
www.allitebooks.com

http://www.allitebooks.org

Beginning XML
4th Edition

David Hunter,

Jeff Rafter,

Joe Fawcett,

Eric van der Vlist,

Danny Ayers,

Jon Duckett,

Andrew Watt, and

Linda McKinnon

www.allitebooks.com

http://www.allitebooks.org

Beginning XML
4th Edition

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Beginning XML
4th Edition

David Hunter,

Jeff Rafter,

Joe Fawcett,

Eric van der Vlist,

Danny Ayers,

Jon Duckett,

Andrew Watt, and

Linda McKinnon

www.allitebooks.com

http://www.allitebooks.org

Beginning XML, 4th Edition
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-11487-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data:

Beginning XML / David Hunter ... [et al.]. -- 4th ed.
p. cm.

ISBN 978-0-470-11487-2 (paper/website)
1. XML (Document markup language) I. Hunter, David, 1974 May 7-
QA76.76.H94B439 2007

006.7’4--dc22
2007006580

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRE-
SENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFES-
SIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOM-
MENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

www.allitebooks.com

www.wiley.com
http://www.allitebooks.org

I would like to thank God, for continuing to give me opportunities to do
what I love; my church family, for giving me more support than I deserve;

and Andrea, for giving me more support than anyone deserves.
I would also like to thank the editors, for their constant help.

Their dedication to the quality of this book was a major factor in its success.
—David

To Ali and Jude, for their loving patience.
—Jeff

To my two brothers, Peter and Stephen, who have both helped me in my life
and career in their own ways, many thanks.

—Joe

To my wife, Catherine, and children, Deborah, David, Samuel, and Sarah,
for their patience and support while I am busy writing books.

—Eric

To my late grandmother, Mona Cartledge, who once gave me a
Commodore Pet.

—Danny

www.allitebooks.com

http://www.allitebooks.org

About the Authors
David Hunter is a Senior Technical Consultant for CGI, a full-service IT and business process services
partner. Providing technical leadership and guidance for solving his clients’ business problems, he is a
jack-of-all-trades and master of some. With a career that has included design, development, support,
training, writing, and other roles, he has had extensive experience building scalable, reliable, enterprise-
class applications. David loves to peek under the hood at any new technology that comes his way, and
when one catches his fancy, he really gets his hands dirty. He loves nothing more than sharing these
technologies with others.

Jeff Rafter is an independent consultant based in Redlands, California. His focus is on emerging tech-
nology and web standards, including XML and validation. He currently works with Baobab Health
Partnership with a focus on improving world health.

Joe Fawcett (http://joe.fawcett.name) started programming in the 1970s and worked briefly in IT
when leaving full-time education. He then pursued a more checkered career before returning to software
development in 1994. In 2003 he was awarded the title of Microsoft Most Valuable Professional in XML
for community contributions and technical expertise; he has subsequently been re-awarded every year
since. Joe currently works in London and is head of software development for FTC Kaplan Ltd., a lead-
ing international provider of accountancy and business training.

Eric van der Vlist is an independent consultant and trainer. His domains of expertise include web devel-
opment and XML technologies. He is the creator and main editor of XMLfr.org, the main site dedicated
to XML technologies in French, the lead author of Professional Web 2.0 Programming, the author of the
O’Reilly animal books XML Schema and RELAX NG and a member or the ISO DSDL (http://dsdl.org)
working group focused on XML schema languages. He is based in Paris and can be reached at
vdv@dyomedea.com, or meet him at one of the many conferences where he presents his projects.

Danny Ayers is a freelance developer and consultant specializing in cutting-edge web technologies.
His blog (http://dannyayers.com) tends to feature material relating to the Semantic Web and/or
cat photos.

Linda McKinnon has more than 10 years of experience as a successful trainer and network engineer,
assisting both private and public enterprises in network architecture design, implementation, system
administration, and RFP procurement. She is a renowned mentor and has published numerous Linux
study guides for Wiley Press and Gearhead Press.

www.allitebooks.com

http://www.allitebooks.org

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editors
Sara Shlaer
Lisa Thibault

Technical Editor
Phred Menyhert

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Brooke Graczyk
Denny Hager
Joyce Haughey
Jennifer Mayberry
Barbara Moore
Alicia B. South

Quality Control Technician
John Greenough

Project Coordinator
Lynsey Osborn

Media Development Specialists
Angie Denny
Kit Malone
Kate Jenkins
Steve Kudirkan

Proofreading
Aptara

Indexing
Broccoli Information Management

Anniversary Logo Design
Richard Pacifico

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

This book would not have been possible without the work of the many developers dedicated to improv-
ing the Web through standards. We would also like to thank the countless contributors to mailing lists,
IRC channels, forums, and friends that have helped us through the difficult corners of the specifications
and technologies presented in this book.

Thanks to Nicholas C. Zakas for his ideas and assistance in implementing the AutoSuggest Control. Many
thanks to Phillip Pearson, who runs TopicExchange.com. He provided much-needed technical support
that otherwise would have meant rewriting most of Chapter 14. We would also like to thank Jim Ley and
Doug Schepers for their assistance on the case study and Chapter 19. Special thanks to our lead editor,
Sara Shlaer, for her gentle and not so gentle persuasive powers and attention to detail; to editor Lisa
Thibault, for her thoughtful assistance; and to Phred Menyhert, for a rigorous technical edit. Many thanks
to our acquisitions editor, Jim Minatel, who has shepherded this book through many incarnations.

Contents

Acknowledgments ix
Introduction xxvii

Part I: Introduction 1

Chapter 1: What Is XML? 3

Of Data, Files, and Text 3
Binary Files 4

Text Files 5

A Brief History of Markup 6

So What Is XML? 7
What Does XML Buy Us? 10

HTML and XML: Apples and Red Delicious Apples 13

Hierarchies of Information 14

What’s a Document Type? 17

No, Really — What’s a Document Type? 18

Origin of the XML Standards 18
What Is the World Wide Web Consortium? 18

Components of XML 19

Where XML Can Be Used, and What You Can Use It For 20
Reducing Server Load 20

Website Content 20

Distributed Computing 21

e-Commerce 21

Summary 22
Exercise Questions 22

Question 1 22

Question 2 22

Chapter 2: Well-Formed XML 23

Parsing XML 24
Tags and Text and Elements, Oh My! 24

Rules for Elements 31

xii

Contents

Attributes 39
When to Use Attributes 43

Comments 45
Empty Elements 49
XML Declarations 50

Version 51

Encoding 51

Standalone 53

Processing Instructions 56
Illegal PCDATA Characters 59

Escaping Characters 60

CDATA Sections 61

Errors in XML 64
Summary 64
Exercise Questions 65

Question 1 65

Question 2 65

Chapter 3: XML Namespaces 67

Why We Need Namespaces 67
Using Prefixes 69

Why Doesn’t XML Just Use These Prefixes? 70

How XML Namespaces Work 72
Default Namespaces 75

Do Different Notations Make Any Difference? 81

Namespaces and Attributes 83

Understanding URIs 86
URLs 86

URNs 87

Why Use URLs for Namespaces, Not URNs? 87

What Do Namespace URIs Really Mean? 88

RDDL 89

When to Use Namespaces 89
Summary 90
Exercise Questions 91

Question 1 91

Question 2 91

Question 3 91

xiii

Contents

Part II: Validation 93

Chapter 4: Document Type Definitions 95

Running the Samples 96
Preparing the Ground 96

The Document Type Declaration 100

Sharing Vocabularies 104
Anatomy of a DTD 105

Element Declarations 105

Attribute Declarations 120

Entities 131

Developing DTDs 141
DTD Limitations 142

DTD Syntax 142

XML Namespaces 143

Data Typing 143

Limited Content Model Descriptions 143

Summary 143
Exercise Questions 144

Question 1 144

Question 2 144

Question 3 144

Chapter 5: XML Schemas 145

Benefits of XML Schemas 146
XML Schemas Use XML Syntax 146

XML Schema Namespace Support 146

XML Schema Data Types 147

XML Schema Content Models 147

Do We Still Need DTDs? 147
XML Schemas 148

The XML Schema Document 148

Running the Samples 148

<schema> Declarations 152

<element> Declarations 155

<complexType> Declarations 165

<group> Declarations 167

Content Models 168

<attribute> Declarations 177

<attributeGroup> Declarations 183

xiv

Contents

Creating Elements with Simple Content and Attributes 185

Datatypes 186

<simpleType> Declarations 193

Creating a Schema from Multiple Documents 200
<import> Declarations 200

<include> Declarations 204

Documenting XML Schemas 206
Comments 206

Attributes from Other Namespaces 207

Annotations 208

Summary 209
Exercise Questions 210

Question 1 210

Question 2 210

Question 3 210

Chapter 6: RELAX NG 211

XML and Compact Syntaxes 212
Running the Samples 212

RELAX NG Patterns 213
Element, Attribute, and Text Patterns 213

Combining and Reusing Patterns and Grammars 227
Named Patterns 227

Combining Named Pattern Definitions 230

Schema Modularization Using the include Directive 231

Redefining Included Named Patterns 232

Removing Patterns with the notAllowed Pattern 233

Extensions and Restrictions 234

Nested Grammars 235

Additional RELAX NG Features 236
Namespaces 236

Name-Classes 237

Datatypes 241

List Patterns 243

Comments and Divisions 244

Useful Resources 245
Summary 245
Exercise Questions 245

Question 1 246

Question 2 246

xv

Contents

Part III: Processing 247

Chapter 7: XPath 249

Ways of Looking at an XML Document 250
Modeling XML Documents 250
Visualizing XPath 251

Understanding Context 252

What Is a Node? 254

XPath 1.0 Types 257

Abbreviated and Unabbreviated Syntax 259
XPath 1.0 Axes 260

Child Axis 260

attribute Axis 262

ancestor Axis 264

ancestor-or-self Axis 265

descendant Axis 265

descendant-or-self Axis 266

following Axis 266

following-sibling Axis 268

namespace Axis 268

parent Axis 271

preceding Axis 271

preceding-sibling Axis 272

self Axis 273

XPath 1.0 Functions 274
Boolean Functions 274

Node-Set Functions 275

Numeric Functions 275

String Functions 276

Predicates 278
Structure of XPath Expressions 278
XPath 2.0 281

Revised XPath Data Model 281

W3C XML Schema Data Types 281

Additional XPath 2.0 Functions 282

XPath 2.0 Features 282

Summary 285
Exercise Questions 285

Question 1 286

Question 2 286

xvi

Contents

Chapter 8: XSLT 287

What Is XSLT? 287
Restructuring XML 288

Presenting XML Content 288

How an XSLT Processor Works 288
Running the Examples 289

Introducing the Saxon XSLT Processor 289

Installing the Saxon XSLT Processor 290

Procedural versus Declarative Programming 292
Procedural Programming 292

Declarative Programming 292

Foundational XSLT Elements 293
The <xsl:stylesheet> Element 295

The <xsl:template> Element 296

The <xsl:apply-templates> Element 296

Getting Information from the Source Tree 297
The <xsl:value-of> Element 297

The <xsl:copy> Element 299

The <xsl:copy-of> Element 303

Influencing the Output with the <xsl:output> Element 306
Conditional Processing 306

The <xsl:if> Element 306

The <xsl:choose> Element 308

The <xsl:for-each> Element 311
The <xsl:sort> Element 312
XSLT Modes 314
XSLT Variables and Parameters 320
Named Templates and the <xsl:call-template> Element 322
XSLT Functions 323
XSLT 2.0 323

Grouping in Version 2.0 324

Non-XML Input and String Handling 327

Multiple Outputs 330

User-Defined Functions 332

xsl:value-of changes 334

Summary 335
Exercise Questions 335

Question 1 335

Question 2 335

xvii

Contents

Part IV: Databases 337

Chapter 9: XQuery, the XML Query Language 339

Why XQuery? 340
Historical Factors 340

Technical Factors 340

Current Status 341

XQuery Tools 343
Saxon 343

X-Hive.com Online 345

X-Hive Database 346

Tamino Database 346

Microsoft SQL Server 2005 346

Oracle 346

Some XQuery Examples 346
Input Functions 346

Retrieving Nodes 348

Element Constructors 351

The XQuery Prolog 355

Computed Constructors 358

Syntax 359

The XQuery Data Model 360
Shared Data Model with XPath 2.0 and XSLT 2.0 360

Node Kinds 361

Sequences of Node-Sets 361

Document Order 361

Comparing Items and Nodes 361

Types in XQuery 361

Axes in XQuery 361

XQuery Expressions 362
FLWOR Expressions 362

XQuery Functions 368
The concat() Function 369

The count() Function 369

Using Parameters with XQuery 370
User-Defined Functions 371
Looking Ahead 372

Update Functionality 372

Full-Text Search 372

Summary 372

xviii

Contents

Exercise Questions 373
Question 1 373

Question 2 373

Chapter 10: XML and Databases 375

The Need for Efficient XML Data Stores 375
The Increasing Amount of XML 376

Comparing XML-Based Data and Relational Data 377

Approaches to Storing XML 378
Storing XML on File Systems 378

Using XML With Conventional Databases 379

Native XML Databases 381

Using Native XML Databases 382
Obtaining and Installing eXist 382

Interacting with eXist 384

XML in Commercial RDBMSs 395
XML Functionality in SQL Server 2000 395

Web Service Support 426

XML in Open Source RDBMS 426
Installing MySQL 426

Adding Information in MySQL 427

Querying MySQL 430

Updating XML in MySQL 435

Usability of XML in MySQL 436

Client-Side XML Support 437

Choosing a Database to Store XML 438
Looking Ahead 438
Summary 438
Exercise Questions 438

Question 1 439

Question 2 439

Question 3 439

Part V: Programming 441

Chapter 11: The XML Document Object Model (DOM) 443

Purpose of the XML DOM 443
Interfaces and Objects 445

The Document Object Model at the W3C 446
XML DOM Implementations 447

www.allitebooks.com

http://www.allitebooks.org

xix

Contents

Two Ways to View DOM Nodes 448
Overview of the XML DOM 448

Tools to Run the Examples 450
Browser Differences 450

The Node Object 458
Properties of the Node Object 458

Methods of the Node Object 461

Loading an XML Document 462

The Effect of Text Nodes 468

The NamedNodeMap Object 471

The NodeList Object 475

The DOMException Object 476

The Document Interface 478
How the XML DOM Is Used in InfoPath 2007 481
Summary 482
Exercise Questions 482

Question 1 482

Question 2 482

Chapter 12: Simple API for XML (SAX) 483

What Is SAX and Why Was It Invented? 483
A Brief History of SAX 484

Where to Get SAX 485

Setting Up SAX 486

Receiving SAX Events 486
ContentHandler Interface 487

ErrorHandler Interface 504

DTDHandler Interface 509

EntityResolver Interface 510

Features and Properties 510

Extension Interfaces 514

Good SAX and Bad SAX 515
Consumers, Producers, and Filters 516
Other Languages 516
Summary 517
Exercise Questions 518

Question 1 518

Question 2 518

xx

Contents

Part VI: Communication 519

Chapter 13: RSS, Atom, and Content Syndication 521

Syndication and Meta Data 521
Syndication Systems 522

The Origin of RSS Species 525

RSS-DEV and RSS 1.0 529

UserLand and RSS 2.0 531

Atom 533

Working with News Feeds 536
Newsreaders 536

Data Quality 536

A Simple Aggregator 537
Modeling Feeds 537

Program Flow 540

Implementation 540

Transforming RSS with XSLT 557

Useful Resources 567
Summary 568
Exercise Questions 568

Question 1 569

Question 2 569

Chapter 14: Web Services 571

What Is an RPC? 571
RPC Protocols 573

DCOM 573

IIOP 574

Java RMI 575

The New RPC Protocol: Web Services 575
XML-RPC 576

The Network Transport 579

Taking a REST 596
The Web Services Stack 600

SOAP 600

WSDL 601

UDDI 602

Surrounding Specifications 602

Summary 604

xxi

Contents

Exercise Questions 605
Question 1 605

Question 2 605

Chapter 15: SOAP and WSDL 607

Laying the Groundwork 608
Running Examples in Windows 2003, XP, and 2000 608
The New RPC Protocol: SOAP 608

Just RESTing 612

Basic SOAP Messages 613

More Complex SOAP Interactions 620

Defining Web Services: WSDL 632
<definitions> 633

<types> 633

<messages> 634

<portTypes> 635

<binding> 635

<soap:body> 637

<service> 638

Other Bindings 641

Summary 644
Exercise Questions 644

Question 1 644

Question 2 644

Chapter 16: Ajax 645

Early Attempts at Asynchronous Updates 645
Microsoft versus Mozilla 647

Cross-Browser Solutions 647

Basic Posting Techniques 649
Transport and Processing on the Server 652

JSON 652

Payment Card Validator 653

The AutoSuggest Box 658

Server-Side Proxies 681
The Currency Converter Proxy 682

Summary 686
Exercise Questions 687

Question 1 687

Question 2 687

Question 3 687

xxii

Contents

Part VII: Display 689

Chapter 17: Cascading Style Sheets (CSS) 691

Why Stylesheets? 692
Introducing CSS 693

CSS Properties 694

Inheritance 695

Attaching the Stylesheet to an XML Document 699

Selectors 700

Using CSS for Layout of XML Documents 701
Understanding the Box Model 702

Positioning in CSS 706

Laying Out Tabular Data 719
Links in XML Documents 721

XLink Support in Firefox 721

Forcing Links Using the XHTML Namespace 725

Images in XML Documents 725
Using CSS to Add Content to Documents 726
Attribute Content 729

Attribute Selectors 729

Using Attribute Values in Documents 729

Summary 732
Exercise Questions 732

Question 1 732

Question 2 733

Question 3 733

Question 4 733

Chapter 18: XHTML 735

Separating Style from Content 736
Learning XHTML 1.x 738

Document Type Definitions for XHTML 738

Basic Changes in Writing XHTML 740

Styling XHTML Documents 751

Stricter Documents Make Faster and Lighter Processors 753

XHTML Tools 753

Validating XHTML Documents 754

Validation Pitfalls 756

Mime Types Pitfalls 757

xxiii

Contents

Modularized XHTML 759
Module Implementations 761

XHTML 1.1 761

XHTML Basic 762

What’s Next for XHTML 763
Summary 765
Exercise Questions 766

Question 1 766

Question 2 766

Chapter 19: Scalable Vector Graphics (SVG) 767

What Is SVG? 767
Scalable, Vector, Graphics 768

Putting SVG to Work 769

An SVG Toolkit 769

Getting Started 771
Views and Units 774

The Painter’s Model 774

Grouping 776

Transformations 776

Paths 777

Images 780

Text 781

Comments, Annotation, and Metadata 782

Scripting 784

SVG on Your Website 785

Tangram: A Simple Application 786
XHTML Wrapper 787

SVG Shapes 788

Tangram Script 792

Useful Resources 799
Summary 800
Exercise Questions 800

Question 1 800

Question 2 801

Chapter 20: XForms 803

How XForms Improves on HTML Forms 804
XForms Tools 804
An Illustrative XForms Example 810

xxiv

Contents

XForms Form Controls 817
The xforms:input Element 817

The xforms:secret Element 818

The xforms:textarea Element 818

The xforms:output Element 818

The xforms:upload Element 819

The xforms:range Element 819

The xforms:trigger Element 820

The xforms:submit Element 820

The xforms:select Element 821

The xforms:select1 Element 822

Constraining XForms Instances 828
The xforms:bind Element 828

W3C XML Schema in XForms 833

Schema or Bind Elements: Which One to Choose? 834

XForms Events 834
The XForms Action Module 835

Developing and Debugging XForms 836

Alternatives to XForms 836
Microsoft InfoPath 836

Adobe LiveCycle 837

HTML Forms 838

Summary 838
Exercise Questions 838

Question 1 838

Question 2 838

Part VIII: Case Study 839

Chapter 21: Case Study: Payment Calculator 841

Mortgage Calculations 841
What You’ll Need 842
Online Loan Calculator 842

Integrating the Calculation Web Service 849

Enhancing the Display with SVG 865

Adding the Frame to the Main Page 868

Summary 872

Chapter 22: Case Study: Payment Calculator — Ruby on Rails Online

xxv

Contents

Appendix A: Exercise Solutions 873

Appendix B: XPath Reference 923

Appendix C: XSLT Reference 939

Appendix D: The XML Document Obect Model Online

Appendix E: XML Schema Element and Attribute Reference Online

Appendix F: XML Schema Datatypes Reference Online

Appendix G: SAX 2.0.2 Reference Online

Index 971

Introduction

Welcome to Beginning XML, Fourth Edition, the book I wish I’d had when I was first learning the language!

When we wrote the first edition of this book, XML was a relatively new language but already gaining
ground fast and becoming more and more widely used in a vast range of applications. By the time we
started the second edition, XML had already proven itself to be more than a passing fad, and was in fact
being used throughout the industry for an incredibly wide range of uses. As we began the third edition,
it was clear that XML was a mature technology, but more important, it became evident that the XML
landscape was dividing into several areas of expertise. In this edition, we needed to categorize the
increasing number of specifications surrounding XML, which either use XML or provide functionality in
addition to the XML core specification.

So what is XML? It’s a markup language, used to describe the structure of data in meaningful ways.
Anywhere that data is input/output, stored, or transmitted from one place to another, is a potential fit
for XML’s capabilities. Perhaps the most well-known applications are web-related (especially with the
latest developments in handheld web access—for which some of the technology is XML-based).
However, there are many other non-web-based applications for which XML is useful—for example, as a
replacement for (or to complement) traditional databases, or for the transfer of financial information
between businesses. News organizations, along with individuals, have also been using XML to dis-
tribute syndicated news stories and blog entries.

This book aims to teach you all you need to know about XML—what it is, how it works, what technolo-
gies surround it, and how it can best be used in a variety of situations, from simple data transfer to using
XML in your web pages. It answers the fundamental questions:

❑ What is XML?

❑ How do you use XML?

❑ How does it work?

❑ What can you use it for, anyway?

Who Is This Book For?
This book is for people who know that it would be a pretty good idea to learn XML but aren’t 100 per-
cent sure why. You’ve heard the hype but haven’t seen enough substance to figure out what XML is and
what it can do. You may be using development tools that try to hide the XML behind user interfaces and
scripts, but you want to know what is really happening behind the scenes. You may already be somehow
involved in web development and probably even know the basics of HTML, although neither of these
qualifications is absolutely necessary for this book.

xxviii

Introduction

What you don’t need is knowledge of markup languages in general. This book assumes that you’re new
to the concept of markup languages, and we have structured it in a way that should make sense to the
beginner and yet quickly bring you to XML expert status.

The word “Beginning” in the title refers to the style of the book, rather than the reader’s experience
level. There are two types of beginner for whom this book is ideal:

❑ Programmers who are already familiar with some web programming or data exchange tech-
niques. Programmers in this category will already understand some of the concepts discussed
here, but you will learn how you can incorporate XML technologies to enhance those solutions
you currently develop.

❑ Those working in a programming environment but with no substantial knowledge or experi-
ence of web development or data exchange applications. In addition to learning how XML tech-
nologies can be applied to such applications, you will be introduced to some new concepts to
help you understand how such systems work.

How This Book Is Organized
We’ve arranged the subjects covered in this book to take you from novice to expert in as logical a man-
ner as we could. In this Fourth Edition, we have structured the book in sections that are based on vari-
ous areas of XML expertise. Unless you are already using XML, you should start by reading the
introduction to XML in Part I. From there, you can quickly jump into specific areas of expertise, or, if you
prefer, you can read through the book in order. Keep in mind that there is quite a lot of overlap in XML,
and that some of the sections make use of techniques described elsewhere in the book.

❑ We begin by explaining what exactly XML is and why the industry felt that a language like this
was needed.

❑ After covering the why, the next logical step is the how, so we show you how to create well-
formed XML.

❑ Once you understand the whys and hows of XML, you’ll go on to some more advanced things
you can do when creating your XML documents, to make them not only well formed, but valid.
(And you’ll learn what “valid” really means.)

❑ After you’re comfortable with XML and have seen it in action, we unleash the programmer
within and look at an XML-based programming language that you can use to transform XML
documents from one format to another.

❑ Eventually, you will need to store and retrieve XML information from databases. At this point,
you will learn not only the state of the art for XML and databases, but also how to query XML
information using an SQL-like syntax called XQuery.

❑ XML wouldn’t really be useful unless you could write programs to read the data in XML docu-
ments and create new XML documents, so we’ll get back to programming and look at a couple
of ways that you can do that.

❑ Understanding how to program and use XML within your own business is one thing, but send-
ing that information to a business partner or publishing it to the Internet is another. You’ll learn
about technologies that use XML that enable you to send messages across the Internet, publish
information, and discover services that provide information.

www.allitebooks.com

http://www.allitebooks.org

xxix

Introduction

❑ Since you have all of this data in XML format, it would be great if you could easily display it to
people, and it turns out you can. We’ll show you an XML version of HTML called XHTML.
You’ll also look at a technology you may already be using in conjunction with HTML docu-
ments called CSS. CSS enables you to add visual styles to your XML documents. In addition,
you’ll learn how to design stunning graphics and make interactive forms using XML.

❑ Finally, we end with a case study, which should help to give you ideas about how XML can be
used in real-life situations, and which could be used in your own applications.

What’s Covered in This Book
This book builds on the strengths of the earlier editions, and provides new material to reflect the
changes in the XML landscape—notably XQuery, RSS and Atom, and AJAX. Updates have been made to
reflect the most recent versions of specifications and best practices throughout the book. In addition to
the many changes, each chapter has a set of exercise questions to test your understanding of the mate-
rial. Possible solutions to these questions appear in Appendix A.

Part I: Introduction
The introduction is where most readers should begin. The first three chapters introduce some of the
goals of XML as well as the specific rules for constructing XML. Once you have read this part you should
be able to read and create your own XML documents.

Chapter 1: What Is XML?

Here we cover some basic concepts, introducing the fact that XML is a markup language (a bit like
HTML) whereby you can define your own elements, tags, and attributes (known as a vocabulary). You’ll
see that tags have no presentation meaning—they’re just a way to describe the structure of the data.

Chapter 2: Well-Formed XML

In addition to explaining what well-formed XML is, we offer a look at the rules that exist (the XML 1.0
and 1.1 Recommendations) for naming and structuring elements—you need to comply with these rules
in order to produce well-formed XML.

Chapter 3: XML Namespaces

Because tags can be made up, you need to avoid name conflicts when sharing documents. Namespaces
provide a way to uniquely identify a group of tags, using a URI. This chapter explains how to use
namespaces.

Part II: Validation
In addition to the well-formedness rules you learn in Part I, you will most likely want to learn how to
create and use different XML vocabularies. This Part introduces you to DTDs, XML Schemas, and
RELAX NG: three languages that define custom XML vocabularies. We also show you how to utilize
these definitions to validate your XML documents.

xxx

Introduction

Chapter 4: Document Type Definitions

You can specify how an XML document should be structured, and even provide default values, using
Document Type Definitions (DTDs). If XML conforms to the associated DTD, it is known as valid XML.
This chapter covers the basics of using DTDs.

Chapter 5: XML Schemas

XML Schemas, like DTDs, enable you to define how a document should be structured. In addition to
defining document structure, they enable you to specify the individual datatypes of attribute values and
element content. They are a more powerful alternative to DTDs.

Chapter 6: RELAX NG

RELAX NG is a third technology used to define the structure of documents. In addition to a new syntax
and new features, it takes the best from XML Schemas and DTDs, and is therefore very simple and very
powerful. RELAX NG has two syntaxes; both the full syntax and compact syntax are discussed.

Part III: Processing
In addition to defining and creating XML documents, you need to know how to work with documents
to extract information and convert it to other formats. In fact, easily extracting information and convert-
ing it to other formats is what makes XML so powerful.

Chapter 7: XPath

The XPath language is used to locate sections and data in the XML document, and it’s important in
many other XML technologies.

Chapter 8: XSLT

XML can be transformed into other XML documents, HTML, and other formats using XSLT stylesheets,
which are introduced in this chapter.

Part IV: Databases
Creating and processing XML documents is good, but eventually you will want to store those docu-
ments. This section describes strategies for storing and retrieving XML documents and document frag-
ments from different databases.

Chapter 9: XQuery, the XML Query Language

Very often, you will need to retrieve information from within a database. XQuery, which is built on
XPath and XPath2, enables you to do this in an elegant way.

Chapter 10: XML and Databases

XML is perfect for structuring data, and some traditional databases are beginning to offer support
for XML. This chapter discusses these, and provides a general overview of how XML can be used in
an n-tier architecture. In addition, new databases based on XML are introduced.

xxxi

Introduction

Part V: Programming
At some point in your XML career, you will need to work with an XML document from within a custom
application. The two most popular methodologies, the Document Object Model (DOM) and the Simple
API for XML (SAX), are explained in this part.

Chapter 11: The Document Object Model (DOM)

Programmers can use a variety of programming languages to manipulate XML using the Document
Object Model’s objects, interfaces, methods, and properties, which are described in this chapter.

Chapter 12: Simple API for XML (SAX)

An alternative to the DOM for programmatically manipulating XML data is to use the Simple API for
XML (SAX) as an interface. This chapter shows how to use SAX and utilizes examples from the Java SAX
API.

Part VI: Communication
Sending and receiving data from one computer to another is often difficult, but several technologies have
been created to make communication with XML much easier. In this part we discuss RSS and content syn-
dication, as well as web services and SOAP. This edition includes a new chapter on Ajax techniques.

Chapter 13: RSS, Atom, and Content Syndication

RSS is an actively evolving technology that is used to publish syndicated news stories and website sum-
maries on the Internet. This chapter not only discusses how to use the different versions of RSS and
Atom, it also covers the future direction of the technology. In addition, we demonstrate how to create a
simple newsreader application that works with any of the currently published versions.

Chapter 14: Web Services

Web services enable you to perform cross-computer communications. This chapter describes web ser-
vices and introduces you to using remote procedure calls in XML (using XML-RPC and REST), as well as
giving you a brief look at major topics such as SOAP. Finally, it breaks down the assortment of specifica-
tions designed to work in conjunction with web services.

Chapter 15: SOAP and WSDL

Fundamental to XML web services, the Simple Object Access Protocol (SOAP) is one of the most popular
specifications for allowing cross-computer communications. Using SOAP, you can package up XML doc-
uments and send them across the Internet to be processed. This chapter explains SOAP and the Web
Services Description Language (WSDL) that is used to publish your service.

Chapter 16: Ajax

Ajax enables you to utilize JavaScript with web services and SOAP, or REST communications.
Additionally, Ajax patterns can be used within web pages to communicate with the web server without
refreshing. This chapter is new to the Fourth Edition.

xxxii

Introduction

Part VII: Display
Several XML technologies are devoted to displaying the data stored inside of an XML document. Some
of these technologies are web-based, and some are designed for applications and mobile devices. In this
part we discuss the primary display strategies and formats used today.

Chapter 17: Cascading Style Sheets (CSS)

Website designers have long been using Cascading Style Sheets (CSS) with their HTML to easily make
changes to a website’s presentation without having to touch the underlying HTML documents. This
power is also available for XML, enabling you to display XML documents right in the browser. Or, if you
need a bit more flexibility with your presentation, you can use XSLT to transform your XML to HTML or
XHTML and then use CSS to style these documents.

Chapter 18: XHTML

XHTML is a new version of HTML that follows the rules of XML. In this chapter we discuss the differ-
ences between HTML and XHTML, and show you how XHTML can help make your sites available to a
wider variety of browsers, from legacy browsers to the latest browsers on mobile phones.

Chapter 19: Scalable Vector Graphics (SVG)

Do you want to produce a custom graphic using XML? SVG enables you to describe a graphic using
XML-based vector commands. In this chapter we teach you the basics of SVG and then dive into a more
complex SVG-based application that can be published to the Internet.

Chapter 20: XForms

XForms are XML-based forms that can be used to design desktop applications, paper-based forms, and
of course XHTML-based forms. In this chapter we demonstrate both the basics and some of the more
interesting uses of XForms.

Part VIII: Case Study
Throughout the book you’ll gain an understanding of how XML is used in web, business-to-business (B2B),
data storage, and many other applications. The case study covers an example application and shows how
the theory can be put into practice in real-life situations. The case study is new to this edition.

Chapter 21: Case Study: Payment Calculator

This case study explores some of the possibilities and strategies for using XML in your website. It
includes an example that demonstrates a loan payment calculator by creating a web page using XHTML
and CSS, communicating with a local web service using AJAX, utilizing an XML Schema to build data
structures in .NET, and ultimately using the Document Object Model to display the results in SVG. An
online version of this case study on the book’s website covers the same material using Ruby on Rails
instead of .NET.

Appendixes
Appendix A provides answers to the exercise questions that appear throughout the book. The remaining
appendixes provide reference material that you may find useful as you begin to apply the knowledge
gained throughout the book in your own applications.

xxxiii

Introduction

The appendixes consist of the following:

❑ Appendix A: Exercise Solutions

❑ Appendix B: XPath Reference

❑ Appendix C: XSLT Reference

❑ Appendix D: The XML Document Object Model

❑ Appendix E: XML Schema Element and Attribute Reference

❑ Appendix F: XML Schema Datatypes Reference

❑ Appendix G: SAX 2.0.2 Reference

Appendixes A, B, and C are included within the book; Appendixes D–G are available on the book’s
website.

What You Need to Use This Book
Because XML is a text-based technology, all you really need to create XML documents is Notepad or an
equivalent text editor. However, to truly appreciate some of these samples in action, you might want to
have a current Internet browser that can natively read XML documents, and even provide error mes-
sages if something is wrong. In any case, screenshots are provided throughout the book so that you can
see what things should look like. Additionally, note the following:

❑ If you do have Internet Explorer, you also have an implementation of the DOM, which you may
find useful in the chapters on that subject.

❑ Some of the examples and the case studies require access to a web server, such as Microsoft’s IIS
(or PWS) or Apache.

❑ Throughout the book, other (freely available) XML tools are used, and we give instructions for
obtaining these.

Within the validation section of the book we provide instructions on how to use Codeplot (http://
codeplot.com). Codeplot is an online collaborative code editor with support for a wide assortment of
XML technologies. Because many validation tools require programming experience or large downloads,
the examples in this section instead use Codeplot. Codeplot can also be used to check the well-formed-
ness of your XML documents, to transform XML documents using XSLT, and to assist you in coding
XHTML, CSS, and SVG. The editor is free and was built using many of the techniques described in this
book.

Programming Languages
We have tried to demonstrate the ubiquity of XML throughout the book. Some of the examples are spe-
cific to Windows, but most of the examples include information on working with other platforms, such
as Linux. Many of the samples were rewritten in this edition to enable you to use any operating system
or web browser.

xxxiv

Introduction

Additionally, we have attempted to show the use of XML in a variety of programming languages,
including Java, JavaScript, PHP, Python, Visual Basic, ASP, C#, and Ruby on Rails. Therefore, while there
is a good chance that you will see an example written in your favorite programming language, there is
also a good chance you will encounter an example in a language you have never used. Whenever a new
language is introduced, we include information on downloading and installing the necessary tools to
use it. Because our focus is XML, regardless of which programming language is used in an example, the
core XML concept is explained in detail.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used several conven-
tions throughout the book.

Try It Out

The Try It Out is an exercise you should work through, following the text in the book.

1. They usually consist of a set of steps.

2. Each step has a number.

3. Follow the steps with your copy of the database.

How It Works
After each Try It Out, the code is explained in detail.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show filenames, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

xxxv

Introduction

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
SB 978-0-470-11487-2

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or a
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration, and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list, includ-
ing links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

xxxvi

Introduction

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Part I

Introduction

Chapter 1: What Is XML?

Chapter 2: Well-Formed XML

Chapter 3: XML Namespaces

www.allitebooks.com

http://www.allitebooks.org

1
What Is XML?

XML (Extensible Markup Language) is a buzzword you will see everywhere on the Internet, but it’s
also a rapidly maturing technology with powerful real-world applications, particularly for the
management, display, and organization of data. Together with its many related technologies,
which are covered in later chapters, XML is an essential technology for anyone working with data,
whether publicly on the web or privately within your own organization. This chapter introduces
you to some XML basics and begins to show you why learning about it is so important.

This chapter covers the following:

❑ The two major categories of computer file types — binary files and text files — and the
advantages and disadvantages of each

❑ The history behind XML, including other markup languages such as SGML and HTML

❑ How XML documents are structured as hierarchies of information

❑ A brief introduction to some of the other technologies surrounding XML, which you will
work with throughout the book

❑ A quick look at some areas where XML is useful

While there are some short examples of XML in this chapter, you aren’t expected to understand
what’s going on just yet. The idea is simply to introduce the important concepts behind the lan-
guage so that throughout the book you can see not only how to use XML, but also why it works
the way it does.

Of Data, Files, and Text
XML is a technology concerned with the description and structuring of data, so before you can
really delve into the concepts behind XML, you need to understand how computers store and
access data. For our purposes, computers understand two kinds of data files: binary files and
text files.

Binary Files
A binary file, at its simplest, is just a stream of bits (1s and 0s). It’s up to the application that created a
binary file to understand what all of the bits mean. That’s why binary files can only be read and pro-
duced by certain computer programs, which have been specifically written to understand them.

For instance, when a document is created with Microsoft Word, the program creates a binary file with an
extension of “doc,’’ in its own proprietary format. The programmers who wrote Word decided to insert
certain binary codes into the document to denote bold text, codes to denote page breaks, and other codes
for all of the information that needs to go into a “doc’’ file. When you open a document in Word, it inter-
prets those codes and displays the properly formatted text or prints it to the printer.

The codes inserted into the document are meta data, or information about information. Examples could
be “this word should be in bold,” “that paragraph should be centered,” and so on. This meta data is
really what differentiates one file type from another; the different types of files use different kinds of
meta data. For example, a word processing document has different meta data than a spreadsheet docu-
ment, because they are describing different things. Not so obviously, documents from different word
processing applications, such as Microsoft Word and WordPerfect, also have different meta data, because
the applications were written differently (see Figure 1-1).

Figure 1-1

You can’t assume that a document created with one word processor will be readable by another, because
the companies who write word processors all have their own proprietary formats for their data files.
Word documents open in Microsoft Word, and WordPerfect documents open in WordPerfect.

Luckily, most word processors come with translators or import utilities, which can translate documents
from other word processors into formats that can be understood natively. If I have Microsoft Word
installed on my computer and someone gives me a WordPerfect document, I might be able to import it
into Word so that I can read the document. Of course, many of us have seen the garbage that sometimes
occurs as a result of this translation; sometimes applications are not as good as we’d like them to be at
converting the information.

Binary file formats are advantageous because it is easy for computers to understand these binary codes —
meaning that they can be processed much faster than nonbinary formats — and they are very efficient for
storing this meta data. There is also a disadvantage, as you’ve seen, in that binary files are proprietary.
You might not be able to open binary files created by one application in another application, or even in the
same application running on another platform.

Microsoft
Word

WordPerfect

To the head of
deparment of Tech-
BooksTo the head of de-
parment of TechBooksTo
the head of deparment of
TechBooksTo the head of
deparment of TechBooks-
To the head of depart-
ment of TechBooksTo the
head of deparment of

4

Part I: Introduction

Text Files
Like binary files, text files are also streams of bits. However, in a text file these bits are grouped together
in standardized ways, so that they always form numbers. These numbers are then further mapped to
characters. For example, a text file might contain the following bits:

1100001

This group of bits would be translated as the number 97, which could then be further translated into the
letter a.

This example makes a number of assumptions. A better description of how numbers are represented in
text files is given in the “Encoding” section in Chapter 2.

Because of these standards, text files can be read by many applications, and can even be read by
humans, using a simple text editor. If I create a text document, anyone in the world can read it (as long
as they understand English, of course) in any text editor they wish. Some issues still exist, such as the
fact that different operating systems treat line-ending characters differently, but it is much easier to share
information when it’s contained in a text file than when the information is in a binary format.

Figure 1-2 shows some of the applications on my machine that are capable of opening text files. Some of
these programs only allow me to view the text, while others will let me edit it as well.

Figure 1-2

In its early days, the Internet was almost completely text-based, which enabled people to communicate
with relative ease. This contributed to the explosive rate at which the Internet was adopted, and to the
ubiquity of applications such as e-mail, the World Wide Web, newsgroups, and so on.

The disadvantage of text files is that adding other information — our meta data, in other words — is
more difficult and bulky. For example, most word processors enable you to save documents in text form,
but if you do, you can’t mark a section of text as bold or insert a binary picture file. You will simply get
the words with none of the formatting.

Tthe date10.01

Head jpur

kfkjfjkjf

To the head of deparment

of TechBooksTo the head of

deparment of TechBooksTo

the head of

Antaryami

A rout

Microsoft
Word

Notepad WordPad FrontPage

Netscape
Navigator

Visual
Studio

Internet
Explorer

5

Chapter 1: What Is XML?

A Brief History of Markup
You can see that there are advantages to binary file formats (easy to understand by a computer, compact,
the ability to add meta data), as well as advantages to text files (universally interchangeable). Wouldn’t it
be ideal if there were a format that combined the universality of text files with the efficiency and rich
information storage capabilities of binary files?

This idea of a universal data format is not new. In fact, for as long as computers have been around, pro-
grammers have been trying to find ways to exchange information between different computer programs.
An early attempt to combine a universally interchangeable data format with rich information storage
capabilities was Standard Generalized Markup Language (SGML). SGML is a text-based language that can
be used to mark up data — that is, add meta data — in a way that is self-describing. (You’ll see in a
moment what self-describing means.)

SGML was designed to be a standard way of marking up data for any purpose, and took off mostly in
large document management systems. When it comes to huge amounts of complex data, a lot of consid-
erations must be taken into account, so SGML is a very complicated language. However, with that com-
plexity comes power.

A very well-known language based on the SGML work is the HyperText Markup Language (HTML).
HTML uses many of SGML’s concepts to provide a universal markup language for the display of infor-
mation, and the linking of different pieces of information. The idea was that any HTML document (or
web page) would be presentable in any application that was capable of understanding HTML (termed a
web browser). A number of examples are given in Figure 1-3.

Figure 1-3

Not only would that browser be able to display the document, but if the page contained links (termed
hyperlinks) to other documents, the browser would also be able to seamlessly retrieve them as well.

Furthermore, because HTML is text-based, anyone can create an HTML page using a simple text editor,
or any number of web page editors, some of which are shown in Figure 1-4.

Firefox
Microsoft Internet

Explorer

Lynx

MozillaCello

HotJava

6

Part I: Introduction

Figure 1-4

Even many word processors, such as WordPerfect and Word, allow you to save documents as HTML.
Think about the ramifications of Figures 1-3 and 1-4: Any HTML editor, including a simple text editor,
can create an HTML file, and that HTML file can then be viewed in any web browser on the Internet!

So What Is XML?
Unfortunately, SGML is such a complicated language that it’s not well suited for data interchange over
the web. In addition, although HTML has been incredibly successful, it’s limited in scope: It is only
intended for displaying documents in a browser. The tags it makes available do not provide any infor-
mation about the content they encompass, only instructions about how to display that content. This
means that you could create an HTML document that displays information about a person, but that’s
about all you could do with the document. You couldn’t write a program to figure out from that docu-
ment which piece of information relates to the person’s first name, for example, because HTML doesn’t
have any facilities to describe this kind of specialized information. In fact, HTML wouldn’t even know
that the document was about a person at all. Extensible Markup Language (XML) was created to address
these issues.

Note that despite the acronym, it’s spelled “Extensible,” not “eXtensible.” Mixing these up is a com-
mon mistake.

XML is a subset of SGML, with the same goals (markup of any type of data), but with as much of the
complexity eliminated as possible. XML was designed to be fully compatible with SGML, meaning any
document that follows XML’s syntax rules is by definition also following SGML’s syntax rules, and can
therefore be read by existing SGML tools. It doesn’t go both ways, however, so an SGML document is
not necessarily an XML document.

It is important to realize that XML is not really a “language” at all, but a standard for creating languages
that meet the XML criteria (we go into these rules for creating XML documents in Chapter 2). In other
words, XML describes a syntax that you use to create your own languages. For example, suppose you
have data about a name, and you want to be able to share that information with others as well as use
that information in a computer program. Instead of just creating a text file like this:

FrontPage

WordPerfect

Eclipse

WordNotepad

Visual Studio

7

Chapter 1: What Is XML?

John Doe

or an HTML file like this

<html>
<head><title>Name</title></head>
<body>
<p>John Doe</p>
</body>
</html>

you might create an XML file like the following:

<name>
<first>John</first>
<last>Doe</last>

</name>

Even from this simple example, you can see why markup languages such as SGML and XML are called
“self-describing.” Looking at the data, you can easily tell that this is information about a <name>, and
you can see that there is data called <first> and more data called <last>. You can give the tags any
names you like, but if you’re going to use XML, you might as well use it right and give things meaningful
names.

You can also see that the XML version of this information is much larger than the plain-text version.
Using XML to mark up data adds to its size, sometimes enormously, but achieving small file sizes isn’t
one of the goals of XML; it’s only about making it easier to write software that accesses the information,
by giving structure to the data.

If bandwidth is a critical issue for your applications, you can always compress your XML documents
before sending them across the network — compressing text files yields very good results.

If you’re running Internet Explorer 5 or later, you can view the preceding XML in your browser, as
shown in the following Try It Out. (You can also use other web browsers, such as Firefox, to display the
XML examples in this chapter. All of the screenshots shown, however, are of Internet Explorer 6.)

Try It Out Opening an XML File in Internet Explorer

1. Open Notepad and type in the following XML:

<name>
<first>John</first>
<last>Doe</last>

</name>

This larger file size should not deter you from using XML. The advantages of easier-
to-write code far outweigh the disadvantages of larger bandwidth issues.

8

Part I: Introduction

2. Save the document to your hard drive as name.xml. If you’re using Windows XP, be sure to
change the Save as Type drop-down option to All Files. (Otherwise, Notepad will save the docu-
ment with a .txt extension, causing your file to be named name.xml.txt.) You might also
want to change the Encoding drop-down to Unicode, as shown in Figure 1-5. (Find more infor-
mation on encodings in Chapter 2.)

Figure 1-5

3. You can then open the file in Internet Explorer (for example, by double-clicking on the file in
Windows Explorer), where it will look something like Figure 1-6.

Figure 1-6

9

Chapter 1: What Is XML?

How It Works
Although your XML file has no information concerning display, the browser formats it nicely for you,
with your information in bold and your markup displayed in different colors. In addition, <name> is col-
lapsible, like your file folders in Windows Explorer. Try clicking on the minus sign (–) next to <name> in
the browser window. It should then look like Figure 1-7.

Figure 1-7

For large XML documents, where you only need to concentrate on a smaller subset of the data, this fea-
ture can be quite handy. This is one reason why Internet Explorer can be so helpful when authoring
XML: It has a default stylesheet built in, which applies this default formatting to any XML document.

XML styling is accomplished through another document dedicated to the task, called a stylesheet. In a
stylesheet, the designer specifies rules that determine the presentation of the data. The same stylesheet
can then be used with multiple documents to create a similar appearance among them. A variety of lan-
guages can be used to create stylesheets. Chapter 8 explains a transformation stylesheet language called
Extensible Stylesheet Language Transformations (XSLT), and Chapter 17 looks at a stylesheet language
called Cascading Style Sheets (CSS).

As you’ll see in later chapters, you can also create your own stylesheets for displaying XML documents.
This way, the same data that your applications use can also be viewed in a browser. In effect, by combin-
ing XML data with stylesheets, you can separate your data from your presentation. That makes it easier
to use the data for multiple purposes (as opposed to HTML, which doesn’t provide any separation of
data from presentation — in HTML, everything is presentation).

What Does XML Buy Us?
I can hear what some of you are thinking. Why go to the trouble of creating an XML document? Wouldn’t
it be easier to just make up some rules for a file about names, such as “The first name starts at the begin-
ning of the file, and the last name comes after the first space?” That way, your application could still read
the data, but the file size would be much smaller.

As a partial answer, suppose that we want to add a middle name to our example:

John Fitzgerald Doe

10

Part I: Introduction

Okay, no problem. We’ll just modify our rules to say that everything after the first space and up to the
second space is the middle name, and everything after the second space is the last name. However, if
there is no second space, we have to assume that there is no middle name, and the first rule still applies.
We’re still fine, unless a person happens to have a name like the following:

John Fitzgerald Johansen Doe

Whoops! There are two middle names in there. The rules get more complex. While a human might be able
to tell immediately that the two middle words compose the middle name, it is more difficult to program
this logic into a computer program. We won’t even discuss “John Fitzgerald Johansen Doe the 3rd”!

Unfortunately, when it comes to problems like this, many software developers simply define more
restrictive rules, instead of dealing with the complexities of the data. In this example, a software devel-
oper might decide that a person can only have one middle name, and the application won’t accept any-
thing more than that.

This is pretty realistic, I might add. My full name is David John Bartlett Hunter, but because of the way
in which many computer systems are set up, a lot of the bills I receive are simply addressed to David
John Hunter or David J. Hunter. Maybe I can find some legal ground to stop paying my bills, but in the
meantime, my vanity takes a blow every time I open my mail.

This example is probably not all that hard to solve, but it highlights one of the major focuses behind
XML. Programmers have been structuring their data in an infinite variety of ways, and every new way
of structuring data brings a new methodology for pulling out the information we need. With those new
methodologies comes a lot of experimentation and testing to get it just right. If the data changes, the
methodologies also have to change, and testing and tweaking has to begin again. XML offers a standard-
ized way to get the information we need, no matter how we structure it.

In addition, remember how trivial this example is. The more complex the data you have to work with,
the more complex the logic you’ll need to do that work. You’ll appreciate XML the most in larger
applications.

XML Parsers
If we just follow the rules specified by XML, we can be sure that getting at our information will be easy.
This is because there are programs called parsers that can read XML syntax and extract the information
for us. We can use these parsers within our own programs, meaning our applications will never have to
look at the XML directly; a large part of the workload will be done for us.

Parsers are also available for parsing SGML documents, but they are much more complex than XML
parsers. Because XML is a subset of SGML, it’s easier to write an XML parser than an SGML parser.

In the past, before these parsers were around, a lot of work would have gone into the many rules we
were looking at (such as the rule that the middle name starts after the first space, and so on), but with
our data in XML format, we can just give an XML parser a file like this:

<name>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

11

Chapter 1: What Is XML?

The parser can tell us that there is a piece of data called <middle>, and that the information stored there
is Fitzgerald Johansen. The parser writer didn’t have to know any rules about where the first name
ends and where the middle name begins, because the parser simply uses the <middle> and </middle>
tags to determine where the data begins and ends. The parser didn’t have to know anything about my
application at all, nor about the types of XML documents the application works with. The same parser
could be used in my application, or in a completely different application. The language my XML is writ-
ten in doesn’t matter to the parser either; XML written in English, Chinese, Hebrew, or any other lan-
guage could all be read by the same parser, even if the person who wrote it didn’t understand any of
these languages.

There’s another added benefit here: If I had previously written a program to deal with the first XML for-
mat, which had only a first and last name, that application could also accept the new XML format, with-
out me having to change the code. Because the parser takes care of the work of getting data out of the
document for us, you can add to your XML format without breaking existing code, and new applications
can take advantage of the new information if they wish. If we were using our previous text-only format,
any time we changed the data at all, every application using that data would have to be modified,
retested, and redeployed.

As long as an existing application were simply looking for information called “first” and information
called “last,” it would continue to work, even if we added to the document. Of course, if we subtracted
information from our <name> example, or changed the names we used for the data, we would still have
to modify our applications to deal with the changes.

Because it’s so flexible, XML is targeted to be the basis for defining data exchange languages, especially
for communication over the Internet. The language facilitates working with data within applications,
such as an application that needs to access the previously listed <name> information, but it also facili-
tates sharing information with others. We can pass our <name> information around the Internet and,
even without our particular program, the data can still be read. People can pull the file up in a regular
text editor and look at the raw XML if they like, or open it in a viewer such as Internet Explorer.

Why “Extensible?’’
Because we have full control over the creation of our XML document, we can shape the data in any way
we wish, so that it makes sense for our particular application. If we don’t need the flexibility of our
<name> example, and don’t need to know which part of the “name” is the “first name,” and which is the
“last name,” we could decide to describe a person’s name in XML like this:

<designation>John Fitzgerald Johansen Doe</designation>

If we want to create data in a way that only one particular computer program will ever use, we can do
so; and if we decide that we want to share our data with other programs, or even other companies across
the Internet, XML gives us the flexibility to do that as well. We are free to structure the same data in dif-
ferent ways that suit the requirements of an application or category of applications.

Just as any HTML document can be displayed by any web browser, any XML docu-
ment can be read by any XML parser, regardless of what application was used to cre-
ate it, or even what platform it was created on. This goes a long way toward making
your data universally accessible.

12

Part I: Introduction

www.allitebooks.com

http://www.allitebooks.org

This is where the extensible in Extensible Markup Language comes from: Anyone is free to mark up
data in any way using the language, even if others are doing it in completely different ways.

HTML, on the other hand, is not extensible, because you can’t add to the language; you have to use the
tags that are part of the HTML specification. For example, web browsers can understand the following:

<p>This is a paragraph.</p>

The <p> tag is a predefined HTML tag. However, web browsers can’t understand the following:

<paragraph>This is a paragraph.</paragraph>

The <paragraph> tag is not a predefined HTML tag.

The benefits of XML become even more apparent when people use the same format to do common
things, because this allows us to interchange information much more easily. There have already been
numerous projects to produce industry-standard vocabularies to describe various types of data. For
example, Scalable Vector Graphics (SVG) is an XML vocabulary for describing two-dimensional graphics
(we’ll look at SVG in Chapter 19); MathML is an XML vocabulary for describing mathematics as a basis
for machine-to-machine communication; Chemical Markup Language (CML) is an XML vocabulary for the
management of chemical information. The list goes on and on. Of course, you could write your own
XML vocabularies to describe this type of information if you so wished, but if you use a common format,
there is a better chance that you will be able to produce software that is immediately compatible with
other software. Better yet, you can reuse code already written to work with these formats.

Because XML is so easy to read and write in your programs, it is also easy to convert between different
vocabularies when required. For example, if you want to represent mathematical equations in your par-
ticular application in a certain way, but MathML doesn’t quite suit your needs, you can create your own
vocabulary. If you want to export your data for use by other applications, you might convert the data in
your vocabulary to MathML for the other applications to read. In fact, Chapter 8 covers a technology
called XSLT, which was created for transforming XML documents from one format to another, and
which could potentially make these kinds of transformations very simple.

HTML and XML: Apples and Red Delicious Apples
What HTML does for display, XML is designed to do for data exchange. Sometimes XML isn’t up to a
certain task, just as HTML is sometimes not up to the task of displaying certain information. How many
of us have Adobe Acrobat readers installed on our machines for those documents on the web that HTML
just can’t display properly? When it comes to display, HTML does a good job most of the time, and those
who work with XML believe that, most of the time, XML will do a good job of communicating informa-
tion. Just as HTML authors sometimes sacrifice precise layout and presentation for the sake of making
their information accessible to all web browsers, XML developers sacrifice the small file sizes of propri-
etary formats for the flexibility of universal data access.

Of course, a fundamental difference exists between HTML and XML: HTML is designed for a specific
application, to convey information to humans (usually visually, through a web browser), whereas XML
has no specific application; it is designed for whatever use you need it for.

13

Chapter 1: What Is XML?

This is an important concept. Because HTML has its specific application, it also has a finite set of specific
markup constructs (<p>, , <h2>, and so on), which are used to create a correct HTML document. In
theory, we can be confident that any web browser will understand an HTML document because all it has
to do is understand this finite set of tags. In practice, of course, I’m sure you’ve come across web pages
that displayed properly in one web browser and not in another, but this is usually a result of nonstan-
dard HTML tags, which were created by browser vendors instead of being part of the HTML specifica-
tion itself.

On the other hand, if you create an XML document, you can be sure that any XML parser will be able to
retrieve information from that document, even though you can’t guarantee that any application will be
able to understand what that information means. That is, just because a parser can tell you that there is a
piece of data called <middle> and that the information contained therein is Fitzgerald Johansen, it
doesn’t mean that there is any software in the world that knows what a <middle> is, what it is used for,
or what it means.

In other words, you can create XML documents to describe any information you want, but before XML
can be considered useful, applications must be written that understand it. Furthermore, in addition to
the capabilities provided by the base XML specification, there are a number of related technologies,
some of which are covered in later chapters. These technologies provide more capabilities for us, making
XML even more powerful than we’ve seen so far.

Some of these technologies exist only in draft form, so exactly how powerful these tools will be, or in
what ways they’ll be powerful, is yet to be seen. Other technologies, however, have been in use for a
number of years, and are already proving useful in real-world applications.

Hierarchies of Information
The syntactical constructs that make up XML are discussed in the next chapter, but first it might be use-
ful to examine how data is structured in an XML document.

When it comes to large, or even moderate, amounts of information, it’s usually better to group it into
related subtopics, rather than to have all of the information presented in one large blob. For example,
this chapter is divided into subtopics, and further subdivided into paragraphs. Similarly, a tax form is
divided into subsections, across multiple pages. This makes the information easier to comprehend, as
well as making it more accessible.

Software developers have been using this paradigm for years, using a structure called an object model. In
an object model, all of the information being modeled is divided into various objects, and the objects
themselves are then grouped into a hierarchy.

Hierarchies in HTML
For example, when working with Dynamic HTML (DHTML), an object model is available for working
with HTML documents, called the Document Object Model (DOM). This enables us to write code in an
HTML document, such as the following JavaScript:

alert(document.title);

14

Part I: Introduction

Here we are using the alert() function to pop up a message box indicating the title of an HTML docu-
ment. That’s achieved by accessing an object called document, which contains all of the information
needed about the HTML document. The document object includes a property called title, which
returns the title of the current HTML document.

The information that the object provides appears in the form of properties, and the functionality avail-
able appears in the form of methods.

Hierarchies in XML
XML also groups information in hierarchies. The items in our documents relate to each other in
parent/child and sibling/sibling relationships.

Consider our <name> example, shown hierarchically in Figure 1-8.

Figure 1-8

<name> is a parent of <first>. <first>, <middle>, and <last> are all siblings to each other (they are
all children of <name>). Note also that the text is a child of the element. For example, the text John is a
child of <first>.

This structure is also called a tree, and any parts of the tree that contain children are called branches,
while parts that have no children are called leaves.

<name>

<first>

"John"

<middle>

"Fitzgerald Johansen"

<last>

"Doe"

These “items” are called elements. Chapter 2 provides a more precise definition of
what exactly an element is. For now, just think of them as the individual pieces of
information in the data.

15

Chapter 1: What Is XML?

These are fairly loose terms, rather than formal definitions, which simply facilitate discussing the tree-
like structure of XML documents. You might have seen the term “twig” in use, although it is much less
common than “branch” or “leaf.”

Because the <name> element has only other elements for children, and not text, it is said to have element
content. Conversely, because <first>, <middle>, and <last> have only text as children, they are said
to have simple content.

Elements can contain both text and other elements, in which case they are said to have mixed content, as
shown in the following example:

<doc>
<parent>this is some text in my element</parent>

</doc>

Here, <parent> has three children:

❑ A text child containing the text this is some

❑ An child

❑ Another text child containing the text in my element

The structure is shown in Figure 1-9.

Figure 1-9

Relationships can also be defined by making the family tree analogy work a little bit harder: <doc> is an
ancestor of ; is a descendant of <doc>.

<doc>

<parent>

"This is some"

"text"

"in my element"

16

Part I: Introduction

Once you understand the hierarchical relationships between your items (and the text they contain),
you’ll have a better understanding of the nature of XML. You’ll also be better prepared to work with
some of the other technologies surrounding XML, which make extensive use of this paradigm.

Chapter 11 gives you an opportunity to work with the document object model (DOM) mentioned ear-
lier, which enables you to programmatically access the information in an XML document using this tree
structure.

What’s a Document Type?
XML’s beauty comes from its ability to create a document to describe any information we want. It’s
completely flexible in terms of how we structure our data, but eventually we’re going to want to settle
on a particular design for our information, and specify “to adhere to our XML format, structure the data
like this.”

For example, when we created our <name> XML above, we created structured data. Not only did we
include all of the information about a name, but our hierarchy also contains implicit information about
how some pieces of data relate to other pieces (our <name> contains a <first>, for example).

More important, we also created a specific set of elements, which is called a vocabulary. That is, we
defined a number of XML elements that all work together to form a name: <name>, <first>, <middle>,
and <last>.

But wait; it’s even more than that! The most important thing we created was a document type. We created
a specific type of document, which must be structured in a specific way, to describe a specific type of
information. Although we haven’t explicitly defined them yet, there are certain rules to which the ele-
ments in our vocabulary must adhere in order for our <name> document to conform to our document
type. For example:

❑ The top-most element must be the <name> element.

❑ The <first>, <middle>, and <last> elements must be children of that element.

❑ The <first>, <middle>, and <last> elements must be in that order.

❑ There must be information in the <first> element and in the <last> element, but there does-
n’t have to be any information in the <middle> element.

Unfortunately, there is nothing in our XML document itself which indicates what these rules are; we
would have to write any applications that use this data to know the rules, and make sure that they’re
obeyed. In later chapters, you’ll see different syntaxes that you can use to formally define an XML docu-
ment type. Some XML parsers know how to read these syntaxes, and can use them to determine whether
your XML document really adheres to the rules in the document type or not. This is good, because the
more work the parser does, the less work your application has to do!

However, all of the syntaxes used to define document types so far are lacking; they can provide some
type checking, but not enough for many applications. Furthermore, they can’t express the human mean-
ing of terms in a vocabulary. For this reason, when creating XML document types, human-readable doc-
umentation should also be provided. For our <name> example, if we want others to be able to use the
same format to describe names in their XML, we should provide them with documentation to describe
how it works.

17

Chapter 1: What Is XML?

In real life, this human-readable documentation is often used in conjunction with one or more of the syn-
taxes available. Ironically, the self-describing nature of XML can sometimes make this human-readable
documentation even more important. Often, because the data is already labeled within the document
structure, it is assumed that people working with the data will be able to infer its meaning, which can be
dangerous if the inferences are incorrect, or even just different from the original author’s intent.

No, Really — What’s a Document Type?
Well, okay, maybe I was a little bit hasty in labeling our <name> example a “document type.” The truth is
that others who work with XML may call it something different.

One of the problems people encounter when they communicate is that they sometimes use different
terms to describe the same thing, or, even worse, use the same term to describe different things. For
example, I might call the thing that I drive a car, whereas someone else might call it an auto, and some-
one else again might call it a G-class vehicle. Furthermore, when I say car I usually mean a vehicle that
has four wheels, is made for transporting passengers, and is smaller than a truck. (Notice how fuzzy this
definition is, and that it depends further on the definition of a truck.) When someone else uses the word
car, or if I use the word car in certain circumstances, it may instead just mean a land-based motorized
vehicle, as opposed to a boat or a plane.

The same thing is true in XML. When you’re using XML to create document types, you don’t really have
to think (or care) about the fact that you’re creating document types; you just design your XML in a way
that makes sense for your application, and then use it. If you ever did think about exactly what you were
creating, you might have called it something other than a document type.

Origin of the XML Standards
One of the reasons why HTML and XML are so successful is that they’re standards. That means anyone
can follow the specification and the solutions they develop will be able to interoperate. So who creates
these standards?

What Is the World Wide Web Consortium?
The World Wide Web Consortium (W3C) was started in 1994, according to its website (www.w3.org),
“to lead the World Wide Web to its full potential by developing common protocols that promote its
evolution and ensure its interoperability.” Recognizing this need for standards, the W3C produces
Recommendations, or specifications, that describe the basic building blocks of the web. They call them
“recommendations” instead of “standards” because it is up to others to follow the recommendations
to provide the interoperability.

We picked the terms “document type’’ and “vocabulary’’ for this book because they
do a good job of describing what we need to describe, but they are not universal
terms used throughout the XML community. Regardless of the terms you use, the
concepts are very important.

18

Part I: Introduction

Their most famous contribution to the web is the HTML Recommendation; when web browser produc-
ers claims that their product follows version 3.2 or 4.01 of the HTML Recommendation, they’re talking
about the recommendation developed under the authority of the W3C.

Recommendations from the W3C are so widely implemented because the creation of these standards is a
somewhat open process: Any company or individual can join the W3C’s membership, and membership
allows these companies or individuals to take part in the standards process. This means that web
browsers such as Mozilla Firefox and Microsoft Internet Explorer are more likely to implement the same
version of the HTML Recommendation, because developers of both applications were involved in the
evolution of that recommendation.

Because of the interoperability goals of XML, the W3C is a good place to develop standards around the
technology. Most of the technologies covered in this book are based on standards from the W3C: the
XML 1.0 Recommendation, the XSLT Recommendation, the XPath Recommendation, and so on.

Components of XML
Structuring information is a pretty broad topic, and it would be futile to try to define a specification to
cover it fully. For this reason, a number of interrelated specifications and recommendations all work
together to form the XML family of technologies, with each specification covering different aspects of
communicating information. Here are some of the more important ones:

❑ XML 1.0 is the base recommendation upon which the XML family is built. It describes the syn-
tax that XML documents have to follow, the rules that XML parsers have to follow, and anything
else you need to know to read or write an XML document. It also defines document type defini-
tions (DTDs), although they sometimes are treated as a separate technology.

❑ Because we can make up our own structures and element names for our documents, DTDs and
schemas provide ways to define our document types. We can check to ensure that other docu-
ments adhere to these templates, and other developers can produce compatible documents.
DTDs and schemas are discussed in Chapters 4 and 5, respectively.

❑ Namespaces provide a means to distinguish one XML vocabulary from another, which enables
us to create richer documents by combining multiple vocabularies into one document type.
Namespaces are discussed in detail in Chapter 3.

❑ XPath describes a querying language for addressing parts of an XML document. This enables
applications to ask for a specific piece of an XML document, instead of having to always deal
with one large chunk of information. For example, XPath could be used to get “all the last
names” from a document. We discuss XPath in Chapter 7.

❑ As mentioned earlier, sometimes we may want to display our XML documents. For simpler
cases, we can use Cascading Style Sheets (CSS) to define the presentation of our documents. For
more complex cases, we can use Extensible Stylesheet Language (XSL); this consists of XSLT,
which can transform our documents from one type to another, and formatting objects, which deal
with display. XSLT is covered in Chapter 8, and CSS is covered in Chapter 17.

❑ Although the syntax for HTML and the syntax for XML look very similar, they are actually not
the same — XML’s syntax is much more rigid than that of HTML. This means that an XML
parser cannot necessarily read an HTML document. This is one of the reasons why XHTML was
created — an XML version of HTML. XHTML is very similar to HTML, so HTML developers

19

Chapter 1: What Is XML?

will have no problem working with XHTML, but the syntax used is more rigid and is readable
by XML parsers (since XHTML is XML). XHTML is discussed in Chapter 18.

❑ The XQuery Recommendation is designed to provide a means of querying data directly from
XML documents on the web. It is discussed in Chapter 9.

❑ To provide a means for more traditional applications to interface with XML documents, there is
a document object model (DOM), discussed in Chapter 11. An alternative way for programmers
to interface with XML documents from their code is to use the Simple API for XML (SAX),
which is the subject of Chapter 12.

❑ In addition to the specifications and recommendations for the various XML technologies, some
specifications also exist for specific XML document types:

❑ The RDF Site Summary (RSS) specification is used by websites that want to syndicate
news stories (or similar content that can be treated similarly to news stories), for use by
other websites or applications. RSS is discussed in Chapter 13.

❑ The Scalable Vector Graphics (SVG) specification is used to describe two-dimensional
graphics, and is discussed in Chapter 19.

Where XML Can Be Used, and

What You Can Use It For
XML can be used anywhere. It is platform- and language-independent, which means it doesn’t matter that
one computer may be using, for example, a Visual Basic application on a Microsoft operating system, and
another computer might be a UNIX machine running Java code. Anytime one computer program needs to
communicate with another program, XML is a potential fit for the exchange format. The following are just
a few examples, and such applications are discussed in more detail throughout the book.

Reducing Server Load
Web-based applications can use XML to reduce the load on the web servers by keeping all information
on the client for as long as possible, and then sending the information to those servers in one big XML
document.

For example, a consulting company may write a timesheet application whereby employees can enter
how much time they’ve spent on different tasks; the time entered would be used to bill their clients
appropriately. Although employees would often have more than one task to fill, the application could
cache all of that data in the browser until the user was finished, meaning that the browser wouldn’t have
to send or receive any data from the web server. Then, when the user is completely finished, an XML
document could be sent to the server, with all of the user’s data.

Website Content
It was mentioned earlier that there are technologies — such as CSS and XSLT — that can be used to trans-
form XML from one format to another, or to “style” XML for viewing in a browser. This allows for some
very powerful applications of your data.

20

Part I: Introduction

For example, the W3C uses XML to publish its recommendations. These XML documents can then be
transformed into HTML for display (by XSLT), or transformed into a number of other presentation for-
mats. Because all of the presentation formats come from the same XML data file, this solution is faster
and less error-prone than having someone re-enter the data in different formats.

Some websites also use XML entirely for their content, where traditionally HTML would have been
used. This XML can then be transformed into HTML via XSLT, or displayed directly in browsers via CSS.
In fact, the web servers can even determine dynamically what kind of browser is retrieving the informa-
tion, and then decide what to do — for example, transform the XML into HTML for older browsers, and
just send the XML straight to the client for newer browsers, reducing the load on the server.

As an author, I could also use this concept for my writing. After writing a chapter for a book I’m work-
ing on, saving it as XML could give me a lot of flexibility:

❑ I could use a technology such as CSS to make the chapter available on my website.

❑ I could use a technology such as XSLT to create a “stripped down” version of the chapter if I
wanted to publish the content in a magazine article. For example, I might ignore certain aspects
of the chapter in the magazine article that I would want to show up in the book. To give myself
the most flexibility, I would probably alter the markup in the content in such a way that I could
indicate to myself where it should appear: book, magazine article, web, or all of the above.

❑ I could even transform the XML to a different XML format, which could be understood by a
word processor, so that I could further edit it. Most modern word processors — such as
Microsoft Word and OpenOffice.org Writer — understand XML formats.

In fact, this can be generalized to any content. If your data is in XML, you can use it for any purpose.
Presentation on the web is just one possibility.

Distributed Computing
XML can also be used as a means for sending data for distributed computing, where objects on one com-
puter call objects on another computer to do work. There have been numerous standards for distributed
computing, such as DCOM, CORBA, and RMI/IIOP, but as Chapters 14 and 15 show, using XML and
HTTP with technologies like web services and/or SOAP enables this to occur even through a firewall,
which would normally block such calls, providing greater opportunities for distributed computing.

e-Commerce
e-commerce is another one of those buzzwords that you hear everywhere now. Companies are discover-
ing that by communicating via the Internet, instead of by more traditional methods (such as faxing,
human-to-human communication, and so on), they can streamline their processes, decreasing costs and
increasing response times. Whenever one company needs to send data to another, XML is the perfect for-
mat for the exchange.

When the companies involved in the exchange have some kind of ongoing relationship, this is known as
business-to-business (B2B) e-commerce. Business-to-consumer (B2C) transactions also take place — a system
you may have used if you bought this book on the Internet. Both types of e-commerce have their poten-
tial uses for XML.

21

Chapter 1: What Is XML?

XML is also a good fit for many other applications. After reading this book, you should be able to decide
when XML will work in your applications and when it won’t.

Summary
This chapter provided an overview of what XML is and why it’s so useful. You’ve seen the advantages of
text and binary files, and the way that XML combines the advantages of both, while eliminating most of the
disadvantages. You have also seen the flexibility you can enjoy in creating data in any format you wish.

Because XML is a subset of a proven technology, SGML, there are many years of experience behind the
standard. In addition, because other technologies are built around XML, you can create applications that
are as complex or simple as your situation warrants.

Much of the power that we get from XML comes from the standard way in which documents must be
written. Chapter 2 takes a closer look at the rules for creating well-formed XML.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
Modify the <name> XML document you’ve been working with to include the person’s title (e.g., Mr.,
Ms., Dr., and so on).

Question 2
The <name> example we’ve been using so far has been in English, but XML is language-agnostic, so you
can create XML documents in any language you wish. Therefore, create a new French document type to
represent a name. You can use the following table for the names of the XML elements.

English French

name identité

first prénom

last nom

middle deuxième-prénom

22

Part I: Introduction

www.allitebooks.com

http://www.allitebooks.org

2
Well-Formed XML

Chapter 1 discussed some of the reasons why XML makes sense for communicating data, so now
it’s time to get your hands dirty and learn how to create your own XML documents. This chapter
covers all you need to know to create well-formed XML. Well-formed XML is XML that meets cer-
tain syntactical rules outlined in the XML 1.0 recommendation.

This chapter includes the following:

❑ How to create XML elements using start-tags and end-tags

❑ How to further describe elements with attributes

❑ How to declare your document as being XML

❑ How to send instructions to applications that are processing the XML document

❑ Which characters aren’t allowed in XML — and how to use them in your documents
anyway!

Because the syntax rules for XML and HTML are so similar, and because you may already be
familiar with HTML, we’ll be making comparisons between the two languages in this chapter.
However, if you don’t have any knowledge of HTML, you shouldn’t find it hard to follow along.

If you have Microsoft Internet Explorer 5 or later, you may find it useful to save some of the exam-
ples in this chapter on your hard drive and view the results in the browser. If you don’t have IE5
or later, some of the examples include screenshots to show what the results look like. One nice
advantage of doing this is that the browser will indicate whether you make a syntax mistake. I do
this quite often, to ensure I haven’t mistyped anything.

The examples given in this chapter are also available for download from the Wrox website, at
www.wrox.com; just find the entry for this title and click the Download Code link. If you wish to
save yourself some typing, you can download the code from there, but typing these examples
manually — and occasionally making mistakes! — will help you to learn and understand things
better.

Parsing XML
The main reason for creating all these rules about writing well-formed XML documents is so that you
can create a computer program to read in the data, and easily tell markup from information.

According to the XML recommendation (www.w3.org/TR/REC-xml#sec-intro), “A software
module called an XML processor is used to read XML documents and provide access to their content
and structure. It is assumed that an XML processor is doing its work on behalf of another module,
called the application.”

An XML processor is more commonly called a parser, as it simply parses XML and provides the applica-
tion with any information it needs. That is, it reads through the characters in the document, determines
which characters are part of the document’s markup and which are part of the document’s data, and
does all of the other processing of an XML document that happens before an application can make use
of it. Several XML parsers are available, many of them free. Some of the better-known ones include the
following:

❑ Microsoft Internet Explorer Parser — Microsoft’s XML parser, MSXML, first shipped with
Internet Explorer 4, and implemented an early draft of the XML recommendation. With the
release of IE5, the XML implementation was upgraded to reflect the XML version 1 recommen-
dation. The latest version of the parser is available for download from Microsoft’s MSDN site, at
http://msdn.microsoft.com, and it comes built-in with the Internet Explorer browser.

❑ Apache Xerces — The Apache Software Foundation’s Xerces subproject of the Apache XML
Project (http://xml.apache.org/) has resulted in XML parsers in Java and C++, plus a Perl
wrapper for the C++ parser. These tools are free, and the distribution of the code is controlled
by the GNU Public License (GPL).

❑ Expat — Expat is an XML 1.0 parser toolkit written in C. You can find more information at
http://expat.sourceforge.net. It is free for both private and commercial use.

Tags and Text and Elements, Oh My!
It’s time to stop calling things just “items” and “text”; we need some names for the pieces that make up
an XML document. To get cracking, let’s break down the simple name.xml document we created in
Chapter 1:

<name>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

The text starting with a < character and ending with a > character is an XML tag. The information in our
document (our data) is contained within the various tags that constitute the markup of the document.
This makes it easy to distinguish the information in the document from the markup.

As you can see, the tags are paired, so that any opening tag (for example, <name>) must have a closing
tag (</name>). In XML parlance, these are called start-tags and end-tags. The end-tags are the same as the
start-tags except that they have a / right after the opening < character.

24

Part I: Introduction

In this regard, XML tags work the same as start-tags and end-tags in HTML. For example, you would
mark a section of HTML to appear bold like this:

This is bold.

As you can see, there is a start-tag, and a end-tag, just like we use for XML.

All of the information from the beginning of a start-tag to the end of an end-tag, and including every-
thing in between, is called an element. For example:

❑ <first> is a start-tag

❑ </first> is an end-tag

❑ <first>John</first> is an element

The text between the start-tag and end-tag of an element is called the element content. The content
between tags will often just be data (as opposed to other elements). In this case, the element content is
referred to as parsed character data, which is almost always referred to using its acronym, PCDATA, or
with a more general term such as “text content” or even “text node.”

Whenever you come across a strange-looking term like PCDATA, it’s usually a good bet the term is
inherited from SGML. Because XML is a subset of SGML, there are a lot of these inherited terms.

The whole document, starting at <name> and ending at </name>, is also an element, which happens to
include other elements (and, in this case, because it contains the entire XML document, the element is
called the root element, which we’ll talk about later).

If you wish, you can include a space before the closing > of a tag. For example, you could create markup
like the following, with a space between the first <first and the closing tag:

<first >John</first>

or the following, with a space between both <first and </first and their closing tags:

<first >John</first >

or even

<first
>John</first>

Later you’ll see where this might come in handy. You cannot, however, put a space after the opening <
character in a tag, or the / character in an end-tag; the XML parser expects your element’s name to come
right after that < or / character. Therefore, the following is not proper XML syntax:

< first >John< /first >

Neither is this:

< first >John< / first >

25

Chapter 2: Well-Formed XML

To put this newfound knowledge into action, the following Try It Out shows you how to create an exam-
ple that contains more information than just a name.

Try It Out Creating a Distribution Process

The examples in this chapter refer to a fictional company, Serna Inc., which has developed a new
portable music device. Serna provides a subscription service called sernaDirect that works with the
devices so that the subscribers can regularly update the musical selection on their devices by download-
ing songs from Serna. Because Serna Inc. wishes to focus on developing its product line and building the
subscription service, it has contracted another company, Ferna Distribution, to handle distribution of the
products to customers. The distribution process works like this:

1. The customer calls a Ferna Distribution customer service representative (CSR) or visits the
Ferna website to place an order. The customer can also change or cancel an order.

2. The order is captured into Ferna Distribution’s back-end systems, and once a day a file is sent to
Serna Inc., with all of the day’s orders (including canceled and updated orders).

3. Once Serna Inc., has received a file, its systems are updated with the new, canceled, and
updated orders. Based on this, the music for the sernaDirect subscription service can be sent to
the appropriate subscribers (based on the ID of their device).

This process is illustrated in Figure 2-1.

Figure 2-1

26

Part I: Introduction

For this Try It Out, you’re concerned with the file that Ferna Distribution sends to Serna each day, with
the new, canceled, and updated orders. This is exactly the place where XML shines, and you’ll use XML
to create the daily file to Serna Inc., but before you break out Notepad and start typing, you need to
know what information you’re capturing.

In Chapter 1, you learned that XML is hierarchical in nature; information is structured like a tree, with
parent-child relationships. This means that the order information has to be arranged in a tree structure
as well:

1. Because this XML layout will contain information about orders, you need to capture informa-
tion such as the customer’s name and address, the type of hardware that has been purchased,
information about the subscription to sernaDirect, and so on.

Figure 2-2 shows the hierarchy you’ll be creating.

Notice that for the sake of brevity, we haven’t included all of the layers of information. For
example, the address will be further broken down for the address information, and the credit
card element will contain child elements for the credit card information.

Some of these elements, such as <Date>, will only appear once; others, such as <Product> or
<Order>, might appear multiple times in the document. In addition, some will have PCDATA
only, while some will include their information as child elements instead. For example, the
<Date> element will contain PCDATA (no child elements) only: the date the order was placed.
Conversely, the <Address> element won’t contain any PCDATA of its own, but will contain
child elements that further break down the information, such as <State> and <City>.

2. With this in mind, it’s time to start entering XML. If you have Internet Explorer 5 or later
installed on your machine, type the following into Notepad and save it to your hard drive as
order.xml:

<Orders>
<Order>
<Type>N</Type>
<Date>Jan 1, 2004, 14:29</Date>
<Customer>
<SernaDirect>
<SubscriptionType>B</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>

</SernaDirect>
<Address>
<Address1>123 Somewhere Ave.</Address1>
<Address2></Address2>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>

</Address>
<CreditCard>
<Number>4111111111111111</Number>
<CardHolderName>John Q Public</CardHolderName>
<Expiry>11/09</Expiry>

</CreditCard>
<Phone>5555555555</Phone>
<Name>John Public</Name>
<Email>jpublic@someprovider.com</Email>

27

Chapter 2: Well-Formed XML

</Customer>
<ID>0000000001</ID>
<Number>x582n9</Number>
<Products>
<Product>
<Model>X9</Model>
<Price>129.95</Price>
<ID>x9000059</ID>

</Product>
</Products>

</Order>
<Order>
<Type>N</Type>
<Date>Jan 1, 2004, 16:00</Date>
<Customer>
<SernaDirect>
<SubscriptionType>D</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>

</SernaDirect>
<Address>

<Address1>89 Subscriber’s Street</Address1>
<Address2>Box 882</Address2>
<City>Smallville</City>
<State>XQ</State>
<Zip>000000000</Zip>

</Address>
<CreditCard>
<Number>4512451245124512</Number>
<CardHolderName>Helen P Someperson</CardHolderName>
<Expiry>01/08</Expiry>

</CreditCard>
<Phone>5554443333</Phone>
<Name>Helen Someperson</Name>
<Email>helens@isp.net</Email>

</Customer>
<ID>0000000002</ID>
<Number>a98f78d</Number>
<Products>
<Product>
<Model>Y9</Model>
<Price>229.95</Price>
<ID>y9000065</ID>

</Product>
</Products>

</Order>
</Orders>

For the sake of brevity, we’ll only enter two orders.

3. Open the file in IE. (Navigate to the file in Explorer and double-click on it, or open the browser
and enter the path in the URL bar.) If you’re running on Windows XP Service Pack 2 or later,
Internet Explorer will pop up a security warning just below the address bar because it doesn’t

28

Part I: Introduction

like opening XML files from the local file system. You can ignore this warning, or click the infor-
mation bar and tell Internet Explorer to allow the blocked content. If you have typed in the tags
exactly as shown, the order.xml file will look something like what is shown in Figure 2-3.

Figure 2-2

29

Chapter 2: Well-Formed XML

Figure 2-3

If you get IE’s security warning, you’ll have to click on the warning and tell IE to allow the blocked
content before you’ll be able to use this expand/collapse functionality.

We’ve made use of IE’s handy collapse feature to collapse some of the elements, so that more of the doc-
ument would fit on the screen.

How It Works
In this example, you created a hierarchy of information about a series of orders that have been placed
through Ferna Distribution, so you name the root element accordingly: <Orders>.

Each <Order> element has children for the type of order, the date the order was placed, and the ID and
number of the order (these types of systems often have multiple IDs attached to an order, as there are

30

Part I: Introduction

multiple systems dealing with it, so we added two separate numbers for realism — the <ID> and
<Number> elements). There are also child elements for handling information about the customer and
the products purchased by that customer.

You may have noticed that the browser changed <Address2></Address2> in our first order to
<Address2/> when it displayed the information. We’ll talk about this shorthand syntax a little later,
but don’t worry: This is called a self-closing tag and it’s perfectly legal.

Rules for Elements
Obviously, if you could just create elements in any old way you wanted, you wouldn’t be any further
along than the text file examples from the previous chapter. There must be some rules for elements,
which are fundamental to the understanding of XML.

Here’s a brief list of the rules, before getting into the details:

❑ Every start-tag must have a matching end-tag, or be a self-closing tag.

❑ Tags can’t overlap; elements must be properly nested.

❑ XML documents can have only one root element.

❑ Element names must obey XML naming conventions.

❑ XML is case sensitive.

❑ XML will keep whitespace in your PCDATA.

It is these rules that make XML such a universal format for interchanging data. As long as your XML
documents follow all of the rules in the XML specification, any available XML parser will be able to read
the information they contain.

Every Start-Tag Must Have an End-Tag
One of the problems with parsing HTML documents is that not every element requires a start-tag and an
end-tag. Take the following example:

<html>
<body>
<p>Here is some text in an HTML paragraph.

Here is some more text in the same paragraph.
<P>And here is some text in another HTML paragraph.</p>
</body>
</html>

Notice that the first <p> tag has no closing </p> tag. This is allowed in HTML, because most web
browsers can figure out where the end of the paragraph should be. (In fact, years ago, this type of prac-
tice was even encouraged in some circles to reduce file size.) In this case, when the browser comes across

XML documents must adhere to certain rules to be well formed.

31

Chapter 2: Well-Formed XML

the second <P> tag, it knows to end the first paragraph and begin a new paragraph. Then there’s the

 tag (line break), which by definition has no closing tag.

In addition, notice that the second, uppercase <P> start-tag is matched by a </p> end-tag, in lowercase.
This is not a problem for HTML browsers, because HTML is not case sensitive; but as you’ll soon see,
this would cause a problem for an XML parser.

The problem is that this makes HTML parsers harder to write. Developers must add code to take into
account all of these factors, which often makes the parsers larger and much harder to debug. What’s
more, the way in which files are parsed is not standardized — different browsers do it differently, lead-
ing to incompatibilities (perhaps not in this simple example, but when it comes to HTML tables, browser
inconsistencies are a nightmare, and badly created HTML markup makes things much worse!).

For now, just remember that in XML the end-tag is required, and its name has to exactly match the start-
tag’s name.

Elements Must Be Properly Nested
Because XML is strictly hierarchical, you must be careful to close the child elements before you close
their parents. (This is called properly nesting your tags.) Take a look at another HTML example to demon-
strate this:

<p>Some formatted text, but no grammar no good!</p>

This would produce the output shown in Figure 2-4 on a web browser.

Figure 2-4

As you can see in Figure 2-4, the tags cover the text formatted text, while the tags
cover the text text, but. Therefore, the word text has both types of markup.

Is a child of , or is a child of ? Or are they both siblings, and children of
<p>? According to our stricter XML rules, the answer is none of the above. As written, the HTML code
can’t be arranged as a proper hierarchy, and therefore could not be well-formed XML.

Actually, in later versions of the HTML specification, the HTML example here isn’t really proper
HTML either; according to the HTML 4 specification, tags should not overlap like this, but web
browsers will do their best to render the content anyway.

32

Part I: Introduction

www.allitebooks.com

http://www.allitebooks.org

If ever you’re in doubt as to whether your XML tags are overlapping, try to rearrange them visually to
be hierarchical. If the tree makes sense, then you’re okay. Otherwise, you’ll have to rework your markup.

For example, you could get the same effect as above with the following:

<p>Some formatted text, but no grammar no
good!</p>

The preceding example can be properly formatted in a tree like this:

<p>
Some

formatted

text

, but

no grammar no good!

</p>

This example now makes it clear which elements are parents of which other elements, and to what ele-
ment each piece of text belongs, which makes it properly nested. Not only is this a better way to write
HTML, but it also makes the example well formed to an XML parser.

An XML Document Can Have Only One Root Element
In our <name> document from Chapter 1, the <name> element is called the root element. This is the top-
level element in the document, and all the other elements are its children, or descendants. An XML docu-
ment must have one and only one root element: In fact, it must have a root element even if it has no
content.

For example, the following XML is not well formed, because it has two root elements:

<name>John</name>
<name>Jane</name>

To make this well formed, you would need to add a top-level element, like this:

<names>
<name>John</name>
<name>Jane</name>

</names>

Even the following is a well-formed document, because it includes one — and only one — root element:

<name></name>

33

Chapter 2: Well-Formed XML

While it may seem a bit of an inconvenience, it turns out that it’s incredibly easy to follow this rule. If
you have a document structure with multiple rootlike elements, simply create a higher-level element to
contain them.

Elements Must Obey XML Naming Conventions
If you’re going to be creating elements you’re going to have to give them names, and XML is very gener-
ous in the names you’re allowed to use. For example, there aren’t any reserved words to avoid in XML,
as there are in most programming languages, so you have a lot of flexibility in this regard.

However, you do need to follow some rules:

❑ Names can start with letters (including non-Latin characters) or the dash (-) character, but not
numbers or other punctuation characters.

❑ After the first character, numbers, hyphens, and periods are allowed.

❑ Names can’t contain spaces.

❑ Names can’t contain the colon (:) character. Strictly speaking, this character is allowed, but the
XML specification says that it’s “reserved.’’ You should avoid using it in your documents, unless
you are working with namespaces (which we’ll be looking at in the next chapter).

❑ Names can’t start with the letters xml, in uppercase, lowercase, or mixed — you can’t start a
name with xml, XML, XmL, or any other combination.

Unfortunately, the XML parser shipped with Internet Explorer doesn’t enforce this rule. However, even
if you are using IE’s XML parser, you should never name elements starting with the characters xml,
because your documents would not be considered well formed by other parsers.

❑ There can’t be a space after the opening < character; the name of the element must come imme-
diately after it. However, there can be space before the closing > character, if you desire.

Here are some examples of valid names:

<first.name>
<résumé>

Following are some examples of invalid names:

<xml-tag>

which starts with xml,

<123>

which starts with a number,

<fun=xml>

because the equals sign (=) sign is illegal, and

34

Part I: Introduction

<my tag>

which contains a space.

Case Sensitivity
Another important point to keep in mind is that the tags in XML are case sensitive. (This is a big differ-
ence from HTML, which is case insensitive.) This means that <first> is different from <FIRST>, which
is different from <First>.

This sometimes seems odd to English-speaking users of XML, as English words can easily be converted
to uppercase or lowercase with no loss of meaning. In many other languages, the concept of case either is
not applicable (e.g., the German “ß’’) or is extremely important (and the answer may differ depending
on the context). Putting intelligent rules into the XML specification for converting between uppercase
and lowercase (sometimes called case folding) would probably have doubled or tripled its size, and only
benefited certain sections of the population. Luckily, it doesn’t take long to get used to having case-
sensitive names.

Our previous <P></p> HTML example would not work in XML. Because XML is case sensitive, an XML
parser would not be able to match the </p> end-tag with any start-tags, and neither would it be able to
match the <P> start-tag with any end-tags.

To help combat these kinds of problems, it’s a good idea to pick a naming style and stick to it. Some
examples of common styles are as follows:

❑ <first_name>

❑ <firstName>

❑ <first-name>

❑ <FirstName>

Which style you choose isn’t important; what is important is that you stick to it. A naming convention
only helps when it’s used consistently. For this book, we usually use the <FirstName> convention.

Warning! Because XML is case sensitive, you could legally create an XML document
that has both <first> and <First> elements, which have different meanings, but
this is a bad idea and will cause nothing but confusion! You should always try to
give your elements distinct names, for your sanity, and for the sanity of those who
use your code.

Remember these rules for element names — they also apply to naming other things
in XML.

35

Chapter 2: Well-Formed XML

Whitespace in PCDATA
There is a special category of characters called whitespace that includes things such as the space character,
new lines (what you get when you press the Enter key), and tabs. Whitespace is used to separate words,
as well as to make text more readable.

Those familiar with HTML are probably quite aware of the practice of whitespace stripping. In HTML, any
whitespace considered insignificant is stripped out of the document when it is processed. For example,
take the following HTML:

<p>This is a paragraph. It has a whole bunch
of space.</p>

As far as HTML is concerned, anything more than a single space between the words in a <P> is insignifi-
cant, so all of the spaces between the first period and the word It would be stripped, except for one. In
addition, the line feed after the word bunch and the spaces before of would be stripped down to one
space. As a result, the previous HTML would be rendered in a browser as shown in Figure 2-5.

Figure 2-5

In order to get results to appear spaced as in the HTML code, you’d have to add special HTML markup
to the source, like the following:

<p>This is a paragraph. It has a whole
bunch
 of space.</p>

Here, signifies that we should insert a space (nbsp stands for nonbreaking space), and the

tag specifies that there should be a line feed. This would format the output as it appears in Figure 2-6.

Figure 2-6

36

Part I: Introduction

Alternatively, if you wanted to have the text displayed exactly as it appears in the source file, you could
use the <pre> tag. This specifically tells the HTML parser not to strip the whitespace, but to display the
text exactly as it appears in the HTML document, so you could write the following and get the desired
results:

<pre>This is a paragraph. It has a whole bunch
of space.</pre>

This would produce output like that shown in Figure 2-7.

Figure 2-7

However, in most web browsers, the <pre> tag also has the added effect that the text is rendered in a
fixed-width font, like the Courier font used for code in this book (which is why Figure 2-7 looks slightly
different from Figure 2-6).

Whitespace stripping is very advantageous for a language like HTML, which is primarily a means for
displaying information. It allows the source for an HTML document to be formatted in a readable way
for the person writing the HTML, while displaying it formatted in a readable, and possibly quite differ-
ent, way for the user who views the document in a browser.

In XML, however, no whitespace stripping takes place for PCDATA. This means that for the XML tag

<Tag>This is a paragraph. It has a whole bunch
of space.</Tag>

the PCDATA is

This is a paragraph. It has a whole bunch
of space.

Just like the second HTML example, none of the whitespace has been stripped out. As far as whitespace
stripping goes, all XML elements are treated just as they are for the HTML <pre> tag. This makes the
rules much easier to understand for XML than they are for HTML.

In XML, the whitespace stays.

37

Chapter 2: Well-Formed XML

Unfortunately, if you view the preceding XML example in Internet Explorer, the whitespace will be
stripped out — or will seem to be. This is because IE is not actually showing you the XML directly; it
uses a technology called XSL to transform the XML to HTML, and it displays the HTML. Then,
because IE is an HTML browser, it strips out the whitespace from that HTML!

End-of-Line Whitespace

There is one form of whitespace stripping that XML does perform on PCDATA, which is the handling of
newline characters. The problem is that two characters are used for new lines — the linefeed character and
the carriage return character — and Windows, UNIX, and Macintosh computers all use these characters
differently.

For example, to get a new line in Windows, an application would use both the line feed and the carriage
return character together, whereas on UNIX only the line feed would be used. This could prove to be
very troublesome when creating XML documents, because UNIX machines would treat the new lines
in a document differently from the Windows boxes, which would treat them differently from the
Macintosh boxes, and our XML interoperability would be lost.

For this reason, it was decided that XML parsers would change all new lines to a single linefeed charac-
ter before processing. This means that any XML application will know, no matter which operating sys-
tem it’s running under, that a new line will be represented by a single linefeed character. This makes
data exchange among multiple computers running different operating systems that much easier, as pro-
grammers don’t have to deal with the (sometimes annoying) end-of-line logic.

Whitespace in Markup

As well as the whitespace in your data, there could also be whitespace within an XML document that’s
not actually part of the data, as shown here:

<Tag>
<AnotherTag>This is some XML</AnotherTag>

</Tag>

While any whitespace contained within <AnotherTag>’s PCDATA is part of the data, there is also a
newline after <Tag>, and some spaces before <AnotherTag>. These spaces could be there just to make
the document easier to read, while not actually being part of its data. This “readability” whitespace is
called extraneous whitespace.

While an XML parser must pass all whitespace through to the application, it can also indicate to the
application which whitespace is not actually part of an element’s PCDATA but is just extraneous
whitespace.

How does the parser decide whether this is extraneous whitespace or not? That depends on what kind
of data you specify <Tag> should contain. If <Tag> can only contain other elements (and no PCDATA),
then the whitespace will be considered extraneous. However, if <Tag> is allowed to contain PCDATA or
mixed content, then the whitespace will be considered to be part of that PCDATA, so it will be retained.

Unfortunately, from this document alone an XML parser would have no way to tell whether <Tag> is
supposed to contain PCDATA or not, which means that it has to assume none of the whitespace is extra-
neous. You’ll see how to get the parser to recognize this as extraneous whitespace in Chapter 5, when we
discuss content models.

38

Part I: Introduction

In many cases, your applications won’t care whether the space is there or not; the application will sim-
ply ask the parser for the data contained in the <AnotherTag> element, and won’t bother to query for
any PCDATA in the <Tag> element.

Attributes
In addition to tags and elements, XML documents can also include attributes. Attributes are simple
name/value pairs associated with an element. They are attached to the start-tag, but not to the end-tag,
as shown in the following code:

<name nickname=”Shiny John”>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

Attributes must have values — even if that value is just an empty string (such as “”) — and those values
must be in quotes. The following example, which is part of a common HTML tag, is not legal in XML:

<input checked>

Nor is the following legal:

<input checked=true>

Either single quotes or double quotes are fine, but they have to match. For example, to make this into
well-formed XML, you can use

<input checked=’true’>

or

<input checked=”true”>

but you can’t use

<input checked=”true’>

Because either single or double quotes are allowed, it’s easy to include quote characters in your attribute
values, such as “John’s nickname” or ‘I said “hi” to him’. You just have to be careful not to accidentally
close your attribute, like ‘John’s nickname’; if an XML parser sees an attribute value like this, it will
think you’re closing the value at the second single quote, and will raise an error when it sees the “s”
that follows right after it.

The same rules apply to naming attributes as apply to naming elements: Names are case sensitive, can’t
start with xml, and so on. In addition, you can’t have more than one attribute with the same name on an
element. For example, if you create an XML document like the following line of code, then you will get
the IE5 error shown in Figure 2-8:

39

Chapter 2: Well-Formed XML

<bad att=”1” att=”2”></bad>

Figure 2-8

You should also be aware that the XML parser will “normalize” the data in an attribute before it passes it
on to the application. In other words, it does a bit of pre-processing of the text. The most important thing
done by the parser is to strip out newline characters and replace them with a single space. For example,
you can write XML markup like this, with a newline in the attribute value:

<test myAttr=’some data
goes
here’>some other data</test>

However, when the XML parser passes the data from the myAttr attribute back to an application, it will
simply pass the data as

some data goes here

Finally, the order in which attributes are included on an element is not considered relevant. In other
words, if an XML parser encounters an element like

<name first=”John” middle=”Fitzgerald Johansen” last=”Doe”></name>

it doesn’t necessarily have to give us the attributes in that order, but can do so in any order it wishes.
Therefore, if information in an XML document must appear in a certain order, you should put that infor-
mation into elements, rather than attributes — parsers always report elements in the order in which they
appear in the document.

40

Part I: Introduction

Try It Out Adding Attributes to Our Orders

In the previous Try It Out, you entered a lot of information about the various orders captured through-
out the day. However, notice that the <Orders> element can contain multiple <Order> elements, and
the <Products> element can contain multiple <Product> elements. Often, programmers find it handy
to include an attribute on these types of “container’’ elements to indicate how many items are in the list.
You could get the same value by counting the child elements, but it’s sometimes useful to have this as a
separate piece of information, for a sanity check. In addition, both <Order> and <Product> have child
elements for ID — this is often the type of information that’s captured in an attribute, instead of a child
element.

1. Open your order.xml file created earlier, and resave it to your hard drive as order2.xml.

2. With your newfound attributes knowledge, add count attributes to <Orders> and
<Products>, and change any <ID> elements to an ID attribute on the parent instead. The result
should look like the following (the changed lines are highlighted):

<Orders Count=”2”>
<Order ID=”0000000001”>

<Type>N</Type>
<Date>Jan 1, 2004, 14:29</Date>
<Customer>
<SernaDirect>
<SubscriptionType>B</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>

</SernaDirect>
<Address>
<Address1>123 Somewhere Ave.</Address1>
<Address2></Address2>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>

</Address>
<CreditCard>
<Number>4111111111111111</Number>
<CardHolderName>John Q Public</CardHolderName>
<Expiry>11/09</Expiry>

</CreditCard>
<Phone>5555555555</Phone>
<Name>John Public</Name>
<Email>jpublic@someprovider.com</Email>

</Customer>
<Number>x582n9</Number>
<Products Count=”1”>
<Product>
<Model>X9</Model>
<Price>129.95</Price>
<ID>x9000059</ID>

</Product>

41

Chapter 2: Well-Formed XML

</Products>
</Order>
<Order ID=”0000000002”>
<Type>N</Type>
<Date>Jan 1, 2004, 16:00</Date>
<Customer>
<SernaDirect>
<SubscriptionType>D</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>

</SernaDirect>
<Address>
<Address1>89 Subscriber’s Street</Address1>
<Address2>Box 882</Address2>
<City>Smallville</City>
<State>XQ</State>
<Zip>000000000</Zip>

</Address>
<CreditCard>
<Number>4512451245124512</Number>
<CardHolderName>Helen P Someperson</CardHolderName>
<Expiry>01/08</Expiry>

</CreditCard>
<Phone>5554443333</Phone>
<Name>Helen Someperson</Name>
<Email>helens@isp.net</Email>

</Customer>
<Number>a98f78d</Number>
<Products Count=”1”>
<Product>
<Model>Y9</Model>
<Price>229.95</Price>
<ID>y9000065</ID>

</Product>
</Products>

</Order>
</Orders>

3. Save the file and view it in IE. It will look something like Figure 2-9.

How It Works
Using attributes, you added some extra information about the number of items contained in any “lists.’’
Again, this is information that could easily be inferred from the content of the document, but if a list
showed that it was supposed to have two elements and only one was in the document, then you’d know
that you had a problem.

42

Part I: Introduction

Figure 2-9

When to Use Attributes
There have been many debates in the XML community about whether attributes are really necessary,
and, if so, where they should be used. The following subsections address some of the main points in
that debate.

Using Attributes to Separate Different Types of Information
In the previous example, the number of <Order> elements under <Orders> isn’t really part of the data
you’re sending, so it may make sense to make that information an attribute. This logically separates the
data most applications will need from the data that most applications won’t need.

In reality, there is no such thing as pure meta data — all information is data to some application. Consider
HTML; you could break the information in HTML into two types of data: the data to be shown to a

43

Chapter 2: Well-Formed XML

human and the data to be used by the web browser to format the human-readable data. From one stand-
point, the data used to format the data would be meta data, but to the browser or the person writing the
HTML, the meta data is the data. Therefore, attributes make sense when you’re separating one type of
information from another.

What Attributes Offer That Elements Don’t
Can’t elements do anything attributes can do? In other words, on the face of it, there’s really no differ-
ence between

<name nickname=’Shiny John’></name>

and

<name>
<nickname>Shiny John</nickname>

</name>

In both cases, we have a child of the <name> element, named “nickname,” with the content “Shiny
John.” Why bother to pollute the language with two ways of doing the same thing?

The main reason why XML was invented was because SGML could do some great things but it was too
massively difficult to use without a full-fledged SGML expert on hand, so one driving concept behind
XML is a kinder, gentler, simpler SGML. For this reason, many people don’t like attributes, because
attributes add a complexity to the language that they feel is unnecessary.

Conversely, some people find attributes easier to use — for example, they don’t require nesting and you
don’t have to worry about crossed tags.

Why Use Elements If Attributes Use So Much Less Space?
Wouldn’t it save bandwidth to use attributes instead? For example, if you were to rewrite the <name>
document to use only attributes, it might look like the following, which takes up much less space than
our earlier code using elements:

<name nickname=’Shiny John’ first=’John’
middle=’Fitzgerald Johansen’ last=’Doe’></name>

However, in systems where size is really an issue, it turns out that simple compression techniques would
work much better than trying to optimize the XML. Moreover, because of the way compression works,
you end up with files of almost the same size regardless of whether attributes or elements are used.
Besides, when you try to optimize XML this way, you lose many of the benefits XML offers, such as
readability and descriptive tag names.

Elements Can Be More Complex Than Attributes
When you use attributes, you are limited to simple text as a value. However, when you use elements,
your content can be as simple or as complex as you need. That is, when your data is in an element, you
have room for expansion, by adding other child elements to further break down the information.

44

Part I: Introduction

Similarly, if line endings will be important in your data, you will have to put the data into an element,
rather than an attribute, because these line endings are stripped out of attribute values.

Sometimes Elements Can Get in the Way
Imagine a case where you have a <note> element, which contains annotations about the text in your
XML document. Sometimes the note will be informational, and sometimes a warning. You could include
the type of note using an element such as the following:

<note>
<type>Information</type>
This is a note.

</note>

or

<note><Information>This is a note.</Information></note>

However, it would probably be much less intrusive to include the information in an attribute, as shown
here:

<note type=”Information”>This is a note.</note>

Attributes Are Unordered
As noted earlier, the order of attributes is considered irrelevant. Hence, sometimes you may need to use
elements, rather than attributes, for information that must appear in the document in a certain order.

Visual Preferences
Many people have different opinions as to whether attributes or child elements “look better.” The
answer comes down to a matter of personal preference and style.

In fact, much of the attributes versus elements debate hinges on personal preference. Many, but not all,
of the arguments boil down to “I like the one better than the other,” but because XML has both elements
and attributes, and neither one is going to go away, you’re free to use both. Choose whichever works
best for your application, whichever looks better to you, or whichever you’re most comfortable with.

Comments
Using comments, you can insert into an XML document text that isn’t really part of the document, but
rather is intended for people who are reading the XML markup itself.

Anyone who has used a programming language will be familiar with the idea of comments: You want to
be able to annotate your code (or your XML), so that those coming after you will be able to figure out
what you were doing. (And remember: The one who comes after you may be you! Code you wrote six
months ago might be as foreign to you as code someone else wrote.)

45

Chapter 2: Well-Formed XML

Of course, comments may not be as relevant to XML as they are to programming languages; after all,
this is just data, and it’s self-describing to boot. Still, you never know when they’re going to come in
handy, and there are cases where comments can be very useful, even in data.

Comments start with the string <!--and end with the string -->, as shown here:

<name nickname=’Shiny John’>
<first>John</first>

<!--John lost his middle name in a fire-->
<middle></middle>
<last>Doe</last>

</name>

Note a couple of points about comments. First, you can’t have a comment inside a tag, so the following
is illegal:

<middle></middle <!--John lost his middle name in a fire--> >

Second, you can’t use the double-dash string (--) inside a comment, so the following is also illegal:

<!--John lost his middle name -- in a fire-->

The XML specification states that an XML parser doesn’t need to pass these comments on to the applica-
tion, meaning that you should never count on being able to use the information inside a comment from
your application. Comments are only there for the benefit of someone reading your XML markup.

Try It Out Some Comments on Our Orders

The type of distribution system we’re working with can be very complicated. In this example, you’ll add
some comments to your order XML to clarify how and why you’ve structured some of the data the way
you have:

1. Open your order2.xml file, make the following changes, and save the modified XML file as
order3.xml:

<Orders Count=”2”>
<Order ID=”0000000001”>
<Type>N</Type>
<!--Indicates the type of order: N(ew), C(ancel), or U(pdate)-->
<Date>Jan 1, 2004, 14:29</Date>
<!--we’re only capturing order date, but often systems will capture
a separate shipment date as well-->
<Customer>

HTML programmers have often used the trick of inserting scripting code in com-
ments, to protect users with older browsers that didn’t support the <script> tag.
That kind of trick can’t be used in XML, as comments won’t necessarily be available
to the application. Therefore, if you have data that you need to get at later from your
applications, put it in an element or an attribute!

46

Part I: Introduction

<SernaDirect>
<SubscriptionType>B</SubscriptionType>
<!--Type of subscription: B(asic) or D(eluxe)-->
<SubscriptionLength>12</SubscriptionLength>
<!--length of subscription in months-->

</SernaDirect>
<Address>
<!--systems often require separate Home, Billing, and Delivery
addresses, but for the sake of simplicity we’re only capturing one-->
<Address1>123 Somewhere Ave.</Address1>
<Address2></Address2>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>

</Address>
<CreditCard>
<Number>4111111111111111</Number>
<CardHolderName>John Q Public</CardHolderName>
<Expiry>11/09</Expiry>

</CreditCard>
<Phone>5555555555</Phone>
<!--systems often require separate home and business #’s, but we’re
only capturing the one-->
<Name>John Public</Name>
<Email>jpublic@someprovider.com</Email>

</Customer>
<Number>x582n9</Number>
<!--in this type of distributed system, there are often multiple
ID’s/numbers associated with an order, because of the multiple
back-end systems involved-->
<Products Count=”1”>
<Product>

<Model>X9</Model>
<Price>129.95</Price>
<ID>x9000059</ID>

</Product>
</Products>

</Order>
<Order ID=”0000000002”>
<Type>N</Type>
<Date>Jan 1, 2004, 16:00</Date>
<Customer>
<SernaDirect>
<SubscriptionType>D</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>

</SernaDirect>
<Address>
<Address1>89 Subscriber’s Street</Address1>
<Address2>Box 882</Address2>
<City>Smallville</City>
<State>XQ</State>
<Zip>000000000</Zip>

</Address>
<CreditCard>

47

Chapter 2: Well-Formed XML

<Number>4512451245124512</Number>
<CardHolderName>Helen P Someperson</CardHolderName>
<Expiry>01/08</Expiry>

</CreditCard>
<Phone>5554443333</Phone>
<Name>Helen Someperson</Name>
<Email>helens@isp.net</Email>

</Customer>
<Number>a98f78d</Number>
<Products Count=”1”>
<Product>
<Model>Y9</Model>
<Price>229.95</Price>
<ID>y9000065</ID>

</Product>
</Products>

</Order>
</Orders>

2. Figure 2-10 shows the new document in IE.

Figure 2-10

How It Works
With the new comments, anyone who reads the source for your XML document will be able to learn a bit
more about how to create their own order file. This particular XML document might be used as a sample
document that can be sent to new distributors as they begin working with Serna Inc.

In this example, the XML parser included with IE does pass comments up to the application, so the
browser has displayed your comments; but remember that for all intents and purposes, this information
is only available to people reading the source file. The information in comments may or may not be
passed up to your application, depending on which parser you’re using. You can’t count on it, unless
you specifically choose a parser that does pass them through.

48

Part I: Introduction

If a developer uses this XML document as a sample and forgets to delete the comments before sending it
to Serna it won’t matter. They’ll be in the document, but they won’t actually be part of the document’s
data, so they won’t do any harm.

Empty Elements
Sometimes an element has no PCDATA. Recall our earlier example in which the <middle> element con-
tained no name:

<name nickname=’Shiny John’>
<first>John</first>
<!--John lost his middle name in a fire-->
<middle></middle>
<last>Doe</last>

</name>

In this case, you also have the option of writing this element using the special empty element syntax (this
syntax is also called a self-closing tag):

<middle/>

This is the one case where a start-tag doesn’t need a separate end-tag, because they are combined into
this one tag. In all other cases, you must have both tags.

Recall from our discussion of elements that the only place you can have a space within the tag is before
the closing >. This rule is slightly different when it comes to empty elements. The / and > characters
always have to be together, so you can create an empty element like this

<middle />

or this

<middle/>

but not like this

<middle/ >

or this

<middle / >

Empty elements really don’t buy you anything — except that they take less typing — so you can use them
or not at your discretion. Keep in mind, however, that as far as XML is concerned, <middle></middle> is
exactly the same as <middle/>; for this reason, XML parsers will sometimes change your XML from one
form to the other. You should never count on your empty elements being in one form or the other, but
since they’re syntactically exactly the same, it doesn’t matter. (This is why Internet Explorer felt free to
change our earlier <Address2></Address2> syntax to just <Address2/>.)

49

Chapter 2: Well-Formed XML

Interestingly, the XML community doesn’t seem to mind the empty element syntax, even though it
doesn’t add anything to the language. This is especially interesting considering the passionate debates
that have taken place regarding whether attributes are really necessary.

One place where empty elements are very often used is for elements that have no (or optional) PCDATA,
but instead have all of their data contained in attributes. For example, if we rewrote our <name> example
without child elements, instead of a start-tag and end-tag we would probably use an empty element,
like this:

<name first=”John” middle=”Fitzgerald Johansen” last=”Doe”/>

Or, for readability, XML authors will often write the XML like this:

<name first=”John”
middle=”Fitzgerald Johansen”
last=”Doe”
/>

Another common example is the case where just the element name is enough; for instance, the HTML

 tag would be converted to an XML empty element, such as the XHTML
 tag. (XHTML is the
latest XML-compliant version of HTML and is discussed in Chapter 18.)

XML Declarations
It is often very handy to be able to identify a document as being of a certain type. On computers running
Windows, giving a file an extension of .xml identifies the file as an XML file to Windows, but on other
operating systems this will not work. In addition, you might want the flexibility of creating XML files
with other extensions.

XML provides the XML declaration to label documents as being XML, along with giving the parsers a few
other pieces of information. You don’t need to have an XML declaration — a parser can usually tell a
document is XML without it — but it’s considered good practice to include it. A typical XML declaration
looks like this:

<?xml version=’1.0’ encoding=’UTF-16’ standalone=’yes’?>
<name nickname=’Shiny John’>
<first>John</first>
<!--John lost his middle name in a fire-->
<middle/>
<last>Doe</last>

</name>

Note the following about the XML declaration:

❑ The XML declaration starts with the characters <?xml and ends with the characters ?>.

❑ If you include a declaration, you must include the version, but the encoding and standalone
attributes are optional.

❑ The version, encoding, and standalone attributes must be in that order.

50

Part I: Introduction

❑ The version should be 1.0 or 1.1, as outlined below.

❑ The XML declaration must be right at the beginning of the file. That is, the first character in the
file should be that <; no line breaks or spaces. Some parsers are more forgiving about this than
others.

For example, an XML declaration can be as full as the previous one or as simple as the following:

<?xml version=’1.0’?>

The next two sections describe more fully the encoding and standalone attributes of the XML
declaration.

Version
The version attribute specifies which version of the XML specification the document adheres to. There
are two versions of the XML specification, 1.0 and 1.1, so when you’re using this attribute, it must be set
to either 1.0 or 1.1:

<?xml version=”1.0”?>

or

<?xml version=”1.1”?>

If a browser comes across a document with a version it doesn’t recognize, it will simply reject the docu-
ment and stop processing it.

These versions of the XML specification are virtually the same, except regarding how certain Unicode
characters are treated for the purpose of naming elements, and how end-of-line characters are treated on
certain mainframe systems.

The Unicode character code is discussed in the next section.

At the time this edition of the book was printed, the 1.1 version of XML was very new, and most parsers
didn’t yet support it. Therefore, unless you’re working with some Unicode data that just won’t work
under the 1.0 specification, you should always specify 1.0 for the version.

If you really need the changes in the XML 1.1 specification, make sure that your XML parser supports it.
In addition, if you’ll be exchanging XML documents with others, then you need to make sure that their
XML parsers support XML 1.1 too, or you’ll have interoperability issues.

Encoding
It should come as no surprise that text is stored in computers using numbers, since 1s and 0s are all that
computers really understand. A character code is a one-to-one mapping between a set of characters and
the corresponding numbers to represent those characters. Character encoding is the method used to repre-
sent the numbers in a character code digitally (in other words, how many bytes should be used for each
number, and so on).

51

Chapter 2: Well-Formed XML

One character code that you might have come across is the American Standard Code for Information
Interchange (ASCII). In ASCII, for example, the lowercase character “a” is represented by the number 97,
and the uppercase character “A” is represented by the number 65.

There are 7-bit and 8-bit ASCII encoding schemes. 7-bit ASCII uses 7 bits for each character, which limits
it to 128 different values, while 8-bit ASCII uses one full byte (8 bits) for each character, which limits it to
256 different values. 7-bit ASCII is a much more universal standard for text, while there are a number of
8-bit ASCII character codes — which were created to add additional characters not covered by ASCII —
such as ISO-8859-1. Each 8-bit ASCII encoding scheme might have slightly different sets of characters
represented, and those characters might map to different numbers. However, the first 128 characters are
always the same as the 7-bit ASCII character code.

ASCII can easily handle all of the characters needed for English, which is why it was the predominant
character encoding used on personal computers in the English-speaking world for many years. Of
course, there are many more than 256 characters in all of the world’s languages, so obviously ASCII (or
any other 8-bit encoding limited to 256 characters) can only handle a small subset of these. This is why
Unicode was invented.

When it comes to the ASCII character set, the question of encoding is very simple: Characters each
require exactly one byte of storage. For 7-bit ASCII, the eighth bit in the byte is not used.

Unicode
Unicode is a character code designed from the ground up with internationalization in mind, aiming to
include enough possible characters to cover all of the characters in any human language. There are two
major character encodings for Unicode: UTF-16 and UTF-8. UTF-16 takes the easy way, simply using two
bytes for every character (2 bytes = 16 bits = 65,356 possible values).

UTF-8 is more clever: It uses one byte for the characters covered by 7-bit ASCII and then uses some
tricks so that any other characters may be represented by two or more bytes. This means that 7-bit ASCII
text can actually be considered a subset of UTF-8, and processed as such. For text written in English, for
which most or all of the characters would fit into the ASCII 7-bit character encoding, UTF-8 will result in
smaller file sizes (because each character requires only one byte), but for text in other languages, UTF-16
can be smaller (because UTF-8 can require three or more bytes for some characters, whereas UTF-16
would only require two).

Because of the work done with Unicode to make it international, the XML specification states that all
XML processors must use Unicode internally. Unfortunately, very few of the documents in the world are
encoded in Unicode. Most are encoded in ISO-8859-1, or Windows-1252, or EBCDIC (used very com-
monly in mainframe computers), or one of a large number of other character codes. (Many of these char-
acter codes, such as ISO-8859-1 and Windows-1252, are actually 8-bit ASCII character codes. They are
not, however, subsets of UTF-8 in the same way that “pure” 7-bit ASCII is.)

Specifying a Character Encoding for XML
This is where the encoding attribute in an XML declaration comes in. It allows you to specify to the
XML parser what character encoding your text is in. The XML parser can then read the document in the
proper encoding and translate it into Unicode characters internally. If no encoding is specified, UTF-8 or
UTF-16 is assumed (parsers must support at least UTF-8 and UTF-16). If no encoding is specified and the
document is not UTF-8 or UTF-16, the parser raises an error.

52

Part I: Introduction

That said, sometimes an XML processor is allowed to ignore the encoding specified in the XML declara-
tion. If the document is being sent via a network protocol such as HTTP, protocol-specific headers may
specify a different encoding than the one specified in the document. In such a case, the HTTP header
would take precedence over the encoding specified in the XML declaration. However, if there are no
external sources for the encoding, and the encoding specified is different from the actual encoding of the
document, an error results.

If you’re running Windows XP, Notepad gives you the option of saving your text files in Unicode, in
which case you can omit the encoding attribute in your XML declarations (see Figure 2-11).

Figure 2-11

In this case, your best bet is to save the document using the UTF-8 encoding and specify it as such in the
XML declaration.

Standalone
If the standalone attribute is included in the XML declaration, it must be set to either yes or no:

❑ yes specifies that the document exists entirely on its own, without depending on any other files.

❑ no indicates that the document may depend on an external DTD (DTDs are covered in
Chapter 4).

53

Chapter 2: Well-Formed XML

This little attribute actually has its own name: the Standalone Document Declaration, or SDD. The XML
Recommendation doesn’t actually require a parser to do anything with the SDD. It is considered more of
a hint to the parser than anything else.

It’s time to take a look at how the XML declaration works in practice.

Try It Out Declaring Our Orders to the World

In this example, you declare your XML document so that any parsers can immediately determine what it
is. In addition, while you’re at it, you should take care of any elements that don’t have any content, and
change them to use the empty element syntax, just to get familiar with it.

1. Open the file order2.xml (we’ll ignore the version with all of our comments, to reduce clutter),
and make the following changes. When you save the document (from Notepad) make sure you
set the encoding to UTF-8.

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<Orders Count=”2”>
<Order ID=”0000000001”>
<Type>N</Type>
<Date>Jan 1, 2004, 14:29</Date>
<Customer>
<SernaDirect>
<SubscriptionType>B</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>

</SernaDirect>
<Address>
<Address1>123 Somewhere Ave.</Address1>
<Address2/>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>

</Address>
<CreditCard>
<Number>4111111111111111</Number>
<CardHolderName>John Q Public</CardHolderName>
<Expiry>11/09</Expiry>

</CreditCard>
<Phone>5555555555</Phone>
<Name>John Public</Name>
<Email>jpublic@someprovider.com</Email>

</Customer>
<Number>x582n9</Number>
<Products Count=”1”>
<Product>
<Model>X9</Model>
<Price>129.95</Price>
<ID>x9000059</ID>

</Product>
</Products>

</Order>
<Order ID=”0000000002”>
<Type>N</Type>
<Date>Jan 1, 2004, 16:00</Date>
<Customer>

54

Part I: Introduction

<SernaDirect>
<SubscriptionType>D</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>

</SernaDirect>
<Address>
<Address1>89 Subscriber’s Street</Address1>
<Address2>Box 882</Address2>
<City>Smallville</City>
<State>XQ</State>
<Zip>000000000</Zip>

</Address>
<CreditCard>
<Number>4512451245124512</Number>
<CardHolderName>Helen P Someperson</CardHolderName>
<Expiry>01/08</Expiry>

</CreditCard>
<Phone>5554443333</Phone>
<Name>Helen Someperson</Name>
<Email>helens@isp.net</Email>

</Customer>
<Number>a98f78d</Number>
<Products Count=”1”>
<Product>
<Model>Y9</Model>
<Price>229.95</Price>
<ID>y9000065</ID>

</Product>
</Products>

</Order>
</Orders>

2. Save the file as order4.xml and view it in IE, shown in Figure 2-12.

Figure 2-12
55

Chapter 2: Well-Formed XML

How It Works
With your new XML declaration, any XML parser can tell right away that it is indeed dealing with an
XML document, and that the document is claiming to conform to version 1.0 of the XML
Recommendation.

Furthermore, the document indicates that it is encoded using UTF-8 character encoding. In addition,
because the Standalone Document Declaration declares that this is a standalone document, the parser
knows that this one file is all that it needs to fully process the information.

Finally, because the address for the first order has no information in the <Address2> element, the syntax
has been changed to the empty element syntax. Remember, though, that to the parser <Address2/> is
exactly the same as <Address2></Address2>, which is why this part of your document looks the same
in the browser as it did in the earlier screenshots.

Processing Instructions
Although it isn’t all that common, sometimes you need to embed application-specific instructions into
your information to affect how it will be processed. XML provides a mechanism to allow this, called pro-
cessing instructions or PIs. These PIs enable you to enter instructions into your XML that are not part of
the data of the document, but which are passed up to the application, as shown in the following code:

<?xml version=’1.0’?>
<name nickname=’Shiny John’>
<first>John</first>
<!--John lost his middle name in a fire-->
<middle/>
<?nameprocessor PRINT nickname?>
<last>Doe</last>

</name>

There aren’t really a lot of rules regarding PIs. They’re basically just a <? followed by the name of the appli-
cation that is supposed to receive the PI (the PITarget). The rest, up until the ending ?>, is whatever you
want the instruction to be. The PITarget is bound by the same naming rules as elements and attributes, so
in this example the PITarget is nameprocessor, and the actual text of the PI (the instructions) is PRINT
nickname.

PIs are pretty rare, and are often frowned upon in the XML community, especially when used frivolously.
Nonetheless, if you have a valid reason to use them, then go for it. For example, PIs can be an excellent
place to put the kind of information (such as scripting code) that in HTML is put in comments. While you
can’t assume that comments will be passed on to the application, PIs always are.

This may leave you wondering whether the XML declaration is a processing instruction. At first glance,
you might think that the XML declaration is a PI that starts with xml. It uses the same <? ?> notation,
and provides instructions to the parser (but not the application). Is it a PI?

Actually, no: The XML declaration isn’t a PI, but in most cases it really doesn’t make any difference
whether it is or not. The only places where you’ll get into trouble are the following:

56

Part I: Introduction

❑ Trying to get the text of the XML declaration from an XML parser — Some parsers erroneously
treat the XML declaration as a PI and will pass it on as if it were, but most will not. In most
cases, your application will never need the information in the XML declaration; that information
is only for the parser. (Even the character encoding shouldn’t matter to your application, because
by the time the parser passes on the text, it will be Unicode, regardless of what encoding was
originally used in the document.) One notable exception might be an application that wants to
display an XML document to a user, in the way that we’re using Internet Explorer to display the
documents in this book.

❑ Including an XML declaration somewhere other than at the beginning of an XML document —
Although you can put a PI anywhere you want, an XML declaration must appear at the begin-
ning of a file.

Try It Out An Order to Be Processed

Just to see what it looks like, try adding a processing instruction to your order XML:

1. Make the following changes to order4.xml, and save the new file as order5.xml:

<?xml version=”1.0”?>
<Orders Count=”2”>
<Order ID=”0000000001”>
<?SernaProcessor ManualIntervention reason:Insufficient Funds?>
<Type>N</Type>
<Date>Jan 1, 2004, 14:29</Date>
<Customer>
<SernaDirect>
<SubscriptionType>B</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>

</SernaDirect>
<Address>
<Address1>123 Somewhere Ave.</Address1>
<Address2/>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>

</Address>
<CreditCard>
<Number>4111111111111111</Number>
<CardHolderName>John Q Public</CardHolderName>
<Expiry>11/09</Expiry>

</CreditCard>
<Phone>5555555555</Phone>
<Name>John Public</Name>
<Email>jpublic@someprovider.com</Email>

</Customer>
<Number>x582n9</Number>
<Products Count=”1”>
<Product>
<Model>X9</Model>
<Price>129.95</Price>
<ID>x9000059</ID>

</Product>

57

Chapter 2: Well-Formed XML

</Products>
</Order>
<Order ID=”0000000002”>
<Type>N</Type>
<Date>Jan 1, 2004, 16:00</Date>
<Customer>
<SernaDirect>
<SubscriptionType>D</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>

</SernaDirect>
<Address>
<Address1>89 Subscriber’s Street</Address1>
<Address2>Box 882</Address2>
<City>Smallville</City>
<State>XQ</State>
<Zip>000000000</Zip>

</Address>
<CreditCard>
<Number>4512451245124512</Number>
<CardHolderName>Helen P Someperson</CardHolderName>
<Expiry>01/08</Expiry>

</CreditCard>
<Phone>5554443333</Phone>
<Name>Helen Someperson</Name>
<Email>helens@isp.net</Email>

</Customer>
<Number>a98f78d</Number>
<Products Count=”1”>
<Product>
<Model>Y9</Model>
<Price>229.95</Price>
<ID>y9000065</ID>

</Product>
</Products>

</Order>
</Orders>

2. In IE, the result looks like Figure 2-13.

How It Works
For this example, you are targeting a fictional application called SernaProcessor, and giving it the
instruction ManualIntervention reason:Insufficient Funds. The instruction has no meaning in
the context of the XML itself, only to the SernaProcessor application, so it’s up to the
SernaProcessor to do something meaningful with it.

In addition, because your document is UTF-8 (which the parser can infer), and because the SDD isn’t
doing too much, you shortened the XML declaration to the shorter syntax.

58

Part I: Introduction

Figure 2-13

Illegal PCDATA Characters
There are some reserved characters that you can’t include in your PCDATA because they are used in
XML syntax: the < and & characters:

<!--This is not well-formed XML!-->
<comparison>6 is < 7 & 7 > 6</comparison>

Viewing the preceding XML in Internet Explorer results in the error shown in Figure 2-14.

Figure 2-14

59

Chapter 2: Well-Formed XML

Even if the parser had gotten past this, the same error would have occurred at the & character.

This error may seem confusing, but it could be worse. Consider the following XML:

<blah>Some <text in an element</blah>

In this case, an error would still be raised, but the error message would read “Missing equals sign
between attribute and attribute value.’’

The reason for this strange error message is that the XML parser comes across the < character and
expects a tag name. In the first document it found a space, which is not allowed, and in the second
example it thought that text was the tag name, but then assumed that in was an attribute and expected
to find an equals sign for the attribute’s value.

All of this means that you can’t put raw < or & characters into PCDATA. (Why & characters can’t be
included will become evident when the syntax for escaping characters is covered in the next section.)
There are two ways you can get around this: escaping characters, or enclosing text in a CDATA section.

Escaping Characters
To escape the < or & characters, you simply replace any < character with < and any & character with
&. (In addition, you can also escape the > character with >. It isn’t necessary, but it does make
things more consistent, as you need to escape all of the < characters.) The previous XML example could
be made well formed by doing the following:

<comparison>6 is < 7 & 7 > 6 </comparison>

This displays properly in the browser, as shown in Figure 2-15.

Figure 2-15

Notice that IE’s XML parser is showing the un-escaped characters when it displays the document; in
other words, it replaces the <, &, and > strings with <, &, and > characters. This is because
the content of the <comparison> element really is 6 is < 7 & 7 > 6— we had to escape the < and & char-
acters so as not to confuse the parser, but once the parser has read in the markup, it knows the real con-
tent of the PCDATA.

< and & are known as entity references. The following entities are defined in XML:

❑ &— the & character

❑ <— the < character
60

Part I: Introduction

❑ >— the > character

❑ '— the ‘ character

❑ "— the “ character

Other characters can also be escaped by using character references. These are strings such as &#nnn;,
where nnn would be replaced by the Unicode number of the character you want to insert. (Or &#x nnn;
with an x preceding the number, where nnn is a hexadecimal representation of the Unicode character
you want to insert. All of the characters in the Unicode specification are specified using hexadecimal, so
allowing the hexadecimal numbers in XML means that XML authors don’t have to convert back and
forth between hexadecimal and decimal.)

Escaping characters in this way can be quite handy if you are authoring documents in XML that use
characters your XML editor doesn’t understand, or can’t output, because the characters escaped are
always Unicode characters, regardless of the encoding being used for the document. As an example, you
could include the copyright symbol ((c)) in an XML document by inserting © or ©.

CDATA Sections
If you have a lot of < and & characters that need escaping, you may find that your document quickly
becomes very ugly and unreadable with all of those entity references. Luckily, there are also CDATA
sections. Recall that CDATA is another inherited term from SGML; it stands for character data. Using
CDATA sections, you can tell the XML parser not to parse the text, but to let it all go by until it gets to
the end of the section. CDATA sections look like this:

<comparison><![CDATA[6 is < 7 & 7 > 6]]></comparison>

Everything starting after the <![CDATA[and ending at the]]> is ignored by the parser, and passed
through to the application as is.

Unfortunately, the CDATA syntax introduces another complexity to XML markup: The character
sequence]]> is not allowed, either in a CDATA section or out. If you really needed to have those three
characters together, you’d have to use this:

]]>

In these trivial cases, CDATA sections may look more confusing than the escaping did, but in other cases
it can turn out to be more readable. For example, consider the following example, which uses a CDATA
section to keep an XML parser from parsing a section of JavaScript:

<script language=’JavaScript’><![CDATA[
function myFunc()
{

if(0 < 1 && 1 < 2)
alert(“Hello”);

}
]]></script>

61

Chapter 2: Well-Formed XML

Figure 2-16 shows how this displays in IE5 or later browsers.

Figure 2-16

Notice the vertical line at the left-hand side of the CDATA section. This indicates that although the
CDATA section is indented for readability, the actual data itself starts at that vertical line. You can visu-
ally see exactly what whitespace is included in the CDATA section.

If you’re familiar with JavaScript, you’ll probably find the if statement much easier to read than the
following:

if(0 < 1 && 1 < 2)

Try It Out Talking about HTML in XML

Suppose you want to create XML documentation to describe some of the various HTML tags in exis-
tence. You might develop a simple document type such as the following:

<HTML-Doc>
<tag>
<tag-name></tag-name>
<description></description>
<example></example>

</tag>
</HTML-Doc>

In this case, you know that your <example> element will need to include HTML syntax, meaning that a
lot of < characters are included. This makes <example> the perfect place to use a CDATA section, so that
you don’t have to search through all of your HTML code looking for illegal characters. This way you can
include text like <html> and have the parser simply treat that as six characters, rather than as a tag. To
demonstrate, let’s document a couple of HTML tags:

62

Part I: Introduction

1. Create a new file (or just open Notepad) and type this code:

<HTML-Doc>
<tag>
<tag-name>p</tag-name>
<description>Paragraph</description>
<example><![CDATA[

<p>Paragraphs can contain other tags.</p>
]]></example>
</tag>
<tag>
<tag-name>html</tag-name>
<description>HTML root element</description>
<example><![CDATA[

<html>
<head><title>Sample HTML</title></head>
<body>
<p>Stuff goes here</p
</body>/html>
]]></example>
</tag>
<!--more tags to follow...-->

</HTML-Doc>

2. Save this document as html-doc.xml and view it in IE5 or later (see Figure 2-17).

Figure 2-17

63

Chapter 2: Well-Formed XML

How It Works
Because of your CDATA sections, you can put whatever you want into the <example> elements, and not
have to worry about the text being mixed up with the actual XML markup of the document. This means
that even though there are typos in the second <example> element (the </p is missing the > and /html>
is missing a <), your XML is not affected.

Errors in XML
In addition to specifying how a parser should get the information from an XML document, the XML
Recommendation also specifies how a parser should deal with errors in XML. Two types of errors are
defined: errors and fatal errors.

❑ An error is simply a violation of the rules in the recommendation, where the results are unde-
fined; the XML processor is allowed to recover from the error and continue processing.

❑ Fatal errors are more serious: According to the recommendation, a parser is not allowed to con-
tinue as normal when it encounters a fatal error. (It may, however, keep processing the XML doc-
ument to search for further errors.) This is called draconian error handling. Any error that causes
an XML document to cease being well formed is a fatal error.

The reason for this drastic handling of non-well–formed XML is simple: It would be hard for parser writ-
ers to try to handle “well-formedness” errors, and it is extremely simple to make XML well formed.
(Web browsers don’t force documents to be as strict as XML does, but this is one of the reasons why web
browsers are so incompatible; they must deal with all the errors they may encounter, and try to figure
out what the person who wrote the document was really trying to code.)

Draconian error handling doesn’t just benefit the parser writers; it also benefits us when we’re creating
XML documents. If you write an XML document that doesn’t properly follow XML’s syntax, you can
find your mistake right away and fix it. Conversely, if the XML parser tried to recover from these errors,
it might misinterpret what you were trying to do, but you wouldn’t know about it because no error
would be raised. In this case, bugs in your software would be much harder to track down, instead of
being caught right at the beginning when you were creating your data. Even worse, if you sent your
XML document to someone else, his or her parser might interpret the mistake differently.

Summary
This chapter has provided you with the basic syntax for writing well-formed XML documents.
Highlighted in the chapter were the following:

❑ Elements and empty elements

❑ How to deal with whitespace in XML

❑ Attributes

❑ How to include comments

❑ XML declarations and encodings

64

Part I: Introduction

❑ Processing instructions

❑ Entity references, character references, and CDATA sections

You’ve also learned why the strict rules of XML grammar actually benefit you in the long run, as they
force you to catch your errors sooner rather than later, and how some of the rules for authoring HTML
are different from the rules for authoring well-formed XML.

In the next chapter you’ll learn about a very important part of XML: namespaces.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
For the addresses in our Order XML, we used a common format of “Address Line 1, Address Line 2,
City, State, and Zip Code.’’ Other applications need to be stricter with their addresses, and have separate
elements for street number, street name, and so on. Rewrite the last version of the Order XML using the
following information, instead of the Address Line 1/Address Line 2 format:

❑ Street number

❑ Street name

❑ Apt. number

❑ City

❑ State

❑ Zip code

❑ Additional Information

Question 2
Sometimes the syntax used by XML can be a little troublesome to figure out. The following XML docu-
ment contains a few syntactical errors, preventing it from being well formed. Correct them so that the
document can be read by IE.

Hint: When I’m trying to correct a file like this, I often open it in the browser and fix errors as the browser
reports them to me. Be warned — some of the errors are a bit more difficult to figure out than others.

<?xml version=”1”?>
<document>
<--There are a couple of problems with this document.-->
<Information>This document
contains some < bold>information</bold>. Once
it’s corrected, it can be read by a parser.</Information>

</Document>

65

Chapter 2: Well-Formed XML

3
XML Namespaces

You have seen why XML provides some benefits over binary formats and can now create well-
formed XML documents. At some point, however, your applications will become more complex,
and you will need to combine elements from various document types into one XML document.

Unfortunately, two document types often have elements with the same name, but with different
meanings and semantics. This chapter introduces XML namespaces, the means by which you can
differentiate elements and attributes of different XML document types from each other when com-
bining them into other documents, or even when processing multiple documents simultaneously.

In this chapter, you will learn the following:

❑ Why you need namespaces

❑ What namespaces are, conceptually, and how they solve the problem of naming clashes

❑ The syntax for using namespaces in XML documents

❑ What is a URI, a URL, and a URN

Why We Need Namespaces
Because of the nature of XML, it is possible for any company or individual to create XML docu-
ment types that describe the world in their own terms. If your company feels that an <order>
should contain a certain set of information, while another company feels that it should contain a
different set of information, both companies can go ahead and create different document types to
describe that information. Both companies can even use the name <order> for entirely different
uses if desired.

However, if everyone is creating personalized XML vocabularies, you’ll soon run into a problem:
Only so many words are available in human languages, and a lot of them are going to be snapped
up by people defining document types. How can you define a <title> element to be used to

denote the title in a person’s name (such as Dr. or Mrs.) when XHTML already has a <title> element
used to describe the title of an HTML document? How can you then further distinguish those two
<title> elements from the title of a book?

If all of these documents were to be kept separate, this still would not be a problem. If you saw a
<title> element in an XHTML document, you’d know what kind of title it referred to, and if you saw
one in your own proprietary XML document type, you’d know what that meant too. Unfortunately, life
isn’t always that simple, and eventually you’ll need to combine various XML elements from different
document types into one XML document. For example, you might create an XML document type con-
taining information about a person, including that person’s title, but also containing the person’s
résumé, in XHTML form. Such a document may look similar to this:

<?xml version=”1.0”?>
<person>
<name>
<title>Sir</title>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>
<position>Vice President of Marketing</position>
<résumé>
<html>
<head><title>Resume of John Doe</title></head>
<body>
<h1>John Doe</h1>
<p>John’s a great guy, you know?</p>

</body>
</html>

</résumé>
</person>

If you want to type this XML into Notepad and view the results in IE, remember to save the document
using an appropriate encoding, such as Unicode or UTF-8. The “é” characters in the <résumé> ele-
ment are not part of the basic ASCII character set, so they’ll cause problems for the XML parser when it
tries to read the document if it doesn’t have an appropriate character set to work with. However, if the
document is saved as one of the Unicode encodings, then the parser won’t have any problems with it.

To an XML parser, there isn’t any difference between the two <title> elements in this document. If you
do a simple search of the document to find John Doe’s title by looking for <title> elements, you might
accidentally get Resume of John Doe instead of “Sir”. Even in your application, you can’t know which
elements are XHTML elements and which aren’t without knowing in advance the structure of the docu-
ment. That is, you’d have to know that there is a <résumé> element, which is a direct child of <person>,
and that all of the descendents of <résumé> are a separate type of element from the others in your docu-
ment. If your structure ever changed, all of your assumptions would be lost. In the preceding document
it looks like anything inside the <résumé> element is XHTML, but in other documents it might not be so
obvious, and to an XML parser it isn’t obvious at all.

68

Part I: Introduction

Using Prefixes
The best way to solve this problem is for every element in a document to have a completely distinct
name. For example, you might come up with a naming convention whereby every element for your pro-
prietary XML document type gets your own prefix, and every XHTML element gets another prefix.

You could rewrite the previous XML document to something like this:

<?xml version=”1.0”?>
<pers:person>
<pers:name>
<pers:title>Sir</pers:title>
<pers:first>John</pers:first>
<pers:middle>Fitzgerald Johansen</pers:middle>
<pers:last>Doe</pers:last>

</pers:name>
<pers:position>Vice President of Marketing</pers:position>
<pers:résumé>
<xhtml:html>
<xhtml:head><xhtml:title>Resume of John Doe</xhtml:title></xhtml:head>
<xhtml:body>
<xhtml:h1>John Doe</xhtml:h1>
<xhtml:p>John’s a great guy, you know?</xhtml:p>
</xhtml:body>
</xhtml:html>

</pers:résumé>
</pers:person>

This is just an example to illustrate the theory: If you try to view this document in Internet Explorer, IE
will give you an error about an “undeclared namespace.” You’ll see why as we investigate the name-
space syntax in more detail.

This is a bit uglier, but at least you — and your XML parser — can immediately tell what kind of title
you’re talking about: a <pers:title> or an <xhtml:title>. Doing a search for <pers:title> will
always return Sir. You can always immediately tell which elements are XHTML elements, without hav-
ing to know in advance the structure of your document.

The drawback to doing this is that you’re no longer using proper XHTML elements. Browsers that are
able to display XHTML understand the <p> element, but they don’t understand the <xhtml:p> ele-
ment, so if you wrote an application to read this XML document and it wanted to display the XHTML
portions in a browser, it would have to rename all of the elements first, to get rid of the xhtml prefix.

By separating these elements using a prefix, you have effectively created two kinds of elements in your
document: pers types of elements and xhtml types of elements. Any elements with the pers prefix
belong to the same “category” as each other, just as any elements with the xhtml prefix belong to
another “category.” These “categories” are called namespaces.

These two namespaces are illustrated in Figure 3-1.

69

Chapter 3: XML Namespaces

Figure 3-1

Note that namespaces are concerned with a vocabulary, not a document type. That is, the namespace dis-
tinguishes which names are in the namespace, but not what they mean or how they fit together. It is sim-
ply a “bag of names.”

The concept of namespaces also exists in certain programming languages, such as Java, where the same
problem exists. How can you name your Java variables whatever you want and not have those names
conflict with names already defined by others, or even by the Java library itself? The answer is that Java
code is broken up into packages, whereby the names within a package must be unique, but the same
name can be used in any package.

For example, one class defined in Java is named java.applet.Applet. The actual name of the class
is just Applet; java.applet is the package that contains that class. This means that you can create
your own package, and in that package you can define a class of your own, named Applet. You can even
use java.applet.Applet from within your package, as long as you specify the package in which it
resides, so that Java always knows which “Applet” you’re referring to.

Why Doesn’t XML Just Use These Prefixes?
Unfortunately, there is a drawback to the prefix approach to namespaces used in the previous XML:
Who will monitor the prefixes? The whole reason for using them is to distinguish names from different
document types, but if it is going to work, then the prefixes themselves also have to be unique. If one
company chose the prefix pers and another company also chose that same prefix, the original problem
still exists.

A namespace is a purely abstract entity; it’s nothing more than a group of names that
belong with each other conceptually.

pers: person

pers: title

pers: resume

pers: name

pers

xhtml: html

xhtml: head

xhtml

xhtml: p

xhtml: title

70

Part I: Introduction

In fact, this prefix administration would have to work a lot like it works now for domain names on the
Internet. A company or individual would go to the “prefix administrators” with the prefix they would
like to use. If that prefix weren’t already being used, they could use it; otherwise, they would have to
pick another one.

To solve this problem, you could take advantage of the already unambiguous Internet domain names in
existence and specify that URIs must be used for the prefix names.

For example, because I’m writing this book for Wiley, which owns the domain name www.wiley.com, I
could incorporate that into the prefix. Perhaps the document might end up looking like this:

<?xml version=”1.0”?>
<{http://www.wiley.com/pers}person>
<{http://www.wiley.com/pers}name>
<{http://www.wiley.com/pers}title>
Sir

</{http://www.wiley.com/pers}title>
<!--etc...-->

Voila! We have solved our problem of uniqueness. Because Wiley owns the www.wiley.com domain
name, I know that nobody else will be using that http://www.wiley.com/pers prefix in their XML doc-
uments, and if I want to create any additional document types, I can just keep using our domain name,
and add the new namespace name to the end, such as http://www.wiley.com/other-namespace.

If you visit http://www.wiley.com/pers, you’ll notice that there is no document at that location. The
Wiley website will give you an error message instead. Does this mean that our namespace is broken?
Actually, not at all. The URL we’re using is simply used as a name, for the namespace; the XML parser
won’t try to pull back any resources from that location, or use it for any purpose other than naming
the namespaces in the document. We’ll talk about this more in a bit, but for now you can remember the
following:

It’s important to note that we need more than just the www.wiley.com part of the URI; we need the
whole thing. Otherwise, there would be a further problem: Different people could have control of differ-
ent sections on that domain, and they might all want to create namespaces. For example, the company’s
HR department could be in charge of http://www.wiley.com/hr and might need to create a name
space for names (of employees), and the sales department could be in charge of http://www.wiley
.com/sales, and also need to create a namespace for names (of customers). As long as we’re using the

Even though it looks like a URL, a namespace name is only used as a name, not a
location.

A URI (Uniform Resource Identifier) is a string of characters that identifies a
resource. It can be in one of two flavors: URL (Uniform Resource Locator) or URN
(Universal Resource Name). The differences between URLs and URNs are discussed
later in this chapter.

71

Chapter 3: XML Namespaces

whole URI, we’re fine — we can create both namespaces (in this case, http://www.wiley
.com/hr/names and http://www.wiley.com/sales/names, respectively). We also need the protocol
(http) in there because there could be yet another department — for example, ftp://www.wiley
.com/hr and ftp://www.wiley.com/sales.

The only drawback to this solution is that our XML is no longer well formed. Our names can now
include a myriad of characters that are allowed in URIs but not in XML names: / characters, for exam-
ple. In addition, for the sake of this example, we used {} characters to separate the URL from the name,
neither of which is allowed in an XML element or attribute name.

What we really need to solve all of our namespace-related problems is a way to create three-part names
in XML: One part would be the name we are giving this element, the second part would be a URI associ-
ated with the name, for the element’s namespace, and the third part would be an arbitrarily chosen pre-
fix that refers to a URI, which specifies the namespace to which this element belongs. In fact, this is what
XML namespaces provide.

How XML Namespaces Work
The XML Namespaces Recommendation introduces a standard syntax for declaring namespaces and
identifying the namespace for a given element or attribute in an XML document.

The XML namespaces specification is located at http://www.w3.org/TR/REC-xml-names/.

To use XML namespaces in your documents, elements are given qualified names. (In most W3C specifica-
tions, qualified name is abbreviated to QName.) These qualified names consist of two parts: the local part,
which is the same as the names we have been giving elements all along, and the namespace prefix, which
specifies to which namespace this name belongs.

For example, to declare a namespace called http://www.wiley.com/pers and associate a <person>
element with that namespace, you would do something like the following:

<pers:person xmlns:pers=”http://www.wiley.com/pers”/>

The key is the xmlns:pers attribute (xmlns stands for XML Namespace). Here you are declaring the
pers namespace prefix and the URI of the namespace that it represents (http://www.wiley.com/
pers). We can then use the namespace prefix with our elements, as in pers:person. As opposed to our
previous prefixed version, the prefix itself (pers) doesn’t have any meaning — its only purpose is to
point to the namespace name. For this reason, we could replace our prefix (pers) with any other prefix,
and this document would have exactly the same meaning. (The prefix does, however, have to follow the
same naming conventions as element names.)

This prefix can be used for any descendants of the <pers:person> element, to denote that they also
belong to the http://www.wiley.com/pers namespace, as shown in the following example:

<pers:person xmlns:pers=”http://www.wiley.com/pers”>
<pers:name>
<pers:title>Sir</pers:title>

</pers:name>
</pers:person>

72

Part I: Introduction

Notice that the prefix is needed on both the start-tags and end-tags of the elements. They are no longer
simply being identified by their names, but by their QNames.

Only elements that are specifically prefixed are part of a namespace. For example, consider this
document:

<pers:person xmlns:pers=”http://www.wiley.com/pers”>
<first/>

</pers:person>

The <first> element is not part of the same namespace as the <person> element because it doesn’t
have a namespace prefix. In fact, in this case, the <first> element is not in a namespace at all.

By now you have probably realized why colons in element names are so strongly discouraged in the
XML 1.0 specification (and in this book). If you were to use a name that happened to have a colon in it
with a namespace-aware XML parser, the parser would get confused, thinking that you were specifying
a namespace prefix.

Internally, when this document is parsed, the parser simply replaces any namespace prefixes with the
namespace itself, creating a name much like the names we used earlier in the chapter. That is, internally
a parser might consider <pers:person> to be similar to <{http://www.wiley.com/pers\person>.
For this reason, the {http://www.wiley.com/pers\person} notation is often used in namespace dis-
cussions to talk about fully qualified names. Just remember that this is only for the benefit of easily dis-
cussing namespace issues; it is not valid XML syntax.

Try It Out Adding XML Namespaces to Your Document

In this example, you see what the document would look like with proper XML namespaces. Luckily,
there is already a namespace defined for XHTML, which is http://www.w3.org/1999/xhtml. You can
use this namespace for the HTML you’re embedding in your document.

1. Open Notepad and type in the following XML:

<?xml version=”1.0”?>
<pers:person xmlns:pers=”http://www.wiley.com/pers”

xmlns:html=”http://www.w3.org/1999/xhtml”>
<pers:name>
<pers:title>Sir</pers:title>
<pers:first>John</pers:first>
<pers:middle>Fitzgerald Johansen</pers:middle>
<pers:last>Doe</pers:last>

</pers:name>
<pers:position>Vice President of Marketing</pers:position>
<pers:résumé>
<html:html>
<html:head><html:title>Resume of John Doe</html:title></html:head>
<html:body>
<html:h1>John Doe</html:h1>
<html:p>John’s a great guy, you know?</html:p>
</html:body>
</html:html>
</pers:résumé>

</pers:person>

73

Chapter 3: XML Namespaces

2. Save this document to your hard drive as namespace.xml.

3. Open namespace.xml in IE. You should get the normal color-coded view of your XML docu-
ment, similar to what is shown in Figure 3-2. (If you don’t, go back and make sure you haven’t
made any mistakes!)

How It Works
You now have a document with elements from two separate namespaces, which you defined in the high-
lighted code; and any namespace-aware XML parser will be able to tell them apart. (The fact that the file
opens fine in Internet Explorer indicates that the parser bundled with this browser understands name-
spaces properly; if it didn’t, the document might raise errors instead.) The two namespaces now look
more like Figure 3-3.

The xmlns attributes specify the namespace prefixes you are using to point to your two namespaces:

<pers:person xmlns:pers=”http://www.wiley.com/pers”
xmlns:html=”http://www.w3.org/1999/xhtml”>

That is, you declare the pers prefix, which is used to specify elements that belong to the “pers” names-
pace, and the html prefix, which is used to specify elements that belong to the XHTML namespace.
However, remember that the prefixes themselves mean nothing to the XML parser; they are replaced
with the URI internally. You could have used pers or myprefix or blah or any other legal string of
characters for the prefix; it’s only the URI to which they point that the parser cares about — although
using descriptive prefixes is good practice!

Figure 3-2

74

Part I: Introduction

Figure 3-3

Because you have a way of identifying which namespace each element belongs to, you don’t have to
give them special, unique names. You have two vocabularies, each containing a <title> element, and
you can mix both of these <title> elements in the same document. If you ever need a person’s title,
you can easily find any {http://www.wiley.com/pers\title} elements you need and ignore the
{http://www.w3 .org/1999/xhtml}\title elements.

However, even though your <title> element is prefixed with a namespace prefix, the name of the ele-
ment is still <title>. It’s just that you have now declared what namespace that <title> belongs to so
that it won’t be confused with other <title> elements that belong to other namespaces.

Default Namespaces
Although the previous document solves all of our namespace-related problems, it’s just a little bit ugly.
You have to give every element in the document a prefix to specify the namespace to which it belongs,
which makes the document look very similar to the first prefixed version. Luckily, you have the option
to create default namespaces.

Using default namespaces, our document might look more like this:

<person xmlns=”http://www.wiley.com/pers”>
<name>
<title>Sir</title>

</name>
</person>

A default namespace is just like a regular namespace except that you don’t have to
specify a prefix for all of the elements that use it.

person

http://wiley.com/pers

title

name

résumé

head

html

title

http://www.w3.org/1999/xhtml

p

75

Chapter 3: XML Namespaces

Notice that the xmlns attribute no longer specifies a prefix name to use for this namespace. As this is a
default namespace, this element and any elements descended from it belong to this namespace, unless
they explicitly specify another namespace. Therefore, the <name> and <title> elements both belong to
this namespace.

Note that these elements, because they don’t use a prefix, are no longer called QNames, even though
they are still universally unique. Many people use the generic term universal name, or UName, to describe
any name that’s in a namespace, whether it is a prefixed QName or a name in a default namespace.

You can declare more than one namespace for an element, but only one can be the default. This allows
you to write XML like this:

<person xmlns=”http://www.wiley.com/pers”
xmlns:xhtml=”http://www.w3.org/1999/xhtml”>

<name/>
<xhtml:p>This is XHTML</xhtml:p>

</person>

In the preceding example, all of the elements belong to the http://www.wiley.com/pers namespace,
except for the <p> element, which is part of the XHTML namespace. (You declared the namespaces and
their prefixes, if applicable, in the root element so that all elements in the document can use these pre-
fixes.) However, you can’t write XML like this:

<person xmlns=”http://www.wiley.com/pers”
xmlns=”http://www.w3.org/1999/xhtml”>

This tries to declare two default namespaces. In this case, the XML parser wouldn’t be able to figure out
to what namespace the <person> element belongs (not to mention that this is a duplicate attribute,
which, as you saw in Chapter 2, is not allowed in XML).

Try It Out Default Namespaces in Action

In this Try It Out you rewrite your previous document, but use a default namespace to make it cleaner:

1. Make the following changes to namespace.xml and save it as namespace2.xml:

<?xml version=”1.0”?>
<person xmlns=”http://www.wiley.com/pers”

xmlns:html=”http://www.w3.org/1999/xhtml”>
<name>
<title>Sir</title>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>
<position>Vice President of Marketing</position>
<résumé>
<html:html>
<html:head><html:title>Resume of John Doe</html:title></html:head>

76

Part I: Introduction

<html:body>
<html:h1>John Doe</html:h1>
<html:p>John’s a great guy, you know?</html:p>
</html:body>

</html:html>
</résumé>

</person>

2. When you view the file in Explorer, it should look like Figure 3-4.

How It Works
In the <person> start-tag, the first xmlns attribute doesn’t specify a prefix to associate with this name-
space, so this becomes the default namespace for the element, along with any of its descendents, which
is why you don’t need any namespace prefixes in many of the elements, such as <name>, <title>, and
so on.

However, because the XHTML elements are in a different namespace, you do need to specify the prefix
for them, such as the following:

<html:head><html:title>Resume of John Doe</html:title></html:head>

Figure 3-4

77

Chapter 3: XML Namespaces

Declaring Namespaces on Descendants
So far, when we have had multiple namespaces in a document, we’ve been declaring them all in the root
element, so that the prefixes are available throughout the document. For example, in the previous Try It
Out, we declared a default namespace, as well as a namespace prefix for our HTML elements, all on the
<person> element.

This means that when you have a default namespace mixed with other namespaces, you would create a
document like this:

<person xmlns=”http://www.wiley.com/pers”
xmlns:xhtml=”http://www.w3.org/1999/xhtml”>

<name/>
<xhtml:p>This is XHTML</xhtml:p>

</person>

However, you don’t have to declare all of your namespace prefixes on the root element; in fact, a name-
space prefix can be declared on any element in the document. You could also have written the previous
XML like this:

<person xmlns=”http://www.wiley.com/pers”>
<name/>
<xhtml:p xmlns:xhtml=”http://www.w3.org/1999/xhtml”>
This is XHTML</xhtml:p>

</person>

In some cases this might make your documents more readable because you’re declaring the namespaces
closer to where they’ll actually be used. The downside to writing documents like this is that the xhtml
prefix is available only on the <p> element and its descendants; you couldn’t use it on your <name> ele-
ment, for example, or any other element that wasn’t a descendant of <p>.

You can take things even further and declare the XHTML namespace to be the default namespace for the
<p> element and its descendents, like this:

<person xmlns=”http://www.wiley.com/pers”>
<name/>
<p xmlns=”http://www.w3.org/1999/xhtml”>This is XHTML</p>

</person>

Although http://www.wiley.com/pers is the default namespace for the document as a whole,
http://www.w3.org/1999/xhtml is the default namespace for the <p> element, and any of its descen-
dants. In other words, the http://www.w3.org/1999/xhtml namespace overrides the http://www
.wiley.com/pers namespace, so that it doesn’t apply to the <p> element. Again, in some cases this can
make your documents more readable because you are declaring the namespaces closer to where they
are used.

Try It Out Default Namespaces for Children

In the interest of readability, in this example you will write the XML from the previous Try It Out again,
to declare the default namespace for the <html> tag and its descendants:

78

Part I: Introduction

1. Make the highlighted changes to namespace2.xml:

<?xml version=”1.0”?>
<person xmlns=”http://www.wiley.com/pers”>
<name>
<title>Sir</title>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>
<position>Vice President of Marketing</position>
<résumé>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head><title>Resume of John Doe</title></head>
<body>
<h1>John Doe</h1>
<p>John’s a great guy, you know?</p>
</body>

</html>
</résumé>

</person>

2. Save this as namespace3.xml. This looks a lot tidier than the previous version and represents
the same thing.

3. View the file in Explorer. Your screen should look like the one shown in Figure 3-5.

Figure 3-5

79

Chapter 3: XML Namespaces

How It Works
Because you have completely eliminated the prefixes from your document, the element names become
“cleaner.” The document is no longer cluttered with the pers: and html: prefixes everywhere, which
can make it easier to read for a human reader.

Canceling Default Namespaces
Sometimes you might be working with XML documents in which not all of the elements belong to a
namespace. For example, you might be creating XML documents to describe employees in your organi-
zation, and those documents might include occasional XHTML comments about the employees, such as
in the following short fragment:

<employee>
<name>Jane Doe</name>
<notes>
<p xmlns=”http://www.w3.org/1999/xhtml”>I’ve worked
with <name>Jane Doe</name> for over a year
now.</p>

</notes>
</employee>

In this case, you have decided that anywhere the employee’s name is included in the document it should
be in a <name> element, in case the employee changes his or her name in the future, such as if Jane Doe
gets married and becomes Jane Smith. (In this case, changing the document would then be a matter of
looking for all <name> elements that aren’t in a namespace and changing the values.) In addition,
because these XML documents will be used only by your own application, you don’t have to create a
namespace for it.

However, as shown in the preceding code, one of the <name> elements occurs under the <p> element,
which declares a default namespace, meaning that the <name> element also falls under that namespace.
Therefore, if you searched for <name> elements that had no associated namespace, you wouldn’t pick
this one up. The way to get around this is to use the xmlns attribute to cancel the default namespace by
setting the value to an empty string, as shown in the following example:

<employee>
<name>Jane Doe</name>
<notes>
<p xmlns=”http://www.w3.org/1999/xhtml”>I’ve worked
with <name xmlns=””>Jane Doe</name> for over a year
now.</p>

</notes>
</employee>

Now the second <name> element is not in any namespace. Of course, if you had a namespace specifically
for your <employee> document, this would become a non-issue, because you could just use the meth-
ods you’ve already learned to declare that an element is part of that namespace (using a namespace pre-
fix or a default namespace). In this case, you’re not declaring that the element is part of a namespace —
you’re trying to declare that it’s not part of any namespace, which is the opposite of what you’ve been
doing so far.

80

Part I: Introduction

Normally, if you’re doing this type of processing of XML, and looking for elements or attributes in a spe-
cific namespace, you would be using some type of XML-aware tool: a SAX parser, a DOM implementa-
tion, or some type of XPath-related tool. You’ll take a look at all of these technologies — and more! — in
later chapters of the book.

Typically, if you’re going to be working with XML documents that mix and match elements from differ-
ent namespaces, you would create namespaces for all of the elements. You wouldn’t usually use ele-
ments that aren’t in a namespace in the same document with UNames. However, if you ever need to,
the flexibility exists.

Do Different Notations Make Any Difference?
You’ve now seen three different ways to combine elements from different namespaces. You can fully
qualify every name, like this:

<pers:person xmlns:pers=”http://www.wiley.com/pers”
xmlns:xhtml=”http://www.w3.org/1999/xhtml”>

<pers:name/>
<xhtml:p>This is XHTML</xhtml:p>

</pers:person>

Alternatively, you can use one namespace as the default, and just qualify any names from other name-
spaces, like this:

<person xmlns=”http://www.wiley.com/pers”
xmlns:xhtml=”http://www.w3.org/1999/xhtml”>

<name/>
<xhtml:p>This is XHTML</xhtml:p>

</person>

You can also just use defaults everywhere, like this:

<person xmlns=”http://www.wiley.com/pers”>
<name/>
<p xmlns=”http://www.w3.org/1999/xhtml”>This is XHTML</p>

</person>

This raises the question whether these three fragments of XML really mean exactly the same thing.

From the pure namespaces point of view, yes — these documents mean exactly the same thing. All three
documents have the same three elements; and in each instance, each element still belongs to the same
namespace as it does in the other two instances.

From the point of view of most applications, these fragments also mean the same thing. When you’re
doing work with an XML document, you usually only care about what elements you’re dealing with;
you don’t care whether the element’s namespace was declared using a default declaration or an explicit
prefix, any more than you care whether an element with no data was written as a start-tag and end-tag
pair or as an empty element.

81

Chapter 3: XML Namespaces

However, some applications actually do differentiate between the preceding three examples, such as an
application that reads in XML and displays the source code to a user. As you may have noticed if you
used IE5 or later to view the XML from the previous Try It Out exercises, each one is displayed differ-
ently. Take a look at each of the three preceding code examples in Figures 3-6, 3-7, and 3-8, respectively.

Figure 3-6

Figure 3-7

Figure 3-8

82

Part I: Introduction

As you can see, the browser displays the documents exactly as they were written, so if you declare your
namespaces using defaults, the browser displays them using defaults; if you declare them with prefixes,
the browser displays them with prefixes.

The two dominant technologies to programmatically get information out of XML documents, the
Document Object Model (DOM) and Simple API for XML (SAX), covered in Chapters 11 and 12, respec-
tively, provide methods that enable you to get not only the namespace URI for a QName, but also the
prefix, for those applications that need it. This means that not only can you find the fully qualified
namespace names for these elements; you can also see how the XML author wrote those names. In real
life, however, you hardly ever need the namespace prefix, unless you are writing applications to display
the XML as entered to a user. Internet Explorer’s default XSL stylesheet can differentiate between the
preceding cases because it pulls this information from the DOM implementation shipped with the
browser.

Namespaces and Attributes
So far, all of our discussions have been centered on elements, and we’ve been pretty much ignoring
attributes. Do namespaces work the same for attributes as they do for elements?

The answer is no, they don’t. In fact, attributes usually don’t have namespaces the way elements do.
They are just “associated” with the elements to which they belong. Consider the following fragment:

<person xmlns=”http://www.wiley.com/pers”>
<name id=”25”>
<title>Sir</title>

</name>
</person>

You know that the <person>, <name>, and <title> elements all belong to the same namespace, which
is declared in the <person> start-tag. The id attribute, however, is not part of this namespace; it’s sim-
ply associated with the <name> element, which itself is part of that default namespace. You could use a
notation like the following to identify it for discussion:

“{http://www.wiley.com/pers}\name:id”

That is, the id attribute is attached to the <name> element, which is in the http://www.wiley
.com/pers namespace.

However, if you used prefixes, you could specify that id is in a namespace like so:

<a:person xmlns:a=”http://www.wiley.com/pers”>
<a:name a:id=”25”>
<a:title>Sir</a:title>

</a:name>
</a:person>

There is now an attribute called id, in the http://www.wiley.com/pers namespace, attached to the
<name> element, which is also in the http://www.wiley.com/pers namespace.

83

Chapter 3: XML Namespaces

Unfortunately, the namespaces specification contains a bit of a gray area concerning attributes. For
example, consider the following two fragments:

<a:name id=”25”>
<a:name a:id=”25”>

Are these two fragments identical or different? Well, actually, programmers can make up their own
minds whether an application should treat these two cases as the same or different. (In XSLT, for exam-
ple, the two cases would be considered to be different.) For this reason, if you need ensure that an appli-
cation specifically recognizes an attribute as being part of a namespace, instead of just being attached to
an element, you should design the application such that the attributes include a prefix. This also means
that you would have to declare a prefix for your namespace, even if you’re using default namespaces for
your elements. On the other hand, most applications treat the two situations identically.

Consider the case in which you want to perform some processing on every attribute in the http://www
.wiley.com/pers namespace. If an application considers both of the preceding cases to be the same,
then in both cases the id attribute is processed. Conversely, if the application doesn’t consider both of
the preceding fragments to be the same, then you get only the second id attribute because it is specifi-
cally declared to be in the namespace you’re looking for, whereas the first one isn’t.

Is this purely theoretical? In most cases, yes. Applications don’t usually look for attributes on their own;
they look for particular elements, and then process the attributes on those elements.

However, attributes from a particular namespace can also be attached to elements from a different
namespace. Attributes that are specifically declared to be in a namespace are called global attributes. A
common example of a global attribute is the XHTML class attribute, which might be used on any XML
element, XHTML or not. This would make things easier when using Cascading Style Sheets (CSS) to dis-
play an XML document.

Try It Out Adding Attributes

To see this in action, you will add an id attribute to your <name> element and add a style attribute to
the HTML paragraph portion of your résumé:

1. Change namespace2.xml to the following, and save it as namespace4.xml:

<?xml version=”1.0”?>
<person xmlns=”http://www.wiley.com/pers”>
<name id=”1”>
<title>Sir</title>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>
<position>Vice President of Marketing</position>
<résumé>
<html:html xmlns:html=”http://www.w3.org/1999/xhtml”>
<html:head><html:title>Resume of John Doe</html:title></html:head>
<html:body>
<html:h1>John Doe</html:h1>
<html:p html:style=”FONT-FAMILY: Arial”>

84

Part I: Introduction

John’s a great guy, you know?
</html:p>
</html:body>
</html:html>

</résumé>
</person>

Because you want the style attribute to be specifically in the XHTML namespace, you have
gone back to using prefixes on your XHTML elements instead of a default namespace. Another
alternative would be to declare the XHTML namespace twice: once as the default, for <html>
and all of its descendents, and once with a prefix, which could be attached to the style
attribute.

2. Open the document in IE to view the results. It should look like Figure 3-9.

How It Works
The id attribute that you added is associated with the <name> element, but it doesn’t actually have a
namespace.

Similarly, the style attribute is associated with the <p> element, but in this case the attribute is specifi-
cally in the XHTML namespace.

Figure 3-9

85

Chapter 3: XML Namespaces

Again, applications may or may not treat both of these the same and consider them to be in the same
namespace as the elements to which they are attached. All applications will treat the style attribute as
being in the XHTML namespace, because you have specifically said so, but some will think id is in the
same namespace as <name>, and some won’t.

Understanding URIs
We have mentioned that namespaces are specified using URIs, and most of the examples shown so far
have been URLs. To really understand namespaces, we have to look at this concept a little further.

Because so much of the work done on the Internet somehow involves finding and retrieving resources,
much thought has been put into this process. What is a resource? Well, simply put, a resource is any-
thing that has identity. It could be a tangible item, such as a .gif file or a book, or it could be a concep-
tual item, like the current state of the traffic in Toronto. It could be an item that is retrievable over the
Internet, such as an HTML document, or an item that is not retrievable over the Internet, such as the per-
son who wrote that HTML document.

Recall our earlier definition of a URI:

URLs and URNs are discussed in the following sections.

There is a document that formally describes the syntax for URIs at the IETF (Internet Engineering Task
Force) website, located at http://www.ietf.org/rfc/rfc2396.txt ; one that describes the syn-
tax for URNs, located at http://www.ietf.org/rfc/rfc2141.txt ; and one that describes the
syntax for URLs, located at http://www.ietf.org/rfc/rfc1738.txt.

URLs
If you have been on the Internet for any length of time, you are probably already familiar with URLs,
and most Internet-savvy people understand how URLs work. The first part of the URL specifies the pro-
tocol, http being the most common, with mailto and ftp also used frequently, and others (such as
gopher, news, telnet, file, and so on) used on occasion. (Officially, the protocol part of the URL is
called a scheme.)

The protocol is followed by a colon, and after the colon is a path to the resource being identified.

For example, here’s a URL to a web page on the Internet:

http://www.google.com/intl/en/about.html

A URI (Uniform Resource Identifier) is a string of characters that identifies a
resource. It can occur in one of two flavors: URL (Uniform Resource Locator), or
URN (Universal Resource Name).

86

Part I: Introduction

This URL contains information that can be used to retrieve a file named about.html from a server on
the Internet named www.google.ca. It specifies that the file is in the /intl/en directory (or virtual
directory) and that the file should be retrieved via the HTTP protocol.

You can also create a URL to an e-mail account, like so:

mailto:someone@somewhere.com

Of course, there is a limitation on the resources that can be retrieved via URLs: Obviously, they must be
resources of a type that is retrievable from a computer! (The resource identified in the mailto: URL is
a bit of an exception, as it isn’t actually retrieved; instead, a mail client is usually triggered, and a new
e-mail is created to the given address.)

URNs
URNs are not as commonly seen as URLs. In fact, most people, even those who have been using the
Internet their whole lives, have never seen a URN. They exist to provide a persistent, location-indepen-
dent name for a resource.

For example, a person’s name is similar to a URN, because the person has the same name, no matter
where they are. Even after a person dies, the name still refers to the person who used to have it when
they were alive. A name is different from a URN, though, because more than one person can have the
same name, whereas URNs are designed to be unique across time and space.

A URN looks something like this:

urn:foo:a123,456

First is the string urn, uppercase or lowercase, and a colon. After the first colon is the Namespace
Identifier, or NID (foo in this case), followed by another colon. Last is the Namespace Specific String, or
NSS (a123,456, for example). As you can see from the terminology, URNs were designed with name-
spaces already in mind. (Not necessarily XML namespaces, but namespaces in general.)

The NID portion of the URN declares what type of URN this is. For example, to create URNs for
Canadian citizens, we might declare an NID of Canadian-Citizen.

The NSS portion of the URN is the part that must be unique and persistent. In Canada, all citizens are
assigned unique Social Insurance Numbers, so a URN for a Canadian citizen with a Social Insurance
Number of 000-000-000 might look like this:

urn:Canadian-Citizen:000-000-000

Why Use URLs for Namespaces, Not URNs?
The XML namespace specification states that namespaces are identified with URIs, which leaves the pos-
sibility of using either URLs or URNs. It seems that URNs are better suited for naming namespaces than
URLs — after all, a namespace is a conceptual resource, not one that can be retrieved via the Internet.
Why then are most namespaces named using URLs instead?

87

Chapter 3: XML Namespaces

Some people find it easier to create unique namespace names using URLs, as they are already guaran-
teed to be unique. If Wiley owns the www.wiley.com domain name, they can incorporate them into their
namespace names and know that they will be unique.

Of course, this is still by convention; nothing stops someone at another company — say, Malicious
Names, Inc., — from stealing Wiley’s domain name and maliciously using it as the name for a name-
space. However, if everyone follows the convention, we can be sure that there won’t be accidental colli-
sions, which is good enough for our purposes. You could still construct a URN like urn:WileyHR:name,
but many people feel that things are just simpler if you use URLs.

There can also be side benefits of using URLs as namespace names. If you wanted to, you could put a
document at the end of the URL that describes the elements in that namespace. For example, we have
been using http://www.wiley.com/pers as a fictional namespace. If Wiley wanted to make the pers
namespace public, for use in public document types, they could put a document at that location that
describes the various XML elements and attributes in that namespace.

But regardless of what people are doing, the possibility of using a URN as a namespace identifier still
exists, so if you have a system of URNs that you feel is unique, it is perfectly legal. URNs provide no
benefits over URLs, except for the conceptual idea that they’re a closer fit to what namespace names are
trying to do — that is, name something, not point to something.

What Do Namespace URIs Really Mean?
Now that you know how to use namespaces to keep your element names unique, what exactly do those
namespace URIs mean? In other words, what does http://www.wiley.com/pers really represent?

The answer, according to the XML namespaces specification, is that it doesn’t mean anything. The URI is
simply used to give the namespace a name, but it doesn’t mean anything on its own, just as the words
John Doe don’t mean anything on their own — they are just used to identify a particular person. As you
saw earlier, the namespace name, although it looks like a URL, is just a name; the XML parser will never
try to go to the URL you’ve used and try to retrieve anything.

Many people feel that this isn’t enough for XML. In addition to keeping element names distinct, they
would also like to give those elements meaning — that is, not just distinguish <my:element> from
<your:element>, but also define what <my:element> means. What is it used for? What are the legal
values for it? If we could create some kind of “schema” that would define our document type, the
namespace URI might be the logical place to declare this document as adhering to that schema.

The XML Namespaces specification (http://www.w3.org/TR/REC-xml-names/) states “it is not a goal
that [the namespace URI] be directly useable for retrieval of a schema (if any exists).” (A schema is a doc-
ument that formally describes an XML document type. Several languages are available for creating
schemas, such as DTDs and the XML Schema language from the W3C, which are covered in Chapters 4
and 5.) In other words, as we’ve been saying, the URI is just a name or identifier; it doesn’t have any
inherent meaning. However, it is not strictly forbidden for it to have a meaning. For this reason, some-
one creating an application could legally decide that the URI used in a namespace actually does indicate
some type of documentation, whether that is a prose document describing this particular document type
or a technical schema document of some sort. Nonetheless, in this case, the URI still wouldn’t mean any-
thing to the XML parser; it would be up to the higher-level application to read the URI and do something
with it.

88

Part I: Introduction

In other words, if I’m writing an application that will process a particular kind of XML file, using name-
spaces, and I want to put something at the end of the URL that I’m using for my namespace name, I’m
free to do that. I just have to remember that the XML parser won’t care. It will give me the information
from my XML document, including what namespace each element belongs to, but it would be up to my
application to then go to that URL and retrieve something from it.

As an example of where this might be useful, consider a corporate information processing system
whereby users enter information to be stored in XML format. If different namespaces are defined for dif-
ferent types of documents, and those namespaces are named with URLs, then you could put a help file
at the end of each URL. If users are viewing a particular type of XML document in the special applica-
tion you have written for them, all they have to do is press F1 to get help and find out about this particu-
lar type of document. All your application has to do is open a web browser and point it to the URL that
defines the namespace.

You may also have noticed in the namespace for XHTML that the W3C decided to include the date of the
recommendation in the string (http://www.w3.org/1999/xhtml). This means that documents using
this namespace are also implicitly stating what version of the XHTML Recommendation they’re adher-
ing to; if/when the W3C comes out with a new XHTML Recommendation, they can change the URL, to
distinguish the new XHTML namespace from the old one.

That’s true only if the W3C wants to distinguish the two versions of XHTML that way. Because a
namespace is just a name, they could just as easily decide that they want to continue using the same
string, http://www.w3.org/1999/xhtml, for the namespace, even if the new XHTML
Recommendation is published after 1999.

RDDL
Therefore, in addition to providing human-readable documentation for your namespace, the options of
providing schemas also exist. However, there are a number of these languages available (a few of which
are covered in this book). How do we decide what to put at the end of a URL we use for a namespace
name? Do we put human-readable documentation that describes the namespace? Or do we put a docu-
ment in one of these machine-readable formats? One answer is to use the Resource Directory Description
Language, or RDDL (the RDDL specification can be found at http://www.openhealth.org/RDDL/).

RDDL was created to combine the benefits of human-readable documentation with the benefits of pro-
viding machine-readable documentation for an XML namespace. An RDDL document is actually an
XHTML document, which makes it human-readable. However, because XHTML is XML, other machine-
readable resources can be included in the document, using a technology called XLink to link the various
documents together. In this way, human-readable documentation can be provided on an XML name-
space, while at the same time providing links to as many other resources as needed, such as machine-
readable documents on the namespace, executable code, and so on.

When to Use Namespaces
By this point, this chapter has covered everything that you need to know about namespaces from a tech-
nical standpoint. You know what they mean, how to use them, and how to combine them. Sit back for a
while now, put your feet up, and let’s talk philosophy. When should you create a new namespace, and
when should you add new elements to an existing one?

89

Chapter 3: XML Namespaces

In the course of this chapter, we have created the http://www.wiley.com/pers namespace for use in
our documents. We decided to use one namespace, to cover all of the elements that are used to create an
XML document about a person. We could have instead split our namespace up, and created separate
namespaces for each element, or we could have created one namespace for the overall document and
another for the résumé. Why did we choose to do it this way?

Remember that a namespace is just a “bag of names” — that is, it’s a group of element names that belong
together, and that are distinct from element names in other namespaces. The key is the phrase belong
together. You might think of the elements in a namespace as being the vocabulary for a language, the
same way that English words are in the English vocabulary. Any words that belong to that language
would go in that namespace, and words from other languages would go into other namespaces. It’s up
to you to decide which elements belong in the same vocabulary, and which ones should go in different
vocabularies.

The W3C went through this process when creating XHTML, the HTML language “redone” in XML. The
problem is that XHTML is based on HTML 4, which has three flavors: frameset (which includes support
for HTML frames), strict (which is designed for clean structural markup, free from all layout tags), and
transitional (which allows formatting markup for older browsers, such as a bgcolor attribute on the
<body> tag). Some HTML elements, such as <p> , appear in all three flavors, while others, such as
<frameset>, may only appear in certain flavors.

This led the W3C, in the initial specifications for XHTML, to indicate that three different namespaces
would be used, one for each flavor. However, the web community strongly disagreed with this
approach. Most people consider HTML (or XHTML) to be one language — even though there may be
more than one “flavor” or “dialect” of that language — so they argued that XHTML should have only
one namespace associated with it. In the end, the W3C decided to go with the one-namespace approach
(the namespace they chose is http://www.w3.org/1999/xhtml , which is why we’ve been using it for
our XHTML examples).

Summary
This chapter introduced the concept of namespaces, along with their implementation in XML.
Highlights of this chapter include the following:

❑ What benefit namespaces can potentially give you in your documents

❑ How to declare and use namespaces

❑ How to effectively use a URI as the name of a namespace

The idea behind namespaces may not seem all that relevant, unless you’re combining elements from var-
ious vocabularies into one XML document. You may be thinking, “If I’m just going to create XML docu-
ments to describe my data, why mess around with all of this namespace stuff?” However, when you
remember that you will be using other XML vocabularies, such as XSLT, to transform your documents,
or XHTML to display your data, namespaces become much more relevant. Learning the concepts behind
namespaces will help you combine your documents with these other document types, in addition to any
further document types you may create yourself.

90

Part I: Introduction

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
In this chapter you saw the following XML document, in which you had to cancel the default namespace:

<employee>
<name>Jane Doe</name>
<notes>

<p xmlns=”http://www.w3.org/1999/xhtml”>I’ve worked
with <name xmlns=””>Jane Doe</name> for over a year
now.</p>

</notes>
</employee>

Assuming that this document is for Wiley’s HR department, create a namespace for employees, and use
it in this document. Be sure to keep the XHTML elements in their namespace.

Question 2
Imagine that Wiley has been going through the employee records and realized that they don’t have a
good, unique way to identify each employee. Create a global id attribute that can be attached to any
XML element in the employee namespace you created earlier.

Put this attribute into effect by modifying the XML you created in Question 1, and mark the Jane Doe
employee as employee number x125.

Question 3
Create a new XML file for an employee named Alfred Neuman, with employee number x393. In the
notes for Alfred, mention that he has worked closely with Jane Doe, being sure to use the <name> ele-
ment to refer to her.

91

Chapter 3: XML Namespaces

Part II

Validation

Chapter 4: Document Type Definitions

Chapter 5: XML Schemas

Chapter 6: RELAX NG

4
Document Type Definitions

As you’ve seen in the first few chapters, the rules for XML are straightforward. It doesn’t take
much to create well-formed XML documents to describe any information that you want. When
you create XML documents, you can categorize them into groups of similar document types based
on the elements and attributes they contain. You learned that the elements and attributes that
make up a document type are known as the document’s vocabulary. In Chapter 3, you learned how
to use multiple vocabularies within a single document using namespaces. By this time, you may
be wondering how to define your own types of documents and check whether certain documents
follow the rules of your vocabulary.

Suppose you are developing an application that uses the <name> sample from Chapter 1. In the
<name> sample, you created a simple XML document that allowed you to enter the first, middle,
and last name of a person. In the sample, you used the name John Fitzgerald Johansen Doe. Now
suppose that users of your application input information that does not match the vocabulary you
developed. How could you verify that the content within the XML document is valid? You could
write some code within your web application to check whether each of the elements is correct and
in the correct order, but what if you want to modify the type of documents you can accept? You
would have to update your application code, possibly in many places. This isn’t much of an
improvement from the text documents discussed in Chapter 1.

The need to validate documents against a vocabulary is common in markup languages. In fact,
it is so common that the creators of XML included a method for checking validity in the XML
Recommendation. An XML document is valid if its content matches its definition of allowable ele-
ments, attributes, and other document pieces. By using special Document Type Definitions, or DTDs,
you can check the content of a document type with special parsers. The XML Recommendation
separates parsers into two categories: validating and nonvalidating. Validating parsers, according
to the recommendation, must implement validity checking using DTDs. Using a validating parser,
you can remove the content-checking code from the application and depend on the parser to ver-
ify the content of the XML document against the DTD.

Although you will learn everything you need to know about DTDs in this chapter, you might like to see
the XML Recommendation and its discussion of DTDs for yourself. If so, you can look it up at
http://www.w3.org/TR/REC-xml#dt-doctype.

In this chapter, you will learn how to do the following:

❑ Create DTDs

❑ Validate an XML document against a DTD

❑ Use DTDs to create XML documents from multiple files

Running the Samples
You’ve already learned about some of the benefits of DTDs, but it will probably help if you look at an
example DTD before moving on. To see how a DTD works, you will create one for the <name> example
from Chapter 1.

Preparing the Ground
You need a program that can validate an XML document against a DTD. Throughout this chapter and
the next two, the examples utilize the Codeplot editor at http://codeplot.com. The Codeplot editor
enables you to create XML documents, DTDs, and other files in a virtual folder. It also enables you to
check a document’s well-formedness and validity. Simply sign up on the Codeplot home page and you
can begin creating XML documents and DTDs. Of course, you can also use a text editor or XML-specific
editor to work through the examples. If you do so, simply use the built-in functionality of the tool you
choose, or use a validating parser to check the validity of your documents.

How do you use a validating parser? This chapter only covers building and verifying DTD documents.
Apart from using a specialized editor to work with your documents, you can write a program that vali-
dates your XML documents against a DTD. For more information on utilizing parsers in your own
programs, see Chapters 11 and 12.

After you sign up you are ready to validate an XML documents against a DTD — all you need now
is a DTD.

Try It Out What’s in a Name?

In this example, you embed a DTD that defines the <name> vocabulary directly within an XML docu-
ment. Later, you will see how separating the definition from the XML document can be useful in dis-
tributed environments.

1. Open the Codeplot website, click the Create link to create a new document, and name it
name2.xml. Type in the following document, making sure you include the spaces as shown.
You may notice that this file looks like the name.xml sample from Chapter 1; much of the con-
tent is the same:

96

Part II: Validation

<?xml version=”1.0”?>
<!DOCTYPE name [
<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

]>
<name>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

2. Click Save to save the file.

3. You are ready to validate the document. Simply click the Validate button. You should see the
output shown in Figure 4-1.

4. If the output suggests that the validation completed but that there was an error in the docu-
ment, correct the error (the parser reports the line number and column number of the error) and
try again. When editing XML manually, it is common to make errors when you first begin. Soon
you will be able to see an error and correct it preemptively.

Figure 4-1

97

Chapter 4: Document Type Definitions

5. Create a new document called name3.xml by clicking the Create link again. Change the name of
the <first> element to <given> within the name2.xml document:

<?xml version=”1.0”?>
<!DOCTYPE name [
<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

]>
<name>

<given>John</given>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

6. Save the file and try validating again. This time the program should indicate errors, as shown in
Figure 4-2.

The program reported that the element <given> was undeclared and that the content of the XML docu-
ment didn’t match what was specified in the DTD.

Figure 4-2

98

Part II: Validation

How It Works
This Try It Out used the DTD to check whether the content within the XML document matched the
vocabulary. Internally, parsers handle these checks in different ways. At the most basic level, the parser
reads the DTD declarations and stores them in memory. Then, as it reads the document, it validates each
element that it encounters against the matching declaration. If it finds an element or attribute that does
not appear within the declarations or appears in the wrong position, or if it finds a declaration that has
no matching XML content, it raises a validity error.

Let’s break the DTD down into smaller pieces so that you can get a preview of what you will learn later:

<?xml version=”1.0”?>

As you have seen in all of the XML documents, you begin with the XML declaration. Again, this is
optional, but it is highly recommended that you include it to avoid XML version conflicts later.

<!DOCTYPE name [

Immediately following the XML header is the Document Type Declaration, commonly referred to as the
DOCTYPE. This informs the parser that a DTD is associated with this XML document. When using a DTD,
the Document Type Declaration must appear at the start of the document (preceded only by the XML
header) — it is not permitted anywhere else within the document. The DOCTYPE declaration has an excla-
mation mark (!) at the start of the element name. The XML Recommendation indicates that declaration
elements must begin with an exclamation mark. Declaration elements may appear only as part of the
DTD. They may not appear within the main XML content.

In the previous example, you created a relatively simple DOCTYPE declaration; later you will look at
some more advanced DOCTYPE declaration features. Directly following the DOCTYPE declaration is the
body of the DTD. This is where you declare elements, attributes, entities, and notations.

<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

In the preceding DTD, you have declared several elements that make up the vocabulary of the <name>
document. Like the DOCTYPE declaration, the element declarations must start with an exclamation mark.

At this point, you may have noticed that the syntax for DTDs is very different from
the rules for basic XML documents. DTDs were originally used with the Standard
Generalized Markup Language (SGML). To maintain compatibility with SGML, the
designers of XML decided to keep the declaration language similar. In fact, the DTD
syntax in XML is a simpler form of its SGML counterpart, so you need to learn many
new syntax rules in order to construct DTDs.

99

Chapter 4: Document Type Definitions

]>

Finally, the declaration section of the DTD is closed using a closing bracket and a closing angle bracket.
This effectively ended the definition, and the XML document immediately follows.

Now that you have seen a DTD and a validating parser in action, you may feel ready to create DTDs
for all of your XML documents. Remember, however, that validation uses more processing power, even
for a small document, so in many circumstances you may not want to use a DTD. For example, when
using XML documents that are created by your company, or that are machine-generated (not hand-
typed), you can be relatively sure that they follow the rules of your vocabulary. In such cases, checking
validity may be unnecessary. In fact, it may negatively affect your overall application performance.

The Document Type Declaration
The Document Type Declaration, or DOCTYPE, informs the parser that your document should conform
to a DTD. It also indicates where the parser can find the rest of the definition. In the first example, the
DOCTYPE was simple:

<!DOCTYPE name []>

The Document Type Declaration always begins in the same way, with <!DOCTYPE, and there must be
some whitespace following the word DOCTYPE, just as there is after element names. In addition, white-
space is not allowed to appear in between DOCTYPE and the opening “<!”.

After the whitespace, the name of the XML document’s root element must appear. It must appear exactly
as it will in the document, including any namespace prefix. Because the document’s root element is
<name>, the word name follows the opening <!DOCTYPE in the declaration.

Remember that XML is case sensitive. Therefore, anytime you see a name in XML, it is case sensitive.
When the recommendation says the name must appear exactly as it will in the document, this includes
character case. You will see this throughout the DTD; any reference to XML names implies case
sensitivity.

Following the name of the root element, you have several options for specifying the rest of the
Document Type Declaration. In the <name> example, the element declarations appeared between the [
and] of the DTD. When declarations appear between the [and], as in the sample, they are called inter-
nal subset declarations. It is also possible to have some or all of your declarations in a separate document.
DTD declarations that appear in external documents are external subset declarations. You can refer to an
external DTD in one of the following two ways:

❑ System identifiers

❑ Public identifiers

System Identifiers
A system identifier allows you to specify the location of an external file containing DTD declarations. It is
comprised of two parts: the keyword SYSTEM and a URI reference pointing to the document’s location. A
URI can be a file on your local hard drive, a file on your intranet or network, or even a file available on
the Internet:

<!DOCTYPE name SYSTEM “name.dtd” [...]>

100

Part II: Validation

You must type the word SYSTEM after the name of the root element in your declaration. Following the
SYSTEM keyword is the URI reference to the location of the file, in quotation marks. The following exam-
ples use system identifiers:

<!DOCTYPE name SYSTEM “file:///c:/name.dtd” []>

<!DOCTYPE name SYSTEM “http://wiley.com/hr/name.dtd” []>

<!DOCTYPE name SYSTEM “name.dtd”>

Notice that the last example has no [and]characters. This is perfectly normal. Specifying an internal
subset is optional. An XML document might conform to a DTD that uses only an internal subset, only an
external subset, or both. If you do specify an internal subset, it appears between the [and], immedi-
ately following the system identifier.

You will see how to use an external DTD in the next Try It Out, but before you do, let’s look at public
identifiers.

Public Identifiers
Public identifiers provide a second mechanism to locate DTD resources:

<!DOCTYPE name PUBLIC “-//Beginning XML//DTD Name Example//EN”>

Much like the system identifier, the public identifier begins with a keyword PUBLIC, followed by a spe-
cialized identifier. However, instead of a reference to a file, public identifiers are used to identify an
entry in a catalog. According to the XML specification, public identifiers can follow any format; however,
a commonly used format is called Formal Public Identifiers, or FPIs.

The syntax for an FPI is defined in the document ISO 9070. ISO 9070 also defines the process for regis-
tration and recording of formal public identifiers. The International Organization for Standardization,
or ISO, is a group that designs government-approved standards. You can learn more about the ISO by
going to its website at http://www.iso.ch/.

The syntax for FPIs matches the following basic structure:

-//Owner//Class Description//Language//Version

At the most basic level, public identifiers function similarly to namespace names, but public identifiers
cannot be used to combine two different vocabularies in the same document. This makes namespaces
much more powerful than public identifiers.

Following the identifier string, you may include an optional system identifier as well. This enables the
processor to find a copy of the document if it cannot resolve the public identifier (most processors can-
not resolve public identifiers). When including the optional system identifier, the SYSTEM keyword
shown earlier isn’t required. A valid document type declaration that uses a public identifier might look
like the following:

<!DOCTYPE name PUBLIC “-//Beginning XML//DTD Name Example//EN” “name.dtd”>

101

Chapter 4: Document Type Definitions

The preceding declaration assumes you are defining a document type for a document whose root ele-
ment is <name>. The definition has the following public identifier:

-//Beginning XML//DTD Name Example//EN

In case this cannot be resolved, there is an URI to a file called name.dtd. In the preceding example, no
internal subset is included.

Now that you have learned how to use public and system identifiers, let’s try to create an external DTD
file and associate it with the XML document. Remember that you can have an internal subset, an exter-
nal subset, or both. When using an internal subset, the DTD declarations will appear within the XML
document. When using an external subset, the DTD declarations will appear in a separate file.

Try It Out The External DTD

By using an external DTD, you can easily share your vocabulary with others in your company, or even
your own industry. Likewise, you can use vocabularies that others have already developed, by referring
to external files they have created. This exercise reconfigures the <name> example so that the DTD is
defined separately from the XML document:

1. Create a new document to form the external DTD. In Codeplot, click the Create link and name
the document name4.dtd. In the editor, type in the following:

<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

2. Click Save to save the document.

3. Create another new document called name4.xml. This document will be similar to the
name3.xml document from the last example:

<?xml version=”1.0”?>
<!DOCTYPE name PUBLIC “-//Beginning XML//DTD Name Example//EN” “name4.dtd”>
<name>

So far, you’ve learned about catalogs and registered and unregistered public identi-
fiers, but are these concepts commonly used in XML development? Yes. In fact,
many web browsers, when identifying the versions of an XHTML document, use the
public identifier mechanism. For example, many XHTML web pages will use the
public identifier -//W3C//DTD XHTML 1.0 Strict//EN to identify the DTD associ-
ated with the document. When the web browser reads the file, it may use a built-in
DTD that corresponds to the public identifier instead of downloading a copy from
the Web. This enables web browsers to cache the DTD locally, reducing processing
time. When you are developing your applications, you can use the same strategy.
Using public identifiers simply gives you a way to identify a vocabulary, just as
namespaces do.

102

Part II: Validation

<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

4. If you copied and pasted the contents of the document from the name3.xml document, make
sure you have also changed the element <given> back to <first> after the last Try It Out. Save
the name4.xml document.

5. You are ready to validate the document again. Click the Validate button.

You should see the output shown in Figure 4-3, which indicates that the validation was successful.

If you received any errors, check whether you have typed everything correctly and try again.

How It Works
In this Try It Out, you used an external DTD to check the XML content. As you may have guessed, the
syntax for the DTD changed very little. The main difference between the internal DTD and external DTD
was the absence of a DOCTYPE declaration within the external DTD. The DOCTYPE declaration is always
located within the main XML document. In addition, within the name4.xml document, there was no
internal subset. Instead, you used a public identifier and system identifier to indicate which DTD the
validation program should use.

Figure 4-3

103

Chapter 4: Document Type Definitions

In this case, the validation program had no way to resolve public identifiers. The processor instead used
the optional URI reference that you included to find the correct DTD for validation. In this example, the
XML parser had to find the file name4.dtd. Because this is a relative URL reference (it does not contain a
website address or drive letter), the parser began looking in the current directory — where the XML doc-
ument it was parsing was located. The XML Recommendation does not specify how parsers should han-
dle relative URL references, but most XML parsers will treat the path of the XML document as the base
path, just as this example did. Be sure to check your XML parser’s documentation before you use rela-
tive URL references.

Using external DTDs can be very beneficial in many situations. For example, because the DTD appears
in a single separate document, it is easier to make changes. If the same DTD is repeated in each XML
file, upgrading can be much more difficult. Later in the chapter, you will look at XML documents and
DTDs that consist of many files using entities. You must remember, however, that looking up the DTD
file takes extra processing time. In addition, if the DTD file is located on the Internet, you have to wait
for it to download. Often, it is better to keep a local copy of the DTD for validation purposes. If you are
maintaining a local copy, you should check for changes to the DTD at the original location.

Sharing Vocabularies
In reality, most DTDs will be much more complex than the first example, so it is often better to share
vocabularies and use DTDs that are widely accepted. Before you start creating your own DTDs, it is
good to know where you can find existing ones. Sharing DTDs not only removes the burden of having
to create the declarations, it also enables you to more easily integrate with other companies and XML
developers who use the shared vocabularies.

Many individuals and industries have developed DTDs that are de facto standards. Scientists use the
Chemical Markup Language (CML) DTD to validate documents they share. In the mortgage industry,
many businesses use the Mortgage Industry Standards Maintenance Organization’s (MISMO) DTD
when exchanging information. XHTML, the XML version of HTML 4.01, maintains three DTDs:
Transitional, Strict, and Frameset. These three DTDs specify the allowed vocabulary for XHTML. Using
these, browser developers can ensure that XHTML content is valid before attempting to display it.

You can check many places when trying to find a DTD for a specific industry. The first place to look, of
course, is your favorite search engine. Most often, this will turn up good results. Another great place to
check is the Cover Pages. Cover Pages is a priceless resource of XML information maintained by Robin
Cover; it can be found at http://xml.coverpages.org/. In addition, you might also want to check
the Dublin Core Metadata Initiative, which is an online resource dedicated to creating interoperable
standards. The address is http://www.dublincore.org.

You may also want to look for an XML Schema or RELAX NG document for your vocabulary. In fact, it
is likely that the most up-to-date software will use one of these formats instead of a DTD. If you can’t
find a DTD or schema for your application, create one. If you think it may be useful to others in your
industry, release it on the Internet.

104

Part II: Validation

Anatomy of a DTD
Now that you have seen a DTD, let’s look at each of the DTD declarations in more detail. Generally,
DTDs consist of three basic parts:

❑ Element declarations

❑ Attribute declarations

❑ Entity declarations

The current name example needs to be expanded to explore the more complex aspects of DTDs. In this
section, you will create an XML vocabulary for listing contacts — all of your friends and family. Note,
however, that there are many existing vocabularies for contacts on the Internet. Using a simplified for-
mat will enable you to quickly create your own vocabulary.

Element Declarations
The beginning of this chapter demonstrated element declarations in use, but you have not yet looked at
an element declaration in detail. When using a DTD to define the content of an XML document, you
must declare each element that appears within the document. As you will soon see, DTDs can also
include declarations for optional elements, elements that may or may not appear in the XML document.

<!ELEMENT name (first, middle, last)>

Element declarations consist of three basic parts:

❑ The ELEMENT declaration

❑ The element name

❑ The element content model

As you have seen with the DOCTYPE declaration, the ELEMENT declaration is used to indicate to the
parser that you are about to define an element. Much like the DOCTYPE declaration, the ELEMENT declara-
tion begins with an exclamation mark. The declaration can appear only within the context of the DTD.

Following the ELEMENT keyword is the name of the element that you are defining. Just as you saw in the
DOCTYPE, the element name must appear exactly as it will within the XML document, including any
namespace prefix.

The fact that you must specify the namespace prefix within DTDs is a major limitation. Essentially this
means that users are not able to choose their own namespace prefix but must use the prefix defined
within the DTD. This limitation exists because the W3C completed the XML Recommendation before
finalizing how namespaces would work. As you will see in the next two chapters, XML Schemas and
RELAX NG documents are not limited in this way.

The content model of the element appears after the element name. An element’s content model defines the
allowable content within the element. An element may contain element children, text, a combination of

105

Chapter 4: Document Type Definitions

children and text, or the element may be empty. This is essentially the crux of the DTD, where the entire
document’s structure is defined. As far as the XML Recommendation is concerned, four kinds of content
models exist:

❑ Element

❑ Mixed

❑ Empty

❑ Any

Let’s look at each of these content models in more detail.

Element Content
Many elements in XML contain other elements. In fact, this is one of the primary reasons for creating
XML. When defining a content model with element content, you simply include the allowable elements
within parentheses. For example, if you had a <contact> element that was allowed to contain only a
<name> element, the declaration would read as follows:

<!ELEMENT contact (name)>

In the contact list, however, the <contact> element needs to include more than just the name. For now,
you will include as its children a <name>, <location>, <phone>, <knows>, and <description> element:

<!ELEMENT contact (name, location, phone, knows, description)>

Each element that you specify within this element’s content model must also have its own definition
within the DTD. Therefore, in the preceding example, you would include ELEMENT declarations for the
<name>, <location>, <phone>, <knows>, and <description> elements to complete the DTD.

Even when an element is used in multiple content models, you should only declare it once. In fact, the
XML Recommendation does not allow you to declare two elements with the same name inside a DTD.

The processor needs this information so that it knows how to handle each element when it is encoun-
tered. You may put the ELEMENT declarations in any order you like. As you may have guessed, the ele-
ment name in the content model must appear exactly as it will in the document, including a namespace
prefix, if any.

Of course, even in this small example at the start of the chapter the element had more than one child.
This will often be the case. There are two fundamental ways of specifying the element children:

❑ Sequences

❑ Choices

Sequences

Often the elements within these documents must appear in a distinct order. If this is the case, you define
the content model using a sequence. When specifying a sequence of elements, you simply list the element
names separated by commas. Again, this will be within the parentheses that immediately follow the

106

Part II: Validation

name of the element you are declaring. All of the examples that had more than one element have used a
sequence when declaring the content model:

<!ELEMENT name (first, middle, last)>

In the preceding example, the declaration indicates that the <name> element must have exactly three
children: <first>, <middle>, and <last> and that they must appear in this order. Likewise, the
<contact> element must have exactly five children in the order specified:

<!ELEMENT contact (name, location, phone, knows, description)>

If your XML document were missing one of the elements within the sequence, or if your document con-
tained more elements, the parser would raise an error. If all of the specified elements were included
within the XML document but appeared in another order such as <last>, <middle>, <first>, the
processor would raise an error.

Note that in an element-only content model (as you have here), whitespace doesn’t matter. Therefore,
using the preceding declaration, the allowable content for the <name> element might appear as follows:

<name>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

Because the whitespace within the element’s content doesn’t matter, you could also have the content
appear as shown here:

<name><first>John</first><middle>Fitzgerald
Johansen</middle><last>Doe</last></name>

The spacing of the elements in an element-only content model is only for readability. It has no signifi-
cance to the validation program.

Choices

Although you have used sequences throughout this chapter, in many circumstances a sequence doesn’t
allow you to model the element content. Suppose you needed to allow one element or another, but not
both. Obviously, you would need a choice mechanism of some sort. Consider the <location> element,
which specifies where each contact lives:

<!ELEMENT location (address)>

Instead of requiring one element, you could require a choice between two elements:

<!ELEMENT location (address | GPS)>

This declaration would allow the <location> element to contain one <address> or one <GPS> element.
If the <location> element were empty, or if it contained more than one of these elements, the parser
would raise an error.

107

Chapter 4: Document Type Definitions

Constructing a choice content model is very similar to constructing a sequence content model. Instead of
separating the elements by commas, however, you must use the vertical bar (|) character. The vertical
bar functions as an exclusive OR. An exclusive OR allows one and only one element of the possible
options.

Combining Sequences and Choices Using Groups

Many XML documents need to leverage much more complex rules, beyond simple sequences and choices.
Suppose you wanted to declare <latitude> and <longitude> elements within the <location> content
model instead of the single <GPS> element.

When creating the <location> declaration, you would need to specify that the content can include
either an <address> element or the <latitude> and <longitude> sequence of elements, but not both.
The XML Recommendation allows you to mix sequences and choices. Knowing this, you can declare the
model as follows:

<!ELEMENT location (address | (latitude, longitude))>

As in the earlier examples, you have enclosed the entire content model within parentheses. In this exam-
ple, however, you have a second set of parentheses within the content model. It is good to think of this
as a content model within a content model. The inner content model, in the preceding example, is a
sequence specifying the elements <latitude> and <longitude>. The XML Recommendation allows
content models within content models within content models, and so on, infinitely.

The processor handles each inner content model much like a simple mathematical equation. Because the
processor handles each model individually, it can treat each model as a separate entity. This enables you
to use models in sequences and choices. In the preceding example, you had a choice between an element
and a sequence content model. You could easily create a sequence of sequences, or a sequence of choices,
or a choice of sequences — almost any combination you can think of.

Mixed Content
The XML Recommendation specifies that any element with text in its content is a mixed content model ele-
ment. Within mixed content models, text can appear by itself or it can be interspersed between elements.

In everyday usage, people refer to elements that can contain only text as text-only elements or text-
only content.

The rules for mixed content models are similar to the element content model rules that you learned in
the last section. You have already seen some examples of the simplest mixed content model — text only:

<!ELEMENT first (#PCDATA)>

The preceding declaration specifies the keyword #PCDATA within the parentheses of the content model.
You may remember from Chapter 2 that PCDATA is an abbreviation for Parsed Character DATA. This
keyword simply indicates that the character data within the content model should be parsed by the
parser. An example element that adheres to this declaration might look like the following:

<first>John</first>

108

Part II: Validation

Mixed content models can also contain elements interspersed within the text. Suppose you wanted to
include a description of each contact in your XML document. You could create a new <description>
element that enables you to specify where line breaks should occur, and indicate when the text should be
emphasized (italic) or strong (bold):

<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>

In this sample, you have a <description> element. Within the <description> element, you have
interspersed the text with elements such as the (indicating italic text) and the (indicating
a bold section of text) and the
 element (indicating a line break).

If you are familiar with HTML or XHTML you may recognize the , , and
 ele-
ments. HTML frequently uses mixed content models to specify parts of the document.

There is only one way to declare a mixed content model within DTDs. In the mixed content model, you
must use the choice mechanism when adding elements. This means that each element within the content
model must be separated by the vertical bar (|) character:

<!ELEMENT description (#PCDATA | em | strong | br)*>

The preceding sample declares the new <description> element. Notice that you use the choice mecha-
nism to describe the content model; a vertical bar separates each element. You cannot use commas to
separate the choices.

When including elements in the mixed content model, the #PCDATA keyword must always appear first
in the list of choices. This allows validating parsers to immediately recognize that it is processing a
mixed content model, rather than an element content model. Unlike with element-only content models,
you cannot have inner content models in a mixed declaration.

You should also notice the * outside of the parentheses of the content model. When you are including
elements within the mixed content model, you are required to include the * at the end of the content
model, which tells the parser to repeat the content model. The * character is known as a cardinality indi-
cator. You will learn more about cardinality indicators later in this chapter.

Because you are using a repeated choice mechanism (the * cardinality indicator), you have no control
over the order or number of elements within the mixed content. You can have an unlimited number of
 elements, an unlimited number of elements, and any amount of text. All of this can
appear in any order within the <description> element. This simple text validation is considered a
major limitation of DTDs. In the next chapter, you will learn how XML Schema has improved validation
of mixed content models.

In summary, every time you declare elements within a mixed content model, they must follow four rules:

❑ They must use the choice mechanism (the vertical bar | character) to separate elements.

❑ The #PCDATA keyword must appear first in the list of elements.

❑ There must be no inner content models.

❑ If there are child elements, the * cardinality indicator must appear at the end of the model.

109

Chapter 4: Document Type Definitions

Empty Content
Recall from Chapter 2 that some elements may or may not have content:

<middle></middle>
<middle/>

In Chapter 2, the <middle> element sometimes had content and sometimes was empty. Some elements
within your XML documents might never need to contain content. In fact, in many cases it wouldn’t
make sense for an element to contain text or elements. Using the
 element you can insert a line
break into the <description> elements. It would not make much sense to include text within the

 element. Moreover, no elements would logically fit into a
 tag. This is a perfect candidate
for an empty content model.

To define an element with an empty content model, simply include the word EMPTY following the ele-
ment name in the declaration:

<!ELEMENT br EMPTY>

Remember that this requires the element to be empty within the XML document. Using the EMPTY key-
word, you shouldn’t declare elements that may contain content. For example, the <middle> element
may or may not contain other elements. As you will see, even though an element is not declared with an
empty content model, it may still be empty. Because the <middle> element may contain elements, you
have to declare the element by using a mixed content model, rather than the EMPTY keyword.

Any Content
Finally, you can declare an element using the ANY keyword. The ANY keyword allows you to be even less
restrictive about the content model. If you wanted, you could declare the <description> element using
the ANY keyword:

<!ELEMENT description ANY>

In the preceding example, the ANY keyword indicates that any elements declared within the DTD can be
used within the content of the <description> element and that they can be used in any order any
number of times. The ANY keyword does not allow you to include elements that are not declared within
the DTD. In addition to elements, any character data can appear within the <description> element.

Because DTDs are used to restrict content, the ANY keyword is not very popular, as it does very little to
restrict the allowed content of the element you are declaring.

Try It Out “Making Contact”

You are likely ready to build a much more complex DTD with all of this newfound knowledge — you are
also probably eager to see the more complete contacts example. In this Try It Out, you start with the
basics and add more features in following examples:

1. Open Codeplot or another text editor and create a new document called contacts1.xml. Input
the following XML document:

110

Part II: Validation

<?xml version=”1.0”?>
<!DOCTYPE contacts PUBLIC “-//Beginning XML//DTD Contact Example//EN”
“contacts1.dtd”>
<contacts>
<contact>
<name>
<first>Jeff</first>
<middle>Craig</middle>
<last>Rafter</last>

</name>
<location>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>

</location>
<phone>001-909-555-1212</phone>
<knows>David Hunter, Danny Ayers</knows>
<description>Jeff is a developer and author for Beginning XML 4th

edition.
Jeff loves XML!</description>
</contact>

</contacts>

2. Save the document.

Notice that you have added a document type declaration that refers to an external system file
called contacts1.dtd. In addition, the root element in this document and the element name
within the DOCTYPE declaration are the same.

3. Create a new document called contacts1.dtd. This file will be where you define your DTD.

Because you have a sample XML document, you can base most of your declarations on the text
that you have. You were probably taught that when programming, you should plan and design
first, and then implement. Building a DTD based on an existing sample, however, is by far the
easiest method available. When designing a DTD, it is much easier to create a sample and let the
document evolve before the vocabulary is set in stone. Of course, you must remember that some
elements might not appear in your sample (such as some elements in choice content models).

4. In the XML document, <contacts> is the root element. This is the easiest place to start, so
begin by declaring it in the DTD:

<!ELEMENT contacts ()>

5. You haven’t specified a content model. Looking at the sample document, you can see that the
<contacts> element contains a <contact> element. There is only one child element, so this
content model should be easy to define:

<!ELEMENT contacts (contact)>

Allowing for only one contact as you have done is a little clumsy, but you’ll improve this con-
tent model a little later in the chapter.

6. Of course, because you have specified a contact element in the content model, you know that
you must declare it in the DTD:

<!ELEMENT contact (name, location, phone, knows, description)>

111

Chapter 4: Document Type Definitions

7. Again, you need to declare each element that is used within the content model. Declare the
<name> element and each of its children:

<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

The <first>, <middle>, and <last> elements represent each part of the contact’s name. They
are all text-only elements, so you have declared that they can contain only #PCDATA. Remember
that this qualifies as a mixed content model even though there are no element children.

8. The contacts list won’t be very useful if you don’t include information about where to find the
contact or how to call them, so you should include an element to describe their location and
their phone number. You can use a complex content model for the <location> element, as
shown earlier in the chapter:

<!ELEMENT location (address | (latitude, longitude))>

This declaration allows each location to include either an address or the latitude and longitude
coordinates. Even though you didn’t include the <latitude> or <longitude> elements in the
<location> element in the sample, you should still include them in the content model declara-
tion so that they can be used in other documents.

9. The <address>, <latitude>, and <longitude> elements are text-only elements:

<!ELEMENT address (#PCDATA)>
<!ELEMENT latitude (#PCDATA)>
<!ELEMENT longitude (#PCDATA)>

10. The <phone> element must also be declared in your DTD and will be text-only:

<!ELEMENT phone (#PCDATA)>

11. There is a <knows> element in the sample document. For now, you can declare it as text-only:

<!ELEMENT knows (#PCDATA)>

12. You can use a truly mixed content model for the description. This enables your XML document
to contain a mix of text and elements but still allows the DTD to be restrictive about which child
elements can be used:

<!ELEMENT description (#PCDATA | em | strong | br)*>

13. Finally, you must include declarations for the , , and
 elements:

<!ELEMENT em (#PCDATA)>
<!ELEMENT strong (#PCDATA)>
<!ELEMENT br EMPTY>

At this point you have completed the DTD. All of the children that were listed in content mod-
els now have their own element declarations. The final DTD should look like the following:

<!ELEMENT contacts (contact)>
<!ELEMENT contact (name, location, phone, knows, description)>

<!ELEMENT name (first, middle, last)>

112

Part II: Validation

<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT location (address | (latitude, longitude))>
<!ELEMENT address (#PCDATA)>
<!ELEMENT latitude (#PCDATA)>
<!ELEMENT longitude (#PCDATA)>

<!ELEMENT phone (#PCDATA)>
<!ELEMENT knows (#PCDATA)>

<!ELEMENT description (#PCDATA | em | strong | br)*>
<!ELEMENT em (#PCDATA)>
<!ELEMENT strong (#PCDATA)>
<!ELEMENT br EMPTY>

14. Save the file.

15. You are ready to validate the document again. Open the contacts1.xml document again and
click Validate. If you typed everything correctly, you should see the results shown in Figure 4-4. If
you received any errors, confirm that you input the documents correctly and click Validate again.

Figure 4-4

113

Chapter 4: Document Type Definitions

How It Works
Just as you saw with the original <name> example, the validator processed your XML document, check-
ing that each element it encountered was declared in the DTD. The DTD for your contacts list was much
more complex than the original example. It used all choice and sequence content models, text-only con-
tent models, and mixed content models. You even declared an empty element.

Unfortunately, the contacts DTD is severely limited. It only allows one contact. How can you fix the
problem? You can’t yet. You need a way to tell the processor that the (contact) sequence may appear
many times or not at all. You must learn how to tell the processor how many times the elements will
appear.

Cardinality
An element’s cardinality defines how many times it will appear within a content model. Each element
within a content model can have an indicator following the element name that tells the parser how many
times it will appear. DTDs allow four indicators for cardinality, as shown in the following table:

Indicator Description

[none] As you have seen in all of the content models thus far, when no car-
dinality indicator is used, it indicates that the element must appear
once and only once. This is the default behavior for elements used in
content models.

? Indicates that the element may appear either once or not at all

+ Indicates that the element may appear one or more times

* Indicates that the element may appear zero or more times

Let’s look at these indicators in action.

In many cultures it is common to have several first names. Let’s examine what you want to accomplish
in that case. You know that every contact you create will have at least one first name. You also know that
each contact might have more than one first name. You don’t know how many first names each contact
will have. You need to use a cardinality indicator specifying that the <first> element can appear one or
more times within the <name> element. The + indicator does just that:

<!ELEMENT name (first+, middle?, last)>

By including a + when specifying the first element, you inform the processor that one or more first
names can be included within the content model. It is also common to have no middle name. To allow
for this, you can use a ? when specifying the middle element within the content model. This indicates
that the <name> may or may not contain a <middle> element.

If you were to validate the document again, the parser would not raise validity errors if there were mul-
tiple <first> elements and the <middle> element was missing. With this new declaration, all of the fol-
lowing <name> elements are allowable:

114

Part II: Validation

<name>
<first>John</first>
<last>Doe</last>

</name>

<name>
<first>John</first>
<first>Fitzgerald</first>
<last>Doe</last>

</name>

<name>
<first>John</first>
<first>Fitzgerald</first>
<first>Simon</first>
<middle>Johansen</middle>
<last>Doe</last>

</name>

<name>
<first>John</first>
<middle>Johansen</middle>
<last>Doe</last>

</name>

In each of the preceding cases, you can see that the <middle> element may or may not appear. In addi-
tion, the <first> element may appear one or several times. Remember that because you didn’t explic-
itly use a cardinality indicator for the <last> element, it must appear once and only once. In addition,
even though you have used cardinality indicators, when elements do appear, they must be in the order
that you defined within your sequence.

Perhaps the largest deficiency remaining in the contacts DTD is that you can only have one contact.
Currently your DTD allows only one <contact> element to appear as a child of the <contacts> root
element. This won’t let you get very far in documenting all of your friends and family. You need to indi-
cate that the element can appear zero, one, or many times. Fortunately, the * cardinality indicator does
just that. You could improve the DTD by changing the earlier <contacts> declaration:

<!ELEMENT contacts (contact*)>

Though it is unlikely that you would ever have an empty contacts list, it is possible. Therefore, utilizing
the * cardinality indicator gives you the flexibility you need. This solves the problem completely, as it
represents the desired content model perfectly. Before you go back to the example, though, let’s look at
some other ways you could spruce up your contacts DTD.

Remember that the cardinality indicator affects only the content model where it
appears. Even though you specify that the <middle> element within the <name>
content model can appear once or not at all, this does not affect the declaration of
the <middle> element, or any other use of the <middle> element in the DTD.

115

Chapter 4: Document Type Definitions

It might also be helpful to support multiple addresses for each contact. To enable this, you could modify
the <location> declaration:

<!ELEMENT location (address* | (latitude, longitude))>

By using the * cardinality indicator for address, you specify that the <location> element may contain
zero or more <address> elements or a single instance of <latitude> and <longitude> elements.

Adding the * to address allows for multiple addresses, but what if a contact has multiple GPS locations
instead? Luckily, the XML Recommendation allows you to apply cardinality indicators to content mod-
els as well. Remember that the content model is everything that appears within parentheses, and content
models can contain inner content models. Therefore, you can change the <location> declaration again:

<!ELEMENT location (address* | (latitude, longitude)*)>

The * indicator is functioning exactly as it did earlier. This time, however, you are indicating that the
entire sequence (latitude, longitude) may appear zero or more times. Remember that this is still
part of a choice. The new declaration indicates that each location may contain zero or more <address>
elements or it may contain zero or more sequences of <latitude> and <longitude> elements. It could
not contain both <address> elements and <latitude> and <longitude> elements. Moreover, the
<location> element could never contain a <latitude> element without the subsequent <longitude>
element. This might be good enough but it would be nice to have some more options, such as changing
the order and allowing for both addresses and latitude/longitude pairs.

<!ELEMENT location (address | (latitude, longitude))*>

In this example, the * is outside of the parentheses. This indicates that you want the entire content
model to appear zero or more times. In this case, the entire content model consists of a choice between
addresses or the sequence of latitude and longitude. Repeating a choice means that you can choose one
option the first time and another the second. For example, the following <location> element would
be valid:

<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
<latitude>-13.955059</latitude>
<longitude>33.800125</longitude>

</location>

In the first example, you have an <address> element followed by two sets of <latitude> and
<longitude> elements. From the validator’s perspective, you chose the <address> element, then you
chose the <latitude> and <longitude> sequence, and finally you chose another <latitude> and
<longitude> element. These choices could repeat infinitely. You could even choose to have the
<latitude> and <longitude> before you chose to have an <address> element:

<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>

</location>

116

Part II: Validation

You could choose to have an <address> element in between two <latitude> and <longitude>
sequences:

<location>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
<address>Redlands, CA, USA</address>
<latitude>-13.955059</latitude>
<longitude>33.800125</longitude>

</location>

By placing the * outside of the parentheses, you have constructed an extremely flexible content model
for the <location> element, which should satisfy all of the possible contacts you encounter.

Try It Out “Making Contact” — Part 2

Now that you have learned how to correct and improve the DTD, let’s get down to business and inte-
grate the changes you have read about so far:

1. Create a new document called contacts2.dtd. To make this easier, copy the content from the
file contacts1.dtd and modify the highlighted sections:

<!ELEMENT contacts (contact*)>
<!ELEMENT contact (name, location, phone, knows, description)>

<!ELEMENT name (first+, middle?, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT location (address | (latitude, longitude))*>
<!ELEMENT address (#PCDATA)>
<!ELEMENT latitude (#PCDATA)>
<!ELEMENT longitude (#PCDATA)>

<!ELEMENT phone (#PCDATA)>
<!ELEMENT knows (#PCDATA)>

<!ELEMENT description (#PCDATA | em | strong | br)*>
<!ELEMENT em (#PCDATA)>
<!ELEMENT strong (#PCDATA)>
<!ELEMENT br EMPTY>

2. Save the file.

3. Of course, now that you have created a new DTD file, you need to update your XML document
to refer to it. Create a new document called contacts2.xml. Again, you can copy the contents
of contacts1.xml and modify the DOCTYPE declaration so that it refers to the new DTD. You
will also change the <middle> element for the first contact to a <first> element and add an
<address>. In order to see the flexibility in the DTD, you can add two more contacts:

<?xml version=”1.0”?>
<!DOCTYPE contacts PUBLIC “-//Beginning XML//DTD Contact Example//EN”
“contacts2.dtd”>

117

Chapter 4: Document Type Definitions

<contacts>
<contact>
<name>
<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>

</name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>

</location>
<phone>001-909-555-1212</phone>
<knows>David Hunter, Danny Ayers</knows>
<description>Jeff is a developer and author for Beginning XML 4th

edition.
Jeff loves XML!</description>
</contact>
<contact>
<name>
<first>David</first>
<last>Hunter</last>

</name>
<location>
<address>Address is not known</address>

</location>
<phone>416 555 1212</phone>
<knows>Jeff Rafter, Danny Ayers</knows>
<description>Senior Technical Consultant for CGI.</description>

</contact>
<contact>
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>

</name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>

</location>
<phone>+39-0555-11-22-33-</phone>
<knows>Jeff Rafter, David Hunter</knows>
<description>A Semantic Web developer and technical author specializing in

cutting-edge technologies.</description>
</contact>

</contacts>

4. Save the file.

5. You are ready to validate the document again. Click the Validate button.

Your output should show a complete validation without errors, as shown in Figure 4-5. If you received
any errors this time, check whether you have typed everything correctly and try again.

118

Part II: Validation

Figure 4-5

How It Works
This Try It Out implements much of what you learned throughout this section. To sum it up, you set out
to design a DTD that could be used to describe a complete list of contacts. You used an assortment of
complex content models so that your DTD would reflect various XML documents. Of course, when you
first began designing your DTD, you didn’t include many options (in fact, there were some severe limi-
tations). After you had the basic structure designed, you modified the DTD to correct some problems
and add some features. The design strategy is very common among XML developers.

Now that you have a firm grasp on how to declare elements within the DTD, let’s turn our attention to
attributes.

Some XML designers have taken this design strategy a step further. Instead of rely-
ing only on an example XML document, they use complex Unified Modeling
Language (UML) diagrams or other types of visual aid. As shown in the next chap-
ter, new syntaxes have evolved based on this strategy of using an example document
to describe the vocabulary. For instance, Examplotron uses a syntax in which the
example essentially is the declaration. More information on Examplotron can be
found at http://examplotron.org/.

119

Chapter 4: Document Type Definitions

Attribute Declarations
Attribute declarations are similar to element declarations in many ways. Instead of declaring allowable
content models for elements, you declare a list of allowable attributes for each element. These lists are
called ATTLIST declarations:

<!ELEMENT contacts (contact*)>
<!ATTLIST contacts source CDATA #IMPLIED>

The preceding example has the element declaration for your <contacts> element from the contacts list
example. Following the element declaration is an ATTLIST declaration, which declares the allowable
attributes of your <contacts> element. This particular ATTLIST declares only one attribute, source, for
the <contacts> element.

An ATTLIST declaration consists of three basic parts:

❑ The ATTLIST keyword

❑ The associated element’s name

❑ The list of declared attributes

Just as you have seen in all of the other declarations, the ATTLIST begins with an exclamation mark to
indicate that it is part of the DTD. Following the ATTLIST keyword is the name of the associated ele-
ment. In this example, the name of the associated element is contacts. By specifying this, you indicate
that you are building a list of attributes only for a <contacts> element.

Following the ATTLIST name, you declare each attribute in the list. An ATTLIST declaration can include
any number of attributes. Each attribute in the list consists of three parts:

❑ The attribute name

❑ The attribute type

❑ The attribute value declaration

Let’s look at each section of the source attribute declaration:

source CDATA #IMPLIED

In the preceding declaration, the name of the attribute is source. The example declares that this source
attribute can contain character data by using the CDATA keyword — this is the attribute’s type. Lastly, the
declaration indicates that the attribute has no default value, and that this attribute does not need to
appear within the element using the #IMPLIED keyword. This third part of the attribute declaration is
known as the value declaration; it controls how the XML parser handles the attribute’s value. You will
look at value declaration options in more detail a little later in this chapter.

Attribute Names
You learned in Chapter 2 that attribute names are very similar to element names. You must follow the
basic XML naming rules when declaring an attribute. In addition to the basic naming rules, you must
also ensure that you don’t have duplicate names within the attribute list. Remember, duplicate attribute

120

Part II: Validation

names are not allowed within a single element. To declare an attribute name, simply type the name
exactly as it will appear in the XML document, including any namespace prefix.

Attribute Types
When declaring attributes, you can specify how the processor should handle the character data that
appears in the value. So far, you haven’t seen anything like this in DTDs. Within the element declarations,
you could specify that an element contained text, but you couldn’t specify how the processor should treat
the text value. To solve this problem, several new features are available for attribute declaration.

Let’s look at the different attribute types:

Type Description

CDATA Indicates that the attribute value is character data. Notice
that this is slightly different from the PCDATA keyword in
ELEMENT declarations. Unlike PCDATA, within CDATA, the
parser can ignore certain reserved characters.

ID Indicates that the attribute value uniquely identifies the
containing element

IDREF Indicates that the attribute value is a reference, by ID, to a
uniquely identifiable element

IDREFS Indicates that the attribute value is a whitespace-separated
list of IDREF values

ENTITY Indicates that the attribute value is a reference to an external
unparsed entity (you will learn more about entities later).
The unparsed entity might be an image file or some other
external resource such as an MP3 or some other binary file.

ENTITIES Indicates that the attribute value is a whitespace-separated
list of ENTITY values

NMTOKEN Indicates that the attribute value is a name token. An
NMTOKEN is a string of character data consisting of standard
name characters.

NMTOKENS Indicates that the attribute value is a whitespace-separated
list of NMTOKEN values

Enumerated List Apart from using the default types, you can also declare an
enumerated list of possible values for the attribute.

As far as DTDs are concerned, namespace declarations, such as xmlns:contacts=
“http://wiley.com/contacts”, are also treated as attributes. Although the
Namespace Recommendation insists that xmlns statements are declarations and not
attributes, DTDs must declare them in an ATTLIST declaration if they are used.
Again, this is because the W3C finalized the syntax for DTDs before the Namespace
Recommendation was completed.

121

Chapter 4: Document Type Definitions

As you saw in the previous example, the attribute type immediately follows the attribute name. Let’s
look at each of these types in more detail.

CDATA

CDATA is the default attribute type. It specifies that the attribute value is character data. A processor
won’t do any additional type checking on a CDATA attribute because it is the most basic of the data types.
Of course, the XML well-formedness rules still apply, but as long as the content is well formed, a validat-
ing parser will accept any text as CDATA.

ID, IDREF, and IDREFS

Attributes of type ID can be used to uniquely identify an element within an XML document. Once you
have uniquely identified the element, you can later use an IDREF to refer to that element. Identifying
elements is paramount in many XML technologies, as covered in Chapter 7, “XPath,” and Chapter 8,
“XSLT.” Many of you may have already seen an ID mechanism in action. Within HTML, many elements
can be identified with an ID attribute. Often JavaScript code accesses elements by their ID.

Remember several rules when using ID attributes:

❑ The value of an ID attribute must follow the rules for XML names.

❑ The value of an ID attribute must be unique within the entire XML document.

❑ Only one attribute of type ID may be declared per element.

❑ The attribute value declaration for an ID attribute must be #IMPLIED or #REQUIRED.

Suppose you added an ID attribute to the <contact> element:

<!ATTLIST contact person ID #REQUIRED>

In the document you could add the unique ID:

<contact person=”Jeff_Rafter”>

Is the value for the person attribute valid? You have declared it as an ID attribute. The first thing to
notice about your ID value is the underscore (_) between “Jeff” and “Rafter”. Remember that XML
names cannot have spaces. If you simply used the contact name (with spaces in between each part of
the name), it would be an invalid ID. Replacing each space in the value with an underscore makes the
value legal.

Using the contact name as the basis for the person attribute helps ensure that each one is different.
Remember that any attribute value of type ID must be unique — it must even be different from the ID
attributes in different elements.

You haven’t declared more than one ID attribute type in a single element. When you declared the kind
attribute, you chose to include the #REQUIRED keyword.

122

Part II: Validation

When you declare IDREF attributes the rules are similar:

❑ The value of an IDREF attribute must follow the rules for XML names.

❑ The value of an IDREF attribute must match the value of some ID within the XML document.

Often you need to refer to a list of elements. For example, within the <knows> element, you may want to
refer to multiple contacts. You could use an IDREFS attribute store with a list of whitespace-separated
IDREF values that refer to the person ID attributes defined for each of your contacts:

<knows contacts=”David_Hunter Danny_Ayers”/>

ENTITY and ENTITIES

Attributes can also include references to unparsed entities. An unparsed entity is an entity reference to an
external file that the processor cannot parse. For example, external images are unparsed entities; instead
of actually including the image inside the document, you use special attributes to refer to the external
resource. In XML you can declare reusable references inside your DTD using an ENTITY declaration. You
haven’t seen ENTITY declarations yet, which are covered in more detail later in this chapter.

For now, let’s cover the rules for ENTITY attribute types. In ENTITY attributes, you must refer to an
ENTITY that has been declared somewhere in the DTD. In addition, because you are referring to an
ENTITY, the value must follow the rules for XML names. Consider the following attribute declaration:

<!ATTLIST contact portrait ENTITY #IMPLIED>

After declaring a portrait attribute, you can then refer to an ENTITY within your XML document:

<contact portrait=”PictureOfJeffRafter”>

The image attribute refers to an ENTITY that is named PictureOfJeffRafter. This assumes that you
have declared the ENTITY somewhere in your DTD. In addition, notice that the value follows the rules
for XML names: It begins with a letter and contains valid name characters.

The ENTITIES attribute type is simply a whitespace-separated list of ENTITY values. Therefore, you
could declare the following:

<!ATTLIST contact pictures ENTITIES #IMPLIED>

A valid use of the preceding declaration might look like the following:

<contact pictures=”PictureOfJeffRafter-Small
PictureOfJeffRafter-Large”>

The ENTITY names are still valid (recall that it is legal to use a dash in an XML name) and they are sepa-
rated by whitespace. In fact, a linefeed and several spaces appear between the two values. This is legal —
the XML processor doesn’t care how much whitespace separates two values. The processor considers any
number of spaces, tabs, linefeeds, and carriage return characters as whitespace.

123

Chapter 4: Document Type Definitions

NMTOKEN and NMTOKENS

You will often need to have attributes that refer to a concept or single word. This might be an element
name, an entity name, an attribute name, or some other concept. In fact, the value that an NMTOKEN
attribute uses doesn’t even have to be declared. The NMTOKEN type enables you to create an attribute
value that, as long as the value follows the rules for an XML name, the processor will treat as valid.

Suppose you added a tag attribute to the <contact> element that allowed you to specify an interesting
keyword for the contact:

<!ATTLIST contact tag NMTOKEN #IMPLIED>

The following value would be allowable:

<contact tag=”author”>

When you learned the rules for XML names, you learned that names are not allowed to begin with a
numerical digit. NMTOKEN values are not required to adhere to this rule. An NMTOKEN value may begin
with any name character, including numbers.

As shown with other attribute types, the NMTOKENS type is simply a whitespace-separated list of
NMTOKEN values. You could declare the tag attribute to allow multiple habitat values as follows:

<!ATTLIST contact tags NMTOKENS #IMPLIED>

The following value would be allowable:

<contact tags=”author programmer poetry”>

You haven’t declared any of these values within the DTD; they simply follow the rules for NMTOKEN
values.

Enumerated Attribute Types

Clearly, the ability to check types within attribute values is indispensable. Suppose you want to allow
only a certain set of values in the attribute. You could use the existing types to restrict your attribute
value, but it might not give you enough control. Suppose you want to add a kind attribute to the
<phone> element. You could use this attribute to specify what kind of phone number is represented in
each element. You might expect to see the values Home, Work, Cell, and Fax. All of these values are
character data, so you could use the CDATA type. Of course, if you did this, someone could input the
value 42, because it is character data. This isn’t what you want at all. Instead, you could use the
NMTOKEN attribute type because all of your choices are valid NMTOKEN values. Of course, this would also
allow values like Blog. You need to limit the values that are allowed for the attribute with even greater
control.

An enumerated list allows you to do just that. When you declare your attribute, you can specify a list of
allowable values. Again, the whitespace within the declaration does not matter. You can use as much or
as little whitespace before and after each enumerated value as you want. Each value must be a valid
XML name (although it can start with any name character, including numeric digits). Therefore, the
value itself cannot contain spaces. Let’s see what a declaration for the kind attribute would look like
using an enumerated list:

124

Part II: Validation

<!ATTLIST phone kind (Home | Work | Cell | Fax) #IMPLIED>

Here, all the possible values are listed within parentheses. Each value is separated by the vertical bar
character (|). This declaration indicates that the value of the kind attribute must match one (and only
one) of the listed values. Each item in the list must be a valid NMTOKEN value. Remember that the
NMTOKEN type functions much like an XML name, but NMTOKEN values can begin with numerical digits.

Some valid uses of the new kind attribute would include

<phone kind=”Cell”>

or

<phone kind=”Home”>

Some invalid values would include

<phone kind=”Dad’s Phone”>

or

<phone kind=”HOME”>

The first value is invalid because it attempts to use a value that is not in the list. In fact, it isn’t even a
valid NMTOKEN. The second value is not valid because although Home appears in the list of allowed val-
ues, HOME does not. Remember that because XML is case sensitive, the values in your list will be case
sensitive as well.

Attribute Value Declarations
Within each attribute declaration you must specify how the value will appear in the document. Often,
you will want to provide a default value for the attribute declaration. At times, you might simply require
that the attribute be specified in the document. At other times, you might require that the value of the
attribute be fixed at a given value. Each attribute can be declared with these properties.

The XML Recommendation allows you to specify that the attribute

❑ Has a default value

❑ Has a fixed value

❑ Is required

❑ Is implied (or is optional)

Default Values

Sometimes you need to provide a value for an attribute even if it hasn’t been included in the XML docu-
ment. By specifying a default value for the attribute, you can be sure that it is included in the final output.
As the document is being processed, a validating parser automatically inserts the attribute with the
default value if the attribute has been omitted. If the attribute has a default value but a value has also

125

Chapter 4: Document Type Definitions

been included in the document, the parser uses the attribute included in the document, rather than the
default. Remember that only validating parsers make use of the information within the DTD, so the
default value is used only by a validating parser. The ability to specify default values for attributes is one
of the most valuable features within DTDs.

Specifying a default attribute is easy; simply include the value in quotation marks after the attribute
type:

<!ATTLIST phone kind (Home | Work | Cell | Fax) “Home”>

Here, the kind attribute declaration has been modified so that it uses a default value. The default value
is Home. When a validating parser is reading the <phone> element, if the kind attribute has been omit-
ted, the parser will automatically insert the attribute kind with the value Home. If the parser encounters
a kind attribute within the <phone> element, it will use the value that has been specified within the
document.

When specifying a default value for your attribute declarations, you must ensure that the value you
specify follows the rules for the attribute type you have declared. For example, if your attribute type is
NMTOKEN, then your default value must be a valid NMTOKEN. If your attribute type is CDATA, then your
default value can be any well-formed XML character data.

You are not permitted to specify a default value for attributes of type ID. This might seem strange at
first, but it actually makes a good deal of sense. If a validating parser inserted the default value into
more than one element, the ID would no longer be unique throughout the document. Remember that an
ID value must be unique — if two elements have an ID attribute with the same value, the document is
not valid.

Fixed Values

In some circumstances, an attribute’s value must always be fixed. When an attribute’s value can never
change, you use the #FIXED keyword followed by the fixed value. Fixed values operate much like default
values. As the parser is validating the file, if the fixed attribute is encountered, then the parser checks
whether the fixed value and attribute value match. If they do not match, the parser raises a validity
error. If the parser does not encounter the attribute within the element, it inserts the attribute with the
fixed value.

A common use of fixed attributes is specifying version numbers. Often, DTD authors fix the version
number for a specific DTD:

<!ATTLIST contacts version CDATA #FIXED “1.0”>

As with default values, when specifying values in fixed attribute declarations, you must ensure that the
value you specify follows the rules for the attribute type you have declared. As shown with default
value declarations, you cannot specify a fixed value for an attribute of type ID.

Required Values

When you specify that an attribute is required, it must be included within the XML document. A docu-
ment often must have the attribute to function properly; at other times, it is simply a matter of exercising
control over the document content. Suppose you require the kind attribute:

126

Part II: Validation

<!ATTLIST phone kind (Home | Work | Cell | Fax) #REQUIRED>

In the preceding example, the declaration indicates that the kind attribute must appear within every
<phone> element in the document. If the parser encounters a <phone> element without a kind attribute
as it is processing the document, it raises an error.

To declare that an attribute is required, simply add the keyword #REQUIRED immediately after the
attribute type. When declaring that an attribute is required, you are not permitted to specify a default
value.

Implied Values

In most cases the attribute you are declaring won’t be required and often won’t even have a default or
fixed value. In these circumstances, the attribute might or might not occur within the element. These
attributes are called implied attributes, because sometimes no explicit value is available. When the
attributes do occur within the element, a validating parser simply checks whether the value specified
within the XML document follows the rules for the declared attribute type. If the value does not follow
the rules, the parser raises a validity error.

When declaring an attribute, you must always specify a value declaration. If the attribute you are declar-
ing has no default value, has no fixed value, and is not required, then you must declare that the attribute
is implied. You can declare that an attribute is implied by simply adding the keyword #IMPLIED after the
attribute’s type declaration:

<!ATTLIST knows contacts IDREFS #IMPLIED>

Specifying Multiple Attributes
So far, the ATTLIST declarations in our examples have been limited. In each of the preceding examples,
there is only a single attribute. This is fine, but many elements need more than one attribute. No problem —
the ATTLIST declaration allows you to declare more than one attribute, as shown in the following example:

<!ATTLIST contacts version CDATA #FIXED “1.0”
source CDATA #IMPLIED>

In the preceding ATTLIST declaration for the <contacts> element, there is both a version and a
source attribute. The version attribute is a fixed character data attribute; the source attribute is also a
character data attribute but is optional. When declaring multiple attributes, as in this example, simply
use whitespace to separate the two declarations. This example includes a linefeed, and the attribute dec-
larations have been aligned with some extra spaces. This type of formatting is common when declaring
multiple attributes. In addition to being able to declare more than one attribute within an ATTLIST dec-
laration, you are also permitted to declare more than one ATTLIST for each ELEMENT declaration:

<!ATTLIST contacts version CDATA #FIXED “1.0”>
<!ATTLIST contacts source CDATA #IMPLIED>

Either style for declaring multiple attributes is legal.

127

Chapter 4: Document Type Definitions

Try It Out “Making Contact” — Part 3

Now that you have seen some common attribute declarations, let’s revisit the contact list example and
add some improvements. As you can now declare attributes, you will add a version attribute, a source
attribute, a person attribute, and a kind attribute, and you will modify the <knows> element to use the
IDREF mechanism built into DTDs:

1. Create a new document called contacts3.xml. Begin by copying the contacts2.xml content.
Modify the DOCTYPE declaration, add the new attributes, and then save the file:

<?xml version=”1.0”?>
<!DOCTYPE contacts PUBLIC “-//Beginning XML//DTD Contact Example//EN”
“contacts3.dtd”>
<contacts source=”Beginning XML 4E” version=”1.0”>
<contact person=”Jeff_Rafter” tags=”author xml poetry”>
<name>
<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>

</name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>

</location>
<phone kind=”Home”>001-909-555-1212</phone>
<knows contacts=”David_Hunter Danny_Ayers”/>
<description>Jeff is a developer and author for Beginning XML 4th

edition.
Jeff loves XML!</description>
</contact>
<contact person=”David_Hunter” tags=”author consultant CGI”>
<name>
<first>David</first>
<last>Hunter</last>

</name>
<location>
<address>Address is not known</address>

</location>
<phone kind=”Work”>416 555 1212</phone>
<knows contacts=”Jeff_Rafter Danny_Ayers”/>
<description>Senior Technical Consultant for CGI.</description>

</contact>
<contact person=”Danny_Ayers” tags=”author semantics animals”>
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>

</name>
<location>

128

Part II: Validation

<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>

</location>
<phone>+39-0555-11-22-33-</phone>
<knows contacts=”Jeff_Rafter David_Hunter”/>
<description>A Semantic Web developer and technical author specializing in

cutting-edge technologies.</description>
</contact>

</contacts>

2. Now that you have modified the XML document, you must declare these new attributes within
the DTD. Create a new file named contacts3.dtd. Again, you can base this document on
contacts2.dtd. Make the following modifications and save the file:

<!ELEMENT contacts (contact*)>
<!ATTLIST contacts version CDATA #FIXED “1.0”>
<!ATTLIST contacts source CDATA #IMPLIED>

<!ELEMENT contact (name, location, phone, knows, description)>
<!ATTLIST contact person ID #REQUIRED>
<!ATTLIST contact tags NMTOKENS #IMPLIED>

<!ELEMENT name (first+, middle?, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT location (address | (latitude, longitude))*>
<!ELEMENT address (#PCDATA)>
<!ELEMENT latitude (#PCDATA)>
<!ELEMENT longitude (#PCDATA)>

<!ELEMENT phone (#PCDATA)>
<!ATTLIST phone kind (Home | Work | Cell | Fax) “Home”>

<!ELEMENT knows EMPTY>
<!ATTLIST knows contacts IDREFS #IMPLIED>

<!ELEMENT description (#PCDATA | em | strong | br)*>
<!ELEMENT em (#PCDATA)>
<!ELEMENT strong (#PCDATA)>
<!ELEMENT br EMPTY>

3. You are ready to validate your document again. Open contacts3.xml and click the Validate
button.

Your output should show a complete validation without errors, as shown in Figure 4-6. If you received
any errors this time, check whether you have typed everything correctly and try again.

129

Chapter 4: Document Type Definitions

Figure 4-6

How It Works
In this Try It Out example, you added several ATTLIST declarations to your DTD. You added the
attributes version and source to your <contacts> element. The version attribute could be used to
indicate to an application what version of the DTD this contact list matches. Using the source attribute,
you can provide a friendly description of who provided the information. If you had omitted the
version attribute the XML parser would have inserted it for you because you declared that it had a
fixed value of 1.0.

You also added attributes to identify the contact uniquely in the document, and included some informa-
tion keywords. The unique identifiers were created by simply using the contact’s name and replacing
all the whitespace with underscores (so that it was a valid XML name). The tags attribute included
names that weren’t declared anywhere in the DTD but which still followed the rules for the NMTOKEN
attribute type.

You also added a kind attribute that provided a list of possible phone number entries for the contact.
Because there were only four choices for the value of the kind attribute, you decided to use an enumer-
ated list. You also set the default value to Home because many of the contacts you listed included home
phone numbers and you didn’t want to type it repeatedly. Note that there was no kind attribute on the
phone number in the contact for Danny Ayers. Because the kind attribute was omitted, a processor, as it
is parsing the document, will automatically insert the attribute with the default value. The description
for David Hunter, however, needed to include the kind attribute because the phone number was not
a home phone number, and the default value was Home. Notice too that even when an attribute is
defaulted to a specific value in the DTD, it is still allowable to have that same value appear in the XML
document. You can see this in the contact phone number of Jeff Rafter.

130

Part II: Validation

Finally, the <knows> element was modified, specifying that it would be EMPTY and contain a single
IDREFS attribute. This allowed you to connect contacts together through the ID/IDREF mechanism built
into DTDs. This can be a very powerful feature. Unfortunately, though, the names you refer to must be
present within your contacts list. Therefore, you couldn’t say that Jeff knows Andrew_Watt because
there is no Andrew_Watt ID within the contacts list.

Entities
In Chapter 2, you learned that you could escape characters or use entity references to include special
characters within the XML document. You learned that five entities built into XML enable you to include
characters that have special meaning in XML documents. In addition to these built-in entities, you also
learned that you can use character references to include characters that are difficult to type, such as the
(c) character:

<contacts source=”Beginning XML 4E's Contact List” version=”1.0”>
<description>Jeff is a developer & author for Beginning XML 4th
edition © 2006 Wiley Publishing.
Jeff loves
XML!</description>

In the first example, there is an ' entity reference within the attribute content. This allows you to
include a ‘ character without the XML parser treating it as the end of the attribute value. In the second
example, there is an © character reference within the element content. This allows you to include
the (c) character by specifying the character’s Unicode value.

In fact, entities are not limited to simple character references within XML documents. Entities can be
used throughout the XML document to refer to sections of replacement text, other XML markup, and
even external files. You can separate entities into four primary types, each of which may be used within
an XML document:

❑ Built-in entities

❑ Character entities

❑ General entities

❑ Parameter entities

Let’s look at each of these in more detail.

In fact, technically, each part of an XML document is an entity. For example, the root element within an
XML document is called the document entity, the DTD is another entity, and so on. Of course, you
cannot use these entities as you can use the four main entity type types, so their usefulness is limited.

Built-in Entities
You have already seen that five entities can be used within an XML document by default:

❑ &— The & character

❑ <— The < character

❑ >— The > character

131

Chapter 4: Document Type Definitions

❑ '— The ‘ character

❑ "— The “ character

These five entities are often called built-in entities because according to the XML Recommendation, all
XML parsers must support their use by default. You are not required to create declarations for them in
the DTD, and you will soon see that other kinds of entities must be declared first within the DTD, before
they are used within the document.

References to Built-in Entities

To use an entity, you must include an entity reference within the document. An entity reference, as the
name implies, refers to an entity that represents a character, some text, or even an external file. A refer-
ence to a built-in entity takes the following form:

'

The reference begins with the ampersand (&) character. Immediately following the ampersand is the
name of the entity, in this case apos. At the end of the reference is a semicolon (;). Whitespace is not
allowed anywhere within the reference.

In general, you can use entity references anywhere you can use normal text within the XML document.
For example, you can include entity references within element contents and attribute values. You can
also use entity references within your DTD within default and fixed attribute value declarations, as well
as entity declarations (as shown later). Although the built-in entities allow you to refer to markup char-
acters, they cannot be used in place of XML markup. For example, the following is legal:

<description>Author & programmer</description>

Here, the & built-in entity allows you to include an ampersand (&) in the content of the
<description> element. This is allowed because it is within the element’s text content. Conversely,
the following would be illegal:

<contacts version="1.0">

In this example, the " entity is used in place of actual quotation marks. As an XML parser pro-
cesses the element, it would encounter the & after the = and immediately raise a well-formedness error.
The XML within the document is first checked for well-formedness errors; only then are entity references
resolved. Many XML parsers will check the well-formedness of a specific section of an XML document
and then begin replacing entities within that section. This can be very useful in large documents.
Consult your XML parser’s documentation for more information. In addition, note that you cannot use
entities within the names of elements or attributes.

Character Entities
Character entities, much like the five built-in entities, are not declared within the DTD. Instead, they can
be used in the document within element and attribute content without any declaration. References to
character entities are often used for characters that are difficult to type, or for non-ASCII characters.

132

Part II: Validation

References to Character Entities

Again, to use a character entity within your document, you must include an entity reference. The syntax
for character entity references is very similar to syntaxes for the five built-in entities:

©

As you can see from the example, the primary difference in character entity references is that there is no
entity name. The reference begins with the ampersand (&) character, but instead of an entity name, there
is a hash mark (#) followed by a number, in this case 169, which is the Unicode value for the (c) charac-
ter. At the end of the reference is a semicolon (;). As shown in the references to built-in entities, white-
space is not allowed anywhere within the character entity reference.

You can also refer to a character entity by using the hexadecimal Unicode value for the character:

©

Here, the hexadecimal value 00A9 is used in place of the decimal value 169. When the value you are
specifying is hexadecimal, you must include a lowercase x before the value, so that the XML parser
knows how it should handle the reference. In fact, it is much more common to use the hexadecimal form
because the Unicode specification lists characters using hexadecimal values.

The best place to find the hexadecimal values for characters is in the Unicode technical reports found at
http://www.unicode.org/charts. For example, the character o that you used in your document
can be found in the document http://www.unicode.org/charts/PDF/U0080.pdf.

Just as you saw with built-in entity references, character entity references can be used anywhere you can
use normal text, such as element content and attribute values. You can also use them within your DTD.
Like the built-in entities, you cannot use character entities in place of actual XML markup or as part of
the names of elements or attributes.

Does this mean that by using character references you can include any Unicode char-
acter in your XML document? Not exactly. Actually, you are permitted to include
only those characters that are specified within the XML Recommendation, which
was based on Unicode 3.0. As the Unicode specification has evolved, the need to use
more characters in XML has also grown. In XML version 1.1 you can use any
Unicode character that has not been explicitly forbidden, including characters from
the more recent Unicode 5.0. This is why it is important that you include the XML
version in the header at the start of your documents — to ensure that they are back-
wardly compatible. The current list of allowable XML 1.0 characters can be found in
the XML Recommendation at http://www.w3.org/TR/REC-xml/#NT-Char and
http://www.w3.org/TR/REC-xml/#CharClasses. If an XML parser encounters a
character (or character entity reference) that is not allowed, the parser should imme-
diately raise a fatal error. Illegal characters are considered well-formedness errors.

133

Chapter 4: Document Type Definitions

General Entities
General entities function very similarly to the five built-in entities, but general entities must be declared
within the DTD before they can be used within the XML document. Most commonly, XML developers
use general entities to create reusable sections of replacement text. Instead of representing only a single
character, general entities can represent characters, paragraphs, and even entire documents. This section
describes many uses of general entities.

You can declare general entities within the DTD in two ways. You can specify the value of the entity
directly in the declaration or you can refer to an external file. Let’s begin by looking at an internal entity
declaration:

<!ENTITY source-text “Beginning XML 4E's Contact List”>

Just as you have seen with the earlier ELEMENT and ATTLIST declarations, the ENTITY declaration
begins with an exclamation mark. Following the ENTITY keyword is the name of the entity, in this case
source-text. You can use this name when referring to the entity elsewhere in the XML document. The
name must follow the rules for XML names, just as you have seen throughout this chapter. After the
entity name in the preceding declaration is a line of replacement text. Whenever an XML parser encoun-
ters a reference to this entity, it substitutes the replacement text at the point of the reference. This exam-
ple is an internal entity declaration because the replacement text appears directly within the declaration
in the DTD.

In the preceding example, the replacement text value is The source of this contact list is
Beginning XML 4E. General entity values are not limited to simple characters or text values, however.
Within a general entity, the replacement text can consist of any well-formed XML content. The only
exception to this rule is that you are not required to have one root element within the replacement text.
For example, the following are legal general entity values:

<!ENTITY address-unknown “The address for this location is "Unknown"”>
<!ENTITY empty-gps “<latitude></latitude><longitude></longitude>”>

Notice that entity references are included within the replacement text. Entity references can be used
within your DTDs in place of normal text (default attribute values and entity replacement text values).
In addition, notice that values might or might not have a root element, or might have no elements at all.
Although you can include entity references within replacement text, an entity is not permitted to contain
a reference to itself, either directly or indirectly. The following declaration is not legal:

<!ENTITY address-unknown “The address for this location is &address-unknown;”>

This entity contains a reference to itself within its replacement text. When an entity refers to itself, it is
known as a recursive entity reference. The replacement text for an entity must be well-formed:

<!ENTITY address-start “<address>”>
<!ENTITY address-end “</address>”>

These two examples are not legal because they are not well formed. In the first declaration, the start of
an <address> element is specified but no closing tag is included. The second declaration contains only
the closing tag of an <address> element. You are not permitted to begin an element in one entity and
end it in another — each entity must be well formed on its own.

134

Part II: Validation

Because there are no limits on the length of replacement text, your DTD can quickly become cluttered by
sections of replacement text, making it more difficult to read. You might want to store your replacement
text in an external file instead of including it within the DTD. This can be very useful when you have a
large section of replacement text. When declaring your entities, instead of declaring the replacement text
internally you can refer to external files. When the replacement text for an entity is stored externally, the
entity is declared using an external entity declaration. For example, you could declare your entities as

<!ENTITY jeff-description SYSTEM “jeff.txt”>

or

<!ENTITY jeff-description PUBLIC
“-//Beginning XML//Jeff Description//EN” “jeff.txt”>

Just as you saw with the Document Type Declaration, when referring to external files, you can use a
system identifier or a public identifier. When you use a public identifier, you can also include an
optional URI reference, as this example does. Each of these declarations refers to an external file named
jeff.txt. As an XML parser is processing the DTD, if it encounters an external entity declaration, then
it might open the external file and parse it. If the XML parser is a validating parser, then it must open the
external file, parse it, and be able to use the content when it is referenced. If the XML parser is not a vali-
dating parser, then it might or might not attempt to parse the external file.

The XML Recommendation makes the distinction between validating and nonvalidating parsers primar-
ily to make it easier to create XML parsers that conform to the XML specification. Many XML parsers
don’t include the capability to validate a document against a DTD because of the additional processing
or programming time it requires. Many of these same parsers have the capability to use external entities,
however, because of the added functionality. If you are using a nonvalidating parser, check the docu-
mentation to see whether it can parse external entities.

Remember that just as you saw with the internal entity declaration, the replacement text must be well-
formed XML (with the exception of requiring a single root element). When the parser encounters a well-
formedness error within the external file, it raises an error and discontinues parsing.

References to General Entities

Now that you know how to declare entities within your DTD, let’s look at how to refer to them within
the document:

&jeff-description;

This entity reference looks very similar to the built-in entity references you learned about earlier. Again,
the reference begins with the ampersand (&) character. Immediately following the ampersand is the
name of the entity to which you are referring, in this case jeff-description. At the end of the refer-
ence is a semicolon (;). Whitespace is not allowed anywhere within the reference, but hyphens (-) and
underscores (_) are. You can refer to any general entity that you have declared within your DTD, as the
preceding example did. When the parser encounters the reference, it includes the replacement text
declared within the DTD or the external file to which the entity declaration refers.

Now that you have seen the basics of how to declare and refer to general entities, let’s look at an exam-
ple that uses them.

135

Chapter 4: Document Type Definitions

Try It Out “Making Contact” — Part 4

In this example, you’ll rework the contacts example so that each of your contact descriptions can be
stored in external files. For this exercise, you create text files for the descriptions. If you are using an
XML editor, save the files in the same folder as the XML document.

1. Begin by creating an external file for David Hunter. Create a new document called david.txt
and type in the following:

Senior Technical Consultant for CGI.

2. Create a description file for Jeff Rafter. Instead of using plain text, you’ll mix in some XML ele-
ments. Create a new document called jeff.txt and type in the following:

Jeff is a developer & author for Beginning XML 4th edition © 2006
Wiley Publishing.
Jeff loves XML!

3. Create a description file for Danny Ayers. This time, you’ll create a complete XML file, including
the <description> element. Create a file called danny.xml and type in the following:

<description>A Semantic Web developer and technical author specializing in cutting-
edge technologies.</description>

4. Declare the new entities within your DTD. Create a new document called contacts4.dtd.
Copy the contents of contacts3.dtd, add the following declarations to the end of the file, and
save the file:

<!ENTITY source-text “The source of this contacts list is Beginning XML 4E”>
<!ENTITY address-unknown “The address for this location is "Unknown"”>
<!ENTITY empty-gps “<latitude></latitude><longitude></longitude>”>

<!ENTITY jeff-description PUBLIC
“-//Beginning XML//Jeff Description//EN” “jeff.txt”>

<!ENTITY david-description PUBLIC
“-//Beginning XML//David Description//EN” “david.txt”>

<!ENTITY danny-description PUBLIC
“-//Beginning XML//Danny Description//EN” “danny.xml”>

Notice the new general entities that can be used when the address or GPS information, as in David’s
contact, is not known.

5. Create a new document called contacts4.xml based on contacts3.xml from the last exam-
ple. You will use the references to the newly defined entities. You also need to change the DOC-
TYPE declaration to refer to the new DTD. After you have completed these modifications, save
the contacts4.xml file:

<?xml version=”1.0”?>
<!DOCTYPE contacts PUBLIC “-//Beginning XML//DTD Contact Example//EN”
“contacts4.dtd”>
<contacts source=”&source-text;” version=”1.0”>
<contact person=”Jeff_Rafter” tags=”author xml poetry”>
<name>

136

Part II: Validation

<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>

</name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>

</location>
<phone kind=”Home”>001-909-555-1212</phone>
<knows contacts=”David_Hunter Danny_Ayers”/>
<description>&jeff-description;</description>

</contact>
<contact person=”David_Hunter” tags=”author consultant CGI”>
<name>
<first>David</first>
<last>Hunter</last>

</name>
<location>
<address>&address-unknown;</address>
&empty-gps;

</location>
<phone kind=”Work”>416 555 1212</phone>
<knows contacts=”Jeff_Rafter Danny_Ayers”/>
<description>&david-description;</description>

</contact>
<contact person=”Danny_Ayers” tags=”author semantics animals”>
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>

</name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>

</location>
<phone>+39-0555-11-22-33-</phone>
<knows contacts=”Jeff_Rafter David_Hunter”/>
&danny-description;

</contact>
</contacts>

6. You are ready to validate the document again. Open contacts4.xml and click the Validate
button.

Your output should show a complete validation without errors. If you received any errors this time, con-
firm that you typed everything correctly and try again.

To prove that the text has been retrieved from the external files and inserted into the XML document,
download the files and open contacts4.xml in Internet Explorer. Figure 4-7 shows a section of what
you should see.

137

Chapter 4: Document Type Definitions

Figure 4-7

How It Works
In this Try It Out, you replaced the textual description of each contact with a general entity reference.
As the XML parser processed the file, it encountered the entity declarations, read the system identifier,
and attempted to retrieve the files. Once it retrieved the files, it parsed the content and stored a copy in
memory so that it could replace any references to the entities in the document with the correct replace-
ment text.

The address-unknown entity and each of the three descriptions were different, so you could experiment
with some of the various features of entities. In the address-unknown entity, you created a simple text
replacement. Within the replacement, you used references to the built-in quot entity.

Though the david-description entity was simply text, you created an external text file that you could
refer to from the DTD. You used a public ID and a system ID to refer to the external file. The public ID
was not used by the processor and, in fact, was not necessary. The simple text you used qualified as
well-formed XML content even though there was no root element (in fact, there were no elements at all).
The text was a valid replacement because the <description> element could legally contain simple text,
or #PCDATA.

The jeff-description entity value was a mix of elements and text. Again, this qualified as well-
formed XML content even though there was no root element. Additionally, the replacement text was
valid because the element and the element were declared within the DTD and allowable
in the <description> element where the entity reference was used.

138

Part II: Validation

The danny-description entity value was an actual XML document. By itself, the document was well-
formed XML content. Instead of using the entity reference inside of the <description> element, the ref-
erence completely replaced the <description> element. Looking at the contacts4.xml document in
Internet Explorer (which processes the file before displaying it), you could see that the entire danny-
description entity value was placed where you had the entity reference. Once all the entity references
were replaced with their entity values by the processor, the document was still valid.

Note that you could also have used files stored on the Internet or HTML web pages. However, just as
you saw with the local text files, the parser must parse each external document and check it for well-
formedness. Most HTML files on the web are not well-formed XML; make sure that external files do not
create a well-formedness error when parsed. Additionally, validating parsers will still check the external
replacement values for validity. The ELEMENT declaration for the description element specifies that it
contains #PCDATA or elements or elements. If the XML parser encounters an <html> ele-
ment within the <description> element, even as the result of an entity’s replacement text, it raises a
validity error because you haven’t declared an <html> element within your DTD.

Earlier you learned that validation uses more processing power and that this might be a drawback to
using DTDs. Likewise, using external entities can also decrease your application’s performance. You
might have noticed a significant performance decrease in the last example. Because external files must
be opened and read, and often downloaded from the Internet, consider the pros and cons of using exter-
nal entities before dividing your DTD into separate modules. You must also consider the trade-offs of
performance and ease of maintenance. Splitting your XML and DTDs into separate modules can enable
different departments or developers to focus on specific parts of the document.

Parameter Entities
Parameter entities, much like general entities, enable you to create reusable sections of replacement text.
So far, you have seen that you can refer to entities within element and attribute content, within specific
places inside the DTD, such as default attribute values, and within entity replacement text. Parameter
entities, however, cannot be used in general content; you can refer to parameter entities only within the
DTD. Unlike other kinds of entities, the replacement text within a parameter entity can be made up of
DTD declarations or pieces of declarations.

Parameter entities can also be used to build DTDs from multiple files. This is often helpful when differ-
ent groups work on DTDs. In addition, this enables you to reuse DTDs and portions of DTDs in your
own XML documents. When XML documents or DTDs are divided into multiple files, they are said to
be modular.

Parameter entity declarations are very similar to general entity declarations:

<!ENTITY % DefaultPhoneKind “Home”>

This example contains a declaration for an internal parameter entity named DefaultPhoneKind. You
know that this is a parameter entity because of the percent sign (%) before the name of the entity. This is
the primary difference between the format of parameter entity declarations and general entity declara-
tions. Notice the space between the ENTITY keyword and the percent sign, and between the percent sign
and the name of the entity. This whitespace is required.

139

Chapter 4: Document Type Definitions

Like general entities, parameter entities can also refer to external files using a system or public identifier:

<!ENTITY % NameDeclarations SYSTEM “name4.dtd”>

or

<!ENTITY % NameDeclarations
PUBLIC “-//Beginning XML 4E//DTD External module//EN” “name4.dtd”>

Instead of redeclaring the <name>, <first>, <middle>, and <last> elements in the DTD for the con-
tacts list, you could refer to the name4.dtd from earlier in the chapter. Reusing existing declarations in
your DTD through external parameter entities is a good way to modularize your vocabulary.

References to Parameter Entities
When referring to a parameter entity within a DTD, the syntax changes slightly. Instead of using an
ampersand (&) you must use a percent sign (%), as shown in the following example:

%NameDeclarations;

The reference consists of a percent sign (%), followed by the entity name, followed by a semicolon (;).
References to parameter entities are permitted only within the DTD. Suppose you wanted to make use of
the DefaultPhoneKind parameter entity within the ATTLIST declaration for the phone element. You
could change the declaration as follows:

<!ENTITY % DefaultPhoneKind “"Home"”>
<!ATTLIST phone kind (Home | Work | Cell | Fax) %DefaultPhoneKind;>

In this example, the parameter entity called DefaultPhoneKind is used in place of the attribute value
declaration. Parameter entity references can be used in place of DTD declarations or parts of DTD decla-
rations. Unfortunately, you can’t use the built-in entity " because general entities and built-in enti-
ties that appear in parameter entity values are not expanded as they are elsewhere. Therefore, you
instead use character entities for the quotation marks. The following is perfectly legal:

<!ATTLIST phone kind (Home | Work | Cell | Fax) “%DefaultPhoneKind;”>

Try It Out “Making Contact” — Part 5

Let’s take what you just learned and use it within your contacts DTD. This will enable you to parameter-
ize the phone attribute declaration within your DTD.

1. Begin by making the appropriate modifications to the DTD file. Create a new document called
contacts5.dtd. You can copy the content from contacts4.dtd, adding the new

In the previous example you referred to the parameter entity to build the ATTLIST
declaration. In fact, this is permitted only because you are using an external DTD.
Parameter entity references cannot be used within declarations inside of the internal
subset.

140

Part II: Validation

DefaultPhoneKind parameter entity and modifying the ATTLIST declaration for the <phone>
element. When you have made the changes, save the contacts5.dtd file:

<!ENTITY % DefaultPhoneKind ‘“Home”’>
<!ATTLIST phone kind (Home | Work | Cell | Fax) %DefaultPhoneKind;>

2. Change the XML file to refer to the new DTD. This is the only change you need to make
within your XML document. Create a new document based on contacts4.xml from the last
example. Change the Document Type Declaration to refer to your new DTD, and save the file
as contacts5.xml:

<!DOCTYPE contacts PUBLIC “-//Beginning XML//DTD Contact Example//EN”
“contacts5.dtd”>

3. You are ready to validate the document again. Open contacts5.xml and click the Validate
button.

Your output should show a complete validation without errors. If you received any errors this time, con-
firm that you have typed everything correctly and try again.

How It Works
In this last Try It Out, you were able to change ATTLIST declarations by using a parameter entity for the
content model and a parameter entity for the attribute declarations. Just as you have seen throughout
this section, parameter entities enable you to reuse DTD declarations or pieces of declarations. As the
parser attempts to process the content model for the <contact> declaration, it encounters the parameter
entity reference. It replaces the entity reference with the replacement text specified in the ENTITY
declaration.

Actually, when a parser builds the replacement value for a parameter entity, it adds a single space char-
acter before and after the value you specify. This can create all kinds of confusion if you are not careful
in defining your parameter entities. In fact, this is why you need to include the quotation marks as part
of the parameter entity — so that there won’t be extra spaces in the value.

Note that the declaration of a parameter entity must occur in the DTD before any references to that
entity.

Developing DTDs
Most of the DTDs you developed within this chapter were relatively simple. As you begin developing
DTDs for your XML documents, you might find it difficult to present the DTDs in a linear order. Most
of the declarations flowed in order, but often you won’t be sure in what order your DTD declarations
should occur. Don’t worry; apart from entities that are used within the DTDs, declarations can appear in
any order. It is common to keep associated declarations near one another. For example, in most DTDs, an
ATTLIST declaration immediately follows the corresponding ELEMENT declaration.

As the flow of the DTDs becomes difficult to follow, it is important to document your declarations. You
can use XML comments and processing instructions within a DTD, following rules similar to usage in
XML content. Comments and processing instructions can appear in the internal or external subsets, but
they cannot appear within markup declarations.

141

Chapter 4: Document Type Definitions

For example, the following is valid:

<!-- source : allows you to describe the source of the contacts list -->
<!ATTLIST contacts source CDATA #IMPLIED>

The following is not valid:

<!ATTLIST contacts
<!-- source : allows you to describe the source of the contacts list -->
source CDATA #IMPLIED>

When developing DTDs, it is not necessary to declare comments and processing instructions that are
used within your XML document. In fact, there is no way to declare that they will be present at all.

As you have already seen, developing a DTD is easiest when you have an example XML document.
What should you do if you have a very long example file with many elements? A good strategy is to
divide the DTD into pieces, or modules. The best way to do this is by using external parameter entities.
Instead of designing the whole DTD at once, try to create DTDs for subsections of your vocabulary and
then use parameter entity references when testing. By dividing your DTD in this way, you can quickly
identify and fix errors. Once you have your DTD working, you can combine the modules to increase per-
formance.

DTD Limitations
This chapter has described some of the many benefits of using DTDs. They enable you to validate con-
tent without application-specific code, supply default values for attributes, and even create modular
XML documents. Throughout your XML career, you will use existing DTDs and often design your
own. Because of XML’s strong SGML foundation, much of the early XML development focused on the
markup of technical documents. Since that time, XML has been used in areas no one expected. While this
was a great achievement for the XML community, it began to reveal some limitations of DTDs:

❑ Differences between DTD syntax and XML syntax

❑ Poor support for XML namespaces

❑ Poor data typing

❑ Limited content model descriptions

Before looking at these limitations in more detail, it is important to reiterate that even with their limita-
tions, DTDs are a fundamental part of the XML Recommendation. DTDs will continue to be used in
many diverse situations, even as other methods of describing documents emerge.

DTD Syntax
The syntax for expressing DTD declarations is different from the generic XML syntax you learned in the
first few chapters. Why is the syntax so different? Early on, you learned that XML is based on SGML.
Because many of the developers turning to XML used SGML, the creators of XML chose to adopt the
DTD syntax that was originally developed for SGML.

142

Part II: Validation

This proved to be both a benefit and a limitation within XML. Initially, this made migration from SGML
to XML easier. Many users had already developed DTDs for their SGML documents. Instead of having
to completely redesign their vocabularies, they could reuse what they had already done, with minimal
changes. As support for XML grew, new XML tools and standards were developed that enabled users to
manipulate their XML data. Unfortunately, these tools were meant for generic XML, not for DTDs.

XML Namespaces
Whenever element or attribute names are declared within a DTD, the namespace prefix and colon must
be included in the declaration. In addition to this limitation, DTDs must treat namespace declarations as
attributes. This is because the XML Recommendation was completed before the syntax for XML name-
spaces was finalized. Forcing users to declare namespace prefixes in advance defeats the purpose of
namespace prefixes altogether. Merging documents from multiple namespaces when the prefixes are
predefined can be problematic and confusing.

Data Typing
As XML developers began using DTDs to model more complex data (such as databases and program-
ming objects), the need for stronger datatypes emerged. The only available datatypes within DTDs
are limited to use in attribute declarations, and even then the datatypes provide only a fraction of the
needed functionality. No method exists for constraining the data within a text-only element to a specific
type. For example, if you were modeling a database and wanted to specify that data within a specific
element needed to be numeric, you couldn’t do so using DTDs.

Limited Content Model Descriptions
In addition to needing more advanced datatypes, limitations in content model descriptions became
apparent soon after the XML Recommendation was published. Developers wanted the capability to
mimic object inheritance in their XML content models. Developers also found the cardinality operators
limiting. For example, because DTDs lack strict control over the number of times an element occurs, it is
difficult to require that a specific element can have more than one but less than ten occurrences.

Summary
By using DTDs, you can easily validate your XML documents against a defined vocabulary of elements
and attributes. This reduces the amount of code needed within your application. An XML parser can be
used to check whether the contents of an XML document are valid according to the declarations within a
DTD. DTDs enable you to exercise much more control over your document content than simple well-
formedness checks do.

In this chapter, you learned how to do the following:

❑ Validate a document against a DTD

❑ Create element declarations

❑ Create attribute declarations

143

Chapter 4: Document Type Definitions

❑ Create entity declarations

❑ Specify an XML document and DTD using external files

You also learned that DTDs have several limitations. The next two chapters illustrate how these limita-
tions have been addressed in newer standards, such as XML Schemas and RELAX NG.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
Build a contact for yourself in the list based on the declarations in the contacts DTD. Once you have
added the new contact, validate your document to ensure that it is correct.

Question 2
Add a gender attribute declaration for the <contact> elements. The attribute should allow two possi-
ble values: male and female. Make sure the attribute is required.

Question 3
Currently, each contact can have only one phone number. Modify the contact declaration so that each
contact can have zero or more phone numbers. In addition, add declarations for website and email
elements.

144

Part II: Validation

5
XML Schemas

In the last chapter, you learned that you can use Document Type Definitions (DTDs) to validate
your XML documents. This avoids the need to write application-specific code to check whether
your documents are valid. You also saw some of the limitations of DTDs. Since the inception of
XML, several new formats have been developed that enable you to define the content of your
vocabulary.

In 1999, the W3C began to develop XML Schemas in response to the growing need for a more
advanced format for describing XML documents. Work had already begun previously on several
efforts that were intended to better model the types of document being created by XML develop-
ers. The W3C’s effort took the best of these early technologies and added more features. During
development, several members of the W3C designed simpler schema languages with fewer fea-
tures outside of the W3C. Perhaps the most important effort is RELAX NG, covered in depth in
Chapter 6.

Today, XML Schemas are a mature technology used in a variety of XML applications. Apart from
their use in validation, XML Schemas are used in XQuery, covered in Chapter 9. XML Schemas
can also be used in conjunction with web services and SOAP, as shown in Chapters 14 and 15,
respectively.

A schema is any type of model document that defines the structure of something,
such as database structures or documents. In this case, the something is an XML docu-
ment. In fact, DTDs are a type of schema. Throughout this book, we have been using
the term vocabulary where we could have used the word schema. So, what is an XML
Schema? This is where it gets confusing. The term XML Schema is used to refer to the
specific W3C XML Schema technology. W3C XML Schemas, much like DTDs,
enable you to describe the structure of an XML document. When referring to W3C
XML Schemas, the “S” in “Schema” should be capitalized. XML Schema definitions
are also commonly referred to as XSDs.

This chapter covers the following:

❑ The benefits of XML Schemas

❑ How to create and use XML Schemas

❑ How to document your XML Schemas

Benefits of XML Schemas
At this point you have already invested time in learning DTDs. You know the syntax and can create
complex, even modular, definitions for your vocabulary. Although XML Schemas are the next great
thing, it is helpful to understand some of the benefits of XML Schemas before jumping in:

❑ XML Schemas are created using basic XML, while DTDs utilize a separate syntax.

❑ XML Schemas fully support the Namespace Recommendation.

❑ XML Schemas enable you to validate text element content based on built-in and user-defined
datatypes.

❑ XML Schemas enable you to more easily create complex and reusable content models.

❑ XML Schemas enable the modeling of programming concepts such as object inheritance and
type substitution.

Let’s look at some of these benefits in more detail.

XML Schemas Use XML Syntax
In the last chapter, you spent most of your time learning the DTD syntax. The syntax, as you learned,
adds a lot to the basic rules for XML well-formedness. When defining an XML Schema, the syntax is
entirely in XML; although you still have to learn the rules regarding which elements and attributes are
required in given declarations, you can use generic XML tools — even those that have no understanding
of the rules specific to XML Schema documents. As you learn new XML technologies throughout this
book, you will see how to apply them to any XML document. For example, Extensible Stylesheet
Language Transformations (XSLT) can be used to work with XML Schemas, but cannot be used on
DTDs. The next chapter describes RELAX NG, another schema language, which has two syntaxes.

XML Schema Namespace Support
Because XML Schemas were finalized after the Namespace Recommendation, the XML Schema specifi-
cation was designed to support namespaces (for a refresher on namespaces, review Chapter 3). Unlike
DTDs, which do not support the full functionality of namespaces, XML Schemas enable you to define
vocabularies that utilize namespace declarations. More important, XML Schemas allow you to mix
namespaces in XML documents with less rigidity. For example, when designing an XML Schema, it is
not necessary to specify namespace prefixes as you must in DTDs. Instead, the XML Schema leaves this
decision to the end-user.

146

Part II: Validation

XML Schema Data Types
When you were developing your DTDs, you could specify that an element had mixed content, element
content, or empty content. Unfortunately, when your elements contained only text, you couldn’t add any
constraints on the format of the text. Attribute declarations gave you some control, but even then the
types you could use in attribute declarations were very limited.

XML Schemas enable you to declare the type of textual data allowed within attributes and elements,
using simple type declarations. For example, by utilizing these types you could specify that an element
may contain only date values, only positive numbers, or numbers within a certain range. Many com-
monly used simple types are built into XML Schemas. This is, perhaps, the single most important feature
within XML Schemas. By enabling you to specify the allowable type of data within an element or
attribute, you can exercise more rigid control over documents. This enables you to easily create docu-
ments that are intended to represent databases, programming languages, and objects within program-
ming languages. Simple types and complex types are shown later in this chapter.

XML Schema Content Models
To reuse a content model within a DTD, you had to utilize parameter entities. Using multiple parameter
entities can lead to complex declarations within the DTD. XML Schemas provide several mechanisms for
reusing content models. In addition to the simple models that you created in DTDs, XML Schema declara-
tions can use object inheritance and content model inheritance. The advanced features of XML Schemas
enable you to build content models upon content models, modifying the definition in each step.

Do We Still Need DTDs?
Wait a second. Why did you spend all of Chapter 4 learning about DTDs if we were just going to turn
around and teach you a better way to validate documents? Don’t worry — DTDs are extremely useful
even with the advent of XML Schemas. Although XML Schemas provide better features for describing
documents — as well as a more common syntax — they provide no ENTITY functionality. In many XML
documents and applications, the ENTITY declaration is of paramount importance. On the merits of this
feature alone, DTDs will live a long and happy life.

DTDs also have a special prominence because they are the only definition and validation mechanism
embedded within the XML Recommendation. This enables DTDs to be embedded directly in the XML
documents they are describing. All other syntaxes require a separate file. Parsers that support DTDs are
trained to use the embedded declarations, while nonvalidating parsers can ignore the declarations. XML
programming tools, such as the Document Object Model (DOM) and Simple API for XML (SAX) —
covered in Chapters 11 and 12, respectively — have special features for DTD types.

XML Schemas divide datatypes into two broad categories: simple and complex.
Elements that may contain attributes or other elements are declared using complex
types. Attribute values and text content within elements are declared using
simple types.

147

Chapter 5: XML Schemas

Because DTDs inherit most of their behavior from Standard Generalized Markup Language (SGML),
they are still widely used in legacy applications.

XML Schemas
As you progress through this chapter, you should begin to realize the benefits of XML Schemas. This
chapter focuses on the basic parts of XML Schemas that are similar to DTDs and explains some of the
datatype mechanisms.

Unfortunately, XML Schemas cannot be covered completely in one chapter. The advanced features of
XML Schemas add significant confusion and complexity. Often these features are not supported correctly
within different validators, and many experts recommend against their usage. This chapter covers the
basic features — those that everyone agrees upon and recommends.

Although you will learn how to design and use XML Schemas in this chapter, you might like to see the
XML Schema Recommendation for yourself. It is divided into three parts: an introduction to XML
Schema concepts at www.w3.org/TR/xmlschema-0/; a document that defines all of the structures
used in XML Schemas at www.w3.org/TR/xmlschema-1/; and a document that describes XML
Schema datatypes at www.w3.org/TR/xmlschema-2/.

The XML Schema Document
Most XML Schemas are stored within a separate XML document. In this respect, XML Schemas function
very similarly to external DTDs; an XML document contains a reference to the XML Schema that defines
its vocabulary. An XML document that adheres to a particular XML Schema vocabulary is called an XML
Schema instance document.

Running the Samples
You have learned some of the benefits of XML Schemas, but it helps if you see an entire XML Schema
before you look at each part in detail. To illustrate how the XML Schema works, we will modify the
name example from the previous chapter. Throughout this chapter, the examples assume you are using
the Codeplot editor (http://codeplot.com). This is the same editor used in Chapter 4. In addition to
being able to work with DTDs, Codeplot is capable of checking an XML Schema instance document

As shown in the last chapter, validating a document against its vocabulary requires
the use of a special parser. The XML Schema Recommendation calls these parsers
schema validators. Not only do schema validators render a verdict on the document’s
schema validity, but many also provide type information to the application. This set
of type information is called the Post Schema Validation Infoset (PSVI). The PSVI con-
tains all of the information in the XML document and a basic summary of every-
thing declared in the schema. For example, PSVI output is used by XQuery and
XPath2.

148

Part II: Validation

against its XML Schema. If you need more information on using Codeplot, please refer to Chapter 4. You
can also use a different XML editor that supports XML Schema validation if you prefer. Additionally, it is
possible to create a program that validates your XML against an XML Schema using a validating parser
library. More information on using parsers in your own programs is available in Chapters 11 and 12.

Try It Out What’s in a Name?

This example creates an XML Schema that defines the name vocabulary. It shows how to refer to the
XML Schema from the instance document:

1. Begin by creating the XML Schema. In Codeplot, create a new document and name it
name5.xsd. Copy the following and save the file when you are finished:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:target=”http://www.example.com/name”
targetNamespace=”http://www.example.com/name” elementFormDefault=”qualified”>
<element name=”name”>
<complexType>
<sequence>
<element name=”first” type=”string”/>
<element name=”middle” type=”string”/>
<element name=”last” type=”string”/>

</sequence>
<attribute name=”title” type=”string”/>

</complexType>
</element>

</schema>

2. Create the instance document. This document is very similar to the name4.xml example from
the previous chapter. Instead of referring to a DTD, refer to the newly created XML Schema.
Create a new document called name5.xml and copy the following; when you are finished, save
the file:

<?xml version=”1.0”?>
<name
xmlns=”http://www.example.com/name”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.example.com/name name5.xsd”
title=”Mr.”>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

At the time of this writing, support for XML Schemas is almost as widespread as
support for DTDs. A list of XML Schema tools can be found on the XML Schema
homepage at www.w3.org/XML/Schema#Tools.

149

Chapter 5: XML Schemas

3. You are ready to validate your XML instance document against the XML Schema. Because you
refer to your XML Schema within name5.xml, you don’t need to select it within the validator.
Simply click the Validate button in the Codeplot editor and observe the output results, shown in
Figure 5-1. If the output suggests that the validation completed but there is an error in the docu-
ment, correct the error and try again.

4. If you would like to see what happens when there is an error, then simply modify your
name5.xml document and try validating again.

How It Works
This Try It Out created an XML Schema for the name vocabulary. Let’s look at each part of the schema
briefly, to get an idea of what to expect throughout the chapter.

You used the XML Schema to determine whether your instance document was schema valid. To connect
the two documents, you included a reference to the XML Schema within your instance document. The
internal process by which schema validators compare the document structure against the vocabulary
varies greatly. At the most basic level, the schema validator reads the declarations within the XML
Schema. As it is parsing the instance document, it validates each element that it encounters against the
matching declaration. If it finds an element or attribute that does not appear within the declarations, or
if it finds a declaration that has no matching XML content, then it raises a schema validity error.

<?xml version=”1.0”?>

Figure 5-1

150

Part II: Validation

As shown in all of the XML documents, you begin with the XML declaration. Again, this is optional, but
it is highly recommended that you include it to avoid XML version conflicts later:

<schema xmlns=”http://www.w3.org/2001/XMLSchema” xmlns:target=”http://www
.example.com/name” targetNamespace=”http://www.example.com/name”
elementFormDefault=”qualified”>

The root element within your XML Schema is the <schema> element. Within the <schema> element,
you have the namespace declaration. The namespace of the <schema> element is http://www.w3
.org/2001/XMLSchema. Within the <schema> element, you also include a targetNamespace attribute
indicating that you are developing a vocabulary for the namespace http://www.example.com/name.
Remember that this is just a unique name; the URL does not necessarily point to anything. You also
declared a namespace that matches your targetNamespace with the prefix target. If you need to refer
to any declarations within your XML Schema, you need this declaration, so you include it just in case. As
with all namespace declarations, you are not required to use target as your prefix; you could choose
any prefix you like.

You also included the attribute elementFormDefault with the value qualified. Essentially, this con-
trols the way namespaces are used within your corresponding XML document. For now, it is best to get
into the habit of adding this attribute with the value qualified, as it will simplify your instance docu-
ments. You will see what this means a little later in the chapter.

<element name=”name”>

Within the <schema> element is an <element> declaration. Within this <element> declaration, you
specified that the name of the element is name. In this example, the content model is specified by includ-
ing a <complexType> definition within the <element> declaration:

<complexType>
<sequence>
<element name=”first” type=”string”/>
<element name=”middle” type=”string”/>
<element name=”last” type=”string”/>

</sequence>
<attribute name=”title” type=”string”/>

</complexType>

Because the <name> element contains the elements <first>, <middle>, and <last>, it must be
declared as a complex type. A <complexType> definition enables you to specify the allowable elements
and their order as well as any attribute declarations.

Just as in your DTD, you must declare your content using a content model. In DTDs you could use
sequences and choices when specifying your content model. In this example, you have indicated that
you are using a sequence by including a <sequence> element. The <sequence> declaration contains
three <element> declarations. Within these declarations, you have specified that their type is string.
This indicates that the elements must adhere to the XML Schema simple type string, which allows any
textual content.

In addition, within the <complexType> definition is an <attribute> declaration. This <attribute>
declaration appears at the end of the <complexType> definition, after any content model information.

151

Chapter 5: XML Schemas

By declaring a title attribute, you can easily specify how you should address the individual described
by your XML document. Because the title attribute is declared in the <complexType> declaration for the
<name> element, the attribute is allowed to appear in the <name> element in the instance document.

Before we move on, take a quick look at the instance document:

<name
xmlns=”http://www.example.com/name”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.example.com/name name5.xsd”
title=”Mr.”>

Within the root element of the instance document are two namespace declarations. The first indicates
that the default namespace is http://www.example.com/name. This namespace matches the
targetNamespace that you declared within your XML Schema. You also declare the namespace
http://www.w3.org/2001/XMLSchema-instance. Several attributes from this namespace can be
used within your instance document.

The instance document includes the attribute schemaLocation. This attribute tells the schema validator
where to find the XML Schema document for validation. The schemaLocation attribute is declared
within the namespace http://www.w3.org/2001/XMLSchema-instance, so the attribute has the pre-
fix xsi. The value of the schemaLocation attribute is http://www.example.com/name name5.xsd.
This is known as a namespace-location pair; it is the namespace of your XML document and the URL
of the XML Schema that describes your namespace. This example used a very simple relative URL,
name5.xsd. The XML Schema Recommendation allows you to declare several namespace-location pairs
within a single schemaLocation attribute — simply separate the values with whitespace. This is useful
when your XML document uses multiple namespaces.

The schemaLocation attribute is only a hint for the processor to use — the processor may not use the
provided location at all. For example, the validator may have a local copy of the XML Schema that it
uses instead of loading the file specified, to decrease processor usage. If your XML Schema has no
targetNamespace, you cannot use a namespace-location pair. Instead, you must refer to the XML
Schema using the noNamespaceSchemaLocation attribute within your instance document.

This has been an extremely brief overview of some difficult concepts in XML Schemas. Don’t worry; this
Try It Out is intended to give you an overall context for what you will be learning throughout the chap-
ter. Each of these concepts is covered in much greater detail.

This chapter doesn’t list all of the elements available with XML Schemas, but introduces the more com-
mon ones that you’re likely to encounter. Furthermore, not all of the attributes are listed for some of the
elements. For in-depth coverage of all of the XML Schema features and their use, see Professional
XML Schemas by Jon Duckett et al. (Wrox Press, 2001).

<schema> Declarations
As you have already seen, the <schema> element is the root element within an XML Schema. The
<schema> element enables you to declare namespace information as well as defaults for declarations
throughout the document. You can also include a version attribute that helps to identify the XML
Schema and the version of your vocabulary:

152

Part II: Validation

<schema targetNamespace=”URI”
attributeFormDefault=”qualified or unqualified”
elementFormDefault=”qualified or unqualified”
version=”version number”>

The XML Schema Namespace
In the first example, the namespace http://www.w3.org/2001/XMLSchema was declared within the
<schema> element. This enables you to indicate that the <schema> element is part of the XML Schema
vocabulary. Remember that because XML is case sensitive, namespaces are case sensitive. If the name-
space does not match http://www.w3.org/2001/XMLSchema, the schema validator should reject the
document. For example, you could use any of the following <schema>:

<schema xmlns=”http://www.w3.org/2001/XMLSchema”>

or

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

or

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

As shown in Chapter 3, the namespace prefix is insignificant — it is only a shortcut to the namespace
declaration. You will usually see one of these three variations. The XML Schema Recommendation itself
uses the prefix xs, and this is by far the most common usage. Using no prefix, as shown in the first of the
preceding examples, is also very common. Because of its relative simplicity, this form is used in the
examples throughout the chapter. Which prefix you use is a matter of personal preference.

Target Namespaces
The primary purpose of XML Schemas is to declare vocabularies. These vocabularies can be identified
by a namespace that is specified in the targetNamespace attribute. Not all XML Schemas will have a
targetNamespace. Many XML Schemas define vocabularies that are reused in another XML Schema, or
vocabularies that are used in documents where the namespace is not necessary.

When declaring a targetNamespace, it is important to include a matching namespace declaration. You
can choose any prefix you like, or you can use a default namespace declaration. The namespace declara-
tion is used when you are referring to declarations within the XML Schema. You will see what this
means in more detail later in the section “Referring to an Existing Global Element.”

Some possible targetNamespace declarations include the following:

<schema xmlns=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.example.com/name”
xmlns:target=”http://www.example.com/name”>

or

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.example.com/name”
xmlns=”http://www.example.com/name”>

153

Chapter 5: XML Schemas

Notice that in the first declaration the <schema> element uses the default namespace. Because of this the
target namespace http://www.example.com/name requires the use of a prefix. However, in the second
declaration you see the exact opposite; the <schema> element requires the use of a prefix because the
target namespace http://www.example.com/name is using a default namespace declaration. Again,
user preference is the only difference.

Element and Attribute Qualification
Within the instance document, elements and attributes may be qualified or unqualified. An element or
attribute is qualified if it has an associated namespace. For example, the following elements are qualified:

<name xmlns=”http://www.example.com/name”>
<first>John</first>
<middle>Fitzgerald</middle>
<last>Doe</last>

</name>

Even though the elements in this example don’t have namespace prefixes, they still have an associated
namespace http://www.example.com/name, making them qualified but not prefixed. Each of the chil-
dren elements is also qualified because of the default namespace declaration in the <name> element.
Again, these elements have no prefixes.

It is also possible to qualify elements using namespace prefixes. In the following example, all of the ele-
ments are qualified and prefixed:

<n:name xmlns:n=”http://www.example.com/name”>
<n:first>John</n:first>
<n:middle>Fitzgerald</n:middle>
<n:last>Doe</n:last>

</n:name>

Unqualified elements have no associated namespace:

<n:name xmlns:n=”http://www.example.com/name”>
<first>John</first>
<middle>Fitzgerald</middle>
<last>Doe</last>

</n:name>

The <name> element is qualified, but the <first>, <middle>, and <last> elements are not. The
<first>, <middle>, and <last> elements have no associated namespace declaration (default or other-
wise); therefore, they are unqualified. This mix of qualified and unqualified elements may seem strange;
nevertheless, it is the default behavior in XML Schemas.

Within the <schema> element you can modify the defaults specifying how elements should be qualified
by including the following attributes:

❑ elementFormDefault

❑ attributeFormDefault

154

Part II: Validation

The elementFormDefault and attributeFormDefault attributes enable you to control the default
qualification form for elements and attributes in the instance documents. The default value for both
elementFormDefault and attributeFormDefault is unqualified.

Even though the value of the elementFormDefault attribute is unqualified, some elements must be
qualified regardless. For example, global element declarations must always be qualified in instance doc-
uments (we will look at global and local declarations in detail in the next section). In the preceding
example, this is exactly what we have done. We have qualified the <name> element with a namespace,
but not the <first>, <middle>, and <last> elements.

Though the mix of qualified and unqualified elements may seem confusing, you may want to create a
document that uses both qualified and unqualified elements. For example, XSLT and SOAP documents
may contain both qualified and unqualified elements. However, most of your documents should qualify
all of their elements. Otherwise, someone who is creating an XML document based on your vocabulary
will need in-depth knowledge of your XML Schema to determine which elements should be qualified and
which elements should be unqualified. Therefore, unless you have a very specific need to mix qualified
and unqualified elements, always include the elementFormDefault attribute with the value qualified.

The default value for the attributeFormDefault is also unqualified. You should never have to
change this value, as most attributes in XML documents are unqualified. Like global elements, globally
declared attributes must be qualified in instance documents, so it is best not to declare attributes globally
unless you want them to be qualified.

<element> Declarations
When declaring an element, you are actually performing two primary tasks: specifying the element
name and defining the allowable content:

<element
name=”name of the element”
type=”global type”
ref=”global element declaration”
form=”qualified or unqualified”
minOccurs=”non negative number”
maxOccurs=”non negative number or ‘unbounded’”
default=”default value”
fixed=”fixed value”>

An element’s allowable content is determined by its type. As you have already seen, element types are
divided into simple types and complex types. XML Schemas allow you to specify an element’s type in
one of two ways:

❑ Creating a local type

❑ Using a global type

In addition to these two methods, you may also reuse existing element declarations instead of creating
new ones. You do this by referring to a global element declaration. You do not need to specify a type in
your reference; the type of the element is included in the global element declaration.

155

Chapter 5: XML Schemas

Global versus Local
Before you can understand these different methods for declaring elements, you must understand the dif-
ference between global and local declarations. XML Schema declarations can be divided into two broad
categories: global declarations and local declarations.

❑ Global declarations are declarations that appear as direct children of the <schema> element.
Global element declarations can be reused throughout the XML Schema.

❑ Local declarations do not have the <schema> element as their direct parent and can be used only
in their specific context.

Let’s look at the first example again:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:target=”http://www.example.com/name”
targetNamespace=”http://www.example.com/name”
elementFormDefault=”qualified”>
<element name=”name”>
<complexType>
<sequence>
<element name=”first” type=”string”/>
<element name=”middle” type=”string”/>
<element name=”last” type=”string”/>

</sequence>
<attribute name=”title” type=”string”/>

</complexType>
</element>

</schema>

This XML Schema has four element declarations. The first declaration, the<name> element, is a global
declaration because it is a direct child of the <schema> element. The declarations for the <first>,
<middle>, and <last> elements are considered local because the declarations are not direct children of
the <schema> element. The declarations for the <first>, <middle>, and <last> elements are valid
only within the <sequence> declaration — they cannot be reused elsewhere in the XML Schema.

Creating a Local Type
Of the two methods of element declaration, creating a local type should seem the most familiar. We used
this model when we declared the <name> element in the example. To create a local type, you simply
include the type declaration as a child of the element declaration:

<element name=”name”>
<complexType>
<sequence>
<element name=”first” type=”string”/>
<element name=”middle” type=”string”/>
<element name=”last” type=”string”/>

</sequence>
<attribute name=”title” type=”string”/>

</complexType>
</element>

156

Part II: Validation

or

<element name=”name”>
<simpleType>
<restriction base=”string”>
<enumeration value=”Home”/>
<enumeration value=”Work”/>
<enumeration value=”Cell”/>
<enumeration value=”Fax”/>

</restriction>
</simpleType>

</element>

These examples show that an element declaration may contain a <complexType> definition or a
<simpleType> definition, but it cannot contain both at the same time.

Using a Global Type
Often, many of your elements will have the same content. Instead of declaring duplicate local types
throughout your schema, you can create a global type. Within your element declarations, you can refer
to a global type by name. In fact, you have already seen this:

<element name=”first” type=”string”/>

Here, the type attribute refers to the built-in datatype string. XML Schemas have many built-in
datatypes, described later in the chapter. You can also create your own global declarations and refer to
them. For example, suppose we had created a global type for the content of the <name> element:

<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:target=”http://www.example.com/name”
targetNamespace=”http://www.example.com/name”
elementFormDefault=”qualified”>
<complexType name=”NameType”>
<sequence>
<element name=”first” type=”string”/>
<element name=”middle” type=”string”/>
<element name=”last” type=”string”/>

</sequence>
<attribute name=”title” type=”string”/>

</complexType>
<element name=”name” type=”target:NameType”/>

</schema>

Even though the type is global, it is still part of the target namespace. Therefore, when referring to the
type, you must include the target namespace prefix (if any). This example used the prefix target to
refer to the target namespace, but it is equally correct to do the following:

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://www.example.com/name”
targetNamespace=”http://www.example.com/name”
elementFormDefault=”qualified”>
<xs:complexType name=”NameType”>
<xs:sequence>

157

Chapter 5: XML Schemas

<xs:element name=”first” type=”xs:string”/>
<xs:element name=”middle” type=”xs:string”/>
<xs:element name=”last” type=”xs:string”/>

</xs:sequence>
<xs:attribute name=”title” type=”xs:string”/>

</xs:complexType>
<xs:element name=”name” type=”NameType”/>

</xs:schema>

Here the XML Schema namespace is declared using the prefix xs, and the target namespace has no pre-
fix. Therefore, to refer to the global type NameType, you do not need to include any prefix.

Try It Out Creating Reusable Global Types

Creating global types within an XML Schema is straightforward. In this example you convert the
<name> example to use a named global type, rather than a local type:

1. Begin by making the necessary changes to your XML Schema. In Codeplot, create a new docu-
ment called name6.xsd. You can copy the content from name5.xsd and make the following
changes:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:target=”http://www.example.com/name”
targetNamespace=”http://www.example.com/name”
elementFormDefault=”qualified”>
<complexType name=”NameType”>
<sequence>
<element name=”first” type=”string”/>
<element name=”middle” type=”string”/>
<element name=”last” type=”string”/>

</sequence>
<attribute name=”title” type=”string”/>

</complexType>
<element name=”name” type=”target:NameType”/>

</schema>

2. Before you can validate your document, you must modify it so that it refers to your new XML
Schema. Create a new document called name6.xml. Again, you can copy the content from
name5.xml and change the xsi:schemaLocation attribute, as follows:

xsi:schemaLocation=”http://www.example.com/name name6.xsd”

3. You are ready to validate your XML instance document against your XML Schema. Click the
Validate button in the Codeplot editor. This should validate with no errors, as before.

How It Works
You had to make minor modifications to your schema in order to create a reusable complex type. First,
you moved the <complexType> definition from within your <element> declaration to your <schema>
element. Remember that a declaration is global if it is a direct child of the <schema> element. Once you
made the <complexType> definition global, you needed to add a name attribute so that you could refer
to it later. You named the <complexType> definition NameType so it would be easy to identify.

158

Part II: Validation

After you declared the NameType <complexType>, you modified your <name> element declaration to
refer to it. You added a type attribute to your element declaration with the value target:NameType.
Keep in mind that you have to include the namespace prefix target when referring to the type so the
validator knows which namespace it should look in.

Referring to an Existing Global Element
As shown in the last example, referring to global types enables you to reuse content model definitions
within your XML Schema. Often, you may want to reuse entire element declarations instead of just the
type. To refer to a global element declaration, simply include a ref attribute and specify the name of the
global element as the value:

<element ref=”target:first”/>

Again, the name of the element must be qualified with the namespace. The preceding example is an ele-
ment reference to a global element named first that was declared in the target namespace. Notice that
when you refer to a global element declaration, you have no type attribute and no local type declara-
tion. Your element declaration uses the type of the <element> declaration in the reference.

Try It Out Referring to Global Element Declarations

This Try It Out modifies the last example to demonstrate how to create and refer to global element decla-
rations:

1. Begin by making the necessary changes to the XML Schema. Create a new document called
name7.xsd. You can copy the content from name6.xsd and make the following changes:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:target=”http://www.example.com/name”
targetNamespace=”http://www.example.com/name”
elementFormDefault=”qualified”>
<element name=”first” type=”string”/>
<element name=”middle” type=”string”/>
<element name=”last” type=”string”/>
<complexType name=”NameType”>
<sequence>
<element ref=”target:first”/>
<element ref=”target:middle”/>
<element ref=”target:last”/>

</sequence>
<attribute name=”title” type=”string”/>

</complexType>
<element name=”name” type=”target:NameType”/>

</schema>

2. Before you can schema validate your XML document, you must modify it so that it refers to
your new XML Schema. Create a new document called name7.xml. Copy the contents from
name6.xml and change the xsi:schemaLocation attribute as follows:

xsi:schemaLocation=”http://www.example.com/name name7.xsd”

159

Chapter 5: XML Schemas

3. You are ready to validate your XML instance document against your XML Schema. Open
name7.xml and click Validate in the Codeplot editor. This should validate with no errors, just as
you saw in the last Try It Out.

How It Works
This Try It Out utilized references to global element declarations within your content model. First
you moved the declarations for the <first>, <middle>, and <last> elements from within your
<complexType> definition to your <schema> element, making them global. After you created your
global declarations, you inserted references to the elements within your <complexType>. In each refer-
ence, you prefixed the global element name with the prefix target.

At this point, it might help to examine what the schema validator is doing in more detail. As the schema
validator processes your instance document, it first encounters the root element, in this case <name>.
When it encounters the <name> element, it looks it up in the XML Schema. When attempting to find
the declaration for the root element, the schema validator looks through only the global element
declarations.

Once the schema validator finds the matching declaration, it finds the associated type (in this case it is
a global <complexType> definition NameType). It then validates the content of the <name> element
within the instance against the content model defined in the associated type. When the schema validator
encounters the <element> reference declarations, it imports the global <element> declarations into the
<complexType> definition, as if they had been included directly.

Now that you have learned some of the basics of how elements are declared, let’s look briefly at some of
the features element declarations offer. Later in the chapter, you will look at complex type definitions
and content models in more depth.

Naming Elements
Specifying a name in your element declaration is very straightforward. Simply include the name
attribute and specify the desired name as the value. The name must follow the rules for XML names that
you have already learned. In the last chapter, when creating names in DTDs, you had to include any
namespace prefix in the element declaration. Because XML Schemas are namespace aware, this is unnec-
essary. Simply specify the name of the element; the schema validator can understand any prefix used
within the instance document. The following are examples of valid element names:

<element name=”first” type=”string”/>
<element name=”description” type=”string”/>

In this case, you have four global element declarations: <first>, <middle>, <last>,
and <name>. Any one of these could be used as the root element within an instance
document; the example uses the <name> element as the instance document root ele-
ment. Although the XML Schema Recommendation allows you to have multiple
global <element> declarations, you are still limited to only one root element in your
instance document.

160

Part II: Validation

The following are examples of invalid element names:

<element name=”2ndElement” type=”string”/>
<element name=”target:middle” type=”string”/>

The first of these examples is invalid because it begins with a number. XML names may include numeri-
cal digits, periods (.), hyphens (-), and underscores (_), but they must begin with a letter or an under-
score (_). The second of these examples is invalid because it contains a colon (:). Since the inception of
namespaces, the colon may be used only to indicate a namespace prefix. Recall that the prefix must not
be included as part of the name in the element declaration.

Element Qualified Form
The form attribute allows you to override the default for element qualification. As shown earlier, if an
element is qualified, then it must have an associated namespace when it is used in the instance docu-
ment. You can specify whether the element must be qualified by setting the value of the form attribute
to qualified or unqualified. If you do not include a form attribute, the schema validator uses the
value of the elementFormDefault attribute declared in the <schema> element. Remember that ele-
ments declared globally must always be qualified, regardless of values in the elementFormDefault or
form attributes.

Cardinality
In the last chapter you learned that when you are specifying elements in your content models, you can
modify their cardinality. Cardinality represents the number of occurrences of a specific element within a
content model. In XML Schemas, you can modify an element’s cardinality by specifying the minOccurs
and maxOccurs attributes within the element declaration.

Within DTDs, you have very limited options when specifying cardinality. Using cardinality indicators,
you can declare that an element would appear once and only once, once or not at all, one or more times,
or zero or more times. This seems to cover the basics, but many times you need more control. XML
Schemas do not have this limitation. Instead, you can specify the minimum and maximum separately.

Some possible uses of the minOccurs and maxOccurs attributes include the following:

<element name=”first” type=”string” minOccurs=”2” maxOccurs=”2”/>

<element ref=”target:first” maxOccurs=”10”/>

<element name=”location” “”minOccurs=”0” maxOccurs=”unbounded”/>

The first of the preceding examples declares that the element <first> must appear within the instance
document a minimum of two times and a maximum of two times. The second example declares our ele-
ment using a reference to the global <first> declaration. Even though it is declared using the ref
attribute, you are permitted to use the minOccurs and maxOccurs attributes to specify the element’s

Note that the minOccurs and maxOccurs attributes are not permitted within global
element declarations. Instead, use these attributes within the element references in
your content models.

161

Chapter 5: XML Schemas

cardinality. In this case, we have included a maxOccurs attribute with the value 10. We have not included
a minOccurs attribute, so a schema validator would use the default value, 1. The final example specifies
that <location> may or may not appear within our instance document because the minOccurs attribute
has the value 0. It also indicates that it may appear an infinite number of times because the value of
maxOccurs is unbounded.

The default value for the minOccurs attribute and the maxOccurs attribute is 1. This means that, by
default, an element must appear only once. You can use the two attributes separately or in conjunction.
The maxOccurs attribute allows you to enter the value unbounded, which indicates there is no limit to
the number of occurrences. The only additional rule you must adhere to when specifying minOccurs
and maxOccurs is that the value of maxOccurs must be greater than or equal to the value for
minOccurs.

Default and Fixed Values
When designing the DTD for our contacts list in the last chapter, we made use of attribute default and
fixed values. In XML Schemas, you can declare default and fixed values for elements as well as
attributes. When declaring default values for elements, you can specify only a text value. You are not
permitted to specify a default value for an element whose content model will contain other elements,
unless the content model is mixed. By specifying a default value for your element, you ensure that the
schema validator will treat the value as if it were included in the XML document — even if it is omitted.

To specify a default value, simply include the default attribute with the desired value. Suppose our
<name> elements were being used to design the Doe family tree. We might want to make “Doe” the
default for the last name element:

<element name=”last” type=”string” default=”Doe”/>

This example declared that the element <last> has the default value “Doe”, so when a schema valida-
tor encounters the <last> element in the instance document, it will insert the default value if there is no
content. For example, if the schema validator encounters

<last></last>

or

<last/>

then it would treat the element as follows:

<last>Doe</last>

Note that if the element does not appear within the document or if the element already has content, then
the default value is not used.

In the last chapter you learned that attributes may have fixed values. In XML Schemas, both elements
and attributes may have fixed values. In some circumstances, you may want to ensure that an element’s
value does not change, such as an element whose value is used to indicate a version number. When an
element’s value can never change, simply include a fixed attribute with the fixed value. As the schema
validator processes an element declared to have a fixed value, it checks whether the element’s content

162

Part II: Validation

and fixed attribute value match. If they do not match, then the validator raises a schema validity error. If
the element is empty, then the parser inserts the fixed value.

To specify a fixed value, simply include the fixed attribute with the desired value:

<element name=”version” type=”string” fixed=”1.0”/>

The preceding example specifies that the <version> element, if it appears, must contain the value 1.0.
The fixed value is a valid string value (the type of the <version> element is string). Therefore, the
following elements would be legal:

<version>1.0</version>

<version></version>

<version/>

As the schema validator processes the file, it accepts elements with the value 1.0 or empty elements.
When it encounters empty elements, it treats them as though the value 1.0 had been included. The fol-
lowing value is not legal:

<version>2.0</version>

When specifying fixed or default values in element declarations, you must ensure that the value you
specify is allowable content for the type you have declared. For example, if you specify that an element
has the type positiveInteger, you cannot use Doe as a default value because it is not a positive inte-
ger. Default and fixed values are not permitted to contain element content, so your element must have a
simple type or a mixed content declaration. You are not permitted to use default and fixed values at the
same time within a single element declaration.

Element Wildcards
You’ll often want to include elements in your XML Schema without explicitly declaring which elements
should be allowed. Suppose you want to specify that your element can contain any of the elements
declared in your namespace, or any elements from another namespace. This is common when designing
XML Schemas. Declarations that allow you to include any element from a namespace are called element
wildcards.

To declare an element wildcard, use the <any> declaration:

<any
minOccurs=”non negative number”
maxOccurs=”non negative number or unbounded”
namespace=”allowable namespaces”
processContents=”lax or skip or strict”>

The <any> declaration can appear only within a content model. You are not allowed to create global
<any> declarations. When specifying an <any> declaration, you can specify the cardinality just as you
would within an <element> declaration. By specifying the minOccurs or the maxOccurs attributes, you
can control the number of wildcard occurrences allowed within your instance document.

163

Chapter 5: XML Schemas

The <any> declaration also enables you to control which namespace or namespaces the elements are
allowed to come from. You do this by including the namespace attribute. The namespace attribute
allows several values, shown in the following table:

Value Description

##any Allows elements from all namespaces to be included as part of the
wildcard

##other Allows elements from namespaces other than the targetNamespace
to be included as part of the wildcard

##targetNamespace Allows elements from only the targetNamespace to be included as
part of the wildcard

##local Allows any well-formed elements that are not qualified by a name
space to be included as part of the wildcard

Whitespace-separated Allows elements from any listed namespaces to be included as part of
list of allowable the wildcard. Possible list values also include ##targetNamespace
namespace URIs and ##local.

For example, suppose you wanted to allow any well-formed XML content from any namespace within
the <name> element. Within the content model for your NameType complex type, you could include an
element wildcard:

<complexType name=”NameType”>
<sequence>
<element ref=”target:first”/>
<element ref=”target:middle”/>
<element ref=”target:last”/>
<!-- allow any element from any namespace -->
<any namespace=”##any”

processContents=”lax”
minOccurs=”0”
maxOccurs=”unbounded”/>

</sequence>
<attribute name=”title” type=”string”/>

</complexType>

By setting the namespace attribute to ##any, you have specified that elements from all namespaces can
be included as part of the wildcard. You have also included cardinality attributes to indicate the number
of allowed wildcard elements. This case specifies any number of elements because the value of the
minOccurs attribute is set to 0 and the value of maxOccurs is set to unbounded. Therefore, the content
model must contain a <first>, <middle>, and <last> element in sequence, followed by any number
of elements from any namespace.

When the schema validator is processing an element that contains a wildcard declaration, it validates the
instance documents in one of three ways:

❑ If the value of the processContents attribute is set to skip, then the processor skips any wild-
card elements in the instance document.

164

Part II: Validation

❑ If the value of processContents attribute is set to lax, then the processor attempts to validate
the wildcard elements if it has access to a global XML Schema definition for them.

❑ If the value of the processContents attribute is set to strict (the default) or there is no
processContents attribute, then the processor attempts to validate the wildcard elements.
However, in contrast to using the lax setting, the schema validator raises a validity error if a
global XML Schema definition for the wildcard elements cannot be found.

<complexType> Declarations
So far you have seen the basics of declaring elements. Each of the examples utilized a <complexType>
definition. Let’s look at type definitions in more detail. Elements that have element content are con-
trolled by <complexType> definitions. Within <complexType> definitions, you can specify the allow-
able element content for the declaration:

<complexType
mixed=”true or false”
name=”Name of complexType”>

All of the examples so far have used either a local or a global <complexType> to specify the content
model for the <name> element declaration:

<element name=”name”>
<complexType>
<sequence>
<element name=”first” type=”string”/>
<element name=”middle” type=”string”/>
<element name=”last” type=”string”/>

</sequence>
<attribute name=”title” type=”string”/>

</complexType>
</element>

When we created a local declaration, we did not include a name attribute in our <complexType> defini-
tion. Local <complexType> definitions are never named; in fact, they are called anonymous complex types.
As you have already seen, however, global <complexType> definitions are always named, so that they
can be identified later.

Apart from the content models you have seen, <complexType> definitions can also be used to create
mixed and empty content models. Mixed content models allow you to include both text and element
content within a single content model. To create a mixed content model in XML Schemas, simply include
the mixed attribute with the value true in your <complexType> definition:

<element name=”description”>
<complexType mixed=”true”>
<choice minOccurs=”0” maxOccurs=”unbounded”>
<element name=”em” type=”string”/>
<element name=”strong” type=”string”/>
<element name=”br” type=”string”/>

165

Chapter 5: XML Schemas

</choice>
</complexType>

</element>

The preceding example declared a <description> element, which can contain an infinite number of
, , and
 elements. Because the complex type is declared as mixed, text can be inter-
spersed throughout these elements. An allowable <description> element might look like the following:

<description>Jeff is a developer & author for Beginning XML 4th
edition © 2006 Wiley Publishing.
Jeff loves
XML! </description>

In this <description> element, textual content is interspersed throughout the elements declared within
the content model. As the schema validator is processing the preceding example, it ignores the textual
content and entities and instead performs standard validation on the elements. The schema validator
will not perform any validation on the text. Because the elements , , and
 may
appear repeatedly, the example is valid.

To declare an empty content model in a <complexType> definition, you simply create the
<complexType> definition without any <element> or content model declarations. Consider the follow-
ing declarations:

<element name=”knows”>
<complexType>
</complexType>

</element>

<element name=”knows”>
<complexType/>

</element>

Each of these declares an element named knows. In both cases, the <complexType> definition is empty,
indicating that knows will not contain text or element children. When used in our instance document,
<knows> must be empty. For example, the following elements would be valid:

<knows/>

<knows></knows>

Although you haven’t looked at attribute declarations in XML Schemas, note that <complexType> defi-
nitions can also contain <attribute> declarations:

<element name=”knows”>
<complexType>
<attribute name=”contacts” type=”IDREFS”/>

</complexType>
</element>

Even when you are declaring an empty element, attribute declarations may still appear within the
<complexType>. You will examine this in more detail later in this chapter.

166

Part II: Validation

<group> Declarations
In addition to <complexType> definitions, XML Schemas also allow you to define reusable groups of
elements. By creating a global <group> declaration, you can easily reuse and combine entire content
models:

<group
name=”name of global group”>

Just as you have seen with global <complexType> definitions, all global <group> declarations must be
named. Simply specify the name attribute with the desired name. Again, the name that you specify must
follow the rules for XML names and should not include a prefix. The basic structure of a global <group>
declaration follows:

<group name=”NameGroup”>
<!-- content model goes here -->
</group>

Try It Out Using a Global Group

This example redesigns the schema so that you can create a reusable global <group> declaration:

1. Begin by making the necessary changes to our XML Schema. Create a new document called
name8.xsd. Copy the contents from name7.xsd and make the following changes:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:target=”http://www.example.com/name”
targetNamespace=”http://www.example.com/name”
elementFormDefault=”qualified”>
<group name=”NameGroup”>

<sequence>
<element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
<element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”last” type=”string”/>

</sequence>
</group>
<complexType name=”NameType”>
<group ref=”target:NameGroup”/>
<attribute name=”title” type=”string”/>

</complexType>
<element name=”name” type=”target:NameType”/>

</schema>

2. Before you can schema validate your XML document, you must modify it so that it refers to
your new XML Schema. Create a new document called name8.xml. Copy the contents from
name7.xml and change the xsi:schemaLocation attribute as follows:.

xsi:schemaLocation=”http://www.example.com/name name8.xsd”

167

Chapter 5: XML Schemas

3. You are ready to validate your XML instance document against the XML Schema. Open the
name8.xml document and click Validate. This should validate with no errors, as shown in the
last Try It Out.

How It Works
This Try It Out modified your XML Schema to use a global <group> declaration. Within the global
<group> declaration named NameGroup, you declared the allowable elements for your content model.
Instead of including element declarations in the <complexType> definition for your <name> element,
you created a <group> reference declaration. When referring to the global <group> declaration, you
included a ref attribute with the value target:NameGroup.

You also updated the <element> declarations to make use of the minOccurs and maxOccurs attributes.
The values used in the minOccurs and maxOccurs attributes enabled you to mimic the various cardinal-
ity indicators used in the original DTD.

Notice that the <attribute> declaration still appeared within the <complexType> definition and not
within the <group> declaration. This should give you some indication of the difference between a
<group> and a <complexType> definition. A <complexType> declaration defines the allowable content
for a specific element or type of element. A <group> declaration simply allows you to create a reusable
content model that can replace other content model declarations in your XML Schema.

As the schema validator is processing the instance document, it processes the <name> element, similarly
to the earlier examples. When it encounters the <name> element, it looks it up in the XML Schema. Once
it finds the declaration, it finds the associated type (in this case it is a local <complexType> definition).
When the schema validator encounters the <group> reference declaration, it treats the items within the
group as if they had been included directly within the <complexType> definition. Even though the
<group> declaration is global, the <element> declarations within the <group> are not.

Content Models
You have already seen that you can use <complexType> and <group> declarations to specify an ele-
ment’s allowable content. What you haven’t seen is how to build more advanced content models.
Luckily, XML Schemas provide greater flexibility than DTDs when specifying an element’s content
model. In XML Schemas you can specify an element’s content model using the following:

❑ A <sequence> declaration

❑ A <choice> declaration

❑ A reference to a global <group> declaration

❑ An <all> declaration

By using these four primary declarations, you can specify the content model of your type in a variety of
ways. Each of these declarations may contain the following:

❑ Inner content models

❑ Element declarations

❑ Element wildcards

168

Part II: Validation

<sequence> Declarations
As shown with DTD content models, specifying your content model using a sequence of elements is
very simple. In fact, the first example used a <sequence> declaration when defining the allowable chil-
dren of the <name> element:

<sequence
minOccurs=”non negative number”
maxOccurs=”non negative number or unbounded”>

The <sequence> declaration allows you to specify minOccurs and maxOccurs attributes that apply to
the overall sequence. You can modify the cardinality (how many times this sequence of elements occurs)
by changing the values of these attributes. The minOccurs and maxOccurs attributes function exactly as
they did within the element declarations.

You have already seen that the <sequence> declaration may contain <element> declarations within
it. In addition to <element> declarations, it may contain element wildcards or inner <sequence>,
<choice>, or <group> references. You may have sequences within sequences within sequences, or you
may have choices within sequences that are in turn within groups — almost any combination you can
imagine.

A sample sequence might appear as follows:

<sequence>
<element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
<element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”last” type=”string”/>

</sequence>

By utilizing a <sequence> to specify your content model, you indicate that the elements must appear
within your instance document in the sequence, or order, specified. For example, the following would
be legal:

<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

The following, however, would be illegal:

<last>Doe</last>
<middle>Fitzgerald</middle>
<first>John</first>

This example isn’t allowable because the elements do not appear in the order specified within the
<sequence>.

<choice> Declarations
The basic structure of the <choice> declaration looks very much like the <sequence> declaration:

<choice
minOccurs=”non negative number”
maxOccurs=”non negative number or unbounded”>

169

Chapter 5: XML Schemas

Again, you can specify minOccurs and maxOccurs attributes to modify the cardinality of a <choice>
declaration. The <choice> declaration is also similar to its DTD counterpart. You can specify multiple
child declarations within a <choice> declaration. In an instance document, however, only one of the
declarations may be used. For example, suppose you declared the content model of the <name> element
using a <choice> declaration:

<choice>
<element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
<element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”last” type=”string”/>

</choice>

If you declare your content model as shown in the preceding example, then within your instance docu-
ment you could include only <first> elements, only a <middle> element, or only the <last> element.
You could not include both a <first> and a <last> element within the instance. As shown in the
<sequence> declaration, the <choice> declaration may contain <element> declarations, element wild-
cards, and inner <sequence>, <choice>, or <group> references.

<group> References
The <group> reference declaration allows you to refer to global element groups within your content
model. You can define content models that can be grouped together and reused within other content
models. Within a content model, the <group> reference declaration is used by creating a reference to one
of these already declared groups:

<group
ref=”global group definition”
minOccurs=”non negative number”
maxOccurs=”non negative number or unbounded”>

This can be done by including a ref attribute and specifying the name of the global <group> declaration:

<group name=”NameGroup”>
<sequence>
<element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
<element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”last” type=”string”/>

</sequence>
</group>
<element name=”name”>
<complexType>
<group ref=”target:NameGroup”/>
<attribute name=”title” type=”string”/>

</complexType>
</element>

Here the group reference within the <complexType> definition has a ref attribute with the value
target:NameGroup. This refers to the global group declaration named NameGroup. You must prefix
the name with a namespace prefix — in this case, target— so that you can identify the namespace in
which the NameGroup declaration appears.

170

Part II: Validation

Again, you can specify minOccurs and maxOccurs attributes to modify the cardinality of your <group>
reference. However, the <group> reference may not contain element children. Instead, the global
<group> declaration to which it refers contains the content model and element children that define the
content model.

<all> Declarations
The <all> declaration enables you to declare that the elements within your content model may appear
in any order:

<all
minOccurs=”0 or 1”
maxOccurs=”1”>

To use the <all> mechanism, however, you must adhere to several rules:

❑ The <all> declaration must be the only content model declaration that appears as a child of a
<complexType> definition.

❑ The <all> declaration may contain only <element> declarations as its children. It is not per-
mitted to contain <sequence>, <choice>, or <group> declarations.

❑ The <all> declaration’s children may appear once each in the instance document. This
means that within the <all> declaration, the values for minOccurs for maxOccurs are limited
to 0 or 1.

Even with the additional restrictions, the <all> declaration can be very useful. It is commonly used
when the expected content is known, but not the order.

Why are there additional restrictions for the <all> declaration? These restrictions ensure that schema
validators can easily understand and process instance documents. Without these restrictions, it would be
very difficult to write software to validate XML Schemas that contained <all> declarations. Chapter 6
describes the interleave pattern, which was introduced in RELAX NG and has fewer limitations.

Suppose you declared the <name> content model using the <all> mechanism:

<element name=”name”>
<complexType>
<all>
<element name=”first” type=”string”/>
<element name=”middle” type=”string”/>
<element name=”last” type=”string”/>

</all>
<attribute name=”title” type=”string”/>

</complexType>
</element>

Notice that the <all> element is the only content model declaration within the <complexType>
(<attribute> declarations do not count as content model declarations). In addition, note that the
<all> declaration contains only <element> declarations as its children. Because the default value for
minOccurs and maxOccurs is 1, each element can appear in the instance document once and only once.

171

Chapter 5: XML Schemas

By declaring the content model as shown in the preceding example, you can validate your element con-
tent but still allow your elements to appear in any order. The allowable content for a <name> element
declared using an <all> declaration might include

<first>John</first>
<middle>Fitzgerald</middle>
<last>Doe</last>

or

<first>John</first>
<last>Doe</last>
<middle>Fitzgerald</middle>

As long as all of the elements you have specified appear, they can appear in any order. In the second
example, the <middle> element was added last. Because the content model is declared using <all>, this
is still allowable.

Try It Out Making Contact

In order to use all of the XML Schema features that you have learned, it’s time to turn to a more complex
subject. This example creates an XML Schema for your contacts listing. Not only does this provide ample
opportunity to use the functionality you have learned thus far, but it also enables you to compare a DTD
and its XML Schema counterpart.

1. Begin by creating the XML Schema. In Codeplot, create a new document named contacts6
.xsd. Enter the following and when you are finished, save the file (the example is long, so you
may want to download the code from www.wrox.com):

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:contacts=”http://www.example.com/contacts”
targetNamespace=”http://www.example.com/contacts”
elementFormDefault=”qualified”>

<element name=”contacts”>
<complexType>
<sequence>
<element name=”contact” minOccurs=”0” maxOccurs=”unbounded”>
<complexType>
<sequence>
<element name=”name” type=”contacts:NameType”/>
<element name=”location” type=”contacts:LocationType”/>
<element name=”phone” type=”string”/>
<element name=”knows” type=”contacts:KnowsType”/>
<element name=”description” type=”contacts:DescriptionType”/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

<complexType name=”NameType”>

172

Part II: Validation

<group ref=”contacts:NameGroup”/>
</complexType>

<group name=”NameGroup”>
<sequence>
<element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
<element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”last” type=”string”/>

</sequence>
</group>

<complexType name=”LocationType”>
<choice minOccurs=”0” maxOccurs=”unbounded”>
<element name=”address” type=”string”/>
<sequence>
<element name=”latitude” type=”string”/>
<element name=”longitude” type=”string”/>

</sequence>
</choice>

</complexType>

<complexType name=”KnowsType”>
</complexType>

<complexType name=”DescriptionType” mixed=”true”>
<choice minOccurs=”0” maxOccurs=”unbounded”>
<element name=”em” type=”string”/>
<element name=”strong” type=”string”/>
<element name=”br” type=”string”/>

</choice>
</complexType>

</schema>

2. Create the instance document. This document is very similar to the contacts sample from
Chapter 4. Instead of referring to a DTD, you refer to your newly created XML Schema. To
begin, you won’t include any attributes; you will add them in later examples in this chapter.
Create a new document called contacts6.xml and copy the following, saving the file when
you are finished:

<?xml version=”1.0”?>
<contacts
xmlns=”http://www.example.com/contacts”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.example.com/contacts contacts6.xsd”>
<contact>
<name>
<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>

</name>
<location>
<address>Redlands, CA, USA</address>

173

Chapter 5: XML Schemas

<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>

</location>
<phone>001-909-555-1212</phone>
<knows/>
<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>

</contact>
<contact>
<name>
<first>David</first>
<last>Hunter</last>

</name>
<location>
<address>Address is not known</address>

</location>
<phone>416 555 1212</phone>
<knows/>
<description>Senior Technical Consultant for CGI.</description>

</contact>
<contact>
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>

</name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>

</location>
<phone>+39-0555-11-22-33-</phone>
<knows/>
<description>A Semantic Web developer and technical author specializing
in cutting-edge technologies.</description>

</contact>
</contacts>

3. You are ready to validate your XML instance document against your XML Schema. Open
contacts6.xml and click Validate in the Codeplot editor. This should validate with no warn-
ings and no errors, as shown in the last Try It Out. If there is a validation error, then correct it
and try validating again.

How It Works
Let’s break down each section of the <schema> to figure out what is going on:

<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:contacts=”http://www.example.com/contacts”
targetNamespace=”http://www.example.com/contacts”
elementFormDefault=”qualified”>

174

Part II: Validation

As shown in earlier examples, the XML Schema begins with the <schema> element. Again, you must
specify the correct namespace for XML Schemas. You have also included a targetNamespace attribute
to indicate the namespace for your vocabulary. You added a namespace declaration so that you can refer
to items in your targetNamespace later. This time, instead of using the prefix target you used the prefix
contacts. Finally, you included the attribute elementFormDefault with the value qualified:

<element name=”contacts”>
<complexType>
<sequence>
<element name=”contact” minOccurs=”0” maxOccurs=”unbounded”>
<complexType>
<sequence>
<element name=”name” type=”contacts:NameType”/>
<element name=”location” type=”contacts:LocationType”/>
<element name=”phone” type=”string”/>
<element name=”knows” type=”contacts:KnowsType”/>
<element name=”description” type=”contacts:DescriptionType”/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

Next, you created a global <element> declaration for your contacts element. Recall that the contacts
element must be declared globally because you are using it as your root element within your instance doc-
ument. As your schema validator processes your instance document, it encounters the contacts element.
The schema validator will then open your XML Schema document based on the xsi:schemaLocation
attribute hint and find the global declaration for the contacts element.

You specified the type of your contacts element by declaring a local <complexType> within your
<element> declaration. Within the <complexType> definition, you used a <sequence> content model
containing only one element. Even if you only have one element inside of a complex type, you still
need to declare it as part of a <sequence>. You specified that the <contact> element could occur an
unbounded number of times or not occur at all.

You used another local <complexType> to define the content model for the contact element. It is possi-
ble to use local <complexType> declarations inside of other <complexType> declarations. In fact, you
could define an entire schema in this manner. In general, it is better to use global type definitions when-
ever possible. Therefore, you referred to global <complexType> definitions for the name, location,
knows, and description elements. You declared the phone element using the type string. By doing
so, you specified that the instance document can only contain simple text and nothing else. You will
need to change this later in the chapter when you learn about attributes.

<complexType name=”NameType”>
<group ref=”contacts:NameGroup”/>

</complexType>

The content model for the global NameType is defined using a reference to a <group>. To refer to the
global <group> declaration, you needed to prefix the group name with the namespace prefix for your

175

Chapter 5: XML Schemas

targetNamespace. In reality, you didn’t need to use a global group to specify the content of the <name>
element, but the name elements are fairly common, and global groups can be more easily combined and
reused. Global complex types are more useful when using type-aware tools such as XPath2 and XQuery.
When designing your own schemas it is really a matter of personal preference and which tools you plan
on using with your XML Schemas.

<group name=”NameGroup”>
<sequence>
<element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
<element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”last” type=”string”/>

</sequence>
</group>

The <group> declaration for the NameGroup was very straightforward. It listed the allowable elements
for the content model within a <sequence> declaration. This should look very similar to the <name>
examples you have already seen.

<complexType name=”LocationType”>
<choice minOccurs=”0” maxOccurs=”unbounded”>
<element name=”address” type=”string”/>
<sequence>
<element name=”latitude” type=”string”/>
<element name=”longitude” type=”string”/>

</sequence>
</choice>

</complexType>

In the LocationType <complexType> definition you used a choice declaration to allow either the ele-
ment address or the sequence of elements, including latitude and longitude. You specified that the
choice may or may not appear and that it could appear an unbounded number of times.

The global declaration for KnowsType didn’t contain any content model. Because of this, the <knows>
element in the instance document must be empty:

<complexType name=”KnowsType”>
</complexType>

<complexType name=”DescriptionType” mixed=”true”>
<choice minOccurs=”0” maxOccurs=”unbounded”>
<element name=”em” type=”string”/>
<element name=”strong” type=”string”/>
<element name=”br” type=”string”/>

</choice>
</complexType>

The DescriptionType <complexType> definition was a mixed declaration. To specify this, you added
a mixed attribute with the value true. Within the mixed content model, to allow an unbounded number
of , and
 elements to be interspersed within the text, you used a <choice> declara-
tion. Again, minOccurs is sets to 0 and maxOccurs is set to unbounded so that the choice would be
repeated.

</schema>

176

Part II: Validation

This completed the XML Schema for the contacts listing. You will continue to add features to this XML
Schema throughout the rest of the chapter.

<attribute> Declarations
So far, you have spent most of this chapter learning how to create element declarations. Of course, this is
only the very first step when creating an XML Schema. Within XML Schemas, attribute declarations are
similar to element declarations. In the examples for the <name> element, you have already seen an
attribute declaration for the title attribute. Attribute declarations have the following format:

<attribute
name=”name of the attribute”
type=”global type”
ref=”global attribute declaration”
form=”qualified or unqualified”
use=”optional or prohibited or required”
default=”default value”
fixed=”fixed value”>

As shown with element declarations, there are two primary methods for declaring attributes:

❑ Creating a local type

❑ Using a global type

Unlike elements, which are divided into simple types and complex types, attribute declarations are
restricted to simple types. Remember that complex types are used to define types that contain attributes
or elements; simple types are used to restrict text-only content. Because an attribute can contain text
only, you can use simple types only to define their allowable content.

You can also reuse attributes by referring to global attribute declarations. You do not need to specify a
type in your attribute reference; the type of the attribute is included in the global attribute declaration.

Creating a Local Type

Creating a local type for an <attribute> declaration is similar to creating a local type for an
<element> declaration. To create a local type, simply include the type declaration as a child of the
<attribute> element:

<attribute name=”title”>
<simpleType>
<!-- type information -->

</simpleType>
</element>

Notice that an attribute declaration may contain only a <simpleType> definition.

Using a Global Type

Just as you saw with the <element> declarations, many of the attributes have the same type of value.
Instead of declaring duplicate local types throughout your schema, you can create a global

177

Chapter 5: XML Schemas

<simpleType> definition. Within your attribute declarations, you can refer to a global type by name.
This type can be one of the built-in XML Schema datatypes:

<attribute name=”title” type=”string”/>

You can also create your own global declarations and refer to them. For example, suppose you created a
global type for the content of the kind attribute:

<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:contacts=”http://www.example.com/contacts”
targetNamespace=”http://www.example.com/contacts”
elementFormDefault=”qualified”>
<simpleType name=”KindType”>
<!-- type information -->

</simpleType>
<element name=”phone”>
<complexType>
<!-- content model information -->
<attribute name=”kind” type=”contacts:KindType”/>

</complexType>
</element>

</schema>

When referring to the type, you must include the target namespace prefix (if any). In the preceding
example, the prefix contacts is used to refer to the target namespace. However, the following is equally
correct:

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://www.example.com/contacts”
targetNamespace=”http://www.example.com/contacts”
elementFormDefault=”qualified”>
<xs:simpleType name=”KindType”>
<!-- type information -->

</xs:simpleType>
<xs:element name=”phone”>
<xs:complexType>
<!-- content model information -->
<xs:attribute name=”kind” type=”KindType”/>

</xs:complexType>
</xs:element>

</xs:schema>

In this example, the XML Schema namespace is declared using the prefix xs, and the target namespace
has no prefix. Therefore, to refer to the global type KindType, you do not need to include any prefix.

Referring to an Existing Global Attribute

Referring to global <simpleType> definitions enables you to reuse attribute types within your XML
Schema. You’ll often want to reuse entire attribute declarations, instead of just the type. XML Schemas
enable you to reuse global attribute declarations within your <complexType> definition. To refer to a
global attribute declaration, include a ref attribute in your declaration and specify the name of the
global attribute as the value:

178

Part II: Validation

<attribute ref=”contacts:kind”/>

Again, the name of the attribute must be qualified with the namespace. Notice that when you refer to a
global attribute declaration, there is no type attribute and no local type declaration. The attribute uses
the type of the <attribute> declaration to which you are referring.

Unfortunately, reusing global attribute declarations can create problems in your instance documents
because of namespaces. Each attribute that you declare globally must be qualified by a namespace in
your instance document. Because default namespace declarations do not apply to attributes, the only
way to qualify them is by using a namespace prefix. This can make your instance documents complex
and confusing. Instead of dealing with these issues, most XML Schema authors utilize global
<attributeGroup> declarations when they need to reuse attributes. We will look at
<attributeGroup> declarations a little later in this chapter.

Naming Attributes
As shown with element declarations, attribute names must follow the rules for XML names that you
have already learned. In the last chapter, when creating names in DTDs, you learned that you have to
include a namespace prefix if one is going to be used in the instance document. Because XML Schemas
are namespace aware, this is unnecessary. Simply specify the name of the attribute; the schema validator
can understand any prefix that is used within the instance document.

Attribute Qualified Form
The form attribute enables you to override the default for attribute qualification. Attribute qualification
functions very similarly to element qualification. If an attribute is qualified, then it must have an associ-
ated namespace when it is used in the instance document. Remember that default namespaces don’t
apply to attributes in your instance document, so you can only qualify an attribute by using a name-
space prefix.

You can specify whether the attribute must be qualified by setting the value of the form attribute to
qualified or unqualified. If you don’t include a form attribute, the schema validator uses the value
of the attributeFormDefault attribute declared in the <schema> element. Any attribute declared
globally must be qualified, regardless of the form and attributeFormDefault values.

Unlike elements, it is very common to have unqualified attributes within an instance document.
Therefore, the form attribute is rarely used.

Attribute Use
When declaring an attribute, you can specify that it is required, optional, or prohibited in the
instance document. To control how an attribute is used, simply include the use attribute within the
<attribute> declaration and specify the appropriate value. You cannot include a use attribute in a
global <attribute> declaration.

By setting the value of the use attribute to prohibited, you can ensure that an attribute won’t appear
within your instance document. Developers commonly use prohibited attribute declarations in con-
junction with attribute wildcards. Using this model, you can specify that you want to allow a large
group of attributes and subsequently disallow specific attributes within the group.

179

Chapter 5: XML Schemas

If you specify that an attribute is required, then it must appear within the instance document. If the
attribute is omitted, then the schema validator raises a validity error.

Most attributes are optional, so the default value for use is optional. By declaring that an attribute is
optional, you indicate that it may or may not appear in the instance document. If you specify a default
value for your attribute declaration, then the value of use cannot be required or prohibited.

Default and Fixed Values
You have already seen that XML Schemas allow you to declare default and fixed values for elements.
You can declare default and fixed values for attributes in exactly the same way. To specify a default
value, simply include the default attribute with the desired value:

<attribute name=”kind” type=”contacts:KindType” default=”Home”/>

In the preceding declaration, the default value for the kind attribute is Home. If the schema validator
finds that the kind attribute has been omitted, it inserts the attribute and sets the value to Home.

Fixed values operate much like default values. As the schema validator is processing the file, if it
encounters a fixed attribute, then the parser checks whether the attribute value and fixed value
match. If they do not match, the parser raises a schema validity error. If the attribute is omitted, then
the parser inserts the attribute with the fixed value.

To specify a fixed value, simply include the fixed attribute with the desired value:

<attribute name=”version” type=”string” fixed=”1.0”/>

When specifying fixed or default values, you must ensure that the value you specify is allowable content
for the type declared for your attribute declaration. For example, if you specify that an attribute has the
type decimal, then you cannot use 1.0 Beta as a default value because it is not a decimal value.
Moreover, you can’t use default and fixed values at the same time within a single attribute declaration.

Attribute Wildcards
Earlier in the chapter, you learned about element wildcards — declarations that allow you to include any
elements from a specific namespace or list of namespaces within your content model. You’ll often want
to declare similar behavior for attributes. Declarations that allow you to include any attribute from a
namespace are called attribute wildcards.

To declare an attribute wildcard, use the <anyAttribute> declaration:

<anyAttribute
namespace=”allowable namespaces”
processContents=”lax or skip or strict”>

The <anyAttribute> declaration can appear only within a <complexType> or <attributeGroup>
declaration. You are not allowed to create global <anyAttribute> declarations. The <anyAttribute>
declaration allows you to control which namespaces may be used, by including the namespace
attribute. The namespace attribute allows several values:

180

Part II: Validation

Value Description

##any Allows attributes from all namespaces to be included as part
of the wildcard

##other Allows attributes from namespaces other than the target-
Namespace to be included as part of the wildcard

##targetNamespace Allows attributes from only the targetNamespace to be
included as part of the wildcard

##local Allows attributes that are not qualified by a namespace to be
included as part of the wildcard

Whitespace-separated list of Allows attributes from any listed namespaces to be included
allowable namespace URIs as part of the wildcard. Possible list values also include

##targetNamespace and ##local.

Suppose you want to allow any unqualified attributes, as well as any attributes from the http://www
.w3.org/XML/1998/namespace namespace. You can achieve this by including an attribute wildcard:

<complexType>
<anyAttribute namespace=”##local http://www.w3.org/XML/1998/namespace”

processContents=”lax”/>
</complexType>

Notice that the value of the namespace attribute is a whitespace-separated list with the values ##local
and http://www.w3.org/XML/1998/ namespace.

The namespace http://www.w3.org/XML/1998/namespace contains the xml:lang and
xml:space attributes. These attributes are commonly used to add information about the language or
spacing of an XML document.

When the schema validator processes an element that contains an attribute wildcard declaration, it vali-
dates the instance documents in one of three ways:

❑ If the value of the processContents attribute is set to skip, then the processor skips any wild-
card attributes in the element.

❑ If the value of processContents attribute is set to lax, then the processor attempts to validate
the wildcard attributes if it has access to an XML Schema that defines them.

❑ If the value of the processContents attribute is set to strict (the default) or there is no
processContents attribute, then the processor attempts to validate the wildcard attributes.
However, in contrast to using the lax setting, the schema validator raises a validity error if a
global XML Schema definition for the wildcard elements cannot be found.

Try It Out Making Contact — Adding Attributes

Now that you have seen all of the various options for attribute declarations, you can update your con-
tacts schema. This example adds two attributes to your <contacts> root element:

181

Chapter 5: XML Schemas

1. Begin by making the necessary changes to your XML Schema. Create a new document called
contacts7.xsd. You can copy the contents of the file contacts6.xsd and make the following
changes. Because you need to change only the declaration for the <contacts> element, that is
all we have shown. You add two attribute declarations after the content model. The rest of the
XML Schema remains the same.

<element name=”contacts”>
<complexType>
<sequence>
<element name=”contact” minOccurs=”0” maxOccurs=”unbounded”>
<complexType>
<sequence>
<element name=”name” type=”contacts:NameType”/>
<element name=”location” type=”contacts:LocationType”/>
<element name=”phone” type=”string”/>
<element name=”knows” type=”contacts:KnowsType”/>
<element name=”description” type=”contacts:DescriptionType”/>

</sequence>
</complexType>

</element>
</sequence>
<attribute name=”version” type=”string” fixed=”1.0” />
<attribute name=”source” type=”string”/>

</complexType>
</element>

2. Before you can validate your instance document, you must modify it so that it refers to your
new XML Schema. You also need to add attributes to your <contacts> element. Create a
new document called contacts7.xml. As before, you can copy the contents of the file
contacts6.xml and make the following changes to the <contacts> element — the rest of
the file remains the same:

<contacts
xmlns=”http://www.example.com/contacts”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.example.com/contacts contacts7.xsd”
source=”Beginning XML 4E”
version=”1.0”>

3. You are ready to validate your XML instance document against the XML Schema. Open
contacts7.xml and click Validate in the Codeplot editor. This should validate with no
warnings and no errors. If there is a validation error, then correct it and try validating again.

How It Works
This Try It Out added two attributes to the <contacts> element. You did this by adding the attribute
declarations after the content model of the local <complexType> definition. Let’s look at each of these
attribute declarations in more detail. Your first attribute declaration defined the version attribute:

<attribute name=”version” type=”string” fixed=”1.0”/>

This indicated that its value must be type string— meaning that any text value is allowed. In your
DTD you used the type CDATA. No CDATA type exists for XML Schemas, so wherever you would have

182

Part II: Validation

used CDATA, you should instead use string. When you declared the attribute, you included a fixed
attribute with the value 1.0. This means that if the version attribute appears within your document,
then it must have the value 1.0. If the version attribute is omitted, then the schema validator will
insert the attribute with the value 1.0.

The second attribute declaration defined the source attribute:

<attribute name=”source” type=”string”/>

Again, you have indicated that the attribute value must be type string.

<attributeGroup> Declarations
You have seen that by creating a global <group> declaration you can define reusable groups of elements.
In addition to element groups, the XML Schema also allows you to define attribute groups:

<attributeGroup
name=”name of global attribute group”>

Often, you will need to use the same set of attributes for many elements. In such cases, it is easier to cre-
ate a global attribute group that can be reused in your <complexType> definitions. In DTDs, this was
not possible without using parameter entities.

The <attributeGroup> declaration is very similar to the <group> declaration. Global
<attributeGroup> declarations must be named. Simply specify the name attribute with the desired
name. The name that you specify must follow the rules for XML names, and it should not include a pre-
fix. The basic structure of a global <attributeGroup> declaration follows:

<attributeGroup name=”ContactsAttributes”>
<!-- attribute declarations go here -->

</attributeGroup>

Instead of allowing content model declarations such as the <group> declarations shown earlier in the
chapter, the <attributeGroup> declaration allows <attribute> declarations as children. It also
allows attribute wildcards and references to global <attribute> and <attributeGroup> declarations.

Although <attributeGroup> declarations may include references to other global <attributeGroup>
declarations as part of the content model, they may not recursively refer to themselves. For example, the
following is an illegal <attributeGroup> declaration:

<attributeGroup name=”AttGroup1”>
<attributeGroup ref=”target:AttGroup1”/>

</attributeGroup >

Remember that within the instance document, attributes may appear in any order. In
addition, no attribute may appear more than once in a single element.

183

Chapter 5: XML Schemas

This is illegal as well:

<attributeGroup name=”AttGroup1”>
<attributeGroup ref=”target:AttGroup2”/>

</attributeGroup >
<attributeGroup name=”AttGroup2”>
<attributeGroup ref=”target:AttGroup1”/>

</attributeGroup >

This second declaration is illegal because the declaration indirectly refers to itself.

To use an <attributeGroup>, simply include an <attributeGroup> reference within a
<complexType> or global <attributeGroup> declaration. To specify which <attributeGroup> you
are referring to, include the ref attribute with the name of the global <attributeGroup> as the value.
As shown with other references, you need to specify the namespace when referring to the global declara-
tion. To do this, include the namespace prefix in the value.

Try It Out Making Contact — Using a Global Attribute Group

This Try It Out redesign the schema so that you can create a reusable global <attributeGroup> decla-
ration. You add your new attribute declarations to an attribute group.

1. Begin by making the necessary changes to your XML Schema. Create a new file called
contacts8.xsd. Copy the contents from the file contacts7.xsd and make the following
changes:

<attributeGroup name=”ContactAttributes”>
<attribute name=”version” type=”string” fixed=”1.0” />
<attribute name=”source” type=”string”/>

</attributeGroup>

<element name=”contacts”>
<complexType>
<sequence>
<element name=”contact” minOccurs=”0” maxOccurs=”unbounded”>
<complexType>
<sequence>
<element name=”name” type=”contacts:NameType”/>
<element name=”location” type=”contacts:LocationType”/>
<element name=”phone” type=”string”/>
<element name=”knows” type=”contacts:KnowsType”/>
<element name=”description” type=”contacts:DescriptionType”/>

</sequence>
</complexType>

</element>
</sequence>
<attributeGroup ref=”contacts:ContactAttributes”/>

</complexType>
</element>

184

Part II: Validation

2. Before you can validate your XML document against your schema, you must modify it so that it
refers to your new XML Schema. Create a new document called contacts8.xml. Copy the con-
tents from the file contacts7.xml and change the xsi:schemaLocation attribute as follows:

xsi:schemaLocation=”http://www.example.com/contacts contacts8.xsd”

3. You are ready to validate your XML instance document against your XML Schema. Open
contacts8.xml and click Validate. This should validate with no warnings and no errors. If
not, correct any errors and try validating again.

How It Works
This Try It Out has modified your XML Schema to use a global <attributeGroup> declaration. You cre-
ated a global <attributeGroup> declaration named ContactAttributes. Within the declaration you
included the declarations for the source and the version attributes. Within the <complexType> defini-
tion for the <contacts> element, you added an <attributeGroup> reference declaration. When refer-
ring to the global <attributeGroup> declaration, you included a ref attribute with the value
contacts:ContactAttributes.

As the schema validator processes the instance document, it processes the <contacts> element, as
shown in earlier examples. When it encounters the <contacts> element, it looks it up in the XML
Schema. Once it finds the declaration, it finds the associated type (in this case it is a local <complexType>
definition). When the schema validator encounters the <attributeGroup> reference declaration, it treats
the source <attribute> declaration within the group as if it had been included directly within the
<complexType> definition. It does this for each attribute declaration in the group.

The fixed declaration for the source attribute still applies even though you are using a group. Because
the version of your contacts list is 1.0, it matches the fixed value. You could have omitted the version
attribute altogether. As the document is being processed, the schema validator adds the fixed value from
the XML Schema if no value is specified in the XML document.

Creating Elements with Simple Content and Attributes
At this point you have learned two ways to specify the allowable content for an element. You learned
how to construct complex element declarations, which can contain both elements and attributes using
the <complexType> declaration. You also learned how to specify an <element> declaration’s type using
the type attribute and the value string. What if your element contains simple content and attributes?
Unfortunately, this requires a little more work.

When declaring an element that has simple content, you start with a basic element declaration:

<element name=”phone”>
<!-- Specify type here -->

</element>

Within the element declaration, you include a <complexType> declaration in which you specify that
you want your element to have simple content. You do this by creating a <complexType> declaration
that contains a <simpleContent> element. The <simpleContent> element indicates that the

185

Chapter 5: XML Schemas

<complexType> cannot contain child elements. It may contain attributes, but otherwise the content will
be defined by a simple type:

<element name=”phone”>
<complexType>
<simpleContent>
<!-- Specify type here -->

</simpleContent>
</complexType>

</element>

You also need to specify what kind of datatype should be used to validate your simple content.
Within the <simpleContent> element, you can create an <extension> declaration. You must use
an <extension> declaration because you will be extending an existing datatype by adding attribute
declarations. Consider the following, for example:

<element name=”phone”>
<complexType>
<simpleContent>
<extension base=”string”>
<attribute name=”kind” type=”string” default=”Home” />

</extension>
</simpleContent>

</complexType>
</element>

In the <extension> declaration, you can add a base attribute whereby you specify the datatype
string to use as the basis for your element’s content. In the preceding example, the built-in string
type is the base type, but you are not limited to using built-in datatypes. You can also refer to any global
<simpleType> in your XML Schema.

After specifying the base type, you declared the attributes. As shown in the <complexType> declara-
tions earlier in the chapter, you can include <attribute> and <attributeGroup> declarations inside
the <extension> element.

Any of the following examples are allowable <phone> elements based on the previous declaration:

<phone kind=”Home”>001-909-555-1212</phone>
<phone>001-909-555-1212</phone>
<phone />

In the first of the preceding examples, the <phone> element contains a phone number string and a kind
attribute. In the second example, the kind attribute is omitted. If a schema validator encountered this
element, it would use the default value Home specified in the attribute declaration. The first two exam-
ples include a phone number string in the element content. In the final example, the kind attribute is
omitted and the element doesn’t include a phone number.

Datatypes
You have seen how to declare allowable elements and attributes using <complexType> definitions. At
the start of the chapter, however, we promised that you would learn how to define the allowable content
for text-only elements and attribute values. It’s time that we made good on that promise.

186

Part II: Validation

The XML Schema Recommendation allows you to use the following:

❑ Built-in datatypes

❑ User-defined datatypes

Built-in Datatypes
The examples throughout this chapter have used the string type for our text-only content. The string
type is a primitive datatype that allows any textual content. XML Schemas provide a number of built-in
simple types that allow you to exercise greater control over textual content in your XML document. The
following table lists all of the simple types built into XML Schemas:

Type Description

string Any character data

normalizedString A whitespace-normalized string in which all spaces, tabs, car-
riage returns, and linefeed characters are converted to single
spaces

token A string that does not contain sequences of two or more spaces,
tabs, carriage returns, or linefeed characters

byte A numeric value from -128 to 127

unsignedByte A numeric value from 0 to 255

base64Binary Base64 encoded binary information

hexBinary Hexadecimal encoded binary information

integer A numeric value representing a whole number

positiveInteger An integer whose value is greater than 0

negativeInteger An integer whose value is less than 0

nonNegativeInteger An integer whose value is 0 or greater

nonPositiveInteger An integer whose value is less than or equal to 0

int A numeric value from –2147483648 to 2147483647

unsignedInt A numeric value from 0 to 4294967295

long A numeric value from –9223372036854775808 to
9223372036854775807

unsignedLong A numeric value from 0 to 18446744073709551615

short A numeric value from –32768 to 32767

unsignedShort A numeric value from 0 to 65535

decimal A numeric value that may or may not include a fractional part

Table continued on following page

187

Chapter 5: XML Schemas

Type Description

float A numeric value that corresponds to the IEEE single-precision
32-bit floating-point type defined in the standard IEEE
754-1985.-0, INF, -INF, and NaN are also valid values.

double A numeric value that corresponds to the IEEE double-precision
64-bit floating-point type defined in the standard IEEE 754-1985.
-0, INF, -INF, and NaN are also valid values.

boolean A logical value, including true, false, 0, and 1

time An instant of time that occurs daily as defined in Section 5.3 of
ISO 8601. For example, 15:45:00.000 is a valid time value.

dateTime An instant of time, including both a date and a time value, as
defined in Section 5.4 of ISO 8601. For example,
1998-07-12T16:30:00.000 is a valid dateTime value.

duration A span of time as defined in Section 5.5.3.2 of ISO 8601. For
example, P30D is a valid duration value indicating a duration
of 30 days.

date A date according to the Gregorian calendar as defined in Section
5.2.1 of ISO 8601. For example, 1995-05-25 is a valid date value.

gMonth A month in the Gregorian calendar as defined in Section 3 of ISO
8601. For example, --07 is a valid gMonth value.

gYear A year in the Gregorian calendar as defined in Section 5.2.1 of
ISO 8601. For example, 1998 is a valid gYear value.

gYearMonth A specific month and year in the Gregorian calendar as defined
in Section 5.2.1 of ISO 8601. For example, 1998-07 is a valid
gYearMonth value.

gDay A recurring day of the month as defined in Section 3 of ISO 8601,
such as the 12th day of the month. For example, ---12 is a valid
gDay value.

gMonthDay A recurring day of a specific month as defined in Section 3 of
ISO 8601, such as the 12th day of July. For example, --07-12 is a
valid gMonthDay value.

name An XML name according to the Namespace Recommendation.
XML names must begin with a letter or an underscore. Though
this type can allow for “:” characters, it is best to avoid them for
compatibility.

QName A qualified XML name as defined in the Namespaces Recom-
mendation. QNames may or may not contain a namespace pre-
fix and colon.

NCName A noncolonized XML name that does not include a namespace
prefix or colon as defined in the Namespaces Recommendation

188

Part II: Validation

Type Description

anyURI A valid Uniform Resource Identifier (URI)

language A language constant as defined in RFC 1766, such as en-US (RFC
1766 can be found at www.ietf.org/rfc/rfc1766.txt)

In addition to the types listed, the XML Schema Recommendation also allows the types defined within
the XML Recommendation. These types include ID, IDREF, IDREFS, ENTITY, ENTITIES, NOTATION,
NMTOKEN, and NMTOKENS. These types are covered in the last chapter.

Although we have used the string type throughout most of our examples, any of the preceding types
can be used to restrict the allowable content within your elements and attributes. Suppose you want to
modify the declarations of the <latitude> and <longitude> elements within your contacts XML
Schema. By specifying a more restrictive type, you could ensure that users of your XML Schema enter
valid values. You could modify your declarations as follows:

<element name=”latitude” type=”float”/>
<element name=”longitude” type=”float”/>

Now, instead of allowing any textual content, you require that users specify a floating-point number. For
a more in-depth look at these types, see Appendix F or the XML Schema Recommendation at
www.w3.org/TR/xmlschema-2/.

Try It Out Making Contact — Built-in XML Schema Datatypes

This Try It Out modifies the contacts example so that you can take advantage of the built-in XML
Schema datatypes. You will also include some additional attributes that utilize the built-in types:

1. Begin by making the necessary changes to your XML Schema. Create a new document called
contacts9.xsd. Copy the contents from the file contacts8.xsd and make the following
changes:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:contacts=”http://www.example.com/contacts”
targetNamespace=”http://www.example.com/contacts”
elementFormDefault=”qualified”>

<attributeGroup name=”ContactAttributes”>
<attribute name=”version” type=”decimal” fixed=”1.0” />
<attribute name=”source” type=”string”/>

</attributeGroup>

<element name=”contacts”>
<complexType>
<sequence>
<element name=”contact” minOccurs=”0” maxOccurs=”unbounded”>
<complexType>
<sequence>
<element name=”name” type=”contacts:NameType”/>
<element name=”location” type=”contacts:LocationType”/>

189

Chapter 5: XML Schemas

<element name=”phone” type=”contacts:PhoneType”/>
<element name=”knows” type=”contacts:KnowsType”/>
<element name=”description” type=”contacts:DescriptionType”/>

</sequence>
<attribute name=”tags” type=”token”/>
<attribute name=”person” type=”ID”/>

</complexType>
</element>

</sequence>
<attributeGroup ref=”contacts:ContactAttributes”/>

</complexType>
</element>

<complexType name=”NameType”>
<group ref=”contacts:NameGroup”/>
<attribute name=”title” type=”string”/>

</complexType>

<group name=”NameGroup”>
<sequence>
<element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
<element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”last” type=”string”/>

</sequence>
</group>

<complexType name=”LocationType”>
<choice minOccurs=”0” maxOccurs=”unbounded”>
<element name=”address” type=”string”/>
<sequence>
<element name=”latitude” type=”float”/>
<element name=”longitude” type=”float”/>

</sequence>
</choice>

</complexType>

<complexType name=”PhoneType”>
<simpleContent>
<extension base=”string”>
<attribute name=”kind” type=”string” default=”Home” />

</extension>
</simpleContent>

</complexType>
<complexType name=”KnowsType”>
<attribute name=”contacts” type=”IDREFS”/>

</complexType>

<complexType name=”DescriptionType” mixed=”true”>
<choice minOccurs=”0” maxOccurs=”unbounded”>
<element name=”em” type=”string”/>
<element name=”strong” type=”string”/>
<element name=”br” type=”string”/>

</choice>
</complexType>

</schema>

190

Part II: Validation

2. Before you can schema validate your XML document, you must modify it so that it refers to
your new XML Schema. You should also add some attributes. Create a new document called
contacts9.xml. Copy the contents of the file contacts8.xml and change the
xsi:schemaLocation attribute. Add the highlighted attributes:

<?xml version=”1.0”?>
<contacts
xmlns=”http://www.example.com/contacts”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.example.com/contacts contacts9.xsd”
source=”Beginning XML 4E”
version=”1.0”>
<contact person=”Jeff_Rafter” tags=”author xml poetry”>
<name title=”Mr.”>
<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>

</name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>

</location>
<phone kind=”Home”>001-909-555-1212</phone>
<knows contacts=”David_Hunter Danny_Ayers”/>
<description>Jeff is a developer and author for Beginning XML 4th

edition.
Jeff loves XML!</description>
</contact>
<contact person=”David_Hunter” tags=”author consultant CGI”>
<name>
<first>David</first>
<last>Hunter</last>

</name>
<location>
<address>Address is not known</address>

</location>
<phone kind=”Work”>416 555 1212</phone>
<knows contacts=”Jeff_Rafter Danny_Ayers”/>
<description>Senior Technical Consultant for CGI.</description>

</contact>
<contact person=”Danny_Ayers” tags=”author semantics animals”>
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>

</name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>

</location>
<phone>+39-0555-11-22-33-</phone>
<knows contacts=”Jeff_Rafter David_Hunter”/>
<description>A Semantic Web developer and technical author specializing in

cutting-edge technologies.</description>
</contact>

</contacts>

191

Chapter 5: XML Schemas

3. You are ready to validate your XML instance document against your XML Schema. Open
contacts9.xml and click Validate in the Codeplot editor. This should validate with no warn-
ings and no errors, but if you do get a validation error, correct it and try validating again.

How It Works
As shown in the previous chapter, DTDs are not capable of advanced data typing. This Try It Out used
some of the XML Schema built-in datatypes. These datatypes enable you to exercise more control over
the textual content within your instance documents. Let’s look at some of the types in a little more detail.
You began by changing the type of your version attribute from string to decimal:

<attribute name=”version” type=”decimal” fixed=”1.0” />

This is a perfect fit because your version number must always be a valid decimal number. (If you ever
needed a complex version number such as 1.0.1, however, this datatype would be insufficient.) Next,
you added a tags attribute to the <complexType> declaration for the contact element:

<attribute name=”tags” type=”token”/>

You specified that the type should be token, which allows you to use a whitespace-separated list as the
value. You added a person attribute as well, specifying the type as ID:

<attribute name=”person” type=”ID”/>

To complement this attribute, you modified the KnowsType <complexType> declaration:

<complexType name=”KnowsType”>
<attribute name=”contacts” type=”IDREFS”/>

</complexType>

Here you used the built-in types ID and IDREFS. Remember that these types were added to XML
Schema for compatibility with DTDs and other XML tools. XML Schema actually allows you to build
complex keys and key-references using its own built-in mechanism. Unfortunately, until recently these
features were not widely supported, so it is usually better to use ID and IDREFS whenever possible. The
phone <element> declaration was modified to refer to a new global type PhoneType:

<element name=”phone” type=”contacts:PhoneType”/>

And the PhoneType was added to the XML Schema:

<complexType name=”PhoneType”>
<simpleContent>
<extension base=”string”>
<attribute name=”kind” type=”string” default=”Home” />

</extension>
</simpleContent>

</complexType>

The PhoneType <complexType> declaration allowed you to specify that the <phone> element could
contain simple string content as well as a kind attribute.

192

Part II: Validation

Instead of using the built-in string type for the latitude and longitude <element> declarations,
you modified these to use the built-in type float. The float type is similar to the decimal type in that
it allows you to have decimal numbers, but it offers even more control and compatibility. Because the
float type is based on existing standards, it is useful across various computer languages. For example,
some XML applications such as XQuery and XPath2 can natively understand floating-point arithmetic.

As the schema validator processes the document, not only is it checking whether the element content
models you have specified are correct, it is also checking whether the textual data you included in your
elements and attributes is valid based on the type you specified.

User-Defined Datatypes
Although the XML Schema Recommendation includes a wealth of built-in datatypes, it doesn’t include
everything. As you are developing your XML Schemas, you will run into many elements and attribute
values that require a type not defined in the XML Schema Recommendation. Consider the kind attribute
for the <phone> element. Because you restricted its value to the string type, it still accepts unwanted
values such as the following:

kind=”Walkie-Talkie”

According to the declaration for the kind attribute, the value Walkie-Talkie is valid. What you need is
to create a list of allowable values as you did in your DTD. No such built-in type exists within the XML
Schema Recommendation, so you must create a new type using a <simpleType> definition.

<simpleType> Declarations
When designing your XML Schemas, you may need to design your own datatypes. You can create cus-
tom user-defined datatypes using the <simpleType> definition:

<simpleType
name=”name of the simpleType”
final=”#all or list or union or restriction”>

When you declare a <simpleType>, you must always base your declaration on an existing datatype.
The existing datatype may be a built-in XML Schema datatype, or it may be another custom datatype.
Because you must derive every <simpleType> definition from another datatype, <simpleType> defini-
tions are often called derived types. There are three primary derived types:

❑ Restriction types

❑ List types

❑ Union types

This section describes the basics of <simpleType> declarations and user-defined types. In addition,
Appendix F covers datatypes in detail. If you are looking for an in-depth treatment of all of the features
and options, see Professional XML Schemas by Jon Duckett et al. (Wrox Press, 2001).

193

Chapter 5: XML Schemas

<restriction> Declarations
The most common <simpleType> derivation is the restriction type. Restriction types are declared using
the <restriction> declaration:

<restriction
base=”name of the simpleType you are deriving from”>

A derived type declared using the <restriction> declaration is a subset of its base type. Facets control
all simple types within XML Schemas. A facet is a single property or trait of a <simpleType>. For exam-
ple, the built-in numeric type nonNegativeInteger was created by deriving from the built-in Integer
type and setting the facet minInclusive to zero. This specifies that the minimum value allowed for the
type is zero. By constraining the facets of existing types, you can create your own more restrictive types.

There are 12 constraining facets, described in the following table:

Facet Description

minExclusive Allows you to specify the minimum value for your type that excludes the
value you specify

minInclusive Allows you to specify the minimum value for your type that includes the
value you specify

maxExclusive Allows you to specify the maximum value for your type that excludes the
value you specify

maxInclusive Allows you to specify the maximum value for your type that includes the
value you specify

totalDigits Allows you to specify the total number of digits in a numeric type

fractionDigits Allows you to specify the number of fractional digits in a numeric type
(e.g., the number of digits to the right of the decimal point)

length Allows you to specify the number of items in a list type or the number of
characters in a string type

minLength Allows you to specify the minimum number of items in a list type or the
minimum number of characters in a string type

maxLength Allows you to specify the maximum number of items in a list type or the
maximum number of characters in a string type

enumeration Allows you to specify an allowable value in an enumerated list

whiteSpace Allows you to specify how whitespace should be treated within the type

pattern Allows you to restrict string types using regular expressions

Not all types use every facet. In fact, most types can be constrained only by a couple of facets. For a com-
plete list of what constraining facets can be used when restricting the built-in XML Schema types, see
Appendix F.

194

Part II: Validation

Within a <restriction> declaration, you must specify the type you are restricting using the base
attribute. The value of the base attribute is a reference to a global <simpleType> definition or built-in
XML Schema datatype. As you have seen with all references in our XML Schema, the reference is a
namespace-qualified value and, therefore, may need to be prefixed.

Suppose you want to create a restriction type that uses enumeration facets to restrict the allowable val-
ues for the kind attribute in your <phone> element:

<attribute name=”kind”>
<simpleType>
<restriction base=”string”>
<enumeration value=”Home”/>
<enumeration value=”Work”/>
<enumeration value=”Cell”/>
<enumeration value=”Fax”/>

</restriction>
</simpleType>

</attribute>

This declaration contains a <restriction> declaration with the base type string. Within the restric-
tion are multiple enumeration facets to create a list of all of the allowable values for your type.

Try It Out Making Contact — Creating a Restriction Simple Type

As shown in the section “User-Defined Datatypes” earlier in the chapter, the kind attribute should be
more restrictive. Now that you know how to create your own <simpleType> definitions, in this Try It
Out you create a <restriction> type for the kind attribute:

1. Begin by making the necessary changes to your XML Schema. Create a new document called
contacts10.xsd. Copy the contents from the file contacts9.xsd and make the following
changes. You need to modify only the <attribute> declaration for the kind attribute. The rest
of the XML Schema remains the same:

<complexType name=”PhoneType”>
<simpleContent>
<extension base=”string”>
<attribute name=”kind” default=”Home”>
<simpleType>
<restriction base=”string”>
<enumeration value=”Home”/>
<enumeration value=”Work”/>
<enumeration value=”Cell”/>
<enumeration value=”Fax”/>

</restriction>
</simpleType>

</attribute>
</extension>

</simpleContent>
</complexType>

195

Chapter 5: XML Schemas

2. Before you can schema validate your XML document, you must modify it so that it refers to
your new XML Schema. Create a new document called contacts10.xml. Copy the contents of
the file contacts9.xml and change the xsi:schemaLocation attribute as follows:

xsi:schemaLocation=”http://www.example.com/contacts contacts10.xsd

3. You are ready to validate your XML instance document against your XML Schema. Open
contacts10.xml and click Validate in the Codeplot editor. This should validate without
warnings or errors. If you do get a validation error, correct it and try validating again.

How It Works
In this Try It Out, you modified the kind attribute declaration. You created a local <simpleType> defini-
tion that is a restriction derived from the built-in type string. This allowed you to limit which string
values could be used within the kind attribute in your instance document. Each possible string was
defined with a separate <enumeration> facet:

<attribute name=”kind” default=”Home”>
<simpleType>
<restriction base=”string”>
<enumeration value=”Home”/>
<enumeration value=”Work”/>
<enumeration value=”Cell”/>
<enumeration value=”Fax”/>

</restriction>
</simpleType>

</attribute>

Because you changed your attribute’s type to a local <simpleType>, you had to remove the original
type by removing the type attribute.

<list> Declarations
You’ll often need to create a list of items. Using a <list> declaration, you can base your list items on a
specific <simpleType>:

<list
itemType=”name of simpleType used for validating items in the list”>

When creating your <list> declaration, you could specify the type of items in your list by including the
itemType attribute. The value of the itemType attribute should be a reference to a global <simpleType>
definition or built-in XML Schema datatype. The reference is a namespace-qualified value, so it may
need to be prefixed. The <list> declaration also allows you to specify your itemType by creating a
local <simpleType> definition.

When choosing the itemType, remember that you are creating a whitespace-separated list, so your items
cannot contain whitespace. Therefore, types that include whitespace cannot be used as itemTypes. A side
effect of this limitation is that you cannot create a list whose itemType is itself a list.

Suppose you created a global <simpleType> called ContactTagsType whereby you enumerated all of
the allowable tags for a contact:

196

Part II: Validation

<simpleType name=”ContactTagsType”>
<restriction base=”string”>
<enumeration value=”author”/>
<enumeration value=”xml”/>
<enumeration value=”poetry”/>
<enumeration value=”consultant”/>
<enumeration value=”CGI”/>
<enumeration value=”semantics”/>
<enumeration value=”animals”/>

</restriction>
</simpleType>

This simple type only allows for one of the enumerated values to be used. If you want to allow for multi-
ple items, you could make a type called ContactTagsListType, which allows for a list of tags using the
<list> declaration:

<simpleType name=”ContactTagsListType”>
<list itemType=”contacts:ContactTagsType”/>

</simpleType>

If you use this within your contacts XML Schema, it would allow you to specify multiple tags within
your instance document but still require that they adhere to the enumerations you provide. Of course,
you would probably want to expand your list of possible tags to include all kinds of values, but for now
this ensures that each tag is validated.

<union> Declarations
Finally, when creating your derived types, you may need to combine two or more types. By declaring a
<union>, you can validate the values in your instance document against multiple types at once:

<union
memberTypes=”whitespace separated list of types”>

When creating a <union> declaration, you specify the types you are combining by including the
memberTypes attribute. The value of the memberTypes attribute should be a whitespace-separated list
of references to global <simpleType> definitions or built-in XML Schema datatypes. Again, these refer-
ences are namespace-qualified values, so they may need to be prefixed. The <union> declaration also
allows you to specify your memberTypes by creating local <simpleType> definitions.

Suppose that you wanted to allow the value Unknown in the <latitude> and <longitude> elements.
To do this you could use a union of the built-in float type and a custom type that allows only the string
Unknown, as shown in the following example:

<simpleType name=”UnknownString”>
<restriction base=”string”>
<enumeration value=”Unknown”/>

</restriction>
</simpleType>

<simpleType name=”UnknownOrFloatType”>
<union memberTypes=”float contacts:UnknownString”/>

</simpleType>

197

Chapter 5: XML Schemas

In this declaration, you have created the custom UnknownString type and a union of the two simple
types float and UnknownString. Note that when you refer to the names of the <simpleType> defini-
tions, you must make sure they are qualified with a namespace. In this case, the reference to float has
no prefix because the default namespace for this document is the XML Schema namespace. The prefix
contacts is used when referring to the type UnknownString, however, because it was declared in the
target namespace. By referring to your newly created type, you can specify that your <latitude> and
<longitude> elements must contain either float values or the string Unknown:

<element name=”latitude” type=”contacts:UnknownStringOrFloatType”/>
<element name=”longitude” type=”contacts:UnknownStringOrFloatType”/>

Some valid elements include the following:

<latitude>43.847156</latitude>
<longitude>Unknown</longitude>

Some invalid elements include these:

<latitude>unknown</latitude>
<longitude>43.847156 Unknown</longitude>

The first two elements both contain valid values. The third element is invalid because the value unknown
is not listed in either of the unioned types — the values are case sensitive. The fourth element is invalid
because the schema validator treats this as a single value. Although Unknown and 43.847156 are allow-
able by themselves, the value 43.847156 Unknown is not listed in either of the unioned types.

Try It Out Making Contact — More Simple Types

In this Try It Out, you add some new types to your contacts listing:

1. Begin by making the necessary changes to your XML Schema. Create a new document called
contacts11.xsd. Copy the contents of the file contacts10.xsd and make the following
changes (you first need to add the new <simpleType> declarations):

<simpleType name=”ContactTagsType”>
<restriction base=”string”>
<enumeration value=”author”/>
<enumeration value=”xml”/>
<enumeration value=”poetry”/>
<enumeration value=”consultant”/>
<enumeration value=”CGI”/>
<enumeration value=”semantics”/>
<enumeration value=”animals”/>

</restriction>
</simpleType>

<simpleType name=”ContactTagsListType”>
<list itemType=”contacts:ContactTagsType”/>

</simpleType>

<simpleType name=”UnknownString”>
<restriction base=”string”>

198

Part II: Validation

<enumeration value=”Unknown”/>
</restriction>

</simpleType>

<simpleType name=”UnknownStringOrFloatType”>
<union memberTypes=”float contacts:UnknownString”/>

</simpleType>

2. Modify the <latitude> and <longitude> element declarations. The rest of the XML Schema
remains the same:

<element name=”latitude” type=”contacts:UnknownStringOrFloatType”/>
<element name=”longitude” type=”contacts:UnknownStringOrFloatType”/>

3. Before you can schema validate your XML document, you must modify it so that it refers to
your new XML Schema. Create a new document called contacts11.xml. Copy the contents of
the file contacts10.xml and change the xsi:schemaLocation attribute as follows:

xsi:schemaLocation=”http://www.example.com/contacts contacts11.xsd”

4. You should also update the latitude and longitude for David Hunter using the newly created
Unknown string:

<contact person=”David_Hunter” tags=”author consultant CGI”>
<name>
<first>David</first>
<last>Hunter</last>

</name>
<location>
<address>Address is not known</address>
<latitude>Unknown</latitude>
<longitude>Unknown</longitude>

</location>
<phone kind=”Work”>416 555 1212</phone>
<knows contacts=”Jeff_Rafter Danny_Ayers”/>
<description>Senior Technical Consultant for CGI.</description>

</contact>

5. You are ready to validate your XML instance document against your XML Schema. Open
contacts11.xml and click the Validate button in the Codeplot editor. This should validate
with no warnings or errors. If you do get a validation error, then correct it and try validating
again.

How It Works
This Try It Out added some more complex <simpleType> declarations to your schema. You first created
a new type that enables you to control which tags can be used for each contact. Then you created two
global <simpleType> declarations that enabled you to utilize floating-point numbers or use the string
“Unknown.” You then modified the <latitude> and <longitude> element declarations to use your
new types.

199

Chapter 5: XML Schemas

Creating a Schema from

Multiple Documents
So far, the XML Schemas in this chapter have used a single schema document to keep things simple. The
XML Schema Recommendation introduces mechanisms for combining XML Schemas and reusing defini-
tions. As mentioned in Chapter 4, reusing existing definitions is good practice — it saves you time when
creating the documents and increases your document’s interoperability.

The XML Schema Recommendation provides two primary declarations for use with multiple XML
Schema documents:

❑ <import>

❑ <include>

<import> Declarations
The <import> declaration, as the name implies, allows you to import global declarations from other
XML Schemas. The <import> declaration is used primarily for combining XML Schemas that have dif-
ferent targetNamespaces. By importing the declarations, the two XML Schemas can be used in con-
junction within an instance document. Note that the <import> declaration allows you to refer to
declarations only within other XML Schemas. The next section covers the <include> declaration, which
includes the declarations directly into the XML Schema as if they had been declared. The <include> dec-
laration can be used only for XML Schemas with the same targetNamespace:

<import
namespace=””
schemaLocation=””>

The <import> declaration is always declared globally within an XML Schema (it must be a direct child
of the <schema> element). This means that the <import> declaration applies to the entire XML Schema.
When importing declarations from other namespaces, the schema validator attempts to look up the doc-
ument based on the schemaLocation attribute specified within the corresponding <import> declara-
tion. Of course, as shown earlier, the schemaLocation attribute serves only as a hint to the processor.
The processor may elect to use another copy of the XML Schema. If the schema validator cannot locate
the XML Schema for any reason, it may raise an error or proceed with lax validation.

To get a better idea of how this works, you need a sample XML Schema that uses the <import> declara-
tion. Let’s combine the examples that you have been working with throughout this chapter. Within the
XML Schema for your contacts listing, you will import the declarations from your <name> vocabulary.
You will use the imported <name> declarations in place of the existing declarations. Though it means
you need to remove some declarations in this case, it is better to reuse XML Schemas whenever possible.

Try It Out Making Contact — Importing XML Schema Declarations

This example modifies your contact listing to introduce an <import> declaration. You import the name
vocabulary that you developed earlier in the chapter. You need to remove some existing declarations
and modify your instance document to reflect the changes in your XML Schemas:

200

Part II: Validation

1. Begin by modifying your contacts vocabulary. You need to import the name vocabulary and use
the imported types. Create a new document called contacts12.xsd. Copy the contents of the
file contacts11.xsd and make the following changes:

<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:contacts=”http://www.example.com/contacts”
xmlns:name=”http://www.example.com/name”
targetNamespace=”http://www.example.com/contacts”
elementFormDefault=”qualified”>

<import namespace=”http://www.example.com/name” schemaLocation=”name8.xsd”/>

2. You also need to modify the declaration of the <contact> element to refer to the global <name>
element declared in name8.xsd:

<element name=”contacts”>
<complexType>
<sequence>
<element name=”contact” minOccurs=”0” maxOccurs=”unbounded”>
<complexType>
<sequence>
<element ref=”name:name”/>
<element name=”location” type=”contacts:LocationType”/>
<element name=”phone” type=”contacts:PhoneType”/>
<element name=”knows” type=”contacts:KnowsType”/>
<element name=”description” type=”contacts:DescriptionType”/>

</sequence>
<attribute name=”person” type=”ID”/>
<attribute name=”tags” type=”token”/>

</complexType>
</element>

</sequence>
<attributeGroup ref=”contacts:ContactAttributes”/>

</complexType>
</element>

3. Remove the NameType <complexType> declaration and the NameGroup <group> declaration
from your schema.

4. Now that you have modified your XML Schema document, you can create an instance docu-
ment that reflects the changes. This document is very similar to the contacts11.xml docu-
ment. Only the <name> elements will change. Create a new document called contacts12.xml.
Copy the contents of the file contacts11.xml and make the following changes:

<?xml version=”1.0”?>
<contacts
xmlns=”http://www.example.com/contacts”
xmlns:name=”http://www.example.com/name”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.example.com/contacts contacts12.xsd”
source=”Beginning XML 4E”
version=”1.0”>
<contact person=”Jeff_Rafter” tags=”author xml poetry”>

201

Chapter 5: XML Schemas

<name:name title=”Mr.”>
<name:first>Jeff</name:first>
<name:first>Craig</name:first>
<name:last>Rafter</name:last>

</name:name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>

</location>
<phone kind=”Home”>001-909-555-1212</phone>
<knows contacts=”David_Hunter Danny_Ayers”/>
<description>Jeff is a developer and author for Beginning XML 4th

edition.
Jeff loves XML!</description>
</contact>
<contact person=”David_Hunter” tags=”author consultant CGI”>
<name:name>
<name:first>David</name:first>
<name:last>Hunter</name:last>

</name:name>
<location>
<address>Address is not known</address>
<latitude>Unknown</latitude>
<longitude>Unknown</longitude>

</location>
<phone kind=”Work”>416 555 1212</phone>
<knows contacts=”Jeff_Rafter Danny_Ayers”/>
<description>Senior Technical Consultant for CGI.</description>

</contact>
<contact person=”Danny_Ayers” tags=”author semantics animals”>
<name:name>
<name:first>Daniel</name:first>
<name:middle>John</name:middle>
<name:last>Ayers</name:last>

</name:name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>

</location>
<phone>+39-0555-11-22-33-</phone>
<knows contacts=”Jeff_Rafter David_Hunter”/>
<description>A Semantic Web developer and technical author specializing in

cutting-edge technologies.</description>
</contact>

</contacts>

5. You are ready to validate your XML instance document against your XML Schema. Open
contacts12.xml and click Validate in the Codeplot editor. As before, this should validate
with no warnings and no errors. If not, then correct any errors and try validating again.

202

Part II: Validation

How It Works
In this Try It Out, you imported one XML Schema into another. You used the <import> declaration
because the two XML Schemas were designed for different targetNamespaces. Within your first XML
Schema, you had already declared a single global element that could be used to describe names. In your
second XML Schema, you were forced to do some more work:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:contacts=”http://www.example.com/contacts”
xmlns:name=”http://www.example.com/name”
targetNamespace=”http://www.example.com/contacts”
elementFormDefault=”qualified”>

The first addition you had to make was an XML namespace declaration in the root element. You added
a namespace declaration for the namespace http://www.example.com/name. You needed to add this

declaration so that you could refer to items declared within the namespace later in your XML Schema.

Next, you added an <import> declaration:

<import namespace=”http://www.example.com/name”
schemaLocation=”name8.xsd”/>

This <import> declaration is straightforward. You are importing the declarations from the http://www
.example.com/name namespace, which is located in the file name8.xsd. This declaration enables you
to reuse the declarations from your name8.xsd XML Schema within your contacts12.xsd XML
Schema. (If you are using another schema validator, you should check the documentation for special
rules when referring to external files. For example, the Xerces parser handles relative URL references dif-
ferently in older versions.)

Finally, you modified the name element declaration within your <contact> declaration:

<element ref=”name:name” />

Notice that you use the namespace prefix declared within the root element when referring to the name
element declaration from your name8.xsd file. Instead of using an element reference, you could have
referred to the global type NameType.

Once you made these changes, you had to create a new, compliant instance document. The major differ-
ence (apart from the namespace declaration in the root element) was the modified content of your
<contact> elements:

<contact person=”Jeff_Rafter” tags=”author xml poetry”>
<name:name title=”Mr.”>
<name:first>Jeff</name:first>
<name:first>Craig</name:first>
<name:last>Rafter</name:last>

</name:name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>

203

Chapter 5: XML Schemas

<longitude>-117.207642</longitude>
</location>
<phone kind=”Home”>001-909-555-1212</phone>
<knows contacts=”David_Hunter Danny_Ayers”/>
<description>Jeff is a developer and author for Beginning XML 4th

edition.
Jeff loves XML!</description>
</contact>

This might seem a little more confusing than you would expect. Because you declared that the
elementFormDefault of both XML Schemas was qualified, you are required to qualify all your
elements with namespace prefixes (or a default namespace declaration).

In your instance document you were already using the default namespace to refer to elements from the
namespace http://www.example.com/contacts. Therefore, you had to use a namespace prefix, in
this case name, when referring to the elements from the namespace http://www.example.com/name.
The <first>, <middle>, and <last> elements are all declared within the http://www.example
.com/name namespace; therefore, you must qualify them with the name prefix you declared in the root
element of your instance document.

The title attribute doesn’t need to be qualified, because you didn’t modify the attribute
FormDefault within your XML Schemas — so it uses the default value unqualified.

<include> Declarations
The <include> declaration is very similar to the <import> declaration. Unlike the <import> declara-
tion, however, the <include> declaration allows you to combine XML Schemas that are designed for the
same targetNamespace (or no targetNamespace) much more effectively. When a schema validator
encounters an <include> declaration, it treats the global declarations from the included XML Schema as
if they had been declared in the XML Schema that contains the <include> declaration. This subtle dis-
tinction makes quite a difference when you are using many modules to define a single vocabulary.

<include
schemaLocation=””>

Notice that within the <include> declaration there is no namespace attribute. Again, unlike the
<import> declaration, the <include> declaration can be used only on documents with the same
targetNamespace, or no targetNamespace. Because of this, a namespace attribute would be redun-
dant. Just as you saw before, the schemaLocation attribute allows you to specify the location of the
XML Schema you are including. The schemaLocation value functions as a validator hint. If the schema
validator cannot locate a copy of the XML Schema for any reason, then it may raise an error or proceed
with lax validation.

To demonstrate the <include> declaration, you need an example that utilizes two XML Schema docu-
ments with the same targetNamespace. To do this, you can break your contacts XML Schema into two
parts — moving the type declarations for the ContactTagsType to a new XML Schema that can be
included in your main document.

204

Part II: Validation

Try It Out Making Contact — Including XML Schema Declarations

This Try It Out divides your XML Schema into two parts and includes one in the other. This is known as
dividing an XML Schema into modules — separate files that make up the overall XML Schema:

1. Create a new XML Schema called contact_tags.xsd that declares all of the allowable tags
in your contact listing. To create the declarations, you can simply copy the declarations from
contacts12.xsd:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:contacts=”http://www.example.com/contacts”
targetNamespace=”http://www.example.com/contacts”
elementFormDefault=”qualified”>
<simpleType name=”ContactTagsType”>
<restriction base=”string”>
<enumeration value=”author”/>
<enumeration value=”xml”/>
<enumeration value=”poetry”/>
<enumeration value=”consultant”/>
<enumeration value=”CGI”/>
<enumeration value=”semantics”/>
<enumeration value=”animals”/>

</restriction>
</simpleType>

</schema>

2. Now that you have created the contact_tags.xsd XML Schema, create a new document
called contacts13.xsd. Copy the contents of the file contacts12.xsd. You need to insert an
<include> declaration, and be sure to remove the ContactTagsType declaration:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:contacts=”http://www.example.com/contacts”
xmlns:name=”http://www.example.com/name”
targetNamespace=”http://www.example.com/contacts”
elementFormDefault=”qualified”>

<include schemaLocation=”contact_tags.xsd”/>

<import namespace=”http://www.example.com/name” schemaLocation=”name8.xsd”/>

3. For clarity, insert a comment in your XML Schema where the ContactTagsType used to be:

<!-- ContactTagsType moved to contact_tags.xsd -->

4. Before you can schema validate your instance document, you must modify it so that it refers to
your new XML Schema. Create a new document called contacts13.xml. Copy the contents of
the file contacts12.xml and change the xsi:schemaLocation attribute as follows:

xsi:schemaLocation=”http://www.example.com/contacts contacts13.xsd”

5. You are ready to validate your XML instance document against your XML Schema. Open
contacts13.xml and click Validate in the Codeplot editor. This should validate with no
warnings or errors. If not, correct any errors and try validating again.

205

Chapter 5: XML Schemas

How It Works
Dividing complex XML Schemas into modules can be an excellent design technique. In this Try It Out,
you divided your contacts vocabulary into two modules. You declared these modules in separate XML
Schema documents, each with http://www.example.com/contacts as the targetNamespace.
Because the two documents utilized the same targetNamespace, you simply used an <include> decla-
ration to combine them.

<include schemaLocation=”contact_tags.xsd” />

As the schema validator processes contacts13.xsd, it includes the declarations from contact_tags
.xsd with the declarations for contacts13.xsd as if they had been declared in one document.
Therefore, you were able to use all of the types as if they were declared within contacts13.xsd.
Because you
didn’t introduce any namespace complexities, there was no need to change the instance document to
support the new modular design.

What happens when the XML Schema you are including has no targetNamespace? Declarations
within XML Schemas that have no targetNamespace are treated differently. These declarations are
known as Chameleon components. Chameleon components take on the targetNamespace of the XML
Schema that includes them. Therefore, even though they were declared with no targetNamespace,
when they are included they take the targetNamespace of the XML Schema that is including them.

Documenting XML Schemas
Throughout your programming career, and even in this book, you have heard that documenting your
code is one of the best habits you can develop. The XML Schema Recommendation provides several
mechanisms for documenting your code:

❑ Comments

❑ Attributes from other namespaces

❑ Annotations

Comments
In Chapter 2, you learned that XML allows you to introduce comments in your XML documents.
Because the XML Schema is an XML document, you can freely intersperse XML comments throughout
the declarations, as long as you follow the rules for XML well-formedness:

<!-- This complexType allows you to describe a person’s name broken down
by first, middle and last parts of the name. You can also specify a
greeting by including the title attribute. -->

<complexType name=”NameType”>
<!-- The NameGroup is a global group defined in this XML Schema. -->
<group ref=”target:NameGroup”/>
<attribute name=”title” type=”string”/>

</complexType>

206

Part II: Validation

The preceding XML Schema fragment includes two comments. The first comment simply introduces the
complex type and when it should be used. If someone were reading this XML Schema, this would surely
give the user some guidance when creating his or her instance documents. The second comment informs
the user that the referenced group is declared in this XML Schema.

While these comments are useful for someone reading this XML Schema, many processors will not
report XML comments. Therefore, the document must be read by a human for the comments to be useful
in all cases.

Attributes from Other Namespaces
The XML Schema Recommendation provides a second mechanism for documenting your XML Schemas.
All of the elements defined within the XML Schema vocabulary allow you to include any attribute from
another namespace. You can use the alternative attributes to introduce descriptive data that is included
with your element.

Suppose you declared an attribute for comments within the namespace http://www.example.com/
documentation. You could use this attribute throughout your XML Schema to include comments that
are embedded within your elements:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:target=”http://www.example.com/name”
xmlns:doc=”http://www.w3.org/documentation”
targetNamespace=”http://www.example.com/name”
elementFormDefault=”qualified”>
<group name=”NameGroup”>

<sequence>
<element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
<element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”last” type=”string”/>

</sequence>
</group>
<complexType name=”NameType” doc:comments=”This complexType allows you to
describe a person’s name broken down by first, middle and last parts of the
name. You can also specify a greeting by including the title attribute.”>
<group ref=”target:NameGroup” doc:comments=”The NameGroup is a global
group defined in this XML Schema.”/>

<attribute name=”title” type=”string”/>
</complexType>
<element name=”name” type=”target:NameType”/>

</schema>

In this example, there is a namespace declaration for a fictitious vocabulary for documentation. Suppose
that your fictitious namespace contained a declaration for the comments attribute. Throughout the XML
Schema document, you could include descriptions of the items you were declaring by including the
comments attribute from the documentation vocabulary.

As a schema validator processes the document, it ignores all of the comments attributes because they are
declared in another namespace. The attributes can still be used to pass information on to other applica-
tions. In addition, the comments provide extra information for those reading your XML Schema.

207

Chapter 5: XML Schemas

Annotations
The primary documenting features introduced in the XML Schema Recommendation are called annota-
tions. Annotations enable you to provide documentation information, as well as additional application
information:

<annotation
id=”unique identifier”>

The <annotation> declaration can appear as a child of most XML Schema declarations. The
<annotation> declaration allows you to add two forms of information to your declarations:

❑ Application information

❑ Documentation information

Each <annotation> declaration may contain the elements <appinfo> and <documentation>. These
elements may contain any XML content from any namespace. Each of these elements may also contain a
source attribute. The source attribute is used to refer to an external file that may be used for applica-
tion information or documentation information. Typically, <appinfo> declarations are used to pass
information such as example files, associated images, or additional information for validation.
Annotations usually include <documentation> declarations to describe the features, or uses, of a partic-
ular declaration within the XML Schema.

Consider the following example:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:target=”http://www.example.com/name”
xmlns:doc=”http://www.w3.org/documentation”
targetNamespace=”http://www.example.com/name”
elementFormDefault=”qualified”>
<annotation>
<appinfo source=”name8.xml”/>
<documentation xmlns:html=”http://www.w3.org/1999/xhtml”>
<html:p>
The name vocabulary was created for a Chapter 2 sample. We have
upgraded it to an <html:strong>XML Schema</html:strong>. The
appinfo of this <html:pre><annotation></html:pre> element
points to a sample XML file. The sample should be used <html:em>
only as an example</html:em>.

</html:p>
</documentation>

</annotation>

<group name=”NameGroup”>
<sequence>
<element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
<element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
<element name=”last” type=”string”/>

</sequence>
</group>
<complexType name=”NameType” doc:comments=”This complexType allows you to

208

Part II: Validation

describe a person’s name broken down by first, middle and last parts of the
name. You can also specify a greeting by including the title attribute.”>
<group ref=”target:NameGroup” doc:comments=”The NameGroup is a global group

defined in this XML Schema.”/>
<attribute name=”title” type=”string”/>

</complexType>
<element name=”name” type=”target:NameType”>
<annotation>
<documentation source=”name.html”/>

</annotation>
</element>

</schema>

This example XML Schema contains two <annotation> declarations. The first <annotation> declara-
tion is contained within the <schema> element. It is used to add information that is applicable to the
entire XML Schema document.

Within the first <annotation> declaration are both the <appinfo> and <documentation> elements.
We didn’t include any content within our <appinfo> element. Instead, we included a source attribute
that pointed to an example XML instance document. Of course, schema validators must be programmed
to utilize the <appinfo> declaration. Many programs define different behavior for the <appinfo> dec-
laration. Often, the <appinfo> declaration contains additional validation information, such as other
schema languages.

Schematron is another language for defining your vocabulary. Schematron definitions, because they offer
additional features, are often embedded directly within the <appinfo> declaration. Several processors
that can use Schematron in conjunction with XML Schemas have been written. The Topologi Schematron
Validator that we have been using throughout our examples is written specifically for this purpose. It is
covered in detail within Professional XML Schemas by Jon Duckett et al. (Wrox Press, 2001).

The <documentation> declaration within our first annotation contains an HTML fragment that could
be used when generating a user’s manual for our XML Schema. Our second annotation included only a
<documentation> declaration. Unlike the first <documentation> declaration, the second declaration
was empty and instead used the source attribute to refer to an external file called name.html.

Summary
In this chapter, you learned how to create XML Schemas that can be used to schema validate your XML
documents. You again started with the simple name examples and then progressed to the more complex
contact examples. Highlights of this chapter included the following:

❑ The advantages of XML Schemas over Document Type Definitions

❑ How to associate an XML Schema with an XML document

❑ How to declare element and attribute types

❑ How to declare groups and attribute groups

❑ How to specify allowable XML content using simple types and complex types

209

Chapter 5: XML Schemas

❑ How to create an XML Schema using multiple documents and namespaces

❑ How to document your XML Schema

While we have not discussed all of the options available within XML Schemas, we have established a
foundation upon which you can build many XML Schemas.

Now that you understand the basics of XML Schemas, you are ready to create your own vocabularies.
Even with the basics, however, you have many styles and options when designing your XML Schemas.
Roger Costello, with the help of many volunteers, has created an XML Schemas Best Practices docu-
ment that gives advice on what the best choice or style is for many different situations. See
www.xfront.com/BestPracticesHomepage.html.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
Add a gender attribute declaration for the <contact> elements. The attribute should allow two possi-
ble values: male and female. Make sure the attribute is required.

Question 2
Currently, each contact can have only one phone number. Modify the contact declaration so that each
contact can have zero or more phone numbers, and add declarations for website and email elements.

Question 3
Modify the <description> declaration to include an element wildcard. Within the wildcard, specify
that the description element can accept any elements from the namespace http://www.w3.org/
1999/xhtml. Set the processContents attribute to lax.

210

Part II: Validation

6
RELAX NG

RELAX NG is a very powerful, yet easy to understand schema technology that can be used to vali-
date XML instance documents. Like W3C XML Schemas, covered in the previous chapter, RELAX
NG is grammar-based. It is possible for many XML instance documents to be valid according to a
single RELAX NG schema document. Alternatively, it is possible for a single XML instance docu-
ment to be valid with respect to multiple RELAX NG schema documents.

Here are some of the key features of RELAX NG:

❑ It’s simple and easy to learn.

❑ It uses pattern-based grammar with a strong mathematical foundation.

❑ It has two different syntaxes: XML syntax and compact syntax.

❑ It supports XML Schema datatypes.

❑ It supports user-defined datatypes.

❑ It supports XML namespaces.

❑ It’s highly composable.

❑ Elements and attributes are treated the same.

RELAX NG is a normalized grammar based on James Clark’s Tree Regular Expression for XML
(TREX), and Makoto Murata’s Regular Language description for XML (RELAX). Because RELAX
NG was created after DTDs and XML Schemas, the authors were able to address many of the
problems in the earlier schema languages. They were able to remove the complexity associated
with W3C XML Schemas while embracing some of its features. Additionally, the authors based
RELAX NG on strong mathematical models. Having such models simplifies validator develop-
ment and enables schema authors to make mathematical assertions about their schemas. XML
Schema is the most widely supported validation technology, but RELAX NG is considered to be
the simplest technology, and it is often favored when support is available. RELAX NG takes a dif-
ferent approach to validating XML documents, when compared to XML Schemas. RELAX NG
schemas are based on patterns, whereas XML Schemas are based on types. In fact, the power of
RELAX NG centers on its use of patterns. RELAX NG schemas can use pattern composition and
named patterns to create reusable sections of schema documents.

Though RELAX NG does not have the type hierarchy of XML Schemas and does not support type inher-
itance, datatyping is supported. RELAX NG supports the datatypes provided by the W3C XML Schema
Part II, Datatypes Recommendation. For example, RELAX NG schemas have full use of XML Schema
datatypes, such as xs:int, xs:double, and xs:decimal, as well as the XML Schema facets previously
discussed. In fact, RELAX NG was designed with pluggable datatypes in mind. That is, users can invent
their own type system, and RELAX NG schemas can be built using user-defined types, instead of, or in
addition to, using the XML Schema datatypes.

In this chapter, you will learn the following:

❑ RELAX NG syntaxes

❑ RELAX NG patterns, which are the building blocks of RELAX NG schemas

❑ Composing and combining patterns into higher-level components for reuse, as well as full
schema grammars

❑ The remaining features of RELAX NG, including namespaces, name-classes, datatyping, and
common design patterns

XML and Compact Syntaxes
In the last chapter, you learned that XML Schemas use an XML syntax. Because the syntax is entirely in
XML, you can use generic XML tools — even those that have no understanding of the rules specific to
XML Schema documents. RELAX NG also uses XML syntax, enabling you to work with schemas using
eXtensible Stylesheet Language Transformations (XSLT) or other XML tools.

As shown in the last chapter, XML Schemas can be very long. In some cases, the DTDs for your docu-
ments were much simpler to read than the corresponding XML Schemas. Because of this, RELAX NG
allows you to construct schemas using a compact syntax. The RELAX NG compact (RNC) syntax is,
well, compact, and tailored for users who are creating and modifying RELAX NG schemas.

Most RELAX NG validators today need the XML syntax in order to validate the document, but some are
becoming available that can validate directly using documents written in the compact syntax.

Running the Samples
Because the examples use the compact syntax, you need an editor and validator that support the
compact syntax. A full list of RELAX NG tools can be found on the RELAX NG website at www
.relaxng.org. As in the previous two chapters, you can use any validator or editor you like. The

Trang is a Java program that can convert the compact syntax to the XML syntax and
back. Trang can also convert RELAX NG schemas into DTDs or XML Schemas.
Because the compact syntax of RELAX NG is easier for humans to read and write,
you’ll use that syntax in this book to describe RELAX NG. Every compact syntax
schema shown can be converted to the XML syntax using Trang. Trang can be down-
loaded from http://thaiopensource.com/relaxng/trang.html.

212

Part II: Validation

examples use the Codeplot editor (http://codeplot.com). In addition to XML Schemas and DTDs, the
Codeplot editor supports both the RELAX NG XML syntax and the compact syntax. It also enables you
to specify which RELAX NG schemas should be used for validation by allowing you to add validation
resources to your XML document.

RELAX NG Patterns
RELAX NG schemas are made up of patterns. Within a RELAX NG schema, you can describe patterns of
XML elements and attributes, including sequences and choices. As you will see, patterns of simple data
enumerations can also be described. Patterns can be nested, enabling the schema author to describe the
entire XML structure from top to bottom starting from a single top-level pattern. This section covers pat-
terns that are common to all RELAX NG schemas. In the next section, you’ll see how patterns can be
given names and be reused.

Element, Attribute, and Text Patterns
You can use many different kinds of patterns, and patterns can be combined in various ways. The most
basic patterns in RELAX NG are the element, attribute and text patterns:

Pattern Name Pattern

element pattern element name {pattern}

attribute pattern attribute name {pattern}

text pattern text

Note that patterns are recursive in nature. That is, the element and attribute patterns are defined by plac-
ing another pattern inside the curly braces ({) and (}). This recursive ability is very powerful, although it
takes some getting used to.

The patterns listed here show three RELAX NG (compact syntax) keywords: element, attribute, and
text. The element and attribute patterns are followed by a name. For now, you can think of this as
simply being the element or attribute name. In fact, though, it is a name class. Name classes are a nice
feature of RELAX NG described later in this chapter.

Try It Out What’s in a Name?

Let’s take a look at a simple XML instance document and work our way into a RELAX NG schema. We’ll
continue to use the name vocabulary from Chapters 4 and 5 so that you can quickly compare RELAX
NG schemas with XML Schemas and DTDs.

1. Begin by creating the XML document. In the Codeplot editor, create a new document called
name9.xml. Copy the following and when you are finished save the file:

213

Chapter 6: Relax NG

<?xml version=”1.0”?>
<name title=”Mr.”>

<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

Notice that there is no reference to a RELAX NG document in the XML. Unlike DTD or XML Schema,
RELAX NG does not define a technique for an XML instance document to reference the schema docu-
ment. It is up to the user (via editing tools, command-line arguments, or processing code) to select the
schema at runtime. A conscious decision was made by the RELAX NG committee to not provide such a
mechanism. One reason is security issues. In addition, it is entirely possible that a particular instance
document may need to be validated against different schemas, at different times, for different reasons.

2. Create the RELAX NG schema. As mentioned previously, these examples use the compact syn-
tax. In the Codeplot editor, create a new document called name9.rnc. Copy the following;
when you are finished, save the file:

element name {
attribute title { text },
element first { text },
element middle { text },
element last { text }

}

3. You are ready to validate the XML instance document against the RELAX NG schema. Codeplot
allows you to add name9.rnc as a validation resource to name9.xml. Simply open name9.xml
and click the Resources button. You will see the resource listing for name9.xml. Click New to
add a new resource. You can give the resource a title such as “RELAX NG.” Choose the RELAX
NG Compact Syntax option as the resource kind and Validation for the purpose. The path of the
resource is name9.rnc (see Figure 6-1).

4. When you have entered the resource information, click Save. In the resource listing, click the
Document button to return to name9.xml. Click Validate to validate the XML document using
the associated name9.rnc resource (see Figure 6-2).

The validation should have completed with no errors and with name9.rnc read. If the output
suggests that the validation completed but there was an error in the document, correct the error
and try again.

5. To see what happens when an error occurs, simply modify your name9.xml document and try
validating again.

214

Part II: Validation

Figure 6-1

Figure 6-2

215

Chapter 6: Relax NG

How It Works
In this Try It Out, you created a RELAX NG schema for your name vocabulary. Note that it is not XML
syntax; it is a compact syntax. This small snippet is a complete RELAX NG schema. A name element
must contain a title attribute, and must have one first element, followed by one middle element,
and one last element. The first, middle, and last elements can contain text.

Unlike in earlier examples, you had to specify which schema to use for validation in the editor instead of
the in XML document. Once selected, the validator began reading the XML document and checking its
contents against specified schema. In this schema, there isn’t any real difference between how you
declare the title attribute and the other elements. In general, RELAX NG treats patterns equally.

Elements and Attributes
Although RELAX NG treats elements and attributes as equals, there are a few differences between ele-
ment and attribute patterns. One difference is that the order of the attribute patterns does not matter. As
in XML, attributes can appear in any order. This means that the following RNC schema, with the title
attribute at the end, is identical to the previous example:

element name {
element first { text },
element middle { text },
element last { text },
attribute title { text }

}

However, if you switched the first and last element patterns, the schema would be different because
element order is significant in a sequence.

Another difference is that the elements and attributes may contain different patterns. For example, an
element pattern may contain text patterns, attribute patterns, or other element patterns. An attribute pat-
tern cannot contain other attributes and cannot contain elements.

The concept of “similar syntax” for elements and attributes is very nice in that you don’t need to carry
around the “heavier syntax” used in XML Schemas. Namely, in RNC, there is no need to specify
<simpleType> declarations or <complexType> declarations, <group> declarations versus
<attributeGroup> declarations, or any other special-case syntax needed in XML Schemas or DTDs
for declaring attributes versus elements.

Cardinality
Within RELAX NG, you can control how many times a pattern must occur, or the pattern’s cardinality. By
specifying a pattern’s cardinality, you can make it optional, required, or repeatable. If not specified, then
the cardinality of a pattern is 1. In the previous example, because no cardinality indicator is specified,
one first element, one middle element, and one last element are expected to occur.

216

Part II: Validation

Cardinality Indicator Meaning

? Pattern may or may not appear

+ Pattern can appear one or more times

* Pattern can appear zero or more times

No indicator (default) Pattern must occur once and only once

Refer to Chapter 4 on DTDs for more discussion of cardinality.

Again, attribute and element patterns are treated similarly. Because you didn’t specify a cardinality indi-
cator for your title attribute pattern, the default was applied. That meant that the title attribute had
to appear in your instance document. If you wanted it to be optional you could use the ? indicator:

element name {
element first { text },
element middle { text },
element last { text },
attribute title { text }?

}

Attributes can be optional, but they cannot appear more than once on an individual element. Therefore,
you would not find cardinality indicators of one or more + or zero or more * on attribute patterns.

Connector Patterns and Grouping
The previous two chapters described how to build complex content models using XML Schemas and
DTDs. RELAX NG uses connector patterns to build content models. RELAX NG has three connector pat-
terns: sequence, choice, and interleave.

Pattern Name Pattern

sequence pattern pattern, pattern

choice pattern pattern | pattern

interleave pattern pattern & pattern

group pattern (pattern)

As shown with other patterns in this chapter, these patterns are recursive, so although only two items
are shown in each example, the sequence, choice, and interleave patterns can repeat indefinitely.

Sequences and Choices

Elements, attributes, or other patterns can be combined with sequence or choice connectors. Therefore, you
can have multiple patterns connected:

element date { element year{text}, element month{text}, element day{text} }

217

Chapter 6: Relax NG

In the preceding example, the comma connector represents sequence, so the order of the elements in the
instance document must be <year> first, then <month>, and then <day>, as shown in the following:

<date>
<year>1959</year>
<month>08</month>
<day>14</day>

</date>

Note that as a result of the way the connector patterns are described, you cannot combine sequence and
choice in the same group. That is, you are allowed to have a sequence in a group, like this:

element a{text} , element b{text} , element c{text}

Or, you can have a choice used in a group:

element a{text} | element b{text} | element c{text}

However, you cannot have a mixture of choice and sequence:

element a{text} , element b{text} | element c{text}

This last example tries to mix sequence and choice in a single group, which is not allowed. If you want
to use more than one kind of connector, you must group your content model using the parentheses in
the group pattern. The following example shows how sequence and choice could be used together to
describe a content model:

element a { text } , (element b { text } | element c { text })

As long as the same connector is used inside the parentheses, all is well. You can also nest parentheses to
any level, as in the following:

(element a {text}, (element b{text} | (element c {text} , element d {text})))

Remember also that grouping patterns supports cardinality, allowing you to add *, ? and + symbols to
the pattern as follows:

(element a{text}, (element b{text} | (element c{text},element d{text}) *) ?) +

Moreover, because RELAX NG is based on patterns and tree automata, you can specify more complex
and flexible validation concepts in RELAX NG compared to XML Schemas. For example, in RELAX NG,
you can specify that an element <payment> has element <amount> and attribute currency, or put in
another way: element <credit> and attribute card. The complete schema for this combination would
be as follows:

element payment {
(attribute currency { text }, element cash { text }) |
(attribute cardtype { text }, element creditcard { text })

}

218

Part II: Validation

Here is one XML instance document that would be valid using the previous schema (combining cur-
rency and cash is OK):

<payment currency=”USD”>
<cash>5.75</cash>

</payment>

Here is another (combining cardtype and creditcard is OK):

<payment cardtype=”Visa”>
<creditcard>4111 1111 1111 1111</creditcard>

</payment>

However, the following XML instance would be invalid, because element cardtype is combined with
attribute cash:

<payment cardtype=”MasterCard”>
<cash>5.75</cash>

</payment>

Interleave

The third connector pattern available is the interleave pattern, which is quite powerful. As you’ve seen,
the sequence connector requires that elements be ordered. The choice connector allows a choice between,
say, two or more elements or other patterns. At a high level, interleave allows child elements (or other
patterns) to occur in any order. For example, suppose you had to create an element that contained a per-
son’s name and phone number, as in the following XML instance:

<person>
<name>Julie Gaven</name>
<phone>555-1234</phone>

</person>

You could use the sequence connector if you wanted to force <name> to come before <phone>, but sup-
pose that you really don’t care about the order of the child elements <name> and <phone>. Instead, you
want to require that both <name> and <phone> are present. The choice connector would not work in this
case because you require both to be there; it’s not an either/or situation. Hence, the interleave connector
(&) is used, as shown in the following:

element person { element name { text } & element phone { text } }

The most common use of the interleave connector is to allow single-element patterns to occur in any
order. However, because two patterns can appear on either side of the interleave connector, and not just
a single-element pattern, you could make other types of content models possible. For example, suppose
you had three elements —<a/>, , and <c/>— that had to occur in that order underneath a parent
element. In addition, suppose you wanted to allow another element (say, an <id/> element) to be
included anywhere underneath that parent element, but you didn’t care where it occurred. The follow-
ing would be a valid instance:

219

Chapter 6: Relax NG

<root>
<a/>
<id>54643</id>

<c/>

</root>

You can use two separate patterns, connected via the interleave connector, as follows:

element root {
element id { text } &
(element a { text }, element b { text}, element c { text })

}

Here, the sequence: a,b,c is interleaved with id. You could add one or more cardinality indicators (+) to
id to allow multiple id elements to be interleaved with the a,b,c sequence.

Enumerated Values
In the name vocabulary, you had an title attribute that allowed you to enter the formal title for the
person you were describing. In the example, you used the value Mr. In the schema you used the text
pattern, which allows any string. Like XML Schema validation (and even DTD validation), RELAX NG
allows a list of enumerated values to be defined in the schema. This list of values can be used to verify
that the instance documents do not contain abnormal values.

If you wanted to specify enumerated values in a RELAX NG, you would use the enumeration pattern
that appears as follows:

Pattern Name Pattern

Enumeration Pattern datatype value

The datatype value is a quoted string value that can use single or double quotes. When multiple values
are permitted, you can use the choice connector (|) to separate the values. With the addition of this new
pattern, you can modify the earlier schema:

element name {
attribute title { “Mr.” | “Mrs.” | “Ms.” | “Miss” | “Sir” | “Rev” | “Dr.” }?,
element first { text },
element middle { text },
element last { text }

}

The following document would be valid:

<?xml version=”1.0”?>
<name title=”Mr.”>

<first>Joe</first>
<middle></middle>
<last>Hughes</last>

</name>

220

Part II: Validation

However, this document would not be valid:

<?xml version=”1.0”?>
<name title=””>

<first>Maria</first>
<middle></middle>
<last>Knapik</last>

</name>

It isn’t valid because you left the title attribute empty, which wasn’t one of your enumerated options.

Instead of using the RNC keyword text, you used a choice of literal values. Validating against enumer-
ated values is a very common and useful technique. Enumerated value validation is also possible for use
in element content. For example, if you only wanted to allow people with first names of Joe or Maria,
you could define your first element this way:

element first { ‘Joe’ | ‘Maria’ }

As shown later, RELAX NG supports datatype validation, such as validating against numeric values, date,
time, or even regular expressions.

Co-Occurrence Constraints
Because RELAX NG is built on patterns and allows flexible pattern combinations, you can construct
schemas that support what are called co-occurrence constraints. Co-occurrence constraints allow you to
change the way an element or attribute is validated based on the content of another element or attribute.
Co-occurrence constraints are not legal in XML Schemas or DTDs.

Here is a sample XML instance to illustrate this concept:

<transportation>
<vehicle type=”Automobile” >
<make>Ford</make>

</vehicle>
<vehicle type=”Trolley”>
<fare>2.50</fare>
<tax>1.00</tax>

</vehicle>
</transportation>

The content allowed for the <vehicle> element depends on the value of the type attribute. If the value
Automobile is found, a <make> element is allowed; if the value Trolley is found, then <fare> and
<tax> must be present. Here is the RNC schema:

element transportation {
element vehicle {
(attribute type { ‘Automobile’ }, element make { text }) |
(attribute type { ‘Trolley’ }, element fare { text }, element tax { text })

}*
}

221

Chapter 6: Relax NG

Mixed Content Pattern
DTD and XML Schema syntax both contain special constructs to handle mixed content. Mixed content
allows you to mix text and other child elements freely when declaring the content model of a particular
element. In RELAX NG, the mixed pattern handles mixed content:

Pattern Name Pattern

mixed pattern mixed {pattern}

Consider the <description> element from the previous two chapters. You wanted to allow the
element, element, and
 element to be interspersed within the textual description:

<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>

As you can see, text is scattered in and around the and child elements. The following
RNC schema handles the previous document:

element description {
mixed { element em { text } | element strong { text } | element br { empty } }*

}

By using the mixed keyword and a repeated choice (using the | and * symbols), the previous schema
allows zero or more occurrences of , , and
 to be used as children of the
<description> element, mixed in with text. This is a common design pattern for mixed content mod-
els. Note that DTD and XML Schemas are limited to this particular use of mixed content, but RELAX NG
is not. You can use other patterns with mixed content, as any pattern can go inside the two curly braces
of the mixed pattern. For example, you could have a mixed pattern for descriptions that require one
 tag, followed by an optional tag, followed by zero or more
 tags, and in that order.
The RNC Schema for this new content model would be as follows:

element description {
mixed { element em { text }, element strong { text }?, element br { empty }* }

}

Note that in the new content model, the
 tag can occur multiple times, but and
cannot.

The Empty Pattern
XML has the concept of an empty element — that is, an element that contains no content, no child ele-
ments, and no text content. Empty elements may contain attributes, however. To provide for empty ele-
ments, RELAX NG has an empty pattern:

Pattern Name Pattern

empty pattern empty

222

Part II: Validation

If fact, the empty pattern was used in the previous example. We declared an element pattern for the ele-
ment
, which has no attributes or child elements. That is, the
 element is completely empty.
The XML for the
 element looked like this:

Here is the schema:

element br { empty }

In your contacts vocabulary, the <knows> element was empty but it allowed a contacts attribute to be
present. For example:

<knows contacts=”David_Hunter Danny_Ayers”/>

The schema would be as follows:

element knows { attribute contacts { text }, empty }

Just as you saw in earlier examples, the order of attribute patterns is not important. The following would
also be correct:

element knows { empty, attribute contacts { text } }

Try It Out Making Contact

This example creates a RELAX NG compact syntax schema for the example XML document used in the
last two chapters: the contacts listing. Because the examples are long, you may want to download the
content from the book’s website at www.wrox.com.

1. Begin by creating the XML instance document. Modify the example from the last chapter to
remove some of the XML Schema–specific items. Open Codeplot and create a new document
called contacts14.xml. Copy the following and when you are finished, save the file:

<?xml version=”1.0”?>
<contacts source=”Beginning XML 4E” version=”1.0”>
<contact person=”Jeff_Rafter” tags=”author xml poetry”>
<name title=”Mr.”>
<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>

</name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>

</location>
<phone kind=”Home”>001-909-555-1212</phone>
<knows contacts=”David_Hunter Danny_Ayers”/>
<description>Jeff is a developer and author for Beginning
XML 4th edition.
Jeff loves
XML!</description>

223

Chapter 6: Relax NG

</contact>
<contact person=”David_Hunter” tags=”author consultant CGI”>
<name>
<first>David</first>
<last>Hunter</last>

</name>
<location>
<address>Address is not known</address>
<latitude>Unknown</latitude>
<longitude>Unknown</longitude>

</location>
<phone kind=”Work”>416 555 1212</phone>
<knows contacts=”Jeff_Rafter Danny_Ayers”/>
<description>Senior Technical Consultant for CGI.</description>

</contact>
<contact person=”Danny_Ayers” tags=”author semantics animals”>
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>

</name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca
Italy</address>

</location>
<phone>+39-0555-11-22-33-</phone>
<knows contacts=”Jeff_Rafter David_Hunter”/>
<description>A Semantic Web developer and technical author specializing
in cutting-edge technologies.</description>

</contact>
</contacts>

2. Create the RNC schema document. Using only the basic patterns you have already learned, you
will build a schema that can validate the document. Create a new document in Codeplot, name
the document contacts14.rnc, copy the following, and when you are finished save the file:

element contacts {
attribute version { “1.0” },
attribute source { text }?,
element contact {
attribute person { text }?,
attribute tags { text }?,
element name {
attribute title { “Mr.” | “Mrs.” | “Ms.” | “Miss” | “Sir” | “Rev” | “Dr.” }?,
element first { text }+,
element middle { text }?,
element last { text }

},
element location {
(element address { text } |
(element latitude { text }, element longitude { text }))*

},

224

Part II: Validation

element phone { attribute kind {“Home” | “Work” | “Cell” | “Fax”}?, text },
element knows {
attribute contacts { text },
empty

},
element description {
mixed {
element em { text } | element strong { text } | element br { empty }

}*
}

}*
}

3. You are ready to validate the XML instance document against the RELAX NG schema. Within
Codeplot, open contacts14.xml and click the Resources button. You will see the resource list-
ing for contacts14.xml. Click New to add a new resource. You can give the resource a title
such as “RELAX NG.” Choose the RELAX NG Compact Syntax option as the resource kind, and
Validation for the purpose. The path of the resource is contacts14.rnc. Save the resource and
return to the document. Click the Validate button. The Codeplot editor should indicate that the
schema loaded and that there were no validation errors (see Figure 6-3).

Figure 6-3

225

Chapter 6: Relax NG

How It Works
In this Try It Out example, you created an XML instance document for the contacts vocabulary you used
in the previous two chapters, and then you created an RNC schema. The contacts XML has a root ele-
ment, called <contacts>, which contains only one child element and two attributes, so you begin the
schema this way:

element contacts {
attribute version { “1.0” },
attribute source { text }?,
element contact {
}*

}

The <contact> element also had two attributes and five children elements:

element contact {
attribute person { text }?,
attribute tags { text }?,
element name {
},
element location {
},
element phone {
},
element knows {
},
element description {
}

}*

Finally, you filled in each of the element patterns with the appropriate content models. The name ele-
ment pattern looked very similar to the earlier examples. You simply added some cardinality indicators
to allow for multiple first names and an optional middle name, and enumerated the choices for the
title attribute:

element name {
attribute title { “Mr.” | “Mrs.” | “Ms.” | “Miss” | “Sir” | “Rev” | “Dr.” }?,
element first { text }+,
element middle { text }?,
element last { text }

}

The location pattern was a little more complex:

element location {
(element address { text } |
(element latitude { text }, element longitude { text }))*

}

Here you wanted to allow for a repeating choice between an <address> element and a <latitude> ele-
ment followed by a <longitude> element. To do this, you created a group for all of the contents and a
subgroup for the latitude and longitude patterns. Recall that this is required because you can’t mix
sequences and choices in a single group.

226

Part II: Validation

The remaining patterns, phone, knows, and description, used the patterns shown earlier in the chap-
ter. These included the empty pattern and the mixed pattern. When the validator began to read your
document, it built an in-memory tree and began attempting to match the patterns you declared against
the document.

Combining and Reusing Patterns

and Grammars
This section describes building patterns and entire grammars for reuse. You’ll see how to break down
patterns so that they can be reused and recombined in various ways. In addition, you’ll take a look at
breaking down the RELAX NG grammars into multiple physical files and learn how to redefine
included patterns.

Named Patterns
All the RNC schemas shown thus far have been valid and complete RNC schemas. It is perfectly legal to
create RNC schemas with one top-level, or root, element and add nested patterns, to any level, as needed.
However, instead of creating one huge nested pattern, RELAX NG also allows you to construct complex
schemas out of smaller pieces called named pattern definitions, which appear as follows:

Pattern Name Pattern

named pattern definition Pattern Name = pattern

Breaking one large pattern into multiple pieces (or named pattern definitions) makes it easier to manage
complex schemas, and enables reuse. It can also make your schema smaller, more flexible, and easier to
understand. For example, it is possible to create a named pattern definition for elements:

FirstNameDef = element first { text }

You can also create named pattern definitions for group patterns:

locationContents = element address { text } |
(element latitude { text }, element longitude { text })

Recursive and re-entrant patterns are allowed. A pattern reference can reference the current pattern
name, either directly (recursive) or indirectly (re-entrant).

You can create a named pattern definition for any pattern you can create in RELAX NG. In the previous
example, FirstNameDef and locationContents are named pattern identifiers. You can choose almost
any name you like. The names do not have to start with an uppercase letter or follow any specific for-
mat. If you use one of the RNC keywords as your pattern name, however, you must precede it with a \,
as in \text = element textElement { text }.

227

Chapter 6: Relax NG

Once you have defined a named pattern definition, you can reference it from inside other patterns:

element location = { locationContents* }

Pattern reuse could not be any easier! You can simply use the named pattern identifier anywhere a pat-
tern is allowed. The locationContents on the right-hand side of the equals sign (=) references the
original locationContents definition defined earlier. Again, recall that locationContents and
FirstNameDef are named pattern names; they are not element or attribute names.

Try It Out Utilizing Named Patterns

This example revises the RELAX NG compact syntax schema from the previous examples. You convert
most of the patterns within your schema to named pattern definitions. You don’t need to modify your
XML instance document for this example.

1. Create a new document in Codeplot called contacts15.rnc. The order in which you list the
schema definitions is your choice, but for this example begin by declaring the start pattern:

start = contacts

This start pattern name is special in that it uses RNC’s start keyword, which calls out the
root element of the XML instance.

2. Create the named pattern definition for contacts:

contacts = element contacts { contactsContent }
contactsContent = (
version,
source?,
contact*

)
version = attribute version { “1.0” }
source = attribute source { text }

Splitting every declaration to a separate named pattern as this example does isn’t required but it
makes your schema much more versatile. Here, there are separate named pattern definitions for
the contacts element declaration and its content model. There are two named patterns for the
version and source attributes. Within the contactsContent pattern, there are references to
the attributes and the contact element pattern. Notice that the cardinality indicator for zero or
more (*) has been added to the reference. This is perfectly legal.

3. Divide the contact pattern definition into separate parts, just as you did with the contacts
pattern. Again, this is not necessary; it only makes the schema more readable and reusable:

contact = element contact { contactContents }
contactContents = (
person?,
tags?,
name,
location,
phone,
knows,
description

)
person = attribute person { text }
tags = attribute tags { text }

228

Part II: Validation

4. Define each of the patterns you referenced in your contactElements declaration. When you
declare the name pattern, you will continue to split the declaration and content model into sepa-
rate patterns. The only difference here is the title attribute declaration. Move all the enumer-
ated choices to a separate named pattern definition called titles:

name = element name { nameContents }
nameContents = (
title?,
first+,
middle?,
last

)
titles = (“Mr.” | “Mrs.” | “Ms.” | “Miss” | “Sir” | “Rev” | “Dr.”)
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }

Remember that any pattern can be used as part of a named pattern definition. This includes
enumeration groups.

5. Declare the rest of the patterns in your schema using the same practices:

location = element location { locationContents* }
locationContents = (
address | (latitude, longitude)

)
address = element address { text }
latitude = element latitude { text }
longitude = element longitude { text }

phone = element phone { phoneContents }
phoneContents = (
kind?,
text

)
kinds = (“Home” | “Work” | “Cell” | “Fax”)
kind = attribute kind { kinds }

knows = element knows { knowsContents }
knowsContents = (
attribute contacts { text },
empty

)

description = element description {
mixed { descriptionContents }*

}
descriptionContents = (em | strong | br)
em = element em { text }
strong = element strong { text }
br = element br { empty }

229

Chapter 6: Relax NG

Notice that in the knowsContents declaration, the contacts attribute declaration is embedded
(you don’t create a separate named pattern definition). Again, this is completely legal. You can
choose to use named patterns for any number of declarations in your schema.

6. You are ready to validate the XML instance document against the RELAX NG schema. Within
Codeplot, open contacts14.xml and click the Resources button. You will see the resource
listing for contacts14.xml. Modify your existing RELAX NG resource to point to the new
contacts15.rnc. Save the resource and return to the document. Click the Validate button.

How It Works
In this Try It Out example, you modified the contacts RELAX NG schema so that it made use of named
pattern definitions. Named patterns are quite useful and important for schema designers, making
RELAX NG schemas easy to create, maintain, understand, and reuse. It is common to create named pat-
terns for reusable components, or groups of attributes and/or elements. It’s completely up to you how
you want to expand your patterns into one or more pattern definitions, by employing the group pattern
discussed earlier.

One additional feature about pattern names is very important to understand. RNC grammar syntax was
designed so that you don’t have to worry about name collisions between pattern names and element (or
attribute) names. For that reason, many RNC schema designers use the same name for both the element
(or attribute) and the pattern that defines that element. Why bother creating new unique names when you
don’t need to? It really depends on how you want to break down the reuse of your patterns and how
much granularity and flexibility you need when combining and redefining multiple named patterns.

Combining Named Pattern Definitions
Up until this point, you have been using the = assign method for your named patterns. That is, you
assign a name to a pattern using the equals sign. This technique works fine as long as your pattern
names are unique. Creating two named patterns with the same name, however, is illegal. For example,
the following schema is invalid:

start = name
name = element name { attribute title { text }? }
name = element name {
element first { text }+,
element middle { text }?,
element last { text }

}

This has defined the name pattern twice, making the schema invalid, as you can’t have two identically
named patterns (name in this case) that use the = assignment method. RELAX NG allows two identically
named patterns, but you must choose another technique when combining the named patterns. Two com-
binations are possible: choice or interleave:

Pattern Name Pattern

named pattern choice Pattern Name |= pattern

named pattern interleave Pattern Name &= pattern

230

Part II: Validation

Using additional assign methods, RELAX NG gives you complete control over how identically named
patterns combine. For example, you can make the previous schema valid by using the interleave assign-
ment method (&=):

start = name
name &= element name { attribute title { text }? }
name &= element name {
element first { text }+,
element middle { text }?,
element last { text }

}

This basically says that element <name> may contain the sequence of elements <first>, <middle>, and
<last>, and that the title attribute can be interleaved anywhere within the pattern. If you used the
choice assignment method (|=), you would declare that the <name> element may contain the sequence
of elements <first>, <middle>, and <last>, or the title attribute, which is not what you wanted.

When combining patterns of elements, using the choice operator is common. Interleave is often used
when combining patterns of attributes because ordering does not matter. You can also place the various
assignment method symbols on the special start pattern. This enables you to combine multiple gram-
mars that have different root elements.

You are not allowed to mix |= and &= on identically named patterns, but the following is legal:

start = name
name = element name { attribute title { text }? }
name &= element name {
element first { text }+,
element middle { text }?,
element last { text }

}

This used = on the first name definition, and &= on the second. This has the same meaning as if they both
used &=.

Schema Modularization Using the include Directive
RELAX NG is extremely flexible when it comes to schema modularization. You are free to break down
large schema files into smaller, reusable chunks. You can then combine these smaller files in various
ways to develop your complete vocabulary. Schema files can include other schema files and at various
levels. For example, instead of redeclaring the <name> element in the contacts vocabulary, you could
simply include it. Consider the following file called name10.rnc:

While using identically named patterns in a single schema file is rare, it is common
for one schema file to include another, and in this case you might have to pay extra
attention to the assignment method you employ on your named patterns. For exam-
ple, in the previous schema, the first name pattern may come from schema1.rnc.
The start pattern and second name pattern shown here may be found in
schema2.rnc, which includes schema1.rnc.

231

Chapter 6: Relax NG

name = element name { nameContents }
nameContents = (
title?,
first+,
middle?,
last

)
titles = (“Mr.” | “Mrs.” | “Ms.” | “Miss” | “Sir” | “Rev” | “Dr.”)
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }

Suppose you wanted to include this in your contacts vocabulary. You could simply remove the existing
name patterns and add an include directive:

include “name10.rnc”

The include directive enables you to merge multiple physical schemas into one. A filename or URL
may be specified. Some validators require the use of an absolute URL instead of a relative URL, as
shown here. When you merge two or more schemas using the include directive, the named patterns in
these schemas are combined into one schema. The assignment method discussed earlier becomes more
important when identically named patterns are in the included schemas.

Recursive includes are not allowed. It is up to you to ensure that a single schema is only included once,
either directly or indirectly.

Redefining Included Named Patterns
When multiple grammars are merged into one, all of the named patterns are combined. When you
merge grammars like this, the including grammar has the ability to redefine one or more of the named
patterns in the included grammar(s). For example, let’s say you wanted to create an alternate version
of the name vocabulary, replacing the <first> element with <given>, the <last> element with
<family>, and completely removing the <middle> element.

Using the same name10.rnc file shown previously, you could modify the include statement to redefine
the name pattern as it is included. The old include pattern was simply as follows:

include “name10.rnc”

You could insert a redefinition:

include “name10.rnc” {
nameContents = (
title?,
element given { text }+,
element family { text }

)
}

232

Part II: Validation

The curly braces that follow the include directive contain a list of named patterns that replace the origi-
nals found in the name10.rnc file. You do not need to worry about the assignment method on the rede-
fined patterns. There is no combination of patterns taking place; it is a total replacement. You can also
replace the start pattern, if one exists, in the included grammar.

This granular redefining capability was only possible because the original name schema was created
using separate named patterns for each piece of the name vocabulary. By using named patterns, you can
enable other schemas to use your vocabulary and redefine patterns as needed.

Note that the contacts schema could have replaced the name pattern with any RELAX NG pattern.
For example, it was not required that the replacement had to be one element for another or one content
model for another. Remember that you are replacing patterns, not elements. You could have replaced the
name pattern with an attribute pattern, or a pattern with three attributes, or a pattern with a choice of
two elements and an attribute — omitting the <name> element altogether.

Removing Patterns with the notAllowed Pattern
Sometimes, instead of combining included named pattern definitions, you want to remove them com-
pletely. This is especially useful when one schema includes another and there are name collisions. To
specify that an included named pattern isn’t allowed, RELAX NG has a notAllowed pattern.

For example, suppose the name vocabulary had declared a start pattern:

start = name
name = element name { nameContents }
nameContents = (
title?,
first+,
middle?,
last

)
titles = (“Mr.” | “Mrs.” | “Ms.” | “Miss” | “Sir” | “Rev” | “Dr.”)
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }

Within your contacts vocabulary, you also defined a start pattern:

start = contacts

Clearly, you don’t want to combine the two patterns, and having two patterns with the same name is not
valid, so you need to use the notAllowed pattern in your include statement:

include “name10.rnc” {
start = notAllowed

}
start |= contacts

233

Chapter 6: Relax NG

Notice that you also had to modify your start pattern to use a named pattern choice (|=). Essentially,
you are removing the included pattern using the notAllowed declaration and then combining that with
the new definition in the contacts vocabulary. Effectively, this is the same as declaring the start pat-
tern as follows:

start = notAllowed | contacts

This makes contacts the only reasonable choice for your start pattern — achieving what you set out
to accomplish. Of course, removing named patterns using notAllowed is not limited to the start pat-
tern. You can use the notAllowed declaration to remove any included named pattern.

Extensions and Restrictions
In the previous chapter on XML Schemas, you saw how XML Schemas support object-oriented inheri-
tance features as a means for schema reuse. Using simple and complex types, XML Schemas can be
extended and/or restricted. RELAX NG is quite a bit different from XML Schemas in this regard because
it doesn’t have the concept of types and is instead based on patterns. While RELAX NG does not sup-
port inheritance, this does not mean that reuse and extensibility are impossible.

RELAX NG makes it easy to reference other named patterns within definitions. Combining various
named patterns is called composition. As you saw earlier, using many named pattern definitions allows
for much more flexibility than one large pattern. By splitting the name vocabulary into more named pat-
tern definitions, it is easier to extend or restrict.

When including the name10.rnc schema in another schema, you can redefine any of these named pat-
terns to extend or restrict your definitions. Suppose you wanted to add a <generation> element after
the <last> element in your schema. You could do this in a number of ways. You could redefine the
nameContents pattern itself, or you could use the nameContents pattern to create a new extended pat-
tern and then modify the name pattern to refer to the extension:

include “name.rnc” {
name = element name { nameContentsExt }

}
nameContentsExt = (nameContents, generation?)
generation = element generation { text }

Here, the name pattern uses the new extended content model, nameContentsExt. In the extended
content model, you can use composition to join the original nameContents pattern and the new
generation named pattern definition. By following this practice in your RELAX NG schema, you can
create much more versatile grammars.

As shown with extensions, using named pattern definitions simplifies restrictions. Suppose that you
wanted to modify allowable enumerations for the title attribute to include only male titles:

include “name.rnc” {
title = attribute title { maleTitles }
}
maleTitles = titles - (“Mrs.” | “Ms.” | “Miss”)

Again, restricting and extending schemas is much easier in RELAX NG than it is using XML Schemas.

234

Part II: Validation

Nested Grammars
Oftentimes, you want to reuse names when working with various vocabularies. In these cases, you may
not want to redefine or combine the various named patterns; you simply want to keep them separate.
In order to do this, you need to keep the grammars separate using the RELAX NG grammar pattern.
Suppose you wanted to add a title attribute to the <contacts> element in the contacts vocabulary.
The title of a contacts listing might be “Business Contacts” or “Family and Friends.”

version = attribute version { “1.0” }
source = attribute source { text }
title = attribute title { text }
contacts = element contacts {
version,
source?,
title?,
contact*

}

Clearly, the title attribute for the <contacts> element would be different from the title attribute
that already exists for the <name> element. When including the name vocabulary in the contacts vocabu-
lary, you would see an error because of the name collision. To fix the error, you could change the pattern
names so that they were different, or you could use a nested grammar:

name = grammar {
include “name10.rnc”

}

Here, the include directive is inside of a grammar declaration. When you have nested grammars, you
have a nested set of named pattern declarations. The named patterns in the outer grammar (contacts,
contactsContent, title, etc.) do not combine with the named patterns (start, name, nameContents,
title, etc.) in the nested grammar. This means that you don’t have to be concerned about how the two
title patterns will combine. The title attribute in the included vocabulary and the title attribute in
the contacts vocabulary won’t collide.

Nested grammars aren’t limited to include directives, though. They can be used within standalone
schemas as well. For example, you could have just as easily declared all of the name vocabulary patterns
inside of the grammar directive instead of using an include directive:

name = grammar {
start = name
name = element name { nameContents }
nameContents = (
title?,
first+,
middle?,
last

)
titles = (“Mr.” | “Mrs.” | “Ms.” | “Miss” | “Sir” | “Rev” | “Dr.”)
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }

}

235

Chapter 6: Relax NG

It is possible to allow patterns in nested grammars to refer to named patterns in their parent grammar by
using the parent pattern. For example, if you wanted to add a source attribute to the <name> element,
you could simply reuse the source pattern in your contacts vocabulary, as shown here:

name = grammar {
start = name
name = element name { nameContents }
nameContents = (
title?,
parent source?,
first+,
middle?,
last

)
titles = (“Mr.” | “Mrs.” | “Ms.” | “Miss” | “Sir” | “Rev” | “Dr.”)
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }

}

Here, you have referred to the named pattern definition for the source attribute just as you had before.
The only difference is the addition of the parent directive, indicating to the RELAX NG validator that it
should look in the parent grammar for the definition.

Additional RELAX NG Features
Let’s now look at some additional RELAX NG features. These include namespaces, name-classes and
wildcards, datatypes, list patterns, comments, and divisions.

Namespaces
XML allows instance documents to contain elements and attributes that belong to one or more
namespaces. In Chapter 5, the contacts listing was part of the namespace http://www.example
.com/contacts. In RELAX NG, you can do the same thing by adding a default namespace declaration
to the schema:

default namespace = “http://www.example.com/contacts”

This specifies that any unprefixed element names (for example, contacts, contact, name) belong to the
namespace http://www.example.com/contacts. Because none of the element names in your schema
are prefixed, the default namespace declaration applies to all of them.

There are many differences in the way XML Schemas and RELAX NG handle namespaces. RELAX NG
doesn’t have the concept of a single targetNamespace. In RELAX NG, one schema document can
describe many elements and attributes from many different namespaces.

Suppose you wanted to declare that the , , and
 elements that are part of the
<description> actually belonged to the XHTML namespace. You could do this very easily by adding
another namespace declaration after the default namespace declaration:

236

Part II: Validation

namespace xhtml = “http://www.w3.org/1999/xhtml”

Declare the element patterns using the newly declared prefix:

description = element description {
mixed { descriptionContents }*

}
descriptionContents = (em | strong | br)
em = element xhtml:em { text }
strong = element xhtml:strong { text }
br = element xhtml:br { empty }

Here, you have declared a namespace and prefix and then used that prefix in the element declarations.
Note that element or attribute names can be assigned namespaces, but not pattern names.

It is not necessary for the schema document to use the same prefix strings as the instance document.
Prefixes defined in your schema (xhtml in this case) are only used to reference items inside the schema.
XML instances are not required to use the same prefix. For example, inside the instance document you
could have the following:

<contacts:description xmlns:html=”http://www.w3.org/1999/xhtml”>Jeff is a developer
and author for Beginning XML <html:em>4th edition</html:em>.<html:br/>Jeff
<html:strong>loves</html:strong> XML!</contacts:description>

Here, the prefix contacts is used for the contacts namespace http://www.example.com/contacts,
and the prefix html is used instead of xhtml to refer to the elements from the namespace http://www
.w3.org/1999/xhtml.

Refer to Chapter 3, “XML Namespaces,” as there are many ways to construct this document, using dif-
ferent combinations of default namespace declarations and prefixes.

You can add as many namespace declarations as you want to your schema, enabling a single schema
to support as many namespaces as you wish. Alternatively, you may elect to have a different default
namespace for each schema document you create, and then combine the schemas via the include direc-
tive, producing a final logical schema that allows multiple namespaces. Either way, RELAX NG makes
using namespaces quite easy and flexible.

Name-Classes
RELAX NG uses name-classes to describe the legal names that you can use for elements and attributes.
Throughout the chapter, element and attribute names have been fairly basic. Now let’s look at the fea-
tures of element and attribute name declarations. Here are the element and attribute patterns shown at
the beginning of this chapter:

Pattern Name Pattern

element pattern element name {pattern}

attribute pattern attribute name {pattern}

237

Chapter 6: Relax NG

The name part in each of these patterns is actually a name-class declaration. RELAX NG has four kinds
of name-classes you can use when establishing a name for your element and attribute patterns:

❑ Basic names (including namespaces)

❑ Name-class choices and groups

❑ Namespaces with wildcard

❑ AnyName

Name-classes are available for both element and attribute patterns; however, the examples that follow
use only element patterns.

Basic Names (Including Namespaces)
The first kind of name-class, Name, includes simple element and attribute names — with or without
namespace prefixes. Every schema example presented so far in this chapter used this kind of name-class.
Here is an element that uses the Name name-class, without a prefix:

element first { text }

This example includes a prefix:

element xhtml:em { text }

Most of the element (and attribute) patterns you develop for your RELAX NG schemas will use this kind
of name-class.

Name-Class Choices and Groups
This second form of name-class allows you to provide a choice of names to use for your elements and
attributes. Here is an example using a choice:

first = element first | given { text }

Modifying your schema this way would allow you to do either of the following:

<name>
<first>Tom</first>
<last>Gaven</last>

</name>

or:

<name>
<given>Tom</given>
<last>Gaven</last>

</name>

Optionally, you can add parentheses around the choice list:

first = element (first | given) { text }

238

Part II: Validation

Of course, you can add names with namespaces to the list of names, assuming you had the appropriate
namespace declarations, as in the following:

descriptionContents = element (xhtml:em | xhtml:strong | xhtml:br) { text }

Keep in mind that this is a choice between which names to use for the element. This differs from the ear-
lier choice patterns you saw whereby you could choose between various content model patterns. Using
this choice feature of name-classes can make your schemas easier to read, but it only works if all the ele-
ment names in the list have the same content model. In this case, you needed to use text for all of the
elements; you couldn’t use empty for the xhtml:br element. In general, when any of the element names
listed require different content models, you need to create separate element patterns for each one.

Namespaces with Wildcards
This third name-class feature allows you to use wildcards for the names of elements (or attributes),
which are attached to a particular namespace. For example, the <description> element allowed for the
elements , , and
 from the XHTML namespace. Each of these elements was declared
within your schema. Using a wildcard, you could instead allow for any element from the XHTML
namespace regardless of whether or not it was declared:

description = element description {
mixed { anyXHTML }*

}
anyXHTML = element xhtml:* { text }

The last line in this schema declares anyXHTML a pattern that matches any child element, containing text,
as long as that child element is from the http://www.w3.org/1999/xhtml namespace. Notice that you
do not have to add additional named patterns to describe the or elements, or any other
elements that might suddenly appear under <description>.

In addition to using namespace wildcards, you can optionally add name exceptions, which allow you to
remove one or more names from the wildcard. For example, suppose you wanted to allow any XHTML
element except <xhtml:script>. You use a minus sign to designate which names are disallowed. Here
is the syntax:

anyXHTML = element xhtml:* - xhtml:script { text }

You could disallow both <xhtml:script> and <xhtml:object> with this syntax as follows:

anyXHTML = element xhtml:* - (xhtml:script | xhtml:object) { text }

You can also use the choice and group pattern from the previous section to allow for content from sev-
eral namespaces at once. If you declared the namespace prefix for SVG, for example, you could do the
following:

anyXHTMLorSVG = element (xhtml:* | svg:*) { text }

While namespace wildcards are a nice feature, you may have noticed one severe limitation with these
schemas: All the xhtml elements —, ,
, and so on — must have text content. This is
a big limitation! What if you wanted to really open up the content model to allow any XHTML element
with any element (or attribute) content? You will see how to accomplish that using the last name-class
feature, AnyName.

239

Chapter 6: Relax NG

Using AnyName
The AnyName name-class feature opens up many different kinds of patterns involving wildcards. The *
symbol for the name-class enables this feature, as the following illustrates:

description = element description {
mixed { anyElementWithText }*

}
anyElementWithText = element * { text }

The last line allows any element, from any namespace, as long as it has text content. This might include
elements from the XHTML namespace, the SVG namespace, or some unknown namespace the user
decides to use.

Using the AnyName name-class pattern, and mixing in some pattern recursion, you can finally get rid
of the text content limitation. The following pattern allows any element, with any child elements, to
any depth:

anyElement = element * { anyElement | text }*

This single pattern can be used to validate any XML document, as long as there are no attributes. It
states that each element may contain zero or more patterns of text or anyElement children (which could
therefore contain zero or more recursive element or text patterns, and so on). If you want to add any
attributes to the mix, then you can use the following pattern:

anyElement = element * { anyAttribute | anyElement | text }*
anyAttribute = attribute * { text }

This pattern can be compressed into the following:

any = element * { attribute * {text} | any | text }*

Unlike XML Schemas, any, anyElement, and anyAttribute are not RELAX NG keywords; feel
free to use any identifier you wish.

The AnyName name-class also allows exceptions. You can disallow certain names from the AnyName
wildcard, as shown earlier. You can also combine the four different name-class features to create flexible
patterns. Following are some example patterns that employ exceptions.

Any element from any namespace, except elements with the local name of script:

anyExample1 = element * - *:script { text }

Any element from any namespace, except elements with the local names script or object:

anyExample2 = element * - (*:script | *:object) { text }

Any element from any namespace, except elements with the local name script from the xhtml
namespace:

anyExample3 = element * - xhtml:script { text }

240

Part II: Validation

Any element from any namespace, except any element from the xhtml namespace:

anyExample4 = element * - xhtml:* { text }

Any element from any namespace, except elements from the null namespace:

namespace local = “”
anyExample5 = element * - local:* { text }

Finally, any element from the xhtml namespace or any element from any namespace with the local
name link, except elements with local name script or elements from the contacts namespace:

anyExample6 = element (xhtml:* | *:link) - (*:script | contacts:*) { text }

All the samples here are shown with text content, but you can open up the content models as needed.

Datatypes
RELAX NG supports datatype validation through external datatypes. RELAX NG has a mechanism
defined by which users can add custom datatype library systems. Of course, to use a datatype library,
you need to have a RELAX NG validator that implements that library system. Most available RELAX
NG validators ship with support for the XML Schema datatypes, including XML Schema facets. The
datatype prefix xsd is used to reference the XML Schema datatypes, and is predefined in RELAX NG.
All the RELAX NG validators listed at the end of the chapter support the XML Schema datatypes.

For example, here is a complete schema that uses the XML Schema integer datatype:

start = number
number = element number { xsd:integer }

This schema would validate the following instance document:

<number>1234</number>

The following would not be valid because the data is not of type integer:

<number>John Fitzgerald Johansen Doe</number>

You can also create custom XML Schema datatypes using the XML Schema facets. Suppose that you
wanted to restrict the content of the <phone> element to a specific regular expression. You could do
the following:

phone = element phone { phoneContents }
phoneContents = (
kind?,
PhonePattern

)
PhonePattern = (UsPhonePattern | IntlPhonePattern)
UsPhonePattern = xsd:string { pattern=”\d{3}-\d{3}-\d{3}-\d{4}” }
IntlPhonePattern = xsd:string { pattern=”\+\d{2}-\d{4}-\d{2}-\d{2}-\d{2}-” }
kinds = (“Home” | “Work” | “Cell” | “Fax”)
kind = attribute kind { kinds }

241

Chapter 6: Relax NG

Here you have created three new types: PhonePattern, UsPhonePattern, and IntlPhonePattern.
Within the phoneContents declaration you have specified that you want to use the PhonePattern
type to validate the content. You are free to use any XML Schema facets except for whitespace and
enumeration.

If you are employing a custom user-defined datatype library, then your schema would use the
datatypes declaration:

datatypes color = “http://www.example.com/colors”
start = house
house = element house { color:beige }

Again, in this case, you would need to rely on a RELAX NG validator that understands the datatypes
URI, as well as the beige type.

Let’s revisit the contacts schema, where you can see datatypes and facets in use. In the earlier schema,
many elements were defined using RELAX NG’s text patterns, as in the following:

first = element first { text }

Let’s modify the schema to use the same datatypes from the last chapter:

namespace xhtml = “http://www.w3.org/1999/xhtml”
start = contacts

version = attribute version { xsd:decimal }
source = attribute source { text }
title = attribute title { text }
contacts = element contacts {
version,
source?,
title?,
contact*

}

contact = element contact { contactContents }
contactContents = (
person?,
tags?,
name,
location,
phone,
knows,
description

)
person = attribute person { xsd:ID }
tags = attribute tags { xsd:token }

name = grammar {
start = name
name = element name { nameContents }
nameContents = (
title?,

242

Part II: Validation

first+,
middle?,
last

)
titles = (“Mr.” | “Mrs.” | “Ms.” | “Miss” | “Sir” | “Rev” | “Dr.”)
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }

}

location = element location { locationContents* }
locationContents = (
address | (latitude, longitude)

)
address = element address { text }
unknownString = xsd:string { pattern=”Unknown” }
unknownStringOrFloat = (xsd:float | unknownString)
latitude = element latitude { unknownStringOrFloat }
longitude = element longitude { unknownStringOrFloat }

phone = element phone { phoneContents }
phoneContents = (
kind?,
PhonePattern

)
PhonePattern = (UsPhonePattern | IntlPhonePattern)
UsPhonePattern = xsd:string {
pattern=”(\d{3}-\d{3}-\d{3}-\d{4})|(\d{3}\s\d{3}\s\d{4})” }

IntlPhonePattern = xsd:string { pattern=”\+\d{2}-\d{4}-\d{2}-\d{2}-\d{2}-” }
kinds = (“Home” | “Work” | “Cell” | “Fax”)
kind = attribute kind { kinds }

knows = element knows { knowsContents }
knowsContents = (
attribute contacts { xsd:IDREFS },
empty

)

description = element description {
mixed { anyXHTML }*

}
anyXHTML = element * { text }

In this schema, you employ the new PhonePattern type as well as the xsd:decimal and xsd:float
types.

List Patterns
List patterns enable you to validate a whitespace-separated list of tokens. As shown in the last chapter,
you can make a whitespace-separated list of almost any datatype. For example, you could build a new
datatype for your contact tags attribute:

243

Chapter 6: Relax NG

tagNames = (
“author” |
“xml” |
“poetry” |
“consultant” |
“CGI” |
“semantics” |
“animals”

)
tagList = list { tagNames }
tags = attribute tags { tagNames }

You created the tagList datatype by using the list keyword and placing the datatype for your list in
brackets, ({) and (}). In the XML instance, the individual items must be separated by whitespace:

<contact person=”Jeff_Rafter” tags=”author xml poetry”>

You aren’t limited to enumeration datatypes; you can use any datatype or combination of datatypes as
the basis of your list.

Comments and Divisions
You can add comments to your schemas, and you can break an individual schema into parts (called divi-
sions). The following schema was divided into three divisions: one for includes, one for header informa-
tion, and one for detail information. Comments start with a # symbol and continue to the end of the line.
Here is an example of using both comments and divisions:

div {
top-level includes
include “extensions.rnc”

}

div {
header-level patterns
start = root
root = element root { header, detail }
header = element header { text }

}

div {
detail-level patterns
detail = element detail { text }

}

You can quickly create subgroups to help organize your schema. Keep in mind, however, that divisions
are different from nested grammars. They do not create separate scopes for named pattern definitions.
This organization technique is very helpful when using the XML syntax, as it simplifies the processing
of groups of declarations using tools such as XSLT. Adding comments throughout your schema is
always a best practice, as it can greatly improve its readability.

244

Part II: Validation

Useful Resources
Here is a list of some RELAX NG–related URLs that you might find helpful:

❑ Main specifications —www.relaxng.org

❑ Validating parsers/processors

❑ Jing —www.thaiopensource.com/relaxng/jing.html

❑ Trang —http://thaiopensource.com/relaxng/trang.html

❑ MSV —wwws.sun.com/software/xml/developers/multischema

❑ Topologi —www.topologi.com

❑ RNV —www.davidashen.net/rnv.html

❑ Editors

❑ Xmlde —www.xmldistilled.com

❑ Topologi —www.topologi.com/products/tme/index.html

❑ Oxygen —www.oxygenxml.com

❑ Nxml mode for GNU Emacs —www.thaiopensource.com/download

❑ Codeplot Online Collaborative Editor —http://codeplot.com

Summary
In this chapter, you learned how to create RELAX NG compact schemas that can be used to validate
XML instance documents. You’ve learned the basic RELAX NG patterns, including element, attribute,
and enumerations, as well as pattern grouping and connectors (sequence, choice, and interleave). Then
you found out how to create named patterns for reuse and how to modularize schemas into multiple
files using the include directive. Next, you learned how to use nested grammars to avoid named pat-
tern collisions, as well as how to create RNC schemas with extensibility in mind. Lastly, you learned
how to use namespaces and name-classes in RNC schemas, and how to employ datatype validation,
lists, comments, and divisions.

While this chapter doesn’t cover every single option available with RELAX NG schemas, it certainly cov-
ered the vast majority of features. It is hoped that you have as much fun as we do using this fabulous
technology!

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

245

Chapter 6: Relax NG

Question 1
Break the contacts15.rnc schema file into two schemas. In contacts-main.rnc, place the main
schema elements. In contacts-names.rnc, place the name pattern definitions. At the top level, place an
include directive in contacts-main.rnc to include contacts-names.rnc.

Question 2
Add a wildcard extension to the descriptionContents pattern so that the users can extend the con-
tacts schema by adding any elements they desire to the <description>.

246

Part II: Validation

Part III

Processing

Chapter 7: XPath

Chapter 8: XSLT

7
XPath

When writing code to process XML, you often want to select specific parts of an XML document to
process in a particular way. For example, you might want to select some invoices that fit a date
range of interest. Similarly, you may want to specifically exclude some part(s) of an XML docu-
ment from processing. For example, if you make basic human resources data available on your
corporate intranet, you probably want to be sure not to display confidential information such as
salary for an employee. To achieve those basic needs, it is essential to have an understanding of a
technology that allows you to select a part or parts of an XML document to process. The XML Path
Language, XPath, is designed to allow the developer to select specific parts of an XML document.

The latest incarnation of XPath to be given candidate recommendation status by the W3C is ver-
sion 2.0. The specification can be viewed at www.w3.org/TR/xpath20/. Because the version is
still not a recommendation and only appeared in June 2006, and is vastly larger than version 1.0,
there are still only a few processors supporting it. The current champion is Saxon, which provides
a Java and a .NET version and is available in free or paid for versions, the latter implementing
some of the more advanced, and optional, features. You can read how to install and configure
Saxon in Chapter 8, which is devoted to XSLT. XPath was designed specifically for use with
Extensible Stylesheet Language Transformations (XSLT), and with XML Pointer (XPointer), which
is not discussed in detail in this book. More recently, XForms 1.0 makes use of XPath 1.0, too. The
use of XForms, which includes XPath expressions that bind a form control to the instance data of
an XForms document, is discussed in Chapter 20. XPath is also used in XQuery, covered in
Chapter 9, and most XML DOM parsers support using it to locate nodes (for more on the XML
DOM, see Chapter 11).

This chapter concentrates on version 1.0 features but also notes where things have changed. Later
in the chapter we will look at some of the newer functions and syntax of version 2.0.

XPointer was intended for use with the XML Link Language, XLink. XLink, which became a
W3C recommendation in 2001, has seen limited adoption to date. As a result, XPointer is cur-
rently also not widely used. Therefore, XPath in this chapter is described primarily in the context
of how it is used with XSLT, and the code examples in the chapter use XSLT. To run XSLT code
using the Saxon XSLT processor, see the information provided in Chapter 8.

This chapter covers the following:

❑ Ways of looking at an XML document, including the XPath data model

❑ How to visualize XPath and how the component parts of XPath syntax fit together to enable you
to navigate around the XPath data model

❑ The XPath axes — the “directions” that are available to navigate around the XPath data model

❑ XPath 1.0 functions

❑ XPath 2.0 new functions and features

To understand what XPath is and how it is used, we will first consider ways in which an XML document
can be represented.

Ways of Looking at an XML Document
In the early chapters of this book you saw how an XML document can be written as a nested structure of
start-tags and end-tags, possibly together with processing instructions, comments, attributes, namespace
declarations, and text content of elements. An XML document written in that way is simply a sequence
of Unicode characters. When XML is expressed in that way, it is said to be serialized.

However, although serialized XML is convenient for the human reader, a serialized document is not the
only way an XML document can be represented. It is often more useful to model the logical structure of
an XML document in a way that describes the logical components that make up the XML document and
exposes those components for programmatic manipulation. For example, consider the following XML
markup:

<Paragraph>Some text.</Paragraph>

You probably think of it logically as a Paragraph element with some text content, rather than as a left-
angled bracket followed by an uppercase P, and so on. Similarly, to process XML, you need some formal
model of the logical content of the document.

The W3C has developed three specifications — XPath, the XML Document Object Model (DOM), and
the XML Information Set — each of which represents a logical model of an XML document in similar but
distinct ways.

This chapter focuses on the XPath 1.0 data model because it underlies how XPath is used. Representing
an XML document using the XML DOM is discussed briefly here and in more detail in Chapter 11. A
fourth way in which an XML document can be represented, the XML Information Set, often abbreviated
as the XML infoset, is also described briefly.

Modeling XML Documents
In a serialized XML document, you write start-tags and end-tags, and, except in XML documents of triv-
ial length, there is a nested structure of elements, such as in the following simple document:

250

Part III: Processing

<?xml version=”1.0” encoding=”UTF-8”?>
<!-- This is a comment. -->
<Book>
<Chapter>Some content</Chapter>
<Appendix>Some appendix content.</Appendix>
</Book>

By now, you should be familiar with such XML documents and how to write well-formed XML. How
are these documents represented in the XPath data model and other models? Three ways to model XML
documents are as follows:

❑ The XPath data model — The XPath data model represents most parts of a serialized XML doc-
ument as a tree of nodes. Most, but not all, parts of an XML document are represented as nodes
in the XPath data model. A root node represents the document itself. An element node repre-
sents each element in an XML document. Each attribute is represented by an attribute node and
similarly for comments and processing instructions. A text node represents an element’s text
content. In-scope namespaces are represented by namespace nodes. We will look in more detail
at each type of node in a moment.

A few parts of an XML document are not represented in the XPath data model. An XML declara-
tion, if present, is not represented in any way in the XPath data model, nor is a document type
declaration (DOCTYPE declaration) represented. In addition, while comments and processing
instructions can be represented by comment nodes and processing instruction nodes, any com-
ments and processing instructions contained in the document type declaration are not repre-
sented in the XPath data model.

❑ The Document Object Model — Like the XPath data model, the Document Object Model repre-
sents an XML document as a hierarchical tree of nodes. The types of nodes used in the DOM are
different from those used in XPath. The nodes used in the DOM and writing code to manipulate
the DOM are described in Chapter 11.

❑ The XML Information Set — The XML Information Set (infoset) represents an XML document as
a hierarchical tree but uses a different approach from both the XPath model and the DOM. The
XML Information Set recommendation is located at http://www.w3.org/TR/xml-infoset/.
It is currently in its second edition.

The infoset represents an XML document as a tree of information items. Each information item is
similar in concept to a node in the XPath model. Each information item has properties, which
store values describing one of the item’s characteristics. Many of the W3’s specifications refer to
the infoset, as it represents a very pure version of the information held in an XML document. It
is also a platform and programming language infoset. When two documents need to be com-
pared as XML, rather than just as text files, the infoset is commonly used. This overcomes the
difficulties of a standard text comparison, such as whether attributes are quoted with single or
double quote marks or their order in an element. Both of these aspects can vary in a document
without its infoset changing.

Visualizing XPath
XPath can be a very abstract and confusing topic. One way of visualizing XPath that newcomers to
XPath often find helpful is to think of XPath as street directions around the hierarchical tree of nodes
that make up the XPath data model.

251

Chapter 7: XPath

In real life, you can give street directions in two ways: relative to a fixed point or relative to the current
position. In XPath, you can write absolute XPath expressions, which always start from a standard point,
the root node. Alternatively, you can write relative XPath expressions, which vary depending on where
you start. In XPath, the starting point is called the context.

All legal XPath code can be called an expression. An XPath expression that returns a node-set is called
a location path.

When giving street directions, you have four basic directions: north, south, east, and west. In XPath,
there are 13 directions (see the “XPath 1.0 Axes” section later in this chapter for a discussion of these
directions). In XPath, a direction is called an axis. Just as you might give someone street directions such
as “Starting from the square, head east for one block and it’s the first building on the right with a red
door,” in XPath, you might write something like this:

/Book/Chapter[@number=2]

If we were to express that XPath expression in English, we might say, “Starting from the root node, take
the child axis and look for element nodes called Book; then, for each of those Book element nodes, look
for element nodes called Chapter, also using the child axis; then select only those Chapter elements
that have a number attribute whose value is 2.” We can refer to a child axis when it isn’t actually men-
tioned because the child axis, being the most commonly used, is the default axis in XPath. The part of
the expression in square brackets is a predicate, which acts to filter nodes selected by the earlier part of
the expression. Axes, predicates, and other XPath constructs are explored in more detail later.

A relative location path could be written as follows:

Chapter[@number=2]

This could be expressed in English as, “Starting from where you are currently located, take the child
axis, select Chapter element nodes, and then filter those nodes to retain only Chapter element nodes
that possess a number attribute whose value is 2.” You will likely immediately realize that the result you
get depends on your starting position (the XPath context), so it’s important to understand just what con-
text means in XPath.

Understanding Context
In XPath, the context indicates the location of the node where a processor is currently situated, so to
speak. That node is called the context node. However, the context consists of more than just the context
node. It also includes a context position and a context size. Consider the following XML document,
book.xml:

<Book>
<Chapter number=”1”>This is the first chapter</Chapter>
<Chapter number=”2”>This is the second chapter</Chapter>
<Chapter number=”3”>This is the third chapter</Chapter>
<Chapter number=”4”>This is the fourth chapter</Chapter>
<Chapter number=”5”>This is the fifth chapter</Chapter>
</Book>

Suppose the context node is the node that represents the Chapter element node for the second chapter.
We can use the position() and last() functions, described in more detail later in this chapter, to
show the position of the context node and the context size, as demonstrated in the following example.

252

Part III: Processing

The examples in this chapter rely on XSLT, as XPath does not exist in isolation, but always acts as a
helper for another technology such as XSLT or XQuery. For a fuller explanation see Chapter 8, but the
basics are explained here. An XSLT file consists of a number of templates that match specific nodes in
the XML being processed. The standard way to select the nodes that are matched is by specifying them
using an apply-templates instruction. There are also built-in rules that start the process.

The following XSLT (context-information.xslt) contains two templates. The first matches the root
node and will be called automatically; the second matches any <Chapter> element and is called by the
<xsl:apply-templates> instruction within the first template:

<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” >

<xsl:template match=”/”>
<html>
<head>
<title>This shows the context position and context size.</title>
</head>
<body>
<h3>Context position and context size demo.</h3>
<xsl:apply-templates select=”/Book/Chapter” />
</body>
</html>
</xsl:template>

<xsl:template match=”Chapter”>
<xsl:if test=”position()=2”>
<p>When the context node is the second Chapter element node then</p>
<p>the context position is <xsl:value-of select=”position()” /></p>
<p>and the context size is <xsl:value-of select=”last()” />.</p>
<p>The text the Chapter element node contains is
‘<xsl:value-of select=”.” />’.</p>
</xsl:if>
</xsl:template>

</xsl:stylesheet>

To run the transform you need to install the Saxon processor, described in Chapter 8, and run the follow-
ing at the command prompt. (Alternatively, follow the documentation for your chosen processor.) The
command-line syntax for the .NET version is as follows:

Transform.exe -o book.html book.xml context-information.xslt

Use the following syntax if you are working with Java:

java -jar saxon8.jar -o book.html book.xml context-information.xslt

This assumes both context-information.xslt and book.xml are in the current directory.

The simple HTML document created by the stylesheet is shown in Figure 7-1.

253

Chapter 7: XPath

Figure 7-1

The file book.xml and the XSLT examples are included in the code download. The instructions to
install Saxon and run transformations are described more fully in Chapter 8, “XSLT.”

In the second template, the one matching Chapter elements, notice that in the value of the select
attribute of the xsl:value-of element you see the position() function and the last() function. As
shown in Figure 7-1, the context position is 2 and the context size is 5. This is because we selected five
Chapter elements with our XPath. Had the XPath been more explicit, such as /Book/Chapter[2], then
the context size and position would both have equaled 1.

What Is a Node?
A node is a representation in the XPath data model of a logical part of an XML document.

In XPath 1.0 there are seven types of nodes:

❑ Root node

❑ Element node

254

Part III: Processing

❑ Attribute node

❑ Text node

❑ Namespace node

❑ Comment node

❑ Processing Instruction node

Each node type is described in more detail in the following sections.

Root Node

The root node represents the document itself, independent of any content. The root node is the apex of
the hierarchy of nodes that represents an XML document; it has no name and cannot be seen when the
document is serialized. The element node (described next), which represents the document element, is a
child of the root node. A root node can only have one child element — that is, the document element. The
root node may also have child nodes, which are processing instruction nodes or comment nodes that
correspond to any processing instructions or comments in the prolog of the serialized XML document.

It is vital to understand the difference between a node and an element, and especially important to dif-
ferentiate between the root node and the document’s root element. All the different items in an XML
document are nodes; these can be elements, attributes, comments or any of the other types mentioned
earlier. The root node is not visible in the document’s serialized form and just serves as a starting point
when navigating the document. The root element, however, is the first element in the document and is a
child of the root node.

The XML declaration and the document type declaration are not children of the root node. Neither of
those features of a serialized XML document is represented in the XPath data model.

The root node’s text value is the concatenation of the values of all descendant text nodes of the root
node, in document order. Examine the following XML document:

<MixedContent>
Mary had a <Emphasis>little</Emphasis> lamb.
</MixedContent>

The text value of this document is Mary had a little lamb.

The root node does not have a name.

Element Node

Each element in an XML document is represented as an element node in the XPath data model.

Element nodes have a name that consists of the namespace URI of the element and the local part of its
name. For developers it is easier to work with a qualified name, also called a QName, which is a name-
space prefix followed by a colon character followed by the local part of the element type name:

prefix:localpart

255

Chapter 7: XPath

The string value of an element node is the concatenation of the values of all its descendant text nodes, in
document order.

An element node may possess an attribute that is defined to be of type ID. For an attribute to be defined
this way, the XML document must have an associated Document Type Definition (DTD), either embed-
ded into the XML or linked to it. The following XML, book-with-ID-node.xml, shows how an
attribute can be specified to have a type of ID:

<!DOCTYPE Book [
<!ELEMENT Book (Chapter+)>
<!ELEMENT Chapter (#PCDATA)>
<!ATTLIST Chapter number ID #REQUIRED>

]>
<Book>
<Chapter number=”c1”>This is the first chapter</Chapter>
<Chapter number=”c2”>This is the second chapter</Chapter>
<Chapter number=”c3”>This is the third chapter</Chapter>
<Chapter number=”c4”>This is the fourth chapter</Chapter>
<Chapter number=”c5”>This is the fifth chapter</Chapter>
</Book>

In the preceding example, a DTD states that the document element is Book, which can contain one or
more Chapter elements. The Chapter elements have text content —#PCDATA in DTD parlance — and
possess a number attribute of type ID. Note how the attribute’s name is number; it is not necessary for
the attribute to be called ID, nor is it sufficient to call it ID for the id() function to work. IDs cannot
begin with a digit, so the prefix c has been added. The following XSLT fragment shows the XPath to
select the entire Chapter element whose number attribute equals c2:

<xsl:copy-of select=”id(‘c2’)”/>

Because of the difficulties associated with internal DTDs, including lack of good toolsets to create and
maintain them, the id() function is not often encountered. In XSLT the key() function is used instead
because it can retrieve nodes based on a much wider range of criteria and without the need for any sup-
plementary information such as a DTD.

Attribute Node

Each attribute in an XML document is represented in the XPath model as an attribute node. The element
node with which the attribute node is associated is said to be the parent node of the attribute node.

Attribute nodes have a name and a value. In XPath the attributes are not children of their parent ele-
ment, which can lead to confusion. In practical terms, this means they are always accessed via the
attribute axis, not the default child one.

Text Node

Text content of an element node is represented in the XPath data model as a text node. The string value
of a text node is its character data. A text node does not have a name.

256

Part III: Processing

Namespace Node

Although a specific node can only belong to one namespace, any number of in-scope namespaces can be
in effect for the node. In-scope namespaces are those for which there exists a valid prefix to URI map-
ping or where a URI is associated with an empty prefix, the default namespace.

All in-scope namespaces of an element node are represented as namespace nodes. XPath takes an extrav-
agant approach to namespace nodes. Each element node has its own namespace node for all in-scope
namespaces. For example, consider the XPath model of the following code:

<library:Book xmlns:library=”http://www.XMML.com/booknamespace”>
<chapter:Chapter xmlns:chapter=”http://www.XMML.com/chapter” number=”1”>
Some text content.</chapter:Chapter>
<chapter:Chapter xmlns:chapter=”http://www.XMML.com/chapter” number=”2”>
Some different text content.</chapter:Chapter>
</library:Book>

The Book element node has a namespace node associated with the namespace URI http://www.XMML
.com/booknamespace mapped to the library prefix. Each of the Chapter element nodes also has its own
namespace node associated with the same namespace URI, http://www.XMML.com/booknamespace.
In addition, they have a namespace node associated with the http://www.XMML.com/chapter URI
and bound to the chapter prefix. This simple document has five separate namespace nodes associated
with the two namespace URIs declared in it. In complex documents, large numbers of namespace nodes
can be associated with a single URI, and some elements deep in the hierarchy can have several name-
space nodes.

The name() function returns the namespace prefix associated with the namespace node. The self::
node() expression (which can be abbreviated to a period character) returns the namespace URI of the
namespace node.

Comment Node

A comment node represents a comment in the XML document. Comments in the document type declara-
tion are not represented in the XPath data model.

Processing Instruction Node

A processing instruction node in the XPath model represents a processing instruction in the correspond-
ing XML document. Processing instructions in the document type declaration are not represented in the
XPath data model.

The name of a processing instruction node is its target (turn to Chapter 2 for more on processing instruc-
tions). The string value of a processing instruction node is its content, excluding the target.

XPath 1.0 Types
XPath 1.0 has four expression types:

❑ Boolean

❑ node-set

257

Chapter 7: XPath

❑ number

❑ string

These are greatly expanded in version 2.0, which is addressed later in the chapter.

Booleans

In an XPath 1.0 expression, a Boolean value is written as one of the values true() or false(). You may
wonder why XPath doesn’t simply use the values true and false. It is possible that an XML developer
might choose to have a structure like this:

<true>
... some content
</true>

true is a legal XML name and therefore can be used to name an element. There are no reserved words in
the XPath language, so the functions true() and false() are used instead, whereas in other languages
constants such as TRUE and FALSE might be available. That way there is no ambiguity between selecting
nodes and choosing a Boolean value.

Node-Sets

A node-set is a set of XPath nodes. Technically, an XPath 1.0 node-set is unordered. However, when used
in XSLT, which is currently XPath’s main use, processing of a node-set is always in the document order
of the nodes for forward axes and in reverse document order for reverse axes. XPath axes are discussed
later. Most axes, including the child axis, are forward axes.

Consider what document order means by examining the following simple document:

<PurchaseOrder>
<Date>2005-01-01</Date>
<To>XMML.com</To>
<ShippingAddress>
<Street>123 Any Street</Street>
<City>Anytown</City>
<State>AZ</State>
</ShippingAddress>
<ZipCode>12345</ZipCode>
</PurchaseOrder>

The PurchaseOrder element is first in document order. Document order among the children of the
PurchaseOrder element is then Date, To, ShippingAddress, and ZipCode. All the child nodes of
ShippingAddress appear earlier in document order than the ZipCode element.

Numbers

In XPath 1.0, numbers are floating-point numbers (more varieties are available in version 2.0). There is no
way to directly represent an integer in XPath, although numeric functions will typically return a whole
number — for example, from the count() function, which counts the number of nodes in a node-set.

258

Part III: Processing

Strings

A string value in XPath is a sequence of Unicode characters. Generally, like XML, XPath is not limited to
ASCII characters but uses the much more extensive Unicode character set (turn to Chapter 2 for more on
Unicode).

XPath 1.0 has no type corresponding to a date. All dates are treated in XPath as strings. Therefore, for
example, manipulating strings that represent dates to extract the month from a date depends on know-
ing exactly how the string is written, and on using various XPath string manipulation functions.

So far, we have talked about XPath in a pretty abstract way. How is XPath written?

Abbreviated and Unabbreviated Syntax
XPath syntax is not written in XML, one reason being that we often use an XPath expression as the value
of an attribute. For example, if you wanted to select the value of a Section element node, you might
write the following:

<xsl:value-of select=”/Book/Chapter/Section” />

If XPath were written using XML, there would be problems in achieving well-formedness. For example,
you couldn’t use left or right-angled brackets inside the select attribute. The syntax used in XPath is
similar to the path syntax used for UNIX and Linux directories. The xsl:value-of element, by the way,
is an XSLT element, which is described in Chapter 8.

The most common tasks you will perform using XPath, the selection of elements and attributes, can be
written using an abbreviated syntax, as shown in the previous example. The unabbreviated syntax with
the same meaning is written as follows:

<xsl:value-of select=”/child::Book/child::Chapter/child::Section” />

To select an attribute using unabbreviated syntax, you can write the following:

attribute::attributename

Or, in the abbreviated form, simply write the following:

@attributename

So the XPath

/Book/Chapter/@number

would select the number attribute on a <Chapter> element that was a child of the document element,
<Book>.

When using XPath, use the abbreviated syntax where possible. For the two most common tasks —
selecting element nodes and attribute nodes using the child and attribute axes — your paths will be
more concise and legible.

259

Chapter 7: XPath

XPath 1.0 Axes
XPath 1.0 has a total of 13 axes, which are used to navigate the node tree of the XPath data model. XSLT
supports all of these axes but for performance reasons, some XQuery processors, particularly those asso-
ciated with relational databases, do not support them all. They ignore those that traverse backward
through the document, the reverse axes, as well as some of the other less frequently used ones.

In the following list, notice that the first letter of the name of an axis is always lowercase. Because
XPath, like XML, is case sensitive, using an uppercase initial letter for the name of an axis will cause
unexpected results.

❑ child axis

❑ attribute axis

❑ ancestor axis

❑ ancestor-or-self axis

❑ descendant axis

❑ descendant-or-self axis

❑ following axis

❑ following-sibling axis

❑ namespace axis (not used in XQuery, and deprecated in XPath 2.0)

❑ parent axis

❑ preceding axis

❑ preceding-sibling axis

❑ self axis

The following sections look more closely at each axis in turn. You’ll examine the child and attribute
axes first because these are the axes you will use most often.

Child Axis
The child axis is the default axis in XPath. The child axis selects nodes that are immediate child nodes
of the context node. Thus, consider a structure like this in an XML document:

<Invoice>
<Date>2004-01-02</Date>
<Item quantity=”4”>QD123</Item>
<Item quantity=”5”>AC345</Item>
</Invoice>

If the context node is the Invoice element node, the location path

child::Item

260

Part III: Processing

or, in abbreviated syntax

Item

will return a node-set containing both Item element nodes, which are child nodes of the Invoice
element.

To select both the Date element node and Item element node, which are child nodes of the Invoice ele-
ment node (which is also the context node), you can write the following:

child::*

Or, in abbreviated syntax, use the following:

*

The * indicates any name, and the only nodes in the child axis that have names are element nodes.

If you want to select all child nodes, including comment nodes, processing instruction nodes, and text
nodes, you can write the following:

child::node()

Or, in abbreviated syntax, use the following:

node()

If you want to specifically select text node children of a context node, you can write the following:

child::text()

Or, in abbreviated syntax, use the following:

text()

Because it is the default axis, it is not necessary to express the child axis when using abbreviated syn-
tax. Thus, the location paths

/child::Book/child::Chapter/child::Section

and

/Book/Chapter/Section

both mean the same thing. Starting at the root node, there are three location steps, each of which uses
the child axis. In the first example, which uses the unabbreviated syntax, the child axis is expressed
explicitly. In the second example, the child axis is not explicitly expressed.

At the end of the following section, the Try It Out example demonstrates the use of the child axis and
the attribute axis.

261

Chapter 7: XPath

attribute Axis
The attribute axis is used to select the attribute nodes associated with an element node. If the context
node is an element node, the location paths

attribute::*

or

@*

will each return all the attribute nodes associated with that element node.

Alternatively, if you want to select a specific attribute node named security, you write either

attribute::security

or

@security

Remember that the @ character is an abbreviation for the attribute axis.

If the context node is not an element node, the attribute axis returns an empty node-set.

The following example shows the use of the child and attribute axes in a simple XSLT stylesheet. If
you have no experience with XSLT, you may need to take a look at Chapter 8 for basic information.

Try It Out Using Child and Attribute Axes

In this example you will use both the child and attribute axes. First take a look at using XPath
in XSLT to create a very simple HTML web page. The source XML document, PersonData.xml, is
shown here:

<?xml version=’1.0’?>
<PersonData>
<Name DOB=”1920/11/25”>
<FirstName>Jack</FirstName>
<LastName>Slack</LastName>
</Name>
</PersonData>

The XSLT stylesheet, PersonData.xslt, is shown here:

<?xml version=’1.0’?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”
>

<xsl:template match=”/”>
<html>

262

Part III: Processing

<head>
<title>Information about <xsl:value-of select=”/PersonData/Name/FirstName”/>
<xsl:text> </xsl:text>
<xsl:value-of select=”/PersonData/Name/LastName” />
</title>

</head>
<body>
<p><xsl:value-of select=”/PersonData/Name/FirstName” /><xsl:text>
</xsl:text>
<xsl:value-of select=”/PersonData/Name/LastName” /> was born on
<xsl:value-of select=”/PersonData/Name/@DOB” /></p>
</body>
</html>

</xsl:template>

</xsl:stylesheet>

The following instructions assume that you have installed the Saxon XSLT processor, as described in
Chapter 8:

1. Open a command window.

2. Navigate to the directory in which the files PersonData.xml and PersonData.xslt are
located.

3. Enter the following command at the command line:

java -jar saxon8.jar -o PersonData.html PersonData.xml PersonData.xslt

If you are using the .NET version, enter this:

transform.exe -o PersonData.html PersonData.xml PersonData.xslt

If everything has worked correctly, you should see no error messages, although you may see a
warning that you are running a version 1.0 stylesheet with a version 2.0 processor. If you see
error messages from Saxon, review how you installed Saxon in light of the instructions in
Chapter 8.

4. Double-click PersonData.html, and you should see a very simple web page with the follow-
ing code:

<html>
<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
<title>Information about Jack Slack</title>

</head>
<body>

<p>Jack Slack was born on 1920/11/25</p>
</body>

</html>

263

Chapter 7: XPath

How It Works
First, look at how the content of the title element is created. The XSLT xsl:value-of element, shown
in the following snippet, uses the child axis three times to select the value of the FirstName element:

<xsl:value-of select=”/PersonData/Name/FirstName”/>

The location path is an absolute location path, which uses abbreviated syntax, so from the root node the
PersonData element in the child axis is selected. Then, with the PersonData element node as context
node, the Name element is selected. Finally, with the Name element node as context node, the FirstName
element node is selected. The xsl:value-of element does what it says — it selects the value of the node
specified, which in this case is the FirstName element node. Here, the value is the string value of the
element’s textual content.

Similarly, the following code retrieves the person’s last name, also using the child axis three times:

<xsl:value-of select=”/PersonData/Name/LastName” />

The date of birth displayed in the web page is retrieved using both the child axis and the attribute
axis as follows:

<xsl:value-of select=”/PersonData/Name/@DOB” />

The context node is the root node. First the child axis is used, and the PersonData element node is
selected. In the next location step, the child axis is again used and the Name element node is selected.
Finally, the attribute axis is used and the DOB attribute node is selected. This selects the value of the DOB
attribute node.

ancestor Axis
The ancestor axis selects the parent node of the context node, the parent of that node, its parent, and so
on until the root node of the document is selected. If the context node is the root node, the ancestor
axis returns an empty node-set.

If you had an XML document such as

<Book>
<Chapter number=”1”>
<Section>This is the first section.</Section>
<Section>This is the second section.</Section>
</Chapter>
<Chapter number=”2”>
<!-- and so on -->
</Chapter>
</Book>

and the context node were the element node corresponding to the second Section element node in
Chapter 1, then the location path

ancestor::*

264

Part III: Processing

would return the Chapter element node, which has a number attribute node with a value of 1, the Book
element node, and the root node.

Note that there is no way to express the ancestor axis using abbreviated syntax.

ancestor-or-self Axis
The ancestor-or-self axis includes all nodes in the ancestor axis plus the context node (which is in
the self axis).

Using the document in the ancestor axis section and the same context node, the location path

ancestor::Section

returns an empty node-set because no ancestor element node is named Section, but the location path

ancestor-or-self::Section

would return the Section element node, which is the context node.

descendant Axis
The descendant axis selects the child nodes of the context node, the child nodes of those child nodes,
and so on.

Consider the following XML document:

<Invoices>
<Invoice>
<Date>2004-01-01</Date>
<Item>KDH987</Item>
<Item>DSE355</Item>
</Invoice>
<Invoice>
<Date>2004-01-01</Date>
<Item>RAH198</Item>
<Item>DJE385</Item>
</Invoice>
</Invoices>

If the Invoices element node were the context node, the location path

descendant::*

would select both the Invoice element nodes, both the Date element nodes, and all the Item element
nodes. Location paths that use the descendant axis can be expressed only in unabbreviated syntax.

Examine the following, which uses the descendant axis with an absolute location path:

/descendant::Item

265

Chapter 7: XPath

All the Item element nodes in the document that contain the context node would be selected.

Only elements can have child elements, so using descendant on any other type, such as attributes or
text nodes, will return an empty node-set.

descendant-or-self Axis
The descendant-or-self axis includes all the nodes in the descendant axis plus the context node
(which is contained in the self axis). The abbreviated form for the descendant-or-self axis is //.

This enables you to find nodes irrespective of their position. For example, if you want all the Chapter
elements but are unsure of the XML hierarchy, or perhaps Chapter elements can be nested, then the
XPath //Chapter will retrieve them all. However, this flexibility comes at a price, as the processor
needs to do an extensive recursive search of the document tree. Contrary to many examples shown, you
should only use this form of XPath when the exact path is unknown.

following Axis
The following axis contains all nodes that come after the context node in document order, but excludes
all descendant nodes and any attribute nodes and namespace nodes associated with the context node.

It’s probably easiest to demonstrate the use of the following axis using an example. (We will use the
same XML document, Employees.xml, to demonstrate the use of the following-sibling axis, the
preceding axis, and the preceding-sibling axis a little later in this section.)

Here is the source XML document, Employees.xml:

<Employees>
<Person>
<FirstName>Lara</FirstName>
<LastName>Farmer</LastName>
<DateOfBirth>1944-12-12</DateOfBirth>
</Person>
<Person>
<FirstName>Patrick</FirstName>
<LastName>Stepfoot</LastName>
<DateOfBirth>1955-11-11</DateOfBirth>
</Person>
<Person>
<FirstName>Angela</FirstName>
<LastName>Paris</LastName>
<DateOfBirth>1980-10-10</DateOfBirth>
</Person>
</Employees>

Here is the XSLT stylesheet (Employees.xslt) that shows the element nodes in the following axis:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” >

<xsl:template match=”/”>
<html>
<head>

266

Part III: Processing

<title>This demonstrates the following axis.</title>
</head>

<body>
<h3>Following axis demo.</h3>
<xsl:apply-templates select=”/Employees/Person[1]/FirstName” />
</body>
</html>
</xsl:template>

<xsl:template match=”FirstName”>
<xsl:for-each select=”following::*”>
<p><xsl:value-of select=”name(.)” /> which contains the text

“<xsl:value-of select=”.” />”.</p>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

Notice the use of the following axis in the xsl:for-each element toward the end of the XSLT:

<xsl:for-each select=”following::*” />

The element nodes in the following axis are shown in Figure 7-2. Alongside each element node is its
text content. Notice that for the Person elements all the text content of its child elements is shown.

Figure 7-2
267

Chapter 7: XPath

following-sibling Axis
The following-sibling axis includes any nodes in the following axis that share their parent node
with the context node. Again, a demo may help you grasp the concept. We will use the same XML docu-
ment, Employees.xml, used in the example for the following axis together with this XSLT stylesheet
(Employees2.xslt):

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” >

<xsl:template match=”/”>
<html>
<head>
<title>This demonstrates the following-sibling axis.</title>
</head>
<body>
<h3>Following-sibling axis demo.</h3>
<xsl:apply-templates select=”/Employees/Person[1]/FirstName” />
</body>
</html>
</xsl:template>

<xsl:template match=”FirstName”>
<xsl:for-each select=”following-sibling::*”>
<p><xsl:value-of select=”name(.)” /> which contains the text

“<xsl:value-of select=”.” />”.</p>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Notice the use of the following-sibling axis in the xsl:for-each element toward the end of the code:

<xsl:for-each select=”following-sibling::*”>

As shown in Figure 7-3, there are only two element nodes, the LastName and DateOfBirth element
nodes for the same person whose FirstName element node was the context node.

namespace Axis
The namespace axis is used to select namespace nodes. An element node has a separate namespace
node for each in-scope namespace.

Examine the following XML source document (xmmlBook.xml):

<xmml:Book xmlns:xmml=”http://www.XMML.com/namespaces”>
<xmml:Chapter number=”1”>Some text.</xmml:Chapter>
<xmml:Chapter number=”2”>Some more text.</xmml:Chapter>
</xmml:Book>

268

Part III: Processing

Figure 7-3

You can apply the following stylesheet (xmmlBook.xslt) to show the namespace nodes that exist on the
xmml:Book element node:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:xmml=”http://www.XMML.com/namespaces” >

<xsl:template match=”/”>
<html>
<head>
<title>This shows namespace nodes.</title>
</head>
<body>
<h3>Namespace nodes of the xmml:Book element.</h3>
<xsl:apply-templates select=”/xmml:Book” />
</body>
</html>
</xsl:template>

<xsl:template match=”xmml:Book”>

<xsl:for-each select=”namespace::node()”>

269

Chapter 7: XPath

<p><xsl:value-of select=”position()” />. The namespace prefix
<xsl:value-of select=”name(.)” /> has the namespace URI <xsl:value-of
select=”.” />. </p>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Notice the namespace declaration using the xmml namespace prefix on the xmml:Book element:

<xmml:Book xmlns:xmml=”http://www.XMML.com/namespaces”>

As shown in Figure 7-4, two namespace nodes are associated with the xmml:Book element node. The
namespace node with the URI of http://www.XMML.com/namespaces will likely not be a surprise,
because it was explicitly declared in a namespace declaration. The namespace node with the URI of
http://www.w3.org/XML/1998/namespace may be unexpected. It is present because all XML element
nodes have a namespace node with that namespace URI associated with them. Remember that you can
use xml:lang and xml:space attributes on any XML element, so the xml namespace must be declared;
in this case, the namespace declaration is built into all XML processors.

Figure 7-4

270

Part III: Processing

parent Axis
The parent axis is used to select the parent node of the context node. Examine the following document:

<Parts>
<Part number=”ABC123” />
<Part number=”DEF234” />
</Parts>

If the context node were a Part element node, then the following location path selects the parent node,
which is the Parts element node:

parent::node()

Following is an abbreviated syntax for the parent axis:

..

This is probably familiar to you from encountering the same usage in directory paths on your hard disk.

If, however, the context node were the Parts element node, the same location path would select the root
node of the document. In XPath 1.0, one way of testing whether the node you are dealing with is the root
node is to see if the parent node is null. The root node is the only node without a parent.

preceding Axis
The preceding axis contains all nodes that come before the context node in document order, excluding
nodes in the ancestor axis and attribute and namespace nodes.

To demonstrate the preceding axis, we will again use Employees.xml as the source XML document.
The stylesheet (Employees3.xslt) is shown here:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” >

<xsl:template match=”/”>
<html>
<head>
<title>This demonstrates the preceding axis.</title>
</head>
<body>
<h3>Preceding axis demo.</h3>
<xsl:apply-templates select=”/Employees/Person[3]/DateOfBirth” />
</body>
</html>
</xsl:template>

<xsl:template match=”DateOfBirth”>
<xsl:for-each select=”preceding::*”>

271

Chapter 7: XPath

<p><xsl:value-of select=”name(.)” /> which contains the text
“<xsl:value-of select=”.” />”.</p>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Notice the use of the preceding axis in the xsl:for-each element:

<xsl:for-each select=”preceding::*”>

Figure 7-5 shows the element nodes in the preceding axis, with their contained text. The HTML output
file (Employees3.html) is included in the code download for this book.

preceding-sibling Axis
The preceding-sibling axis includes those nodes that are in the preceding axis and that also share a
parent node with the context node.

Figure 7-5

272

Part III: Processing

The following stylesheet (Employees4.xslt) displays the preceding siblings of the DateOfBirth ele-
ment node of the third person in the source XML document:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” >

<xsl:template match=”/”>
<html>
<head>
<title>This demonstrates the preceding-sibling axis.</title>
</head>
<body>
<h3>Preceding axis demo.</h3>
<xsl:apply-templates select=”/Employees/Person[3]/DateOfBirth” />
</body>
</html>
</xsl:template>

<xsl:template match=”DateOfBirth”>
<xsl:for-each select=”preceding-sibling::*”>
<p><xsl:value-of select=”name(.)” /> which contains the text

“<xsl:value-of select=”.” />”.</p>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Figure 7-6 shows the element nodes in the preceding-sibling axis, with their text content.

self Axis
The self axis selects the context node. The unabbreviated syntax for the self axis is as follows:

self::node()

The abbreviated syntax for the context node is the period character. Thus, if you wanted to select the
value of the context node using the xsl:value-of element, you would write the following:

<xsl:value-of select=”.” />

The unabbreviated syntax is as follows:

<xsl:value-of select=”self::node()” />

XPath allows you to filter nodes selected from an axis using predicates. Predicates frequently use XPath
functions, so next we’ll look at the functions available in XPath 1.0 and at how predicates can be used to
filter node-sets.

273

Chapter 7: XPath

Figure 7-6

XPath 1.0 Functions
The XPath 1.0 specification defines a core function library. The functions making up the function library
are listed here; some are used in XSLT examples in Chapter 8.

Boolean Functions
The XPath 1.0 Boolean functions are as follows:

❑ boolean()— Takes an object as its argument and returns a Boolean value. If the argument is a
number, true is returned if the number is not zero or NaN. If the argument is a node-set, true is
returned if the node-set is not empty. If the argument is a string, true is returned if the string is
not empty.

❑ false()— Takes no argument and returns the Boolean value false

❑ lang()— Takes a string argument. Returns true if the language of the context node is the lan-
guage indicated by the string argument or one of its sublanguages.

274

Part III: Processing

❑ not()— Takes a Boolean expression as its argument, returning true if the argument evaluates to
false, and false if the argument evaluates to true

❑ true()— Has no argument and returns the Boolean value true

Node-Set Functions
The XPath 1.0 functions are as follows:

❑ count()— Takes a node-set argument and returns a value equal to the number of nodes in the
node-set

❑ id()— Takes a string as its argument and returns a node-set containing any node that has an
attribute of type ID equal to the function’s argument

❑ last()— Returns a value equal to the context size

❑ local-name()— Takes zero or one node-sets as its argument and returns the local part of the
element name if it exists; if no argument node-set exists, it returns the local part of the name of
the context node. For example, the element <library:Book xmlns:library=http://www
.XMML.com/booknamespace/> local-name() would return Book.

❑ name()— Takes zero or one node-set arguments and returns the name of the node in
prefix:localpart format. For example, for the element library:Book shown above, name()
would return library:Book.

❑ namespace-uri()— Takes zero or one node-sets as its argument and returns the namespace
URI of the argument node-set; if there is no argument, the namespace URI of the context
node is returned. For example, for the element library:Book in the last two examples,
namespace-uri() would return http://www.XMML.com/booknamespace.

❑ position()— Returns a value equal to the context position

Numeric Functions
The number functions of XPath 1.0 are as follows:

❑ ceiling()— Takes a number as its argument and returns the smallest integer greater than this

❑ floor()— Takes a number as its argument and returns the largest integer that is lower
than this

❑ number()— Takes a string, Boolean or node-set as its argument and returns a number. If there is
a string argument and it contains characters that constitute a number, that number is returned;
otherwise, NaN is returned. If the argument is the Boolean true, 1 is returned. If the argument is
the Boolean false, 0 is returned. If the argument is a node-set, it is as if the string() function is
applied to the node-set, and then the number() function is applied to the string value that results.

❑ round()— Takes a number as its argument and returns the integer that is closest to the number
argument. The method of rounding is not specified, which may cause problems if a particular
algorithm — for example, banker’s rounding — is needed.

275

Chapter 7: XPath

❑ sum()— Takes a node-set as its argument and returns the sum of the value of each individual
node after converting the values to a numeric type if possible. Be careful when using sum(). If
some of the values cannot be converted, then they will end up as NaN, not a number, and the sum
itself will then be NaN.

String Functions
The string functions of XPath 1.0 are as follows:

❑ concat()— Takes two or more string arguments and returns the concatenation of those strings

❑ contains()— Takes two string arguments and returns a Boolean value that is true if the first
string argument contains the second string argument

❑ normalize-space()— Takes a single string argument. Adjacent whitespace characters are
replaced by single-space characters, and leading and trailing spaces are stripped.

❑ starts-with()— Takes two string arguments and returns a Boolean value that is true if the
first argument string starts with the second argument string

❑ string()— Takes a Boolean, node-set, or number as its argument and returns a string value

❑ string-length()— Takes a single string argument and returns a number that indicates the
length of the string

❑ substring()— Can take two or three arguments. When it takes two arguments, the first is a
string (of which you select a substring) and the second is a number. It then returns a string
beginning at the character of the first argument as indicated by the number argument and con-
tinuing to the end of the string. If a third argument is present, it indicates the character at which
the returned string ends.

❑ substring-after()— Takes two string arguments and returns the part of the first string that
occurs after the first occurrence of the second string argument in the first string argument

❑ substring-before()— Takes two string arguments and returns the part of the first string that
occurs before the first occurrence of the second string

❑ translate()— Takes three string arguments and coverts each of the characters in the first
argument that appear in the second to the corresponding characters in the third. A common use
of the translate function is to turn text into all uppercase characters for a case-insensitive
comparison. The following transform, LowerToUpper.xslt, shows how to use the
translate() function:

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>
<body>
<xsl:apply-templates select=”//text()[normalize-space(.)]”/>

</body>
</html>

</xsl:template>

276

Part III: Processing

<xsl:template match=”text()”>
<xsl:variable name=”upper”
select=”’ABCDEFGHIJKLMNOPQRSTUVWXYZ’”/>

<xsl:variable name=”lower”
select=”’abcdefghijklmnopqrstuvwxyz’”/>

The input

<xsl:value-of select=”.”/>
was translated to

<xsl:value-of select=”translate(., $lower, $upper)”/>

</xsl:template>

</xsl:stylesheet>

If you run this transform against any XML that includes some text nodes — for example,
Employees.xml— you’ll see output similar to what is shown in Figure 7-7.

Figure 7-7

277

Chapter 7: XPath

All text nodes that do not consist entirely of whitespace are selected using the XPath
//text()[normalize-space(.)]. Each character in the variable $lower, if found in the
selected text node, is converted to the corresponding character in the variable $upper.

This sort of conversion can also be used to strip unwanted characters by not specifying a replacement
character in the third argument. For example, use the following code to remove all the vowels from
some text held in the variable $text:

<xsl:value-of select=”translate($text, ‘aeiou’, ‘’)”/>

Be aware that the lower–to-uppercase translation only works when all relevant characters are supplied
in the second and third parameters. The preceding example will not alter characters such as the é found
in languages such as French. If you want to perform this sort of translation in XPath 2.0, you can use
the upper-case() and lower-case() functions.

Predicates
Predicates are used to filter node-sets selected using an axis and location step. A predicate is optional
in each location step of an XPath expression, and there can be more than one predicate in any one loca-
tion step.

For example, if you had a document with various security levels assigned in a security attribute on a
Section element, you could use predicates to decide which sections to display:

//Section[@security=”confidential”]

This would select Section element nodes that possessed a security attribute whose value was the
string confidential.

If the Section element also had a version attribute that identified draft or final sections, you could
choose public, final sections using two predicates, like this:

//Section[@security=”public”][@version=”final”]

Each predicate selects only from nodes that are already selected.

Now that you have looked at each of the parts of XPath expressions, let’s put the pieces together so you
have a solid appreciation of what is and is not allowed in an XPath expression.

Structure of XPath Expressions
Most complex XPath expressions select node-sets — therefore, those expressions are also location paths.

A location path is made up of location steps. Depending on the context node and the complexity of the
document, location paths can have many location steps.

278

Part III: Processing

Each location step is potentially made up of three parts:

❑ An axis

❑ A node test

❑ An optional predicate

Examine the following location path:

child::Paragraph[position()=2]

The axis is child, the node test is Paragraph, and the predicate (one predicate appears in this example)
is [position()=2].

An axis is present in every location path. However, when the child axis is used in abbreviated syntax,
the axis is not actually expressed in the surface syntax of the location path.

The node test is used to specify what type of node in the axis should be selected. For example, to select
all child element nodes of Book element nodes that are Chapter element nodes, you could write the
following:

/Book/Chapter

This location path has two location steps. The initial / character indicates that the context node is the
root node. The next location step, Book, selects all Book element nodes in the child axis. The second /
character is a separator between location steps. The second location step is Chapter, which selects
Chapter element nodes in the child axis. The same location path would be written in unabbreviated
syntax like this:

/child::Book/child::Chapter

You may find that this syntax shows the parts of the location path more clearly.

The first location step starts at the root node and selects all Book element nodes that are children of the
root node. If the document element is a Book element, a single Book element node is present in the node-
set selected by the first location step (with any other document element, the node-set is empty and pro-
cessing of the location path stops, with an empty node-set returned). Starting at that node, the next
location step then looks for Chapter element nodes that are child element nodes of the Book element
node returned by the first location step.

Suppose the location path had another location step, as shown here:

/child::Book/child::Chapter/child::Section

In that case, after finding all the Chapter element nodes that are selected by the second location step,
any Section element nodes of each of the selected Chapter element nodes are chosen in turn.

Suppose the location path is modified to include a predicate, as shown here:

/child::Book/child::Chapter[position()=3]/child::Section

279

Chapter 7: XPath

In this case, only the Chapter element node in the third position in document order would be selected
by the second location step. Processing of all other Chapter element nodes would stop and those nodes
would not be included in the returned node-set. For the Chapter element node in third position, all its
Section element node children would be selected.

The only type of node in the child axis that has a name is the element node, but other nodes, such as
comment nodes and text nodes, can also be present in the child axis. To select all nodes in the child
axis that are child nodes of the Book element node, you would write the following:

/Book/node()

This location path would select all nodes in the child axis that are child nodes of Book element nodes,
which are children of the root node.

Predicates are optional. Suppose you have a more complex structure that included Chapter elements,
Section elements, and Paragraph elements, and you want to select the third paragraph in the second
section in the first chapter. You could use a location path like this:

/Book/Chapter[1]/Section[2]/Paragraph[3]

The second, third, and fourth location steps each include a predicate. The same location path could be
written in unabbreviated syntax, like this:

/child::Book/child::Chapter[position()=1]/child::Section[position()=2]/
child::Paragraph[position()=3]

Notice how a numeric expression can be used directly in a predicate, where it is short for position() =
expression.

Predicates can also be multiple for any location step. Suppose you want to select the third paragraph in
the second section in the first chapter only if the first Chapter element has a security attribute whose
value is public. You could write the following:

/Book/Chapter[1][@security=”public”]/Section[2]/Paragraph[3]

Or, using unabbreviated syntax, you could write this:

/child::Book/child::Chapter[position()=1][attribute::security=”public”]/
child::Section[position()=2]/child::Paragraph[position()=3]

Notice that the second location step has two predicates, [1][@security=”public”]. Both predicates
must be satisfied before a Chapter element node can be selected. The order of predicates can also influ-
ence the node-set returned.

Be careful when using predicates such as [@security=”public”] as the values of XSLT attributes, such
as the select attribute of the xsl:value-of element. Make sure you use different paired quotes or
apostrophes for the value inside the predicate than those used to delimit the attribute value. You could
write the following:

<xsl:value-of select=”/Book/Chapter[@security=’public’]” />

280

Part III: Processing

Alternatively, you could write this:

<xsl:value-of select=’/Book/Chapter[@security=”public”]’ />

In other words, if you use paired quotes to delimit the value of the select attribute, use paired apostro-
phes inside the predicate; if you use paired apostrophes to delimit the attribute value, use paired quotes
inside the predicate.

Before you move on to Chapter 8 and look at how XPath is used with XSLT, take a look at the new fea-
tures and syntax in XPath version 2.0.

XPath 2.0
The latest version of the XPath 2.0 specification is located at http://www.w3.org/tr/xpath20/.
Functions for XPath 2.0 are specified in a separate document located at http://www.w3.org/TR/
xpath-functions/. At the time of writing, further general information on XPath 2.0 can be found
at http://www.w3.org/XML/Query. Currently, the XPath link from http://www.w3.org/
describes only XPath 1.0.

XPath 2.0 is a much more powerful language than XPath 1.0 and is significantly more complex. Unlike
the XPath 1.0 specification, which is described in a single document, the XPath 2.0 specification is
described in several supporting documents in addition to the XPath 2.0 specification itself.

XPath 2.0 is a syntactic subset of the XML Query Language (XQuery), which is described in Chapter 9,
so reading Chapter 9 will give you a good overview of XPath 2.0 too.

Revised XPath Data Model
The data model underlying XPath 2.0 is significantly different from the XPath 1.0 model. Some high-
lights of differences are described here and in the following sections.

XPath 2.0 can be described as an expression language for processing sequences. A sequence is a general-
ization of the XPath 1.0 concept of a node-set to also include atomic values. Every XPath 2.0 expression
returns a sequence. Unlike an XPath 1.0 node-set, an XPath 2.0 sequence is ordered. In XPath 1.0, a node-
set is not allowed to contain duplicates. By contrast, an XPath 2.0 sequence may contain duplicates.

The XPath 2.0 data model is described at www.w3.org/TR/xpath-datamodel/.

W3C XML Schema Data Types
In XPath 1.0, a node has a rather primitive type system, which really doesn’t intrude much into the
developer’s consciousness. In XPath 2.0, typing of nodes becomes much more formal and complex.
Typing of nodes and items in XPath 2.0 uses the W3C XML Schema. (The W3C XML Schema is described
in Chapter 5.)

XPath 2.0 adds the W3C XML Schema data types for date-time values. Because many XML documents,
such as invoices and purchase orders, include date-time data, the ability to automatically validate values in
XPath 2.0 is a potentially significant advantage, compared to the absence of date-time types in XPath 1.0.

281

Chapter 7: XPath

Additional XPath 2.0 Functions
XPath 2.0 shares its function library with XQuery 1.0. Many more functions are provided in XPath 2.0
than were specified in XPath 1.0. In fact, XPath 2.0 contains so many functions that a separate specifica-
tion describes them.

The document specifying XPath 2.0 functions is located at http://www.w3.org/TR/
xpath-functions.

XPath 2.0 Features
The main feature improvements over XPath 1.0 are listed here and described in the following sections:

❑ Better string handling

❑ Better date and time handling

❑ The ability to create new sequences

❑ Conditional logic

❑ Ability to call user-defined functions

❑ More node tests

Better String Handling
Among other functions, XPath 2.0 adds a tokenize() function to split strings, and a matches() func-
tion to test strings against regular expressions.

The tokenize() function takes a string and returns a sequence created by splitting the string on the
regular expression supplied as the second argument. For example, the XPath

tokenize(“I love Wrox books”, “\s+”)

returns the sequence of strings representing each separate word in the sentence. The regular expression
\s+ means one or more whitespace characters. An optional third argument can be used to modify the
tokenization.

The matches() function also uses a regular expression but returns a Boolean depending on whether the
string matches the expression. For example, to verify that a particular variable, $phone, was composed
entirely of digits, you could use the following XPath:

matches($phone, “^\d+$”)

The expression ^\d+$ tests that the input contains at least one digit and no other character.

The new version also offers a slew of functions such as normalize-unicode(), which enables input to
be converted to a standardized form.

282

Part III: Processing

Better Date and Time Handling
There was no real support for dates and times in XPath 1.0. Version 2.0 has many functions designed to
compare, create, and manipulate dates and times.

The current-date(), current-DateTime(), and current-time() functions do exactly what they
say: they return the current date, date and time, or just time, in a standard ISO 8601 format. The one
thing to be aware of is that if used twice in the same XSLT, the functions will return identical results, so
you cannot attempt to time operations.

Functions such as day-from-date() and hour-from-time()extract parts of a full date or time,
respectively.

Also available are functions that work on durations, rather than specific date-times. These all have sensi-
ble names such as years-from-yearMonthDuration().

The time functions also support different time zones, so it is possible to convert and compare dates and
times from different points on the planet.

Creating New Sequences
A powerful way of creating new sequences and dealing with current ones is available using the new for
operator. As an example, if you want to construct a sequence of square numbers, you can use the follow-
ing XPath:

for $i in 1 to 10 return $i * $i

This gives results in the sequence 1, 4, 9 . . . 100.

You can also write expressions such as the following:

sum(for $item in order/item return $item/@price * $item/@quantity)

This would return the total order value assuming a structure such as this:

<order>
<item sku=”abc123” value=”10.00” quantity=”3”/>
<item sku=”abc456” value=”20.00” quantity=”2”/>
<item sku=”abc789” value=”30.00” quantity=”1”/>

</order>

This sort of calculation can be very laborious in XPath 1.0.

Conditional Logic
XPath 2.0 supports an if/else construct:

<xsl:value-of select=

“if ($total > 1000) then $total * 0.9 else $total * 0.95”/>

This reduces $total by 10 percent if it’s over 1,000; otherwise, by only 5 percent.

283

Chapter 7: XPath

Ability to Call User-Defined Functions
Version 2.0 has the ability to call user-defined functions. Suppose you have a routine that calculates a
customer’s order total, which involves some complex logic. You can encapsulate it into a function such
as get-order-total() that accepts the order ID. You can then use this function as you would a built-in
one such as string-length:

<xsl:value-of select=”get-order-total(order/@orderId)”/>

How do you define a function? Here’s the catch: You can’t in XPath. You can, however, in applications
that support XPath such as XSLT and XQuery. As such, a fuller discussion of this topic is left to Chapters
8 and 9 in which those subjects are covered in more detail.

More Node Tests
In XPath 2.0 you can select nodes based on their type, a capability lacking in version 1.0. For example,
you can select all elements in a document using //element(). You can also search for all nodes that are
of type xs:token with //element(*, xs:token). There is a similar syntax for attributes as well.

XPath2.0.xslt shows a number of the new features and can be run against any XML input document.
You can see the results of the following code in Figure 7-8:

<xsl:stylesheet version=”2.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>
<body>
<h3>String handling</h3>
<xsl:variable name=”sentence” select=”’I love Wrox books’”/>
The sentence: ‘<xsl:value-of select=”$sentence”/>’ has

<xsl:value-of select=”count(tokenize($sentence, ‘\s+’))”/> words.

Case-sensitive match against ‘wrox’:

<xsl:value-of select=”matches($sentence, ‘wrox’)”/>

Case-insensitive match against ‘wrox’:

<xsl:value-of select=”matches($sentence, ‘wrox’, ‘i’)”/>
<h3>Date and Time</h3>
The current date is: <xsl:value-of select=”current-date()”/>

The current time is: <xsl:value-of select=”current-time()”/>

The day of the month is:

<xsl:value-of select=”day-from-date(current-date())”/>

<h3>Creating sequences</h3>
Showing string-join() and a for expression:
<xsl:value-of select=

“string-join((for $i in 1 to 10 return string($i * $i)), ‘ => ‘)”/>

<h3>Node tests</h3>
The 17th element in this document that is under the xsl:template is:

<textarea rows=”10” cols=”60”>
<xsl:copy-of select=”document(‘’)/*/xsl:template//element()[18]”/>
</textarea>

</body>
</html>

</xsl:template></xsl:stylesheet>

284

Part III: Processing

Figure 7-8

Because the XSLT doesn’t need a source XML file, you can run it against itself. The command line for
.NET would be as follows:

transform -o XPath2.0.html XPath2.0.xslt XPath2.0.xslt

Summary
This chapter covered the XML Path Language, XPath. You were introduced to the concept of the XPath
model and the important concept of context was discussed. The XPath axes and the functions in the
XPath function library were also described.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

285

Chapter 7: XPath

Question 1
Name two XPath axes that, respectively, can be used to select element nodes and attribute nodes. If the
context node is an element node, give the XPath location path, which selects the number attribute node
of that element node. Show the answer in both abbreviated and unabbreviated syntax.

Question 2
XPath 1.0 allows wildcards to be used when selecting child nodes of the context node. What is the loca-
tion path, which selects all child nodes of the context node? Give the answer in both abbreviated and
unabbreviated syntax.

286

Part III: Processing

8
XSLT

XSLT, Extensible Stylesheet Language Transformations, is a very important XML application in
many XML workflows. In many business situations, data is either stored as XML or can be made
available from a database as XML. XSLT is important because, typically, the way in which XML is
stored needs to be changed before it is used. Wherever the data comes from, the XML might need
to be presented to end-users or be shared with business partners in a format that is convenient for
them. XSLT plays a key role in converting XML to its presentation formats and restructuring XML
to fit the structures useful to business partners.

This chapter covers the following:

❑ How XSLT can be used to convert XML for presentation or restructure XML for business-
to-business data interchange

❑ How XSLT differs from conventional procedural languages

❑ An XSLT transformation is described in terms of a source document and a result docu-
ment. However, under the hood, the transformation taking place is a source tree (which
uses the XPath data model) to a result tree (which also uses the XPath data model).

❑ How the elements that make up an XSLT stylesheet are used. For example, you look at
how to use the xsl:value-of element to retrieve values from the source tree being trans-
formed. In addition, you look at the xsl:copy and xsl:copy-of elements, which,
respectively, shallow copy and deep copy nodes from the source tree.

❑ How to use XSLT variables and parameters

❑ The new features of XSLT 2.0 and how they make transformations easier

XSLT 2.0 reached W3C Recommendation status as of January 23, 2007.

What Is XSLT?
XSLT is a declarative programming language, written in XML, for converting XML to some other
output. Often the output is XML or HTML, but in principle, XSLT can produce arbitrary output

from any given XML source document. For example, an XML document can be restructured to conform
to a business partner’s schema, or a selection from an XML document can be made to correspond to
specified criteria, such as selecting invoices from a specified period.

In XSLT 1.0 the source had to be XML. In version 2.0 this restriction does not apply and you can trans-
form other formats, such as CSV files, where the data is separated by commas and carriage returns, into
different structures.

Alternatively, XML data can be transformed so that the data is part of an HTML document, XHTML doc-
ument, WML (Wireless Markup Language) page, or other presentation format. Just as it is efficient to
store relational data once to avoid data inconsistencies, having one XML data source that can then be
converted to multiple presentation formats results in an efficient and effective workflow when multiple
formats, which may themselves be evolving, need to be produced.

XSLT uses XPath, to which you were introduced in Chapter 7, to select the parts of the source XML doc-
ument that are used in the result document. All the XPath 1.0 functions are available to an XSLT proces-
sor, and XSLT 1.0 has a few functions of its own.

XSLT is a declarative language. Often, newcomers to XSLT find it difficult to adapt from the mindset that
they use while programming in procedural languages such as Java or JavaScript. Therefore, you will
take the first code examples slowly to help you understand the difference between a declarative lan-
guage and a procedural one.

Restructuring XML
One of the major uses of XSLT is to restructure XML for use by another user — for example, a business
partner. In a common scenario, two companies need to exchange XML documents electronically but for
historical reasons have differences in the structures of basic documents such as invoices and purchase
orders.

XSLT can copy selected parts of the source XML unchanged into the result document or can create new
elements or attributes in the result document. The names of elements and attributes can be changed.
Elements or attributes present in the source document can be selectively omitted from the result docu-
ment. By combining these options, any arbitrary change can typically be achieved between the source
document and the result document.

Presenting XML Content
XML is often presented as HTML or XHTML on the desktop, as well as various other options on mobile
devices. XSLT is often used to transform select parts of the XML document for display. For example, you
might create a linked set of HTML pages, each of which contains data from a specified time period.
Using XSLT, appropriate data for each HTML page can be selected from the same XML document.

How an XSLT Processor Works
Before you start writing code, it is helpful to understand how, in general terms, an XSLT processor
works. At its simplest, you can look at an XSLT processor as a piece of software that accepts an XML

288

Part III: Processing

document (the source document), applies an XSLT stylesheet to it, and produces another document called
the result document, which can be XML, HTML, or plain text.

If you have read Chapter 7 on XPath, then you will likely already be able to guess that this isn’t the
whole story. A slightly more detailed description of an XSLT processor is that it accepts a source docu-
ment and creates an in-memory tree representation of that source document, according to the XPath data
model, called the source tree. The XSLT processor processes the source tree according to the templates con-
tained in the XSLT stylesheet. A result tree is created. The creation of a result tree from a source tree is
called transformation. After the result tree is created, a process called serialization takes place, which cre-
ates a familiar, serialized XML (or other) document from the result tree.

Strictly speaking, an XSLT processor is responsible only for the transformation of the source tree to one
or, in the case of XSLT 2.0, multiple result trees. However, most XSLT processor software also contains an
XML parser that creates the source tree and a serializer component that serializes the result tree.

Running the Examples
The first examples used in this chapter are standard XSLT 1.0 code; toward the end of the chapter some
version 2.0 transformations are shown. To run the version 1.0 transformations, virtually any processor
will do. For version 2.0 you are limited, as many vendors are waiting for the final W3C recommendation.
The main contender at the moment is the Saxon processor written by Wrox author Michael Kay. Details
for installing this are provided later in the chapter.

In this chapter, step-by-step instructions are supplied for using the Saxon XSLT processor.

Introducing the Saxon XSLT Processor
All the examples in this chapter use the Saxon XSLT processor, which is written by Michael Kay, editor
of the XSLT 2.0 specification. It has two versions, a free one called Saxon-B, for basic, and a commercial
version named Saxon-SA, for schema aware. The examples in this book all use the free version. The differ-
ences are explained in the discussion of XSLT 2.0 later in the chapter. General information on the latest
version of Saxon is located at http://saxon.sourceforge.net/. The version used when writing this
chapter is Saxon 8.8, which incorporates both XSLT 1.0 and XSLT 2.0 functionality. If you want to explore
only XSLT 1.0 functionality, you can use Saxon 6.5.5.

At the time of writing, the Saxon processor is being updated on an ongoing basis to add more complete
XPath 2.0 and XSLT 2.0 functionality. Therefore, it is likely that the latest version when you read this
will be a version other than 8.8 or 6.5.5. Take time to read the descriptions of the available versions at
the Saxon web page to ensure that you choose a version that supports XSLT 1.0 (all versions currently
do) and that is stable (from time to time quasi-experimental versions are released).

Information on the Java 2 and C++ versions of the Xalan XSLT processor are avail-
able at http://xml.apache.org/. Information on the MSXML software, which
comprises a COM version called Microsoft XML Core Services as well as .NET, is
available at http://msdn.microsoft.com/xml/. Useful support information on
MSXML is available at http://www.netcrucible.com/.

289

Chapter 8: XSLT

Installing the Saxon XSLT Processor
Saxon now comes with installs for Java and .NET. The installation of the Java version is covered first.

Installing the Java Version
To run the Saxon XSLT processor, you need a Java Virtual Machine (JVM) installed. To check whether
you have a JVM correctly installed, open a command window and type the following:

java -version

If Java is installed, then you will see a message similar to the following:

java version “1.5.1”
Java (TM)2 Runtime Environment, Standard Edition (build 1.5.1-b65)
Java HotSpot (TM) Client VM (build 1.5.1-b65, mixed mode)

If Java is not installed, you need to obtain a suitable version of Java and install it.

You can obtain a JVM by installing either a Java Runtime Environment (JRE) or a Java Software
Development Kit (SDK). If you don’t already have a JVM installed, then information on the current ver-
sion of Java (you need J2SE, Java 2 Standard Edition, version 1.4 or higher, to run Saxon 7.8) is available
at http://java.sun.com. Look for a link to additional information on J2SE.

Assuming that you have downloaded a Java 2 version 1.5 SDK, launch the installer and follow the
onscreen installation instructions to install it. After you have completed the installation, open a com-
mand prompt window. At the command prompt, type

java -version

and press Enter. If a JVM has been successfully installed, then a message similar to the one shown earlier
will be displayed.

You also need to install the selected version of Saxon to an appropriate directory. Launch the Saxon zip
file that you downloaded and extract the files to the desired directory using a tool such as WinZip. In
order to run saxon8.jar from any directory, you need to add the file, providing its full path, to your
CLASSPATH environment variable.

To create or edit the CLASSPATH environment variable on Windows XP, click Start, select Control Panel,
and select the System option. On the System Properties window, select the Advanced tab and click the
Environment Variables button near the bottom. The Environment Variables window opens.

In the System Variables section look at the existing environment variables to see if CLASSPATH or
classpath (it isn’t case sensitive) is already present. If it is, then click the Edit button; the Edit System
Variable window opens. Edit the Variable Value text box to reflect the location where you installed
Saxon and the version that you chose to install. Once you are sure that you correctly typed the location,
click OK.

If there is no CLASSPATH variable in the System Variables section, then look at the User Variables section
to determine whether it’s there. Assuming that it isn’t, click the New button in the System Variables

290

Part III: Processing

section. The New System Variable window opens. Enter CLASSPATH (either case) in the Variable Name
text box and enter the location of Saxon in the Variable Value text box. Figure 8-1 shows the Edit System
Variable window with the CLASSPATH variable added. Click OK.

Figure 8-1

If you have a command prompt window open, you need to restart it so that the changes you made to the
environment variables are applied to it.

Now you can test whether the installation of Saxon is working correctly. Navigate to the directory in which
you intend to install your XML source files and your XSLT stylesheets. For the purposes of this chapter,
they are installed on my machine at c:\BXML\Ch08. At the command prompt, type the following:

java -jar saxon8.jar

If everything is working correctly, you will see the default Saxon error message, which includes informa-
tion about how to use the command-line switches (shown in Figure 8-2), indicating that you haven’t
entered a full command to make Saxon carry out a transformation. At the moment, you don’t need to do
anything more, because the display of that error message is an indication that Saxon is installed correctly.

Installing the .NET Version
The .NET version is simpler to set up once you have the .NET Framework 1.1 installed.
You can download the framework from www.microsoft.com/downloads/details
.aspx?FamilyID=262d25e3-f589-4842-8157-034d1e7cf3a3&displaylang=en. Alternatively,
go to www.microsoft.com/downloads/ and search for .NET framework redistributable. Most
Windows XP machines will have the .NET Framework 1.1 installed already.

Unzip the install package, saxonb8-8n.zip, for version 8.8, into a folder such as C:\program
files\Saxon\. That’s it. You can optionally install the libraries to the global assemble cache (GAC) if
you want to use them in other applications without recopying them each time by running install-gac
.cmd. You may need to modify the first line if you do not have a default installation of the .NET SDK.
You can then run the examples by using Transform.exe, found in the bin directory.

The final step that will help is to add the bin folder to the Path environment variable. See the instruc-
tions for the Java install regarding how to change environment variables in Windows. You are almost
ready to run your first XSLT example, but first let’s look briefly at how procedural and declarative pro-
gramming languages differ.

291

Chapter 8: XSLT

Figure 8-2

Procedural versus Declarative Programming
Many newcomers to XSLT find it tough to adjust to the difference in approach when using XSLT com-
pared to using procedural programming languages. The following brief sections highlight the differ-
ences between the two approaches.

Procedural Programming
When using a procedural programming language such as JavaScript, you tell the computer what you
want to do step by step. You might define a function, and then define each thing that the computer is
supposed to do, assigning a variable, iterating through a loop, and so on. The mental picture of what the
function is supposed to achieve exists only in your mind.

Declarative Programming
The procedural programming approach differs from declarative programming in that you tell the com-
puter what you want to achieve. XSLT resembles SQL in that respect. For example, in SQL you tell the

292

Part III: Processing

relational database management system (RDBMS) to SELECT certain columns, but you don’t expect to
tell it how to retrieve the desired data. XSLT is similar. You specify what the XSLT processor is to create
each time it comes across a particular pattern in the source tree.

To specify what the XSLT processor is to do, you frequently use the xsl:template element with a
match attribute that contains the relevant pattern.

For example, if you wanted to create certain output for every Chapter element in a source XML docu-
ment you would have code like this:

<xsl:template match=”Chapter”>
<!-- The content of the <xsl:template> element defines what is to be added -->
<!-- to the result tree. -->
</xsl:template>

Notice how the pattern Chapter appears as the value of the match attribute of the xsl:template
element.

XSLT is also a functional language. A functional language is one that relies entirely on functions that accept
and return data and does not rely on maintaining state to carry out its tasks. You will see some of the effects
of this later in the chapter, especially when dealing with variables.

Let’s move on and create a simple XSLT stylesheet and see how it works.

Foundational XSLT Elements
In this section, you create an example that makes a simple HTML web page from the XML source docu-
ment shown here. Refer to the People.xml file:

<People>
<Person>
<Name>Winston Churchill</Name>
<Description>Winston Churchill was a mid 20th century British politician who

became famous as Prime Minister during the Second World War.</Description>
</Person>
<Person>
<Name>Indira Gandhi</Name>
<Description>Indira Gandhi was India’s first female prime minister and was

assassinated in 1984.</Description>
</Person>
<Person>
<Name>John F. Kennedy</Name>
<Description>JFK, as he was affectionately known, was a United States president

who was assassinated in Dallas, Texas.</Description>
</Person> </People>

As you can see from the file, People.xml contains brief information about three famous twentieth-
century politicians.

The following stylesheet, People.xslt, creates a simple HTML web page, People.html, which con-
tains the name and description information about the politicians:

293

Chapter 8: XSLT

<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0” >

<xsl:template match=”/”>
<html>
<head>
<title>Information about

<xsl:value-of select=”count(/People/Person)” /> people.</title>
</head>
<body>
<h3>Information about

<xsl:value-of select=”count(/People/Person)” /> people.</h3>

<xsl:apply-templates select=”/People/Person” />
</body>

</html>
</xsl:template>

<xsl:template match=”Person”>
<h3><xsl:value-of select=”Name” /></h3>
<p><xsl:value-of select=”Description” /></p>

</xsl:template>

</xsl:stylesheet>

The HTML page created by the transformation is shown in Figure 8-3.

The HTML code produced by the listing, with whitespace tidied for display, is shown in the following
block (People.html):

<html>
<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
<title>Information about 3 people.</title>

</head>
<body>

<h3>Information about 3 people.</h3>
<h3>Winston Churchill</h3>
<p>Winston Churchill was a mid 20th Century British politician who became

famous as Prime Minister during the Second World War.</p>
<h3>Indira Gandhi</h3>
<p>Indira Gandhi was India’s first female prime minister and was assassinated

in 1984.</p>
<h3>John F. Kennedy</h3>
<p>JFK, as he was affectionately known, was a United States President who was

assassinated in Dallas, Texas.</p>
</body>

</html>

Next you will analyze the stylesheet People.xslt while you look at the XSLT elements that were
used in it.

294

Part III: Processing

Figure 8-3

The <xsl:stylesheet> Element
Every full XSLT stylesheet has, as its document element, either an xsl:stylesheet element or an
xsl:transform element.

For very simple XSLT stylesheets it is possible to omit the xsl:stylesheet element and have, for
example, an HTML document that includes elements from the XSLT namespace scattered inside it,
similar to Active Server Pages (ASP) or JavaServer Page (JSP) code. Because these simplified XSLT
stylesheets are very limited in what they can do, they aren’t discussed further here.

The <xsl:stylesheet> element is semantically identical to the <xsl:transform> element. You
can use the elements interchangeably in your XSLT stylesheets. Most XSLT stylesheets that you are
likely to see use the <xsl:stylesheet> element, so that element is used in this chapter.

The start-tag of the xsl:stylesheet element has a mandatory version attribute. Most stylesheets in
existence are version 1.0, although as version 2.0 processors become more common this will change. You
can see this in the following excerpt from the People.xslt example stylesheet:

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0” >

295

Chapter 8: XSLT

You can also see in the preceding excerpt from the stylesheet that the xsl:stylesheet element must
also have a namespace declaration for the XSLT namespace. The XSLT namespace has the URI
http://www.w3.org/1999/XSL/Transform. Any other URI in a namespace declaration identifies ele-
ments that are not XSLT. You can use any namespace prefix that you want for XSLT elements; some peo-
ple use an xslt namespace prefix, but the indicative namespace prefix for the XSLT namespace is xsl.

The <xsl:template> Element
An XSLT processor looks in a stylesheet for an xsl:template element that has a match attribute with
value of / (which matches the root node of the XPath model of the source tree). The following excerpt
from the People.xslt example stylesheet shows the xsl:template element with the match attribute
of /:

<xsl:template match=”/”>
<html>
<head>
<title>Information about

<xsl:value-of select=”count(/People/Person)” /> people.</title>
</head>
<body>
<h3>Information about

<xsl:value-of select=”count(/People/Person)” /> people.</h3>

<xsl:apply-templates select=”/People/Person” />
</body>
</html>
</xsl:template>

Each time the XSLT processor finds a node in the source tree that is a root node, the structure corre-
sponding to the content of this template is added to the result tree. Of course, you have only one root
node in an XPath model, so the nodes are added only once to the result tree.

Many of the elements in the template that match the root node are likely to be familiar to you as
HTML/XHTML elements. These elements are added to the result tree literally, and so are called literal
result elements. However, the template also contains several elements from the XSLT namespace. Those
elements are called instructions.

A frequently used instruction is the xsl:apply-templates element.

The <xsl:apply-templates> Element
In the People.xslt stylesheet, there is one xsl:apply-templates element inside the template that
matches the root node:

<xsl:apply-templates select=”/People/Person” />

The xsl:apply-templates element causes the XSLT processor to look for matching nodes in
the source tree. In this case, the nodes to be looked for are specified by the XPath location path
/People/Person, which specifies Person element nodes that are child nodes of a People element
node, which is, in turn, a child node of the root node. In the source document, People.xml, there are
three Person elements (as is shown by the highlighted code lines in the following excerpt):

296

Part III: Processing

<People>
<Person>
<Name>Winston Churchill</Name>
<Description>Winston Churchill was a mid 20th Century British politician who

became famous as Prime Minister during the Second World War.</Description>
</Person>
<Person>
<Name>Indira Gandhi</Name>
<Description>Indira Gandhi was India’s first female prime minister and was

assassinated in 1984.</Description>
</Person>
<Person>
<Name>John F. Kennedy</Name>
<Description>JFK, as he was affectionately known, was a United States President

who was assassinated in Dallas, Texas.</Description>
</Person>

</People>

The XSLT processor then looks for a template that matches such a Person element node. The example
stylesheet, People.xslt, has such a template, as follows:

<xsl:template match=”Person”>
<h3><xsl:value-of select=”Name” /></h3>
<p><xsl:value-of select=”Description” /></p>

</xsl:template>

The preceding template has an xsl:template element with a match attribute that matches
the XPath pattern Person, so it provides a match for the value of the select attribute of the
xsl:apply- templates element. Each time the XSLT processor finds a Person element node that
corresponds to the location path /People/Person, the content of this template is processed and content
is added to the result tree. Because three such nodes exist, the content specified by the template is added
to the result tree three times.

The content of the template consists partly of literal result elements that are HTML/XHTML elements
and partly of elements in the XSLT namespace — specifically, the xsl:value-of element.

Getting Information from the Source Tree
When you are writing a stylesheet, it is often important to be able to use literal result elements, but typi-
cally, you will often also want to use information contained in the source tree. XSLT provides a number
of ways to use information from the source tree. A frequently used XSLT instruction to achieve that is the
xsl:value-of element.

The <xsl:value-of> Element
The xsl:value-of element, as its name implies, provides the value of a part of the source tree that rep-
resents the source XML document. The xsl:value-of element has a mandatory select attribute,
whose value is an XPath location path.

297

Chapter 8: XSLT

In the template that matched the root node, you used the xsl:value-of element to provide the content
of the title and h3 elements:

<html>
<head>

<title>Information about <xsl:value-of select=”count(/People/Person)” />
people.</title>

</head>
<body>

<h3>Information about <xsl:value-of select=”count(/People/Person)” />
people.</h3>

The value of the select attribute uses the XPath count() function. The argument to the count() func-
tion is itself an XPath location path, /People/Person. That location path again matches each Person
element node in the source tree, which has a People element node as its parent, which, in turn, has the
root node as its parent. As you saw a short time ago, there are three such Person elements in the source
document and therefore three corresponding Person element nodes in the source tree. Not surprisingly,
the count() function counts how many such nodes are there and the XSLT processor replaces the
xsl:value-of XSLT instruction with the literal value 3. For example, in the title element,

<title>Information about <xsl:value-of select=”count(/People/Person)” />
people.</title>

in the stylesheet is replaced by

<title>Information about 3 people.</title>

in the result document.

Similarly, in the template that matches a Person element node (like the following one from the sample
stylesheet),

<xsl:template match=”Person”>
<h3><xsl:value-of select=”Name” /></h3>
<p><xsl:value-of select=”Description” /></p>

</xsl:template>

the xsl:value-of elements are replaced in the result document by text corresponding, respectively, to
the Name element node and the Description element node that are child nodes of the Person element
node that matches the value of the match attribute of the xsl:template element.

To clarify further, the value of the select attribute is the relative location path Name, which
matches a Name element node that is a child node of the context node. When the template that
matches the pattern Person is instantiated, the context node is defined by the select attribute of the
xsl:apply-templates element, as indicated in the following excerpt from the sample stylesheet:

<xsl:apply-templates select=”/People/Person” />

298

Part III: Processing

Therefore, the relative location path Name in

<h3><xsl:value-of select=”Name” /></h3>

could be written as the following absolute location path:

/People/Person/Name

That path matches any of the three Name element nodes in the source tree, but by using the relative loca-
tion path, you ensure that only the value of the Name element node that is the child of the present
Person element node is added to the result tree.

The xsl:value-of element is the simplest XSLT element that extracts information from the source tree. It
simply selects the value of a node-set, which might be only a single node, specified by the location path
that is the value of the select attribute of the xsl:value-of element. If there is more than one node in
the node-set, then the xsl:value-of element uses the value of the first node in document order only, not
the values of all nodes. The xsl:value-of element is particularly useful when producing output for pre-
sentation, as in the example just shown, but it can also be used when XML is being restructured.

The next two elements discussed, the xsl:copy and xsl:copy-of elements, are useful primarily when
XML is being restructured.

The <xsl:copy> Element
The xsl:copy element copies a node to the result tree, but it doesn’t copy any descendant nodes; nor, if
the context node is an element node, does it cause any attribute nodes to be copied. This can be useful
when, for example, you want to use an element but change the structure of its content or add or remove
attributes from it.

Try It Out Using the xsl:copy Element

Let’s look at how the xsl:copy element can be used. We’ll first demonstrate how you can convert an
element-based structure to one in which child elements in the source document are expressed in the
result document as attributes.

The source XML, Persons.xml, is shown here:

<Persons>
<Person>
<FirstName>Jill</FirstName>
<LastName>Harper</LastName>
</Person>
<Person>
<FirstName>Claire</FirstName>
<LastName>Vogue</LastName>
</Person>
<Person>
<FirstName>Paul</FirstName>
<LastName>Cathedral</LastName>
</Person>
</Persons>

299

Chapter 8: XSLT

Notice that the first and last names are held as child elements of the Person element.

Suppose you want to restructure this so that the Person element has a FirstName attribute and a
LastName attribute instead of the child elements shown previously. The stylesheet, Persons.xslt, can
restructure the XML to achieve that:

<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0” >

<xsl:template match=”/”>
<Persons>
<xsl:apply-templates select=”/Persons/Person” />
</Persons>
</xsl:template>

<xsl:template match=”Person”>
<xsl:copy>
<xsl:attribute name=”FirstName”><xsl:value-of select=”FirstName”/>

</xsl:attribute>
<xsl:attribute name=”LastName”><xsl:value-of select=”LastName”/>

</xsl:attribute>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

1. Navigate to the directory in which Persons.xml and Persons.xslt are stored.

2. To carry out the transformation, type the following at the command line if you are using the
Java version:

java -jar saxon8.jar -o PersonsOut.xml Persons.xml Persons.xslt

Or type the following when using .NET:

transform.exe -o PersonsOut.xml Persons.xml Persons.xslt

How It Works
As before, there is a template that matches the root node of the source document. Instead of creating
HTML/XHTML literal result elements as you did in the first example, you add a Persons literal result
element. The xsl:apply-templates element is used with the absolute location path /Persons/Person.
There is a template that has a match attribute with value of Person, which matches the value of the
select attribute of the xsl:apply-templates element. Therefore, for each Person node in the source
document, that template specifies how it is processed.

Notice first how the xsl:copy element is used inside the template:

<xsl:template match=”Person”>
<xsl:copy>
<xsl:attribute name=”FirstName”><xsl:value-of select=”FirstName”/>

</xsl:attribute>

300

Part III: Processing

<xsl:attribute name=”LastName”><xsl:value-of select=”LastName”/>
</xsl:attribute>
</xsl:copy>
</xsl:template>

The xsl:copy element is used when the context node is a Person element node. Therefore, a node that
is the same as the context node is added to the result tree. In other words, a Person element node is
added to the result tree, but its child nodes — the FirstName element node and the LastName element
node — are not copied.

If you serialized the result document at this point, when only the xsl:copy element has been processed,
then it would look like this:

<Persons>
<Person />
<Person />
<Person />
</Person>

However, the template uses the xsl:attribute element to add a new attribute to the Person element
node in the result tree. The name attribute of the xsl:attribute element specifies that the name of the
new attributes are called FirstName and LastName:

<xsl:template match=”Person”>
<xsl:copy>
<xsl:attribute name=”FirstName”><xsl:value-of select=”FirstName”/>

</xsl:attribute>
<xsl:attribute name=”LastName”><xsl:value-of select=”LastName”/>

</xsl:attribute>
</xsl:copy>
</xsl:template>

The xsl:value-of element is used to specify the value of the newly created attributes. For the
FirstName attribute, the value is the value of the FirstName element in the source document. For the
LastName attribute, the value selected is the value of the LastName element in the source document.
Figure 8-4 shows the result document displayed in Internet Explorer.

The result document, PersonsOut.xml, tidied for on-page presentation, is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<Persons>
<Person FirstName=”Jill” LastName=”Harper”/>
<Person FirstName=”Claire” LastName=”Vogue”/>
<Person FirstName=”Paul” LastName=”Cathedral”/>
</Persons>

Notice that the Person elements are now empty elements and that each Person element now has a
FirstName attribute and a LastName attribute.

301

Chapter 8: XSLT

Figure 8-4

Try It Out Adding Child Elements

Sometimes you need to do the opposite when restructuring an element. You can reverse the process,
again using the xsl:copy element. Using PersonsOut.xml as the source document, remove the
FirstName and LastName attributes and add new FirstName and LastName child elements to the
Person element. The stylesheet Persons2.xslt is shown here:

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0” >
<xsl:template match=”/”>
<Persons>
<xsl:apply-templates select=”/Persons/Person” />
</Persons>
</xsl:template>
<xsl:template match=”Person”>
<xsl:copy>
<xsl:element name=”FirstName”><xsl:value-of select=”@FirstName”/>

</xsl:element>
<xsl:element name=”LastName”><xsl:value-of select=”@LastName”/>

</xsl:element>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

1. Navigate to the directory containing the PersonsOut.xml and Persons2.xslt files.

2. To run the transformation, type the following at the command line:

java -jar saxon8.jar -o PersonsBack.xml PersonsOut.xml Persons2.xslt

or

transform.exe -o PersonsBack.xml PersonsOut.xml Persons2.xslt

302

Part III: Processing

In subsequent examples, only the Java style command line will be shown; for .NET, substitute
transform.exe for java -jar saxon8.jar.

3. Open PersonsBack.xml in your favorite editor to see the structure created using the
Persons2.xslt stylesheet.

How It Works
The stylesheet Persons2.xslt differs from the previous stylesheet, Persons.xslt, only in the content
of the template that matches the Person element node:

<xsl:template match=”Person”>
<xsl:copy>
<xsl:element name=”FirstName”><xsl:value-of select=”@FirstName”/>

</xsl:element>
<xsl:element name=”LastName”><xsl:value-of select=”@LastName”/>

</xsl:element>
</xsl:copy>
</xsl:template>

The xsl:copy element, as before, adds a Person element node to the result tree. Each xsl:element
element adds a child element node to the Person element node. The name of the new element node is
specified in the name attribute of the xsl:element element. The value of the new element is specified
using the xsl:value-of element:

<xsl:value-of select=”@FirstName” />

The location path in the select attribute specifies that the value of the newly created FirstName ele-
ment node is the value of the FirstName attribute in the source tree.

The preceding examples give you an idea of how to use the xsl:copy element. However, sometimes
you will want to copy an entire structure from the source XML document to the result document. In that
case, the xsl:copy-of element comes into play.

The <xsl:copy-of> Element
The xsl:copy-of element causes a deep copy to take place. In other words, a node, together with all its
attribute nodes and descendant nodes, is copied to the result tree.

Suppose you receive a purchase order (PurchaseOrder.xml shown here) as a source document:

<PurchaseOrder>
<From>Example.org</From>
<To>XMML.com</To>
<Address>
<Street>234 Any Street</Street>
<City>Any Town</City>
<State>MO</State>
<ZipCode>98765</ZipCode>
</Address>
<!-- Other purchase order information would go here. -->
</PurchaseOrder>

303

Chapter 8: XSLT

The stylesheet, PurchaseOrder.xslt, to create an Invoice, Invoice.xml, from the purchase order is
shown here:

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0” >

<xsl:template match=”/”>
<Invoice>

<xsl:apply-templates select=”/PurchaseOrder/To” />
<xsl:apply-templates select = “/PurchaseOrder/From” />
<xsl:apply-templates select=”/PurchaseOrder/Address” />
<xsl:comment>The rest of the Invoice would go here.</xsl:comment>
</Invoice>
</xsl:template>

<xsl:template match=”To”>
<xsl:element name=”From”><xsl:value-of select=”.” /></xsl:element>
</xsl:template>

<xsl:template match=”From”>
<xsl:element name=”To”><xsl:value-of select=”.” /></xsl:element>
</xsl:template>

<xsl:template match=”Address”>
<xsl:copy-of select=”.” />
</xsl:template>

</xsl:stylesheet>

To run the transformation, enter the following at the command line:

java -jar saxon8.jar -o Invoice.xml PurchaseOrder.xml PurchaseOrder.xslt

Now let’s walk through what the stylesheet does. The template that matches the root node creates an
Invoice element as a literal result element. Then three xsl:apply-templates element are used to cre-
ate the content of the Invoice element:

<xsl:template match=”/”>
<Invoice>
<xsl:apply-templates select=”PurchaseOrder/To” />
<xsl:apply-templates select=”PurchaseOrder/From” />
<xsl:apply-templates select=”PurchaseOrder/Address” />
<xsl:comment>The rest of the Invoice would go here.</xsl:comment>
</Invoice>
</xsl:template>

The first xsl:apply-templates element selects To element nodes in the source tree and matches this
template:

<xsl:template match=”To”>
<xsl:element name=”From”><xsl:value-of select=”.” /></xsl:element>
</xsl:template>

304

Part III: Processing

A new element node, From, is created using the value of the To element node in the source tree.
Remember that the value of the select attribute of xsl:value-of,

<xsl:value-of select=”.” />

is the abbreviated syntax for the context node, which is the To element node.

Similarly, the second xsl:apply-templates element matches From element nodes:

<xsl:template match=”From”>
<xsl:element name=”To”><xsl:value-of select=”.” /></xsl:element>
</xsl:template>

A new element, To, is created in the result tree and given the value of the From element node in the
source tree.

The result of those two templates simply switches the From and To parties, which you would expect to
be switched between a purchase order and an invoice.

The Address element in the source document can be used unchanged in the invoice:

<Address>
<Street>234 Any Street</Street>
<City>Any Town</City>
<State>MO</State>
<ZipCode>98765</ZipCode>
</Address>

Therefore, the third xsl:apply-templates element in the stylesheet selects the location path
/PurchaseOrder/Address, and the following template matches:

<xsl:template match=”Address”>
<xsl:copy-of select=”.” />
</xsl:template>

The xsl:copy-of element copies the Address element node from the source tree to the result tree,
together with all its descendant nodes (and attribute nodes, if it had any).

The result document, Invoice.xml, is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<Invoice>
<From>XMML.com</From>
<To>Example.org</To>
<Address>
<Street>234 Any Street</Street>
<City>Any Town</City>
<State>MO</State>
<ZipCode>98765</ZipCode>
</Address><!--The rest of the Invoice would go here.-->

</Invoice>

305

Chapter 8: XSLT

Influencing the Output with the

<xsl:output> Element
XSLT can be used to produce XML, HTML, or text output. The developer makes a choice among these
options by using the method attribute of the xsl:output element.

XML output is the default, and it is not necessary to specify XML as an output method. If you want to do
it explicitly, then the following code is used:

<xsl:output method=”xml” />

The value of the method attribute is case sensitive and must be all lowercase.

HTML output is specified like this:

<xsl:output method=”html” />

Text output is specified like this:

<xsl:output method=”text” />

In XSLT 1.0, there is no way to specify XHTML output although this has been added to version 2.0. For
true XHTML, you should use the xml designation.

Sometimes the processor will guess that you want HTML rather than XML. This normally happens
when the first literal result element is html, so in this case there is no need to specify the method as
html. The basic difference between HTML output and XML is that many HTML elements —img or
br, for example — are empty of content but have no closing tag. These violate the well-formedness of
XML. Another difference is that of standalone attributes such as the SELECTED marker found on a
select element’s option. The text method of output has no restrictions on its format and is normally used
to create any non-markup files.

Conditional Processing
So far you have seen pretty simple XSLT stylesheets that carry out a transformation in only one way
each time a template is instantiated. At times, you will want to apply conditions when processing. The
xsl:if and xsl:choose elements allow conditional processing in XSLT.

The <xsl:if> Element
The xsl:if element tests whether a Boolean condition is true or false. If it is true, then the content of the
xsl:if element is instantiated. If it is false, then nothing specified inside the xsl:if element is added
to the result tree.

Suppose you want to test whether the age data for some historical or fictional characters corresponded to
an imposed upper realistic age limit of 110 years. The source document, Characters.xml, is shown here:

306

Part III: Processing

<Characters>
<Character age=”99”>Julius Caesar</Character>
<Character age=”23”>Anne Boleyn</Character>
<Character age=”41”>George Washington</Character>
<Character age=”45”>Martin Luther</Character>
<Character age=”800”>Methuselah</Character>
<Character age=”119”>Moses</Character>
<Character age=”50”>Asterix the Gaul</Character>
</Characters>

A quick glance at a short document like this reveals that two characters have unusually high ages. When
you have thousands or tens of thousands of Character elements, it is more appropriate to automate the
checks.

The stylesheet Characters.xslt uses the xsl:if element to add to the result tree only when the value
of the age attribute exceeds the specified upper age limit of 110:

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0” >

<xsl:template match=”/”>
<html>
<head>
<title>Age check on Characters.</title>
</head>
<body>
<h3>The recorded age is unusually high. Please check original data.</h3>
<xsl:apply-templates select=”/Characters/Character” />
</body>
</html>
</xsl:template>
<xsl:template match=”Character”>
<xsl:if test=”@age > 110 “ >
<p><xsl:value-of select=”.” /> is older than expected.
Please check if this character’s age, <xsl:value-of select=”@age” />
, is correct.</p>
</xsl:if>
</xsl:template>

</xsl:stylesheet>

The xsl:apply-templates element in the template that matches the root node selects Character ele-
ment nodes for which the following template matches:

<xsl:template match=”Character”>
<xsl:if test=”@age > 110 “ >
<p><xsl:value-of select=”.” /> is older than expected. Please check if
this character’s age, <xsl:value-of select=”@age” />, is correct.</p>
</xsl:if>
</xsl:template>

Notice that the xsl:if element is a child element of the xsl:template element. Therefore, if the test
attribute of the xsl:if element returns the Boolean value false, then nothing is output from the tem-
plate for that Character element.

307

Chapter 8: XSLT

The output from the transformation is shown in Figure 8-5.

Figure 8-5

As you can see in Figure 8-5, only those characters whose age exceeds 110 are displayed in the web page
created by the transformation.

While the xsl:if element either outputs something or outputs nothing, the xsl:choose element is
intended to allow alternate output options.

The <xsl:choose> Element
Suppose that you want to indicate whether the age of a character is suspicious or acceptable. Using the
same XML source document used in the previous section, Characters.xml, you can use the following
stylesheet, CharactersChoose.xslt, to indicate an assessment for each character:

<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0” >

<xsl:template match=”/”>
<html>
<head>
<title>Age check on all Characters.</title>
</head>
<body>
<h3>The following is the assessment of the age data.</h3>
<xsl:apply-templates select=”/Characters/Character” />
</body>
</html>
</xsl:template>

<xsl:template match=”Character”>
<xsl:choose>

308

Part III: Processing

<xsl:when test=”@age > 110 “ >
<p><xsl:value-of select=”.” /> - too high. Please check if this
character’s age, <xsl:value-of select=”@age” />, is correct.</p>
</xsl:when>
<xsl:otherwise>
<p><xsl:value-of select=”.” /> - ok</p>.
</xsl:otherwise>

</xsl:choose>
</xsl:template>

</xsl:stylesheet>

To run the transformation, enter the following at the command line:

java -jar saxon8.jar -o AgeAssessed.html Characters.xml CharactersChoose.xslt

The key part of this transformation is in the template that matches Character element nodes:

<xsl:template match=”Character”>
<xsl:choose>
<xsl:when test=”@age > 110 “ >
<p><xsl:value-of select=”.” /> - too high. Please check if this
character’s age, <xsl:value-of select=”@age” />, is correct.</p>
</xsl:when>
<xsl:otherwise>
<p><xsl:value-of select=”.” /> - ok</p>.
</xsl:otherwise>
</xsl:choose>
</xsl:template>

Notice how the xsl:choose element is nested immediately inside the xsl:template element.
Therefore, output from that template is entirely controlled by the xsl:choose element.

Nested inside the xsl:choose element are an xsl:when element and an xsl:otherwise element. On
the xsl:when element is a test attribute whose value is a Boolean value. If the value of the test
attribute is the Boolean value true, then the content of the xsl:when element is output. If the value of
the test attribute of the xsl:when attribute is false, then none of the content of the xsl:when element
is output; the content of the xsl:otherwise element is output instead.

The HTML output, AgeAssessed.html, tidied for on-page display, is shown here:

<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
<title>Age check on all Characters.</title>

</head>
<body>
<h3>The following is the assessment of the age data.</h3>
<p>Julius Caesar - ok</p>
<p>Anne Boleyn - ok</p>
<p>George Washington - ok</p>
<p>Martin Luther - ok</p>

309

Chapter 8: XSLT

<p>Methuselah - too high. Please check if this character’s age,
800, is correct.</p>
<p>Moses - too high. Please check if this character’s age, 119
, is correct.</p>
<p>Asterix the Gaul - ok</p>
</body>
</html>

Output is created for every Character element node in the source tree. If the value of the age attribute
is greater than 110, then a message asking the user to check that character’s age is output, as indicated by
the content of the xsl:when element. Otherwise, an ok message is output, as specified in the xsl:oth-
erwise element.

The resulting web page is shown in Figure 8-6.

Figure 8-6

In the preceding example, the xsl:choose element had only one xsl:when element. However, it can
have an arbitrary number of xsl:when elements as its children, each with a Boolean test specified in the
test attribute. The content of the first xsl:when element that has a test attribute evaluating to the
Boolean value true is output. All other xsl:when elements generate no output, and the xsl:otherwise

310

Part III: Processing

is ignored. However, if none of the xsl:when elements has a test attribute that evaluates to the Boolean
value true, then the content of the xsl:otherwise element, if one is present, is output.

Having looked at how you can make choices between processing options, let’s move on to examine how
you can process several nodes, with each being processed in the same way.

The <xsl:for-each> Element
The xsl:for-each element allows all nodes in a node-set to be processed according to the XSLT
instructions nested inside the xsl:for-each element. For example, consider a source document,
Objects.xml, that shows some characteristics of an object:

<?xml version=”1.0”?>
<Objects>
<Object name=”Car”>
<Characteristic>Hard</Characteristic>
<Characteristic>Shiny</Characteristic>
<Characteristic>Has 4 wheels</Characteristic>
<Characteristic>Internal Combustion Engine</Characteristic>
</Object>
</Objects>

The xsl:for-each element can be used to iterate across this node-set and create some specified output
for each node in the node-set. You could, for example, use the xsl:for-each element to create an
HTML list item, a li element, for each characteristic of an object. The following code, object.xslt,
shows a stylesheet that does this:

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”
>

<xsl:template match=”/”>
<html>
<head>
<title>Object Characteristics</title>
</head>
<body>
<h3>Characteristics of <xsl:value-of select=”Objects/Object/@name” /></h3>
<xsl:apply-templates select=”/Objects/Object” />
</body>
</html>
</xsl:template>

<xsl:template match=”Object”>

<xsl:for-each select=”Characteristic”>
<xsl:value-of select=”.” />
</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

311

Chapter 8: XSLT

The interesting part of this stylesheet is the template that matches Object element nodes:

<xsl:template match=”Object”>

<xsl:for-each select=”Characteristic”>
<xsl:value-of select=”.” />
</xsl:for-each>

</xsl:template>

Inside the template, the start-tags and end-tags of an unordered list are specified using literal result
elements. Between those tags you use the xsl:for-each element to create a list item for each
Characteristic element node child of the context node, which is an Object element node.

Remember that XSLT is declarative, not procedural. xsl:for-each does not loop through the ele-
ments as you might loop through a collection or an array in other languages. In theory, the nodes can be
processed in any order — with a multi-processor machine processing one per processor simultaneously,
for example. This is why you cannot break out of a for-each as you can in, say, Java.

So far the order of the elements in the output document has matched that of the input document.
However, you may need to output data in an order that differs from the order in the source document.
The xsl:sort element provides the functionality to sort XML data during a transformation.

The <xsl:sor t> Element
The xsl:sort element is used to specify sort order for node-sets. The xsl:sort element can be used
together with the xsl:apply-templates element and the xsl:for-each element. The following
example shows both usages.

Suppose you have a larger group of objects that you want to describe in an HTML web page. The source
XML, Objects2.xml, is shown in the following code:

<?xml version=”1.0”?>
<Objects>
<Object name=”Car”>
<Characteristic>Hard</Characteristic>
<Characteristic>Shiny</Characteristic>
<Characteristic>Has 4 wheels</Characteristic>
<Characteristic>Internal Combustion Engine</Characteristic>
</Object>
<Object name=”Orange”>
<Characteristic>Fruit</Characteristic>
<Characteristic>Juicy</Characteristic>
<Characteristic>Dimpled skin</Characteristic>
<Characteristic>Citrus</Characteristic>
</Object>
<Object name=”Giraffe”>
<Characteristic>Tall</Characteristic>
<Characteristic>Four legs</Characteristic>
<Characteristic>Big spots</Characteristic>

312

Part III: Processing

<Characteristic>Mammal</Characteristic>
</Object>
<Object name=”Prawn Cracker”>
<Characteristic>Crisp</Characteristic>
<Characteristic>Savoury</Characteristic>
<Characteristic>Off white</Characteristic>
<Characteristic>Edible</Characteristic>
</Object>
</Objects>

Now suppose you want to sort the data before displaying it. The objects are to be sorted in ascending
alphabetical order, and the characteristics are to be sorted in descending alphabetical order. The
stylesheet, Objects.xslt, creates an HTML file with those sort orders applied:

<?xml version=”1.0”?>
<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”
>

<xsl:template match=”/”>
<html>
<head>
<title>Object Characteristics</title>
</head>
<body>
<xsl:apply-templates select=”/Objects/Object” >
<xsl:sort select=”@name” />
</xsl:apply-templates>
</body>
</html>
</xsl:template>

<xsl:template match=”Object”>
<h3>Characteristics of <xsl:value-of select=”@name” /></h3>

<xsl:for-each select=”Characteristic”>
<xsl:sort select=”.” order=”descending” />
<xsl:value-of select=”.” />
</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

First, look at the use of xsl:sort in association with the xsl:apply-templates element:

<xsl:apply-templates select=”/Objects/Object” >
<xsl:sort select=”@name” />
</xsl:apply-templates>

As normal, you use the select attribute of the xsl:apply-templates element to specify a node-set.
Unlike earlier examples, the xsl:apply-templates element is not an empty element; instead, it has an

313

Chapter 8: XSLT

xsl:sort element nested inside it. The value of the select attribute of the xsl:sort element specifies
the value by which the node-set is to be sorted. In this case, the value of the select attribute is a relative
location path, @name, which specifies the name attribute node whose parent is an Object element node.

The default sort order is ascending so you don’t need to specify that to produce the desired sort order
for objects. However, when you want to sort the Characteristic element nodes, the desired sort order
is descending, so that needs to be specified using the order attribute on the xsl:sort element:

<xsl:template match=”Object”>
<h3>Characteristics of <xsl:value-of select=”@name” /></h3>

<xsl:for-each select=”Characteristic”>
<xsl:sort select=”.” order=”descending” />
<xsl:value-of select=”.” />
</xsl:for-each>

</xsl:template>

Notice how the unordered list is created in the preceding template. The start- and end-tags of the ul ele-
ment come outside the xsl:for-each element. The xsl:sort element is nested inside the xsl:for-
each element, coming immediately after its start-tag. The node-set selected by the xsl:for-each
element are Characteristic element nodes. It is the value of those nodes that you want to sort by, so
you use the period character as the value of the select attribute of the xsl:sort element. Remember
that the period character selects the context node itself, being an abbreviation for the location path
self::node(). To sort the characteristics in descending order, you specify the value of the order
attribute of the xsl:sort element as descending.

xsl:sort elements can be repeated so that if you wish to sort by one value and then another this is also
possible. For example, if you want to process a number of Person elements that have a FirstName and
a LastName element and have them sorted by LastName and then FirstName, the following
xsl:apply-templates would be needed:

<xsl:apply-templates select=”Person”>
<xsl:sort select=”LastName”/>
<xsl:sort select=”FirstName”/>

</xsl:apply-templates>

Both these sorts were alphabetical, as the processor could tell from the Characteristic’s type. If you
want to sort numerically, you need to add the attribute data-type to the xsl:sort element and specify
number as its value. If you wish to specify alphabetical sorting, specify text.

XSLT Modes
You have learned how you can select, for example, element nodes in the source tree and produce output
corresponding to their content. So far in the examples that you have seen, a node in the source tree has
been processed once or not at all. Sometimes, however, you will need to use a node in the source tree
more than once. A classic situation is using a chapter title in the source document at the top of its own
page and using the same information in a table of contents for the document.

314

Part III: Processing

The XSLT solution to this need to process certain nodes more than once is the mode. An XSLT mode is
expressed using a mode attribute on an xsl:apply-templates element, like this:

<xsl:apply-templates select=”/Book/Chapter” mode=”TOC” />

Suppose the stylesheet had two templates, one with the start-tag

<xsl:template match=”Chapter” >

and the other with the start-tag

<xsl:template match=”Chapter” mode=”TOC” >

Both templates match as far as the value of the match attribute is concerned. However, if the
xsl:apply-templates element has a mode attribute, a template is instantiated only if it has both a
matching value in the match attribute and in the mode attribute of the xsl:template element.

We can see this in operation to solve the example problem of processing chapter titles so that they are
both used in a table of contents and displayed as the title of the chapter when the chapter is displayed.
The content of a very abbreviated version of this book, BegXML.xml, is stored as XML and is shown
here:

<?xml version=”1.0”?>
<Book>
<Authors>
<Author>David Hunter</Author>
<Author>Danny Ayers</Author>
<Author>Jeff Rafter</Author>
<Author>John Duckett</Author>
<Author>Eric van der Vlist</Author>
<Author>Andrew Watt</Author>
<Author>Joe Fawcett</Author>
</Authors>
<Year>2007</Year><Chapters>

<Chapter number=”1” title=”What is XML?”>
XML is a markup language, derived from SGML.</Chapter>
<Chapter number=”2” title=”Well-formed XML”>
To be well-formed an XML document must satisfy several rules about its
structure.</Chapter>
<Chapter number=”3” title=”Namespaces”>
To help unambiguously identify the names of elements and attributes the
notion of an XML namespace is used.</Chapter>
<Chapter number=”4” title=”DTD”>
A document type definition, DTD, is a way to specify the permitted
structure of an XML document.</Chapter>
<Chapter number=”5” title=”Schemas”>
W3C XML Schema and Relax NG are two schema languages to specify the
structure of XML documents.</Chapter>
</Chapters>
</Book>

315

Chapter 8: XSLT

The aim is to create an HTML document with a table of contents and the chapter text, as shown in
Figure 8-7.

Figure 8-7

The stylesheet, BegXML.xslt, to create the HTML web page is shown here:

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”
>

<xsl:template match=”/”>
<html>
<head>
<title><xsl:value-of select=”/Book/Title” /></title>
</head>
<body>
<h3><xsl:value-of select=”/Book/Title” /></h3>
<p>by <xsl:apply-templates select=”/Book/Authors/Author” />
</p>
<h3>Table of Contents</h3>

316

Part III: Processing

<xsl:apply-templates select=”/Book/Chapters/Chapter” mode=”TOC” />
<xsl:apply-templates select=”/Book/Chapters/Chapter” mode=”fulltext” />
</body>
</html>
</xsl:template>

<xsl:template match=”Author”>
<xsl:value-of select=”.” />
<xsl:if test=”position() != last()”><xsl:text>, </xsl:text></xsl:if>
<xsl:if test=”position() = last()-1”><xsl:text>and </xsl:text></xsl:if>
<xsl:if test=”position() = last()”><xsl:text>.</xsl:text></xsl:if>
</xsl:template>

<xsl:template match=”Chapter” mode=”TOC”>
<p><xsl:value-of select=”@number” />: <xsl:value-of select=”@title” />
</p>
</xsl:template>

<xsl:template match=”Chapter” mode=”fulltext”>
<h3><xsl:value-of select=”@number” />. <xsl:value-of select=”@title” /></h3>
<p><xsl:value-of select=”.” /></p>
</xsl:template>

</xsl:stylesheet>

Note several differences from stylesheets that you have already seen. The template that matches the root
node has three xsl:apply-templates elements in it:

<xsl:template match=”/”>
<html>
<head>
<title><xsl:value-of select=”/Book/Title” /></title>
</head>
<body>
<h3><xsl:value-of select=”/Book/Title” /></h3>
<p>by <xsl:apply-templates select=”/Book/Authors/Author” />
</p>
<h3>Table of Contents</h3>
<xsl:apply-templates select=”/Book/Chapters/Chapter” mode=”TOC” />
<xsl:apply-templates select=”/Book/Chapters/Chapter” mode=”fulltext” />
</body>
</html>
</xsl:template>

The first xsl:apply-templates element matches this template:

<xsl:template match=”Author”>
<xsl:value-of select=”.” />
<xsl:if test=”position() != last()”><xsl:text>, </xsl:text></xsl:if>
<xsl:if test=”position() = last()-1”><xsl:text>and </xsl:text></xsl:if>
<xsl:if test=”position() = last()”><xsl:text>.</xsl:text></xsl:if>
</xsl:template>

317

Chapter 8: XSLT

The xsl:value-of element simply outputs an author’s name, but punctuation is controlled using the
xsl:if element and the XPath position() function and last() function. The first xsl:if element
causes a comma followed by a space character to be output. This is done when the position of the
Author element node is not last in document order among the Author element nodes in the node-set
selected by the first of the three xsl:apply-templates elements in the template matching the root
node.

The second xsl:if element produces output only if the Author element node is the second last Author
element node in the node-set. The third xsl:if element produces a period character only when the
Author element node is the last one.

Taken together, all this produces a correctly punctuated author list:

<p>by David Hunter, Danny Ayers, Jeff Rafter, John Duckett,
Eric van der Vlist, and Joe Fawcett.</p>

The xsl:text element was used in each of the xsl:if elements. It is not needed here, and you could
have obtained the same output without using it. However, the xsl:text element is essential if you
want to output whitespace literally — either a space character or a newline character, for example. To
output a space character, you could write the following:

<xsl:text> </xsl:text>

To output a newline character, you could write the following:

<xsl:text>
</xsl:text>

The second and third xsl:apply-templates from the BegXML.xslt stylesheet demonstrate the use of
modes:

<xsl:apply-templates select=”/Book/Chapters/Chapter” mode=”TOC” />
<xsl:apply-templates select=”/Book/Chapters/Chapter” mode=”fulltext” />

The first xsl:apply-templates element matches this template, as shown in the following:

<xsl:template match=”Chapter” mode=”TOC”>
<p><xsl:value-of select=”@number” />: <xsl:value-of
select= “@title” /></p>
</xsl:template>

Notice that the value of the select attribute of the xsl:apply-templates element matches the value
of the match attribute of the xsl:template element, and at the same time the values of the two mode
attributes are the same.

The content added to the result tree is straightforward using the xsl:value-of element that you have
seen several times before. Importantly, using a mode attribute on both the xsl:apply-templates and
xsl:template element leaves you free to process the Chapter nodes a second time, using another
xsl:apply-templates element:

<xsl:apply-templates select=”/Book/Chapters/Chapter” mode=”fulltext” />

318

Part III: Processing

The preceding xsl:apply-templates element matches the following template:

<xsl:template match=”Chapter” mode=”fulltext”>
<h3><xsl:value-of select=”@number” />. <xsl:value-of select=”@title” /></h3>
<p><xsl:value-of select=”.” /></p>
</xsl:template>

Note that the match attribute of the xsl:template element matches the select attribute of the
xsl:apply-templates element, and the two mode attributes also match.

The HTML document, BegXML.html, that the stylesheet produces is shown here after tidying for on-
page presentation:

<html>
<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
<title>Beginning XML, 4th Edition</title>

</head>
<body>

<h3>Beginning XML, 4th Edition</h3>
<p>by David Hunter, Danny Ayers, Jeff Rafter, John Duckett,

Eric van der Vlist, and Joe Fawcett.</p>
<h3>Table of Contents</h3>
<p>1:What Is XML?
</p>
<p>2:Well-Formed XML
</p>
<p>3:Namespaces
</p>
<p>4:DTD
</p>
<p>5:Schemas
</p>
<h3>1. What Is XML?</h3>
<p>XML is a markup language, derived from SGML.</p>
<h3>2. Well-formed XML</h3>
<p>To be well-formed an XML document

must satisfy several rules about its structure.</p>
<h3>3. Namespaces</h3>
<p>To help unambiguously identify the
names of elements and attributes,

the notion of an XML namespace is used.</p>
<h3>4. DTD</h3>
<p>A document type definition, DTD, is a way to
specify the permitted structure of an XML document.</p>
<h3>5. Schemas</h3>
<p>W3C XML Schema and Relax NG are two schema
languages to specify the structure of XML documents.</p>

</body>
</html>

As you have seen, modes allow multiple processing of nodes in the source tree for different purposes.

319

Chapter 8: XSLT

XSLT Variables and Parameters
XSLT allows variables and parameters to be specified by the xsl:variable and xsl:parameter ele-
ments, respectively. Both variables and parameters are referenced using $VariableName or
$ParameterName syntax.

Variables in XSLT can be confusing because they resemble constants in other languages; once their
value is set it cannot be altered. This means that expressions common in other languages, such as
$VariableName = $VariableName + 1, are illegal in XSLT. If you find yourself needing such con-
structs you will have to rethink the approach to fit with a functional language.

Suppose you want to be able to enter the name of a person and find his or her age. A source document,
Ages.xml, is shown here:

<?xml version=”1.0”?>
<Ages>
<Person name=”Peter” age=”21” />
<Person name=”Angela” age=”12” />
<Person name=”Augustus” age=”92” />
<Person name=”George” age=”44” />
<Person name=”Hannah” age=”30” />
</Ages>

Next, you show the stylesheet. Note the xsl:param element as a child element of the xsl:stylesheet
element:

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”
>
<xsl:param name=”person” />

<xsl:template match=”/”>
<html>
<head>
<title>Finding an age using an XSLT parameter</title>
</head>
<body>
<xsl:apply-templates select=”/Ages/Person[@name=$person]” />
</body>
</html>

</xsl:template>

<xsl:template match=”Person”>
<p>The age of <xsl:value-of select=”$person” /> is <xsl:value-of
select=”@age”/> </p>

</xsl:template>

</xsl:stylesheet>

To pass in a parameter from the command line, use syntax like this:

java -jar saxon8.jar -o Ages.html Ages.xml Ages.xslt person=”Peter”

320

Part III: Processing

This passes in Peter as the value of the person parameter. If you pass in the name Hannah to the
stylesheet, the HTML output is as follows:

<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>
<title>Finding an age using an XSLT parameter</title>
</head>
<body>
<p>The age of Hannah is 30</p>
</body>
</html>

The person parameter is used twice in the stylesheet. First, it is used in a predicate in the value of the
select attribute of the xsl:apply-templates element:

<xsl:apply-templates select=”/Ages/Person[@name=$person]” />

Later, it is used inside the matching template to display the value of the person parameter using the
xsl:value-of element:

<xsl:template match=”Person”>
<p>The age of <xsl:value-of select=”$person” /> is <xsl:value-of
select=”@age”/></p>

</xsl:template>

XSLT variables behave in the same way as parameters but with one difference: Parameters can be passed
into a transformation from outside. Variables are defined inside an XSLT stylesheet. There are two ways
to specify an XSLT variable: the first way uses the select attribute of the xsl:variable element, as
shown in the following:

<xsl:variable name=” variableName” select=” someExpression” />

The second way to specify an XSLT variable is to supply content between the start-tag and the end-tag of
the xsl:variable element, as shown in the following:

<xsl:variable name=” variableName”>
<!-- Some content goes here which can define the value of the variable. -->
</xsl:variable>

Don’t forget to enclose the contents of param or variable in quotes if you are using the select
attribute and you want a string value. For example, if you have

<xsl:param name=”searchLetter” select=”’A’”/>

then the param $searchLetter will be set to A unless set externally before the transform. If you omit the
inner pair of single quotes, then it will default to the node set of all A elements under the context node.

The variable can then be employed by using the $ variableName notation at an appropriate place in the
stylesheet.

321

Chapter 8: XSLT

Finally, as noted previously, a global variable, one residing as a child of the xsl:stylesheet element, can
be set programmatically before the transform runs. The specification doesn’t indicate how this must be
done, so each processor has a slightly different technique. You need to look at the documentation for the
particular transformer you are using.

Named Templates and the

<xsl:call-template> Element
The xsl:apply-templates element that you have seen in use several times in this chapter allows
addressing of selected parts of the source tree of nodes. However, at times you may want to use a tem-
plate in a manner similar to using a function in, for example, JavaScript. Named templates in XSLT enable
you to do this.

Named templates are identified, not surprisingly, by a name attribute on an xsl:template element:

<xsl:template name=” TemplateName”>
<!-- The template content goes here. -->
</xsl:template>

Named templates are called using the xsl:call-template element.

The simplest use of xsl:call-template is when no parameter is passed to the named template:

<xsl:call-template name=” TemplateName” />

When you want to pass one or more parameters to a named template, you can do so using the
xsl:with-param element, like this:

<xsl:call-template name=” TemplateName” >
<xsl:with-param name=” ParameterName” />
<!-- More <xsl:with-param> elements can go here. -->
</xsl:call-template>

The xsl:with-param element can optionally have a select attribute whose value is an expression,
which can specify how the value to be passed is selected.

When a parameter is passed to a named template, the template is written like this:

<xsl:template name=” TemplateName”>
<xsl:with-param name=” ParameterName” />
<!-- Rest of template goes here. -->
</xsl:template>

The content of a template called using xsl:call-template can use any of the XSLT elements described
in this chapter.

322

Part III: Processing

XSLT Functions
All of the XPath 1.0 functions described in Chapter 7 are available to an XSLT processor. In addition to
those functions, XSLT 1.0 provides a limited number of additional functions to provide functionality
specifically relevant to XSLT, several of which are listed here:

❑ The document() function enables access to documents other than the document that contains
the context node. This allows the use of multiple documents as source XML documents.

❑ The key() function can be used with the xsl:key element to provide an indexing mechanism
for XML source documents.

❑ The format-number() function can be used with the xsl:decimal-format element to pro-
vide fine control of how numeric values are displayed in a result document.

❑ The generate-id() function allows the generation of ID attribute nodes in the result tree.

XSLT 2.0
XSLT 2.0 was a long time coming but finally made it as a W3C Recommendation in January 2007.

The latest version of the XSLT 2.0 specification is located at www.w3.org/tr/xslt20/.

As well as harnessing the more powerful XPath 2.0, a number of other improvements make XSLT 2.0 a
much more powerful tool:

❑ New data model — The data model for XSLT 2.0 is the same data model that is used for XPath
2.0 and for the XML Query Language, XQuery. XQuery is described in Chapter 9.

❑ W3C XML Schema datatypes — W3C XML Schema datatypes replace the datatypes used in
XPath 1.0 and in XSLT 1.0.

❑ New elements — Several new elements are added in XSLT 2.0, including elements that help
with grouping tasks, which are difficult to accomplish in XSLT 1.0.

❑ Non-XML input — XSLT 2.0 enables you to transform textual data that is not well-formed XML.

❑ Improved string handling — As well as using XPath’s regular expression functions, XSLT 2.0
has its own instructions that help with text parsing, The main addition is xsl:analyze-
string.

❑ Multiple outputs — XSLT 2.0 allows more than one document to be output.

❑ New functions — XSLT 2.0 uses the additional functions that form part of XPath 2.0 as well as
adding some of its own. This provides a much bigger function library than is standardly avail-
able in XSLT 1.0. You can also define your own custom functions.

Along with these new features are a number of rules that apply when a version 1.0 transform is carried
out by a version 2.0 processor. Some elements, notably xsl:value-of, produce quite different results
under version 2.0, so you need to be careful in specifying the version of the transformation and knowing
which processor will apply it.

323

Chapter 8: XSLT

Another improvement is the abandonment of the result tree fragment. This means that variables created
like this:

<xsl:variable name=”newNodes”>
<newElement>
<xsl:copy-of select=”//person”/>

</newElement>
</xsl:variable>

are directly usable as nodes without needing the node-set extension function that many processors were
forced to implement.

The following sections looks at how these new features help with some common transformation
requirements.

Grouping in Version 2.0
Grouping elements — for example, creating a list of contacts based on country of origin — was no mean
feat in XSLT 1.0. A popular technique was Muenchian grouping, details of which can be found at
www.jenitennison.com/xslt/grouping/muenchian.xml, but this technique was tricky to explain
and difficult to write.

XSLT 2.0 solves this problem by having an xsl:for-each-group instruction allied to new functions
such as current-grouping-key() and current-group().

xsl:for-each-group has a variety of options, allowing you to group on specific values or by position,
where there is some sort of header element, and where nodes needing grouping are adjacent in the
document.

The following example uses a section of my address book, contacts.xml, to illustrate how the new
grouping features work:

<Contacts>
<Contact>
<FirstName>Bruce</FirstName>
<LastName>Willis</LastName>
<Country>USA</Country>

</Contact>
<Contact>
<FirstName>Stephen</FirstName>
<LastName>Fry</LastName>
<Country>UK</Country>

</Contact>
<Contact>
<FirstName>Anne</FirstName>
<LastName>Hathaway</LastName>
<Country>USA</Country>

</Contact>
<Contact>
<FirstName>Etienne</FirstName>
<LastName>Pradier</LastName>

324

Part III: Processing

<Country>France</Country>
</Contact>
<Contact>
<FirstName>Bill</FirstName>
<LastName>Gates</LastName>
<Country>USA</Country>

</Contact>
<Contact>
<FirstName>Kiera</FirstName>
<LastName>Knightley</LastName>
<Country>UK</Country>

</Contact>
</Contacts>

The requirement is to produce a list of all contacts grouped by Country. You also want them listed
alphabetically, by LastName and then FirstName. The transform, groupedContacts.xslt, produces
the output shown in Figure 8-8.

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”2.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>
<body>
<h3>Contacts by Country</h3>
<xsl:for-each-group select=”Contacts/Contact” group-by=”Country”>
<xsl:sort select=”current-grouping-key()”/>
<p>Contacts who live in:

<xsl:value-of select=”current-grouping-key()”/>

<xsl:apply-templates select=”current-group()”>
<xsl:sort select=”LastName”/>

</xsl:apply-templates>

</p>
</xsl:for-each-group>

</body>
</html>

</xsl:template>

<xsl:template match=”Contact”>

<xsl:value-of select=”LastName”/>, <xsl:value-of select=”FirstName”/>

</xsl:template>

</xsl:stylesheet>

325

Chapter 8: XSLT

Figure 8-8

Aside from the standard HTML elements, this transformation has one notable section, the xsl:for-
each-group instruction:

<xsl:for-each-group select=”Contacts/Contact” group-by=”Country”>
<!—more code here -->

</xsl:for-each-group>

The select attribute is used to choose the nodes that need grouping — in this case the Contact ele-
ments lying under the Contacts document element. The group-by attribute states how to group and
the expression is relative to the nodes chosen to group — in this case the Country element, which is a
child of Contact.

You want to sort by Country, so the next instruction is xsl:sort:

<xsl:for-each-group select=”Contacts/Contact” group-by=”Country”>
<xsl:sort select=”current-grouping-key()”/>
<!—more code here -->

</xsl:for-each-group>

The item to sort on is specified by the select attribute as normal, but a new function, current-
grouping-key(), is used to obtain the specific Country element that the current group is based on.

The next stage is to ouput the group’s heading:

326

Part III: Processing

<xsl:for-each-group select=”Contacts/Contact” group-by=”Country”>
<xsl:sort select=”current-grouping-key()”/>
<p>Contacts who live in:

<xsl:value-of select=”current-grouping-key()”/>

<!—more code here -->
</p>

</xsl:for-each-group>

The current group name is shown, again using the current-grouping-key() function.

Finally, the actual nodes in each group are selected; these will be matched by the Contact template and
output as individual list items:

<xsl:for-each-group select=”Contacts/Contact” group-by=”Country”>
<xsl:sort select=”current-grouping-key()”/>
<p>Contacts who live in:

<xsl:value-of select=”current-grouping-key()”/>

<xsl:apply-templates select=”current-group()”>
<xsl:sort select=”LastName”/>

</xsl:apply-templates>

</p>

</xsl:for-each-group>

The individual groups are sorted by an xsl:sort instruction with LastName chosen as the sort item.

Non-XML Input and String Handling
XSLT 2.0 allows non-XML to be used in a transformation. Although the principal input must be XML,
secondary documents can be accessed via the new unparsed-text() function, which accepts a URL
that can be a local file or a document accessed via HTTP. To illustrate the use of this function, let’s take a
look at another new instruction, xsl:analyze-string.

xsl:analyze-string breaks down a string based on a regular expression. It then passes those parts
that match the expression to an xsl:matching-substring instruction, and those that don’t to an
xsl:non-matching-substring element.

For example, suppose you have a variable named historicalDates that contains a mixture of years
and text:

Some famous years in history were 1066 — the Battle of Hastings in England,

1776 — the signing of the Declaration of Independence in America, and 1789 — the

Storming of the Bastille in France.

327

Chapter 8: XSLT

To extract the actual years into an HTML list, use the following XSLT:

<xsl:analyze-string select=”$historicalDates” regex=”\d+”>
<xsl:matching-substring>
<xsl:value-of select=”.”/>

</xsl:matching-substring>
</xsl:analyze-string>

The regular expression \d+ matches a string of at least one digit. Each match is processed by the
xsl:matching-substring instruction, where the actual match can be accessed via the context node.

You can also use the xsl:non-matching-substring instruction, where it’s easier to match the charac-
ters you don’t need and process those remaining. If necessary, both the xsl:matching-substring and
xsl:non-matching-substring instructions can be used.

Try It Out Reading and Using Non-XML Input

For an example of combining the unparsed-text() function and xsl:analyze-string instruction,
start with a traditional INI file, config.ini:

name = joe
server = Socrates
role = admin
initial screen = accounts

Now suppose your requirement is to turn this into a more modern XML representation:

<config>
<item name=”name”>joe</item>
<item name=”server”>Socrates</item>
<item name=”role”>admin</item>
<item name=”initial screen”>accounts</item>

</config>

The following XSLT, createConfig.xslt, shows how it’s done:

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”2.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xsl:param name=”sourceUri” as=”xs:string”/>

<xsl:template name=”main”>
<xsl:variable name=”iniFile” select=”unparsed-text($sourceUri)”/>
<config>
<xsl:analyze-string select=”$iniFile” regex=”\n”>
<xsl:non-matching-substring>
<item>
<xsl:for-each select=”tokenize(., ‘\s+=\s+’)”>

328

Part III: Processing

<xsl:choose>
<xsl:when test=”position() = 1”>
<xsl:attribute name=”name”>
<xsl:value-of select=”.”/>

</xsl:attribute>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select=”.”/>

</xsl:otherwise>
</xsl:choose>

</xsl:for-each>
</item>

</xsl:non-matching-substring>
</xsl:analyze-string>
</config>

</xsl:template>
</xsl:stylesheet>

To test the transformation, use the following command line:

java –jar saxon8.jar -o config.xml -it main createConfig.xslt sourceUri=config.ini

The stylesheet has no XML input, so the –it switch instructs processing to begin at a template named
main. The xsl:param named sourceUri is also set to the name of the INI file.

How It Works
The template named main first uses the unparsed-text() function to read the INI file and store the
text in a variable named iniFile:

<xsl:template name=”main”>
<xsl:variable name=”iniFile” select=”unparsed-text($sourceUri)”/>

Then the document element config is created and xsl:analyze-string is used with a newline char-
acter as the regular expression:

<xsl:template name=”main”>
<xsl:variable name=”iniFile” select=”unparsed-text($sourceUri)”/>
<config>
<xsl:analyze-string select=”$iniFile” regex=”\n”>

The xsl:non-matching-substring instruction processes the name-value pairs and begins by creating
an item element:

<xsl:template name=”main”>
<xsl:variable name=”iniFile” select=”unparsed-text($sourceUri)”/>
<config>
<xsl:analyze-string select=”$iniFile” regex=”\n”>
<xsl:non-matching-substring>
<item>
<xsl:for-each select=”tokenize(., ‘\s+=\s+’)”>

329

Chapter 8: XSLT

It then splits the name value based on a regular expression that looks for a number of spaces surround-
ing an equals sign:

<xsl:template name=”main”>
<xsl:variable name=”iniFile” select=”unparsed-text($sourceUri)”/>
<config>
<xsl:analyze-string select=”$iniFile” regex=”\n”>
<xsl:non-matching-substring>
<item>
<xsl:for-each select=”tokenize(., ‘\s*=\s*’)”>
<xsl:choose>
<xsl:when test=”position() = 1”>
<xsl:attribute name=”name”>
<xsl:value-of select=”.”/>

</xsl:attribute>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select=”.”/>

</xsl:otherwise>
</xsl:choose>

</xsl:for-each>
</item>

</xsl:non-matching-substring>

The xsl:choose instruction uses the first node, the name, to create an attribute, and the second, the
value, to create a text node.

Multiple Outputs
One of the most common questions in XSLT forums asks how to produce more than one document as
output. In version 1.0, the only way was through extensions or scripting within the transformation. XSLT
2.0 introduces the xsl:result-document element, which enables any number of documents to be pro-
duced. As an example, suppose you wanted to group contacts as in the previous example, but this time
each country’s contacts should be output to a separate file and the main result will give an overall
report.

The XSLT used is separatedContacts.xslt:

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”2.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>
<body>
<h3>Contacts by Country</h3>

330

Part III: Processing

<xsl:for-each-group select=”Contacts/Contact” group-by=”Country”>
<xsl:sort select=”current-grouping-key()”/>
<p>Number of contacts who live in:

<xsl:value-of select=”current-grouping-key()”/>

 is
<xsl:value-of select=”count(current-group())”/>

</p>
<xsl:result-document href=”{current-grouping-key()}.xml”>
<Contacts>
<xsl:copy-of select=”current-group()”/>

</Contacts>
</xsl:result-document>

</xsl:for-each-group>
</body>

</html>
</xsl:template>

</xsl:stylesheet>

If you run this transform with the line

java -jar saxon8.jar -o ContactsReport.html Contacts.xml separatedContacts.xslt

you end up with three files named France.xml, UK.xml, and USA.xml. USA.xml looks like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<Contacts>
<Contact>
<FirstName>Bruce</FirstName>
<LastName>Willis</LastName>
<Country>USA</Country>

</Contact>
<Contact>
<FirstName>Anne</FirstName>
<LastName>Hathaway</LastName>
<Country>USA</Country>

</Contact>
<Contact>
<FirstName>Bill</FirstName>
<LastName>Gates</LastName>
<Country>USA</Country>

</Contact>
</Contacts>

You’ll also get the main result document, ContactsReport.html, as shown in Figure 8-9.

331

Chapter 8: XSLT

Figure 8-9

The main difference between this and the groupedContacts.xslt is the use of xsl:result-
document:

<xsl:result-document href=”{current-grouping-key()}.xml”>
<!—more code here -->

</xsl:result-document>

When the xsl:result-document is encountered, a new document node is constructed and eventually
output to a file specified using the href attribute. In this example, the current-grouping-key() func-
tion is used to give each file a different name based on the location.

Using curly braces, {}, around an expression in an attribute is known as an Attribute Value
Template. You can use this technique on certain attributes to insert the result of an XPath expression
where normally a fixed string would be expected.

Within the result document, a document element, Contacts, is created’ and then all of the current-
group is copied in its entirety using the xsl:copy-of instruction:

<xsl:result-document href=”{current-grouping-key()}.xml”>
<Contacts>

<xsl:copy-of select=”current-group()”/>
</Contacts>

</xsl:result-document>

User-Defined Functions
XPath 2.0 adds the capability to call user-defined functions but has no way of actually defining them. It
is up to the host — XSLT or XQuery, for example — to do this. XSLT 2.0 uses a new instruction,
xsl:function, to define them.

332

Part III: Processing

Suppose you have a simple orders.xml document as follows:

<Orders CustomerId=”abc123”>
<Order OrderId=”ord1” OrderDate=”2006-09-01”>
<Items>
<Item ItemId=”a1” Quantity=”1” ItemPrice=”2.00”></Item>
<Item ItemId=”b2” Quantity=”1” ItemPrice=”3.00”></Item>
<Item ItemId=”c3” Quantity=”2” ItemPrice=”1.50”></Item>

</Items>
</Order>
<Order OrderId=”ord2” OrderDate=”2006-10-30”>
<Items>
<Item ItemId=”a1” Quantity=”2” ItemPrice=”2.00”></Item>
<Item ItemId=”d4” Quantity=”2” ItemPrice=”1.00”></Item>
<Item ItemId=”e5” Quantity=”1” ItemPrice=”3.50”></Item>
<Item ItemId=”h8” Quantity=”1” ItemPrice=”5.00”></Item>

</Items>
</Order>
<Order OrderId=”ord3” OrderDate=”2006-11-19”>
<Items>
<Item ItemId=”e5” Quantity=”3” ItemPrice=”3.50”></Item>
<Item ItemId=”f6” Quantity=”1” ItemPrice=”4.00”></Item>

</Items>
</Order>

</Orders>

You want to show a summary of all the orders with their dates and totals. You can use some standard
XSLT combined with a function that accepts an Items node and return the order total. The function is
defined so:

<xsl:function name=”udf:get-order-total” as=”xs:double”>
<xsl:param name=”items”/>
<xsl:value-of

select=”sum(for $item in $items/Item return $item/@Quantity * $item/@ItemPrice)”/>
</xsl:function>

The name of the function must be a qualified name; the udf prefix shown above is mapped to a URI in
the xsl:stylesheet element. The return type of the function is specified by the as attribute. The func-
tion has one parameter, which is referenced as $items.

The function then uses one of the new constructs in XPath 2.0, a for expression. This states that for each
Item element, the program will return the Quantity multiplied by the ItemPrice and return the sum
of all these values. The full stylesheet, orderSummary.xslt, is shown here:

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”2.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:udf=”http://wrox.com/XSLT/functions”>

<xsl:template match=”/”>
<html>
<body>

333

Chapter 8: XSLT

<h3>Order Summary for Customer
<xsl:value-of select=”Orders/@CustomerId”/>

</h3>
<table>
<thead>
<tr>
<th>Order ID</th>
<th>Order Date</th>
<th>Order Total</th>
</tr>

</thead>
<tbody>
<xsl:apply-templates select=”Orders/Order”>
<xsl:sort data-type=”number”

select=”translate(@OrderDate, ‘-’, ‘’)” />
</xsl:apply-templates>

</tbody>
</table>

</body>
</html>

</xsl:template>

<xsl:template match=”Order”>
<tr>
<td>
<xsl:value-of select=”@OrderId”/>

</td>
<td>
<xsl:value-of select=”@OrderDate”/>

</td>
<td>
<xsl:value-of select=”udf:get-order-total(Items)”/>

</td>
</tr>

</xsl:template>

<xsl:function name=”udf:get-order-total” as=”xs:double”>
<xsl:param name=”items”/>
<xsl:value-of

select=”sum(for $item in $items/Item return $item/@Quantity * $item/@ItemPrice)”/>
</xsl:function>

</xsl:stylesheet>

xsl:value-of changes
The way xsl:value-of works has changed dramatically in version 2.0. In version 1.0, when a sequence
of nodes is used as the select, only the first, converted to a string, was output. In version 2.0, all the
nodes are output, separated by a space. Imagine you have the following nodes:

<persons>
<person>Joe</person>
<person>Peter</person>
<person>Stephen</person>

</persons>

334

Part III: Processing

The instruction, assuming the context node is persons:

<xsl:value-of select=”person”/>

in version 1.0 produces

Joe

with the first node converted to a string. In version 2.0, the output would be as follows:

Joe Peter Stephen

If you want to use a different separator — a comma, for instance — use the following syntax:

<xsl:value-of select=”person” separator=”,”/>

If you want the same behavior as version 1.0, use a predicate:

<xsl:value-of select=”person[1]”/>

There are many other new features and functions in XSLT 2.0. For a full reference see Michael Kay’s
XSLT 2.0, Third Edition (Wrox, 2004).

Summary
In this chapter, you learned that XML documents can be restructured for data interchange or trans-
formed for presentation using XSLT. An XSLT transformation changes a source tree into a result tree. You
saw how an XSLT stylesheet is created and how elements are available to retrieve values from a source
tree, copy nodes from the source tree to the result tree, carry out conditional processing, iterate over
nodes, and sort nodes. Finally, you learned how the new features in version 2.0 make transforming eas-
ier and allow the use of non-XML formats as input.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
If you need to process a node in the source tree more than once but in different ways each time, what
technique does XSLT provide to achieve this?

Question 2
What are the two XSLT elements that provide conditional processing? Describe how the functionality
provided by these two elements differs.

335

Chapter 8: XSLT

Part IV

Databases

Chapter 9: XQuery, the XML Query Language

Chapter 10: XML and Databases

9
XQuery, the XML
Query Language

Large amounts of information are now being stored as XML or can be made available as XML from
relational and other databases with XML functionality. As the volume of XML-based information
increases, the need for a query language to efficiently query and make use of that XML data is
obvious. At the time of writing, the W3C, the World Wide Web Consortium, is developing an XML
query language called XQuery. This chapter introduces you to using XQuery and walks you
through several working examples using XQuery’s features.

XQuery is likely to become as important in the XML world as SQL has become in the relational
database world. In the near future, any self-respecting developer who uses XML will be expected
to have at least a basic understanding of XQuery and the skill to use it to carry out frequently
used queries. Those who work routinely with large volumes of XML data will be expected to have
significant expertise in using XQuery as they create programmatic solutions to XML data-
handling business issues.

In this chapter you will learn the following:

❑ Why XQuery was created to complement languages such as SQL and XSLT

❑ How to get started with XQuery using the XQuery tools that are already available

❑ How to query an XML document using XQuery and how to create new elements in the
result using element constructors

❑ About the XQuery data model and how to use the different types of expression in XQuery,
including the important FLWOR (for, let, where, order by, return) expressions

❑ How to use some XQuery functions

❑ What further developments are likely in future versions of XQuery, including full-text
searching and update functionality

Why XQuery?
First, let’s briefly look at a few of the factors that led to the creation of XQuery at the W3C.

Historical Factors
The expansion in storage of data as XML and the different approaches to storing that XML data — in
conventional relational databases that are XML-enabled, in native XML databases, and so on — meant
that the ways to access XML data could potentially splinter, with no single language being accepted as
the XML query language. This would mean that an important advantage of XML, that it can be pro-
cessed using standard tools, would potentially be lost. The realization that several vendors and experts
were working on the development of XML query languages resulted in an effort at the W3C to create a
single, standard XML query language, which is now called XQuery.

When relational databases became a standard technology for enterprise and desktop databases, the advan-
tages of having a common language for retrieving, inserting, deleting, or updating data in a relational data
store were recognized and applied when the Structured Query Language (SQL) was created. Due, perhaps,
to intercompany rivalry and the timescale of the development of the SQL standard compared to commer-
cial need, significant differences in how individual relational products implemented SQL developed and
still exist. Similar processes to develop distinct XML-targeted query languages were underway but have, in
the end, been brought together to support the development of XQuery at the W3C.

Despite these efforts at cooperation, XQuery may still be at risk of suffering partial splintering into propri-
etary approaches, in part because XQuery 1.0 won’t have all the necessary functionality that is needed in
an XML query language for an enterprise data-handling system. XQuery 1.0 will be able to query XML
data, but will have no functionality to delete, update, or insert XML data. The XQuery Working Group is,
of course, well aware of those additional needs but took a pragmatic decision that it is better to get the
most commonly used part of an XML query language — the capacity to retrieve data — finished as a W3C
Recommendation in a reasonable time frame, rather than attempt to do everything in XQuery 1.0 but risk
substantial slippage of the timeline for doing so. The data model used by XQuery has been designed with
the future needs for deleting, updating, and inserting in mind, so it is hoped that once development of the
XQuery 1.0 specification is complete, users of XQuery shouldn’t have to wait too long for an update with
the additional functionality just mentioned.

Technical Factors
Storing the huge volumes of business data that are around today in lengthy sequences of Unicode char-
acters as serialized XML documents is probably a very inefficient way to store that data, and retrieval
would be difficult, too. Therefore, under the hood, the data that can be made available as XML is likely

At the time of writing, the specification of XQuery is not yet finalized at the
W3C. However, much of the XQuery language is now stable and at the Proposed
Recommendation stage. General XQuery information is located at http://www
.w3.org/XML/Query, including links to each of the several XQuery specification
documents.

340

Part IV: Databases

to be stored in some binary format, whether in an enterprise relational database management system or
in a native XML database.

Databases that can store or emit XML data are discussed in Chapter 10.

XQuery is designed primarily around a data model that has the property of being able to be serialized as
XML. Therefore, when developing a query language for XML, significant effort was focused on defining
a data model appropriate for use in large data stores.

XML data, like any other data stored in large quantity and that typically is at least partially confidential,
requires many of the features already available in relational database management systems. For exam-
ple, indexing of XML data is needed to enable speedy retrieval. Security capabilities are also essential in
any real-life scenario.

Current Status
At the time of writing, the XQuery specifications are at Proposal Recommendation status at the W3C.
This means that it is unlikely any major changes will be made to the final version; its status offers one
final chance for any bugs to be spotted. The Update specifications, however, which include insert,
update, and delete functionality, are at a Working Draft stage. This means that a lot could change before
the standard settles down.

Developing XQuery, XSLT 2.0, and XPath 2.0
Work on XSLT 1.0 and on the predecessor prototypes for XQuery started as separate processes. The
background of XSLT, and of XPath, is in document processing. The historical background of XQuery is in
querying databases. Of course, XML can express both documents and data, a notion often expressed by
referring to document-centric XML and data-centric XML. When the various efforts started, the extent of
the potential for common ground in querying document-centric XML and data-centric XML was very
likely not fully appreciated.

In the XSLT 1.0 specification, it was specifically stated that XSLT was not intended as a general-purpose
transformation language. Therefore, several potentially useful features were not included in XSLT 1.0, and
XSLT was targeted primarily at producing result documents for human consumption. It was reasonable
that the XSLT processing should attempt to produce some output, rather than fail completely if a source
document wasn’t structured quite as expected. Because at that time it was often assumed that XSLT pro-
cessing would be carried out on the client side, it was rightly assumed that it would be inappropriate to
deliver some error message to an end-user who had no control over the stylesheet producing the error.

Because of the refusal to attempt a general-purpose transformation language, some potentially useful
functionality such as strong math support and text manipulation did not feature in XSLT 1.0. Developers
of XSLT might also plausibly have been assumed to be working with XML, using XML tools, and so
would be comfortable using a language expressed in XML. Therefore, a language expressed in XML
made a lot of sense.

The background to the need for XQuery differed significantly. XQuery was intended for retrieval of data
from large collections of XML documents, in contrast to the common scenario in which XSLT is used to
process a single source XML document or a small number of XML documents. Unlike source documents
to be processed by XSLT, the XML to be processed by XQuery would be unlikely to be held in memory at
one time; single documents or collections of documents would be simply too large to allow a Document

341

Chapter 9: XQuery, the XML Query Language

Object Model (DOM) tree to be constructed in memory. The large size of XML documents to be queried
increased the importance of optimizing queries, including indexing of the XML to be queried. Potential
users of XQuery would likely come from a database background where they would expect document
structure to be defined by a schema, in contrast to the relatively permissive approach accepted when
using XSLT to process document-centric XML. Error handling would appropriately be rigorous in the
context of a large data store and so error handling is much stricter in XQuery than it was in XSLT 1.0.

As you can probably appreciate, despite the differences highlighted, there is considerable overlap in
what the two initially separate communities wanted to do with XML using XSLT and XQuery, respec-
tively. Both XSLT and XQuery have XML as input, create a result that takes nodes from the source XML
tree(s), and combine and filter the source, often adding arbitrary literal content (supplied either statically
or dynamically) to the result. Both XSLT and XQuery provide a library of functions (much more exten-
sive in XSLT 2.0 than XSLT 1.0) and allow the creation of user-defined functions. Both languages allow
nested iteration — using the xsl:for-each element in XSLT and the FLWOR expression (described later
in this chapter) in XQuery. Both XSLT and XQuery take a similar approach to variables, in that the value
of variables may not be changed once the variable is created, a characteristic that many newcomers to
XSLT find surprising. Both XSLT and XQuery are declarative functional languages without a full assign-
ment statement, although XQuery does have a limited assignmentlike let clause available.

Given a different history, it is quite possible that only one XML query language, rather than two, would
have been developed at the W3C. Even had that been the case, sufficient flexibility to accommodate the
differing emphases described previously would likely have been necessary.

Using XSLT and XQuery
XSLT is probably used most for converting XML documents to HTML (and to a lesser extent XHTML)
for display. XSLT is also used to create other XML-based presentation formats such as Scalable Vector
Graphics (SVG), which is described in Chapter 19. The final part of XSLT is in the conversion of one
XML document structure to another XML document structure in business-to-business (B2B) transactions.
It seems likely that the latter usage will continue to increase significantly. XSLT 2.0 also adds the capabil-
ity to transform non-XML formats, so as version 2.0 becomes more established this facility will lead to
even further uptake.

XQuery, on the other hand, will likely be used more in querying databases, a task that can be accom-
plished using XSLT (at least where the data is exposed as XML) but may most appropriately be carried
out using XQuery. The practical needs associated with using XQuery mean that it is likely to be used
either in an enterprise-level database management system or programmatically using C#, Java, or a simi-
lar programming language. The absence of XML syntax in XQuery makes it easier to use XQuery with
other programming languages. An alternative XML-based syntax for XQuery, named XQueryX, is under
development and has reached Proposed Recommendation status, but it is very verbose and initial uptake
looks likely to be slow.

Comparing XSLT, XPath, and XQuery
XSLT is written using XML syntax. By contrast, XQuery uses a non-XML syntax. The fact that XSLT
stylesheets are written in XML means that XSLT stylesheets can be generated by or modified by XML
tools, including other XSLT stylesheets. Such use of XSLT isn’t uncommon in large-scale programs.
XQuery cannot be sculpted using such tools because it uses a non-XML syntax.

Both XSLT and XQuery can be used to add nodes to a result tree and they both require XPath as a means
to select nodes to process. The roles of the two languages can be broadly summarized as follows: XPath

342

Part IV: Databases

selects nodes from a source tree (which models an XML document), and XSLT causes nodes to be added
to a result tree. Similarly, much of XQuery depends on its XPath 2.0 subset.

There are some similarities between the two approaches. In XSLT the value of some attributes is an
attribute value template, which is an expression enclosed in paired curly brackets. This resembles the syn-
tax used in XQuery for expressions. For example, the code

Click for further information

can be written in both XSLT and XQuery. The paired curly brackets are used in XSLT to indicate an
attribute value template. In XQuery, paired curly brackets enclose an XQuery expression. In XQuery it is
possible to nest expressions, which, given the XML syntax limitations of XSLT, is not possible in XSLT.

XPath 1.0 has been adapted in version 2.0 to form a subset of XQuery 1.0. The use of XPath 2.0 to select
nodes in XQuery is not surprising because XQuery needs to carry out similar retrieval of specified XML
data. You will see in a moment that you can use XPath expressions in XQuery to retrieve nodes. In
XQuery the retrieved nodes (and, if present, the values that are also allowed) are called a sequence, rather
than the XPath 1.0 term, node-set.

XQuery Tools
Despite the fact that XQuery is still relatively new, a large number of software companies and indepen-
dent developers have developed partial or more complete implementations of XQuery. The proliferation
of XQuery tools indicates that many software vendors see XQuery as an important XML standard with
significant commercial potential.

On an ongoing basis, the W3C updates a web page where links to XQuery implementations and other
sources of useful XQuery information are included. Visit www.w3.org/XML/Query and follow the link
to Products to explore XQuery implementations.

Because, at the time of writing, XQuery has not been finalized, none of the prototype XQuery tools can
yet be finalized. Tools are being updated on different schedules, with some prototypes now being visibly
outdated (at least in publicly available versions) compared to the most recent XQuery draft specification
documents.

The examples in this chapter use the Saxon XQuery engine, which is a free and very up-to-date implemen-
tation of XQuery. The creator of Saxon, Michael Kay, is a member of the working groups that are creating
XQuery, XPath 2.0, and XSLT 2.0. Therefore, Saxon is typically among the most up-to-date implementa-
tions, with the latest release normally passing all the W3C’s test cases.

Saxon
If you chose to download Saxon version 8.8 in Chapter 8, then you are well placed to process XQuery
queries. If not, then to use Saxon to process XQuery queries, visit http://saxon.sourceforge.net/
again and look for the currently available versions of Saxon that support XQuery. Versions after
Saxon 7.6 have some XQuery support. At the time of writing, Saxon 8.8 is the latest version and has full
XQuery functionality.

343

Chapter 9: XQuery, the XML Query Language

If necessary, first install the Saxon processor, following the instructions given in Chapter 8. To test
whether Saxon XQuery functionality is present, type the following at the command line:

java net.sf.saxon.Query -?

If you are using the .NET version, enter this:

Query -?

If everything is working correctly, then you should see a screen detailing various options, as shown in
Figure 9-1.

Figure 9-1

Remember that Java is case sensitive; accidentally typing an incorrect uppercase or lowercase character
on the command line will likely lead to an error message when java.exe runs.

If you used Saxon in Chapter 8 to carry out XSLT transformations, you will notice that the command-line
syntax to access Saxon’s XQuery functionality is significantly different from the syntax used when
using XSLT.

344

Part IV: Databases

Saxon comes with extensive help files. Typically, installation of Saxon creates a doc directory, which
includes several HTML help files. Look for a file labeled using-xquery.html, or something similar,
and check the latest information about which parts of XQuery are supported.

Several other online XQuery demos are available, and several other products or prototypes support
XQuery. Some are mentioned in the following sections.

X-Hive.com Online
You can find a very user-friendly XQuery demonstration online at www.x-hive.com/xquery/. An exam-
ple query and its result are shown in Figure 9-2. You can use one of the pre-built queries that were used in
the XQuery use cases document or edit them to test your increasing understanding of XQuery; the results,
or, if you get things wrong, lengthy Java error messages, are displayed in the right panel. If you get the
syntax hopelessly wrong as you try to adapt existing queries, then you can restore a query with correct
syntax simply by reselecting it from a drop-down list.

Figure 9-2

At the time of this book’s writing, the X-Hive online demo had not been updated for some time and
bases its syntax on the April 2005 Working Draft, rather than the newer specifications. Therefore, some

345

Chapter 9: XQuery, the XML Query Language

minor differences exist between it and the latest XQuery draft. Nonetheless, it offers a very nice interac-
tive interface to explore the creation of XQuery queries.

X-Hive Database
The X-Hive database that underpins the X-Hive.com database also supports XQuery. Further informa-
tion is located at www.x-hive.com.

Tamino Database
You can find an online demo of XQuery using Software AG’s Tamino database located at http://
tamino.demozone.softwareag.com/demoXQuery/XQueryDemo/index.jsp. Tamino was one of the
first commercial products to support XQuery and is used in many successful XML applications.

Microsoft SQL Server 2005
Microsoft’s enterprise relational database management system, SQL Server, includes XQuery support start-
ing in version 2005. It supports a useful working subset of the whole specification and adds extensions for
updates and deletes in advance of the W3C finalizing its recommendation. There are examples of XQuery
specific to SQL Server 2005 in Chapter 10. You can find more details about SQL Server 2005 and plans for
the next version, code-named Katmai, at www.microsoft.com/sql/.

Oracle
Oracle is also working on XQuery support for its database products. You can find more information on
XQuery and a downloadable demo available for the Oracle database at www.oracle.com/technology/
tech/xml/xquery/index.html. If the preceding URL is not available when you are reading this chap-
ter, then visit http://otn.oracle.com/ and insert XQuery in the Search text box to find the current
information about XQuery in Oracle.

The implementations mentioned in the preceding sections are only a few of many. Visit www.w3.org/
XML/Query to check for further implementations and for links to current information about them.

Let’s now move on to run some simple XQuery examples so that you begin to have a feel for what
XQuery queries look like.

Some XQuery Examples
Saxon can run XQuery queries from Java or .NET applications, but for the purposes of this chapter we
will run queries from the command line. One difference between the Saxon syntax for XSLT processing
and for XQuery processing is that the location of the XML document to be queried is not specified on the
command line. Rather, it is specified using one of XQuery’s input functions.

Input Functions
At the time of writing, the XQuery input functions are the doc() function and the collection() func-
tion, and both are implemented in Saxon 8.8.

346

Part IV: Databases

The doc() Function
The doc() function is used to specify the XML document that you want to query. To demonstrate basic
XQuery functionality, you will query the following simple XML document, SimpleBooks.xml. It is
used here and later in the chapter as a source XML document:

<?xml version=”1.0”?>
<Books>
<Book>Beginning XML, 4th Edition</Book>
<Book>Beginning XML Databases</Book>
<Book>Professional Web 2.0 Programming</Book>
</Books>

For convenience, we will specify XQuery queries in documents with a .xquery suffix, but you can use
another suffix if you prefer. Using Saxon from the command line, you simply specify the filename that
contains the XQuery query.

The first query you will run is contained in the file SimpleBooks.xquery, and contains the following
single line of code:

doc(“SimpleBooks.xml”)/Books/Book

The query consists of the doc() function, whose single string argument specifies that the XML docu-
ment SimpleBooks.xml is to be used as the source document for the query. The remaining part of the
query should remind you of XPath location paths that you were introduced to in Chapter 7, because that
is exactly what they are. Recall that XPath 2.0 is a subset of XQuery. The expression /Books/Book is an
XQuery expression that could also be an XPath 2.0 expression — the syntax and semantics are the same
in both XQuery and XPath 2.0. This means that you can apply your understanding of XPath, gained in
Chapter 7, to some parts of XQuery syntax.

The expression is evaluated from left to right. The initial / character indicates that evaluation starts at
the document node of SimpleBooks.xml, that a Books element node (there can be only one element
node child of the document node in a well-formed XML document) that is a child node of the document
node is selected, and then using that node as context, its Book child element node(s) are selected.

The XQuery doc() function is similar to the XSLT document() function. The doc() function
returns a single document. The document() function processes a sequence of URIs, enabling multiple
XML documents to be processed.

To have Saxon run the query and display the output to the command window, enter

java net.sf.saxon.Query SimpleBooks.xquery

or, if using the .NET version, enter

Query SimpleBooks.xquery

at the command line.

From this point on, only the Java version will be shown for command-line execution.

347

Chapter 9: XQuery, the XML Query Language

The filename SimpleBooks.xquery is supplied to the Saxon XQuery processor. The output of the query
is shown in Figure 9-3.

Figure 9-3

Notice that an XML declaration is output to the command window, followed by three Book elements
and their text content. That behavior occurs because all XQuery queries return a sequence of items. Each
Book element node selected by the XPath expression /Books/Book is in the sequence returned by the
query. Notice how the result is only a document fragment; it’s not a full XML document because it lacks
a root element.

The collection() Function
The collection() function is used to process several XML documents at one time. The collection()
function takes as its argument a string that is an xsd:anyURI value. The collection() function can be
used to access a collection of nodes in a database or to process all files in a specified folder.

Because you are primarily using individual XML documents as the target of queries in this chapter, you
will focus on the use of the doc() function.

Retrieving Nodes
As you have seen, in XQuery you can retrieve nodes in a fairly straightforward way using XPath expres-
sions. However, XQuery 1.0 has a few limitations when compared to XPath. All XQuery processors
lack the XPath namespace axis. In addition, some XQuery processors lack support for the following
XPath axes:

❑ ancestor

❑ ancestor-or-self

❑ following

❑ following-sibling

❑ preceding

❑ preceding-sibling

XQuery implementations that support the preceding axes are said to support the full-axis feature, but even
those XQuery processors are not “full” in a certain sense, because the namespace axis is not supported.

348

Part IV: Databases

Those that do not support the full-axis feature are still following the recommendations and support the
other axes, and, optionally, some of the axes on the preceding list.

The decision in XQuery, at least as currently drafted, to drop these axes seems to have arisen from a dif-
ference in view between those familiar with XPath and those who think more in terms of relational
databases. In any case, unless later drafts reverse the situation, it will be necessary to accept the absence
of the axes mentioned in some XQuery processors and code accordingly.

Try It Out Retrieving Nodes

This exercise carries out some queries using a source XML document adapted from the W3C’s use case
sample data. It is shown here and contained in the file BibAdapted.xml.

1. The following data will be used as the source XML in several example queries:

<?xml version=”1.0”?>
<bib>
<book year=”1988”>
<title>The C Programming Language</title>
<author><last>Kernighan</last><first>Brian</first></author>
<author><last>Ritchie</last><first>Dennis</first></author>
<publisher>Prentice Hall</publisher>
<price> 44.20</price>
</book>

<book year=”2004”>
<title>XSLT 2.0 Programmer’s Reference</title>
<author><last>Kay</last><first>Michael</first></author>
<publisher>Wrox Press</publisher>
<price>39.99</price>
</book>

<book year=”2006”>
<title>Professional Web 2.0 Programming</title>
<author><last>van der Vlist</last><first>Eric</first></author>
<author><last>Ayers</last><first>Danny</first></author>
<author><last>Bruchez</last><first>Eric</first></author>
<author><last>Vernet</last><first>Alessandro</first></author>
<author><last>Fawcett</last><first>Joe</first></author>
<publisher>Wrox Press</publisher>
<price>39.99</price>
</book>

<book year=”2002”>
<title>The Economics of Technology and Content for Digital TV</title>
<editor>
<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>
</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>
</book>

<book year=”2004”>
<title>Beginning XML, 4th Edition</title>

349

Chapter 9: XQuery, the XML Query Language

<author><last>Hunter</last><first>David</first></author>
<author><last>Watt</last><first>Andrew</first></author>
<author><last>Rafter</last><first>Jeff</first></author>
<author><last>Cagle</last><first></first>Kurt</author>
<author><last>Duckett</last><first>John</first></author>
<author><last>Fawcett</last><first>Joe</first></author>

<publisher>Wrox Press</publisher>
<price>TBA</price>
</book>

</bib>

As you can see, the document element is a bib element, inside of which are nested several book
elements, each of which has some basic data such as year of publication and authors or editors.

2. Select all book elements in BibAdapted.xml using the following query, which is contained in
the file BibQuery1.xquery:

doc(“BibAdapted.xml”)/bib/book

3. Send the result of the query to an output file BibQuery1Out.xml by typing the following at the
command line:

java net.sf.saxon.Query -o BibQuery1Out.xml BibQuery1.xquery

Notice that the name of the output file is specified by the -o switch followed by the output filename,
before the name of the file that contains the XQuery query. Part of that result document is shown here in
BibQuery1Out.xml (trimmed to reduce page length, only two of the five book elements are shown):

<?xml version=”1.0” encoding=”UTF-8”?>
<book year=”1988”>
<title>The C Programming Language</title>
<author>

<last>Kernighan</last>
<first>Brian</first>

</author>
<author>

<last>Ritchie</last>
<first>Dennis</first>

</author>
<publisher>Prentice Hall</publisher>
<price> 44.20</price>
</book>

<!-- other books removed -->

<book year=”2004”>
<title>Beginning XML, 4th Edition</title>
<author>

<last>Ayers</last>
<first>Danny</first>

</author>
<author>

<last>Watt</last>

350

Part IV: Databases

<first>Andrew</first>
</author>
<author>

<last>Rafter</last>
<first>Jeff</first>

</author>
<author>

<last>van der Vlist</last>
<first/>Eric</author>

<author>
<last>Duckett</last>
<first>John</first>

</author>
<author>

<last>Fawcett</last>
<first>Joe</first>

</author>
<publisher>Wrox Press</publisher>
<price>TBA</price>

</book>

How It Works
One important thing to observe here is that XQuery can output a document that is not well-formed
XML. Notice there is no single document element in BibQuery1Out.xml.

This contrasts with XSLT, which (assuming you use the xml output method) will not let you create a
stylesheet to output markup that is not well formed. In XQuery the responsibility of producing well-
formed XML lies very much with the creator of the query.

Creating a well-formed result in this case is straightforward. You simply add an element constructor to
the query and ensure that the XQuery expression is nested inside it. Let’s introduce element constructors
and look at how they are used.

Element Constructors
In XSLT, new elements can be added to the result document using literal result elements. In XQuery you
can similarly create new XML elements by including literal start-tags and end-tags in appropriate places
in the XQuery query.

A very simple example of using an element constructor is the following query, which is contained in the
file SimpleBooks2.xquery:

<Books>
{doc(“SimpleBooks.xml”)/Books/Book}
</Books>

The element constructor has a literal start-tag for a Books element, followed by the expression shown
earlier that retrieves Book element nodes from the file SimpleBooks.xml. Then, after all the selected
Book element nodes have been found, it adds a literal end-tag for the Books element.

351

Chapter 9: XQuery, the XML Query Language

To display the output to the command window, you can enter the following at the command line:

java net.sf.saxon.Query -o SimpleBooks2Out.xml SimpleBooks2.xquery

The output file, SimpleBooks2Out.xml, is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<Books>

<Book>Beginning XML, 4rd Edition</Book>
<Book>Beginning XML Databases</Book>
<Book>Professional Web 2.0 Programming</Book></Books>

Notice that in the preceding query the XQuery expression doc(“SimpleBooks.xml”)/Books/Book is
contained inside paired curly brackets. If you omit the paired curly brackets, then the XPath expression
is treated as text. The XPath expression is displayed literally. The output document when you make that
error is SimpleBooks2WRONGOut.xml, shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<Books>
doc(“SimpleBooks.xml”)/Books/Book
</Books>

You can create well-formed XML from the BibAdapted.xml file using the following query:

<myNewBib>{
doc(“BibAdapted.xml”)/bib/book}</myNewBib>

This appears in the code downloads as BibQuery2.xquery. The query creates the start-tag for a new
element named myNewBib, uses an XQuery expression similar to those you have used before to select all
the book elements, and then outputs the end-tag of the newly created myNewBib element.

The output document, BibQuery2Out.xml (trimmed for presentation) is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<?xml version=”1.0” encoding=”UTF-8”?>
<myNewBib>

<book year=”1988”>
<title>The C Programming Language</title>
<author>

<last>Kernighan</last>
<first>Brian</first>

</author>
<author>

<last>Ritchie</last>
<first>Dennis</first>

</author>
<publisher>Prentice Hall</publisher>
<price> 44.20</price>

</book>

<!-- other books removed -->

<book year=”2004”>

352

Part IV: Databases

<title>Beginning XML, 4th Edition</title>
<author>

<last>Ayers</last>
<first>Danny</first>

</author>
<author>

<last>Watt</last>
<first>Andrew</first>

</author>
<author>

<last>Rafter</last>
<first>Jeff</first>

</author>
<author>

<last>van der Vlist</last>
<first/>Eric</author>

<author>
<last>Duckett</last>
<first>John</first>

</author>
<author>

<last>Fawcett</last>
<first>Joe</first>

</author>
<publisher>Wrox Press</publisher>
<price>TBA</price>

</book>
</myNewBib>

Up to this point, you have used simple XPath expressions to output content based only on the structure
of the source XML. In practice, you will want to manipulate or filter that XML in various ways. One
option is simply to filter using an XPath predicate.

A predicate in XPath filters a sequence by limiting its elements to those where the predicate is true. The
predicate is placed between square brackets. For example:

//Chapter[@status = ‘approved’]

selects only those Chapter elements that have their status attribute set to approved.

You can use XPath predicates in an XQuery query, as in the following code:

<myNewBib>{
doc(“BibAdapted.xml”)/bib/book[@year > 2005]
}</myNewBib>

This is contained in the file BibQuery3.xquery. The predicate [@year >2005] tests whether the value
of the year attribute of a book element in BibAdapted.xml is greater than 2005; if it is, then that book
element is selected and, together with its content, output.

That query filters out all but one book in BibAdapted.xml, and the output it produces, in
BibQuery3Out.xml, is shown here:

353

Chapter 9: XQuery, the XML Query Language

<?xml version=”1.0” encoding=”UTF-8”?>
<myNewBib>

<book year=”2006”>
<title>Professional Web 2.0 Programming</title>
<author>

<last>van der Vlist</last>
<first>Eric</first>

</author>
<author>

<last>Ayers</last>
<first>Danny</first>

</author>
<author>

<last>Fawcett</last>
<first>Joe</first>

</author>
<author>

<last>Vernet</last>
<first>Alessandro</first>

</author>
<publisher>Wrox Press</publisher>
<price>39.99</price>

</book>
<book year=”2007”>

<title>Beginning XML, 4th Edition</title>
<author>

<last>Ayers</last>
<first>Danny</first>

</author>
<author>

<last>Watt</last>
<first>Andrew</first>

</author>
<author>

<last>Rafter</last>
<first>Jeff</first>

</author>
<author>

<last>van der Vlist</last>
<first/>Eric</author>

<author>
<last>Duckett</last>
<first>John</first>

</author>
<author>

<last>Fawcett</last>
<first>Joe</first>

</author>
<publisher>Wrox Press</publisher>
<price>TBA</price>

</book>

</myNewBib>

354

Part IV: Databases

As you can see, even a very simple answer like this can take up quite a bit of space. Whitespace in XML
documents has always been a bone of contention between the data-centric developers and the document-
centric ones. In general, those who use XML as a way of passing data like to ignore insignificant white-
space such as newlines between the end-tag of one element and the start-tag of the next. Those who use
XML to mark up documents like to preserve all whitespace, so XQuery allows control of whitespace in
the prolog of an XQuery query, described next.

The XQuery Prolog
The prolog of an XQuery document is used to provide the XQuery processor with pieces of information
that might be necessary for correct processing of a query. The prolog is written before the main part of an
XQuery query.

Strictly speaking, the version declaration and module declaration come before the prolog proper, but
most developers are likely to treat them as effectively part of the prolog. The important thing to remem-
ber is the following order:

1. The version declaration, if present, must always come first.

2. Next is the module declaration (if there is one).

3. Then comes the rest of the prolog.

The XQuery Version Declaration
You might want to first specify the version of XQuery being used. It is optional, but if it is present, then
it must come first. At the time of writing, that requirement is rather superfluous because only a single
version — version 1.0 — exists, but after a version of XQuery with update and other functionality is
added, other XQuery versions are likely to be available.

To specify that the query is XQuery 1.0, use the following code:

xquery version “1.0”;

Notice the xquery keyword (all lowercase), followed by version, and then the version number as a
string contained in paired quotes or paired apostrophes. The declaration is completed by a semicolon
character. Unlike XML, there is no = character between version and the version number. If you are used
to writing XML code, that’s an easy mistake to make.

XQuery Modules
XQuery queries may consist of one or more modules. The examples in this chapter consist of a single
module, but reuse of XQuery code is likely to be common in the construction of complex queries.

The prolog of an XQuery module contains the following declaration:

module namespace WROX = “http://www.wrox.com/XQuery/Books”;

The module declaration identifies the module as a library module. In the preceding declaration, the
namespace prefix WROX is associated with the Uniform Resource Identifier (URI) http://www.wrox
.com/XQuery/Books. An XQuery module declaration is similar to an XML namespace declaration in

355

Chapter 9: XQuery, the XML Query Language

that a namespace prefix is associated with a namespace URI. In a library module, as in standalone
XQuery documents, the version declaration, if present, comes first, and then the module declaration
precedes the rest of the prolog.

XQuery Prolog Continued
Having looked at the version declaration and module declaration, the remaining prolog items can be
examined. These can be written in any convenient order.

The base-uri Declaration

URIs can be relative or absolute. Relative URIs are resolved in relation to a base URI. The base-uri is
declared in XQuery using the base-uri declaration, similar to the following:

declare base-uri “http://someRelevantURI.com”;

This means that if you specify a file location as myFile.xml— for example, as an argument to a doc()
function such as doc(“myFile.xml”)— the XQuery processor will try to retrieve it from http://
someRelevantURI.com/myFile.xml.

The namespace Declaration

Also included in the prolog are the relevant namespace declarations. For example, in an XQuery that is
creating output that includes elements that are namespace qualified, it is necessary to declare the name-
space to which those elements belong. Like an XML namespace declaration, an XQuery namespace
declaration associates a namespace prefix with a namespace URI. If you intended to use XQuery to cre-
ate an XSLT stylesheet, you might include a namespace declaration like this:

declare namespace xsl = “http://www.w3.org/1999/XSL/Transform”

Later, in the body of the query, you might see the following:

<xsl:stylesheet version = “1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

This indicates the start of an XSLT 1.0 stylesheet.

Default namespace Declarations

Any default namespace declarations are also included in the prolog. For convenience, you may want to
write element or function names without a namespace prefix. This is done using the default namespace
declarations.

To declare a default namespace for elements, use the following syntax:

declare default element namespace “http://someRelevantURI.com”

To declare a default namespace for functions, use this syntax:

declare default function namespace “http://someRelevantURI.com”

356

Part IV: Databases

Schema Imports

You may want to have access to element, attribute, or type definitions from a particular schema; this too
is expressed in the prolog. This schema can be imported using the following syntax:

import schema namespace xhtml = “http://www.w3.org/1999/xhtml”

This imports the schema for an XHTML document. If you want to specify a URL at which the schema is
located, you can use a schema import of the following type:

import schema namespace xhtml = “http://www.w3.org/1999/xhtml”
at “http://ActualSchemaLocation.com/xhtml.xsd”

This specifies a URL from which the schema can be accessed.

Variable Declarations

You may want to declare XQuery variables. If so, that too is done in the prolog. To declare a variable
$seven and specify that its value is the integer 7, you can use the following syntax:

declare variable $seven as xs:integer :=7;

You could also omit the type; if you do this the processor will try to infer the type from the expression
used to initialize it (in the preceding example, 7):

declare variable $seven :=7;

You can also declare a variable that will be set externally by the processor before the XQuery runs:

declare variable $seven as xs:integer external;

The xs prefix is automatically bound to the XML Schema namespace of http://www.w3.org/
2001/XMLSchema.

How an external variable is set depends on the XQuery implementation. It might be from a command-
line parameter, as is the case for Saxon, by reading an external file or using an environment variable.

Validation Declaration

You may also want to specify in the prolog how validation is to be carried out. Permitted values are lax,
skip, or strict. To specify strict validation, you can write a validation declaration like this:

declare validation strict;

The boundary-space Declaration

One of the prolog’s declarations indicates whether to strip or preserve whitespace, as shown in the fol-
lowing query, BibQuery4.xquery:

xquery version “1.0”;
declare boundary-space strip;
(: The above line is the XQuery way to strip whitespace :)

357

Chapter 9: XQuery, the XML Query Language

<myNewBib>{
doc(“BibAdapted.xml”)/bib/book[@year>2002]
}</myNewBib>

Whitespace in XQuery is handled a little differently from whitespace in XML. In XQuery the concept of
boundary whitespace indicates whitespace that occurs at the boundaries of elements (before the start-tag
or after the end-tag) or expressions. Such boundary whitespace can be useful in laying out complex
queries neatly. If you want to strip extraneous boundary whitespace, you can use the construct shown in
the second line of the preceding code.

Also shown here is the XQuery way of writing comments, which is discussed a bit later in the chapter.

At the time of this writing, Saxon seems to ignore the declaration to strip boundary whitespace using the
syntax just shown. If you want to explicitly specify that boundary whitespace be preserved, use the fol-
lowing construct:

declare boundary-space preserve;

You saw earlier how to use element constructors to add XML elements literally to the output of a query.
Now take a look at how to create computed constructors.

Computed Constructors
In earlier examples you saw how literal start-tags and end-tags can be used to construct elements in the
result of a query. Another syntax allows elements and attributes to be constructed at runtime.

Now you’ll create a simple library using element and attribute constructors. For clarity, you will use
string literals to provide the values of the created attributes and elements. Of course, you can substitute
any arbitrary XQuery expression in place of the string literals to achieve similar but more complex
things. The query, Library.xquery, is shown here:

element library{
element book {
attribute year {2007},
element title {
“Beginning XML, 4thEdition”
}
},
element book {
attribute year {2006},
element title {
“Beginning XML Databases”
}
},
element book {
attribute year {2006},
element title {
“Professional Web 2.0 Programming”
}

}

}

358

Part IV: Databases

The library element, which is the document element of the output XML document, is created using the
following construct:

element library {
...
}

All attributes and descendants are created inside that construct.

When creating a single child element of the library element, the book element, a similar syntax is
followed:

element book {
attribute year {2004},
element title {
“Beginning XML,4th Edition”
}
}

Any attributes that belong to the book element are specified first, using a comma as the separator
between attribute specifications. Then any child elements of the book element are added in the order in
which they are to be included in the output document.

If you have a sequence of elements to be constructed, then a comma is added after the relevant closing
curly bracket.

The output document, LibraryOut.xml, is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<library>

<book year=”2007”>
<title>Beginning XML, 4th Edition</title>

</book>
<book year=”2006”>

<title>Beginning Beginning XML Databases</title>
</book>
<book year=”2006”>

<title>Professional Web 2.0 Programming</title>
</book></library>

When creating queries of this type, once you get beyond fairly simple queries, such as the preceding one,
it is very easy to make mistakes by failing to correctly pair up curly braces or omitting the crucial
comma that separates attributes and child elements. If you make such basic mistakes in long queries,
you will most likely receive several error messages — due, for example, to omitting a single comma
fairly early in the query. The best way to avoid such errors is to create the elements and attributes from
the outside in, pairing up curly brackets as you add an element or attribute.

Syntax
The following two sections briefly introduce a couple of aspects of XQuery syntax of which you need to
be aware when writing XQuery code.

359

Chapter 9: XQuery, the XML Query Language

XQuery Comments
In XQuery, comments are written using scowling and smiley faces to start and end the comment,
respectively:

(: After the scowl, we smile when the comment ends. :)

This notation is used only to define comments inside the query. Unlike HTML comments, for example, it
is permissible to nest XQuery comments, which can be useful when using comments to comment out
suspect code when debugging by hand.

No syntax to create a “to end of line” comment, equivalent to the // notation in JavaScript, for example,
exists in XQuery.

Delimiting Strings
Strings in XQuery are delimited by paired double quotes or by paired apostrophes, as shown in the
example that created elements and supplied their content as string literals. For example, a Paragraph
element with text content can be written in either of the two following ways:

element Paragraph {
“Some content contained in paired double quotes”

}

or

element Paragraph {
‘Some content contained in paired apostrophes.’

}

The XQuery Data Model
The XQuery data model is significantly different from the XPath 1.0 data model to which you were intro-
duced in Chapter 7, but it also has similarities to the XPath 1.0 data model.

Shared Data Model with XPath 2.0 and XSLT 2.0
The XQuery data model and XPath 2.0 and XSLT 2.0 data models are the same, so once you have learned
the data model for one of these technologies, you know the foundations of the other two. Chapter 8
mentioned that XSLT transformations use a source tree as input to a transformation. Similarly, all XQuery
queries use an instance of the XQuery data model as input, and another instance of the data model as out-
put. Each of those instances of the data model is represented as a treelike hierarchy broadly similar to an
XSLT source tree.

Many parts of an XML document can be represented by nodes in the XQuery data model. Let’s move on
to look briefly at each of the nodes available in XQuery.

360

Part IV: Databases

Node Kinds
Node kinds in XQuery are similar to the types of node available in XPath 1.0. The one notable change is
that the root node of XPath 1.0 is replaced by the document node in XQuery 1.0. The XQuery 1.0 node
kinds are document, element, attribute, namespace, text, comment, and processing instruction. Each
node represents the corresponding part of an XML document indicated by its name. Every XQuery node
has identity that distinguishes it from all other nodes, including nodes with the same name and content.

Sequences of Node-Sets
In XQuery, the XPath 1.0 node-set is replaced by a sequence. A sequence can contain nodes or atomic val-
ues or a mixture of nodes and atomic values. The term item is the collective term in XQuery for nodes
and atomic values. An atomic value corresponds to a W3C XML Schema simple-Type.

Sequences are written inside paired parentheses, and items are separated by commas. Sequences cannot
be nested, so the sequence

(1,2, (3, 4, 5), 6)

is equivalent to writing

(1, 2, 3, 4, 5, 6)

Document Order
In XQuery, all nodes created when parsing an XML document are in an order called document order.
Attributes associated with an element are considered to occur after the element in document order and
before any child elements. The actual order of the attributes is considered irrelevant by the XML Infoset
so you cannot rely on position to select an attribute, nor can you guarantee ordering in the output.

Comparing Items and Nodes
The XQuery data model generalizes the idea of a node-set that was present in XPath 1.0. In XQuery, the
result of an expression is a sequence. A sequence can include nodes (just like XPath 1.0) but can also
include atomic values.

Types in XQuery
In XQuery, the W3C XML Schema type system is used. Chapter 5 introduced W3C XML Schema types.

Axes in XQuery
As mentioned earlier in the chapter, XQuery processors do not support the XPath namespace axis. Only
XQuery processors that support the full-axis feature support processing of the ancestor, ancestor-
or-self, following, following-sibling, preceding or preceding-sibling axes. All XQuery pro-
cessors support the child, parent, descendant, or descendant-or-self axes.

361

Chapter 9: XQuery, the XML Query Language

XQuery Expressions
As mentioned earlier, XQuery expressions include XPath expressions, which tend to principally focus
on path expressions. However, XQuery adds a rich feature set on top of the XPath functionality. The
FLWOR expression adds significant power to queries that cannot be expressed by traditional XPath path
expressions.

FLWOR Expressions
The FLWOR expression is a pivotal part of XQuery’s power. It owes much to the SELECT statement in
SQL. A FLWOR expression binds variables to sequences of values in the for and let clauses and then
uses those variables in the construction of the output of the query. Because binding is an essential part
of a FLWOR expression, every FLWOR expression must have either a for clause or a let clause, and many
FLWOR expressions have both.

The first four components of FLWOR can be expressed in XSLT using, respectively, the xsl:for-each,
xsl:variable, xsl:if, and xsl:sort elements to produce similar results. Therefore, many XQuery
FLOWR expressions can be expressed in XSLT with very similar semantics.

If you make the error of using the wrong case for any of the keywords for, let, where, order by, and
return, you can expect to get some very puzzling error messages from the Saxon XQuery processor,
perhaps mentioning odd characters beyond the end of the query. For example, if you use uppercase FOR
instead of the correct lowercase for, then among the error messages you are likely to get is an indication
that a variable is undeclared, as any variable declared in the for statement in which you mistakenly
used uppercase FOR is not recognized as having been declared. If you see mention of an undeclared vari-
able, then it is worth checking the case of either for or let in your query, as for clauses bind multiple
variables and let clauses bind single variables; a case error would lead to the relevant variable or vari-
ables not being bound. However, other XQuery processors, or indeed later versions of Saxon, may give
more informative error messages.

for Expressions
One version of the for expression is the for ... in expression, as shown in ForIn.xquery:

<items>
{for $i in (1,2,3,4) return <item>{$i}</item>}
</items>

If you run the preceding query from the command line, you receive the following output in file
ForInOut.xml:

<?xml version=”1.0” encoding=”UTF-8”?>
<items>
<item>1</item>
<item>2</item>
<item>3</item>
<item>4</item>

</items>

The query contains an element constructor that is a literal start-tag of the enclosing items element in the
output document. The for statement binds the items in the sequence (1, 2, 3, 4) to the variable $i.

362

Part IV: Databases

Because the in keyword is used in the for statement, each individual item in the sequence is, in turn,
considered to be represented by $i, in much the same way you could use an XPath expression to return
a sequence of nodes (in XPath 1.0 a node-set of nodes).

The return statement specifies that for each item in $i an item start-tag is created, an expression $i
is evaluated and inserted as text, and a literal end-tag for the item element is added. After all possible
values for the $i variable have been processed, the end-tag for the items element is added.

It doesn’t matter whether items are values or nodes because both values and nodes are items, as the fol-
lowing example demonstrates. The source XML is Products.xml, shown here:

<?xml version=”1.0”?>
<Products>
<Product>Widget</Product>
<Product>Gadget</Product>
<Product>Knife</Product>
<Product>Spoon</Product>
</Products>

The query, ForIn2.xquery, is shown here:

<items>
{for $i in (1,2, doc(“Products.xml”)/Products/Product/text(), 3, 4) return
<item>{$i}</item>}
</items>

Notice that between the first pair of items in the sequence in the for statement and the last pair of items
in the sequence an XPath expression doc(“Products.xml)/Products/Product/text() has been
inserted. For each value in $i, whether it is a value or a text node selected by the XPath expression, the
value of $i is inserted between the start-tag and end-tag of an item element.

The output document, ForIn2Out.xml, is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<items>

<item>1</item>
<item>2</item>
<item>Widget</item>
<item>Gadget</item>
<item>Knife</item>
<item>Spoon</item>
<item>3</item>
<item>4</item>

</items>

Items supplied as literal values in the sequence in the for statement of the query and items selected by
the XPath expression are treated the same.

The for statement also has a for ... in ... to option that can be used with integers. In other words,
instead of writing

for $i in (1,2,3,4,5)

363

Chapter 9: XQuery, the XML Query Language

you can write

for $i in 1 to 5

Therefore, if you run ForIn3.xquery, as here:

<items>
{for $i in 1 to 5 return <item>{$i}</item>}
</items>

you produce the output in ForIn3Out.xml, shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<items>

<item>1</item>
<item>2</item>
<item>3</item>
<item>4</item>
<item>5</item>

</items>

You can use this structure in combination with other literal values, as here in ForIn4.xquery:

<items>
{for $i in (1 to 5, 7, 8)
return <item>{$i}</item>}
</items>

The second line of the preceding example is a convenient shorthand for the following:

{for $i in (1, 2, 3, 4, 5, 7, 8)

The output is in the code download in the file ForIn4Out.xml. An item element is created that contains
a value contained in the input sequence.

It is also possible to nest for statements, as shown here in ForNested.xquery:

<items>
{for $i in (1 to 5, 7, 8) return
<group>{ for $a in (1 to ($i - 2)) return<item>{$a}</item>}
</group>
}
</items>

The output, ForNestedOut.xml, is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<items>

<group/>
<group/>
<group>

<item>1</item>
</group>

364

Part IV: Databases

<group>
<item>1</item>
<item>2</item>

</group>
<group>

<item>1</item>
<item>2</item>
<item>3</item>

</group>
<group>

<item>1</item>
<item>2</item>
<item>3</item>
<item>4</item>
<item>5</item>

</group>
<group>

<item>1</item>
<item>2</item>
<item>3</item>
<item>4</item>
<item>5</item>
<item>6</item>

</group>
</items>

The variable $i is specified in the outer for statement and is equivalent to the sequence (1, 2, 3, 4, 5,
7, 8). For each value of $i, a group element is created.

The content of each group element is defined by the nested for expression:

{ for $a in (1 to ($i - 2))
return<item>{$a}</item>}

When $i is 1 or 2, no item elements are added to the corresponding group elements because the value
$i - 2 is less than 1.

When $i is 3, then a single item element is generated because

for $a in (1 to ($i - 2))

is equivalent to

for $a in 1 to 1

Therefore, one item element is output. As $i becomes larger, additional item elements are nested in
subsequent group elements.

Filtering with the where Clause
Often, you will want to filter the output of a FLWOR statement using a where clause. The where clause is
used in for expressions to filter what is returned in the result. For example, suppose you wanted to find any

365

Chapter 9: XQuery, the XML Query Language

books in BibAdapted.xml that were published by Wrox Press. The query shown here, Publisher.xquery,
can do that:

<books>{
for $book in doc(“BibAdapted.xml”)/bib/book

where $book/publisher = “Wrox Press” return

element book {
attribute year {$book/@year},
element title {$book/title/text()}
}
}
</books>

A books element is created literally, and its content is defined using a FLWOR expression. The where
clause selects only books for which the publisher element has the value Wrox Press. The content of
such books, of which there are three in the example, is specified using the expression

element book { attribute year {$book/@year}, element title {$book/title/text()}
}

which constructs a book element and uses XPath expressions to assign a value to its year attribute and
its title child element.

The output is shown in PublisherOut.xml:

<?xml version=”1.0” encoding=”UTF-8”?>
<books>

<book year=”2004”>
<title>XSLT 2.0 Programmer’s Reference</title>

</book>
<book year=”2006”>

<title>Professional Web 2.0 Programming</title>
</book>
<book year=”2007”>

<title>Beginning XML, 4th Edition</title>
</book>

</books>

Sorting Using the order by Clause
The order by clause allows the sorting of the output in a specified order. The following query,
OrderByTitle.xquery, shows how the order by clause is used:

<books>{
for $book in doc(“BibAdapted.xml”)/bib/book
let $t := $book/title/text() order by $t return
<book><title>{$t}</title></book>
}

</books>

The order by clause

order by $t

366

Part IV: Databases

specifies that the output is to be ordered by the value of the text content of the title element of book
elements in the source XML document. In other words, the output is sorted alphabetically by title, as
demonstrated in the output of the query OrderByTitleOut.xml shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<books>

<book>
<title>Beginning XML, 4th Edition</title>

</book>
<book>

<title>Professional Web 2.0 Programming</title>
</book>
<book>

<title>The C Programming Language</title>
</book>
<book>

<title>The Economics of Technology and Content for Digital TV</title>
</book>
<book>

<title>XSLT 2.0 Programmer’s Reference</title>
</book>

</books>

If you wanted the order in reverse alphabetical order, you could write the order by clause as follows:

order by $t descending

Conditional Expressions
The FLWOR expression enables you to iterate over a sequence of items. However, sometimes you need to
process nodes only in certain circumstances using XQuery’s support for conditional processing.

Conditional expressions in XQuery use the if keyword.

Try It Out Using Conditional Expressions

In this example, you produce a query on BibAdapted.xml that outputs a book’s title and a count of its
authors only if the number of authors exceeds two.

Enter the following query, MultiAuthor.xquery:

<MultiAuthor>
{for $book in doc(“BibAdapted.xml”)/bib/book
return if (count($book/author) gt 2)
then <book>

<title>{$book/title/text()}</title>
<NumberOfAuthors>{count($book/author)}</NumberOfAuthors>
</book>

else ()
}
</MultiAuthor>

367

Chapter 9: XQuery, the XML Query Language

You should see the following output (MultiAuthorOut.xml):

<?xml version=”1.0” encoding=”UTF-8”?>
<MultiAuthor>

<book>
<title>Professional Web 2.0 Programming</title>
<NumberOfAuthors>4</NumberOfAuthors>

</book>
<book>

<title>Beginning XML, 4th Edition</title>
<NumberOfAuthors>6</NumberOfAuthors>

</book></MultiAuthor>

How It Works
The query uses a for statement to associate the variable $book with each book element in
BibAdapted.xml. All of the return statement is governed by the conditional statement

if (count($book/author) gt 2)

gt is a new comparison operator used to compare values. In this example, the older comparator, >,
would also have worked. The value comparison operators are covered in Chapter 7.

The count() function counts how many author elements are child elements of $book. For example, if
the number of author elements that are child elements of $book exceeds two, then the then clause
specifies the corresponding output:

then <book>
<title>{$book/title/text()}</title>
<NumberOfAuthors>{count($book/author)}</NumberOfAuthors>
</book>

Conversely, if the number of author elements does not exceed two, then the else clause, which is
mandatory, comes into play:

else ()

In this case, producing the empty sequence is signified by ().

XQuery Functions
XQuery provides a huge range of functions to allow an extensive set of tools to manipulate and filter
data. You just saw a simple use of the count() function to count the number of author element nodes
in an example describing conditional processing. This section describes a couple of commonly used
functions.

A full description of the XQuery functions is contained in a lengthy, separate W3C document located at
www.w3.org/tr/xpath-functions. The URL describes the functions common to XPath 2.0
(hence the final part of the URL) and XQuery 1.0.

368

Part IV: Databases

The concat() Function
The concat() function is used to concatenate strings. The following shows a simple example. The
source XML, Parts.xml, contains two strings that we want to join together:

<?xml version=”1.0”?>
<Parts>
<Part>To be or not to be,</Part>
<Part>that is the question!</Part>
</Parts>

The query, ASaying.xquery, is shown here:

<ASaying>{
for $a in doc(“Parts.xml”)/Parts/Part[1]
for $b in doc(“Parts.xml”)/Parts/Part[2]
return concat($a, “ “, $b)

}</ASaying>

Notice that you declare two variables, $a and $b, using XPath path expressions to select relevant parts of
the source XML document. In the return statement, the concat() function is used to concatenate the
strings while interspersing a space between the two; and the output, ASayingOut.xml, is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<ASaying>To be or not to be, that is the question!</ASaying>

The concat() function is unusual in that it can take any number of arguments. It is not possible to
define your own functions this way; it’s only possible with the built-in functions.

The count() Function
Let’s use the count() function to calculate the number of Book elements that are present in
SimpleBooks.xml, shown earlier in the chapter. The query is contained in the file Count.xquery,
whose content is shown here:

<library count=”{count(doc(“SimpleBooks.xml”)/Books/Book)}”>
{ for $b in doc(“SimpleBooks.xml”)/Books/Book return <book>{$b/text()}</book>
}
</library>

To run the query, type the following at the command line:

java net.sf.saxon.Query -o CountOut.xml Count.xquery

Notice that the count() function is used inside the value of the count attribute of the element
library, which is created literally. The expression used to create the value of the count attribute,
count(doc(‘SimpleBooks.xml’)/Books/Book), uses the count() function with the argument
doc(‘SimpleBooks.xml’)/Books/Book. That expression selects all the Book elements in
SimpleBook.xml and returns them in a sequence. At the risk of stating the obvious, there are three
Book element nodes in the sequence. The count() function then counts those nodes and returns the
value 3 in the count attribute.

369

Chapter 9: XQuery, the XML Query Language

The query uses two nested expressions to create the content of the library element. The for statement
is used to iterate over Book element nodes. The result of the query is shown in CountOut.xml, which is
displayed here:

<?xml version=”1.0” encoding=”UTF-8”?>
<library count=”3”>

<book>Beginning XML, 4rd Edition</book>
<book>Beginning XML Databases</book>
<book>Professional Web 2.0 Programming</book></library>

Using Parameters with XQuery
External parameters may be passed to an XQuery query. In XQuery, a parameter is considered to be a
variable that is declared as external.

To pass a string “Hello World!” to an XQuery, ParameterExample.xquery, and display the output on
the console, use the following syntax at the command line:

java net.sf.saxon.Query ParameterExample.xquery input=”Hello, World!”

The query is shown here:

declare variable $input as xs:string external;
<output>
{$input}
</output>

Notice the variable declaration specifies that the variable $input is external and of type xs:string. In
the absence of a namespace declaration to the contrary, the namespace prefix xs is treated as the names-
pace prefix for the W3C XML Schema namespace.

In this simple example, you simply use an element constructor to create an output element and specify
that the element’s content is an XQuery expression $input. The output is shown in Figure 9-4.

Figure 9-4

370

Part IV: Databases

User-Defined Functions
Although XPath 2.0 enables you to call custom functions, there is no inherent way to define these functions.
That is left to the technology using XPath, be it XSLT, XQuery, or some other host.

XQuery uses a straightforward way of declaring these functions in the XQuery prolog. A simple declara-
tion is shown here:

declare namespace math = “http://wrox.com/namespaces/xquery/math”;
declare function math:add($op1 as xs:integer, $op2 as xs:integer) as xs:integer
{
$op1 + $op2

};

After declaring a suitable namespace URI and prefix for the function, it is declared using a syntax simi-
lar to most modern languages. There is a parameter list with each argument’s name preceded by a dollar
sign, and the return type is either one of the built-in schema types or a type from a user-defined schema.
The curly braces then hold the function body, which follows the normal XQuery rules of evaluation.
SimpleFunction.xquery shows how to use this function in a simple scenario:

declare namespace math = “http://wrox.com/namespaces/xquery/math”;
declare function math:add($op1 as xs:integer, $op2 as xs:integer) as xs:integer
{
$op1 + $op2

};
declare variable $op1 as xs:integer := 1;
declare variable $op2 as xs:integer := 2;
<add>
<op1>{$op1}</op1>
<op2>{$op2}</op2>
<result>{math:add($op1, $op2)}</result>

</add>

Here is a more useful function that calculates the factorial of a number, something not available in the
standard library:

The factorial of a number, written as x!, is the product of that number with all smaller integers greater
than one. So 4! = 4 x 3 x 2 = 24.

declare namespace math = “http://wrox.com/namespaces/xquery/math”;
declare variable $n as xs:integer external;
declare function math:factorial($integer as xs:integer) as xs:double
{
if ($integer gt 1) then $integer * math:factorial($integer - 1) else 1

};

This time a recursive function is used. If the input to the function is greater than 1, the function returns the
input multiplied by the factorial of the input less 1. Once the input reaches 1, the function unwinds and
the final result is returned. Recursion is common in functional languages because alternative techniques,
such as an iterative loop, cannot work without altering the value of variables. This is not allowed in
functional languages.

371

Chapter 9: XQuery, the XML Query Language

The function can be tested using FactorialFunction.xquery:

declare namespace math = “http://wrox.com/namespaces/xquery/math”;
declare variable $n as xs:integer external;
declare function math:factorial($integer as xs:integer) as xs:double
{
if ($integer gt 1) then $integer * math:factorial($integer - 1) else 1

};
concat($n, “! = “, math:factorial($n))

You can test this query by using the following from the command line:

java net.sf.saxon.Query FactorialFunction.xquery n=5

Looking Ahead
As mentioned earlier in the chapter, it is likely that the XQuery specification will be finalized shortly
after this book is published. However, almost everyone who has taken an interest in XQuery during its
development recognizes that XQuery 1.0 is only a step toward a full-featured XQuery language. Two
important aspects of the future of XQuery are mentioned here.

Update Functionality
Any XML data store that relies on XQuery as its primary query language must, like XML, be able to
insert, delete, and update arbitrary parts of XML content. XQuery 1.0 has no such functionality, but the
W3C Working Group has made it clear that such functionality is very much in its plans for XQuery after
version 1.0. At the time of writing, the main URL for update features is www.w3.org/TR/xqupdate/.
You can also find some use cases that demonstrate the need for the functionality at www.w3.org/
TR/xqupdateusecases/.

Full-Text Search
Currently, the W3C has issued a working draft concerned with text searching within XML documents.
The draft is available at www.w3.org/TR/xquery-full-text/. You can also find use cases at www.w3
.org/TR/xqupdateusecases/.

Summary
In this chapter, you learned about some foundational aspects of the upcoming XML query language,
XQuery. XQuery is based on XPath 2.0 and has a number of similarities to XSLT 2.0, which is also under
development at the W3C. The XQuery prolog defines a number of components that determine how an
XQuery will be processed. XQuery uses XPath path expressions for simple data retrieval but adds the
very flexible and powerful FLWOR expressions to add a new dimension to querying XML data.

372

Part IV: Databases

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
What notation is used in an XQuery expression to indicate that its content is created dynamically?

Question 2
What are the component parts of a FLWOR expression, and what does each do?

373

Chapter 9: XQuery, the XML Query Language

10
XML and Databases

The volume of XML used by businesses is increasing as enterprises send increasing numbers of
messages as XML. Many websites use XML as a data store, which is transformed into HTML or
XHTML for online display. The diversity of sources of XML data is increasing, too. For example,
a new generation of forms products and technologies, such as Microsoft’s InfoPath and W3C
XForms, is also beginning to supply XML data directly to data stores such as Microsoft Access or
SQL Server from forms filled in by a variety of information workers.

To monitor business activity, you need to be able to store or exchange possibly huge amounts of
data as XML and to recognize the benefits of XML’s flexibility to reflect the structure of business
data and to process or interchange it further. In addition, XML is being used increasingly for
business-critical data, some of which is particularly confidential and needs to be secured from
unauthorized eyes. This raises many issues that need to be considered when storing XML in a pro-
duction setting. It isn’t enough that data is available as XML; other issues such as security and
scalability enter the picture, too.

In Chapter 9 you looked at XQuery, the XML query language under development at the W3C. This
chapter covers broader issues that relate to the use of XML with databases. These issues are illus-
trated with examples that use XML with a native XML database and two different XML-enabled
SQL databases.

This chapter includes the following:

❑ Use cases for XML-enabled database systems

❑ How to perform foundational tasks using eXist, an Open Source native XML database

❑ How to use some of the XML functionality in Microsoft SQL Server and MySQL, two
major relational databases with XML functionalities

The Need for Efficient XML Data Stores
Efficiency is an important criterion when considering how to store data as XML. If XML is stored as
text documents, how can it be processed efficiently? When data is measured in gigabytes, creating

an in-memory Document Object Model (DOM) becomes impractical in many situations and alternative
approaches must be explored.

When volumes of XML data grow, the efficiency of searching becomes important. Whatever method is
used to actually store the XML, the addition of indexes to speed up searching that XML becomes increas-
ingly necessary. Efficiency of data retrieval is important in many practical settings. For example, when
XML data is used in web-based user interaction or in XML web services, performance is of great impor-
tance if the user is to feel that the system is sufficiently responsive.

If data is stored as something other than XML, the issue of how fast, for example, data held in relational
form can be transformed into XML comes into play. Can an individual database product supply data as
XML fast enough for users or other business processes to use, without imposing unacceptable delays?

Issues of reliability also come into play. You may have designed an XML database that works well — at
least, it works well when it’s working — but if it doesn’t stay online almost 100 percent of the time when
it is needed and has evident dips in performance in certain circumstances, then that database may sim-
ply be unacceptable in a production setting.

The Increasing Amount of XML
I began using XML in early 1999 and first wrote about using it about a year later. At first XML was seen
as a pretty specialized, abstract topic that I suspect many people failed to see as relevant. I remember
thinking when I first used XML that it could be an important technology. While I expected XML use to
grow enormously, I had no idea just how much and how fast it would grow. XML’s growth in nine years
has been astonishing.

Of course, XML has its limitations. I see XML as the paper clip of business communication. It helps bring
the organization where it wasn’t possible or wasn’t easy before, and it’s going to continue growing as its
value in connecting all sorts of data becomes clearer to business users.

One of the underlying factors that support the increasing use of XML is that XML has enormous flexibil-
ity in representing data. It can represent data structures that are difficult or inefficient to represent as
relational data. In some settings, native XML databases that handle XML that a relational database might
not easily handle may carve out a niche. But the situation is fluid and fuzzy. You will find no universally
accepted definition of a native XML database. Perhaps the most practical definition of a native XML
database is a database designed primarily or only to handle XML data.

People who come from a relational database background tend to refer to relational data as structured
data, overlooking the reality that many other types of data are also structured, but structured in a differ-
ent, more complex, or more variable way. Used here, the term structured data refers primarily to rela-
tional data, although it is also relevant to keep in mind that relational data is, in a real sense, simply
structured data.

The terms semi-structured data and loosely structured data have no clear boundaries. Semi-structured data is
a term used often by relational database folks to refer to nonrelational data, very often XML data. Loosely
structured data typically refers to document-centric XML. XML documents, such as XHTML web pages or
DocBook documents, can vary enormously in structure. They are, of course, still structured and, assum-
ing they are correctly written, correspond to a schema. A big difference between a relational mindset and
an XHTML or DocBook document is that there is much more flexibility in the XHTML document and
much more variation allowed than what is allowed in a relational database.

376

Part IV: Databases

Whether you view relational data as inflexibly and simply structured data or simply as “structured
data” (as if there were no other kind) is as much a matter of philosophy or perspective as anything else.
Similarly, whether you view XML documents as loosely structured data (the relational viewpoint) or as
richly structured, flexibly structured data is again a matter of perspective.

Comparing XML-Based Data and Relational Data
Before we move on to examine approaches to using XML in modern databases, this section briefly com-
pares the structure of relational data and XML. If you don’t appreciate these simple differences, much of
what follows may be hard for you to understand.

In a relational database, data is stored in tables that consist of rows and columns. In a column, data of a
particular kind is stored for all records in the table. Each record in the table is represented as a row. The
order of rows in a relational table does not indicate any ordering of the data. This contrasts with XML,
where document order is intrinsically present and affects, for example, the data that is returned by an
XPath function such as position().

Only the simplest relational data can be stored in a single table, and a typical relational database will
have multiple tables with complex logical relationships between the tables. Data in different tables is
associated with the use of keys. For example, a CustomerID field (or column) may exist in a Customers
table. Identification of orders for that customer is likely to be facilitated by the existence of a correspond-
ing value in the CustomerID column of an Orders table.

Relationships between data can be one-to-one (think of son to father), one-to-many (think of son to
parents or customer to orders), or many-to-many (think of products to orders — one product can appear
in many orders, and one order can contain many products). Each of these types of relationships can be
represented by storing data in two or more relational tables.

Relational databases, as typically structured, have no hierarchy as such, unlike XML documents, which
are intrinsically hierarchical, as exemplified in the XPath data model, the Document Object Model, and
the XML Infoset.

XML data is intrinsically ordered, as in this simple example:

<Orders>
<Order Customer=”Acme Industries” Date=”2003-12-11” Value=”1234.56” Currency=”US
Dollars” />
<Order Customer=”Fiction Fabricators” Date=”2004-02-11” Value=”4300.12”
Currency=”US Dollars” />
<Order Customer=”Aspiring Assemblers” Date=”2005-07-11” Value=”10000.00”
Currency=”US Dollars” />
</Orders>

XML’s intrinsic hierarchy is a condition imposed by the criteria that define a well-formed XML document.
Storing even simple data like this in a relational table would lose the ordering of orders. Whether that
matters or not depends on whether you need to assemble the data in XML at a later date to recapture the
original structure.

377

Chapter 10: XML and Databases

Approaches to Storing XML
The need to store XML doesn’t occur in a vacuum. Huge amounts of data had already been stored for
years before XML was invented, much of it in conventional relational database management systems.

Storing XML on File Systems
Even though this chapter is about XML and databases, keep in mind that most XML documents are
stored on file systems. The very notion of an XML “document” suggests storage on disk just like you
store any other kind of “document” on your desktop. Many applications never go beyond this first step
and continue to store XML documents on file systems. In fact, the main reason why XML databases have
been so slow to take off is likely because storing XML documents on file systems works so well.

Storing XML documents on file systems is not only simple and natural because the term “XML docu-
ment” suggests doing so, but also because the hierarchical organization of a file system is very similar to
the hierarchical organization of a file document. There is a strong parallel between the syntax of file
URLs or Unix paths and the simplest XPath expressions, and it’s very natural to access the “/bat/baz”
node from the “/foo/bar.xml” document! Before moving on to “real” XML databases, it is worth looking
at the limitations of storing XML documents on file systems.

Document Size
Keeping your XML documents on disk makes sense when you need to read or serve static documents with
a reasonably small size on the Web. File systems can now efficiently support gigabytes; and as long as you
know the path to any XML document, you can retrieve that document efficiently. The important factor to
consider here is the granularity of the information you need to retrieve. If you always need to retrieve a full
document, this system works fine, but if you need to retrieve small pieces from big documents through
DOM or XPath, you will incur a huge overhead because you have to read the full document before you can
extract the small part in which you’re interested.

In addition, don’t forget that you’ll need to parse these documents each time you want to access them
through DOM or XPath. Of course, this only applies if you need to perform this kind of access. If you
only need to serve the documents without modification or transformation on the Web, it is beneficial to
get them “ready to serve” in XML.

Updates
Another issue you have if you store XML documents on disk are updates. If you are manually managing
a collection of XML documents alone on your desktop or web server, updates may not be an issue, but as
soon as you want to enable multiple users to update these documents, or, even worse, if you’re writing a
transactional application, you need to take extra care to perform these updates. One way to do so is to
store your documents on a WebDAV repository that will take care of locking and concurrent accesses for
you. A path to explore if you’re interested in this approach is to use a version control system such as
Subversion (http://subversion.tigris.org/). Subversion can act as a WebDAV repository and
offers all the features of a version control system, including a full history of any modifications to your
documents. This is a very important feature for some applications, and one that isn’t natively supported
by the database systems shown in this chapter.

Whatever solution you find for supporting document updates, consider again the granularity of the
information. If most of your updates apply to small pieces of big documents, you’ll have significant

378

Part IV: Databases

overhead because you need to replace the full document by the updated version. In transactional appli-
cations, this also means that the whole document will be locked when you update one of its nodes,
which can have serious performance consequences.

Indexes
The last issue you may encounter if you store your documents on disk are queries. For example, if you
needed to find all the documents written by a specific author in a big collection of documents, you would
need to implement some kind of indexing mechanism. If you have few predefined fields to index, you can
use the directory structure as an index: To index authors, you have directories per author. If you also need
to index per date, you can add symbolic links to create virtual directories per date, but if you increase the
number of these fields or you want to support full-text search, you need to find something else.

If you’re using a version control system as advised in the previous section, you can take advantage of the
features of this system. For instance, with Subversion, you can easily get a list of documents for a specific
version, committed by a specific user, modified between two dates, and so on. Furthermore, Subversion
lets you add your own user-defined properties, which you can also store and query. This is handy, for
example, when you need to store the name of the author of a document and it is different from the user
who performs an update, or when the date of a text is different from the commit date. As a little icing on
the cake, Subversion commands have an option to format their results in XML, meaning you can format
them with XSLT to be presented in a web page.

If you’re mostly interested in full-text search, you can use a search engine such as Lucene (http://
lucene.apache.org/). Lucene comes with an API that enables you to define which elements need to
be indexed and how they must be treated. It supports large collections efficiently and provides features
that will be immediately familiar to your users because they are similar to those used in their favorite
search engines on the Web.

Even if you were convinced in Chapter 9 that XQuery is what you need, you can find XQuery imple-
mentations that run on top of collections of XML documents stored on disk. This is the case with
XQEngine (http://xqengine.sourceforge.net/).

Building Your Own
Although most issues can be worked around, keeping XML documents on disk with write access and
indexes is a “build your own” kind of solution and exposes you to a fair amount of integration work. By
contrast, XML databases give you a much more packaged approach. Of course, packaged means that
trade-offs will have been made for you, and you may find XML databases weaker than the solution that
you would have built yourself. This is the case for version control features: You won’t find in XML
databases the features you find in a version control system and for full-text search. Most XML databases
do not match search engine features. On the other hand, you can save a lot of time by using a stable
XML database instead of adding a bunch of software on top of your file system storage to implement
features that are natively available in these databases.

Using XML With Conventional Databases
Relational databases are one of the most popular ways to store data. They are mature, very well fitted to
store structured data, store a huge amount of legacy data, and are well understood by a large number of
developers. These reasons make them good candidates to use together with XML, and you have differ-
ent options to do so.

379

Chapter 10: XML and Databases

Producing XML from Relational Databases
Large numbers of HTML and XHTML websites are created, directly or indirectly, from relational data.
Widely used combinations are PHP with the MySQL database or ASP or ASP.NET with SQL Server or
Microsoft Access. Data is stored conventionally as relational tables, and the programmer writes code to
create HTML or XHTML, sometimes using XML as an intermediate stage. XHTML is an XML application
language. Creating XHTML web pages from relational data demonstrates one way in which relational
data can be used to produce a presentation-oriented form of XML. That common activity demonstrates
that it is possible to map relational data to hierarchical XML structures and return those hierarchical struc-
tures to a user.

For example, when using PHP to query data from a couple of tables in MySQL to present it to a user of a
web page, it is unlikely that the developer will want to present the data only in tables similar to the struc-
tures in the database. More likely, the developer will convert the non-ordered, nonhierarchical structure of
relational data into something with at least some order and hierarchy, since that fits well into HTML and
XHTML web pages, which are themselves hierarchical.

If individual programmers have figured out ways to convert relational data to XML, then it is not sur-
prising that vendors of database products have also recognized the opportunity to get into a growing
XML market that the ability to export XML from a relational data store would bring. In fact, many rela-
tional databases allow XML to be returned to the user from data held in relational tables.

Moving XML to Relational Databases
Similarly, many relational database management systems now have the capability to accept XML data
from a user, convert it into a relational form, and then store that latter data in relational tables.
Depending on whether any meta data about ordering is captured in the process of shredding XML into
parts that a relational database can handle, it may be possible to reconstitute the original XML docu-
ment. (Shredding refers to processing XML and inserting its contents into standard database tables.) In
many situations such precise reconstitution is not needed.

The ability to shred and put back together bits of data to mimic XML functionality is fine, not least
because it works for many situations, but this task is tedious to apply by hand and can be automated.
Enter data binding.

Data Binding
Data binding frameworks acknowledge the fact that several representations of the same data need to co-
exist in applications, automating the mapping between those representations. The representations that
are most often supported by data binding frameworks are XML, SQL databases, and objects.

Data binding frameworks that can directly map XML and SQL databases include ADO.NET (http://
msdn.microsoft.com/data/ref/adonet/) in Microsoft’s world and Castor (http://www.castor
.org/) in the Java open-source community. They act as the “glue” between XML and relational
databases that is so tedious to develop by hand. They are very flexible, can be configured in a number
of ways, and are good solutions if you need to expose as XML the content of existing databases.

In addition to such a direct data binding between XML and relational databases, you may encounter
more complex scenarios, such as those in which a relational database is used as a persistence layer for
objects, which in turn generate XML or XHTML documents. In these scenarios the persistence layer is
nothing more than a data binding framework used to map the relational database and the objects.

380

Part IV: Databases

Depending on the situation, the XML or XHTML is generated manually, through templates, or through
another data binding library.

Sound complex? This is not necessarily the case, and Ruby on Rails, a shining star praised for its simplic-
ity among Web 2.0 frameworks, is following this approach!

If you are attracted by more integrated approaches, native XML databases are what you’re looking for.

Native XML Databases
What is a native XML database? You won’t find one single, universally agreed upon definition, but a
simple and reasonably helpful definition is that a native XML database is designed to store XML. If it
also stores data structures other than XML, however, then does it stop being a native XML database?

A native XML database might choose to implement XML using a model like the XML Infoset, the XML
DOM, XPath, or Simple API for XML (SAX) events. It is also likely to capture aspects of an XML docu-
ment, such as document order.

Relational database technology is now pretty mature, having a sound theoretical basis and a couple of
decades of practical experience in widely used products. By contrast, native XML databases are recent
introductions; they don’t have the same kind of theoretical underpinning as relational databases do, and
they are evolving and are likely to continue to evolve for some years to come.

Whatever the underlying storage mechanism, a native XML database product also maps an XML docu-
ment to the storage model. The mapping differs substantially, perhaps, from the detail of the shredding
of an XML document into a relational database.

Native XML databases often store XML documents in collections, and queries can be made across a col-
lection. Depending on the product, a collection may be defined by a schema or may contain documents
of differing structure. The latter approach is likely to be greeted with horror by anyone used to the pre-
dictability of a relational model.

At the time of writing, many native XML databases use XQuery as the query language, even though it
is not yet a W3C Recommendation. However, few of them support the W3C XML Schema features of
XQuery.

Updates to native XML databases currently lack standardization. The lack of insert, delete, and update
functionality in XQuery 1.0 means that nonstandard update mechanisms are likely to persist in the
native XML database world for some time.

In practice, the boundary between native XML databases and XML-enabled relational databases is
becoming progressively blurred. For example, Microsoft’s SQL Server, Oracle, Sybase Adaptive Server
Enterprise, and IBM’s DB2 9 have the ability to store a new xml datatype without discarding their tradi-
tional strengths as relational database management systems.

For many practical purposes it won’t matter whether you are using a native XML database or an XML-
enabled relational database product. As user or developer, you send XML into both types and you get
XML back, so why worry about what is under the hood? Usually you don’t need to. Making a choice
between an XML-enabled relational database versus a native XML database is similar to making any

381

Chapter 10: XML and Databases

other software decision. Clearly define your needs and then find the best fit for those functional needs
depending on price, supported operating system(s), and a host of other criteria.

The rest of this chapter looks at three very different database products as examples of native XML
databases and XML-enabled database management systems:

❑ eXist is the most mature open-source XML database, written in Java.

❑ SQL Server is a Microsoft enterprise-capable relational database management system with some
XML functionality.

❑ MySQL is the open-source database most widely used to power websites. Its XML capabilities
are still well behind those of its commercial competitors but this chapter will give you the first
look at what they are in the 5.1.2 beta version.

Using Native XML Databases
As mentioned earlier, native XML databases vary in their approach. Individual databases in the native
XML database category vary significantly in their capabilities. This chapter uses eXist to explore how
one native XML database works.

Obtaining and Installing eXist
Before doing anything with eXist, visit its website at http://exist-db.org/. From there, you’ll find
links to download the latest version. The download is available in different flavors; for an easy standalone
installation, choose the latest version of the “Installer based on IzPack” (at the time of this writing, this ver-
sion is eXist-1.1.1-newcore.jar). eXist is written in Java, so before you install the downloaded jar file, ensure
that you have a recent version of Java installed. Currently, a JDK version 1.4.2 or later was required.

If you are not sure which version of Java is installed on your computer, type java -version in a DOS or
Unix terminal.

Once you have your download ready and have the right version of Java installed, you should be able to
install eXist by clicking on the jar file on any properly configured workstation. If that’s not the case, open
a terminal and type java -jar eXist-<version>.jar. A fancy graphical installer will pop up and guide you
through the installation, which is very straightforward.

When that’s done, you have a ready-to-run native XML database that can be used in three different modes:

❑ You can use eXist as a Java library to embed a database server in your own Java application.

❑ You can run it as a standalone database server as you would run a SQL database server.

❑ You can run it embedded in a web server and get the features of both a standalone database and
a web interface to access the database.

After the installation, eXist can be used in the last two modes using a different set of scripts that you can
find in its bin subdirectory:

❑ server (.sh or .bat depending on your platform) is used to run eXist as a standalone database
server.

382

Part IV: Databases

❑ startup (.sh or .bat) is used to start eXist embedded in a web server, and shutdown (.sh or
.bat) is used to stop this web server. This is the mode that you will use for the exercises in this
chapter because it is the one that includes most features.

To check that the installation is correct, launch startup.sh or startup.bat in a terminal. You should
get a series of warnings and information, concluding with (if everything is okay) the following two lines:

20 Nov 2006 16:47:55,485 [main] INFO (SocketListener.java [start]:204) - Started
SocketListener on 0.0.0.0:8080
20 Nov 2006 16:47:55,485 [main] INFO (HttpServer.java [start]:690) - Started
org.mortbay.jetty.Server@858bf1

These lines mean that jetty (the Java web server that comes with this eXist download) is ready to accept
connections on port 8080.

By default, the web server listens to port 8080. This means that it will fail to start if another service is already
bound to this port on your computer. If that’s the case, either stop this service before you start eXist or change
eXist’s configuration to listen to another port. You can find instructions to do so on eXist’s website.

The last step to check that everything runs smoothly is to open you favorite web browser to http://
localhost:8080/exist/ and confirm that eXist’s home page, shown in Figure 10-1, opens.

Figure 10-1

383

Chapter 10: XML and Databases

Interacting with eXist
Congratulations, you have your first native XML database up and running! Now it’s time to find out
how you can interact with it. You will soon see that eXist is so open you have many options for doing so.

Using the Web Interface
The first of these options is to use the web interface at http://localhost:8080/exist/. Scroll down
this web page to the section “Administration,” on the left side. Click Admin to go to http://local
host:8080/exist/admin/admin.xql, where you need to log in as user “admin” with an empty
password until you have set up a more secure password.

Once you’re logged in, you have access to the commands from the left-side menu. Feel free to explore by
yourself how you can manage users and set up the example that eXist suggests you install.

When you are ready to continue this quick tour of eXist, click Browsing Collection (see Figure 10-2).
(XML documents are organized in collections, a collection being equivalent to a directory on a file system.
They are really the same concept. You can think of an eXist database as a black box that packages the
features you lack when you store XML documents on disk, while retaining the same paradigm of a hier-
archical structure of collections, or directories.)

Figure 10-2

384

Part IV: Databases

A brand-new eXist installation has a number of existing collections, but you will create a new one named
blog using the Create Collection button. Once this collection is created, follow the link to browse it.
This new collection is empty. Using the Upload button, upload the documents blogitem1.xml and
blogitem2.xml, which you can download from the code samples for this chapter on the Wrox site.
These documents are sample blog entries such as the following (blogitem1.xml):

<?xml version=”1.0”?>
<item id=”1”>
<title>Working on Beginning XML</title>
<description>
<p>

<img

src=”http://media.wiley.com/product_data/coverImage/73/07645707/0764570773.jpg”
align=”left”/>

 I am currently working on the next edition of
WROX’s excellent “Beginning XML”.

</p>
<p>It’s the first time I am working on editing a book that I haven’t written

and I must say that I like it even better than I had expected when I
accepted WROX’s offer.</p>

<p>I knew that the book was solid and that I would be working with a team of
very professional authors, but what I hadn’t anticipated is how fun it
can be to create a new version out of existing material. You have a lot
of room to reorganize what you are editing and when the material is good,
it’s like creating your own stuff, except that 80% of the hard work is
already done!</p>

</description>
<category>English</category>
<category>XML</category>
<category>Books/Livres</category>
<pubDate>2006-11-13T17:32:01+01:00</pubDate>
<comment-count>0</comment-count>

</item>

After you have uploaded these documents, you can display them by clicking on their links. Now that
you have documents in the /db/blog collection, you can query these documents, still using the Web
interface. To do so, click on the Home link to go back to the home page and follow the link to the
XQuery sandbox, which you can reach at http://localhost:8080/exist/sandbox/sandbox.xql.

It’s time to remember what you learned of XPath in Chapter 7 and XQuery in Chapter 9: The big text area
expects a query written in XPath or XQuery! If you start with something simple such as /item[@id=’1’]
and press Send, you’ll get all the documents from all the collections that have an item root element with
an id attribute equal to 1. If you’ve followed the instructions that led to this point, you should get only
the content of the first blog entry.

Of course, you can write more complex queries. For example, if you want to determine the titles, IDs,
and links of blog entries with a link on the Wrox site, you can write the following (xquery1.xq), as
shown in Figure 10-3:

385

Chapter 10: XML and Databases

for $item in /item
where .//a[contains(@href, ‘wrox.com’)]
return <match>

<id>{string($item/@id)}</id>
{$item/title}
{$item//a[contains(@href, ‘wrox.com’)]}

</match>

Figure 10-3

Feel free to try as many queries as you like, and then move on to discover the eXist client.

Using the eXist Client
The eXist client is a standalone graphical tool that can perform the same kind of operations as the web
interface. To start it, just click on the script client.sh or client.bat, depending on your environment.
You should get a login screen. If you have set up a password for the admin user, enter that password.
Before you click the OK button, note the URL entry field. By default, this field has the value xmldb:
exist://localhost:8080/exist/xmlrpc. We won’t cover details about the different components of
this URL, but note the localhost:8080 piece: It means that this client tool uses HTTP to connect to the
eXist database and that you can administer eXist databases on other machines.

386

Part IV: Databases

The next screen enables you to browse the collections or your database. If you click “blog,” you again
find your two blog entries; and if you click one of them, you get a window in which you can edit it. Back
at the main window, the button with binoculars opens the Query dialog, where you can try again your
XPath and XQuery expertise. Note the Trace tab in the Results window at the bottom: You find there the
execution path of your queries, which may contain useful information to debug or optimize them.
Figure 10-4 shows the previous query run in the eXist client.

Figure 10-4

There is much more to explore with this client, which you can also use to save and restore collections or
full databases. Once you’re done with it, read on to see how eXist can be used as a WebDAV server.

Using WebDAV
WebDAV stands for Web-based Distributed Authoring and Versioning. It designates a set of IETF RFCs
that define how HTTP can be used to not only read resources, but also to write them. WebDAV is widely
and natively implemented in most common operating systems and tools, and eXist’s ability to expose its
collections as WebDAV repositories can greatly facilitate the way you import and export documents.

The IETF (Internet Engineering Task Force) is the standardization organization that publishes most of the
protocol-oriented Internet specifications, including HTTP. Its specifications are called RFCs (Requests For
Comments); and despite this name, they are de facto standards.

387

Chapter 10: XML and Databases

As a first contact with WebDAV, try to point your Web browser to http://localhost:8080/exist/
webdav/db/. You need to again enter the login and password of your database admin. Then you will see
a page where you can browse the collections and content of your database. Without browser extensions,
you have read-only access; you need to set up your WebDAV client to gain write access and see the eXist
database as a repository.

The eXist documentation available on your local database at http://localhost:8080/exist/
webdav.xml includes detailed instructions for setting up Microsoft Windows, KDE Konqueror, oXygen,
and XML Spy to use WebDAV. WebDAV support is also built into the finder on Mac OS X. In Windows
XP, this feature is known as web folders and is fairly easy to configure. Because these setups are well
described in the eXist documentation, they aren’t covered here, but this section will guide you through
setting up a WebDAV client on GNOME, which is fairly similar.

In GNOME, start by clicking the Places ➪ Connect to Server menu item. Select WebDAV (HTTP) as the
Service type and enter the information that matches your configuration: Server=localhost, Port=8080,
Folder=/exist/webdav/db/, and User Name=admin. Choose a name that will be used as a label for this
connection, such as “eXist (local)” and press Connect. Figure 10-5 shows the GNOME WebDAV Connect
to Server dialog box.

Figure 10-5

Your WebDAV client is configured. To use it, select this new connection in the Places menu. You will be
prompted for the password associated with the admin user, and Nautilus (Nautilus is the name of the
default GNOME file manager) will open with a window to browse the content of your eXist database,
exactly as if it were a filesystem.

At this point, on whatever environment, you should be able to access the resources in your eXist
database using your favorite file manager. This means that not only can you open the documents that
you find there, you can also edit them, move resources between eXist and your local file system, create
new collections, delete existing ones, and so on. Figure 10-6 shows the GNOME default file manager,
Nautilus, browsing the eXist database exposed as a WebDav repository.

If you’ve kept your eXist client or web browser open on the administration interface or XQuery sandbox,
you can confirm that the updates applied through WebDAV are immediately visible in the database, or
vice versa: The modifications applied directly on the database are visible as soon as you refresh your file
manager.

388

Part IV: Databases

Figure 10-6

The only feature that you lack using the WebDAV interface is the capability to execute queries, but you
will see next that you can regain this feature if you use an XML IDE.

Using an XML IDE
Your favorite XML IDE can probably access your eXist database through WebDAV. If it is interfaced
with eXist, you can also execute queries from the IDE itself. This is the case with oXygen 8.0, available as
a 30-day evaluation license from their site at http://www.oxygenxml.com/.

To configure the connection to your eXist database, select the database perspective using either its icon on
the toolbar or the Perspective menu. Then, click the Configure Database Sources button situated at the
upper-right corner of the Database Explorer window. This opens the database preferences window. Create
a new data source with type eXist and add the exist.jar, xmldb.jar, and xmlrpc-1.2-patched.jar
libraries (located in your eXist installation). The easiest way to search these version-dependent libraries is
to search for them in the directories embedded in your eXist installation directory. Save this data source
and create a connection using it with the eXist connection parameters. Save this connection and the
database preferences and you’re all set.

The Database Explorer should show the newly created connection, and you can now browse and update
the eXist database as you would browse and open documents on your local file system.

So far, all that you’ve done could be done through Web DAV. To execute a query, create a new document
through the File New icon or menu item. Choose a type XQuery for this document and type your query.
When you’re done, click the Apply Transformation Scenario button on the toolbar or select this action
though the Document ➪ XML Document ➪ Apply Transformation Scenario menu item. Because no sce-
nario is attached to this document yet, this opens the Configure Transformation Scenario dialog. The
default scenario uses the Saxon XQuery engine. To use the eXist XQuery engine, create a new scenario
and select your eXist database connection as the Transformer. Save this scenario and click Transform
Now to run the query. Figure 10-7 shows the same query run in oXygen.

389

Chapter 10: XML and Databases

Figure 10-7

Now that this scenario is attached to your query document, you can update the query and click the
Apply Transformation Scenario button to run it without needing to go through this configuration again.

All the methods you’ve seen provide handy user interfaces, but you still need to see how web applica-
tions can access your database.

Using the REST Interface
What better way to interface your database with a web application could there be than using HTTP as it
was meant to be used? This is the purpose of the REST interface. As a first contact, you can point your
browser to http://localhost:8080/exist/rest/. Doing so will show you the content of your
database root exposed as an XML document. This XML format is less user friendly than browsing the
content of your collections through the admin web interface or even through browsing the WebDAV
repository, but far more easy to process in an application!

The full content of the database is available through this interface. For instance, http://localhost:
8080/exist/rest/db/blog/ shows the content of the blog collection, and http://localhost:8080/
exist/rest/db/blog/blogItem1.xml gets you the first blog item. This becomes more interesting
when you start playing with query strings. The REST interface accepts a number of parameters, includ-
ing a _query parameter that you can use to send XPath or XQuery simple queries straight away!

390

Part IV: Databases

For instance, if you want to get all the links from all the documents in the collection /db/blog, you
can query http://localhost:8080/exist/rest/db/blog/?_query=//a. In the current version
(eXist-1.1.1-newcore) of eXist, the media type for these queries is improperly configured as text/html,
and your browser will try to display it as if it were HTML, as shown in Figure 10-8.

Figure 10-8

This can be confusing, but if you look at the source that is returned, you will see an XML document such
as this one:

<exist:result xmlns:exist=”http://exist.sourceforge.net/NS/exist”
exist:hits=”4” exist:start=”1” exist:count=”4”>

<img

src=”http://media.wiley.com/product_data/coverImage/73/07645707/0764570773.jpg”
align=”left”/>

WROX’s excellent”Beginning XML”.

eXist
<a href=”http://prdownloads.sourceforge.net/exist/eXist-1.1.1-newcore-

391

Chapter 10: XML and Databases

build4311.jar”>
eXist 1.1.1-newcore
</exist:result>

This XML deserves a XSLT transformation to be presented as HTML; and if you remember what you
learned in Chapter 8, a simple transformation such as the following would display the results better than
the previous one:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:exist=”http://exist.sourceforge.net/NS/exist” version=”1.0”>
<xsl:template match=”/exist:result”>
<html>
<head>
<title>Query results</title>

</head>
<body>
<h1>eXist query results</h1>
<p>Showing results <xsl:value-of select=”@exist:start”/> to <xsl:value-of

select=”@exist:end”/> out of <xsl:value-of select=”@exist:hits”/>:</p>
<xsl:apply-templates/>

</body>
</html>

</xsl:template>
<xsl:template match=”*”>
<p>
<xsl:copy-of select=”.”/>

</p>
</xsl:template>

</xsl:stylesheet>

The good news is that the eXist REST interface can execute this transformation for you if you like, but
before you can do that, you need to store the transformation in the database. To do so, you can use any
of the methods you have seen so far to upload documents in the database (the web interface, the eXist
client, WebDAV, or your favorite XML IDE). Because this section is about the REST interface, you can
also use this interface.

Storing documents with the REST interface uses an HTTP PUT request; unfortunately, you can’t do
that with your web browser. To send an HTTP PUT request, you need to either do a bit of programming
(all the programming languages have libraries available to support this) or use a utility such as curl
(http://curl.haxx.se/).

This program has a lot of different command-line options. If you have curl installed on your machine, to
store the document rest-query-results.xsl at location http://localhost:8080/exist/rest/
db/xslt/, just type the following command in a Unix or DOS window:

curl -T rest-query-results.xsl http://localhost:8080/exist/rest/db/xslt/

This command simply sends this document through an HTTP PUT. The eXist REST interface also sup-
ports HTTP DELETE requests, and you can also delete this document. To do so, use the -X option, which
enables you to define the HTTP method that you want to use and write:

curl -X DELETE localhost:8080/exist/rest/db/xslt/rest-query-results.xsl

392

Part IV: Databases

Of course, if you have run the previous command, you need to upload the transformation again before
you can use it! Now that your stylesheet is stored in the database, to use it you just add a _xsl parameter,
specifying its location. The URL to paste or type in your browser is then http://localhost:8080/
exist/rest/db/blog/?_query=//a&_xsl=/db/xslt/rest-query-results.xsl. The result is
shown in Figure 10-9.

Figure 10-9

You have seen how to use HTTP GET, PUT, and DELETE methods. If you are familiar with HTTP, you may
be wondering whether the REST interface supports the HTTP POST method. Yes, this method is used to
send requests that are too big to be easily pasted in the query string of a HTTP GET request. These queries
have to be wrapped into an XML document, the structure of which is defined in the eXist documenta-
tion. For instance, the query shown previously would become the following:

<?xml version=”1.0” encoding=”UTF-8”?>
<query xmlns=”http://exist.sourceforge.net/NS/exist”>
<text>
<![CDATA[

for $item in /item
where .//a[contains(@href, ‘wrox.com’)]
return <match>

<id>{string($item/@id)}</id>

393

Chapter 10: XML and Databases

{$item/title}
{$item//a[contains(@href, ‘wrox.com’)]}

</match>
]]>
</text>

</query>

Note how the query itself has been cautiously embedded within a CDATA section so that it qualifies as
well-formed XML. To send this query using the REST interface, you can use curl and a -d option. On my
Linux workstation, if this query were in linksToWrox.xml, I would type the following:

curl -d @linksToWrox.xml http://localhost:8080/exist/rest/db/

Other Interfaces
You’ve already seen four ways to interact with eXist, but many more exist. This section briefly covers a
few (because there are many other cool, important topics to cover in this chapter).

The first of these methods is the XML:DB API. The XML:DB API is a common API defined by a number
of XML databases editors. Its original purpose was to define a vendor-neutral API for playing the same
role with XML databases that JDBC plays with SQL databases. Unfortunately, the project failed to attract
commercial vendors and seems to have lost all its momentum. The XML:DB is still an API of choice to
access your eXist database if you are developing in Java.

The second is an XML-RPC interface that covers everything that is possible with the REST interface, plus
some bonuses — for example, you can update an XML fragment without uploading whole documents
and administer your database entirely with this interface.

A SOAP interface is also available with the same features of the XML-RPC interface for those of you who
prefer SOAP over XML-RPC.

Last but not least, an Atom Publishing Protocol (APP) interface has been recently developed so that you
can see your collections as Atom feeds.

Choosing an Interface
With so many options, how do you decide which one you should be using? Ask yourself whether it really
matters. You can think of your eXist database as a black box that encapsulates your XML documents. These
documents are located in collections that are similar to file directories. The black box acts like a filesystem
with XQuery capabilities and provides a number of different interfaces to access the same set of documents
in different ways. Whatever interface is used, the effect is the same. You can choose, case by case, the inter-
face that is most convenient for the task you have to do.

If you need a filesystem-like type of access to your documents, WebDAV is a sure choice. If all you have is a
browser, the web interface is what you need. If your XML IDE supports eXist, that makes your life easier. If
you’re using a tool that is a good Web citizen and can use the different HTTP requests such as XForms, which
you’ll see in Chapter 20, you can plug the REST interface directly. If you’re developing in Java, have a look at
the XML:DB API. If you want to integrate your database with Atom tools, the APP interface is designed for
you, and if you’re a web services fan, you will choose either the XML-RPC or the SOAP interface.

The richness of this set of interfaces means that your documents will never be locked in the database and
can remain accessible in any environment.

394

Part IV: Databases

XML in Commercial RDBMSs
The practical reality is that huge volumes of data are currently stored in relational database management
systems (RDBMSs). Moving that data to native XML storage, even if it were desirable and possible,
would be a huge logistical task. For reasons similar to the continuing existence of the COBOL language
in many enterprises, the task will never be carried out. Relational data works well for many practical
business purposes, and many business processes depend critically on at least some of that relational
data, so it would be folly to risk breaking something that works by moving all relational data to XML.

However, there is also an opposite pressure: the desire to use data derived from those traditional rela-
tional data stores in modern XML-based business processes, either within an enterprise or between
enterprises. The question then becomes how can additional XML-relevant functionality be added to existing
relational databases?

The vendors of major enterprise relational database management systems such IBM’s DB2, Oracle, and
Microsoft’s SQL Server have taken different approaches. This section looks briefly at the XML function-
ality in SQL Server 2000, which can be considered a first-generation XML-enabled relational database
management system. We also look in more depth at SQL Server 2005, which has added many more fea-
tures, including XQuery and schema-based typing. Finally, we glance at some of the features being
touted for the next version, currently known as Katmai.

XML Functionality in SQL Server 2000
SQL Server 2000 was the first version of SQL Server to have any XML functionality. Microsoft describes
SQL Server 2000 as an XML-enabled database. When you are introduced a little later to the XML
functionality in SQL Server 2005, you will see that, in comparison, SQL Server 2000 is a partly XML-
enabled database. The functionality in SQL Server 2000 that makes it an XML-enabled database includes
the following:

❑ Support for XDR schemas (later upgraded to XSD schemas)

❑ HTTP access to SQL Server 2000

❑ SQLXML functionality (added in SQLXML 1.0)

❑ A SOAP component (added in SQLXML 3.0)

❑ Retrieval of XML using the SELECT statement and FOR XML clause

❑ Writing XML using the OPENXML rowset provider

❑ Retrieval of XML data using XPath 1.0

SQL Server is available free as an edition known as SQL Express. You can download
the database and tools from http://msdn.microsoft.com/vstudio/express/sql/.
You are advised to download the version with advanced services, as well as Books
Online and the sample databases to test the code in this chapter. Once everything is
installed, you can open the manager, SSMS, by selecting Start ➪ All programs ➪

Microsoft SQL Server 2005 ➪ SQL Server Management Studio Express.

395

Chapter 10: XML and Databases

Most of these features are also available in SQL Server 2005, although some of the ways of accessing
XML data in SQL Server 2000, particularly via HTTP, are now considered to be risky from a security
standpoint or are too reliant on other applications such as IIS, and have been superseded by more secure
ones in the newer version. SQL Server 2005 also includes its own web server.

XML Functionality in SQL Server 2005, the version followed SQL Server 2000, adds a raft of new features,
including many centered on XML. It also has the capability to use .NET code to create stored procedures
as well as enhanced T-SQL and built-in support for web services.

The basic XML features, such as returning records as XML instead of as tabular data, are backwardly
compatible with SQL Server 2000, although there are now more options to provide precisely the data for-
mat needed. The examples that follow were all run on SQL Server 2005, but also indicate which ones will
work on the previous version.

Returning Data as XML Using FOR XML
FOR XML allows most standard SQL queries to return data as XML, rather than as a recordset.

Several options are available to control the format of the XML, element names, whether data is output as
elements or attributes, and how child records are nested. Consider the following query, which uses the
AdventureWorks catalog included as a sample with the downloads recommended previously:

SELECT [PurchaseOrderID]
,[Status]
,[EmployeeID]
,[VendorID]
,[ShipMethodID]
,[OrderDate]
,[ShipDate]
,[SubTotal]
,[TaxAmt]
,[Freight]
,[TotalDue]

FROM [AdventureWorks].[Purchasing].[PurchaseOrderHeader]
WHERE [TotalDue] > 300000

This query selects the listed columns from the PurchaseOrderHeader table and limits the results
returned to only those whose total exceeds $300,000.

The results resemble the output shown in Figure 10-10.

To convert this query to produce XML, add the phrase FOR XML followed by the type of XML query you
want. There are four options, RAW, AUTO, EXPLICIT, and PATH, the last one new to SQL Server 2005.

SQL keywords are not case sensitive. Many people who code in SQL use uppercase
for SQL keywords, but that is a convention only.

396

Part IV: Databases

Figure 10-10

Using FOR XML RAW

To execute a query using the RAW option, use the following syntax:

SELECT [PurchaseOrderID]
,[Status]
,[EmployeeID]
,[VendorID]
,[ShipMethodID]
,[OrderDate]
,[ShipDate]
,[SubTotal]
,[TaxAmt]
,[Freight]
,[TotalDue]

FROM [AdventureWorks].[Purchasing].[PurchaseOrderHeader]
WHERE [TotalDue] > 300000

FOR XML RAW

397

Chapter 10: XML and Databases

FOR XML RAW returns the data as attributes wrapped in a generic <row> element. The XML is only a frag-
ment, as by default there is no document element. The results of one of the rows are shown here:

<row PurchaseOrderID=”4007” Status=”2” EmployeeID=”164”
VendorID=”102” ShipMethodID=”3” OrderDate=”2004-04-01T00:00:00”
ShipDate=”2004-04-26T00:00:00” SubTotal=”554020.0000”
TaxAmt=”44321.6000” Freight=”11080.4000” TotalDue=”609422.0000” />

If you need an element-centric view, add , ELEMENTS to the query:

SELECT -- query as before
FOR XML RAW, ELEMENTS

The results now appear as follows (only the first <row> is shown):

<row>
<PurchaseOrderID>4007</PurchaseOrderID>
<Status>2</Status>
<EmployeeID>164</EmployeeID>
<VendorID>102</VendorID>
<ShipMethodID>3</ShipMethodID>
<OrderDate>2004-04-01T00:00:00</OrderDate>
<ShipDate>2004-04-26T00:00:00</ShipDate>
<SubTotal>554020.0000</SubTotal>
<TaxAmt>44321.6000</TaxAmt>
<Freight>11080.4000</Freight>
<TotalDue>609422.0000</TotalDue>

</row>

Note two things you are likely to want to change when using FOR XML RAW. First, you may want to
change the name of the default row element. Second, you may want to turn the fragment into a docu-
ment by having an all-containing document element.

To change the name of the row element, specify your preferred name in parentheses after the RAW key
word, as in FOR XML RAW(‘Order’). To specify the document element, add the keyword ROOT followed
by the name in parentheses:

SELECT -- query as before
FOR XML RAW(‘Order’), ROOT(‘Orders’) , ELEMENTS

The output of this query is shown in Figure 10-11.

A common problem when interfacing with data held in a relational database from object-oriented lan-
guages such as C# or Java is handling nulls. This also occurs when returning data as XML. The tradi-
tional approach in XML is to omit from the output an element or attribute whose value is null. For
example, if a shipped order appears as

<Order>
<PurchaseOrderID>4007</PurchaseOrderID>
<Status>2</Status>
<EmployeeID>164</EmployeeID>
<VendorID>102</VendorID>
<ShipMethodID>3</ShipMethodID>

398

Part IV: Databases

<OrderDate>2004-04-01T00:00:00</OrderDate>
<ShipDate>2004-04-26T00:00:00</ShipDate>
<SubTotal>554020.0000</SubTotal>
<TaxAmt>44321.6000</TaxAmt>
<Freight>11080.4000</Freight>
<TotalDue>609422.0000</TotalDue>
<OrderQty>5000</OrderQty>
<ProductID>849</ProductID>
<UnitPrice>24.7500</UnitPrice>

</Order>

Figure 10-11

the following would show that the shipped date was NULL:

<Order>
<PurchaseOrderID>4007</PurchaseOrderID>
<Status>2</Status>
<EmployeeID>164</EmployeeID>
<VendorID>102</VendorID>
<ShipMethodID>3</ShipMethodID>
<OrderDate>2004-04-01T00:00:00</OrderDate>
<SubTotal>554020.0000</SubTotal>
<TaxAmt>44321.6000</TaxAmt>

399

Chapter 10: XML and Databases

<Freight>11080.4000</Freight>
<TotalDue>609422.0000</TotalDue>

</Order>

This is not always convenient to process. Sometimes it is easier to have an empty element as a represen-
tation of a null:

<ShipDate/>

To request that format, add XSINIL after the ELEMENTS keyword:

SELECT -- query as before
FOR XML RAW(‘Order’), ROOT(‘Orders’), ELEMENTS XSINIL

This will produce the following for an order with a null shipping date:

<Orders xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<Order>
<PurchaseOrderID>4007</PurchaseOrderID>
<Status>2</Status>
<EmployeeID>164</EmployeeID>
<VendorID>102</VendorID>
<ShipMethodID>3</ShipMethodID>
<OrderDate>2004-04-01T00:00:00</OrderDate>
<ShipDate xsi:nil=”true” />
<SubTotal>554020.0000</SubTotal>
<TaxAmt>44321.6000</TaxAmt>
<Freight>11080.4000</Freight>
<TotalDue>609422.0000</TotalDue>

</Order>
</Orders>

If that particular order does not have a NULL ship date in the database you downloaded, you can
always modify the table first.

Notice how the xsi:nil attribute has been used to indicate that the element’s contents are null and not
an empty string. The xsi prefix is bound to a standard namespace on the Orders element.

One further option may be useful, particularly if you are passing the results of the query to a third party:
An XML schema describing the format of the XML can be prepended to the data. Simply add a comma
followed by XMLSCHEMA to the existing query:

FOR XML RAW(‘Order’), ROOT(‘Orders’), ELEMENTS XSINIL, XMLSCHEMA

The results will be identical to the previous output, but a schema such as the following will be shown:

400

Part IV: Databases

<Orders xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<xsd:schema targetNamespace=”urn:schemas-microsoft-com:sql:SqlRowSet1”

xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:sqltypes=http://schemas.microsoft.com/sqlserver/2004/sqltypes
elementFormDefault=”qualified”>

<xsd:import namespace=http://schemas.microsoft.com/sqlserver/2004/sqltypes
schemaLocation=

“http://schemas.microsoft.com/sqlserver/2004/sqltypes/sqltypes.xsd”/>
<xsd:element name=”Order”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”PurchaseOrderID” type=”sqltypes:int” nillable=”1” />
<xsd:element name=”Status” type=”sqltypes:tinyint” nillable=”1” />
<xsd:element name=”EmployeeID” type=”sqltypes:int” nillable=”1” />
<xsd:element name=”VendorID” type=”sqltypes:int” nillable=”1” />
<xsd:element name=”ShipMethodID” type=”sqltypes:int” nillable=”1” />
<xsd:element name=”OrderDate” type=”sqltypes:datetime” nillable=”1” />
<xsd:element name=”ShipDate” type=”sqltypes:datetime” nillable=”1” />
<xsd:element name=”SubTotal” type=”sqltypes:money” nillable=”1” />
<xsd:element name=”TaxAmt” type=”sqltypes:money” nillable=”1” />
<xsd:element name=”Freight” type=”sqltypes:money” nillable=”1” />
<xsd:element name=”TotalDue” type=”sqltypes:money” nillable=”1” />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>
<!-- rest of order data as before -->

</Orders>

Using FOR XML AUTO

Although using FOR XML RAW gives you quite a bit of flexibility, it falters when your query produces
nested data, such as all orders with their individual line items. Instead of a hierarchical XML document,
you will still get one element containing all the order data and the item data for each line item ordered.
This is difficult to process, wasteful of resources, and fails to capitalize on one of XML’s strengths: its
ability to clearly represent nested data. To overcome some of the problems with this, you can use FOR
XML AUTO, as demonstrated in the following Try It Out.

Try It Out Using FOR XML AUTO

1. To try FOR XML AUTO, simply replace the RAW keyword with AUTO in the basic query introduced
in the preceding section:

SELECT [PurchaseOrderID]
,[Status]
,[EmployeeID]
,[VendorID]
,[ShipMethodID]
,[OrderDate]
,[ShipDate]
,[SubTotal]

401

Chapter 10: XML and Databases

,[TaxAmt]
,[Freight]
,[TotalDue]

FROM [AdventureWorks].[Purchasing].[PurchaseOrderHeader]
WHERE [TotalDue] > 300000
FOR XML AUTO

You won’t see much difference in the results of this query compared to the RAW version other
than the fact that the name of the element holding the data is derived from the table name rather
than being a generic row element:

<AdventureWorks.Purchasing.PurchaseOrderHeader
PurchaseOrderID=”4007” Status=”2” EmployeeID=”164” VendorID=”102”
ShipMethodID=”3” OrderDate=”2004-04-01T00:00:00” ShipDate=”2004-04-26T00:00:00”
SubTotal=”554020.0000” TaxAmt=”44321.6000” Freight=”11080.4000”
TotalDue=”609422.0000” />

Again the result is a fragment with no all-enclosing document element.

2. The real difference becomes apparent when a query extracting data from two linked tables
is executed. The following SQL shows all the previous orders along with their individual
line items:

SELECT [PurchaseOrderHeader].[PurchaseOrderID]
,[PurchaseOrderHeader].[Status]
,[PurchaseOrderHeader].[EmployeeID]
,[PurchaseOrderHeader].[VendorID]
,[PurchaseOrderHeader].[ShipMethodID]
,[PurchaseOrderHeader].[OrderDate]
,[PurchaseOrderHeader].[ShipDate]
,[PurchaseOrderHeader].[SubTotal]
,[PurchaseOrderHeader].[TaxAmt]
,[PurchaseOrderHeader].[Freight]
,[PurchaseOrderHeader].[TotalDue]
,[PurchaseOrderDetail].[OrderQty]
,[PurchaseOrderDetail].[ProductID]
,[PurchaseOrderDetail].[UnitPrice]

FROM [Purchasing].[PurchaseOrderHeader] PurchaseOrderHeader
INNER JOIN Purchasing.PurchaseOrderDetail PurchaseOrderDetail
ON PurchaseOrderHeader.[PurchaseOrderID] =

PurchaseOrderDetail.[PurchaseOrderID]
WHERE [PurchaseOrderHeader].[TotalDue] > 300000

Here the tables have been joined on the PurchaseOrderId field and the tables have been aliased. The
results of this query are shown in Figure 10-12.

402

Part IV: Databases

Figure 10-12

How It Works
Although the actual line item data, the last three columns in the result set, belong to the individual
orders, this isn’t readily apparent and each order header has to be repeated for these individual items.
The actual nesting of the data is lost somewhat by the tabular representation of the results.

If this is query is modified to use FOR XML AUTO, the hierarchy is immediately obvious:

SELECT [PurchaseOrderHeader].[PurchaseOrderID]
,[PurchaseOrderHeader].[Status]
,[PurchaseOrderHeader].[EmployeeID]
,[PurchaseOrderHeader].[VendorID]
,[PurchaseOrderHeader].[ShipMethodID]
,[PurchaseOrderHeader].[OrderDate]
,[PurchaseOrderHeader].[ShipDate]
,[PurchaseOrderHeader].[SubTotal]
,[PurchaseOrderHeader].[TaxAmt]
,[PurchaseOrderHeader].[Freight]
,[PurchaseOrderHeader].[TotalDue]
,[PurchaseOrderDetail].[OrderQty]

403

Chapter 10: XML and Databases

,[PurchaseOrderDetail].[ProductID]
,[PurchaseOrderDetail].[UnitPrice]

FROM [Purchasing].[PurchaseOrderHeader] PurchaseOrderHeader
INNER JOIN Purchasing.PurchaseOrderDetail PurchaseOrderDetail
ON PurchaseOrderHeader.[PurchaseOrderID] =

PurchaseOrderDetail.[PurchaseOrderID]
WHERE [PurchaseOrderHeader].[TotalDue] > 300000
FOR XML AUTO, ROOT(‘Orders’)

Notice that a root element has been specified, as with the RAW option. The results appear as follows:

<Orders>
<PurchaseOrderHeader PurchaseOrderID=”4007” Status=”2” EmployeeID=”164”

VendorID=”102” ShipMethodID=”3” OrderDate=”2004-04-01T00:00:00”
ShipDate=”2004-04-26T00:00:00” SubTotal=”554020.0000” TaxAmt=”44321.6000”
Freight=”11080.4000” TotalDue=”609422.0000”>
<PurchaseOrderDetail OrderQty=”5000” ProductID=”849” UnitPrice=”24.7500” />
<PurchaseOrderDetail OrderQty=”5000” ProductID=”850” UnitPrice=”24.7500” />
<!-- more PurchaseOrderDetail elements -->

</PurchaseOrderHeader>
<PurchaseOrderHeader PurchaseOrderID=”4008” Status=”2” EmployeeID=”244”

VendorID=”95” ShipMethodID=”3” OrderDate=”2004-05-23T00:00:00”
ShipDate=”2004-06-17T00:00:00” SubTotal=”396729.0000” TaxAmt=”31738.3200”
Freight=”7934.5800” TotalDue=”436401.9000”>

<PurchaseOrderDetail OrderQty=”700” ProductID=”858” UnitPrice=”9.1500” />
<PurchaseOrderDetail OrderQty=”700” ProductID=”859” UnitPrice=”9.1500” />
<!-- more PurchaseOrderDetail elements -->

</PurchaseOrderHeader>
<PurchaseOrderHeader PurchaseOrderID=”4012” Status=”2” EmployeeID=”231”

VendorID=”29” ShipMethodID=”3” OrderDate=”2004-07-25T00:00:00”
ShipDate=”2004-08-19T00:00:00” SubTotal=”997680.0000” TaxAmt=”79814.4000”
Freight=”19953.6000” TotalDue=”1097448.0000”>

<PurchaseOrderDetail OrderQty=”6000” ProductID=”881” UnitPrice=”41.5700” />
<PurchaseOrderDetail OrderQty=”6000” ProductID=”882” UnitPrice=”41.5700” />
<!-- more PurchaseOrderDetail elements -->

</PurchaseOrderHeader>
</Orders>

The other options available to FOR XML RAW, such as ELEMENTS, XSINIL, and XMLSCHEMA, are also avail-
able to FOR XML AUTO.

Also available are several less commonly used features, such as those to return binary data and to use
GROUP BY in XML queries. These are covered at length in the SQL SERVER 2005 Books Online (BOL)
available for download from www.microsoft.com/technet/prodtechnol/sql/2005/down-
loads/books.mspx.

Despite the different options available to both the RAW and the AUTO versions of FOR XML, you will likely
encounter cases where neither alternative produces the output needed. The most common scenario is
when you need a combination of both elements and attributes, rather than one or the other. Two options
are available for this purpose, FOR XML EXPLICIT and FOR XML PATH, the latter being a new feature of
SQL Server 2005.

404

Part IV: Databases

Using FOR XML EXPLICIT

The EXPLICIT option enables almost unlimited control over the resulting XML format, but this comes at a
price. The syntax is difficult to grasp, and because the mechanism used to construct the resulting XML is
based on a forward-only XML writer, the results must be grouped and ordered in a very specific way.
Unless you are stuck with SQL Server 2000, the advice from Microsoft and other experts is to use the PATH
option instead. If you do need to use EXPLICIT, the full details are available in the SQL Server BOL.

Using FOR XML PATH

The PATH option makes building nested XML with combinations of elements and attributes relatively
simple. Take the very first query results example, in which orders over $300,000 were retrieved and
returned as attribute-centric XML using the AUTO option:

<Orders>
<PurchaseOrderHeader PurchaseOrderID=”4007” Status=”2” EmployeeID=”164”

VendorID=”102” ShipMethodID=”3” OrderDate=”2004-04-01T00:00:00”
ShipDate=”2004-04-26T00:00:00” SubTotal=”554020.0000” TaxAmt=”44321.6000”
Freight=”11080.4000” TotalDue=”609422.0000” />

<PurchaseOrderHeader PurchaseOrderID=”4008” Status=”2” EmployeeID=”244”
VendorID=”95” ShipMethodID=”3” OrderDate=”2004-05-23T00:00:00”
ShipDate=”2004-06-17T00:00:00” SubTotal=”396729.0000” TaxAmt=”31738.3200”
Freight=”7934.5800” TotalDue=”436401.9000” />

<PurchaseOrderHeader PurchaseOrderID=”4012” Status=”2” EmployeeID=”231”
VendorID=”29” ShipMethodID=”3” OrderDate=”2004-07-25T00:00:00”
ShipDate=”2004-08-19T00:00:00” SubTotal=”997680.0000” TaxAmt=”79814.4000”
Freight=”19953.6000” TotalDue=”1097448.0000” />

</Orders>

What if a different layout were needed, one where the PurchaseOrderID, EmployeedID, and status
were attributes but the other data appeared as elements? The PATH option uses aliases of the columns to
specify how the XML is structured. The syntax is similar to XPath, covered in Chapter 7, hence the PATH
keyword.

The PATH query for the order data as a mix of attributes and elements would be as follows:

SELECT [PurchaseOrderID] [@PurchaseOrderID]
,[Status] [@Status]
,[EmployeeID] [@EmployeeID]
,[VendorID]
,[ShipMethodID]
,[OrderDate]
,[ShipDate]
,[SubTotal]
,[TaxAmt]
,[Freight]
,[TotalDue]

FROM [AdventureWorks].[Purchasing].[PurchaseOrderHeader] PurchaseOrderHeader
WHERE [TotalDue] > 300000
FOR XML PATH(‘Order’), ROOT(‘Orders’)

405

Chapter 10: XML and Databases

Notice how data that needs to be returned as attributes is aliased to a column name beginning with @.
Unaliased columns are returned as elements. The results of this query would resemble this XML:

<Orders>
<Order PurchaseOrderID=”4007” Status=”2” EmployeeID=”164”>
<Vendor>102</Vendor>
<ShipMethodID>3</ShipMethodID>
<OrderDate>2004-04-01T00:00:00</OrderDate>
<ShipDate>2004-04-26T00:00:00</ShipDate>
<SubTotal>554020.0000</SubTotal>
<TaxAmt>44321.6000</TaxAmt>
<Freight>11080.4000</Freight>
<TotalDue>609422.0000</TotalDue>

</Order>
<!-- more Order elements here -->

</Orders>

The PATH option also provides control over nesting. The usual way to do this, rather than use a SQL
JOIN as shown previously, is to use a subquery. The following snippet shows the order header as
attributes, with the order details as nested elements:

SELECT [PurchaseOrderHeader].[PurchaseOrderID] [@PurchaseOrderID]
,[PurchaseOrderHeader].[Status] [@Status]
,[PurchaseOrderHeader].[EmployeeID] [@EmployeeID]
,[PurchaseOrderHeader].[VendorID] [@VendorID]
,[PurchaseOrderHeader].[ShipMethodID] [@ShipMethodID]
,[PurchaseOrderHeader].[OrderDate] [@OrderDate]
,[PurchaseOrderHeader].[ShipDate] [@ShipDate]
,[PurchaseOrderHeader].[SubTotal] [@SubTotal]
,[PurchaseOrderHeader].[TaxAmt] [@TaxAmt]
,[PurchaseOrderHeader].[Freight] [@Freight]
,[PurchaseOrderHeader].[TotalDue] [@TotalDue]
,(

SELECT [PurchaseOrderDetail].[OrderQty]
,[PurchaseOrderDetail].[ProductID]
,[PurchaseOrderDetail].[UnitPrice]

FROM [Purchasing].[PurchaseOrderDetail] PurchaseOrderDetail
WHERE PurchaseOrderHeader.[PurchaseOrderID] =

PurchaseOrderDetail.[PurchaseOrderID]
ORDER BY PurchaseOrderDetail.[PurchaseOrderID]
FOR XML PATH(‘OrderDetail’), TYPE

)
FROM [Purchasing].[PurchaseOrderHeader] PurchaseOrderHeader
WHERE [PurchaseOrderHeader].[TotalDue] > 300000
FOR XML PATH(‘Order’), ROOT(‘Orders’)

The main part of the query, without the inner SELECT, is much the same as before except all the output
columns are specified as attributes, as shown by the alias name beginning with the @ symbol.

SELECT [PurchaseOrderHeader].[PurchaseOrderID] [@PurchaseOrderID]
,[PurchaseOrderHeader].[Status] [@Status]
,[PurchaseOrderHeader].[EmployeeID] [@EmployeeID]
,[PurchaseOrderHeader].[VendorID] [@VendorID]
,[PurchaseOrderHeader].[ShipMethodID] [@ShipMethodID]

406

Part IV: Databases

,[PurchaseOrderHeader].[OrderDate] [@OrderDate]
,[PurchaseOrderHeader].[ShipDate] [@ShipDate]
,[PurchaseOrderHeader].[SubTotal] [@SubTotal]
,[PurchaseOrderHeader].[TaxAmt] [@TaxAmt]
,[PurchaseOrderHeader].[Freight] [@Freight]
,[PurchaseOrderHeader].[TotalDue] [@TotalDue]
,(

-- Inner query here
)

FROM [Purchasing].[PurchaseOrderHeader] PurchaseOrderHeader
WHERE [PurchaseOrderHeader].[TotalDue] > 300000
FOR XML PATH(‘Order’), ROOT(‘Orders’)

The inner query returns the order detail relating to the customer specified in the outer query. This is
accomplished by equating the PurchaseOrderDetail.PurchaseOrderId field in the outer query to
the PurchaseOrderDetail.PurchaseOrderID in the nested query. (In pure SQL terms, this is known
as a correlated subquery.)

SELECT [PurchaseOrderDetail].[OrderQty]
,[PurchaseOrderDetail].[ProductID]
,[PurchaseOrderDetail].[UnitPrice]

FROM [Purchasing].[PurchaseOrderDetail] PurchaseOrderDetail
WHERE PurchaseOrderHeader.[PurchaseOrderID] =

PurchaseOrderDetail.[PurchaseOrderID]
ORDER BY PurchaseOrderDetail.[PurchaseOrderID]
FOR XML PATH(‘OrderDetail’), TYPE

Note the TYPE option at the end of the subquery. This is new to SQL Server 2005 and specifies that the
resulting data should be converted to the XML datatype (this is covered more fully later in the chapter).
This option ensures that the data is inserted as XML, rather than a string. The actual output from the
query appears as follows:

<Orders>
<Order PurchaseOrderID=”4007” Status=”2” EmployeeID=”164” VendorID=”102”

ShipMethodID=”3” OrderDate=”2004-04-01T00:00:00”
ShipDate=”2004-04-26T00:00:00” SubTotal=”554020.0000”
TaxAmt=”44321.6000” Freight=”11080.4000” TotalDue=”609422.0000”>

<OrderDetail>
<OrderQty>5000</OrderQty>
<ProductID>849</ProductID>
<UnitPrice>24.7500</UnitPrice>

</OrderDetail>
<OrderDetail>
<OrderQty>5000</OrderQty>
<ProductID>850</ProductID>
<UnitPrice>24.7500</UnitPrice>

</OrderDetail>
<OrderDetail>
<OrderQty>5000</OrderQty>
<ProductID>851</ProductID>
<UnitPrice>24.7500</UnitPrice>

</OrderDetail>
<!-- more OrderDetails elements -->

407

Chapter 10: XML and Databases

</Order>
<Order PurchaseOrderID=”4008” Status=”2” EmployeeID=”244” VendorID=”95”

ShipMethodID=”3” OrderDate=”2004-05-23T00:00:00”
ShipDate=”2004-06-17T00:00:00” SubTotal=”396729.0000”
TaxAmt=”31738.3200” Freight=”7934.5800” TotalDue=”436401.9000”>

<OrderDetail>
<OrderQty>700</OrderQty>
<ProductID>858</ProductID>
<UnitPrice>9.1500</UnitPrice>

</OrderDetail>
<!-- more OrderDetails elements -->

</Order>
<Order PurchaseOrderID=”4012” Status=”2” EmployeeID=”231” VendorID=”29”

ShipMethodID=”3” OrderDate=”2004-07-25T00:00:00”
ShipDate=”2004-08-19T00:00:00” SubTotal=”997680.0000”
TaxAmt=”79814.4000” Freight=”19953.6000” TotalDue=”1097448.0000”>

<OrderDetail>
<OrderQty>6000</OrderQty>
<ProductID>881</ProductID>
<UnitPrice>41.5700</UnitPrice>

</OrderDetail>
<!-- more OrderDetails elements -->

</Order>
</Orders>

As no aliasing was applied to the inner query, the columns are represented by XML elements.

If you remove the , TYPE from the inner query, the order details are inserted as escaped XML because
they are treated as text data, not markup.

Plenty of other options are available. The final example shows how to group data within elements. The
two dates associated with the order are grouped under a Dates element, and an OrderDetails element
is used to hold the individual line items:

SELECT [PurchaseOrderHeader].[PurchaseOrderID] [@PurchaseOrderID]
,[PurchaseOrderHeader].[Status] [@Status]
,[PurchaseOrderHeader].[EmployeeID] [@EmployeeID]
,[PurchaseOrderHeader].[VendorID] [@VendorID]
,[PurchaseOrderHeader].[ShipMethodID] [@ShipMethodID]
,[PurchaseOrderHeader].[SubTotal] [@SubTotal]
,[PurchaseOrderHeader].[TaxAmt] [@TaxAmt]
,[PurchaseOrderHeader].[Freight] [@Freight]
,[PurchaseOrderHeader].[TotalDue] [@TotalDue]
,[PurchaseOrderHeader].[OrderDate] [Dates/Order]
,[PurchaseOrderHeader].[ShipDate] [Dates/Ship]
,(

SELECT [PurchaseOrderDetail].[OrderQty]
,[PurchaseOrderDetail].[ProductID]
,[PurchaseOrderDetail].[UnitPrice]

FROM [Purchasing].[PurchaseOrderDetail] PurchaseOrderDetail
WHERE PurchaseOrderHeader.[PurchaseOrderID] =

PurchaseOrderDetail.[PurchaseOrderID]
ORDER BY PurchaseOrderDetail.[PurchaseOrderID]

408

Part IV: Databases

FOR XML PATH(‘OrderDetail’), TYPE
) [OrderDetails]

FROM [Purchasing].[PurchaseOrderHeader] PurchaseOrderHeader
WHERE [PurchaseOrderHeader].[TotalDue] > 300000
FOR XML PATH(‘Order’), ROOT(‘Orders’)

In the preceding code, the key change is to the OrderDate and ShipDate in the outer SELECT. The
columns are aliased to Date/Order and Dates/Ship so SQL Server creates a new element, Dates, to
hold these two values. There is also an alias on the entire subquery, OrderDetails, that causes all of its
results to be grouped under one element. The resulting XML looks like this:

<Orders>
<Order PurchaseOrderID=”4007” Status=”2” EmployeeID=”164” VendorID=”102”

ShipMethodID=”3” SubTotal=”554020.0000” TaxAmt=”44321.6000” Freight=”11080.4000”
TotalDue=”609422.0000”>

<Dates>
<Order>2004-04-01T00:00:00</Order>
<Ship>2004-04-26T00:00:00</Ship>

</Dates>
<OrderDetails>
<OrderDetail>
<OrderQty>5000</OrderQty>
<ProductID>849</ProductID>
<UnitPrice>24.7500</UnitPrice>

</OrderDetail>
<OrderDetail>
<OrderQty>5000</OrderQty>
<ProductID>850</ProductID>
<UnitPrice>24.7500</UnitPrice>

</OrderDetail>
<OrderDetail>
<OrderQty>5000</OrderQty>
<ProductID>851</ProductID>
<UnitPrice>24.7500</UnitPrice>

</OrderDetail>
<!-- More OrderDetail elements -->

</OrderDetails>
</Order>
<!-- More Order elements here -->

</Orders>

There are dozens more options for PATH queries, including how to produce comments, how to create text
content, and how to add namespace declarations. For a full discussion, refer to Books Online.

This section dealt with producing XML given a relational source. The next topic, OPENXML, deals with the
opposite challenge — how to parse XML and insert it into related tables.

Using OPENXML

There are three basic stages to processing XML and inserting its contents into standard database tables,
also called shredding.

409

Chapter 10: XML and Databases

The first stage, analogous to loading a DOMDocument, uses a special stored procedure named
sp_xml_prepareDocument to provide a pointer that is used by other methods to access the XML.
The basic syntax is as follows:

DECLARE @XmlData NVARCHAR(MAX)
DECLARE @XmlPointer INT
SET @XmlData = ‘<root><element>One</element><element>Two</element></root>’
EXEC sp_xml_preparedocument @XmlPointer OUTPUT, @XmlData

NVARCHAR(MAX) is a new variable type in SQL Server 2005 that is designed to replace other large text
types such as NTEXT. When using SQL Server 2000, you can use NVARCHAR(4000) in the examples
instead.

In the background, SQL Server parses the text as XML and stores details of the document in an internal
table. The variable @XmlPointer is used to retrieve this data.

The next stage is to actually process the XML. The OPENXML keyword is used to present the XML as a
table. This is followed by a schema specifying which attributes and element data to return:

SELECT *
FROM OPENXML (@XmlPointer, ‘/root/element’, 2)

WITH (newName NVARCHAR(100) ‘.’)

The first argument to OPENXML is the pointer to the parsed XML document. The second argument is the
XPath to the nodes that will be used in each row of the output; in this case, each element is used to form
an output row. The third argument specifies the mapping, attribute-centric or element-centric one: 1 is
for attributes, 2 is for elements.

The WITH clause maps data from each element to the output. The first item is the column name, the
second is the SQL datatype, and the third is the XPath to the data. The result will be a table with one
column, as shown in Figure 10-13.

As an alternative to specifying the mapping using a WITH clause, you can specify what is known as an
edge table. Full details are provided in Books Online.

The final stage of using OPENXML is to delete the XML document from SQL Server’s internal table. If this
is not done, then eventually the server runs out of memory and you won’t be able to create any more
XML documents. The deletion is done via the stored procedure sp_xml_removedocument:

EXEC sp_xml_removedocument @XmlPointer

One big advantage of OPENXML is that it enables you to construct stored procedures that accept argu-
ments in the form of an array. This is virtually impossible using standard SQL. As a real-world example,
imagine you have an e-commerce application that uses a traditional shopping basket. After customers
finalize their choices, you need to pass the basket details to a stored procedure, maybe to calculate ship-
ping or for other processing. Because the basket can hold a variable number of items, it is difficult to
design the stored procedure. Using an XML string, life becomes much easier.

410

Part IV: Databases

Figure 10-13

First, you need to decide on a format for the basket. Imagine each item is represented by an item element
that has two attributes, the item’s ID and the quantity requested:

<basket customerId=”12345”>
<item productId=”a123” quantity=”1”/>
<item productId=”b456” quantity=”3”/>
<item productId=”c789” quantity=”2”/>

</basket>

The following SQL script will convert this into a table, ready for further processing or permanent storage:

DECLARE @BasketXml NVARCHAR(MAX)
DECLARE @BasketPointer INT
SET @BasketXml = ‘<basket customerId=”12345”>

<item productId=”a123” quantity=”1”/>
<item productId=”b456” quantity=”3”/>
<item productId=”c789” quantity=”2”/>
</basket>’

411

Chapter 10: XML and Databases

EXEC sp_xml_preparedocument @BasketPointer OUTPUT, @BasketXml

DECLARE @BasicBasket TABLE
(
ProductId NVARCHAR(20),
Quantity INT

)

INSERT @BasicBasket
SELECT productId ProductId,

quantity Quantity
FROM OPENXML (@BasketPointer, ‘/basket/item’, 1)
WITH
(productId NVARCHAR(20),
quantity INT)

EXEC sp_xml_removedocument @BasketPointer
SELECT * FROM @BasicBasket

The first part of the code is similar to the preceding block. Two variables are set up: @BasketXml for the
XML string, and @BasketPointer to hold the pointer to the parsed XML data. In real life the stored pro-
cedure would have @BasketXml as one of its parameters.

The XML is parsed to its internal format as before:

EXEC sp_xml_prepareDocument @BasketPointer OUTPUT, @BasketXml

A simple table variable is then declared to hold the XML data when it has been extracted:

DECLARE @BasicBasket TABLE
(
ProductId NVARCHAR(20),
Quantity INT

)

Then comes the crucial OPENXML statement:

SELECT productId ProductId,
quantity Quantity

FROM OPENXML (@BasketPointer, ‘/basket/item’, 1)
WITH
(productId NVARCHAR(20),
quantity INT)

In this example, the third parameter to OPENXML is 1, specifying attribute mapping. The WITH clause
specifies the two resulting columns as NVARCHAR(20) and INT, and there is no need for the third argu-
ment, as attributes are the default.

Finally, the XML pointer is released and the results displayed, as shown in Figure 10-14.

The next section deals with the most revolutionary addition to SQL Server 2005: the XML datatype.

412

Part IV: Databases

Figure 10-14

The xml Datatype

SQL Server 2005 adds a new xml datatype, which means that XML documents can be stored in a SQL
Server 2005 database without — as was the only option in SQL Server 2000 — being shredded into parts
and stored in multiple relational tables that conform with the relational data model or stored simply as
a sequence of characters, which loses the logical content of the XML document. XML data stored as the
xml datatype can, in effect, be treated as if it were still an XML document. In reality, the xml datatype is
stored in a proprietary binary format under the hood, but as far as the developer is concerned, it is acces-
sible as XML, with its logical structure intact.

There are one or two differences between the data stored by SQL Server and the original document, and
it is not possible to round-trip between the two and get an identical copy, although the XML Infoset is
preserved (see Chapter 7 for details).

This is a significant improvement over SQL Server 2000, where XML documents were either shredded
using OpenXML as described earlier or saved as a text format that could be retrieved only as a series of
characters. Queries on the latter documents could not necessarily rely on well-formedness or validity
of the text cum XML that was being retrieved, and all XML-specific processing needed to take place out-
side the database, often in the middle tier of a three-tier application.

413

Chapter 10: XML and Databases

The existence of the xml datatype means that XML documents stored, for example, in an SQL Server
2005 column, can be treated as if they were collections of XML documents sitting on your hard drive. Of
course, the details of the interface to that XML is specific to SQL Server 2005, just as there were aspects
specific to eXist when you accessed XML stored in it.

Among the general advantages of storage in SQL Server 2005 is that XML storage benefits from the
security, scalability, and other aspects of an enterprise-level database management system. You can also
associate XML schemas with the column and, when querying the document, the appropriate type will
be returned. This is a vast improvement on the previous version whereby much CASTing or CONVERTing
was needed.

XML documents stored in 2005 can be treated as XML in any other setting. One practical effect of that
is that you can use XQuery, to which you were introduced in Chapter 9, to query these XML columns.
Perhaps surprisingly, two XML document instances cannot be compared in this release, in part because
of the flexibility of XML syntax. Consider, for example, the subtleties of trying to compare two lengthy
XML documents that can have paired apostrophes or paired quotes to contain attribute values, can have
differently ordered attributes, can have different namespace prefixes although the namespace URI may
be the same, and can have empty elements written with start-tags and end-tags or with the empty ele-
ment tag.

Documents stored as the XML datatype can optionally be validated against a specified W3C XML Schema
document. XML data that is not associated with a schema document is termed untyped, and XML associ-
ated with a schema documented is termed typed.

Let’s look at how to create a simple table to contain XML documents in SQL Server 2005. The graphical
interface in SQL Server 2005 has changed significantly from SQL Server 2000. The SQL Server Management
Studio is the main graphical tool for manipulating database objects and writing SQL code. The SQL
Management Studio is based on Microsoft’s Visual Studio product, and in SQL Server 2005 developers can
create solutions and projects in ways that are likely to be familiar to them if they are users of Visual Studio.

Try It Out Creating XML Documents in SQL Server

1. After following the installation instructions on the download page, http://msdn.microsoft
.com/vstudio/express/sql/, open the Management Studio and connect to the instance of
SQL Server that is of interest.

2. In the Object Explorer, expand the nodes so that User Databases is shown. Right-click and select
the New Database option. A dialog box opens into which you insert the name of the database —
XMLDocTest for this example. Before clicking OK, make sure that the Full Text Indexing option
is checked.

3. Create a table called Docs using the following SQL:

CREATE TABLE dbo.Docs (
DocID INTEGER IDENTITY PRIMARY KEY,
XMLDoc XML
)

The column XMLDoc is of type xml. Because this is an SQL statement, the datatype is not case
sensitive. Now you have an empty table.

414

Part IV: Databases

4. For the purposes of this example, you will add simple XML documents with the following
structure:

<Person>
<FirstName></FirstName>
<LastName></LastName>
</Person>

5. Insert XML documents using the SQL INSERT statement, as follows, which shows insertion of a
single XML document:

INSERT Docs
VALUES (‘<Person><FirstName>Joe</FirstName>
<LastName>Fawcett</LastName></Person>’
)

6. After modifying the values of the FirstName and LastName elements and adding a few docu-
ments to the XMLDoc column, confirm that retrieval works correctly using the following SQL
statement:

SELECT XMLDoc FROM Docs

The result of that SQL Query is shown in Figure 10-15.

Figure 10-15

415

Chapter 10: XML and Databases

The values contained in the XMLDoc column are displayed in the lower pane of the figure. A lit-
tle later, you will create some simple XQuery queries.

How It Works
The first step created a table, Docs, which had one of the columns, XmlDoc, defined as the new XML
type. The next stage used a traditional INSERT query to add some text to this column. Because the col-
umn was defined as XML, the data was converted from text to an XML document. The document can be
retrieved by using a traditional SELECT query.

As an alternative to retrieving the whole XML document, you can also select only parts of it (this is
shown later in the chapter).

XML documents in SQL Server 2005 can be indexed for more efficient retrieval, and optionally a full-text
index can be created. To create a full-text index on a document, use a command like the following:

--If no catalog exists so far
CREATE FULLTEXT CATALOG ft ON DEFAULT
CREATE FULLTEXT INDEX ON dbo.Docs(XmlDoc) KEY INDEX <primary key name>Doc)

The xml datatype allows the following methods to be used: query(), value(), exist(), modify(),
and nodes().

XQuery in SQL Server 2005

The xml datatype can be queried using the XQuery language, introduced in Chapter 9. In SQL Server
2005, XQuery expressions are embedded inside Transact-SQL. Transact-SQL is the flavor of the SQL lan-
guage used in SQL Server.

Standard XQuery is covered in detail in Chapter 9, so the following sections concentrate on the additions
offered by SQL Server.

Microsoft has learned from its past mistakes and has chosen to separate the nonstandard update function-
ality from the standardized XQuery. This way, it can add the capability to insert, delete, and replace,
when these become part of XQuery, without breaking past code. It will then deprecate the nonstandard
extensions and eventually phase them out.

Extensions to XQuery in SQL Server 2005

The W3C XQuery specification is limited in that it can only query an XML (or XML-enabled) data source.
There is no facility in XQuery 1.0 to carry out deletions, to insert new data, or (combining those actions) to
modify data. In SQL Server 2005, the XML Data Modification Language (DML) adds three keywords to
the functionality available in XQuery 1.0:

❑ delete

❑ insert

❑ replace value of

Note that although SQL itself is not case sensitive, the preceding commands are; if you use DELETE
instead of delete, you will receive a cryptic error message.

416

Part IV: Databases

Try It Out Deleting with XML DML

For this exercise, let’s first look at using the delete keyword. The following code shows an example of
how it can be used:

DECLARE @myDoc XML
SET @myDoc = ‘<Person><FirstName>Joe</FirstName>
<LastName>Fawcett</LastName></Person>
‘
SELECT @myDoc
SET @myDoc.modify(‘ delete /Person/*[2]
‘)
SELECT @myDoc

If you have access to SQL Server 2005, follow these steps:

1. Open the SQL Server Studio.

2. Connect to the default instance.

3. From the menu, select New SQL Server Query.

4. Enter the preceding code.

5. Press F5 to run the SQL code. If you have typed in the code correctly, the original document
should be displayed, with the modified document displayed below it. In the modified docu-
ment, the LastName element has been removed.

6. Adjust the width of the columns to display the full XML.

How It Works
The first line of the code declares a variable myDoc and specifies the datatype as xml. The SET statement

SET @myDoc = ‘<Person><FirstName>Joe</FirstName>
<LastName>Fawcett</LastName></Person>
‘)

specifies a value for the myDoc variable. It’s a familiar Person element with FirstName and LastName
child elements and corresponding text content.

The SELECT statement following the SET statement causes the value of myDoc to be displayed. Next, the
modify function is used to modify the value of the xml datatype:

SET @myDoc.modify(‘
delete /Person/*[2]
‘)

The Data Modification Language statement inside the modify function is, like XQuery, case sensitive.
The delete keyword is used to specify which part of the XML document is to be deleted. In this case,
the XPath expression /Person/*[2] specifies that the second child element of the Person element is to
be deleted, which is the LastName element.

The final SELECT statement shows the value of myDoc after the deletion has taken place. Figure 10-16
shows the results of both SELECT statements.

417

Chapter 10: XML and Databases

Figure 10-16

Try It Out Inserting with XML DML

This example uses the insert keyword. The Transact-SQL code is shown here:

DECLARE @myDoc XML
SET @myDoc = ‘<Person><LastName>Fawcett</LastName></Person>’
SELECT @myDoc
SET @myDoc.modify(‘ insert <FirstName>Joe</FirstName> as first into /Person[1]
‘)
SELECT @myDoc

1. Open the SQL Server Studio.

2. Connect to the default instance.

3. From the Start page, select New SQL Server Query.

418

Part IV: Databases

4. Enter the preceding code.

5. Press F5 to run the SQL code. If you have typed in the code correctly, the original document
should be displayed, with the modified document displayed below it. The modified document
has a new FirstName element.

6. Adjust the width of the columns to display the full XML.

How It Works
In the first line you declare a variable myDoc and specify it has the datatype xml. In the code

SET @myDoc = ‘<Person><LastName>Fawcett</LastName></Person>’

you set the value of the myDoc variable and specify a Person element that contains only a LastName ele-
ment, which contains the text Fawcett.

The modify function is used to contain the XQuery extension that you want to use. The insert key-
word specifies that the modification is an insert operation. The XML to be inserted follows the insert
keyword. Notice that it is not enclosed by apostrophes or quotes. The clause as first specifies that
the inserted XML is to be inserted first, and the into clause uses an XPath expression, /Person, to spec-
ify that the FirstName element and its content is to be added as a child element to the Person element.
Given the as first clause, you know that the FirstName element is to be the first child of the Person
element.

As alternatives to into, you could also use after or before. Whereas into adds children to a parent
node, after or before add siblings. The preceding query could be rewritten as follows:

DECLARE @myDoc XML
SET @myDoc = ‘<Person><LastName>Fawcett</LastName></Person>’
SELECT @myDoc
SET @myDoc.modify(‘ insert <FirstName>Joe</FirstName>
before (/Person/LastName)[1]’)
SELECT @myDoc

When you run the Transact-SQL, the first SELECT statement causes the original XML to be displayed,
and the second SELECT statement causes the XML to be displayed after the insert operation has com-
pleted. The results are shown in Figure 10-17.

419

Chapter 10: XML and Databases

Figure 10-17

Try It Out Updating with XML DML

The final example using the Data Modification Language updates the content of an XML variable so that
the value of the FirstName element is changed from Joe to Gillian. The code is shown here:

DECLARE @myDoc XML
SET @myDoc = ‘<Person><FirstName>Joe</FirstName>
<LastName>Fawcett</LastName></Person>’
SELECT @myDoc
SET @myDoc.modify(‘ replace value of (/Person/FirstName/text())[1] with “Gillian”
‘)
SELECT @myDoc

1. Open the SQL Server Studio.

2. Connect to the default instance.

3. From the Start page, select New SQL Server Query.

4. Enter the preceding code.

420

Part IV: Databases

5. Press F5 to run the SQL code. If you have typed in the code correctly, the original document
should be displayed, with the modified document displayed below it. The document now has
Gillian instead of Joe for the FirstName element’s contents.

6. Adjust the width of the columns to display the full XML.

How It Works

Notice the modify function:

SET @myDoc.modify(‘
replace value of (/Person/FirstName/text())[1]
with “Gillian”
‘)

The replace value of keyword indicates an update, and an XPath expression indicates which part of
the XML the update is to be applied to. In this case it is the text node that is the child of the FirstName
element — in other words, the value of the FirstName element — specified by the XPath expression
/Person/FirstName/text().

The results of the two SELECT statements are shown in Figure 10-18.

Figure 10-18

421

Chapter 10: XML and Databases

One of the main problems with using the modify() method is that it expects a hard-coded string as its
argument. It is therefore difficult to make dynamic queries that are needed in the real world — for exam-
ple, queries in which the new XML is brought in from another table. There are two ways around this.
First, you can construct the query as a string and execute it dynamically using EXEC. Alternatively, you
can use the built-in functions sql:column and sql:function. An example of each of these techniques
follows.

For these examples you can use the Docs table created earlier. First, here’s a reminder of what a static
update looks like:

UPDATE Docs
SET XmlDoc.modify
(‘ replace value of (/Person/LastName/text())[1] with “Salt”’)
WHERE DocId = 1

Now suppose you want to replace the hard-coded value Salt with a variable. You might first try this:

DECLARE @NewName NVARCHAR(100)
SET @NewName = N’Salt’
UPDATE Docs
SET XmlDoc.modify(‘ replace value of (/Person/LastName/text())[1] with “‘ +
@NewName + ‘“‘)
WHERE DocId = 1

Unfortunately, that won’t work. The modify() method complains that it needs a string literal. One way
around this is to build the whole SQL statement dynamically:

DECLARE @NewName NVARCHAR(100)
SET @NewName = N’Salt’
DECLARE @SQL NVARCHAR(MAX)
SET @SQL = ‘UPDATE Docs SET XmlDoc.modify(
‘’ replace value of (/Person/LastName/text())[1] with “‘ + @NewName + ‘“‘’) WHERE
DocId = 1’
PRINT(@SQL)
EXEC(@SQL)

You can see the SQL before it is executed by running as far as the PRINT statement (the following is dis-
played on a single line):

UPDATE Docs SET XmlDoc.modify
(‘ replace value of (/Person/LastName/text())[1] with “Salt”’) WHERE DocId = 1

This is exactly the same as the original code you started with.

422

Part IV: Databases

The recommended way, however, is to use the built-in functions sql:column or sql:variable.
sql:column is used when the new data is being retrieved from a table, so here sql:variable is needed:

DECLARE @NewName NVARCHAR(100)
SET @NewName = N’Salt’
UPDATE Docs
SET XmlDoc.modify
(‘ replace value of (/Person/LastName/text())[1] with sql:variable(“@NewName”)’)
WHERE DocId = 1

The basic syntax is the name of the variable enclosed in double quotes as an argument to
sql:variable().

The query() Method

The query() method enables you to construct XQuery statements in SQL Server 2005. The syntax fol-
lows the XQuery syntax discussed in Chapter 9, and all the queries in that chapter can be run against a
suitable XML data column.

The following query uses the query() method to output the names of each person in a newly con-
structed Name element, with the value of the LastName element followed by a comma and then the
value of the FirstName element. The code is shown here:

SELECT XMLDoc.query
(‘for $p in /Person return
<Name>{$p/LastName/text()}, {$p/FirstName/text()}</Name>’)
FROM Docs

The first line indicates that a selection is being made using the query() method applied to the XMLDoc
column (which, of course, is of datatype xml).

The for clause specifies that the variable $p is bound to the Person element node.

The return clause specifies that a Name element is to be constructed using an element constructor. The first
part of the content of each Name element is created by evaluating the XQuery expression $p/LastName/
text(), which, of course, is the text content of the LastName element. A literal comma is output, and
then the XQuery expression $p/FirstName/text() is evaluated.

Figure 10-19 shows the output when the SELECT statement containing the XQuery query is run.

423

Chapter 10: XML and Databases

Figure 10-19

W3C XML Schema in SQL Server 2005

It was mentioned earlier that the new xml datatype is now a first-class datatype in SQL Server 2005.
This datatype can be used to store untyped and typed XML data, so it shouldn’t be surprising that, just
as relational data is specified by a schema, the new xml datatype can be associated with a W3C XML
Schema document to specify its structure. The XDR schema language that was used in SQL Server 2000
has been replaced by W3C XML Schema in SQL Server 2005.

Let’s look at how you can specify a schema for data of type xml. The first task is to create a schema col-
lection together with its first XML Schema. You need to give the collection a name — in this example
EmployeesSchemaCollection— and the W3C XML Schema document itself needs to be delimited
with single quote marks. For example, if you wanted to create a very simple schema for a document that
could contain a Person element and child elements named FirstName and LastName, you could do so
using the following syntax:

CREATE XML SCHEMA COLLECTION EmployeesSchemaCollection AS
‘<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://wiley.com/namespaces/Person”
xmlns=”http://wiley.com/namespaces/Person”>

424

Part IV: Databases

<xsd:element name=”Person”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”FirstName” />
<xsd:element name=”LastName” />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>’

If you want to drop the XML Schema collection, you need to issue a DROP XMLSCHEMA statement:

DROP XML SCHEMA COLLECTION EmployeesSchemaCollection

Once you have a collection you can add new schemas using the following syntax:

ALTER XML SCHEMA COLLECTION EmployeesSchemaCollection ADD
‘<xsd:schema>
<!--new schema inserted here -->

</xsd:schema>’

Untyped and typed xml data can be used in an SQL Server column, variable, or parameter. If you want
to create a Docs table and associate it with a W3C XML Schema document, you can do so using code like
the following:

CREATE TABLE [dbo].[Docs](
[DocID] [int] IDENTITY(1,1) PRIMARY KEY,
[XMLDoc] [xml] (EmployeesSchemaCollection))

The advantage of applying a schema collection is twofold. First, it acts as a validation check; XML not con-
forming to one of the schemas in the collection will be rejected in the same way that a column declared as
an INT will not accept random textual data. Second, queries against the XML will return typed data as
specified by the schema, rather than generic text.

For optimization, XML Schemas are shredded and stored internally in a proprietary format. Most of the
schema can be reconstructed as an XML document from this proprietary format using the xml_schema_
namespace intrinsic function. Therefore, if you had imported the schema shown earlier, you could
retrieve it using the following code:

SELECT xml_schema_namespace(N’dbo’, N’EmployeesSchemaCollection’)

Remember, too, that there can be multiple ways of writing a functionally equivalent W3C XML Schema
document — for example, using references, named types, or anonymous types. SQL Server will not
respect such differences when reconstituting a schema document.

In addition, parts of the schema that are primarily documentation — for example, annotations and
comments — are not stored in SQL Server’s proprietary format. Therefore, to ensure precise recovery of
an original W3C XML Schema document, it is necessary to store the serialized XML Schema document
separately. One possibility is to store it in a column of type xml or varchar(max) in a separate table.

425

Chapter 10: XML and Databases

Web Service Support
SQL Server 2000 provided various means of accessing XML data over HTTP based on the underlying
relational tables in a catalog. Much of this is still available to some degree in SQL Server 2005, but it has
been superseded somewhat by the native support for web services. Unfortunately, this extra power
comes at a price; the newer functionality is more difficult to set up and relies on a number of different
components working together in order to use even a basic service.

The stages involved are fully documented in SQL Server Books Online under the heading “Using Native XML
Web Services.”

The main advantages of using the native functionality are listed here:

❑ Greater availability — Any client capable of issuing HTTP requests and parsing XML can take
advantage of the new services.

❑ Standards compliant — The SOAP standard is now well defined and in use all over the Web.
Rather than need special ways to access the data, the client will not even know that it is SQL
Server operating in the background.

❑ Built-in web server — There is no need for a separate instance of IIS to be running.

❑ Better security — SQL Server has a relatively easy to use security model that allows suitable
authentication and authorization for any services offered.

❑ Reuse of existing monitoring tools — Numerous tools are already available that can be used to
monitor and tweak performance of the services while they are running on the server.

XML in Open Source RDBMS
The driving factors to add XML support within open-source RDBMSs are the same as those of their com-
mercial competitors, but open-source RDBMSs appear to lag well behind in this area. The reasons are
diverse. Open-source projects are often less prone than commercial companies to “get big fast” and
absorb all their surroundings. They are also more used to collaborating with other projects. It is also pos-
sible that they are less influenced by the trendy buzzword to adopt “XML anywhere.” In addition, they
often have fewer financial resources for their development.

Of the three major open-source relational databases, two (PostgreSQL and Ingres) have close to no XML
support; and the third, MySQL, is introducing its first XML features in version 5.1, which is in beta as
this chapter is being written.

Installing MySQL
MySQL can be downloaded from http://dev.mysql.com/downloads/. Follow the links to Community
Server and choose version 5.1 (or later if available). Stable versions of MySQL are also available from the
packaging systems of various Linux distributions, but currently that is not an option, because the fea-
tures shown here are currently only available in MySQL version 5.1, which is still beta.

426

Part IV: Databases

The download page includes a sources download and a number of binary downloads for the most com-
mon platforms, including Windows, many Linux distributions, and Mac OS X. Choose the option that is
the best match for your platform and follow the instructions for that platform.

For this chapter, you need to install the server and the client programs. If you are a Debian or Ubuntu
user, then select the “Linux x86 generic RPM (dynamically linked) downloads,” convert the .rpm pack-
ages into .deb packages using the Debian alien package and alien command, and install it like any
other package using the Debian dpkg -i command.

If you like fancy user interfaces, you can also download and install MySQL GUI tools. These tools are
also available from the main MySQL download page in version 5.0. They are not fully compatible with
version 5.1 of the server, but most of their features work well; and those that fail seem to fail without
doing any harm. (Because they are not available in their own version 5.1, you can simply use those that
come with your favorite Linux distribution if you are using one.)

If you were installing a MySQL database for anything else than test purposes, it is recommended that
you set up proper users and passwords to protect your database. For the tests covered in this chapter,
just leave the default configuration to make your life slightly simpler during this first encounter with
MySQL. Of course, if you want to keep this setup afterward, add proper passwords.

Adding Information in MySQL
To interact with MySQL you can use a GUI tool, but if you really want to understand what’s going on
behind the scene, the mysql command-line utility is your best friend. Open a Unix or DOS terminal and
type mysql -u root. If everything is OK, you should see the mysql prompt:

vdv@grosbill:~/beginning-xml/0764570773/ch 10 $ mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 14
Server version: 5.1.12-beta-log MySQL Community Server (GPL)

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql>

If you created a password for the root user when you installed MySQL, you need to provide a -p option.

The following Try It Out exercise creates a new database and adds information.

Try It Out Creating and Populating a MySQL Database

Before you can add information in MySQL you must create a database. A database acts as a container in
which you group information related to a project. Note that unlike the collections you’ve seen in eXist,
there is only one level of databases in a MySQL server.

1. To create a database named myBlog with UTF-8 as a character set, type the following:

mysql> create database myBlog DEFAULT CHARACTER SET ‘utf8’;
Query OK, 1 row affected (0.00 sec)

mysql>

427

Chapter 10: XML and Databases

2. Move into the newly created database by typing the following:

mysql> use myBlog;
Database changed
mysql>

A big difference between a native XML database such as eXist and a relational database is that a relational
database is highly structured. In all the tests you’ve done with eXist, you have stored documents without
defining any schema or DTD. The database learned the structure of your documents when you loaded
them, without needing any prior definition. This isn’t possible with a relational database. In a relational
database, information is stored in tables with rows and columns. These tables are similar to spreadsheet
tables, except that the name and type of the columns needs to be defined before you can use them.

3. Create one of these tables to hold the information needed for the exercises in this chapter. This
table will be named entries and, for the sake of simplicity, it will have only two columns:

❑ A column named id that will be used as a primary key when you want to retrieve a
specific blog entry

❑ A column named content to hold the blog entry in XML

Of course, this is a very minimal schema. You might want to add more columns to this table to
simplify and optimize specific queries.

To create this table, type the following:

mysql> create table entries (
-> id int PRIMARY KEY,
-> content LONGTEXT
->);

Query OK, 0 rows affected (0.27 sec)

mysql>

Note that you don’t have to type the -> at the beginning of the second and subsequent lines of the
create table SQL instruction; these are just prompts sent by the mysql command-line utility.

4. The database is now ready to accept your blog entries. In a real-world application, these entries
would be added by a nice web application, but this chapter will continue to use the mysql
command-line utility to add them. In SQL, adding information is done through an insert
statement. Enter a couple of your own blog entries following this pattern:

mysql> insert into entries values (
-> 1,
-> ‘<?contentxml version=”1.0”?>
‘> <item id=”1”>
‘> <title>Working on Beginning XML</title>
‘> <description>
‘> <p>
‘> <a href=”http://www.wrox.com/WileyCDA/WroxTitle/productCd-

0764570773.html”>
‘> <img

src=”http://media.wiley.com/product_data/coverImage/73/07645707/0764570773.jpg”

428

Part IV: Databases

‘> align=”left”/>
‘> I am currently working on the next edition of <a
‘> href=”http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764570773.html”>
‘> WROX\’s excellent “Beginning XML”.
‘> </p>
‘> <p>It\’s the first time I am working on editing a book that I haven\’t
‘> written and I must say that I like it even better than I had
‘> expected when I accepted WROX\’s offer.</p>
‘> <p>I knew that the book was solid and that I would be working with a team
‘> of very professional authors, but what I hadn\’t anticipated is how
‘> fun it can be to create a new version out of existing material.
‘> You have a lot of room to reorganize what you are editing and when the
‘> material is good, it\’s like creating your own stuff, except that
‘> 80% of the hard work is already done!</p>
‘> </description>
‘> <category>English</category>
‘> <category>XML</category>
‘> <category>Books/Livres</category>
‘> <pubDate>2006-11-13T17:32:01+01:00</pubDate>
‘> <comment-count>0</comment-count>
‘> </item>
‘> ‘);

Query OK, 1 row affected (0.34 sec)

mysql>

Note that the XML document that you’re including is embedded in a SQL string delimited by single
quotes. Any single quotes within your XML document must be escaped to fit in that string, and the
SQL way to escape is by backslashing as follows: \’.

If you are feeling lazy, you can copy these statements from the mysql.sql file on the book’s website; it
contains all the SQL statements used in this section plus some cleanup statements to ensure that you can
run the whole document as a batch multiple times with consistent results.

How It Works
In this Try It Out, you have created a database that serves as the container where information is stored,
and a table that defines the structure of your data. Then you entered data in this structure.

Now that your database is ready for further use, you can try out mysql-admin, the graphical user inter-
face that comes with MySQL for its administration. After you start it, connect to the database server. If
you haven’t changed it, the hostname should be localhost, and the username root and the password are
left empty. Among other features, mysql-admin enables you to display and even update the table defini-
tions, as shown in Figure 10-20.

429

Chapter 10: XML and Databases

Figure 10-20

Querying MySQL
Now that you have your first two blog entries, what can you do with them? Of course, MySQL is a SQL
database, so you can use all the power of SQL to query the content of your database. To show all the
entries, just type the following:

select * from entries;

The result is too verbose to print in a book, but if you want something more concise, you can select only
the first characters of each entry:

mysql> select id, substring(content, 1, 80) from entries;
+----+--+
| id | substring(content, 1, 80) |
+----+--+
| 1 | <?xml version=”1.0”?>
<item id=”1”>
<title>Working on Beginning XML</title>
|

| 2 | <?xml version=”1.0”?>
<item id=”2”>
<title>eXist: getting better with each rel |

+----+--+
2 rows in set (0.00 sec)

mysql>

430

Part IV: Databases

Or, if you just want the number of entries:

mysql> select count(*) from entries;
+----------+
| count(*) |
+----------+
| 2 |
+----------+
1 row in set (0.00 sec)

mysql>

Fine, but all that is pure SQL and could be done with any SQL database without XML support. How
could you, for instance, display the content of the title element?

The XML support in MySQL 5.1 comes from two XML functions documented at http://dev.mysql
.com/doc/refman/5.1/en/xml-functions.html. These are ExtractValue and UpdateXML. The
following Try It Out shows you how to use ExtractValues to query data.

Try It Out Using ExtractValue to Extract Title Data

1. The first function, ExtractValue, evaluates the result of an XPath expression over an XML
fragment passed as a string. Note that only a fairly restricted subset of XPath is currently imple-
mented, which severely limits your ability to query XML fragments, but this is still enough to
extract the title from content columns:

mysql> select id, ExtractValue(content, ‘/item/title’) as title FROM entries;
+----+---+
| id | title |
+----+---+
| 1 | Working on Beginning XML |
| 2 | eXist: getting better with each release |
+----+---+
2 rows in set (0.03 sec)

mysql>

This function can be used wherever you want in SQL statement.

2. To retrieve the ID of the blog entry with a specific title, use the following:

mysql> select id from entries where ExtractValue(content, ‘/item/title’) =
-> ‘eXist: getting better with each release’;

+----+
| id |
+----+
| 2 |
+----+
1 row in set (0.00 sec)

mysql>

431

Chapter 10: XML and Databases

How It Works
The behavior of ExtractValue is often somewhat counterintuitive if you are familiar with XPath. For
instance, if you try to apply the same technique to fetch the description of your blog entries, you’ll get
the following:

mysql> select id, ExtractValue(content, ‘/item/description’) as title FROM entries;
+----+-----------------------+
| id | title |
+----+-----------------------+
| 1 |

|
| 2 |

|
+----+-----------------------+
2 rows in set (0.00 sec)

mysql>

If you are used to the XPath behavior that translates elements into strings by concatenating the text
nodes from all their descendants, you might assume that ExtractValue would do the same, but that’s
not the case: ExtractValue only concatenates the text nodes directly embedded in elements. In our
case, the only text nodes that are direct children from description elements are whitespaces, which
explains the preceding output.

To get the default XPath behavior, you need to explicitly state that you want the text nodes at any level:

mysql> select id, ExtractValue(content, ‘/item/description//text()’)
-> as description FROM entries;

+----+-------------------------- .../... -+
| id | description |
+----+-------------------------- .../... -+
| 1 |

I am currently working on the next edition of WROX’s excellent
“Beginning XML”.

.

.

.
2 rows in set (0.00 sec)

mysql>

(This listing has been edited for conciseness.)

432

Part IV: Databases

How would you select entries that contain images? In XPath, you would use //img directly in a test,
and this would be considered true if and only if there is at least one img element somewhere in the
document. If you’re familiar with XPath, you might be tempted to write something like this:

mysql> select id, ExtractValue(content, ‘/item/title’) as title
-> from entries
-> where ExtractValue(content, ‘//img’) != ‘’;

Empty set (0.00 sec)

mysql>

This doesn’t work because img elements are empty: They don’t have any child text node and
ExtractValue converts them into empty strings. To make that query work, you need to select a node
that will have a value (such as //img/@src) or count the number of img elements and test that the
result is greater than zero:

mysql> select id, ExtractValue(content, ‘/item/title’) as title from entries
-> where ExtractValue(content, ‘//img/@src’) != ‘’;

+----+--------------------------+
| id | title |
+----+--------------------------+
| 1 | Working on Beginning XML |
+----+--------------------------+
1 row in set (0.00 sec)

mysql> select id, ExtractValue(content, ‘/item/title’) as title from entries
-> where ExtractValue(content, ‘count(//img)’) > 0;

+----+--------------------------+
| id | title |
+----+--------------------------+
| 1 | Working on Beginning XML |
+----+--------------------------+
1 row in set (0.00 sec)

mysql>

You’ll hit another limitation pretty soon if you use this function: Most of the string functions of XPath
are not implemented. For instance, if you want to find entries with links to URIs from the Wrox site, you
might be tempted to write something such as the following:

select id, ExtractValue(content, ‘/item/title’) as title
from entries
where ExtractValue(content,

‘count(//a[starts-with(@href,”http://www.wrox.com”)])’) >0;

Unfortunately, the starts-with function is not implemented; you need to use SQL to do what you can’t
do with XPath:

mysql> select id, ExtractValue(content, ‘/item/title’) as title
-> from entries where ExtractValue(content, ‘//a/@href’)
-> like ‘%http://www.wrox.com%’;

433

Chapter 10: XML and Databases

+----+--------------------------+
| id | title |
+----+--------------------------+
| 1 | Working on Beginning XML |
+----+--------------------------+
1 row in set (0.01 sec)

mysql>

If you are not a command-line aficionado, you will be happy to learn that you can execute these com-
mands using mysql-query-browser, the second GUI tool that can be installed from the MySQL website,
shown in Figure 10-21.

Figure 10-21

This tool not only enables you to run all the queries that you’ve seen, it also provides a feature that
enables you to edit the table values in a table view similar to a spreadsheet and even field by field,
which is most convenient for editing the XML documents you’ve stored in the database. Figure 10-22
illustrates the editing feature.

434

Part IV: Databases

Figure 10-22

Updating XML in MySQL
The second XML function introduced by MySQL 5.1 is called UpdateXML. Like any SQL function,
UpdateXML doesn’t perform database updates, but it is handy when you use it in update statements.

UpdateXML takes three parameters. The first is a string containing an XML document. The second is an
XPath expression that points to an element, and the third is an XML fragment. UpdateXML takes the
XML document, replaces the element pointed to the XPath expression by the XML fragment passed as
the third parameter, and returns the result of this operation as a string.

To change the title of the second blog entry, for example, use the following:

mysql> update entries
-> set content = UpdateXml(content,
-> ‘/item/title’,
-> ‘<title>eXist DB is getting much better with each release</title>’)
-> where id=2;

Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

435

Chapter 10: XML and Databases

mysql>
mysql> select id, ExtractValue(content, ‘/item/title’) as title FROM entries;
+----+---+
| id | title |
+----+---+
| 1 | Working on Beginning XML |
| 2 | eXist DB is getting much better with each release |
+----+---+
2 rows in set (0.01 sec)

mysql>

This function is obviously handy in this situation, but note that the XPath expression must point to an
element. This means that the granularity of updates is at element level, so if you want to update an
attribute value you are out of luck.

Usability of XML in MySQL
After this introduction to the XML features of MySQL 5.1, you are probably wondering how usable
these features are in real-world applications. To answer this question, first note that support of XML in
MySQL 5.1 is limited to the two string functions already shown. In other words, there’s no such thing as
an XML column type. Your documents are stored as text and need to be parsed each time you use one of
these functions.

Consider one of the queries that you have seen:

select id from entries where ExtractValue(content, ‘/item/title’) = ‘eXist:
getting better with each release’.

To process this query, the database engine needs to read the full content of all the blog entries, parse
this content, and apply the XPath expression that extracts the title. That’s fine with our couple of blog
entries, but probably not something you want to do if you are designing a Technorati clone able to store
millions of blog entries.

To optimize the design of the sample database that you created, you would probably extract the infor-
mation that is most commonly used in user queries and move it into table columns. In this example,
obvious candidates for that would be the title, the categories, and the publication date. Having this data
available as columns enables direct access for the engine; and if you need further optimization, that
gives you the opportunity to create indexes using these columns.

The other consideration to keep in mind is the mismatch between the current implementation and the
XPath usages. You saw an example of that when you had to explicitly specify that you wanted to con-
catenate text nodes from all the descendants. If you use these functions, then you will see more exam-
ples. This mismatch is likely to be reduced in future releases, and this is something to watch carefully
because it could lead to incompatible changes.

With these restrictions in mind, if you are both a MySQL and XML user, you will find these first XML
features most welcome and there is no reason to ignore them. They don’t turn MySQL into a native XML
database yet, but they are a step in the right direction!

436

Part IV: Databases

Client-Side XML Support
The features that you have seen so far are all server-side features implemented by the database engine.
You don’t need anything to support XML client side, and it is very easy using any programming lan-
guage to convert SQL query results into XML. However, you might find it disappointing to leave this
chapter without at least a peek at an XML feature that can be handy when you use the mysql command-
line utility.

To see it in action, leave your mysql session and type the mysql command, adding a --xml option:

vdv@grosbill:~/beginning-xml/0764570773/ch 10 $ mysql -u root --xml myBlog
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 31
Server version: 5.1.12-beta-log MySQL Community Server (GPL)

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql>

This option has switched the XML mode on, and the query results will now be output as XML:

mysql> select id, ExtractValue(content, ‘/item/title’) as title FROM entries;
<?xml version=”1.0”?>

<resultset
statement=”select id, ExtractValue(content, ‘/item/title’) as title FROM

entries;”>
<row>

<field name=”id”>1</field>
<field name=”title”>Working on Beginning XML</field>

</row>

<row>
<field name=”id”>2</field>
<field name=”title”>eXist DB is getting much better with each

release</field>
</row>

</resultset>
2 rows in set (0.02 sec)

mysql>

Of course, that’s not very readable or useful as such, but it’s a useful feature when you use mysql in
shell or DOS scripts: You get your results as XML documents on which you can run XML tools such as
XSLT transformations. If you need a truly simple way to turn out a query result in XHTML, this is defi-
nitely something that you’ll find useful.

437

Chapter 10: XML and Databases

Choosing a Database to Store XML
At the end of the day, knowing a little of the theory behind XML and databases isn’t the direction from
which most businesses will approach storage of XML. Businesses are likely to have large amounts of
existing data in conventional relational database management systems and want to leverage the skills
and knowledge that their database administrators and other employees have of such RDBMS. For that
reason, much of the enterprise attention on XML and databases is likely to be focused on adding XML
support to existing RDBMS such as IBM’s DB2, Oracle, Sybase, MySQL, or Microsoft’s SQL Server. Of
course, as XML functionality is added to such products, it is unclear whether they remain an RDBMS or
become some other hybrid entity. For most businesses, that will be academic. They want a database that
works, that is secure, that scales as business volume grows, that is easy to manage, and so on.

On the other hand, for some business uses, a custom application that uses a native XML database such
as eXist may be an appropriate approach.

Looking Ahead
At present there is no standard update technique for native XML databases, and there is unlikely to be
one until a version of XQuery after version 1.0 is released. In an ideal world we would have a standard
update language, in the sense that XQuery is pretty tightly standardized across different commercial
database products. That tight standardization of the query aspect of XQuery contrasts with the signifi-
cant impact of proprietary aspects of implementing SQL in many relational database management sys-
tems. SQL Server 2005 provides one proprietary solution to fill this gap in the specification. In time it is
likely that the W3C will produce a standard data modification language, either as part of a later version
of XQuery or to complement it. Meanwhile, users of native XML databases and enterprise XML-enabled
relational database management systems will have to decide which proprietary data modification lan-
guage they prefer.

Summary
In this chapter you learned about the increasing business need to store or expose data as XML. The char-
acteristics of a viable XML-enabled database were discussed, and three different examples of XML-
enabled databases were shown. First, eXist, a native XML database, was examined. Microsoft’s SQL
Server 2000 was then explored, together with a preliminary look at the upcoming SQL Server 2005, to
see how additional XML functionality is being added to one commercial enterprise-grade relational
database management system. Finally, you looked at the latest release of the popular open-source
MySQL relational database, the first version to include XML features.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

438

Part IV: Databases

Question 1
List some reasons why adding XML functionality to a relational database management system may be
preferable to using a native XML database.

Question 2
What methods are available in SQL Server 2005 to manipulate data in a database column that is of
type xml?

Question 3
Write a SQL query to get the ID and title of blog items from the XML category of the MySQL database.
Would you expect this query to scale if your blog grows and includes many blog entries? What would
you do to increase performance in that case?

439

Chapter 10: XML and Databases

Part V

Programming

Chapter 11: The XML Document Object Model (DOM)

Chapter 12: Simple API for XML (SAX)

11
The XML Document Object

Model (DOM)

This chapter explores the XML Document Object Model, often called the XML DOM or simply the
DOM, and how it can be manipulated in various ways. The XML DOM is primarily used by pro-
grammers as a way to manipulate the content of an XML document. The XML DOM is useful for
tasks as diverse as manipulating data from an RSS feed to animating part of an SVG graphic.

Although many XML programmers refer to the XML DOM simply as the DOM, the term DOM
can also be used to refer to the HTML Document Object Model, the XML Document Object
Model, or both. In this chapter the focus is on the XML DOM.

This chapter covers the following:

❑ The purpose of the XML Document Object Model

❑ How the DOM specification was developed at the W3C

❑ Important XML DOM interfaces and objects, such as the Node and Document interfaces

❑ How to add and delete elements and attributes from a DOM and manipulate a DOM tree
in other ways

❑ How the XML DOM is used “under the covers” in Microsoft InfoPath 2003

Purpose of the XML DOM
The XML DOM provides an interface for programmers to create XML documents; to navigate
them; and to add, modify, or delete parts of those XML documents while they are held in memory.
There are a number of ways that an in-memory representation can be created:

❑ One of the possibilities is to read a file from disk. This is a common technique now when
dealing with configuration files; user options held in an XML format are easier to deal
with than traditional techniques such as INI files or registry settings.

❑ A second option is to convert a string representation embedded in the source code. This is popu-
lar for examples but not often used in real-life scenarios because of the difficulty in changing the
XML when needed.

❑ A third method is to accept a stream piped from another source such as a response from a web
service or a database stored procedure.

These three techniques all come under the category of XML parsing. Parsing means taking a stream of
characters and producing an internal representation conforming to a predetermined structure. However
the source was received, the result is an in-memory model of the XML, known as the XML DOM.
Parsing also means that entities are not represented in the XML DOM, because any entities referenced in
the XML would be expanded by an XML parser before the DOM tree was constructed. For example, in
the XML DOM the predefined entity & would be represented by the single character &. This raises
corresponding issues when serializing an XML DOM. The character & in a DOM node would need to be
expanded to & to avoid constructing an XML document that was not well formed.

Some other features of the input are lost after parsing, such as the XML declaration and its specified
encoding, as well as details such as whether attributes were quoted with single or double quote marks.
In general the DOM deals with an idealized version of the XML known as the XML Information Set (or
Infoset). This means two differently constructed documents, once parsed, can yield the same Infoset. Full
details of this concept can be found at www.w3.org/TR/xml-infoset/.

Serialization is the process of storing an object’s state to a permanent form, such as a file or a database,
or converting it to a form that can be transmitted between machines. Deserialization is the opposite
process of generating an object based on its stored form.

In XML the object is the DOM Document, which exists as a tree of nodes. When serialized it is repre-
sented using angular bracket notation (although other notations have been proposed to reduce the size of
the serialized form). Figure 11-1 shows two different forms of the same document for comparison.

There is a fourth possibility when producing an XML DOM that does not need an input stream of any
sort. The DOM can be created directly in memory using the appropriate DOM methods such as
createElement() and appendChild(). An example of this is shown later in the chapter.

The DOM provides a logical view of the in-memory structure that represents an XML document. Like
the XPath document model introduced in Chapter 7, the XML DOM represents an XML document in a
way that is equivalent to a hierarchical treelike structure consisting of nodes. A DOM implementation
isn’t obliged to create a tree as long as it appears to a developer to be equivalent to an in-memory tree.

The XML document itself is represented as a Document node. Like the root node in XPath 1.0, a DOM
Document node is always situated at the apex of a tree. However, the Document node differs signifi-
cantly from an XPath root node in its characteristics, and its descendant nodes are also significantly dif-
ferent representations of parts of an XML document compared to XPath 1.0 nodes.

An XML document might typically be parsed by an XML parser, which checks for well-formedness and,
optionally, validity of the document. The XML DOM may then be constructed as an in-memory repre-
sentation of the XML document. However, this doesn’t happen in a vacuum. Typically, the XML DOM
will be associated with some other application. In many of the examples later in this chapter, for the sake
of illustrating principles relating to the XML DOM, that other application will be a web browser, but the
options are almost limitless given XML’s increased use in all types of business processes. Later in this
chapter you will look briefly at how the XML DOM is used in an enterprise XML forms product from
Microsoft called InfoPath 2003.

444

Part V: Programming

Figure 11-1

In the MSXML component, which is used by Internet Explorer and can be harnessed programmatically,
the XML parser, a DOM implementation, and several other XML technologies are implemented in one
component. In Mozilla-based browsers, the XML parser is separate from other components such as the
XSLT processor, and it cannot be accessed outside of the browser.

Interfaces and Objects
Interfaces and objects are often discussed as if the two terms were pretty much interchangeable, but that
is not really the case. An interface is a more abstract concept than an object.

Outside the programming world you might, loosely speaking, have a class of person characterized by
success in an electoral process and residence at 1600 Pennsylvania Avenue. Very probably you would
guess that the class of person you are talking about is a president of the United States. Apart from
electoral information, a president would have assorted other properties such as name, inauguration

DOM Document

Serialized verson

<documentElement>
<firstChildElement attributeNode=”attributeValue”>Text Node</firstChildElement>
<secondChildElement>Text Node</secondChildElement>
<!- - Example comment - ->
</documentElement>

Element
(firstChildElement)

Attribute
(attributeNode)

Element
(secondChildElement)

Comment
(Example comment)

Document Element
(documentElement)

Text node

Text Node

Root Node

445

Chapter 11: The XML Document Object Model (DOM)

date, political party represented, and so on. If the general concept of a president is an interface, you
can view a specific instance of a president as corresponding to an object. If you refer to John Fitzgerald
Kennedy, you have particular values for that individual — for example, “Democratic Party” as the value
of the party represented characteristic.

The class of person, president, has a set of characteristics and a set of actions for which he or she has
authority, such as appointing a cabinet and signing Acts of Congress. Similarly, an interface describes the
properties and behavior of a class of objects. Characteristics of the interface are termed properties, and
actions or capacities of the interface are termed methods.

In general terms, if you think of parts of an XML document, you know that an element has certain char-
acteristics — for example, a name and an optionally empty non-ordered set of attributes. However, any
particular XML element — any particular instance of the class element — has particular values for the
characteristics of that class.

An interface can be considered a contract. The properties defined in the interface are available on all
objects that are instances of that class. The methods specified in the interface are also present on all
objects in the class.

There is a Document interface defined in the XML DOM. One of the properties of that interface is the
documentElement property, which specifies the document element of the document. For any particular
document there is a Document node, which is an object that implements the Document interface. Because
the Document interface has a documentElement property, you can be sure that the Document object also
has such a property, and you can query or assign a value to the documentElement property on that par-
ticular object. Whatever properties and methods the Document interface has (covered in detail later in
the chapter), a Document object has the same.

Because an object is an instance of an interface and has all the characteristics (properties and methods)
of that interface, it is very easy to slip from describing an interface to describing an instance of it — an
object. It isn’t easy in natural writing to be technically wholly consistent in separating interfaces from
objects, a difficulty that the creators of the DOM also seem to have found because, arguably, what they
created was a Document Interface Model, rather than a Document Object Model.

The Document Object Model at the W3C
The official specifications of the XML DOM have been developed by the World Wide Web Consortium
(W3C). The various editions of the DOM specification have been referred to as levels. The first DOM
specification was finalized as the Document Object Model Level 1 Recommendation in October 1998.
DOM Level 1 provided an approach both to the DOM for HTML and for XML. This chapter focuses
only on those aspects of DOM Level 1 that apply to XML. The HTML interfaces are not described.

The main page for the DOM specification is www.w3.org/DOM/. As noted earlier, this chapter deals
with the XML side of the DOM.

The XML DOM, like XPath 1.0, is a logical model of an XML document. An implementer of the XML
DOM is free to implement the DOM in any way that presents the interface to the developer as if it,
logically, corresponded to a hierarchical treelike structure. The DOM Level 1 specification also left the

446

Part V: Programming

technique and syntax to achieve creation of a Document node up to the creators of DOM implementa-
tions. Similarly, serialization of an XML DOM was not defined in the Level 1 recommendation.

The XML DOM Level 1 provides an interface for developers to use to manipulate XML documents.
Equally, the DOM can be presented as an interface to proprietary structures that themselves allow
manipulation of structures representing XML, thereby providing a common means across programs to
manipulate models of XML. The big advantage of the XML DOM is that as far as users are concerned,
they appear to have a standard interface to allow manipulation of XML.

Having a shared interface potentially improves a programmer’s productivity, because familiarity with
only one common interface is needed. Of course, in practice, that hasn’t always been delivered, in part
because the DOM Level 1 specification provided no common interface to create a representation of XML
documents. Therefore, that basic functionality had to be essentially proprietary.

The DOM also failed to provide a universal interface in the sense that it is not ideal or suitable for larger
XML documents. The DOM, although useful for relatively small-scale XML programming, becomes
impractical for handling very large XML documents, because the DOM requires a single tree (or equiva-
lent structure) to be created in memory. For very large XML documents, the Simple API for XML (SAX),
described in Chapter 12, or .NET’s XmlReader, provide an approach that scales better than the XML
DOM. In practice, therefore, many XML developers need to be familiar with both the XML DOM as well
as at least one of these alternatives.

DOM Level 1 did not include a way to create an XML document. Nor did it include a specification of XML
events. DOM Level 1 specified language bindings — how different languages would represent the methods
and properties — for Java and ECMAScript. For example, in Java you can retrieve the document that a
node belongs to by using using the getOwnerDocument() method on the node. In ECMAScript you use
the ownerDocument property.

ECMAScript is a standard ratified by ECMA, the European Computer Manufacturers Association. It
is commonly known as JavaScript when used in most browsers other than IE, where it is called JScript.

DOM Level 2 added some new functionality, which resulted in the XML DOM specification being split
into several modules. The Core module had few changes from DOM Level 1, including such things as
support for namespaced elements. For example, a node included new properties such as namespaceURI,
localName, and prefix.

The DOM Level 2 specification documents and their location can be found at www.w3.org/TR/
DOM-Level-2-Core/.

In 2004 DOM Level 3 was finalized. This introduced, among other things, standards for URI handling,
namespace resolution, and how the DOM maps to the XML Infoset. The Core level documentation can
be found at www.w3.org/TR/DOM-Level-3-Core/.

XML DOM Implementations
A DOM implementation provides all interfaces described in a particular level of the DOM specification.
However, an implementer is free to provide additional interfaces. For example, in DOM Level 1 it was
essential that implementers provided some additional interfaces because DOM Level 1 provided no
standard mechanism for creating an XML DOM Document object.

447

Chapter 11: The XML Document Object Model (DOM)

Similarly, implementers may use the XML DOM for specialized purposes that benefit from specialized
functionality. The Adobe SVG Viewer, which is a widely used SVG viewer at the time of writing, provides
several additional properties and methods for manipulation of objects in the SVG DOM in addition to
those required to comply with the XML DOM specifications. See Chapter 19 for more information on SVG.

Two Ways to View DOM Nodes
The XML DOM provides two ways in which you can look at DOM nodes:

❑ One way of looking at a DOM tree is as a hierarchy of Node objects, some of which expose spe-
cialized interfaces. Viewed in this way, all XML DOM objects are Node objects. This way of
viewing an XML DOM is particularly useful when you identify properties and methods that are
common to all DOM nodes.

❑ The alternative way to view a DOM tree is to view the root of the tree as a Document node (or
object) whose descendant nodes are objects of different specialized types. For example, the child
nodes of the Document object may be a DocumentType object (which represents a DOCTYPE dec-
laration), an Element object (which represents the document element of the document), and
zero or more ProcessingInstruction objects and Comment objects (which represent any pro-
cessing instructions and comments in the prolog of the XML document). If you recall the per-
mitted structure of an XML document and, specifically, its prolog, the allowed objects should be
fairly self-explanatory. Remember that an XML declaration is not, strictly speaking, a processing
instruction; therefore, it is not represented as a ProcessingInstruction node in the XML
DOM. As an example of a commonly used ProcessingInstruction, the following line can
be added to an XML document so that when it is opened in a browser, the XSL transformation,
example.xslt, is applied to the document:

<?xml-stylesheet type=”text/xsl” href=”example.xslt”?>

The XML declaration, however, sits at the beginning of an XML file and is most commonly used
to state the encoding for the contents:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

The difference between the prolog and the XML declaration is that the prolog consists of both an XML
declaration and a DTD, both of which are optional.

The second viewpoint tends to be more intuitive when trying to visualize the effect that the code has or
is intended to have on nodes within the DOM, so the text mostly uses that approach in the descriptions
of the DOM that follow.

Overview of the XML DOM
This section briefly describes the objects or interfaces that make up the XML DOM so you can get the
general picture of how an XML document is represented. Each of the node types is briefly mentioned
here, but several of the node types are discussed in more detail and demonstrated in example code later
in the chapter.

As the following allowed node types are described, you may find it helpful to consider how those node
types correspond to parts of serialized XML documents.

448

Part V: Programming

As mentioned earlier, the root of the DOM hierarchy is always a Document node if an XML document is
being represented. The child nodes of the Document node are the DocumentType node, Element node,
ProcessingInstruction nodes, and Comment nodes. The DocumentType, Comment, and
ProcessingInstruction node types may not have child nodes.

If the DOM tree represents a fragment of an XML document — for example, snipped from an existing DOM
tree or newly created — then the root of the hierarchy is a DocumentFragment node. Given the circum-
stances in which it is used, it is not surprising that the child nodes of a DocumentFragment node need not
conform to XML’s well-formedness rules, although once the nodes in the document fragment have been
added to a full XML DOM tree, the equivalent of well-formedness rules apply again. The most common
child nodes of the DocumentFragment node are likely to be Element nodes but other allowed child node
types are Comment, ProcessingInstruction, Text, CDATASection, and EntityReference.

Element nodes represent the document element of an XML document and all other elements
in the document. The permitted child node types of an Element node are Element, Comment,
ProcessingInstruction, Text, CDATASection, and EntityReference. Notice that the permitted child
nodes of the Element node are the same as the allowed child nodes of the DocumentFragment node.

Attributes in an XML document are represented by the Attr node type. An Attr node is associated with
an Element node but is not considered to be a child node of the Element node. In the DOM an Attr
node is not a child node of the Element node and therefore is not considered part of the DOM tree,
despite the Attr node implementing the Node interface. Thus, the parentNode, previousSibling, and
nextSibling attributes of the Attr node have a Null value. The text content of an attribute is repre-
sented in a Text node.

Most of the code you write to manipulate the XML DOM is likely to include the Document, Element,
Attr, and Text node types.

The CDATASection and the Notation node types correspond to the similarly named structures
in an XML document. The Entity node type represents a parsed or unparsed entity in an XML
document. An Entity node may have child nodes of the following node types: Element, Comment,
ProcessingInstruction, Text, CDATASection, and EntityReference.

An EntityReference node may have the following child node types: Element, Comment,
ProcessingInstruction, Text, CDATASection, and EntityReference.

In the examples in this chapter you won’t look further at the use of CDATASection, Entity, and
EntityReference node types. To explore those node types further, see the DOM Core specification at
www.w3.org/TR/DOM-Level-3-Core/.

Now that you have an overview of the node types that make up an XML DOM document or document
fragment, let’s move on to the tools you need to run the examples.

The DOM representation of attributes differs significantly from the representation
of attributes in the XPath data model, described in Chapter 7. In XPath an attribute
node is not considered to be a child of the element node with which it is associated,
but seemingly paradoxically, in the XPath model the element node is considered to
be the parent node of the attribute node.

449

Chapter 11: The XML Document Object Model (DOM)

Tools to Run the Examples
All the examples in this chapter run in a browser, as this provides the easiest way to both process easily
changeable script examples and display the output in a user-friendly fashion. Originally, only Internet
Explorer (IE) could process XML, but now all the Mozilla-based browsers such as Firefox have this capa-
bility, as well as others such as Safari. You need IE 5.5 or later, Firefox 1.2 or later, or Netscape 7 or later.

This chapter refers to either Microsoft’s or Mozilla’s implementation, the latter covering all the other
browsers mentioned above.

Browser Differences
The Microsoft and Mozilla implementations of XML share the DOM interface discussed earlier, but they
are implemented internally in two very different ways. The former is a COM class, sometimes known as
an ActiveX component, that can be used by any COM-aware language, such as VB6, C#, or Microsoft’s
version of JavaScript, called JScript, for instance. The class can be used within IE or by other applications.
Mozilla’s version is built in to the browser in the same way that the alert() method is. The advantage
of this is that you don’t run into the problems that can arise when users disable ActiveX. The disadvan-
tage is that it’s not reusable outside the browser environment.

Because they share the same interface, the methods and properties between browsers are substantially
the same, although initial setup and configuration varies somewhat. In general, Microsoft’s implemen-
tation is easier to work with and has a number of extra features designed to speed up development.
Fortunately, Mozilla’s classes can be extended to also implement extra features, a capability not present
in Microsoft’s COM.

Try It Out Navigating to the Document Element

In this first example, you learn how to create a simple in-memory DOM by loading an XML string; you
then access the document element, which, as you may remember, is the first element in the document
and contains all the other content — apart, possibly, from any comments and processing instructions.

The following page, DocumentElement-IE.html, uses Microsoft’s XML classes to load and view the data:

<html>
<head>
<title>Document Element - IE</title>
<script type=”text/javascript”>

function getDom()
{
var oDom = null;
try
{
oDom = new ActiveXObject(“Msxml2.DomDocument.3.0”);

}
catch (e)
{
alert(“This code needs msxml version 3 installed to operate.”);

450

Part V: Programming

}
return oDom;

}

function getXml()
{
return document.getElementById(“txtXml”).value;

}

function showParseError(err)
{
var sMessage = “Error parsing input.\n”

+ “Reason: “ + err.reason
+ “\nSource: “ + err.srcText;

alert(sMessage);
}

function showResults(text)
{
var oResults = document.getElementById(“txtResults”);
oResults.value += text + “\n”;

}

function showProperties()
{
var oDom = getDom();
if (!oDom) return;
var bLoaded = oDom.loadXML(getXml());
if (!bLoaded)
{
showParseError(oDom.parseError);
return;

}
showResults(“The document element is: “ + oDom.documentElement.nodeName);

}
</script>

</head>
<body>
<textarea cols=”40” rows=”20” id=”txtXml”><root><data>
<item value=”1”>This is some text.</item></data></root></textarea>
<textarea cols=”40” rows=”20” id=”txtResults”></textarea>

<input type=”button” value=”Show XML Properties” onclick=”showProperties();”>

<input type=”button” value=”Clear Results”
onclick=”document.getElementById(‘txtResults’).value = ‘’;”>
</body>
</html>

The page displays some XML in the left-hand side. Upon clicking the button, it displays some data in the
right-hand area. If the XML is not well formed, an error message shows; otherwise, the result is similar
to what is shown in Figure 11-2.

451

Chapter 11: The XML Document Object Model (DOM)

Figure 11-2

How It Works
The following HTML input element creates a simple button that has an onclick attribute:

<input type=”button” value=”Show XML Properties” onclick=”showProperties();”>

Clicking the button calls the showProperties() function; this relies on a number of helper functions,
the first of which is getDom():

function getDom()
{
var oDom = null;
try
{
oDom = new ActiveXObject(“Msxml2.DomDocument.3.0”);

}
catch (e)
{
alert(“This code needs msxml version 3 installed to operate.”);

}
return oDom;

}

getDom() begins by declaring a variable, oDom, to hold the XML parser object. It attempts to assign a
COM object specified by the progID of Msxml2.DomDocument.3.0, which is Microsoft’s implementa-
tion of the standard DOM document.

452

Part V: Programming

Microsoft has released a number of XML libraries with different progIDs. The latest one is version 6.0,
although you should only rely on 3.0 being available. Never use the older progID of Microsoft
.XmlDom, as this sometimes produces a pre-standards version that can lead to poor performance and
unexpected results.

The code is surrounded in a try/catch block, and if the object is not created, either because it is not
installed or the user has increased the level of security settings, then an alert is given. If oDom is found to
be null, then the showProperties() returns the following:

function showProperties()
{
var oDom = getDom();
if (!oDom) return;
var bLoaded = oDom.loadXML(getXml());

//more code
}

showProperties() then attempts to load the string returned from getXml() into the parser. This func-
tion simply obtains a reference to the textarea using its ID and returns its value:

function getXml()
{
return document.getElementById(“txtXml”).value;

}

The XML parser uses its loadXML() method, which accepts a string and returns a Boolean, which is true
if the load succeeded or false if it failed. A failure usually results from XML that was not well formed:

function showProperties()
{
var oDom = getDom();
if (!oDom) return;
var bLoaded = oDom.loadXML(getXml());
if (!bLoaded)
{
showParseError(oDom.parseError);
return;

}
//more code
}

The bLoaded variable is tested and if it is found to be false, the document’s parseError object is passed
to showParseError(), where the reason and source are displayed:

function showParseError(err)
{
var sMessage = “Error parsing input.\n”

+ “Reason: “ + err.reason
+ “\nSource: “ + err.srcText;

alert(sMessage);
}

453

Chapter 11: The XML Document Object Model (DOM)

The final piece of code displays the name of the document element using the documentElement prop-
erty of the DOM object and the nodeName property of the document element itself:

function showProperties()
{
var oDom = getDom();
if (!oDom) return;
var bLoaded = oDom.loadXML(getXml());
if (!bLoaded)
{
showParseError(oDom.parseError);
return;

}
showResults(“The document element is: “ + oDom.documentElement.nodeName);

}

The nodeName property exists for all nodes, but not all nodes return something useful. It is most com-
monly used for elements and attributes.

If you change the text in the left-hand area — for example, by removing the final t in the closing </root>
element to leave </roo>, — and click the button again, you will get an error stating that the end-tag roo
does not match the start-tag root, and listing the offending text.

Now that you’ve seen how the basics work in IE, you will rewrite the example to use the Mozilla classes
(in the following code of DocumentElement-Mozilla.html). As you will see, the core interface is the
same, but parts that are not specified in the standard, such as how the basic DOM document is created
and how errors are handled, vary somewhat.

The HTML code remains the same; only the script is different:

<html>
<head>
<title>Document Element - Mozilla</title>
<script type=”text/javascript”>

function getDomFromXml(xml)
{
var oDom = null;
try
{
var oParser = new DOMParser();
oDom = oParser.parseFromString(xml, “text/xml”);

}
catch (e)
{

alert(“This code needs DOMparser available to operate.”);
}
return oDom;

}

function getXml()
{

454

Part V: Programming

return document.getElementById(“txtXml”).value;
}

function removeEntities(text)
{
var oDiv = document.createElement(“div”);
oDiv.innerHTML = text;
return oDiv.firstChild.nodeValue;;

}

function showParseError(dom)
{
var oSerializer = new XMLSerializer();
var sXml = oSerializer.serializeToString(dom, “text/xml”);
var oRE = />([\s\S]*?)Location:([\s\S]*?)Line Number (\d+), Column

(\d+):<sourcetext>([\s\S]*?)(?:\-*\^)/;
oRE.test(sXml);
var sMessage = “Error parsing input.\n”

+ “Reason: “ + removeEntities(RegExp.$1)
+ “\nSource: “ + removeEntities(RegExp.$5);

alert(sMessage);
}

function showResults(text)
{
var oResults = document.getElementById(“txtResults”);
oResults.value += text + “\n”;

}

function showProperties()
{
var oDom = getDomFromXml(getXml());
if (!oDom) return;
var sName = oDom.documentElement.nodeName;
if (sName == “parsererror”)
{
showParseError(oDom);
return;

}
showResults(“The document element is: “ + sName);

}
</script>
</head>
<body>
<textarea cols=”40” rows=”20” id=”txtXml”>
<root><data><item value=”1”>This is some text.</item></data></root></textarea>
<textarea cols=”40” rows=”20” id=”txtResults”></textarea>

<input type=”button” value=”Show XML Properties” onclick=”showProperties();”>

<input type=”button” value=”Clear Results”
onclick=”document.getElementById(‘txtResults’).value = ‘’;”>
</body>
</html>

455

Chapter 11: The XML Document Object Model (DOM)

The first major change is creating a DOM document from the XML in the text area. showProperties()
begins by passing the XML to getDomFromXml():

function showProperties()
{
var oDom = getDomFromXml(getXml());

getDomFromXml accepts the XML string and creates a DOMParser:

function getDomFromXml(xml)
{
var oDom = null;
try
{
var oParser = new DOMParser();

//more code
}

DOMParser is a built-in Mozilla class that has a number of methods to build a DOM document, the most
frequently used being parseFromString():

function getDomFromXml(xml)
{
var oDom = null;
try
{
var oParser = new DOMParser();
oDom = oParser.parseFromString(xml, “text/xml”);

//more code
}

parseFromString() takes the actual string as the first argument, and the MIME type of the document
as the second. If text/xml is provided as the MIME type, an XML DOM document is returned:

function getDomFromXml(xml)
{
var oDom = null;
try
{
var oParser = new DOMParser();
oDom = oParser.parseFromString(xml, “text/xml”);

}
catch (e)
{

alert(“This code needs DOMparser available to operate.”);
}
return oDom;

}

As with Internet Explorer, the code is wrapped in a try/catch block and an alert is displayed if the rel-
evant classes are not available. Otherwise, a loaded DOM document is returned.

456

Part V: Programming

The DOMParser uses a different technique from Microsoft’s DomDocument to report errors. Instead of a
Boolean value indicating success or failure, the DOMParser itself holds a special XML document contain-
ing the error details. This document has a document element named parsererror and you can test for
success by checking for that name:

function showProperties()
{
var oDom = getDomFromXml(getXml());
if (!oDom) return;
var sName = oDom.documentElement.nodeName;
if (sName == “parsererror”)
{
showParseError(oDom);
return;

}
showResults(“The document element is: “ + sName);

}

If the name does equal parsererror, the showParseError() function displays this
to the user. This is more complicated than Microsoft’s version because the details
need to be extracted from the text in the error message:function
showParseError(dom)
{
var oSerializer = new XMLSerializer();
var sXml = oSerializer.serializeToString(dom, “text/xml”);
var oRE = />([\s\S]*?)Location:([\s\S]*?)Line Number (\d+), Column

(\d+):<sourcetext>([\s\S]*?)(?:\-*\^)/;
oRE.test(sXml);
var sMessage = “Error parsing input.\n”

+ “Reason: “ + removeEntities(RegExp.$1)
+ “\nSource: “ + removeEntities(RegExp.$5);

alert(sMessage);
}

First, another class is instantiated, XMLSerializer. Then the serializeToString() method is called;
again, the second argument specifies the MIME type of text/xml. Next, a regular expression is con-
structed to parse the individual sections from the string, and a helper method named removeEntities()
converts such entities as < into the more readable <.

Figure 11-3 shows an error report in Mozilla.

Figure 11-3

457

Chapter 11: The XML Document Object Model (DOM)

As you can see, the Mozilla version is more long-winded, and in real life you would not want to write
two sets of pages to cope with both models. To overcome this problem, a number of cross-browser
libraries are available that use browser sniffing to determine which classes are available and return
objects that share a common set of methods. The library used for the following examples is zXml, writ-
ten by Nicholas C. Zakas and available from www.nczonline.net/downloads/.

The Node Object
It was mentioned earlier that one way to view nodes in an XML DOM is as specializations of the Node
object. One very good reason for viewing an XML DOM in that way is that the Node object has proper-
ties and methods that are also available on all other types of XML DOM nodes shown in this chapter.
XML DOM programming consists of retrieving and setting some of these properties, either directly or
using the methods defined in an interface to manipulate the object that instantiates that interface or
related objects. The following sections describe the properties and methods that are available to a devel-
oper, whatever type of DOM node is being used.

Properties of the Node Object
The Node object in DOM Level 2 has 14 properties:

❑ attributes— This is a read-only property whose value is a NamedNodeMap object.

❑ childNodes— This is a read-only property whose value is a NodeList object.

❑ firstChild— This is a read-only property whose value is a Node object.

❑ lastChild— This is a read-only property whose value is a Node object.

❑ localName— This is a read-only property that is a String.

❑ namespaceURI— This is a read-only property whose value is a String.

❑ nextSibling— This is a read-only property whose value is a Node object.

❑ nodeName— This is the name of the node, if it has one, and its value is a String type.

❑ nodeType— This is a read-only property that is of type number. The number value of the
nodeType property maps to the names of the node types mentioned earlier.

❑ nodeValue— This property is of type String. When the property is being set or retrieved, a
DOMException can be raised.

❑ ownerDocument— This is a read-only property whose value is a Document object.

❑ parentNode— This is a read-only property whose value is a Node object.

❑ prefix— This property is a String. When the property is being set, a DOMException can be
raised.

❑ previousSibling— This is a read-only property whose value is a Node object.

These properties enable the developer to learn a great deal about the node itself and the XML DOM
surrounding the currently selected node. Depending on the particular node object, there may not be
a retrievable useful value for some properties made available by the Node interface. For example, a

458

Part V: Programming

Document object does not have a parent node, and a Comment node has no attributes or child nodes. For
Element nodes, it is frequently of interest to know what child nodes it has, so the childNodes property
is of significance for that node type.

You can retrieve several pieces of information about the node using the Node object’s properties. You
can retrieve its name in the nodeName property. If the name of the node is namespace-qualified, you
can retrieve the local part of its qualified name in the localName property, its namespace prefix in the
prefix property, and the namespace URI in the namespaceURI property. If the node is an Element
node and has attributes, then they are retrieved from the attributes property. Of course, if the node
has a value, the nodeValue property gives you the necessary information.

A Uniform Resource Identifier (URI) is a string of characters that uniquely identifies a resource. It nor-
mally follows the same pattern as a Uniform Resource Locator (URL),e.g., http://www.w3.org/
1999/XSL/Transform, for example, but this is just to avoid clashes with other URIs. There is no guar-
antee that a file can be accessed by typing a URI into a browser.

A common mistake when coming across the XML DOM for the first time is assuming that the nodeValue
of an element is the text it contains — for example, to believe the nodeValue of the <root> element in
<root>Text here</root> is Text here. In fact, an element’s nodeValue is null. According to the specifi-
cation, only text nodes and attributes have a non-null nodeValue.

In addition to accessing information about the current node itself, you can find out useful information
about that node’s surroundings in the DOM. For example, you can obtain a list of the child nodes of the
currently selected node using the childNodes property. Within that list of child nodes, you can specify
the first node using the firstChild property, and the last child using the lastChild property. You can
get information about its parent node using the parentNode property, and about its adjacent sibling
nodes using the nextSibling property. In a broader context, the ownerDocument property indicates the
document to which the node belongs.

Try It Out Exploring Child Nodes

This example uses the techniques you have already seen to navigate around a simple XML document:

1. Create the following file and save it as NodeProperties.html:

<html>
<head>
<title>Node Properties</title>
<script type=”text/javascript” src=”zXml.src.js”></script>
<script type=”text/javascript”>

function getXml()
{
return document.getElementById(“txtXml”).value;

}

function showResults(text)
{
var oResults = document.getElementById(“txtResults”);
oResults.value += text + “\n”;

459

Chapter 11: The XML Document Object Model (DOM)

}

function showProperties()
{
var oDom = zXmlDom.createDocument();
oDom.loadXML(getXml());
var oDocumentElement = oDom.documentElement;
showResults(“With respect to the document element - “);
showResults(“First child node has name: “ +
oDocumentElement.firstChild.nodeName);
showResults(“First child node has text content of: “ +
oDocumentElement.firstChild.firstChild.nodeValue);
showResults(“Last child node has name: “ + oDocumentElement.lastChild.nodeName);
showResults(“Last child node has text content of: “ +
oDocumentElement.lastChild.firstChild.nodeValue);
showResults(“There are “ + oDocumentElement.childNodes.length + “ child nodes.”);

}
</script>
</head>
<body>
<textarea cols=”40” rows=”20” id=”txtXml”>
<Book><Chapter>This is Chapter 1.</Chapter>
<Chapter>This is Chapter 2.</Chapter>
<Chapter>This is Chapter 3.</Chapter></Book>
</textarea>
<textarea cols=”40” rows=”20” id=”txtResults”></textarea>

<input type=”button” value=”Show XML Properties” onclick=”showProperties();”>

<input type=”button” value=”Clear Results”
onclick=”document.getElementById(‘txtResults’).value = ‘’;”>
</body>
</html>

In the actual file, the XML in the textarea should all be on one line.

2. Navigate to this file in IE or a Mozilla-based browser such as Firefox and click the Show
Properties button. Information about the left textarea nodes is shown in the right-hand pane.

How It Works
The main change is using the cross-browser library, which is referenced by adding a second script block
at the head of the page:

<script type=”text/javascript” src=”zXml.src.js”></script>

For production, you can use the more compact zXml.js but when debugging, it’s easier to see what’s
going on with zXml.src.js, as this has formatting and is commented. The rest of the code is similar to
that shown earlier. The XML in txtXml is loaded into the DOM document created as follows:

var oDom = zXmlDom.createDocument();

460

Part V: Programming

The document element is then stored in a variable to avoid having to retrieve it multiple times:

var oDocumentElement = oDom.documentElement;

Next, various properties such as firstChild, lastChild, and childNodes are used and displayed to
the user:

showResults(“With respect to the document element - “);
showResults(“First child node has name: “ +
oDocumentElement.firstChild.nodeName);
showResults(“First child node has text content of: “ +
oDocumentElement.firstChild.firstChild.nodeValue);
showResults(“Last child node has name: “ + oDocumentElement.lastChild.nodeName);
showResults(“Last child node has text content of: “ +
oDocumentElement.lastChild.firstChild.nodeValue);
showResults(“There are “ + oDocumentElement.childNodes.length + “ child nodes.”);

Notice that when the content of a node is needed the nodeValue of the firstChild is shown. This
is because elements don’t have a nodeValue but text nodes do. The firstChild in lastChild
.firstChild, therefore, refers to the text node of the <chapter> element.

If you fail to put all the XML on one line, you may get some odd-looking results from this page in
Mozilla but not in IE. This is because they treat whitespace such as carriage returns and newlines dif-
ferently. Microsoft contravenes the standard by stripping insignificant whitespace during parsing. You
can change this by setting the DOM document’s preserveWhitespace property to true before load-
ing the document. There is more on this subject later in the chapter.

In addition to the preceding properties, Microsoft’s parser also supports two nonstandard ones: text,
which gives a concatenation of all the elements’ text nodes, and xml, which gives the actual markup.
In the preceding example, oDocumentElement.xml would return all of the initial XML as a string.
Although they are not standard, they can be extremely useful, especially when debugging, and they are
supported by the zXml library.

Methods of the Node Object
The Node object has many methods. The common ones are listed here and include some that you will
use frequently in XML DOM programming. In the list that follows, the names of method arguments will,
in working programs, be replaced by variables that you define in your script or other code:

❑ appendChild(newChild)— This method returns a Node object. The newChild argument is a
Node object. This method can raise a DOMException object.

❑ cloneNode(deep)— This method returns a Node object. The deep argument is a Boolean
value. If true, then all nodes underneath this node are also copied; otherwise, only the node
itself.

❑ hasAttributes()— This method returns a Boolean value. It has no arguments.

❑ hasChildNodes()— This method returns a Boolean value. It has no arguments.

❑ insertBefore(newChild, refChild)— This method returns a Node object. The newChild
and refChild arguments are each Node objects. This method can raise a DOMException object.

461

Chapter 11: The XML Document Object Model (DOM)

❑ isSupported(feature, version)— This method returns a Boolean value. The feature and
version arguments are each String values.

❑ normalize()— This method has no return value and takes no arguments.

❑ removeChild(oldChild)— This method returns a Node object. The oldChild argument is a
Node object. This method can raise a DOMException object.

❑ replaceChild(newChild, oldChild)— This method returns a Node object. The newChild
and oldChild arguments are each Node objects. This method can raise a DOMException object.

The names of most of the methods of the Node object are self-explanatory. The insertBefore()
method, for example, allows a new child node to be inserted before a specified existing child node. The
appendChild() method allows a new child node to be added. The removeChild() method allows a
specified node to be removed from the XML DOM tree. The cloneNode() method allows a node to be
copied.

Just as the properties of the Node object tell us a lot about the node and its DOM environment, so the
methods of the Node object allow the developer to manipulate the XML DOM tree by adding and
removing nodes and so on. Later in the chapter you will use these properties and methods of the Node
object as well as the more specialized properties and methods of more specialized types of node.

Before you look at examples using the methods of the Node object, let’s first look at how to load an exist-
ing XML document.

Loading an XML Document
A common scenario is loading a document from a stream such as a file, rather than a string of XML. In
Microsoft’s parser, the load() method is called and passed a URL. This can be a local file, if security
requirements are met, or a file accessed via a web server. In a standard web browser, only files hosted on
the same domain as the original document can be read. As an alternative to using Msxml2.DomDocument,
you can also use Msxml2.XmlHttpRequest to retrieve XML and other files via HTTP. There are many
examples of this in Chapter 16, “Ajax.”

Mozilla also offers two options: using the DOMParser.parseFromStream() method or using the
XMLHttpRequest class. Again, you can find many examples of this in Chapter 16, so the examples here
concentrate on using the XML node’s methods after the document has been loaded.

Try It Out Deleting a Node

A common task in DOM programming is deleting an existing node. The following example deletes the
first child node of the document element:

1. Create the following file and save it as DeleteNode.html:

<html>
<head>
<title>Delete Node</title>
<script type=”text/javascript” src=”zXml.src.js”></script>

462

Part V: Programming

<script type=”text/javascript”>

function showResults(text)
{
var oResults = document.getElementById(“txtResults”);
oResults.value += text + “\n”;

}

function showXml(xml)
{
var oInput = document.getElementById(“txtXml”);
oInput.value = xml;

}

function deleteNode()
{
var oReq = zXmlHttp.createRequest();
oReq.open(“GET”, “book.xml”, false);
oReq.send(null);
var oDom = oReq.responseXML;
showXml(oDom.xml);
var oNodeToDelete = oDom.documentElement.firstChild;
oNodeToDelete.parentNode.removeChild(oNodeToDelete);
showResults(oDom.xml);

}
</script>
</head>
<body>
<textarea cols=”40” rows=”20” id=”txtXml”>
</textarea>
<textarea cols=”40” rows=”20” id=”txtResults”></textarea>

<input type=”button” value=”Delete Node” onclick=”deleteNode();”>

<input type=”button” value=”Clear Results”
onclick=”document.getElementById(‘txtResults’).value = ‘’;”>
</body>
</html>

2. This example loads a file, rather than an XML string, so you also need to create book.xml in the
same folder as DeleteNode.html:

<Book><Chapter>This is Chapter 1.</Chapter>
<Chapter>This is Chapter 2.</Chapter>
<Chapter>This is Chapter 3.</Chapter></Book>

3. DeleteNode.html needs to be served via HTTP because Mozilla browsers, and IE in some con-
figurations, won’t allow files to be loaded from a local disk without special security settings.
You need to create a virtual folder to store the files and navigate via the HTTP protocol.

Chapter 16 contains detailed instructions on creating a virtual folder.

4. Click the Delete Node button. The original XML is shown on the left; the resulting XML, with
the deleted node, is shown on the right.

463

Chapter 11: The XML Document Object Model (DOM)

How It Works
The HTML is mostly the same as before. When the Delete Node button is clicked, deleteNode() begins
by creating an XML HTTP request:

function deleteNode()
{
var oReq = zXmlHttp.createRequest();

//more code
}

The request class is covered extensively in Chapter 16, but essentially it can connect via HTTP and
retrieve content using the same underlying techniques as a browser:

function deleteNode()
{
var oReq = zXmlHttp.createRequest();
oReq.open(“GET”, “book.xml”, false);
oReq.send(null);

//more code
}

The request then initiates a GET request to the host server and asks for book.xml. The third parameter,
set to false in this example, indicates that the code should wait after the send() call until the request is
completed before processing the next statement. The send() method then fires the request; no data is
needed with this example, so null is passed as its only argument:

function deleteNode()
{
var oReq = zXmlHttp.createRequest();
oReq.open(“GET”, “book.xml”, false);
oReq.send(null);
var oDom = oReq.responseXML;
showXml(oDom.xml);

//more code
}

When an XML document is asked for, the responseXML property contains a DOM document represent-
ing the response. The XML is shown in the left hand textarea.

To delete a node, you first obtain a reference to it using the documentElement and its firstChild
property:

function deleteNode()
{
var oReq = zXmlHttp.createRequest();
oReq.open(“GET”, “book.xml”, false);
oReq.send(null);
var oDom = oReq.responseXML;
showXml(oDom.xml);
var oNodeToDelete = oDom.documentElement.firstChild;
oNodeToDelete.parentNode.removeChild(oNodeToDelete);
showResults(oDom.xml);

}

464

Part V: Programming

The next line uses the parentNode property to access the node’s parent. This is because the
removeChild() method can only be called from the immediate parent of the node to be deleted. The
removeChild() method is called and passed the reference of the targeted node. Finally, the resulting
DOM document is displayed in the right-hand textarea.

It may seem strange to use the properties of a node to remove it from the tree, but the code’s order of
execution means that the reference to the parentNode is obtained before the deletion is attempted.

The result of running the code is shown in Figure 11-4.

Figure 11-4

The next example shows another common task: adding a new node.

Try It Out Adding New Nodes

The HTML for this example is the same as the previous Try It Out; the only difference is that the
deleteNode() method has been replaced with addNode():

1. Create a new file with the following code and name it AddNode.html:

function addNode()
{
var oReq = zXmlHttp.createRequest();
oReq.open(“GET”, “book.xml”, false);
oReq.send(null);
var oDom = oReq.responseXML;
showXml(oDom.xml);
var oNewElement = oDom.createElement(“Chapter”);
var oNewText = oDom.createTextNode(“This is Chapter 4.”);
oNewElement.appendChild(oNewText);

465

Chapter 11: The XML Document Object Model (DOM)

oDom.documentElement.appendChild(oNewElement);
showResults(oDom.xml);

}

The result is shown in Figure 11-5.

Figure 11-5

How It Works
The code starts as before by retrieving book.xml and displaying it in the left-hand area:

function addNode()
{
var oReq = zXmlHttp.createRequest();
oReq.open(“GET”, “book.xml”, false);
oReq.send(null);
var oDom = oReq.responseXML;
showXml(oDom.xml);
var oNewElement = oDom.createElement(“Chapter”);
var oNewText = oDom.createTextNode(“This is Chapter 4.”);
//more code

}

The code then uses createElement() and createTextNode to create two new nodes; these are stored
in oNewElement and oNewText, respectively:

function addNode()
{
var oReq = zXmlHttp.createRequest();

466

Part V: Programming

oReq.open(“GET”, “book.xml”, false);
oReq.send(null);
var oDom = oReq.responseXML;
showXml(oDom.xml);
var oNewElement = oDom.createElement(“Chapter”);
var oNewText = oDom.createTextNode(“This is Chapter 4.”);
oNewElement.appendChild(oNewText);
//more code

}

The new text node is appended to the new element, and the code finishes by appending the element to
the document element’s existing child nodes:

function addNode()
{
var oReq = zXmlHttp.createRequest();
oReq.open(“GET”, “book.xml”, false);
oReq.send(null);
var oDom = oReq.responseXML;
showXml(oDom.xml);
var oNewElement = oDom.createElement(“Chapter”);
var oNewText = oDom.createTextNode(“This is Chapter 4.”);
oNewElement.appendChild(oNewText);
oDom.documentElement.appendChild(oNewElement);
showResults(oDom.xml);

}

The last method is replaceChild(). The replace() method is similar to addNode() but it needs a ref-
erence to the element that will be replaced. In this example, you choose the lastChild of the document
element:

function replace ()
{
var oReq = zXmlHttp.createRequest();
oReq.open(“GET”, “book.xml”, false);
oReq.send(null);
var oDom = oReq.responseXML;
showXml(oDom.xml);
var oNewElement = oDom.createElement(“Chapter”);
var oNewText = oDom.createTextNode(“This is a different Chapter 3.”);
oNewElement.appendChild(oNewText);
var oOldElement = oDom.documentElement.lastChild;
//more code
showResults(oDom.xml);

}

Then the replaceChild() method is called:

oDom.documentElement.replaceChild(oNewElement, oOldElement);

The result is shown in Figure 11-6.

467

Chapter 11: The XML Document Object Model (DOM)

Figure 11-6

The Effect of Text Nodes
A common technique is to iterate through the child nodes of a specified Element node and retrieve or
set information of some type. However, the issue of whitespace (or in XML DOM terms, Text nodes)
becomes important if you don’t want unwelcome surprises.

The following HTML page, TextNodes.html, loads three different versions of the same document,
depending on the drop-down list, and displays information about the document element’s child nodes:

<html>
<head>
<title>Text Nodes</title>
<script type=”text/javascript” src=”zXml.src.js”></script>
<script type=”text/javascript”>

function showResults(text)
{
var oResults = document.getElementById(“txtResults”);
oResults.value += text + “\n”;

}

function showXml(xml)
{
var oInput = document.getElementById(“txtXml”);
oInput.value = xml;

}

function displayNodes()

468

Part V: Programming

{
var oReq = zXmlHttp.createRequest();
var oLst = document.getElementById(“lstFiles”);
var sFile = oLst.options[oLst.selectedIndex].value;
oReq.open(“GET”, sFile, false);
oReq.send(null);
var oDom = oReq.responseXML;
showXml(oDom.xml);
var colChildNodes = oDom.documentElement.childNodes;
for (var i = 0; i < colChildNodes.length; i++)
{
var oChild = colChildNodes[i];
var sDetail = “Child (“ + i + “) has name: “ + oChild.nodeName;
showResults(sDetail);

}
}
</script>
</head>
<body>
<textarea cols=”40” rows=”20” id=”txtXml”>
</textarea>
<textarea cols=”40” rows=”20” id=”txtResults”></textarea>

<select id=”lstFiles”>
<option value=”book.xml”>One line file</option>
<option value=”book-indented.xml”>Indented file without xml:space</option>
<option value=”book-xml-space.xml”>Indented file with xml:space</option>

</select>

<input type=”button” value=”Display Nodes” onclick=”displayNodes();”>

<input type=”button” value=”Clear Results”
onclick=”document.getElementById(‘txtResults’).value = ‘’;”>
</body>
</html>

The three document files are subtly different. book.xml and book-indented.xml are the same but
book.xml is written on one line with no indentation. Book-indented.xml looks as follows:

<Book>
<Chapter>This is Chapter 1.</Chapter>
<Chapter>This is Chapter 2.</Chapter>
<Chapter>This is Chapter 3.</Chapter>

</Book>

The third file, book-xml-space.xml, is also indented but has the xml:space attribute added to the
document element:

<Book xml:space=”preserve”>
<Chapter>This is Chapter 1.</Chapter>
<Chapter>This is Chapter 2.</Chapter>
<Chapter>This is Chapter 3.</Chapter>

</Book>

469

Chapter 11: The XML Document Object Model (DOM)

Running this page in IE can produce different results from Mozilla, noticeably for book-indented.xml.
The difference in the output is most noticeable for the indented files shown in Figures 11-7 and 11-8; note
how the xml:space attribute changes how MSXML sees the file by choosing “Indented file with
xml:space” in the drop-down menu.

Figure 11-7

Figure 11-8

470

Part V: Programming

The difference is explained by the way the two parsers handle whitespace such as carriage returns and
linefeeds. In Microsoft’s parser, these are removed when they appear between elements, which is con-
trary to the specification. In Mozilla they are not. To avoid this problem, you have two possible solu-
tions: If you have control over the source, then add xml:space=”preserve” to the document element,
as is the case in the third version:

<Book xml:space=”preserve”>
<Chapter>This is Chapter 1.</Chapter>
<Chapter>This is Chapter 2.</Chapter>
<Chapter>This is Chapter 3.</Chapter>

</Book>

The results will then appear the same for both browsers.

If you don’t have access to the source and are loading using the load() or loadXML() methods, your
other option is to set the preserveWhitespace property of the DOM document to true before loading:

var oDom = new ActiveXObject(“Msxml2.DomDocument.3.0”);
oDom.preserveWhitespace = true;
oDom.load(“book-indented.xml”);

If neither solution helps, then the best course of action is to access nodes in a different manner, such as
selectNodes(), which uses XPath (see Chapter 7).

The NamedNodeMap Object
Earlier in the chapter you learned about the attributes property of the Node object and that its value
was a NamedNodeMap object. A named node map is an unordered set of objects. As you probably recall, the
attributes of an XML element are unordered, so you can’t use ordered constructs such as lists to refer to
attributes.

When the Node object is an Element node, then the attributes property holds information about all
the attributes of the element that the Element node represents.

The NamedNodeMap object has a single property, the length property, which is a Number value. The
value of the length property indicates how many nodes are in the named node map.

The NamedNodeMap object has seven methods:

❑ getNamedItem(name)— This method returns a Node object. The name argument is a String
value.

❑ getNamedItemNS(namespaceURI, localName)— This method returns a Node object. The
namespaceURI and localName arguments are String values.

❑ item(index)— This method returns a Node object. The index argument is a Number value.

❑ removeNamedItem(name)— This method returns a Node object. The name argument is a
String value. This method can raise a DOMException object if the item doesn’t exist.

❑ removeNamedItemNS(namespaceURI, localName)— This method returns a Node object.
The namespaceURI and localName arguments are String values. This method can raise a
DOMException object if the item does not exist.

471

Chapter 11: The XML Document Object Model (DOM)

❑ setNamedItem(node)— This method returns a Node object. The node argument is a new Node.
This method can raise a DOMException object if the new node belongs to a different document.

❑ setNamedItemNS(node)— This is the same as setNamedItem except it handles namespaced
nodes.

The preceding list is based on the W3C recommendations, and not all implementations follow the stan-
dard precisely. For example, IE raises an error if you use setNamedItem to add an attribute to an ele-
ment when the attribute originated from a different document, whereas Firefox allows it.

A NamedNodeMap object is used to retrieve the attributes of an element, and typically you use a name corre-
sponding to the attribute’s name. For example, the getNamedItem() method has a name as its argument.

Notice, too, that there are separate pairs of methods for getting and setting nodes in the named node
map depending on whether or not the Node objects in the named node map are in a namespace. When
the nodes are not in a namespace, the getNamedItem(), removeNamedItem(), and setNamedItem()
methods are used. For nodes in a namespace, the getNamedItemNS(), removeNamedItemNS(), and
setNamedItemNS() methods are used.

The *NS versions of the methods are designed to handle nodes in a namespace and were introduced after
the original methods; they are not supported by Microsoft’s parser. You have to use XPath to access
namespaced nodes if necessary.

Try It Out Adding and Removing Attributes

This example uses book3.xml, which has a similar structure to the other XML files but also has
attributes describing the chapter number and the author’s initials:

1. Create the following file and save it as book3.xml (you can download the files for the example
from the book’s website):

<Book xml:space=”preserve”>
<Chapter number=”1” author=”JJF”>This is Chapter 1.</Chapter>
<Chapter number=”2” author=”EVL”>This is Chapter 2.</Chapter>
<Chapter number=”3” author=”DA”>This is Chapter 3.</Chapter>
</Book>

2. Create the following file and name it NamedNodeMap.html. This file is similar to the other
examples but has three new methods to add, remove, and modify attributes:

<html>
<head>
<title>NamedNodeMap</title>
<script type=”text/javascript” src=”zXml.src.js”></script>
<script type=”text/javascript”>
var oDom = null;

function showResults(text)
{
var oResults = document.getElementById(“txtResults”);
oResults.value += text + “\n”;

}

function showXml(xml)

472

Part V: Programming

{
var oInput = document.getElementById(“txtXml”);
oInput.value = xml;

}

function init()
{
var oReq = zXmlHttp.createRequest();
oReq.open(“GET”, “book3.xml”, false);
oReq.send(null);
oDom = oReq.responseXML;
showXml(oDom.xml);

}

function add()
{
var oNewAtt = oDom.createAttribute(“new”);
oNewAtt.nodeValue = “I’m new!”;
var oTargetElement = oDom.documentElement.getElementsByTagName(“Chapter”)[0];
oTargetElement.attributes.setNamedItem(oNewAtt);
showXml(oDom.xml);
showResults(“New attribute added to first Chapter element.”);

}

function remove()
{
var oTargetElement = oDom.documentElement.getElementsByTagName(“Chapter”)[1];
oTargetElement.attributes.removeNamedItem(“number”);
showXml(oDom.xml);
showResults(“Attribute ‘number’ removed from second Chapter element.”);

}

function modify()
{
var oTargetElement = oDom.documentElement.getElementsByTagName(“Chapter”)[2];
var oTargetAttribute = oTargetElement.attributes.getNamedItem(“author”);
oTargetAttribute.nodeValue = “JJF”;
showXml(oDom.xml);
showResults(“Attribute ‘author’ from third Chapter element modified.”);

}

</script>
</head>
<body onload=”init();”>
<textarea cols=”40” rows=”20” id=”txtXml”>
</textarea>
<textarea cols=”40” rows=”20” id=”txtResults”></textarea>

<input type=”button” value=”Add Attribute” onclick=”add();”>

<input type=”button” value=”Remove Attribute” onclick=”remove();”>

<input type=”button” value=”Modify Attribute” onclick=”modify();”>

<input type=”button” value=”Clear Results”

473

Chapter 11: The XML Document Object Model (DOM)

onclick=”document.getElementById(‘txtResults’).value = ‘’;”>
</body>
</html>

3. As the buttons are clicked, the action is described in the right-hand pane and the resulting XML
is shown in the left. The results are shown in Figure 11-9.

Figure 11-9

How It Works
The HTML begins in a similar fashion to the previous scripts by loading the Dom document. It does this
in the init() method, which is called when the body’s onload event fires:

function init()
{
var oReq = zXmlHttp.createRequest();
oReq.open(“GET”, “book3.xml”, false);
oReq.send(null);
oDom = oReq.responseXML;
showXml(oDom.xml);

}

The oDom variable is global so it can be accessed later in other functions. Also shown are three methods:
add(), remove() and modify():

function add()
{
var oNewAtt = oDom.createAttribute(“new”);
oNewAtt.nodeValue = “I’m new!”;

474

Part V: Programming

var oTargetElement = oDom.documentElement.getElementsByTagName(“Chapter”)[0];
oTargetElement.attributes.setNamedItem(oNewAtt);
showXml(oDom.xml);
showResults(“New attribute added to first Chapter element.”);

}

add() first creates a new attribute using the DOM document’s createAttribute() method, which
takes the name of the attribute as its sole argument.

The nodeValue is set and the element to add it to is retrieved using getElementsByTagName(). This
accepts an element name and returns a NodeList. The first item in the list is used as the target element.

Then the attributes’ setNamedItem() method is used and passed the new attribute. The other two
methods are very similar; remove() simply uses removeNamedItem():

function remove()
{
var oTargetElement = oDom.documentElement.getElementsByTagName(“Chapter”)[1];
oTargetElement.attributes.removeNamedItem(“number”);
showXml(oDom.xml);
showResults(“Attribute ‘number’ removed from second Chapter element.”);

}

Finally, modify() retrieves a particular attribute using getNamedItem() and changes its nodeValue:

function modify()
{
var oTargetElement = oDom.documentElement.getElementsByTagName(“Chapter”)[2];
var oTargetAttribute = oTargetElement.attributes.getNamedItem(“author”);
oTargetAttribute.nodeValue = “JJF”;
showXml(oDom.xml);
showResults(“Attribute ‘author’ from third Chapter element modified.”);

}

As you can see from the results in the browser, the NamedNodeMap is “live” in the sense that changes to
the attributes are reflected immediately in the underlying document, although you still need to refresh
the details in the left-hand text area to see the changes.

The NodeList Object
When looking at the childNodes property of the Node object, you learned that the childNodes prop-
erty has a value that is a NodeList. The NodeList object can be used to process all child nodes of a
specified node.

The NodeList object has one property, the length property, which is a read-only property of type
Number. The length property indicates how many nodes are present in the list of nodes. Knowing that
can be useful when, for example, creating a for loop to process all child nodes of a particular node.

The NodeList object has one method, the item() method. The item() method takes a single argument,
which is a Number value, and returns a Node object. The code item(3) returns the fourth child node,
because the first child node is returned by item(0). The item() method was used in an earlier example.

475

Chapter 11: The XML Document Object Model (DOM)

The DOMException Object
In almost any programming situation something can go wrong. For example, you might type some syn-
tax incorrectly, get a property or method name wrong, forget that a property is read-only and try to
change it, or simply try to do something that isn’t allowed. In programming of the XML DOM, when an
error occurs, an exception is said to be thrown. The exception is then caught by an exception handler.

Try It Out Creating a DOMException

Let’s create a simple example to deliberately cause a DOMException object to be raised. The following
code is contained in DOMException.html:

<html>
<head>
<title>DomException</title>
<script type=”text/javascript” src=”zXml.src.js”></script>
<script type=”text/javascript”>
var oDom = null;
oDom = zXmlDom.createDocument();

function showResults(text)
{
var oResults = document.getElementById(“txtResults”);
oResults.value += text + “\n”;

}

function showXml(xml)
{
var oInput = document.getElementById(“txtXml”);
oInput.value = xml;

}

function tryAddElement(elementName)
{
var oNewElement = oDom.createElement(elementName);
var sMessage = “”;
try
{
oDom.appendChild(oNewElement);
sMessage = “Element ‘“ + elementName + “‘ added.”;
showXml(oDom.xml);

}
catch (e)
{
sMessage = “Element ‘“ + elementName + “‘ not added because ‘“

+ e.message + “‘.”;
}
showResults(sMessage);

}

</script>
</head>
<body>

476

Part V: Programming

<textarea cols=”50” rows=”20” id=”txtXml”>
</textarea>
<textarea cols=”50” rows=”20” id=”txtResults”></textarea>

<input type=”button” value=”Add Element”
onclick=”tryAddElement(document.getElementById(‘txtElement’).value);”>
 <input type=”text” id=”txtElement” value=”element”>
<input type=”button” value=”Clear Results” onclick=
“document.getElementById(‘txtResults’).value = ‘’;”>

</body>
</html>

If you click the Add Element button once a new element is added, but the second time an exception is
raised. The error messages vary slightly between IE and Firefox. IE complains that Only one top level ele-
ment is allowed in an XML document (shown in Figure 11-10), whereas Firefox has a more generic Node
cannot be inserted at the specified point in the hierarchy.

Figure 11-10

How It Works
The basic structure of the page follows the pattern of others in this chapter: The XML is shown on the
left and the messages appear on the right.

The function that creates the new element, and possibly causes an exception to be thrown, is
tryAddElement():

function tryAddElement(elementName)
{
var oNewElement = oDom.createElement(elementName);
var sMessage = “”;
try

477

Chapter 11: The XML Document Object Model (DOM)

{
oDom.appendChild(oNewElement);
sMessage = “Element ‘“ + elementName + “‘ added.”;
showXml(oDom.xml);

}
catch (e)
{
sMessage = “Element ‘“ + elementName + “‘ not added because ‘“

+ e.message + “‘.”;
}
showResults(sMessage);

}

The function accepts the name of the new element and uses the createElement() method to create a
new element:

var oNewElement = oDom.createElement(elementName);

The next bit of code is contained in a try/catch block so that any exceptions raised are handled grace-
fully by the code itself, rather than the browser. The code attempts to add the new element as a top-level
element by using appendChild():

try
{
oDom.appendChild(oNewElement);

If this succeeds, a success message is constructed and the left-hand pane is refreshed with the new XML:

sMessage = “Element ‘“ + elementName + “‘ added.”;
showXml(oDom.xml);

If an exception is raised, then the catch block uses the message property of the error object, held in the
variable e, to create a failure message:

catch (e)
{
sMessage = “Element ‘“ + elementName + “‘ not added because ‘“

+ e.message + “‘.”;
}

Finally, the relevant message is shown in the right-hand text area:

showResults(sMessage);
}

The Document Interface
The Document interface has featured in several examples earlier in this chapter, which is inevitable
because all XML DOMs have a Document object. The Document interface has three properties:

478

Part V: Programming

❑ documentElement— This read-only property returns an Element object.

❑ doctype— This read-only property is a DocumentType object, corresponding to a DOCTYPE
declaration, if present, in the XML document.

❑ implementation— This read-only property is a DOMImplementation object.

As shown in earlier examples, the documentElement property is very useful for getting a handle on the
document element of the XML. From there, you can navigate around the XML DOM.

The Document interface has 14 methods:

❑ createAttribute(name)— This method returns an Attr object. The name argument is a
String value. This method can raise a DOMException object if the name contains an invalid
character, such as <.

❑ createAttributeNS(namespaceURI, qualifiedName)— This method returns an Attr
object. The namespaceURI and qualifiedName arguments are String values. This method
can raise a DOMException object if the name contains an invalid character.

❑ createCDATASection(data)— This method returns a CDATASection object. The data argu-
ment is a String value.

❑ createComment(data)— This method returns a Comment object. The data argument is a
String value.

❑ createDocumentFragment()— This method takes no argument and returns a
DocumentFragment object.

❑ createElement(tagName)— This method returns an Element object. The tagName argument
is a String value. This method can raise a DOMException object if the name contains an invalid
character.

❑ createElementNS(namespaceURI, qualifiedName)— This method returns an Element
object. The namespaceURI and qualifiedName arguments are String values. This method
can raise a DOMException object if the name contains an invalid character.

❑ createEntityReference(name)— This method returns an EntityReference object. The
name argument is a String value. This method can raise a DOMException object if the name
contains an invalid character.

❑ createProcessingInstruction(target, data)— This method returns a
ProcessingInstruction object. The target and data arguments are each of type String.
This method can raise a DOMException object if the target contains an invalid character.

❑ createTextNode(data)— This method returns a Text object. The data argument is a String
value.

❑ getElementById(elementId)— This method returns an Element object. The elementId
argument is a String value.

❑ getElementsByTagName(tagname)— This method returns a NodeList object. The tagname
argument is a String value.

❑ getElementsByTagNameNS(namespaceURI, localName)— This method returns a NodeList
object. The namespaceURI and localName arguments are String values.

479

Chapter 11: The XML Document Object Model (DOM)

❑ importNode(importedNode, deep)— This method returns a Node object. The importedNode
argument is a Node object. The deep argument is a Boolean value. This method can raise a
DOMException object for some of the nodes — for example, when trying to import an element
from an XML 1.1 document, which allows most Unicode characters in element names, into an
XML 1.0 version, which only allows a much smaller set.

As noted earlier, the *NS versions of the methods are designed for working with namespaced elements
and are not available in MSXML.

You have already seen many of these methods in action throughout the chapter; they are pivotal to the
process of adding new nodes to a document. Earlier examples showed how the createElement(),
createTextNode(), and createAttribute() methods of the Document object can be used to create
new nodes of the specified type, which can later be appended to or inserted into the XML DOM at the
desired place. The createElement() and createAttribute() methods take an argument of type
String, but you need to make sure that the string is also a legal XML name.

When you are creating new Element and Attr nodes that are in a namespace — for example, when
manipulating SVG — then you must use the createElementNS() and createAttributeNS() meth-
ods to achieve the correct results.

You will likely use the createCDATASection(), createComment(), and createProcessing
Instruction() methods less often, but they are there if you need to add the corresponding compo-
nents to an XML document.

The getElementsByTagName() method is useful to retrieve all elements that are not in a namespace
and have a particular element name. For example, to retrieve all Chapter nodes in a DOM you would
use code like the following:

oDom.getElementsByTagName(“Chapter”);

You would then have a NodeList object containing all such Chapter nodes for further processing.

If you are retrieving Element nodes that are in a namespace — for example, SVG — then you need to use
the getElementsByTagNameNS() method. Remember that namespace URIs must match character for
character if you are to successfully retrieve the intended node(s).

If you are manipulating XML documents that had ID attributes, then you can use the getElementById()
method to retrieve a specific Element node.

A full listing of the DOM Level 2 interfaces is available in Appendix B, but it is hoped that having
worked through the examples, you now feel you have the knowledge to manipulate the XML DOM —
for example, to add and remove nodes and to alter their value.

As indicated earlier, the XML DOM is typically embedded in an application, and represents at least part
of the way in which XML is used in an application. To briefly illustrate this, the next section introduces
InfoPath 2007 and discusses how the XML DOM is used in it.

480

Part V: Programming

How the XML DOM Is Used

in InfoPath 2007
InfoPath 2007 is an enterprise XML-based forms tool from Microsoft that is designed to produce XML
data from forms without requiring the end-user to have any understanding or awareness of XML. At the
heart of InfoPath 2007 are several XML technologies, including the Microsoft implementation of the
XML DOM in MSXML 6.

A free trial of InfoPath is available as part of Office 2007. Go to http://office.microsoft.com/
en-us/infopath/default.aspx and click “Download a free trial.”

The data of an InfoPath form is held as XML in a DOM. As far as the InfoPath developer is concerned,
this is exposed as a “data source” that reflects the node hierarchy in the XML DOM but without requir-
ing, for simple forms at least, the developer to have an understanding of how the XML DOM works. The
data source for an InfoPath form is shown in Figure 11-11.

Figure 11-11

481

Chapter 11: The XML Document Object Model (DOM)

The simplest InfoPath forms use a single XML DOM to hold the data returned from a query or data that is
to be submitted to a relational database or XML web service. However, many forms have multiple XML
DOMs in a single InfoPath solution. The values available in, for example, drop-down list form controls are
secondary XML DOMs and can be retrieved from XML documents or from relational data sources.

The use of the XML DOM in InfoPath serves to illustrate how the DOM can be used as part of a larger
application, whether custom coded or, with InfoPath 2007, a commercial application with XML DOM
under the covers.

Summary
In this chapter, you learned what the XML DOM is, how it compares to other representations, and a little
about its history at the W3C. The differences between interfaces and nodes were discussed, and many of
the methods used to create, edit, and delete elements and attributes were shown. Several of the most
commonly used DOM interfaces and objects were described, and a number of examples were demon-
strated using the MSXML parser and the equivalent Mozilla classes, including what happens when an
error in manipulating the DOM occurs. Finally, an example of an application that uses the DOM exten-
sively, InfoPath, was shown.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
Describe an important difference between the NamedNodeMap object and the NodeList object.

Question 2
List the methods of the Document object that are used to add Element nodes — first, in no namespace,
and second, in a namespace.

As mentioned earlier, many DOM implementations have proprietary extensions.
Manipulation of the InfoPath XML DOM depends on proprietary Microsoft meth-
ods that allow XPath strings to be used as arguments to those methods. The W3C is
working on proposals to incorporate these or similar methods into the DOM to facil-
itate interoperability of XPath and DOM, but those are not finalized yet.

482

Part V: Programming

12
Simple API for XML (SAX)

In the last chapter, you learned about the Document Object Model (DOM) and how it can be used
to work with your XML documents. The DOM is great when you work with relatively small docu-
ments that can easily fit into memory, but what do you do when you need to read an XML file that
is several megabytes or even several gigabytes large? Loading this kind of data into memory can
be very slow, and in many cases not possible. Luckily, you have another way to get the data out of
an XML document: SAX.

This chapter covers the following:

❑ What is SAX?

❑ Where to download SAX and how to set it up

❑ How and when to use the primary SAX interfaces

What Is SAX and Why Was It Invented?
The Simple API for XML, or SAX, was developed to provide a standardized way to parse XML and
enable more efficient analysis of large XML documents. The problem with the DOM is that before
you can use it to traverse a document it has to build up a massive in-memory map of the docu-
ment. This takes up space and — more important — time. If you’re trying to extract a small amount
of information from the document, this can be extremely inefficient.

Because SAX is an application programming interface (API), you need to learn some
in-depth programming concepts within this chapter. As in the last chapter, you will
learn it step by step, but you need to have some programming experience under
your belt. In order to work through the many examples, this chapter explains how
to download and install the Java Development Kit (JDK). If you do not plan to
program applications for XML, but rather plan to use XML for its design- and
document-driven nature, you may want to skip this chapter.

Parsing an XML document using SAX is similar to watching a train pass by. It is very easy to catalog
certain events of the train’s passing. For example, you might observe the start of the train (the engine)
and the end of the train (the caboose). You also might note the start of each car and the end of each car.
Ideally, you would note the contents and characteristics of each car: color, length, engineer, baggage, pas-
sengers, and so on. Using this method, you could survey every part of the train.

SAX treats XML documents in much the same way. As the XML parser parses the documents, it reports a
stream of events back to the application — events for the start of the document, the end of the document,
the start and end of each element, the character contents of each element, and so on.

Unfortunately, receiving the events emitted by a SAX parser is like watching a runaway train. Once it is
started, the parser cannot be interrupted so you can go back and look at an earlier part of the document.
Unlike DOM, which gives you access to the entire document at once, SAX stores little or nothing from
event to event. Although this seems like a major limitation, it is this very characteristic that gives SAX its
speed and power.

A Brief History of SAX
The extraordinary thing about SAX is that it isn’t owned by anyone. It doesn’t belong to any consortium,
standards body, company, or individual. In other words, it doesn’t survive because some organization
or government says that you must use it to comply with their standards, or because a specific company
supporting it is dominant in the marketplace. It survives because it’s simple and it works.

SAX arose out of discussions on the XML-DEV mailing list now hosted by OASIS. You can read the
archives at http://lists.xml.org/archives/xml-dev/. The mailing list was aimed at resolving
incompatibilities between different XML parsers (this was back in the infancy of XML in late 1997).
David Megginson took on the job of coordinating the process of specifying a new API with the group.
On May 11, 1998, the SAX 1.0 specification was completed. A whole series of SAX 1.0–compliant parsers
then began to emerge, both from large corporations, such as IBM and Sun, and from enterprising indi-
viduals, such as James Clark. All of these parsers were freely available for public download.

Eventually, a number of shortcomings in the specification became apparent, and David Megginson and his
colleagues got back to work, finally producing the SAX 2.0 specification on May 5, 2000. The improvements
centered on added support for namespaces and tighter adherence to the XML specification. Since that time,
several enhancements were made to expose additional information in the XML document, but the core of
SAX was very stable. On April 27, 2004, these changes were finalized and released as version 2.0.2.

Is it possible to pause the stream of events from a SAX parser and come back to it
later? Because SAX parsers “push” the data back to the application, they are gener-
ally referred to as push processors. The DOM model, which allows the application to
retrieve the information when ready, is more generally a pull process. Some SAX
parsers have emerged that allow you to pull the events when you’re ready. These
parsers work by enabling you to pause and resume the parsing process. Although it
still does not allow you to go backward, it adds greater flexibility in the design of
applications.

484

Part V: Programming

SAX is specified as a set of Java interfaces, which initially meant that if you were going to do any serious
work with it, you were looking at doing some Java programming, using JDK 1.1 or later. Now, however,
a wide variety of languages have their own version of SAX, some of which you will learn about later in
the chapter. In deference to the SAX tradition, however, the examples in this chapter are written in Java.

Where to Get SAX
All the latest information about SAX can be found at www.saxproject.org. It remains a public domain
open-source project hosted by SourceForge. To download SAX you can go to the home page and browse
for the latest version, or you can go directly to the SourceForge project page at http://sourceforge
.net/projects/sax.

The distribution contains all of the Java interfaces, the extension interfaces, some helper files, and the
documentation. Not included is a SAX parser. To actually use SAX, you need to download one of the
many XML parsers that have been developed to work with SAX.

The following table shows some popular Java SAX parsers:

Parser Driver Class Name Description

Xerces2-J org.apache.xerces The Xerces2 parser, used throughout this chapter, is
.parsers.SAXParser maintained by the Apache group. It is available

at http://xml.apache.org/xerces2-j. The
original Xerces Java Toolkit also contains a SAX2-
compatible parser.

AElfred2 gnu.xml.aelfred2 The AElfred2 parser is highly conformant, as it was
.XmlReader written and modified by the creators of SAX. It is

available as part of the GNU JAXP project at
www.gnu.org/software/classpathx/jaxp/.

Crimson org.apache.crimson The Crimson parser was originally part of the
.parser.XMLReaderImpl Crimson project at http://xml.apache.org/

crimson/. It is now included as part of Sun’s Java
API for XML Parsing, available at http://java
.sun.com/xml.

Oracle oracle.xml.parser Oracle maintains a SAX parser as part of its XML
.v2.SAXParser Toolkit. It can be downloaded from the Oracle

Technology Network at http://otn.oracle
.com/tech/xml/index.html.

XP com.jclark.xml.sax XP is an XML 1.0 parser written by James Clark. A
.SAX2Driver SAX2 driver was created for use with the latest

versions of SAX. More information can be found at
www.xmlmind.com/_xpforjaxp/docs/index

.html or the original www.jclark.com/xml/xp/
index.html.

485

Chapter 12: Simple API for XML (SAX)

Setting Up SAX
Before trying it out, you need to get hold of some software:

❑ Download the SAX libraries. You can do this by going to www.saxproject.org, and down-
loading the latest version. Currently, that is sax2r3.zip (final).

❑ For the parser, you’re going to use the latest Java version of Apache Xerces, available from
http://xml.apache.org/xerces2-j.

❑ You also need the Java Development Kit, release 1.1 or later. If you don’t already have it
installed, your best bet is to download the latest edition of the Sun Java 2 Platform, Standard
Edition from http://java.sun.com/javase/downloads/index.jsp. However, this is a
pretty large download, so if you have limited bandwidth, JDK 1.1 is quite acceptable and is still
available from http://java.sun.com/products/archive/index.html, although even this
is still a large download, so you might want to get this ready well in advance.

You can store the Xerces2-J and SAX libraries wherever you like. For the examples in this chapter, you
need the sax2.jar from the SAX distribution and the xercesImpl.jar from the Xerces2-J distribution.
You could add references to these in your CLASSPATH environment variable, or simply include refer-
ences to them in the command-line calls.

Receiving SAX Events
You may be wondering how you’re going to be receiving these events. Remember the discussion on
interfaces in the last chapter? If not, it might be a good time to take a look again to refresh your memory.
You will write a Java class that implements one of the SAX interfaces, which means your class will have
all of the same functions as the interface.

In Java, you specify that a class implements an interface by declaring it like this:

public class MyClass implements ContentHandler

MyClass is the name of the new class, and ContentHandler is the name of the interface. Actually, this is
the most important interface in SAX, as it is the one that defines the callback methods for content-related
events (that is, events about elements, attributes, and their contents). What you’re doing here is creating
a class that contains methods that a SAX-aware parser knows about.

The ContentHandler interface contains a whole series of methods, most of which in the normal course
of events you don’t really want to be bothered with. Unfortunately, when you implement an interface,
you have to provide implementations of all the methods defined in that interface. However, SAX pro-
vides you with a default, empty implementation of them, called DefaultHandler, so rather than imple-
ment ContentHandler, you can instead extend DefaultHandler, like this:

public class MyClass extends DefaultHandler

You can then choose which methods you want to provide your own implementations, to trap
specific events. This is called overriding the methods. If you leave things as they are, the base class
(DefaultHandler in this case) provides its own implementation of them for use by MyClass. For

486

Part V: Programming

example, there’s a method in the ContentHandler interface called startDocument. Whenever another
piece of code invokes the startDocument method of MyClass’s implementation of ContentHandler,
the method invoked is actually DefaultHandler.startDocument. This is because DefaultHandler is
providing a default implementation of startDocument. This is called inheriting an implementation.

If you provide your own implementations of the methods by overriding the inherited methods, then
your methods are used instead. The method invoked would now be MyClass.startDocument. This
might do something totally different from DefaultHandler’s implementation.

Actually, DefaultHandler is a very hard-working class because it also provides default implementa-
tions of the three other core SAX interfaces: ErrorHandler, DTDHandler, and EntityResolver. You’ll
come across them in a little while, but for the time being you’ll focus on ContentHandler.

ContentHandler Interface
The ContentHandler interface, as the name implies, is designed to control the reporting of events for
the content of the document. This includes information about the text, attributes, processing instructions,
elements, and even the document itself. Here is a quick summary of methods that a ContentHandler
must implement:

Event Description

startDocument Event to notify the application that the parser has read the start of
the document

endDocument Event to notify the application that the parser has read the end of
the document

startElement Event to notify the application that the parser has read an element
start-tag

endElement Event to notify the application that the parser has read an element
end-tag. Note that this event will be fired immediately after the
startElement event for empty elements where the end-tag is
implicit.

characters Event to notify the application that the parser has read a block of
characters. Multiple characters events may be fired for a single
section of text.

ignorableWhitespace Event to notify the application that the parser has read a block of
whitespace that can probably be ignored, such as formatting and
spacing of elements. Multiple ignorableWhitespace events
may be fired for a single section of whitespace.

skippedEntity Event to notify the application that the parser has skipped an
external entity

processingInstruction Event to notify the application that the parser has read a process-
ing instruction

Table continued on following page

487

Chapter 12: Simple API for XML (SAX)

Event Description

startPrefixMapping Event to notify the application that the parser has read an XML
namespace declaration, and that a new namespace prefix is in
scope

endPrefixMapping Event to notify the application that a namespace prefix mapping
is no longer in scope

setDocumentLocator Event that allows the parser to pass a Locator object to the
application

You will learn about each of these events in more detail. Let’s try a small example to see how it works.

Try It Out The Start of Something Big

1. Begin by creating a sample XML document that you can use throughout this chapter — the
examples will continue to use the train analogy used at the beginning of the chapter:

<?xml version=”1.0”?>
<train>
<car type=”Engine”>
<color>Black</color>
<weight>512 tons</weight>
<length>60 feet</length>
<occupants>3</occupants>

</car>
<car type=”Baggage”>
<color>Green</color>
<weight>80 tons</weight>
<length>40 feet</length>
<occupants>0</occupants>

</car>
<car type=”Passenger”>
<color>Green and Yellow</color>
<weight>40 tons</weight>
<length>60 feet</length>
<occupants>23</occupants>

</car>
<car type=”Caboose”>
<color>Red</color>
<weight>90 tons</weight>
<length>30 feet</length>
<occupants>4</occupants>

</car>
</train>

It may not be a very long train, but it has a caboose, so it’s complete. A better example of SAX’s
power, however, would be much larger. Save this file as Train.xml in a directory that you can
use for your project.

488

Part V: Programming

2. Create a Java class that does the work of starting the parser and handling the events. You begin
the class by telling the compiler that you will be using the SAX library by importing several
packages:

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

3. You can now begin your class, called TrainReader:

public class TrainReader extends DefaultHandler
{

public static void main(String[] args)
throws Exception

{
System.out.println(“(“Running train reader...”);...”);
TrainReader readerObj = new TrainReader();
readerObj.read(args[0]);

}

The main method declaration is standard Java: This is the piece of code that is executed when
you start the class. It prints out a message, creates a new instance of the class that it resides in,
and invokes a method called read().

The void part of the declaration, incidentally, means that the method doesn’t return a value to
its caller, and the throws Exception part means that if anything happens that it can’t cope
with, it passes the exception back so the caller can deal with it. You’ll see more exception decla-
rations later.

public void read(String fileName)
throws Exception

{
XMLReader reader =
XMLReaderFactory.createXMLReader(“org.apache.xerces.parsers.SAXParser”);

reader.setContentHandler(this);
reader.parse(fileName);

}

The first line of this method creates an XMLReader object using a factory helper object. This is
the only place in the code where you explicitly indicate that the Xerces parser is used. You could
substitute the qualified name of another parser here if you happened to have one installed.

4. Now you can start working with the events themselves, which is why you are writing the class.
You start with the simplest of events, the start of the document:

public void startDocument()
throws SAXException

{
System.out.println(“Start of the train”);

}

489

Chapter 12: Simple API for XML (SAX)

5. Now you can create a function to catch the event that is executed when the parser reaches the
end of the XML document:

public void endDocument()
throws SAXException

{
System.out.println(“End of the train”);

}

6. Finally, you can add the closing of the class:

}

Save this as file TrainReader.java in the same folder that you saved Train.xml. In these
examples, it is assumed that you are compiling and executing your Java classes from a com-
mand prompt (or a terminal window if you are working in Linux). If you are on Windows, you
can find a shortcut to open a command prompt by selecting Start ➪ Accessories. You may
already be using a Java Integrated Development Environment (Java IDE), which is fine as long
as you have access to view the console output.

At the command prompt, change to the directory where you have saved TrainReader.java
and compile:

javac TrainReader.java

If you receive an error such as

‘javac’ is not recognized as an internal or external command, operable program or
batch file.

then it is likely that you have not added your Java bin folder to your PATH environment vari-
able. Check your setup and try again. If you receive another error compiling, confirm that you
typed the code correctly and try again.

If you have added the SAX and Xerces packages to your CLASSPATH environment variable, you
can run your TrainReader program:

java TrainReader Train.xml

If you did not want to modify your CLASSPATH variable, you could simply copy the
xercesImpl.jar file and sax2r2.jar file into your project directory and type the following:

java -cp .;sax2.jar;xercesImpl.jar TrainReader Train.xml

You should see the following:

Running train reader...
Start of the train
End of the train

The Sun JDK on Linux uses the colon (:) instead of the semicolon (;) to separate
CLASSPATH components.

490

Part V: Programming

Though this may not seem like groundbreaking output, the code behind your TrainReader
class is the basis of any SAX project. From here you can quickly expand your code to examine
any part of any XML document, regardless of size.

If you see an error, confirm that you typed in Train.xml correctly and try again. Possible errors are
covered in more detail later in the chapter.

How It Works
Before moving on to another example, let’s break down some important parts of the TrainReader class.
In the main() function you created an XMLReader object by sending a registered parser name to a fac-
tory function:

XMLReader reader = XMLReaderFactory.createXMLReader(“org.apache.xerces
.parsers.SAXParser”);

Before you parsed, you indicated to the XMLReader that your class should receive events about the con-
tent of the XML document:

reader.setContentHandler(this);

Then you started the parsing, passing the name of the file you wanted to parse:

reader.parse(fileName);

At that point, the SAX parser took over. As it parsed the document, it called the event handlers
that were registered. Therefore, when the parser encountered the start of the document, it reported a
startDocument event to the registered ContentHandler, your TrainReader class. It did this by exe-
cuting the startDocument function:

public void startDocument()
throws SAXException

{
System.out.println(“Start of the train”);

}

Finally, when it reached the end of the document, it called the similar endDocument function:

public void endDocument()
throws SAXException

{
System.out.println(“End of the train”);

}

Handling Element Events
Now that you have learned the basics of handling events using the ContentHandler interface, let’s look
at how to handle element events, beginning with the startElement function:

public void startElement(String uri, String localName, String qName,
Attributes atts) throws SAXException

491

Chapter 12: Simple API for XML (SAX)

The first three parameters help to identify the element that the parser encountered — they enable you
to identify the element based on its namespace name and local name, or by its qualified name. If you
remember the discussion of namespaces from Chapter 3, this behavior enables you to uniquely identify
similar elements in different vocabularies.

For example, if the parser encountered

<myPrefix:myElement xmlns:myPrefix=”http://example.com”>

then it would fire an event for the start of the element with the following values:

Parameter Value

uri http://example.com

localName myElement

qName myPrefix:myElement

As you can see, the uri parameter represents the namespace URI associated with the element. The
localName parameter contains part of the element name after the “:”. The qName parameter is the quali-
fied name — or the local name and the namespace prefix. If there is no prefix for the element name (for
example, if there is no namespace or a default namespace), then the localName and qName should be
the same.

The startElement event also provides a fourth parameter — the attributes. The Attributes interface
enables you to easily look up the attributes and their values at the start of each element. The default
Attributes interface provides you with the following functions:

Method Description

getLength Determines the number of attributes available in the Attributes interface

getIndex Retrieves the index of a specific attribute in the list. The getIndex function
enables you to look up the index by using the attribute’s qualified name or by
using both the local name and namespace URI.

Though most SAX parsers report identical strings for the localName and qName
parameters when there is no prefix, some do not. By default, some parsers may
report an empty string for the qName parameter if the element has a namespace.
Therefore, it is recommended that you first check the uri parameter for null. If the
uri parameter is not null, then use the combination of the uri and the localName
instead of the qName parameter. You may be wondering why this is preferred.
Remember that any prefix can be used to refer to a namespace, and this may change
from document to document. Using the namespace URI directly is more reliable.

492

Part V: Programming

Method Description

getLocalName Retrieves a specific attribute’s local name by sending the index in the list

getQName Retrieves a specific attribute’s qualified name by sending the index in the list

getURI Retrieves a specific attribute’s namespace URI by sending the index in the list

getType Retrieves a specific attribute’s type by sending the index in the list, by using
the attribute’s qualified name or by using both the local name and namespace
URI. If there is no Document Type Definition (DTD), this function will always
return CDATA.

getValue Retrieves a specific attribute’s value by sending the index in the list, by using
the attribute’s qualified name, or by using both the local name and name-
space URI

As shown with elements, you can access the attributes through their qualified names or through the
local names and namespace URIs. Note that namespace declarations (the xmlns declarations you
learned about in Chapter 3) are not reported as attributes by default.

In the latest version of SAX, some parsers expose extended behavior through an interface called
Attributes2, which enables you to check whether an attribute was declared in a DTD, whether the
attribute value appeared in the XML document, or whether it appeared because of a DTD or XML
Schema attribute default declaration. Extension interfaces are covered a little later in the chapter.

Let’s look at an example of working with elements and attributes.

Try It Out Element and Attribute Events

In this example, you simply try to report the type of each train car as your SAX parser fires the appropri-
ate events. You use the same XML document, Train.xml, from the first example and modify the Java
program a little.

1. Begin by opening TrainReader.java and adding the following function just after the
endDocument function:

public void startElement(String uri, String localName, String qName,
Attributes atts) throws SAXException

{
if (“car”.equals(localName)) {
if (atts != null) {
System.out.println(“Car: “ + atts.getValue(“type”));

}
}

}

2. Save this as file TrainReader.java in the same folder that you saved Train.xml. At the com-
mand prompt, change to the directory where you have saved TrainReader.java and compile:

javac TrainReader.java

493

Chapter 12: Simple API for XML (SAX)

3. Once you have compiled the class, you can run the program:

java TrainReader Train.xml

You should see the following:

Running train reader...
Start of the train
Car: Engine
Car: Baggage
Car: Passenger
Car: Caboose
End of the train

How It Works
The core of this Try It Out is exactly the same as the first example. The only thing you did differently was
create an event handler for the start of each element:

if (“car”.equals(localName)) {

The first thing you did in the handler was check the element’s local name. Because you are using Xerces,
you know that the localName and qName parameters are always reliable and always the same for docu-
ments without namespaces. Still, in this example, you used the localName parameter to get in the habit
of doing so when it is unknown whether the parser supports the qName parameter. When the element’s
local name was car, the attributes were processed:

if (atts != null) {
System.out.println(“Car: “ + atts.getValue(“type”));

}

The first step was to check whether the passed in Attributes interface was not null. According to the
SAX specification, it should never be null. However, some early parsers did not follow this constraint.
Next, you printed out the value of the type attribute. Note that if the type attribute is not found in the
Attributes list, then the getValue function returns null. In a more complete application, where the
source XML documents vary, it would be a good idea to check for this case.

Handling Character Content
In addition to working with elements and the attribute events, SAX makes it easy to work with the char-
acter content in the document. Working with the characters event is very similar to the events you
have already seen:

public void characters(char[] ch, int start, int len)
throws SAXException

Notice that the characters are delivered as a buffer, rather than a string. This enables parser designers to
more easily reuse internal buffers, which can effectively reduce the number of memory allocations and
increase overall performance. Passing in the start position and length to copy from the buffer can also
help to increase performance. Luckily, it is very easy to create strings in Java with these parameters.

494

Part V: Programming

Unfortunately, working with the characters function is not quite as straightforward as it might seem.
The parser writer is not obligated to deliver all the character data between two tags as a single block of
text. It may report the text using multiple characters callbacks. (When you think about it, this is actu-
ally quite reasonable — after all, the string might turn out to be extremely long, which could result in a
very clumsy parser implementation.) From an application point of view, this just means that you may
need to build up your string over a number of characters events.

Try It Out Adding Colorful Characters

Though you are sticking with the trains, you add quite a bit in this Try It Out, which should output the
color of each car and its car type:

1. For starters, add some private variables to your class:

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class TrainReader extends DefaultHandler
{
private boolean isColor;
private String trainCarType = “”;
private StringBuffer trainCarColor = new StringBuffer();
public static void main(String[] args)
throws Exception

{
System.out.println(“Running train reader...”);
TrainReader readerObj = new TrainReader();
readerObj.read(args[0]);

}

public void read(String fileName)
throws Exception

{
XMLReader reader =
XMLReaderFactory.createXMLReader(“org.apache.xerces.parsers.SAXParser”);

reader.setContentHandler(this);
reader.parse(fileName);

}

public void startDocument()
throws SAXException

{
System.out.println(“Start of the train”);

}

public void endDocument()
throws SAXException

{
System.out.println(“End of the train”);

}

495

Chapter 12: Simple API for XML (SAX)

2. Modify the startElement function to record some of the data before the parser continues. Just
because the SAX parser doesn’t remember data from event to event doesn’t mean your applica-
tion can’t. Set the isColor flag to indicate whether the parser has started parsing a color ele-
ment, and record the car type instead of just outputting it immediately, as in the last example:

public void startElement(String uri, String localName, String qName,
Attributes atts) throws SAXException

{
if (“car”.equals(localName)) {
if (atts != null) {
trainCarType = atts.getValue(“type”);

}
}

if (“color”.equals(localName)) {
trainCarColor.setLength(0);
isColor = true;

} else {
isColor = false;

}
}

Notice that you are again working with the localName parameter instead of the qName parame-
ter. If localName is color, then set your flag to true; otherwise, set it to false. Be sure to reset
the trainCarColor StringBuffer to be empty at the start of each new color element.

3. You can now add your characters event handler:

public void characters(char[] ch, int start, int len)
throws SAXException

{
if (isColor)
{
trainCarColor.append(ch, start, len);

}
}

Remember that the parser may report the characters for an element in multiple chunks (even
when the character data is very small), so you need to collect all the characters events into a
single StringBuffer, appending the data with each new call. In addition, make sure you are
appending the data only from color elements by checking the isColor flag you set in the
startElement event.

4. Finally, add an event handler to catch the end of the color element:

public void endElement(String uri, String localName, String qName)
throws SAXException

{
if (isColor) {
System.out.println(“The color of the “ + trainCarType + “ car is “ +
trainCarColor.toString());

isColor = false;
}

}

496

Part V: Programming

Here you can output a message including the StringBuffer that you built up in the characters
event. You should also set the isColor flag back to false so that you don’t collect unneeded
character data in the characters event.

Again, save this as file TrainReader.java in the same folder that you saved Train.xml and
compile the class:

javac TrainReader.java

Once you have compiled the class, you can run the program:

java TrainReader Train.xml

You should see the following:

Running train reader...
Start of the train
The color of the Engine car is Black
The color of the Baggage car is Green
The color of the Passenger car is Green and Yellow
The color of the Caboose car is Red
End of the train

How It Works
The examples are now beginning to hint at the power, and difficulty, of SAX. As you can see, retrieving
the data from the SAX model is fairly simple. However, the complexity of the application grows very
quickly when you need to associate and store data between event callbacks.

As shown throughout the chapter, the process began very simply. As the SAX parser began parsing
the document, it called the startDocument function. Then, for each new element, it called the
startElement function. When the parser encountered a car element and fired the event, you stored
the type attribute for later use:

trainCarType = atts.getValue(“type”);

Until the parser encountered another car element, the trainCarType variable remained unchanged.
When the parser encountered the start of a color element, you set a flag to alert the application to
append any character data to the trainCarColor StringBuffer:

if (isColor)
{
trainCarColor.append(ch, start, len);

}

Instead of outputting the train car’s color immediately, you wait until the endElement event to ensure
that you have collected all of the character content in the color element. For example, if the parser had
fired the following events:

Start of element: color
Character data: Green and
Character data: Yellow
End of element: color

497

Chapter 12: Simple API for XML (SAX)

and you simply assigned the trainCarColor instead of appending the data each time, then you would
overwrite Green and with Yellow during the second characters event.

When to Ignore ignorableWhitespace

The ignorableWhitespace event is very similar to the characters event. In fact, the parameter lists
for the two functions are identical:

public void ignorableWhitespace(char[] ch, int start, int len)
throws SAXException

Not only are the parameters identical, but the functionality is very similar. Parsers may call the
ignorableWhitespace function multiple times within a single element.

Why have the ignorableWhitespace event? Whitespace, such as spaces, tabs, and linefeeds, which are
used to make an XML document more readable, are often not important to the application, even though
they are part of the XML content. For example, the linefeed and the spaces between the end of the color
element and the start of the weight element have no meaning, whereas the space between 512 and tons
within the weight element is very meaningful:

<car type=”Engine”>
<color>Black</color>
<weight>512 tons</weight>
<length>60 feet</length>
<occupants>3</occupants>
</car>

The only way a SAX parser can know that whitespace is ignorable is when an element is declared, as in
a DTD, to not contain PCDATA (remember PCDATA is short for “parsed” character data). Therefore, only
validating parsers can report this event. If the parser has no knowledge of the DTD, then it must assume
that all character data, including whitespace, is important, and it must report it in the characters
event.

Skipped Entities

The skippedEntity event, much like the ignorableWhitespace event, alerts the application that the
SAX parser has encountered information it believes the application can or must skip. In the case of the
skippedEntity event, the SAX parser has not expanded an entity reference it encountered in the XML
document. An entity might be “skipped” for several reasons:

❑ The entity is a reference to an external resource that cannot be parsed or cannot be found.

❑ The entity is an external general entity and the http://xml.org/sax/features/external-
general-entities feature is set to false.

❑ The entity is an external parameter entity and the http://xml.org/sax/features/
external-parameter-entities feature is set to false.

You learn about the external-general-entities and external-parameter-entities features
later in this chapter. The skippedEntity event is declared as follows:

public void skippedEntity(String name)
throws SAXException

498

Part V: Programming

The name parameter is the name of the entity that was skipped. It begins with % in the case of a parame-
ter entity. SAX considers the external DTD subset an entity, so if the name parameter is [dtd], then it
means the external DTD subset was not processed. For more information on DTDs, refer to Chapter 4.

Handling Special Commands with Processing Instructions
Processing instructions, as you may remember from Chapter 2, allows XML document authors to pass
specific instructions to applications. SAX allows you to receive these special instructions in your applica-
tion through the processingInstruction event:

public void processingInstruction(String target, String data) throws SAXException

Consider the following processing instruction:

<?instructionForTrainPrograms blowWhistle?>

Here the target would be instructionForTrainPrograms and the data would be blowWhistle.
Using the processingInstruction event, adding special functionality to your application becomes
relatively easy. In reality, though, processing instructions are seldom used. In fact, many people argued
against the inclusion of processing instructions in the XML specification. With that said, processing
instructions are legal and intended for use within applications.

You probably don’t need to be reminded at this point that the XML declaration at the start of an XML
document is not really a processing instruction, and as such it shouldn’t result in a processing
Instruction event. If it does, then you should switch to another parser quickly.

Namespace Prefixes
When working with the element events, you saw that it is best to use the namespace URI and local name
instead of the prefix, but what if you want keep track of the prefixes used for each namespace? SAX
processors will fire a startPrefixMapping event and endPrefixMapping event for any namespace
declaration:

public void startPrefixMapping(String prefix, String uri)
throws SAXException

public void endPrefixMapping(String prefix) throws SAXException

The prefix parameter is the namespace prefix that is being declared. In the case of a default namespace
declaration, the prefix should be an empty string. The uri parameter is the namespace URI being
declared, so for the namespace declaration

xmlns:example=”http://example.com”

the prefix parameter would be “example” and the uri parameter would be “http://example.com.”
A startPrefixMapping event occurs immediately before the startElement event for the element
where a namespace declaration appears. Likewise, an endPrefixMapping event will occur immediately
after the corresponding endElement event. Keep in mind that the xml prefix is built in, so a SAX parser
will not fire startPrefixMapping and endPrefixMapping events when an attribute or declaration
with the xml prefix is encountered.

499

Chapter 12: Simple API for XML (SAX)

Stopping the Process in Exceptional Circumstances
In Chapters 4, 5, and 6, you learned how to validate documents against a DTD, XML Schema, or RELAX
NG schema. What should you do if you have a rule that is so complex that it cannot be expressed in one
of these languages? The designers of SAX considered this problem. As you may have noticed, all the
event functions used so far have declared that they may throw a SAXException. This allows you to cre-
ate a new SAXException when you want to stop the processing.

Let’s try another example.

Try It Out Pulling the Brakes

This example makes a small modification to the last example, adding a new rule to require that the
caboose be Red. After all, nobody likes a train with a caboose that isn’t red.

1. The only change that you make is in the endElement function: Check the trainCarType for
Caboose and then check the color:

public void endElement(String uri, String localName, String qName)
throws SAXException

{
if (isColor) {
System.out.println(“The color of the “ + trainCarType + “ car is “ +
trainCarColor.toString());

isColor = false;
if ((“Caboose”.equals(trainCarType)) &&

(!”Red”.equals(trainCarColor.toString())))
throw new SAXException(“The caboose is not red!”);

}
}

This is all you need to do to stop the parsing process. Save this as file TrainReader.java in the
same folder that you saved Train.xml and compile the class:

javac TrainReader.java

Once you have compiled the class, you can run the program:

java TrainReader Train.xml

You should see the following:

Running train reader...
Start of the train
The color of the Engine car is Black
The color of the Baggage car is Green
The color of the Passenger car is Green and Yellow
The color of the Caboose car is Red
End of the train

Of course, the caboose is red, so you don’t receive an error. Now change the color of the caboose
in Train.xml and save the file as Train2.xml:

<car type=”Caboose”>
<color>Green</color>
<weight>90 tons</weight>

500

Part V: Programming

<length>30 feet</length>
<occupants>4</occupants>

</car>

Try running the TrainReader again:

java TrainReader Train2.xml

You should now see the following:

Running train reader...
Start of the train
The color of the Engine car is Black
The color of the Baggage car is Green
The color of the Passenger car is Green and Yellow
The color of the Caboose car is Green
Exception in thread “main” org.xml.sax.SAXException: The caboose is not red!

at TrainReader.endElement(TrainReader.java:76)
at org.apache.xerces.parsers.AbstractSAXParser.endElement(Unknown Source)
at org.apache.xerces.impl.XMLNSDocumentScannerImpl.scanEndElement
(Unknown Source)
at org.apache.xerces.impl.XMLDocumentFragmentScannerImpl$
FragmentContentDispatcher.dispatch(Unknown Source)
at org.apache.xerces.impl.XMLDocumentFragmentScannerImpl.scanDocument
(Unknown Source)
at org.apache.xerces.parsers.XML11Configuration.parse(Unknown Source)
at org.apache.xerces.parsers.XML11Configuration.parse(Unknown Source)
at org.apache.xerces.parsers.XMLParser.parse(Unknown Source)
at org.apache.xerces.parsers.AbstractSAXParser.parse(Unknown Source)
at TrainReader.read(TrainReader.java:25)
at TrainReader.main(TrainReader.java:16)

Notice that when the exception is raised it stops the whole application. This is because the
exception isn’t handled anywhere. Let’s add that to the application now.

2. Add a try/catch block around the call to the parse function where you start reading the
document:

public void read(String fileName)
throws Exception

{
XMLReader reader =
XMLReaderFactory.createXMLReader(“org.apache.xerces.parsers.SAXParser”);

reader.setContentHandler(this);
try
{
reader.parse(fileName);

}
catch (SAXException e)
{
System.out.println(“Parsing stopped : “ + e.getMessage());

}
}

Once this is complete, you can again compile TrainReader.java:

javac TrainReader.java

501

Chapter 12: Simple API for XML (SAX)

After compiling the class, you can run the program:

java TrainReader Train2.xml

You should see the following:

Running train reader...
Start of the train
The color of the Engine car is Black
The color of the Baggage car is Green
The color of the Passenger car is Green and Yellow
The color of the Caboose car is Green
Parsing stopped : The caboose is not red!

How It Works
Taking advantage of the exception mechanism built into SAX enables you to quickly stop the parsing
process if you deem it necessary. This means that you can add additional validation for more complex
constraints that cannot be modeled using DTDs or XML Schemas. In the example, you used the excep-
tion mechanism to ensure that the caboose was red, but this same concept can be used to model any type
of business rules needed in your application, including complex calculations or specialized lookups.

Once the exception was thrown, you didn’t receive any more SAX events, even though the parser had
not completed parsing the document. Many SAX parsers are designed to fire an endDocument event
even when there is an exception or error in the document. This design provides applications with a
guaranteed time to do any miscellaneous cleanup such as releasing memory. Currently, however, the
Xerces parser, the Crimson parser, and the Oracle parser do not fire the endDocument event if an error
or exception is encountered. Therefore, it is safest to assume that the endDocument function will not be
called, which means you should always have a try...finally block surrounding calls to the parse
function if you need to ensure that certain actions are taken even when there is an exception.

Providing the Location of the Error
Although you have provided an error message for the problem XML document, you haven’t given the
author of the XML document very much information for fixing the error. It would be helpful to provide the
line number and the column position of the error, which SAX enables you to pass along in the message.

The only event callback you haven’t used from the ContentHandler so far in this chapter is
setDocumentLocator. The setDocumentLocator callback allows the parser to pass the application a
Locator interface. Using this interface you can easily determine the line number and column position at
any time within your application. The methods of the Locator object are shown in the following table:

Method Description

getLineNumber Retrieves the line number for the current event

getColumnNumber Retrieves the column number for the current event (the SAX specification
assumes that the column number is based on right-to-left reading modes)

getSystemId Retrieves the system identifier of the document for the current event.
Because XML documents may be composed of multiple external entities,
this may change throughout the parsing process.

502

Part V: Programming

Method Description

getPublicId Retrieves the public identifier of the document for the current event.
Because XML documents may be composed of multiple external entities,
this may change throughout the parsing process.

The latest version of SAX has also introduced an extended version of the Locator interface, called
Locator2. The Locator2 interface enables you to retrieve the XML version and encoding declaration.
You will learn about the extension interfaces later in the chapter.

The setDocumentLocator callback, if it is called, occurs before any other event callbacks. It may not be
called at all, or it may be passed a null locator object, so always check for null before using the locator.
All the parsers listed in the beginning of the chapter except XP provide locator information that can be
used throughout the parsing process.

Try It Out Which Stop Is This?

Let’s add some information to that exception you created using the document locator. If the parser pro-
vides a locator, you display the document name, the line number, and the column position when the
exception is thrown:

1. To start, add a private variable to hold on to the locator object when it is passed in the callback.
Call this trainLocator:

private boolean isColor;
private String trainCarType = “”;
private StringBuffer trainCarColor = new StringBuffer();
private Locator trainLocator = null;

2. Add the handler for the setDocumentLocator event:

public void setDocumentLocator(Locator locator)
{
trainLocator = locator;

}

Notice that this function does not declare that a SAXException can be thrown. Until the
startDocument event has been fired, error information is unreliable.

3. Finally, modify the exception message in the endElement event handler:

public void endElement(String uri, String localName, String qName)
throws SAXException

{
if (isColor) {
System.out.println(“The color of the “ + trainCarType + “ car is “ +
trainCarColor.toString());

isColor = false;
if ((“Caboose”.equals(trainCarType)) &&

(!”Red”.equals(trainCarColor.toString()))) {
if (trainLocator != null)

503

Chapter 12: Simple API for XML (SAX)

throw new SAXException(“The caboose is not red at line “ +
trainLocator.getLineNumber() + “, column “ +
trainLocator.getColumnNumber());

else
throw new SAXException(“The caboose is not red!”);

}
}

}

Again, you must ensure that the locator is not null before you can use it. Let’s compile
TrainReader.java:

javac TrainReader.java

Once you have compiled the class, you can run the program:

java TrainReader Train2.xml

You should see the following:

Running train reader...
Start of the train
The color of the Engine car is Black
The color of the Baggage car is Green
The color of the Passenger car is Green and Yellow
The color of the Caboose car is Green
Parsing stopped : The caboose is not red at line 22, column 25

How It Works
By handling the setDocumentLocator event, you were able to access the Locator object supplied by
the XML parser. This allowed you to easily notify the user where the error occurred in the XML docu-
ment. In a small document, such as the sample that you are working with, the benefit may not be very
obvious. In a multi-gigabyte document, however, this information would be invaluable.

The information provided by the Locator is not always absolute. Some parsers are better than others at
determining the location in the document. For the most part, the line number is accurate. The reported
column position can vary wildly between parsers, however, so it is probably best to use the Locator
information in situations where the exact position is not critical.

ErrorHandler Interface
You still aren’t finished with errors. What if you want to do your own handling of parser errors? It prob-
ably won’t come as a great surprise to find out that you implement some methods of an interface. How-
ever, these new methods aren’t part of ContentHandler; they’re part of another interface altogether,
called ErrorHandler. As it happens, the DefaultHandler class provides you with a rudimentary
implementation of this interface as well, although it doesn’t actually do anything apart from throw a
SAXException to print out a trace of the call stack, like the one in the earlier example.

504

Part V: Programming

Event Description

warning Allows the parser to notify the application of a warning it has encountered in
the parsing process. Though the XML Recommendation provides many possible
warning conditions, very few SAX parsers actually produce warnings.

error Allows the parser to notify the application that it has encountered an error. Even
though the parser has encountered an error, parsing can continue. Validation
errors should be reported through this event.

fatalError Allows the parser to notify the application that it has encountered a fatal error
and cannot continue parsing. Well-formedness errors should be reported
through this event.

To receive error events, you must call setErrorHandler and pass a reference to the TrainReader
object. This is the exact analog of the call to setContentHandler that you used to tell the parser where
to send the content-related events.

Try It Out To Err Is Human, To Handle Errors Is Divine

This example extends the TrainReader class so that you can catch parser errors and report their loca-
tion. In addition to overriding some of DefaultHandler’s implementation of ContentHandler, you
override some of its implementation of ErrorHandler. You also upgrade the sample by creating a
DTD for the Train vocabulary and validating the XML document. This enables you to see how the
ErrorHandler works with different kinds of errors.

1. Begin by modifying the sample XML document. Add an internal DTD so that you can validate
the document:

<?xml version=”1.0”?>
<!DOCTYPE train [
<!ELEMENT train (car*)>
<!ELEMENT car (color, weight, length, occupants)>
<!ATTLIST car type CDATA #IMPLIED>
<!ELEMENT color (#PCDATA)>
<!ELEMENT weight (#PCDATA)>
<!ELEMENT length (#PCDATA)>
<!ELEMENT occupants (#PCDATA)>

]>

Save this file as Train3.xml in the directory that you are using for your project.

2. Modify the TrainReader class. First, add a call to setErrorHandler and set the validation fea-
ture to true to turn on validation:

public void read(String fileName)
throws Exception

{
XMLReader reader =
XMLReaderFactory.createXMLReader(“org.apache.xerces.parsers.SAXParser”);

reader.setContentHandler(this);

505

Chapter 12: Simple API for XML (SAX)

reader.setErrorHandler(this);
try
{
reader.setFeature(“http://xml.org/sax/features/validation”, true);

}
catch (SAXException e)
{
System.err.println(“Cannot activate validation”);

}
try
{
reader.parse(fileName);

}
catch (SAXException e)
{
System.out.println(“Parsing stopped : “ + e.getMessage());

}
}

Notice that you set the validation feature within a try/catch block. You will learn more about
features and properties later in the chapter.

3. Next add the error-handling functions to the TrainReader class. These will override the mini-
mal implementations provided by DefaultHandler:

public void warning (SAXParseException exception)
throws SAXException {
System.err.println(“[Warning] “ +
exception.getMessage() + “ at line “ +
exception.getLineNumber() + “, column “ +
exception.getColumnNumber());

}

public void error (SAXParseException exception)
throws SAXException {
System.err.println(“[Error] “ +
exception.getMessage() + “ at line “ +
exception.getLineNumber() + “, column “ +
exception.getColumnNumber());

}

public void fatalError (SAXParseException exception)
throws SAXException {
System.err.println(“[Fatal Error] “ +
exception.getMessage() + “ at line “ +
exception.getLineNumber() + “, column “ +
exception.getColumnNumber());

throw exception;
}

All you’re doing here is printing out the location of the error, taken from the incoming
SAXParseException object, and then — in the case of fatalError— rethrowing the error
back to the parser. In most parsers, rethrowing the exception is unnecessary, but it ensures that

506

Part V: Programming

regardless of the parser chosen, parsing will stop when a fatal error is encountered. It’s worth
noting that if the parser doesn’t support Locator, then it’s not going to provide you with any-
thing meaningful in these methods on SAXParseException.

Let’s compile TrainReader.java:

javac TrainReader.java

Once you have compiled the class, you can run the program:

java TrainReader Train3.xml

You should see the following:

Running train reader...
Start of the train
The color of the Engine car is Black
The color of the Baggage car is Green
The color of the Passenger car is Green and Yellow
The color of the Caboose car is Green
Parsing stopped : The caboose is not red at line 31, column 25

You have the same output you had in the last example. Obviously, you didn’t change the color
of the caboose back to Red. Note that the exception thrown by the application wasn’t passed
through any of the new error-handling methods. When you create an exception to stop parsing,
it is immediate.

4. Now insert a couple of errors into the XML document so that you can see the new error func-
tions in action. First, rename the occupants element for the Engine to be a conductors ele-
ment. Then, delete the “>” on the closing car tag. Finally, change the caboose color to Red:

<?xml version=”1.0”?>
<!DOCTYPE train [
<!ELEMENT train (car*)>
<!ELEMENT car (color, weight, length, occupants)>
<!ATTLIST car type CDATA #IMPLIED>
<!ELEMENT color (#PCDATA)>
<!ELEMENT weight (#PCDATA)>
<!ELEMENT length (#PCDATA)>
<!ELEMENT occupants (#PCDATA)>

]>
<train>
<car type=”Engine”>
<color>Black</color>
<weight>512 tons</weight>
<length>60 feet</length>
<conductors>3</conductors>

</car
<car type=”Baggage”>
<color>Green</color>
<weight>80 tons</weight>
<length>40 feet</length>
<occupants>0</occupants>

</car>
<car type=”Passenger”>
<color>Green and Yellow</color>

507

Chapter 12: Simple API for XML (SAX)

<weight>40 tons</weight>
<length>60 feet</length>
<occupants>23</occupants>

</car>
<car type=”Caboose”>
<color>Red</color>
<weight>90 tons</weight>
<length>30 feet</length>
<occupants>4</occupants>

</car>
</train>

Save this file as Train4.xml and run the program:

java TrainReader Train4.xml

You should see the following:

Running train reader...
Start of the train
The color of the Engine car is Black
[Error] Element type “conductors” must be declared. at line 16, column 17
[Fatal Error] The end-tag for element type “car” must end with a ‘>’ delimiter. at
line 18, column 3
Parsing stopped : The end-tag for element type “car” must end with a ‘>’ delimiter.

How It Works
By handling the errors reported by the parser, you are able to provide useful error messages to the appli-
cation, and ultimately the user. The three levels of errors enable you to either report the information
even when parsing can continue or stop parsing for all errors and warnings. Let’s look at the output in
more detail:

Running train reader...
Start of the train
The color of the Engine car is Black

The process begins as it has in every other example, firing off events normally. Then the parser encoun-
tered the first error, the conductors element that you added:

[Error] Element type “conductors” must be declared. at line 16, column 17

The Xerces parser raised an error when it encountered the conductors element because it was not
declared in the DTD provided with your document. Some parsers will also raise an error about the miss-
ing occupants element. The error that was raised was only a validation error, which meant that parsing
could continue because the document could still be well formed even if it was not valid. The parsing,
and events, continued until it reached the well-formedness error you introduced:

[Fatal Error] The end-tag for element type “car” must end with a ‘>’ delimiter. at
line 18, column 3

Once the parser encounters a well-formedness error, it cannot continue trying to parse the document
according to the XML specification. After outputting the message, the application threw the exception
that was then caught by the exception handler around the call to the parse function:

508

Part V: Programming

Parsing stopped : The end-tag for element type “car” must end with a ‘>’ delimiter.

Again, a message about the error was output. Of course, with your newly added error-handling code,
the message was redundant.

DTDHandler Interface
Now that you have added a DTD to your document you may want to receive some events about the dec-
larations. The logical place to turn is the DTDHandler interface. Unfortunately, the DTDHandler interface
provides you with very little information about the DTD itself. In fact, it allows you to see the declara-
tions only for notations and unparsed entities.

Event Description

notationDecl Allows the parser to notify the application that it has read a notation
declaration

unparsedEntityDecl Allows the parser to notify the application that it has read an
unparsed entity declaration

When parsing documents that make use of notations and unparsed entities to refer to external files —
such as image references in XHTML or embedded references to non-XML documents — the application
must have access to the declarations of these items in the DTD. This is why the creators of SAX made
them available through the DTDHandler, one of the default interfaces associated with an XMLReader.

The declarations of elements, attributes, and internal entities, however, are not required for general XML
processing. These declarations are more useful for XML editors and validators. Therefore, the events for
these declarations were made available in one of the extension interfaces, DeclHandler. You’ll look at
the extension interfaces in more detail later in the chapter.

Using the DTDHandler interface is very similar to using the ContentHandler and ErrorHandler inter-
faces. The DefaultHandler class you used as the base class of the TrainReader also implements the
DTDHandler interface, so working with the events is simply a matter of overriding the default behavior,
just as you did with the ErrorHandler and ContentHandler events. To tell the XMLReader to send the
DTDHandler events to your application, you can simply call the setDTDHandler function, as shown in
the following:

reader.setDTDHandler(this);

You may be wondering if there is an interface for receiving XML Schema events.
Surprisingly, there isn’t. In fact, no events are fired for XML Schema declarations
either. The creators of SAX wanted to ensure that all the information outlined in the
XML recommendation was available through the interfaces. Remember that DTDs
are part of the XML Recommendation, but XML Schemas are defined in their own,
separate recommendation.

509

Chapter 12: Simple API for XML (SAX)

EntityResolver Interface
The EntityResolver interface enables you to control how a SAX parser behaves when it attempts to
resolve external entity references within the DTD, so much like the DTDHandler, it is frequently not
used. However, when an XML document utilizes external entity references, it is highly recommended
that you provide an EntityResolver.

The EntityResolver interface defines only one function:

Event Description

resolveEntity Allows the application to handle the resolution of entity lookups for the
parser

As shown with the other default interfaces, the EntityResolver interface is implemented by the
DefaultHandler class. Therefore, to handle the event callback, you simply override the resolveEntity
function in the TrainReader class and make a call to the setEntityResolver function:

reader.setEntityResolver(this);

Consider the following entity declaration:

<!ENTITY train PUBLIC “-//TRAINS//freight cars xml 1.0//EN”
“http://example.com/freighttrain.xml”>

In this case, resolveEntity function would be passed -//TRAINS//freight cars xml 1.0//EN as
the public identifier, and http://example.com/freighttrain.xml as the system identifier. The
DefaultHandler class’s implementation of the resolveEntity function returns a null InputSource
by default. When handling the resolveEntity event, however, your application can take any number
of actions. It could create an InputSource based on the system identifier, or it could create an
InputSource based on a stream returned from a database, hash table, or catalog lookup that used the
public identifier as the key. It could also simply return null. These options and many more enable an
application to control how the processor opens and connects to external resources.

Features and Properties
As shown earlier in this chapter, some of the behavior of SAX parsers is controlled through setting fea-
tures and properties. For example, to activate validation, you needed to set the http://xml.org/
sax/features/validation feature to true. In fact, all features in SAX are controlled this way, by set-
ting a flag to true or false. The feature and property names in SAX are full URIs so that they can have
unique names — much like namespace names.

Working with Features
To change a feature’s value in SAX, you simply call the setFeature function of the XMLReader:

public void setFeature(String name, boolean value)
throws SAXNotRecognizedException, SAXNotSupportedException

510

Part V: Programming

When doing this, however, it is important to remember that parsers may not support, or even recognize,
every feature. If a SAX parser does not recognize the name of the feature, then the setFeature function
will raise a SAXNotRecognizedException. If it recognizes the feature name but does not support a
feature (or does not support changing the value of a feature at a certain time), then the setFeature
function will raise a SAXNotSupportedException. For example, if a SAX parser does not support vali-
dation, then it will raise a SAXNotSupportedException when you attempt to change the value to true.

The getFeature function allows you to check the value of any feature:

public boolean getFeature(String name)
throws SAXNotRecognizedException, SAXNotSupportedException

Like the setFeature function, the getFeature function may raise exceptions if it does not recognize
the name of the feature or does not support checking the value at certain times (such as before, during,
or after the parse function has been called). Therefore, place all of your calls to the setFeature and
getFeature functions within a try/catch block to handle any exceptions.

All SAX parsers should recognize, but may not support, the following features:

Feature Default Description

http://xml.org/sax/ Unspecified Controls whether the parser will validate the
features/validation document as it parses. In addition to controlling

validation, it also affects certain parser behaviors.
For example, if the feature is set to true, all exter-
nal entities must be read.

http://xml.org/sax/ true In the latest version of SAX, this feature should
features/namespaces always be true, meaning that namespace URI and

prefix values will be sent to the element and
attribute functions when available.

http://xml.org/sax/ false In the latest version of SAX, this feature should
features/namespace- always be false. It means that names with colons
prefixes will be treated as prefixes and local names. When

this flag is set to true, raw XML names are sent to
the application.

http://xml.org/sax/ false Allows you to control whether xmlns declarations
features/xmlns-uris are reported as having the namespace URI http://

www.w3.org/2000/xmlns/. By default, SAX con-
forms to the original namespaces in the XML Rec-
ommendation and will not report this URI. The 1.1
Recommendation and an erratum to the 1.0 edition
modified this behavior. This setting is only used
when xmlns declarations are reported as attributes.

Table continued on following page

511

Chapter 12: Simple API for XML (SAX)

Feature Default Description

http://xml.org/sax/ true Controls whether the SAX parser will “absolutize”
features/resolve- system IDs relative to the base URI before reporting
dtd-uris them. Parsers will use the Locator’s systemID

as the base URI. This feature does not apply to
EntityResolver.resolveEntity, nor does it
apply to LexicalHandler.startDTD.

http://xml.org/sax/ Unspecified Controls whether external general entities should
features/external- be processed. When the validation feature is set to
general-entities true, this feature is always true.

http://xml.org/sax/ Unspecified Controls whether external parameter entities
features/external- should be processed. When the validation feature is
parameter-entities set to true, this feature will always be true.

http://xml.org/sax/ Unspecified Controls the reporting of the start and end of
features/lexical- parameter entity inclusions in the LexicalHandler
handler/parameter-

entities

http://xml.org/sax/ None Allows you to determine whether the standalone
features/is- flag was set in the XML declaration. This feature
standalone can be accessed only after the startDocument

event has completed. This feature is read-only and
returns true only if the standalone flag in the XML
declaration has a value of yes.

http://xml.org/sax/ Unspecified Check this read-only feature to determine whether
features/use- the Attributes interface passed to the
attributes2 startElement event supports the Attributes2

extensions. The Attributes2 extensions enable
you to examine additional information about the
declaration of the attribute in the DTD. For more
information on the Attributes2 interface, see
Appendix G on this book’s website. Because this
feature was introduced in a later version of SAX,
some SAX parsers will not recognize it.

http://xml.org/sax/ Unspecified Check this read-only feature to determine
features/use- whether the Locator interface passed to the
locator2 setDocumentLocator event supports the

Locator2 extensions. The Locator2 extensions
enable to you determine the XML version and
encoding declared in an entity’s XML declaration.
For more information on the Locator2 interface,
see Appendix G on this book’s website. Because this
feature was introduced in a later version of SAX,
some SAX parsers will not recognize it.

512

Part V: Programming

Feature Default Description

http://xml.org/ true (if Set this feature to true (the default) if the
sax/features/use- recognized) EntityResolver interface passed to the
entity-resolver2 setEntityResolver function supports the

EntityResolver2 extensions. If it does not support
the extensions, then set this feature to false. The
EntityResolver2 extensions allow you to receive
callbacks for the resolution of entities and the exter-
nal subset of the DTD. For more information on the
EntityResolver2 interface, see Appendix G on this
book’s website. Because this feature was introduced
in a later version of SAX, some SAX parsers will not
recognize it.

http://xml.org/sax/ Unspecified Allows you to determine whether the strings
features/string- reported in event callbacks were interned using the
interning Java function String.intern. This allows for fast

comparison of strings.

http://xml.org/sax/ false Controls whether the parser reports Unicode
features/unicode- normalization errors as described in Section 2.13
normalization- and Appendix B of the XML 1.1 Recommendation.
checking Because these errors are not fatal, if encountered

they are reported using the ErrorHandler.error
callback.

http://xml.org/sax/ Unspecified Read-only feature that returns true if the parser
features/xml-1.1 supports XML 1.1 and XML 1.0. If the parser does

not support XML 1.1, then this feature will be
false.

Working with Properties
Working 4with properties is very similar to working with features. Instead of boolean flags,
however, properties may be any kind of object. The property mechanism is most often used to connect
helper objects to an XMLReader. For example, SAX comes with an extension set of interfaces called
DeclHandler and LexicalHandler that allow you to receive additional events about the XML docu-
ment. Because these interfaces are considered extensions, the only way to register these event handlers
with the XMLReader is through the setProperty function:

public void setProperty(String name, Object value)
throws SAXNotRecognizedException, SAXNotSupportedException

public Object getProperty(String name)
throws SAXNotRecognizedException, SAXNotSupportedException

513

Chapter 12: Simple API for XML (SAX)

As you saw with the setFeature and getFeature functions, all calls to setProperty and
getProperty should be safely placed in try/catch blocks, as they may raise exceptions. Some of the
default property names include the following:

Property Name Description

http://xml.org/sax/ Specifies the DeclHandler object registered to receive events for
properties/ declarations within the DTD
declaration-handler

http://xml.org/sax/ Specifies the LexicalHandler object registered to receive lexical
properties/lexical- events, such as comments, CDATA sections, and entity references
handler

http://xml.org/sax/ Read-only property that describes the actual version of the XML
properties/document- Document, such as 1.0 or 1.1. This property can only be accessed
xml-version during the parse and after the startDocument callback has been

completed.

Extension Interfaces
The two primary extension interfaces are DeclHandler and LexicalHandler. Using these interfaces,
you can receive events for each DTD declaration and specific items such as comments, CDATA sections,
and entity references as they are expanded. It is not required by the XML specification that these items
be passed to the application by an XML processor. All the same, the information can be very useful at
times, so the creators of SAX wanted to ensure that they could be accessed.

The DeclHandler interface declares the following events:

Event Description

attributeDecl Allows the parser to notify the application that it has read an
attribute declaration

elementDecl Allows the parser to notify the application that it has read an ele-
ment declaration

externalEntityDecl Allows the parser to notify the application that it has read an exter-
nal entity declaration

internalEntityDecl Allows the parser to notify the application that it has read an inter-
nal entity declaration

The LexicalHandler interface declares the following events:

514

Part V: Programming

Event Description

comment Allows the parser to notify the document that it has read a comment. The
entire comment is passed back to the application in one event call; it is not
buffered as it may be in the characters and ignorableWhitespace events.

startCDATA Allows the parser to notify the document that it has encountered a CDATA
section start marker. The character data within the CDATA section is always
passed to the application through the characters event.

endCDATA Allows the parser to notify the document that it has encountered a CDATA
section end marker

startDTD Allows the parser to notify the document that it has begun reading a DTD

endDTD Allows the parser to notify the document that it has finished reading a DTD

startEntity Allows the parser to notify the document that it has started reading or
expanding an entity

endEntity Allows the parser to notify the document that it has finished reading or
expanding an entity

Because these are extension interfaces, they must be registered with the XMLReader using the property
mechanism, as you just learned. For example, to register a class as a handler or LexicalHandler events,
you might do the following:

reader.setProperty(“http://xml.org/sax/properties/lexical-handler”, lexHandler);

Note that the DefaultHandler class, which you used as the basis of the TrainReader class, does not
implement any of the extension interfaces. In the latest version of SAX, however, an extension class was
added called DefaultHandler2. This class not only implements the core interfaces, but the extension
interfaces as well. Therefore, if you want to receive the LexicalHandler and DeclHandler events, it
is probably a good idea to descend from DefaultHandler2 instead of the DefaultHandler class.

Good SAX and Bad SAX
Now that you’re thoroughly familiar with SAX, this is a good point at which to review both what SAX is
good at and what it isn’t so good at, so you can decide when to use it and when to use another approach,
such as the DOM.

As you’ve seen, SAX is great for analyzing and extracting content from XML documents. Let’s look at
what makes it so good:

❑ It’s simple: You need to implement only three or perhaps four interfaces to get going.

❑ It doesn’t load the whole document into memory, so it doesn’t take up vast amounts of space.
Of course, if your application is using SAX to build up its own in-memory image of the docu-
ment, it’s likely to end up taking a similar amount of space as the DOM would have (unless
your in-memory image is a lot more efficient than the DOM!).

515

Chapter 12: Simple API for XML (SAX)

❑ The parser itself typically has a smaller footprint than that of its DOM cousin. In fact, DOM
implementations are often built on top of SAX.

❑ It’s quick, because it doesn’t need to read in the whole document before you start work on it.

❑ It’s great at filtering data, enabling you to concentrate on the subset that you’re interested in.

Why not use it for everything? Here are a few drawbacks:

❑ You get the data in the order that SAX gives it to you. You have absolutely no control over the
order in which the parser searches. As shown in the Try It Out sections, this means that you may
need to build up the data that you need over several event invocations. This can be a problem if
you’re doing particularly complex searches.

❑ SAX programming requires fairly intricate state keeping, which is prone to errors. Even in our
simple examples we needed to maintain information between various events. In larger applica-
tions, keeping this kind of information can become very difficult.

❑ If you’re interested in analyzing an entire document, DOM is much better, because you can tra-
verse your way around the DOM in whichever direction you want, as many times as you want.

Consumers, Producers, and Filters
Throughout this chapter, you have learned the basics of SAX. You created an application that receives, or
consumes, SAX events. Although this is the most common usage of SAX, you can use it in other ways. In
addition to consuming events from an XMLReader, it is possible to write classes that produce SAX events.
For example, you might want to write a class that reads a comma-delimited file and fires SAX events,
similar to an XMLReader. You would then have a single application that could receive events from either
an XML document or a comma-delimited file.

Instead of producing or consuming events, you may want to simply filter events as they pass from
XMLReader to the event handler. A SAX filter acts as a middleman between the parser and the applica-
tion. Filters can insert, remove, or even modify events before passing them on to the application. Using
the earlier train analogy, you could say that a filter is very similar to a tunnel through which the train
passes. While in the tunnel, the train might be painted, or new cars might be added or removed.

In fact, many filters already exist for SAX, which enable you to do anything from specialized validation
to document transformation. Many filters can be chained together, creating a SAX pipeline. Included in
SAX is an XMLFilter interface that is intended for standardizing how filters are created.

Considering the many ways to use SAX enables you to create more complex and more powerful
applications.

Other Languages
Because the SAX model works so well for processing XML documents, the Java interfaces have been
translated to many programming languages and environments. Currently, the most widely accepted
are as follows:

516

Part V: Programming

Language Available Interfaces

C++ Xerces-C++, the counterpart to the Xerces-J toolkit you are using from Apache,
defines a set of C and C++ bindings available at http://xml.apache.org/
xerces-c.

Microsoft Core XML Services (formerly MSXML) provides C++ and COM interfaces
(including ActiveX wrappers) available at http://msdn.microsoft.com/xml.

Arabica toolkit provides C++ bindings that make more extensive use of C++ lan-
guage features, available at http://www.jezuk.co.uk/cgi-bin/view/Arabica.

Perl SAX bindings for Perl can be found at http://perl-
xml.sourceforge.net/libxml-perl/.

Python Python 2.0 includes support for SAX processing in its markup toolkit as part of the
default distribution available at http://www.python.org/.

Pascal SAX for Pascal bindings can be found at
http://saxforpascal.sourceforge.net/.

Visual MSXML, the Microsoft XML Toolkit, provides Visual Basic interfaces available at
Basic http://msdn.microsoft.com/library/en-us/xmlsdk/html/ac6be45a-

177e-4b80-a918-dc73e357f7bb.asp.

.NET The System.Xml classes distributed with .NET provide psuedo-SAX implementa-
tions usable in various .NET languages. The interfaces are “pull-based” and are not
exact correlations. To use SAX interfaces in .NET, visit the SAX for .NET project at
http://saxdotnet.sourceforge.net.

Curl Curl is a web content management system with its own SAX bindings, available at
http://www.curl.com/.

In general, these versions of SAX have retained the spirit of the original Java interfaces while making
good use of their own individual language features.

Summary
SAX is an excellent API for analyzing and extracting information from large XML documents without
incurring the time and space overhead associated with the DOM. In this chapter, you learned how to use
SAX to catch events passed by a parser, by implementing a known SAX interface, ContentHandler. You
used this to extract some simple information from an XML document.

You also looked at error handling, and learned how to implement sophisticated intelligent parsing,
reporting errors as you did so. In addition, you looked at how to supplement the error-handling mecha-
nisms in the parser by using the Locator object. Finally, you read about the strengths and weaknesses
of SAX.

Now that you are well versed in the APIs used to work with XML in applications, you can look more
closely at how XML can be used to communicate between multiple applications.

517

Chapter 12: Simple API for XML (SAX)

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
Calculate the weight, length, and total number of occupants on the entire train. Once the document has
been parsed, print out the result of the calculations.

Question 2
Print out a list of all elements declared in the DTD. To do this, descend the TrainReader class from
DefaultHandler2 instead of DefaultHandler. Register the TrainReader class with the parser so that
you can receive DeclHandler events. (Hint: You need to use a property.)

518

Part V: Programming

Part VI

Communication

Chapter 13: RSS, Atom, and Content Syndication

Chapter 14: Web Services

Chapter 15: SOAP and WSDL

Chapter 16: Ajax

13
RSS, Atom, and Content

Syndication

One of the interesting characteristics of the Web is the way that certain ideas seem to arise sponta-
neously, without any centralized direction. Content syndication technologies definitely fall into
this category, and they have emerged as a direct consequence of the linked structure of the Web
and general standardization regarding the use of XML.

This chapter focuses on a number of aspects of content syndication, including the RSS and Atom
formats and their role in such areas as blogs, news services, and the like. There is no doubt these
technologies will play a major role in the next logical leap in the connectedness of the Web, so it’s
useful to understand them not just from an XML-format standpoint but also in terms of how they
are shaping the future Internet.

This chapter covers the following:

❑ Concepts and technologies of content syndication and meta data

❑ A brief look at the history of RSS, Atom, and related languages

❑ What the feed languages have in common and how they differ

❑ How to implement a simple newsreader/aggregator using Python

❑ Examples of XSLT used to generate and display newsfeeds

There is a lot more to RSS, Atom, and content syndication than can be covered in a single chapter,
so the aim here is to give you a good grounding in the basic ideas, and then provide a taste of how
XML tools such as SAX and XSLT can be used in this rapidly expanding field.

Syndication and Meta Data
Turn on your TV and you’ll see spontaneous snapshots of the current state of the TV “space,” one
channel at a time. Information is transmitted to the box in front of you, mostly appearing in the
form of shows. Some shows are instantly familiar to you (the ill-fated man in a red shirt jumping

in front of the Klingon phaser — you’d think these guys would learn!), and some may require a little bit
of time to figure out what’s going on. If you’re lucky, you’ll jump to a commercial break and see the tran-
sitional title, but some programming remains mystifying no matter how long you watch.

One of the largest circulated magazines on the planet is TV Guide. Although it has some editorial con-
tent, people typically do not buy the magazine for that content. They are interested in the listings —
what channel transmits what show at what time. TV Guide listings provide a certain amount of informa-
tion for each such show beyond this, such as abstracts describing the show itself, the stars, a family rat-
ing, and a key number used by automated video recorders to set them to record the show automatically.

The deployment of resources on a network (whether television or computer) is called syndication. The TV
guide provides descriptions of the shows, information about information. Stepping down into the less
human-friendly computer world, we have something very similar, meta data, which is data about data.
The essence of RSS and related formats is found where these two ideas join: syndication and meta data.

A syndication feed is simply an XML file comprised of meta data elements and in most cases some content as
well. There are several distinct standard formats — notably, RSS 1.0, RSS 2.0, and Atom. As XML formats,
these (and various other RSS x.x dialects) are largely incompatible, having different document structures
and element definitions, though they each share a common basic model of a syndication feed. There is the
feed itself, which has characteristics such as a title and publication date. The feed carries a series of discrete
blocks of data, known as items or entries, each of which also has a set of individual characteristics, again
such as title and date. These items are little chunks of information, which either describe a resource on the
Web (a link is provided) or are a self-contained unit, carrying content along with them.

Syndication Systems
Like most other Web systems, syndication systems are generally based around the client-server model.
At one end you have a web server delivering data using the Hypertext Transfer Protocol (HTTP), and at
the other end is a client application receiving it. On the Web, the server uses a piece of software such as
Apache or IIS, and the client uses a browser such as Internet Explorer (IE) or Mozilla Firefox. HTML-
oriented web systems tend to have a clear distinction between the roles and location of the applications:
the server is usually part of a remote system, and the client appears on the user’s desktop. HTML data is
primarily intended for immediate rendering and display for users to read on their home computer.

However, syndication material is intended for machine-readability first, and there is at least one extra
stage of processing before the content appears on the user’s screen. Machine-readability means that it is
possible to pass around and process the data relatively easily, allowing a huge amount of versatility in
systems. The net result is that applications that produce material for syndication purposes can appear
either server-side or client-side (desktop), as can applications that consume this material.

Perhaps the key to understanding the differences between syndication and typical web pages is the
aspect of time. A syndicated resource (an item in a feed) is generally only available for a short period of
time at a given point in the network, at which stage it disappears from the feed, although an archived
version of the information is likely archived on the publisher’s site.

The different kinds of syndication software components can roughly be split into four categories: server-
producer, client-consumer, client-producer, and server-consumer. In practice, software products may
combine these different pieces of functionality, but it helps to look at these parts in isolation.

The following sections provide an overview of each, with the more familiar systems first.

522

Part VI: Communication

Server-Producer
A server-side producer of syndication material is in essence no different from that used to publish regular
HTML web pages. At minimum, this would be a static XML file in one of the syndication formats placed
on a web server. More usefully the XML data will be produced from some kind of content management
system. The stereotypical content management systems in this context are weblog (blog) tools. The main
page of the (HTML) website features a series of diarylike entries, with the most recent entry appearing
first. Behind the scenes is some kind of database containing the entry material, and the system presents
this in reverse chronological order on a nicely formatted web page. In parallel with the HTML-generating
subsystems of the application are syndication feed format (RSS and/or Atom) producing subsystems.
These two subsystems are likely to be very similar, as the results usually only differ in format. Many blog-
ging systems include a common templating system to produce either HTML or syndication format XML.

Client-Consumer
Although it is possible to view certain kinds of syndicated feeds in a web browser, one of the major ben-
efits of syndication comes into play with so-called newsreaders or aggregator tools. The reader applica-
tion enables users to subscribe to a large number of different feeds and present the material from these
feeds in an integrated fashion. There are two common styles of feed-reader user interface:

❑ Single pane styles present items from the feeds in sequence, as they might appear on a weblog.

❑ Multipane styles are often modeled on e-mail applications, and present a selectable list of feeds
in one panel and the content of the selected feed in another.

The techniques used to process and display this material vary considerably. Many pass the data directly
to display, whereas others incorporate searching and filtering, usually with data storage behind the
scenes; and occasionally Semantic Web technologies are used to provide integration with other kinds
of data.

Several newsreaders (for example, Radio and AmphetaDesk) use a small web server running on the
client machine to render content in a standard browser. There are also wide variations in the sophistica-
tion of these tools. Some provide presentation of each feed as a whole; others do it item-by-item by date,
through user-defined categories or any combination of these and other alternatives. You will see the
code for a very simple aggregator later in this chapter.

Client-Producer
OK, you know that the server-producer puts content on a web server, and the client-consumer processes
and displays this content, but where does the content come from in the first place? Again, blogging tools
are the stereotype. Suppose an author of a weblog uses a tool to compose posts containing his thoughts
for the day and cat photos. Clicking a button submits this data to a content management system that will
typically load the content into its database for subsequent display, as in the preceding server-producer.
The client-producer category covers desktop blogging clients such as BlogEd, ecto, and Microsoft
Windows Live Writer, which run as conventional applications. It seems likely that many existing desk-
top authoring tools will soon incorporate post-to-blog facilities (there are already plug-ins for MS Word
and OpenOffice). When the user clicks Submit (or similar), the material will be sent over the Web to the
content management system. However, the four categories presented here break down a little at this
point, as many blogging tools provide authoring tools from the web server as well, with users being
presented a web form in which to enter their content.

523

Chapter 13: RSS, Atom, and Content Syndication

A technical issue should be mentioned at this point. When it comes to communications, the server-
producer and client-consumer systems generally operate in exactly the same way as HTML-oriented
web servers and clients using the HTTP protocol directly. The feed material is delivered in one of the
syndication formats: RSS or Atom.

However, when it comes to posting material to a management system, other strategies are commonly
used. In particular, developers of the Blogger blogging service designed a specification for transmitting
blog material from the author’s client to the online service. Although the specification was only intended
as a prototype, the “Blogger API” became the de facto standard for posting to blogging and similar con-
tent management systems. The Blogger API defines a small set of XML-RPC (Remote Procedure Calling)
elements to encode the material and pass it to the server. There were certain limitations of this specifica-
tion, which led to the MetaWeblog API from UserLand, which extends the elements in a way that makes
it possible to send all the most common pieces of data that might be required. There was a partial recog-
nition in the MetaWeblog API that a degree of redundancy existed in the specifications. The data that
is passed from an authoring tool is essentially the same in structure and content as the material passed
from the server to newsreaders, so the MetaWeblog API uses some of the vocabulary of RSS 2.0 to
describe the structural elements.

Since the XML-RPC blogging APIs came out, there has been a growing realization in the developer
community that not only is there redundancy at the level of naming parts of the messages being passed
around, but also in the fundamental techniques used to pass them around. To transfer syndicated mate-
rial from a server to a client, the client sends an HTTP GET message to the server, and the server responds
with a bunch of RSS/Atom-formatted data. On the other hand, when transferring material from the
client to the server, the blogging APIs wrap the content in XML-RPC messages and use a HTTP POST

to send that. The question is, why use XML-RPC format when there is already a perfectly good RSS or
Atom format? Recent developments have led to a gradual shift from XML-RPC to the passing of XML
data directly over HTTP, and more use of the less familiar HTTP verbs, such as PUT (to replace an XML
document on the web) and DELETE (to remove a resource). Leading the field in this direction is the Atom
Publication Protocol (http://bitworking.org/projects/atom/), a specification from the Atom
Working Group that at the time of writing is approaching finalization.

Server-Consumer
The notion of a server-consumer component covers several different kinds of functionality. First, there’s
the functionality needed to receive material sent from a client-producer, blog posts, and the like. This in
itself isn’t particularly interesting; typically it’s really just a refactoring of authoring directly on the
server through HTML forms.

Second, it’s possible to take material from other syndication servers and either render them directly,
acting as an online equivalent of the desktop newsreader, or process the aggregated data further. This
approach is increasingly common, and online newsreaders such as Bloglines are very popular. The fact
that feed data is suitable for subsequent processing and integration means it offers considerable poten-
tial for the future. Various online services such as PubSub and Tailrank use syndicated data to provide
enhanced search capabilities, and enable you to register a search query and then subscribe to a feed of
the results, which are extracted from millions of feeds.

TechMeme (www.techmeme.com/) is an example of a (moderately) smarter aggregator, in that it uses
heuristics (rules of thumb) on the data found on blogs to determine the most significant stories, treating
an incoming link as a sign of importance for an entry (it isn’t altogether clear whether TechMeme uses

524

Part VI: Communication

RSS/Atom feeds or the HTML representation of blogs, but conceptually it doesn’t matter). These are all
fairly centralized, mass-appeal services, but there’s also been a lot of development in the open-source
world of tools that can offer similar services for special-interest groups, organizations, or even individu-
als. It’s relatively straightforward to set up your own “Planet” aggregations of topic-specific feeds by
downloading and installing the Planet (www.planetplanet.org/) or Chumpalogica (www.hackdiary
.com/projects/chumpologica/) online aggregation applications. The Planet Venus aggregator
(http://intertwingly.net/code/venus/docs/), an offshoot of Planet, includes various pieces of
additional functionality, such as a personalized “meme-tracker” similar to TechMeme. An example of
how such systems can be customized is Planète Web Sémantique (http://planete.websemantique
.org/). This site uses Planet Venus to aggregate French language posts on the topic of the Semantic
Web. Because many of the bloggers on its subscription list also regularly post on other topics and in
English, such material is filtered out (actually hidden by JavaScript).

It’s worth noting that the distinction between server-consumer as the recipient of a single author’s blog
posts and server-consumer as an online information aggregator is likely to blur as HTTP + syndication
format client-producer systems become more widespread. The Atom Publishing Protocol offers a simple
means of posting material to a site and is effectively a mirror image of Atom for feed subscription, so
interconnectivity is bound to accelerate when people start integrating support into their systems. But
that’s looking ahead; to get a handle on how syndication works and its practical problems, it’s useful to
look how we arrived at the present situation.

The Origin of RSS Species
Where and when did these systems and the formats they use originate? The meta-data side of RSS can
be said to have begun in the mid-1990s, with the development of the Meta Content Framework (MCF) at
Apple, essentially a table of contents for a website. The notion of building a syndication network for the
Internet came about in large part from the idea of a push model for publication. In this model, informa-
tion such as news alerts would be pushed to the client from the server, describing a set of “channels”
and their associated web content, including when this content was to be published and when it would
expire. By doing this, the thinking went, large concerns could push their content specifically through
these channels, establishing the traditional media concept of brand-naming channels and turning
the Internet into something with properties more similar to a television set than the document server
that had characterized the Web up to that point. Modern syndication is usually based around a pull
approach, in which the client gets the data from servers. Because this happens automatically, the net
effect simulates push, in that data is being broadcast from the server. However, the client and server are
very loosely coupled compared with true push, and significantly it’s the client that manages subscriptions.

Microsoft’s Content Definition Format
Specifically XML syndication formats really began around 1997 when Microsoft entered the fray with
the Content Definition Format (CDF). This was specifically targeted to be a comprehensive syndication
format that would appeal to traditional broadcasters, and the roster of companies that provided content
initially read like a who’s who of the entertainment industry. The CDF format, and Active Channel, the
Windows-based component within Internet Explorer that supported it, was oriented toward a true syn-
dication model, with the publishers being the big names. The Channel bar would periodically download
content based upon the syndication schedule within the CDF format, caching the content that would
then be available immediately upon demand.

525

Chapter 13: RSS, Atom, and Content Syndication

The CDF model of a feed and its items is essentially the same model in use today in all syndication for-
mats, and it contains features that found their way into RSS and have stayed there ever since — channel,
item, title, and so on. Internet Explorer only lost support for CDF with IE 7 (though it gained a whole
RSS platform).

The Great Push Revolution that was supposed to herald a complete reshaping of the Web more or less
failed to materialize. A big part of the reason may have been that although push technology makes a
great deal of sense to marketers — you deliver your message to your customers rather than have your
customers come to you — it held far less value to the recipients of such push technology.

UserLand and Scripting News
The content management company UserLand played a prominent role in the history of XML syndica-
tion, a notable move being their introduction of the Scripting News format in late 1997. This followed
experiments by the company with Apple’s MCF and Microsoft’s CDF.

Netscape and RSS 0.9
MCF moved to Netscape with its lead developer, R. V. Guha, and subsequently Netscape submitted its
XML version of MCF to the W3C (not long after Microsoft’s submission of CDF), but Netscape’s real
entrance to the syndication arena came with its introduction of the RDF Site Summary (RSS) 0.9 language
in early 1999. This format used the fledgling Resource Description Framework (RDF) language, and RSS
defined a simple structure for collecting linked information and publishing it in a customized part of its
browser section. RDF evolved from MCF and various other sources, and played an important role in the
internal workings of the Netscape Navigator browser (as it still does in its descendants, Mozilla and
Firefox). The syntax of RSS 0.9 appeared very much like that of the Scripting News and CDF formats,
yet its RDF base made a significant conceptual difference.

Simply RDF
The Resource Description Framework, RDF is, not surprisingly, all about describing resources, and is
described in a suite of six specifications from the W3C. Although very simple in principle, RDF takes
a lot of material to describe in full because of its theoretical grounding in logic and various practical
requirements. It’s at the heart of the W3C’s Semantic Web initiative, which is based on a vision of how the
existing Web can be improved with the help of meta data and a little logic. Anyone working with syndi-
cation feeds or interested in the future of the Web should at least read the RDF Primer (www.w3.org/
TR/rdf-primer/) or the (rather friendlier) tutorials at rdfabout.com. The interchange format for RDF
is known as RDF/XML, which forms the basis of RSS 0.9 and 1.0. An example of the XML syntax of
RSS 0.9 will be shown in just a moment, but you need a little more information to be able to interpret it
correctly — there’s more to it than meets the eye.

The key to RDF is the concept of a resource. A resource is usually something that can be identified on the
Web. Many resources have a universal identifier (URI), which in the case of web pages will be the same as
their address (URL). Pretty much anything else (people, places, and concepts) can be identified in this
way by assigning URIs. Descriptions are made in RDF using statements, which have the following three
parts:

❑ The thing being described

❑ The characteristic of interest

❑ The value of that characteristic

526

Part VI: Communication

For example, the thing being described might be a book — say, A Christmas Carol; the characteristic of
interest (property) could be the author; and the value would be the name of the author, Charles Dickens.
In RDF jargon, these three parts are the subject, predicate, and object, and together they form a triple. This
grouping roughly corresponds to the English sentence structure of subject, verb, and object. Each triple
corresponds to a single statement. The subject is a resource, the predicate is a special kind of resource
used to denote a property, and the object can either be another resource or literal text. As resources, the
predicates are identified using URIs, and the same predicates are often reused — when we ask who the
author of a book is, we are asking the same question regardless of the book we are talking about or who-
ever happens to be the author. However, a lot of the time it isn’t convenient or even possible to give
everything we want to talk about a URI (what is the URI of A Christmas Carol?), and in these circum-
stances RDF uses a stand-in for the URI called a blank node. So you can say in effect resourceX has author
Charles Dickens, and resourceX has the title A Christmas Carol. Those two properties in combination
make it pretty unambiguous which resource is under discussion.

Now that you know the core concepts of RDF, take look at the RSS 0.9 shown in the following:

<?xml version=”1.0”?>
<rdf:RDF

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns=”http://my.netscape.com/rdf/simple/0.9/”>

<channel>
<title>The Metaphorical Web</title>
<link>http://www.metaphoricalweb.com</link>
<description>Kurt Cagle’s Metaphorical Web site, filled with information
on XML, XSLT, SVG and other things X-related.</description>

</channel>
<item>

<title>The Metaphorical Web #23: The of Things to Come</title>
<link>http://www.metaphoricalweb.com/?method=showPage&
src=metaphorical23.xml
</link>
<description>Resolutions and Reflections on the State of Tech in
2004</description>

</item>

<item>
<title>SVG 1.2: Into the interface</title>
<link>http://www.metaphoricalweb.com/?
method=showPage&src=svg12.xml</link>

<description>A look at the recently announced SVG 1.2
specification.</description>

</item>

</rdf:RDF>

It has a root <rdf:RDF> element, and a couple of namespaces are declared, but it certainly isn’t obvious
how it has anything to do with the triple things. Take a look again at the first two lines inside the outer
element:

...
<channel>

<title>The Metaphorical Web</title>
...

527

Chapter 13: RSS, Atom, and Content Syndication

What this is saying in the RDF interpretation is that there is a resource of the type channel, which has a
property called title and whose value is The Metaphorical Web. Type here refers to an RDF term that
expresses class membership — another way of saying the resource in question is a member of the class
channel. The channel resource isn’t associated with a URI, so it’s a blank node. Through the standard
XML namespaces interpretation, both channel and title are qualified with the namespace http://
my.netscape.com/rdf/simple/0.9/, which means both these terms are unambiguously associated
with URIs. Expressed as triples (giving the blank node the temporary identifier id0), the preceding two
lines become the following:

subject: id0
predicate: http://www.w3.org/1999/02/22-rdf-syntax-ns#type
object: http://my.netscape.com/rdf/simple/0.9/channel

subject: id0
predicate: http://my.netscape.com/rdf/simple/0.9/title
object: “The Metaphorical Web”

It’s no coincidence that the RSS 0.9 RDF/XML syntax look similar to the plain XML CDF material. It’s
conveying much the same kind of information, except in a form that can be interpreted by a computer as
globally unambiguous logical statements. Another important point about the use of RDF/XML is that
this is no longer merely about the language of syndication. Different vocabularies, each having its own
namespace, can be defined using RDF Schema and used together in the same document. Alongside the
channels, items, and titles, it’s also possible to use terms defined elsewhere. The item might actually be
a book, with the author Charles Dickens. The RDF model allows such terms to be incorporated and inter-
preted in exactly the same way as the core RSS vocabulary. This is a major boon for extensibility.

Referring back to the full example, you can see that the structure is divided into a channel and multiple
items. The human meaning of a channel is a little ambiguous — you could associate it with an organiza-
tional entity (CNN, Netscape, Microsoft, etc.) or with a specific website. The link associated with the
channel can consequently point to the main web page of that organization’s website, or to a specific RSS-
oriented channel page that pulls the appropriate relevant meta data. The channel’s description provides
the abstract or rationale for this particular channel, telling the receiver a little more about itself.

Each of the item elements in turn has a similar structure, describing a title, a link, and an abstract descrip-
tion. The original 0.9 specification included a few other primary fields, including links to icons and posting
dates, but these were very much secondary to what amounted to a collection of editorial links.

The RSS 0.9 specification proved to be fairly robust, and though it’s very rare nowadays it can be seen as
a baseline RSS specification. It is also the immediate precursor of the RSS 1.0 format. It’s rather confus-
ing, but the RSS 0.91–0.94 and RSS 2.0 specifications are very different from RSS 0.9 and 1.0. The growth
of syndication has been marred by political battles over the best approach to take — in a nutshell, the
conflict centers around whether it is more important for the format to be easily read by humans or
machines.

Netscape, UserLand, and RSS 0.9x
Netscape backed away from its original RDF-oriented approach to RSS, and influenced by UserLand’s
Scripting News and the way people were actually using the format, toward the end of 1999 Netscape
dropped the RDF approach in RSS 0.91. Along with RDF, out went namespaces and in came a DTD and
a new name: Rich Site Summary. Not long after this Netscape dropped RSS altogether. It was picked up
by UserLand, and further minor changes were made (the DTD was discarded and a different version of

528

Part VI: Communication

RSS 0.91 was released). The format was effectively promoted by UserLand, which also introduced some
of the first software applications dedicated to blogging and syndication. The following is a typical exam-
ple of RSS 0.91:

<rss version=”0.91”>
<channel>
<title>The Metaphorical Web</title>
<link>http://www.metaphoricalweb.com/</link>
<description>Kurt Cagle’s Metaphorical Web site, filled with

information on XML, XSLT, SVG and other things X-related.
</description>
<language>en-us</language>
<item>
<title>The Metaphorical Web #23: The of Things to Come</title>
<link>http://www.metaphoricalweb.com/metaphorical23.xml

</link>
<description>Resolutions and Reflections on the State of Tech
in 2004

</description>
</item>
<item>

<title>SVG 1.2: Into the interface</title>
<link>http://www.metaphoricalweb.com/svg12.xml</link>
<description>A look at the recently announced
SVG 1.2 specification.

</description>
</item>

</channel>
</rss>

On the surface the syntax is fairly similar to the 0.90 version, and if you ignore the removal of the
rdf:RDF element and namespaces, the biggest difference is that the channel is now a container of vari-
ous items, rather than a sibling.

RSS 0.91’s greatest strength was that it was simple. As a straightforward XML format, its main weakness
was that it was rather poorly specified with several ambiguous element definitions, and the lack of
namespace support meant that its use with other XML languages was severely impaired. One advantage
“vanilla” XML has over RDF/XML is that simple DTDs can be used for validation, but the DTD Net-
scape provided with their version 0.91 was removed when the spec was adopted by UserLand.

Still, a fair proportion of syndicated feeds are to this day RSS 0.91, and this UserLand style of RSS
evolved through versions 0.92, 0.93, and (briefly) 0.94 before becoming RSS 2.0, which you will look
at later in the chapter; but first we return to RDF.

RSS-DEV and RSS 1.0
Around the same time UserLand was working on the RSS 0.91 line, an informal mailing list sprang up,
RSS-DEV, with a general consensus that the RDF-based approach of RSS 0.9 (and Netscape’s original
planned future direction for RSS) was the best; and the result was the RSS 1.0 specification, published in
December 2000. Unfortunately, the RSS-DEV proposal clashed head-on with the RDF/namespace-free
0.91 approach followed by UserLand. Agreement wasn’t forthcoming on a way forward, and as a result
RSS forked. One thread carried the banner of simplicity, the other of interoperability. This is the source of

529

Chapter 13: RSS, Atom, and Content Syndication

considerable confusion to newcomers to RSS, as both forms are designed for the same primary purpose,
yet differ considerably in their construction. The rebranding of UserLand’s RSS as Really Simple
Syndication helps a little in contrast to RSS-DEV’s RDF Site Summary.

RSS-DEV reintroduced the RDF basis, taking advantage of the modularity offered by that language, and
made it possible to reuse terms from the library community’s Dublin Core Metadata Initiative standard
(http://dublincore.org) and add “modules” (RDF vocabularies) for content and syndication-
specific terms. This is what RSS 1.0 looks like:

<?xml version=”1.0” encoding=”iso-8859-1”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:sy=”http://purl.org/rss/1.0/modules/syndication/”
xmlns=”http://purl.org/rss/1.0/”>

<channel rdf:about=”http://journal.dajobe.org/journal/index.rdf”>
<title>Dave Beckett - Journalblog</title>
<link>http://journal.dajobe.org/journal/</link>
<description>Semantic web and free software hacking.</description>
<language>en</language>
<dc:date>2004-04-16T08:22:58+00:00</dc:date>
<sy:updatePeriod>hourly</sy:updatePeriod>
<sy:updateFrequency>1</sy:updateFrequency>

<items>
<rdf:Seq>
<rdf:li

rdf:resource=”http://journal.dajobe.org/journal/2004_03.html#001678” />
<rdf:li

rdf:resource=”http://journal.dajobe.org/journal/2004_03.html#001677” />
</rdf:Seq>

</items>
</channel>

<item rdf:about=”http://journal.dajobe.org/journal/archives/
2004_03.html#001678”>
<title>MySQL lifts restrictive licensing terms</title>
<description> MySQL lifts restrictive licensing terms (Silicon.com)
by Stephen Shankland. Reports the adding of a Free and Open Source

Software...</description>
<link>http://journal.dajobe.org/journal/archives/2004_03.html#001678</link>
<dc:subject>comment</dc:subject>
<dc:creator>dajobe</dc:creator>
<dc:date>2004-03-16T20:56:39+00:00</dc:date>

</item>

<item rdf:about=”http://journal.dajobe.org/journal/archives/
2004_03.html#001677”>

<title>The trouble with Rover is revealed</title>
<description> The trouble with Rover is revealed by Ron Wilson, EE Times
on how the Spirit Mars rover got stuck...</description>

<link>http://journal.dajobe.org/journal/archives/2004_03.html#001677</link>
<dc:subject>link</dc:subject>

530

Part VI: Communication

<dc:creator>dajobe</dc:creator>
<dc:date>2004-03-08T18:06:35+00:00</dc:date>

</item>

</rdf:RDF>

To a human with a text editor, this format appears considerably more complex than RSS 0.91. It restores
the role of RDF as the namespace that provides descriptive content, and a valid RSS 1.0 document is also
a valid RDF document (and not coincidentally a valid XML document). To a computer (for example,
either a namespace-aware XML parser or an RDF tool), it contains the same kind of information as “sim-
ple” RSS expressed in a less ambiguous and more interoperable form.

Like RSS 0.9, the XML has an outer <rdf:RDF> element (which incidentally is no longer a requirement
of RDF/XML in general). After the namespace declarations is a channel block, which first describes the
channel feed itself and then lists the individual items found in the feed. The channel resource is identi-
fied with a URI, which makes the information portable. There’s no doubt what the title, description, and
so on refer to. Title, link, description, and language are all defined in the core RSS 1.0 specification. XML
namespaces (with the RDF interpretation) are employed to provide properties defined in the Dublin
Core (dc:date) and Syndication (sy:updatePeriod, sy:updateFrequency) modules.

The channel has an items property, which has the rdf:Seq type. The RSS 1.0 specification describes this
as a sequence used to contain all the items and to denote item order for rendering and reconstruction.
After this statement, the items contained in the feed are listed, each identified with a URI, so the channel
block describes this feed, specifying which items it contains.

The items themselves are listed separately: Each is identified by a URI, and the channel block associates
these resources with the channel, so there’s no need for XML element nesting to group them together.
Each item has its own set of properties, a title, and a description, as shown in the preceding RSS formats,
along with a link that is defined as the item’s URL. Usually, this is the same as the URI specified by
the item’s own rdf:about attribute. Again, terms from Dublin Core are used for the subject, creator
(author), and date. This makes it much better suited for broad-scale syndication, as Dublin Core has
become the de facto standard for dealing with document-descriptive content.

Looking again from an RDF perspective, note that the object of the statements that list the item URIs
become the subject of the statements that describe the items themselves. In most XML languages this
kind of connection is made through element nesting, and it’s clear that tree structures can be built this
way. However, using identifiers for the points of interest (the resource URIs) in RDF also makes it possi-
ble for any resource to be related to any other resource, allowing arbitrary node and arc graph struc-
tures. Loops and self-references can occur. This versatility is an important feature of RDF, and is very
similar to the arbitrary hyperlinking of the Web. The downside is that there isn’t any elegant way to
represent graph structures in a tree-oriented syntax like XML, which is a major reason why RDF/XML
syntax can be hard on the eye.

UserLand and RSS 2.0
After a period of simmering unrest in the syndication world, and several 0.x releases in the Simple
Syndication thread, each making minor modifications, in 2002 UserLand released an RSS 2.0 specifica-
tion. This followed the RSS 0.91 side of the fork, and the syntax is completely incompatible with RSS 1.0.
Most of the changes from RSS 0.91 are relatively minor, although two are significant: the introduction of
the <guid> element and (limited) namespace support. You can see in the following code example how

531

Chapter 13: RSS, Atom, and Content Syndication

similar the syntax appears to the earlier “simple” version. Small differences prevent true backward com-
patibility, but in practice this is unlikely to be a problem, as a high degree of flexibility is needed for a
tool to support any version of RSS!

The <guid> element is defined as being an optional globally unique identifier for each item. The specifica-
tion doesn’t prescribe what this should be, other than a string. In practice, people tend to use URIs, which
are the global identifiers of the Web. This makes sense because if the isPermalink attribute has a value of
true, then the <guid> contains the URL of an archived (usually HTML) version of the item. Here is the
example:

<rss version=”2.0”>
<channel>

<title>inessential.com</title>
<link>http://inessential.com/</link>
<description>Brent Simmons’ weblog.</description>
<language>en-us</language>
<managingEditor>Brent Simmons (brent@ranchero.com)</managingEditor>
<webMaster>Brent Simmons (brent@ranchero.com)</webMaster>
<pubDate>Thu, 15 Apr 2004 19:56:13 GMT</pubDate>
<lastBuildDate>Thu, 15 Apr 2004 19:56:13 GMT</lastBuildDate>
<item>

<title>Bowie</title>
<link>http://inessential.com/?comments=1&postid=2836</link>
<description>Sheila and I saw David Bowie at the Key Arena last
night. He was great, the band rocked&mdash;and Sheila and I
both have &ldquo;All the Young Dudes\&rdquo; stuck in
our head.\<br /\>\<br /\></description>

<guid isPermaLink=”true”>http://inessential.com/?comments=1\&
postid=2836</guid>

<pubDate>Thu, 15 Apr 2004 19:56:13 GMT</pubDate>
</item>

<item>
<title>Socializing at WWDC</title>
<link>http://inessential.com/?comments=1\&postid=2835</link>
<description>Buzz Andersen proposes a \<a href=\"
http://www.scifihifi.com/weblog/wwdc2004/Socializing-
at-WWDC.html\"\>weblogger get-together at WWDC\</a\>.
Good thinking. Count me in.</description>
<guid isPermaLink=”true”>http://inessential.com/?
comments=1\&
postid=2835</guid>
<pubDate>Fri, 02 Apr 2004 00:53:57 GMT</pubDate>
</item>

</channel>
</rss>

XML namespace support in RSS 2.0 is limited in the sense that although material from other namespaces
can be included within an RSS 2.0 feed, the format doesn’t have a namespace of its own, which pre-
cludes the use of RSS 2.0 elements in other XML languages.

The principle differences between the 1.0 and 2.0 versions ultimately come back to whether or not RDF
is used as the foundation. RDF offers versatility; RSS 2.0 offers simplicity. Unlike RSS 1.0, RSS 2.0 lacks
a general framework (such as RDF) into which extensions can be placed. You can more or less add

532

Part VI: Communication

whatever you like to RSS 2.0, but you have to rely completely on tool developers to support those exten-
sions. Anything goes, and there’s no guarantee that one person’s extension will be compatible with
another (for example, Yahoo! Media RSS and Apple’s iTunes RSS extensions have virtually nothing in
common). However, such issues only started arising in the few years — RSS’s success has been largely
due to the core functionality of publishing newslike information in a lightweight fashion.

This is by no means the end of the story. One particular aspect of extensibility probably caused the great-
est upheaval since RSS 2.0. The original syndication specifications were metadata-oriented and pointed
to content elsewhere on the Web. The <description> element was intended to describe that remote
resource. However, with the growth in blogging and newsreader tools, a demand for content within
feeds grew. RSS 1.0 responded with the addition of the Content module. In the RSS 2.0 thread the
response manifested itself as a shift in the semantics of the <description> element. It no longer
describes some other piece of content; it contains that content.

Other significant changes with RSS 2.0, of a political nature, followed. The RSS 2.0 specification was
frozen and has in effect been declared the last in the line of Really Simple Syndication formats. The spec-
ification was placed in the repository of the Berkman Center for Internet and Society at Harvard Law
School, under the Creative Commons license, with the explicit caveat that the document is considered
normative and final. The move to Berkman was welcomed, though doubts have been expressed about
the wisdom of freezing the specification at this point.

The demand for content in feeds highlighted a significant problem with the RSS 2.0 specification: It says
that the <description> element may contain HTML, and that’s all it says. There is no way for applica-
tions to distinguish HTML from plain text, so how do you tell what content is markup and what content
is just talking about markup? The spec was now frozen, so developers started to work around the prob-
lem using namespace-qualified extensions, such as xhtml:body, to insert well-defined markup. Soon
after this, there was controversy over the use of extensions with RSS 2.0 — specifically, the use of the
Dublin Core element to express information that could appear in core elements. Where previously there
had been criticism of “simple” RSS from the RSS-DEV camp, dissent was now appearing among sup-
porters of the “simple” standard. This led to another open community initiative being launched in the
summer of 2003, with the aim of fixing the problems of RSS 2.0 and unifying the syndication world
(including the RSS 1.0 developers). Accepting the roadmap for RSS presented in the RSS 2.0 specification
meant the name RSS couldn’t be used, and after lengthy discussion the new project got a name: Atom.

Atom
As you’ve no doubt gathered, historically the RSS space has been something of a mess. Not only did the
“format wars” make choices difficult for developers, but the highly fluid and decentralized nature of
blog space itself contributes to uncertainty as well. Nonetheless, being optimistic, Atom does offer an
opportunity for the two main syndication camps to unite. Unlike RSS 1.0 and 2.0, it has been developed
as a true open community project, through the auspices of a widely respected standards organization,
the Internet Engineering Task Force (IETF). The Atom Publishing Format and Protocol (atompub) work-
ing group is open to anyone interested in participating, and with the IETF process being based on con-
sensus, broad community input counts.

The initial aim for Atom was to fix the problems of RSS, and it was realized early on that any sane
solution would not only look at the format, but also take into account the protocols used in authoring,
editing, and publication. Hence, this was included in atompub’s charter. The first deliverable of the
group, the Atom Syndication Format (RFC 4287, www.ietf.org/rfc/rfc4287.txt) was published in

533

Chapter 13: RSS, Atom, and Content Syndication

December 2005. It seems likely that the other specification covered by the charter, the Atom Publishing
Protocol, will be finalized early in 2007 (the latest working draft is available from http://bitworking
.org/projects/atom/).

The Atom format is structurally and conceptually very much like its RSS predecessors, and its practical
design lies somewhere between the RSS 1.0 and 2.0 versions. Though the syntax isn’t RDF/XML, full
namespace support is included, and work is under way to provide a mapping to the RDF model (see
http://atomowl.org). Most of the elements are direct descendants of those found in RSS, although
considerable work has given it robust support for inline content, using a new <content> element.

Atom mostly includes all the features that have ever been seen in feed formats, along with a few new
ones. Most of the elements are self-explanatory, although the naming of parts differs from RSS, so an
Atom feed corresponds to an RSS channel, an Atom entry corresponds to an RSS item, and so on:

<feed xmlns=”http://www.w3.org/2005/Atom”>
<link rel=”self” href=”http://example.org/blog/index.atom”/>
<id>http://example.org/blog/index.atom</id>
<icon>../favicon.ico</icon>
<title>An Atom Sampler</title>
<subtitle>No Splitting</subtitle>
<author>

<name>Ernie Rutherford </name>
<email>ernie@example.org</email>
<uri>.</uri>

</author>
<updated>2006-10-25T03:38:08-04:00</updated>
<link href=”.”/>
<entry>

<id>tag:example.org,2004:2417</id>
<link href=”2006/10/23/moonshine”/>
<title>Moonshine</title>
<content type=”text”>

Anyone who expects a source of power from the transformation of the atom
is talking moonshine.

</content>
<published>2006-10-23T15:33:00-04:00</published>
<updated>2006-10-23T15:47:31-04:00</updated>

</entry>
<entry>

<id>>tag:example.org,2004:2416</id>
<link href=”2006/10/21/think”/>
<title type=”html”>Think!</title>
<content type=”xhtml”>

<div xmlns=”http://www.w3.org/1999/xhtml”>
<p>We haven’t got the money, so we’ve got to think!</p>

During its development, an experimental version of the format (Atom 0.3) was pub-
lished and soon gained support in many of the leading blogging and syndication
tool creators. This version was only a trial, however; the only official version of
Atom is the one described by RFC 4287.

534

Part VI: Communication

</div>
</content>
<updated>2006-10-21T06:02:39-04:00</updated>

</entry>
</feed>

The first real enhancement is the <id> element, which roughly corresponds to the <guid> of RSS 2.0 and
the rdf:about attribute found in RSS 1.0 to identify entities. Rather than leave it to chance that this will
be a unique string, the specification makes this a URI, which by definition is unique (to be more precise,
it’s defined as an Internationalized Resource Identifier (URI) — for typical usage there’s no difference). Note
the use of a tag: scheme URI in the example, these are not retrievable like http: scheme URIs. In effect,
the identifiers (URIs) and locators (URLs) of entities within the format have been separated. This was a
slightly controversial move, as many would argue that the two should be interchangeable. Time will tell
whether this is a good idea or not. It is acceptable to use an http: URI in the <id> element, though in
practice it’s probably better to follow the spirit of the Atom specification. Whereas the <id> element
identifies, the <link> element locates. The Atom <link> element is modeled on its namesake in HTML,
to provide a link and information about related resources.

Whereas the <id> makes it considerably easier and more reliable to determine whether two entries are
the same, the <content> element offers a significant enhancement in the description of the material
being published. It’s designed to allow virtually anything that can be passed over XML. In the first entry
in the preceding example, the <entry> element has the attribute type=”text”. This explicitly states
that the material within the element should not be treated as markup (and must not contain any child
elements). The common case of HTML content is taken care of by making the attribute type=”html”.
Again, there should be no child elements, and any HTML in the content should be escaped according
to XML rules, so it would be <h1> (or one of the equivalent alternatives), rather than <h1>.
However, although HTML content may be common, it’s not the most useful. Atom is an XML format,
and namespaces make it possible for it to carry data in other XML formats, which can be addressed
using standard XML tools. The third kind of content support built in to Atom is type=”xhtml”. To use
XHTML in Atom, it has to be wrapped in a (namespace-qualified) <div> element. The <div> itself
should be ignored by any rendering or processing tool that consumes the feed; it’s only there for demar-
cation purposes.

Additionally, it’s possible to include other kinds of content by specifying the type attribute as the media
type. For XML-based formats this is straightforward; for example, the Description of a Project format
(http://usefulinc.com/doap) uses RDF, which has a media type of “application/rdf+xml”, and
the DOAP vocabulary has the namespace “http://usefulinc.com/ns/doap#”. For example, a pro-
ject description payload in Atom would look something like this:

<content type=”application/rdf+xml”>
<doap:Project xmlns:doap=”http://usefulinc.com/ns/doap#”>
<doap:name>My Blogging Tool</doap:name>

...
</doap:Project>

</content>

Of course, not all data is found in XML formats. Text-based formats (i.e., those with a type that begins
“text/”), can be included as content directly as long as only legal XML characters are used and the
usual escaping is applied to reserved characters. Other data formats can be represented in Atom using
Base 64 encoding. This is a mapping from arbitrary sequences of binary data into a 65-character subset
of US-ASCII.

535

Chapter 13: RSS, Atom, and Content Syndication

Working with News Feeds
Over the course of the twentieth century, newspapers evolved into news organizations with the advent of
each new medium. Initially, most newspapers operated independently, and coverage of anything beyond
local information was usually handled by dedicated reporters in major cities. However, for most news-
papers, such reporters are typically very costly to maintain. Consequently, these news organizations pool
their resources together to create syndicates, feeding certain articles (and columns) to the syndicates, who
would then license them out to other publishers. These news syndicates, or services, specialize in certain
areas. Associated Press (AP) and United Press International (UPI) handle syndication within the United
States, while Reuters evolved as a source for European news, especially financial news. Similarly, comic
strips are usually handled by separate syndicates (such as King Features Syndicate).

These news services act as aggregators: They aggregate news from a wide variety of different sources and
publish the result as a unified whole, the newspaper. One advantage of this approach is that it is possible
to bundle related content together, regardless of the initial source. For instance, a sports-dedicated publi-
cation may pull together all articles on baseball, football, and basketball, but the feed wouldn’t include
finance articles unless they were sports-related. In essence, such a syndication service provides a per-
spective or viewpoint on the data made available — it creates an editorial judgment that all of the articles
in the bundle will target a particular type of user. Content published through RSS or Atom feeds is often
topic-specific, either at the feed level (a particular blogger might always write about XML) or at the level
of individual entries.

This has made RSS news feeds ideal for creating highly targeted bundles of related content. For instance,
it’s possible for a website that promotes XML technology to generate an RSS feed about articles that deal
with XML in some fashion. Some of these may be in-house articles, and some may be press releases, arti-
cles, or white papers from other locations on the Web. By combining them, the website is able to act in
the role of an aggregator.

Newsreaders
The web makes it possible to do a similar kind of targeted syndication, except for an audience of one.
The tools are available so that anyone can set up their own personal “newspaper”, with content selected
from the millions of feeds published on the web.

These aggregators are usually known as newsreaders, applications that enable you to both add and
otherwise manage RSS feeds into a single “newspaper” of articles. Popular online newsreaders include
Bloglines (http://bloglines.com) and Google Reader (www.google.com/reader). A large number
of desktop applications are available, often free, such as RSS Bandit (www.rssbandit.org/) and
BottomFeeder (www.cincomsmalltalk.com/BottomFeeder/). Both the Firefox and IE 7 browsers have
RSS/Atom newsreading capability built in. Although public awareness of feed reading is still minimal,
the technology is becoming ubiquitous and many Web users are reading material that has passed through
RSS/Atom syndication without realizing it.

Data Quality
Whenever we work with material on the Web, keep in mind that not all data purporting to be XML
actually is XML. It’s relatively common to find RSS feeds that are not well formed. One of the most
common failings is that the characters in the XML document aren’t from the declared encoding (UTF-8,
ISO-8859-1, or something similar). Another likely corruption is that characters within the textual content

536

Part VI: Communication

of the feed are incorrectly escaped. A stray < instead of a < is enough to trip up a standard XML pro-
cessor. Unfortunately, many of the popular blogging tools make it extremely easy to produce an ill-
formed feed, a factor not really taken into account by the “simple” philosophy of syndication.

There was considerable discussion by the Atom developers on this issue, and responses ranged from the
creation of an “ultra-liberal” parser that does its best to read anything, to the suggestion that aggregation
tools simply reject ill-formed feeds to discourage their production. The approach that found the most
support in the Atom working group was (as you might expect) a compromise — the parser should
attempt to display the data as intended, but notify end-users that the feed contained errors and encour-
age users to notify the feed producer. Current newsreaders tend very much toward the liberal.

There is a simple way of checking the quality of RSS and Atom feeds — the Feed Validator at http://
feedvalidator.org (or the W3C’s installation at http://validator.w3.org/feed/). You
can use it online or download it. It’s backed by a huge array of test cases, providing reliable results and
explanations of any errors or warnings.

A Simple Aggregator
The application described here is a simple newsreader that aggregates news items from several channels.
It is provided with a list of feed addresses in a text file, and when run will present the most recent five
items from those feeds. To keep things simple, the reader has only a command-line user interface and
won’t remember what it has read from the feeds previously.

Modeling Feeds
The programmer has many options for dealing with XML data, and the choice of approach often
depends on the complexity of the data structures. In many circumstances the data can be read directly
into a DOM model and processed from there, but there is a complication with syndicated material — the
source data can be in one of three completely different syntaxes: RSS 1.0, RSS 2.0 (and its predecessors),
and Atom. Because the application is only a simple newsreader, the sophistication offered by the RDF
model behind RSS 1.0 isn’t needed, but a simple model is implicit in news feeds: A feed comprises a
number of items, and each of those items has a set of properties. Therefore, at the heart of the aggregator
presented here is an object-oriented version of that model. A feed is represented by a Feed object, and
items are represented by Item objects. Each Item object has member variables to represent the various
properties of that item. To keep things simple, the code here only uses three properties of each item in
the feeds: title, date, and content. The item itself and these three properties can be mapped to an XML
element in each of the three main syntaxes, as shown in the following table:

Model RSS 1.0 RSS x.x Atom

Item rss: item item atom:entry

Title dc:title title atom:title

Date dc:date pubDate atom:updated

Content dc:description, description, xhtml:body atom:content

content:encoded

537

Chapter 13: RSS, Atom, and Content Syndication

The namespaces of the elements are identified by their usual prefixes as follows (note that the “simple”
RSS dialects don’t have a namespace):

❑ rss is RSS 1.0 (http://purl.org/rss/1.0/)

❑ dc is Dublin Core (http://purl.org/dc/elements/1.1/)

❑ xhtml is XHTML (www.w3.org/1999/xhtml)

❑ content is the content module for RSS 1.0 (http://purl.org/rss/1.0/modules/content/)

❑ atom is, you guessed it, Atom (www.w3.org/2005/Atom)

The correspondence between the different syntaxes is only approximate. Each version has its own defini-
tions, and although they don’t coincide exactly, they are close enough in practice to be used in a basic
newsreader.

Syntax Isn’t Model
Though there’s a reasonable alignment between the different elements listed in the preceding table, this
doesn’t hold for the overall structure of the different syndication syntaxes. In particular, both plain XML
RSS and Atom use element nesting to associate the items with the feed. If you look back at the sample
of RSS 1.0, it’s clear that something different is going on. RSS 1.0 uses the interpretation of RDF in XML
to indicate that the channel resource has a property called items, which points to a Seq (sequence)
of item instances. The item instances in the Seq are identified with URIs, as are the individual item
entries themselves, which enables an RDF processor to know that the same resources are being referred
to. In short, the structural interpretation is completely different.

All of this sounds very complicated, but it is still essentially the same subject-predicate-object triple
structure discussed earlier, with the object of one triple (channel-items-Seq) appearing as the
subject in others (Seq-li-resource).

Two pieces of information implicit in the XML structure of simple RSS are made explicit in RSS 1.0. In
addition to the association between the feed and its component items, there is also the order of the items.
The use of a Seq in RSS 1.0 and the document order of the XML elements in the RSS x.x dialects provide
an ordering, though there isn’t any common agreement on what this ordering signifies. Atom explicitly
states that the order of entries shouldn’t be considered significant.

To keep the code simple in the aggregator presented here, two assumptions are made about the material
represented in the various syntaxes:

❑ The items in the file obtained from a particular location are all part of the same conceptual feed.
This may seem obvious; in fact, it has to be the case in plain XML RSS, which can only have one
root <rss> element, but in RDF/XML (on which RSS 1.0 is based), it is possible to represent
practically anything in an individual file. In practice, though, it’s a relatively safe assumption.

❑ The second assumption is that in a news-reading application, the end-user won’t be interested
in the order of the items in the feed (element or Seq order), but the dates on which the items
were published.

538

Part VI: Communication

The first assumption means there is no need to check where in the document structure individual items
appear, and the second means there is no need to interpret the Seq or remember the element order.
There is little or no cost to these assumptions in practice, yet it enables considerable code simplification.
All that is needed is to recognize when an element corresponding to an item (rss:item, item or
atom:entry) occurs within a feed and to start recording its properties. In all the syntaxes the main
properties are provided in child elements of the item element, so only a very simple structure has to be
managed.

What you have here are different syntaxes, but a part of the structure is common to all three despite
differences in element naming. An object model can be constructed from a simple one-to-one mapping
from each set of elements. On encountering a particular element in the XML, a corresponding action
needs to be carried out on the objects. An XML programming tool is ideally suited to this situation: SAX.

SAX to the Rescue!
As shown in Chapter 12, SAX works by responding to method calls generated when various different
entities with the XML document are encountered. The entities of interest for this simple application are
the following:

❑ The elements correspond to items

❑ The elements corresponding to the properties of the items and the values of those properties

Three SAX methods can provide all the relevant information: startElement, characters, and
endElement. The first of these signals which element has been encountered, providing its name and
namespace (if it has one). It’s easy enough to tell if that element corresponds to an item. From the previ-
ous table, we know its name will either be item or entry. Similarly, each of the three kinds of properties
elements can be identified. The data sent to characters is the text content of the elements, which are the
values of the properties. A call to the endElement method signals that the element’s closing tag has
been encountered, so the program can deal with whatever is inside it.

Again using the previous table, we can derive the following simple rules that determine the nature of
the elements encountered:

❑ rss:item | item | atom:entry = item

❑ dc:title | title | atom:title = title

❑ dc:date | pubDate | atom:updated = date

❑ dc:description | content:encoded |description | xhtml:body | atom:content =
content

If startElement has been called, any subsequent calls matching the last three elements will pass on the
values of that particular property of that element, until the endElement method is called. There may be
calls to the property elements outside of an item block, and we can reasonably assume that those proper-
ties apply to the feed as a whole. This makes it straightforward to extract the title of the feed.

You may notice that the element names are pretty well separated between each meaning — there is little
likelihood of the title data being purposefully published in an element called <date>, for example. This
makes coding these rules somewhat easier, although in general it is good practice to make it possible to
get at the namespace of elements to avoid naming clashes.

539

Chapter 13: RSS, Atom, and Content Syndication

Program Flow
When the main application is run, the list of feeds is picked up from the text file. Each of the addresses in
turn is passed to an XML parser. The aggregator then reads the data found on the Web at that address. In
more sophisticated aggregators, you will find a considerable amount of code devoted to the reading of
data over HTTP in a way that both respects the feed publisher and makes the system as efficient as pos-
sible, but the parsers in PyXML are capable of reading data directly from a web address. Therefore, to
keep things simple, that’s what’s shown in Figure 13-1.

Figure 13-1

Implementation
The aggregator is written in Python, a language that has reasonably sophisticated XML support
(PyXML), and everything we need to run it is available as a free download from www.python.org. If
you’re not familiar with Python, don’t worry — it’s a very simple language, and the code is largely self-
explanatory. All you really need to know is that it uses indentation to separate functional blocks, rather
than braces {}. In addition, the # character means that the rest of the line is a comment.

It would be very straightforward to port the code given here to any other languages with good XML
support, such as Java or C#.

The code is contained in the following four files:

❑ feed_reader.py controls the operation.

❑ feed.py models the feed and items.

❑ feed_handler.py constructs objects from the content of the feed.

❑ list_reader.py reads a list of feed addresses.

FeedReader

get URIs

for each URI:

for each Item:

console

bookmarks

list

XML

Document

URIs

Items

filter

print

ListReader

Parser

Feed

Get feed
Parse

Web

540

Part VI: Communication

Address List Reader: ListReader
We also need the addresses of the feeds we’d like to aggregate. At its simplest, this can be a text file con-
taining the URIs:

http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss
http://dig.csail.mit.edu/breadcrumbs/blog/feed/4
http://www.markbaker.ca/blog/feed/atom/

An aggregator should be able to deal with all the major formats. Here we have a selection: The first feed
is in RSS 2.0 format, the second is RSS 1.0, and the third is Atom. A text list is the simplest format in
which the URIs can be supplied. For convenience, a little string manipulation makes it possible to use IE
or Netscape/Mozilla bookmarks file to supply the list of URIs. The addresses of the syndication feeds
should be added to a regular bookmark folder in the browser. With IE it’s possible to export a single
bookmark folder to use as the URI list, but with Netscape/Mozilla all the bookmarks are exported in one
go. The following code is set up to read the links only in the first folder in such a bookmark file.

The list_reader.py source file contains a single class, ListReader, with a single method, get_uris:

import re

class ListReader:
“”” Reads URIs from file “””

def get_uris(self, filename):
“”” Returns a list of the URIs contained in the named file “””
file = open(filename, ‘r’)
text = file.read()
file.close()

get the first block of a Netscape file
text = text.split(‘</DL>’)[0]

get the uris
pattern = ‘http://\S*\w’
return re.findall(pattern,text)

Try It Out Reading a List of URIs

The purpose here is just to confirm that our Python installation is working correctly. If you’re not familiar
with Python, then this also demonstrates how useful command-line interaction with the interpreter can be.
Before starting, you need to download and install Python (it’s available from http://python.org).

Python comes in a complete package as a free download, available for most platforms — as its enthusi-
asts say, batteries are included. Installation is very straightforward, and a Windows installer is
included. The standard package provides the Python interpreter, which may be run interactively or from
a command line or even a web server. There’s also a basic Integrated Development Environment tool
called IDLE and plenty of documentation.

541

Chapter 13: RSS, Atom, and Content Syndication

Once Python is installed (you may have to add it to your system PATH; see the documentation for
details), you can try out the following:

1. Open a text editor, type in the previous listing, and save it as list_reader.py.

2. Open a new text editor window and type in the following three URIs:

http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss
http://dig.csail.mit.edu/breadcrumbs/blog/feed/4
http://www.markbaker.ca/blog/feed/atom/

3. Save this as feeds.txt in the same folder as list_reader.py.

4. Open a common prompt and cd to the folder containing these files.

5. Type in the command python and press Enter. You should see something like this:

D:\rss-samples\test>python
Python 2.3.3 (#51, Dec 18 2003, 20:22:39) [MSC v.1200 32 bit (Intel)] on win32
Type “help”, “copyright”, “credits” or “license” for more information.
>>

You are now in the Python interpreter.

6. Type in the following lines and press Enter after each line (the interpreter will display the >>>
prompt):

>>> from list_reader import ListReader
>>> reader = ListReader()
>>> print reader.get_uris(“feeds.txt”)

After the last line, the interpreter should respond with the following:

[‘http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss’,
‘http://dig.csail.mit.edu/breadcrumbs/blog/feed/4’,
‘http://www.markbaker.ca/blog/feed/atom’]
>>>

How It Works
The first line you gave the interpreter was as follows:

from list_reader import ListReader

This makes the class ListReader in the package list_reader available to the interpreter (the package
is contained in the file list_reader.py). The line

reader = ListReader()

creates a new instance of the ListReader class and assigns it to the variable reader. The next line you
asked to be interpreted was as follows:

print reader.get_uris(“feeds.txt”)

542

Part VI: Communication

This calls the get_uris method of the reader object, passing it a string, which corresponds to the file-
name of interest. The print method was used to display the object (on the command line) returned by
the get_uris method. The object returned was displayed as follows:

[‘http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss’,
‘http://dig.csail.mit.edu/breadcrumbs/blog/feed/4’,
‘http://www.markbaker.ca/blog/feed/atom’]

This is the syntax for a standard Python list, here containing three items, which are the three URIs
extracted from feeds.txt.

For an explanation of how list_reader.py worked internally, here’s the source again:

import re

class ListReader:
“”” Reads URIs from file “””

def get_uris(self, filename):
“”” Returns a list of the URIs contained in the named file “””
file = open(filename, ‘r’)
text = file.read()
file.close()

get the first block of a Netscape file
text = text.split(‘</DL>’)[0]

get the uris
pattern = ‘http://\S*\w’
return re.findall(pattern,text)

The get_uris method is called with a single parameter. This is the name of the file containing the list of
URIs (the self parameter is an artifact of Python’s approach to methods and functions, and refers to the
method object). The file opens as read-only (r), and its contents are read into a string called text and
then closed. To trim a Netscape bookmark file, the built-in split string method divides the string into a
list, with everything before the first occurrence of the </DL> tag going into the first part of the list, which
is accessed with the index [0]. The text variable will then contain this trimmed block or the whole of
the text if there aren’t any </DL> tags in the file. A regular expression finds all the occurrences within
the string of the characters http:// followed by any number of nonwhitespace characters (signified by
\S*) and terminated by an alphanumeric character. It’s crude, but it works well enough for text and
bookmark files. The URIs are returned from this method as another list.

Application Controller: FeedReader
The list of URIs is the starting point for the main control block of the program, which is the FeedReader
class contained in feed_reader.py. If you refer to Figure 13-1, you should be able to see how the func-
tional parts of the application are tied together. Here are the first few lines of feed_reader.py, which
acts as the overall controller of the application:

import urllib2
import xml.sax
import list_reader

543

Chapter 13: RSS, Atom, and Content Syndication

import feed_handler
import feed

feedlist_filename = ‘feeds.txt’
def main():

“”” Runs the application “””
FeedReader().read(feedlist_filename)

The code starts with the library imports. urllib2 and xml.sax are only used here to provide error mes-
sages if something goes wrong with HTTP reading or parsing. list_reader is the previous URI list
reader code (in list_reader.py), feed_handler contains the custom SAX handler (which you’ll see
shortly), and feed contains the class that models the feeds.

The name of the file containing the URI list is given as a constant. You can either save your list with this
filename or change it here. Because Python is an interpreted language, any change takes effect the next
time you run the program. The main() function runs the application by creating a new instance of the
FeedReader class and telling it to read the named file. When the new instance of FeedReader is cre-
ated, the init method is automatically called, which is used here to initialize a list, which will contain
all the items obtained from the feeds:

class FeedReader:
“”” Controls the reading of feeds “””
def __init__(self):

“”” Initializes the list of items “””
self.all_items = []

The read method looks after the primary operations of the aggregator and begins by obtaining a parser
from a local helper method, create_parser, and then getting the list of URIs contained in the supplied
file, as shown in the following:

def read(self, feedlist_filename):
“”” Reads each of the feeds listed in the file “””
parser = self.create_parser()

feed_uris = self.get_feed_uris(feedlist_filename)

The next block of code selects each URI in turn and does what is necessary to get the items out of that feed,
which is to create a SAX handler and attach it to the parser to be called as the parser reads through the
feed’s XML. The magic of the SAX handler code will appear shortly, but reading data from the Web and
parsing it is a risky business, so the single command that initiates these actions, parser.parse(uri), is
wrapped in a try...except block to catch any errors. Once the reading and parsing occur, the feed_
handler instance will contain a feed object, which in turn contains the items found in the feed (you will
see the source to these classes in a moment). To indicate the success of the reading/parsing, the number of
items contained in the feed is then printed. The items are available as a list of handler.feed.items, the
length of this list (len) is the number of items, and the standard str function is used to convert this num-
ber to a string for printing to the console:

for uri in feed_uris:
print ‘Reading ‘+uri,
handler = feed_handler.FeedHandler()

544

Part VI: Communication

parser.setContentHandler(handler)
try:

parser.parse(uri)
print ‘ : ‘ + str(len(handler.feed.items)) + ‘ items’
self.all_items.extend(handler.feed.items)

except xml.sax.SAXParseException:
print ‘\n XML error reading feed : ‘+uri
parser = self.create_parser()

except urllib2.HTTPError:
print ‘\n HTTP error reading feed : ‘+uri
parser = self.create_parser()

self.print_items()

If an error occurs while either reading from the Web or parsing, a corresponding exception is raised, and
a simple error message is printed to the console. The parser is likely to have been trashed by the error,
so a new instance is created. Whether or not the reading/parsing was successful, the program now loops
back and starts work on the next URI on the list. Once all the URIs have been read, a helper method
(shown in an upcoming code example), print_items, is called to show the required items on the con-
sole. The following methods in FeedReader are all helpers used by the read method in the previous
listing.

The get_feed_uris method creates an instance of the ListReader class shown earlier, and its
get_uris method returns a list of the URIs found in the file:

def get_feed_uris(self, filename):
“”” Use the list reader to obtain feed addresses “””
lr = list_reader.ListReader()
return lr.get_uris(filename)

The create_parser method makes standard calls to Python’s SAX library to create a fully namespace-
aware parser as follows:

def create_parser(self):
“”” Creates a namespace-aware SAX parser “””
parser = xml.sax.make_parser()
parser.setFeature(xml.sax.handler.feature_namespaces, 1)
parser.setFeature(xml.sax.handler.feature_namespace_prefixes, 1)
return parser

The next method is used in the item sorting process, using the built-in cmp function to compare two
values — in this case, the date properties of two items. Given the two values x and y, the return value is
a number less than zero if x < y, zero if x = y, and greater than zero if x > y. The date properties are rep-
resented as the number of seconds since a preset date (usually January 1, 1970), so a newer item here
will actually have a larger numeric date value. Here is the code that does the comparison:

def newer_than(self, itemA, itemB):
“”” Compares the two items “””
return cmp(itemB.date, itemA.date)

545

Chapter 13: RSS, Atom, and Content Syndication

The get_newest_items method uses the sort method built into Python lists to reorganize the contents
of the all_items list. The comparison used in the sort is the newer_than method from earlier, and a
Python “slice” ([:5]) is used to obtain the last five items in the list. Putting this together, we have the
following:

def get_newest_items(self):
“”” Sorts items using the newer_than comparison “””
self.all_items.sort(self.newer_than)
return self.all_items[:5]

Note that the slice is a very convenient piece of Python syntax and selects a range of items in a
sequenceobject. For example, z = my_list[x:y] would copy the contents of my_list from
index x to index y into list z.

The print_items method applies the sorting and slicing previously mentioned and then prints the
resultant five items to the console, as illustrated in the following code:

def print_items(self):
“”” Prints the filtered items to console “””
print ‘\n*** Newest 5 Items ***\n’
for item in self.get_newest_items():

print item

The final part of feed_reader.py is a Python idiom used to call the initial main() function when this
file is executed:

if __name__ == ‘__main__’:
“”” Program entry point “””
main()

Model: Feed and Item
The preceding FeedReader class uses a SAX handler to create representations of feeds and their items.
Before looking at the handler code, here is the feed.py file, which contains the code that defines those
representations. It contains two classes, Feed and Item. The plain XML RSS dialects generally use the
older RFC 2822 date format used in e-mails, whereas RSS 1.0 and Atom use a specific version of the ISO
8601 format used in many XML systems, known as W3CDTF. As mentioned earlier, the dates are repre-
sented within the application as the number of seconds since a specific date, so libraries that include
methods for conversion of the e-mail and ISO 8601 formats to this number are included in the imports.
The significance of BAD_TIME_HANDICAP is explained next, but first take a look at the feed.py file:

import email.Utils
import xml.utils.iso8601
import time

BAD_TIME_HANDICAP = 43200

The Feed class in the following listing is initialized with a list called items to hold individual items
found in a feed, and a string called title to hold the title of the feed (with the title initialized to an
empty string):

546

Part VI: Communication

class Feed:
“”” Simple model of a syndication feed data file “””
def __init__(self):

“”” Initialize storage “””
self.items = []
self.title = “

Although items are free-standing entities in a sense, they are initially derived from a specific feed,
which is reflected in the code by having the Item instances created by the Feed class. The create_item
method creates an Item object and then passes the title of the feed to the Item object’s source property.
Once initialized in this way, the Item is added to the list of items maintained by the Feed object:

def create_item(self):
“”” Returns a new Item object “””
item = Item()
item.source = self.title
self.items.append(item)
return item

To make testing easier, the Feed object overrides the standard Python __str__ method to provide a use-
ful string representation of itself. All the method here does is run through each of the items in its list and
adds the string representation of them to a combined string:

def __str__(self):
“”” Custom ‘toString()’ method to pretty-print “””
string =”
for item in self.items:

string.append(item.__str__())
return string

The item class essentially wraps four properties that will be extracted from the XML: title, content,
source (the title of the feed it came from), and date. Each of these is maintained as an instance variable,
the values of the first three being initialized to an empty string. It’s common to encounter date values
in feeds that aren’t well formatted, so it’s possible to initialize the date value to the current time (given
by time.time()). The only problem with this approach is that any items with bad date values appear
newer than all the others. As a little hack to prevent this without excluding the items altogether, a
handicap value is subtracted from the current time. At the start, the constant BAD_TIME_HANDICAP was
set to 43,200, represented here in seconds, which corresponds to 12 hours, so any item with a bad date is
considered 12 hours old, as shown here:

class Item:
“”” Simple model of a single item within a syndication feed “””
def __init__(self):

“”” Initialize properties to defaults “””
self.title = “
self.content = “
self.source = “
self.date = time.time() - BAD_TIME_HANDICAP # seconds from the Epoch

The next two methods make up the setter for the value of the date. The first, set_rfc2822_time, uses
methods from the e-mail utility library to convert a string (like Sat, 10 Apr 2004 21:13:28 PDT) to the
number of seconds since 01/01/1970 (1081656808). Similarly, the set_w3cdtf_time method converts

547

Chapter 13: RSS, Atom, and Content Syndication

an ISO 8601-compliant string (for example, 2004-04-10T21:13:28-00:00) into seconds. If either con-
version fails, then an error message is printed, and the value of date remains at its initial (handicapped)
value, as illustrated in the following:

def set_rfc2822_time(self, old_date):
“”” Set email-format time “””
try:

temp = email.Utils.parsedate_tz(old_date)
self.date = email.Utils.mktime_tz(temp)

except ValueError:
print “Bad date : \%s” \% (old_date)

def set_w3cdtf_time(self, new_date):
“”” Set web-format time “””
try:

self.date = xml.utils.iso8601.parse(new_date)
except ValueError:

print “Bad date : \%s” \% (new_date)

The get_formatted_date method uses the e-mail library again to convert the number of seconds into a
human-friendly form — for example, Sat, 10 Apr 2004 23:13:28 +0200), as follows:

def get_formatted_date(self):
“”” Returns human-readable date string “””
return email.Utils.formatdate(self.date, True)

RFC 822 date, adjusted to local time

Like the Feed class, Item also has a custom __str__ method to provide a nice representation of the
object. This is simply the title of the feed it came from and the title of the item itself, followed by the con-
tent of the item and finally the date, as shown in the following:

def __str__(self):
“”” Custom ‘toString()’ method to pretty-print “””
return (self.source + ‘ : ‘

+ self.title +’\n’
+ self.content + ‘\n’
+ self.get_formatted_date() + ‘\n’)

That’s how feeds and items are represented, and you will soon see the tastiest part of the code, the
SAX handler that builds Feed and Item objects based on what appears in the feed XML document.
This file (feed_handler.py) contains a single class, FeedHandler, which is a subclass of xlm.sax
.ContentHandler. An instance of this class is passed to the parser every time a feed document is to be
read; and as the parser encounters appropriate entities in the feed, three specific methods are automati-
cally called: startElementNS, characters, and endElementNS. The namespace-enhanced versions of
these methods are used because the elements in feeds can come from different namespaces.

XML Markup Handler: FeedHandler
As discussed earlier, there isn’t much structure to deal with — just the feed and contained items, but
there is a complication not mentioned earlier. The title and content elements of items may contain
markup. This shouldn’t happen with RSS 1.0; the value of content:encoded is enclosed in a CDATA
section or the individual characters escaped as needed. However, the parent RDF/XML specification

548

Part VI: Communication

does describe XML Literals, and material found in the wild often varies wildly from the spec. In any
case, the rich content model of Atom is designed to allow XML, and the RSS 2.0 specification is unclear
on the issue, so markup should be expected. If the markup is, for example, HTML 3.2 and isn’t escaped,
then the whole document won’t be well formed and by definition won’t be XML — a different kettle of
fish. However, if the markup is well-formed XML (for example, XHTML), then there will be a call to the
SAX start and end element methods for each element within the content.

The code has an instance variable state to keep track of where the parser is within an XML document’s
structure. This variable can take the value of one of the three constants. If its value is IN_ITEM, then the
parser is reading somewhere inside an element that corresponds to an item. If its value is IN_CONTENT,
then the parser is somewhere inside an element that contains the body content of the item. If neither of
these is the case, then the variable will have the value IN_NONE.

The code itself begins with imports from several libraries, including the SAX material you might have
expected as well as the regular expression library re and codecs, which contain tools that are used for
cleaning up the content data. The constant TRIM_LENGTH determines the maximum amount of content
text to include for each item. For demonstration purposes and to save paper, this is set to a very low 100
characters. This constant is followed by the three alternative state constants, as shown in the following:

import xml.sax
import xml.sax.saxutils
import feed
import re
import codecs

Maximum length of item content
TRIM_LENGTH = 100

Parser state
IN_NONE = 0
IN_ITEM = 1
IN_CONTENT = 2

The content is stripped of markup, and a regular expression is provided to match any XML-like tag (for
example, <this>). However, if the content is HTML, then it’s desirable to retain a little of the original
formatting, so another regular expression is used to recognize
 and <p> tags, which are replaced
with newline characters, as shown in the following:

Regular expressions for cleaning data
TAG_PATTERN = re.compile(“<(.rt \n)+?>”)
NEWLINE_PATTERN = re.compile(“(<br.*>)rt(<p.*>)”)

The FeedHandler class itself begins by creating a new instance of the Feed class to hold whatever data
is extracted from the feed being parsed. The state variable begins with a value of IN_NONE, and an
instance variable text is initialized to the empty string. The text variable is used to accumulate text
encountered between the element tags, as shown here:

Subclass from ContentHandler in order to gain default behaviors
class FeedHandler(xml.sax.ContentHandler):

“”” Extracts data from feeds, in response to SAX events “””
def __init__(self):

549

Chapter 13: RSS, Atom, and Content Syndication

“Initialize feed object, interpreter state and content”
self.feed = feed.Feed()
self.state = IN_NONE
self.text = “
return

The next method, startElementNS, is called by the parser whenever an opening element tag is encoun-
tered and receives values for the element name — the prefix-qualified name of the element along with an
object containing the element’s attributes. The name variable actually contains two values (it’s a Python
tuple): the namespace of the element and its local name. These values are extracted into the separate
namespace, localname strings. If the feed being read were RSS 1.0, then a <title> element would
cause the method to be called with the values name = (‘http://purl.org/rss/1.0/’, ‘title’),
qname = ‘title’. (If the element uses a namespace prefix, like <dc:title>, then the qname string
includes that prefix, such as dc:title in this case.) In this simple application the attributes aren’t used,
but SAX makes them available as an NSAttributes object.

The startElementNS method determines whether the parser is inside content, by checking whether the
state is IN_CONTENT. If this isn’t the case, then the content accumulator text is emptied by setting it to
an empty string. If the name of the element is one of those that corresponds to an item in the simple
model (item or entry), then a new item is created, and the state changes to reflect the parser’s position
within an item block. The last check here tests whether the parser is already inside an item block, and if
it is, whether the element is one that corresponds to the content. The actual string comparison is done by
a separate method to keep the code tidy, as there are several alternatives. If the element name matches,
then the state is switched into IN_CONTENT, as shown in the following:

def startElementNS(self, name, qname, attributes):
“Identifies nature of element in feed (called by SAX parser)”
(namespace, localname) = name

if self.state != IN_CONTENT:
self.text = “ # new element, not in content

if localname == ‘item’ or localname == “entry”: # RSS or Atom
self.current_item = self.feed.create_item()
self.state = IN_ITEM
return

if self.state == IN_ITEM:
if self.is_content_element(localname):
self.state = IN_CONTENT

return

A tuple is an ordered set of values. A pair of geographic coordinates is one example,
an RDF triple another. In Python, a tuple can be expressed as a comma-separated list
of values, usually surrounded in parentheses — for example, (1, 2, 3, “go”). In
general, the values within tuples don’t have to be of the same type. It’s common to
talk of n-tuples, where n is the number of values — the example here is a 4-tuple.

550

Part VI: Communication

The characters method merely adds any text encountered within the elements to the text accumulator:

def characters(self, text):
“Accumulates text (called by SAX parser)”
self.text = self.text + text

The endElementNS method is called when the parser encounters a closing tag, such as </this>. It
receives the values of the element name and qname, and once again the name tuple is split into its compo-
nent namespace, localname parts. What follows are a lot of statements, which are conditional based
on the name of the element and/or the current state (which corresponds to the parser’s position in the
XML). This essentially carries out the matching rules between the different kinds of elements that may
be encountered in RSS 1.0, 2.0, or Atom, and the Item properties in the application’s representation. You
may want to refer to the table of near equivalents shown earlier and the examples of feed data to see
why the choices are made where they are. Here is the endElementNS method:

def endElementNS(self, name, qname):
“Collects element content, switches state as appropriate
(called by SAX parser)”
(namespace, localname) = name

OK, first choice — has the parser come to the end of an item? If so, revert to the IN_NONE state:

if localname == ‘item’ or localname == ‘entry’: # end of item
self.state = IN_NONE
return

Next, are we in content? If so, is the tag the parser just encountered one of those classed as the end of
content? If both answers are yes, then the content accumulated from characters in text is cleaned up
and passed to the current item object. As it’s the end of content, the state also needs shifting back down
to IN_ITEM. Regardless of the answer to the second question, if the first answer is yes, then you’re done
here, as shown in the following:

if self.state == IN_CONTENT:
if self.is_content_element(localname): # end of content

self.current_item.content = self.cleanup_text(self.text)
self.state = IN_ITEM

return

Now that the content is out of the way with its possible nested elements, the rest of the text that makes it
this far represents the simple content of an element. You can clean it up, as outlined in the following:

cleanup text - we probably want it
text = self.cleanup_text(self.text)

At this point, if the parser isn’t within an item block and the element name is title, then what you have
here is the title of the feed. Pass it on as follows:

if self.state != IN_ITEM: # feed title
if localname == “title”:

self.feed.title = self.text
return

551

Chapter 13: RSS, Atom, and Content Syndication

The parser must now be within an item block thanks to the last choice, so if there’s a title element
here, then it must refer to the item. Pass that on too:

if localname == “title”:
self.current_item.title = text
return

Now we get to the tricky issue of dates. If the parser finds an RSS 1.0 date (dc:date) or an Atom date
(atom:updated), then it will be in ISO 8601 format, so we need to pass it to the item through the appro-
priate converter:

if localname == “date” or localname == “updated”:
self.current_item.set_w3cdtf_time(text)
return

RSS 2.0 and most of its relatives use a pubDate element in RFC 2822 e-mail format, so pass that through
the appropriate converter as shown here:

if localname == “pubDate”:
self.current_item.set_rfc2822_time(text)
return

Handler Helpers
The rest of feed_handler.py is devoted to helper methods. The first, is_content_element, checks
the alternatives to determine whether the local name of the element corresponds to that of an item:

def is_content_element(self, localname):
“Checks if element may contain item/entry content”
return (localname == “description” or # most RSS x.x

localname == “encoded” or # RSS 1.0 content:encoded
localname == “body” or # RSS 2.0 xhtml:body
localname == “content”) # Atom

The next three methods are related to tidying up text nodes (which may include escaped markup) found
within the content. Cleaning up the text begins by stripping whitespace from each end. This is more
important than it might seem, because depending on the layout of the feed data there may be a host of
newlines and tabs to make the feed look nice but which only get in the way of the content. These unnec-
essary newlines should be replaced by a single space.

Next, a utility method, unescape, in the SAX library is used to unescape characters such as <this>
to <this>. This is followed by a class to another helper method, process_tags, to do a little more strip-
ping. If this application used a browser to view the content, then this step wouldn’t be needed (or even
desirable), but markup displayed to console just looks bad, and hyperlinks <a>
won’t work.

The next piece of cleaning is a little controversial. The content delivered in feed can be Unicode, with
characters from any international character set, but most consoles are ill prepared to display such mate-
rial. The standard string encode method is used to flatten everything down to plain old ASCII. This is
rather drastic, and there may well be characters that don’t fit in this small character set. The second
value determines what should happen in this case — possible values are strict (default), ignore, or
replace. The replace alternative swaps the character for a question mark, hardly improving legibility.

552

Part VI: Communication

The strict option throws an error whenever a character won’t fit, and it’s not really appropriate here
either. The third option, ignore, simply leaves out any characters that can’t be correctly represented in
the chosen ASCII encoding. The following code shows the sequence of method calls used to make the
text more presentable:

def cleanup_text(self, text):
“Strips material that won’t look good in plain text”
text = text.strip()
text = text.replace(‘\n’, ‘ ‘)
text = xml.sax.saxutils.unescape(text)
text = self.process_tags(text)
text = text.encode(‘ascii’,’ignore’)
text = self.trim(text)
return text

The process_tags method (called from cleanup_text) uses regular expressions to first replace any

 or <p> tags in the content with newline characters, and then to replace any remaining tags with a
single space character:

def process_tags(self, string):
“”” Turns
 into \n then removes all <tags> “””
re.sub(NEWLINE_PATTERN, ‘\n’, string)
return re.sub(TAG_PATTERN, ‘ ‘, string)

The cleaning done by the last method in the FeedHandler class is really a matter of taste. The amount of
text found in each post varies greatly between different sources. You may not want to read whole essays
through your newsreader, so the trim method cuts the string length down to a preset size determined
by the TRIM_LENGTH constant. However, just counting characters and chopping results in some words
being cut in half, so this method looks for the first space character in the text after the TRIM_LENGTH
index and cuts there. If there aren’t any spaces in between that index and the end of the text, then the
method chops anyway. Other strategies are possible, such as looking for paragraph breaks and cutting
there. Although it’s fairly crude, the result is quite effective. The code that does the trimming is as follows:

def trim(self, text):
“Trim string length neatly”
end_space = text.find(‘ ‘, TRIM_LENGTH)
if end_space != -1:

text = text[:end_space] + “ ...”
else:

text = text[:TRIM_LENGTH] # hard cut
return text

That’s it, the whole of the aggregator application. There isn’t a lot of code, largely thanks to libraries tak-
ing care of the details.

Try It Out Running the Aggregator

To run the code, you need to have Python installed (see the note with the Reading a List of URIs Try it
Out earlier in the chapter) and be connected to the Internet:

1. Download and install the latest version of the PyXML package, which is a small download
(http://pyxml.sourceforge.net/) and a simple install.

553

Chapter 13: RSS, Atom, and Content Syndication

PyXML is a very popular Python XML library that implements the standard SAX and DOM APIs,
although it isn’t currently being maintained. If you are using Python 2.5 or later you may need to
download PyXML as source and build it locally, or tweak the code to use a different XML library such
as the comprehensive (and significantly larger) 4Suite, from http://4suite.org.

2. Open a command prompt window, and cd to the folder containing the source files.

3. Type the following:

python feed_reader.py

An alternative way to run the code is to use IDLE, a very simple IDE with a syntax-coloring editor and
various debugging aids. Start IDLE by double-clicking its icon and then using its File menu, opening
the feed reader.py file in a new window. Pressing the F5 key when the code is in the editor window
runs the application.

Whichever way you run the application, you should see something like this:

python feed_reader.py
Reading http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss :
14 items
Reading http://dig.csail.mit.edu/breadcrumbs/blog/feed/4 :
9 items
Reading http://www.markbaker.ca/blog/feed/atom :
10 items

*** Newest 5 Items ***

Web Things, by Mark Baker : links for 2006-10-28
Sam goes to WSO2
Sam considering WSO2. See my comment.
(tags: webservices rest ...
Mark Baker
Sat, 28 Oct 2006 07:24:46 +0200

timbl’s blog : Reinventing HTML
Making standards is hard work. Its hard because it involves listening to
other people and figuring ...

Fri, 27 Oct 2006 23:14:10 +0200

Web Things, by Mark Baker : links for 2006-10-27
Tom Palaima: The evil that men do lives after

them “Evil doesn’t come like ...
Mark Baker
Fri, 27 Oct 2006 07:24:45 +0200

Dare Obasanjo aka Carnage4Life : Jubilee Thoughts: Adding Podcasts to iTunes
or WMP Playlists
what about the Aggregator Vendors? I’m reminded that there is ...

Thu, 26 Oct 2006 16:11:14 +0200

Web Things, by Mark Baker : links for 2006-10-26
Apollo - the Adobe Web browser

554

Part VI: Communication

“We spent a considerable amount of time researching ...
Mark Baker
Thu, 26 Oct 2006 07:25:44 +0200

How It Works
You’ve already seen the details of how this works, but here are the main points:

❑ A list of feed addresses is loaded from a text file.

❑ Each of the addresses is visited in turn, and the data is passed to a SAX handler.

❑ The handler creates objects corresponding to the feed and items within the feed.

❑ The individual items from all feeds are combined into a single list and sorted.

❑ The items are printed in the command window.

Extending the Aggregator
Obviously, a thousand and one things could be done to improve this application, but whatever enhance-
ment is made to the processing or user interface, you are still dependent on the material pumped out to
feeds. XML is defined by its acronym as extensible, which means that elements outside of the core lan-
guage can be included with the aid of XML namespaces. According to the underlying XML namespaces
specification, producers can potentially put material from other namespaces pretty much where they
like, but this isn’t as simple as it sounds because consumers have to know what to do with them. So far,
two approaches have been taken to extensibility in syndication.

RSS 2.0 leaves the specification of extensions entirely up to developers. This sounds desirable but has
significant drawbacks because there nothing within the specification indicates how an element from an
extension relates to other elements in a feed. One drawback is that each extension appears like a com-
pletely custom application, needing all-new code at both the producer and consumer ends. Another
drawback is that without full cooperation between developers, there’s no way of guaranteeing that the
two extensions will work together.

The RSS 1.0 approach is to fall back on RDF, specifically the structural interpretation of RDF/XML. The
structure in which elements and attributes appear within an RDF/XML document gives an unambigu-
ous interpretation according to the RDF model, irrespective of the namespaces. You can tell that certain
elements/attributes correspond to resources, and that others correspond to relationships between those
resources. The advantage here is that much of the lower-level code for dealing with feed data can be
reused across extensions, as the basic interpretation will be the same. It also means that independently
developed extensions for RSS 1.0 are automatically compatible with each other.

Atom takes a compromise approach to extensions, through the specification of two constructs: Simple
Extension Elements and Structured Extension Elements. The Structured Extension Element provides some-
thing similar to the extensibility of RSS 2.0 in that a block of XML that is in a foreign (i.e., not-Atom)
namespace relies on the definition of the extension for interpretation (or to be ignored). Unlike RSS 2.0,
there are some restrictions on where such a block of markup may appear in the feed, but otherwise it’s
open-ended. The Simple Extension Element provides something similar to the extensibility of RSS 1.0 in
that it is interpreted as a property of its enclosing element, as shown here:

<feed xmlns=”http://www.w3.org/2005/Atom”
xmlns:im=”http://example.org/im/”>

...

555

Chapter 13: RSS, Atom, and Content Syndication

<author>
<name>John Smith</name>
<im:nickname>smiffy</im:nickname>

</author>
...
</feed>

The Simple Extension Element, <im:nickname> here, must be in a foreign namespace. The namespace
(http://example.org/im/ with prefix im:) is given in this example on the root <feed> element,
although following XML conventions it could be specified in any of the ancestor elements of the exten-
sion element, or even on the extension element itself. A Simple Extension Element can’t have any child
nodes, except for a mandatory text node that provides the value of the property, so this example indi-
cates that the author has a property called im:nickname with the value “smiffy”.

To give you an idea of how you might incorporate support for extensions in the tools you build, here is a
simple practical example for the demo application. As mentioned at the start of this chapter, a growing
class of tools takes material from one feed (or site) and quotes it directly in another feed (or site). Of partic-
ular relevance here are online aggregators, such as the “Planet” sites: Planet Gnome, Planet Debian, Planet
RDF, and so on. These are webloglike sites, the posts of which come directly from the syndication feeds
of existing blogs or news sites. They each have syndication feeds of their own. You may want to take a
moment to look at Planet RDF: The human-readable site is at http://planetrdf.com, and it has an RSS
1.0 feed at http://planetrdf.com/index.rdf. The main page contains a list of the source feeds from
which the system aggregates. The RSS is very much like regular feeds, except the developers behind it
played nice and included a reference back to the original site from which the material came. This appears
in the feed as a per-item element from the Dublin Core vocabulary, as shown in the following:

...
<dc:source>Lost Boy by Leigh Dodds</dc:source>
...

The text inside this element is the title of the feed from which the item was extracted. It’s pretty easy to
capture this in the aggregator described here. To include the material from this element in the aggre-
gated display, two things are needed: a way to extract the data from the feed and a suitable place to put
it in the display.

Like the other elements the application uses, the local name of the element is enough to recognize it. It is
certainly possible to have a naming clash on “source,” though unlikely. This element is used to describe
an item, and the code already has a way to handle this kind of information. Additionally, the code picks
out the immediate source of the item (the title of the feed from whence it came) and uses this in the title
line of the displayed results. All that is needed is another conditional, inserted at the appropriate point,
and the source information can be added to the title line of the results.

Try It Out Extending Aggregator Element Handling

This is a very simple example, but it demonstrates how straightforward it can be to make aggregator
behavior more interesting:

1. Open the file feed_handler.py in a text editor.

2. At the end of the endElementNS method, insert the following code:

556

Part VI: Communication

...
if localname == “pubDate”:

self.current_item.set_rfc2822_time(text)
return

if localname == “source”:

self.current_item.source = ‘(‘+self.current_item.source+’) ‘+text
return

def is_content_element(self, localname):
“Checks if element may contain item/entry content”

...

3. Open feeds.txt in the editor and add the following feed URI:

http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss
http://dig.csail.mit.edu/breadcrumbs/blog/feed/4
http://www.markbaker.ca/blog/feed/atom/
http://planetrdf.com/index.rdf

4. Run the application again (see the previous Try It Out).

How It Works
Among the items that the aggregator shows you, you should see something like this:

(Planet RDF) Tim Berners-Lee : Reinventing HTML
Making standards is hard work. Its hard because it involves listening

to other people and figuring ...
Tim Berners-Lee
Fri, 27 Oct 2006 23:14:10 +0200

The name of the aggregated feed from which the item has been extracted is in parentheses (Planet RDF),
followed by the title of the original feed from which it came.

Transforming RSS with XSLT
Because syndicated feeds are usually XML, you can process them using XSLT directly (turn to Chapter 8
for more on XSLT). There are three common situations in which you might want to do this:

❑ Generating a feed from existing data

❑ Processing feed data for display

❑ Pre-processing feed data for other purposes

The first situation assumes you have some XML available for transformation, although because this
could be XHTML from cleaned-up HTML, it isn’t a major assumption. The other two situations are simi-
lar to each other, taking syndication feed XML as input. The difference is that the desired output of the
second is likely to be something suitable for immediate rendering, whereas the third situation translates
data into a format appropriate for subsequent processing.

557

Chapter 13: RSS, Atom, and Content Syndication

Generating a Feed from Existing Data
One additional application worth mentioning is that an XSLT transformation can be used to generate
other feed formats when only one is available. If your blogging software only produces RSS 1.0, then a
standard transformation can provide your site with feeds for Atom and RSS 2.0. A web search will pro-
vide you with several examples (names like rss2rdf.xsl are popular!).

Be warned that the different formats may carry different amounts of information. For example, in RSS
2.0 most elements are optional, in Atom most elements are mandatory, virtually anything can appear in
RSS 1.0, and there isn’t one-to-one correspondence of many elements. Therefore, a conversion from one
to the other may be lossy or may demand that you artificially create values for elements. For demonstra-
tion purposes, the examples here only use RSS 2.0, a particularly undemanding specification for the
publisher.

The following XSLT transformation will generate RSS from an XHTML document (xhtml2rss.xsl):

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:xhtml=”http://www.w3.org/1999/xhtml”>

<xsl:output method=”xml” indent=”yes”/>

<xsl:template match=”/xhtml:html”>
<rss version=”2.0”>
<channel>
<description>This will not change</description>
<link>http://example.org</link>
<xsl:apply-templates />
</channel>

</rss>
</xsl:template>

<xsl:template match=”xhtml:title”>
<title>
<xsl:value-of select=”.” />

</title>
</xsl:template>

<xsl:template match=”xhtml:body/xhtml:h1”>
<item>
<title>
<xsl:value-of select=”.” />

</title>
<description>
<xsl:value-of select=”following-sibling::xhtml:p” />

</description>
</item>

</xsl:template>

<xsl:template match=”text()” />

</xsl:stylesheet>

558

Part VI: Communication

Try It Out Generating RSS from XHTML

1. Open a text editor and type in the previous listing (or simply download it from the book’s
website).

2. Save the file as xhtml2rss.xsl.

3. Type the following into the text editor:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<title>My Example Document</title>

</head>
<body>

<h1>A first discussion point</h1>
<p>Something related to the first point.</p>

<h1>A second discussion point</h1>
<p>Something related to the second point.</p>

</body>
</html>

4. Save the preceding code as document.html in the same folder as xhtml2rss.xsl.

5. Use an XSLT processor to apply the transformation to the document.

Refer to Chapter 8 for details describing how to do this. A suitable processor is Saxon, available from
http://saxon.sourceforge.net/.

The command line for Saxon with saxon8.jar and the data and XSLT file in the same folder is
as follows:

java -jar saxon8.jar -o document.rss document.html xhtml2rss.xsl

6. Open the newly created document.rss in the text editor. You should see the following RSS 2.0
document:

<?xml version=”1.0” encoding=”UTF-8”?>
<rss version=”2.0” xmlns:xhtml=”http://www.w3.org/1999/xhtml”>

<channel>
<description>This will not change</description>
<link>http://example.org</link>
<title>My Example Document</title>
<item>

<title>A first discussion point</title>
<description>Something related to the first point.</description>

</item>
<item>

<title>A second discussion point</title>
<description>Something related to the second point.</description>

</item>
</channel>

</rss>

559

Chapter 13: RSS, Atom, and Content Syndication

How It Works
The root element of the stylesheet declares the prefixes for the required namespaces, xsl: and xhtml:.
The output element is set to deliver indented XML:

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:xhtml=”http://www.w3.org/1999/xhtml”>

<xsl:output method=”xml” indent=”yes”/>

The first template in the XSLT is designed to match the root html element of the XHTML document. In
that document, the XHTML namespace is declared as the default, but in the stylesheet it’s necessary to
refer explicitly to the elements using the xhtml: prefix to avoid conflicts with the no-namespace RSS.
The template looks like this:

<xsl:template match=”/xhtml:html”>
<rss version=”2.0”>
<channel>
<description>This will not change</description>
<link>http://example.org</link>
<xsl:apply-templates />
</channel>

</rss>
</xsl:template>

This will output the rss and channel start-tags followed by preset description and link elements,
and then it applies the rest of the templates to whatever is inside the root xhtml:html element. The tem-
plate then closes the channel and rss elements.

The next template is set up to match any xhtml:title elements:

<xsl:template match=”xhtml:title”>
<title>
<xsl:value-of select=”.” />

</title>
</xsl:template>

There is just one matching element in the XHTML document, which contains the text My example
document. This is selected and placed in a title element. Note that the input element is in the XHTML
namespace, and the output has no namespace, to correspond to the RSS 2.0 specification.

The next template is a little more complicated. The material in the source XHTML document is consid-
ered to correspond to an item of the form:

<h1>Item Title</h1>
<p>Item Description</p>

To pick these blocks out, the stylesheet matches on xhtml:h1 elements contained in an xhtml:body, as
shown here:

<xsl:template match=”xhtml:body/xhtml:h1”>
<item>

560

Part VI: Communication

<title>
<xsl:value-of select=”.” />

</title>
<description>
<xsl:value-of select=”following-sibling::xhtml:p” />

</description>
</item>

</xsl:template>

An outer no-namespace <item> element wraps everything produced in this template. It contains a
<title> element, which is given the content of whatever’s in the context node, which is the xhtml:h1
element. Therefore, the header text is passed into the item’s title element. Next, the content for the
RSS <description> element is extracted by using the following-sibling::xhtml:p selector. This
addresses the next xhtml:p element after the xhtml:h1.

The final template is needed to mop up any text not directly covered by the other elements, which
would otherwise appear in the output:

<xsl:template match=”text()” />
</xsl:stylesheet>

Note that the stylesheet presented here assumes the source document will be well-formed XHTML, with
a heading/paragraph structure following that of the example. In practice, the XSLT must be modified to
suit the document structure. If the original document isn’t XHTML (HTML 3.2, for example), then a
tool such as HTML Tidy (http://tidy.sourceforge.net/) can be used to convert it before
applying the transformation.

If the authoring of the original XHTML is under your control, then you can take more control over the
conversion process. You can add markers to the document to indicate which parts correspond to items,
descriptions, and so on. This is the approach taken in the Atom microformat (http://microformats
.org/wiki/hatom) — for example, <div class=”hentry”>. This enables an Atom feed to be generated
from the XHTML and is likely to be convenient for CSS styling.

One final point: Although this general technique for generating a feed has a lot in common with screen-
scraping techniques (which generally break when the page author makes a minor change to the layout), it’s
most useful when the authors of the original document are involved. The fact that the source document is
XML greatly expands the possibilities. Research is ongoing into methods of embedding more general meta
data in XHTML and other XML documents, with recent proposals available at the following sites:

❑ http://microformats.org (microformats)

❑ www.w3.org/2004/01/rdxh/spec (Gleaning Resource Descriptions from Dialects of
Languages, or GRDDL)

Processing Feed Data for Display
What better way to follow a demonstration of XHTML-to-RSS conversion than an RSS-to-XHTML
stylesheet? This isn’t quite as perverse as it may sound — it’s useful to be able to render your own feed
for browser viewing, and this conversion offers a simple way to view other people’s feeds. Though it is
relatively straightforward to display material from someone else’s syndication feed on your own site this

561

Chapter 13: RSS, Atom, and Content Syndication

way, it certainly isn’t a good idea without obtaining permission first. Aside from copyright issues, every
time your page is loaded it will call the remote site, adding to their bandwidth load. There are ways
around this — basically, caching the data locally — but that’s beyond the scope of this chapter.

Generating XHTML from RSS isn’t very different from the other way around, as you can see in this list-
ing (rss2xhtml.xsl):

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://www.w3.org/1999/xhtml”>

<xsl:output method=”html” indent=”yes”/>
<xsl:template match=”rss”>
<xsl:text disable-output-escaping=”yes”>
\<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”\>

</xsl:text>
<html>
<xsl:apply-templates />

</html>
</xsl:template>

<xsl:template match=”channel”>
<head>
<title>
<xsl:value-of select=”title” />

</title>
</head>
<body>
<xsl:apply-templates />

</body>
</xsl:template>

<xsl:template match=”item”>
<h1><xsl:value-of select=”title” /></h1>
<p><xsl:value-of select=”description” /></p>

</xsl:template>

<xsl:template match=”text()” />

</xsl:stylesheet>

Try It Out Generating XHTML from an RSS Feed

1. Enter the previous listing into a text editor (or download it from the book’s website).

2. Save it as rss2xhtml.xsl in the same folder as document.rss.

3. Apply the stylesheet to document.rss. The command line for Saxon with saxon7.jar and the
data and XSLT file in the same folder is as follows:

java -jar saxon8.jar -o document.xml document.rss rss2xhtml.xsl

562

Part VI: Communication

4. Open the newly created document.xml in the text editor. You should see the following XHTML
document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<title>My Example Document</title>

</head>
<body>

<h1>A first discussion point</h1>
<p>Something related to the first point.</p>
<h1>A second discussion point</h1>
<p>Something related to the second point.</p>

</body>
</html>

As you can see, it closely resembles the XHTML original (document.html) used to create the
RSS data.

How It Works
As in the previous stylesheet, the namespaces in use are those of XSLT and XHTML. This time, however,
the output method is html. The xml output method can be used to produce equally valid data, as
XHTML is XML, but the syntax is a little tidier (this is likely to vary between XSLT processors):

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://www.w3.org/1999/xhtml”>

<xsl:output method=”html” indent=”yes”/>

The first template here matches the root <rss> element of the RSS 2.0 document. The template puts in
place an appropriate DOCTYPE declaration, which is wrapped in an xsl:text element with escaping
disabled to allow the end <...> characters to appear in the output without breaking this XML’s well-
formedness. The root element of the XHTML document is put in position, and the other templates are
applied to the rest of the feed data. Here is the first template:

<xsl:template match=”rss”>
<xsl:text disable-output-escaping=”yes”>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

</xsl:text>
<html>
<xsl:apply-templates />

</html>
</xsl:template>

The next template matches the <channel> element. This actually corresponds to two separate sections
in the desired XHTML: the head and the body. All that’s needed in the head is the content of the title
element, which appears as an immediate child of channel. The material that must appear in the body of

563

Chapter 13: RSS, Atom, and Content Syndication

the XHTML document is a little more complicated, so other templates are applied to sort that out. Here
then is the channel template:

<xsl:template match=”channel”>
<head>
<title>
<xsl:value-of select=”title” />

</title>
</head>
<body>
<xsl:apply-templates />

</body>
</xsl:template>

For each item element that appears in the feed, a pair of <h1> and <p> elements are created, correspond-
ing to the RSS <title> and <description>. Here is the template, and you can see how the content is
transferred from the RSS kinds of element to their XHTML mappings:

<xsl:template match=”item”>
<h1><xsl:value-of select=”title” /></h1>
<p><xsl:value-of select=”description” /></p>

</xsl:template>

Once more a utility template is included to mop up any stray text, before the closing xsl:stylesheet
element closes this document:

<xsl:template match=”text()” />

</xsl:stylesheet>

Browser Processing
A bonus feature of modern web browsers, such as Mozilla and IE, is that they have XSLT engines built
in. This means it’s possible to style a feed format document in the browser. All that’s needed is an XML
Processing Instruction that points toward the stylesheet. This is very straightforward, as shown here,
modifying document.rss:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”rss2xhtml.xsl”?>
<rss version=”2.0”>

<channel>
...

If you save this modified version as document.xml and open it with your browser, you’ll see a render-
ing that’s exactly the same as what you see with the XHTML version listed earlier.

Browsers aren’t that smart at figuring out what kind of document they’re being presented with, so when
saved and loaded locally, the filename extension has to be something the browser recognizes. If you try
to load a file document.rss into a browser, chances are good it will ask you where you want to save it.

564

Part VI: Communication

When it comes to displaying XML (such as RSS and Atom) in a browser, the world’s your oyster — you
can generate XHTML using a stylesheet and the resulting document can be additionally styled using
CSS. There’s no real need for anyone to see raw XML in his or her browser. This is one reason the Atom
group has created the <info> element, which can be used along with client-side styling to present an
informative message about the feed alongside a human-readable rendering of the XML.

Pre-processing Feed Data
Another reason you might want to process feed data with XSLT would be to interface easily with exist-
ing systems. For example, if you wanted to store the feed items in a database, you could set up a trans-
formation to extract the content from a feed and format it as SQL statements, as follows:

INSERT INTO feed-table
VALUES (item-id, “This is the title”, “This is the item description”);

One particularly useful application of XSLT is to use transformation to “normalize” the data from the var-
ious formats into a common representation, which can then be passed on to subsequent processing. This
is in effect the same technique used in the aggregator application just shown, except there the normaliza-
tion is to the application’s internal representation of a feed model.

A quick Web search should yield something suitable for most requirements like this, or at least some-
thing that you can modify to fit your specific needs. Two examples of existing work are Morten
Frederiksen’s anything-to-RSS 1.0 converter (http://purl.org/net/syndication/subscribe/
feed-rss1.0.xsl) and Aaron Straup Cope’s Atom-to-RSS 1.0 and 2.0 stylesheets (www.aaronland
.info/xsl/atom/0.3/).

Reviewing the Different Formats
There are at least three different syndication formats for a feed consumer to deal with, and you may
want to build different subsystems to deal with each individually. Even when XSLT is available this can
be desirable, as no single feed model can really do justice to all the variations. How do you tell what for-
mat a feed is? Here are the addresses of some syndication feeds:

http://news.bbc.co.uk/rss/newsonline_world_edition/front_page/rss091.xml
http://blogs.it/0100198/rss.xml
http://purl.org/net/morten/blog/feed/rdf/
http://swordfish.rdfweb.org/people/libby/rdfweb/webwho.xrdf
http://icite.net/blog/?flavor=atom\&smm=y

You might suppose a rough rule of thumb is to examine the filename. It is, but this is pretty unreliable
for any format on the Web. A marginally more reliable approach (and one that counts as good practice
against the Web specifications) is to examine the MIME type of the data. A convenient way of doing this
is to use the wget command-line application to download the files (this is a standard Unix utility; a
Windows version is available from http://unxutils.sourceforge.net/).

In use, wget looks like this:

D:\rss-samples>wget http://blogs.it/0100198/rss.xml
–16:23:35– http://blogs.it/0100198/rss.xml

=> ‘rss.xml’
Resolving blogs.it... 213.92.76.66
Connecting to blogs.it[213.92.76.66]:80... connected.

565

Chapter 13: RSS, Atom, and Content Syndication

HTTP request sent, awaiting response... 200 OK
Length: 87,810 [text/xml]

100%[====================================>] 87,810 7.51K/s ETA 00:00

16:23:48 (7.91 KB/s) - ‘rss.xml’ saved [87810/87810]

It provides a lot of useful information: the IP address of the host called, the HTTP response (200 OK), the
length of the file in bytes (87,810), and then the part of interest: [text/xml]. If you run wget with each
of the previous addresses, you can see the MIME types are as follows:

[application/atom+xml] http://news.bbc.co.uk/rss/
newsonline_world_edition/front_page/rss091.xml

[text/xml] http://blogs.it/0100198/rss.xml
[application/rdf+xml] http://purl.org/net/morten/blog/feed/rdf/
[text/plain] http://swordfish.rdfweb.org/people/libby/rdfweb/webwho.xrdf
[application/atom+xml] http://icite.net/blog/?flavor=atom\&smm=y

In addition to the preceding MIME types, it’s not uncommon to see application/rss+xml used,
although that has no official standing.

Has that helped determine what formats these are? Hardly. The only reliable way to find out is to look
inside the files and see what it says there, and even then it can be tricky, so run wget to get the previous
files, and have a look inside with a text editor. Snipping off the XML prolog (and irrelevant namespaces),
the data files begin like this (this one is from http://news.bbc.co.uk/rss/newsonline_world_
edition/front_page/rss091.xml):

<rss version=”0.91”>
<channel>
<title>BBC News News Front Page World Edition</title>

...

OK, that’s clearly RSS, flagged by the root element. It even tells you that it’s version 0.91. Here’s another
from http://blogs.it/0100198/rss.xml:

<rss version=”2.0”>
<channel>

<title>Marc’s Voice</title>
_

Again, a helpful root tells you it’s RSS 2.0. Now here’s one from http://purl.org/net/morten/
blog/feed/rdf/:

<rdf:RDF xmlns=”
http://purl.org/rss/1.0/” xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>

<channel rdf:about=”http://purl.org/net/morten/blog/rdf”>
<title>Binary Relations</title>
...

566

Part VI: Communication

The rdf:RDF root suggests, and the rss:channel element confirms, this is RSS 1.0. However, the fol-
lowing from http://swordfish.rdfweb.org/people/libby/rdfweb/webwho.xrdf is less clear:

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:foaf=”http://xmlns.com/foaf/0.1/”>

...>

<rdf:Description rdf:about=””>
<foaf:maker>
<foaf:Person>
<foaf:name>Libby Miller</foaf:name>

...

The rdf:RDF root and a lot of namespaces could indicate that this is RSS 1.0 using a bunch of extension
modules. You might have to go a long way through this file to be sure. The interchangeability of RDF
vocabularies means that RSS 1.0 terms can crop up almost anywhere; whether or not you wish to count
any document as a whole as a syndication feed is another matter. As it happens, there aren’t any RSS ele-
ments in this particular file; it’s a FOAF (Friend-of-a-Friend) Personal Profile Document. It’s perfectly
valid data; it’s just simply not a syndication feed as such.

Now for a last example from http://icite.net/blog/?flavor=atom &smm=y:

<feed version=”0.3”
xmlns=”http://purl.org/atom/ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xml:lang=”en”>

<title>the iCite net development blog</title>
...

The <feed> gives this away from the start: this is Atom. The version is only 0.3, but chances are good it
will make it to version 1.0 without changing that root element.

These examples were chosen because they are all good examples — that is to say, they conform to their
individual specifications. In the wild, things might get messy, but at least the preceding checks give you
a place to start.

Useful Resources
Here’s a selection of some additional resources for further information on the topics discussed in this
chapter. The following sites are good specifications resources:

❑ RSS 1.0: http://purl.org/rss/1.0/spec

❑ RSS 2.0: http://blogs.law.harvard.edu/tech/rss

❑ Atom: www.ietf.org/rfc/rfc4287.txt

❑ Atom Wiki: www.intertwingly.net/wiki/pie/FrontPage

❑ RDF: www.w3.org/RDF/

567

Chapter 13: RSS, Atom, and Content Syndication

These sites offer tutorials:

❑ rdf:about: www.rdfabout.com/

❑ Atom Enabled: www.atomenabled.org/

❑ Syndication Best Practices: www.ariadne.ac.uk/issue35/miller/

❑ The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About
Unicode and Character Sets (No Excuses!), by Joel Spolsky: www.joelonsoftware.com/
articles/Unicode.html

Some miscellaneous resources include the following:

❑ Feed Validator: http://feedvalidator.org

❑ RDF Validator: www.w3.org/RDF/Validator/

❑ Dave Beckett’s RDF Resource Guide: www.ilrt.bris.ac.uk/discovery/rdf/resources/

❑ RSS-DEV Mailing List: http://groups.yahoo.com/group/rss-dev/

Summary
The beginning of this chapter showed how the current ideas of content syndication grew out of “push”
technologies and early meta data efforts, the foundations laid by CDF and MCF followed by Netscape’s
RSS 0.9 and Scripting News format. It described how the components of syndication systems carry out
different roles: server-producer, client-consumer, client-producer, and server-consumer. The chapter then
covered the basic ideas behind the Resource Description Framework (RDF) on which RSS 1.0 is built, as
well as the relatively straightforward syntax of RSS 2.0. This was followed by a discussion of Atom, an
open language that hopes to get beyond political divisions that have been the bane of the RSS commu-
nity and concentrate on advancing the technology.

After a brief discussion of some of the practical issues of syndication, you learned about an aggregator
written in Python. It is hoped that you tried the application and undoubtedly thought of ways in which
it can be extended. Most of the development around syndication has been from the grassroots, and it’s a
fertile area for new ideas. It really is worthwhile putting your ideas into practice.

The chapter then briefly covered some of the things that can be achieved by using XSLT with feed for-
mats, such as generation of feed data from XHTML and rendering to a browser. The topic of RSS and
content syndication is wide and deep, and a single chapter cannot do justice to it. However, you have
learned the fundamental concepts, a small sample of the techniques that can be applied, and one or two
of the problems developers face. You have also seen how XML is central to content syndication. You are
now equipped to change the world — or at least a geeky corner of it.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

568

Part VI: Communication

Question 1
At the end of the description of the simple Python aggregator, it was demonstrated how relatively sim-
ple it is to extend the range of the elements covered, by adding support for dc:source. Your first chal-
lenge is to extend the application so that it also displays the author of a feed entry, if that information is
available.

You should check the specs and some real-world feeds yourself, but the elements used for identifying
the author of an item are usually one of the following: author, dc:creator, atom:name, or foaf:name.
The author element appears in the “simple” RSS versions (0.9x, 2.0) and has no namespace. However,
note a slight complication: There is also an element in RSS 2.0 called name, which is used for the name of
the text object in a text input area (the text input area elements are rarely encountered in practice, but it
does make for a more interesting exercise). Therefore, part of this exercise is to ensure that this element
won’t be mistaken for the name of the author.

Question 2
You saw toward the end of the chapter how the most common syndication formats show themselves,
and earlier in the chapter you saw how it is possible to run an XSLT stylesheet over RSS feeds to produce
an XHTML rendering. The exercise here is to apply the second technique to the first task. Try to write an
XSLT transformation that indicates the format of the feed, together with its title.

569

Chapter 13: RSS, Atom, and Content Syndication

14
Web Services

So far, we’ve covered what XML is and how to create well-formed and valid XML documents, and
you’ve even seen a couple of programmatic interfaces into XML documents in the form of DOM
and SAX. We also discussed the fact that XML isn’t really a language on its own; it’s a meta lan-
guage, to be used in the creation of other languages.

This chapter takes a slightly different turn. Rather than discuss XML itself, it covers an application
of XML: web services enable objects on one computer to call and make use of objects on other com-
puters. In other words, web services are a means of performing distributed computing.

This chapter includes the following:

❑ What a remote procedure call (RPC) is, and what RPC protocols exist currently

❑ Why web services can provide more flexibility than previous RPC protocols

❑ How XML-RPC works

❑ Why most web services implementations should use HTTP as a transport protocol, and
how HTTP works under the hood

❑ How the specifications that surround web services fit together

What Is an RPC?
It is often necessary to design distributed systems, whereby the code to run an application is spread
across multiple computers. For example, to create a large transaction processing system, you
might have a separate server for business logic objects, one for presentation logic objects, a
database server, and so on, all of which need to talk to each other (see Figure 14-1).

In order for a model like this to work, code on one computer needs to call code on another com-
puter. For example, the code in the web server might need a list of orders for display on a web
page, in which case it would call code on the business objects server to provide that list of orders.
That code in turn might need to talk to the database. When code on one computer calls code on
another computer, this is called a remote procedure call (RPC).

Figure 14-1

In order to make an RPC, you need to know the following things:

❑ Where does the code you want to call reside? If you want to execute a particular piece of code,
you need to know where that code is!

❑ Does the code need any parameters? If so, what type? For example, if you want to call a remote
procedure to add two numbers, then that procedure needs to know what numbers to add.

❑ Will the procedure return any data? If so, in what format? For example, a procedure to add two
numbers would probably return a third number, which would be the result of the calculation.

In addition, you need to deal with networking issues, packaging any data for transport from computer to
computer, and a number of other issues. For this reason, a number of RPC protocols have been developed.

These protocols specify how to provide an address for the remote computer, how to package data to be
sent to the remote procedures, how to retrieve a response, how to initiate the call, how to deal with
errors, and all of the other details that need to be addressed to allow multiple computers to communi-
cate with each other. (Such RPC protocols often piggyback on other protocols; for example, an RPC pro-
tocol might specify that TCP/IP must be used as its network transport.)

A protocol is a set of rules that enables different applications, or even different com-
puters, to communicate. For example, TCP (Transmission Control Protocol) and IP
(Internet Protocol) are protocols that enable computers on the Internet to talk to each
other, because they specify rules regarding how data should be passed, how comput-
ers are addressed, and so on.

Business ObjectsBusiness ObjectsBusiness Objects

Web Server

Database

572

Part VI: Communication

RPC Protocols
Several protocols exist for performing remote procedure calls, but the most common are DCOM (Distri-
buted Component Object Model) and IIOP (Internet Inter-ORB Protocol), both of which are extensions of other
technologies: COM and CORBA, respectively, and Java RMI. Each of these protocols provides the function-
ality needed to perform remote procedure calls, although each has its drawbacks. The following sections
discuss these protocols and those drawbacks, without providing a lot of technical details.

DCOM
Microsoft developed a technology called the Component Object Model, or COM (see www.microsoft
.com/com/default.asp), to help facilitate component-based software, software that can be broken down
into smaller, separate components, which can then be shared across an application, or even across multi-
ple applications. COM provides a standard way of writing objects so they can be discovered at runtime
and used by any application running on the computer. In addition, COM objects are language indepen-
dent. That means you can write a COM object in virtually any programming language — C, C++, Visual
Basic, and so on — and that object can talk to any other COM object, even if it was written in a different
language.

A good example of COM in action is Microsoft Office: Because much of Office’s functionality is provided
through COM objects, it is easy for one Office application to make use of another. For example, because
Excel’s functionality is exposed through COM objects, you might create a Word document that contains
an embedded Excel spreadsheet.

However, this functionality is not limited to Office applications; you could also write your own applica-
tion that makes use of Excel’s functionality to perform complex calculations, or uses Word’s spell-
checking component. This enables you to write your applications faster, as you don’t have to write the
functionality for a spell-checking component or a complex math component yourself. By extension,
you could also write your own shareable components for use in others’ applications.

COM is a handy technology to use when creating reusable components, but it doesn’t tackle the problem
of distributed applications. In order for your application to make use of a COM object, that object must
reside on the same computer as your application. For this reason, Microsoft developed a technology
called Distributed COM, or DCOM. DCOM extends the COM programming model, enabling applications
to call COM objects that reside on remote computers. To an application, calling a remote object from a
server using DCOM is just as easy as calling a local object on the same PC using COM — as long as the
necessary configuration has been done ahead of time.

Nonetheless, as handy as COM and DCOM are for writing component-based software and distributed
applications, they have one major drawback: Both of these technologies are Microsoft-specific. The COM
objects you write, or that you want to use, will only work on computers running Microsoft Windows;
and even though you can call remote objects over DCOM, those objects also must be running on com-
puters using Microsoft Windows.

DCOM implementations have been written for non-Microsoft operating systems, but they haven’t been
widely accepted. In practice, when someone wants to develop a distributed application on non-Microsoft
platforms, they use one of the other RPC protocols.

573

Chapter 14: Web Services

For some people, this may not be a problem. For example, if you are developing an application for your
company and you have already standardized on Microsoft Windows for your employees, then using a
Microsoft-specific technology might be fine. For others, however, this limitation means that DCOM is
not an option.

IIOP
Prior even to Microsoft’s work on COM, the Object Management Group, or OMG (see www.omg.org/)
developed a technology to solve the same problems that COM and DCOM try to solve, but in a plat-
form-neutral way. They called this technology the Common Object Request Broker Architecture, or CORBA
(see www.corba.org/). As with COM, CORBA objects can be written in virtually any programming
language, and any CORBA object can talk to any other, even if it was written in a different language.
CORBA works similarly to COM, the main difference being who supplies the underlying architecture
for the technology.

For COM objects, the underlying COM functionality is provided by the operating system (Windows),
whereas with CORBA, an Object Request Broker (ORB) provides the underlying functionality (see Figure
14-2). In fact, the processes for instantiating COM and CORBA objects are similar.

Figure 14-2

Although the concepts are the same, using an ORB instead of the operating system to provide the base
object services offers one important advantage: It makes CORBA platform independent. Any vendor that
creates an ORB can create versions for Windows, Unix, Linux, and so on.

Furthermore, the OMG created the Internet Inter-ORB Protocol (IIOP), which enables communication
between different ORBs. This means that you not only have platform independence, you also have ORB
independence. You can combine ORBs from different vendors and have remote objects talking to each
other over IIOP (as long as you avoid any vendor-specific extensions to IIOP).

Neither COM nor CORBA are easy to work with, which dramatically reduced their acceptance and take-
up. Although COM classes are reasonably easy to use, and were the basis of thousands of applications
including Microsoft Office, they are difficult to design and create. CORBA suffered similar problems,
and these difficulties, as well as such scenarios as DLL hell in COM (mismatched incompatible versions
of libraries of a machine) led to the design of other techniques.

Returns pointer to object

Requests object

Instantiates object

COM object/
CORBA object

Operating System (COM)/
ORB (CORBA) Application

574

Part VI: Communication

Java RMI
Both DCOM and IIOP provide similar functionality: a language-independent way to call objects that
reside on remote computers. IIOP goes a step further than DCOM, enabling components to run on dif-
ferent platforms. However, a language already exists that is specifically designed to enable you to “write
once, run anywhere”: Java.

Java provides the Remote Method Invocation, or RMI, system (see http://java.sun.com/products/
jdk/rmi/) for distributed computing. Because Java objects can be run from any platform, the idea
behind RMI is to just write everything in Java and then have those objects communicate with each other.

Although Java can be used to write CORBA objects that can be called over IIOP, or even to write COM
objects using certain nonstandard Java language extensions, using RMI for distributed computing can
provide a smaller learning curve because the programmer isn’t required to learn about CORBA and
IIOP. All of the objects involved use the same programming language, so any datatypes are simply the
built-in Java datatypes, and Java exceptions can be used for error handling. Finally, Java RMI can do one
thing DCOM and IIOP can’t: It can transfer code with every call. That is, even when the remote com-
puter you’re calling doesn’t have the code it needs, you can send it and still have the remote computer
perform the processing.

The obvious drawback to Java RMI is that it ties the programmer to one programming language, Java,
for all of the objects in the distributed system.

The New RPC Protocol: Web Services
With the Internet fast becoming the platform on which applications run, it’s no surprise that a truly lan-
guage- and platform-independent way of creating distributed applications has become the Holy Grail of
software development. Currently, it looks as though that Holy Grail has made itself known in the form
of web services.

The exact definition of a web service is one of those never-ending discussions. Some would describe even
a simple request for a standard web page as an example. In this book, a web service is a service that
accepts a request and returns data or carries out a processing task. The data returned is normally for-
matted in a machine-readable form, without a focus on the content and the presentation, as you would
expect in a standard web page. Another distinction is that made between a service and an XML web
service. The latter means that at least one aspect, the request or the response, consists of XML. In this
chapter, web services means XML web services unless otherwise stated.

Web services are a means for requesting information or carrying out a processing task over the Internet,
but, as stated, they typically involve the encoding of both the request and the response in XML. Along
with using standard Internet protocols for transport, this encoding makes messages universally avail-
able. That means that a Perl program running on Linux can call a .NET program running on
Windows.NET, and nobody will be the wiser.

Of course, nothing’s ever quite that simple, at least this early in the game. In order to make these web
services available, there must be standards so that everyone knows what information can be requested,
how to request it, and what form the response will take.

575

Chapter 14: Web Services

The following pages look at XML-RPC, a simple form of web services. The discussion is then extended
to look at the more heavy-duty protocols and how they fit together. The next chapter takes a closer look
at two of the most commonly used protocols: SOAP and WSDL.

There are two main designs for XML Web services; they differ in their approach to how the request is
made. The first technique, known as XML-RPC, mimics how traditional function calls are made — with
the name of the method and individual parameters wrapped in an XML format. The second version uses
a document approach. This simply specifies that the service expects an XML document as its input, the
format of which is predefined, usually by an XML Schema. The service then processes the document and
carries out the necessary tasks.

XML-RPC
One of the easiest ways to see web services in action is to look at the XML-RPC protocol. Designed to be
simple, it provides a means for calling a remote procedure by specifying the procedure to call and the
parameters to pass. The client sends a command, encoded as XML, to the server, which performs the
remote procedure call and returns a response, also encoded as XML.

The protocol is simple, but the process — sending an XML request over the Web and getting back an
XML response — is the foundation of web services, so understanding how it works will help you under-
stand more complex protocols such as SOAP.

The service examined here is the Internet Topic Exchange (http://topicexchange.com/), a set of
“channels” that list postings on particular topics. For example, when Wiley Publishing publicizes new
editions on its website, they can add an entry to the “books” channel.

Let’s start by looking at the API we’re going to be calling.

The Target API
The Internet Topic Exchange has only three available methods. The first is as follows:

struct topicExchange.getChannels()

This method does exactly what it says it does: It returns a list of existing channels. (Don’t worry about
the struct yet.) It doesn’t have any parameters, so calling it is very simple.

Now take a look at the second method:

struct topicExchange.ping(string topicName, struct details)

This method is used to add a new entry to a particular topic, as defined by the topicName.

The third method has the following signature:

struct topicExchange.getChannelInfo(string topicName)

This method retrieves information on a specific channel. It accepts the name of the channel as a string
and returns a struct with the relevant details, such as the topic’s URL and a description of its contents.
We’ll look at actually making the request in a moment, but first let’s look at how to construct an XML
web services message.

576

Part VI: Communication

A Simple Request
The simplest XML-RPC request is one that executes a method with no parameters. In this example, that
would be the topicExchange.getChannels() method, shown in the following:

<methodCall>
<methodName>topicExchange.getChannels</methodName>

</methodCall>

In this case, the process is straightforward; you simply call the topicExchange.getChannels()
method, as specified in the methodName element. When you send this XML snippet to the service, the
service returns an XML document that lists existing channels. We’ll look at that response in a moment,
but first let’s look at a more complex request.

Passing Parameters
Typically, the method you want to call requires parameters, so XML-RPC includes a way to specify them
within the XML request. For example, the topicExchange.ping() method requires a string and a
struct. The string is easy to specify, as shown in the following:

<methodCall>
<methodName>topicExchange.ping</methodName>
<params>
<param>
<value><string>books</string></value>

</param>
</params>

</methodCall>

Here you specify a set of parameters using the params element, and then a single parameter using the
param element. Within the param element you specify the first parameter, the channel name, noting that
it is to be treated as a string. XML-RPC actually specifies seven types of scalar values: <i4> (or <int>, a
4-byte signed integer), <boolean> (0 for false, or 1 for true), <string>, <double>, <dateTime.iso8601>
(a date/time value, such as 20040422T16:12:04), and <base64> (base64-encoded binary data). In some
cases, the parameter is not a single scalar value, but a group of values, known as a struct.

Using a struct
A struct is a set of named values passed as you might pass an object. For example, the Internet Topic
Exchange expects the information on the posting to which you’re linking as a single struct:

<methodCall>
<methodName>topicExchange.ping</methodName>
<params>
<param>
<value><string>books</string></value>

</param>
<param>
<value>

<struct>
<member>
<name>blog_name</name>
<value><string>Wiley Today</string></value>

577

Chapter 14: Web Services

</member>
<member>
<name>title</name>
<value><string>Latest Publications</string></value>

</member>
<member>
<name>url</name>
<value>
<string>http://www.wiley.com/WileyCDA/Section/index.html </string>

</value>
</member>
<member>
<name>excerpt</name>
<value><string>Wiley latest publications have something for everyone.

Beginning XML is proving to be this year’s hottest selling item.
</string></value>

</member>
</struct>

</value>
</param>

</params>
</methodCall>

In this case, the details parameter consists of a single value, but that value is a struct. The struct
consists of four members, with each member having a name and a value. As before, the value is a scalar
of one of the seven types, but that’s not actually a requirement. A struct can have a struct as one or
more of its members, as shown here in the response returned from the getChannels() method:

<methodResponse>
<params>
<param>
<value>
<struct>
<member>
<name>channels</name>
<value>
<struct>

<member>
<name>books</name>
<value>
<struct>
<member>
<name>url</name>
<value>
<string>http://topicexchange.com/t/books/</string>

</value>
</member>

</struct>
</value>

</member>
<member>

578

Part VI: Communication

<name>logic</name>
<value>
<struct>
<member>
<name>url</name>
<value>
<string>http://topicexchange.com/t/logic/</string>

</value>
</member>

</struct>
</value>

</member>
<!-- more member elements -->

</struct>
</value>

</member>
</struct>

</value>
</param>

</params>
</methodResponse>

This response has been snipped for brevity’s sake, but the structure is just as it would be for the dozens
of other channels. That’s it, as far as XML-RPC syntax is concerned. Now we just have to look at how to
actually send a request.

The Network Transport
Generally, web services specifications allow you to use any network transport to send and receive mes-
sages. For example, you could use IBM MQSeries or Microsoft Message Queue (MSMQ) to send SOAP
messages asynchronously over a queue, or even use SMTP to send SOAP messages via e-mail. However,
the most common protocol used is probably HTTP. In fact, the XML-RPC specification requires it, so that
is what we concentrate on in this chapter.

HTTP
Many readers may already be somewhat familiar with the HTTP protocol, as it is used every time you
request a web page in your browser. Most web services implementations use HTTP as their underlying
protocol, so take a look at how it works under the hood.

The Hypertext Transfer Protocol (HTTP) is a request/response protocol. This means that when you make
an HTTP request, at its most basic, the following steps occur:

1. The client (in most cases, the browser) opens a connection to the HTTP server.

2. The client sends a request to the server.

3. The server performs some processing.

4. The server sends back a response.

5. The connection is closed.

579

Chapter 14: Web Services

An HTTP message contains two parts: a set of headers, followed by an optional body. The headers are
simply text, with each header separated from the next by a new line character, while the body might be
text or binary information. The body is separated from the headers by two newline characters.

For example, suppose you attempt to load an HTML page, located at http://www.wiley.com/
WileyCDA/Section/index.html (Wiley’s home page) into your browser, which in this case is Internet
Explorer 7.0. The browser sends a request similar to the following to the www.wrox.com server:

GET /WileyCDA/Section/index.html HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Win32)
Host: www.wiley.com

The first line of your request specifies the method to be performed by the HTTP server. HTTP defines a
few types of requests, but this has specified GET, indicating to the server that you want the resource
specified, which in this case is /WileyCDA/Section/index.html. (Another common method is POST,
covered in a moment.) This line also specifies that you’re using the HTTP/1.1 version of the protocol.
There are several other headers there as well, which specify to the web server a few pieces of informa-
tion about the browser, such as what types of information it can receive. Those are as follows:

❑ Accept tells the server what MIME types this browser accepts — in this case, */*, meaning any
MIME types.

❑ Accept-Language tells the server what language this browser is using. Servers can potentially
use this information to customize the content returned. In this case, the browser is specifying
that it is the United States (us) dialect of the English (en) language.

❑ Accept-Encoding specifies to the server whether the content can be encoded before being sent
to the browser. In this case, the browser has specified that it can accept documents that are
encoded using gzip or deflate. These technologies are used to compress the data, which is
then decompressed on the client.

For a GET request, there is no body in the HTTP message. In response, the server sends something simi-
lar to the following:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Fri, 09 Mar 2007 15:30:52 GMT
Content-Type: text/html
Last-Modified: Thu, 06 Mar 2007 12:19:57 GMT
Content-Length: 98

<html>
<head><title>Hello world</title></head>
<body>
<p>Hello world</p>
</body>
</html>

580

Part VI: Communication

Obviously, the real Wiley home page is a little more complicated than this. Again, there is a set of HTTP
headers, this time followed by the body. In this case, some of the headers sent by the HTTP server were
as follows:

❑ A status code, 200, indicating that the request was successful. The HTTP specification
(ftp://ftp.isi.edu/in-notes/rfc2616.txt) defines a number of valid status codes that
can be sent in an HTTP response, such as the famous (or infamous) 404 code, which means that
the resource being requested could not be found.

❑ A Content-Type header, indicating what type of content is contained in the body of the mes-
sage. A client application (such as a web browser) uses this header to decide what to do with the
item; for example, if the content type were a .wav file, the browser might load an external
sound program to play it or give the user the option of saving it to the hard drive instead.

❑ A Content-Length header, which indicates the length of the body of the message

The GET method is the most common HTTP method used in regular everyday surfing. The second most
common is the POST method. When you do a POST, information is sent to the HTTP server in the body of
the message. For example, when you fill out a form on a web page and click the Submit button, the web
browser will usually POST that information to the web server, which processes it before sending back the
results. Suppose you create an HTML page that includes a form like this:

<html>
<head>
<title>Test form</title>
</head>
<body>
<form action=”acceptform.asp” method=”POST”>
Enter your first name: <input name=”txtFirstName” />

Enter your last name: <input name=”txtLastName” />

<input type=”submit” />

</form>
</body>
</html>

This form will POST any information to a page called acceptform.asp, in the same location as this
HTML file, similar to the following:

POST /acceptform.asp HTTP/1.1
Accept: */*
Referer: http://www.wiley.com/myform.htm
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Win32)
Host: www.wiley.com
Content-Length: 36

txtFirstName=Joe&txtLastName=Fawcett

Whereas the GET method provides for surfing the Internet, it’s the POST method that allows for things
like e-commerce, as information can be passed back and forth.

581

Chapter 14: Web Services

As you’ll see later in the chapter, the GET method can also send information by appending it to the
URL, but in general POST is used wherever possible.

Why HTTP for Web Services?
It was mentioned earlier that most web services implementations probably use HTTP as their transport.
Here are a few reasons why:

❑ HTTP is already a widely implemented, and well understood, protocol.

❑ The request/response paradigm lends itself to RPC well.

❑ Most firewalls are already configured to work with HTTP.

❑ HTTP makes it easy to build in security by using Secure Sockets Layer (SSL).

Widely Implemented
One of the primary reasons for the explosive growth of the Internet was the availability of the World
Wide Web, which runs over the HTTP protocol. There are millions of web servers in existence, serving
up HTML and other content over HTTP, and many, many companies use HTTP for e-commerce.

HTTP is a relatively easy protocol to implement, which is one of the reasons why the Web works as
smoothly as it does. If HTTP had been hard to implement, then a number of implementers would have
probably gotten it wrong, meaning some web browsers wouldn’t have worked with some web servers.

Using HTTP for web services implementations is therefore easier than other network protocols would
have been. This is especially true because web services implementations can piggyback on existing web
servers — in other words, use their HTTP implementation. This means you don’t have to worry about
the HTTP implementation at all.

Request/Response
Typically, when a client makes an RPC call, it needs to receive some kind of response. For example,
if you make a call to the getChannels() method, then you need to get a list of channels back, or it
wouldn’t be a very useful procedure to call. In other instances, such as submitting a new entry to a topic,
you may not need data returned from the RPC call, but you may still need confirmation that the proce-
dure executed successfully. For example, an order to a back-end database may not require data to be
returned, but you should know whether the submission failed or succeeded.

HTTP’s request/response paradigm lends itself easily to this type of situation. For your “add entry”
remote procedure, you must do the following:

1. Open a connection to the server providing the XML-RPC service.

2. Send the information on the entry to be added.

3. Process the addition.

4. Get back the result, including an error code if it didn’t work, or a ping identifier if it did.

5. Close the connection.

582

Part VI: Communication

In some cases, such as in the SOAP specification, messages are one-way instead of two-way. This means
two separate messages must be sent: one from the client to the server with, say, numbers to add, and one
from the server back to the client with the result of the calculation. In most cases, however, when a speci-
fication requires the use of two one-way messages, it also specifies that when a request/response proto-
col, such as HTTP, is used, these two messages can be combined in the request/response of the protocol.

Firewall-Ready
Most companies protect themselves from outside hackers by placing a firewall between their internal sys-
tems and the external Internet. Firewalls are designed to protect a network by blocking certain types of
network traffic. Most firewalls allow HTTP traffic (the type of network traffic that would be generated
by browsing the Web) but disallow other types of traffic.

These firewalls protect the company’s data, but they make it more difficult to provide web-based ser-
vices to the outside world. For example, consider a company selling goods over the Web. This web-
based service would need certain information, such as which items are available in stock, which it
would have to get from the company’s internal systems. In order to provide this service, the company
probably needs to create an environment such as the one shown in Figure 14-3.

Figure 14-3

This is a very common configuration, in which the web server is placed between two firewalls. (This sec-
tion, between the two firewalls, is often called a demilitarized zone, or DMZ.) Firewall 1 protects the com-
pany’s internal systems and must be carefully configured to allow the proper communication between
the web server and the internal systems, without letting any other traffic get through. Firewall 2 is con-
figured to let traffic through between the web server and the Internet, but no other traffic.

Web Server

The Internet

Back-End Systems

Firewall 2Firewall 1

583

Chapter 14: Web Services

This arrangement protects the company’s internal systems, but because of the complexity added by
these firewalls — especially for the communication between the web server and the back-end servers —
it makes it a bit more difficult for the developers creating this web-based service. However, because
firewalls are configured to let HTTP traffic go through, it’s much easier to provide the necessary func-
tionality if all of the communication between the web server and the other servers uses this protocol.

Security
Because there is already an existing security model for HTTP, the Secure Sockets Layer (SSL), it is very
easy to make transactions over HTTP secure. SSL encrypts traffic as it passes over the Web to protect it
from prying eyes, so it’s perfect for web transactions, such as credit card orders. In fact, SSL is so com-
mon that there are even hardware accelerators available to speed up SSL transactions.

Using HTTP for XML-RPC
Using HTTP for XML-RPC messages is very easy. You only need to do two things with the client:

❑ For the HTTP method, use POST.

❑ For the body of the message, include an XML document comprising the XML-RPC request.

For example, consider the following:

POST /RPC2 HTTP/1.1
Accept: */* Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.wiley.com
Content-Length: 79

<methodCall>
<methodName>topicExchange.getChannels</methodName>

</methodCall>

The headers define the request, and the XML-RPC request makes up the body. The server knows how to
retrieve that body and process it. In the next chapter, you’ll look at processing the actual request, but for
now you’ll just send an XML-RPC request and process the response.

Try It Out Using HTTP POST to Call Your RPC

You can write a simple HTML page to test this. This page uses MSXML to post the information to the
Internet Topic Exchange, so it needs IE 5 or later to run. (Next we’ll cover the posting in other browsers.)

1. Enter the following code (PostTester-IE.html in the code download). Note that the impor-
tant code, the JavaScript, is highlighted in the following:

<html><head><title>POST Tester - IE</title>
<script language=”JavaScript”>

var xhHTTP;

function doPost()

584

Part VI: Communication

..{
var xdDoc, sXML;

sXML = “<methodCall>”
+ “<methodName>topicExchange.ping</methodName>”
+ “<params><param><value><string>test</string></value></param>”
+ “<param><value><struct>”
+ “<member><name>blog_name</name>”
+ “<value><string>” + pingForm.blog_name.value +

“</string></value></member>”
+ “<member><name>title</name>”
+ “<value><string>” + pingForm.title.value + “</string></value></member>”
+ “<member><name>url</name>”
+ “<value><string>” + pingForm.url.value + “</string></value></member>”
+ “<member><name>excerpt</name>”
+ “<value><string>” + pingForm.excerpt.value +

“</string></value></member>”
+ “</struct></value>”
+ “</param></params>”
+ “</methodCall>”;

xdDoc = new ActiveXObject(“MSXML2.DOMDocument.3.0”);
xdDoc.async = false;
xdDoc.loadXML(sXML);
xhHTTP = new ActiveXObject(“MSXML2.XMLHTTP.3.0”);
xhHTTP.onreadystatechange = handleReadyStateChange;
xhHTTP.open(“POST”, “http://topicexchange.com/RPC2”, true);
xhHTTP.send(xdDoc);

}

function handleReadyStateChange()
{
if (xhHTTP.readyState == 4)
{
var xdDoc = xhHTTP.responseXML;
xdDoc.setProperty(“SelectionLanguage”, “XPath”);
var oErrorNode = xdDoc.selectSingleNode(“//member[name=’flError’]/value”);
if(oErrorNode && oErrorNode.text == “1”)
{
var oMessageNode = xdDoc.selectSingleNode(“//member[name=’message’]/value”)
var msg = “Error:\n” + oMessageNode.text;

}
else
{
var oPingNode = xdDoc.selectSingleNode(“//member[name=’pingid’]/value”);
var oTopicNode = xdDoc.selectSingleNode(“//member[name=’topicUrl’]/value”);
var msg = “Success! Ping “

+ oPingNode.text
+ “ successfully added to URL “
+ oTopicNode.text;

}
alert(msg);
}

}

</script>

585

Chapter 14: Web Services

</head>
<body>
<form name=”pingForm” id=”pingForm”>
<table width=”100%”>
<tr><td>Blog name:</td>

<td><input id=”blog_name” name=”blog_name” size=”45”></td></tr>
<tr><td>Post title:</td>

<td><input id=”title” name=”title” size=”45” ></td></tr>
<tr><td>Post url:</td>

<td><input id=”url” name=”url” size=”45”></td></tr>
<tr><td>Post excerpt:</td>

<td><textarea rows=”6” cols=”34” id=”excerpt”
name=”excerpt”></textarea></td></tr>

</table>
<input type=”button” value=”Send The Ping” id=”btnPost” name=”btnPost”

onclick=”doPost()”>
</form>

</body>
</html>

2. Save this as posttester.html and then open it in IE. Fill in the textboxes with sample infor-
mation — the actual text doesn’t matter, as this is a “test” channel — and click the Send the Ping
button to perform the POST and get the results. Figure 14-4 shows a successful result.

Figure 14-4

If you try sending a ping that already exists, you get the error message shown in Figure 14-5.

586

Part VI: Communication

Figure 14-5

How It Works
A standard HTML form is used to provide the three textboxes and the text area needed for the post
details. The variable xhHTTP is declared outside of the two functions so it is in scope and accessible to
both of them. Instead of actually posting the data using a Submit button, a standard button calls the
doPost() function:

function doPost()
..{

var xdDoc, sXML;

sXML = “<methodCall>”
+ “<methodName>topicExchange.ping</methodName>”
+ “<params><param><value><string>test</string></value></param>”
+ “<param><value><struct>”
+ “<member><name>blog_name</name>”
+ “<value><string>” + pingForm.blog_name.value +

“</string></value></member>”
+ “<member><name>title</name>”
+ “<value><string>” + pingForm.title.value + “</string></value></member>”
+ “<member><name>url</name>”
+ “<value><string>” + pingForm.url.value + “</string></value></member>”
+ “<member><name>excerpt</name>”
+ “<value><string>” + pingForm.excerpt.value +

“</string></value></member>”
+ “</struct></value>”
+ “</param></params>”
+ “</methodCall>”;

The first part of the function builds a string in the required XML format and inserts the four values from
the HTML form: the blog name, title, URL, and excerpt.

587

Chapter 14: Web Services

Building an XML string like this is fine for very simple applications and demonstrations but can lead to
errors. For instance, characters that should be escaped, such as the & in the user input, can cause the
document not to be well formed. A more robust way of creating the document is shown in Chapter 11,
which deals with the XML Document Object Model.

xdDoc = new ActiveXObject(“MSXML2.DOMDocument.3.0”);
xdDoc.async = false;
xdDoc.loadXML(sXML);

The next stage is to load this string into an XML document. You first use the ActiveXObject() method
and specify a prog id of MSXML2.DOMDocument.3.0. There are many versions of this component, but
version 3.0 is installed by default in newer systems. The next line sets the async property to false. This
means that when loading XML, the code waits before continuing (later you’ll see an asynchronous call
made in which the program continues immediately). Finally, the XML representing the Web service
request is loaded using the loadXML() method.

When using IE MSXML, version 3.0 is available on Windows XP or later and most likely on Windows
2000. The latest version of MSXML, 6.0, can be downloaded from www.microsoft.com/
downloads/details.aspx?familyid=993c0bcf-3bcf-4009-be21-27e85e1857b1.

xhHTTP = new ActiveXObject(“MSXML2.XMLHTTP.3.0”);
xhHTTP.onreadystatechange = handleReadyStateChange;
xhHTTP.open(“POST”, “http://topicexchange.com/RPC2”, true);
xhHTTP.send(xdDoc);

After the document is loaded, a second ActiveX object is created. The MSXML2.XMLHTTP class is named
confusingly, for it is capable of making requests using any format, not just XML. Again, version 3.0 rep-
resents a compromise between performance and what is generally available.

The onreadystatechange property dictates what should happen when the state of the request changes.
There are five stages in all, beginning with 0, uninitialized, and finishing with 4, completed; stage 4 is
the stage that we are interested in. The property accepts a function pointer, the name of the function
without any quote marks or parentheses.

The HTTP request is then initialized using the open() method. This takes three parameters: the method,
usually GET or POST, the actual URL, and whether to perform an asynchronous request. In this case, the
last option has been set to true. There are many advantages in making requests asynchronously, one
being that the user can perform other tasks while the request completes. This capability forms the main-
stay of Ajax programming (see Chapter 16 for more on Ajax).

After the open() method, the XML data is posted to the server using the send() method. Control now
returns to the user until the handleReadyState() function is called:

function handleReadyStateChange()
{
if (xhHTTP.readyState == 4)
{
var xdDoc = xhHTTP.responseXML;
xdDoc.setProperty(“SelectionLanguage”, “XPath”);

588

Part VI: Communication

As mentioned earlier, the handleReadyStateChanged() function is called whenever the status
of xhHTTP alters. You are only concerned when the response has been completed, as shown by a
readyState equal to 4. When this happens, the XML document returned is stored in xdDoc. Then the
setProperty() method is used to instruct xdDoc to use XPath as a selection language. (This step is
necessary because when Microsoft originally released these libraries, XPath was not fully finished and
XSLPattern, a similar but now obsolete syntax, was used instead for searches and selections.)

var oErrorNode = xdDoc.selectSingleNode(“//member[name=’flError’]/value”);
if(oErrorNode && oErrorNode.text == “1”)
{
var oMessageNode = xdDoc.selectSingleNode(“//member[name=’message’]/value”)
var msg = “Error:\n” + oMessageNode.text;

}

The selectSingleNode() method first looks for a <member> element that has a child named <name>.
If this has the value flError, then the <value> child is stored in oErrorNode. If this node’s text value
is one, then an error has occurred and a similar XPath is used to retrieve the actual error message:

else
{
var oPingNode = xdDoc.selectSingleNode(“//member[name=’pingid’]/value”);
var oTopicNode = xdDoc.selectSingleNode(“//member[name=’topicUrl’]/value”);
var msg = “Success! Ping “

+ oPingNode.text
+ “ successfully added to URL “
+ oTopicNode.text;

}
alert(msg);
}

}

If no error has occurred, then two nodes are selected providing the ID of the new post and the topic
URL, which should match what was sent in the request. Finally, the error or success message is pre-
sented to the user. The information is posted to the server in a format similar to this:

POST /RPC2 HTTP/1.1
Accept:*/*
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Win32)
Host: www.wiley.com
Content-Length: 591

<methodCall><methodName>topicExchange.ping</methodName><params><param><value>
<string>test</string></value></param><param><value><struct><member>
<name>blog_name</name><value><string>Wiley Books</string></value>
</member><member><name>title</name><value><string>Latest Editions</string>
</value></member><member><name>url</name><value><string>
http://www.wiley.com/CDASection/index.html
</string></value></member><member><name>excerpt</name>
<value><string> There is something for everyone with these latest editions from
Wiley.</string></value>
</member></struct></value></param></params></methodCall>

589

Chapter 14: Web Services

Meanwhile, the information is returned in a format like this:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Fri, 06 Jul 2001 17:48:34 GMT
Content-Length: 48
Content-Type: text/xml

<methodResponse>
<params>
<param>
<value>
<struct>
<member>
<name>topicUrl</name>
<value><string>http://topicexchange.com/t/test/</string></value>

</member>
<member>
<name>flError</name>
<value><boolean>0</boolean></value>

</member>
<member>
<name>editkey</name>
<value><string>cqvq9v20805830945mv0a9w4850239185932850</string>
</value>

</member>
<member>
<name>errorCode</name>
<value><int>0</int></value>

</member>
<member>
<name>pingid</name>
<value><string>28044</string></value>

</member>
<member>
<name>message</name>
<value><string>New ping added.</string></value>

</member>
<member>
<name>topicName</name>
<value><string>test</string></value>

</member>
</struct>

</value>
</param>

</params>
</methodResponse>

So far we have created a system in which messages are passed back and forth, via HTTP POST, in which
all of the data is encoded in XML. This is very handy, but only a very small part of the overall picture.

590

Part VI: Communication

Posting with Firefox and Netscape
The preceding example works only with Internet Explorer on Windows. For browsers based on the
Gecko engine, such as Firefox and Netscape, a different approach is needed. With these browsers, the
ability to make an HTTP request is implemented within the browser, rather than as an external ActiveX
component. To create the HttpRequest, use the following:

var xhHTTP = new XmlHttpRequest();

This has similar methods to the Microsoft class such as open() and send(). As it would be tedious to
create two versions of code each time you wanted to develop a page using this functionality, a common
approach is to abstract the interface by using a JavaScript library that automatically chooses which com-
ponent to use. The library also adds a few methods to the XmlHttpRequest to make it similar to the
Microsoft version.

One of the most popular cross-browser libraries was written by Nicholas C. Zakas, author of Professional
Ajax (Wrox, 2006). The library is included in the code download for this book, but it can also be found,
along with a number of other useful tools, at the author’s website, www.nczonline.net. There are two
versions: zxml.js for incorporation into your web page (compressed for speedy download), and zxml.src.js,
which has the equivalent code but formatted and commented for instructive purposes.

The basis of this library and many others is that the type of browser is detected and the appropriate
object returned.

Try It Out Posting with Firefox and Netscape

One of the chores handled by the library is getting the correct version of the XMLHttpRequest: the
ActiveX one in IE versions earlier than 7.0 or the built-in object for Firefox and Netscape and IE 7.0. The
basic code is shown here:

var zXml /*:Object*/ = {
useActiveX: (typeof ActiveXObject != “undefined”),
useDom: document.implementation && document.implementation.createDocument,
useXmlHttp: (typeof XMLHttpRequest != “undefined”)

};

zXml.ARR_XMLHTTP_VERS /*:Array*/ = [“MSXML2.XmlHttp.6.0”,”MSXML2.XmlHttp.3.0”];

zXml.ARR_DOM_VERS /*:Array*/ = [“MSXML2.DOMDocument.6.0”,”MSXML2.DOMDocument.3.0”];

/**
* Static class for handling XMLHttp creation.
* @class
*/
function zXmlHttp() {
}

/**
* Creates an XMLHttp object.
* @return An XMLHttp object.
*/

591

Chapter 14: Web Services

zXmlHttp.createRequest = function ()/*:XMLHttp*/ {

//if it natively supports XMLHttpRequest object
if (zXml.useXmlHttp) {

return new XMLHttpRequest();
} else if (zXml.useActiveX) { //IE < 7.0 = use ActiveX

if (!zXml.XMLHTTP_VER) {
for (var i=0; i < zXml.ARR_XMLHTTP_VERS.length; i++) {

try {
new ActiveXObject(zXml.ARR_XMLHTTP_VERS[i]);
zXml.XMLHTTP_VER = zXml.ARR_XMLHTTP_VERS[i];
break;

} catch (oError) {
}

}
}

if (zXml.XMLHTTP_VER) {
return new ActiveXObject(zXml.XMLHTTP_VER);

} else {
throw new Error(“Could not create XML HTTP Request.”);

}
} else {

throw new Error(“Your browser doesn’t support an XML HTTP Request.”);
}

};

The first step is determining whether to set the Microsoft XmlHttp class or the XmlHttpRequest built-in
object:

var zXml /*:Object*/ = {
useActiveX: (typeof ActiveXObject != “undefined”),
useDom: document.implementation && document.implementation.createDocument,
useXmlHttp: (typeof XMLHttpRequest != “undefined”)

};

A variable named zXml is declared and three properties are added specifying whether to use ActiveX,
the built-in DOM, and the built-in XmlHttpRequest.

There are many versions of the Microsoft XML-related classes, but the main choice is between version 6
and version 3, so the next step is to declare an array listing them:

zXml.ARR_XMLHTTP_VERS = [“MSXML2.XmlHttp.6.0”, “MSXML2.XmlHttp.3.0”];

Later the code can loop through the array items and initialize the latest version available:

zXmlHttp.createRequest = function ()
{

if (zXml.useXmlHttp) {
return new XMLHttpRequest();

}

592

Part VI: Communication

The first part of the function simply returns the XmlHttpRequest object if it’s available.

else if (zXml.useActiveX) {

if (!zXml.XMLHTTP_VER) {
for (var i=0; i < zXml.ARR_XMLHTTP_VERS.length; i++) {

try {
new ActiveXObject(zXml.ARR_XMLHTTP_VERS[i]);
zXml.XMLHTTP_VER = zXml.ARR_XMLHTTP_VERS[i];
break;

} catch (oError) {
}

}
}

The next part runs when a Microsoft browser is being used. If the code has run previously, then the latest
version available is stored in zXml.XMLHTTP_VER. Otherwise, the code loops through the versions start-
ing with the latest and if no error occurs, it returns a valid instance and stores the version used in zXml
.XMLHTTP_VER. The rest of the function merely throws an error if no XML request can be created, either
because the browser is too old or because the user’s security settings forbid ActiveX.

The following code is the cross-browser version of PostTester-IE.html, PostTester-CrossBrowser
.html. The <body> of the HTML is the same, only the script is different. Note the inclusion of the
zXml.js library:

<script type=”text/javascript” src=”zXML.src.js”></script>
<script type=”text/javascript”>

var xhHTTP;

function doPost()
{
var xdDoc, sXML;

sXML = “<methodCall>”
+ “<methodName>topicExchange.ping</methodName>”
+ “<params><param><value><string>test</string></value></param>”
+ “<param><value><struct>”
+ “<member><name>blog_name</name>”
+ “<value><string>” + pingForm.blog_name.value +

“</string></value></member>”
+ “<member><name>title</name>”
+ “<value><string>” + pingForm.title.value + “</string></value></member>”
+ “<member><name>url</name>”
+ “<value><string>” + pingForm.url.value + “</string></value></member>”
+ “<member><name>excerpt</name>”
+ “<value><string>” + pingForm.excerpt.value +

“</string></value></member>”
+ “</struct></value>”
+ “</param></params>”
+ “</methodCall>”;

if (zXml.useXmlHttp && !zXml.useActiveX)
{
try
{

593

Chapter 14: Web Services

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);
}
catch (e)
{
alert(“Permission UniversalBrowserRead denied.”);

}
}
xdDoc = zXmlDom.createDocument();
xdDoc.loadXML(sXML);
xhHTTP = zXmlHttp.createRequest();
xhHTTP.onreadystatechange = handleReadyStateChange;
xhHTTP.open(“POST”, “http://topicexchange.com/RPC2”, true);
xhHTTP.send(xdDoc);

}

function handleReadyStateChange()
{
if (xhHTTP.readyState == 4)
{
if (zXml.useXmlHttp && !zXml.useActiveX)
{
try
{
netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);
}
catch (e)
{
alert(“Permission UniversalBrowserRead denied.”);

}
}
var xdDoc = xhHTTP.responseXML;
var oErrorNode = zXPath.selectSingleNode(xdDoc.documentElement,

“//member[name=’flError’]/value”);
if (oErrorNode && oErrorNode.text == 1)
{
var oMessageNode = zXPath.selectSingleNode(xdDoc.documentElement,

“//member[name=’message’]/value”)
var msg = “Error:\n” + oMessageNode.text;

}
else
{
var oPingNode = zXPath.selectSingleNode(xdDoc.documentElement,

“//member[name=’pingid’]/value”);
var oTopicNode = zXPath.selectSingleNode(xdDoc.documentElement,

“//member[name=’topicUrl’]/value”);
var msg = “Success! Ping “

+ oPingNode.text
+ “ successfully added to URL “
+ oTopicNode.text

}
alert(msg);

}
}

</script>

594

Part VI: Communication

How It Works
There are two main points of interest here. First is the use of zXml, zXmlHttp, and zXPath for creating
the XML document and XML request, and for extracting information from the response. These are all
designed to work with different browsers, and by ascertaining the browser type they can carry out their
allotted task using the appropriate classes and methods.

Second is this piece of code:

if (zXml.useXmlHttp)
{
try
{
netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);
}
catch (e)
{
alert(“Permission UniversalBrowserRead denied.”);

}
}

Although the Internet Explorer version of PostTester-IE.html can be opened from a local drive and
run, the Mozilla version can’t. The security restriction known as cross-domain posting forbids it. It also
causes Internet Explorer to fail if run from a web server. Cross-domain posting means that the web serv-
ice you are attempting to use resides on a domain other than the page from which the request is made.

Because this could be used by a maliciously designed page to send data nefariously to a third party,
cross-domain posting is blocked by default. To allow it, the user must elevate the browser’s permissions
level. The preceding code produces a dialog box similar to the one shown in Figure 14-6.

Figure 14-6

595

Chapter 14: Web Services

The user can choose to allow, forbid, or always allow the site the capability to cross-domain post.
Obviously, this situation is not ideal. Chapter 16, which deals with Ajax, presents a better technique
known as a server-side proxy, which circumvents this problem without inconveniencing the user.

Taking a REST
So far we’ve been working exclusively with the POST method. This section describes using web services
with the GET method. In fact, it covers a web service that in some circles is not considered a web service
at all. It was mentioned earlier in this chapter that technically, a “web service” is any information
requested over the Web. For example, back in 1996, I built a Java applet that retrieved a calculation from
a remote URL. At the time, there was no XML involved. The numbers involved in the calculation were
simply included as part of the URL, and the response consisted of the result of the calculation.

That, in a nutshell, is REST. Short for REpresentational State Transfer, REST is not a specification, but
rather an architecture, which asserts that all resources should be directly addressable by an URL. For
example, the XML-RPC implementation would not be RESTful because you use a single URL for both
the getChannels() and ping() methods; you can’t tell the difference between requests just by the URL.

On the other hand, if you were to request an XML document from Amazon.com using the following
URL, that would be an example of REST, because all of the necessary information is part of the URL:

http://xml.amazon.com/onca/xml3?t=thevanguardsc-20&dev-t=xxxxxxxxxxxxxx&Key
wordSearch=web+services&mode=books&type=lite&page=1&f=xml

In fact, many developers who think they’re using web services are actually using REST. Amazon.com
provides access to its database and functionality via web services, but they also give developers the
option to simply include all the relevant information as part of the URL, rather than send a SOAP mes-
sage. According to some reports, the overwhelming majority of requests to the Amazon API use this
method. Now try an example and see how this works.

Try It Out Calling a Web Service Using REST

Rather than use POST to execute a remote procedure call, in this example you use GET to request an XML
response. In this case, you create a simple web page that accepts a topic and returns the number of books
Amazon has listed for that particular topic.

1. Start by creating an HTML form that accepts the information:

<html>
<head>

<title>GET Tester</title>
</head>
<body>

The xxxxxxxxxxxxxx in the preceding URL must be replaced with a valid user key,
which can be obtained from https://aws-portal.amazon.com/gp/aws/
developer/registration/index.html.

596

Part VI: Communication

<form name=”searchForm” id=”searchForm”>
<p>
What topic would you like to research?

<input id=”keyword” name=”keyword” size=”45”>

</p>
<input type=”button” value=”Send The Request”>

</form>
</body>

</html>

2. Add the JavaScript that adds the cross-browser library, takes the form information, and con-
structs a URL:

<html>
<head>

<title>GET Tester</title>

<script type=”text/javascript” src=”zXML.js”></script>

<script type=”text/javascript”>
var keyword, xhHTTP;
function doGet()
{

keyword = searchForm.keyword.value;
sRequest = “http://xml.amazon.com/onca/xml3?t=webservices-20”

+ “&dev-t=<Amazon key goes here>&KeywordSearch=”
+ keyword
+ “&mode=books&type=lite&page=1&f=xml”; </head>

<body>
<form name=”searchForm” id=”searchForm”>
<p>
What topic would you like to research?

<input id=”keyword” name=”keyword” size=”45”>

</p>
<input type=”button” value=”Send The Request” onclick=”doGet()”>

</form>
</body>
</html>

3. Send the request using the GET method and handle the result as shown in the earlier example in
PosterTester-CrossBrowser.html. Again, Mozilla browsers need to be granted extra per-
missions for this script to work:

<html>
<head>

<title>GET Tester</title>
<script language=”JavaScript”>

function doGet()
{

var xdDoc, xhHTTP, sXML

var keyword = searchForm.keyword.value;
sRequest = “http://xml.amazon.com/onca/xml3?t=webservices-20”+

“&dev-t=xxxxxxxxxxxxxxxx&KeywordSearch=”+keyword+

597

Chapter 14: Web Services

“&mode=books&type=lite&page=1&f=xml”;

if (zXml.useXmlHttp)
{
try
{
netscape.security.PrivilegeManager.enablePrivilege

(“UniversalBrowserRead”);
}
catch (e)
{
alert(“Permission UniversalBrowserRead denied.”);

}
}
xhHTTP = zXmlHttp.createRequest();
xhHTTP.onreadystatechange = handleReadyStateChange;
xhHTTP.open(“GET”, sRequest, true);
xhHTTP.send(null);

function handleReadyStateChange()
{
if (xhHTTP.readyState == 4)
{

if (zXml.useXmlHttp)
{
try
{
netscape.security.PrivilegeManager.enablePrivilege

(“UniversalBrowserRead”);
}
catch (e)
{
alert(“Permission UniversalBrowserRead denied.”);

}
}
var xdDoc = xhHTTP.responseXML;
alert(xhHTTP.responseText);
var oResultsNode = zXPath.selectSingleNode

(xdDoc.documentElement, “/ProductInfo/TotalResults”);
var iResults = oResultsNode.text;
alert(“Amazon lists “ + iResults + “ books on “ + keyword + “.”);

}
}}

</script>
</head>
<body>
<form name=”searchForm” id=”searchForm”>
<p>
What topic would you like to research?

<input id=”keyword” name=”keyword” size=”45”>

</p>
<input type=”button” value=”Send The Request” onclick=”doGet()”>

</form>
</body>

</html>

598

Part VI: Communication

4. Enter a topic and click the Send The Request button to see the results, shown in Figure 14-7.

Figure 14-7

How It Works
Whereas in the first Try It Out you created an XML document to send to the remote web service, all you
do here is construct the URL correctly. The URL consists of seven name/value pairs, such as type=lite,
each separated by an ampersand (&). For example, the mode of the search is books. The browser actually
pulls the keyword information from the web form and uses it to construct the URL.

In fact, you could construct virtually any request this way. For example, you might have posted to the
TopicExchange without creating an XML-RPC message just by calling the URL:

http://topicexchange.com/t/books/?blog_name=Wiley+Books &title=Latest+Editions
&url=http://www.wiley.com/WileyCDA/section/index.html&excerpt=Our+latest+editions...

You don’t do that, however, because it goes against the way the Web was designed. GET requests are
only to be used for requests that have no “side effects.” Otherwise, you’re supposed to use POST. In
other words, you can request the number of books Amazon carries using GET, but if you’re going to
actually place an order, use POST.

Once you’ve constructed the URL, you can send it to the server. This process is much the same as a POST
request, but no body is sent with the request. The response is a pure XML document — to see it, add the
command alert(xdDoc.text) to the script — from which you can pull a particular node or nodes.

So is REST a form of web services? Many (including those who first espoused REST) would disagree
with me, but I say yes. True, you’re not sending an XML request, but most of the time you are getting an
XML response.

599

Chapter 14: Web Services

The moral of the story? Be careful when you say “web services.” There are plenty of specifications to go
around; make sure you know which one you’re talking about. In fact, web-services-related standards
abound, so before you go about using any of them, you should understand how they fit together.

The Web Services Stack
If you’ve been having trouble keeping track of all of the web services-related specifications out there and
just how they all fit together, don’t feel bad, it’s not just you. In fact, there are literally dozens of specs
out there, with a considerable amount of duplication as companies jockey for position in this nascent
field. Lately it’s gotten so bad that even Don Box, one of the creators of the major web services protocol,
SOAP, commented at a conference that the proliferation in standards has led to a “cacophony” in the
field and that developers should writer fewer specs and more applications.

Not that some standardization isn’t necessary, of course. That’s the whole purpose of the evolution of
“web services” as an area of work — to find a way to standardize communications between systems.
This section discusses the major standards you must know in order to implement most web services sys-
tems, and then addresses some of the emerging standards and how they all fit together.

SOAP
If you learn only one web-services-related protocol, SOAP is probably your best bet. Originally con-
ceived as the Simple Object Access Protocol, SOAP has now been adapted for so many different uses that
its acronym is no longer applicable.

SOAP is an XML-based language that provides a way for two different systems to exchange information
relating to a remote procedure call or other operation. SOAP messages consist of a Header, which con-
tains information about the request, and a Body, which contains the request itself. Both the Header and
Body are contained within an Envelope.

SOAP calls are more robust than, say, XML-RPC calls, because you can use arbitrary XML. This enables
you to structure the call in a way that’s best for your application. For example, if your application ulti-
mately needs an XML node such as

<totals>
<dept id=”2332”>
<gross>433229.03</gross>
<net>23272.39</net>

</dept>
<dept id=”4001”>
<gross>993882.98</gross>
<net>388209.27</net>

</dept>
</totals>

then rather than try to squeeze your data into an arbitrary format such as XML-RPC, you can create a
SOAP message such as the following:

600

Part VI: Communication

<?xml version=”1.0” encoding=”UTF-8”?>
<SOAP:Envelope xmlns:SOAP=”http://www.w3.org/2003/05/soap-envelope”>

<SOAP:Header></SOAP:Header>
<SOAP:Body>

<totals xmlns=”http://www.wiley.com/SOAP/accounting”>
<dept id=”2332”>
<gross>433229.03</gross>
<net>23272.39</net>

</dept>
<dept id=”4001”>
<gross>993882.98</gross>
<net>388209.27</net>

</dept>
</totals>

</SOAP:Body>
</SOAP:Envelope>

SOAP also has the capability to take advantage of technologies such as XML-Signature for security. You
can also use attachments with SOAP, so a request could conceivably return, say, a document or other
information. In the next chapter, you’ll create a complete SOAP server and client, and look at the syntax
of a SOAP message.

Of course, this suggests another problem: How do you know what a SOAP request should look like, and
what it will return as a result? As you’ll see next, WSDL solves that problem.

WSDL
The Web Services Description Language (WSDL) is an XML-based language that provides a contract
between a web service and the outside world. To understand this better, let’s go back to our discussion
of COM and CORBA. The reason why COM and CORBA objects can be so readily shared is that they
have defined contracts with the outside world. This contract defines the methods an object provides, as
well as the parameters to those methods and their return values. Interfaces for both COM and CORBA
are written in variants of the Interface Definition Language (IDL). Code can then be written to look at an
object’s interface to determine what functions are provided. In practice, this dynamic investigation of an
object’s interface often happens at design time, as a programmer is writing the code that calls another
object. A programmer would find out what interface an object supports and then write code that prop-
erly calls that interface.

Web services have a similar contract with the outside world, except that the contract is written in WSDL
instead of IDL. This WSDL document outlines what messages the SOAP server expects in order to pro-
vide services, as well as what messages it returns. Again, in practice, WSDL is likely used at design time.
A programmer would use WSDL to figure out what procedures are available from the SOAP server and
what format of XML is expected by that procedure, and then write the code to call it.

To take things a step further, programmers might never have to look at WSDL directly or even deal with
the underlying SOAP protocol. Already available are several SOAP toolkits that can hide the complexi-
ties of SOAP. If you point one of these toolkits at a WSDL document, it can automatically generate code
to make the SOAP call for you! At that point, working with SOAP is as easy as calling any other local

601

Chapter 14: Web Services

object on your machine. You can find many toolkits for developing SOAP applications at www-128.ibm
.com/developerworks/views/webservices/downloads.jsp. The next chapter looks at the syntax
for a WSDL document. After you’ve built it, how do you let others know that it’s out there? Enter UDDI.

UDDI
The Universal Discovery, Description, and Integration (UDDI) protocol enables web services to be registered
so that they can be discovered by programmers and other web services. For example, if you’re going to
create a web service that serves a particular function, such as providing up-to-the-minute traffic reports
by GPS coordinates, you can register that service with a UDDI registry. The global UDDI registry system
consists of several different servers that all mirror each other, so by registering your company with one,
you add it to all the others.

The advantage of registering with the UDDI registry is twofold. First, your company’s contact informa-
tion is available, so when another company wants to do business with you, it can use the white pages
type of lookup to get the necessary contact information. A company’s listing not only includes the usual
name, phone number, and address type of information, but also information on the services available.
For example, it might include a link to a WSDL file describing the traffic reporting system.

The UDDI registry system also enables companies to find each other based on the types of web services
they offer. This is called a green pages type of listing. For example, you could use the green pages to find a
company that uses web services to take orders for widgets. Listings would also include information on
what the widget order request should look like and the structure of the order confirmation, or, at the
very least, a link to that information.

Many of the SOAP toolkits available, such as IBM’s Web Services Toolkit, provide tools to work with
UDDI. UDDI seems to be another of those seemed like a good idea at the time specifications. Most real-
world developers naturally prefer to build their applications knowing that the web services they will
consume are available, and are unwilling to risk having to discover them dynamically. This is one of the
reasons why UDDI has never really taken off.

Surrounding Specifications
So far we’ve described a landscape in which you can use a UDDI registry to discover a web service for
which a WSDL file describes the SOAP messages used by the service. For all practical purposes, you
could stop right there, because you have all of the pieces that are absolutely necessary, but as you start
building your applications, you will discover that other issues need to be addressed.

For example, just because a web service is built using such specifications as SOAP and WSDL doesn’t
mean that your client is going to flawlessly interact with it. Interoperability continues to be a challenge
between systems, from locating the appropriate resource to making sure types are correctly imple-
mented. Numerous specifications have emerged in an attempt to choreograph the increasingly complex
dance between web service providers and consumers. Moreover, any activity that involves business
eventually needs security.

This section looks at some of the many specifications that have been working their way into the market-
place. Only time will tell which will survive and which will ultimately wither, but it helps to understand
what’s out there and how it all fits together.

602

Part VI: Communication

Interoperability
At the time of this writing, the big name in interoperability is the Web Services Interoperability
Organization, or WS-I (www.ws-i.org). This industry group includes companies such as IBM, Micro-
soft, and Sun Microsystems, and the purpose of the organization is to define specific “profiles” for web
services and provide testing tools so that companies can be certain that their implementations don’t con-
tain any hidden “gotchas.” WS-I has released a Basic Profile as well as a number of use cases and sample
implementations.

Some other interoperability-related specifications include the following:

❑ WS-Addressing (http://msdn.microsoft.com/ws/2003/03/ws-addressing/) provides a
way to specify the “location” of a web service. Remember that we’re not always talking about
HTTP. WS-Addressing defines an XML document that indicates how to “find” a service, no mat-
ter how many firewalls, proxies, or other devices and gateways lie between you and that service.

❑ WS-Eventing (www.w3.org/Submission/WS-Eventing/) describes protocols that involve a
publish/subscribe pattern, in which web services subscribe to or provide event notifications.

Details and descriptions of these and related services can also be found at http://msdn.microsoft
.com/webservices/webservices/understanding/specs/default.aspx.

Coordination
For a while, it looked like the winner in coordination and choreography was going to be ebXML
(www.ebxml.org), a web services version of Electronic Data Interchange (EDI), in which companies
become “trading partners” and define their interactions individually. ebXML consists of a number of
different modules specifying the ways in which businesses can define not only what information they’re
looking for and the form it should take, but the types of messages that should be sent from a multiple-
step process. Although ebXML is very specific and seems to work well in the arena for which it was
designed, it doesn’t necessarily generalize well in order to cover web services outside the EDI realm.

As such, Business Process Execution Language for Web Services (BPEL4WS) (http://msdn2.microsoft
.com/en-us/library/aa479359.aspx) has been proposed by a coalition of companies, including
Microsoft and IBM. BPEL4WS defines a notation for specifying a business process ultimately implemented
as web services. Business processes fall into two categories: executable business processes and business pro-
tocols. Executable business processes are actual actions performed in an interaction, whereas business
protocols describe the effects (for example, orders placed) without specifying how they’re actually
accomplished. When BPEL4WS was introduced in 2002, it wasn’t under the watchful eye of any stan-
dards body, which was a concern for many developers, so work is currently ongoing within the Web
Services Business Process Execution Language (WS-BPEL) (www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsbpel) group at the OASIS standards body.

Not to be outdone, the World Wide Web Consortium has opened the WS-Choreography (www.w3.org/
2002/ws/chor/) activity, which is developing a way for companies to describe their interactions with
trading partners. In other words, they’re not actually defining how data is exchanged, but rather the
language to describe how data is exchanged. In fact, Choreography Definition Language is one of the
group’s deliverables.

603

Chapter 14: Web Services

In the meantime, Microsoft, IBM, and BEA are also proposing WS-Coordination (www-106.ibm.com/
developerworks/library/ws-coor/), which is also intended to provide a way to describe these inter-
actions. This specification involves the WS-AtomicTransaction specification for describing individual
components of a transaction.

Security
Given its importance, perhaps it should come as no surprise that security is currently another hotly con-
tested area. In addition to the basic specifications set out by the World Wide Web Consortium, such as
XML Encryption (www.w3.org/Encryption/2001/) and XML Signature (www.w3.org/Signature/),
the industry is currently working on standards for identity recognition, reliable messaging, and overall
security policies.

Both the Liberty Alliance (www.projectliberty.org), which includes Sun Microsystems, and
WS-Federation (Web Services Federation Language) (www-106.ibm.com/developerworks/
webservices/library/ws-fedworld/), espoused by IBM and Microsoft, are trying to specify a means
for creating a “federated identity.” In other words, you should be able to sign on to one site with your
username and password, smart card, fingerprint, or any other form of identification, and be recognized
anywhere, even another site and another application.

Perhaps the most confusing competition is between WS Reliable Messaging (www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsrm) and WS-ReliableMessaging (www-106.ibm.com/
developerworks/webservices/library/ws-rm/). In essence, both specifications are trying to
describe a protocol for reliably delivering messages between distributed applications within a particular
tolerance, or Quality of Service. These specifications deal with message order, retransmission, and ensur-
ing that both parties to a transaction are aware of whether a message has been successfully received.

Two other specifications to consider are WS-Security and WS-Policy:

❑ WS-Security (www-106.ibm.com/developerworks/webservices/library/ws-secure/) is
designed to provide enhancements to SOAP that make it easier to control issues such as mes-
sage integrity, message confidentiality, and authentication, no matter what security model or
encryption method you use.

❑ WS-Policy (www-106.ibm.com/developerworks/webservices/library/ws-polfram/) is a
specification meant to help people writing other specifications, and it provides a way to specify
the “requirements, preferences, and capabilities” of a web service.

Summary
This chapter covered many aspects of web services, a group of XML-based protocols for performing
remote procedure calls. You studied how web services can be used, and even put them into practice by
creating an XML-RPC client using the Internet Explorer browser.

Because web services are based on easy-to-implement and standardized technologies such as XML and
HTTP, they have the potential to become a universal tool. In fact, most of the hype surrounding web
services concerns its interoperability. At least initially, companies providing web services software are

604

Part VI: Communication

concentrating on making their software as interoperable as possible with the software from other compa-
nies, instead of creating proprietary changes to the standards, but they’re also creating a good number of
new standards.

In general, web services are XML messages sent as the body of an HTTP POST request. The response is
XML, which we can then analyze. We can also request a web services response via an HTTP GET request.
For any level more complex than that, standards are still being shaken out.

The next chapter takes a deeper look at two of the most important web services specifications, SOAP
and WSDL.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
Imagine you are trying to contact an XML-RPC-based web service to submit a classified ad for a lost
dog. The required information includes your name, phone number, and the body of the ad. What might
the XML request look like?

Question 2
You are trying to call a REST-based web service to check on the status of a service order. The service
needs the following information:

cust_id: 3263827
order_id: THX1138

What might the request look like?

605

Chapter 14: Web Services

15
SOAP and WSDL

In the last chapter, you learned about web services and how they work toward enabling disparate
systems to communicate. Of course, if everyone just chose their own formats in which to send
messages back and forth, that wouldn’t do much good in the interoperability area, so a standard
format is a must. XML-RPC is good for remote procedure calls, but otherwise limited. SOAP over-
comes that problem by enabling rich XML documents to be transferred easily between systems,
even allowing for the possibility of attachments. Of course, this flexibility means that you need a
way to describe your SOAP messages, and that’s where Web Services Description Language
(WSDL) comes in. WSDL provides a standard way to describe where and how to make requests to
a SOAP-based service.

SOAP originally stood for Simple Object Access Protocol, but as most people found it anything
but simple it is now officially a name rather than an acronym, so it doesn’t stand for anything.

In this chapter you’ll take it a step further by creating a simple web service using a method called
REST (covered in the previous chapter). You’ll expand your horizons by creating a SOAP service
and accessing it via SOAP messages, describing it using WSDL so that other developers can make
use of it if desired.

In this chapter you’ll learn the following:

❑ Why SOAP can provide more flexibility than previous RPC protocols

❑ How to format SOAP messages

❑ When to use GET versus POST in an HTTP request

❑ What SOAP intermediaries are

❑ How to describe a service using WSDL

❑ The difference between SOAP styles

Laying the Groundwork
Any web services project requires planning, so before you jump into installing software and creating
files, let’s take a moment to look at what you’re trying to accomplish. Ultimately, you want to send and
receive SOAP messages, and describe them using WSDL. To do that, you need the following in place:

❑ The client — In the last chapter, you created an XML-RPC client in Internet Explorer. This chap-
ter uses a lot of the same techniques to create a SOAP client.

❑ The server — You’re going to create two kinds of SOAP services in this chapter, and they both
use ASP.NET. Both use standard aspx pages, rather than .NET’s specialized asmx page. There
are two reasons for this. First, coding by hand ensures that you see how it works, and more
important, you learn how to diagnose problems in real-life situations. Second, if you want to
use these techniques in other languages, it’s easier to port the code when it’s not hidden by
.NET’s web service abstraction layer.

In order to run some of the examples in this chapter, you need Internet Information Services (IIS) version
5.0 or later with ASP.NET installed, or Visual Studio. The examples will work with Visual Studio Express
Web Edition, which can be downloaded free from http://msdn.microsoft.com/vstudio/express/.

Running Examples in Windows 2003,

XP, and 2000
The steps needed to install a web server on Windows depend on which operating system you’re using.
A version of IIS comes with Windows 2003, Windows XP Professional Edition, and Windows 2000. In
most cases, it is installed by default, but if it’s not, select Control Panel ➪ Add/Remove Programs, and
select Add/Remove Windows Components, under which you’ll find the option to install Internet
Information Services (IIS). Unfortunately, IIS doesn’t come with Windows XP Home Edition, and neither
IIS nor PWS can be installed on it.

You can also run the examples using the built-in web server that comes with Visual Studio. This has
fewer options than IIS and is only suitable for development and testing, but it has the advantage that no
extra install is needed and it makes the projects self-contained.

The New RPC Protocol: SOAP
According to the current SOAP specification, SOAP is “a lightweight protocol for exchange of informa-
tion in a decentralized, distributed environment.” In other words, it is a standard way to send informa-
tion from one computer to another using XML to represent the information.

At the time of writing, you can find information on the current version of SOAP, SOAP 1.2, at www.w3.org/

2000/xp/Group/.

In a nutshell, the SOAP recommendation defines a protocol whereby all information sent from computer
to computer is marked up in XML, with the information transmitted via HTTP in most cases.

608

Part VI: Communication

Technically, SOAP messages don’t have to be sent via HTTP. Any networking protocol, such as SMTP or FTP,
could be used, but for the reasons discussed in the last chapter, in practice HTTP is likely to remain the most com-
mon protocol used for SOAP for some time.

Let’s look at some of the advantages of SOAP over other protocols such as DCOM or Java RMI:

DCOM and Java RMI are forerunners of SOAP and were both designed to solve the same problem: how
to call methods of a class that resides on a remote machine and make the results available to the local
machine. You can find a good tutorial about these techniques at
http://my.execpc.com/~gopalan/misc/compare.html.

❑ It’s platform-, language-, and vendor-neutral — Because SOAP is implemented using XML and
(usually) HTTP, it is easy to process and send SOAP requests in any language, on any platform,
without having to depend on tools from a particular vendor.

❑ It’s easy to implement — SOAP was designed to be less complex than the other protocols. Even
if it has moved away from that a bit in recent years, a SOAP server can still be implemented
using nothing more than a web server and an ASP page or a CGI script.

❑ It’s firewall-safe — Assuming that you use HTTP as your network protocol, you can pass SOAP
messages across a firewall without having to perform extensive configuration.

In this chapter, you’ll create part of a hypothetical music order service.

Try It Out Creating an RPC Server in ASP.NET

Before you start creating SOAP messages, you need to look at the process of creating an RPC server that
receives a request and sends back a response. This example begins with a fairly simple procedure to
write: one that takes a unit price and quantity and returns the appropriate discount along with the total
price.

To begin, you’re going to create a simple ASP.NET page that accepts two numbers, evaluates them, and
returns the results in XML. It won’t be a fully-fledged SOAP service for reasons discussed later, but it
contains a similar architecture. Later you’ll convert it to a full SOAP XML service.

The example that follows uses Visual Studio. If you don’t want to use this, just create the two files in a
folder and make that folder a virtual directory in IIS.

Chapter 16 includes detailed instructions on how to set up a virtual folder.

1. Open Visual Studio and choose File ➪ New ➪ Web Site. Choose an ASP.NET website and call the
folder BasicOrderService. Testing will be easier if you use IIS to host the site, rather than
Visual Studio’s own web server.

Rename Default.aspx to GetTotal.aspx and open it in the editor.

2. Remove all the content from the page except for the declaration at the top and add a new
attribute, ContentType, with a value of text/xml. The page should now look like the follow-
ing, although the code will all be on one line:

<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”GetTotal.aspx.cs” Inherits=”_Default”
ContentType=”text/xml”%>

609

Chapter 15: SOAP and WSDL

Save the page, right-click on it in the Solution Explorer, and choose Set as Start Up Page.

3. Right-click in the body of the page and choose View Code. You will see the code file
GetTotal.aspx.cs. Replace the code with the following:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Xml;

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
string clientXml = string.Empty;
try
{
double unitPrice = Convert.ToDouble(Request.QueryString[“unitPrice”]);
int quantity = Convert.ToInt16(Request.QueryString[“quantity”]);
double discount = GetQuantityDiscount(quantity);
double basicTotal = GetBasicTotal(unitPrice, quantity);
double finalTotal = basicTotal * (1 - discount);
clientXml = GetSuccessXml(finalTotal, discount * 100);

}
catch (Exception ex)
{
clientXml = GetErrorXml(ex);

}
XmlDocument doc = new XmlDocument();
doc.LoadXml(clientXml);
doc.Save(Response.OutputStream);

}

private double GetBasicTotal(double unitPrice, int quantity)
{
return unitPrice * quantity;

}

private double GetQuantityDiscount(int quantity)
{
if (quantity < 6) return 0;
if (quantity < 11) return 0.05;
if (quantity < 51) return 0.1;
return 0.2;

}
private string GetSuccessXml(double totalPrice, double discount)
{
string clientXml = “<GetTotalResponse><Discount>{0}</Discount>”

+ “<TotalPrice>{1}</TotalPrice></GetTotalResponse>”;

610

Part VI: Communication

return string.Format(clientXml, Convert.ToString(discount),
Convert.ToString(totalPrice));

}

private string GetErrorXml(Exception ex)
{
string clientXml = “<Error><Reason>{0}</Reason></Error>”;
return string.Format(clientXml, ex.Message);

}
}

The page is called with two values in the query string, unitPrice and quantity. The total
price is calculated by multiplying the two values, and then a discount is applied. The discount
depends on the quantity, and applies when the user requests more than five items. The results
are returned in XML.

4. Test the page by right-clicking the project in the Solution Explorer and choosing View in
Browser. When your browser appears it should show a listing of the project files and a URL sim-
ilar to http://localhost:1698/BasicOrderService/. (The port may not show if you’re
using IIS.) Append the text GetTotal.aspx?unitprice=8.5&quantity=6 to this and press
Enter. You should see XML similar to that shown in Figure 15-1. If invalid values are entered,
such as a quantity of x, then you should see the result shown in Figure 15-2.

Figure 15-1

Figure 15-2

611

Chapter 15: SOAP and WSDL

How It Works
This page pulls two values from the query string, converts them to numbers, and performs two actions.
First, it requests a quantity discount using GetQuantityDiscount(), and then the page multiplies the
two original numbers using GetBasicTotal(). Next, it returns the results as XML by loading a string
of XML into an XmlDocument and saving to the Response.OutputStream. If either of the two values
isn’t numeric, meaning they can’t be multiplied together, a different XML document is returned to the
client, indicating a problem. This method of saving to the output stream is better than alternatives such
as using Response.Write, as it preserves the character encoding that may be used in the document,
whereas Response.Write always treats the content as UTF-16.

Note that this ASP.NET page isn’t limited to being called from a browser. For example, you could load
the XML directly and then retrieve the numbers from it, as in this VB.NET example:

Sub Main()
Dim xdDoc As System.Xml.XmlDocument = new System.Xml.XmlDocument()

xdDoc.Load
(“http://localhost/BasicOrderService/gettotal.aspx?unitprice=8.5&quantity=6”)

If xdDoc.documentElement.name = “Error” Then
MsgBox (“Unable to perform calculation”)

Else
MsgBox

(xdDoc.selectSingleNode(“/*/TotalPrice”).InnerText)
End If

End Sub

You pass a URL, including the query string, to the Load() method, and then check the results. If the root
element is named Error, then you know something went wrong. Otherwise, you can get the results
using an XPath expression.

Just RESTing
Technically speaking, what you just did isn’t actually a SOAP transaction, but not for the reasons you
might think. The issue isn’t that you sent a URL rather than a SOAP message in order to make the
request; SOAP actually defines just such a transaction. The problem is that the response wasn’t actually a
SOAP message.

Take a look at the output:

<GetTotalResponse>
<Discount>0.95</Discount>
<TotalPrice>44.46</TotalPrice>

</GetTotalResponse>

This is a perfectly well-formed XML message, but it doesn’t conform to the structure of a SOAP message.
A SOAP message, as you’ll see in the next section, consists of an Envelope element that contains a
Header and Body. If this were a SOAP message, the XML you see here would have been contained in the
SOAP Body.

612

Part VI: Communication

Why go through all that? For one thing, this is still a perfectly valid way of creating a web service.
Known as REpresentational State Transfer (REST), it’s based on the idea that any piece of information on
the World Wide Web should be addressable via a URL. In this case, that URL included a query string
with parameter information.

REST is growing in popularity as people discover that it is, in many ways, much easier to use than
SOAP. After all, you don’t have to create an outgoing XML message, and you don’t have to figure out
how to POST it, as demonstrated in the previous chapter.

All of this begs the question: If REST is so much easier, why use SOAP at all? Aside from the fact that in
some cases the request data is difficult or impossible to provide as a URL, the answer lies in the funda-
mental architecture of the Web. You submitted this request as a GET, which means that any parameters
were part of the URL and not the body of the message. If you were to remain true to the way the Web is
supposed to be constructed, GET requests are only for actions that have no “side effects,” such as making
changes to a database. That means you could use this method for getting information, but you couldn’t
use it for, say, placing an order, because the act of making that request changes something on the server.

When SOAP was still growing in popularity, some developers insisted that REST was better because it
was simpler. SOAP 1.2 ends the controversy by adopting a somewhat RESTful stance, making it possible
to use an HTTP GET request to send information and parameters and get a SOAP response. Before you
see that in action, though, you should look at how SOAP itself works.

Basic SOAP Messages
As mentioned before, SOAP messages are basically XML documents, usually sent across HTTP. SOAP
specifies the following:

❑ Rules regarding how the message should be sent. Although the SOAP specification says that
any network protocol can be used, specific rules are included in the specification for HTTP, as
that’s the protocol most people use.

❑ The overall structure of the XML that is sent. This is called the envelope. Any information to be
sent back and forth over SOAP is contained within this envelope, and is known as the payload.

❑ Rules regarding how data is represented in this XML. These are called the encoding rules.

When you send data to a SOAP server, the data must be represented in a particular way so that the
server can understand it. The SOAP 1.2 specification outlines a simple XML document type, which is
used for all SOAP messages. The basic structure of that document is as follows:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
<soap:Header>
<head-ns:someHeaderElem xmlns:head-ns=”some URI”

env:mustUnderstand=”true{{vert}false”
env:relay=”true{{vert}false”
env:role=”some URI”/>

</soap:Header>
<soap:Body encodingStyle=”http://www.w3.org/2003/05/soap-encoding”>
<some-ns:someElem xmlns:some-ns=”some URI”/>
<!-- OR -->
<soap:Fault>

613

Chapter 15: SOAP and WSDL

<soap:Code>
<soap:Value>Specified values</soap:Value>
<soap:Subcode>
<soap:Value>Specified values</soap:Value>

</soap:Subcode>
</soap:Code>
<soap:Reason>
<soap:Text xml:lang=”en-US”>English text</soap:Text>
<v:Text xml:lang=”fr”>Texte francais</soap:Text>

</soap:Reason>
<soap:Detail>
<!-- Application specific information -->

</soap:Detail>
</soap:Fault>

</soap:Body>
</soap:Envelope>

Only three main elements are involved in a SOAP message itself (unless something goes wrong):
<Envelope>, <Header>, and <Body>, and starting in version 1.2 of SOAP, a number of error-related ele-
ments. Of these elements, only <Envelope> and <Body> are mandatory; <Header> is optional, and
<Fault> and its child elements are only required when an error occurs. In addition, all of the attributes
(encodingStyle, mustUnderstand, and so on) are optional.

<Envelope>
Other than the fact that it resides in SOAP’s envelope namespace, www.w3.org/2003/05/soap-
envelope, the <Envelope> element doesn’t really need any explanation. It simply provides the root
element for the XML document and is usually used to include any namespace declarations. The next
couple of sections talk about the other elements available, as well as the various attributes.

<Body>
The <Body> element contains the main body of the SOAP message. The actual RPC calls are made using
direct children of the <Body> element (which are called body blocks). For example, consider the following:

<soap:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”>
<soap:Body>

<o:AddToCart xmlns:o=”http://www.wiley.com/soap/ordersystem”>
<o:CartId>THX1138</o:CartId>
o:Item>ZIBKA</o:Item>
<o:Quantity>3</o:Quantity>
<o:TotalPrice>34.97</o:TotalPrice>

</o:AddToCart>
</soap:Body>

</soap:Envelope>

In this case, you’re making one RPC call, to a procedure called AddToCart, in the
http://www.wiley.com/soap/ordersystem namespace. (You can add multiple calls to a single mes-
sage, if necessary.) The AddToCart procedure takes four parameters: CartId, Item, Quantity, and
TotalPrice. Direct child elements of the <soap:Body> element must reside in a namespace other than
the SOAP namespace. This namespace is what the SOAP server uses to uniquely identify this procedure
so that it knows what code to run. When the procedure is done running, the server uses the HTTP
response to send back a SOAP message. The <soap:Body> of that message might look similar to this:

614

Part VI: Communication

<soap:Envelope xmlns:soap=’http://www.w3.org/2003/05/soap-envelope’>

<soap:Body>
<o:AddToCartResponse xmlns:o=’http://www.wiley.com/soap/ordersystem’>
<o:CartId>THX1138</o:CartId>
<o:Status>OK</o:Status>
<o:Quantity>3</o:Quantity>
<o:ItemId>ZIBKA</o:ItemId>
</so:AddToCartResponse>

</soap:Body>
</soap:Envelope>

The response is just another SOAP message, using an XML structure similar to the request, in that it has
a Body in an Envelope, with the relevant information included as the payload.

Encoding Style
Usually, in the realm of XML, when you talk about encoding, you’re talking about esoteric aspects of
passing text around, but in the SOAP world, encoding is pretty straightforward. It simply refers to the
way in which you represent the data. These examples use SOAP style encoding, which means you’re
using plain old elements and text, with maybe an attribute or two thrown in. You can let an application
know that’s what you’re doing by adding the optional encodingStyle attribute, as shown here:

<soap:Envelope xmlns:soap=’http://www.w3.org/2003/05/soap-envelope’>

<soap:Body soap:encodingStyle=”http://www.w3.org/2003/05/soap-encoding”>
<o:AddToCartResponse xmlns:o=’http://www.wiley.com/soap/ordersystem’>
<o:CartId>THX1138</o:CartId>
<o:Status>OK</o:Status>
<o:Quantity>3</o:Quantity>
<o:ItemId>ZIBKA</o:ItemId>

</o:AddToCartResponse>
</soap:Body>

</soap:Envelope>

This distinguishes it from other encodings, such as RDF, shown in the following:

RDF stands for Resource Description Framework, a protocol used to represent information on the Web.
It is a W3C Recommendation, and the full details are available at www.w3.org/RDF/.

<soap:Envelope xmlns: soap=’http://www.w3.org/2003/05/soap-envelope’>
<soap:Body>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns{#”
xmlns:o=”http://www.wiley.com/soap/ordersystem’

env:encodingStyle=”http://www.w3.org/1999/02/22-rdf-syntax-ns{#”>
<o:AddToCartResponse

rdf:About=
“http://www.wiley.com/soap/ordersystem/addtocart.asp?cartid
=THX1138”>

<o:CartId>THX1138</o:CartId>
<o:Status>OK</o:Status>

615

Chapter 15: SOAP and WSDL

<o:qQuantity>3</o:Quantity>
<o:ItemId>ZIBKA</o:ItemId>

</o:AddToCartResponse>

</rdf:RDF>
</soap:Body>

</soap:Envelope>

The information is the same, but it’s represented, or encoded, differently. You can also create your own
encoding, but of course if your goal is interoperability, you need to use a standard encoding style. In the
preceding example the env:encodingStyle is an attribute of the rdf:RDF element, but it could equally
well have appeared on the soap:Body. In general, the attribute can appear anywhere and applies to all
descendants of the one on which it appears as well as the element itself. This means that different parts
of the same SOAP message can use different encodings if needed.

Try It Out GETting a SOAP Message

The last Try It Out presented almost all of the benefits of SOAP. It works easily with a firewall, and all
the information is passed over HTTP in XML, meaning you could implement your remote procedure
using any language, on any platform, and you can call it from any language, on any platform. However,
the solution is still a little proprietary. In order to make the procedure more universal, you need to go
one step further and use a SOAP envelope for your XML.

This example still uses a GET request, but rather than return the raw XML, it is enclosed in a SOAP enve-
lope, like so:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
< soap:Body>

<GetTotalResponse xmlns=”http://www.wiley.com/soap/ordersystem”>
<Discount>10</Discount>
<TotalPrice>243</TotalPrice>

</GetTotalResponse>
</ soap:Body>

</ soap:Envelope>

In this case, you’ll also send the request and receive the response through an HTML form:

1. Create an HTML file in the text editor and save it as soaptester.html in a virtual folder. If
you tried the last example, then just store the file in the same directory, BasicOrderService.

2. Add the following HTML to SoapTester.html:

<html>
<head>
<title>SOAP Client</title>

<!—script to go here -->
</head>
<body onload=”init();”>
<h3>Soap Pricing Tool</h3>
<form name=”orderForm”>
<select name=”lstItems” style=”width:350px” onchange=”setPriceAndQuantity();”>

<option value=”10.50” id=”item1” selected>

616

Part VI: Communication

Cool Britannia, by The Bonzo Dog Doo-Dah Band</option>
<option value=”12.95” id=”item2”>

Zibka Smiles, by The Polka Dot Zither Band</option>
<option value=”20.00” id=”item3”>

Dr Frankenstein’s Disco Party, by Jonny Wakelin</option>
</select>

<p>
Unit price:<input type=”text” name=”txtUnitPrice” size=”6” ReadOnly>

Quantity: <input type=”text” name=”txtQuantity” size=”2”>

</p>
<input type=”button” value=”Get Price” onclick=”doGet()”>

Discount (%):<input type=”text” name=”txtDiscount” size=”4” readonly>

Total price:<input type=”text” name=”txtTotalPrice” size=”6” readonly>

</form>
</body>

The form has a drop-down box to pick an item; this sets the price in the first text box. The user
then chooses the quantity and clicks the button. There are two read-only textboxes for the out-
put: txtDiscount and txtTotalPrice (see Figure 15-3).

Figure 15-3

3. Add the script that’s going to make the call to the SOAP server to the soapclient.html file:

<head>
<title>SOAP Tester</title>
<script type=”text/javascript” src=”zXML.src.js”></script>

<script type=”text/javascript”>
var xhHTTP;
function doGet()
{

var dUnitPrice = document.orderForm.txtUnitPrice.value;
var iQuantity = document.orderForm.txtQuantity.value;
var sBaseUrl = “GetTotal2.aspx”
var sQuery = “?unitprice=” + dUnitPrice + “&quantity=” + iQuantity;
var sRequest = sBaseUrl + sQuery;
xhHTTP = zXmlHttp.createRequest();

617

Chapter 15: SOAP and WSDL

xhHTTP.onreadystatechange = handleGetTotalResponse;
xhHTTP.open(“GET”, sRequest, true);
xhHTTP.send(null);

}

function handleGetTotalResponse()
{
if (xhHTTP.readyState == 4)
{

var xdDoc = xhHTTP.responseXML;
alert(xdDoc.xml);
var oNamespaceMapper = {ns: “http://www.wiley.com/soap/ordersystem”};
if (xdDoc.documentElement.nodeName == “Error”)
{
alert(“ERROR!:\n” + xdDoc.documentElement.text);
return;

}
var oDiscountNode = zXPath.selectSingleNode(xdDoc.documentElement,
“/*/*/*/ns:Discount”, oNamespaceMapper);

var oTotalPriceNode = zXPath.selectSingleNode(xdDoc.documentElement,
“/*/*/*/ns:TotalPrice”, oNamespaceMapper);

var dDiscount = oDiscountNode.text;
var dTotalPrice = oTotalPriceNode.text;
showResults(dDiscount, dTotalPrice);

}
}

function showResults(discount, totalPrice)
{
document.orderForm.txtDiscount.value = discount;
document.orderForm.txtTotalPrice.value = totalPrice;

}

function setPriceAndQuantity()
{

var oLst = document.orderForm.lstItems;
document.orderForm.txtUnitPrice.value =

oLst.options[oLst.selectedIndex].value;
document.orderForm.txtQuantity.value = 1;

}

function init()
{

setPriceAndQuantity();
}

</script>
</head>

There are two other functions. setPriceAndQuantity() populates txtUnitPrice with the
price of the selected item and resets the quantity to 1. init() sets the initial values of these
boxes when the page loads.

618

Part VI: Communication

4. Create the ASPX page to serve the content. Save a copy of GetTotal.aspx and call it
GetTotal2.aspx. Modify the content so that the CodeFile attribute points to
GetTotal2.aspx.cs:

<%@ Page Language=”C#” AutoEventWireup=”true”CodeFile=”GetTotal2.aspx.cs”
Inherits=”_Default” ContentType=”text/xml”%>

5. Copy the code file, GetTotal.aspx.cs, and name the new version GetTotal2.aspx.cs.
Modify the GetSuccessXml to produce a SOAP-style message:

private string GetSuccessXml(double totalPrice, double discount)
{
string clientXml =

“<soap:Envelope xmlns:soap=\”http://www.w3.org/2003/05/soap-envelope\”><soap:Body>”
+ “<GetTotalResponse”

+ “xmlns=\”http://www.wiley.com/soap/ordersystem\”><Discount>{0}</Discount>”
+ “<TotalPrice>{1}</TotalPrice>”
+ “</GetTotalResponse></soap:Body></soap:Envelope>”;
return string.Format(clientXml, Convert.ToString(discount),
Convert.ToString(totalPrice));

}

6. Before testing, ensure that the XML cross-browser library, zXML.src.js, is in the same folder as
soaptester.html. Reload the soaptester.html page in the browser, change the quantity,
and click the Get Price button. You should see an alert box with the returned SOAP message,
shown in Figure 15-4. The results are extracted from the message and displayed in the bottom
two textboxes, as shown in Figure 15-5.

Figure 15-4

619

Chapter 15: SOAP and WSDL

Figure 15-5

How It Works
This Try It Out illustrates a practical (if a bit contrived) example of working with a SOAP server. Using
the browser, you created a simple SOAP client that retrieved information from the user interface (the
quantity and unit price), sent a request to a SOAP server (the GET request), and displayed the results (the
discount and extended price).

Because you created a client using the browser, you had to use a MIME type that the browser under-
stands: text/xml. Under other circumstances, you’d want to use the actual SOAP MIME type, appli-
cation/soap+xml. In other words, the ASP page would begin with the following:

Response.ContentType = “application/soap+xml”

This way, administrators can configure their firewalls to allow packets with this MIME type to pass
through, even if they are blocking other types of content. Unfortunately, far too few clients understand
this version so the less accurate text/xml is still more common.

Of course, you’ve only scratched the surface of what SOAP can do. Let’s look at some detailed uses.

More Complex SOAP Interactions
Now that you know the basics of how SOAP works, it’s time to delve a little more deeply. SOAP mes-
sages can consist of not just a Body, which contains the payload or data to be processed, but also a
Header element containing information about the payload. The Header also gives you a good deal of
control over how its information is processed.

This section also describes the structure of a SOAP Fault, and how to use SOAP in a POST operation,
rather than a GET operation. First, take a look at the rest of the SOAP Envelope’s structure.

<Header>
The <Header> element comes into play when you need to add additional information to your SOAP
message. For example, suppose you created a system whereby orders can be placed into your database

620

Part VI: Communication

using SOAP messages, and you have defined a standard SOAP message format that anyone communi-
cating with your system must use. You might use a SOAP header for authentication information, so that
only authorized persons or systems can use your system. These elements, called header blocks, are specifi-
cally designed for meta information, or information about the information contained in the body.

When a <Header> element is used, it must be the first element child of the <Envelope> element.
Functionally, the <Header> element works very much like the <Body> element; it’s simply a placeholder
for other elements in namespaces other than the SOAP envelope namespace, each of which is a SOAP
message to be evaluated in conjunction with the main SOAP message(s) in the body. In general, how-
ever, it doesn’t contain information to be processed.

The SOAP 1.2 Recommendation also defines optional attributes you can include on those header entries:
mustUnderstand, role, and relay.

The mustUnderstand Attribute

The mustUnderstand attribute specifies whether it is absolutely necessary for the SOAP server to pro-
cess a particular header block. A value of true indicates that the header entry is mandatory and the
server must either process it or indicate an error. For example, consider the following:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
<soap:Header xmlns:some-ns=”http://www.wiley.com/soap/headers/”>

<some-ns:authentication mustUnderstand=”true”>
<UserID>User ID goes here...</UserID>
<Password>Password goes here...</Password>

</some-ns:authentication>

<some-ns:log mustUnderstand=”false”>
<additional-info>Info goes here...</additional-info>

</some-ns:log>
<some-ns:log>
<additional-info>Info goes here...</additional-info>

</some-ns:log>
</soap:Header>
<soap:Body xmlns:body-ns=”http://www.wiley.com/soap/rpc”>
<body-ns:mainRPC>
<additional-info/>

</body-ns:mainRPC>
</soap:Body>

</soap:Envelope>

This SOAP message contains three header entries: one for authentication and two for logging purposes.

For the <authentication> header entry, you specified a value of true for mustUnderstand. (In SOAP
1.1, you would have specified it as 1.) This means that the SOAP server must process the header block. If
the SOAP server doesn’t understand this header entry, it rejects the entire SOAP message — the server is
not allowed to process the entries in the SOAP body. This forces the server to use proper authentication.

The second header entry specifies a value of false for mustUnderstand, which makes this header
entry optional. This means that when the SOAP server doesn’t understand this particular header entry, it
can still go ahead and process the SOAP body anyway.

621

Chapter 15: SOAP and WSDL

Finally, in the third header entry the mustUnderstand attribute was omitted. In this case, the header
entry is optional, just as if you had specified the mustUnderstand attribute with a value of false.

The role Attribute

In some cases a SOAP message may pass through a number of applications on a number of computers
before it arrives at its final destination. You might send a SOAP message to computer A, which might
then send that message on to computer B. Computer A would be called a SOAP intermediary.

In these cases, using the role attribute you can specify that some SOAP headers must be processed by a
specific intermediary. The value of the attribute is a URI, which uniquely identifies each intermediary.
The SOAP specification also defines the following three roles:

❑ http://www.w3.org/2003/05/soap-envelope/role/next applies to the next intermediary
in line, wherever it is.

❑ http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver only applies to
the very last stop.

❑ http://www.w3.org/2003/05/soap-envelope/role/none effectively “turns off” the header
block so that it is ignored at this stage of the process.

When an intermediary processes a header entry, it must remove that header from the message before
passing it on. Conversely, the SOAP specification also says that a similar header entry can be inserted in
its place, so you can process the SOAP header entry and then add another identical header block.

The relay Attribute

The SOAP specification also requires a SOAP intermediary to remove any headers it doesn’t process,
which presents a problem. What if you want to add a new feature and target it at any intermediary that
might understand it? The solution is the relay attribute. By setting the relay attribute to true, you can
instruct any intermediary that encounters it to either process it or leave it alone. (If the intermediary
does process the header, the intermediary still must remove it.) The default value for the relay attribute
is false.

<Fault>
Whenever computers are involved, things can go wrong, and there may be times when a SOAP server is
unable to process a SOAP message, for whatever reason. Perhaps a resource needed to perform the oper-
ation isn’t available, or invalid parameters were passed, or the server doesn’t understand the SOAP
request in the first place. In these cases, the server returns fault codes to the client to indicate errors.

Fault codes are sent using the same format as other SOAP messages. However, in this case, the <Body>
element has only one child, a <Fault> element. Children of the <Fault> element contain details of the
error. A SOAP message indicating a fault might look similar to this:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:rpc=”http://www.w3.org/2003/05/soap-rpc”>

<soap:Body>
<soap:Fault>
<soap:Code>
<soap:Value>soap:Sender</soap:Value>

622

Part VI: Communication

<soap:Subcode>
<soap:Value>rpc:BadArguments</soap:Value>

</soap:Subcode>
</soap:Code>
<soap:Reason>
<soap:Text xml:lang=”en-US”>Processing error</soap:Text>
<soap:Text xml:lang=”fr”>Erreur de traitement </soap:Text>

</soap:Reason>
<soap:Detail>
<o:orderFaultInfo xmlns:o=”http://www.wiley.com/soap/ordersystem”>
<o:errorCode>WA872</o:errorCode>
<o:message>Cart doesn’t exist</o:message>

</o:OrderFaultInfo>
</soap:Detail>

</soap:Fault>
</soap:Body>

</soap:Envelope>

The <Code> element contains a <Value> consisting of a unique identifier that identifies this particular
type of error. The SOAP specification defines five such identifiers, described in the following table:

Fault Code Description

VersionMismatch A SOAP message was received that specified a version of the
SOAP protocol that this server doesn’t understand. (This would
happen, for example, if you sent a SOAP 1.2 message to a SOAP
1.1 server.)

MustUnderstand The SOAP message contained a mandatory header that the SOAP
server didn’t understand.

Sender The message was not properly formatted. That is, the client made
a mistake when creating the SOAP message. This identifier also
applies if the message itself is well formed, but doesn’t contain the
correct information. For example, if authentication information
were missing, this identifier would apply.

Receiver This indicates that the server had problems processing the mes-
sage, even though the contents of the message were formatted
properly. For example, perhaps a database was down.

DataEncodingUnknown This indicates that the data in the SOAP message is organized, or
encoded, in a way the server doesn’t understand.

Keep in mind that the identifier is actually namespace-qualified, using the http://www.w3.org/
2003/05/soap-envelope namespace.

You also have the option to add information in different languages, as shown in this example’s <Text>
elements, as well as application-specific information as part of the <Detail> element. Note that applica-
tion-specific information in the <Detail> element must have its own namespace.

623

Chapter 15: SOAP and WSDL

Try It Out POSTing a SOAP message

The last two Try It Outs were devoted to simply getting information from the SOAP server. Because you
weren’t actually changing anything on the server, you could use the GET method and simply pass all of
the information as part of the URL. (Remember that you’re only supposed to use GET when there are no
side effects from calling the URL.)

Now let’s examine a situation where that isn’t the case. In this Try It Out, you’ll look at a SOAP proce-
dure that adds an item to a hypothetical shopping cart. Because this is not an “idempotent” process — it
causes side effects, in that it adds an item to the order — you’ll have to submit the information via the
POST method, which means creating a SOAP message within the client.

To call the AddToCart procedure, use this SOAP message (placeholders are shown in italics):

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
<soap:Body>
<o:AddToCart xmlns:o=”http://www.wiley.com/soap/ordersystem”>
<o:CartId>CARTID</o:CartId>
<o:Item itemId=”ITEMID”>
<o:Quantity>QUANTITY</o:Quantity>
<o:TotalPrice>PRICE</o:TotalPrice>

</o:Item>
</o:AddToCart>

</soap:Body>
</soap:Envelope>

For the response, send the following XML back to the client:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
<soap:Body>
<o:AddToCartResponse xmlns:o=”http://www.wiley.com/soap/ordersystem”>
<o:CartId>CARTID</o:CartId>
<o:Status>STATUS</o:Status>
<o:Quantity>QUANTITY</o:Qntity>
<o:ItemId>ITEMID</o:ItemId>

</o:AddToCartResponse>
</soap:Body>

</soap:Envelope>

You also need to handle the errors using a SOAP envelope. Use the following format for errors:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:rpc=”http://www.w3.org/2003/05/soap-rpc”>

<soap:Body>
<soap:Fault>
<soap:Code>
<soap:Value>soap: FAULTCODE</soap:Value>
<soap:Subcode>
<soap:Value>SUBVALUE</soap:Value>

</soap:Subcode>
</soap:Code>
<soap:Reason>

624

Part VI: Communication

<soap:Text>ERROR DESCRIPTION</soap:Text>
</soap:Reason>
<soap:Detail>
<o:OrderFaultInfo xmlns:o=”http://www.wiley.com/soap/ordersystem”>
<o:ErrorCode>APPLICATION-SPECIFIC ERROR CODE</o:ErrorCode>
<o:Message>APPLICATION-SPECIFIC ERROR MESSAGE</o:Message>

</o:OrderFaultInfo>
</soap:Detail>

</soap:Fault>
</soap:Body>

</soap:Envelope>

1. Add a new web form to the example project named AddToCart.aspx. Similar to the previous
aspx pages, it indicates that the returned content is XML. It also has a ValidateRequest
attribute set to false; otherwise, the aspx handler rejects the request as malformed:

<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”AddToCart.aspx.cs” Inherits=”AddToCart”
ContentType=”text/xml” ValidateRequest=”false”%>

2. Go to AddToCart.aspx.cs to create the basic page that retrieves the submitted SOAP message
and extracts the appropriate information. The first part of the page declares the namespaces of
the libraries used in the service. These are the usual System and System.Web, as well as two for
parsing and processing XML:

using System;
using System.Web;
using System.Xml;
using System.Xml.XPath;

public partial class AddToCart : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
XmlDocument soapDoc = new XmlDocument();
string responseXml = string.Empty;
string cartId = string.Empty;
int quantity = 0;
string itemId = string.Empty;
try
{
soapDoc.Load(Request.InputStream);

}

3. After declaring an XmlDocument to hold the incoming SOAP request and some variables to
hold the actual data, the request is loaded into the XmlDocument using its InputStream prop-
erty. This is done in a try/catch block; if the Load() method fails, then a SOAP error is
returned to the client:

catch (Exception ex)
{
responseXml = GetFailureXml(“Sender”,

“rpc:ProcedureNotPresent”,

625

Chapter 15: SOAP and WSDL

“Malformed request”,
1,
“Unable to read SOAP request:” + ex.Message);

}

The GetFailureXml method is discussed later in the chapter.

4. Now an XmlNamespaceManager is set up so that namespaced nodes can be retrieved:

XmlNamespaceManager nsm = new XmlNamespaceManager(soapDoc.NameTable);
nsm.AddNamespace(“soap”, “http://www.w3.org/2003/05/soap-envelope”);
nsm.AddNamespace(“o”, “http://www.wiley.com/soap/ordersystem”);
string xpath = “/soap:Envelope/soap:Body/o:AddToCart”;
XmlNode procedureNode = soapDoc.SelectSingleNode(xpath, nsm);
XmlNode node = null;

Then the first node of interest, AddToCart, is retrieved using a standard XPath statement.

5. Check the node. If it’s null, then the message isn’t recognized and again an error is returned to
the client:

XmlNode procedureNode = soapDoc.SelectSingleNode(xpath, nsm);
XmlNode node = null;
if (procedureNode == null)
{
responseXml = GetFailureXml(“Sender”,

“rpc:ProcedureNotPresent”,
“Unable to find AddToCart element”,
2,
“Unable to find AddToCart element”);

}

A similar approach is now taken with the other three nodes of interest, CartId, ItemId, and
Quantity. If any of these are null, then an error is returned. If all three are located, then the data
is processed by SaveCart(), which in this example does nothing but in real life would proba-
bly save to a database.

6. Finally, a SOAP response is generated and saved to the Response.OutputStream:

soapDoc.LoadXml(responseXml);
soapDoc.Save(Response.OutputStream);

7. The two methods that create the SOAP response, either the successful one or the SOAP fault, are
very similar. They contain an XML template into which the appropriate variables are inserted.
Here’s the GetSuccessXml() method:

private string GetSuccessXml(string CartId, int Quantity, string ItemId)
{
string responseXml = “<soap:Envelope

xmlns:soap=\”http://www.w3.org/2003/05/soap-envelope\”>”
+ “<soap:Body><o:AddToCartResponse “
+ “xmlns:o=\”http://www.wiley.com/soap/ordersystem\”>”
+ “<o:CartId>{0}</o:CartId>”
+ “<o:Status>OK</o:Status>”
+ “<o:Quantity>{1}</o:Quantity>”

626

Part VI: Communication

+ “<o:ItemId>{2}</o:ItemId>”
+ “</o:AddToCartResponse>”
+ “</soap:Body></soap:Envelope>”;

return string.Format(responseXml, CartId, Quantity, ItemId);
}

The GetFailureXML() method accepts a number of parameters detailing the conventional
error message such as rpc:BadArguments, and a more user-friendly one such as CartId not
found:

private string GetFailureXml(string faultCode, string subValue, string reason,
int errorCode, string message)
{
string responseXml = “<soap:Envelope

xmlns:soap=\”http://www.w3.org/2003/05/soap-envelope\” “
+ “xmlns:rpc=\”http://www.w3.org/2003/05/soap-rpc\”>”
+ “<soap:Body><soap:Fault><soap:Code>”
+ “<soap:Value>soap:{0}</soap:Value>”
+ “<soap:Subcode><soap:Value>{1}</soap:Value>”
+ “</soap:Subcode></soap:Code><soap:Reason>”
+ “<soap:Text>{2}</soap:Text></soap:Reason>”
+ “<soap:Detail><o:OrderFaultInfo “
+ “xmlns:o=\”http://www.wiley.com/soap/ordersystem\”>”
+ “<o:ErrorCode>{3}</o:ErrorCode>”
+ “<o:Message>{4}</o:Message></o:OrderFaultInfo>”
+ “</soap:Detail></soap:Fault></soap:Body></soap:Envelope>”;

return string.Format(responseXml, faultCode, subValue, reason, errorCode,
message);
}

8. Now the client needs amending. Once the total price has been retrieved, the user can add the
items to the cart. There are two changes to the HTML. First, the item’s ID is stored against each
select option so it can be sent with the SOAP request:

<select name=”lstItems” style=”width:350px” onchange=”setPriceAndQuantity();”>
<option value=”10.50” id=”item1” selected>

Cool Britannia, by The Bonzo Dog Doo-Dah Band</option>
<option value=”12.95” id=”item2” >

Zibka Smiles, by The Polka Dot Zither Band</option>
<option value=”20.00” id=”item3” >

Dr Frankenstein’s Disco Party, by Jonny Wakelin</option>
</select>

9. The other addition is a new function to create the request, doPost(), and one to handle the
return, handleAddToCartResponse(). Both work exactly as previously but create a POST
request instead of a GET. The full listing of SoapTester-Post.html is shown here, and Figure
15-6 shows it in action:

<html>
<head>
<title>SOAP Tester - Advanced</title>
<script type=”text/javascript” src=”zXML.src.js”></script>

<script type=”text/javascript”>

627

Chapter 15: SOAP and WSDL

var xhHTTP;
function doGet()
{

var dUnitPrice = document.orderForm.txtUnitPrice.value;
var iQuantity = document.orderForm.txtQuantity.value;
var sBaseUrl = “GetTotal2.aspx”
var sQuery = “?unitprice=” + dUnitPrice + “&quantity=” + iQuantity;
var sRequest = sBaseUrl + sQuery;
xhHTTP = zXmlHttp.createRequest();
xhHTTP.onreadystatechange = handleGetTotalResponse;
xhHTTP.open(“GET”, sRequest, true);
xhHTTP.send(null);

}

function handleGetTotalResponse()
{
if (xhHTTP.readyState == 4)
{

var xdDoc = xhHTTP.responseXML;
alert(xdDoc.xml);
var oNamespaceMapper =

{ns: “http://www.wiley.com/soap/ordersystem”};
if (xdDoc.documentElement.nodeName == “Error”)
{
alert(“ERROR!:\n” + xdDoc.documentElement.text);
return;

}
var oDiscountNode = zXPath.selectSingleNode(xdDoc.documentElement,

“/*/*/*/ns:Discount”, oNamespaceMapper);
var oTotalPriceNode = zXPath.selectSingleNode(xdDoc.documentElement,

“/*/*/*/ns:TotalPrice”, oNamespaceMapper);
var dDiscount = oDiscountNode.text;
var dTotalPrice = oTotalPriceNode.text;
showResults(dDiscount, dTotalPrice);

}
}

SoapTester-Post.html
function doPost()
{
var oLst = document.orderForm.lstItems
var sItemId = oLst.options[oLst.selectedIndex].id;
var dTotalPrice = document.orderForm.txtTotalPrice.value;
var sCartId = document.orderForm.cartId.value;
var iQuantity = document.orderForm.txtQuantity.value;
var sSoapRequest =

“<soap:Envelope xmlns:soap=\”http://www.w3.org/2003/05/soap-envelope\”>”
+ “<soap:Body><o:AddToCart xmlns:o=\”http://www.wiley.com/soap/ordersystem\”>”

+ “<o:CartId>” + sCartId + “</o:CartId>”
+ “<o:Item ItemId=\”” + sItemId + “\”>”
+ “<o:Quantity>” + iQuantity + “</o:Quantity>”

+ “<o:TotalPrice>” + dTotalPrice + “</o:TotalPrice>”
+ “</o:Item></o:AddToCart></soap:Body></soap:Envelope>”;

var sRequest = “AddToCart.aspx”;
xhHTTP = zXmlHttp.createRequest();
xhHTTP.onreadystatechange = handleAddToCartResponse;

628

Part VI: Communication

xhHTTP.open(“POST”, sRequest, true);
xhHTTP.send(sSoapRequest);

}

function handleAddToCartResponse()
{
if (xhHTTP.readyState == 4)
{

var xdDoc = xhHTTP.responseXML;
alert(xdDoc.xml);
var oNamespaceMapper =

{soap: “http://www.w3.org/2003/05/soap-envelope”,
o: “http://www.wiley.com/soap/ordersystem”};

var sXPath = “/soap:Envelope/soap:Body/o:AddToCartResponse”;
var oResponseNode = zXPath.selectSingleNode(xdDoc.documentElement, sXPath,

oNamespaceMapper);
if (oResponseNode)
{
var sSuccessMessage = “Item added to cart.”;

alert(sSuccessMessage);
}

else
{
var sErrorMessage = “Error adding item to cart:\n”;
sXPath = “/soap:Envelope/soap:Body/soap:Fault/soap:Code/soap:Value/text()”;

var node = zXPath.selectSingleNode(xdDoc.documentElement, sXPath,
oNamespaceMapper);

sErrorMessage += “\nFault value: “ + node.nodeValue;
sXPath =

“/soap:Envelope/soap:Body/soap:Fault/soap:Code/soap:Subcode/soap:Value/text()”;
node = zXPath.selectSingleNode(xdDoc.documentElement, sXPath,

oNamespaceMapper);
sErrorMessage += “\nFault subvalue: “ + node.nodeValue;

sXPath = “/soap:Envelope/soap:Body/soap:Fault/soap:Reason/soap:Text/text()”;
node = zXPath.selectSingleNode(xdDoc.documentElement, sXPath,

oNamespaceMapper);
sErrorMessage += “\nFault text: “ + node.nodeValue;

sXPath =
“/soap:Envelope/soap:Body/soap:Fault/” +
“soap:Detail/o:OrderFaultInfo/o:ErrorCode/text()”;

node = zXPath.selectSingleNode(xdDoc.documentElement, sXPath,
oNamespaceMapper);

sErrorMessage += “\nFault error code: “ + node.nodeValue;
sXPath =

“/soap:Envelope/soap:Body/soap:Fault/soap:Detail/o:OrderFaultInfo/o:Message/text()”
;

node = zXPath.selectSingleNode(xdDoc.documentElement, sXPath,
oNamespaceMapper);

sErrorMessage += “\nFault message: “ + node.nodeValue;
alert(sErrorMessage);
}
}

}

function showResults(discount, totalPrice)

629

Chapter 15: SOAP and WSDL

{
document.orderForm.txtDiscount.value = discount;
document.orderForm.txtTotalPrice.value = totalPrice;

}

function setPriceAndQuantity()
{

var oLst = document.orderForm.lstItems;
document.orderForm.txtUnitPrice.value =

oLst.options[oLst.selectedIndex].value;
document.orderForm.txtQuantity.value = 1;

}

function init()
{

setPriceAndQuantity();
}

</script>
</head>
<body onload=”init();”>
<h3>Soap Pricing Tool</h3>
<form name=”orderForm”>
<select name=”lstItems” style=”width:350px” onchange=”setPriceAndQuantity();”>

<option value=”10.50” id=”item1” selected>
Cool Britannia, by The Bonzo Dog Doo-Dah Band</option>

<option value=”12.95” id=”item2” >
Zibka Smiles, by The Polka Dot Zither Band</option>

<option value=”20.00” id=”item3” >
Dr Frankenstein’s Disco Party, by Jonny Wakelin</option>

</select>
<p>
Unit price:<input type=”text” name=”txtUnitPrice” size=”6” ReadOnly>

Quantity: <input type=”text” name=”txtQuantity” size=”2”>

</p>
<input type=”button” value=”Get Price” onclick=”doGet()”>

Discount (%):<input type=”text” name=”txtDiscount” size=”4” readonly>

Total price:<input type=”text” name=”txtTotalPrice” size=”6” readonly>

<input type=”text” readonly name=”cartId” value=”cart123”>

<input type=”button” value=”Add to Cart” onclick=”doPost();”>
</form>

</body>
</html>

630

Part VI: Communication

Figure 15-6

Figure 15-7 shows the raw XML response received after the Add to Cart button is clicked.

Figure 15-7

If an error occurs (and you can test this by modifying the SOAP template by changing the AddToCart
element to AddToCar), then a SOAP fault is returned, as shown in Figure 15-8.

631

Chapter 15: SOAP and WSDL

Figure 15-8

How It Works
Here you used the same techniques you used for raw XML messages to put together valid SOAP mes-
sages on both the incoming and the outgoing streams. You used data entered by the user on a form to
create a SOAP message that was sent to a server. The server extracted information from that SOAP mes-
sage using typical XML tactics, evaluated the data, and then determined whether to send a success or
failure message. The success message is another SOAP message that simply includes a payload, which
was then interpreted by the browser and displayed on the page. The failure message, or fault, was also
analyzed by the browser. A SOAP 1.2 Fault can include a wealth of information, related to both SOAP
and the application itself.

Yes, this seems like a lot of work for a very simple operation, but realize that you have created, from
scratch, all of the plumbing necessary to create an entire SOAP service. Implementing a more difficult
SOAP service, such as some type of order-processing system, would require the same level of plumbing,
even though the functionality being provided would be much more difficult.

In addition, several SOAP toolkits are available, meaning you won’t necessarily have to generate the
SOAP messages by hand like this every time you want to use SOAP to send messages from one com-
puter to another. In any case, whenever you use those toolkits now, you’ll understand what’s going on
under the hood. Until vendors get their respective acts together, that will come in handy when the
inevitable inconsistencies and incompatibilities appear.

Defining Web Services: WSDL
You’ve built a web service. Now what? Well, it is hoped that other people and organizations start using
the service you’ve built. In order to do that, however, they need to know two things:

❑ How to call the service

❑ What to expect as a response from the service

Fortunately, there’s an easy way to provide answers to both questions: Web Services Description
Language (WSDL). WSDL provides a standardized way to describe a web service. That means you can
create a WSDL file describing your service, make the file available, and then sit back as people use it.

632

Part VI: Communication

Of course, a WSDL file isn’t just for people. Recall the toolkits that take most of the work out of creating
SOAP messages. They’re built on the principle that they can automatically generate a client for your web
service just by analyzing the WSDL file. In this way, WSDL helps to make web services truly platform-
and language-independent.

How’s that, you ask? It’s simple. A WSDL file is written in XML, describing the data to be passed and
the method for passing it, but it doesn’t lean toward any particular language. That means a web services
client generator can use the WSDL information to generate a client in any language. For example, a code
generator for Java could create a client to access your ASP-based service, and the best part is that the
client is pure Java. A developer writing an application around it doesn’t have to know the details of the
service, just the methods of the proxy class that actually accesses the service. The proxy sits between the
client and the actual service, translating messages back and forth.

The latest version of WSDL, version 2.0, reached Candidate Recommendation in March 2006 but has
had little impact so far. Most services still use the earlier version. The major differences between the two
versions are highlighted when the various parts of the WSDL schema are discussed later in this chapter.

You can read the specification for WSDL, WSDL 1.1, at www.w3.org/TR/wsdl.

This chapter uses WSDL to describe a service that sends SOAP messages over HTTP, but in actuality
WSDL is designed to be much more general. First, you define the data that will be sent, and then you
define the way it will be sent. In this way, a single WSDL file can describe a service that’s implemented
as SOAP over HTTP as well as, say, SOAP over e-mail or even a completely different means.

This chapter sticks with SOAP over HTTP because that’s by far the most common usage right now.

<definitions>
A WSDL file starts with a <definitions> element:

<?xml version=”1.0”?>
<definitions name=”temperature”

targetNamespace=”http://www.example.com/temperature”
xmlns:typens=”http://www.example.com/temperature”
xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”>

</definitions>

The first task in a WSDL file is to define the information that will be sent to and from the service. A
WSDL file builds the service up in levels. First, it defines the data to be sent and received, and then it
uses that data to define messages.

<types>
Remember that there’s no way to know for sure that the service will use SOAP, or even that the informa-
tion will be XML, but WSDL enables you to define the information set — in other words, the information
itself, regardless of how it’s ultimately represented — using XML Schemas (discussed in Chapter 5). For

633

Chapter 15: SOAP and WSDL

example, consider a simple service that takes a postal code and date and returns an average tempera-
ture. The service would have two types of data to deal with, as shown in the following:

<types>
<xsd:schema xmlns=””

xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
targetNamespace=”http://www.example.com/temperature”>

<xsd:complexType name=”temperatureRequestType”>
<xsd:sequence>

<xsd:element name=”where” type=”xsd:string” />
<xsd:element name=”when” type=”xsd:date”/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=”temperatureResponseType”>

<xsd:sequence>
<xsd:element name=”temperature” type=”xsd:integer”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>
</types>

Just as in a normal schema document, you define two types: temperatureRequestType and
temperatureResponseType. You can use them to define messages.

<messages>
When you define a message in a WSDL file, you’re defining the content, rather than the representation.
Sure, when you send SOAP messages, you are sending XML in a SOAP envelope, but that doesn’t mat-
ter when you define the messages in the WSDL file. All you care about is what the message is, what it’s
called, and what kind of data it holds. Take the following example:

<message name=”TemperatureRequestMsg”>
<part name=”getTemperature” type=”typens:temperatureRequestType”/>

</message>
<message name=”TemperatureResponseMsg”>

<part name=”temperatureResponse” type=”typens:temperatureResponseType”/>
</message>

In the preceding code, you defined a message that consists of an element called getTemperature of the
type temperatureRequestType. This translates into the following SOAP message:

<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”>
<env:Body>
<getTemperature>
<where>{{it{POSTAL} CODE}</where>
<when>{{it{DATE}}</when>

</getTemperature>
</env:Body>

</env:Envelope>

Notice that the namespace for the payload is still missing. You take care of that later in the WSDL file. In
WSDL 2.0, messages are described within the types element and rely on XML Schemas.

634

Part VI: Communication

<portTypes>
portTypes contains a number of portType elements that describe the individual operation provided by
the service. These operations come in two varieties, input and output, and are made up of the messages
you defined earlier. Consider the following example:

<portType name=”TemperatureServicePortType”>
<operation name=”GetTemperature”>

<input message=”typens:TemperatureRequestMsg”/>
<output message=”typens:TemperatureResponseMsg”/>

</operation>
</portType>

This portType shows that you’re dealing with a request-response pattern; the user sends an input mes-
sage, the structure of which is defined as a TemperatureRequestMsg, and the service returns an output
message in the form of a TemperatureResponseMsg.

One of the major improvements coming in WSDL 2.0 is the change of the <portTypes> element to the
<interfaces> element. Although portType seems to make sense from a structural point of view —
later, you’ll reference it when you define an actual port — it really is more of an interface, as it defines
the various operations you can carry out with the service. interfaces can also be extended using the
extends attribute, which allows inheritance and greater reuse of already successful code.

Next, you have to define how those messages are sent.

<binding>
Up until now, this section actually hasn’t described anything related to SOAP. You’ve defined messages
and put them together into operations, but you haven’t learned anything about the protocol you use to
send them. The binding element sets up the first part of this process. In this case, you bind the opera-
tions to SOAP as follows:

<binding name=”TemperatureBinding” type=”typens:TemperatureServicePortType”>
<soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http”/>
<operation name=”GetTemperature”>

<soap:operation />
<input>

<soap:body use=”encoded”
encodingStyle=”http://www.w3.org/2003/05/soap-encoding”
namespace=”http://www.example.com/temperature” />

</input>
<output>

<soap:body use=”encoded”
encodingStyle=”http://www.w3.org/2003/05/soap-encoding”
namespace=”http://www.example.com/temperature” />

</output>
</operation>

</binding>

Notice that the soap: namespace finally comes into play at this point. Let’s take this one step at a time.

635

Chapter 15: SOAP and WSDL

<soap:binding>
The <soap:binding> element specifies that you are, in fact, dealing with a SOAP message, but it does
more than that. The transport attribute is easy; it simply specifies that you’re sending the message via
HTTP. The style attribute is a little more complex (but just a little).

Both this chapter and the previous one concentrate on using web services as another means of perform-
ing remote procedure calls, but that’s not their only use. In fact, in many cases information is simply
passed to the service, which acts upon the data, rather than the data determining what should be done.

The style attribute has two possible values: rpc and document. The rpc value is a message in which
you simply have a method name and parameters. For example, in our message, the payload represents a
call to the getTemperature method with the parameters 34652 and 2004-5-23, as shown in the follow-
ing:

<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”>
<env:Body>

<getTemperature>
<where>34652</where>
<when>2004-05-23</when>

</getTemperature>
</env:Body>

</env:Envelope>

The data is contained in an outer element (getTemperature), which is itself contained within the
<env:Body> element.

When you use the document style, however, the situation is slightly different. In that case, the entire
contents of the <env:Body> element are considered to be the data in question. For example, you might
have created a SOAP message of the following:

<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”>

<env:Body>
<where>34652</where>
<when>2004-05-23</when>

</env:Body>
</env:Envelope>

The document style also enables you to send more complex documents that might not fit into the RPC
mold. Note that neither of these examples shows the namespaces for the payload. That is set in the
soap:body element, which you’ll learn about shortly.

<soap:operation>
If the <soap:operation> element looks out of place just sitting there with no attributes, that’s because
in many ways it is out of place. The SOAP 1.1 specification required all services to use a SOAPAction
header defining the application that was supposed to execute it. This was an HTTP header, so you’d see
something like this:

POST /soap.asp HTTP/1.1

636

Part VI: Communication

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.example.com
Content-Length: 242
SOAPAction: “http://www.example.org/soap/TemperatureService.asp”

<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”>
<env:Body>
<getTemperature>
<where>34652</where>
<when>2004-05-23</when>

</getTemperature>
</env:Body>

</env:Envelope>

The SOAP 1.2 specification did away with the SOAPAction header, but it’s still necessary to specify that
this is a SOAP message — hence, the soap:operation element.

<soap:body>
The binding element references an operation, which, in this case, is already defined as having an input
and an output message. Within the binding element, you define how those messages are to be presented
using the soap:body element. For example, you specify the following:

<soap:body use=”encoded”
encodingStyle=”http://www.w3.org/2003/05/soap-encoding”
namespace=”http://www.example.com/temperature” />

For the input message, you’re specifying that it’s a SOAP message. Like the style attribute, the use
attribute has two possible values: literal and encoded. When the use is specified as literal, it
means that the server is not to assume any particular meaning in the XML, but to take it as a whole.
Normally, you use the literal use with the document style. If you specify the use as encoded, you have to
specify the encodingStyle. In this case, you specify the SOAP style, but you could use other encodings,
such as RDF or even an entirely new encoding style. Finally, you specify the namespace of the payload,
so you wind up with a complete message as follows:

<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”>
<env:Body>
<t:getTemperature xmlns:t=”http://www.example.com/temperature”>
<t:where>34652</t:where>
<t:when>2004-05-23</t:when>

</t:getTemperature>
S </env:Body>
</env:Envelope>

Now you just need to know where to send it.

637

Chapter 15: SOAP and WSDL

<service>
The final step in creating a WSDL file is to specify the service that you’re creating by putting all of these
pieces together, as shown in the following:

<service name=”TemperatureService”>
<port name=”TemperaturePort” binding=”typens:TemperatureBinding”>

<soap:address location=”http://www.example.com/temp/getTemp.asp”/>
</port>

</service>

When you create a service, you’re specifying where and how to send the information. In fact, the port
element shown here will likely be renamed to endpoint in WSDL 2.0 because that’s what it is: the end-
point for the connection between the server and a client. First, you reference the binding you just cre-
ated, and then you send it as a SOAP message to the address specified by the location attribute. That’s it.
Now let’s try it out.

Try It Out Specifying the Order Service via WSDL

In this Try It Out you’ll create a WSDL file that describes the service you created earlier in the chapter:

1. Open a new text file and name it WileyShopping.wsdl.

2. Start by creating the overall structure for the file:

<?xml version=”1.0”?>
<definitions name=”WileyShopping”

targetNamespace=”http://www.wiley.com/soap/ordersystem”
xmlns:typens=”http://www.wiley.com/soap/ordersystem”
xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<!-- more WSDL will go here -->
</definitions>

3. Add types for the XML in the messages to be passed as children of the definitions element:

<types>
<xsd:schema xmlns=””

xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
targetNamespace=”http://www.wiley.com/soap/ordersystem”>

<xsd:complexType name=”AddToCartType”>
<xsd:sequence>

<xsd:element name=”CartId” type=”xsd:string” />
<xsd:element name=”Item”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”Quantity”
type=”xsd:string”/>

<xsd:element name=”TotalPrice”
type=”xsd:string”/>

</xsd:sequence>
<xsd:attribute name=”ItemId”

638

Part VI: Communication

type=”xsd:string” />
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name=”AddToCartResponseType”>

<xsd:sequence>
<xsd:element name=”CartId” type=”xsd:string”/>
<xsd:element name=”Status” type=”xsd:string”/>
<xsd:element name=”Quantity” type=”xsd:string”/>
<xsd:element name=”ItemId” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>
</types>

4. Define the messages to be sent to and from the service:

<message name=”AddToCartRequestMsg”>
<part name=”AddToCart” type=”typens:AddToCartType”/>

</message>
<message name=”AddToCartResponseMsg”>

<part name=”AddToCartResponse” type=”typens:AddToCartResponseType”/>
</message>

5. Now define the portType, or interface, that will use the messages:

<portType name=”WileyPort”>
<operation name=”AddToCart”>

<input message=”typens:AddToCartRequestMsg”/>
<output message=”typens:AddToCartResponseMsg”/>

</operation>
</portType>

6. Bind the portType to a particular protocol, in this case, SOAP:

<binding name=”WileyBinding”
type=”typens:WileyPort”>

<soap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”AddToCart”>
<soap:operation />

<input>
<soap:body use=”encoded”

namespace=”http://www.wiley.com/soap/ordersystem”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

</input>
<output>

<soap:body use=”encoded”
namespace=”http://www.wiley.com/soap/ordersystem”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

</output>
</operation>

</binding>

639

Chapter 15: SOAP and WSDL

7. Finally, define the actual service by associating the binding with an endpoint. This results in the
following final file:

<?xml version=”1.0”?>
<definitions name=”WileyShopping”

targetNamespace=”http://www.wiley.com/soap/ordersystem”
xmlns:typens=”http://www.wiley.com/soap/ordersystem”
xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<types>
<xsd:schema xmlns=””

xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
targetNamespace=”http://www.wiley.com/soap/ordersystem”>

<xsd:complexType name=”AddToCartType”>
<xsd:sequence>

<xsd:element name=”CartId” type=”xsd:string” />
<xsd:element name=”item”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”Quantity”
type=”xsd:string”/>

<xsd:element name=”TotalPrice”
type=”xsd:string”/>

</xsd:sequence>
<xsd:attribute name=”ItemId”

type=”xsd:string” />
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name=”addToCartResponseType”>

<xsd:sequence>
<xsd:element name=”CartId” type=”xsd:string”/>
<xsd:element name=”Status” type=”xsd:string”/>
<xsd:element name=”Quantity” type=”xsd:string”/>
<xsd:element name=”ItemId” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>
</types>

<message name=”AddToCartRequestMsg”>
<part name=”AddToCart” type=”typens:AddToCartType”/>

</message>
<message name=”AddToCartResponseMsg”>

<part name=”AddToCartResponse” type=”typens:AddToCartResponseType”/>
</message>

<portType name=”WileyPort”>
<operation name=”AddToCart”>

<input message=”typens:AddToCartRequestMsg”/>
<output message=”typens:AddToCartResponseMsg”/>

640

Part VI: Communication

</operation>
</portType>
<binding name=”WileyBinding”

type=”typens:WileyPort”>
<soap:binding style=”rpc”

transport=”http://schemas.xmlsoap.org/soap/http”/>
<operation name=”AddToCart”>

<soap:operation/>
<input>

<soap:body use=”encoded”
namespace=”http://www.wiley.com/soap/ordersystem”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

</input>
<output>

<soap:body use=”encoded”
namespace=”http://www.wiley.com/soap/ordersystem”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

</output>
</operation>

</binding>
<service name=”WileyService”>

<port name=”WileyPort” binding=”typens:WileyBinding”>
<soap:address

location=”http://localhost/BasicOrderService/AddToCart.aspx”/>
</port>

</service>
</definitions>

How It Works
Here you created a simple WSDL file describing the SOAP messages sent to and from the hypothetical
Wiley Shopping Service. First, you created the datatypes for the messages to be sent. Next, you com-
bined them into messages, created operations out of the messages, and finally bound them to a protocol
and a service.

Other Bindings
It’s important to understand that WSDL doesn’t necessarily describe a SOAP service. Earlier in this
chapter, you looked at a situation in which messages were passed by HTTP without the benefit of a
SOAP wrapper. These REST messages can also be defined via WSDL by adding the HTTP binding.

The basic process is the same as it was for SOAP: Define the datatypes, group them into messages, create
operations from the messages and portTypes from the operations, and then create a binding that ties
them all in to a particular protocol, as shown in the following:

<?xml version=”1.0”?>
<definitions name=”WileyShopping”

targetNamespace=”http://www.wiley.com/soap/ordersystem”
xmlns:typens=”http://www.wiley.com/soap/ordersystem”
xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”

641

Chapter 15: SOAP and WSDL

xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”

xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”
xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<types>
<xsd:schema xmlns=””

xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
targetNamespace=”http://www.wiley.com/soap/ordersystem”>

<xsd:complexType name=”AddToCartType”>
<xsd:sequence>

<xsd:element name=”CartId” type=”xsd:string” />
<xsd:element name=”ItemId” type=”xsd:string”/>

<xsd:element name=”Quantity” type=”xsd:string”/>
<xsd:element name=”TotalPrice” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=”AddToCartResponseType”>
<xsd:sequence>

<xsd:element name=”CartId” type=”xsd:string”/>
<xsd:element name=”Status” type=”xsd:string”/>
<xsd:element name=”Quantity” type=”xsd:string”/>

<xsd:element name=”ItemId” type=”xsd:string”/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”GetTotalResponseType”>
<xsd:sequence>

<xsd:element name=”Discount” type=”xsd:string” />
<xsd:element name=”TotalPrice”

type=”xsd:string”/>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

</types>
<message name=”AddToCartRequestMsg”>

<part name=”AddToCart” type=”typens:AddToCartType”/>
</message>
<message name=”AddToCartResponseMsg”>

<part name=”AddToCartResponse” type=”typens:AddToCartResponseType”/>
</message>

<message name=”UpdateTotalsRequestMsg”>
<part name=”Quantity” type=”xsd:number”/>
<part name=”UnitPrice” type=”xsd:number”/>

</message>
<message name=”GetTotalResponseMsg”>

<part name=”GetTotalResponse” type=”typens:
GetTotalResponseType”/>

</message>
<portType name=”WileyPort”>

<operation name=”AddToCart”>
<input message=”typens:AddToCartRequestMsg”/>
<output message=”typens:AddToCartResponseMsg”/>

</operation>

642

Part VI: Communication

</portType>
<portType name=”WileyRESTPort”>

<operation name=”GetTotal2.aspx”>
<input message=”typens:UpdateTotalsRequestMsg”/>
<output message=”typens:UpdateTotalsResponseMsg”/>

</operation>
</portType>

<binding name=”WileyBinding”
type=”typens:WileyPort”>

<soap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”AddToCart”>
<soap:operation/>
<input>

<soap:body use=”encoded”
namespace=”http://www.wiley.com/soap/ordersystem”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

</input>
<output>

<soap:body use=”encoded”
namespace=”http://www.wiley.com/soap/ordersystem”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

</output>
</operation>

</binding>
<binding name=”WileyRESTBinding”

type=”typens:WileyRESTPort”>
<http:binding verb=”GET”/>
<operation name=”GetTotal2.aspx”>

<http:operation location=”GetTotal.aspx”/>
<input>

<http:urlEncoded/>
</input>
<output>

<mime:content type=”text/xml”/>
</output>

</operation>
</binding>
<service name=”WileyService”>

<port name=”WileyPort” binding=”typens:WileyBinding”>
<soap:address

location=”http://localhost/BasicOrderService/GetTotal.aspx”/>
</port>

<port name=”WileyRESTPort” binding=”typens:WileyRESTBinding”>
<http:address location=”http://localhost/BasicOrderService/”/>

</port>

</service>
</definitions>

In this way, you can define a service that uses any protocol using WSDL.

643

Chapter 15: SOAP and WSDL

In real life, WSDL is created by the SOAP tool you use. Occasionally, a tweak or two might be needed —
for example, the port or binding sections may need amending when you switch from development to live.
In ASP.NET, for instance, if you build a service using asmx pages, the WSDL is created automatically.

Summary
In this chapter, you looked at SOAP, an XML-based protocol for performing remote procedure calls and
passing information between computers. You studied how this protocol is used and even put it into
practice by creating a SOAP-based shopping cart system.

Because SOAP is based on easy-to-implement and standardized technologies, such as XML and HTTP, it
has the potential to become a very universal protocol indeed. In fact, most of the hype surrounding
SOAP concerns its interoperability. At least initially, companies providing SOAP software are concentrat-
ing on making their product as interoperable as possible with the software from other companies,
instead of creating proprietary changes to the standard.

With the backing of companies such as Microsoft, IBM, DevelopMentor, Lotus, UserLand Software, Sun
Microsystems, and Canon, SOAP is already a widely implemented technology. The web services built on
top of SOAP also have huge potential for creating widely accessible functionality over the Web.

That said, SOAP is not the only game in town. You also looked at a simpler form of web service, REST,
which is currently growing in popularity. The chapter also described Web Services Definition Language
(WSDL), which is designed to enable you to provide other developers with all of the information they
might need in order to access your service. WSDL can be used with any protocol but is particularly well
suited to SOAP. You examined the various parts of a WSDL document and created one for the SOAP and
REST services you built earlier in the chapter.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
Create a SOAP message that fulfills the following requirements:

1. It corresponds to an RPC called getRadioOperators().

2. It passes the following information:

❑ City and State or Postal Code

❑ Radius

❑ License Class

3. The server must receive and verify a call sign from the sender.

Question 2
Create a WSDL file that describes the document in Question 1.

644

Part VI: Communication

16
Ajax

The term Ajax was first used in early 2005 by Jesse James Garrett as an acronym for Asynchronous
JavaScript and XML. The term is a little misleading because (a) the technique is not always asyn-
chronous; (b) XML is not necessarily used; and (c) if you’re happy for your code to be Internet
Explorer–specific, then you can replace JavaScript with VBScript.

The crux of Ajax, though, is making requests behind the scenes in a web application and incorpo-
rating any data returned in the page without reloading the entire HTML. The normal way that this
is carried out is by using an HTTP Request controlled by client-side scripting. Data is passed in the
request, often as XML, and a response, also commonly XML, is received. The information con-
tained in this response is then incorporated in the page using dynamic HTML.

These techniques have made possible the kind of responsiveness and functionality that previously
were only to be found in desktop applications. Two of the most famous Ajax uses both originate
from Google. Google Suggest, www.google.com/webhp?complete=1&hl=en, enables a textbox to
suggest suitable entries chosen from a drop-down list; and Gmail,
mail.google.com/mail/help/intl/en/about.html, is a web e-mail client with almost as
much functionality as a traditional desktop application such as Microsoft’s Outlook Express.

This chapter first describes previous endeavors to improve the user experience before the Ajax
technique was formalized. You will learn the differences between the two main browser camps, IE
and Mozilla, and how this led to the use of a cross-browser library to simplify development. You
will also see how background requests are passed using the XMLHttpRequest, and how the two
main options for data formats, XML and JSON, compare. Two Ajax applications are examined in
detail: a simple web service that validates credit card numbers and a more complex AutoSuggest
textbox. The chapter finishes with an explanation of how the same source origin policy limits your
use of third-party web services, and how to overcome this using a server-side proxy.

Early Attempts at Asynchronous Updates
Web developers often want their programs to be able to carry out background tasks while the user
continues to view and use the current page. One of the ways of passing data to a server behind the

scenes is to use the Image object. Suppose when users land on a page in your site you want to record
from which page they got there. You can use the following JavaScript, assuming the referrer property
has been populated:

var oImage = new Image();
var sRef = “ref=” + encodeURIComponent(document.referrer);
var sMe = “me=” + encodeURIComponent(location.href);
oImage.src = “myLoggingPage.aspx?” +sRef + “&” + sMe

Obviously, you need to set up a page named myLoggingPage.aspx to record the data.
encodeURIComponent is used to escape any problematic characters.

This sort of approach is used by Google Analytics to produce tracking figures for sites but it has two
drawbacks: the amount and structure of the data sent in a query string is limited, and, more important,
there is no means to receive a response. These problems were initially solved in a number of ways,
including the following:

❑ Hidden frames or iframes — Using this technique, which is still the only option on some older
browsers, data was posted by manipulating the form elements in a hidden frame or iframe. The
frame was then submitted programmatically. The resulting page could then be accessed and the
returned data passed to the main content page. The main problems with this approach were that
hidden frames can cause problems with some devices, and the structure of the data that could
be passed was somewhat restricted. It was also necessary to hand-craft much of the code, with
little reusability.

❑ Java applets — Java applets overcame some of the problems with hidden frames. They provided
a more common interface and removed some of the drudge work. The problems with applets
was that they needed to be installed on the client, which often meant an update to the Java
Runtime, and differences between different implementations of the Java Virtual Machine
(between Microsoft’s and Sun’s) meant that some applets worked only on one version.

One of the turning points that led to today’s move to Ajax occurred in 1998 when Microsoft released
Internet Explorer 5.0, and with it came support for XML. Included in the library was a class named
XmlHttp, a strange choice because it could actual initiate any HTTP request; it wasn’t confined to sending
or receiving XML. This class had the ability, among other things, to make GET and POST requests and could
return the results to the caller in a variety of formats, such as text, XML, or a byte stream. Slowly but surely
developers of other browsers noticed how useful this was and began to incorporate similar functionality
into their browsers. The main difference in how the functionality is implemented is that Microsoft’s version
is a COM, or ActiveX, library, whereas in other browsers it is a built-in component, part of the window
object. Support for the capability to make background requests via XmlHttp classes now exists in all the
Mozilla-based browsers such as Firefox and Netscape, as well as, to a lesser extent, Safari and Opera.

646

Part VI: Communication

Microsoft versus Mozilla
As noted, Microsoft’s library needs to be instantiated via the standard ActiveX extensions to JavaScript:

var oXmlHttp = new ActiveXObject(“MSXML2.XmlHttp.3.0”);

The program id, or string, that needs to be passed to the ActiveXObject() function consists of the
library name, MSXML2, and the member name, along with the version. To date, Microsoft has released six
versions of the class, but version 3.0 is installed by default on all modern machines.

Because ActiveX can be harnessed for malicious purposes, its use in browsers is controlled by the origin
of the page hosting it and the security settings for that page’s zone. For example, a page from your com-
pany’s intranet, the local intranet zone, will allow freer use than a site from the Internet zone. Some fea-
tures of the MSXML2 library are not normally available when the control is used on a web page — for
example, saving an XML file to the local disk.

The Mozilla way of doing things is to incorporate the class into the browser object model. The following
snippet shows how to create the object in a Mozilla browser:

var oXmlHttp = new XMLHttpRequest();

Both return a similar object, with Microsoft’s having the edge on functionality. Fortunately, because of
JavaScript’s built-in extensibility, it is possible to add required features using standard scripting techniques.

Cross-Browser Solutions
When designing web pages, it would be tedious to have to write one version for Microsoft and another
for other browsers when needing to use the XmlHttp functionality. To overcome this, several cross-
browser libraries are available that detect which platform they are running on and return the correct ver-
sion of the object. They also add in the missing features of the Mozilla version so that any subsequent
script can ignore any differences in methods.

The client-side examples in this chapter use the library introduced in zXml.js in Chapter 14.

Once the capability to make background requests and receive a response became available in most
browsers, people began to see the benefits of the techniques that would eventually be labeled Ajax. It
was no longer necessary to request a complete HTML page every time a small portion of the page
needed updating. A common example is address lookup; many sites where users need to supply an
address now have the facility to automatically fill in address details when a zip code is entered. Rather
than make a complete round-trip to the server and have to store and repopulate all the other fields on
the page that the user had already completed, a mechanism that allows just the zip code to be sent to the
server and the address returned means a better user experience, less bandwidth used, and simpler state
management. Given the emerging popularity of XML at the same time, and the fact that only data —
devoid of presentation — needs to be exchanged, it was natural this format was chosen as the medium.
Examples of this sort of application existed some eight years before the term Ajax was coined.

The next several sections describe the principles behind how Ajax works and provide specific examples
of each step.

647

Chapter 16: Ajax

Figure 16-1

Some of the examples that follow require a virtual web directory to be created. In
IIS this is accomplished by opening the IIS manager, either by going to Start ➪

Administrative Tools ➪ Internet Information Services Manager or by selecting Start
➪ Run and entering either C:\WINDOWS\system32\Inetsrv6\iis6.msc or C:\
WINDOWS\system32\Inetsrv\iis.msc, depending on which version of the man-
ager you are using, and clicking OK. Then create a new folder on your machine
where the web files will be stored.

You then need to expand the tree view on the left to Default Web Site. Right-click
and choose New ➪ Virtual Directory as shown in Figure 16-1. Follow the wizard’s
instructions. You can accept the defaults, and just choose a friendly name for the
folder and the actual location for the folder just created. When you’re finished,
right-click on the new folder in the IIS manager and choose Properties. From the
Directory tab, click the Create button next to the Application textbox and set the per-
missions in the drop-down menu to Scripts only, as shown in Figure 16-2. Click OK
to back out of the properties box.

648

Part VI: Communication

Figure 16-2

Basic Posting Techniques
The basic steps involved in making an HTTP request using XmlHttp are as follows:

1. Create an instance of the XmlHttp request class.

2. Specify a function to call to deal with the response.

3. Open a connection to the server specifying the URL and method, either GET or POST.

4. Send the request together with any data if necessary.

5. Process the returned data using the function specified in step 2.

Try It Out Making a Background Post

This example demonstrates how these steps translate into JavaScript using the zXml cross-browser
library.

1. Create a new folder on your machine named WroxServices and turn it into a new virtual
directory, also called WroxServices.

2. Create a file named BasicRetrievalDemo.aspx, which is just a minimal web form with some
hard-coded XML:

<%@ Page Language=”C#” ContentType=”text/xml”%>
<response>How to retrieve XML data</response>

649

Chapter 16: Ajax

(If you are not using ASP.NET — but PHP, for instance — create a similar file for your chosen
language.) Save this in the virtual folder you just created.

3. Create the following HTML page, BasicRetrievalDemo.html, and save it to WroxServices:

<html>
<head>
<title>Basic Retrieval Demo</title>
<script type=”text/javascript” src=”zXML.src.js”></script>
<script type=”text/javascript”>
var oXmlHttp;

function fetchData()
{
oXmlHttp = zXmlHttp.createRequest();
oXmlHttp.onreadystatechange = handleReadyStateChange;
oXmlHttp.open(“POST”, “BasicRetrievalDemo.aspx”, true);
oXmlHttp.send(“<data/>”);

}

function handleReadyStateChange()
{
if (oXmlHttp.readyState == 4)
{
alert(oXmlHttp.responseText);

}
}
</script>
</head>
<body onload=”fetchData();”>
</body>
</html>

4. Browse to http://localhost/wroxservices/BasicRetrievalDemo.aspx. You should see
an alert box containing the raw XML from the aspx file.

How It Works
The page that returns the XML, BasicRetrievalDemo.aspx, has no processing attached to it; it may as
well have been a regular XML file except that some web servers, including IIS, will not allow, by default,
a POST request to be made to a static XML file.

The HTML is mainly JavaScript. First the cross-browser library is referenced using a standard script
include:

<script type=”text/javascript” src=”zXML.src.js”></script>

In the examples in this chapter, zXML.src.js is used because it is commented and indented to make
debugging easier. In a production application, the more compact, but functionally equivalent, zXML.js
would be a better choice.

Within the next script block, a variable is created to hold the XMLHttpRequest:

var oXmlHttp;

650

Part VI: Communication

There are two functions in the second script block, fetchData() and handleReadyStateChange().
The former is called when the page has loaded as instructed by the onload attribute in the body ele-
ment. When fetchData() is called, it first creates an XMLHttpRequest and assigns it to the previously
declared oXmlHttp variable:

oXmlHttp = zXmlHttp.createRequest();

For IE, the zXmlHttp class automatically returns the most suitable ActiveX version; for Mozilla, it
returns an instance of XMLHttpRequest. If the browser supports neither, an error is thrown.

Next, it assigns a function, known as a callback, to onreadystatechange:

oXmlHttp.onreadystatechange = handleReadyStateChange;

The second function in the script, handleReadyStateChange(), is assigned to be called when the
readystatechange event fires. Mozilla’s XMLHttpRequest does not actually call this event, only
Microsoft’s version does, but the library adds the necessary code for this to work. Microsoft defines five
states for the readyState starting with 0, uninitialized, and finishing with 4, which equates to com-
pleted. Until state 4 appears, the response is not ready to be processed. The zXml library fakes this
behavior for Mozilla but only state 4, completed, can be relied on.

oXmlHttp.open(“POST”, “http://localhost/wroxservices/BasicRetrievalDemo.aspx”, true);

The connection is opened, this time using POST, rather than GET. POST is normally used in three situa-
tions: when a large amount of data needs to be sent, when the structure is awkward to represent using
name/value pairs, or when updates will be made by the server. GET is used in other circumstances, such
as when data is requested but no updates are being made. The third parameter, true in this case, speci-
fies whether to make an asynchronous connection or not. Normally, an asynchronous connection is pre-
ferred because it allows other scripts to execute and the user can continue to use the page while the
request is being satisfied.

Most clients allow a maximum of two simultaneous connections to the same host. Although this behav-
ior can be overridden, you need to build your applications based on this limit. This means that if you
initiate three HTTP requests, the third one will be blocked until one of the other two completes.

An easy way to see this in action is to try to download three non-HTML files simultaneously from a site.
The progress report on the third request will stay at 0% until one of the two earlier requests completes.

oXmlHttp.send(“<data/>”);

The data, if any, is sent to the server. The server processes the request and issues a response. When this
happens, handleReadyStateChange is called:

function handleReadyStateChange()
{
if (oXmlHttp.readyState == 4)
{
alert(oXmlHttp.responseXML.xml);

}
}

651

Chapter 16: Ajax

The first step is to ensure that the readyState is 4, completed. If so, the response can be used. If XML
has been returned, the XML document is accessed via the responseXML property. In this example, the
actual XML is just alerted; in the real world you probably need to parse the XML and extract the data
needed.

If you need to make another request to the same server, you must call the open() method again. You
can’t just call send with different parameters.

Transport and Processing on the Server
Now that you know how to send a request and deal with the response, consider how the server pro-
cesses the request and what format the request and response should take. Original exponents of
XmlHttp simply wrote pages that read the posted data, parsed it, and carried out whatever processing
was necessary. The problem with this was that each page needed data in a different format and there
was little interoperability between sites. As web services standardized, many came to use the SOAP
model and so did many sites using Ajax; others stuck to using XML but in a variety of formats. Some,
however, decided on a different approach to passing data. Among these is a technique called JavaScript
Object Notation (JSON). All these techniques are covered in this chapter.

JSON
JavaScript Object Notation is a popular alternative in Ajax to using XML for data representation. It seeks to
address the following issues with using XML:

❑ XML can be very verbose; even small amounts of data carry quite a large overhead.

❑ You need an XML parser to consume it, and possibly other classes as well such as an XSL pro-
cessor and a serializer.

❑ The syntax can be quite daunting and you must give a lot of thought to the serialization process.

JSON solves these problems by representing data as JavaScript literals. It does not need any XML classes
to process it and is usually terser, which results in less traffic across the network. What are JavaScript lit-
erals? Most languages support literals of one sort or another. In C#, for instance, a string literal can be
used to initialize a new string object:

string myString = “this is a string literal”;

This is very similar to JavaScript, the difference being the use of string instead of var.

JavaScript also supports array literals. Instead of creating an array and populating it one element at a
time, you can do it all in one statement:

var myArray = new Array();
myArray[0] = “One”;
myArray[1] = “Two”;
myArray[2] = “Three”;

//Equivalent literal syntax
var myArray = [“One”, “Two”, “Three”];

652

Part VI: Communication

Finally, it’s also possible to have object literals:

var myObject = new Object();
myObject.name = “Joe”;
myObject.age = 44;
myObject.lastUpdated = new Date();
//Equivalent literal syntax
var myObject = {name: “Joe”, age: 44, lastUpdated: new Date()};

As an alternative, you can quote the member names.

The idea behind JSON is to transform data needed for the HTTP request to a literal. When the web serv-
ice returns the data, also a literal, it is passed to JavaScript’s eval() function, which converts the literal
back into data that can be used by the web page. An example is shown later in the second version of the
AutoSuggest control.

Although JSON has its advantages, it hasn’t yet replaced XML as the method of data representation alto-
gether, for the following reasons:

❑ For more complicated data structures, it can be difficult to turn the data into a literal. This is
especially true when the data is a document, rather than individual members.

❑ The use of eval() can consume resources, sometimes even more so than an XML parser. Each
time eval() is called, a new instance of the JavaScript engine is created; this is one reason why
it’s frowned upon to use it in standard web pages.

Several JSON libraries are available that simplify the task of converting data to literals and vice versa. A
popular one is Douglas Crockford’s, which you can find at www.json.org/js.html.

Our first example of a fully working Ajax component is the AutoSuggest drop-down, one of the first
uses of Ajax seen by many people. From Google Labs, you can see it in Action at www.google.com/
webhp?complete=1&hl=en.

Three examples are presented in this chapter. The first is a relatively simple one that verifies whether a
given payment card number is valid. It uses a simple web service and a small amount of JavaScript. The
second example is a fully functional AutoSuggest textbox that can be used when the number of options
makes a traditional drop-down impractical. Because this control manipulates the user interface to a large
extent, considerably more JavaScript is needed. The final example shows how third-party web services
can be used by your own website.

Many thanks to Nicholas Zakas for his ideas and assistance in implementing the AutoSuggest control.

Payment Card Validator
The first example of a real-world Ajax application uses what is known as Luhn’s algorithm to test whether
a payment card number is valid. Most payment cards in use today follow a certain pattern that helps
avoid fraud and ensures that if errors are made when entering or transmitting the number, then the pay-
ment request is rejected. You can read about how algorithm works, including some of its weak points, at
http://en.wikipedia.org/wiki/Luhn.

653

Chapter 16: Ajax

The basic process is as follows:

1. Enter a card number into a standard web page textbox.

2. Click the Validate button.

3. The card number is normalized, to remove spaces, hyphens, and so on.

4. The number is passed to the verification web service.

5. The Web service tests the number and returns true or false.

6. The web page displays the result.

Try It Out Validating a Payment Card Number

1. If you haven’t done so already, create a new virtual directory called WroxServices.

2. Create a new file, CheckPaymentCard.aspx, with the following code and save it in
WroxServices:

<%@ Page Language=”C#” ContentType=”text/xml”%>

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{
string cardNumber = Request.QueryString[“cn”];
if (string.IsNullOrEmpty(cardNumber))
{
SendResponse(false);

}
SendResponse(PerformLuhnCheck(cardNumber));

}

private bool PerformLuhnCheck(string cardNumber)
{
int sum = 0;
try
{
for (int i = cardNumber.Length - 1; i >= 0; i--)
{
int currentDigit = int.Parse(cardNumber[i].ToString());
if (i % 2 == 0)
{
currentDigit *= 2;
if (currentDigit > 9)
{
currentDigit -= 9;

}
}
sum += currentDigit;

}
return sum % 10 == 0;

}
catch (Exception)
{

654

Part VI: Communication

return false;
}

}

private void SendResponse(bool succeeded)
{
string xml = “<boolean>{0}</boolean>”;
Response.Write(string.Format(xml, succeeded));
Response.End();

}
</script>

3. Create another file, CheckPaymentCard.html, and save it to the same folder:

<html>
<head>
<title>Check Payment Card Demo</title>
<script type=”text/javascript” src=”zXML.src.js”></script>
<script type=”text/javascript”>
var oXmlHttp;

function validateCardNumber(cardNumber)
{
oXmlHttp = zXmlHttp.createRequest();
showOutput(“”);
oXmlHttp.onreadystatechange = handleReadyStateChange;
cardNumber = cardNumber.replace(/\D/g, “”);
document.getElementById(“txtCardNumber”).value = cardNumber;
var sUrl = “CheckPaymentCard.aspx?cn=” + cardNumber;
oXmlHttp.open(“GET”, sUrl, true);
oXmlHttp.send(null);

}

function handleReadyStateChange()
{
if (oXmlHttp.readyState == 4)
{
var sXPath = “/*/text()”;
var oResultNode = zXPath.selectSingleNode

(oXmlHttp.responseXML.documentElement, sXPath);
showOutput(oResultNode.nodeValue);

}
}

function showOutput(cardValid)
{
var oOutput = document.getElementById(“spnOutput”);
oOutput.innerHTML = cardValid;

}
</script>

</head>
<body>
Card Number:<input type=”text”

655

Chapter 16: Ajax

maxlength=”20”
id=”txtCardNumber”
value=”4111111111111111”>

<input
onclick=”validateCardNumber(document.getElementById(‘txtCardNumber’).value);”

type=”button”
value=”Validate”>

<div>Card valid: </div>

</body>
</html>

4. Navigate to http://localhost/wroxservices/CheckPaymentCard.html, and try a number
such as 4111111111111111, as shown in Figure 16-3. This is a standard testing number and should
validate, whereas changing the last digit to a zero should result in the validation failing.

Figure 16-3

How It Works
The web service side of this process consists of three parts. The first extracts the target payment card
number from the Request.QueryString if it exists. If not, the card number is treated as invalid:

protected void Page_Load(object sender, EventArgs e)
{
string cardNumber = Request.QueryString[“cn”];
if (string.IsNullOrEmpty(cardNumber))
{
SendResponse(false);

}
SendResponse(PerformLuhnCheck(cardNumber));

}

If a card number is found, PerformLuhnCheck() is called. This basically starts from the far right of the
string and sums the odd-numbered digits with twice the value of the even-numbered ones (full details
can be found at the Wikipedia link given previously):

private bool PerformLuhnCheck(string cardNumber)
{
int sum = 0;
try
{
for (int i = cardNumber.Length - 1; i >= 0; i--)
{

656

Part VI: Communication

int currentDigit = int.Parse(cardNumber[i].ToString());
if (i % 2 == 0)
{
currentDigit *= 2;
if (currentDigit > 9)
{
currentDigit -= 9;

}
}
sum += currentDigit;

}
return sum % 10 == 0;

}
catch (Exception)
{
return false;

}
}

If an error occurs at any stage, the card number is invalid; otherwise, the results of the check are output
via SendResponse():

private void SendResponse(bool succeeded)
{
string xml = “<boolean>{0}</boolean>”;
Response.Write(string.Format(xml, succeeded));
Response.End();

}

SendResponse() uses a basic template, which is filled with the value True or False depending on the
parameter succeeded.

The HTML page is very similar to BasicRetrievalDemo.html. A standard web page consists of a
textbox and a button that, when clicked, pass the value of the textbox to a JavaScript function named
validateCardNumber():

function validateCardNumber(cardNumber)
{
oXmlHttp = zXmlHttp.createRequest();
showOutput(“”);
oXmlHttp.onreadystatechange = handleReadyStateChange;
cardNumber = cardNumber.replace(/\D/g, “”);
document.getElementById(“txtCardNumber”).value = cardNumber;
var sUrl = “CheckPaymentCard.aspx?cn=” + cardNumber;
oXmlHttp.open(“GET”, sUrl, true);
oXmlHttp.send(null);

}

validateCardNumber() assigns a new XMLHttpRequest to the previously declared variable
oXmlHttp. It then assigns a callback, handleReadyStateChange(), that will process the returned XML.
The line

cardNumber = cardNumber.replace(/\D/g, “”);

657

Chapter 16: Ajax

uses a regular expression to remove any nondigits from the string, and then writes this back to the web
form, before calling the web service.

handleReadyStateChange() introduces some new code to retrieve the necessary data from the
returned XML. This code uses the zXPath class to locate the target node via XPath:

function handleReadyStateChange()
{
if (oXmlHttp.readyState == 4)
{
var sXPath = “/*/text()”;
var oResultNode = zXPath.selectSingleNode

(oXmlHttp.responseXML.documentElement, sXPath);
showOutput(oResultNode.nodeValue);

}
}

The key step here is the XPath used, /*/text(); this means “fetch the text node of the document ele-
ment.” The next line retrieves the actual nodeValue, True or False, and passes this to showOutput()
for display. This next example uses a combination of XML, XSLT, and JavaScript to implement the
AutoSuggest functionality. A second version shows how it could be adapted to use JSON.

The AutoSuggest Box
If you visited the Google link mentioned earlier, you saw how the AutoSuggest box works. After enter-
ing characters into the main textbox, a list of matching suggestions appears underneath in the form of a
list. The textbox itself also adds the first suggestion but with the added part selected so that it can easily
be overtyped. You can also use the up and down arrow keys to choose one of the suggestions and then
use the mouse or the Enter key to place it in the textbox. The AutoSuggest box is ideal for situations
when a traditional drop-down would be cumbersome due to an excessive number of options.

The example here uses a list of world countries, which number nearly 200. This would be awkward to
set up if the options could not be restricted somehow. Here’s a list of the requirements and functionality:

❑ Suggestions — You need a way to restrict the list of countries to those starting with the charac-
ters already typed.

❑ Show a suggestion — As the user types, the textbox will be filled with a suggestion from the
list. The part of the suggestion that wasn’t actually entered by the user will be highlighted.

❑ User control — The options can be selected using the mouse or the keyboard, using the up and
down arrows and the Enter key. The list can also be hidden by pressing the Esc key.

As this book is an XML primer, the first implementation uses XML for storing and transporting the data;
a second version will see what changes need to be made to use JSON.

There are quite of number of parts to this example: the HTML, a substantial amount of JavaScript, CSS,
and the web service to deliver the suggestions. The full listings are available in the code download for
this book, but are not presented in the chapter.

658

Part VI: Communication

The following files are used for this example:

❑ zXml.src.js: The standard XML library as used by the other examples in the chapter

❑ AutoSuggest.js: The basic JavaScript for the control

❑ CountriesSuggestionProvider.js: JavaScript specific to retrieving the countries data. There
is also a second version, CountriesSuggestionProvider2.js, for the JSON example.

❑ AutoSuggest.css: A CSS stylesheet to control how the suggestions are displayed

❑ AutoSuggestDemo.html: An example of the control in action

❑ GetCountries.aspx: The entry point for the web service; there is also GetCountries2.aspx
for the JSON version.

❑ GetCountries.aspx.cs: The code for the web service and a second version for the JSON ver-
sion

❑ Countries.xml: The list of countries

❑ Countries.xslt: Retrieves a filtered list of countries from Countries.xml based on the let-
ters provided. There is also a second version, Countries2.xslt, for JSON. The starting point
for the whole control is a standard textbox:

<input type=”text” name=”txtSuggest” id=”txtSuggest” autocomplete=”off”>

The autocomplete attribute set to off ensures that the usual browser feature of providing past entries
as suggestions will not interfere with your own list.

Much of the look of a standard drop-down, as well as such features as highlighting the current sugges-
tion, is achieved using CSS. The list of suggestions is held in a div that has a CSS class of suggestions:

div.suggestions
{
position: absolute;
background-color: #ffffff;
border: 1px solid #000000;
box-sizing: border-box;
-moz-box-sizing: border-box;

}

The background color is set to #ffffff (white), and the border is set to #000000 (black). The –moz-
box-sizing setting is needed for some older browsers so that they follow the CSS standard. Later you’ll
learn how to position the div so that it sits underneath the textbox.

Class Design
There are two main classes: a SuggestionProvider and the actual AutoSuggestControl itself. The
provider is responsible for retrieving the suggestions and passing them to the AutoSuggestControl.
The SuggestionProvider only has one method, fetchSuggestions(), which is called by the
AutoSuggestControl class when the user types a character into the textbox.

659

Chapter 16: Ajax

The AutoSuggestControl must be able to access both the provider and the textbox, so both of these are
passed to the constructor:

function AutoSuggestControl(textbox, provider)
{
this.textbox = textbox;
this.provider = provider;

}

Showing a Suggestion

Showing a suggestion involves examining the user input and making one or more suggestions that
match the input. For example, if the user types in the letter L, then the countries beginning with this let-
ter would be displayed (see Figure 16-4).

Figure 16-4

The first suggestion — in this example, Laos — would be shown in the textbox but only aos would be
highlighted. If the user then entered the letter e, the countries Lebanon and Lesotho would be suggested,
and, for example, Lebanon would appear in the textbox with banon highlighted.

To achieve this functionality, you need to be able to select a portion of the text. Originally browsers only
had an all-or-nothing approach using the select() method. Nowadays, both Internet Explorer and
Mozilla provide ways to select any contiguous portion of text. You probably won’t be surprised to learn
that they implement different ways of achieving this, although what is somewhat surprising is that for
once IE actually follows the W3C standard, whereas Mozilla has a proprietary system. The code must
therefore detect the browser’s capabilities and apply the appropriate method.

In Internet Explorer the key to manipulating text lies with the TextRange class. Here is code to select all
the characters in a textbox except the first two:

660

Part VI: Communication

var oSuggest = document.getElementById(“txtSuggest”);
var oRange = oSuggest.createTextRange();
oRange.moveStart(“character”, 0);
oRange.moveEnd(“character”, 2 - oSuggest.value.length);
oRange.select();
oSuggest.focus();

After obtaining a reference to the textbox and storing it in oSuggest, a TextRange is created.

The actual text to be highlighted is obtained by specifying the starting and ending points using the
moveStart() and moveEnd() methods. These accept a string indicating the units to use; instead of
character you can also choose word, sentence, or textedit; the last of these indicates the start or
end of the text. The second parameter indicates how many units to move, and must be negative if you
want to move from the end toward the beginning.

The Mozilla version, albeit nonstandard, has the merit of simplicity; it just needs the start and end index
of the characters to select:

var oSuggest = document.getElementById(“txtSuggest”);
oSuggest.setSelectionRange(2, oSuggest.value.length);
oSuggest.focus();

The setSelectionRange() method simply takes two integers specifying the zero-based index of the
start and end points. Note that in both cases you need to apply the focus() method after specifying the
selection. This ensures that the selection is highlighted and that it will be replaced by any additional
characters typed by the user.

To add this functionality to the AutoSuggestControl, test which version is needed. The method itself is
called selectTextRange:

AutoSuggestControl.prototype.selectTextRange = function(start, end)
{
if (this.textbox.createTextRange)
{
var oRange = this.textbox.createTextRange();
oRange.moveStart(“character”, start);
oRange.moveEnd(“character”, end – this.textbox.value.length);
oRange.select();

}
else if (this.textbox.setSelectionRange)

{
this.textbox.setSelectionRange(start, end);

}
this.textbox.focus();

}

The selectTextRange() method is used by the showFullSuggestion() method. This accepts one
suggestion, inserts it into the textbox, and highlights only the characters not entered by the user:

AutoSuggestControl.prototype.showFullSuggestion = function (suggestion)
{
if (this.textbox.createTextRange || this.textbox.setSelectionRange)

661

Chapter 16: Ajax

{
var iCharCount = this.textbox.value.length;
this.textbox.value = suggestion;
this.selectTextRange(iCharCount, suggestion.length);

}
}

The function first determines whether either the createTextRange or the setSelectionRange
method is available. If neither is, then no suggestion is shown.

Implementing the suggest Method

When the coding is finished, the suggest() method accepts all the suggestions and displays them
underneath the textbox. At this stage, it will just deal with the main suggestion. When we are dealing
with an alphabetical list of countries, the main suggestion will be the first one.

AutoSuggestControl.prototype.suggest = function (suggestions, show)
{
if (suggestions.length > 0)
{
this.showFullSuggestion(suggestions[0]);

}
}

Notice a second parameter named show. The reason for this is explained later when the code for dealing
with special keys, such as Backspace, is covered.

Handling Input and Control Keys

Three possibilities are of interest when the user presses a key. The first is when the user enters a charac-
ter into the textbox; the second is when the user presses a control key such as the down arrow to high-
light a suggestion; and the third case (when you don’t want to interfere) is when the user is interacting
with another control on the page. To handle the first two cases, you need to hook into the textbox’s
events. There are three contenders: keydown, keypress, and keyup. The first two don’t do quite what
we need, because they fire too early, before the text has actually changed. The keyup event is therefore
what you’ll use to respond to user input.

When the browser fires the keyup event, you can determine which key was pressed by using the
keyCode property of the event object. Again, events are handled slightly differently in Internet Explorer
than in Mozilla; the former has a global event object, whereas the latter passes an Event object to the
handler.

At this stage you are only concerned with handling character input for the textbox and fetching sugges-
tions based on the input; this means you can ignore other keys such as Home or Print Screen.

Key codes can be viewed at www.jpsoft.com/help/index.htm?keyscanexpl.htm.

The following code filters out the key codes to be ignored and only passes on the textbox’s value when
the character keys, the Backspace key, or the Delete key is released:

662

Part VI: Communication

AutoSuggestControl.prototype.handleKeyUp = function (e)
{
var iCode = e.keyCode;
if (!(iCode < 8

|| (iCode > 8 && iCode < 32)
|| (iCode > 32 && iCode < 46)
|| (iCode > 111 && iCode < 124)))

{
this.provider.fetchSuggestions(this);

}
}

Now you need to make sure that the textbox’s own keyup event fires the preceding handling code:

AutoSuggestControl.prototype.init = function()
{
var me = this;
this.textbox.onkeyup = function (e)
{
me.handleKeyUp(e || window.event);

}
}

A reference to this is stored in the variable me; this means you can access the instance of the control
from elsewhere in code. The textbox’s onkeyup() method is assigned an anonymous function, which
passes the event object, taking into account the differences between Mozilla and Internet Explorer.

The init() method is called in the AutoSuggestControl constructor:

function AutoSuggestControl(textbox, provider)
{
this.textbox = textbox;
this.provider = provider;
this.init();

}

Creating the Suggestions List

The actual div holding the suggestions will be created dynamically; the tricky part is aligning it under-
neath the main textbox. A reference to it is stored in an instance variable named suggestionsBox,
which is initially null:

function AutoSuggestControl(textbox, provider)
{
this.textbox = textbox;
this.provider = provider;
this.suggestionsBox = null;

}

A few methods are needed to deal with this div: You need to create it, hide it, and highlight the current
selection. The method that hides the suggestions is shown here:

663

Chapter 16: Ajax

AutoSuggestControl.prototype.hideSuggestionsBox = function ()
{
this.suggestionsBox.style.visibility = “hidden”;

}

The method that creates the div is createSuggestionsBox():

AutoSuggestControl.prototype.createSuggestionsBox = function ()
{
this.suggestionsBox = document.createElement(“div”)
this.suggestionsBox.className = “suggestions”;
this.suggestionsBox.style.visibility = “hidden”;
this.suggestionsBox.style.width = this.textbox.offsetWidth;
document.body.appendChild(this.suggestionsBox);

}

This method creates the div and assigns a CSS class of suggestions. It initially needs to be hidden, as
no suggestions are available until the user types at least one letter; and its width matches that of the
main textbox. The offsetWidth gives the actual width of the textbox after the page has rendered, rather
than what might have initially been set via CSS.

The final method of the suggestions div is highlightSuggestion():

AutoSuggestControl.prototype.highlightSuggestion = function (suggestionElement)
{
for (var i = 0; i < this.suggestionsBox.childNodes.length; i++)
{
var oElement = this.suggestionsBox.childNodes[i];
if (oElement == suggestionElement)
{
oElement.className = “current”;

}
else if (oElement.className == “current”)

{
oElement.className = “”;

}
}

}

highlightSuggestion() takes one parameter, a reference to the element representing the desired sug-
gestion. It loops through all the div’s children and compares each to the suggestion. If they match, the
CSS class is set to current. If not, the current class is removed by setting className to an empty
string.

To align the div accurately, you need to know where the textbox is. This position cannot be read directly;
it must be calculated using the offsetTop and offsetLeft properties. These provide the position rela-
tive to an element’s offsetParent, normally its parent; and by working back up the element tree until
the body is reached, the absolute position can be reached. Two new helper methods are therefore added
to the AutoSuggestControl:

AutoSuggestControl.prototype.getLeft = function ()
{
var oElement = this.textbox;

664

Part VI: Communication

var iLeft = 0;

while (oElement.tagName != “BODY”)
{
iLeft += oElement.offsetLeft;
oElement = oElement.offsetParent;

}
return iLeft;

}

AutoSuggestControl.prototype.getTop = function ()
{
var oElement = this.textbox;
var iTop = 0;

while (oElement.tagName != “BODY”)
{
iTop += oElement.offsetTop;
oElement = oElement.offsetParent;

}
return iTop + this.textbox.offsetHeight;

}

Both these methods recurse through the DOM tree until they hit the body, adding the offset values as
they go. The getTop() method also takes into account the height of the textbox in the final calculation.
The methods then return the final measurement.

Handling Mouse Actions

Suggestions can be selected by using the mouse or the keyboard. The keyboard method is discussed
later; for now, the three mouse actions needing attention are onmouseover, onmousedown, and
onmouseup. onmouseover highlights the suggestion underneath the cursor, onmousedown places the
suggestion under the cursor into the textbox, and onmouseup sets the focus on it.

First the code for onmouseover:

AutoSuggestControl.prototype.createSuggestionsBox = function ()
{
this.suggestionsBox = document.createElement(“div”)
this.suggestionsBox.className = “suggestions”;
this.suggestionsBox.style.visibility = “hidden”;
this.suggestionsBox.style.width = this.textbox.offsetWidth;
document.body.appendChild(this.suggestionsBox);

var me = this;
this.suggestionsBox.onmouseover = function (e)
{
var oEvent = e || window.event;
var oSuggestion = oEvent.target || oEvent.srcElement;
me.highlightSuggestion(oSuggestion);

}
//Other handlers to follow

}

665

Chapter 16: Ajax

The interesting code here is that which tests for the different objects exposed by Mozilla and Internet
Explorer. Once the chosen element is referenced, it is passed to highlightSuggestion().

The code for onmousedown comes immediately afterward:

this.suggestionsBox.onmousedown = function (e)
{
var oEvent = e || window.event;
var oSuggestion = oEvent.target || oEvent.srcElement;
me.textbox.value = oSuggestion.firstChild.nodeValue;
me.hideSuggestionsBox();

}

After referencing the suggestion, you take its first child, a text node, and insert its nodeValue, the actual
text, into the main textbox.

onmouseup simply focuses on the textbox itself:

this.suggestionsBox.onmouseup = function ()
{
me.textbox.focus();

}

Adding the Suggestions

The next step is to create a process to add suggestions to the suggestions box. It will accept an array of
strings representing the suggestions and create a new div for each one:

AutoSuggestControl.prototype.showSuggestions = function (suggestions)
{
this.suggestionsBox.innerHTML = “”;
for (var i = 0; i < suggestions.length; i++)
{
var oDiv = document.createElement(“div”);
oDiv.appendChild(document.createTextNode(suggestions[i]));
this.suggestionsBox.appendChild(oDiv);

}
this.suggestionsBox.style.left = (this.getLeft() + “px”);
this.suggestionsBox.style.top = (this.getTop() + “px”);
this.suggestionsBox.style.visibility = “visible”;

}

Here you create a new div for each suggestion and append a text node, with its value set to the sug-
gested country.

Now revisit the suggest() method and make a small modification to allow for the fact that users may
try to erase a character with the Backspace or Delete key:

AutoSuggestControl.prototype.suggest = function (suggestions, show)
{
if (suggestions.length > 0)
{

666

Part VI: Communication

if (show)
{
this.showFullSuggestion(suggestions[0]);

}
this.showSuggestions(suggestions);

}
else
{
this.hideSuggestionsBox();

}
}

The logic here is simple: If there are no suggestions, then you hide the box. If there are suggestions and
the second parameter is true, you add the suggestion to the textbox and then show the alternative sug-
gestions.

Next, you modify the handleKeyUp() function so that if the Backspace or Delete keys are used, then the
showFullSuggestion() method is not called. Otherwise, the user’s deleted text would keep reappear-
ing. The Backspace key has a key code of 8; the Delete key is 46:

AutoSuggestControl.prototype.handleKeyUp = function (e)
{
var iCode = e.keyCode;
if (!(iCode < 8

|| (iCode > 8 && iCode < 32)
|| (iCode > 32 && iCode < 46)
|| (iCode > 111 && iCode < 124)))

{
if (iCode == 8 || iCode == 46)
{
this.provider.fetchSuggestions(this, false);

}
else
{
this.provider.fetchSuggestions(this, true);

}
}

}

Handling Keyboard Selection

Now you need code to enable users to run up and down the suggestion list with the arrow keys. Two
new variables are needed: The first holds the index of the current suggestion, or -1 if no suggestion has
been chosen; the second variable holds the actual text the user has entered so far:

function AutoSuggestControl(textbox, provider)
{
this.textbox = textbox;
this.provider = provider;
this.suggestionsBox = null;
this.currentSuggestionIndex = -1;
this.actualText = textbox.value;
this.init();

}

667

Chapter 16: Ajax

The function called when the user presses an arrow key is goToSuggestion():

AutoSuggestControl.prototype.goToSuggestion = function (offset)
{
var colSuggestionNodes = this.suggestionsBox.childNodes;
if (colSuggestionNodes.length > 0)
{
var oNode = null;
if (offset > 0)
{
if (this.currentSuggestionIndex < colSuggestionNodes.length – 1)
{
oNode = colSuggestionNodes[++this.currentSuggestionIndex];

}
}
else if (this.currentSuggestionIndex > 0)

{
oNode = colSuggestionNodes[--this.currentSuggestionIndex];

}
if (oNode)
{
this.highlightSuggestion(oNode);
this.textbox.value = oNode.firstChild.nodeValue;

}
}

}

The goToSuggestion() method takes one argument: A positive integer moves one suggestion down
the list, a negative one moves one up. First, the child nodes of the div are stored. The div’s only children
are the individual suggestions in their own divs, so if there are no child nodes, then the method does
nothing. If the offset is positive and you aren’t at the end of the list, a reference to the next div is stored
in oNode. If the offset is negative and you aren’t at the start, the previous div is assigned to oNode. If
oNode is not null, then it is passed to highlightSuggestion() and the textbox value is updated.

It is also necessary to reset the currentSuggestionIndex when a suggestion is chosen, so add the fol-
lowing line to the suggest() method:

AutoSuggestControl.prototype.suggest = function (suggestions, show)
{
this.currentSuggestionIndex = -1;
if (suggestions.length > 0)
{
if (show)
{
this.showFullSuggestion(suggestions[0]);

}
this.showSuggestions(suggestions);

}
else
{
this.hideSuggestionsBox();

}
}

668

Part VI: Communication

The actualText variable needs to be updated in the key handling routine:

AutoSuggestControl.prototype.handleKeyUp = function (e)
{
this.actualText = this.textbox.value;
var iCode = e.keyCode;
if (!(iCode < 8

|| (iCode > 8 && iCode < 32)
|| (iCode > 32 && iCode < 46)
|| (iCode > 111 && iCode < 124)))

{
if (iCode == 8 || iCode == 46)
{
this.provider.fetchSuggestions(this, false);

}
else
{
this.provider.fetchSuggestions(this, true);

}
}

}

Next is the code to trap the keydown event and call the appropriate method:

AutoSuggestControl.prototype.handleKeyDown = function (e)
{
switch (e.keyCode)
{
case 38: //up arrow
this.goToSuggestion(-1);

break;
case 40: //down arrow
this.goToSuggestion(1);

break;
case 27: //escape key
this.textbox.value = this.actualText;
this.selectTextRange(this.actualText.length, 0);

case 13: //enter key
this.hideSuggestionsBox();
e.returnValue = false;
if (e.preventDefault) e.preventDefault();

break;
}

}

If an arrow key is pressed, then the goToSelection() method is called with the appropriate offset. If
the Esc key is pressed, then the textbox is returned to the text the user typed and the selection changes to
reflect this. The code then continues to the final case, which is also called when the Enter key is pressed.
The suggestions box is hidden and preventDefault() is called if a Mozilla browser is being used.
Setting the return value to false cancels any spurious events caused by these two keys.

You can now update the init function to hook the handleKeyDown() method:

669

Chapter 16: Ajax

AutoSuggestControl.prototype.init = function()
{
var me = this;
this.textbox.onkeyup = function (e)
{
me.handleKeyUp(e || window.event);

}
this.textbox.onkeydown = function (e)
{
me.handleKeyDown(e || window.event);

}
}

The last addition to init() is adding an onblur handler to the textbox such that if the user clicks on a
part of the document other than the suggestions box, then the hideSuggestionsBox() is called:

AutoSuggestControl.prototype.init = function()
{
var me = this;
this.textbox.onkeyup = function (e)
{
me.handleKeyUp(e || window.event);

}
this.textbox.onkeydown = function (e)
{
me.handleKeyDown(e || window.event);

}
this.textbox.onblur = function ()
{
me.hideSuggestionsBox();

}
this.createSuggestionsBox();

}

You also add a call to createSuggestionsBox() to the init() method.

Coping with Speed Typists

There is one more issue to consider: speed typists. If a user types quickly into the textbox, then too many
requests are sent, and due to the asynchronous nature of the XmlHttp request, suggestions could be
returned in the wrong order. To allow for this, add a delay before calling the fetchSuggestions()
method. If the user types quickly and another request is waiting when a new one appears, the previous
one is canceled. This functionality is easily achieved using setTimeout().

setTimeout() is a method of the window object, which returns a timeoutId that can be passed to
clearTimeout() to cancel a pending request. First add the timeout value, in milliseconds, and an
instance variable to store the timeoutId:

function AutoSuggestControl(textbox, provider)
{
this.textbox = textbox;
this.provider = provider;
this.suggestionsBox = null;

670

Part VI: Communication

this.currentSuggestionIndex = -1;
this.actualText = textbox.value;
this.timeoutId = null;
this.defaultTimeout = 200;
this.init();

}

Then change the handlers to use the setTimeout() method.

AutoSuggestControl.prototype.handleKeyUp = function (e)
{
var me = this;
clearTimeout(this.timeoutId);
this.actualText = this.textbox.value;
var iCode = e.keyCode;
if (!(iCode < 8

|| (iCode > 8 && iCode < 32)
|| (iCode > 32 && iCode < 46)
|| (iCode > 111 && iCode < 124)))

{
if (iCode == 8 || iCode == 46)
{
this.timeoutId = setTimeout(function () {

me.provider.fetchSuggestions(me, false);}, this.defaultTimeout);
}
else
{
this.timeoutId = setTimeout(function () {

me.provider.fetchSuggestions(me, true);}, this.defaultTimeout);
}

}
}

Store a reference to this in me to prevent it from going out of scope. Then wrap the calls to
fetchSuggestions() in setTimeout().

The code is now finished! Now to implement the SuggestionProvider.

Implementing the SuggestionProvider

The SuggestionProvider is actually very straightforward. It uses a web service, to be implemented
later, and simply forwards the text typed so far. When the web service returns the matching suggestions,
it calls the suggest() method on the AutoSuggestControl.

The actual web service does the work of taking the user’s text and finding any matching entries. You are
going to write two services: a SOAP-based one and one that uses JSON.

The SuggestionProvider makes use of the zXml cross-browser library and starts with a constructor
that creates a new XML HTTP request object. The constructor accepts the URL of the web service provid-
ing the suggestions:

671

Chapter 16: Ajax

function SuggestionProvider(serviceUrl)
{
this.httpRequest = zXmlHttp.createRequest();
this.serviceUrl = serviceUrl;

}

The fetchSuggestions() method needs a reference to the actual AutoSuggestControl so that it can
extract the search text and call the suggest method once the results have been returned.

The only method to implement is fetchSuggestions(), and this begins by accessing the httpRequest
declared above and checking whether it is currently in use. This would occur if a previous request had
not completed. If a request is pending, it is canceled by calling abort():

SuggestionProvider.prototype.fetchSuggestions = function (autoSuggestControl, show)
{
var request = this.httpRequest;
if (request.readyState != 0)
{
request.abort();

}
var sQueryString = “?countryText=” +

encodeURIComponent(autoSuggestControl.actualText);
var sUrl = this.serviceUrl + sQueryString;

The query string is built from the serviceUrl and the actualText public member of the
AutoSuggestControl:

SuggestionProvider.prototype.fetchSuggestions = function (autoSuggestControl, show)
{
var request = this.httpRequest;
if (request.readyState != 0)
{
request.abort();

}
var sQueryString = “?countryText=” +

encodeURIComponent(autoSuggestControl.actualText);
var sUrl = this.serviceUrl + sQueryString;
request.onreadystatechange = function ()
{
if (request.readyState == 4)
{
var oResultsXml = request.responseXML;
var oNamespaceMapper =

{wrox: “http://www.wrox.com/webservices/GetCountries”};
var sXPath = “/*/*/*/wrox:countries/wrox:country”;
var colCountries = zXPath.selectNodes

(oResultsXml.documentElement, sXPath, oNamespaceMapper);
var arrCountries = new Array();
for (var i = 0; i < colCountries.length; i++)
{
arrCountries.push(colCountries[i].firstChild.nodeValue);

}
autoSuggestControl.suggest(arrCountries, show);

672

Part VI: Communication

}
}
request.open(“GET”, sUrl, true);
request.send(null);

}

The brunt of the work is done in the onreadystatechange handler. Here, the <country> elements are
extracted, and then an array is created using the text node of the <country> element as its value. This
array is then passed to the AutoSuggestControl.suggest() method.

See Chapter 15 for more details about using zXPath.

Implementing the Web Service

The web service is implemented as an aspx page. The reason for that, rather than using the built-in func-
tionality of asmx, is twofold: First, this is a book devoted to XML, and several useful XML techniques in
the service could not be shown using an asmx. Second, you are going to rewrite the service to use JSON,
which will be easier if it is hand-coded.

The service consists of four files: GetCountries.aspx, GetCountries.aspx.cs, countries.xml, and
countries.xslt.

GetCountries.aspx consists of just the following, which needs to be on one line:

<%@ Page Language=”C#”
AutoEventWireup=”true” CodeFile=”GetCountries.aspx.cs”
Inherits=”_Default” ContentType=”text/xml”%>

The only unusual thing about this is the addition of the ContentType attribute, which specifies that the
output MIME type should be text/xml.

The actual work is done by the code-beside file, GetCountries.aspx.cs:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Xml;
using System.Xml.Xsl;
using System.Web.Caching;

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
XmlDocument countriesXml = new XmlDocument();
if (Cache[“countriesXml”] == null)
{
string xmlPath = Server.MapPath(“countries.xml”);
countriesXml.Load(xmlPath);
Cache.Insert(“countriesXml”, countriesXml, new CacheDependency(xmlPath));

673

Chapter 16: Ajax

}
else
{
countriesXml = (XmlDocument)Cache[“countriesXml”];

}
XslCompiledTransform countriesXslt = new XslCompiledTransform();
if (Cache[“countriesXslt”] == null)
{
string xsltPath = Server.MapPath(“countries.xslt”);
countriesXslt.Load(xsltPath);
Cache.Insert(“countriesXslt”, countriesXslt, new CacheDependency(xsltPath));

}
else
{
countriesXslt = (XslCompiledTransform)Cache[“countriesXslt”];

}
try
{
string countryText = Request.QueryString[“countryText”];
XsltArgumentList args = new XsltArgumentList();
args.AddParam(“countryText”, “”, countryText);
countriesXslt.Transform(countriesXml, args, Response.OutputStream);

}
catch (Exception ex)
{
SendErrorXml(ex);

}
}

private void SendErrorXml(Exception ex)
{
string errorXml = “<?xml version=\”1.0\” encoding=\”utf-8\”?>”

+ “<soap:Envelope xmlns:soap=\”http://www.w3.org/2003/05/soap-envelope\””
+ “xmlns:wrox=\”http://www.wrox.com/webservices/GetCountries\”>”
+ “<soap:Body><wrox:GetCountriesResponse><wrox:countries/>”
+ “</wrox:GetCountriesResponse></soap:Body></soap:Envelope>”;

XmlDocument errorDoc = new XmlDocument();
errorDoc.LoadXml(errorXml);
errorDoc.Save(Response.OutputStream);

}
}

After declaring a number of namespaces to allow easy access to the System.Xml classes and caching fea-
tures, the Page_Load method starts by obtaining the countries.xml file:

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
XmlDocument countriesXml = new XmlDocument();
if (Cache[“countriesXml”] == null)
{
string xmlPath = Server.MapPath(“countries.xml”);

674

Part VI: Communication

countriesXml.Load(xmlPath);
Cache.Insert(“countriesXml”, countriesXml, new CacheDependency(xmlPath));

}
else
{
countriesXml = (XmlDocument)Cache[“countriesXml”];

}

It first checks to see whether the XmlDocument representing the countries has been stored in the cache. If
not, such as when the page is called for the first time, then it is loaded and stored in the cache with a file
dependency, which means it remains in the cache until either the machine needs to reclaim memory for
a more important task or, and this is more likely, the file has been modified. This means that after the
first access, countries.xml won’t need to be read from disk unless you have added or removed a
<country> element:

XslCompiledTransform countriesXslt = new XslCompiledTransform();
if (Cache[“countriesXslt”] == null)
{
string xsltPath = Server.MapPath(“countries.xslt”);
countriesXslt.Load(xsltPath);
Cache.Insert(“countriesXslt”, countriesXslt, new CacheDependency(xsltPath));

}
else
{
countriesXslt = (XslCompiledTransform)Cache[“countriesXslt”];

}

A similar process happens with the XSLT transform, countries.xslt. It is fetched from cache if possi-
ble and loaded into an instance of XslCompiledTransform. This class is new to .NET 2.0 and provides
better performance and other features:

try
{
string countryText = Request.QueryString[“countryText”];
XsltArgumentList args = new XsltArgumentList();
args.AddParam(“countryText”, “”, countryText);
countriesXslt.Transform(countriesXml, args, Response.OutputStream);

}
catch (Exception ex)
{
SendErrorXml(ex);

}

The reason for the transformation is to retrieve only those countries from Countries.xml that match
the initial characters entered by the user.

The final part of Page_Load retrieves the value of the query string and adds it as an argument to the
transform. The actual transformation saves the result directly into the Response.OutputStream, a
much better choice than using such methods as Response.Write().

675

Chapter 16: Ajax

Should an error occur, SendErrorXml() is called:

private void SendErrorXml(Exception ex)
{
string errorXml = “<?xml version=\”1.0\” encoding=\”utf-8\”?>”

+ “<soap:Envelope xmlns:soap=\”http://www.w3.org/2003/05/soap-envelope\””
+ “xmlns:wrox=\”http://www.wrox.com/webservices/GetCountries\”>”
+ “<soap:Body><wrox:GetCountriesResponse><wrox:countries/>”
+ “</wrox:GetCountriesResponse></soap:Body></soap:Envelope>”;

XmlDocument errorDoc = new XmlDocument();
errorDoc.LoadXml(errorXml);
errorDoc.Save(Response.OutputStream);

}

Not much can be done on an error, so you just return a SOAP document that looks like the following,
with an empty <countries> element:

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wrox=”http://www.wrox.com/webservices/GetCountries”>
<soap:Body>
<wrox:GetCountriesResponse>
<wrox:countries />

</wrox:GetCountriesResponse>
</soap:Body>

</soap:Envelope>

The countries.xml file is simple; it just has a number of <country> elements wrapped in
<countries>:

<countries>
<country>Afghanistan</country>
<country>Albania</country>
<country>Algeria</country>
<!— More countries here -->
<country>Zambia</country>
<country>Zimbabwe</country>
</countries>

The last file needed is the XSL transform, countries.xslt. Begin by declaring the namespaces needed
on the <xsl:stylesheet> element:

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wrox=”http://www.wrox.com/webservices/GetCountries”>

<xsl:param name=”countryText”/>
<xsl:variable name=”lower” select=”’abcdefghijklmnopqrstuvwxyz’”/>
<xsl:variable name=”upper” select=”’ABCDEFGHIJKLMNOPQRSTUVWXYZ’”/>

<!-- templates go here -->
</xsl:stylesheet>

676

Part VI: Communication

You also need to declare an <xsl:Param> to hold the search text, and two variables that will be used
later to make the search case insensitive, using the following Countries.xslt file:

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:wrox=”http://www.wrox.com/webservices/GetCountries”>

<xsl:param name=”countryText”/>
<xsl:variable name=”lower” select=”’abcdefghijklmnopqrstuvwxyz’”/>
<xsl:variable name=”upper” select=”’ABCDEFGHIJKLMNOPQRSTUVWXYZ’”/>

<xsl:template match=”/”>
<xsl:variable name=”lowercaseSearch”

select=”translate($countryText, $upper, $lower)”/>
<soap:Envelope>
<soap:Body>
<wrox:GetCountriesResponse>
<wrox:countries>
<xsl:apply-templates select=

“countries/country[starts-with(translate(., $upper, $lower), $lowercaseSearch)]”>
<xsl:sort select=”.” data-type=”text”/>

</xsl:apply-templates>
</wrox:countries>

</wrox:GetCountriesResponse>
</soap:Body>

</soap:Envelope>
</xsl:template>

</xsl:stylesheet>

The main template first translates the search into lowercase and stores the result in lowercaseSearch.
It then creates the <soap:Envelope> and <soap:Body>. Next is the payload, the
<wrox:GetCountriesResponse> and <wrox:countries> elements. Then the following XPath is used
to select the countries:

countries/country[starts-with(translate(., $upper, $lower), $lowercaseSearch)

In English, this means select all the <country> elements with a <countries> parent where the string
value of the element, when translated to lowercase, starts with the characters in the variable
lowercaseSearch. Before the relevant <country> elements are processed by the final template, they
are sorted alphabetically, so new counties can be added to Countries.xml at any position.

The elements selected by the preceding XPath are dealt with by the last template:

<xsl:template match=”country”>
<wrox:country><xsl:value-of select=”.”/></wrox:country>

</xsl:template>

This simply recreates the <country> element but this time in the wrox namespace.

Now you can finally test your control! Create a virtual directory for your files named WroxServices
and add the following, all of which are available in the code download for this book:

677

Chapter 16: Ajax

❑ GetCountries.aspx: the entry point for the web service

❑ GetCountries.aspx.cs: The actual web service code

❑ AutoSuggest.js: The JavaScript for the control

❑ CountriesSuggestionProvider.js: The code for the SuggestionProvider

❑ AutoSuggest.css: The CSS stylesheet for the suggestions box

❑ zXml.js: The cross-browser library

❑ Countries.xml: The XML holding the country list

❑ Countries.xslt: The XSL transformation to create the SOAP response

❑ AutoSuggestDemo.html: The test page, shown below

The file to test the control contains the textbox and one JavaScript method to connect the
AutoSuggestControl, the textbox, and the SuggestionProvider:

<html>
<head>
<title>AutoSuggestControl Demo</title>
<link rel=”stylesheet” type=”text/css” href=”autosuggest.css”>
<script type=”text/javascript” src=”zXml.src.js”></script>
<script type=”text/javascript” src=”AutoSuggest.js”></script>
<script type=”text/javascript” src=”CountriesSuggestionProvider.js”></script>
<script type=”text/javascript”>
function init()
{
var oASC = new AutoSuggestControl(document.getElementById(“txtSuggest”),
new SuggestionProvider(“http://localhost/WroxServices/GetCountries.aspx”));

}

</script>
</head>

<body onload=”init();”>
<form>
Country:

<input type=”text” name=”txtSuggest” id=”txtSuggest” size=”40” autocomplete=”off”>
</form>

</body>
</html>

Now navigate to http://localhost/WroxServices/AutoSuggestDemo.html and start to type. You
should see something like what is shown in Figure 16-4.

Next, you will modify the code to use JSON instead of XML.

Try It Out Modifying the Control to Work with JSON

There are three main things to change to implement the AutoSuggestControl using JSON. The actual
AutoSuggest.js stays the same; the changes are made to the SuggestionProvider and the web serv-
ice itself:

678

Part VI: Communication

1. Modify the GetCountries.aspx file by removing the ContentType attribute. You are no
longer sending XML, but a simple string:

<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”GetCountries2.aspx.cs” Inherits=”_Default”%>

2. Save this file as GetCountries2.aspx after modifying the CodeFile value to be
GetCountries2.aspx.cs.

3. Now modify GetCountries.aspx.cs as follows and save it as GetCountries2.aspx.cs:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Xml;
using System.Xml.Xsl;
using System.Web.Caching;

public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
XmlDocument countriesXml = new XmlDocument();
if (Cache[“countriesXml”] == null)
{
string xmlPath = Server.MapPath(“countries.xml”);
countriesXml.Load(xmlPath);
Cache.Insert(“countriesXml”, countriesXml, new CacheDependency(xmlPath));

}
else
{
countriesXml = (XmlDocument)Cache[“countriesXml”];

}
XslCompiledTransform countriesXslt = new XslCompiledTransform();
if (Cache[“countries2Xslt”] == null)
{
string xsltPath = Server.MapPath(“countries2.xslt”);
countriesXslt.Load(xsltPath);
Cache.Insert(“countries2Xslt”, countriesXslt, new CacheDependency(xsltPath));

}
else
{
countriesXslt = (XslCompiledTransform)Cache[“countries2Xslt”];

}
try
{
string countryText = Request.QueryString[“countryText”];
XsltArgumentList args = new XsltArgumentList();
args.AddParam(“countryText”, “”, countryText);
countriesXslt.Transform(countriesXml, args, Response.OutputStream);

}
catch (Exception ex)
{

679

Chapter 16: Ajax

SendError(ex);
}

}

private void SendError(Exception ex)
{
string errorString = “[];”;
Response.Write(errorString);

}
}

How It Works
The XSL transform now points to countries2.xslt, and the SendXmlError() has been changed to
SendError(). It now returns the JavaScript literal for an empty array.

Countries2.xslt is somewhat smaller now:

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”text”/>
<xsl:param name=”countryText”/>
<xsl:variable name=”lower” select=”’abcdefghijklmnopqrstuvwxyz’”/>
<xsl:variable name=”upper” select=”’ABCDEFGHIJKLMNOPQRSTUVWXYZ’”/>
<xsl:template match=”/”>
<xsl:variable name=”lowercaseSearch”
select=”translate($countryText, $upper, $lower)”/>
<xsl:text>[</xsl:text>
<xsl:apply-templates select=

“countries/country[starts-with(translate(., $upper, $lower), $lowercaseSearch)]”>
<xsl:sort select=”.” data-type=”text”/>

</xsl:apply-templates>
<xsl:text>];</xsl:text>

</xsl:template>

<xsl:template match=”country”>
<xsl:text>”</xsl:text>
<xsl:value-of select=”.”/>

<xsl:text>”</xsl:text>
<xsl:if test=”position() != last()”>, </xsl:if>

</xsl:template>

</xsl:stylesheet>

The first changes are the removal of the namespace declarations needed for the SOAP version and the
addition of an <xsl:output> element so that you can specify the output to be text, rather than XML or
HTML.

The main template now has no need to create the <soap:Envelope> and <soap:Body>; it just adds
brackets to form the literal array syntax.

680

Part VI: Communication

The last template outputs the string value of each selected <country> element. If the element is not the
last, then it appends a comma. The resulting output for the search text Ch looks something like this:

[“Chad”, “Chile”, “China”];

The CountriesSuggestionProvider2.js is also simpler; only the fetchSuggestions() method has
changed:

SuggestionProvider.prototype.fetchSuggestions =
function (autoSuggestControl, show)
{
var request = this.httpRequest;
if (request.readyState != 0)
{
request.abort();

}
var sQueryString =

“?countryText=” + encodeURIComponent(autoSuggestControl.actualText);
var sUrl = this.serviceUrl + sQueryString;
request.onreadystatechange = function ()
{
if (request.readyState == 4)
{
var sData = request.responseText;
var arrCountries = eval((sData));
autoSuggestControl.suggest(arrCountries, show);

}
}
request.open(“GET”, sUrl, true);
request.send(null);

}

Instead of accessing responseXML, you access responseText and use eval() to assign it to
arrCountries. Notice the two pairs of parentheses around sData. One pair would be sufficient in this
example but a second pair is advisable to ensure that any statements are fully evaluated.

Now navigate to http://localhost/WroxServices/AutoSuggestDemo2.html. You shouldn’t see
any change in behavior or functionality. Overall, developing with JSON is easier than with XML pro-
vided you are passing around data that is not too complex.

Server-Side Proxies
A perennial problem with using Ajax and web services in general is that with normal security settings,
client-side code can only make requests and receive responses from services in the same domain as the
page itself. Without this provision it would be impossible for users to determine whether to send confi-
dential data using an HTML form. Currently, when a site uses SSL, therefore encrypting the data being
sent, the browser shows a security symbol, normally a padlock on the status bar. If the site’s certificate is
outdated or the name doesn’t match the server, then a warning dialog appears. If JavaScript could post
data to a completely different site, with or without encryption, then this system breaks down.

681

Chapter 16: Ajax

Of course, one of the main ideas behind web services is reusability. It would be hopeless if you had to
write, or at least incorporate, the code for each service your site needed and place it on your own server.
The way around this is to use a server-side proxy. The proxy receives the data from the user and passes it
to a service running on the same domain as the original page. The service does very little; it just passes
the data on to the real service and relays the response back to the client.

Any restrictions on posting from the server are controlled by the site administrators, so there is no prob-
lem with client-side security settings. The next example involves creating a server-side proxy and
describes how to utilize it, client-side, from a web page.

The Currency Converter Proxy
This example shows how to take advantage of a currency conversion service, one of several free services
found at www.xmethods.net/ve2/index.po.

The basic signature of the service is as follows:

float rate getRate(string countryFrom, string countryTo)

It accepts the ISO standard country abbreviation (as found in a URL) for two countries, and returns the
conversion rate between their currencies. For example, calling getRate() with us and uk might return
0.57.

There are three steps to this example:

1. Create a web service with a reference to the currency conversion service.

2. Implement a method that accepts the two country strings, passes them to the service, and
returns the result.

3. Create a client to take advantage of the service.

Creating the Web Service
Follow these steps to create the web service:

1. Open Visual Studio 2005 and choose New ➪ Web Site from the File menu.

2. Pick an ASP.NET web service as the project and choose HTTP as the location.

3. Call the project CurrencyProxyService. The full URL is
http://localhost/CurrencyProxyService. Click OK to create the project.

4. Right-click the project in Solution Explorer and choose Add Web Reference.

5. Enter the following URL, found on the webserviceX.NET website, into the URL box:
http://www.webservicex.net/CurrencyConvertor.asmx. Click Go.

6. You should see the ConversionRate method listed. Rename the Web Reference Name to
webservicex and click Add Reference, as shown in Figure 16-5.

682

Part VI: Communication

Figure 16-5

Implementing the GetRate() Method
Open service.cs in the App_Code folder file and modify it as shown:

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

[WebService(Namespace = “http://www.wrox.com/webservices/CurrencyProxyService”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{

[WebMethod(Description =
“Accepts two currency codes and returns the currency exchange rate as a double.”)]

public double GetRate(string currencyFrom, string currencyTo)
{
webservicex.CurrencyConvertor exchange = new webservicex.CurrencyConvertor();
webservicex.Currency from =

(webservicex.Currency)Enum.Parse(typeof(webservicex.Currency), currencyFrom);
webservicex.Currency to =

(webservicex.Currency)Enum.Parse(typeof(webservicex.Currency), currencyTo);
double rate = exchange.ConversionRate(from, to);
return rate;

}
}

As stated, the code is very short. Aside from the standard namespaces needed for the service, it has one
method, GetRate().

683

Chapter 16: Ajax

The method creates a new instance of webservicex.CurrencyConvertor and calls its ConversionRate()
method. The slightly fiddly part is caused by the fact that the service uses an enumeration for the cur-
rency codes, so the two strings need to use the static Enum.Parse() method along with a cast to convert
them. It then returns the rate to the caller.

Creating the Client
Create a new HTML file named currencyProxyServiceDemo.html and save it in the
CurrencyProxyService folder created earlier. Add the following HTML for the test form:

<html><head>
<title>Currency Service Proxy Demo</title>
<!—script to come -->

</head>

<body>
Currency from:

<input type=”text” id=”txtCurrencyFrom” value=”USD” size=”4”>

Currency to:

<input type=”text” id=”txtCurrencyTo” value=”GBP” size=”4”>

Amount from: <input type=”text” id=”txtAmountFrom” value=”1” size=”10”>

Amount to: <input type=”text” id=”txtAmountTo” size=”10” readonly>

<input type=”button” value=”Convert”

onclick=
“getRate(document.getElementById(‘txtCurrencyFrom’).value,
document.getElementById(‘txtCurrencyTo’).value);”>

</body>
</html>

Now add the following script:

<head>
<title>Currency Service Proxy Demo</title>
<script type=”text/javascript” src=”zXml.src.js”></script>

<script type=”text/javascript”>
var oHttpReq = null;
function getRate(from, to)
{
var sServiceUrl = “Service.asmx/GetRate”;
var sQuery = “?currencyFrom=” + from + “¤cyyTo=” + to;
var sUrl = sServiceUrl + sQuery;
oHttpReq = zXmlHttp.createRequest();
oHttpReq.onreadystatechange = handleReadyStateChange;
oHttpReq.open(“GET”, sUrl, true);
oHttpReq.send(null);

}

function handleReadyStateChange()
{
if (oHttpReq.readyState == 4)
{

684

Part VI: Communication

if (oHttpReq.status == 200 && oHttpReq.responseXML)
{
showResults(oHttpReq.responseXML.documentElement.firstChild.nodeValue);

}
else
{
throw new Error(“Unable to retrieve rate.”);

}
}

}

function showResults(rate)
{
var dAmount = document.getElementById(“txtAmountFrom”).value;
document.getElementById(“txtAmountTo”).value = dAmount * rate;

}
</script>
</head>

This page uses the zXml library so that needs to be in the virtual folder. The first script block adds the
zXml library so that this client works on both Internet Explorer and Mozilla browsers. When the user
clicks the Convert button, the two values from txtCurrencyFrom and txtCurrencyTo are passed to
the getRate() method:

function getRate(from, to)
{
var sServiceUrl = “Service.asmx/GetRate”;
var sQuery = “?currencyFrom=” + from + “¤cyTo=” + to;
var sUrl = sServiceUrl + sQuery;
oHttpReq = zXmlHttp.createRequest();
oHttpReq.onreadystatechange = handleReadyStateChange;
oHttpReq.open(“GET”, sUrl, true);
oHttpReq.send(null);

}

The method builds the full URL to your web service, including the query string, and opens a connection
to the service. The handleReadyStateChange() function is assigned to be called to deal with the
response:

function handleReadyStateChange()
{
if (oHttpReq.readyState == 4)
{
if (oHttpReq.status == 200 && oHttpReq.responseXML)
{
showResults(oHttpReq.responseXML.documentElement.firstChild.nodeValue);

}
else
{
throw new Error(“Unable to retrieve rate.”);

}
}

}

685

Chapter 16: Ajax

When the readyState is equal to 4, the status is checked to see if it equals 200, which means the server
received the request and responded correctly. A code of 404, for example, would mean that the resource
could not be found. The response actually arriving looks like this:

<double xmlns=”http://www.wrox.com/..... “>0.5263</double>

Therefore, to read the rate, simply take the value of the document element’s first child.

There is one final step to take before testing the page. By default, ASP.NET allows only SOAP requests to
a web service; GET and POST requests are forbidden. Because this service uses GET and passes the two
currencies in the query string, a new section must added to the web.config file for the service. Add the
following code to the <system.web> element:

<webServices>
<protocols>
<!-- <add name=”HttpPost”/> -->
<add name=”HttpGet”/>

</protocols>
</webServices>

Navigate to http://localhost/CurrencyProxyService/currencyProxyServiceDemo.html to see
the whole page in action, as shown in Figure 16-6.

Figure 16-6

Summary
This chapter covered the origins of Ajax and how it evolved from a number of disparate techniques into
the standard used today. You learned about the main forms of data representation, XML and JSON, and
the differences in calling services with GET, POST and SOAP. The example developed an Ajax-enabled
control, a textbox that provides suitable suggestions as the user types. It first used XML for the data
communication and then was modified to use JSON. Finally, you learned how server-side proxies can
relieve you of the security problems associated with using web services that are hosted on domains
other than that of the calling page.

686

Part VI: Communication

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
Construct the equivalent JSON literal for this XML:

<person>
<forename>Joe</forename>
<surname>Fawcett</surname>
<profession>Developer</profession>
<children>
<child>
<forename>Persephone</forename>
<sex>female</sex>

</child>
<child>
<forename>Xavier</forename>
<sex>male</sex>

</child>
</children>

</person>

Question 2
Why is it necessary to use a server-side proxy when calling a third-party web service?

Question 3
What is the maximum number of simultaneous connections allowed by most browsers to a single URL?

687

Chapter 16: Ajax

Part VII

Display

Chapter 17: Cascading Style Sheets (CSS)

Chapter 18: XHTML

Chapter 19: Scalable Vector Graphics (SVG)

Chapter 20: XForms

17
Cascading Style Sheets

(CSS)

This chapter examines Cascading Style Sheets (CSS) as a means of styling XML documents for use
on the Web. You may well have already used CSS with HTML or XHTML. Dealing with other
XML document types, however, requires some different techniques, which are covered in this
chapter.

You’ll see XHTML in the next chapter, but for the time being you only need to know that
XHTML documents can be styled like HTML documents. Styling XHTML and HTML docu-
ments is so similar that this chapter uses the term “(X)HTML” to represent “HTML or
XHTML.”

Even when you remove stylistic markup from an (X)HTML document, the browser still knows
how to display elements, such as tables, lists of different levels of headings, and so on. In other
XML vocabularies, you won’t even have this most rudimentary help with layout. After all, a
<table> element in your XML vocabulary might be used to describe a piece of wood with four
legs. Considering that a browser won’t know how any of the elements in your XML vocabulary
need to be displayed, you have a lot more work to do when styling XML documents with CSS
than (X)HTML documents.

If you know that your XML documents will be displayed on the Web, some of the points you learn
in this chapter might even affect the way in which you write your vocabulary or schema. For
example, by the end of the chapter, you will understand why CSS is much better suited to display-
ing element content than attribute values.

In this chapter you will learn the following:

❑ How CSS relies upon a box model for styling documents, whereby the content of each ele-
ment inhabits a box

❑ How to use CSS to style (X)HTML documents, rather than relying on stylistic markup

❑ How to give your XML documents a visual structure so that they can look like (X)HTML
documents with features such as tables, lists, links, and images, even though the browser
does not know how to present any of the elements.

Before looking at CSS, however, it is important to reiterate the reasons why you need stylesheets.

This chapter uses Internet Explorer 6 and Firefox 1.5 or later, or other Gecko-based browsers such as
Mozilla and Netscape 6 or later. Most features described and demonstrated here are available in recent
versions of other browsers such as Opera and Safari.

Why Stylesheets?
(X)HTML documents contain the following three types of markup:

❑ Structural markup — Describes the structure of a document, the headings, paragraphs, line
breaks, and lists, using elements such as <h1>, <p>,
, , and elements

❑ Semantic markup — Indicates something about the document you are marking up — for exam-
ple, the <meta> and <title > elements

❑ Stylistic markup — Indicates how the document should be presented on a browser, using ele-
ments such as and <s>, and attributes such as bgcolor

There is an odd-one-out here: stylistic markup. The other two tell you something about the content of
the document, whereas the stylistic markup just tells you how the document should be presented for
one medium (the desktop PC browser), not about the document itself. While a element might
indicate in which typeface a designer wanted a line of a page to be shown, the element doesn’t
indicate anything about the structure of the document in the same way a heading or paragraph element
does — and the same designer might want a different font for the same text in a different medium. That’s
why this markup has been deprecated in HTML 4.01 and, as you’ll see in the next chapter, in XHTML.

Because applications of XML are supposed to create self-describing documents, styling doesn’t indicate
anything about the content of the document and should not be included in most of your documents.
Rather than use stylistic markup in your documents, you can use another language in a separate docu-
ment to indicate how your documents should be rendered, and you can even have different stylesheets
for different mediums — one each for PC browsers, browsers in set top boxes for TVs, printer-friendly ver-
sions of pages, and so on, all of which have different types of display (in particular, different resolutions).

Remember that most XML languages do not include markup that indicates how the document should be
styled. Indeed, many XML languages are never styled because they are used to transfer data between
applications.

This chapter addresses how you can use this separate language, CSS, to style XML documents. Some of
the things shown in this chapter are only beginning to be supported in browsers, so the material pre-
sented here not only takes you to the limits of what is possible with CSS in browsers now, but also whets
your appetite for what is likely to be possible in the near future.

The topics covered in this chapter include the following:

❑ How CSS works

❑ How to style XML documents with CSS

692

Part VII: Display

❑ Using CSS selectors to indicate the elements to which a CSS rule applies

❑ The box model that CSS is based upon

❑ Positioning schemes that enable CSS to control page layouts

❑ Laying out tabular XML data with CSS

❑ Linking between XML documents

❑ Adding images to XML documents

❑ Adding text to your documents from the stylesheet

❑ Using attribute values in documents

The first thing to do is make sure you are familiar with writing a basic CSS stylesheet and how the pre-
sentational or stylistic CSS rules are applied to a document.

Two versions of CSS have already been published as recommendations by the W3C: CSS1 and CSS2.
CSS2 built upon the functionality of CSS1. It added so many features that it required a bit of cleaning,
and a new clarified and simplified version has been published as CSS2.1. Both CSS1 and CSS2.1 are
covered in this chapter under the general term CSS. A third version (CSS3) is currently under develop-
ment by the W3C to add new features to CSS2.1.

Introducing CSS
CSS enables you to style a document by associating presentation rules with the elements that appear in
the document you want to style; these rules indicate how the content of those elements should be ren-
dered. Figure 17-1 shows an example of a CSS rule. Rather than use a element to specify type-
faces, this rule indicates that all <h1> elements should use the Arial typeface.

Figure 17-1

The rule is split into two parts:

❑ The selector indicates the element or elements to which the declaration applies (you can have a
comma-separated list of several elements or more elaborate patterns to indicate complex condi-
tions on elements).

❑ The declaration sets out how the elements should be styled. In this case, the content of the <h1>
elements should be in the Arial typeface.

h1 {font-family: arial;}

declaration

property

selector

value

693

Chapter 17: Cascading Style Sheets (CSS)

The declaration is also split into two parts, separated by a colon:

❑ A property of the selected element(s) that you want to affect; Figure 17-1 sets the font-family
property.

❑ A value is a specification for this property; in this case, it is the arial typeface.

Although you do not need to add a semicolon at the end of a single declaration, a declaration can consist
of several property-value pairs, and each property-value pair within a rule must be separated by a semi-
colon. Therefore, it is good practice to start adding them from the beginning in case you want to add
another later, because if you forget to add the semicolon, any further property-value pairs will be ignored.

Following is an example of a CSS rule that applies to several elements (<h1>, <h2>, and <h3>), with
each element’s name separated by a comma. It also specifies several properties for these elements, with
each rule separated by a semicolon. All the properties are kept inside the curly braces, as shown in the
following:

h1, h2, h3 { color:#000000;
background-color:#FFFFFF;
font-family:arial, verdana, sans-serif;
font-weight:bold;}

This should be fairly straightforward: The content of each heading element is written in a bold, black,
Arial typeface (unless the computer does not have it, in which case it will look for Verdana, and then any
sans-serif font), with a white background.

If you have done any XHTML work at all, this should be quite familiar to you. Rather than use the
bgcolor attribute on an element, you use the background-color property in CSS. Rather than use a
 element to describe the typeface you want to use, you add the font-family property to the
rule for that element. Rather than use tags, you use the font-weight property.

CSS Properties
The following table shows the main properties available to you from CSS1 and CSS2 (there are other
properties in these specifications, but they are rarely used and are not supported yet by the major
browsers):

Font Border Dimensions

font border height

font-family border-bottom line-height

font-size border-bottom-color max-height

font-style border-bottom-style max-width

font-variant border-bottom-width min-height

font-weight border-color min-width

Text border-left width

694

Part VII: Display

color border-left-color Positioning

direction border-left-style bottom

letter-spacing border-left-width clip

text-align border-right left

text-decoration border-right-color overflow

text-indent border-right-style right

text-transform border-right-width top

unicode-bidi border-style vertical-align

white-space border-top z-index

word-spacing border-top-color Outlines

Background border-top-style outline

background border-top-width outline-color

background-attachment border-width outline-style

background-color Padding outline-width

background-image padding Margin

background-position padding-bottom margin

background-repeat padding-left margin-bottom

Table padding-right margin-left

border-collapse padding-top margin-right

border-spacing caption-side Generated Content margin-top

empty-cells content Classification

table-layout counter-increment clear

List and Marker counter-reset cursor

list-style quotes display

list-style-image float

list-style-position position

list-style-type visibility

Inheritance
There is a good reason why the word “cascading’’ appears at the beginning of the name for CSS. Many
of the CSS properties can be inherited by child elements, so once you have declared a rule, that rule

695

Chapter 17: Cascading Style Sheets (CSS)

applies to all child elements of the element to which it was applied. For example, if you set up a rule on
the <body> element in an XHTML document, then the rule will apply to all elements in the body of the
document. If you indicate a font-family property for the <body> element, all of the text in the docu-
ment should appear in that font. You can, however, override a rule by creating a more specific rule for
certain child elements — for example, you might want all headings in a different font than the rest of the
page.

Now revisit the CSS rule shown earlier in the chapter:

h1, h2, h3 { color:#000000;
background-color:#FFFFFF;
font-family:arial, verdana, sans-serif;
font-weight:bold;}

Imagine that you now want the <h3> element to be italic as well. Just add the following rule:

h1, h2, h3 {color:#000000; background-color:#FFFFFF;
font-family:arial, verdana, sans-serif;
font-weight:bold;}

h3 {font-style:italic;}

This saves rewriting all the property-value pairs that the h3 element has in common with other heading
elements. The more specific a rule within the stylesheet, the greater precedence it has in the cascade. For
example, if you don’t want the h3 element to be bold when it is immediately preceded by an h2 element,
you could just add the following rule:

h2 + h3 {font-weight:normal;}

The selector h2 + h3 matches h3 elements only when they are immediately preceded by an h2 element. It
is more specific than the h3 selector, which also defines a font-weight property, and would override it.

The order in which rules appear within the stylesheet matters only when a property is defined several
times with the same font-weight. For instance, if you want none of the h3 elements to be bold, you can
add the following rule in the same stylesheet after the common rule for h1, h2, and h3 elements:

h3 {font-weight:normal;}

When two rules have the same weight, the last rule wins, so normal overrides the font-weight property.

This is a great useful feature but it needs to be used with moderation! Overriding properties rapidly
leads to stylesheets that are hard to read and error prone.

There is another reason CSS stylesheets have “cascading’’ in the title: You can use rules from several
stylesheets by importing one into another or use several stylesheets with the same document. You might
use multiple stylesheets if, for example, you wanted to include all the styles common to the whole site in
one CSS document (such as company colors and fonts), and all the styles just for a subsection of the site
in another (such as specific layout for a certain section of the site).

696

Part VII: Display

Try It Out Styling an XML Document with CSS

The first type of XML document to style is a DocBook document. If you have never used DocBook, don’t
worry. This one is quite straightforward — a small extract of this chapter expressed as a DocBook article.
There’s nothing too adventurous in this first example — just some basic rules about how this document
should be presented to get you into the swing of writing CSS.

Like TEI, DocBook is a schema that can be used to mark up complete books. While TEI aims to be very
generic and could be used to mark up very different types of text, from the Bible to the latest Harry
Potter, without forgetting the entire works of Shakespeare, DocBook was designed to mark up technical
documentation, and has specific elements to represent things such as program listings and screen out-
puts. Among many other uses, the Linux Documentation Project has chosen DocBook as its source for-
mat, so if you are a Linux user, chances are good that you can find thousands of DocBook documents on
your workstation!

Download or edit and save the following document as ch17_eg01.xml:

<?xml version=”1.0” encoding=”UTF-8”?>
<?xml-stylesheet type=”text/css” href=”ch17_eg01.css”?>
<article>
<title>Styling XML documents with CSS</title>
<section>
<title>Introduction</title>
<para>This article addresses how we can use this separate language,
CSS, to style XML documents. Some of the things we will see in this
chapter are only starting to be supported in browsers, so the chapter
will not only take you to the limits of what is possible with CSS in browsers
now, but also whet your appetite for what will be possible in the near
future.</para>

<para>The topics covered in this article include:</para>
<itemizedlist>
<listitem>
<para>How CSS works</para>

</listitem>
<listitem>
<para>How to style XML documents with CSS</para>

</listitem>
<listitem>
<para>Using CSS selectors to indicate which elements a
CSS rule applies to</para>

</listitem>
<listitem>
<para>The box model that CSS is based upon</para>

</listitem>
</itemizedlist>

</section>
</article>

2. If you open this document with your preferred browser right now, you can see that it displays
all the text together. That’s because the CSS stylesheet doesn’t exist yet and, even if that seems
obvious to you, the browser has no clue that a <title> element is meant to be a title or that a
para element is meant to be a paragraph. The following steps will express all this in CSS.

697

Chapter 17: Cascading Style Sheets (CSS)

3. Using your favorite web or text editor, create a file called ch17_eg01.css for your stylesheet.

4. The first rules you should write indicate the settings for the whole document, so the first selec-
tor should indicate that you want to apply rules to the <article> element:

article {}

5. Having written the selector, you need to add the declarations indicating that the background of
the document should be white and the text should be black — and while you’re at it, specify a
typeface. To do this, add the following to the rule:

article {
color:#000000;
background-color:#FFFFFF;
font-family:arial, verdana, sans-serif;}

6. Indicate that the titles should be italicized, the <title> and <para> elements should be dis-
played as blocks, and the listitem elements should be considered . . . list items!

title {font-style:italic;}
title, para {display:block}
listitem {display:list-item; list-style: circle outside; margin-left: 2em}

7. Save the CSS file you have just written and open the XML document in a browser. You should
end up with something that looks like Figure 17-2.

Figure 17-2
698

Part VII: Display

How It Works
First, the <?xml-stylesheet?> processing instruction in the source XML document indicates that a
CSS stylesheet is available that can be applied to the document:

<?xml-stylesheet type=”text/css” href=”ch17_eg01.css”?>

Remember that there are two parts to a CSS rule: the selector, which indicates the element(s) to which
the rule applies, and the declarations (which are made up of properties and their values). Looking at the
first rule in the stylesheet, the selector applies to the <article> element; and because the rules cascade,
the declarations for the <article> element also apply to all other child elements (unless a more specific
rule overrides a given attribute).

article {
color:#000000;
background-color:#FFFFFF;
font-family:arial, verdana, sans-serif;}

The first two rules, setting the color property to black and the background-color to white, are the
same as the default values for these settings in most browsers. The third, font-family, indicates that
the computer should try to render text in an Arial typeface. If it cannot find Arial, then it should look for
Verdana; if it can’t find Verdana, then it should use any sans-serif font.

The other three rules act on specific elements: All <title> elements should be italicized; all <title>
and <para> elements must be displayed as blocks; and the <listitem> elements should be considered
a list item:

title, para {display:block}
listitem {display:list-item; list-style: circle outside; margin-left: 2em}

It may seem obvious that a <para> element is a paragraph and needs to be displayed as a block or that a
<listitem> element is a list item, but remember that this isn’t (X)HTML and that the browser has no
clue what these elements represent. This is quite different from what you may have experienced if
you’ve been using CSS with (X)HTML. Browsers have a set of predefined rules to style (X)HTML, and
your own CSS rules complement or overload these predefined rules, meaning if you neglect to define a
rule — for example, that <p> elements need to be displayed as blocks — then the predefined rule applies
and your document will look OK. With XML, if you neglect to state that the <para> elements must be
displayed as blocks, then they will be displayed in line, without any linefeeds before or after them.

Attaching the Stylesheet to an XML Document
When you use CSS with (X)HTML, the CSS rules can be put inside a <style> element contained within
the head of the document, rather than in a separate document. In other XML vocabularies, however, you
must use a standalone stylesheet.

For non-(X)HTML XML vocabularies, you must use a processing instruction to link a stylesheet to a docu-
ment instance, like the following:

<?xml-stylesheet type=”text/css” href=”ch17_eg13.css” ?>

699

Chapter 17: Cascading Style Sheets (CSS)

The processing instruction requires the following attributes:

Attribute Description

href Indicates the location of the stylesheet — its value is a URL

type Indicates the MIME type of the stylesheet, which is text/css for CSS
stylesheets. If the user agent does not understand the type (perhaps it’s a non-
CSS-aware mobile phone), it will not need to download it.

The processing instruction can also take the following optional attributes:

Attribute Description

Title The name or title of the stylesheet

Media Indicates which media the specified stylesheet has been written to work with.
Values include screen (primarily for color computer screens), as well as
aural, Braille, handheld, and tv.

Charset Indicates the character set used

Alternate Indicates whether the stylesheet is the preferred stylesheet. It can take the val-
ues yes or no; if not supplied, the default value is no. The idea is to provide
multiple stylesheets for a single XML document, giving a hint to user agents
so that they can choose one and leave it up to users if they want to select
another one.

You can include as many stylesheets as you like by adding further processing instructions for each of the
stylesheets you want to use with the document. You can also add processing instructions to include an
XSLT stylesheet (see Chapter 8).

Selectors
As shown earlier, the selector is the portion of the CSS rule that indicates the elements to which the rule
should apply.

In addition to providing the element name as a selector, you can use the following as selectors:

❑ Universal selector — An asterisk indicating a wildcard and matching all element types in the
document:

*{}

❑ Type selector — Matches all of the elements specified in the comma-delimited list. The follow-
ing would match all page, heading, and paragraph elements:

page, heading, paragraph {}

700

Part VII: Display

❑ Child selector — Matches an element that is a direct child of another. In this case, it matches
child elements that are direct children of parent elements:

parent > child {}

❑ Descendant selector — Matches an element type that is a descendant of another specified ele-
ment, at any level of nesting — not just a direct child. In this case, it matches <a> elements that
are contained within a <p> element:

p a {}

❑ Adjacent sibling selector — Matches an element type that is the next sibling of another. Here it
matches <second> elements that have the same parent as a <first> element and appear imme-
diately after the <first> element (it would not match a <second> element that comes after
another <second> element):

first + second

There are also a series of selectors called attribute selectors, covered later in the chapter in the section
“Attribute Selectors.”

You might have used the class selector, which matches the value of a class attribute, in (X)HTML docu-
ments, but it only works with these languages because the browser already knows the meaning of the
class attribute for these vocabularies. Even if your XML contained a class attribute, the browser
would not associate it with the class selector.

There is also an ID selector, which works like the class attribute but only works with attributes of ID
type. Although the browser understands this for (X)HTML elements, for other XML vocabularies the
browser needs to know that an attribute is of type ID. This requires a DTD or schema that specifies the
attribute’s type. Because the browser is not forced to validate with a DTD or schema, even if one is speci-
fied for the XML document, you cannot rely on it knowing when an attribute is of type ID.

Using CSS for Layout of XML Documents
You have already seen that even when your XML vocabulary has an element called <p> or , the
browser won’t know you want its content to be displayed as a paragraph or in bold. Similarly, if you
have an element in your XML vocabulary, the browser won’t know you want an image displayed;
and if you had a element, the browser won’t know it should add bullet points. Therefore, you need
to address the following issues:

❑ How to create sophisticated layouts without the use of tables, as web designers often rely on
tables to create layouts they require

❑ How to present tabular data in XML

❑ How to link between XML documents

❑ How to display bullet points

❑ How to display images in your documents

701

Chapter 17: Cascading Style Sheets (CSS)

Furthermore, in order to evaluate whether it is best to use CSS or look at another technology, such as
XSLT, to transform your documents into (X)HTML, you need to consider the following:

❑ The extent to which you can reorder the content so that elements are presented in a different
sequence from the one in which they appear in the original XML document

❑ How you can add content that is not in the XML document, such as new headings that explain
the content of the element. (After all, in the XML file, the element’s name describes its content,
but the element name is not viewed in the browser.)

❑ How you can display attribute content, because many XML files contain important data you
may wish to view in attribute values

One of the great things about using CSS with (X)HTML is that you can begin to get results very quickly.
You don’t need to understand everything about how it works first: Attach styles to elements and off you
go. When you work with XML, however, in particular when it comes to positioning and layout, it is
important to understand how CSS renders a page. CSS operates on something known as the box model,
so you need to learn how this works before looking at how it’s implemented when laying out pages in
this model.

Understanding the Box Model
When displaying a document, CSS treats each element in the document as a rectangular box. Each box is
made up of four components: content surrounded by padding, a border, and margins.

The margins of each box are transparent, borders can have styles (for example, solid or dashed), and
backgrounds apply to the area inside the border, which includes padding and content. The padding is
the area between the border and the content (see Figure 17-3).

Figure 17-3

The default width for margins, borders, and padding is zero, but the width can be specified using CSS —
in fact, different widths can be specified for each side of the box. For example, you might have a wider
border on the top and more padding to the right.

If you specify a width and height for a box, you are actually setting the width and height of the content
area, although some versions of Internet Explorer actually read width and height values as measuring
the height and width of the content plus padding plus border.

Element content

Margin

Padding

Border

702

Part VII: Display

Block and Inline Boxes
Each box can contain other boxes, corresponding to elements that are nested inside of it. There are two
types of boxes in CSS: block and inline. In (X)HTML, block boxes are created by elements, such as <p>,
<div>, or <table>, whereas inline boxes are created by tags such as , , and , as well as
content such as text and images. Block boxes deal with a block of content (each paragraph is treated as if
it has a carriage return before and after its content), while the contents of inline boxes can flow together,
without the carriage returns (such as a reference being italicized or an important statement being in bold
text in the middle of a sentence).

Some elements in (X)HTML such as lists and tables have other types of boxes, but the browser treats
them as a block or inline box when it comes to positioning, so we won’t go into that here.

When styling XML with CSS, the browser doesn’t know which elements should be displayed as block
and which as inline, so you need to specify this as a property of the element. To do this you use the
display property, which takes a value of either block or inline. As you will see, how you lay out
your document and the style of a parent box can affect these properties (for example, an absolutely
positioned element is always treated as a block-level element even if it has a display property whose
value is inline).

You can also set the display property to have a value of none, in which case the browser acts as if nei-
ther the element nor any of its children exist (even if those children have declared display values of
block or inline).

Try It Out Playing with the Box Model

To demonstrate the box model, a paragraph of text is all that is needed. This paragraph will be a block-
level element and contain some inline elements:

1. Create a document called ch17_eg02.xml. Start your document with the XML processing
instruction, and then add the processing instruction to attach a stylesheet called
ch17_eg02.css, which is in the same folder:

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=”text/css” href=”ch17_eg02.css” ?>

2. Add the following fragment of XML:

<paragraph>This book is called <reference>Beginning XML</reference>, it will help
you to learn <keyword>XML</keyword>.</paragraph>

3. Open a blank document to create your CSS stylesheet, write selectors for each element of the
fragment of XML, and put curly braces next to each element:

paragraph {}
reference {}
keyword {}

4. Specify whether each element should be block or inline with the display property (don’t forget
to add the semicolon at the end; you will be adding more declarations to the rule next):

703

Chapter 17: Cascading Style Sheets (CSS)

paragraph {
display:block;}

reference {
display:inline;}

keyword {
display:inline;}

5. Finally, add other rules indicating how you want that box to be presented. Note the use of gray
borders for each element so that you can see where the edges of the box are:

paragraph {
display:block;
padding:10px;
border:solid; border-width:4px; border-color:#CCCCCC;}

reference {
display:inline;
font-style:italic;
color:#CC3333;
border:solid; border-width:2px; border-color:#CCCCCC;}

keyword {
display:inline;
font-weight:bold;
color:#990000;
border:solid; border-width:2px; border-color:#CCCCCC;}

The result should look something like what is shown in Figure 17-4.

Figure 17-4

How It Works
In this example, the <paragraph> element is a block-level element that acts as the containing element
for the inline <reference> and < keywords> elements.

Because the <paragraph> element is given a display property with a value of block, nothing appears
to the left or right of it, as if there were a carriage return before or after the content of this element.
Meanwhile, the <reference> and <keywords> elements are given a display property with a value of
inline, which means they appear in the flow of the rest of the sentence, rather than in a block box
standing on its own.

704

Part VII: Display

You will see later in the chapter how to get two block-level elements to be displayed next to each other,
which, for example, you could use to create two columns of text.

In the same way that an element containing another element is called a containing element, a box that
contains another box, or several boxes, is known as a containing box or containing block.

Anonymous Boxes
In order to simplify the way CSS positioning works, the direct children of a block box will be either all
inline boxes or all block boxes, so when the children of an element, which is supposed to be displayed as
a block-level element, are to be displayed as both block and inline, an anonymous box is created to make
the inline element a block-level element.

To illustrate this, take the paragraph from the last example and put it inside a <page> element. You can
also add an inline <pageNumber> element inside it at the same level as the <paragraph> element, as
shown in the following example (this file is available with the downloadable code for this chapter and is
called ch17_eg03.xml):

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=”text/css” href=”ch17_eg03.css” ?>
<page>

<pageNumber>1</pageNumber>
<paragraph>This book is called <reference>Beginning XML</reference>,
it will help you to learn <keywords>XML</keywords>.</paragraph>

</page>

Now add the following styles to the stylesheet from the previous example and rename it
ch17_eg03.css:

page {
display:block;
padding:10px;
margin:10px;
border-style:solid; border-width:4px; border-color:#000000;}

pageNumber {
display:inline;
font-style:italic;
border-style:solid; border-width:4px; border-color:#CCCCCC;}

Here you can see that the <page> element has two direct children: the inline <pageNumber> element
and the block-level <paragraph> element. Although the <pageNumber> element has its display prop-
erty set to inline, it behaves like a block box because an anonymous block box is created around it.
This is just an invisible container for the inline element so that it gets treated as a block box.

There is no need to set rules for anonymous boxes; rather, you make the element a block-level box in the
first place (see Figure 17-5).

705

Chapter 17: Cascading Style Sheets (CSS)

Figure 17-5

Positioning in CSS
We have already established that in order to lay out XML documents using CSS, you need to understand
the box model. Knowing that the content of each element can be displayed as a box, the layout process
becomes a matter of deciding which type of box you want an element to be in (inline or block) and
where you want that box to appear on the page.

CSS 2 has three types of positioning: normal flow, float positioning (or floated for short), and absolute posi-
tioning. It is important to understand how you can use these to position the boxes corresponding to each
element.

Normal Flow
Normal flow is the default type of positioning that you get without specifying any other type of position-
ing; block boxes flow from the top to the bottom of the page in the order they appear in the source docu-
ment, starting at the top of their containing block, while inline boxes flow horizontally from left to right.

Try It Out Normal Flow

To see normal flow working, simply add another paragraph to the XML of the simple example you have
been using so far:

1. Add the following line to the XML in the previous example and save it as ch17_eg04.xml:

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=”text/css” href=”ch17_eg03.css” ?>
<page>

<pageNumber>1</pageNumber>
<paragraph>This book is called <reference>Beginning XML</reference>,
it will help you to learn <keyword>XML</keyword>.</paragraph>
<paragraph>The current chapter focuses on using CSS to display
XML documents.</paragraph>

</page>

706

Part VII: Display

2. Open the new XML document in a browser. It should look something like Figure 17-6.

Figure 17-6

How It Works
The <page> and <paragraph> elements are block-level elements, and the <pageNumber> element is
treated as a block-level element because it is put in an anonymous box. Each of these block-level items is
treated as if it has a carriage return before and after it; the items appear to flow from top to bottom
within the page.

The <keyword> and <reference> elements, meanwhile, flow within the normal text of the paragraph,
left to right. Inline boxes are wrapped as needed, moving down to a new line when the available width
is exceeded.

Vertical Margins Collapse in Normal Flow

Note also here that vertical margins of boxes collapse in the normal flow, so instead of adding the bot-
tom margin of a block box to create the distance between their respective borders, only the larger of the
two values is used. Horizontal margins, however, are never collapsed.

Relative Positioning

There is another type of positioning that falls under the banner of normal positioning: relative positioning.
This renders the page just like normal flow but then offsets the box by a given amount. You indicate that
a box should be relatively positioned by giving the position property a value of relative. Then you
use the left, right, top, and bottom properties to specify the offset values.

One scenario in which this is particularly useful is when rendering subscript or superscript text. The fol-
lowing adds a <footnoteNumber> after the <reference> element in the example (ch17_eg05.xml):

<page>
<pageNumber>1</pageNumber>
<paragraph>This book is called <reference>Beginning XML</reference>

707

Chapter 17: Cascading Style Sheets (CSS)

<footnoteNumber>3</footnoteNumber>, it will help you to learn
<keywords>XML</keywords>.</paragraph>

</page>

Here is the rule for the <footnoteNumber> element (ch17_eg05.css):

footnoteNumber {
position:relative; top:3px;
display:inline;
font-size:9pt; font-weight:bold;
color:#990000;
border-style:solid; border-width:2px; border-color:#CCCCCC;}

Figure 17-7 shows how the top offset has been used to push the box down.

Figure 17-7

You should only specify a left or right offset and a top or bottom offset. If you specify both, one must be
the absolute negative of the other (for example, top:3px; bottom:-3px;). If you have top and bottom
or left and right, and they do not have absolute negative values of each other, the right or bottom offset
is ignored.

Overlapping Relative Positioning

When you use relative positioning, some boxes may end up overlapping others. Because you are offset-
ting a box relative to normal flow, one box will end up on top of another if the offset is large enough.
This may create an effect you are looking for, but be aware of the following pitfalls:

❑ Unless you set a background for a box (either a background color or image) it will, by default,
be transparent, so when the overlapping of text occurs, you get an unreadable mess.

❑ The CSS specification does not specify which element should appear on top when relatively
positioned elements overlap each other, so there can be differences between browsers.

To illustrate this possibility, the file ch17_eg06.css (for use with ch17_eg06.xml) contains a relatively
positioned <keywords> element, and the background is set to white:

708

Part VII: Display

keywords {
display:inline;
position:relative; right:45px;
background-color:#ffffff;
color:#990000;
font-weight:bold;
border:solid; border-width:2px; border-color:#CCCCCC;}

Figure 17-8 shows the result.

Figure 17-8

In IE and Firefox, the relatively positioned element appears at the front; in Opera the order in which the
elements appear in the document determines which one appears on the top.

Float Positioning
The second type of positioning creates a box that floats, enabling other content to flow around it. A box
that is floated is shifted as far to the left or right of the containing box as possible within that block’s
padding. (Its vertical margins, however, are not collapsed above or below it as block boxes in normal
flow can; rather, it is aligned with the top of the containing box.)

To indicate that you want a box floated either to the left or the right of the containing box, you set the
float property to have a value of either left or right. Even if these boxes are defined as inline boxes,
they will be treated as block-level boxes.

Whenever you specify a float property, set a width property too — to indicate the width of the contain-
ing box that the floating box should occupy; otherwise, it will automatically take up 100 percent of the
width of the containing box (leaving no space for things to flow around it, leaving it just like a plain
block-level element).

Try It Out Creating a Floating Box

1. Create a file called ch17eg_07.xml. Then add the XML declaration and a link to a stylesheet
called ch17_eg07.css:

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=”text/css” href=”ch17_eg06.css” ?>

709

Chapter 17: Cascading Style Sheets (CSS)

2. Add the following XML, which contains a < pullQuote> element you will float, to the file:

<review>
<title>The Wrox Review</title>
<pullQuote>If you want to learn XML, this is the book.</pullQuote>
<paragraph>Extensible Markup Languages is a rapidly maturing technology
with powerful real-world applications, particularly for the management,
display, and transport of data. Together with its many related
technologies, it has become the standard for data and document delivery
on the web. <reference>Beginning XML</reference> is for any developer
who is interested in learning to use <keyword>XML</keyword> in web,
e-commerce, or data storage applications. Some knowledge of markup,
scripting, and/or object oriented programming languages is
advantageous, but not essential, as the basis of these techniques is
explained as required.</paragraph>

</review>

3. Create another file called ch17_eg07.css, and add the element names in the XML document
you just created. In addition, indicate whether you want each element to be a block-level ele-
ment or an inline element (the exception is the <pullQuote> element, covered in a moment):

review {display:block;}
title {display:block;}
pullQuote {}
paragraph {display:block;}
keyword {display:inline;}

4. You want to make the <pullQuote> element float to the left of the paragraph, so add the float
property with a value of left and a width property with a value of 20 percent. Remember that
if you don’t add the width property, the floated element will be displayed just like any other
block-level element.

pullQuote {
float:left;
width:20%;}

5. Now add the rest of the rules indicating how the document should be styled. The title of the
book should be in a black box with white text, and each box should have a border to illustrate
where the edges of the box are, as shown here:

review {
display:block;
padding:10px;
margin:10px;
border-style:solid; border-width:4px; border-color:#000000;}

title {
display:block;
font-size:24px;
padding:5px;
color:#FFFFFF; background-color:#000000;}

pullQuote {
float:left;

710

Part VII: Display

width:20%;
font-style:italic;
padding:10px; margin:10px;
border:solid; border-width:4px; border-color:#CCCCCC;}

paragraph {
display:block;
padding:10px;
border:solid; border-width:4px; border-color:#CCCCCC;}

keyword {
display:inline;
font-weight:bold;
color:#990000;
border:solid; border-width:2px; border-color:#CCCCCC;}

6. Open the XML file in your browser. You should see something like what is shown in Figure 17-9.

Figure 17-9

711

Chapter 17: Cascading Style Sheets (CSS)

How It Works
The <pullQuote> element has been given a property of float, with a value of left, which indicates
that the box should be floated to the left of the containing <review> element. Remember that the width
property is vital when adding a float; otherwise, the whole content of the element would be treated like
any block-level element and take up the full width of the containing box.

Note that regardless of whether the <pullQuote> element appears before or after the paragraph ele-
ment, it is still in the same place. This has important implications for the ability to present the contents of
an XML document in a sequence other than the one it follows in the XML source. A float can be used to
bring the content of any element to the top of a document.

Overlapping Floated Boxes

Like relatively positioned boxes, floated boxes can cause overlap problems. A floated box can overlap
block-level boxes that are in normal flow mode. Figure 17-10 shows what happens when you add
another <paragraph> element and increase the length of the <pullQuote> so it is long enough to over-
lap (there is an example in the download code for this chapter in the file ch17_eg08.xml).

Figure 17-10

712

Part VII: Display

Using the Clear Property to Prevent an Overlap

If you don’t want the content of an element to wrap around the content of a floated element, you can use
the clear property. In the example just shown, you would use the clear property on the second para-
graph element:

paragraph2 {clear:left;}

The value of the property can be any of the following:

Value Description

Left The left side of box must not be adjacent to an earlier floating box.

Right The right side of box must not be adjacent to an earlier floating box.

Both Neither the left nor right side of box may be adjacent to an earlier floating box.

None The default setting; content is placed adjacent to the floated element on either side

Inherit Inherits the parent element’s property

You can see how clear works in Figure 17-11. (ch17_eg09.xml and ch17_eg09.css illustrate this in
the code download.)

Figure 17-11

713

Chapter 17: Cascading Style Sheets (CSS)

Absolute Positioning
The third method of positioning is absolute positioning. Absolutely positioned elements are completely
removed from the normal flow. They are always treated as block-level elements and are positioned
within their containing block using offset values for the left, top, right, and bottom properties. For
example, you might want a <page> element to appear 10 pixels in from the left of the browser window
and 20 pixels from the top of the window, with the <title> within the <page> element 10 pixels from
the top of the <page> and 5 pixels in from the left.

You indicate that an element’s content should be absolutely positioned using the position property
with a value of absolute. Remember, however, that the content of the containing element will not float
around the absolutely positioned box as it does with a floated box; rather, it will appear above or be
placed on top of the containing box.

IE 6 doesn’t correctly display offset values given for the right and bottom properties, although
Firefox and other browsers handle them correctly. It’s best to rely on the left and top properties.

Try It Out Using Absolute Positioning to Create Columns of Text

In this example, you will create a page with two columns of text. The XML file will contain a root ele-
ment called <page> and have two child elements, <column1> and <column2>, each of which contains a
paragraph of text. Here is the XML file called ch17_eg10.xml:

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=”text/css” href=”ch17_eg10.css” ?>
<page>

<column1>
<paragraph>This is a paragraph...</paragraph>
<paragraph>This is a paragraph...</paragraph>
<paragraph>This is a paragraph...</paragraph>

</column1>
<column2>

<paragraph>This is a paragraph...</paragraph>
<paragraph>This is a paragraph...</paragraph>
<paragraph>This is a paragraph...</paragraph>

</column2>
</page>

1. Start a stylesheet called ch17_eg10.css and add these elements to it:

page{}
column1{}
column2{}
paragraph{}

2. Decide which elements are to be absolutely positioned and which elements are block-level or
inline. Remember that all absolutely positioned elements are treated as block-level elements, so
you do not need to add a display property to them:

page{display:block;}
column1{position:absolute;}
column2{position:absolute;}
paragraph{display:block;}

714

Part VII: Display

3. Now you can decide where you want your absolutely positioned elements. The <page> element
is the containing element, so <column1> can be the left-hand column, and <column2> can be
the right-hand column.

You often need to specify the width or height of boxes when using absolute positioning; after
all, you use offsets to position boxes, and if you do not set the widths of boxes, you might cause
overlap. The columns should therefore be set to be 200 pixels wide, so you can position the sec-
ond column 250 pixels in from its containing element as follows:

page {
display:block;
width:470px;
height: 400px;}

column1 {
position:absolute;
left:10px; top:10px;
width:200px;}

column2 {
position:absolute;
left:250px; top:10px;
width:200px;}

paragraph {
display:block;
padding-bottom:10px;}

4. Add some padding and borders so you can see where the boxes’ borders are:

page {
display:block;
width:470px;
height: 400px;
padding:10px;
border-style:solid; border-width:2px; border-color:#000000;}

column1 {
position:absolute;
left:10px; top:10px;
width:200px;
padding:10px;
border-style:solid; border-width:2px; border-color:#CCCCCC;}

column2 {
position:absolute;
left:250px; top:10px;
width:200px;
padding:10px;
border-style:solid; border-width:2px; border-color:#CCCCCC;}

paragraph {
display:block;
padding-bottom:10px;}

715

Chapter 17: Cascading Style Sheets (CSS)

5. Finally, open the XML page in your browser to see how it looks; you should end up with some-
thing like what is shown in Figure 17-12.

Figure 17-12

How It Works
This example created two columns of text by using absolute positioning to position the <column1> and
<column2> elements. The <column1> element was positioned 10 pixels in from the left of the browser
window and 10 pixels from the top. It was given a width of 200 pixels. Meanwhile, the <column2> ele-
ment was positioned 250 pixels in from the left and 10 pixels from the top; it was also 200 pixels wide.

716

Part VII: Display

Because the width of these column elements were specified, it was possible to position them next to each
other in the browser window using the top and left offsets. The content of these elements is then posi-
tioned using normal flow inside their respective containing blocks.

Fixed Positioning

Fixed positioning is a special subset of absolute positioning whereby the box does not move when users
scroll down the page. To give a box fixed positioning, you add the position property with a value of
fixed. To position the box, you use offsets just as you would with absolute positioning, although the
box is positioned relative to the browser window, not its containing element.

Firefox and Opera support fixed positioning, but IE 6 and IE 7 do not.

Try It Out Fixed Positioning

This exercise adds a new element to the last example. The new element is a heading for the page.

1. Open the last example and add the following <heading> element just after the opening <page>
tag. Call the file ch17_eg11.xml:

<page>
<heading>This is a Heading</heading>
<column1>

2. Change the value for the href attribute on the <link> element to point to the new stylesheet,
which is called ch17_eg11.css:

<?xml-stylesheet type=”text/css” href=”ch17_eg11.css” ?>

3. Open the stylesheet ch17_eg10.css, add the following rule for the heading element, and then
save it as ch17_eg11.css:

heading {
position:fixed;
width:100%; padding:20px;
top:0px; left:0px;
color:#FFFFFF; background-color:#666666;
font-family:arial, verdana, sans-serif; font-size:22px;}

4. Save the file and open it in the browser. If your browser supports fixed positioning, you should
see something like what is shown in Figure 17-13.

717

Chapter 17: Cascading Style Sheets (CSS)

Figure 17-13

How It Works
As you can see in the stylesheet, the <heading> element has been given the position property with a
value of fixed to ensure that the heading stays in the same place. The width property ensures that the
heading spans the whole page, and the top and left offsets indicate that it should be positioned at the
top left-hand corner of the browser window.

You might have noticed a bit of a problem here, however: The columns inside the page overlap the head-
ing. Furthermore, if they did not overlap the heading, they would be masked by it. You need to do two
things to address this issue. First, add an offset to the columns so that they appear below the <heading>
element. Second, arrange the order of the elements so that the columns are not displayed above the
heading when the user scrolls down the page.

Overlapping Absolutely Positioned Elements and Z-Index

Absolutely positioned elements have a tendency to overlap each other and nonpositioned elements.
When this happens, the default behavior is to place the first elements underneath later ones. This is
known as stacking context. You can, however, control which element appears on top using the z-index

718

Part VII: Display

property. If you are familiar with graphic design packages, it is similar to using the “bring to top’’ and
“send to back’’ features.

The value of the z-index property is a number, and the higher the number the nearer the top that ele-
ment should be displayed.

Laying Out Tabular Data
When you look at laying out tabular data in XML, the problem is pretty obvious: You don’t have the
<table> element and related row and cell elements you had in (X)HTML.

If you knew how many rows and columns of data there were going to be, you could use absolute posi-
tioning to position each cell (but your stylesheet would only accommodate this number of columns and
rows). Luckily, the display property can take a value of table, which helps us in this matter.

The display property takes the following values, which correspond with (X)HTML meanings for
<table> , <tr> , <td> and <caption> elements, designed specifically for laying out tabular data:

Value of display Description

display:table; Indicates that an element’s content represents a table

display:table-row; Indicates that an element’s content represents a table row

display:table-cell; Indicates that an element’s content represents a table cell

display:table-caption; Indicates that an element’s content represents a table caption

The CSS table properties do not work in IE 6 and IE 7, although they do work with Firefox, Safari, and
Opera browsers.

Try It Out Using display to Display Tabular Data

This example creates a tabular presentation of the following XML data. Although the element names in
this example match the tabular content, they could equally be some other data structure:

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=”text/css” href=”ch17_eg12.css” ?> <page>
<table>
<tableRow>
<tableCell1>One</tableCell1>
<tableCell2>Two</tableCell2>
<tableCell3>Three</tableCell3>

</tableRow>
<tableRow>
<tableCell1>Four</tableCell1>
<tableCell2>Five</tableCell2>
<tableCell3>Six</tableCell3>

</tableRow>
</table>

</page>

719

Chapter 17: Cascading Style Sheets (CSS)

1. Create a new stylesheet document called ch17_eg12.css and add element names and their
appropriate display properties to each element like so:

page {display:block;}
table {display:table;}
tableRow {display:table-row;}
tableCell1, tableCell2, tablecell3 {display:table-cell;}

2. Add some padding and shading so you can see where each element begins and ends:

page {
display:block;
color:#000000; background-color:#EFEFEF;
border-style:solid; border-width:2px; border-color:#000000; }

table {
display:table;
padding:20px;
color:#000000; background-color:#CCCCCC;
border-style:solid; border-width:2px; border-color:#000000; }

tableRow {display:table-row;}

tableCell1, tableCell2, tableCell3 {
display:table-cell;
padding:10px;
color:#000000; background-color:#EFEFEF;
border-style:solid; border-width:2px; border-color:#000000; }

3. Save the stylesheet and open the XML file in a browser. In Firefox, Safari, or Opera, you should
end up with a result similar to what is shown in Figure 17-14.

Figure 17-14

720

Part VII: Display

How It Works
Obviously, the key to this example are the special values for the display property that enable you to
specify to the browser which elements indicate rows or cells of a table. Note, however, an issue that
greatly limits this approach. The technique relies on the XML file having a structure like the one in the
example XML. The element corresponding to the row must contain the elements corresponding to cells,
so you need a repeating structure for this technique to work.

The cells could have the same name. They are different here to illustrate that they might have different
names, as more real-life uses of XML are likely to follow this structure. However, you cannot miss an ele-
ment in any row; it must be present even if its content is empty. Nor can you have any extra elements in
any of the rows, or the table will not display properly. In short, your XML must have a strict structure if
you are going to display it as a table. Having seen how to display tables, let’s move onto another type of
markup that you will miss from (X)HTML, namely links.

Links in XML Documents
In the XML 1.0 Recommendation, there is no equivalent of the <a> element to create hyperlinks, so if
you are going to use CSS to display your XML documents, then you need a way of indicating which ele-
ment should be a link.

While the XML Recommendation itself does not offer a way to create links in XML documents, another
W3C recommendation, XLink, provides a mechanism for linking that goes far beyond what you are used
to with HTML links. XLink is a powerful and complicated technology that provides users with advanced
features, such as enabling authors to offer multiple destinations from a single link, and the ability to
define links in separate link documents or databases, rather than the source files.

Firefox supports a limited subset of XLink, and it is enough to reproduce the functionality of the <a>
and tags in HTML. Opera and IE have yet to add any implementation of XLink (although Opera
does have a proprietary extension to CSS to enable you to define a link).

A complete discussion of XLink is beyond the scope of this chapter, although you will look at the subset
of it implemented by Firefox.

XLink Support in Firefox
The limited support for XLink introduced in Firefox enables users to create links with the same function-
ality as those of HTML. You can embed an XLink into the document, and the document the link points to
can replace the current document (just like a normal link in (X)HTML) or open the document in a new
window (which is similar to using target=”_new” on a link in (X)HTML). You can even open a link
automatically when a page loads, which enables you to create pop-up windows when the page loads or
replace the content of the current page that is loading.

Any element in an XML document can be a linking element. You simply add attributes from the XLink
namespace to that element to indicate that the element should be treated as a link. The attributes are
listed in the following table:

721

Chapter 17: Cascading Style Sheets (CSS)

Attribute Description

xlink:type Indicates whether the link is a simple or extended link. Firefox only sup-
ports simple links, so you can give it a value of Simple.
Simple links are just like those you are familiar with using in (X)HTML:
They link from one document to another. The URL of the document you
are linking to is given as a value of the href attribute.

xlink:href Indicates the target of the link, just as it does in (X)HTML, and its value
is a URI

xlink:title Enables you to provide a title that describes what the user might find in
the destination document for the link, and is similar to the title
attribute on (X)HTML links

xlink:show Indicates where the target document should appear. It can take the
following values:
new if the document should appear in a new window, replace if the
document should replace the content of the window, or embed if the
document should be inserted at the current point in the document.

xlink:actuate Enables you to specify when the link should be activated. There are two
possible values:
onRequest to wait for the user to activate the link, or onLoad to activate
the link when the page loads.

As you can see, the attributes are shown here with a namespace prefix of xlink: because attributes
without prefixes are assumed to belong to the same namespace as the element that carries them. As
these attributes belong to the XLink namespace, you add the following namespace declaration to the
root element of your documents:

xmlns:xlink=”http://www.w3.org/1999/xlink”

Try It Out Using XLink in Firefox

In this example, you create a simple link that takes the user from one page to a new page. You need to
pay special attention to the XML, as that is where the real work is being done with the XLink.

1. Create a file called ch17_eg13.xml and add the XML declaration and a stylesheet link to a
stylesheet called ch17_eg13.css like so:

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=”text/css” href=”ch16_eg13.css” ?>

2. Add a root element called <page>. This element must contain the namespace declaration, like so:

<page xmlns:xlink=”http://www.w3.org/1999/xlink”>

722

Part VII: Display

3. Now there are a couple of paragraphs to explain the example. The interesting part is the <link>
element, with the xlink attributes that actually create the link:

<paragraph>The following link uses XLink to replicate the functionality of HTML
hyperlinks between pages:</paragraph>

<paragraph><link xlink:type=”simple”
xlink:show=”replace”
xlink:actuate=”onRequest”
xlink:title=”This link is like a link between pages in HTML”
xlink:href=”http://www.wrox.com”>
Click here</link>

to be taken to a new page</paragraph>

4. Finish up the XML page with the closing root element’s tag:

</page>

5. Create a simple stylesheet called ch17_eg13.css with the following rules. Note how the link is
made blue and underlined to indicate that it is a link:

page {
display:block;
padding:10px;
color:#000000; background-color:#FFFFFF;
border-style:solid; border-width:2px; border-color:#000000;}

paragraph {
display:block;
font-family:arial, verdana, sans-serif; font-size:20px;
padding:20px;
color:#000000; background-color:#FFFFFF;}

link {
display:inline;
color:#0000FF;
text-decoration:underline;}

6. Open the XML file in Firefox. You should see something like what is shown in Figure 17-15.

723

Chapter 17: Cascading Style Sheets (CSS)

Figure 17-15

How It Works
The example works just like a link in an (X)HTML document, but if you view the source, you can see
that it is still XML. The really interesting parts here are the XLink attributes, not the CSS.

The equivalent in (X)HTML would be the following:

In the case of XLink, not only do you have the href and title attributes; you also have a couple of new
ones. First, you have to indicate whether it is a simple or complex link (although Netscape only supports
simple links):

xlink:type=”simple”

Then, you have the actuate attribute, to indicate when the link should be activated:

xlink:actuate=”onRequest”

The show attribute indicates that you want the target of the link to replace this page:

xlink:show=”replace”
xlink:title=”This link is like a link between pages in HTML”
xlink:href=”http://www.wrox.com”>

Just like a links in (X)HTML, the content of the element used as a link is what the user can click. If there
is no element content, then users have nothing to click, although this is not a problem if the actuate
attribute has a value of onLoad.

724

Part VII: Display

Forcing Links Using the XHTML Namespace
There is an alternative to using XLink, which suffers from a lack of support in browsers. You can embed
XHTML syntax into your XML documents using the XHTML namespace, so your browser picks up on
the meaning of XHTML elements and renders them appropriately. This technique works fine on Opera,
Firefox, and IEv6, but it doesn’t work in IE 7.

To rework the example just shown using XHTML instead of XLink, you need to change the lines that are
highlighted (this reworking of the previous example is called ch17_eg14.xml):

<page xmlns:xhtml=”http://www.w3.org/1999/xhtml”>
<paragraph>The following link uses XHTML to replicate the functionality of HTML
hyperlinks between pages:</paragraph>
<paragraph>
<xhtml:a href=”http://www.wrox.com”>Click here</xhtml:a>
to be taken to a new page</paragraph>

</page>

While this works, it is not the ideal approach, because it forces you to use XHTML elements in a docu-
ment that otherwise would not contain elements like these.

The HTML “namespace,” http://www.w3.org/TR/REC-html40, has also been used for this pur-
pose but it is no longer supported by recent versions of Firefox. When you think about it, the notion of a
namespace, which is purely XML, doesn’t make a lot of sense for a markup language such as HTML,
which isn’t XML. However, dropping support of the HTML “namespace” is breaking the few applica-
tions that have been using this feature.

Images in XML Documents
Having looked at using XLink to create links in your XML documents, you should have a good idea of
how images can be included in XML documents — by giving the xlink:show attribute a value of embed,
so that the image file is embedded in the document where the link appears. Unfortunately, however, nei-
ther IE, Firefox, nor Opera supports the embedding of images in documents using XLink.

You can see how this should work in theory in the following piece of code (ch17_eg15.xml); note how
the actuate attribute needs a value of onLoad so that it loads with the rest of the page:

<link xlink:type=”simple”
xlink:show=”embed”
xlink:actuate=”onLoad”
xlink:title=”An image inserted using XLink”
xlink:href=”wrox_logo.gif”></link>

You could also use a value of replace for the show attribute if you wanted an image to replace the
whole document (which would work in Firefox).

One way around the lack of browser support for images in XML documents is through the use of the
CSS background-image property. An element in the XML document can be associated with a CSS rule

725

Chapter 17: Cascading Style Sheets (CSS)

that uses the background-image property with a value of url(file_name). This example contains an
element called <logo /> (ch17_eg16.xml):

<page>
<logo />
<paragraph>You should see an image above this paragraph, which was inserted
into the page using the background-image property in a CSS style
sheet.</paragraph>

</page>

The CSS rule associated with this element should look something like this (ch17_eg16.css):

logo {
display:block;
background-image:url(wrox_logo.gif);
margin:5px;
width:615px; height:25px;}

The benefit of this technique is that it works with IE 5+, Firefox, and Opera. The problem is that the
source XML document must include a separate element for each image you want in the resulting docu-
ment (until attribute selectors are better supported in browsers — you’ll learn about attribute selectors
later in the chapter). You must also have a rule in your CSS for each of these elements/images.

Using CSS to Add Content to Documents
Having seen how XSLT works in Chapter 8, you might wonder how you can add new text or images
into your XML documents from the CSS file. In truth, the ways in which you can add to XML documents
using CSS are very limited, although four pseudo-elements introduced in CSS2 offer some helpful
results:

Pseudo-Element Description

:before Allows you to insert content before an element

:after Allows you to insert content after an element

:first_letter Allows you to add special styles to the first letter of the selector

:first-line Allows you to add special styles to the first line of the text in a selector

The syntax for pseudo-elements is as follows:

selector:pseudo-element {property:value;}

For example, you could make the first letter of a paragraph larger than the rest by adding a rule like this:

paragraph:first-letter {font-size:42px;}

Making bulleted lists is another particularly helpful application of these pseudo-elements.

726

Part VII: Display

Try It Out Creating a Bulleted List Using the :before Pseudo-Element

In this example you create a CSS that deals with different levels of bulleted lists. The XML document
you will work with looks like this (ch17_eg17.xml):

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=”text/css” href=”ch17_eg17.css” ?>
<page>
<paragraph>The effect of a bulleted list is created using CSS.</paragraph>

<list>
<bulletPoint>Item one</bulletPoint>
<bulletPoint>Item two</bulletPoint>
<bulletPoint>Item three</bulletPoint>
<list>

<bulletPoint>Item three point one</bulletPoint>
<bulletPoint>Item three point two</bulletPoint>

</list>
<bulletPoint>Item four</bulletPoint>

</list>

</page>

1. Add the element names and their display properties. Each element is a block-level element,
including each bullet point, as each point should start on a new line:

page {display:block;}
paragraph {display:block;}
list {display:block;}
bulletPoint {display:block;}

2. Add another selector for the <bulletPoint> element, and use the :before pseudo-element
with it so you can add a + sign to indicate your bullet point:

bulletPoint:before {content:”+ “;}

3. Finally, add some other styles, borders, fonts, colors, and padding, to make the page complete:

page {
display:block;
padding:10px;
color:#000000; background-color:#FFFFFF;
border-style:solid; border-width:2px; border-color:#000000;}

paragraph {
display:block;
font-family:arial, verdana, sans-serif; font-size:20px;
padding:20px;
color:#000000; background-color:#FFFFFF;}

list {
display:block;
padding-left:20px;}

bulletPoint {display:block;}
bulletPoint:before {content:”+ “;}

727

Chapter 17: Cascading Style Sheets (CSS)

4. Save this file as ch17_eg17.css and take a look at it in a browser. The result should look some-
thing like what is shown in Figure 17-16.

Figure 17-16

Note that this will not work in IE 6 or 7, which don’t support generated content. With IE, you would
need to stick to the display;list property shown in the first example to implement bulleted lists.

How It Works
This example illustrates the three steps that make a bulleted list work with an XML document. First, the
containing element for the list needs to be displayed as a block-level element. In this case it is the
<list> element:

list {display:block;}

Just as a or element in (X)HTML can contain another or element to create a nested
list, you can do the same with this list element. The padding to the left of this block-level element makes
it clear that it is a nested list:

list {
display:block;
padding-left:20px;}

Second, the <bulletPoint> element, which represents an item in the list, is specified as a block-level
element. This makes each item appear on a new line using normal flow:

bulletPoint {display:block;}

728

Part VII: Display

Finally, using the :before pseudo-element adds the marker (or bullet point) before each item in the list.
This inserts the + symbol before each item, as shown in the following:

bulletPoint:before {content:”+ “;}

CSS2 also introduced counters, which enable you to create numbered lists using this approach, although
they are not yet supported by all the major browsers.

Attribute Content
You may well have noticed that throughout the chapter so far, the examples have only displayed and
talked about displaying element content. To wrap up this topic, you need to understand how to use
attributes in selectors and how to display attribute values.

Attribute Selectors
CSS2 introduced the capability to use attributes and their values in conjunction with element names as
the selector for a CSS rule:

Selector Matches

myElement[myAttribute] An element called myElement carrying an
attribute called myAttribute

myElement[myAttribute=”myValue”] An element called myElement carrying an
attribute called myAttribute whose value is
myValue

myElement[myAttribute~=”myValue”] An element called myElement carrying an
attribute called myAttribute whose value is a
list of space-separated words, one of which is
exactly the same as myValue

Although none of these work in IE 6, they work fine in IE 7, Firefox, and Opera. When they do become
supported, however, they will be powerful tools that enable you to apply a style to an element based on
the presence of, or value of, an attribute.

Using Attribute Values in Documents
One of the biggest drawbacks of working with XML and CSS is that there is no simple method for dis-
playing attribute values from your documents. You might have noticed that all of the examples so far
have concentrated on element content, and the reason is because CSS is designed to style element con-
tent, not attribute values.

However, you can employ a trick that enables you to display values of attributes. The trick relies on the
:before and :after pseudo-elements shown earlier in the chapter. Using these pseudo-elements, you
can add attribute values before or after the element that carries that attribute — unfortunately, you can-
not display an attribute value before or after any element other than the one that carries it.

729

Chapter 17: Cascading Style Sheets (CSS)

The secret lies in a property called content, whose value can be set to attr(attributeName), where
attributeName is the name of the attribute whose content you want to add before or after the element.

The drawback to this trick is that it only works in Firefox and Opera, not Internet Explorer.

Try It Out Displaying Attribute Values

This example makes use of an earlier example, ch17_eg07.xml, adding an author attribute to the
<title> element:

1. Open ch17_eg07.xml, change the stylesheet to point to ch17_eg18.css, and save the file as
ch17_eg18.xml.

2. Add the following line and save the file:

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=”text/css” href=”ch17_eg18.css” ?>
<review>

<title author=”Tom Bishop”>The Wrox Review</title>
<pullQuote>If you want to learn XML, this is the book.</pullQuote>
<paragraph>Extensible Markup Languages is a rapidly maturing technology
with powerful real-world applications, particularly for the management,
display, and transport of data. Together with its many related
technologies, it has become the standard for data and document delivery
on the web. <reference> Beginning XML</reference> is for any developer
who is interested in learning to use <keyword>XML</keyword> in web,
e-commerce, or data storage applications. Some knowledge of mark up,
scripting, and/or object oriented programming languages is advantageous,
but not essential, as the basis of these techniques is explained as
required.</paragraph>

</review>

3. Open the stylesheet ch17_07.css and add the following rule:

title:after {
display:block;
font-size:14px;
color:#efefef; font-weight:bold; font-style:italic;
content:”Written by: “ attr(author);}

4. Save this file as ch17_eg18.css.

5. Open ch17_eg18.xml in your browser. You should end up with a page something like the one
shown in Figure 17-17.

730

Part VII: Display

Figure 17-17

How It Works
This example not only takes an attribute value and displays it onscreen, but also writes some additional
text beforehand. Recall the restriction that you can only write attribute values before or after the element
that carries them. Therefore, this example used the :after pseudo-element to display the value of the
<author> attribute after the <title> element. The pseudo-element is used in the selector, like so:

title:after {

The content property writes the attribute value to the screen as follows:

content:”Written by: “ attr(author);}

As you can see, this example not only added the attribute value, but also some text saying Written by:
so that the attribute value did not just appear out of the blue.

731

Chapter 17: Cascading Style Sheets (CSS)

Summary
This chapter began by introducing CSS and how using it with XML and (X)HTML differs. As you saw, a
web browser already knows how to deal with many of the elements in (X)HTML, such as table, ul, and
b. When you write your own XML vocabularies, however, the browser won’t know how to interpret any
of the elements, which means you have to lay out your documents from scratch.

The box model of CSS puts the content of every element in either an inline or block box; and by position-
ing these boxes carefully, you can achieve complex layouts. You have seen that normal flow, relative
positioning, float positioning, absolute positioning, and fixed positioning allow you to control where the
elements appear.

The chapter also covered how to create tables and bulleted lists, and how to display links and images in
your XML documents. Along the way, three of CSS’s significant weaknesses were described:

❑ There is still very little support for some of the more advanced features, such as table layout
properties and complex positioning.

❑ It is very difficult to reorder element content from the order presented in the original XML docu-
ment.

❑ To display attribute values, you need to use a workaround that is not supported in Internet
Explorer.

These drawbacks may encourage you to look at transforming your XML using XSLT into either XHTML
or another XML vocabulary that is easier to present. Transforming your content into XHTML also gives
you the advantage of being able to add images and links to your documents that would work in most
browsers.

Alternatively, you may have the luxury of being able to write a vocabulary that will be easy to display
using CSS now that you know where its strengths and weaknesses regarding presenting XML lie.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
The questions for this chapter focus on one example: a purchase order. Slowly build a more complex
stylesheet beginning with the following XML file (ch17_ex01.xml):

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=”text/css” href=”ch17_ex01.css” ?>

<purchaseOrder orderID=”x1129001”>

<buyer>
<companyName>Woodland Toys</companyName>

732

Part VII: Display

<purchaserName>Tom Walter</purchaserName>
<address>
<address1>The Business Centre</address1>
<address2>127 Main Road</address2>
<town>Albury</town>
<city>Seaforth</city>
<state>BC</state>
<zipCode>22001</zipCode>

</address>
</buyer>

<orders>
<item>

<sku>126552</sku>

<product>People Carrier</product>
<description>Childs pedal operated car</description>

</item>
<item>

<sku>122452</sku>
<product>BubbleBaby</product>
<description>Bean filled soft toy</description>

</item>
<item>

<sku>129112</sku>
<product>My First Drum Kit</product>
<description>Childs plastic drum kit</description>

</item>
</orders>

</purchaseOrder>

Create a rule to put the purchase order in a box, with a 1-pixel black border, 20 pixels of padding inside,
and a 20-pixel margin to separate the box from the browser window.

Question 2
Create a rule that writes “Purchase Order Number’’ in a large, bold, Arial typeface as the heading (in
case the user does not have Arial, you should add Verdana as a second option, and the default sans-serif
font as the third option), and that collects the purchase order number from the orderID attribute.

Question 3
Add the buyer’s details to the purchase order, with the company name in bold and each part of the
address on a new line in a smaller Arial font (and if the user does not have Arial, specify Verdana or the
default sans-serif font).

Question 4
Write out the items ordered in a table.

733

Chapter 17: Cascading Style Sheets (CSS)

18
XHTML

When people say XHTML is the new HTML, it is not in the sense that fashion pundits might say
brown is the new black; it is the W3C’s replacement for HTML. Rather than create HTML 5, the
W3C made XHTML, which is akin to Macromedia creating Flash MX instead of Flash 6, or
Microsoft releasing Windows XP instead of Windows 2001. XHTML is actually the reformulation
of HTML 4 written in XML, so you have a few new rules to learn, the first of which is that it shall
be XML-compliant.

The good news is that the elements and attributes available to you in XHTML are almost identical
to those in HTML 4 (after all, XHTML 1.0 is a version of HTML 4 written in XML), so you won’t
need to learn a new vocabulary in this chapter. There are, however, a few changes related to how
construct documents, which is what you will learn in this chapter.

While XML is finding its way into many aspects of programming, data storage, and document
authoring, it was primarily designed for use on the Web. It isn’t surprising, therefore, that the
W3C wanted to make these changes to HTML (the most widely used language on the Web) to
make it an application of XML.

Why do you need to learn a new version of HTML? After all, existing browsers will continue to
support HTML, as we know it, for the foreseeable future (and many sites on the Internet may
never be upgraded). In fact, this chapter covers several reasons for upgrading old HTML pages,
including the following:

❑ It can make your page size smaller and your code clearer to read.

❑ It can make your pages more accessible to readers with disabilities, including search
engine crawlers!

❑ Your code can be used with all XML-aware processors (from authoring tools and valida-
tors to XSLT, DOM, and SAX processors).

❑ It addresses issues regarding creating web pages so that they can be viewed on all the
new devices that can now access the Internet, from phones to fridges, without each type
of device requiring its own different language.

❑ Some new browsers and devices are being written to only support XHTML.

As a reformulation of HTML 4 in XML, XHTML doesn’t add new features to HTML. Code conciseness
and accessibility can be achieved in HTML. However, the other points mentioned in the preceding list
are specific to XML. Furthermore, XHTML is probably the most popular application of XML today; and
if you are familiar with HTML, you will be writing XHTML pages in no time at all.

Covered in this chapter are two versions of XHTML: XHTML 1.0 and XHTML 1.1. The W3C is currently
working on XHTML 2.0, which is a complete refactoring of XHTML (and HTML). XHTML 2.0 is still a
work in progress and is briefly covered at the end of this chapter.

Before you even look at XHTML, however, you should be aware that in HTML 4.1 all stylistic markup
(such as the element and bgcolor attribute, which is used to indicate how a document should
appear) was marked as deprecated, meaning it would be phased out in future versions of the specifica-
tions, so it is essential to address removal of the stylistic markup before starting on XHTML.

In this chapter, you will learn the following:

❑ How to keep style and content separate, and the benefits of doing so

❑ The different versions and document types of XHTML

❑ How to write XHTML 1.0 documents

❑ What modularized XHTML is and how it enables you to write pages for many different devices

This chapter assumes you have a basic knowledge of HTML. If you don’t, plenty of free tutorials are
available on the Web, including the following:

❑ www.w3.org/MarkUp/Guide/

❑ www.w3schools.com/html/html_intro.asp

❑ www.webreference.com/html/tutorials/

Separating Style from Content
All of the stylistic markup in HTML — markup such as the element for indicating which type-
face to use or the bgcolor attribute for indicating background colors — was deprecated in HTML 4.1,
with the expressed purpose that document authors should stop using such markup to indicate how
pages should be displayed. Anything that indicated how a document should be displayed, rather than
being about the structure or content of the document, was marked for removal from future versions of
the specification, with the exception of the <style> element and style attribute (both of which contain
CSS rules or a link to a CSS style sheet). To understand why this markup was deprecated, you need to
take a trip back in time.

The Web was originally created for transmitting scientific documents between researchers, to make the
work more easily and widely available. Web page authors used markup to describe the structure of a
document, identifying which parts of the document should be headings, paragraphs, bulleted or num-
bered lists, and tables. The browser would then use these tags to render the document correctly. The
problem was that it all looked fairly boring.

736

Part VII: Display

As we all know, the rise of the Web was phenomenal. Very soon all kinds of people found new uses for
it, and new users wanted far greater control over how their web pages looked. As a result, both the W3C
and browser manufacturers introduced all kinds of markup that enabled web page authors to control
how the pages appeared in browsers.

The problem with all this stylistic markup was that documents became much longer and more compli-
cated. Whereas the first HTML documents only described the structure of a page, the addition of stylistic
markup resulted in pages that were littered with markup that affected the presentation of the document.
 tags were used to specify typefaces, sizes, and the color of text. Tables were used to specify the
layout for a page, rather than to describe tabular data. Background colors and images were set for sev-
eral types of elements.

Other stylistic markup that has been deprecated includes align , border , color , cellpadding ,
cellspacing , size , style , valign , and width attributes and the <s>, <strike> , <base-
font> , <u> , and <center> elements. The rule of thumb is simple: If it merely indicates how the item
should appear, then it has been deprecated.

HTML markup no longer just described the structure and content of a document — its headings, para-
graphs, lists, and so on — it also described how it should appear on a desktop PC web browser. Not only
did this result in more complex documents, but a new problem emerged: The desktop PC was no longer
the only device that accessed the Internet, and pages designed to work on a desktop PC would not work
on all other devices.

Therefore, it was decided that all stylistic markup should be removed and put in a separate stylesheet,
linked from the HTML document. The language for this is Cascading Style Sheets (CSS), which you may
already be familiar with — if not, it is covered in detail in Chapter 17.

Separating style from content has several advantages over including style rules in the document:

❑ Pages are simpler because they do not contain tables to control presentation as well as markup.

❑ Pages are smaller because each page does not have to repeat the instructions for how the page
should be styled; rather, the whole site (or several pages) can use the same stylesheet. Therefore,
once the stylesheet has been downloaded, pages are quicker to load, and you do not have to
send as much data from your server.

❑ If you (or your boss) want to make sitewide changes, such as changing the color of all pages,
you can do so by just changing the stylesheet, rather than changing each page individually.

❑ It clearly separates the jobs of graphical designers, working on CSS style sheets, and content
producers, who work on the XHTML. Working on different files makes it easier to work in par-
allel without tripping over each other’s updates.

❑ The same HTML document can be used with different stylesheets for different purposes — for
example, you could have one stylesheet for browsing onscreen and another for printing out
information. This makes documents more reusable, rather than having to be recreated for differ-
ent mediums.

❑ Markup just describes a document’s structure and content (as it was originally intended).

❑ Web users with visual impairments can more effectively view pages, because they do not con-
tain fixed sizes for fonts, making them easier to read and navigate. Furthermore, devices such as
screen readers don’t have to contend with markup that was incorrectly used — such as the use
of tables to control layout.

737

Chapter 18: XHTML

The previous chapter covered CSS and you already know how to style XML documents. In this chapter,
you’ll see how CSS is applied to XHTML documents.

Learning XHTML 1.x
Having seen that XHTML is taking a step toward removing stylistic markup, instead of relying on
stylesheets to control the presentation of documents, it’s time to look at the other differences between
HTML and XHTML. As already mentioned, the elements and attributes available to you in XHTML are
virtually identical to those in other versions of HTML, so there is no need to learn a whole new vocabu-
lary for XHTML documents. The key topics introduced in this section are as follows:

❑ The four document types of XHTML 1.0: Strict, Transitional, and Frameset, and XHTML 1.1, and
when to use each one

❑ The basic changes to the elements are attributes of HTML to make them XML compliant.

❑ The advantages of having a stricter language

❑ How to validate your XHTML documents and why this is important. Also described are some
pitfalls that you might come across when trying to validate XHTML documents.

First up are the four document types of XHTML 1.0 and XHTML 1.1. Each is different, but don’t let that
put you off. Though you may not have known it, there were three versions of HTML 4 too!

Document Type Definitions for XHTML
Like many other XML vocabularies, each version of XHTML has a Document Type Definition (DTD) that
defines markup and the allowable structure of conforming documents (more recently these have also
been made available in XML Schema). There are actually five main XHTML 1.x DTDs you can follow
when writing XHTML pages:

❑ XHTML 1.0 Transitional — This DTD allows deprecated markup from HTML 4.1.

❑ XHTML 1.0 Strict — This DTD does not allow deprecated markup from HTML 4.1.

❑ XHTML 1.0 Frameset — Use this DTD when creating pages that use frames.

❑ XHTML 1.1 — This DTD is derived from XHTML 1.0 Strict and is the latest stable version of
XHTML.

❑ XHTML Basic — This is a stripped-down version of XHTML designed to be used in small
devices. Among the notable features that have been dropped is scripting.

The idea of removing all stylistic markup may have sounded alarm bells for some of you. Without the
stylistic markup we are used to, it is going to be very hard to create visually attractive pages. Even the
latest browsers do not fully and perfectly support CSS2, which we are now supposed to use to style doc-
uments, never mind the older browsers that are still used to access your sites. Therefore, the transitional
document type still allows you to use deprecated markup from HTML 4.

738

Part VII: Display

All of the element and attribute names, and allowable uses of them, are the same in transitional XHTML
1.0 as they are in HTML 4.01 — even the root element of the document is still <html> (rather than
<xhtml>). However, you do need to consider some minor changes because you are writing a document
conforming to the rules of XML, which are addressed in the following section.

The strict form of XHTML 1.0, as its name suggests, is stricter than transitional XHTML; it does not allow
use of the deprecated markup — in particular, the deprecated styling markup (leaving only the <style>
element and style attribute). This helps to fulfill one of the aims of XHTML: separating style from con-
tent. Nor should you use tables for layout purposes in strict XHTML 1.0, as this controls the presentation
of the document, rather than its intended use of displaying tabular data.

The main differences between XHTML 1.1 and XHTML 1.0 Strict are that the lang attribute has been
replaced by the xml:lang attribute, the name attribute has been replaced by the id attribute, and the
Ruby collection of elements has been added to support ideographic scripts such as Japanese.

Ruby annotations are used by East Asian typography to provide phonetic transcriptions of characters
that might be unfamiliar to readers. The Ruby collection of elements is a set of elements that associates
such annotations to a text.

As shown in the section “Modularized XHTML,” the architecture of the XHTML 1.1 DTD is different
from the architecture of its predecessors. This change was needed to enable the creation of variations
over the XHTML DTDs, such as XHTML 1.1 and XHTML Basic, and compound documents mixing
XHTML and other languages such as SVG or MathML.

As its name indicates, XHTML Basic is limited to the most basic features of XHTML, and its aim is to
provide a set of features that can safely be used in any kind of environment, from small devices to desk-
top browsers.

The XHTML 1.0 frameset document enables you to create documents that utilize framesets to show multi-
ple pages in a single window. This technique is still mainly used to create a navigation frame separated
from the documents that are being shown.

Choosing between five different DTDs might seem daunting but it’s simpler than it appears:

❑ If you are defining a frameset, you have to use XHTML 1.0 Frameset (note that the documents
loaded in each of the frames can use any DTD).

❑ If you are translating HTML 4 documents into XHTML and want to minimize the number of
changes, you can use XHTML 1.0 Transitional if you are using deprecated features or XHTML
1.0 Strict otherwise. Note that by minimizing the number of changes, you also minimize the
benefits of using XHTML over HTML!

❑ If publishing on a wide range of devices is more important than achieving fancy presentations
and animations, then you should use XHTML Basic.

❑ In other cases, which represent the vast majority of new projects, XHTML 1.1 is your best bet.

739

Chapter 18: XHTML

Basic Changes in Writing XHTML
Because you are now writing XML documents, you have to make some changes in the way you write
HTML. Specifically, you need to do the following:

❑ Consider starting each document with the XML declaration.

❑ Include a DOCTYPE declaration.

❑ Only use lowercase characters for element and attribute names.

❑ Provide values for all attributes. These should be written inside double quotation marks.

❑ Make sure your document is well formed.

❑ Close empty elements with a forward slash after the tag name but before the closing angled
bracket.

❑ Use id attributes instead of name attributes to uniquely identify fragments of documents.

❑ Specify the language in which the document is written. This should be specified using an ISO
639 language code (for example, en for English, us-en for US English, or fr for French).

❑ Specify the character encoding in which the document is saved (as you will see, this is particu-
larly important if you use characters not included in the ASCII character set).

The following sections address each of these aspects in turn. You are not required to do all of these
things, but it is advisable to develop good habits early.

XML Declaration
Because your XHTML documents are indeed XML documents, it is recommended that they start with
the following XML declaration:

<?xml version=”1.0” encoding=” ISO-8859-1” ?>

This should appear at the very beginning of the document, without even be a space before it. (We will
come back to the encoding attribute at the end of this section when we look at specifying character
encoding for a document.) This can cause a problem, however, because some older browsers have trou-
ble with the XML declaration, resulting in one of the two following reactions:

❑ They will ignore it.

❑ They will display the declaration as if it were part of the text for the document.

The following browsers have problems with the XML declaration:

❑ Netscape Navigator 3.04 and earlier

❑ Internet Explorer 3.0 and earlier

If your documents need to be viewed by these ancient browser versions, you may choose to ignore the
XML declaration.

740

Part VII: Display

DOCTYPE Declaration
Immediately following the XML declaration (or at the start of the document if the XML declaration is not
present), you should put the DOCTYPE declaration, which indicates the kind of document you are writ-
ing. Because there are five XHTML 1.x document types (XHTML 1.0 Strict, Transitional, and Frameset,
XHTML 1.1, and XHTML Basic), five options are possible for the DOCTYPE declaration:

❑ Transitional documents — For transitional XHTML 1.0 documents (which can include the depre-
cated markup from HTML 4.1 — in particular, the stylistic markup), use the following declaration:

❑ Strict documents — For Strict XHTML 1.0 documents (with none of the markup deprecated in
HTML 4.1 — in particular, the stylistic markup), use the following declaration:

A strictly conforming XHTML document must contain the DOCTYPE declaration before the root
element, although a Transitional or Frameset document may leave it out.

❑ Frameset documents — For Frameset XHTML 1.0 documents, use the following declaration:

❑ XHTML 1.1 documents — For XHTML 1.1 documents, use the following declaration:

❑ XHTML Basic documents — For XHTML Basic documents, use the following declaration:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”

“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

741

Chapter 18: XHTML

Case Sensitivity
XML is case sensitive, so it is hardly surprising to learn that XHTML is too. All element names and
attributes in the XHTML vocabulary must be written in lowercase, as shown in the following example:

<body onclick=”someFunction();”>

Of course, the element content or value of an attribute does not have to be lowercase; you can write what
you like between the opening and closing tags of an element and within the quotes of an attribute
(except quotation marks, which would close the attribute).

The decision to make XML case sensitive was largely driven by internationalization efforts. Whereas
you can easily convert English characters from uppercase to lowercase, some languages do not have
such a direct mapping. There may be no equivalent in a different case, or it might depend upon the
region. To enable the specification to use different languages, it was therefore decided to make XML case
sensitive.

Attribute Values
Be aware of the following two points when writing XHTML attributes:

❑ All attributes must be enclosed in double quotation marks.

❑ A value must be given for each attribute.

Some versions of HTML allow you to write attributes without giving the value in quotes, as shown in
the following example:

<TD align=center>

This is not allowed in XHTML documents. After all, your XHTML documents are XML documents, and
putting attribute values in quotes is a basic requirement for a document to be well formed.

Furthermore, HTML also allowed some attributes to be written without a value. It was known as
attribute minimization, and where a value was not given, a default would be used. For example, in an
HTML form, when using the <option> element to create a drop-down list box, you could use the
selected attribute without a value to indicate that this option should be shown when the page loads
and act as the default value, as shown here:

<OPTION selected value=”option1”>

Even when the value is left blank, all attributes in XHTML must be given a value enclosed in double
quotation marks, like this:

<option selected=”selected” value=”option1”>

Note also that any trailing whitespace at the end of an attribute value would be stripped out of the docu-
ment, and any line breaks or multiple spaces between words would be collapsed into one space, rather
like most processors treat spaces in HTML.

742

Part VII: Display

Well-Formedness and Validity of Documents
As with all XML documents, all XHTML documents must be well formed. Recall from Chapter 2 the basic
requirements for a well-formed document: A well-formed document is one that meets the syntactic rules
of XML. With regard to this, you should look at the following:

❑ The unique root element — the <html> element

❑ Empty elements, because every start-tag must have a corresponding end-tag

❑ The correct nesting of elements

To be understood by an XHTML processor, such as a web browser, a document instance should also be
able to be validated using the DTD specified in the DOCTYPE declaration. Validation is covered later in
the chapter.

Unique Root HTML Element

In order to be well formed, an XML document must have a unique root element. In the case of XHTML
documents, you might think that this would be <xhtml>, but it is not — the root element remains
<html>.

This illustrated that XHTML really is the new version of HTML, not some alternative. It also means that
older browsers will still display XHTML documents.

You can use a namespace on the root element to indicate the namespace to which the markup belongs.
This is required in strictly conforming documents but is not necessary in transitional or frameset docu-
ments unless you are mixing different vocabularies within the same document (for example, using SVG
inside an XHTML document).

Here is an example using namespace defaulting on the root element to indicate that the markup belongs
to the XHTML 1.1 document type:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=” http://www.w3.org/1999/xhtml”>
...
</html>

Empty Elements

An element that has no character content between its opening and closing tags is known as an empty ele-
ment. In HTML, the , <hr>, and
 elements are examples of empty elements. As with all XML
documents, you cannot just use an opening tag for empty elements; you must add a forward slash
before the closing angled bracket of the tag. For example, the correct way of writing elements, such as
img in XHTML, is as follows:

Similarly, you would write hr and br elements as shown here:

<hr />

743

Chapter 18: XHTML

Note the space between the hr and the forward slash character, rather than writing
. This is
because some older browsers won’t understand the tag unless this space is there and will ignore it. If
you add the space before the closing slash, it will be displayed.

Correctly Nesting Elements

In XHTML all elements must nest correctly within each other. Most browsers would forgive the follow-
ing HTML and show it onscreen:

<p>Here is some text in a paragraph. And here is some emphasized text in a
paragraph.</p>

The preceding would not be allowed in XHTML, as it would not meet the requirements for the docu-
ment to be considered well formed. Rather, it should be written like this:

<p>Here is some text in a paragraph. And here is some emphasized text in a
paragraph.</p>

Names and IDs
In HTML the <a>, <applet>, <form>, <frame>, <iframe>, , and <map> elements can carry the
name attribute in order to identify a fragment of a document. One popular use of the name attribute is
with anchor elements so links can be created that take you to a particular subsection of a page. For
example, you might add the following to the top of your page so that you could create “back to top”
links further down the page:

In XHTML the name attribute is replaced by another attribute, the id attribute. This is because fragment
identifiers in XML must be of type ID, and each element can only have one attribute whose value is of
type ID. Therefore, the id attribute in XHTML is of type ID, as shown in the following:

This can cause a problem if you want to create links to a specific part of a page or within a page, as older
browsers still expect the name attribute to be used with a elements, including the following:

❑ Netscape Navigator 4.79 and earlier

❑ Internet Explorer 4.0 and earlier

For maximum browser compatibility when writing XHTML documents, you can therefore use
Transitional XHTML 1.0 and include both the name and id attributes on the same element, although
name has been deprecated in XHTML 1.0. Nowadays, the market share of these ancient browsers is so
small that it is safe to ignore them, unless of course you are working for atypical populations in which
such browsers represent a higher proportion.

Remember that because the id attribute is of XML ID type, its value must be unique within the document.

744

Part VII: Display

Specifying Language
It might seem perfectly obvious to you which language your web page is written in, but HTML 4 and
XHTML 1.0 allow you to specify the language either for the whole documents or for the language used
in specific elements. This is done using the lang attribute. Browsers can use this information to display
the page using language-specific methods, such as the correct use of hyphenating characters, other
applications could use it to check whether they can display or process the document, and screen readers
would be able to read different languages in different voices if they needed to.

The value of the lang attribute should be an ISO 639 language code (for example, en for English, fr for
French, ja for Japanese, and so on). You can find a full list of these language codes at www.oasis-
open.org/cover/iso639a.html .

XHTML 1.1 replaces the lang attribute with the xml:lang attribute. Because xml:lang can be used in
any XML document, it can also be used in XHTML 1.0 documents. Currently, there is very little support
for either lang or xml:lang , but it is good practice to include the xml:lang attribute.

Character Encoding
A character encoding is a table that defines a numeric value for each character. You need these encodings
because a computer does not store characters in the way you see them on the screen. As you learned in
Chapter 2, XML processors, by default, are expected to understand at least two encodings: UTF-8 and
UTF-16. UTF-8 is a character encoding that supports the first 128 ASCII characters as well as additional
characters from languages other than English that feature accents, as well as a wide range of other sym-
bols. UTF-16 is even larger than UTF-8 and supports characters from many other languages such as
Chinese and Japanese.

The key advantages of UTF-8 and UTF-16 are that programs written to support these character encod-
ings can handle different languages without needing to be rewritten, and documents can easily be cre-
ated that contain characters from several languages.

By default, if you do not specify an encoding, XML documents are assumed to be written in UTF-8, but
if the tool you are writing in uses a different encoding, then you can end up with characters that do not
display properly.

In order to support characters from different languages, UTF-16 requires two or more bytes for each
character, whereas ASCII and UTF-8 only require 1 byte for each character. This means that some text
editors and browsers do not support UTF-16.

Remember that while you can often view XHTML documents in older browsers if they use the
text/html mime type, these older processors do not contain XML processors and do not all support
UTF-16 by default. Therefore, your documents written in UTF-16 may not display correctly.

You will also commonly see the character encoding set to ISO-8859-1 , which is an ISO character
encoding for the Latin alphabet for the U.K., North America, Western Europe, Latin America, The
Caribbean, Canada, and Africa. Many document authoring programs, such as Macromedia
Dreamweaver and Microsoft FrontPage, use this setting.

745

Chapter 18: XHTML

How to Specify Character Encoding in XHTML

XHTML allows two ways to specify the character set your document uses (for the best chance of success,
you should use both):

❑ The XML declaration

❑ The meta element

You have already seen the XML declaration at the beginning of most of the XML documents used in this
book. Plenty of these examples have included the encoding attribute, like the following:

<?xml version=”1.0” encoding=”UTF-8”>

Recall that some browsers either ignore the XML declaration or display the declaration as if it were part
of the text for the document. Browsers that do this include Netscape Navigator 3.04 and earlier and
Internet Explorer 3.0 and earlier. Conversely, if you omit this declaration, then the XML
Recommendation requires your encoding to be either UTF-8 or UTF-16. XHTML documents using any
other encoding, such as ISO-8859-1, are not well-formed XML if the XML declaration was omitted.

Even when the browser does not display the XML declaration as text, it does not necessarily mean that it
understands it. Therefore, you should also declare your encoding in a meta element like so:

<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />

Using the <meta> tag with the http-equiv attribute set to Content-Type tells the browser what type
of content the document contains. In the preceding example, the document type is set to text/html,
and the encoding is specified as UTF-8.

The MIME type text/html actually means the browser will treat your page as if it were HTML. This is
good news for older browsers, which can display it.

XHTML also introduced the MIME type application/xhtml+xml, which was supposed to be used
on XHTML 1.0; however, note the following points if you are tempted to use it:

❑ Internet Explorer cannot handle this MIME type, so you need to serve it as text/html to most
browsers.

❑ It must be valid XHTML, or Mozilla-based browsers will display an error.

❑ When using CSS selectors with XML documents, the selectors are case sensitive, so you must
match the case of the selector to that of the element.

Some people avoid using the XML declaration in XHTML documents because it can be ignored by older
browsers or treated as part of the text of the document.

When a document contains both the XML declaration and the meta element, the encoding value in the
XML declaration takes precedence. Browsers that do not understand the XML declaration, however, still
use the meta element.

746

Part VII: Display

Server-Side Content Types

If you are using a server-side technology — such as ASP, PHP, or JSP — to create XHTML documents,
then the best way to specify an encoding is by using the HTTP header Content-Type. The implementa-
tions are specific to the server-side environment you choose (so you should refer to documentation for
your chosen language), and it is not always an option, but where possible this is the most reliable way to
specify the encoding.

If it is possible, the W3C recommends using the MIME type application/xhtml+xml. Unfortunately,
this MIME type isn’t supported by Internet Explorer and many web servers are configured to serve
XHTML document with the MIME type text/html.

Summary of Changes Between Writing XHTML and HTML
You have already seen all the changes you need to know when writing XHTML, rather than HTML. If
you are familiar with HTML, then writing XHTML documents should be a breeze! There are very few
changes, and the elements and attributes remain the same (although you should avoid presentational
markup where possible).

To summarize, when writing an XHTML 1.x document, you must be aware of the following:

❑ You can include the optional XML declaration.

❑ You should include a DOCTYPE declaration, indicating whether you are writing a document
according to the XHTML 1.0 Transitional, Strict, or Frameset, XHTML 1.1, or XHTML Basic
DTD.

❑ You must write all element and attribute names in lowercase.

❑ You must close all elements.

❑ All elements must nest correctly.

❑ Consider using id attributes instead of name attributes.

❑ Indicate the language your documents are written in using the lang or xml:lang attributes.

❑ Specify the character encoding the document is written in.

To demonstrate these simple changes, take a look at an example of an XHTML page.

Try It Out Creating an XHTML 1.1 Document

In this example, you are going to create a strict XHTML 1.0 page that documents how to write lists in
XHTML. It will look very similar to the type of HTML document that you’re probably used to writing,
but the example highlights the differences in writing XHTML.

1. Start your favorite web page editor, or text editor, and create a file called eg01.html.

2. Add the following XML declaration and encoding:

<?xml version=”1.0” encoding=”UTF-8” ?>

747

Chapter 18: XHTML

3. Add the DOCTYPE declaration, which indicates that the document is written according to the
Strict XHTML 1.0 DTD:

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

4. Add the <html> element, and use namespace defaulting to indicate that it is part of the XHTML
1.0 namespace:

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
</html>

5. Add the <head> element, with a <title> element, just as you would in any HTML document.
In addition, add a meta element, to specify the content type of the document and the character
encoding you are using. The document needs to work in IE 7 and older browsers, so stick with
the text/html MIME type in the content attribute:

<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
<title>Lists in XHTML</title>

</head>

6. Add the <body> elements and the following headings:

<body>
<h1>Lists in XHTML</h1>
<h2>Ordered Lists</h2>
<h2>Unordered Lists</h2>
<h2>Definition Lists</h2>

</body>

As you might use different levels of headings in a word processor, here is a main heading, with
lower-level headings that mark the start of subsections. So far, the document is self-describing
just as XML intends — the head, title, body, and different level headings all describe the content
and structure of the document.

7. Add an unordered list that introduces the types of lists available in XHTML:

Ordered List
Unordered List
Definition Lists

Note that you must close the line item element. HTML was more forgiving than this — if you
omitted some closing tags, pages would still be displayed. XHTML, being an application of
XML, is not so forgiving, so you must add the closing tags.

8. Ideally, you should link these list items to anchors inside each of the relevant headings:

Ordered List
Unordered List

748

Part VII: Display

Definition Lists

<h2>Ordered List</h2>
<h2>Unordered List</h2>
<h2>Definition List</h2>

As with all attributes in XML, both the value of the href attribute on the link and the id
attribute must be provided in double quotes.

9. You can now add the rest of the document, which contains paragraphs describing each type of
bullet. It would also be good to add a back-to-top link to the bottom of the page (inside a <div>
element, because it’s an inline element and therefore shouldn’t appear at block level). Here is
the full page:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
<title>Lists in XHTML</title>

</head>

<body>

<h1>Lists in XHTML</h1>
<p>Three types of list are available to us when writing an XHTML document.

These are:</p>

Ordered List
Unordered List
Definition Lists

<h2>Ordered List</h2>
<p>An ordered list allows you to create a list of items, each of which is

preceeded by a number. The list is automatically numbered in ascending
order.</p>

<p>The list is started with a <code>nl</code> tag, which indicates the
start of a numbered list. The <code>nl</code> element is the containing
element, for the numbered list. Each list item is then placed inside a
<code>li</code> element. </p>

<h2>Unordered List</h2>
<p>An unordered list is a fancy name for a list of bullet points that are

not preceeded by numbers. The containing element for the items in an
unordered list is the <code>ul</code> element. Again each item in the
list is put inside the <code>li</code> element.</p>

<h2>Definition List</h2>
<p>The least common type of list is a definition list, which tends to

comprise of words and their definitions.</p>

749

Chapter 18: XHTML

<p>The containing element for a definition list is <code>dl</code>
element.Each term that has to be defined is contained inside a & gt;DT& lt;
element, while the definition is contained in a & gt;DL& lt; element, like
so.</p>

<div>Back to top</div>
</body>
</html>

10. Save the file as eg02.html and open it in a browser (see Figure 18-1).

Figure 18-1

How It Works
Most of this document will be very familiar to you, so highlighted here are only the parts that are partic-
ularly noteworthy and different from HTML. The example began with the optional XML declaration, fol-
lowed by a DOCTYPE declaration, which indicates which DTD the document obeys the rules of. In this
case, it was the Strict XHTML DTD.

The root element was the <html> element, as with earlier HTML documents. However, it did carry a
namespace to indicate that the markup belonged to the XHTML namespace. Both the <meta> element
inside the head of the document and the XML declaration carried the encoding attributes to indicate the
character encoding in which the document was written.

750

Part VII: Display

Every element must be closed properly. For example, the <meta> element was an example of an empty
element; it had no content and therefore had a forward slash character before the closing angled bracket.
Meanwhile, all other elements had an opening and closing element. All elements nested correctly to cre-
ate a well-formed document, and all attribute values were given in quotes.

The bulleted list of topics covered was linked to the relevant headings using the id attribute, rather than
the name attribute, to create destination anchors. The id attribute value must be of type ID, so it has to
be unique within the document and must obey the rules of XML 1.0 names.

Finally, there is no stylistic markup (as suggested at the beginning of the chapter). In order to change the
fonts, colors, and other presentational rules for this document, a link would be made to a CSS stylesheet
using the <link> element. As you can see, this document doesn’t differ greatly from an HTML docu-
ment, but the rules for creating an XHTML document are stricter than those for creating HTML so you
need to be clear about the few changes there are.

Styling XHTML Documents
Fortunately, everything you learned about CSS in the previous chapter applies to XHTML. That said,
you should be aware of two differences between styling XHTML documents and styling other XML doc-
uments.

First, when you style an XML document, you must consider that the tools using your stylesheets have
absolutely no prior clue how elements must be displayed. In the previous chapter, your stylesheets
needed to be exhaustive, declaring which elements should be displayed as blocks, line items, tables, and
so on. When using XHTML, the tools that display your documents already have a basic idea how ele-
ments need to be displayed. Browsers know perfectly well that a <p> element is a paragraph, a <table>
element is a table, and a element is a line item. This makes your life, as a CSS stylesheet author, eas-
ier because you just need to add rules for styles you want to specifically impose on browsers.

The second difference is the way in which stylesheets are attached to documents. In Chapter 17, you saw
that stylesheets are attached to XML documents using <?xml-stylesheet?> processing instructions.
Instead of using such a PI, XHTML follows the HTML way and uses <link> elements.

Try It Out Styling an XHTML 1.1 Document

This example attaches a CSS stylesheet to the previous XHTML document to define the text and back-
ground colors and the preferred font families:

1. Edit your previous XHTML document and add the following <link> element in its <head>:

<link rel=”stylesheet” type=”text/css” href=”ch18_eg02.css” />

2. Save the file as ch18_eg02.html.

3. Create a file named ch18_eg02.css with the following rules:

html {
background-color:#232323;

}
body {
border: 2em solid #232323;

751

Chapter 18: XHTML

padding: 1em;
color:#464646;
background-color:#FCFCFC;
font-family:arial, verdana, sans-serif;}

h1, h2, h3 {
color:#232323;}

4. Open the XHTML document in a browser (see Figure 18-2).

Figure 18-2

How It Works
Because you already know how CSS and XHTML work, this new example is just a matter of bringing
these two technologies together. Compared with the examples shown in the previous chapter, note that
although we have not defined that are line items and that <h1> and <h2> are titles, do dis-
play as line items, and <h1> and <h2> display as titles.

This example defined text colors that are variations of dark grays over a very light-gray background.
The difference isn’t obvious in print, but it conforms to many studies that have shown that dark texts
over light backgrounds (also called “negative contrast”) are usually more readable than light texts over
dark backgrounds (called “positive contrasts”), and that high-level contrasts are aggressive and usually
less readable than mid-level contrasts.

752

Part VII: Display

Stricter Documents Make Faster and Lighter Processors
As shown, there are new constraints on writing documents in XHTML (in particular, the strict document
type). You can no longer omit closing tags on your bullet points; line breaks and image tags must
be written as empty elements; and the values of attributes must be given in quotes.

These extra requirements might seem like a hassle. After all, with HTML you can often get away with
writing documents that contain all manner of mistakes and they still display correctly. Nonetheless,
there is a very good reason for the strict approach, and you only need to download the latest version of
one of the main browsers to see why.

Mainstream browsers tend to contain a lot of code that enables users to view HTML pages containing
errors in the code — from tags that are not closed to elements that are not nested properly. While it may
help people who are just learning to write pages to get them on the Internet, the cost is bigger browsers,
which take longer to download.

When you consider the range of new devices that can connect to the Internet, it isn’t reasonable to expect
all of them to support megabytes of code just to allow some people to write pages incorrectly. Imagine if
a mobile phone were expected to carry a program that weighs in at 52MB, which is the amount of hard
disk space you need to run Netscape 7.1.

Other benefits from being strict with your code include the following:

❑ Pages can be displayed faster.

❑ Because the stricter rules make your XHTML documents conform to the rules of XML docu-
ments, you can use all kinds of XML tools with your XHTML documents, including DOM, SAX,
and XSLT processors and authoring tools.

❑ As you shall see shortly in this chapter, you can use the same language, XHTML, on many dif-
ferent types of Internet-enabled devices.

❑ Pages are easier to access in JavaScript, which is especially important for Web 2.0 applications,
which often heavily modify their pages in JavaScript. Simpler pages mean simpler scripts.

Therefore, for the sake of keeping what are good habits anyway, you get some real advantages as a
developer (unless you want to learn new languages for each kind of device).

XHTML Tools
You don’t need any fancy new tools to write XHTML documents; a plain-text editor such as Windows
Notepad or Mac Simple Text suffices, providing it supports the character encoding in which you want to
write. Many of the latest versions of document-authoring tools also support XHTML documents, such as
Macromedia Dreamweaver and Microsoft FrontPage (but make sure you select the appropriate options
in your program or it might continue to produce standard HTML code with some errors).

This is just the tip of the iceberg when it comes to tools you can use with your XHTML pages. Because
XHTML documents are themselves XML documents, you can use any of the tools you have already met
in this book to work with your XHTML pages:

753

Chapter 18: XHTML

❑ You can use any XML editor to write your XHTML pages, and though they may not be written
specifically for XHTML, they will help you close tags, check well-formedness, and show allow-
able elements and attributes.

❑ You can use DOM- and SAX-aware processors to programmatically access your code.

❑ You can use XSLT to perform transformations on your XHTML. For example, you could use an
XSLT stylesheet to transform a document conforming to the strict XHTML 1.0 DTD into one
conforming to the transitional DTD so that it has better support for older browsers. This means
you still have future-proofed strict XHTML documents and backwardly compatible versions
generated from transformations.

❑ You can use any XML validation tools to validate your XHTML documents.

Validating your documents is a good practice to adopt, so that is addressed next.

Validating XHTML Documents
Although browsers are unlikely to validate your XHTML documents, and browsers on a desktop PC are
likely to display your page even if it contains errors, it’s a good idea to validate your documents manu-
ally when you have written them to ensure they do not contain any errors. While your desktop browser
might show the XHTML page you created as you intended, validating a document is the best way to
ensure you get the results you expect when the document is used with different applications (even if
these are just browsers on other operating systems).

HTML browsers have been so forgiving of our errors that most people have developed at least one or
two bad habits. Browsers tend to be much stricter when they read XHTML document, but as already
mentioned, most XHTML documents are served with text/html MIME types, which switches this
strictness off. Even if you think you stick rigidly to standards, you might be surprised. It is particularly
useful to check your pages when you start to write XHTML. (After all, if you made a mistake, you
wouldn’t want to come back and change all your pages when your boss decides you have to perform
XSLT transforms on each document next year).

To test how XHTML documents can be validated, first create a document with an error. You can use a
previous example from this chapter, with the quotes removed from the attribute:

Ordered List

Some authoring tools will validate your XHTML documents for you, or they will have interactive
debugging features such as highlighting errors. For example, as shown in Figure 18-3, the oXygen XML
IDE complains and displays an error as soon as you remove these quotes.

This is also the case with online XML IDEs such as http://codeplot.com, and several other options
are available; because XHTML documents are themselves XML documents, you can use any validating
XML processor to validate your XHTML documents. You already encountered some validating proces-
sors in this book; in particular, Chapter 4 looked at processors that validate documents against DTDs.

Probably the simplest way to check your XHTML documents is to use one of the free online XHTML val-
idation services, such as the one provided by the W3C at http://validator.w3.org.

Figure 18-4 shows the error you receive from running the example with the missing quotes through the
W3C validator.

754

Part VII: Display

Figure 18-3

Figure 18-4

755

Chapter 18: XHTML

As shown in the figure, you are told where your errors are located so you can correct them. In the long
run this process should save you time.

Validation Pitfalls
If you are seasoned in writing HTML pages or converting sites from HTML to XHTML, note the follow-
ing scenarios you are likely to come across; otherwise, you are likely to have problems when you vali-
date your pages:

❑ Using JavaScript in your pages

❑ Using content from third parties (such as advertising)

Including JavaScript in Your Page
Rather than include JavaScript in your pages, you should get into the habit of putting scripts in separate
files, which are then referred to using the script element, as shown here:

<script type=”text/javascript” src=”scripts/formValidation.js”> </script>

This can have great benefits, as you are likely to find that in no time at all you have developed a script
library that you can reuse, which will save you development time in the long run. It also means that if
several pages use the same script, then you can make alterations to just one file and the changes will be
replicated across the entire site. You won’t have to manually alter each page.

If, however, you must include script in your page, then you must watch for the following things:

❑ XHTML processors can strip out anything in comment markers.

❑ The <, >, and & characters break the structure of an XHTML document unless they are placed in
a CDATA section.

When writing JavaScript, you’re probably in the habit of putting it inside comment marks so that older
browsers that don’t support JavaScript don’t raise an error and can still display the page. With XHTML,
however, both browsers and servers can strip out comments that they find in a document before display-
ing the data, which means JavaScript code would be lost.

To avoid having your script stripped out, place it within a CDATA section, as discussed in Chapter 2.
This has the added advantage that you can use the <, >, and & characters without breaking the structure
of the document. For example, the following code works with most older browsers (with the exception
of Netscape Navigator 3 and earlier):

<script type=”text/javascript”><![CDATA[
function validateEmail {...
... }
]]></script>

If your browser knows you’re using XML, because you use the MIME type application/xhtml+xml
(as opposed to using text/html, which browsers treat as if it were just HTML), you have the following
additional issues to deal with:

756

Part VII: Display

❑ If you use getElementsByTagName() with the XML DOM, elements are returned in lowercase,
whereas the HTML DOM returns them in uppercase.

❑ You cannot just use the document.write() method to write to the page; you have to create a
new element in the document.

❑ To access contents of a document, you cannot use collections such as document.form ; you
have to use another method such as getElementsByTagName().

Incorporating Content from Other People
There are many reasons why you might display content created by others within your web pages. For
example, you might be syndicating some content from another content provider, or you might be show-
ing advertisements from a third-party source.

This could be a problem because you might not be getting the latest version of XHTML. While you could
ask for it in the correct format, this may not be possible with syndicated content, and it may hold you up
when dealing with advertisers, thereby affecting advertising revenue. If you have to live with their ver-
sions, you have the following two options:

❑ Downgrade your version of XHTML to whatever the client is using. Although you might be
happy to downgrade from Strict XHTML 1.0 to Transitional XHTML 1.0, you might be less will-
ing to downgrade to HTML 3.2 if that is what your client uses.

❑ Use client-side JavaScript to include the information in the page. This ensures that your base
page is a valid document, and that you can display your pages in both browsers that support
the incorporated format and those that do not.

Having looked at some of these validation issues, it is hoped that you are confident with writing
XHTML 1.x documents.

Mime Types Pitfalls
MIME types are important to your browser: It’s by checking MIME types that the browser knows how it
must handle documents. Depending on the MIME type, your browser decides whether it can manage
the document by itself, through a plug-in or external application, or whether it should just offer to
download and save it.

The W3C has registered the application/xhtml+xml MIME type for XHTML documents, which they
recommend using to serve XHTML documents. This would be fine if IE supported this MIME type, but
unfortunately it doesn’t; even the most current version, Internet Explorer 7.0, offers no support for this
MIME type, and offers to save documents served with it instead of displaying them.

The vast majority of XHTML documents are served with a text/html MIME type. This often makes no
difference, but it can have some nasty side effects, as shown by the following XHTML document:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

757

Chapter 18: XHTML

<title>Bitten by the text/html mime type</title>
<script type=”text/javascript”>

function init() {
// here, we still have a p[@id=’bar’] element
alert(“bar’s tag name is: “ + document.getElementById(“bar”).tagName);
document.getElementById(“foo”).innerHTML=”This is division foo.”;
// but now, the p[@id=’bar’] element has disappeared...
alert(“bar: “ + document.getElementById(“bar”));
}

</script>
</head>
<body onload=”init()”>
<div id=”foo” />
<p id=”bar” >This is paragraph “bar”.</p>

</body>
</html>

This very simple XHTML document includes a division foo, which is initially empty, followed by a
paragraph bar. A script replaces the empty content of division foo with some text. Two alerts have been
added to display the tag name of the paragraph and the paragraph bar object after the replacement of
the content of division foo.

If you serve this document with an application/xhtml+xml MIME type to a browser that supports
this type, such as Firefox, the script works as expected:

❑ The first alert displays “bar’s tag name is: p”.

❑ The second alert displays “bar: [object HTMLParagraphElement]”

❑ After the second alert, the document shows two lines with “This is division foo.” and “This is
paragraph “bar”.”

If you serve this same document with a text/html MIME type to the same browser or to Internet
Explorer, you get a significantly different result:

❑ The first alert displays “bar’s tag name is: P”.

❑ The second alert displays “bar: null”.

❑ After the second alert, the document shows only one line with “This is division foo.

What’s happening? In Internet Explorer, even when the document is XHTML, it is read as HTML. As a
result, the browser uses an HTML DOM instead of using an XHTML DOM. This is why the tag name is
uppercase instead of lowercase, but that doesn’t explain why the paragraph has disappeared. What’s
happening is that the HTML parser ignores trailing slashes in tags, and reads <div id=”foo” /> as
<div id=”foo”>. The rules of implicitly closing <div> tags in HTML being what they are, the <div>
spans over the <p> element that follows, and the paragraph is now a child element of the division
instead of being a following sibling. That’s why you override the paragraph when you replace the con-
tent of the division by text!

758

Part VII: Display

The solution in this case is as follows:

❑ Take into account the difference of case folding between HTML and XHTML DOMs if you need
to test tag names (or still better, convert tag names to lowercase to get portable scripts).

❑ Avoid writing <div id=”foo” /> and instead write <div id=”foo”></div> or <div
id=”foo”><!-- --></div> (the latter has less risk of being converted back into <div
id=”foo” /> by XML tools).

This is just an example of bugs that may creep into your scripts when you serve XHTML documents
with text/html MIME types. Unfortunately, this kind of bug may be very difficult to debug.

Modularized XHTML
Having looked at XHTML 1.x and the changes you have to make when writing HTML as an application
of XML, this section looks at the architecture of XHTML 1.1 DTDs, which takes a much larger step for-
ward. Before XHTML 1.1 was produced, XHTML was split into a set of modules, and you do not need to
look far in order to see why.

In the past few years, an increasing number of different devices can connect to the Internet, including
mobile phones, PDAs, TVs, digital book readers, and refrigerators. Because of the inherent limitations
(such as screen size) of some of these devices, not all of the HTML 4 specification is relevant to them.
Furthermore, some of these devices don’t have the power or memory to implement the full specification,
so more compact languages have been developed specifically to support these new devices. Some exam-
ples include CHTML (Compact HTML), WML (Wireless Markup Language), and the HTML 4.0
Guidelines for Mobile Access.

The competing languages that have sprung up to support different devices share common features. Each
language enables users to mark up the following types of information:

❑ Basic text, including headings, paragraphs, and lists

❑ Hyperlinks and links to related documents

❑ Basic forms

❑ Basic tables

❑ Images

❑ Meta information

The W3C understood that the various devices that can now access the Internet could no longer be served
by one single language (HTML). Therefore, rather than have several competing languages for different
devices, the W3C thought it would be much better if XHTML were split into modules, with each module
covering some common functionality (such as basic text or hyperlinks). That way, these modules could
be used as building blocks for the variations of XHTML developed for different devices.

Instead of reinventing the wheel, as CHTML and WML did, all languages could be built from these same
basic building blocks. The new document types would be based on what is known as an XHTML Host

759

Chapter 18: XHTML

Language, which is then extended with other modules. For example, the XHTML 1.1 DTD contains 21
modules that cover the functionality of the XHTML 1.0 Strict DTD. We shall shortly cover XHTML Basic,
designed as a host language for use on smaller devices, which uses just 11 modules.

When a new document type is being created and only part of a module’s functionality is required, the
whole module must be included in the language (it cannot just include part of a module). This makes it
easier to learn a new language because the developer can specify which modules it uses, and the docu-
ment author will know it supports all of the markup from that module, rather than having to check indi-
vidual elements.

The following table shows the full list of XHTML abstract modules in the first column (these are like the
basic functionality of HTML split into related subsets). The second column contains the core modules
required to be an application of XHTML. The third and fourth columns indicate which modules are used
in the XHTML Basic DTD and the XHTML 1.1 DTD.

Module Name Core Module XHTML Basic DTD XHTML 1.1 DTD

Structure X X X

Text X X X

Hypertext X X X

List X X X

Applet

Object X X

Presentation X

Edit X

Bidirectional text X

Frames X

IFrame

Basic forms X

Forms X

Basic tables X

Table X

Image X X

Client-side image map X

Server-side image map X X

Intrinsic events X

Metainformation X X

Scripting X

760

Part VII: Display

761

Chapter 18: XHTML

Module Name Core Module XHTML Basic DTD XHTML 1.1 DTD

Stylesheet X

Style attribute (deprecated) X

Link X X

Target

Base X X

Ruby annotation X

Name identification

Legacy

Note that the legacy module supports elements that have been deprecated from earlier versions of
HTML and XHTML, so it is helpful in writing code that supports older devices.

There is another benefit as well: Modularization makes it possible to create new document types that
mix XHTML with other XML languages, such as SVG or MathML, resulting in what is known as a hybrid
document type. Indeed, when new versions of XHTML come out, extensions to the language can take the
form of new modules. This makes cross-browser development far easier, and you can finally say good-
bye to deprecated features such as stylistic markup of HTML 4 that were allowed into XHTML 1.0.

Module Implementations
As you learned in Chapter 1, each document type has a DTD or XML Schema (or other schema) that
defines the elements, attributes, and allowable structures of documents conforming to that type. A mod-
ule implementation is a form of schema, such as a DTD or XML Schema, containing the element types,
attribute-list declarations, and content model declarations that define the module. Having each module
use a separate implementation makes it far easier to create markup languages using the modules, as
opposed to fishing the appropriate parts from one large document.

While XHTML 1.1 was initially released with a DTD, the W3C later released an XML Schema version of
the implementations.

XHTML 1.1
XHTML 1.1 uses a selection of the abstract modules defined by XHTML modularization, and the imple-
mentations of those modules, in a document type called XHTML 1.1. Therefore, XHTML 1.1 is an exam-
ple of the modules combined into a specific document type. You saw the modules that XHTML 1.1
contains in the previous table.

The modules used offer the same functionality found in Strict XHTML 1.0. As already mentioned, the
only changes you have to make are as follows:

1. The DOCTYPE declaration must precede the root element (which should carry the xmlns
attribute). The public identifier, if present, should be represented as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

2. The lang attribute has been replaced by the xml:lang attribute.

3. The name attribute has been replaced by the id attribute.

4. The Ruby collection of elements has been added.

Ruby is a term for a run of small character annotations that are sometimes added to the characters of an
ideographic script like Japanese to clarify the pronunciation (and/or the meaning) of those characters. In
vertical text they are usually added in a very small font along the side of the ideogram, while in horizon-
tal text they are used on the top.

5. The style attribute has been deprecated.

XHTML Basic
Another good example of the use of XHTML modularization is XHTML Basic, a document type in itself,
which was designed for devices that don’t support the full set of XHTML features, such as mobile
phones, PDAs, car navigation systems, digital book readers, and smart watches.

Recall that the memory and power that would be required to implement the full HTML specification
would be too high for some smaller devices. Therefore, rather than create a whole new language for
these devices from scratch, XHTML Basic takes the four core modules of XHTML and extends them with
additional modules. Here is a quick summary of the modules and elements available in XHTML Basic:

Module Elements

Structure module* body , head , html , title

Text module* abbr , acronym , address , blockquote , br , cite , code , dfn ,
div , em , h1 , h2 , h3 , h4 , h5 , h6 , kbd , p , pre , q , samp , span ,
strong , var

Hypertext module* a

List module* dl , dt , dd , ol , ul , li

Basic forms module form , input , label , select , option , textarea

Basic tables module table , tr , td , th , caption

Image module img

Object module object , param

Meta-information module meta

Link module link

Base module base

* = core module

762

Part VII: Display

XHTML Basic is not intended to be the one and only language that will ever be used on small devices.
Rather, it is supposed to serve as a common base that can be extended. For example, it could be
extended with the addition of the bi-directional text module, or one could create an event model to deal
with behavior such as incoming call events (which would not apply to, say, televisions). It is this kind of
subsetting and extending of XHTML that makes it a language that can serve as a strong basis for all
kinds of future clients.

To finish this section, it is worthwhile to take a quick look at some of the markup and modules of
XHTML that were not included in XHTML Basic, and why they were left out. You now know that HTML
4 contained features that not every device could support, and that several competing markup languages
for mobile devices recreated common functionality. You also know that XHTML Basic serves as a base
for further extensions of XHTML. Here is some of the markup that was left out, including some of the
reasons why:

❑ The <style> element was left out because you can use the <link> element to link external
stylesheets to a document, rather than use an internal stylesheet (if you don’t know the differ-
ence between the two, you’ll learn more in the next chapter). Therefore, browsers that support
stylesheets can download them, but they are not required to support them in order to display
information.

❑ <script> and <noscript> elements are not supported because small devices might not have
the memory and CPU power to handle execution of scripts or programs. It was deemed that
documents for these devices should be readable without requiring scripts.

❑ Event-handler attributes, which are used to invoke scripts, are not supported because events
tend to be device-dependent. For example, a TV might have an onChannelChange event, while
a phone might have an incomingCall event, neither of which applies to the other device.
Ideally, it’s better to use a generic event-handling mechanism than hardwire event names into
the DTD.

❑ Whereas basic XHTML forms are supported, more complex form functions are not applicable to
all small devices. For example, if a device does not have a local file system, then it won’t be able
to use the file and image input types in forms. This is why only the basic XHTML forms module
is included.

❑ As with forms, only basic tables are supported. Tables can be difficult to display under the best
circumstances on small devices, so features of the tables module won’t apply to all small devices
(for example, the nesting of tables is left out). It is recommended that users follow the Web
Content Accessibility Guidelines 1.0 for creating accessible tables.

While XHTML Basic can be used as is, the intention is that it be used as a host language. These features
could be added for a particular implementation that needs to support them. Adding markup from other
languages results in a new document type that is an extension of XHTML Basic.

What’s Next for XHTML
The W3C road map for XHTML is to build on the concept of modularization and create a framework in
which different modules, and even document types, could be used. This would broaden the overall
scope of the XHTML family to include applications such as SVG, MathML or SMIL, but XHTML itself
would be stripped down from its frames, handled by a specific specification known as XFrames, and its
forms implemented as XForms (XForms is the topic of the Chapter 20).

763

Chapter 18: XHTML

The next version of XHTML will be XHTML 2.0. XHTML 2.0 will be the first release to add new features
since HTML 4 and the first major refactoring of HTML. The motivation behind this refactoring is that the
W3C considers XHTML to have reached a point where new features shouldn’t be added before XHTML
is simplified and made more consistent. This motivation is so strong that XHTML 2.0 will not be back-
wardly compatible with previous versions.

In addition to elements that are removed from XHTML 2.0 because they belong to XFrames or XForms,
the remaining presentational elements such as , <big>, <small>, and <tt> are removed from
XHTML 2.0, together with the <acronym> element, which is very close to the more generic <abbr> ele-
ment. Other elements have been renamed, such as <hr> (horizontal rule), which is misleading when
used in vertical text, and so has been renamed <separator>.

However, you miss the most spectacular changes between XHTML 1.1 and XHTML 2.0 if you focus on
elements, as the most dramatic changes come from attributes! For one thing, XHTML 2.0 generalizes the
usage of src and href attributes. In XHTML 1.1, these attributes were allowed only in a small set of ele-
ments. For instance, to make a link, you have to use an a element, and to include a picture you have to
use a img element. With XHTML 2.0, this is no longer the case: Any element with a src attribute
behaves like an object, and any element with a href attribute is considered a link.

XHTML 2.0 has been very strict regarding the number of new elements, which include <section> and
<summary> elements and a new type of list, <nl>, for navigation lists. This doesn’t mean that the W3C
doesn’t recognize that users need to express new concepts in XHTML. On the contrary, XHTML 2.0 has a
new role attribute that can be used to express the role of any XHTML element. In the past, people have
hijacked the class attribute to express all kinds of nonpresentational things (this is the main principal
behind microformats), and the role attribute is meant to provide a cleaner way to do this kind of thing.
You can learn everything about XHTML 2.0 at www.w3.org/TR/xhtml2/.

The term “microformat” is used to designate a set of conventions that maps XHTML (or HTML) ele-
ments and attributes into a XML-like structure. For instance, the hCalendar microformat that describes
calendar events uses an HTML element with a class event to define an event, and within this element
identifies the summary though a class summary, the start date with a class dtstart, and so on. You
can find more information on microformats at http://microformats.org/, and on hCalendar at
http://microformats.org/wiki/hcalendar.

This is a very short introduction to XHTML 2.0 but it illustrates how ambitious this project is. As you
might expect, such radical changes can create a strong reaction, and the WHATWG
(http://whatwg.org/), an informal group of browser and web developers led by Mozilla, Apple, and
Opera, is developing a counter proposal that would be more compatible with existing browsers and ver-
sions of XHTML. This proposal includes the following:

❑ Web Forms 2.0, an extension to HTML 4.01 forms, which is an alternative to XForms

❑ Web Applications 1.0, also known as HTML 5, which is an alternative to XHTML 2.0

Both proposals are backwardly compatible with HTML 4! The WHATWG argues that because most
XHTML documents are served as text or HTML, this is proof that the XML foundation of XHTML isn’t
really important. The WHATWG believes that an HTML-based syntax is sufficient for Web 2.0 applica-
tions and will always be easier for web developers to write and understand. HTML 5 also adds a num-
ber of elements, such as <article>, <header>, <footer>, and <section>, to express various things
that would be expressed using the role attribute in XHTML 2.0.

764

Part VII: Display

It is too early to say which proposal will succeed, and the answer might well depend on the attitude of
Microsoft. Although the WHATWG includes most developers of alternative browsers, their cumulative
market share is small, and Microsoft’s decision to support XHTML 2.0, HTML 5, or neither of these is
likely to determine whether the future resides in XHTML 2.0, HTML 5, or a status quo in which XHTML
1.1 would be a long-term best choice.

Summary
In this chapter you learned how HTML has been reformulated as an application of XML in XHTML 1.x.
You were introduced to the five XHTML 1.x document types, and saw how converting HTML to an
application of XML does not require learning much new, other than obeying rules that any well-formed
XML document would, such as the following:

❑ The optional presence of an XML declaration

❑ A required DOCTYPE declaration

❑ Element and attribute names are case sensitive.

❑ All attributes must be given values, and the values must be given in double quotes.

❑ There must be a unique root <html> element.

❑ Empty elements must be written with the closing slash before the end of the tag, for
example,
.

❑ Elements must be correctly nested.

❑ The name attribute is replaced by the id attribute, which is of XML ID type, for uniquely identi-
fying a fragment (and its value must therefore be unique within the document).

❑ You can specify language and character encodings.

In return, you saw the following improvements:

❑ A stricter syntax, which makes it is possible to create processors that require less memory and
power and is ideal for portable devices

❑ Pages that are simpler and will display quicker

❑ Pages are easier to animate in JavaScript and are thus more “Web 2.0 friendly.”

❑ All tools that are XML-aware can be used when working with strict XHTML 1.0 documents,
such as XSLT, DOM, and SAX. In particular, you can validate documents using any XML valida-
tion tool or one of the free online validation resources.

Some pitfalls to validating documents were also covered — in particular, handling JavaScript (which
should be placed in external files or CDATA sections) and content from other sources (which can be
imported using JavaScript).

Having looked at XHTML 1.x, you also saw how XHTML has been split into modules of related markup.
These modules can be combined to create new document types for the wide range of new web-enabled
devices that are coming onto the market. XHTML Basic is a rather minimal build of the modules

765

Chapter 18: XHTML

designed for use on small devices, while XHTML 1.1 is an example of a larger build, avoiding the old
presentation features, but offering a rich language for devices that have the required resources to sup-
port the larger language.

Finally, you had a brief glimpse of what the future of XHTML might look like, and saw that between two
conflicting visions, XHTML 1.1 might be a good long-term choice.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
Take the following HTML 3.2 example and create a version in Strict XHTML 1.1 without any stylistic
markup:

<HTML>
<HEAD>

<TITLE>Exercise One</TITLE>
</HEAD>
<BODY bgcolor=white>

<H1 align=center>XHTML</H1>

XHTML 1.0 is the reformulation of HTML in XHTML. There are three XHTML 1.0
document types:

Transitional
Strict
Frameset

XHTML has also been split into modules, from which document types
such as XHTML 1.1 and XHTML Basic have been formed.

Back to top
</BODY>
</HTML>

Question 2
Take the same HTML 3.2 example, and create a second version that uses Transitional XHTML 1.0, can
work in old browsers, and in which you could include legacy scripts and code. Once you have written
your documents, validate them using the W3C validator at http://validator .w3.org/.

766

Part VII: Display

19
Scalable Vector Graphics

(SVG)

This chapter describes Scalable Vector Graphics (SVG), an extremely versatile 2-D graphics format
designed primarily for the Web. Its specification is defined and maintained by the World Wide
Web Consortium (W3C), and it offers an open alternative to proprietary graphics systems.

Here you learn about the core concepts and some of the most commonly used features of SVG,
along with corresponding practical code. The SVG specification is brimming with features — far
too many to describe in a single chapter — but to come to grips with the language, you need to
know how to write practical code and have a general idea of the kind of things SVG can do.

This chapter is divided into four sections:

❑ An overview of SVG, including the kind of things it’s good for and what tools are avail-
able to you, the developer

❑ A hands-on section that demonstrates some of the basics of SVG in code examples

❑ A simple but complete browser-based SVG application constructed using XHTML and
SVG, as well as a script manipulating the XML DOM

❑ A section-by-section summary of the contents of the SVG specification

The information in this chapter is quite densely packed, but once you start playing with SVG
yourself, you will discover that not only is it easier to work with than it looks on the printed page,
but it’s also a lot of fun.

What Is SVG?
SVG is primarily a language for creating graphical documents. The language uses simple, intuitive
terms such as circle and line, which makes it easy to learn. It’s an XML language, which means it
can be generated and processed using standard XML tools. SVG’s use of XML’s structural features

makes it straightforward to construct complex diagrams based on simpler, modular parts. It has been
designed with the Web in mind, and the documents can be viewed in browsers with the appropriate
plug-in. In addition to offering animation and scripting capabilities, SVG also supports sophisticated
graphic filtering, processing, and geometry, though none of these advanced features are necessary to get
started creating useful images.

SVG has been used in Web environments, print environments, and even in Geographic Information
Systems (GIS) and mapping applications. SVG isn’t limited to the traditional Web; it is quickly becoming
a dominant format on mobile phones and browsers. In fact, there are more mobile devices supporting
SVG than desktop computers.

Scalable, Vector, Graphics
Rather than define images pixel by pixel as in bitmapped formats such as JPEG and GIF, SVG defines
how images should be drawn using a series of statements. This approach has several advantages. First,
SVG image files tend to be significantly smaller than their bitmap equivalents, a desirable characteristic
on the Web. Second, parts of an image can be treated as separate objects and manipulated indepen-
dently. This means complex diagrams can be built from simpler components, and dynamic effects (for
example, animation) are relatively straightforward. Third, vector graphic images can easily be resized —
this reflects the “scalable” part of the name — which is particularly useful on devices with small screens,
such as mobile phones. Most viewers also enable you to zoom (enlarge and reduce) and pan (move side
to side and up and down) the graphics.

On top of the versatility of vector graphics, SVG has an ace card — it is true XML. All the benefits
described in this book about using XML apply to SVG. Tools such as XSLT (covered in Chapter 8), pro-
gramming models such as DOM (covered in Chapter 11), interoperability, and internationalization — all
of these are available for use in SVG thanks to its definition as XML. That’s still not all, though. Not only
can you draw graphics, you can also write applications — SVG has a powerful scripting facility built in.

Because the end product of SVG is visual, a lot of geometry and color theory is involved. Most of the
theory is either trivial or makes intuitive sense, but some of the mathematics can seem daunting.
Fortunately, several websites help out with this kind of theory, either specific to SVG or more general.
For example, SVG uses complex coordinate spaces controlled through transformation matrices. More
information on matrix mathematics can be found on Wikipedia at
http://en.wikipedia.org/wiki/Matrix_(mathematics).

Certain parts of SVG are difficult to describe with words alone. Fortunately, as a visual language it’s
straightforward to demonstrate these features. There isn’t space in this chapter to cover SVG in great
depth, but many resources and examples are available on the Web. The starting point is the W3C specifi-
cation, which contains code for most things, but a search engine is likely to give you more complex,
practical examples. As with XHTML (covered in Chapter 18), if you’re not sure how something’s been
done, view the source code and find out. Additionally, a list of helpful SVG-related websites is provided
at the end of this chapter.

Presently, the most current version of SVG is 1.1. The SVG specification is available
at www.w3.org/TR/SVG/.

768

Part VII: Display

Putting SVG to Work
The uses of SVG can loosely be divided into three categories:

❑ Static graphics rendering — The code is used to define a fixed image.

❑ Self-contained applications — The animation and scripting capabilities of SVG are used to pro-
vide dynamic, interactive graphics.

❑ Server-based applications — SVG provides the front end for bigger and more complex systems.

Static Graphics
In many situations traditional web graphics formats, such as GIF and JPEG, are unsuitable. For example,
if you have a large and complex engineering drawing, then the size of the image file results in the file
taking a long time to download; and once you have the image in your browser, it is very difficult to nav-
igate around. Because they are vector-based, SVG diagrams can have much smaller file sizes, and the abil-
ity to zoom and pan means that navigation is straightforward.

Self-Contained Applications
Most SVG viewers support client-side scripting, and this combined with SVG’s animation facilities
makes it an extremely versatile tool for creating applications that run in the browser. Although several
other systems are available for this purpose, such as Macromedia Flash and Java Applets, SVG is an
open standard built on existing Web standards, such as XML, ECMAScript (JavaScript), and Cascading
Style Sheets (CSS), whereas Flash is proprietary. SVG’s focus on graphics makes it considerably easier to
create visually appealing browser-based applications.

Additionally, SVG is designed to work with XHTML. It can be used within standard web applications
and can be manipulated using Ajax and HTML Forms. Using forms to communicate with plug-ins such
as Flash or Java Applets can create serious security implications. This type of application is much easier
to build using SVG.

Server-Based Applications
SVG’s web standards base means it’s perfectly suited for constructing rich user interfaces to server-side
systems. Where a graphic front end is needed for a system that handles a large amount of data or com-
plex processing, SVG is a good solution. A typical example would be GIS, whereby the server can pro-
duce maps on-the-fly based on client requests. All the facilities available to client-side applications and
static graphics are available to build browser-based clients that are as rich as the system demands.
Because SVG is XML, it is relatively easy to generate from other XML data — generating charts for
dynamically inclusion in reports is a typical example. The case study in Chapter 21 utilizes Ajax and
HTML forms to build an SVG display of mortgage loan balances.

An SVG Toolkit
Thanks to the openness and versatility of SVG, it’s practically impossible to recommend any single set of
tools. To hand-build SVG files, you need some kind of editing tool; and to see the result, you need a
viewer. The simplest of these would be a text editor and a SVG-enabled web browser, though consider-
ably more sophisticated editors are available. If you want to build more dynamic systems or integrate
with existing systems, then you need to consider what tools are available for the programming languages

769

Chapter 19: Scalable Vector Graphics (SVG)

that you want to work with. Each of these jobs has a wide range of options; some of the better-known
alternatives are listed in the following sections. The W3C maintains an official list of SVG implementa-
tions (www.svgi.org), although a Web search may turn up more up-to-date tools suited to your particu-
lar needs. Here are a few suggestions — most are free, and some are open source.

Viewers
The most popular way to view SVG files on a desktop computer is to use an SVG-enabled web browser
such as Firefox, Opera, Konqueror, or Safari. Microsoft’s Internet Explorer web browser, together with
Adobe’s plug-in (available from www.adobe.com/svg/), is another option. At the time of writing, the
release version 3.0 is available for most platforms and languages, though support for it will be discontin-
ued on January 1, 2008.

Batik, the Java toolkit for SVG, includes a cross-platform viewer called Squiggle (see http://xml
.apache.org/batik). Squiggle is a good choice while you’re developing with SVG because it provides
more useful error messages than the browsers and plug-ins. In addition, work has also been done to
ensure that Batik can be used as an applet.

Although support for SVG on Mozilla-based browsers (Netscape, Firefox, and others) is less than per-
fect, SVG has been declared one of the Mozilla project’s priorities. Considerable work has already been
done on native support for SVG in all of the major browsers except Internet Explorer. Additionally, SVG
is used in a variety of products. For example, Adobe PDFs allow for embedded SVG (SVG is central to
Adobe’s Mars project for XML-based print formats). Several desktop environments also provide SVG-
based theme and icon support.

Editors
Depending on what you want to do with SVG, a text editor is certainly adequate for simple hand-cod-
ing. To check your code, the W3C has produced an SVG Validator that can be used online or down-
loaded and run locally (http://jiggles.w3.org/svgvalidator).

Also from the W3C is Amaya, a combined web browser and editor with support for SVG and a lot more,
available at www.w3.org/Amaya (the OpenGL version provides better SVG support).

A generic XML editor such as XMLSpy (www.xmlspy.com) or the online editor Codeplot (http://
codeplot.com) can make life easier by checking the validity of your data as you go along, and can
advise which attributes are available for particular elements.

If you’re interested in drawing, then Inkscape (www.inkscape.org/) is an open-source graphical editor,
and the commercial SVGStudio (www.evolgrafix.de/htDocs/html/index.shtml) offers editing
with animation support. Adobe Illustrator and GoLive are other commercial alternatives (www.adobe
.com/svg). Qurvi (www.qurvi.com/), an online drawing application, enables you to create and save
drawings and simple SVG applications without cost.

Programming Tools
If you’re working with self-contained SVG applications, then pretty much any JavaScript editor can
help, and many general-purpose text editors, such as the open-source jEdit (www.jedit.org), offer syn-
tax highlighting along with other conveniences. Debugging SVG in Firefox is greatly simplified with the
Firebug extension (www.joehewitt.com/software/firebug).

770

Part VII: Display

SVG-specific programming libraries are available for most languages. For instance, there’s librsvg
(http://librsvg.sourceforge.net) for Linux applications, several Perl modules at CPAN, and
SVGDraw for Python (www2.sfk.nl/svg). There’s a fairly new project for open-source SVG on .NET
called SVG# (www.sharpvectors.org//). Probably the most sophisticated programmer’s toolkit is
Apache Batik (http://xml.apache.org/batik/), which provides just about everything you’re likely
to need for SVG work in Java.

The Dojo Toolkit (http://dojotoolkit.org/) is a JavaScript library that enables you to build cross-
browser Ajax applications, and the library’s SVG functionality degrades gracefully on older browsers.
On Internet Explorer, the much older VML language is used for basic shapes and effects.

The list of tools that can generate SVG is actually very, very long thanks to its use of XML. Any tool that
can create or modify XML can be applied to SVG. In particular, DOM (and similar) libraries for any lan-
guage offer a straightforward way to dynamically generate SVG data. XSLT makes it possible to trans-
form data from other XML formats into SVG for a graphic representation.

It’s beyond the scope of this chapter to describe how to use SVG with other programming languages, but
the material in the rest of this book related to using XML applies exactly the same when working with
SVG as with any other XML language.

Getting Star ted
Getting started with SVG is very easy, as simple things really are simple. Most XML elements in the SVG
format correspond to graphics elements, and most XML attributes correspond to attributes (or proper-
ties) of the elements. The names of elements and attributes are fairly self-explanatory: <circle> draws a
circle, <rect> draws a rectangle, and so on. Here is a minimal example:

<?xml version=”1.0”?>
<svg xmlns=”http://www.w3.org/2000/svg”>
<rect x=”100” y=”10” width=”100” height=”100” fill=”green” />

</svg>

The <svg> element clearly marks the boundaries of the SVG material, in this case the whole document.
The namespace declaration is also needed to unambiguously identify the element and attribute names —
SVG document fragments like this can be embedded in other XML documents, and without a names-
pace, clashes between element and attribute names might occur.

The <rect> element defines a rectangle, with its characteristics given as attributes. The x and y values
are the coordinates of the top left-hand corner of the rectangle, measured across and down from the top
left-hand corner of the viewing area. It is upside-down compared to Cartesian coordinates (used in maps
and some graphs), but in most web browsers that top left-hand corner is the only fixed point. The width
and height are both 100 units, resulting in a square. The fill attribute here says to color the inside of
the shape green.

If you type this example into a text editor, save it, and open the resulting file in an SVG viewer (here
using Batik Squiggle), you should see a green square, as shown in Figure 19-1 (minus the color, of
course).

771

Chapter 19: Scalable Vector Graphics (SVG)

Figure 19-1

The preceding example included the SVG namespace (which is necessary in many viewers), but you can
pass on more information to XML systems. Saying that the data is XML is a good start, and specifying a
DOCTYPE enables a processor to determine whether the content is valid against a DTD. Here is the same
fragment filled out to be a more complete XML document:

<?xml version=”1.0”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”
“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg xmlns=”http://www.w3.org/2000/svg” version=”1.1”>
<rect x=”100” y=”10” width=”100” height=”100” fill=”green” />

</svg>

The XML version specified here is 1.0. The newer SVG specifications, including SVG 1.2 and SVG
Tiny 1.2, allow for XML 1.1 documents. In this example, the version of SVG is stated as 1.1, the latest
W3C Recommendation. Most SVG viewers won’t care very much about these niceties, but its good
practice to include them. This is especially true if you are working on the Web, where there’s no way of
telling what tool might access your data.

Try It Out Basic Shapes in SVG

Using the handful of basic shapes available in SVG, you can build more complex images: rectangles
(including ones with optional rounded corners), circles, ellipses, lines, polygons (enclosed areas), and
polylines (line segments joined together):

1. If you don’t have Firefox, Opera, or another SVG-enabled browser, you need to obtain and
install an SVG viewer. If you’re using Internet Explorer, then the SVG viewer plug-in from
Adobe is a good choice (www.adobe.com/svg/). You could also download Squiggle
(http://xmlgraphics.apache.org/batik/svgviewer.html).

2. Open a text editor and type in the following code:

<?xml version=”1.0”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

772

Part VII: Display

<svg xmlns=”http://www.w3.org/2000/svg” version=”1.1”>

<rect x=”1” y=”1” width=”100” height=”100”
fill=”none” stroke=”blue” stroke-width=”10” />

<line x1=”10” y1=”10” x2=”90” y2=”90”
stroke=”green” stroke-width=”4” />

<circle cx=”50” cy=”50” r=”30” fill=”red” />
</svg>

3. Save this document to your hard drive as shapes.svg.

4. Open shapes.svg in your viewer. Double-clicking on the file in Windows Explorer should
open the document and display the shapes, as shown in Figure 19-2. If the document is not dis-
played, you may need to allow the document to be opened in the plug-in by your browser. For
example, Internet Explorer produces a security warning when you try to view local files. This
doesn’t happen for files on the Internet.

Figure 19-2

How It Works
The code starts with XML information, followed by SVG-specific material contained in the root <svg> ele-
ment. The first child element is <rect>, which draws a rectangle. The x and y coordinates position this
shape on the screen, just inside the top-left corner of the viewing area. This time the value of fill has
been set to none, so the inside of this shape is the color of whatever’s underneath. This <rect> element
has two more attributes, stroke and stroke-width. The stroke draws the lines that define the shape, in
this case the outline of the rectangle. The value of the stroke attribute determines the color of the outline;
here it’s blue. The stroke-width attribute indicates how thick the outline should be, in this case 10 units.

Next is a <line> element. Lines are straight, going from one point on screen to another. Those points are
given as two sets of coordinates, the start point being (x1,y1) and the end point (x2,y2), so in the code the
line starts at a point 10 units from the left-hand side of the viewing area (x1=”10”) and 10 units down
from the top (y1=”10”). The line runs to the point 90 units across (x2=”90”) and 90 units down from the
top left-hand corner of the viewing area (y2=”90”). A simple line doesn’t enclose any space, so there is
no fill attribute here, but a line can be stroked, and here the color is specified as green and the width of
the line is specified as 4 units.

773

Chapter 19: Scalable Vector Graphics (SVG)

The third shape element is a <circle>. Circles are defined in SVG using the coordinates of their center
point and their radius. The center point is expressed as the value of the cx and cy attributes, and the
radius is set in the r attribute.

Views and Units
The examples thus far haven’t specified what kind of unit to use for measurements. For example, when
you wanted the rectangle to be 100 pixels wide, you used the attribute and value width=”100”. You
assumed that value 100 meant 100 pixels. Actually, SVG allows for much greater control; you can use
relative units, absolute units, or percentages. There are eight kinds of absolute units in SVG:

❑ em to measure units using font height

❑ ex to measure units using the height of the “x” character

❑ px to measure units using pixels

❑ pt to measure units using points (often used in graphic design and publishing)

❑ pc to measure units using picas (often used in graphic design and publishing)

❑ cm to measure units using centimeters

❑ mm to measure units using millimeters

❑ in to measure units using inches

For example, if you want your rectangle 2 inches wide and 2 inches high, you could use the following:

<rect x=”1” y=”1” width=”2in” height=”2in”
fill=”none” stroke=”blue” stroke-width=”10” />

Percentages and relative units enable you to define shapes based on document views. As you have seen,
SVG documents can be embedded in other documents or they can be standalone XML files. In each of
these cases, the root <svg> element is considered a view and can be customized using the width,
height, and viewBox attributes. By default, though, the unit 1 in an SVG document is equal to 1px.
Because you won’t be using custom views in the examples, each of the units is treated as a pixel.
Therefore, the value 100 in each of the examples should be rendered as 100 pixels.

The Painter’s Model
In the previous example, the square outline defined by the <rect> element is clearly visible, as is the cir-
cle, but the middle section of the line has been obscured by the circle. This is a feature, not a bug! If you
refer back to the source, inside the root <svg> element, there are three child elements at the same level:
<rect>, <line>, and <circle>. The coordinates of these elements locate them in more or less the same
area of the screen. The order in which the elements appear is significant; it is the order in which the
visual objects are rendered. This is commonly referred to as the painter’s model. The <rect> comes first,
so a rectangle is painted on the “canvas.” Next, the line is drawn on the canvas on top of whatever’s
already there. Finally, the circle is drawn on top of everything else.

If you rearrange the source data as follows so that the elements appear in the reverse order, then you can
see the difference (see Figure 19-3):

774

Part VII: Display

<?xml version=”1.0”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>
<svg xmlns=”http://www.w3.org/2000/svg” version=”1.1”>
<circle cx=”50” cy=”50” r=”30” fill=”red” />

<line x1=”10” y1=”10” x2=”90” y2=”90”
stroke=”green” stroke-width=”4” />

<rect x=”1” y=”1” width=”100” height=”100”
fill=”none” stroke=”blue” stroke-width=”10” />

</svg>

Figure 19-3

The circle is now painted first, followed by the line, and finally the rectangle. The line comes after the
circle in the same location, so it’s painted on top. Although the rectangle was painted last, you can still
see the line and circle, as the fill attribute of <rect> is none. You are in effect looking through the
square outline at the other objects.

Try It Out Painter’s Model

This Try It Out modifies the earlier SVG document to add a <polygon> and <circle> element. As
shown in the last example, these basic shapes can be used to create more complex images.

1. Open the example in your editor again and add the following:

<?xml version=”1.0”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>
<svg xmlns=”http://www.w3.org/2000/svg” version=”1.1”>

<rect x=”1” y=”1” width=”100” height=”100”
fill=”none” stroke=”blue” stroke-width=”10” />

<line x1=”10” y1=”10” x2=”90” y2=”90”
stroke=”green” stroke-width=”4” />

<polygon points=”60,0 75,46 120,46 84,74

775

Chapter 19: Scalable Vector Graphics (SVG)

97,120 60,93 23,120 36,74
0,46 45,46”

stroke=”orange” fill=”yellow” />

<circle cx=”50” cy=”50” r=”30” fill=”red” />
</svg>

2. Save this document to your hard drive as shapes2.svg.

3. Open shapes2.svg in your viewer.

You should now see the red circle on top of a yellow star, below which you can see the rectangle and line
as before.

How It Works
The <polygon> is another of SVG’s basic shapes. Unlike the other basic shapes, the <polygon> is
described as a series of (absolute) points, and a straight line is drawn from point to point. The coordi-
nates of the points are specified as (x,y) pairs in the points attribute of the polygon element. The
<polygon> here defines the lines that make up the outline of a five-pointed star.

In the previous listing, the <polygon> (star) comes after the <rect> and <line> elements, so it is
painted on top of them. The <circle> appears after the <polygon>, so it is painted on top. You may
want to experiment with the order of the elements to confirm that the image appears as if each succes-
sive element were being painted on its predecessors.

Grouping
The <g> element enables you to group related elements using the hierarchical structure of XML. For
example, if you wanted a circle and a line to behave as if they were a single element, you could wrap
them in a <g> element like this:

<g stroke=”green” stroke-width=”4”>
<circle cx=”50” cy=”50” r=”30” fill=”red” />
<line x1=”10” y1=”10” x2=”90” y2=”90” />

</g>

This is convenient if you want various elements to share the same properties — here the stroke and
stroke-width attributes in the <g> element are applied to both the circle and the line. If either of these
child elements had stroke or stroke-width attributes of its own, they would override the defaults
inherited from the parent <g> element.

Transformations
The transform attribute enables modification of a shape or set of shapes defined in a group. Several
simple expressions can be used in the transform attribute:

❑ translate displays the shapes shifted vertically or horizontally by specified distances.

❑ rotate rotates the shapes by a given angle around the origin or a specified point.

776

Part VII: Display

❑ scale makes the shapes larger or smaller by a specified ratio.

❑ skewX leans the shapes along the x-axis.

❑ skewY leans the shapes along the y-axis.

These operators can be used individually in attributes or in combination. For example, the following has
the effect of drawing the rectangle starting from the point (101,101) and rotated by 45 degrees:

<rect x=”1” y=”1” width=”100” height=”100”
fill=”none” stroke=”blue” stroke-width=”10”
transform=”translate(100,100) rotate(45)”/>

Note that the order of the transforms makes a difference, so the transform value translate(100,100)
rotate(45) is not the same as the transform value rotate(45) translate(100,100). You can also
use the matrix operator to apply a transformation matrix to a shape or set of shapes, which shift and
twist the shapes, though to use this successfully you need some knowledge of matrix arithmetic.

Unlike the x and y attributes, the transform attribute actually modifies the coordinate space of the ele-
ment and its children elements, so it is common to use a transform attribute on a <g> element to move
the entire group.

Paths
The basic shape elements are a convenient way of drawing common figures, but not the only way. Each
of the shapes, and a whole lot more, can be created using a more fundamental drawing device, the path.
An SVG <path> element describes the behavior of a virtual pen, which can be used to create practically
any shape you like. The pen can be moved with or without drawing, and it can draw straight-line seg-
ments and curves. What the pen should draw is specified in an attribute of the path element named d,
for data. As an example, you can duplicate the shapes drawn in the previous example using paths, start-
ing with the following line:

<line x1=”10” y1=”10” x2=”90” y2=”90” stroke=”green” stroke-width=”4” />

This instructed the SVG renderer to paint a 4-pixel-wide green line between the points (10,10) and
(90,90). This can be expressed as pen movements in a similar fashion as follows:

<path d=”M 10,10 L 90,90” stroke=”green” stroke-width=”4” />

Inside the d attribute is the path data. The path data contains two commands: M 10,10 and L 90,90. The
first command says to move (M) the virtual pen to the point (10,10), and the second says to paint a line
from the current point to the absolute point (90,90). You aren’t required to use absolute points, though.
You can make a small change to the example and use relative points instead:

<path d=”M 10,10 l 80,80” stroke=”green” stroke-width=”4” />

The difference is that the L is now lowercase, and the two values after it have each been reduced by 10.
In an SVG viewer, the lines appear exactly the same. Path commands are case sensitive, which deter-
mines the meaning of the coordinates given. Uppercase letters (L, M, and so on) are used to signify that
absolute coordinates should be used, and lowercase letters signify that relative coordinates should

777

Chapter 19: Scalable Vector Graphics (SVG)

be used. In the first version, L 90,90 indicates the drawing of a line to the point (90,90) measured from
the top left-hand corner (0, 0). In the second version, l 80,80 indicates drawing a line to the point
(80,80) measured from the current point. Thanks to the initial movement of M 10,10 the current point is
positioned 10 units down and 10 units to the right of the top left-hand corner of the screen, so the target
point is that much closer. Relative to the point (10,10), the required target is 80 units to the right and 80
down.

In this example, you only have one move command followed by one line command — paths can be as
long as you like, put together as a sequence of commands.

Here are the commands that can appear in paths. The specification uses shorthand names:

M moveto Moves to a new starting point

L lineto Draws a line from the current position to a
new point

H horizontal lineto Draws a horizontal line from the current
point to line up with a new point

V vertical lineto Draws a vertical line from the current point
to line up with a new point

Z closepath Draws a straight line from the current point
to current path’s starting point

A elliptical arc Draws an elliptical arc from the current point
to a new point. Other values in the data
define the exact shape.

Q quadratic Bézier curveto Draws a quadratic Bézier curve from the cur-
rent point to a new point. Other values in the
data define the exact shape.

T smooth quadratic Bézier curveto Draws a quadratic Bézier curve from the cur-
rent point to a new point. Values in a preced-
ing curve’s data define the exact shape.

C curveto (cubic Bézier) Draws a cubic Bézier curve from the current
point to a new point. Other values in the data
define the exact shape.

S smooth curveto (cubic Bézier) Draws a cubic Bézier curve from the current
point to a new point. Values in a preceding
curve’s data define the exact shape.

Note that each of the commands can appear in uppercase (absolute coordinates) or lowercase (relative
coordinates).

The first two you have already seen in the line example —M (moveto) changes the current point to a new
location without drawing anything, and L (lineto) draws a straight line from the current point to the
specified coordinates. The horizontal and vertical lineto commands H and V aren’t followed by a pair
of coordinates, just a single value (x for horizontal, y for vertical).

778

Part VII: Display

The Z command, closepath, is used when you want to draw a closed shape, something that encloses an
area. The command draws a straight line from the current point back to the initial starting point of the
current subpath (for example, where the pen first touched the canvas in this particular part).

You can see how this works if you draw a rectangle using paths. The basic shape version looked like
this:

<rect x=”1” y=”1” width=”100” height=”100”
fill=”none” stroke=”blue” stroke-width=”10” />

The top left-hand corner of the rectangle is specified, along with its dimensions. The path approach isn’t
anywhere near as easy to read (or, as shown later, to change with script):

<path d=”M 1,1 L 1,100 L 100,100 L 100,1 z”
fill=”none” stroke=”blue” stroke-width=”10” />

The data starts with a command to move to the point (1,1), which is followed by a line to the point
(1,100). Next is another line from the current point to the absolute position (100,100), followed by a line
from there to (100,1). Finally, a z command (note it’s lowercase) closes the square, drawing a line from
the current point (100,1) back to the point where the pen last started drawing in this part of the path,
which was (1,1).

The remainder of the path commands (A, Q, T, C, and S) draw curves, based on different mathematical
formulas. You don’t actually need to know anything about the formula to use these commands to draw
curves; the SVG Specification (Section 8.3) has examples of each kind. You can use the elliptical arc com-
mand to make a path version of the circle in the basic shape example.

Here again is the easy-to-read version:

<circle cx=”50” cy=”50” r=”30” fill=”red” />

The coordinates of the center of the circle are given along with its radius. There are several ways the cir-
cle could be drawn using a path, none of which are particularly straightforward. For example, you could
use an elliptical arc command (A). The series of values that follow the elliptical arc command are listed in
the specification as rx ry x-axis-rotation large-arc-flag sweep-flag x y:

<path d=”M30,70.7 a30,30 1 1,1 1,1” fill=”red” />

The first two values give the radius in the x and y directions; for a circle they’re equal values. The arc is
drawn from the current point to the point specified by the coordinates (x, y). Here we’ve used the rela-
tive version of the command (a), drawing the arc around the point (1,1), or 1 unit to the right and down
of the origin. The other values provide further information about how the arc is to be drawn.

If the point (0,0) is used as the origin for an arc, the shape disappears altogether.
This is because the rendering algorithm cannot determine directionality without a
second reference point. By specifying the origin as (1,1), the algorithm can determine
in which direction to arc.

779

Chapter 19: Scalable Vector Graphics (SVG)

This section has only been using paths to paint very simple shapes. The <path> element is very useful
when more complex drawings are needed. To show this in a very limited fashion, consider what you’ve
seen so far: A virtual pen has drawn a line, another virtual pen has drawn a square, and a third virtual
pen has drawn a circle. If you don’t care about changing the pen’s ink (the fill and stroke attributes),
you can draw all three shapes in one path, as shown in the following code:

<path d=”M1 1L1 100L100 100L100 1z M10 10l80 80M30 70.7a30 30 1 1 1 1 1”
stroke=”pink” stroke-width=”5” />

If you look at the data line carefully, you can see how each part has been taken from the three single
<path> elements. The syntax here is a little different — there’s no reason why the commas and spaces
shouldn’t have appeared as in the individual examples, but there are alternatives. Commas and/or
whitespace can be used to separate the numbers in a path, as can the command letters themselves. This
example uses the concise version without commas. The resulting image looks like Figure 19-4.

Figure 19-4

Paths are an extremely versatile way to draw shapes with SVG, but that versatility comes at a cost: It is
considerably more difficult to write the code manually and make sense of existing code. In practice you
probably won’t want to write paths any more complex than the last example without the help of tools.

Images
Bitmap images such as GIFs, PNGs, and JPEGs can easily be incorporated into SVG documents using the
<image> element. The following snippet draws a yellow rectangle with a green border, and places a pic-
ture of a flag on top of that:

<svg version=”1.1”
xmlns=”http://www.w3.org/2000/svg”
xmlns:xlink=”http://www.w3.org/1999/xlink”>

<rect x=”10” y=”10” width=”120” height=”120”
fill=”yellow” stroke=”green” stroke-width=”4” />

<image xlink:href=”http://www.jpeg.org/images/flag_fr.jpg”
type=”image/jpeg” x=”20” y=”20” width=”100” height=”100” />

</svg>

780

Part VII: Display

The <image> element uses an attribute from the XLink namespace, so the namespace prefix xlink is
declared in the root <svg> element. The MIME (Internet Media) type of the image is given as an
attribute (image/jpeg) along with the required position and dimensions of the image (see Figure 19-5).

Figure 19-5

Note that the flag is distorted — the original image is actually smaller than the width and height values
given in the <image> element, so the viewer stretches it to fit the specified values.

Text
The first thing to understand about text in SVG is that it is real text. Any kind of image can contain text,
but try copying and pasting text from a JPEG image. In SVG, text is a first-class citizen. You can copy it
from the rendered graphics and employ tools that can read the text from the source code or modify it in
the DOM tree.

Support for text in SVG 1.1 is very sophisticated, yet lacking in one particular respect. The sophistication
extends to using different character sets, styles, and orientations — virtually any written language can be
rendered in SVG without much difficulty. You can even create your own font, defined as a set of graphi-
cal “glyphs” mapped to Unicode values for each character. Where SVG 1.1 falls short is in support for
multi-line text. You can write series of lines of text easily enough, but a single block of text cannot be
made to wrap to the next line as you might expect. Fortunately, this is a feature defined in the upcoming
version of the SVG 1.2 specification.

In its basic form, as you are likely to want to use it most of the time, there’s not a lot to learn about SVG
text. Here is an example of some text that appears in a little frame, as in the image example:

<svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”>

<rect x=”10” y=”10” width=”120” height=”120”
fill=”yellow” stroke=”green” stroke-width=”4” />

<text x=”15” y=”70” font-size=”20” fill=”red”>SVG is XML</text>

</svg>

781

Chapter 19: Scalable Vector Graphics (SVG)

The text is defined using a <text> element. The x and y attributes specify the point at which to start
writing the text. In this simple example, this refers to the bottom left-hand side of the first character. The
color of the text is specified by the fill attribute, and the size of the letters by the font-size attribute,
which is defined by CSS2 (see Figure 19-6).

Figure 19-6

Virtually all the CSS2 properties can be applied to SVG: as inline style properties, as attributes, or by
using stylesheets and classes. See Chapter 17 for more information about using CSS.

Comments, Annotation, and Metadata
A key benefit of SVG as XML is its machine readability. A computer can read and interpret the content of
an SVG file beyond what’s needed for the graphics display. Your SVG files may be read by software
other than straightforward viewers — for example, robots building indexes for search engines. Even with
viewers there are places to put information outside of the graphics display, such as the title bar of the
viewer window, or in pop-up tooltips.

Three elements within SVG are available specifically for providing this kind of extra information:
<title>, <desc>, and <metadata>. The first two of these are used in the following example:

<svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”>

<!-- This is an XML comment -->

<title>This is the title of the document</title>
<desc>This is the description of the document</desc>

<circle cx=”60” cy=”60” r=”50” fill=”red”>
<title>This is a circle</title>
<desc>The color is red.</desc>

</circle>

<g>
<title>This is a collection of squares</title>
<desc>The squares are arranged in a grid.</desc>

782

Part VII: Display

<rect x=”45” y=”45” width=”10” height=”10” />
<rect x=”65” y=”45” width=”10” height=”10” />
<rect x=”45” y=”65” width=”10” height=”10” />
<rect x=”65” y=”65” width=”10” height=”10” />

</g>
</svg>

This example includes a regular XML comment. These should only be used to assist anyone reading the
source code. Don’t put anything too valuable in a comment. Next are <title> and <desc> elements as
children of the root element. In this position, these are providing a title and a description of the docu-
ment itself. You then have a <circle> element, which contains a <title> and a <desc>. Finally, there
is a <g> element, which contains a <title>, <desc>, and four <rect> elements. The title and descrip-
tion in this case refer to this group of elements. Unlike the graphics elements, what the user agent (the
software reading the document) does with the data in these elements is not mandated in the specifica-
tion, although none of it is displayed directly as part of the graphics. As you might expect, this has led to
some variation in what’s been implemented in the viewers. Figure 19-7 shows the previous file in the
viewer.

Figure 19-7

You can see that the document title (“This is the title of the document”) is shown in the title bar. In some
viewers, such as the Opera browser pictured, if the mouse pointer is over an element, or part of a group
of elements, then a pop-up note showing the contents of the <title> and <desc> elements may be
displayed.

The <metadata> element allows more complex machine-readable data to be included in the document.
The W3C has been leading initiatives to make material on the Web more useful by adding as much
machine-readable information as possible. There are others, but the leading metadata standard is the
Resource Description Framework (http://w3.org/RDF), which makes it possible to say anything
about virtually anything in a form that computers can use. The framework is really a data model, but

783

Chapter 19: Scalable Vector Graphics (SVG)

the format used for interchange of this data is an XML language, RDF/XML. There has been consider-
able industry support for the W3C initiative; for example, all of Adobe’s tools now embed RDF in their
data files — JPEGS, PDF, and of course SVG. A good place to start finding out more about using SVG and
RDF together is the “Co-depiction” site (http://rdfweb.org/2002/01/photo/), which is part of the
FOAF (Friend-of-a-Friend) project (www.foafnaut.org/).

Remember that under most circumstances the contents of the <title>, <desc>, and <metadata> ele-
ments won’t be visible as part of the SVG graphics, although some web browsers without a plug-in will
display these as plain text.

Scripting
SVG has a scripting facility very similar to that of HTML. The language usually available is
ECMAScript, which is the international standard version of JavaScript. It’s beyond the scope of this book
to provide an introduction to ECMAScript/JavaScript, but the examples used here are relatively self-
explanatory. More information about the SVG object model used by the renderer and script engine can
be found in the specification in Section 18. Because the SVG specification does not mandate scripting
support, not all browsers provide it. Additionally, very few of the available browsers and plug-ins sup-
port all of the functions and properties defined in the specification.

The following code is in two parts. The first is an SVG graphic element that defines the triangle shape,
and the second part is a piece of ECMAScript that responds to the mouse click and changes the triangle’s
color. If the code is opened in a viewer, you see a green triangle. Clicking the mouse on the triangle turns
it red:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”
“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg xmlns=”http://www.w3.org/2000/svg” version=”1.1”>

<polygon points=”150,100, 50,100 100,29.3” fill=”green”
onclick=”handleClick(evt)” />

<script type=”text/ecmascript”>
<![CDATA[

function handleClick(evt) {
var polygon = evt.target;
polygon.setAttribute(“fill”, “red”);

Different Web users have different requirements, and many people can’t use a
browser in the regular fashion because of disabilities such as poor eyesight. Several
features of SVG make it particularly good for communication in such circumstances,
as discussed in the W3C note “Accessibility Features of SVG”
(www.w3.org/TR/SVG-access/). For example, being able to zoom in on images
makes SVG images more accessible to people with impaired vision. Providing text
equivalents of images in title and desc elements also enables the information to
be conveyed using text-to-speech screenreaders.

784

Part VII: Display

}

]]>
</script>

</svg>

The triangle is defined as a <polygon>. A triangle has three corners, so you have three sets of (x,y) coor-
dinates. The fill attribute for the <polygon> is green, so it appears shaded in that color.

The onclick attribute is a special attribute that associates the element with an event and part of the
script. In this example the event is a mouse click, and the part of the script is a user-defined function
called handleClick. That function is passed an object (evt) that carries information relating to the
mouse click event.

Scripts in SVG are included using a <script> element. As shown later in the chapter, it is possible to
point to an external script file, but there isn’t much code here, so it’s included in the SVG document file
itself.

The script listing is wrapped in a CDATA section, as there may be characters in the script (for example, <)
that would break XML’s well-formedness rule. Here the script is comprised of a single function,
handleClick, which is called when the user clicks on the triangle.

The first statement of the function creates a new variable called polygon (the name isn’t important) and
sets this to the value of the target attribute of the evt object. The target is the object on which the event
occurred, in this case the <polygon> element in the SVG part of the code. The next line uses a DOM
method to set the <polygon> element’s value to the red string. This has the effect of changing the value
in memory of that part of the SVG to be equivalent to the following:

<polygon points=”150,100, 50,100 100,29.3” fill=”red”
onclick=”handleClick(evt)” />

Note that the actual source code doesn’t change, only the in-memory representation, which is the DOM
tree, but the result is the same: The triangle becomes red.

SVG on Your Website
Publishing SVG material on the Web is nearly as straightforward as publishing XHTML. Bear in mind
that people who visit your site need an SVG-capable viewer, so it’s a good to idea to have a link on one
of your XHTML pages to one of the browsers or plug-ins.

Even if the visitor is using an SVG-capable browser, the browser may not realize that the material it’s
seeing is SVG. If you point your browser at one of your newly uploaded SVG masterpieces and all you
see is XML code, don’t be dismayed. There are two ways to give the browser a hint:

❑ Give the file an appropriate extension — .svg for regular SVG files and .svgz for gzip com-
pressed files.

❑ Most important, ensure that the web server delivers the document with the right MIME type. At
the time of writing, most web servers don’t.

785

Chapter 19: Scalable Vector Graphics (SVG)

Depending on your setup, you may have to ask the server administrator to add the MIME type to the
configuration for you. With most Apache-based services, it’s possible to add the MIME type yourself.
Simply create a file called .htaccess (note the initial dot) in the top-level directory, below which your
SVG files appear, and enter the following text:

AddType image/svg+xml svg
AddType image/svg+xml svgz
AddEncoding gzip svgz

To check whether the material’s being served correctly, you need a download tool such as wget (a GNU
tool, Win32 ports are available), which will tell you what the MIME type is (for SVG it should be
image/svg+xml).

Tangram: A Simple Application
To give you a taste of how an SVG application fits together, this section presents a little toy. Tangram is a
jigsawlike Chinese puzzle based on seven flat geometric pieces, which can be arranged (without over-
lap) to make various shapes, the simplest of which is a square. In the toy application shown in Figure
19-8, you begin with all the pieces in a square box and click a Scramble button to scatter them out of the
box. The goal is to fit the pieces back into the box.

Figure 19-8

786

Part VII: Display

The application is composed of the following three files:

❑ tangram.html— An XHTML file that displays the puzzle and some instructions

❑ tangram.svg— An SVG file that defines the graphics, including control buttons

❑ tangram.es— An ECMAScript file that looks after movement of the pieces

XHTML Wrapper
SVG files can be viewed directly in capable browsers or they can form part of a regular XHTML page.
The first file is standard XHTML, using the Transitional DOCTYPE. You will probably recognize most of its
elements; they were all tags in legacy HTML, though the <iframe> element deserves some additional
explanation:

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Tangram Puzzle</title>

</head>
<body>
<h1>Tangram Puzzle</h1>
<p>
Instructions

Click Scramble, then put the pieces back in the box.

</p>

To move shapes : click and drag the mouse
To rotate shapes : move the mouse over a shape and press any key

<iframe src=”tangram.svg” width=”750” height=”550” frameborder=”0”>
</iframe>

</body>
</html>

The document begins with conventional XHTML material, and the body begins with a heading, a small
paragraph of text (<p>) featuring some emphasis (and), followed by an unnumbered list
() containing two items (), which make up the instructions. After the instructions comes the
interesting part — the <iframe> element that displays the SVG graphics in the XHTML page.

Historically, it’s not been easy to display embedded objects and plug-ins in web pages in a consistent
fashion, as different browsers supported different approaches. You could use the <embed> tag or an
<object> tag, but at the time of writing, the code here works with all of the major browsers and plug-
ins. By using an <iframe>, the browser can determine how to render the subframe. It may use a plug-
in or its own internal rendering engine.

The data attribute contains a relative URI pointing to the SVG file (it’s in the same directory as this
XHTML file). The width and height attributes of the <iframe> element determine the size of the area
into which the SVG graphics are drawn.

787

Chapter 19: Scalable Vector Graphics (SVG)

SVG Shapes
The SVG part of the application is relatively straightforward. Essentially, what you have is the box con-
taining the puzzle pieces, with the pieces represented as polygons, and two labeled buttons. When the
source code is stripped down to its elements, you can see the overall structure:

<svg>
<script/>

<title>Tangrams</title>
<desc>An old Chinese puzzle</desc>

<rect/> <!-- the pieces box -->

<g> <!-- the pieces -->
<polygon/>
<polygon/>
<polygon/>
<polygon/>
<polygon/>
<polygon/>
<polygon/>

</g>

<g><!-- “Scramble” button -->
<rect/>
<text>Scramble</text>

</g>

<g><!-- “Reset” button -->
<rect/>
<text>Reset</text>

</g>
</svg>

In addition to the basic shapes and text, there is also a <script> element to link to an external
ECMAScript file, which looks after mouse and keyboard interaction. A <title> element and <desc>
element provide machine-readable annotation. The <g> elements are used to provide common attributes
to their child elements and simplify events.

You need to be able to move the pieces around. Therefore, a mouse click-and-drag gesture is used, and
you need listeners for various mouse events. To make the puzzle a little more interesting, you should
also rotate the pieces to get them oriented properly. This is done by selecting a piece and then pressing
any key. A piece is selected by simply moving the mouse cursor over it. When the mouse cursor is over a
piece, it changes color to indicate it has been selected.

One other behavior to handle is responding to mouse clicks on the buttons. A click on the Scramble but-
ton scatters the pieces around, and a click on the Reset button returns them to their starting positions.

All this behavior has introduced a minor complication: The various elements have to respond to mouse
and keyboard events. Therefore, hooks in the code call appropriate functions in the ECMAScript, though
the keyboard event handling is set up in the script itself:

788

Part VII: Display

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”
“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>
<svg xmlns=”http://www.w3.org/2000/svg”
xmlns:xlink=”http://www.w3.org/1999/xlink”
version=”1.1”
width=”750px”
height=”550px”
viewBox=”-10 -10 740 540”
onload=”init(evt)”
onmouseup=”mouseup(evt)”
onmousemove=”move(evt)”
onmousedown=”mousedown(evt)”>

After the XML declaration and DOCTYPE declaration is the document’s root <svg> element. As well as
declaring the SVG namespace and version, this also has attributes to position and scale the graphics in a
suitably sized area (the viewBox) within the initial viewport specified by the width and height
attributes. Here, the viewBox data is used to shift all the graphics 10 pixels down and to the right to pro-
vide a margin. The onload attribute is one of several possible event attributes, and the effect here is that
when the SVG document is loaded into the viewer, a user-defined (in the script) function called init is
called and passed an object, evt, that models to the onload event.

All of the pieces in the document share the same behavior when responding to mouse events, so the
event attributes (onmousemove and others) also appear in the root <svg> element. Each of these
attributes contains a value corresponding to a function in the script. For instance, when the mouse cur-
sor moves over any element in the document, the move method in the script is called. In the event, you
check to ensure that you have an active <polygon> element selected. You could place the event
attributes on each of the <polygon> elements instead of the root element, but then the events would
only fire when the cursor was over the <polygon>. Because cursor movement in modern browsers is
unpredictable, it is safer to place the event attributes on the root. You also add a background element for
the whole document to ensure that events are caught.

<rect x=”0” y=”0” width=”100%” height=”100%” fill=”white” opacity=”0”/>

Here the opacity is set to 0; you don’t want the background <rect> to be visible in the viewer, only to
the event handler.

The next line links in the script, and like the element in the previous XHTML code, the type attribute
gives the MIME type of the linked file so the viewer knows what to expect. Similarly, a relative link is
made because the script file (tangram.es) will be in the same directory as this document. There then
follows a title and description for this SVG document:

<script type=”text/ecmascript” xlink:href=”tangram.es”/>
<title>Tangrams</title>
<desc>An old Chinese puzzle</desc>

The main graphic elements start with the square container box. This rectangle is yellow and has a 5-pixel
dark-blue outline, these characteristics being set in the elements’ attributes, as shown in the following:

<rect x=”0” y=”0” width=”200” height=”200” fill=”yellow”
stroke=”darkblue” stroke-width=”5”/>

789

Chapter 19: Scalable Vector Graphics (SVG)

Next are the <polygon> elements, which paint the puzzle pieces. All these pieces share the same fill and
outline (stroke) characteristics. Therefore, the <polygon> elements are grouped together in a <g> ele-
ment, and those attributes appear with that element. The parent-child inheritance of the characteristics
means that this is equivalent to adding the attributes to all the individual children. An attribute intro-
duced here is fill-opacity. This can take a value from 0 (transparent) to 1 (opaque). Setting this at 0.8
gives the shapes an attractive translucency, rather like stained glass. To simplify the reference in the
script, you give the <g> element an id attribute:

<g id=”PolyGroup” fill=”lightgreen” stroke=”darkblue” stroke-width=”3”
fill-opacity=”0.8” onmouseover=”mouseover(evt)” onmouseout=”mouseout(evt)”>

Try It Out Tangram Shapes

Let’s see what this looks like in a browser just as static shapes. Remember that the code for the examples
is available from the book’s website at www.wrox.com.

1. Open a text editor and enter the previous code, starting from the following:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”
“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>
<svg xmlns=”http://www.w3.org/2000/svg”
xmlns:xlink=”http://www.w3.org/1999/xlink”
version=”1.1”
width=”750px”
height=”550px”
viewBox=”-10 -10 740 540”
onload=”init(evt)”
onmouseup=”mouseup(evt)”
onmousemove=”move(evt)”
onmousedown=”mousedown(evt)”>
<rect x=”0” y=”0” width=”100%” height=”100%” fill=”white” opacity=”0”/>
<script type=”text/ecmascript” xlink:href=”tangram.es”/>
<title>Tangrams</title>
<desc>An old Chinese puzzle</desc>
<rect x=”0” y=”0” width=”200” height=”200” fill=”yellow”
stroke=”darkblue” stroke-width=”5”/>

<g id=”PolyGroup” fill=”lightgreen” stroke=”darkblue” stroke-width=”3”
fill-opacity=”0.8” onmouseover=”mouseover(evt)” onmouseout=”mouseout(evt)”>

2. Add the following code:

<polygon points=”0,0 0,100 100,0”
transform=”translate(0,0) rotate(0,0,0)”/>

<polygon points=”100,0 50,50 150,50 200,0”
transform=”translate(0,0) rotate(0,0,0)”/>

<polygon points=”50,50 0,100 50,150 100,100”
transform=”translate(0,0) rotate(0,0,0)”/>

<polygon points=”50,50 100,100 150,50”
transform=”translate(0,0) rotate(0,0,0)”/>

<polygon points=”200,0 100,100 200,200”
transform=”translate(0,0) rotate(0,0,0)”/>

<polygon points=”0,100 0,200 50,150”
transform=”translate(0,0) rotate(0,0,0)”/>

790

Part VII: Display

<polygon points=”0,200, 200,200 100,100”
transform=”translate(0,0) rotate(0,0,0)”/>

</g>
</svg>

3. Save the file as tangram.svg.

4. Open the file in a browser or SVG viewer.

After an initial error message pop-up, you should see the Tangram pieces all neatly positioned in a box.
Moving the mouse over the pieces should also produce error messages because calls are being made to a
non-existent script.

If you’re using IE and don’t get an error message here, go into IE’s Tools menu and select Internet
Options. Click on the Advanced tab. Under Browsing, make sure the Disable Script Debugging and
Display a Notification About Every Script Error options are not checked. Click OK. To view JavaScript
errors in Firefox, open the JavaScript Console on the Tools menu.

How It Works
The pieces themselves are defined as <polygon> elements, each having three (triangles) or four (quadri-
laterals) pairs of coordinates. Each of the elements also has a transform attribute, containing a trans-
late and rotate part. These attributes are used to hold the movement and rotation information of the
pieces. The two values in the translate part indicate how far to shift the element across and down. The
first value in the rotate part gives the rotation angle (in degrees), and the next two values are the x and
y coordinates of the point around which the shape should be rotated. All these values are set to zero at
first because there’s no translation or rotation.

Try It Out Adding the Buttons

Add the two control buttons, Scramble and Reset.

1. Open the file you just typed in, tangram.svg, in a text editor.

2. Delete the </svg> tag at the end and type in the following block of code:

<g onclick=”scramble()”>
<rect x=”20” y=”220” width=”60” height=”20”
style=”fill:coral;stroke:blue;stroke-width:2”/>

<text x=”50” y=”220” transform=”translate(0,14)” text-anchor=”middle”
style=”fill:black;font-size:9pt;font-family:Arial”>Scramble</text>

</g>
<g onclick=”reset()”>
<rect x=”90” y=”220” width=”60” height=”20”
style=”fill:violet;stroke:blue;stroke-width:2”/>

<text x=”120” y=”220” transform=”translate(0,14)” text-anchor=”middle”
style=”fill:black;font-size:9pt;font-family:Arial”>Reset</text>

</g>
</svg>

3. Save the file again as tangram.svg.

4. Open the file in your browser.

791

Chapter 19: Scalable Vector Graphics (SVG)

You should now see the buttons, but again you will be presented with an error message pop-up when
the file is opened because of the incomplete script.

How It Works
Each button is drawn as a colored rectangle with a stroked outline and a text label positioned in the cen-
ter of the rectangle. It’s convenient to use the same vertical coordinates for both the rectangle and the
text, making the small adjustment needed to center the text vertically with a simple translate transfor-
mation. For horizontal centering, the text-anchor attribute was added with the value middle. You also
changed the horizontal position to be in the middle of the rectangle.

The behavior in response to mouse clicks is set up in <g> elements, as you want the same thing to hap-
pen whether the text or the rectangle is clicked. Clicking the first button calls the scramble() function
in the script, and clicking the second button calls the reset() function. These functions haven’t yet been
defined, so for now the clicks produce error messages.

Tangram Script
The interactivity of the tangram puzzle is provided by the ECMAScript (JavaScript) in the file tan-
gram.es. When the mouse is moved or clicked, the SVG DOM causes functions in the script to be called.
Those functions in turn make changes to the DOM to carry out the required behavior — moving the puz-
zle pieces. For example, Figure 19-9 shows the visual result of clicking the Scramble button.

Figure 19-9

792

Part VII: Display

To give you an idea of how it all fits together before you look at the details of the source, here is an
overview of the functions the script contains:

init(evt)
mousedown(evt)
mouseup(evt)
mouseover(evt)
mouseout(evt)
move(evt)

getTransformBlock(polygon, index)
getRotateAngle(polygon)
getCenter(polygon)

moveToFront(polygon)
rotatePolygon(evt)

scramble()
reset()

The first six functions are called in response to events generated from user interaction with the SVG doc-
ument. The init(evt) function is called when the document is initially loaded into the viewer using
the onload attribute in its top-level <svg> element. That function initializes the svgDoc variable and
adds a new event. The rest of the functions here are called when particular mouse actions occur. For
example, moving the mouse pointer over a puzzle piece causes the mouseover(evt) method to be
called, and the evt object it receives contains a reference to that particular piece. These functions all have
a hook in the SVG code in the form of event attributes pointing to these functions. The mousedown(evt)
and mouseup(evt) functions are used to recognize the start and end of a click-and-drag gesture, which
is used to move the pieces around. The actual movement is tracked by the move(evt) method. The
mouseover(evt) and mouseout(evt) functions change the color of the piece the mouse pointer
passes over.

The next functions are utilities to help in reading values from the SVG DOM. Each of the puzzle pieces
(the <polygon> elements in the previous SVG) has a transform attribute as follows:

transform=”translate(0,0) rotate(0,0,0)”

This attribute is a string with two distinct blocks: The first is a translate command and the second a
rotate command. The getTransformBlock(polygon, index) function returns a string containing
the whole of the command for the specified <polygon> element. If the index has value 0, then the
translate block is returned; if it is 1, then the rotate block is returned. getRotateAngle(polygon)
returns the angle specified in the rotate block.

The next two functions carry out operations on the pieces. getCenter(polygon) returns the coordi-
nates of the center point of the specified polygon relative to the 0,0 point from which it is referenced.
This is used to calculate the offsets needed to line up the center of the shapes to the mouse pointer
when moving them around. If other puzzle pieces are lying on top of the piece selected, the
moveToFront(polygon) function moves the selected piece to the top of the pile.

The last two functions look after operations when the Scramble or Reset buttons are clicked. The scram-
ble() function scatters the pieces around by randomizing the transform values, and the reset() func-
tion returns all the pieces to their initial positions by setting all the transform values back to 0.

793

Chapter 19: Scalable Vector Graphics (SVG)

OK, now you might like to see the code itself. It begins by declaring the following three global variables
illustrated in the following code:

❑ selectedPoly will be the individual <polygon> element corresponding to the piece the user
has selected.

❑ track is true when a piece is being dragged around the screen, and false otherwise.

❑ svgDoc starts as null, but is assigned to the document in the init function.

var selectedPoly;
var track = false;
var svgDoc = null;

The init(evt) function is called when the SVG document is loaded into the viewer. It begins by getting
a reference to the document itself from the event passed by the caller (the SVG DOM). To handle key
presses, an event listener is added to the rootElement object, so whenever there’s a key event, the
rotatePolygon(evt) method is called. Attaching event listeners should only be done on the root ele-
ment for compatibility, as shown in the following:

function init(evt) {
svgDoc = evt.target.ownerDocument;
svgDoc.rootElement.addEventListener(“keydown”, rotatePolygon, false);

}

When the mouse moves over an element, the mouseover(evt) method is called. The event object evt
carries a reference to the element on which it was called, which may be a puzzle piece. The
mouseover(evt) function should check whether a piece is already being dragged by checking the
track variable. If the user is already dragging a piece, then you don’t want to highlight another one. If
no piece is currently being tracked, then you can check whether the DOM element under the cursor (the
evt.target) is a puzzle piece by evaluating its name. If its name is polygon, set the selectedPoly
variable reference to this element so that it can be moved or rotated later. In addition, set the fill
attribute to orange, changing the color of the piece onscreen:

function mouseover(evt){
if(!track){
if(evt.target.nodeName == “polygon”){
selectedPoly = evt.target;
selectedPoly.setAttribute(“fill”, “orange”);

}
}

}

When a mouse button is pressed, the mousedown method is called. If the selectedPoly variable has
already been set by the mouseover(evt) method, the track variable can be set to true, as this action
might mean the element is about to be dragged. The selected shape should also be moved in front of any
other pieces:

function mousedown(){
if(selectedPoly != null){
track = true;
selectedPoly = moveToFront(selectedPoly);

}
}

794

Part VII: Display

When the mouse button is released, the mouseup function is called. All this function needs to do is reset
the track variable to stop the dragging:

function mouseup(){
track=false;

}

The mouseout function is called when the mouse pointer moves off a visual element, so it needs to reset
the fill attribute and the color of the piece back to its original value of lightgreen. It can also clear
the selectedPoly variable, which effectively deselects the piece:

function mouseout(){
if(!track && selectedPoly != null){
selectedPoly.setAttribute(“fill”, “lightgreen”);
selectedPoly=null;

}
}

The move(evt) function begins by checking for an empty value in selectedPoly, or that the value of
track specified not to drag the element. If either is the case, then the function returns without any fur-
ther operations, except for resetting the track variable just to be sure. If the piece is to be moved, then a
center object is created, which contains the x,y coordinates of the selected shape’s current center point.
The coordinates of the mouse pointer are then retrieved using the built-in event properties clientX and
clientY. These have the corresponding values of the center variable subtracted from them to produce
new values for the translate part of the shape’s transform attribute. The value of the transform
attribute is reconstructed from these new translate values and the existing rotate part, which is
obtained using getTransformBlock with the index 1:

function move(evt){
if(!track || selectedPoly == null){
track = false;
return;

}
var center = getCenter(selectedPoly);

var x = evt.clientX-center.x;
var y = evt.clientY-center.y;
translateString = “translate(“+x+”,”+y+”)”;

selectedPoly.setAttribute(“transform”,
translateString+” “+getTransformBlock(selectedPoly, 1));

}

The getTransformBlock(poly, index) function starts by getting the transform attribute from the
supplied polygon. Here again is the form that attribute will take, with some arbitrary values:

transform=”translate(11,23) rotate(90,100,100)”

The function returns either the translate or rotate part of a shape’s transform attribute; and to get
at this, the function employs a very useful piece of ECMAScript functionality: regular expressions. A com-
plete discussion of regular expressions is beyond the scope of this chapter, but if you’ve not encountered
them already, plenty of tutorials are on the Web. Here, the built-in split method is applied to the whole

795

Chapter 19: Scalable Vector Graphics (SVG)

transform string. The /\)/ argument is a regular expression that matches all single closing parentheses
in the string. Returned from split is an array of strings, built from splitting the input string on what-
ever the regular expression matched. Applied to the previous transform string, split(/\)/)[0]
would return the string translate(11,23, and split(/\)/)[1] would return rotate(90,100,100.
Notice that the closing parenthesis has been removed in each of the previous strings. You need to add
that back in the return statement:

function getTransformBlock(polygon, index){
var transformString = polygon.getAttribute(“transform”);
var transformPieces = transformString.split(/\)/);
if (transformPieces.length > index)
return transformPieces[index] + “)”;

return “”;
}

The getRotateAngle(polygon) function can use the previous function to get the rotate(90,100,100)
part, and then use another regular expression, reg, with the built-in exec function to extract the first num-
ber. The regular expression here matches any decimal number, such as 123 or 55.6, and the exec function
applied to the rotateString returns the first matching value, which is the rotate angle. This value will be
a string, so the built-in parseFloat(string) function is used to convert it into a floating-point number.
Be careful to put this in a try/catch block, as shown in the following code:

function getRotateAngle(polygon){
var rotateString = getTransformBlock(polygon, 1);
var reg = /([0-9]+)(\.?)([0-9]*)/;
try {
return parseFloat(reg.exec(rotateString));

} catch(e) {
return 0;

}
}

The getCenter(polygon) function is passed a polygon and returns an object containing a pair of val-
ues, the coordinates of the shape’s center point relative to 0,0. This is calculated by taking the average of
the x and y values of the polygon’s corner points. The regular-expression-based split method is used
again in the function. Here it is applied to the points attribute of the polygon, which looks something
like “0,200 200,200 100,100”. Each pair of coordinates corresponds to one of the shape’s corners. The
pairs are separated by spaces, so you can separate each pair of numbers using split(/ /). The length of
the array this gives you is the same as the number of pairs of values. The function steps through each
pair of values and applies the split method again, this time with a regular expression that matches
commas. This gives an array containing two strings, which are converted into integers and then added
to the running totals xSum and ySum. The center object is defined as having two properties, x and y,
which are then given the calculated average values of x and y. The center object is then returned, as
shown in the following:

function getCenter(polygon){
var center = {
x: 0,
y: 0

};
try {
var pointsString = polygon.getAttribute(“points”);

796

Part VII: Display

var split = pointsString.split(/ /);
var xSum = 0;
var ySum = 0;
var coords;
for(var i=0;i<split.length;i++){
coords = split[i].split(/,/);
xSum = xSum + parseInt(coords[0]);
ySum = ySum + parseInt(coords[1]);

}
center.x = xSum/split.length;
center.y = ySum/split.length;

} catch(e) {
// do nothing

}
return center;

}

The moveToFront(polygon) function modifies the SVG DOM to move the specified polygon into the
foreground, above any other objects onscreen. As shown earlier, SVG’s painter’s model means that
graphic elements that appear earlier in the document are painted first. It follows that whichever shape
appears last in the elements defining the puzzle pieces are painted last, or on top. Therefore, here the
function does a little element juggling using standard XML DOM methods to make the specified poly-
gon the last of the polygon’s children. This is done by first cloning a copy of the polygon of interest and
appending that to its parent node’s (the <g> element) list of children. The original polygon element is
then removed from the DOM tree, and its new clone returned, as shown in the following:

function moveToFront(polygon){
var clone = polygon.cloneNode(true);
polygon.parentNode.appendChild(clone);
polygon.parentNode.removeChild(polygon);
return clone;

}

The rotatePolygon function was attached to a keyboard listener in the init() function, and it is
called when a key is pressed. The function receives an evt object from which further information could
be extracted, such as which key was pressed. However, as there is only one action, this is ignored, and
all key presses have the same result. First the current rotation angle (in degrees) is obtained using the
helper function getRotateAngle(polygon) described previously. This has the value 22.5 added to
it, which rotates the shape one-eighth of a circle clockwise. The getCenter(polygon) function is
reused to provide the point around which the rotation should take place. A new string for the trans-
form attribute is then built, consisting of the current translate block together with a revised rotate block,
as shown in the following:

function rotatePolygon(evt){
if (selectedPoly == null)
return;

var rotation = getRotateAngle(selectedPoly);
rotation = rotation + 22.5;
var center = getCenter(selectedPoly);
var transformString = getTransformBlock(selectedPoly, 0)
+ “ rotate(“ + rotation + “,” + center.x + “,” + center.y + “)”;

selectedPoly.setAttribute(“transform”, transformString);
}

797

Chapter 19: Scalable Vector Graphics (SVG)

The last two methods are called when the Scramble or Reset buttons are clicked. The code to scram-
ble() looks a lot more complex than it actually is. It starts by obtaining the set of <polygon> elements
through the childNodes DOM property of the parent polyGroup, then steps through these, and ran-
domizes the values contained in the transform attribute of each shape in turn. The individual child ele-
ments are accessed using the XML DOM method item(x). Note that a check is made to ensure that the
item in question actually is a <polygon> element, as text nodes corresponding to whitespace in the SVG
also appear as children here. The random values are generated using the ECMAScript Math.random
function and are scaled and offset as needed to make the shapes appear in a suitable part of the screen
(to the right of the puzzle pieces’ box). Again the attribute strings are built, and the value of the trans-
form attribute in the DOM is set:

function scramble(){
var polyGroup = svgDoc.getElementById(“PolyGroup”);
var children = polyGroup.childNodes;

var transformString;
var randX;
var randY;
var randAngle;
var center;

for(var i=0;i<children.length;i++){
if(children.item(i).nodeName == “polygon”){
center = getCenter(children.item(i));
randX = 200+Math.floor (200*Math.random());
randY = Math.floor (200*Math.random());
randAngle = Math.floor (8*Math.random()) * 45;

transformString = “translate(“+randX+”,”+randY+”) “;
transformString = transformString
+ “rotate(“ + randAngle + “,” + center.x + “,” + center.y + “)”;

children.item(i).setAttribute(“transform”, transformString);
}

}
track=false;

}

One of the most straightforward functions, reset(), steps through the shapes in exactly the same man-
ner as scramble(), but this time it resets the values contained in the transform attribute back to 0,
thus putting all the pieces back into their starting positions:

function reset(){
var polyGroup = svgDoc.getElementById(“PolyGroup”);
var children = polyGroup.childNodes;
var transformString = “translate(0,0) rotate(0,0,0)”;
for(var i=0;i<children.length;i++){
if(children.item(i).nodeName == “polygon”){
children.item(i).setAttribute(“transform”, transformString);

}
}
track=false;

}

798

Part VII: Display

Try It Out Running the Tangram Application

1. Open a new window in your text editor.

2. Type in the code listed previously.

3. Save the file as tangram.es in the same folder as tangram.svg.

4. Open tangram.svg in your browser.

5. Click the Scramble button.

6. Try to place the pieces back into the box.

How It Works
The application works by manipulating the in-memory DOM model of the SVG. Mouse behavior causes
functions in the script to be called. Moving the mouse over a shape leads to a call to mouseover(evt),
which changes the color of a shape by setting the shape’s fill attribute. If the shape in the evt.target
is a <polygon> element, it is saved as the value of selectedPoly.

Clicking on a piece automatically makes a call to mousedown, which in turn calls moveToFront(poly-
gon), which moves the <polygon> element corresponding to that shape below the others in the DOM
tree, causing it to be painted last, on top of the others. Clicking the mouse button down on the shape also
sets the track variable to true, indicating that this puzzle piece can be moved.

When a shape is clicked and dragged, the move(evt) function adjusts the translate part of the
<polygon> element’s transform attribute according to the mouse movements. An event listener notices
when a key has been pressed and automatically calls rotatePolygon(polygon), which adds 22.5
degrees to the rotate angle in the currently selected <polygon> element’s transform attribute.

A mouse click on the Scramble button leads to a call to the scramble() function, which randomizes the
values in each <polygon> element’s transform attribute. Clinking the Reset button leads to a call to the
reset() function, which zeros all the transform values.

Further Applications
This tangram code shows how the scripting facilities of SVG enables you to give your applications cus-
tom interactivity. There wasn’t adequate space to cover it here, but if you imagine an application like this
delivered from a web server, it’s relatively straightforward to use HTTP methods to pass information
back to the server. Simple hyperlinking can enable other SVG documents to be loaded in response to
user interactions. Relatively complex standalone applications can be built using SVG with scripting, and
relatively rich custom clients for web applications can be created in the same way.

Useful Resources
Here are some other helpful SVG resources:

❑ SVG.org community news and feeds: http://svg.org/

❑ SVG wiki: http://wiki.svg.org/

❑ SVG specifications and news at W3C: www.w3.org/Graphics/SVG/

799

Chapter 19: Scalable Vector Graphics (SVG)

❑ SVG developers mailing list: http://groups.yahoo.com/group/svg-developers/

❑ Accessibility features of SVG: www.w3.org/TR/SVG-access/

❑ Apache Batik SVG Toolkit: http://xml.apache.org/batik/

❑ Croczilla SVG samples: www.croczilla.com/svg/samples/

❑ Adobe SVG Zone (there is also a mailing list): www.adobe.com/svg/

Summary
This chapter has demonstrated that SVG is an extremely versatile drawing format. In addition, thanks to
XML and scripting support, SVG is highly programmable. The chapter overview provided grounding in
what SVG is and what it is good for. The introductory code section showed how you can use basic
shapes and other core features of SVG, as well as how SVG fits into the web environment.

The Tangram application demonstrated that it is relatively straightforward to build a visually appealing,
interactive application for the Web. It was pointed out that SVG is a far bigger topic than one chapter can
do justice to, but it is hoped that the overview of the SVG specification offered a general idea of the kind
of features that are available.

Finally, if you’ve played with the code a little, it has undoubtedly occurred to you that SVG can be a
great deal of fun!

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
Figure 19-10 shows a picture of a stylized windmill. Write the SVG code needed to draw it. You can use
the Hint if necessary, but you if you like a challenge, try the exercise before looking at the Hint. Squared
paper can help in working out the coordinates, and don’t forget that the y-axis starts with zero at the top.

Figure 19-10

800

Part VII: Display

Hint: There are several different ways of doing this with SVG, but here the body of the windmill was
constructed from a (yellow) <polygon> element with a (yellow) <circle> element half-overlapping
on top. The four (blue) vanes are <polygon> elements with three points. The shape in the middle of the
vanes is a (blue) <rect> element, with a transform to rotate it 45 degrees. At the bottom of the wind-
mill is a (green) <line> element.

Question 2
Get a tangram puzzle application to start with the pieces organized into the stylized cat pictured in
Figure 19-11. Everything else should stay the same — clicking Reset should still place all the pieces into
the square box.

Figure 19-11

801

Chapter 19: Scalable Vector Graphics (SVG)

20
XForms

XForms is an XML-based forms technology specified by the World Wide Web Consortium
(W3C). XForms’ initial intent was to replace HTML forms, which are now at least a decade old.
The power and flexibility of XForms goes well beyond this initial goal, and XForms is well suited
to be used as a general-purpose tool for designing user interfaces for Web applications.

In several earlier chapters, you learned how to manipulate XML using technologies such as XPath,
XSLT, XQuery, and the XML DOM, but you have yet to discover how to collect data to form part of
an XML-based workflow. XForms is an important tool in the XML developer’s toolbox, because
XForms submits data from forms as well-formed XML documents.

Forms are an integral part of day-to-day business activity. Filling in paper forms or electronic
forms is almost inescapable for anyone who is an information worker. As XML-based workflows
become more prevalent in large enterprises and progressively trickle down into smaller busi-
nesses, the advantages of submitting XML data will become more widely appreciated.

XForms isn’t the only XML-based forms tool, and although the main focus of this chapter is
XForms, other proprietary solutions to XML-based forms are described briefly toward the end of
the chapter.

This chapter covers the following:

❑ How XForms improves on existing HTML forms technology

❑ The state of the main XForms implementations

❑ How the XForms model is created, including a discussion and examples of using the
xforms:model, xforms:instance, xforms:submission, and xforms:bind elements

❑ How the W3C XML Schema, XPath, and XML namespaces are used in XForms

❑ How to use XForms form controls

❑ Alternatives to XForms

How XForms Improves on HTML Forms
If you are going to work with XML on the server, the fact that XForms documents submit data as well-
formed XML documents is a significant advantage. Thus, if you are using an XML-based workflow, the
standard XML tools can be directly applied to the data being sent across the wire.

Another advantage is that XForms has a different way of associating form controls that are visible to the
end-user with the underlying data that is collected. In HTML forms, a single HTML element defines the
visual appearance of a form control, and accepts a value from the user. This inextricably ties together the
form’s appearance and the data collected, which becomes undesirable as the range of browser clients
becomes wider. Defining a single data structure (which is to be submitted regardless of the type of client
device) can have coding maintenance benefits. One has to be realistic about how far that principle can be
taken. It is very easy to create forms for a desktop browser that would not be feasible to display on, say,
a mobile phone because of its limited screen real estate.

XForms uses the W3C XML Schema for typing data. XForms processors can validate user-entered data
and automatically identify invalid entries, often without any need for client-side scripting or a round-
trip to the server. In addition, both client-side and server-side validation are possible using a single W3C
XML Schema document, an approach that offers distinct advantages compared to, for example, validat-
ing data on the client side using JavaScript and on the server side with, say, Python or Perl. The client-
side code and server-side code can both reference a single W3C XML Schema document, so the
developer only has to make updates to the schema in a single place, avoiding the need for coding
changes in two different languages to cope with evolving business needs.

XForms form controls incorporate labels, which increase accessibility. In addition, XForms form controls
may include tooltips to improve usability by providing suggestions to help users understand what data
is expected for each form control.

Assuming that these potential benefits are sufficient to tempt you into trying out XForms, read on to see
what tools you need to get up and running.

XForms Tools
To create and test XForms documents effectively, you need two types of tools: one to create an XForms
document, and an XForms viewer. Several XForms viewers are available, but much fewer XForms
designers. Both types of tool are listed on the W3C XForms page at
www.w3.org/MarkUp/Forms/#implementations. Note that the page is often not kept comprehen-
sively updated, so it’s prudent to follow links to check on the current status of the projects.

XForms viewers typically take one of the following forms:

❑ Native browser implementations (mainly Firefox)

❑ Browser plug-ins (typically for Internet Explorer)

804

Part VII: Display

❑ JavaScript implementations (still in progress)

❑ Client/server implementations

❑ As part of other applications

The lack of native XForms implementations in the major browsers is probably the main reason for the
relatively slow adoption of this technology by web developers. The only major browser currently work-
ing on implementing XForms is Firefox. At the time of writing, this implementation, available as the
XForms 0.7 extension, still lacks too many features to be used in real-world applications. It has made
good progress but it can’t run all the XForms examples in this chapter. Figure 20-1 shows a simple form
displayed by Firefox using this implementation.

Figure 20-1

The X-Smiles browser (downloadable www.x-smiles.org) has been developed as a showcase for XML
technologies on the Web. Supported XML formats include XForms, XSLT, XHTML, SVG, XSL-FO, and
SMIL 2.0 Basic. Figure 20-2 shows the same form in X-Smiles.

805

Chapter 20: XForms

Figure 20-2

A feature of the X-Smiles browser enables you to supply an XML instance document, which includes an
xml-stylesheet processing instruction, and the X-Smiles browser will generate the output format (for
example, a multi-namespace XHTML and XForms document) on-the-fly.

The Firefox implementation should become a native part of the browser when it is stabilized. Microsoft
is being quite reticent regarding XForms and there is no such plan for Internet Explorer. Several XForms
processors are available, as final or prototype versions, for IE. The fairly widely used formsPlayer plug-
in from x-port.net is a browser plug-in, which is described and available for download at a dedicated
URL: www.formsplayer.com/.

An XForms document must have some way of signaling to IE that elements in the XForms namespace
(http://www.w3.org/2002/xforms) are to be processed by an XForms processor. In the case of
formsPlayer, this is achieved by embedding the following code in the head of an XHTML document:

<object id=”FormsPlayer” classid=”CLSID:4D0ABA11-C5F0-4478-991A-375C4B648F58”
width=”0” height=”0”>
FormsPlayer has failed to load! Please check your installation.

</object>
<?import namespace=”xforms” implementation=”#FormsPlayer”?>

The object element enables the formsPlayer to be loaded. If loading fails, the markup content of the
object element is displayed.

806

Part VII: Display

Notice the processing instruction (see Chapter 2 for more on processing instruction). The value of the
namespace pseudo-attribute of the processing instruction must match the namespace prefix chosen in
that document for the XForms namespace. In other words, to successfully use the import processing
instruction as shown previously, you must have the following namespace declaration in scope:

xmlns:xforms=”http://www.w3.org/2002/xforms

Typically, the namespace declaration is on the document element, as shown here in the html element for
an XHTML document:

<html xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xforms=”http://www.w3.org/2002/xforms”>

Used inside the XFormation Designer mentioned in the next section, the x-port.net formsPlayer is also
used to display several of the examples in this chapter. Figure 20-3 shows a simple XForms document
displayed in IE. The default behavior is to display an fP logo beside each XForms form control.

Figure 20-3

Both native and plug-in implementations depend on getting the right software installed on your user
workstations; this is a very limiting factor for web applications. To work around this limitation, people
have started developing implementations that enable you to use XForms with today’s browsers. They
fall into three different categories:

❑ Pure JavaScript implementations try to implement XForms with client-side JavaScript. XForms
itself is a pretty complex piece of technology, and it relies on the W3C XML Schema, which is
arguably still harder to implement. Although some of these projects have made good progress,

807

Chapter 20: XForms

their current versions are still not mature enough to be used in real-world implementations.
They might represent good alternatives in the future, and if you want to try one, you can have a
look at FormFaces (www.formfaces.com/).

❑ Pure server implementations have been developed as a temporary workaround to use XForms
without needing browser support at all. They translate XForms into plain HTML forms and
keep all the logic on the server side. Their main advantage is being relatively simple to imple-
ment, but their huge drawback is that each user’s actions requires a full client/server interac-
tion, which involves reloading the full HTML page. This makes them slow and not very
responsive, so they tend to be replaced by client/server implementations.

❑ Client/server implementations can be seen as the next generation of pure server XForms imple-
mentations. XForms is translated into plain HTML forms, but user actions are trigger treatments
that are spread between the client and the server using Ajax technologies. The most advanced of
these implementations are so well integrated with Ajax that they can be seen as a unique way of
modeling Web 2.0 applications with XForms. If you want to give one a try, take a look at Orbeon
Forms (www.orbeon.com/forms/demos), which comes with a full XML web publishing frame-
work to manipulate the XML documents edited through XForms. Also try Chiba (http://
chiba.sourceforge.net/), which can be coupled with Cocoon (http://cocoon.apache
.org/) to achieve a similar effect.

Figure 20-4 shows an XForms form executed in Orbeon Forms. Note that because the form is executed in
a web framework, it can easily be integrated into a website. You can find a very handy XForms sandbox
at www.orbeon.com/ops/goto-example/xforms-sandbox, which you can use to run your XForms
documents on their implementation from any browser.

Figure 20-4

808

Part VII: Display

The last place where you can see XForms in action is within other applications. An interesting example is
Open Document Format (ODF), a standard XML vocabulary supported by OpenOffice, AbiWord, KWrite,
and a number of other open-source tools, and Microsoft, has announced an import filter for Microsoft
Office as well. ODF uses XForms to model its forms, and it includes both an XForms viewer and a user-
friendly XForms, which is shown in Figure 20-5. Although OpenOffice makes no attempt to make these
forms easy to import or export, it should be possible to do so using XSLT.

Figure 20-5

In addition to these XForms viewers, a few XForms designers are also available, such as AchieveForms
(www.businesswebsoftware.com/Solutions/AchieveForms/) and XFormation (www.xformation
.com). The goal of these tools is to provide user-friendly environments in which to edit and update
XForms documents. Figure 20-6 shows a screenshot of XFormation during the design of an XForms
document.

809

Chapter 20: XForms

Figure 20-6

An Illustrative XForms Example
To create a working XForms document, several different parts need to be present and working together
correctly. In order to focus on how XForms works, you will hand-code this example.

XForms documents are not intended to be free-standing. Instead, XForms markup is intended to be com-
bined with markup in another XML namespace (for example, the XHTML namespace or SVG names-
pace, as appropriate) to produce XHTML or SVG documents that have XForms functionality.

In all code in this chapter, the namespace prefix xforms is used when referring to
elements in the XForms namespace (see www.w3.org/2002/xforms). In full code
listings, an appropriate namespace declaration is provided. In code snippets,
XForms elements are shown with the xforms namespace prefix, assuming that the
corresponding namespace declaration is in scope for that element.

810

Part VII: Display

Try It Out Creating an XForms Document

First, let’s look at a simplified XForms document that demonstrates many of the fundamental techniques
that you use regularly in XForms. In this example, the XForms markup is embedded inside an XHTML
web page.

1. Create a file with the following XHTML and XForms code and save it as PersonData.xhtml:

<?xml version=”1.0”?>

<html
xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xforms=”http://www.w3.org/2002/xforms”
xmlns:xmml=”http://www.XMML.com/namespace” >
<head>
<title>Personal Information collection using XForms</title>
<xforms:model>
<xforms:instance >
<Person xmlns=”http://www.XMML.com/namespace” >
<FirstName></FirstName>
<LastName></LastName>
<Street></Street>
<City></City>
</Person>
</xforms:instance>
<xforms:submission id=”PersonData” action=”SavedPerson.xml” method=”put” />
</xforms:model>
</head>
<body>
<p>Enter your name and address.</p>
<p>
<xforms:input ref=”xmml:FirstName”>
<xforms:label>Enter your first name:</xforms:label>
</xforms:input>
</p>
<p>
<xforms:input ref=”xmml:LastName” >
<xforms:label>Enter your last name:</xforms:label>
</xforms:input>
</p>
<p>
<xforms:input ref=”xmml:Street” >
<xforms:label>Enter Street address here:</xforms:label>
</xforms:input>
</p>
<p>
<xforms:input ref=”xmml:City” >
<xforms:label>Enter the city here:</xforms:label>
</xforms:input>
</p>
<p>
<xforms:submit submission=”PersonData” replace=”all” >
<xforms:label>Click Here to Submit</xforms:label>
</xforms:submit>

811

Chapter 20: XForms

</p>
</body>
</html>

2. Open your browser and display the output from the file. The XHTML page produced by render-
ing this example in Firefox, X-Smiles, formsPlayer (after adding the object element and process-
ing instruction mentioned in the section that introduced formsPlayer) and Orbeon Forms
should resemble the screens in Figures 20-1, 20-2, 20-3, and 20-4, respectively. You will use this
simple example to explore the fundamental building blocks of an XForms document.

How It Works
As with any XForms document, there are many aspects to how it works, as described in this section and
the sections that follow. To begin, note the three namespace declarations in the start-tag of the html doc-
ument element:

<html
xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xforms=”http://www.w3.org/2002/xforms”
xmlns:xmml=”http://www.XMML.com/namespace” >

The first namespace declaration signifies that elements in the XHTML namespace have no namespace
prefix in this part of the document. Elements in the XForms namespace have the namespace prefix
xforms, and elements in the XML document, which are submitted by the XForms processor, use the
namespace prefix xmml, which is associated with a specified namespace Uniform Resource Identifier
(URI). (Namespace issues are discussed in more detail later in this section.)

Apart from the page title, the main part of the content of the XHTML head element relates to the XForms
model for the XForms document.

The XForms Model

Let’s take a look at the XForms code contained in the head section of the XHTML document, which spec-
ifies the XForms model. After looking at the markup used in this example, you will also consider some
other aspects of the xforms:model element:

<xforms:model >
<xforms:instance >
<Person xmlns=”http://www.XMML.com/namespace” >
<FirstName></FirstName>
<LastName></LastName>
<Street></Street>
<City></City>
</Person>
</xforms:instance>
<xforms:submission id=”PersonData” action=”SavedPerson.xml” method=”put” />
</xforms:model>

The XForms namespace is still in scope because the xforms:model element is a descendant of the
XHTML html element where the XForms namespace was declared; therefore, no further namespace dec-
laration is needed.

812

Part VII: Display

The xforms:model element has two child elements in this example: an xforms:instance element and
an xforms:submission element. The other permitted child elements of xforms:model in the XForms
namespace are xforms:bind and elements in the XForms Action module, each of which is discussed
later in this chapter.

An xforms:model element may, optionally, have a functions attribute. The value of the functions
attribute is a space-separated list of extension function names (which are QNames) needed by the
XForms model. XForms uses the rather limited function library provided by XPath 1.0. Therefore, for
example, for anything other than straightforward calculations, extension functions are likely needed,
assuming that numeric processing is to be done client-side.

QNames (for Qualified Names) are the names with optional prefixes that are used by XML namespaces
to identify elements and attributes such as xforms:model, xforms:submission, or html. Some
XML vocabularies use such names in attributes or element contents, and the XML Schema xs:QName
datatype was created to describe such values. Namespaces are described in Chapter 3, and the XML
Schema is covered in Chapter 5.

An XForms document may contain more than one xforms:model element. If, as in this initial example,
there is only one xforms:model element, then there is no requirement that the xforms:model element
have an id attribute. Any xforms:model element other than the default is identified by an id attribute.
Some developers prefer that even the default xforms:model have an id attribute, often with a conve-
nient value of default, to act as disambiguating identification. Some XForms processors or designers
may also require that the default xforms:model element have an id attribute.

The xforms:instance Element

The xforms:instance element is a child element of the xforms:model element. The
xforms:instance element is optional in any particular xforms:model element, but in cases where
there is a single XForms model, it will include an xforms:instance element, as shown here:

<xforms:instance >
<Person xmlns=”http://www.XMML.com/namespace” >
<FirstName></FirstName>
<LastName></LastName>
<Street></Street>
<City></City>
</Person>
</xforms:instance>

The preceding code shows one of the two permitted ways to define the initial structure of instance data, a
term we return to in a moment. The other option is to have a src attribute on an empty
xforms:instance element whose value is a URL from which a well-formed XML document can be
retrieved:

<xforms:instance src=”http://www.example.com/instancedata.xml” />

If retrieval of the XML document is unsuccessful, then an exception is raised.

The content of the xforms:instance element must itself be a well-formed XML document. If an XML
document is accessed using a URL in the src attribute, then well-formedness is taken care of automatically,

813

Chapter 20: XForms

assuming retrieval is successful. If element content for the xforms:instance element is provided inline,
then it is the developer’s responsibility to ensure that the xforms:instance element has a single element
child and satisfies the other well-formedness constraints.

Why the emphasis on the well-formedness of the descendant elements of xforms:instance? It is from
these elements contained in the xforms:instance element that a separate XPath data model is con-
structed, which, as you will remember, can only be created from an XML document when it is well
formed. The separate XPath data model is the instance data mentioned earlier.

It is this separate XPath data model to which XForms form controls are bound. If you change values in
form controls and do a View Source on the XHTML page, you won’t see the changes you made in the
form controls reflected there. The changes in data are reflected in the separate XPath data model — the
instance data.

The separate XPath data model for the instance data, of course, has its own root node. The Person ele-
ment shown earlier is the document element for that separate copy. Suppose you wanted to bind a form
control to the FirstName element. To access it, you could use the following XPath expression:

xmml:FirstName

If the meaning of that expression is unclear, refer to Chapter 7, “XPath.” We return to the use of names-
paces in XForms documents later in this section. Now that you know where the data from an XForms
document is stored when the form is open, how do you specify what happens when you choose to sub-
mit the data?

The xforms:submission Element

An XForms document needs some way to specify how and where data is to be submitted. The
xforms:submission element, an optional child element of the xforms:model element, specifies that
information as follows:

<xforms:submission id=”PersonData” action=”SavedPerson.xml” method=”put” />

The action attribute is required, and its value is a URI that specifies where the XForms instance data is
to be sent after serialization. The previous example used the file protocol to save the data to a file on a
hard disk. Of course, using the file protocol only works when you are running a form on a local file
with a client implementation; it wouldn’t work for a web application (including an Orbeon form) for
obvious security reasons.

The method attribute is required, and its value is the method by which data is to be submitted.
Permitted values include post, get, and put.

The xforms:submission element must have an id attribute. The id attribute is used to bind an
xforms:submit element (which you haven’t learned about yet) in the visible part of the form to a par-
ticular xforms:submission element.

Remember that XML is case sensitive. The values of the method attribute are always
expressed entirely in lowercase characters.

814

Part VII: Display

Following are several more attributes that can be used on the xforms:submission element:

❑ bind— An optional reference to an xforms:bind element

❑ cdata-section-elements— An optional attribute listing elements whose content is to be seri-
alized using CDATA sections

❑ encoding— An optional attribute specifying the encoding of the serialized XML

❑ includenamespaceprefixes— An optional attribute that can be used to exclude (despite its
name) some namespace prefixes from serialization by listing those which are to be serialized.
The default is to serialize all.

❑ indent— An optional attribute indicating whether the serializer should add whitespace to the
XML to aid readability

❑ mediatype— An optional attribute specifying the media type of the serialized XML

❑ omit-xml-declaration— An optional attribute indicating whether the XML declaration is to
be omitted from the serialized XML

❑ ref— An optional binding expression to part of the instance data. This allows submission of
only part of the instance data — the element node specified by the binding expression and all
descendant elements. The default value for the ref attribute is /, indicating that all the instance
data is to be submitted.

❑ replace— An optional attribute indicating how data returned after a submit is to be replaced

❑ standalone— An optional attribute specifying whether to include a standalone attribute in the
XML declaration of the serialized XML

❑ version— An optional attribute that specifies the version of XML to be used when serializing
the instance data prior to submission

The xforms:bind Element

The xforms:bind element is a child element of the xforms:model element but isn’t used in the exam-
ple. Using the xforms:bind element with model item properties is described later in this chapter.

XPath 1.0 in XForms

XForms form controls, such as xforms:input (described in detail later), must be associated with parts
of the content of the xforms:instance element that is nested inside an xforms:model element. For
simplicity in this initial description, it is assumed that the XForms document has a single xforms:model
element that does not need an id attribute.

Somewhere inside the body of an XHTML document, you have an xforms:input element that has a
ref attribute which might look like this:

<xforms:input ref=”xmml:FirstName”>
<!– Content here. –>
</xforms:input>

If you are familiar with at least the basics of XPath, you will recognize that the value of the ref attribute on
the xforms:input element is an XPath location path, assuming that the context node is the root element.

815

Chapter 20: XForms

Which XML document is being referred to? The XPath data model created from the content of the
xforms:instance element. Remember that the content of the xforms:instance element must be a
well-formed XML document, as shown in the following:

<xforms:instance>
<!– This content must have a single element which is a child
of the xforms:instance element. In addition it must be well-formed on all
other criteria. -->

</xforms:instance>

The XPath location path (the value of the ref attribute on the xforms:input element) looked like this:

xmml:FirstName

However, the content of the xforms:instance element showed the FirstName element:

<FirstName></FirstName>

To understand why this works, let’s quickly review the use of XML namespaces in XForms documents.

XML Namespaces in XForms Documents

All XForms documents contain multiple namespaces. Typically, at least three namespaces are found in
any one document: the XForms namespace itself, the namespace of the containing display format such
as XHTML and SVG, and, very often, the namespace of the elements that make up the content of the
xforms:instance element.

In this simple example, you had three namespace declarations on the document element, html:

<html
xmlns=”http://www.w3.org/1999/xhtml” xmlns:xforms=”http://www.w3.org/2002/xforms”
xmlns:xmml=”http://www.XMML.com/namespace” >

Throughout the document, these namespace declarations apply except when there are other namespace
declarations in descendant elements. The Person element, which is a child of the xforms:instance
element, had the following namespace declaration:

<Person xmlns=”http://www.XMML.com/namespace” >

Therefore, its child FirstName element is in the namespace http://www.XMML.com/namespace but is
written simply as the following, because the namespace declaration on the Person element is in scope:

<FirstName></FirstName>

However, on the xforms:input element, which is in the body of the XHTML document, the namespace
declaration in scope for that namespace is as follows:

xmlns:xmml=”http://www.XMML.com/namespace”

816

Part VII: Display

Here, an element in the namespace http://www.XMML.com/namespace has the namespace prefix xmml.
Therefore, to bind to a FirstName element in that namespace, you need to write the XPath expression
like this:

<xforms:input ref=”xmml:FirstName” >

That location path references the FirstName element in the instance data because both the location path
and the element node in the instance data are associated with the namespace http://www.XMML
com/namespace.

Having seen how the XForms xforms:input form control can be bound to instance data, let’s take a
closer look at the range of XForms form controls that are available in XForms 1.0.

XForms Form Controls
In principle, the XForms data model will work with a range of user interface technologies. As long as
individual form controls can be bound to appropriate parts of the instance data, the data supplied by the
end-user can be added to the instance data. In addition, as long as there is a binding from a submit form
control to the xforms:submission element in the XForms model, the XML data can be submitted to an
appropriate URL endpoint.

In practice, at the time of writing, the XForms form controls are the dominant set of form controls used
with an XForms data model, although other sets of form controls may appear in time. This section
briefly describes the XForms form controls and their characteristics.

The xforms:input Element
Specifying a textbox into which users can enter arbitrary text, the xforms:input element is bound to a
node in the instance data using one of two techniques. First, as shown in the earlier example, a ref
attribute can contain an XPath 1.0 location path, which specifies a node in the instance data. The alterna-
tive technique for binding is to use a bind attribute whose value is of type xs:IDREF and references an
xforms:bind element. When only one XForms model is present in the document, it isn’t necessary to
specify the model to which the ref attribute is pointing. However, when there is more than one XForms
model, the model attribute of the xforms:input element can be used to disambiguate the situation.

The xforms:input element, in common with many other XForms form controls, can optionally have an
appearance attribute. An XForms processor must support the values full, compact, and minimal, but
it may support other QNames, too.

The use of XML namespaces in XForms can seem quite confusing at first, but it is
important to get a handle on this, because any errors in the handling of namespaces
mean your XForms document won’t work correctly (for example, data entered in a
form control won’t be captured in the corresponding part of the instance data) and,
in all likelihood, the data will not be submitted.

817

Chapter 20: XForms

An optional navindex attribute, whose value is an integer, can be used to specify the sequence in which
form controls are navigated. Also option is the accesskey attribute, which defines a keyboard shortcut
to access a particular form control.

The incremental attribute has xs:boolean value. The default value is false. When the value of the
incremental attribute is set to true, then a change in the value contained in an xforms:input element
causes the xforms-value-changed event to fire. This in turn enables the XForms developer to create an
event handler that can provide additional functionality or information to the user, as appropriate to the
situation.

If Cascading Style Sheets (CSS) styling is being used in an XForms document, then the xforms:input
element will likely also have a class attribute.

The following elements are allowed in the content of the xforms:input element: xforms:label,
xforms:help, xforms:hint, and xforms:alert. In addition, an element from the XForms Action
Module (which is described later) is allowed.

You have already seen several examples of xforms:input:

<xforms:input ref=”xmml:FirstName”>
<xforms:label>Enter your first name:</xforms:label>
</xforms:input>

The xforms:secret Element
The xforms:secret element has the same set of attributes and permitted element content as the
xforms:input form control. The xforms:secret element is intended for use in entering passwords,
and the character values entered by a user are echoed to the screen as some nonmeaningful characters.
An example of xforms:secret would be as follows:

<xforms:secret ref=”xmml:Password”>
<xforms:label>Enter your password:</xforms:label>
</xforms:secret>

The xforms:textarea Element
The xforms:textarea element has the same set of attributes and the same permitted element content
as the xforms:input element. The xforms:textarea element allows multiline entry of character data.
An example of xforms:textarea is as follows:

<xforms:textarea ref=”xmml:Comments”>
<xforms:label>Enter comments here:</xforms:label>
</xforms:textarea>

The xforms:output Element
The xforms:output element differs in function from the XForms controls you have learned so far
because it does not directly accept user input. It can be used, for example, to display a date value (per-

818

Part VII: Display

haps the current date) to ensure that a correct date is submitted with a form. Another use is to display a
calculated value — for example, the total cost of a number of items in an online purchase.

The xforms:output element may have a ref or bind attribute, but neither is required because the
value need not be stored in the instance data. The xforms:output element has an appearance attribute
with permitted values as described previously, but it doesn’t have a navindex or accesskey attribute
because data cannot be entered into an xforms:output form control.

The xforms:output element may have a value attribute whose value is an XPath 1.0 expression. This
allows display in read-only mode of a specified part of the instance data, if the xforms:output is dis-
playing part of the instance data: While the href attribute must refer to an actual node from an instance,
the value attribute refers to the result of an XPath function or expression.

An xforms:output element may have an optional child xforms:label element, which is displayed
before the output value, but no other child element content is allowed. An example of xforms:output
is as follows:

<xforms:output model=”myToppings” value=”count(xmml:ToppingAvailable)” />

The xforms:upload Element
Often used to upload a file selected from the file system of the user’s machine to a specified URL, the
xforms:upload element uses either a ref attribute or a bind attribute to bind to an appropriate part of
the instance data. The appearance, navindex, and accesskey attributes may be used as previously
described.

The xforms:upload element may have the xforms:label, xforms:help, xforms:hint, and
xforms:alert elements as child elements, as well as an element from the XForms Action Module. In
addition, the xforms:upload element may optionally have xforms:filename and xforms:medi-
atype elements whose purpose is, respectively, to specify the filename for the uploaded file and its
media type. An example of xforms:upload is as follows:

<xforms:upload ref=”file”>
<xforms:label>Choose a file to upload:</xforms:label>
<xforms:filename ref=”@filename”/>
<xforms:mediatype ref=”@mediatype”/>

</xforms:upload>

The xforms:range Element
The XForms form control elements described so far are likely to remind you of HTML forms. The
xforms:range element has no counterpart in HTML. The purpose of the xforms:range element is to
specify, in a way visible to the user, a permitted range of values for the characteristic represented by the
form control. It might be used to specify a minimum and maximum number of a particular item to be
purchased, for example, when an item is in limited supply and a ceiling on purchases needs to be
imposed. Another use is to specify an allowed range of numeric values when responding to a survey.

The xforms:range element may have a bind or ref attribute to specify the component of the instance
data to which it is bound. It may also have appearance, navindex, and accesskey attributes.

819

Chapter 20: XForms

The allowed values displayed by the xforms:range form control are specified by its start and end
attributes. The intermediate values to be displayed are specified using the step and incremental
attributes. These attributes must use numeric or date types.

The permitted content of the xforms:range form control are the xforms:label, xforms:hint,
xforms:help, and xforms:alert elements as well as an element from the XForms Action Module. An
example of xforms:upload is as follows:

<xforms:range ref=”/config/speed” start=”0” end=”1” step=”.1”>
<xforms:label>Speed:</xforms:label>

</xforms:range>

The xforms:trigger Element
The xforms:trigger element is broadly equivalent to the button element in HTML forms. The
xforms:trigger element can be used to respond to user actions.

The xforms:trigger element may have a bind or ref attribute to specify the component of the
instance data to which it is bound, but it does not need to be bound to any component of the instance
data. It may also have appearance, navindex, and accesskey attributes.

The permitted content of the xforms:trigger form control are the xforms:label, xforms:hint,
xforms:help, and xforms:alert elements as well as an element from the XForms Action Module. An
example of xforms:trigger is as follows:

<xforms:trigger>
<xforms:label>Say hello</xforms:label>

</xforms:trigger>

The xforms:submit Element
Used to submit instance data, the xforms:submit element has a mandatory submission attribute
whose value is an IDREF to an xforms:submission element in an XForms model somewhere in the
same document. Therefore, assuming the id attribute of the corresponding xforms:submission ele-
ment has the value submitsurvey, you can write an xforms:submit element like this:

<xforms:submit submission=”submitsurvey”>
<xforms:label>Click Here to Submit the Survey</xforms:label>
</xforms:submit>

The submission process depends on the xforms-submit event being raised on the xforms:submit ele-
ment and being dispatched to the corresponding xforms:submission element.

A binding attribute, ref or bind, is not required because the xforms:submit element is not bound
directly to instance data. However, the xforms:submit element may be affected by the model item
properties (discussed later in this chapter) of a component of the instance data.

The xforms:submit element may have appearance, navindex, and accesskey attributes whose per-
mitted values have been described previously.

820

Part VII: Display

The permitted content of the xforms:submit form control are the xforms:label, xforms:hint,
xforms:help, and xforms:alert elements as well as an element from the XForms Action Module.

The xforms:select Element
The xforms:select element allows the user to make one or more selections from a set of options. The
rough equivalent in an HTML form would be checkboxes that allow multiple choices to be made. To
make a choice limited to a single option, the xforms:select1 element (described in the following sec-
tion) is used. The xforms:select attribute is bound to a node in the instance data using either a ref
attribute or a bind attribute.

The selection attribute of the xforms:select element defines whether values other than those sup-
plied are permitted. The default value of the selection attribute is closed. To allow users to add addi-
tional values to the options available, the value of the selection attribute must be open.

The permitted content of the xforms:select element includes the following elements: xforms:label,
xforms:choice, xforms:item, xforms:itemset, and an element from the XForms Action Module.
For example, to allow a selection to be made among options for pizza toppings, the xforms:select ele-
ment may be used like this:

<xforms:select ref=”xmml:Toppings” >
<xforms:label>Select the toppings for your pizza. You may select up to two
toppings.</xforms:label>
<xforms:item>
<xforms:label>Chocolate</xforms:label>
<xforms:value>Choc</xforms:value>
</xforms:item>
<xforms:item>
<xforms:label>Pepperoni</xforms:label>
<xforms:value>Pepp</xforms:value>
</xforms:item>
<xforms:item>
<xforms:label>Ham and Pineapple</xforms:label>
<xforms:value>HamnPin</xforms:value>
</xforms:item>
<xforms:item>
<xforms:label>Chilli Beef</xforms:label>
<xforms:value>Chil</xforms:value>
</xforms:item>
</xforms:select>

Because no value was expressed for the selection attribute in the previous code, users cannot add
additional options to those offered by the developer.

Be careful when specifying values for the xforms:value element. The selections
made are stored as a whitespace-separated list, so if the value for the Ham and
Pineapple choice had been Ham and Pineapple in the xforms:value element, then
this would be interpreted as a list of three options: Ham, and, and Pineapple, which
is almost certainly not what you or the user intended.

821

Chapter 20: XForms

You can control the visual appearance of an xforms:select element using the appearance attribute.
Navigation to an xforms:select element may be specified using the navindex attribute. Direct access
to an xforms:select element can be provided using the accesskey attribute.

The incremental attribute of the xforms:select element defines whether xforms-value-changed
events are raised after each value is selected. The default value of the incremental attribute is true.

As well as providing items for possible selection literally, as in the preceding code example, it is also
possible to provide values for the xforms:select element by referencing the content of an
xforms:instance element, whose content is not, typically, intended for submission. An example of this
is shown in the xforms:select1 section that follows.

The xforms:select1 Element
The xforms:select1 element is intended to allow a single choice from a range of options. In HTML,
forms would normally be created using a set of radio buttons. The xforms:select1 element is bound
to a node in the instance data using the ref or bind attribute. It has optional appearance, naviga-
tionindex, and accesskey attributes.

Like the xforms:select element, the xforms:select1 element has optional selection and incre-
mental attributes. The selection attribute specifies whether additional options, other than those pro-
vided by the form author, are allowed. The possible values are open and closed. The default value is
closed. The incremental attribute specifies whether an xforms-value-changed event is raised each
time the choice changes. The default value of the incremental attribute is true.

Try It Out Using the xforms:select and xforms:select1 Elements

Let’s take a look at how the selection elements can be used. The following example uses both the
xforms:select and xforms:select1 elements:

1. Create the following XForms document and save it as PizzaOrder.xhtml:

<?xml version=”1.0”?>

<html
xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xforms=”http://www.w3.org/2002/xforms”
xmlns:xmml=”http://www.XMML.com/namespace” >
<head>
<title>Using a schema and the <xforms:itemset> element.</title>

<xforms:model id=”default” schema=”PizzaOrder.xsd”>
<xforms:instance >

<xmml:Pizza >
<xmml:Size>L</xmml:Size>
<xmml:Toppings>Pepp</xmml:Toppings>
</xmml:Pizza>
</xforms:instance>
<xforms:submission id=”mySubmit” action=”PizzaOrder.xml” method=”put” />
</xforms:model>

<xforms:model id=”myToppings”>

822

Part VII: Display

<xforms:instance id=”myToppingsInstance”>
<xmml:ToppingsAvailable >
<xmml:ToppingAvailable type=”Choc”>
<xmml:Description>Chocolate</xmml:Description>
</xmml:ToppingAvailable>
<xmml:ToppingAvailable type=”Pepp”>
<xmml:Description>Pepperoni</xmml:Description>
</xmml:ToppingAvailable>
<xmml:ToppingAvailable type=”HamnPin”>
<xmml:Description>Ham and Pineapple</xmml:Description>
</xmml:ToppingAvailable>
<xmml:ToppingAvailable type=”Chil”>
<xmml:Description>Chilli Beef</xmml:Description>
</xmml:ToppingAvailable>
</xmml:ToppingsAvailable>
</xforms:instance>
</xforms:model>

<xforms:model id=”mySizes”>
<xforms:instance>
<xmml:SizesAvailable >
<xmml:SizeAvailable type=”S”>
<xmml:Description>Small</xmml:Description>
</xmml:SizeAvailable>
<xmml:SizeAvailable type=”M”>
<xmml:Description>Medium</xmml:Description>
</xmml:SizeAvailable>
<xmml:SizeAvailable type=”L”>
<xmml:Description>Large</xmml:Description>
</xmml:SizeAvailable>
</xmml:SizesAvailable>
</xforms:instance>
</xforms:model>

</head>
<body>
<p>Choose the size and toppings for your pizza.</p>
<p>
<xforms:select1 model=”default” ref=”xmml:Size” >
<xforms:label>Sizes offered.</xforms:label>
<xforms:itemset model=”mySizes” nodeset=”xmml:SizeAvailable” >
<xforms:label ref=”xmml:Description” />
<xforms:value ref=”@type” />
</xforms:itemset>
</xforms:select1>
</p>
<p>Choose your toppings here. You may choose up to two toppings.</p>
<p>
<xforms:select model=”default” ref=”xmml:Toppings” >
<xforms:label>There are
<xforms:output model=”myToppings” value=”count(xmml:ToppingAvailable)” />
toppings to choose from.</xforms:label>

<xforms:itemset model=”myToppings” nodeset=”xmml:ToppingAvailable” >
<xforms:label ref=”xmml:Description” />
<xforms:value ref=”@type” />

823

Chapter 20: XForms

</xforms:itemset>
</xforms:select>
</p>
<p>
<xforms:submit submission=”mySubmit”>
<xforms:label>Click Here to submit your Order.</xforms:label>
</xforms:submit>
</p>
</body>
</html>

2. Open this document in your favorite XForms processor.

How It Works.
This XForms document has three XForms models in it. The purpose of the first, the default, is to contain

the instance data intended for submission by the user:

<xforms:model id=”default” schema=”PizzaOrder.xsd”>
<xforms:instance >
<xmml:Pizza >
<xmml:Size>L</xmml:Size>
<xmml:Toppings>Pepp</xmml:Toppings>
</xmml:Pizza>
</xforms:instance>
<xforms:submission id=”mySubmit” action=”PizzaOrder.xml” method=”put” />
</xforms:model>

The document to be submitted is straightforward, having an xmml:Pizza element as its document ele-
ment, and two child elements, xmml:Size and xmml:Toppings.

The xforms:submission element specifies that you will use the put method to save the instance data
to an XML file at the relative URL PizzaOrder.xml. This is similar to what you’ve already seen but
there are some differences:

❑ The schema PizzaOrder.xsd is attached to the model using a schema attribute. When speci-
fied, this W3C XML Schema document defines the permitted structure of the XML content of
the xforms:instance element. When specified in the schema document, datatypes provide a
hint to the XForms processor about how a particular component of the instance should be ren-
dered. For example, the occurrence of an xs:date datatype typically results in a date form con-
trol being used. These datatypes are also used to validate the data entered by the user, and any
submission is forbidden if the instance isn’t valid per the schema.

❑ Instead of redefining the default namespace as shown in the previous example, a prefix is used
to identify the namespace used by the instance. This prefix (xmml) is defined once in the root
html element and can be used anywhere in the document.

❑ While the element values were empty in the first example, values are provided in this example:
xmml:Size is set to L so that customers order a large pizza by default and xmml:Toppings is
set to Pepp. Of course, users can select other values, but those are used as default values.

824

Part VII: Display

The next XForms model is shown in the following:

<xforms:model id=”myToppings”>
<xforms:instance id=”myToppingsInstance”>
<xmml:ToppingsAvailable >
<xmml:ToppingAvailable type=”Choc”>
<xmml:Description>Chocolate</xmml:Description>
</xmml:ToppingAvailable>
<xmml:ToppingAvailable type=”Pepp”>
<xmml:Description>Pepperoni</xmml:Description>
</xmml:ToppingAvailable>
<xmml:ToppingAvailable type=”HamnPin”>
<xmml:Description>Ham and Pineapple</xmml:Description>
</xmml:ToppingAvailable>
<xmml:ToppingAvailable type=”Chil”>
<xmml:Description>Chilli Beef</xmml:Description>
</xmml:ToppingAvailable>
</xmml:ToppingsAvailable>
</xforms:instance>
</xforms:model>

This model must have an id attribute because it is not the default XForms model. Later you will see how
the value of that id attribute is used to retrieve the data contained inside it.

The xforms:instance element has as its content a well-formed XML document that provides basic
information about a range of pizza toppings, which may or may not be to your taste. Here you have
specified content literally. In a working environment it might be more appropriate to reference a sepa-
rate XML file, using a src attribute on the xforms:instance element. By using that technique, avail-
able toppings for a range of XForms forms could then be modified when necessary in one place. Still
more powerful, this src attribute can reference a RESTful web service, such as you’ve seen in Chapter
14, or even a query to an XML database using a REST interface as shown in Chapter 10. This could allow,
for example, displaying only the toppings that the restaurant has in stock. The data in this XForms data
model will be used to populate an xforms:select element.

The third XForms data model in the document (shown in the following code) is used to provide infor-
mation about the range of pizza sizes available:

<xforms:model id=”mySizes”>
<xforms:instance>
<xmml:SizesAvailable >
<xmml:SizeAvailable type=”S”>
<xmml:Description>Small</xmml:Description>
</xmml:SizeAvailable>
<xmml:SizeAvailable type=”M”>
<xmml:Description>Medium</xmml:Description>
</xmml:SizeAvailable>
<xmml:SizeAvailable type=”L”>
<xmml:Description>Large</xmml:Description>
</xmml:SizeAvailable>
</xmml:SizesAvailable>
</xforms:instance>
</xforms:model>

825

Chapter 20: XForms

The instance data in the XPath model produced from the content of the xforms:instance element will
be used to populate an xforms:select1 element. Here is the xforms:select1 element populated
from the mySizes XForms model:

<xforms:select1 model=”default” ref=”xmml:Size” >
<xforms:label>Sizes offered.</xforms:label>
<xforms:itemset model=”mySizes” nodeset=”xmml:SizeAvailable” >
<xforms:label ref=”xmml:Description” />
<xforms:value ref=”@type” />
</xforms:itemset>
</xforms:select1>

Notice on the xforms:select1 element that there is a model attribute, and its value is default, not
mySizes, as you might have expected. The value of the model attribute refers to the XForms model in
which the data is updated. That instance data is derived from the default XForms model. The value of
the ref attribute references the node in the instance data to which the value of the xforms:select1 ele-
ment is bound.

The content of the xforms:label element simply provides a label for the xforms:select1 element, as
shown in Figure 20-7.

Figure 20-7

The other content of the xforms:select1 element is an xforms:itemset element:

<xforms:itemset model=”mySizes” nodeset=”xmml:SizeAvailable” >
<xforms:label ref=”xmml:Description” />

826

Part VII: Display

<xforms:value ref=”@type” />
</xforms:itemset>

Notice that the model attribute of the xforms:itemset element references the mySizes XForms model.
It is in that context that the value of the nodeset attribute is interpreted. The location path
xmml:SizeAvailable in the nodeset attribute selects the three xmml:SizeAvailable elements in that
XForms model.

The label to be displayed in the xforms:select1 form control is defined using another XPath location
path in the value of the ref attribute of the xforms:label element. Here, xmml:Description is used
as the label. Finally, the value associated with the label is defined using a third XPath expression. In the
example, that value is the @type attribute, which appears in the instance that is updated when the corre-
sponding choice is selected, which in this case is the default instance.

The toppings for the chosen size of pizza are specified using the xforms:select element, and its con-
tent is shown here:

<xforms:select model=”default” ref=”xmml:Toppings” >
<xforms:label>There are
<xforms:output model=”myToppings” value=”count(xmml:ToppingAvailable)” />
toppings to choose from.</xforms:label>

<xforms:itemset model=”myToppings” nodeset=”xmml:ToppingAvailable” >
<xforms:label ref=”xmml:Description” />
<xforms:value ref=”@type” />
</xforms:itemset>
</xforms:select>

Notice that on the xforms:select element the value of the model attribute is a reference to the
default XForms model because it is that XForms model which specifies the instance data. The value of
the ref attribute references the xmml:Toppings node.

Also notice how an XForms:output control is used in the xforms:label to display the number of
xmml:ToppingAvailable elements, which determines the number of possible options. In this example,
the available toppings are embedded in the model and the number of options could have been hard-
coded, but remember that this XML instance could be the result of a call to a RESTful web service, in
which case the number of options couldn’t have been hard-coded.

The xforms:itemset element is used similarly to the provision of the sizes of pizza shown earlier. The
value of the model attribute references the myToppings XForms model, so the location path specified in
the value of the nodeset attribute is interpreted in that context.

The xforms:label and xforms:value elements are used, respectively, to specify the options to be dis-
played and the value to be submitted. Clicking the xforms:submit form control, because it is bound to
the mySubmit xforms:submission element, causes the instance data, after serialization, to be saved to
the file PizzaOrder.xml. The saved document from one use of the form is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<xmml:Pizza xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xforms=”http://www.w3.org/2002/xforms”
xmlns:xmml=”http://www.XMML.com/namespace”>
<xmml:Size>S</xmml:Size>
<xmml:Toppings>Choc Chil</xmml:Toppings>

</xmml:Pizza>

827

Chapter 20: XForms

Note how the value of the xmml:Toppings element is a whitespace-separated list of tokens. The two
tokens specified here are Choc, which is the value attached to “Chocolate,” and Chil, for “Chili Beef.”
Whether ordering a chili beef and chocolate pizza is a good idea is left to you to decide, but if you want
to exclude such unexpected pairings, then you can do that by adding the following xforms:bind ele-
ment to the default model:

<xforms:bind nodeset=”xmml:Toppings”
constraint=”not(contains(., ‘Choc’) and contains(., ‘Chil’))”/>

The constraint attribute enables you to define any constraint as an XPath expression and provides a
very flexible way to define validation tests. This xforms:bind is one of the ways to define constraints
on instance data. Now let’s look deeper into how these constraints can be specified.

Constraining XForms Instances
XForms instances can be constrained using so called XForms model item properties that enable you to do
things such as make a form control read-only or specify that its value is a calculated value. At the heart
of how XForms model item properties work is the xforms: bind element.

The xforms:bind Element
The xforms:bind element is a child element of the xforms:model element. Depending on how many
form controls you want to specify model item properties for, there can be multiple xforms:bind ele-
ments in any xforms:model element’s content.

The nodeset attribute of the xforms:bind element specifies a node-set in the instance data for which
an XForms model item property is to be specified.

A model item property is specified using an attribute, identically named to the property, on an
xforms:bind element. For example, to specify that a Name is required, you would write something like
the following (depending on the path to the node of interest in the instance data):

<xforms:bind required=”true()” nodeset=”/somePath/Name” />

More than one property can be specified on a single xforms:bind element.

The XForms model items properties are as follows:

❑ calculate—Specifies a calculation to be performed to provide a value for the component of the
instance data

❑ constraint—Specifies a constraint on the value of the component of the data source, as shown
for selecting pizza toppings

❑ p3ptype—Specifies a Platform for Privacy Preferences element to be associated with the compo-
nent of the instance data

❑ readonly— Specifies whether a component of the instance data is read-only. Allowed values for
the corresponding readonly attribute are true and false(the default).

828

Part VII: Display

❑ relevant— Specifies whether a component of the instance data is relevant in particular circum-
stances. For example, if an employee’s gender is male, then maternity leave is unlikely to be rel-
evant.

❑ required— Signifies whether a value is required for the bound component of the instance data

❑ type—Allows a W3C XML Schema datatype to be specified for a component of the instance
data, in the absence of a W3C XML Schema document.

Try It Out Using Model Item Properties

This example uses several of the model item properties just covered. Here, you create a form that a com-
pany’s human resources department might use to track maternity leave for its employees:

1. Type this XForms sample into a document named ModelItemPropertiesExample.xhtml:

<?xml version=”1.0”?>
<html
xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xforms=”http://www.w3.org/2002/xforms”
xmlns:xmml=”http://www.XMML.com/namespace”
xmlns:xs=”http://www.w3.org/2001/XMLSchema” >
<head>
<title>Example using Model Item Properties.</title>

<xforms:model id=”default”>
<xforms:instance >
<xmml:Employee >
<xmml:Identity>
<xmml:FirstName></xmml:FirstName>
<xmml:LastName></xmml:LastName>
<xmml:Gender></xmml:Gender>
</xmml:Identity>
<xmml:Employment>
<xmml:StartDate></xmml:StartDate>
<xmml:EndDate></xmml:EndDate>
<xmml:MaternityLeave></xmml:MaternityLeave>
</xmml:Employment>
<xmml:Comments></xmml:Comments>
</xmml:Employee>
</xforms:instance>
<xforms:submission id=”mySubmit” action=”EmployeeData.xml” method=”put” />
<xforms:bind nodeset=”xmml:Identity/xmml:FirstName” required=”true()” />
<xforms:bind nodeset=”xmml:Identity/xmml:LastName” required=”true()” />
<xforms:bind nodeset=”xmml:Employment/xmml:StartDate” required=”true()”

type=”xs:date” />
<xforms:bind nodeset=”xmml:Employment/xmml:EndDate” type=”xs:date”

required=”false()”
constraint=”. = ‘’ or . >= ../xmml:StartDate”/>

<xforms:bind nodeset=”xmml:Employment/xmml:MaternityLeave”
relevant=”/xmml:Employee/xmml:Identity/xmml:Gender = ‘Female’” />

</xforms:model>

<xforms:model id=”myEmployeeInfo”>

829

Chapter 20: XForms

<xforms:instance>
<xmml:EmployeeChoices>
<xmml:GenderChoices >
<xmml:GenderChoice>Male</xmml:GenderChoice>
<xmml:GenderChoice>Female</xmml:GenderChoice>
</xmml:GenderChoices>
<xmml:MaternityChoices >
<xmml:MaternityChoice>Yes</xmml:MaternityChoice>
<xmml:MaternityChoice>No</xmml:MaternityChoice>
</xmml:MaternityChoices>
</xmml:EmployeeChoices>
</xforms:instance>
</xforms:model>

</head>
<body>
<p>Enter employee information here.</p>
<p>
<xforms:input model=”default” ref=”xmml:Identity/xmml:FirstName” >
<xforms:label>First Name:</xforms:label>

</xforms:input>
</p>
<p>
<xforms:input model=”default” ref=”xmml:Identity/xmml:LastName” >
<xforms:label>Last Name: </xforms:label>
</xforms:input>
</p>
<p>
<xforms:select1 model=”default” ref=”xmml:Identity/xmml:Gender” >
<xforms:label>Enter the employee’s gender: </xforms:label>
<xforms:itemset model=”myEmployeeInfo”

nodeset=”xmml:GenderChoices/xmml:GenderChoice” >
<xforms:label ref=”.” />
<xforms:value ref=”.” />
</xforms:itemset>
</xforms:select1>
</p>
<p>Enter start and end dates of employment.</p>
<p>
<xforms:input ref=”xmml:Employment/xmml:StartDate”>
<xforms:label>Start Date:</xforms:label>
</xforms:input>
</p>
<p>
<xforms:input ref=”xmml:Employment/xmml:EndDate”>
<xforms:label>End Date: </xforms:label>
</xforms:input>
</p>
<p>
<xforms:select1 model=”default” ref=”xmml:Employment/xmml:MaternityLeave”>
<xforms:label>Has the employee had maternity leave?</xforms:label>
<xforms:itemset model=”myEmployeeInfo”

nodeset=”xmml:MaternityChoices/xmml:MaternityChoice” >
<xforms:label ref=”.” />
<xforms:value ref=”.” />

830

Part VII: Display

</xforms:itemset>
</xforms:select1>
</p>
<p>
<xforms:textarea ref=”xmml:Comments”>
<xforms:label>Enter comments here:</xforms:label>
</xforms:textarea>
</p>
<p>
<xforms:submit submission=”mySubmit”>
<xforms:label>Click Here to submit your changes.</xforms:label>
</xforms:submit>
</p>
</body>
</html>

2. Open the form in an XForms implementation. You should see something similar to Figure 20-8.

Figure 20-8

831

Chapter 20: XForms

How It Works
In the default XForms model, the content of the xforms:instance element lists some basic data about
an employee:

<xforms:instance >
<xmml:Employee >
<xmml:Identity>
<xmml:FirstName></xmml:FirstName>
<xmml:LastName></xmml:LastName>
<xmml:Gender></xmml:Gender>
</xmml:Identity>
<xmml:Employment>
<xmml:StartDate></xmml:StartDate>
<xmml:EndDate></xmml:EndDate>
<xmml:MaternityLeave></xmml:MaternityLeave>
</xmml:Employment>
<xmml:Comments></xmml:Comments>
</xmml:Employee>
</xforms:instance>

This provides more information than the previous examples, and the values have been grouped into
sub-elements. This also provides an opportunity to see more complex XPath expressions. The remainder
of that default XForms model is an xforms:submission element specifying where the serialized
instance data is to be saved:

<xforms:submission id=”mySubmit” action=”EmployeeData.xml” method=”put” />

The most interesting part of the XForms model are the several xforms:bind elements shown here:

<xforms:bind nodeset=”xmml:Identity/xmml:FirstName” required=”true()” />
<xforms:bind nodeset=”xmml:Identity/xmml:LastName” required=”true()” />
<xforms:bind nodeset=”xmml:Employment/xmml:StartDate” required=”true()”

type=”xs:date” />
<xforms:bind nodeset=”xmml:Employment/xmml:EndDate” type=”xs:date”

required=”false()”
constraint=”. = ‘’ or . >= ../xmml:StartDate”/>

<xforms:bind nodeset=”xmml:Employment/xmml:MaternityLeave”
relevant=”/xmml:Employee/xmml:Identity/xmml:Gender = ‘Female’” />

The first two xforms:bind elements use the required model item property simply to specify that both a
first name and a last name are required for the employee.

The xforms:bind element, which relates to the start date, specifies that a value is required for start date
and that the datatype is an xs:date value. As you can see, this also causes a date form control to be dis-
played for the start date.

Because some employees will still be employed and therefore won’t have an end date, the required
attribute on the xforms:bind element that binds to the end date is set to false(). Remember that to
specify a Boolean value in XPath you must use the true() or false() functions, as true or false in a
location path are interpreted as element type names. In addition, because an end date shouldn’t be
before the start date, this control has been added in a constraint attribute. The XPath expression that you
see there just verifies that the end date is either empty or greater than or equal to the start date.

832

Part VII: Display

If an employee is male, then he isn’t eligible for maternity leave. Therefore, if you set the value of gender
to Male, you cannot set a value for maternity leave. The remainder of the form markup uses code tech-
niques already shown, so it isn’t explained further here.

The submitted data, EmployeeData.xml, is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
<xmml:Employee xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xforms=”http://www.w3.org/2002/xforms”
xmlns:xmml=”http://www.XMML.com/namespace”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xmml:Identity>
<xmml:FirstName>Jane</xmml:FirstName>
<xmml:LastName>Smith</xmml:LastName>
<xmml:Gender>Female</xmml:Gender>

</xmml:Identity>
<xmml:Employment>
<xmml:StartDate>2006-08-10</xmml:StartDate>
<xmml:EndDate>2006-11-10</xmml:EndDate>
<xmml:MaternityLeave>No</xmml:MaternityLeave>

</xmml:Employment>
<xmml:Comments>Jane stayed with the company for only 3 months.</xmml:Comments>

</xmml:Employee>

Support of these features isn’t flawless in current versions of XForms implementations, and you might
have to remove some of these controls depending on the implementations you are using. For instance,
with Firefox XForms 0.7, you need to remove the constraint attribute to get your form working.

W3C XML Schema in XForms
The data submitted from an XForms document is well-formed XML. An XForms processor has a W3C
XML Schema processor built in so the option is available to validate data that a user enters against a
specified schema.

Here is the schema document PizzaOrder.xsd, which defines the permitted structure of the content of
the xforms:instance element of the pizza order example:

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://www.XMML.com/namespace”
targetNamespace=”http://www.XMML.com/namespace”
elementFormDefault=”qualified”>

<xs:element name=”Pizza”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Size” type=”xs:token”/>
<xs:element name=”Toppings”>
<xs:simpleType>
<xs:restriction>
<xs:simpleType>
<xs:list itemType=”xs:NMTOKEN”/>

</xs:simpleType>

833

Chapter 20: XForms

<xs:minLength value=”1”/>
<xs:maxLength value=”2”/>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

This schema defines a “Pizza” root element with two sub-elements. The Size element is declared as
xs:token, meaning it can hold any value. The Toppings element is defined as a list of xs:NMTOKEN
with a length between 1 and 2. The unit used to determine the length of W3C XML Schema list types is
the number of tokens, so this confirms that the number of selected toppings is between 1 and 2. This
means that this simple schema adds a constraint over the definitions defined in the form.

Schema or Bind Elements: Which One to Choose?
You’ve seen two different mechanisms to define constraints over instance documents:

❑ The xforms:bind element, with its set of attributes, which enables you to constrain sets of
elements

❑ The schema attribute, which attaches a schema to an instance for validation purposes

These mechanisms are complementary: the xforms:bind element enables you to define constraints that
can’t be expressed with W3C XML Schema, such as when you’ve tested that an end date is greater than
or equal to a start date. Its required attribute is also a simpler alternative to the equivalent expression
with W3C XML Schema: To express that a date is optional with W3C XML Schema, you have to define a
union type between xs:date and an empty xs:token. On the other hand, W3C XML Schema gives you
a powerful means to validate an instance document as a whole.

There is still a fair amount of overlap between these mechanisms, and when you need to choose between
one or the other, keep in mind that the xforms:bind element is usually more lightweight and often pro-
vides more user-friendly error messages, whereas a schema gives you the ability to validate the instance
as a whole and can be reused out of the scope of your form.

XForms Events
XForms has a large number of events, which are described in more detail in the XForms specification at
www.w3.org/TR/xforms/index-all.html#rpm-events.

XForms events are categorized into the following four groups:

❑ Initialization events — Fired when an XForms processor is starting up and loading an XForms
document

❑ Interaction events — Fired in response to user actions

834

Part VII: Display

❑ Notification events — Indicate that something has happened in the form

❑ Error events — Indicate that something has gone wrong during form processing

Creating event handlers for XForms events enables you to add custom functionality to XForms docu-
ments that you create.

The XForms Action Module
The XForms Action Module specifies XForms elements that function as declarative event handlers. The
events supported by XForms include the following:

❑ Initialization events that signal when the model is ready or destructed

❑ Interaction events triggered either by the user or by the XForms actions defined in XForms ele-
ments

❑ Notification events signaling that something has changed, either in an instance document or as
a result of a user action

❑ Errors

XForms does not define any mechanism for scripted handling of events, leaving that to host languages,
such as XHTML and SVG. On the other hand, this Action Module is so powerful and flexible that the
need for scripting is almost eliminated.

It was mentioned earlier that an element from this module could be included in the content of several
XForms form controls, so if you were to mimic the reset functionality available in HTML forms by using
the xforms:trigger element, then you would use code like the following, assuming that the names-
pace for XML events was declared to be associated with the namespace prefix ev:

<xforms:trigger>
<xforms:label>Reset the instance data.</xforms:label>
<xforms:reset ev:event=”DOMActivate” model=”default” />
</xforms:trigger>

Describing the details of this module is beyond the scope of this introduction to XForms, and this section
provides only a short description of its elements, which are described in more depth in the XForms rec-
ommendation (www.w3.org/TR/xforms/):

❑ xforms:action is used to group other elements from the XForms Action Module.

❑ xforms:dispatch dispatches an event.

❑ xforms:load causes an external resource to be loaded either to replace an existing instance or
to serve as a new one.

❑ xforms:message specifies a message to be displayed to the user.

❑ xforms:rebuild rebuilds the internal data structures.

❑ xforms:recalculate forces a new evaluation of all the calculated fields.

❑ xforms:refresh refreshes the representation of the form.

835

Chapter 20: XForms

❑ xforms:reset causes the xforms-reset event to be dispatched to a specified XForms model.

❑ xforms:revalidate forces a validation of an instance.

❑ xforms:send initiates the submission of instance data.

❑ xforms:setfocus sets the focus on an XForms control.

❑ xforms:setvalue sets the value of a specified node in the instance data.

All these action elements make extensive use of XPath to access nodes and calculate values, and they
provide a very effective alternative to the scripting that is powering Ajax applications.

Developing and Debugging XForms
If you are new to both XForms and XML, creating even simple XForms documents can be difficult to get
right at first, as there is such a large number of things that you can get wrong. It is recommended that
you start with very simple forms until you are familiar with creating working XForms documents,
assuming you are hand-coding. Be sure that you have mastered basic but essential techniques such as
understanding XML namespaces, and be sure that you understand the section describing what instance
data is and how XPath location paths are used to reference nodes inside the instance data.

You will save yourself a lot of grief by using an XML-aware editor to code. Examples of standalone XML
editors include XMLwriter (www.xmlwriter.net), XMLSpy (www.xmlspy.com), and oXygen
(www.oxygenxml.com), as well as the XML editors available with XFormation. An XML-aware editor
will catch the simple well-formedness errors that can be very tough to spot by eye once a form moves
beyond the trivial.

If form controls aren’t working correctly (for example, an xforms:input element loses the value you
entered when you tab away from the form control), it is likely that the binding to the instance data is
faulty. That failure to bind can be due, for example, to omitting a ref attribute, to omitting a leading /
character in the value of a ref attribute, or getting namespace declarations wrong. Another possible
cause when you have multiple XForms models is not specifying a model attribute that has an xs:IDREF
to the correct XForms model.

Alternatives to XForms
Many commercial software companies are developing tools in the XML forms arena, in response to the
increased used of XML in enterprise applications. This section briefly introduces two tools in this space
where XForms technology is not used.

Microsoft InfoPath
Microsoft InfoPath is a tool intended to be used to submit and retrieve XML from relational databases,
such as Microsoft Access and SQL Server, to XML web services and Microsoft application servers, such
as Microsoft Office SharePoint Server and BizTalk Server.

Microsoft InfoPath has a very nice visual designer, which enables users who are not familiar with XML
to create InfoPath forms, which submit well-formed XML. For more advanced work, familiarity with
XSLT, JScript, VBScript, or a .NET language is needed.

836

Part VII: Display

Figure 20-9 shows the InfoPath designer with a simple sample form open and the Controls task pane
visible.

Figure 20-9

Further information about InfoPath is located at http://office.microsoft.com/en-us/infopath/
HA101656341033.aspx.

Adobe LiveCycle
The Adobe LiveCycle product family uses Adobe Acrobat Reader to view and fill forms designed with
Adobe LiveCycle Designer, server-side-powered by Adobe LiveCycle Designer, and managed by Adobe
LiveCycle Designer. Like InfoPath, Adobe LiveCycle uses a proprietary file format that bundles several
files necessary for the functioning of the Acrobat form. It resembles InfoPath in that respect because
InfoPath uses a cabinet file with an .xsn extension to hold its XML files. Also like InfoPath, despite this
use of a proprietary format for the forms themselves, Adobe LiveCycle can be used to edit XML docu-
ments that conform to arbitrary W3C XML Schema documents.

Like many other Adobe design tools, Adobe LiveCycle Designer is a very polished tool in many
respects. You can find more information about this product family at www.adobe.com/products/
livecycle/.

837

Chapter 20: XForms

HTML Forms
You may be surprised to see HTML forms mentioned as an XForms alternative, but they deserve to be
mentioned here for good reasons. First, you have to admit that plain old HTML forms are not dead.
Despite its many powerful features, it is fair to say that XForms adoption has been much slower than
most of us wished and expected, and today the main XForms competitor in term of market share on the
Web is neither Microsoft InfoPath nor Adobe LiveCycle but HTML forms. Not only do they belong to
Web 1.0, but together with JavaScript and XML, HTML forms are one of the most fundamental compo-
nents of Web 2.0 applications.

Whether developing HTML and JavaScript by hand is a better alternative than designing user interac-
tion with XForms and using a client/server implementation such as Orbeon Forms is yet to be seen, but
the reality is that this is still the most common approach. Not only are HTML forms not dead, they are
evolving, and the WHATWG informal consortium (introduced in Chapter 18) is working on Web Forms
2.0, which you can find at http://whatwg.org/specs/web-forms/current-work/. Web Forms 2.0 is
meant to be an evolution of HTML forms, and should be more backwardly compatible and easier to
implement in Web browsers than XForms.

Time will tell whether XForms will ever replace HTML forms, but note the main difference between
them. You have on one side XForms, a technology in which everything is described declaratively — in
XForms you define what you want to achieve; and on the other side, you have HTML forms, which
heavily rely on scripting and for which you need to deal with low-level details and define how every
behavior needs to be implemented.

Switching to declarative methodologies may require a fair amount of adaptation, but it relieves you from
all the low-level scripting development, meaning productivity should be much higher.

Summary
In this chapter you were introduced to XForms. After discussing the XForms model, you learned how to
create instance data and how to configure submission of a form. Then, you looked at XForms form con-
trols, and finished up with XForms model item properties.

Exercise Questions
Suggested solutions to these questions can be found in Appendix A.

Question 1
Experiment with the code examples given in the chapter by changing the value of the appearance attribute
on the xforms:select and xforms:select1 elements. This, particularly, when viewed in more than one
XForms viewer will give you an idea of the range of visual appearances available to an XForms developer.

Question 2
Describe the differences in purpose of the xforms:submit and xforms:submission elements.

838

Part VII: Display

Part VIII

Case Study

Chapter 21: Case Study: Payment Calculator

21
Case Study:

Payment Calculator

Throughout this book, you have learned how XML can be used to construct and validate docu-
ments and for communications between systems, and you now know how to use several impor-
tant XML display formats. Sometimes it can be difficult seeing how all of these fit together without
a real-world business case. This case study demonstrates how you can build an online home loan
calculator using a public web service, a .NET web application, JavaScript, and several of the XML
technologies described in this book.

Specifically, this chapter describes how to do the following:

❑ Create a web page to enter loan information

❑ Call a web service to calculate the payments using SOAP

❑ Display the results using Ajax (Asynchronous JavaScript and XML) and SVG

Mortgage Calculations
Mortgages are commonly used throughout the world when purchasing a home or land. The word
mortgage comes from French and literally means “death pledge.” Before making such a pledge,
consumers often want to see the proposed payments for the loan. These payments generally
include interest and a principal reduction component, depending on various laws or religious
guidelines.

In the most common mortgages, the schedule of payments (based on a repayment agreement, or
note) must be determined before the annual percentage rate (APR) can be calculated. The amount
of interest and principal paid in each payment is based on the loan terms selected and generally
changes over the course of the loan. Depending on the kind of loan and the country from which it
originates, these calculations can become extremely complex. In the United States, the complexity
of the calculations is only the first hurdle. The calculations must adhere to a strict and evolving set
of laws that can vary by the combination of jurisdictions in effect.

This case study uses a mortgage calculation web service from Compliance Studio (http://compli-
ancestudio.com). The Compliance Studio engine is used by mortgage industry companies in the
United States to handle complex lending compliance checks and simple mortgage estimates. Luckily,
Compliance Studio offers a number of its programs free, which enables you to build a professional-
grade application quickly. Because Compliance Studio is a U.S.-based company, the calculations may not
be applicable for loans in other countries. Regardless, the examples in this case study can be applied to
any number of alternative calculation engines.

What You’ll Need
Before you get started, make sure you have everything you need. You will use Microsoft’s Visual Studio
.NET 2005 to create a local web service proxy. You will also be running an application on the built-in
Windows web server Internet Information Server (IIS). An alternate version of this case study is avail-
able for download from the book’s website at www.wrox.com. The alternate version uses Ruby on Rails
instead of .NET, and the built-in Ruby on Rails web server instead of IIS.

For the examples in this chapter, you need the following:

❑ Microsoft Visual Studio .NET 2005 (or Microsoft Visual Web Designer)

❑ An SVG-enabled browser or an SVG plug-in for Internet Explorer

Microsoft’s Visual Studio can be downloaded or purchased on its website. A free version of Visual Web
Developer 2005 (Express Edition) is also available at
http://msdn.microsoft.com/vstudio/express/vwd/. In general, these tools are very powerful,
but they can take a considerable amount of time to download. Therefore, prepare well in advance. The
examples in this book use the 2005 versions of these tools, but nothing in the examples requires .NET 2.0,
so you can use earlier versions of Visual Studio or you can an alternate tool to create the proxy web ser-
vice. Some of the samples in this chapter are long, so you can download all of the code for the examples
on this book’s website instead of typing them in yourself.

In addition to the web service, you can use Visual Studio or Visual Web Developer to design all of your
web pages, stylesheets, and SVG documents. Of course, you will be looking at the code for each of these
files instead of using the built-in designers, so you may also decide to use another text or XML editor to
implement these samples.

A complete list of SVG-enabled browsers can be found in Chapter 19. If you plan to use Internet
Explorer to test and debug your website, you currently need an SVG plug-in. The most popular plug-in
is Adobe’s SVG Viewer, available for download at www.adobe.com/svg.

Online Loan Calculator
As in the development of any web application, the easiest place to begin is the main web page. This page
serves as the entry point into your complex server interactions. It needs to enable users to input various
mortgage details, request a calculation, and see the resulting payment schedule. For starters, this page
will be simple, containing some basic text, an entry form, and the payment schedule. You won’t spend a
lot of time on the design of the page, but you will make basic styling decisions using CSS.

842

Part VIII: Case Study

In these examples, you host the page on your local web server. If you would like to use a public web
server instead, replace the references to http://localhost/ with your own domain.

Try It Out Building the Loan Calculator Web Page

Begin by building the basic XHTML web page. In the next Try It Out, you will style this page using CSS
and add a JavaScript library for the SOAP-based AJAX calls.

1. Create the header of the HTML page. Open your text editor and copy the following. When you
are finished, save the file as loancalculator1.html. If you are using Windows, you can save
this file in the C:\Inetpub\wwwroot\ folder.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Loan Calculator</title>
<meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

</head>
<body>

The web page begins with a DOCTYPE declaration pointing to the transitional version of XHTML
1.0. Remember that this tells the web browser what specific version and flavor of XHTML
you’re using. Notice that you haven’t included an <?xml version=”1.0”?> declaration at the
start of the page. Some web browsers will render the page in quirks mode if this included.
Quirks mode is a rendering mode that doesn’t always adhere to publishing web standards. This
means can’t be sure that your page will be rendered correctly in the user’s browser. To avoid
that, it is best to omit the declaration.

The namespace declaration http://www.w3.org/1999/xhtml is also included in the root ele-
ment. This default namespace declaration indicates that all of the elements in this document
belong to the XHTML namespace.

The <head> element also contains a <title> element. The <title> element is required for the
web page to be valid. Also included is a <meta> element. This element isn’t required; in fact, it
is using a nonstandard media type as well. Regardless, this helps avoid other problems you
might face when using different browsers.

2. The main content of the loan calculator web page is fairly simple. It begins with some basic
header text:

<div id=”container”>
<div id=”header”>
<div id=”title”>
<h1>Loan Calculator</h1>

</div>
</div>

Notice that there are quite a few extra <div> elements, and inside the <h1> is an extra
element. All of this is unnecessary for the basic page rendering and validation, but it provides
many more options when applying a Cascading Style Sheet to the page. If you are working with
a professional designer for your website, he or she will appreciate the increased flexibility.

843

Chapter 21: Case Study: Payment Calculator

3. The most important part of this web page is the entry form, where users can input information
about the loan:

<div id=”info”>
<h3>Tell us about the loan you would like</h3>
<form id=”loan” action=”#”>
<div id=”program_group”>
<label for=”ProgramName”>Choose the loan program</label>
<select id=”ProgramName”>
<option selected=”selected” value=”Fixed”>Fixed</option>
<option value=”Hybrid”>Fixed Hybrid</option>
<option value=”InterestOnlyOption”>Interest Only Option</option>

</select>
</div>
<div id=”amounts_group”>
<label for=”OriginalLoanAmount”>Loan Amount</label>
<input type=”text” value=”250000” id=”OriginalLoanAmount” />
<label for=”DisclosedTotalSalesPriceAmount”>Sales Price</label>
<input type=”text” value=”0” id=”DisclosedTotalSalesPriceAmount” />
<label for=”PropertyAppraisedValueAmount”>Appraised Value</label>
<input type=”text” value=”300000” id=”PropertyAppraisedValueAmount” />

</div>
<div id=”terms_fees_group”>
<label for=”LoanOriginalMaturityTermMonths”>Term</label>
<input type=”text” value=”360” id=”LoanOriginalMaturityTermMonths” />
<label for=”TotalAPRFeesAmount”>Total Fees</label>
<input type=”text” value=”3988” id=”TotalAPRFeesAmount” />

</div>
<div id=”rate_group”>
<label for=”NoteRatePercent”>Note Rate</label>
<input type=”text” value=”0.08” id=”NoteRatePercent” />
<label for=”IndexValue”>Index Value</label>
<input type=”text” value=”0.00” id=”IndexValue” />
<label for=”MarginValue”>Margin Value</label>
<input type=”text” value=”0.00” id=”MarginValue” />

</div>
<div id=”buttons”>
<input id=”calculate_button” type=”submit” value=”Calculate”
onclick=”return false;”/>

</div>

</form>
</div>

The <form> contains all of the <input> elements needed for the loan data. These elements are
broken into logical groups based on the kind of data. Again, this will be useful when applying a
stylesheet to the page. Also included are <label> elements to describe each of the inputs.
Technically, you could use <p> elements for the descriptions, but the <label> element describes
specifically what you are trying to accomplish.

844

Part VIII: Case Study

In this example, loan information has been added to the value attributes. Normally, this data
would be omitted, but it will be very useful when testing the application, so leave it in for now.
Additional information on each of the mortgage concepts is available on the Compliance Studio
website or at http://en.wikipedia.org/wiki/Mortgage.

The action attribute on the <form> element is #. In a more complete example, it would be bet-
ter to have an actual URL here. Of course, as long as users have JavaScript enabled, they won’t
use the value of the action attribute at all. If JavaScript is not supported or is disabled, how-
ever, the application won’t do anything. In public websites, providing fallback mechanisms for
browsers that don’t support JavaScript or CSS is important.

Note that the onclick attribute for the Submit button simply returns false. This means the
<form> can never be submitted. You will modify this line a little later in the chapter.

You have included an element that is used to indicate that something is happening when
you make any Ajax calls. The image indicator.gif can be downloaded with the rest of the
code at www.wrox.com/. The image was designed by Jakob Skjerning and is available at
http://mentalized.net/activity-indicators/, along with several other public domain
indicator graphics.

4. You need to include a placeholder for the payment information. Ultimately, the payments will
appear in a <table>, but you use a <div> element as a container:

<div id=”payments”>
<h3>Payments</h3>
<div id=”payments_table”>
Please submit a request and the payments will be displayed here.

</div>
</div>

5. Finally, end the elements you started at the beginning of the page:

</div>
</body>

</html>

How It Works
This Try It Out built the main web page for the loan calculator. The page is fairly simple, and apart from
some extra <div> elements, it is entirely content driven. Notice that you haven’t included any extra
information about the layout of the page. Separating the content of a web page from its presentation
layer simplifies maintenance of the page in the future. Unfortunately, though, because you haven’t yet
created a stylesheet for the page, it isn’t very pretty.

Figure 21-1 shows how the web page looks when rendered in Internet Explorer.

845

Chapter 21: Case Study: Payment Calculator

Figure 21-1

Before you add more functionality, you will add a basic stylesheet to the page.

Try It Out Improving the Look of the Loan Calculator

For many professional sites, a design team is hired to create stunning graphics and page layouts. This
case study focuses on the basics, building a CSS document that makes testing a little more enjoyable:

1. Open your text editor and create a new stylesheet document. The stylesheet begins with a
default rule:

* { margin: 0; padding: 0; }

Even though you are building a basic stylesheet, it is good to follow best practice guidelines.
Beginning a stylesheet by setting the margin and padding for all elements to 0 ensures that dif-
ferent browsers treat these properties the same. Tips like this are shared freely in online CSS
communities such as irc://irc.freenode.net/css.

2. Define a template for the <body> tag:

body {
background-color:white;
color:black;
font-family:arial, sans-serif;
margin-left:10px;

}

846

Part VIII: Case Study

Again, it isn’t required to set default background and text colors, but it is good practice. In addi-
tion, choosing a font you like and providing a fallback font such as sans-serif guarantees that
the page will remain fairly consistent across various platforms.

3. The biggest problem with the loan calculator is the layout of the <input> elements. Because
you have grouped them in uniquely named <div> elements, you can be very precise with their
position. You will use absolute positioning to define the layout of the various groups based on
the id attribute of each <div> element:

#program_group {
position:absolute;
left:10px;
top:70px;

}
#amounts_group {
position:absolute;
left:10px;
top:120px;

}
#terms_fees_group {
position:absolute;
left:170px;
top:120px;

}
#rate_group {
position:absolute;
left:330px;
top:120px;

}

4. The <label> elements also need a template. Right now the labels appear next to the <input>
controls. Instead, treat them as block-level elements so that there is a line break after each one:

label {
display:block;

}

5. The element for the spinning indicator shouldn’t be visible unless the calculation is
occurring. In the template, set the display to none:

#working {
display:none;

}

6. Create a template for the <form> element. Because you used absolute positioning for the
<input> groups, the <form> has no actual height, but you need to leave a space where the form
contents should go. The height and min-height CSS properties are not implemented consis-
tently in all browsers, so cheat and add padding to the top and bottom of the form instead:

form {
padding-top:190px;
padding-bottom:10px;

}

847

Chapter 21: Case Study: Payment Calculator

7. Even though you don’t have any payments yet, add templates for the table, cells, and the pay-
ments_table container element:

#payments_table {
overflow:auto;
margin:10px;
padding:5px;
width:488px;
height:200px;
border:1px solid black;

}
#payments_table td, #payments_table th{
margin:0px;
padding:10px;

}
.numeric_cell {
text-align:right;

}
.even_row {
color:black;
background-color:#eee;

}

Notice that the overflow property of the payments_table template is set to auto. Each loan
can have a lot of payments. Instead of allowing the page to become very long, the value auto
ensures that the contents of the payments_table <div> element will scroll.

8. Finally, modify the web page to refer to the stylesheet. Add a <link> element into the <head>
section of the document. Once completed, save the file as loancalculator2.html:

<head>
<title>Loan Calculator</title>
<meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />
<link href=”loancalculator1.css” rel=”stylesheet” type=”text/css” />

</head>

How It Works
In this Try It Out, you added a CSS stylesheet to the main web page for the loan calculator. The
stylesheet may not win any design awards, but working with the input fields and visualizing the results
is now much more pleasant. In the stylesheet, you followed best-practice guidelines and used a mix of
CSS features. Some elements were styled using ID selectors, while others used element names. Using
this stylesheet as a basis, you could alter the look of your page very quickly.

Figure 21-2 shows how the web page looks when rendered in Internet Explorer.

848

Part VIII: Case Study

Figure 21-2

Integrating the Calculation Web Service
Now that you have your main loan calculator web page, all you have to do is connect it to the
Compliance Studio web service and display the results. Unfortunately, the web page can’t communicate
directly with the Compliance Studio web service because the web page and the service are hosted in dif-
ferent domains. Currently, browsers don’t permit web pages to make HTTP requests to URLs that have a
different domain. These requests are commonly called Cross-Domain XML HTTP Requests or Cross-Site
Scripting (XSS). Cross Site Scripting is the source of many common security problems.

Luckily, you can call a web service that is hosted in the same domain. You need to create a second web
service that you can call locally that will pass the request from the server to the Compliance Studio web
service. This middle-man approach enables you to use the server as a proxy for the interaction.

Building a Proxy Web Service
To build the web service, you use Microsoft’s Visual Studio 2005. Though you could build the code for
the web service manually, using tools greatly simplifies the process and provides some additional bene-
fits such as type-checking. The proxy web service has two web methods. The first simply passes through
the request and the response. The second method uses the Compliance Studio XML Schema to enable
you to construct the request using XML data-binding.

849

Chapter 21: Case Study: Payment Calculator

Try It Out Building the Request and Response Service

This Try It Out creates a new web service to pass the request through to the Compliance Studio service.
The service sends the results back directly as XML.

1. Open Visual Studio or Visual Web Developer. Click the File menu and choose New ➪ Web Site
(see Figure 21-3). The New Web Site dialog box will appear.

Figure 21-3

2. In the New Web Site dialog box, select the ASP.NET Web Service icon, and enter the name of
the website, ProxyCalculationService. Set the language to Visual C# and click OK (see
Figure 21-4).

Figure 21-4

If you are having trouble creating the web service, refer to Chapter 14.

3. Because this web service will be calling the Compliance Studio service, add a web reference.
Click the Website menu, and then select Add Web Reference. Type http://compliancestudio
.com/apr/1.0/ in the URL field and click the Go button. Once the service appears, click the
Add Reference button (see Figure 21-5).

850

Part VIII: Case Study

Figure 21-5

4. You need to add two using directives to the file Service.cs. The first enables you to work
with the System.Xml package. The second enables you to use the classes that were automati-
cally generated when you added the web reference:

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml;
using com.compliancestudio;

5. Modify the namespace that will identify the web service. By default, Visual Studio uses

[WebService(Namespace = “http://tempuri.org”)]

but you can change this to something more meaningful:

[WebService(Namespace = “http://localhost/ProxyCalculationService”)]

Of course, the namespace name doesn’t have to be the same as the web service project name.
Like all namespaces, it is just an identifier.

6. By default, Visual Studio has already created a web method called HelloWorld:

[WebMethod]
public string HelloWorld() {

return “Hello World”;
}

You don’t need a HelloWorld method in the proxy web service so it can be deleted.

851

Chapter 21: Case Study: Payment Calculator

7. Insert a new method called CalculatePassThrough. This method captures the incoming
request, loads it into an XmlDocument object, and passes it to the Compliance Studio service.
The method returns the Compliance Studio response as is:

[WebMethod]
public XmlNode CalculatePassThrough(string TransactionEnvelope) {

XmlDocument request = new XmlDocument();
request.LoadXml(TransactionEnvelope);
com.compliancestudio.Service cs = new com.compliancestudio.Service();
return cs.RequestCalculation(request.DocumentElement);

}

8. You should be able to run the web service in debugging mode. You may receive a warning indi-
cating that debugging is not enabled in the Web.config file (see Figure 21-6). Simply modify
the Web.config using the dialog and press OK.

Figure 21-6

9. If the web service is working correctly, then you should be able to see the service description
when you execute the Service.asmx page (see Figure 21-7).

If you have trouble getting the web service to run on your local machine, it could be
one of several common problems. Confirm that the World Wide Web Publishing ser-
vice is running on your local machine. Sometimes, locally run programs such as
Skype use port 80, which can conflict with the debugger. If you are deploying this
application to an actual server, make sure you have created the application in the
website configuration (click the folder in the Admin Console and choose Properties,
and then click Create Application).

852

Part VIII: Case Study

Figure 21-7

How It Works
This Try It Out built a proxy web service for the loan calculator. The service doesn’t do very much; it
passes any requests it receives to the Compliance Studio service and sends back the response. Visual
Studio hid much of the complexity involved in building a web service. By pointing the Add Web
Reference dialog box to the Compliance Studio website, you created a custom service wrapper inside the
application. Visual Studio handled the WSDL (the Web Service Description Language file that describes
the web service), the SOAP envelopes, and the HTTP traversal.

Modifying the Request and Response
Often, when building a proxy web service, you need to modify the request or the response before pass-
ing it on. A proxy web service is a good place to verify user credentials, add logs about the transaction,
or supplement the request with additional data.

The next Try It Out makes a more advanced web method that does just that.

Try It Out Using an XML Schema to Build the Request

Your current web service doesn’t offer much assistance in constructing the requests that are sent to
Compliance Studio. In fact, there isn’t any type checking or data defaults. Compliance Studio provides
an XML Schema for its request data. You can use this schema to generate .NET classes that can be used
to check types and generate the request.

1. Download the Compliance Studio XML Schema and save it in your project folder. The current
schema is http://compliancestudio.com/apr/APRData-1-0.xsd.

2. Open a command prompt (select Start ➪ Run and type cmd) and change the current directory to
the location of your project. By default, you could do this by entering the following command:

cd \Inetpub\wwwroot\ProxyCalculationService

853

Chapter 21: Case Study: Payment Calculator

From there, you can use the program xsd.exe to generate a set of .NET classes. xsd.exe is dis-
tributed with Visual Studio. If you have installed Visual Studio to the default location, then you
can generate the classes with the following command (see Figure 21-8):

“c:\Progra~1\Microsoft Visual Studio 8\SDK\v2.0\Bin\xsd.exe” APRData-1-0.xsd /c

Figure 21-8

3. Now that you have generated the classes, you need to add them into the project. Click the
Website menu, and then Add Existing Item. Browse for the new file, APRData-1-0.cs, in your
project folder, select it, and click the Add button. Make sure the file is located in the App_Code
folder of the website or you will get a build error when you try to execute the service.

4. Before you build the new web method, add two more using directives for System.IO and
System.Xml.Serialization to the top of the Service.cs file:

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.IO;
using System.Xml.Serialization;
using System.Xml;
using com.compliancestudio;

5. Create a custom enumeration for the various loan program types. This case study uses only
three programs: Fixed for fixed rate loans, Hybrid for fixed-rate adjustable loans, and
InterestOnlyOption for interest-only loans with various payment options. Insert the follow-
ing code just after the using directives at the start of Service.cs:

public enum ProgramType
{

Fixed,
Hybrid,
InterestOnlyOption

}

854

Part VIII: Case Study

6. Now, within the Service class itself, you can add the second web method, called Calculate.
Instead of receiving XML in the request, you include parameters for the various mortgage con-
cepts you defined in the web page:

[WebMethod]
public XmlNode Calculate(PaymentStreamRequestType PaymentRequestType,
ProgramType LoanProgram, double TotalAPRFeesAmount, double IndexValue,
double MarginValue, double OriginalLoanAmount,
double DisclosedTotalSalesPriceAmount, double PropertyAppraisedValueAmount,
double NoteRatePercent, int LoanOriginalMaturityTermMonths,
DateTime ApplicationSignedDate, DateTime LoanEstimatedClosingDate,
DateTime ScheduledFirstPaymentDate, int EstimatedPrepaidDays)

{
// Implementation

}

Recall that this case study doesn’t define these mortgage concepts in detail; more information
about each of these terms can be found on the Compliance Studio website or at
http://en.wikipedia.org/wiki/Mortgage.

7. Within the function, create the request that will be sent to the Compliance Studio service. To do
so, use the newly generated classes based on the XML Schema. You won’t fill out all of the prop-
erties in the objects, just the information you are collecting in the XHTML page and default
options. Start by creating the basic objects. Put the following code under the //
Implementation comment from the previous step:

TRANSACTION aprTransaction = new TRANSACTION();
REQUEST aprRequest = new REQUEST();
REQUESTOPTIONS aprRequestOptions = new REQUESTOPTIONS();
DATA aprRequestOptionsData = new DATA();
APRREQUEST aprAprRequest = new APRREQUEST();
LOANDATA aprLoanData = new LOANDATA();
TERMS aprTerms = new TERMS();

8. Connect the various objects using the properties generated by xsd.exe:

aprTransaction.REQUEST = aprRequest;
aprTransaction.REQUEST.REQUESTOPTIONS = aprRequestOptions;
aprTransaction.REQUEST.REQUESTOPTIONS.DATA = aprRequestOptionsData;
aprTransaction.REQUEST.APRREQUEST = new APRREQUEST[1];
aprTransaction.REQUEST.APRREQUEST[0] = aprAprRequest;
aprTransaction.REQUEST.LOANDATA = aprLoanData;
aprTransaction.REQUEST.LOANDATA.TERMS = aprTerms;

9. Begin by assigning the request options. Again, these settings are applicable to United States
mortgages. More information about these options can be found in the documentation on the
Compliance Studio website:

aprRequestOptions.PaymentStreamAndApr = true;
aprRequestOptions.ReverseApr = false;
aprRequestOptions.ManualPaymentStream = false;
aprRequestOptions.AdditionalPrincipal = false;
aprRequestOptionsData.PaymentStreamRequestType = PaymentRequestType;
aprRequestOptionsData.AllowOddLastPayment = true;

855

Chapter 21: Case Study: Payment Calculator

aprRequestOptionsData.DaysPerYear = DaysPerYear.Item360;
aprRequestOptionsData.ConstructionTILType = ConstructionTILType.Seperate;
aprRequestOptionsData.AprIterations = 1;
aprRequestOptionsData.FeeIterations = 0;

10. Use the parameters that were passed in. Start by converting the LoanProgram value to actual
program names based on the ProgramType enumeration. Use a static string “Beginning XML
Calculator” as the Loan Origination System Identifier. This can be whatever you like. You
also need to assign the rest of the loan details, including the fee total:

switch (LoanProgram)
{

case ProgramType.Fixed:
aprTerms.ProgramName = “FIXED 360/360”;
break;

case ProgramType.Hybrid:
aprTerms.ProgramName = “FIXED 50 30 10”;
break;

case ProgramType.InterestOnlyOption:
aprTerms.ProgramName = “GMAC IO Option Neg ARM”;
break;

}

aprTerms.LoanOriginationSystemLoanIdentifier = “Beginning XML Calculator”;
aprTerms.OriginalLoanAmount = OriginalLoanAmount;
aprTerms.DisclosedTotalSalesPriceAmount = DisclosedTotalSalesPriceAmount;
aprTerms.PropertyAppraisedValueAmount = PropertyAppraisedValueAmount;
aprTerms.NoteRatePercent = NoteRatePercent;
aprTerms.InitialPaymentRatePercent = NoteRatePercent;
aprTerms.LoanOriginalMaturityTermMonths = LoanOriginalMaturityTermMonths;
aprTerms.ApplicationSignedDate = ApplicationSignedDate;
aprTerms.LoanEstimatedClosingDate = LoanEstimatedClosingDate;
aprTerms.ScheduledFirstPaymentDate = ScheduledFirstPaymentDate;
aprTerms.EstimatedPrepaidDays = EstimatedPrepaidDays;
aprAprRequest.TotalAPRFeesAmount = TotalAPRFeesAmount;

11. Because of the way xsd.exe has generated the classes, you need to do a little more work.
Indicate to the XmlSerializer which properties you have modified (except for string proper-
ties) so that it knows which fields should be serialized to attributes and which fields should be
skipped:

aprRequestOptions.PaymentStreamAndAprSpecified = true;
aprRequestOptions.ReverseAprSpecified = true;
aprRequestOptions.ManualPaymentStreamSpecified = true;
aprRequestOptions.AdditionalPrincipalSpecified = true;
aprRequestOptionsData.PaymentStreamRequestTypeSpecified = true;
aprRequestOptionsData.AllowOddLastPaymentSpecified = true;
aprRequestOptionsData.DaysPerYearSpecified = true;
aprRequestOptionsData.ConstructionTILTypeSpecified = true;
aprRequestOptionsData.AprIterationsSpecified = true;
aprRequestOptionsData.FeeIterationsSpecified = true;
aprAprRequest.TotalAPRFeesAmountSpecified = true;
aprTerms.OriginalLoanAmountSpecified = true;
aprTerms.DisclosedTotalSalesPriceAmountSpecified = true;

856

Part VIII: Case Study

aprTerms.PropertyAppraisedValueAmountSpecified = true;
aprTerms.NoteRatePercentSpecified = true;
aprTerms.InitialPaymentRatePercentSpecified = true;
aprTerms.LoanOriginalMaturityTermMonthsSpecified = true;
aprTerms.ApplicationSignedDateSpecified = true;
aprTerms.LoanEstimatedClosingDateSpecified = true;
aprTerms.ScheduledFirstPaymentDateSpecified = true;
aprTerms.EstimatedPrepaidDaysSpecified = true;

12. You haven’t assigned the index or margin values to your objects, because the index and margin
may not be used (they are only applicable to the InterestOnlyOption loan program). You
handle those only if the submitted values are not 0:

if (IndexValue != 0 && MarginValue != 0)
{

INDEXVALUES aprIndexValues = new INDEXVALUES();
MARGINVALUES aprMarginValues = new MARGINVALUES();

aprTransaction.REQUEST.INDEXVALUES = new INDEXVALUES[1];
aprTransaction.REQUEST.INDEXVALUES[0] = aprIndexValues;
aprTransaction.REQUEST.MARGINVALUES = new MARGINVALUES[1];
aprTransaction.REQUEST.MARGINVALUES[0] = aprMarginValues;

aprIndexValues.IndexValue = IndexValue;
aprMarginValues.MarginValue = MarginValue;
aprIndexValues.IndexMonths = LoanOriginalMaturityTermMonths;
aprMarginValues.MarginMonths = LoanOriginalMaturityTermMonths;

aprIndexValues.IndexValueSpecified = true;
aprIndexValues.IndexMonthsSpecified = true;
aprMarginValues.MarginValueSpecified = true;
aprMarginValues.MarginMonthsSpecified = true;

}

13. Finally, serialize the classes to a stream, load the stream into an XmlDocument, and pass the root
element to the Compliance Studio service, as you did in the previous example. Again, return the
Compliance Studio response as the web method’s response:

MemoryStream ms = new MemoryStream();
XmlDocument request = new XmlDocument();
XmlSerializer serializer = new XmlSerializer(aprTransaction.GetType());
serializer.Serialize(ms, aprTransaction);
ms.Seek(0, SeekOrigin.Begin);
request.Load(ms);
com.compliancestudio.Service cs = new com.compliancestudio.Service();
XmlNode response = cs.RequestCalculation(request.DocumentElement);
return response;

This completes the implementation of the Calculate method.

857

Chapter 21: Case Study: Payment Calculator

How It Works
In this Try It Out you added a Calculate web method to the proxy web service for the loan calculator.
Unlike the CalculatePassThrough function, the Calculate function handles many more details of
constructing the Compliance Studio request. Though it makes the web service code more complex, it
greatly reduces the amount of JavaScript needed in the web page.

In fact, you can communicate with the completed service in several ways. You could use local JavaScript
to invoke the web service, or you could build additional communication layers as you have already
done. Visual Studio has generated a WSDL and provides bindings for SOAP 1.1, SOAP 1.2, and simple
HTTP. Viewing the Service.asmx file in a browser, you should see your two functions (see Figure 21-9).

Figure 21-9

Communicating with the Proxy Web Service Using Ajax
Asynchronous JavaScript and XML, or Ajax/AJAX, has been growing in popularity over the past few
years. In fact, Ajax has been possible in browsers for much longer than that. In the loan calculator, you
use Ajax to call the proxy web service you built in the previous two examples. When the user clicks the
calculate button, the application does the following:

1. Construct a SOAP message request and send it to the web service using xmlhttp.

2. Disable the Calculate button and show the progress indicator.

3. Display the results on the page by rewriting the innerHTML property of the table container.

858

Part VIII: Case Study

Unfortunately, currently each of the major browsers provides different mechanisms for using XML over
HTTP. To get around this, you need to use a custom library that hides the differences. Though many
JavaScript libraries do this, the simplest is the xmlhttp.js library written by Jim Ley. The code for the
xmlhttp library can be downloaded from www.wrox.com or from Jim’s website at
www.jibbering.com/2002/4/httprequest.html.

The full text of xmlhttp.js is provided here:

var xmlhttp=false;
/*@cc_on @*/
/*@if (@_jscript_version >= 5)
// JScript gives us Conditional compilation, we can cope with old IE versions.
// and security blocked creation of the objects.
try {
xmlhttp = new ActiveXObject(“Msxml2.XMLHTTP”);
} catch (e) {
try {
xmlhttp = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (E) {
xmlhttp = false;
}
}
@end @*/
if (!xmlhttp && typeof XMLHttpRequest!=’undefined’) {
try {
xmlhttp = new XMLHttpRequest();

} catch (e) {
xmlhttp=false;

}
}
if (!xmlhttp && window.createRequest) {
try {
xmlhttp = window.createRequest();

} catch (e) {
xmlhttp=false;

}
}

Download the code (or type it into a file named xmlhttp.js) and save it in the same folder as loan-
calculator2.html. The code uses advanced techniques to determine which xmlhttp object is sup-
ported by the current browser. Because there are many popular browsers, the code must support several
different methods for constructing the object.

Try It Out The Loan Calculator JavaScript Layer

This Try It Out builds the loan calculator JavaScript library. This file handles the SOAP request and
response, displaying the results and indicating when the system is working on a request:

1. When working with asynchronous calls, it is best to provide some kind of visual feedback to
show that the system is working, while enabling users to continue using the page. Of course, in
this case you don’t want over-anxious users to make multiple simultaneous requests. To prevent
this, you will keep track of when you are submitting a request in a global variable. You also cre-

859

Chapter 21: Case Study: Payment Calculator

ate showProgress and hideProgress functions that reveal the indicator image and disable
and enable the Calculate button:

var submitting = false;

function showProgress() {
try {
submitting = true;
var working = document.getElementById(“working”);
working.style.display = “inline”;
var calc = document.getElementById(“calculate_button”);
calc.disabled = true;

} catch(e) {
// do nothing

}
}

function hideProgress() {
try {
submitting = false;
var working = document.getElementById(“working”);
working.style.display = “none”;
var calc = document.getElementById(“calculate_button”);
calc.disabled = false;

} catch(e) {
// do nothing

}
}

These samples use some basic DOM functionality to control the document. The
getElementById function enables you to look up the various elements in the document using
the id attribute values specified in the XHTML. Once you have located the objects, you can
modify the style definitions and the disabled property. These properties are part of the HTML
Document Object Model.

You have also used a try/catch construction to handle any unexpected errors. In general, the
error handling in this application is limited. In a public website, you may need to add addi-
tional error-checking.

2. Create a function to construct the SOAP request and submit it. You first need to verify that you
are not already submitting a request and call the showProgress function:

function submitLoanInformation() {
if (submitting) return;
showProgress();

3. Check whether the xmlhttp object was correctly initialized. If so, you construct a request string:

try {
if (xmlhttp) {
var request = ‘’+

‘<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>’+
‘<soap:Body>’+
‘<Calculate xmlns=”http://localhost/ProxyCalculationService”>’+
‘<PaymentRequestType>Long</PaymentRequestType>’+

860

Part VIII: Case Study

‘<LoanProgram>’ + getSelectValue(‘ProgramName’) + ‘</LoanProgram>’+
‘<TotalAPRFeesAmount>’ + getFloatValue(‘TotalAPRFeesAmount’) +
‘</TotalAPRFeesAmount>’+
‘<IndexValue>’ + getFloatValue(‘IndexValue’) + ‘</IndexValue>’+
‘<MarginValue>’ + getFloatValue(‘MarginValue’) + ‘</MarginValue>’+
‘<OriginalLoanAmount>’ + getFloatValue(‘OriginalLoanAmount’) +
‘</OriginalLoanAmount>’+
‘<DisclosedTotalSalesPriceAmount>’ +
getFloatValue(‘DisclosedTotalSalesPriceAmount’) +

‘</DisclosedTotalSalesPriceAmount>’+
‘<PropertyAppraisedValueAmount>’ +
getFloatValue(‘PropertyAppraisedValueAmount’) +

‘</PropertyAppraisedValueAmount>’+
‘<NoteRatePercent>’ +
getFloatValue(‘NoteRatePercent’) + ‘</NoteRatePercent>’ +

‘<LoanOriginalMaturityTermMonths>’ +
getFloatValue(‘LoanOriginalMaturityTermMonths’) +

‘</LoanOriginalMaturityTermMonths>’+
‘<ApplicationSignedDate>’ + getDateValue() + ‘</ApplicationSignedDate>’+
‘<LoanEstimatedClosingDate>’ + getDateValue() + ‘</LoanEstimatedClosingDate>’+
‘<ScheduledFirstPaymentDate>’ + getDateValue() + ‘</ScheduledFirstPaymentDate>’+
‘<EstimatedPrepaidDays>’ + getPrepaidDays() + ‘</EstimatedPrepaidDays>’+
‘</Calculate>’+
‘</soap:Body>’+
‘</soap:Envelope>’+
‘’;

Here you have built a string that contains all of the XML. This is a little clumsy in JavaScript but
it gets the job done. You insert all of the values from the <form> using getSelectValue(),
getFloatValue(), getDateValue(), and getPrepaidDays().

4. Set the options of the xmlhttp object. For starters, open a connection to the web service proxy
URL, and then create a JavaScript closure that monitors the ready state of the object. If the ready
state is 4 (complete), you call a function that can handle the response:

xmlhttp.open(“POST”, “/ProxyCalculationService/Service.asmx”, true);
xmlhttp.onreadystatechange=function() {
if (xmlhttp.readyState==4) {
receiveLoanInformation(xmlhttp.responseXML);

}
}

5. Configure the headers and send the request:

xmlhttp.setRequestHeader(“SOAPAction”,
“http://localhost/ProxyCalculationService/Calculate”);

xmlhttp.setRequestHeader(“Content-Type”, “text/xml”);
xmlhttp.setRequestHeader(“Content-Length”, request.length);
xmlhttp.send(request);

861

Chapter 21: Case Study: Payment Calculator

6. Add the catch block for the try/catch construction:

}
} catch(ex) {
hideProgress();
alert(ex.toString());

}
}

When using the xmlhttp object, make sure you call the open method prior to setting the
onreadystatechange event. This ensures that the xmlhttp object can be reused in Internet Explorer.

7. The getSelectValue(), getFloatValue(), getDateValue(), and getPrepaidDays()func-
tions don’t exist yet. getSelectValue()and getFloatValue() look up a form field by id and
get its current value. getDateValue() determines when the next 15th of the month is, and
getPrepaidDays() determines the number of days between that date and the end of the
month:

function getSelectValue(id) {
var obj = document.getElementById(id);
return (obj.selectedIndex > -1 ? obj.options[obj.selectedIndex].value : “”);

}

function getFloatValue(id) {
var obj = document.getElementById(id);
return (obj ? parseFloat(obj.value) : 0);

}

function getDateValue() {
var d = new Date();
if (d.getDate() > 15)
d.setMonth(d.getMonth()+1);

return d.getFullYear() + “-” + (d.getMonth()+1) + “-15”;
}

function getPrepaidDays() {
var d = new Date();
if (d.getDate() > 15)
d.setMonth(d.getMonth()+1);

d.setDate(0);
return d.getDate()-15;

}

You have used a couple of tricks here to shortcut the calculations. Note that you increment the
month values regardless of whether the current month is December. The JavaScript Date object
handles this by incrementing the year and setting the month to January. Likewise, when you set
the date to 0, the Date object decrements the month (and possibly year) and sets the day to the
last day of the month.

8. The receiveLoanInformation function referred to in the onreadystatechange closure is
passed the response XML document. After checking whether there is a root element using the
documentElement property, you grab all of the contained <PAYMENTSTREAM> elements using
the DOM method getElementsByTagName:

862

Part VIII: Case Study

function receiveLoanInformation(responseXML) {
try {
if (responseXML.documentElement == null) return;
var payments = response.getElementsByTagName(“PAYMENTSTREAM”);

9. Once you have a collection of <PAYMENTSTREAM> nodes, you can begin constructing the
XHTML for the <table>. You grab the number of payments and loop through the collection,
adding a <tr> element for each item. You use the CSS class even_row for all of the even num-
bered rows in the output, and odd_row for the odd ones. Each row contains the payment and
balance from the current node:

var totalPayments = payments.length;
var payment = 0;
var balance = 0;
var tableHTML = “” +
“<table border=’0’ cellpadding=’0’ cellspacing=’0’>” +
“ <tr>” +
“ <th>Payment Date</th>” +
“ <th>Payment Amount</th>” +
“ <th>Remaining Balance</th>” +
“ </tr>”;

for (var i = 0; i < totalPayments; i++) {
payment = parseFloat(payments[i].getAttribute(“PmtTotal”));
balance = parseFloat(payments[i].getAttribute(“PmtEndingBalance”));
tableHTML += “”+
“<tr “ + ((i % 2 == 0) ? “class=’even_row’>” : “class=’odd_row’>”) +
“<td>” + payments[i].getAttribute(“PmtDate”) + “</td>” +
“<td class=’numeric_cell’>” + formatDollar(payment) + “</td>” +
“<td class=’numeric_cell’>” + formatDollar(balance) + “</td>” +
“</tr>”;

}
tableHTML += “</table>”;

10. Once the HTML is constructed, you can assign it to the payments_table container in the docu-
ment using the innerHTML property:

var tableContainer = document.getElementById(“payments_table”);
tableContainer.innerHTML = tableHTML;

When inserting the payment table data, notice that you inserted the whole <table> into the
innerHTML property of the container. Internet Explorer doesn’t allow you to modify the
innerHTML of a <table> element, so you have to use a container.

11. Call the hideProgress function to enable the Calculate button and hide the progress
indicator:

} finally {
hideProgress();

}
}

863

Chapter 21: Case Study: Payment Calculator

12. The only function left to create is formatDollar, which converts a floating-point number to a
string with a leading “$”. It also rounds the value to the nearest cent and prints trailing zeroes
to two decimal places:

function formatDollar(value) {
value *= 100;
value = Math.round(value);
value /= 100;
var res = “$” + value;
if (res.indexOf(“.”) == -1) {
res += “.00”;

} else {
while (res.indexOf(“.”) > res.length-2) res += “0”;

}
return res;

}

13. Before the application will work, you need to modify loancalulator2.html. Open the file
and save it as loancalculator3.html in the same folder. Modify the header to add references
to the two script files:

<head>
<title>Loan Calculator</title>
<meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />
<link href=”loancalculator1.css” rel=”stylesheet” type=”text/css” />
<script type=”text/javascript” src=”xmlhttp.js”></script>
<script type=”text/javascript” src=”loancalculator1.js”></script>

</head>

14. Modify the onclick attribute for the Calculate button so that it calls the
submitLoanInformation function:

<div id=”buttons”>
<input id=”calculate_button” type=”submit” value=”Calculate”

onclick=”submitLoanInformation(); return false;”/>

</div>

How It Works
In this Try It Out, you completed the loan calculator by connecting the web page to the proxy web ser-
vice using Ajax. Now when users click the Calculate button, the proposed payments are displayed on
the page (see Figure 21-10); and while the request is being processed, a spinning indicator appears to let
the user know that it is working.

864

Part VIII: Case Study

Figure 21-10

Enhancing the Display with SVG
Displaying the payments and ending balance in a table is very useful, but by using a chart of the balance
over time, one could quickly compare the various loan programs visually. You can use Scalable Vector
Graphics (SVG) to construct the chart and display it in the loan calculator web page. Again, in order for
users to see the SVG graphic, they need to have a browser that supports SVG or an SVG plug-in.

Building the chart includes the following steps:

1. Create a base SVG document for the chart.

2. Display the SVG in an <iframe> element.

3. Use JavaScript to manipulate the SVG DOM and assign the chart data.

865

Chapter 21: Case Study: Payment Calculator

Note that an <iframe> is used to display the SVG content. Ideally, you would include the <svg> ele-
ments directly in an XHTML page; and using namespaces, the browser would know how to render the
document. Currently, however, that isn’t possible in all of the major browsers. In fact, because Internet
Explorer relies on a plug-in to render SVG content, <iframe> is the only standard cross-browser solu-
tion. The <object> tag is another solution, but for it is lacking in older browsers.

Therefore, you need to create an empty SVG document that can be loaded into the <iframe> element
when the page is loaded. Of course, you use the document to set up the outline of the chart and several
other defaults, which makes drawing the chart in JavaScript easier. Manipulating an inner frame
through JavaScript (especially when that frame has an ActiveX object in its content) can be cumbersome
because of the varying security restrictions in the browser. Luckily, the SVG document can tell the parent
frame about itself, greatly simplifying the process, so you will include a script in the default chart docu-
ment that passes a variable called svgWindow to the topmost frame.

Try It Out Creating a Base SVG Chart Document

In this Try It Out, you build the base for the loan balance chart that is displayed in the loan calculator
web page. Apart from the basic display of the chart’s background and labels, this file needs to pass a ref-
erence called svgWindow to the topmost frame:

1. Begin by creating this chart as you would any SVG document. Include a <title> element even
though it won’t be displayed:

<?xml version=”1.0” encoding=”UTF-8”?>
<svg xmlns=”http://www.w3.org/2000/svg”>
<title>Loan Balance over Time</title>

2. Wrap the contents of the <script> element in a <![CDATA[]]> declaration. You learned about
CDATA sections in Chapter 2 — these enable you to include characters that would normally
need to be escaped (such as < and &):

<script type=”text/javascript”><![CDATA[
top.svgWindow = window;

//]]></script>

The code does one thing: assigns the current window to a variable called svgWindow in the “top”
frame. You can access the svgWindow variable directly from the main loan calculator page.

3. Include a grid for the data, using a simple rectangle and four lines. In a more complete applica-
tion, you might enhance this with a decorative gradient or other design features:

<g id=”grid”>
<rect x=”10” y=”10” width=”500” height=”200” fill=”#f0f0f0”
stroke=”#000” stroke-width=”2”/>

<path d=”M11,60 l 498,0 M11,110 l 498,0 M11,160 l 498,0 M11,210 l 498,0”
stroke=”#ddd”/>

</g>

4. Even though there is no data when the chart is loaded, it is helpful to insert a placeholder for
the graph. Include a <path> that has only one command: a simple move command (M0,0):

<g id=”data”>
<path id=”balance” d=”M0,0” fill=”#77c” stroke=”#aaf” fill-opacity=”0.3”/>

</g>

866

Part VIII: Case Study

5. The chart needs labels for the dates and balances. Create four basic balance labels and a con-
tainer to insert the date labels:

<g id=”balance_labels” font-size=”8pt” font-weight=”bold”>
<text id=”balance100Percent” x=”520” y=”20”>$0.00</text>
<text id=”balance75Percent” x=”520” y=”65”>$0.00</text>
<text id=”balance50Percent” x=”520” y=”115”>$0.00</text>
<text id=”balance25Percent” x=”520” y=”165”>$0.00</text>

</g>
<g id=”date_labels” font-size=”6pt” font-weight=”normal”>
</g>

You have provided id attributes on all of the elements that you will want to modify later.
Looking up elements by id is much easier than traversing the DOM using firstChild and
nextSibling methods.

6. Finally, add the closing <svg> tag:

</svg>

7. Save the file as chart.svg in the same folder as loancalculator3.html.

How It Works
In this Try It Out you built a basic chart using SVG. You haven’t added an <iframe> in the main page,
but you can view the chart directly in a browser (see Figure 21-11).

Figure 21-11

By default, the SVG should be viewable in your browser if you have the correct plug-in installed or you
are using a browser that supports SVG natively. If the browser offers to let you download the file, then
you may need to add an entry for the SVG MIME (“image/svg+xml”) type to your web server. For
more information, see http://wiki.svg.org/MIME_Type.

867

Chapter 21: Case Study: Payment Calculator

Adding the Frame to the Main Page
Of course, a blank chart isn’t very useful. Let’s add the frame to the main loan calculator page and add
some script to draw the data.

Try It Out Integrating the SVG and the Loan Calculator

This Try It Out adds a frame to the main loan calculator page to display the SVG. It also modifies the
JavaScript for the loan calculator so that it displays the results:

1. Open loancalculator3.html in your editor and make the following changes. Because you
need to update the JavaScript for the loan calculator, you must update the reference in the
header of the page:

<head>
<title>Loan Calculator</title>
<meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />
<link href=”loancalculator1.css” rel=”stylesheet” type=”text/css” />
<script type=”text/javascript” src=”xmlhttp.js”></script>
<script type=”text/javascript” src=”loancalculator2.js”></script>

</head>

2. The <iframe> should refer to chart.svg and you need to set a default width and height. You
also remove the frame border so that it looks consistent with the rest of the design:

<div id=”payments”>
<h3>Payments</h3>
<div id=”payments_table”>
Please submit a request and the payments will be displayed here.

</div>
</div>
<div id=”chart”>
<h3>Lending Balance</h3>
<iframe src=”chart.svg” width=”650” height=”260”
frameborder=”0” id=”chart_frame” name=”chart_frame”>
<p>It looks like your browser doesn’t support frames</p>

</iframe>
</div>

</div>
</body>

</html>

This provides a fallback message for browsers that don’t support frames. Once you are finished,
save the file as loancalculator4.html.

3. To modify the JavaScript for the loan calculator, open loancalculator1.js in your editor and
save it as loancalculator2.js. Modify the end of the receiveLoanInformation function so
that it calls the new drawChart function and passes the payments:

tableHTML += “</table>”;
var tableContainer = document.getElementById(“payments_table”);
tableContainer.innerHTML = tableHTML;
drawChart(payments);

} finally {
hideProgress();

}

868

Part VIII: Case Study

4. Define the drawChart function at the end of the loancalculator2.js file. This function con-
tains a lot of math and DOM manipulation, so you break it down into smaller parts. Declare the
function and check whether the svgWindow variable that you created inside of chart.svg is
available:

function drawChart(payments) {
if (svgWindow == null) return;

5. Each payment is charted in the SVG. In order to calculate the points, you need to know the
width and height as well as the offsets of the chart. You could figure this out programmatically,
but because they won’t be changing, just use constants:

var left = 10;
var top = 10;
var width = 500;
var height = 200;

6. In addition to the basic dimensions of the chart, you need to know the maximum balance. In
some mortgages, the balance can exceed the original loan amount. Loop through all of the pay-
ments to determine the maximum balance at any given point in the loan:

var totalPayments = payments.length;
var maxBalance = -1;
var balance = 0;
for (var i = 0; i < totalPayments; i++) {
balance = parseFloat(payments[i].getAttribute(“PmtEndingBalance”));
if (maxBalance == -1 || maxBalance < balance) maxBalance = balance;

}

7. You now have enough information to begin labeling the chart. Set up four labels for the bal-
ances: the maximum balance, 75% of the maximum, 50% of the maximum and 25% of the maxi-
mum. These labels give users some indication of the loan balance at any given point in the
timeline:

var balance100Percent = svgWindow.document.getElementById(“balance100Percent”);
var balance75Percent = svgWindow.document.getElementById(“balance75Percent”);
var balance50Percent = svgWindow.document.getElementById(“balance50Percent”);
var balance25Percent = svgWindow.document.getElementById(“balance25Percent”);
balance100Percent.firstChild.nodeValue = formatDollar(maxBalance);
balance75Percent.firstChild.nodeValue = formatDollar(0.75 * maxBalance);
balance50Percent.firstChild.nodeValue = formatDollar(0.50 * maxBalance);
balance25Percent.firstChild.nodeValue = formatDollar(0.25 * maxBalance);

8. As shown elsewhere in this application, you look up the elements by their id attribute. To
assign the value, you select the firstChild (in this case, the first text node in the element con-
tent) and set the nodeValue property to the amount.

9. Before you can build the data for the chart, you need to figure out the width each payment uses
on the graph. Likewise, by dividing the height by the total balance, you can convert the balance
amounts to percentages of the height:

var paymentWidth = (width / totalPayments);
var balanceHeight = (height / maxBalance);

869

Chapter 21: Case Study: Payment Calculator

10. Declare a variable balancePath for the path data that charts the balance, and initialize it with a
move command (M) to the lower-left corner of the graph:

var balanceData = “M “ + left + “,” + (top+height);

11. Loop through the payments again, this time converting the payment number (i) to a horizontal
position and the remaining balance to a vertical position. Use a line command (L) to move the
pen to each point, appending the results to balancePath after each iteration:

for (var i = 0; i < totalPayments; i++) {
balanceData += “L” + (left+(i*paymentWidth)) + “,” + ((top+height) -
(balanceHeight*parseFloat(payments[i].getAttribute(“PmtEndingBalance”))));

}

12. Closing the path provides a complete polygon that can be filled in appropriately. Just draw a
line to the bottom, right corner of the graph and close the path using the z command:

balanceData += “ L” + (left+width) + “,” + (top+height) + “ z”;

13. With the path data complete, you can look up the balance element in the chart and assign the
data to the d attribute:

var balancePath = svgWindow.document.getElementById(“balance”);
balancePath.setAttribute(“d”, balanceData);

14. With the path data completed, add the date labels to the bottom of the chart. Before you do that,
though, clear any existing elements in the date_labels container in the SVG. Use a while
loop, which keeps deleting the firstChild as long as the element has children:

var labels = svgWindow.document.getElementById(“date_labels”);
while (labels.hasChildNodes()) {
labels.removeChild(labels.firstChild);

}

15. Loop through the payments array one last time to add the date labels. Instead of adding a label
for each payment, only add one label per year. Do this by checking whether the current iteration
is evenly divisible by 12 (using the modulus operator %). If not, continue to the next iteration.
Otherwise, create a <text> element in the SVG namespace:

for (var i = 1; i < totalPayments; i++) {
if (i % 12 != 0) continue;
var label =
svgWindow.document.createElementNS(“http://www.w3.org/2000/svg”, “text”);

16. The new element doesn’t have any children by default, so you can’t assign the content using the
firstChild.nodeValue, as you did earlier. Instead, create a new text node with the content
and immediately append it as a child of the label:

label.appendChild(svgWindow.document.createTextNode(
payments[i].getAttribute(“PmtDate”)));

17. Positioning the dates is easier if they are right-justified. SVG controls the justification through
the text-anchor property:

label.setAttribute(“text-anchor”, “end”);

870

Part VIII: Case Study

18. Rotate the text labels so that they don’t overlap. Rotating them 45 degrees should be enough,
but you also need to position them along the bottom of the graph. Use the transform attribute
with a translate(x,y) command and a rotate(degrees) command:

label.setAttribute(“transform”,
“translate(“ + (20+(i*paymentWidth))+”, “+(20+height)+”), rotate(-45)”);

Each label is also offset by 20 on the left and the top. There is no significance to the value 20, but
it enables you to visually account for the rotation and the text-anchor.

19. Finally, append the new label to the labels group and add the closing braces for the loop and
the drawChart function:

labels.appendChild(label);
}

}

How It Works
In this Try It Out, you completed the loan calculator by using the payment and balance information to
build a chart showing how the balance is paid off over time. This kind of visualization greatly enhances
the application. Moreover, because you used SVG, the data you are generating can be manipulated
through JavaScript and the DOM. With the data returned from the Compliance Studio service, you could
create dozens of charts in SVG. Figure 21-12 shows the completed chart for a fixed-loan program.

Figure 21-12
871

Chapter 21: Case Study: Payment Calculator

Even if you are using an SVG-capable browser, the browser may not realize that the material it’s seeing
is SVG. If you point your browser at one of your newly uploaded SVG masterpieces and all you see is
XML code or a prompt to download the file, then review the steps in Chapter 19 on SVG in the section
“SVG on Your Website.”

Summary
This case study used a variety of XML technologies to build an advanced online loan calculator. By con-
necting to a freely available web service using a local proxy service, you were able to quickly execute
advanced mortgage calculations and display the results to users. Though you may not be working in the
mortgage industry, this pattern of connecting to a web service and displaying the results in your own
page is used throughout the Web.

Of course, there is no reason to limit the loan calculator to a single web service. You could easily connect
to other web services and combine the results on your page. A web page that uses disparate information
sources is often called a mashup. Online applications frequently combine calculation engines, search
engines, mapping engines, and even other mashups to build successful sites.

872

Part VIII: Case Study

A
Exercise Solutions

This appendix contains some suggested solutions to the exercise questions posed at the end of
most of the chapters throughout the book.

Chapter 1
This chapter gave an overview of XML and why it’s so useful.

Question 1
Modify the <name> XML document you’ve been working with to include the person’s title (Mr.,
Ms., Dr., and so on).

Solution
Because of the self-describing nature of XML, the only difficult part of adding a title to the <name>
example is deciding what to call it. If you call it <title>, you can add it to your document as follows:

<name>
<title>Mr.</title>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

Another possibility is to treat a title as a simple prefix to the name; this also allows you the flexibil-
ity of adding a suffix. This approach might look like the following:

<name>
<prefix>Mr.</prefix>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>
<suffix>the 3rd</suffix>

</name>

In this case, instead of giving the data an explicit label, you’re making it more generic and allowing
some text to come before and after the name.

Question 2
The <name> example we’ve been using so far has been in English, but XML is language-agnostic, so you
can create XML documents in any language you wish. Create a new French document type to represent
a name. You can use the following table for the names of the XML elements:

English French

name identité

first prénom

Last nom

middle deuxième-prénom

Solution
Although this might seem like a trick question, it’s actually not. As shown in Chapter 2, XML allows the
special French characters required here (as well as many thousands of other characters) in element
names. That means creating the document in French is just as easy as creating it in English:

<identité>
<prénom>John</prénom>
<deuxiéme-prénom>Fitzgerald Johansen</deuxiéme-prénom>
<nom>Doe</nom>

</identité>

If you enter this into Notepad, save it using the UTF-8 encoding, and view it in Internet Explorer, it will
show up just as easily as the English version did, as shown in Figure A-1.

If you have trouble entering the “é” character, open the Character Map application and copy the charac-
ter from there. You can then paste it into Notepad in the appropriate spots. On Windows XP, you can
find Character Map in Start ➪ All Programs ➪ Accessories ➪ System Tools ➪ Character Map.

Figure A-1

874

Appendix A: Exercise Solutions

When you save this document, however, be sure to specify to Notepad that you want to save the file
using the UTF-8 encoding. If you use the default ANSI encoding, the document won’t show up in the
browser properly. Instead, you’ll get an error message like the one shown in Figure A-2. In Chapter 2,
you’ll see why this encoding setting is so important.

Figure A-2

Although XML is language-agnostic, allowing you to create markup in any language you want, remem-
ber that XML is not able to translate markup from one language to another. Therefore, if you write an
application that handles names, and program that application to ask the XML parser for the information
from the element called last, that’s what the parser looks for. If you try to feed your French XML docu-
ment to that application, the parser will find an element called nom, but it won’t be able to find an ele-
ment called last, which means the application won’t be able to get the data it needs. There is no way
for an XML parser to know that a nom element is equivalent to a last element; as far as the parser is
concerned, you’ve created two completely different document types, even if they are equivalent to a
human mind. This is an important concept to remember as you continue through the book.

Chapter 2
This chapter described the basic syntax for writing well-formed XML documents.

Question 1
For the addresses in our Order XML, we used a common format of “Address Line 1, Address Line 2,
City, State, and Zip Code.” Other applications need to be stricter with their addresses, and have separate
elements for street number, street name, and so on. Rewrite the last version of the Order XML using the
following information, instead of the Address Line 1/Address Line 2 format:

875

Appendix A: Exercise Solutions

❑ Street number

❑ Street name

❑ Apt. number

❑ City

❑ State

❑ Zip code

❑ Additional information

Solution
As always, there are multiple ways this could be designed. One option is to use attributes, to break up
information about the street and the apartment:

<Address>
<Street number=”123”

name=”Somewhere Ave.” />
<Apartment number=””

type=”” />
<!-–the apartment type would

specify apartment, suite,
room, etc. –->

<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>
<AdditionalInformation/>

</Address>

It’s nice to have this flexibility, but for this example it would not be wise to design the address like that,
because it isn’t consistent with the rest of the document. Instead, to fit in with the naming convention
used throughout the rest of the document, it’s probably better to use child elements, as follows:

<Address>
<StreetNumber>123</StreetNumber>
<StreetName>Somewhere Ave.</StreetName>
<ApartmentNumber/>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>
<AdditionalInformation/>

</Address>

That turns the overall document into this:

<?xml version=”1.0”?>
<Orders Count=”2”>
<Order ID=”0000000001”>
<?SernaProcessor ManualIntervention reason:Insufficient Funds?>
<Type>N</Type>

876

Appendix A: Exercise Solutions

<Date>Jan 1, 2004, 14:29</Date>
<Customer>
<SernaDirect>
<SubscriptionType>B</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>

</SernaDirect>
<Address>
<StreetNumber>123</StreetNumber>
<StreetName>Somewhere Ave.</StreetName>
<ApartmentNumber/>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>
<AdditionalInformation/>

</Address>
<CreditCard>
<Number>4111111111111111</Number>
<CardHolderName>John Q Public</CardHolderName>
<Expiry>11/09</Expiry>

</CreditCard>
<Phone>5555555555</Phone>
<Name>John Public</Name>
<Email>jpublic@someprovider.com</Email>

</Customer>
<Number>x582n9</Number>
<Products Count=”1”>
<Product>
<Model>X9</Model>
<Price>129.95</Price>
<ID>x9000059</ID>

</Product>
</Products>

</Order>
<Order ID=”0000000002”>
<Type>N</Type>
<Date>Jan 1, 2004, 16:00</Date>
<Customer>
<SernaDirect>
<SubscriptionType>D</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>

</SernaDirect>
<Address>
<StreetNumber>89</StreetNumber>
<StreetName>Subscriber’s Street</StreetName>
<ApartmentNumber/>
<City>Smallville</City>
<State>XQ</State>
<Zip>000000000</Zip>
<AdditionalInformation>Box 882</AdditionalInformation>

</Address>
<CreditCard>
<Number>4512451245124512</Number>
<CardHolderName>Helen P Someperson</CardHolderName>
<Expiry>01/08</Expiry>

877

Appendix A: Exercise Solutions

</CreditCard>
<Phone>5554443333</Phone>
<Name>Helen Someperson</Name>
<Email>helens@isp.net</Email>

</Customer>
<Number>a98f78d</Number>
<Products Count=”1”>
<Product>
<Model>Y9</Model>
<Price>229.95</Price>
<ID>y9000065</ID>

</Product>
</Products>

</Order>
</Orders>

This doesn’t put to work all of the different things you learned in the chapter, but it is a better overall
design, especially when the document as a whole is taken into consideration.

Question 2
Sometimes the syntax used by XML can be a little troublesome to figure out. The following XML docu-
ment contains a few syntactical errors, preventing it from being well formed. Correct them so that the
document can be read by IE.

Hint: When I’m trying to correct a file like this, I often open it in the browser and fix errors as the
browser reports them to me. Be warned — some of the errors are a bit more difficult to figure out than
others.

<?xml version=”1”?>
<document>
<--There are a couple of problems with this document.-->
<Information>This document
contains some < bold>information</bold>. Once
it’s corrected, it can be read by a parser.</Information>

</Document>

Solution
For this example, I purposely tried to pick some common errors that I find hard to spot when I’m work-
ing with XML. When you have an XML document that isn’t well formed and you can’t figure out why,
your first step should always be to load the document into a parser that provides good error informa-
tion. IE is an excellent example. When I load this document into a browser, the first thing that it com-
plains about is the version number, as shown in Figure A-3.

878

Appendix A: Exercise Solutions

Figure A-3

XML parsers are very picky about the version number; it has to be exactly “1.0” — “1” isn’t good
enough. Correct the version number as follows:

<?xml version=”1.0”?>
<document>
<-–There are a couple of problems with this document.–->
<Information>This document
contains some < bold>information</bold>. Once
it’s corrected, it can be read by a parser.</Information>

</Document>

Resave this and load it in the browser again. The file is still not correct, and the message shown in Figure
A-4 appears.

Figure A-4

879

Appendix A: Exercise Solutions

This doesn’t seem to make sense. Why is the XML parser trying to read what’s in the comments? The
answer is that there is no ! at the beginning of the comment, so the parser doesn’t realize it’s supposed
to be a comment. As far as the parser is concerned, there is a < character, and there’s no ! after it, so this
should be the beginning of an element. Because a dash isn’t a valid way to start an element name, the
parser assumes it has encountered an element with a bad name. Correcting this problem is easy enough.
Just add the !:

<?xml version=”1.0”?>
<document>
<!-–There are a couple of problems with this document.–->
<Information>This document
contains some < bold>information</bold>. Once
it’s corrected, it can be read by a parser.</Information>

</Document>

The document is still not done, though. Loading this into the browser results in the error shown in
Figure A-5.

Figure A-5

In this case, the error message is exactly right. The mistake made here is an extra space added after the
opening < of the <bold> element. Remove the space as follows:

<?xml version=”1.0”?>
<document>
<!-–There are a couple of problems with this document.–->
<Information>This document
contains some <bold>information</bold>. Once
it’s corrected, it can be read by a parser.</Information>

</Document>

The document is almost complete, but there is one problem left. Viewing it in the browser now reveals
the error shown in Figure A-6.

880

Appendix A: Exercise Solutions

Figure A-6

Once again, the error message provided by IE is very descriptive. Although the start-tag is named docu-
ment, with a lowercase “d,” the end-tag is named Document, with the “D” in uppercase. Changing the
end-tag to use a lowercase “d” fixes the document and results in the following XML:

<?xml version=”1.0”?>
<document>
<!-–There are a couple of problems with this document.–->
<Information>This document
contains some <bold>information</bold>. Once
it’s corrected, it can be read by a parser.</Information>

</document>

Now the document finally loads properly in the browser, as shown in Figure A-7.

Figure A-7

881

Appendix A: Exercise Solutions

Chapter 3
This chapter introduced the concept of namespaces, along with their implementation in XML.

Question 1
This chapter used the following XML document, in which you had to cancel the default namespace:

<employee>
<name>Jane Doe</name>
<notes>

<p xmlns=”http://www.w3.org/1999/xhtml”>I’ve worked
with <name xmlns=””>Jane Doe</name> for over a year
now.</p>

</notes>
</employee>

Assuming that this document is for Wiley’s HR department, create a namespace for employees, and use
it in this document. Be sure to keep the XHTML elements in their namespace.

Solution
The URL we’ve been using for namespaces for Wiley has been http://www.wiley.com, followed by
something to indicate the namespace being named. In this case, you’re creating a namespace for employ-
ees, so http://www.wiley.com/employee makes sense.

Because you have a <name> element embedded inside an XHTML <p> element, it makes sense to use
prefixes, rather than default namespaces, so the resulting document could look like this:

<emp:employee xmlns:emp=”http://www.wiley.com/employee”>
<emp:name>Jane Doe</emp:name>
<emp:notes>
<p xmlns=”http://www.w3.org/1999/xhtml”>I’ve worked
with <emp:name>Jane Doe</emp:name> for over a year
now.</p>

</emp:notes>
</emp:employee>

I decided to leave the XHTML elements in a default namespace, because I’m much more used to reading
XHTML without all of the embedded namespace prefixes. Notice that I also removed the xmlns=””
attribute, which was canceling the default namespace on the <name> element, but I then had to prefix
the <name> element with the emp prefix.

Question 2
Imagine that Wiley has been going through their employee records and realize that they don’t have a
good, unique way to identify each employee. Create a global id attribute that can be attached to any
XML element in the employee namespace you created earlier.

Put this attribute into effect by modifying the XML you created in Question 1, and mark the Jane Doe
employee as employee number x125.

882

Appendix A: Exercise Solutions

Solution
You already know the name of the attribute you want to create: The only question is what namespace
you should put it in. You could put it in the http://www.wiley.com/employee namespace, if you
think the attribute is about an employee, or you could use the http://www.wiley.com/pers names-
pace, if you think the attribute is about a person, or you could create a brand-new namespace, if you
think it’s distinct from both of these namespaces.

As is often the case, there is no right answer. More information is probably required to determine con-
ceptually what namespace should be used. For the sake of discussion, assume that this attribute is used
to identify not just employees of Wiley, but also customers, business contacts, and so on. In that case, it
makes sense to include it in the http://www.wiley.com/pers namespace.

Therefore, you could modify the earlier document to create the following:

<emp:employee xmlns:emp=”http://www.wiley.com/employee”
xmlns:pers=”http://www.wiley.com/pers”
pers:id=”x125”>

<emp:name>Jane Doe</emp:name>
<emp:notes>
<p xmlns=”http://www.w3.org/1999/xhtml”>I’ve worked
with <emp:name pers:id=”x125”>Jane Doe</emp:name>
for over a year now.</p>

</emp:notes>
</emp:employee>

Notice that the attribute is also added to the <name> element in the Notes section. Depending on how
the data will be used, this may or may not be necessary, but it couldn’t hurt.

Question 3
Create a new XML file for an employee named Alfred Neuman, with employee number x393. In the
notes for Alfred, mention that he has worked closely with Jane Doe, being sure to use the <name> ele-
ment to refer to her.

Solution
Because there isn’t really that much data in these files, Alfred’s XML file will look very similar to Jane’s.
The only real data is the <name> element, as well as the <notes> field. The result should look similar to
this:

<emp:employee xmlns:emp=”http://www.wiley.com/employee”
xmlns:pers=”http://www.wiley.com/pers”
pers:id=”x393”>

<emp:name>Alfred Neuman</emp:name>
<emp:notes>
<p xmlns=”http://www.w3.org/1999/xhtml”>Alfred has worked
with <emp:name pers:id=”x125”>Jane Doe</emp:name> in the
past, and she has had nothing but good to say about him.</p>

</emp:notes>
</emp:employee>

883

Appendix A: Exercise Solutions

Chapter 4
This chapter showed how to utilize DTDs to easily validate your XML documents against a defined
vocabulary of elements and attributes.

Question 1
Build a contact for yourself in the list based on the declarations in the contacts DTD. Once you have
added the new contact, validate your document to ensure that it is correct.

Solution
Because I have already added a contact for myself in the chapter, here I add a new contact for “Weird
Al” Yankovic, one of my favorite recording artists. Here is the contact information for “Weird Al”:

<contact person=”Weird_Al_Yankovic” tags=”singer artist parody”>
<name>
<first>Weird</first>
<first>Al</first>
<middle>Matthew</middle>
<last>Yankovic</last>

</name>
<location>
<address>Lynwood, CA, USA</address>
<latitude>33.959878</latitude>
<longitude>-118.210487</longitude>

</location>
<phone kind=”Work”>001-805-646-8433</phone>
<knows contacts=”Jeff_Rafter”/>
<description>”Weird Al” is the most creative musical genius ever.
Clearly chief among the White and Nerdy</description>

</contact>

Question 2
Add a gender attribute declaration for the <contact> elements. The attribute should allow two possi-
ble values: male and female. Make sure the attribute is required.

Solution
You first need to modify the DTD. Add the attribute declaration with an enumerated list as the data
type. Also, make sure that you have included the #REQUIRED keyword:

<!ELEMENT contact (name, location, phone, knows, description)>
<!ATTLIST contact person ID #REQUIRED>
<!ATTLIST contact tags NMTOKENS #IMPLIED>
<!ATTLIST contact gender (male | female) #REQUIRED>

Of course, the new requirement means you need to change your XML instance document. Add a gender
attribute to each of the contacts in your XML file, as shown in the following example:

<contact person=”Jeff_Rafter” tags=”author xml poetry” gender=”male”>

884

Appendix A: Exercise Solutions

Question 3
Currently, each contact can have only one phone number. Modify the contact declaration so that each con-
tact can have zero or more phone numbers. In addition, add declarations for website and email elements.

Solution
In order to allow for multiple <phone> elements as well as <website> and <email> elements, you
needed to modify the declaration for the <contact> element:

<!ELEMENT contact (name, location, phone*, website*, email* knows, description)>
<!ATTLIST contact person ID #REQUIRED>
<!ATTLIST contact tags NMTOKENS #IMPLIED>
<!ATTLIST contact gender (male | female) #REQUIRED>

You also needed to add declarations for the new <website> and <email> elements:

<!ELEMENT website (#PCDATA)>
<!ELEMENT email (#PCDATA)>

Your existing contact list should still be valid. Of course, if you want to add more information to your
contacts, you now can. For example, an updated contact may look like the following:

<contact person=”Weird_Al_Yankovic” tags=”singer artist parody”>
<name>
<first>Weird</first>
<first>Al</first>
<middle>Matthew</middle>
<last>Yankovic</last>

</name>
<location>
<address>Lynwood, CA, USA</address>
<latitude>33.959878</latitude>
<longitude>-118.210487</longitude>

</location>
<phone kind=”Work”>001-805-646-8433</phone>
<website>http://weirdal.com</website>
<website>http://www.myspace.com/weirdal</website>
<email>cpfoa@aol.com</email>
<knows contacts=”Jeff_Rafter”/>
<description>”Weird Al” is the most creative musical genius ever.
Clearly chief among the White and Nerdy.</description>

</contact>

Chapter 5
This chapter explained how to create XML Schemas that can be used to schema validate your XML
documents.

885

Appendix A: Exercise Solutions

Question 1
Add a gender attribute declaration for the <contact> elements. The attribute should allow two possi-
ble values: male and female. Make sure the attribute is required.

Solution
Declare the new gender attribute within the <complexType> definition for the <contact> element.
Within the attribute declaration, include an enumerated <simpleType> declaration that lists the values
male and female:

<element name=”contact” minOccurs=”0” maxOccurs=”unbounded”>
<complexType>
<sequence>
<element ref=”name:name”/>
<element name=”location” type=”contacts:LocationType”/>
<element name=”phone” type=”contacts:PhoneType”/>
<element name=”knows” type=”contacts:KnowsType”/>
<element name=”description” type=”contacts:DescriptionType”/>

</sequence>
<attribute name=”tags” type=”token”/>
<attribute name=”person” type=”ID”/>
<attribute name=”gender” required=”true”>
<simpleType>
<restriction base=”string”>
<enumeration value=”male”/>
<enumeration value=”female”/>

</restriction>
</simpleType>

</attribute>
</complexType>

</element>

Because the attribute is required, you must add these attributes to your current contacts listing.

Question 2
Currently, each contact can have only one phone number. Modify the contact declaration so that each
contact can have zero or more phone numbers. In addition, add declarations for website and email ele-
ments.

Solution
Modify the minOccurs and maxOccurs of the <phone> element declaration within the <complexType>
for the <contact> element. You can also add the new element declarations after the <phone> element
declaration:

<element name=”contact” minOccurs=”0” maxOccurs=”unbounded”>
<complexType>
<sequence>
<element ref=”name:name”/>
<element name=”location” type=”contacts:LocationType”/>

886

Appendix A: Exercise Solutions

<element name=”phone” type=”contacts:PhoneType”
minOccurs=”0” maxOccurs=”unbounded”/>

<element name=”website” type=”string”
minOccurs=”0” maxOccurs=”unbounded”/>

<element name=”email” type=”string”
minOccurs=”0” maxOccurs=”unbounded”/>

<element name=”knows” type=”contacts:KnowsType”/>
<element name=”description” type=”contacts:DescriptionType”/>

</sequence>
<attribute name=”tags” type=”token”/>
<attribute name=”person” type=”ID”/>
<attribute name=”gender” required=”true”>
<simpleType>
<restriction base=”string”>
<enumeration value=”male”/>
<enumeration value=”female”/>

</restriction>
</simpleType>

</attribute>
</complexType>

</element>

Again, you can now add new content to each of your contacts, but your existing file should validate
without any changes.

Question 3
Modify the <description> declaration to include an element wildcard. Within the wildcard, specify
that the description element can accept any elements from the namespace http://www.w3.org/1999/
xhtml. Set the processContents attribute to lax.

Solution
In this exercise, you want to modify the <description> element so that it can include any elements
from the XHTML namespace. To do this, you need to replace the existing element declarations with an
element wildcard declaration:

<complexType name=”DescriptionType” mixed=”true”>
<sequence>
<any namespace=”http://www.w3.org/1999/xhtml” processContents=”lax”
minOccurs=”0” maxOccurs=”unbounded”/>

</sequence>
</complexType>

After you’ve completed the changes to the declaration, you need to update your XML document. Your
document had the following:

Jeff is a developer & author for Beginning XML 4th edition ©
2006 Wiley Publishing.
Jeff loves XML!

887

Appendix A: Exercise Solutions

But you needed to modify this. In order for the content to be valid, you need to ensure that all of the ele-
ments used inside the description were from the XHTML namespace. To do this, you first add a name-
space declaration to your root element. Then, you add the new prefix to all of your
 and , and
 elements:

Jeff is a developer & author for Beginning XML <html:em>4th edition</html:em>
© 2006 Wiley Publishing.<html:br/>Jeff <html:strong>loves</html:strong> XML!

Don’t forget to add the namespace declaration for the XHTML namespace to the header of the contacts
listing:

<?xml version=”1.0”?>
<contacts
xmlns=”http://www.example.com/contacts”
xmlns:name=”http://www.example.com/name”
xmlns:html=”http://www.w3.org/1999/xhtml”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.example.com/contacts contacts13_solution1.xsd”
source=”Beginning XML 4E”
version=”1.0”>

Chapter 6
This chapter showed how to create RELAX NG compact schemas, which can be used to validate XML
instance documents.

Question 1
Break the contacts19.rnc schema file into two schemas. In contacts-main.rnc, place the main
schema elements. In contacts-names.rnc, place the name pattern definitions. At the top level, place an
include directive in contacts-main.rnc to include contacts-names.rnc.

Solution 1

You first need to create contacts_names.rnc. You could do this by copying the name declarations
from contacts15.rnc. The resulting file should look as follows:

name = element name { nameContents }
nameContents = (
title?,
first+,
middle?,
last

)
titles = (“Mr.” | “Mrs.” | “Ms.” | “Miss” | “Sir” | “Rev” | “Dr.”)
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }

888

Appendix A: Exercise Solutions

You also need to create the document contacts_main.rnc. This file is the same as contacts15.rnc
but the name declarations are removed and an include directive should be placed at the start of the
document:

include “contacts_names.rnc”
start = contacts
contacts = element contacts { contactsContent }
contactsContent = (
version,
source?,
contact*

)
version = attribute version { “1.0” }
source = attribute source { text }
contact = element contact { contactContents }
contactContents = (
person?,
tags?,
name,
location,
phone,
knows,
description

)
person = attribute person { text }
tags = attribute tags { text }
location = element location { locationContents* }
locationContents = (
address | (latitude, longitude)

)
address = element address { text }
latitude = element latitude { text }
longitude = element longitude { text }

phone = element phone { phoneContents }
phoneContents = (
kind?,
text

)
kinds = (“Home” | “Work” | “Cell” | “Fax”)
kind = attribute kind { kinds }

knows = element knows { knowsContents }
knowsContents = (
attribute contacts { text },
empty

)

description = element description {
mixed { descriptionContents }*

}
descriptionContents = (em | strong | br)
em = element em { text }
strong = element strong { text }
br = element br { empty }

889

Appendix A: Exercise Solutions

Question 2
Add a wildcard extension to the descriptionContents pattern so that the users can extend the con-
tacts schema by adding any elements they desire to the <description>.

Solution 2
The declaration for the description element referred to the descriptionContents pattern in the
schema:

description = element description {
mixed { descriptionContents }*

}
descriptionContents = (em | strong | br)
em = element em { text }
strong = element strong { text }
br = element br { empty }

In the new schema, remove the declarations for the , , and
 elements and change the
descriptionContents pattern as follows:

description = element description {
mixed { descriptionContents }*

}
descriptionContents =
element * { (attribute * {text})+ | descriptionContents | text }*

This declaration actually allows any attributes to be mixed in as well. To do this, you need to add one or
more cardinality (+) indicators to the attribute declaration.

Chapter 7
This chapter covered XPath 1.0, and you learned about XPath axes and the functions in the XPath 1.0
function library.

Question 1
Name two XPath axes that, respectively, can be used to select element nodes and attribute nodes. If the
context node is an element node, then provide the XPath location path, which selects the number
attribute node of that element node. Show the answer in both abbreviated and unabbreviated syntax.

Solution
Element nodes are most commonly selected using the child axis. The descendant and descendant-
or-self axes may also contain element nodes.

Attribute nodes are selected using the attribute axis.

Using abbreviated syntax, the location path @number selects the number attribute. Using unabbreviated
syntax, the equivalent location path is written as attribute::number.

890

Appendix A: Exercise Solutions

Question 2
XPath 1.0 allows wildcards to be used when selecting child nodes of the context node. What is the loca-
tion path that selects all child nodes of the context node? Give the answer in both abbreviated and unab-
breviated syntax.

Solution

Using abbreviated syntax, the asterisk (*)selects all child element nodes of the context node; in unabbre-
viated syntax, that is written as child::*.

Chapter 8
This chapter discussed how XML documents can be restructured for data interchange or transformed for
presentation using XSLT.

Question 1
If you need to process a node in the source tree more than once but in different ways each time, what
technique does XSLT provide to achieve this?

Solution

XSLT provides the use of modes to allow a node in the source tree to be processed multiple times. An
xsl:apply-templates element can have a mode attribute. The same value as the value of the mode
attribute of the xsl:apply-templates element will match, and therefore only that template rule will be
processed.

Question 2
What are the two XSLT elements that provide conditional processing? Describe how the functionality
provided by these two elements differs.

Solution

XSLT has the xsl:if and xsl:choose elements to provide conditional processing. The content of an
xsl:if element is processed if a test is true and allows a single choice to be made. The xsl:choose ele-
ment, together with its child elements, xsl:when and xsl:otherwise, allows multiple tests to be
applied. No test is applied on the xsl:choose element or the xsl:otherwise element. Each xsl:when
element has an associated test. Each test on the xsl:when elements is evaluated in turn. If a test returning
true is found on an xsl:when element, then the content of that xsl:when element is processed and all
subsequent xsl:when elements are ignored, as is the xsl: otherwise element. If no xsl:when element
has a test that returns true, then the content of the xsl:otherwise element, if present, is processed.

Chapter 9
This chapter covered some foundational aspects of the upcoming XML Query Language, XQuery.

891

Appendix A: Exercise Solutions

Question 1
What notation is used in an XQuery expression to indicate that its content is created dynamically?

Solution

Paired curly brackets, written as { and }, are used to indicate that their content is evaluated at runtime.
Other parts of an XQuery expression — for example, start-tags and end-tags — of element constructors,
are used literally in the output from a query.

Question 2
What are the component parts of a FLWOR expression and what does each do?

Solution

There are potentially five parts of a FLWOR expression: the for clause, the let clause, the where clause,
the order by clause, and the return clause. In the for clause, a variable can be bound to multiple items
in a sequence. In a let clause, a variable is bound to a single item. The where clause filters the results
according to specified criteria. The order by clause specifies any ordering of the returned data. The
return clause specifies the construct in the output for each variable, appropriately filtered and sorted.

Chapter 10
This chapter explored the increasing business need to store or expose data as XML through the use of a
viable XML-enabled database.

Question 1
List some reasons why adding XML functionality to a relational database management system may be
preferable to using a native XML database.

Solution

Be aware that this issue can generate discussions of religious intensity. The following offers a possible
answer to the question: Most uses of XML are in a setting where relational database management sys-
tems are already in use. Using an RDBMS may be essentially free (for example, there would be no addi-
tional license costs), whereas acquiring a native XML database might have additional license or training
costs. In addition, most commercial relational database management systems have good and well-tested
security, reliability, and scalability. These considerations, which are important to enterprise use in a pro-
duction setting, may not be as good in the early versions of native XML databases.

Question 2
What methods are available in SQL Server 2005 to manipulate data in a database column of type xml?

892

Appendix A: Exercise Solutions

Solution

Five methods in SQL Server 2005 allow manipulation of type xml: query(), value(), exist(),
modify(), and nodes().

query() is used to execute XQuery; value() to return a scalar value, rather than a node set. exist()
tests for the existence of nodes and returns 1 if true, otherwise 0. modify() is Microsoft’s extension to
handle inserts, updates, and deletes; and nodes() is used when you need to transform XML into a tradi-
tional relational format, a process called shredding.

Question 3
Write a SQL query to get the ID and title of blog items from the XML category of the MySQL database.
Would you expect this query to scale if your blog grows and includes many blog entries? What would
you do to increase performance in that case?

Solution
The SQL query needs to use the function ExtractValue twice:

1. In the select clause, the title is extracted by the following function call: ExtractValue
(content, ‘/item/title’)

2. In the where clause, the category is extracted and tested using the following condition:
ExtractValue(content, ‘/item[category]=”XML”’) != ‘’

The complete query is as follows:

select id, ExtractValue(content, ‘/item/title’) as title
FROM entries
where ExtractValue(content, ‘/item[category]=”XML”’) != ‘’;

Using this function as the only condition in the where clause means that the database engine needs to do
a table scan and perform an XML parsing and an XPath query for each line in the table, which won’t
scale when your table grows.

To solve this performance issue, you would have to rely on the relational features of MySQL, rather than
rely on XML and XPath. In that case, a solution would be to create a separate table to describe the rela-
tion between categories and blog entries, and perform a SQL join between this table and the table
entries.

Chapter 11
This chapter introduced the XML Document Object Model (DOM), noting the differences between inter-
faces and nodes as well as describing several of the most common DOM interfaces and objects.

Question 1
Describe an important difference between the NamedNodeMap object and the NodeList object.

893

Appendix A: Exercise Solutions

Solution
The NamedNodeMap object is unordered and is used to refer to attributes, because the attributes of an ele-
ment are not ordered. A NodeList object is ordered, so it cannot be used to refer to attributes. A
NodeList object often corresponds to the child nodes of a Document node or an Element node, because
those child nodes are ordered.

Question 2
List the methods of the Document object that are used to add Element nodes — first, in no namespace
and, second, in a namespace.

Solution
The createElement() method of the Document object is used to create new Element nodes where the
element is not in a namespace. To add Element nodes where the element is in a namespace, use the
createElementNS() method. Microsoft’s offerings do not support createElementNS, but to make up
for this, they do accept a namespace URI as an argument.

Chapter 12
This chapter covered the Simple API for XML (SAX).

Question 1
Calculate the weight, length, and total number of occupants on the entire train. Once the document has
been parsed, print out the result of the calculations.

Solution
In general, this is a straightforward task; all you needed to do was record the values as you encountered
them and add them to a total variable that could be printed out in the endDocument function. The first
step was to rename the class to TrainReader_Question1. You also add declarations for your total vari-
ables and a StringBuffer to collect the element values:

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class TrainReader_Question1 extends DefaultHandler

{
private boolean isColor;
private String trainCarType = “”;
private StringBuffer trainCarColor = new StringBuffer();
private Locator trainLocator = null;

private StringBuffer trainElementValue = new StringBuffer();
private int totalWeight;

894

Appendix A: Exercise Solutions

private int totalLength;
private int totalOccupants;
public static void main (String[] args)
throws Exception

{
System.out.println(“Running train reader...”);

TrainReader_Question1 readerObj = new TrainReader_Question1();
readerObj.read(args[0]);

}

You then need to modify your startDocument and endDocument functions. Inside of startDocument,
you reset your total values to 0. Within the endDocument function, you make sure to print out the
results of the calculations:

public void startDocument()
throws SAXException

{
System.out.println(“Start of the train”);
totalWeight = 0;
totalLength = 0;
totalOccupants = 0;

}

public void endDocument()
throws SAXException

{
System.out.println(“End of the train”);
System.out.println(“The train weighed “ + totalWeight + “ tons”);
System.out.println(“The train was “ + totalLength + “ feet long”);
System.out.println(“The train had “ + totalOccupants + “ occupants”);

}

Next, inside of the startElement function, you reset the trainElementValue buffer if you are not
working with a color:

public void startElement(String uri, String localName, String qName, Attributes
atts)
throws SAXException

{
if (localName.equals(“car”)) {
if (atts != null) {
trainCarType = atts.getValue(“type”);

}
}
if (localName.equals(“color”))
{
trainCarColor.setLength(0);
isColor = true;

}else {
isColor = false;
trainElementValue.setLength(0);

}

}

895

Appendix A: Exercise Solutions

As shown when collecting the value of the <color> elements, be sure to append any data you receive to
a buffer. Although it is unlikely you would receive multiple calls to the characters function for a single
value, it is possible, and you must be ready for it:

public void characters(char[] ch, int start, int len)
throws SAXException

{
if (isColor)
{
trainCarColor.append(ch, start, len);

}else {

trainElementValue.append(ch, start, len);

}
}

Finally, in the endElement function, you performed the calculations. You first copy the value of the
buffer into the elementValue variable. This value could include “tons” or “feet,” so you check whether
there is a space and delete everything from the space until the end of the string. In a real application, you
would need to do more error checking here to ensure that you don’t receive a bad value. Once you
obtain the right string, you parse it into a numeric value and add it to the correct total based on the
localName:

public void endElement(String uri, String localName, String qName)
throws SAXException

{
if (isColor)
{
System.out.println(“The color of the “ + trainCarType + “ car is “ +
trainCarColor.toString());

if ((trainCarType.equals(“Caboose”)) &&
(!trainCarColor.toString().equals(“Red”)))

{
if (trainLocator != null)
throw new SAXException(“The caboose is not red at line “ +
trainLocator.getLineNumber() + “, column “ +
trainLocator.getColumnNumber());

else
throw new SAXException(“The caboose is not red!”);

}
}else {

String elementValue = trainElementValue.toString();
if (elementValue.indexOf(“ “) >= 0)
elementValue = elementValue.substring(0, elementValue.indexOf(“ “));

int value = Integer.parseInt(elementValue);

if (“weight”.equals(localName)) {
totalWeight += value;

}else if (“length”.equals(localName)) {
totalLength += value;

}else if (“occupants”.equals(localName)) {

896

Appendix A: Exercise Solutions

totalOccupants += value;
}

}
isColor = false;

}

In the end, you can quickly see how much the train weighed, how long it was, and how many occupants
were on the train. If you ran the program against the Train3.xml sample document from Chapter 12,
you would see the following results:

Running train reader...
Start of the train
The color of the Engine car is Black
The color of the Baggage car is Green
The color of the Passenger car is Green and Yellow
The color of the Caboose car is Red
End of the train
The train weighed 722 tons
The train was 190 feet long
The train had 30 occupants

Make sure you reset the caboose’s color to Red if you receive an error.

Question 2
Print out a list of all elements declared in the DTD. To do this, descend the TrainReader class from
DefaultHandler2 instead of DefaultHandler. Register the TrainReader class with the parser so that
you can receive DeclHandler events (hint: you need to use a property).

Solution
Although this exercise question may have seemed more difficult than the first, the code was actually
shorter. You first need to import the helper class DefaultHandler2. Then, you modify your declaration
to descend from DefaultHandler2 (and change the name of this class for the example):

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import org.xml.sax.ext.DefaultHandler2;
public class TrainReader_Question2 extends DefaultHandler2
{

private boolean isColor;
private String trainCarType = “”;
private StringBuffer trainCarColor = new StringBuffer();
private StringBuffer trainElementValue = new StringBuffer();
private Locator trainLocator = null;
private int totalWeight;
private int totalLength;
private int totalOccupants;

public static void main (String[] args)
throws Exception

897

Appendix A: Exercise Solutions

{
System.out.println(“Running train reader...”);

TrainReader_Question2 readerObj = new TrainReader_Question2();
readerObj.read(args[0]);

}

Before parsing the document, you need to register your class as a DeclHandler with the parser. Because
the DeclHandler is an extension interface, the only way to register it is to set the property http://
xml.org/sax/properties/declaration-handler:

public void read(String fileName)
throws Exception

{
XMLReader reader =

XMLReaderFactory.createXMLReader(“org.apache.xerces.parsers.SAXParser”);
reader.setContentHandler (this);
reader.setErrorHandler (this);

try
{

reader.setFeature(“http://xml.org/sax/features/validation”, true);
}
catch (SAXException e)
{
System.err.println(“Cannot activate validation”);

}

try
{

reader.setProperty(“http://xml.org/sax/properties/declaration-handler”,
this);

}
catch (SAXException e)
{

System.err.println(“Cannot set declaration handler”);
}
try
{

reader.parse(fileName);
}
catch (SAXException e)
{

System.out.println(“Parsing stopped : “ + e.getMessage());
}

}

Finally, you need to override the elementDecl function. Recall that in the DefaultHandler2 class this func-
tion does absolutely nothing. Inside the function, all you do is print out a message with the element name:

public void elementDecl(String name, String model)
throws SAXException {
System.out.println(“Element declaration : “ + name);

}

898

Appendix A: Exercise Solutions

While the resulting output may not be very exciting, being able to access declaration events is. Many
XML editors utilize this feature of SAX to generate lists of elements for tag completion. If you were to
run the code on the Train4.xml sample documents from Chapter 12, you would see the following
results:

Running train reader...
Start of the train
Element declaration : train
Element declaration : car
Element declaration : color
Element declaration : weight
Element declaration : length
Element declaration : occupants
The color of the Engine car is Black
The color of the Baggage car is Green
The color of the Passenger car is Green and Yellow
The color of the Caboose car is Red
End of the train
The train weighed 722 tons
The train was 190 feet long
The train had 30 occupants

If you receive an error, remember to change the <conductors> element back to <occupants> and cor-
rect any additional errors in the document.

Chapter 13
This chapter covered RSS and content syndication, introducing the fundamental concepts, some of the
techniques that can be applied, and how XML is central to content syndication.

Question 1
At the end of the description of the simple Python aggregator, it was demonstrated how it is relatively
simple to extend the range of the elements covered, by adding support for dc:source. Your first chal-
lenge is to extend the application so that it also displays the author of a feed entry, if that information is
available.

You should check the specs and some real-world feeds yourself, but the elements used for identifying
the author of an item are usually one of the following: author, dc:creator, atom:name, or foaf:name.
The author element appears in the “simple” RSS versions (0.9x, 2.0) and has no namespace. However,
there is a slight complication, as there is also an element in RSS 2.0 called name, which is used for the
name of the text object in a text input area (the text input area elements are rarely encountered in prac-
tice, but it does make for a more interesting exercise). Therefore, part of this exercise is to ensure that this
element won’t be mistaken for the name of the author.

Solution
The core of the solution is just a matter of following what was done in the chapter for dc:source— that
is, add an extra conditional to the endElementNS method in feed_handler.py. However, there is also
the little matter of distinguishing between atom:name/foaf:name (author) and name (text area). The

899

Appendix A: Exercise Solutions

potential for naming clashes has been taken into account by using the SAX endElementNS method,
rather than the marginally simpler endElement. Referring back to the endElementNS method in
feed_handler.py, you see it begins like this:

def endElementNS(self, name, qname):
“Collects element content, switches state as

appropriate (called by SAX parser)”
(namespace, localname) = name

...

The name value passed to the method is actually a pair of individual values combined in a tuple. The
localname part is what has been used in the conditionals so far, but the namespace string is also avail-
able. As a necessary step, check whether the unambiguous combination of namespace and localname
is one that corresponds to the author. The extra conditional needed looks like this:

...
if localname == “source”: # dc:source

self.current_item.source = ‘(‘+self.current_item.source+’) ‘+ text
return

if (localname == “creator” or # dc:creator
localname == “author” or # RSS 0.9x/2.0
(localname == “name” and
namespace == “http://purl.org/atom/ns#”) or
(localname == “name” and
namespace == “http://xmlns.com/foaf/0.1/”)):
self.current_item.author = text

...

As you probably noticed by now, there was a little cheating in the text — a member variable source was
included in the original code for the Item class (in feed.py), so when the dc:source extension was
added, a destination for the value was already available. There isn’t really any good place available for
the value of author to go, but it’s straightforward to create one — in other words, an author member
variable in the Item class. Here’s what the code looks like (in feed.py):

class Item:
“”” Simple model of a single item within a syndication feed “””

def __init__(self):
“”” Initialize properties to defaults “””
self.title = “
self.content = “
self.source = “
self.date = time.time() - BAD_TIME_HANDICAP # seconds from the Epoch

self.author = “

...

That’s simply an additional member variable with its value initialized to an empty string, class, which
provides a string representation of the class (like toString() in Java). Here is the code, again in
feed.py:

900

Appendix A: Exercise Solutions

def __str__(self):
“”” Custom ‘toString()’ method to pretty-print “””
return (self.source + ‘ : ‘

+ self.title +’\n’
+ self.content + ‘\n’
+ self.author + ‘\n’
+ self.get_formatted_date() + ‘\n’)

The string that contains the name of the author is inserted, along with a newline character, into the string
representation of Item objects, which is used by FeedReader to display them.

Binary Relations : WordPress
While WordPress gives you choices for translating the names of the
weekdays for use with the post calendar, ...
Morten Frederiksen Thu, 20 May 2004 16:16:38 +0200

As you can see, a name has been added:

<item rdf:about=”http://purl.org/net/morten/...”>
...
<foaf:maker>

<foaf:Person>
<foaf:name>Morten Frederiksen</foaf:name>
<foaf:nick>mortenf</foaf:nick>

<foaf:mbox_sha1sum>65b983bb397fb71849da910996741752ace8369b</foaf:mbox_sha1sum>
<foaf:weblog rdf:resource=”http://purl.org/net/morten/blog”/>

</foaf:Person>
</foaf:maker>
...
</item>

It’s worth mentioning again that the model used inside the demo application is specialized to particular
kinds of feed data and is as simple as can be, and hence seriously limited. In feeds such as Morten’s, a lot
more information is potentially available structured in the RDF model (in RDF/XML syntax). The
foaf:maker of the item is a foaf:Person with a foaf:name of Morten Frederiksen. This foaf:
Person also has other properties, including a foaf:nick and a foaf:weblog. The foaf:mbox_sha1
property is a disguised reference to Morten’s mailbox (e-mail address). This has a unique value, which
makes it possible for RDF tools to tell that any other foaf:Person with the same foaf:mbox_sha1sum
is the same person, enabling them to combine (merge or “smush”) any properties associated with this
foaf:Person and reason with the information as required. RDF code libraries are available for most
languages, so if you’re considering building a more sophisticated aggregator, it’s relatively straightfor-
ward to use the richness available through RSS 1.0.

Question 2
You saw toward the end of the chapter how the most common syndication formats show themselves,
and earlier in the chapter you saw how it was possible to run an XSLT stylesheet over RSS feeds to pro-
duce an XHTML rendering. The exercise here is to apply the second technique to the first task. Try to
write an XSLT transformation that indicates the format of the feed, together with its title.

901

Appendix A: Exercise Solutions

Solution
The following (version.xsl) is one possible solution. The stylesheet starts with a list of namespace
declarations that cover the kinds of data that might be encountered:

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rss=”http://purl.org/rss/1.0/”
xmlns:foaf=”http://xmlns.com/foaf/0.1/”
xmlns:atom=”http://purl.org/atom/ns#”>

<xsl:output method=”text” indent=”yes”/>

The output method here is set to text. To keep the listing short, this stylesheet only delivers plain text
output.

To make the output more legible, it is preceded and followed by a new line, which is achieved by placing
an escaped-text representation of the newline character (
) before and after the application of the
detailed templates. The entry point into the stylesheet is through matching the root element, as shown
here:

<xsl:template match=”/”>
<xsl:text>
</xsl:text>

<xsl:apply-templates />
<xsl:text>
</xsl:text>

</xsl:template>

There now follows a series of templates that match according to simple rules intended to identify the
feed format. First of all, here is a template to match RSS versions 0.9x and 2.0:

<xsl:template match=”/rss”>
<xsl:text>RSS Version: </xsl:text>
<xsl:value-of select=”./@version” />
<xsl:apply-templates select=”channel/title” />

</xsl:template>

Text is output to state the name of the feed type (RSS), and then the value of the version attribute is
extracted. An attempt is then made to match templates to anything with the path /rss/channel/
title. The following template matches the root element of an Atom feed:

<xsl:template match=”/atom:feed”>
<xsl:text>Atom Version: </xsl:text>
<xsl:value-of select=”./@version” />
<xsl:apply-templates select=”atom:title”/>

</xsl:template>

Again, the version is extracted, and then anything matching /atom:feed/atom:title is passed to
other templates to deal with.

The next template matches RDF files:

902

Appendix A: Exercise Solutions

<xsl:template match=”/rdf:RDF”>
(RDF)

<xsl:apply-templates />
</xsl:template>

Note the requirement for RDF/XML files to have a root called rdf:RDF. This was removed from the
latest specification, though the requirement is still in place for RSS 1.0.

If the feed is RSS 1.0, it has a <channel> element, which is picked up by the following template:

<xsl:template match=”rss:channel”>
<xsl:text>RSS Version: 1.0</xsl:text>
<xsl:apply-templates />

</xsl:template>

Next is a template that matches the feed title of the three feed formats:

<xsl:template match=”rss:title | atom:title | title”>
<xsl:text>
Title: </xsl:text>

<xsl:value-of select=”text()” />
</xsl:template>

The FOAF document described in the text was a red herring, but for the sake of consistency here’s a tem-
plate that extracts the first named person in a FOAF profile:

<xsl:template match=”//*[position() = 1]/foaf:Person/foaf:name”>
<xsl:text>FOAF Name: </xsl:text>
<xsl:value-of select=”text()” />

</xsl:template>

The stylesheet ends with a template that picks up loose ends that would otherwise go to the output:

<xsl:template match=”rss:item | text()” />

</xsl:stylesheet>

Here are the results of running this transformation on the documents at the sample URIs, which were
previously downloaded using wget:

http://news.bbc.co.uk/rss/newsonline_world_edition/front_page/rss091.xml:

D:\rss-samples>java -jar saxon7.jar rss091.xml version.xsl
RSS Version: 0.91
Title: BBC News | News Front Page | World Edition

http://purl.org/net/morten/blog/feed/rdf/:

D:\rss-samples>java -jar saxon7.jar index.html version.xsl

(RDF)
RSS Version: 1.0
Title: Binary Relations

903

Appendix A: Exercise Solutions

http://icite.net/blog/?flavor=atom&smm=y:

D:\rss-samples>java -jar saxon7.jar index.html@flavor=atom version.xsl
Atom Version: 0.3
Title: the iCite net development blog

http://blogs.it/0100198/rss.xml:

D:\rss-samples>java -jar saxon7.jar rss.xml version.xsl
RSS Version: 2.0
Title: Marc’s Voice

http://swordfish.rdfweb.org/people/libby/rdfweb/webwho.xrdf:

D:\rss-samples>java -jar saxon7.jar webwho.xrdf version.xsl

(RDF)
FOAF Name: Libby Miller

Chapter 14
This chapter looked at web services, a group of XML-based protocols for performing remote procedure
calls.

Question 1
Imagine you are trying to contact an XML-RPC-based web service to submit a classified ad for a lost
dog. The required information includes your name, phone number, and the body of the ad. What might
the XML request look like?

Solution
There are two ways of doing this. The first example (shown next) is the simpler way, representing each
of the parameters individually. It begins by including the name of the procedure to call (classifieds
.submit) and then simply specifies each of the parameters, in order. (You could also add a name element
that named each parameter, as shown in the second example.)

<methodCall>
<methodName>classifieds.submit</methodName>
<params>
<param>
<value><string>Nicholas Chase</string></value>

</param>
<param>
<value><string>212-555-1234</string></value>

</param>
<param>
<value><string>Lost: Large mixed-breed dog. Chunk out of one ear,

missing an eye, limps on three legs. Answers to “Lucky”.
212-555-1234</string></value>

904

Appendix A: Exercise Solutions

</param>
</params>

</methodCall>

The second example adds the same information, but as part of a struct, with each member holding one
parameter. Which technique you choose in the real world depends on the requirements of the procedure
you’re calling.

<methodCall>
<methodName>classifieds.submit</methodName>
<params>
<param>
<value>
<struct>
<member>
<name>CustomerName</name>
<value><string>Nicholas Chase</string></value>

</member>
<member>
<name>CustomerPhone</name>
<value><string>212-555-1234</string></value>

</member>
<member>
<name>AdText</name>
<value>
<string> Lost: Large mixed-breed dog. Chunk out of one ear,
missing an eye, limps on three legs. Answers to “Lucky”.
212-555-1234</string>

</value>
</member>

</struct>
</value>

</param>
</params>

</methodCall>

Question 2
You are trying to call a REST-based web service to check on the status of a service order. The service
needs the following information:

cust_id: 3263827
order_id: THX1138

What might the request look like?

Solution
In a REST system, you add all of the information to the URL and then submit that URL as a GET request.
In this case, you’re adding two parameters, cust_id and order_id, separated by an ampersand (&):

http://www.example.com/checkServiceOrder?cust_id=3263827&order_id=THX1138

905

Appendix A: Exercise Solutions

Chapter 15
This chapter covered SOAP, an XML-based protocol for performing remote procedure calls and passing
information between computers. The chapter also looked at Web Services Definition Language (WSDL),
which provides other developers with all the information they might need to access your service.

Question 1
Create a SOAP message that fulfills the following requirements:

1. It corresponds to an RPC called getRadioOperators().

2. It passes the following information:

❑ City and state or postal code

❑ Radius

❑ License class

3. The server must receive and verify a call sign from the sender.

Solution
In this case, you’re creating a simple SOAP message, which includes the request as the contents of the
Body element, as shown in the following code. You call the getRadioOperators() method, so that’s
the name of the root element for your payload, and each item is included in an element that corresponds
to the name of the parameter you’re passing. The sender’s call sign is sent in the header, with the
mustUnderstand attribute set to true. If the server doesn’t understand how to handle this information
before processing the message, then it must reject the message altogether.

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
<soap:Header xmlns:s=”http://www.example.com/radio/”>
<s:License mustUnderstand=”true”>
WNEW

</s:License>
</soap:Header>
<soap:Body xmlns:h=”http://www.example.com/hams/”>

<h:getRadioOperators>
<h:postalCode>02134</h:postalCode>
<h:radius>5</h:radius>
<h:licenseClass>General</h:licenseClass>

</h:getRadioOperators>
</soap:Body>

</soap:Envelope>

Question 2
Create a WSDL file that describes the document in Question 1.

906

Appendix A: Exercise Solutions

Solution
Starting at the bottom, we’ve created a service that has an instance located at a particular URL,
http://localhost/hamsearch.asp. That instance is “bound” to the HamSearchBinding binding,
which specifies that the message is to be sent using the SOAP RPC style, and defines the encoding for
the input and output messages, as well as their namespaces. The binding also specifies that it’s using
the HamSearchPort portType, or interface. This portType specifies the message types for the input
and output messages, which refer back to element definitions in the schema at the top of the document,
as shown in the following:

<?xml version=”1.0”?>
<definitions name=”HamSearch”

targetNamespace=”http://www.example.com/hamSearch”
xmlns:typens=” http://www.example.com/hamSearch “
xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<types>
<xsd:schema xmlns=””

xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
targetNamespace=”http://www.example.com/hamSearch”>
<xsd:complexType name=”HamSearchType”>

<xsd:sequence>
<xsd:choice>

<xsd:group>
<xsd:element name=”City” type=”xsd:string” />
<xsd:element name=”State” type=”xsd:string” />

</xsd:group>
<xsd:element name=”Radius” type=”xsd:number” />
<xsd:element name=”LicenseClass” type=”xsd:string” />

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name=”HamSearchResponseType”>

<xsd:sequence>
<xsd:element name=”NumHamsFound” type=”xsd:number”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>
</types>

<message name=”HamSearchRequestMsg”>
<part name=”HamSearchRequest” type=”typens:HamSearchType”/>

</message>
<message name=”HamSearchResponseMsg”>

<part name=”HamSearchResponse” type=”typens:HamSearchResponseType”/>
</message>

<portType name=”HamSearchPort”>
<operation name=”HamSearch”>

<input message=”typens:HamSearchRequestMsg”/>

907

Appendix A: Exercise Solutions

<output message=”typens:HamSearchResponseMsg”/>
</operation>

</portType>
<binding name=”HamSearchBinding” type=”typens:HamSearchPort”>

<soap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”GetOperators”>
<soap:operation/>
<input>

<soap:body use=”encoded” namespace=”http://www.example.com/
hamsearch” encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

</input>
<output>

<soap:body use=”encoded” namespace=”http://www.example.com/
hamsearch” encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

</output>
</operation>

</binding>
<service name=”HamSearchService”>

<port name=”HamSearchPort” binding=”typens:HamSearchBinding”>
<soap:address location=”http://localhost/hamsearch.asp”/>

</port>
</service>

</definitions>

Chapter 16
This chapter introduced Ajax (Asynchronous JavaScript and XML).

Question 1
Construct the equivalent JSON literal for the following XML:

<person>
<forename>Joe</forename>
<surname>Fawcett</surname>
<profession>Developer</profession>
<children>
<child>
<forename>Persephone</forename>
<sex>female</sex>

</child>
<child>
<forename>Xavier</forename>
<sex>male</sex>

</child>
</children>

</person>

908

Appendix A: Exercise Solutions

Solution
var person = “{forename: \”Joe\”, surname: \”Fawcett\”, profession: \”Developer\”,”

+ “ children: [{forename: \”Persephone\”, sex: \”female\”}, “
+ “ {forename: \”Xavier\”, sex: \”male\”}]}”;

Question 2
Why is it necessary to use a server-side proxy when calling a third-party web service?

Solution
The XMLHttpRequest object only allows calls to a service in the same domain as the page on which it
resides. This is known as the same origin policy.

Question 3
What is the maximum number of simultaneous connections allowed by most browsers to a single URL?

Solution
Two.

Chapter 17
This chapter introduced Cascading Style Sheets (CSS) and how it can be used with XHTML.

Question 1
The exercises for this chapter focus on one example: a purchase order. You slowly build a more complex
style sheet for the following XML file (ch17_ex01.xml):

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=”text/css” href=”ch17_ex01.css” ?>

<purchaseOrder orderID=”x1129001”>

<buyer>
<companyName>Woodland Toys</companyName>
<purchaserName>Tom Walter</purchaserName>
<address>
<address1>The Business Centre</address1>
<address2>127 Main Road</address2>
<town>Albury</town>
<city>Seaforth</city>
<state>BC</state>
<zipCode>22001</zipCode>

</address>

909

Appendix A: Exercise Solutions

</buyer>

<orders>
<item>

<sku>126552</sku>
<product>People Carrier</product>
<description>Childs pedal operated car</description>

</item>
<item>

<sku>122452</sku>
<product>BubbleBaby</product>
<description>Bean filled soft toy</description>

</item>
<item>

<sku>129112</sku>
<product>My First Drum Kit</product>
<description>Childs plastic drum kit</description>

</item>
</orders>

</purchaseOrder>

First, create a rule to put the purchase order in a box, with a 1-pixel black border, 20 pixels of padding
inside, and a 20-pixel margin to separate the box from the browser window.

Solution
The <purchaseOrder> element is specified to be a block-level element. Use the margin and padding
attributes to create some whitespace on either side of the 1-pixel black border:

purchaseOrder {
display:block;

margin:20px; padding:20px;
border-style:solid; border-width:1px; border-color:#000000;}

Question 2
Create a rule that writes “Purchase Order Number” in a large, bold, Arial typeface as the heading (in
case the user does not have Arial, add Verdana as a second option, and the default sans-serif font as the
third option), and that collects the purchase order number from the orderID attribute.

Solution
To write out “Purchase Order Number” along with the value of the orderID attribute, first set the font
you want. Then, use the content property to first write out “Purchase Order Number,” and then use the
special value of attr(orderID):

purchaseOrder:before {
font-family:arial, verdana, sans-serif;
font-size:28px; font-weight:bold;
content:”Purchase Order Number: “ attr(orderID);}

This works in Firefox, Opera, and Safari, but not in Internet Explorer.

910

Appendix A: Exercise Solutions

Question 3
Add the buyer’s details to the purchase order, with the company name in bold and each part of the
address on a new line in a smaller Arial font (and if the user does not have Arial, provide for Verdana or
the default sans-serif font).

Solution
To add the buyer’s details, you need to create styles for several elements. Rather than repeat the styles
for each element, you can use the type selector, which separates element names with a comma:

buyer, companyName, purchaserName, address1, address2, town, city, state, zipcode {
display:block;
font-family:arial, verdana, sans-serif; font-size:14px;}

Then, you only need to write one rule for the element, whose content should be displayed in bold:

companyName {font-weight:bold;}

Question 4
Write out the items ordered in a table.

Solution
The writing out of the table is fairly straightforward using the special values for the display property
designed for presenting tabular data. Remember to add some padding if you want to make your table
more readable:

orders {display:table; padding-top:30px;}item {display:table-row;}sku, product,
description {display:table-cell; padding:10px;}

This works in Firefox, but unfortunately it doesn’t work in Internet Explorer.

Chapter 18
This chapter discussed how HTML has been reformulated as an application of XML in XHTML 1.0. The
exercises for Chapter 16 required you to turn a sample HTML 3.2 document first into a strict XHTML 1.0
document, and then into a transitional XHTML 1.0 document for use on legacy browsers.

Question 1
Take the following HTML 3.2 example and create a version in XHTML 1.1 without any stylistic markup:

<HTML>
<HEAD>

<TITLE>Exercise One</TITLE>
</HEAD>

911

Appendix A: Exercise Solutions

<BODY bgcolor=white>

<H1 align=center>XHTML</H1>

XHTML 1.0 is the reformulation of HTML in XHTML. There are three XHTML 1.0
document types:

Transitional
Strict
Frameset

XHTML has also been split into modules, from which document types
such as XHTML 1.1 and XHTML Basic have been formed.

Back to top
</BODY>
</HTML>

Solution
In order to turn this example of text into valid XHTML 1.1, you must make sure all element and attribute
names are written in lowercase. XHTML (like all XML languages) is case sensitive, and all element and
attribute names should be lowercase. Next, look at what goes before the root <html> element in a strict
XHTML 1.0 document. You can start with the (optional) XML declaration (after all, this is an XML docu-
ment). Many validators require that the character encoding of the document is specified, so you can use
the encoding attribute on the XML declaration to indicate the character encoding used (you could also
use the <meta> element to provide this information). After the XML declaration, add the DOCTYPE decla-
ration, which indicates that the document is written according to the strict XHTML 1.0 document type:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

The root <html> element should feature the xmlns attribute, indicating that the markup in this docu-
ment belongs to the XHTML namespace, as shown in the following:

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en”>

You do not need to make any changes to the <head> element or its content (other than making sure the
element names are lowercase):

<head>
<title>Exercise One</title>

</head>

912

Appendix A: Exercise Solutions

The <body> element is where you should start removing the styling markup. One of the aims of XHTML
is to separate style from content, so remove the bgcolor attribute and its value; instead, use CSS to indi-
cate the background color for the document. The opening <body> tag should now look like this:

<body>

The next task is to move the anchor element inside the heading, because the anchor element is an inline
element and therefore should be inside a block-level element, such as a heading or paragraph (in the
original version the anchor element was before the h1 element). Remember also that in the strict XHTML
1.0 DTD, you should be using an id attribute for the fragment identifier instead of the name attribute.
Finally, you need to remove the align attribute from the h1 element:

<h1>XHTML</h1>

Next, remove the font element. As the first line of text represents a paragraph, it should appear inside
the opening <p> and closing </p> tags, as shown in the following:

<p>XHTML 1.0 is the reformulation of HTML in XHTML. There are three XHTML 1.0
document types:</p>

The HTML 3.2 specification actually says that “the end tag for LI elements can always be omitted.” Of
course, this is no longer the case with XHTML; you must include the closing tags for each list
item as follows:

Transitional
Strict
Frameset

Following this list is another paragraph, which you put inside opening <p> and closing </p> tags. You
could replace the element with a element, indicating strong emphasis if you wanted to,
but it is not necessary.

<p>XHTML has also been split into modules, from which document types such
as XHTML 1.1 and XHTML Basic have been formed.</p>

As with the anchor element indicating the top of the document, the link that points to the top of the doc-
ument should be contained within a block-level element, which in this case is a <div> element:

<div>Back to top</div>

Complete the document with the closing <body> and <html> tags:

</body>
</html>

Now you can run the document through a validator to ensure that it contains no errors.

913

Appendix A: Exercise Solutions

Question 2
Using the same HTML 3.2 example, create a second version that uses transitional XHTML 1.0, can work
in old browsers, and in which you could include legacy scripts and code. Once you have written your
documents, validate them using the W3C validator at http://validator .w3.org.

Solution
The XHTML 1.1 document version won’t work in very old browsers, so in this exercise you need to
make a transitional version that works on legacy browsers. The first thing to avoid is the optional XML
declaration, because older browsers do not understand it, and some of them will actually display it. You
can start the exercise with a DOCTYPE declaration, as this won’t cause a problem for older browsers:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

In the root element, it is best to avoid the namespace attribute. Although older browsers typically just
ignore markup they do not understand, there is no point in putting it in here.

<html>

You can leave the <head> element and its content as it was in the original, but when it’s time to validate,
some validators complain if you have not indicated the character encoding, so you can use the meta ele-
ment inside the head like so:

<head>
<title>Excerise One</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />

</head>

While the transitional DTD enables us to use deprecated stylistic markup, you should still avoid the use
of the bgcolor attribute, as it is not essential to the meaning of the document. In fact, the default back-
ground of browsers is white, so the background will only be a different color for users who have specifi-
cally changed the default setting. Therefore, the opening <body> tag should now look like this:

<body>

With the transitional document, there is no need to move the anchor element inside the heading, as you
had to in the strict XHTML 1.0 exercise. Older browsers do not recognize the id attribute as a destina-
tion anchor, so you shouldn’t change the name attribute to an id attribute. You could leave the align
attribute on the <h1> element, but it was removed here because that would be in the stylesheet if you
had one. Therefore, leave the next two lines of the example as it was:

<h1 align=”center”>XHTML</h1>

You can leave in the element if you wish. Recall, however, that there would be a CSS to replace
styling rules, so you can remove them. It is good practice to put the sentence in a <p> element, so you
could do that with the following:

<p>XHTML 1.0 is the reformulation of HTML in XHTML. There are three XHTML 1.0
document types:</p>

914

Appendix A: Exercise Solutions

When it comes to the unordered list, close the line item elements, with a closing tag:

Transitional
Strict
Frameset

Again, for good practice, put the sentence into a <p> element:

<p>XHTML has also been split into modules, from which document types
such as XHTML 1.1 and XHTML Basic have been formed.</p>

Finally, you have the link back to the top, which can be left on its own; you don’t need to put it into a
block-level element in the transitional DTD. Don’t forget to finish the exercise with the closing </body>
and </html> tags:

Back to top
</body>
</html>

Remember to validate your document to ensure that you have not made any mistakes.

Chapter 19
This chapter demonstrated how SVG is not only an extremely versatile drawing format, but also highly
programmable, thanks to XML and scripting support.

Question 1
Figure 19-10 shows a picture of a stylized windmill. Write the SVG code needed to draw it. You can use
the hint, but you if you like a challenge, try it before looking at the hint. Squared paper can help in work-
ing out the coordinates; don’t forget that the y-axis starts with zero at the top.

Figure 19-10

915

Appendix A: Exercise Solutions

Hint: There are several different ways to do this with SVG, but here the body of the windmill was con-
structed from a (yellow) <polygon> element with a (yellow) <circle> element half-overlapping on
top. The four (blue) vanes are <polygon> elements with three points. The shape in the middle of the
vanes is a (blue) <rect> element, with a transform to rotate it 45 degrees. At the bottom of the wind-
mill is a (green) <line> element.

Solution
The windmill can be drawn using basic shapes as follows:

<?xml version=”1.0”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg xmlns=”http://www.w3.org/2000/svg” version=”1.1”>

<!-- windmill body -->
<circle cx=”250” cy=”230” r=”30” fill=”yellow” />

<polygon points=”200,340 220,230 280,230 300,340”
fill=”yellow” />

<!-- vanes -->
<polygon points=”250,230 230,320 270,320”

fill=”red”
transform=”rotate(45, 250, 230)” />

<polygon points=”250,230 230,320 270,320”
fill=”red”
transform=”rotate(135, 250, 230)” />

<polygon points=”250,230 230,320 270,320”
fill=”red”
transform=”rotate(225, 250, 230)” />

<polygon points=”250,230 230,320 270,320”
fill=”red”
transform=”rotate(315, 250, 230)” />

<!-- centerpiece -->
<rect x=”240” y=”220” width=”20” height=”20” fill=”blue” />

<!-- bottom line -->
<line x1=”180” y1=”340” x2=”320” y2=”340”

stroke=”green” stroke-width=”6” />

</svg>

The different features of the windmill are drawn as eight different basic shapes. The circle and poly-
gon that make up the body of the windmill overlap and are the same color, giving the effect of a single
shape. Rather than figure out the coordinates of the four vanes separately, the coordinates of one vane
(as it would be positioned vertically) have been determined and the point values copied into the others,
with a rotate transform used to position them around a center point (250,230):

916

Appendix A: Exercise Solutions

<?xml version=”1.0”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg xmlns=”http://www.w3.org/2000/svg”
xmlns:xlink=”http://www.w3.org/1999/xlink”
version=”1.1”>

<defs>
<polygon id=”vane” points=”250,230 230,320 270,320”

fill=”red”/>
</defs>

<! windmill body -->
<path d=”M 200,340 L 220,230 A 30,30 0 0 1 280,230 L 300,340 z”
fill=”yellow”/>

<!-- vanes -->

<use xlink:href=”#vane” transform=”rotate(45, 250, 230)” />

<use xlink:href=”#vane” transform=”rotate(135, 250, 230)” />

<use xlink:href=”#vane” transform=”rotate(225, 250, 230)” />

<use xlink:href=”#vane” transform=”rotate(315, 250, 230)” />

<!-- centerpiece -->
<rect x=”240” y=”220” width=”20” height=”20” fill=”blue” />

<!-- bottom line -->
<line x1=”180” y1=”340” x2=”320” y2=”340”

stroke=”green” stroke-width=”6” />

</svg>

The triangular vanes are all of the same shape and color, so these attributes are given in a defs element
(see Section 5.3 of the SVG Specification). The shape defined here won’t be drawn immediately, but it
provides the description that is referred to by use elements (Section 5.6) further down the listing.
Essentially, the use element is substituted with the linked definition, and any additional attributes that
are provided locally are applied — here the rotate transform is defined for each vane. The reference is
made through an element from the XLink namespace (xlink:href), so the namespace declaration at the
beginning gives the namespace URI for the xlink prefix. In this version, the body of the windmill is
defined using a path element (see Section 8 of the SVG Specification). It trades brevity of code for sim-
plicity, something that generally has to be decided case by case. The path uses an absolute moveto to get
to the starting point (M 200,340); the line of the left-hand side of the windmill body is then drawn (L
220,230). The curve at the top of the windmill is drawn using an elliptical arc (A 30,30 0 0 1 280,230),
the last pair of figures being the right-hand side of the top (for details about arcs, see Section 8.3.8 of the
specification). A line is drawn to form the right-hand side of the windmill body (L 300,340). Finally, the
path is closed by drawing a line back to the starting point (z).

917

Appendix A: Exercise Solutions

Question 2
Get a tangram puzzle application to start with the pieces organized into the stylized cat pictured in
Figure 19-11. Everything else should stay the same — clicking Reset still places all the pieces into the
square box.

Figure 19-11

Solution
One solution starts with the puzzle pieces ready-transformed to their positions in the cat shape. The
coordinates listed in the points attributes are exactly as in the original. The transform attribute con-
tains an initial translation and rotation to place them as required. Pressing the Reset button still zeroes
all these values, placing the pieces in the square box:

<polygon points=”0,0 0,100 100,0”
transform=”translate(453.6,137.6) rotate(292.5,33.3,33.3)” />

<polygon points=”100,0, 50,50 150,50 200,0”
transform=”translate(495,45) rotate(472.5,125,25)” />

<polygon points=”50,50, 0,100 50,150 100,100”
transform=”translate(300,0) rotate(0,0,0)”/>

<polygon points=”50,50, 100,100 150,50”
transform=”translate(285,-15) rotate(90,100,66.6)”/>

<polygon points=”200,0, 100,100 200,200”
transform=”translate(245,76) rotate(22.5,166.6,100)”/>

<polygon points=”0,100, 0,200 50,150”
transform=”translate(300,-100) rotate(0,0,0)”/>

<polygon points=”0,200, 200,200 100,100”
transform=”translate(452,9.3) rotate(67.5,100,166.6)”/>

918

Appendix A: Exercise Solutions

You might be wondering how those values were obtained. Using some cardboard, a ruler, and a protrac-
tor would be one approach. An easier way is to let the computer do the work. Because it’s XML you’re
looking at, standard XML tools can be used. In the Tangram application, the pieces are moved by using
code to dynamically manipulate the transform attributes of the polygon elements. These changes are
made by modifying the DOM model in memory. It’s not possible to view the contents of the DOM by
saving the file from the viewer, but it is possible to expose it programmatically. It’s simple to get the
browser to display a piece of text using the built-in alert(‘text’) function. This causes a small win-
dow to pop up displaying the text, and can be used to provide an inside view of the DOM part that con-
tains the transform attributes of the polygon elements. In the original code, pressing any key causes a
function to be called that rotates the currently selected shape. A minor modification can be made to the
script (tangram.es) to recognize when the “x” key has been pressed.

var selectedPoly;
var track = false;
var svgDoc = null;
var polyGroup = null;

function init(evt){
svgDoc = evt.target.ownerDocument;
svgDoc.rootElement.addEventListener(“keydown”, rotatePolygon, false);
polyGroup = svgDoc.getElementById(“PolyGroup”);

}

Modify the rotatePolygon event listener to print a message when the “x” key is pressed. That function
is as follows:

function rotatePolygon(evt){
if (evt.charCode)
var charCode = evt.charCode;

else
var charCode = evt.keyCode;

if(charCode == 88) {
alert(getPolygonDetails(polyGroup));
return;

}
if (selectedPoly == null)
return;

var rotation = getRotateAngle(selectedPoly);
rotation = rotation + 22.5;
var center = getCenter(selectedPoly);
var transformString = getTransformBlock(selectedPoly, 0)
+ “ rotate(“ + rotation + “,” + center.x + “,” + center.y + “)”;

selectedPoly.setAttribute(“transform”, transformString);
}

The charCode property of the event object is obtained. Because key events are not specified in the SVG
recommendation, they are implemented in different ways. To handle this, check for the charCode or
keyCode property of the event. The code is then checked to determine whether it is an “x” by checking
for the value 88. If it is, then the polyGroup object (the parent of the polygons, extracted previously) is
passed to a function called getPolygonDetails. Whatever this returns appears as the text in a pop-up
window. If the character isn’t an “x,” then the rotatePolygon function continues as in the original ver-
sion. What’s needed are the attributes of the individual polygon elements. These are all child nodes of

919

Appendix A: Exercise Solutions

the polygon group and are easy to get from the passed polyGroup element. Each of these is examined in
turn to ensure it is actually an element node. If it is, then it has a nodeType value of 1. In that case, the
attributes of that element can be obtained in turn, using the DOM attributes.item(j) method. The
name of the node and its value are then added to a string. This accumulates all the attribute names and
values in the elements as the loops step through them. After each line, a newline character (\n) is added
for the sake of appearances:

var ELEMENT_NODE = 1;

function getPolygonDetails(group) {
var string = “”;
var children = group.childNodes;
var node;
var attr;

for (var i=0; i<children.length; i++){
node = children.item(i);
if (node.nodeType == ELEMENT_NODE){
string += node.nodeName;
for (var j = 0; j<node.attributes.length; j++){

attr = node.attributes.item(j);
string += “ “ + attr.nodeName + ‘=”’ + attr.nodeValue+ ‘“‘;

}
string += “\n”;

}
}
return string;

}

Once the string has been built, it is passed back to the preceding calling function (rotatePolygon),
which uses it as the content of an alert. If the puzzle pieces are moved around and the “x” key pressed,
then a window will appear, like the one shown in Figure A-8.

Figure A-8

Note that the order of the elements probably won’t match that of the original, as selecting an element
moves it to the last position in the list, so it shows up on top (following the painter’s model).

920

Appendix A: Exercise Solutions

Chapter 20
This chapter discussed the XForms model, including the creation of instance data, submission configura-
tion of a form, XForms form controls, and XForms model item properties.

Question 1
Experiment with the code examples given in the chapter, changing the value of the appearance
attribute on the xforms:select and xforms:select1 elements. This, particularly when viewed in
more than one XForms viewer, provides some idea of the range of visual appearances available to an
XForms developer.

Solution
There is no “solution” to this one, but you’re encouraged to explore this area further on your own.

Question 2
Describe the differences in purpose of the xforms:submit and xforms:submission elements.

Solution
The xforms:submit element controls a form control visible to users of the form to enable them to initi-
ate submission of the form, typically by a mouse click. The xforms:submission element is part of an
XForms model and is not directly visible to users. Attributes of the xforms:submission element con-
trol where the instance data is to be submitted and what method of submission should be used.

921

Appendix A: Exercise Solutions

B
XPath Reference

XPath is a well-established W3C specification that describes a non-XML syntax for selecting a set
of nodes from the in-memory model of an XML document. XPath version 1.0 reached W3C
Recommendation status on November 16, 1999. The specification documents for XPath 2.0, which
is a subset of XQuery 1.0, were in late Working Draft stage at the time of this writing. XPath, both
1.0 and 2.0, is an essential part of the corresponding XSLT specification. This appendix focuses on
XPath 1.0.

An XPath location path contains one or more location steps, separated by forward slashes (/). Each
location step has the following form:

axis-name::node-test[predicate]*

In plain English, this is an axis name, followed by two colons, a node test, and, finally, zero or
more predicates each contained in square brackets. A predicate can contain literal values (for
example, 4 or ‘hello’), operators (+, –, =, and so on), and other XPath expressions. XPath also
defines a set of functions that can be used in predicates.

An XPath axis defines how to select a part of the model of an XML document, from the perspective
of a starting point called the context node. The context node serves as the starting point for selecting
the result of an XPath expression. The node test makes a selection from the nodes on the specified
axis. In other words, a node test filters the nodes in the specified axis. By adding predicates, it is
possible to filter any nodes already selected by selecting a subset of the nodes selected by the axis,
and node-test parts of the expression. If the expression in the predicate returns true, the node
remains in the selected node set; otherwise, it is removed.

This reference lists the XPath axes, node tests, and functions. Each entry includes whether it is
implemented in version 1.0 of the specification. At one time, there were significant variations
among implementations, with, for example, the Microsoft XML Core Services lacking full XPath
1.0 compliance. The situation has now improved to the point that any XPath implementation is
likely to be essentially fully XPath 1.0–compliant. Microsoft Core XML Services (MSXML) versions
3.0 and later have full XPath implementations. Versions of MSXML before version 3.0 are not suit-
able for XPath 1.0 processing.

Other implementations, such as Xalan and Saxon, essentially fully implement version XPath 1.0.

XPath 2.0 Is Emerging Slowly
The move from XPath 1.0 to XPath 2.0 is progressing slowly due to XPath’s complicity with XQuery,
XSLT, and other parsers. Any changes made to XPath have to be carefully planned and implemented.
XPath 2.0 will use the same axes information as XPath 1.0, so there will be little change there. The major
change from XPath 1.0 to XPath 2.0 is the basic concept of using sequences instead of node-sets. The
XPath community found node-sets to be too limiting and complicated. The new sequences will allow
more flexibility and power and are simpler to use. The move from node-sets to sequences also brings
some new techniques and methods when manipulating data types and functions.

XPath 2.0 also embraces the use of XML schemas. To be good at XPath 2.0, you will have to hone those
XML schema skills. XPath 2.0, like XML schemas, are all about datatypes. The bottom line is that XPath
2.0 supports all datatypes supported by XML schemas plus some new additions.

Changes to functions in XPath 2.0 are covered at the end of this appendix.

The New Sequencing
The new sequencing is conceptually different and can now be a singleton, empty, and/or contain dupli-
cate entries. The flexibility here adds power when testing data results and using functions. A sequence is
formally described as being an ordered collection of items (some of us would have called these nodes or
simply a result set). The concept of ordered or unordered is also emphasized and can be taken advantage
of by some of the new functions.

Datatyping Control
All existing datatypes from XML schemas are supported, plus any new derivations that can be con-
structed from simple primitive types. The following table shows a list of some of the basic datatypes.
Note that the xs: prefix maps to the XML schema namespace.

xs:string xs:boolean xs:decimal

xs:float xs:double xs:duration

xs:dateTime xs:time xs:date

xs:gYearMonth xs:gYear xs:hexBinary

xs:anyURI xs:QName xs:NOTATION

Axes
This section lists each axis and includes a brief description of the nodes it selects. The principal node
type of an axis indicates what type of nodes are selected by a literal node test or the * node test (look
under the literal name node test for an example). For some axes, XPath defines an abbreviated syntax.
This syntax’s form and its primary node type are listed for every axis.

924

Appendix B: XPath Reference

ancestor

Description: Contains the context node’s parent node, the parent node’s parent
node, and so on, all the way up to the document root. If the context
node is the root node, the ancestor axis is empty

Principal node type: Element

Abbreviated syntax: No abbreviated syntax for this axis

Implemented: W3C 1.0 specification (recommendation)

ancestor-or-self

Description: Includes the context node itself and the nodes in the ancestor axis

Principal node type: Element

Abbreviated syntax: No abbreviated syntax for this axis

Implemented: W3C 1.0 specification (recommendation)

attribute

Description: Contains all attributes of the context node. The attribute axis will be
empty unless the context node is an element node.

Principal node type: Attribute

Abbreviated syntax: @

Implemented: W3C 1.0 specification (recommendation)

child

Description: Contains all direct children of the context node (that is, the children,
but not the children’s children)

Principal node type: Element

Abbreviated syntax: The child axis is the default axis, so if no axis is expressed, it is
assumed that a location path is using the child axis.

Implemented: W3C 1.0 specification (recommendation)

descendant

Description: All children of the context node, including all children’s children
recursively

Principal node type: Element

Abbreviated syntax: //

Implemented: W3C 1.0 specification (recommendation)

925

Appendix B: XPath Reference

descendant-or-self

Description: Includes the context node itself plus the nodes in the descendant axis

Principal node type: Element

Abbreviated syntax: No abbreviated syntax for this axis

Implemented: W3C 1.0 specification (recommendation)

following

Description: Contains all nodes that come after the context node in document
order. This means that for nodes in the following axis, the start-tag of
the element to which the node corresponds must come after the con-
text node’s end-tag. Descendant nodes of the context node are not
part of the following axis.

Principal node type: Element

Abbreviated syntax: No abbreviated syntax for this axis

Implemented: W3C 1.0 specification (recommendation)

following-sibling

Description: Contains all siblings (children of the same parent node) of the context
node that come after the context node in document order

Principal node type: Element

Abbreviated syntax: No abbreviated syntax for this axis

Implemented: W3C 1.0 specification (recommendation)

namespace

Description: Contains all namespace nodes that are in scope on the context node.
This includes the default namespace and the XML namespace (these
are automatically declared in any document). The namespace axis is
empty unless the context node is an element.

Principal node type: Namespace

Abbreviated syntax: No abbreviated syntax for this axis

Implemented: W3C 1.0 specification (recommendation)

926

Appendix B: XPath Reference

parent

Description: Contains the direct parent node (and only the direct parent node) of
the context node, if there is one. If the context node is the root node,
the parent axis is empty.

Principal node type: Element

Abbreviated syntax: ..

Implemented: W3C 1.0 specification (recommendation)

preceding

Description: Contains all nodes that come before the context node in document
order. This contains element nodes where the corresponding start-
tag/end-tag pair are already closed (their end-tag comes before the
context node’s start-tag in the document). Ancestor nodes are not
present in this axis because their end-tag is later in the document.

Principal node type: Element

Abbreviated syntax: No abbreviated syntax for this axis

Implemented: W3C 1.0 specification (recommendation)

preceding-sibling

Description: Contains all sibling nodes (children of the same parent node) of the
context node that come before the context node in document order

Principal node type: Element

Abbreviated syntax: None

Implemented: W3C 1.0 specification (recommendation)

self

Description: Contains only the context node

Principal node type: Element

Abbreviated syntax: .

Implemented: W3C 1.0 specification (recommendation)

Node Tests
A node test describes a test performed on each node in an axis to decide whether it should be included
in the node-set. If the Boolean value true is returned by the node test, the node is included in the node-
set. If false is returned, the node is not included in the node-set. Appending a predicate can further fil-
ter the node-set.

927

Appendix B: XPath Reference

Examples using the meta character *:
child::* will select all element children of the context node.

attribute::* will select all attributes of the context node.

Description: Returns true for all nodes of the principal node type for the axis

Implemented: W3C 1.0 specification (recommendation)

Example using the comment()function:

child::comment() will select all comment node children of the context node.

comment()

Description: Returns true for all comment nodes

Implemented: W3C 1.0 specification (recommendation)

node()

Description: Returns true for all nodes, except attributes and namespaces

Implemented: W3C 1.0 specification (recommendation)

Example using the processing-instruction()function:

</xsl:template>
<xsl:template match = “processing-instruction(‘’peanuts’)” >
</xsl:template>

processing-instruction(Literal)

Description: The node test processing-instruction() is true for any process-
ing instruction. The processing-instruction() test may have an
argument that is Literal; in this case, it is true for any processing
instruction that has a name equal to the value of the Literal.

Implemented: W3C 1.0 specification (recommendation)

Examples using the text() function:

child::text() will select all text node children of the context node.

text()

Description: Returns true for all text nodes

Implemented: W3C 1.0 specification (recommendation)

928

Appendix B: XPath Reference

Functions
Functions in XPath 1.0 are limited to fairly simple manipulation of node-sets, numbers, strings, and
Booleans. A common use of functions in XPath 1.0 is to filter a node-set that was selected using an axis
and node test. To do that, an expression is written in square brackets, which can include literal values
(numbers, strings, and so on), XPath location paths, and one or more functions defined by the XPath
specification.

Each function in this section is described by a line of the following form:

return-type function-name (parameters)

For each parameter, you display the type (object, string, number, node-set) and, where necessary, a
symbol indicating whether the parameter is optional (?) or can occur multiple times (+). The type
object means that any type can be passed.

If an expression is passed as a parameter, it is first evaluated and (if necessary) converted to the expected
type before passing it to the function.

boolean boolean(object)

Converts any object passed to it to a Boolean.
boolean(attribute: name) will return true if the context node has a name attribute.

Parameter:
object

Numbers result in true if they are not zero or NaN.
Strings result in true if their length is nonzero.
Node-sets return true if they are non-empty.

Implemented: W3C 1.0 specification (recommendation)

number ceiling(number)
Rounds a passed number to the smallest integer that is not smaller than the passed number.

ceiling(1.1) returns 2

Parameter:
number

The number that is to be rounded up to an integer

Implemented: W3C 1.0 specification (recommendation)

Table continued on following page

929

Appendix B: XPath Reference

string concat(string1, string2+)

Concatenates all passed strings to one string.
concat(‘con’, ‘c’, ‘a’, ‘t’) returns concat

Parameters:
string1

The first string
string2
All following strings

Implemented: W3C 1.0 specification (recommendation)

boolean contains(string1, string2)

Returns true if string1 contains string2.
contains(‘John Smith’, ‘John’) returns true

Parameters:
string1

The source string
string2

The string whose presence in the source string is to be tested

Implemented: W3C 1.0 specification (recommendation)

number count(node-set)

Returns the number of nodes in the passed node-set.
count(child::*[@name]) returns the number of child elements of the context node that have a
name attribute.

Parameter:
node-set

The node-set that is to be counted

Implemented: W3C 1.0 specification (recommendation)

boolean false()

Always returns false. This function is needed because an expression False tests whether the con-
text node has child element nodes whose name is False.

Implemented: W3C 1.0 specification (recommendation)

930

Appendix B: XPath Reference

number floor(number)

The floor function can be used to mathematically derive the number x (closest to positive infinity)
either equal to but not greater than the number x in question expressed as an integer. Usually cal-
culated in steps. Because infinity is not a number, it means that x becomes either larger and larger
(for positive infinity) or smaller and smaller (for negative infinity). Rounds a passed number to the
largest integer that is less than the passed number.

floor(2.9) returns 2
floor(-1.1) returns -2

Parameter:
number

The number that must be rounded to an integer

Implemented: W3C 1.0 specification (recommendation)

node-set id(string)

Returns the element identified by the passed identifier. In a compliant XPath implementation, this
will only work in validated documents, because for nonvalidated documents, the parser has no way
of knowing which attributes represent ID values. The ID type is defined in a schema document.

Parameter:
string

The ID value

Implemented: W3C 1.0 specification (recommendation)

boolean lang(string)

<?xml version=”1.0”?>

<!-- This is LangTest.xsl -->

<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”xml” version=”1.0” indent=”yes”/>

<xsl:param name=”LanguageSelected” select=”’en’”/>

<xsl:variable name=”phrases”

select=”document(‘LanguageData.xml’)/phrases”/>

Returns true if the language of the context node is the same as the passed language parameter.
The language of the context node can be set using the xml:lang attribute on itself or any of its ancestors.
Lang(‘en’) returns true for English language nodes.

Parameter:
string

Language identifier

Implemented: W3C 1.0 specification (recommendation)

Table continued on following page

931

Appendix B: XPath Reference

number last()

Returns the last node in a node-set. The node returned is, for forward axes,
the last node in document order. For reverse axes the opposite is true.
child::*[last()-1] selects the penultimate child element node of the context node.

Implemented: W3C 1.0 specification (recommendation)

String local-name(node-set?)

Returns the local part of the name of the first node in the passed node-set (the part of a namespace-
qualified name that occurs after the colon). For example, the local part of an xsl:value-of ele-
ment is value-of.

Parameter:
Node-set

If no node-set is specified, the context node is used.

Implemented: W3C 1.0 specification (recommendation)

String name(node-set?)

Returns the name of the first node in a passed node-set. This is the fully qualified name, including
namespace prefix.

Parameter:
Node-set

If no node-set is specified, the context node is used.

Implemented: W3C 1.0 specification (recommendation)

string namespace-uri(node-set?)

Returns the URI of the namespace of the passed node

Parameter:
node-set

If no node-set is specified, the context node is used.

Implemented: W3C 1.0 specification (recommendation)

932

Appendix B: XPath Reference

string normalize-space(string?)

Returns the whitespace-normalized version of the passed string. This means that leading and trail-
ing whitespace is stripped and all sequences of whitespace characters are combined to one single-
space character.
normalize-space(‘ some text ‘) would return ‘some text’.

Parameter:
string

If no string is passed, the value of the context node is converted to a string.

Implemented: W3C 1.0 specification (recommendation)

boolean not(boolean)

Returns the logical inverse of the passed value.
not(@name) returns true if there is no name attribute on the context node.

Parameter:
boolean
An expression that evaluates to a Boolean value

Implemented: W3C 1.0 specification (recommendation)

number number(object?)

Converts the parameter to a number.
number(‘3.6’) returns the number 3.6 from the supplied string parameter.

Parameter:
object

If no parameter is specified, the context node is used.

Implemented: W3C 1.0 specification (recommendation)

number position()

Returns the position of a node in a node-set.
position() returns 1 for the first node in a node-set.

Implemented: W3C 1.0 specification (recommendation)

Table continued on following page

933

Appendix B: XPath Reference

number round(number)

Rounds a passed number to the nearest integer. If the value is exactly halfway between two inte-
gers, it is rounded to the integer nearer to positive infinity.
round(1.5) returns 2, round(-1.7) returns –2.

Parameter:
number

The number that is to be rounded [-1]

Implemented: W3C 1.0 specification (recommendation)

boolean starts-with(string1, string2)

Returns true if string1 starts with string2.
starts-with(@name, ‘D’) returns true if the value of the name attribute starts with an upper-
case D.

Parameters:
string1

The string to be checked

Implemented: W3C 1.0 specification (recommendation)

string string(object?)

Converts the passed object to a string value

Parameter:
object

If no parameter is specified, the context node is evaluated.

Implemented: W3C 1.0 specification (recommendation)

number string-length(string?)

Returns the number of characters in the passed string.
string-length(‘Andrew Watt’) returns 11.

Parameter:
string
If no parameter is specified, the context node is converted to a string.

Implemented: W3C 1.0 specification (recommendation)

934

Appendix B: XPath Reference

string substring(string, number1, number2?)

Returns the substring from the passed string starting at the number1 character, with the length of
number2. If no number2 parameter is passed, the substring runs to the end of the passed string.
Characters are numbered from 1.
substring(‘Andrew Watt’, 8) returns ‘Watt’.

Parameters:
string

The string that will be used as source for the substring extraction

Implemented: W3C 1.0 specification (recommendation)

string substring-after(string1, string2)

Returns the substring following the first occurrence of string2 inside string1. For example, the
return value of substring-after(‘2004/3/22’, ‘/’) would be 3/22.

Parameters:
string1

The string to be searched for the specified substring
string2

The string that is searched in the source string

Implemented: W3C 1.0 specification (recommendation)

string substring-before(string1, string2)

Returns the string part preceding the first occurrence of string2 inside string1. For example, the
return value of substring-before(‘2004/3/22’, ‘/’) would be 2004.

Parameters:
string1

The string to be searched for the specified substring
string2

The string that is searched in the source string

Implemented: W3C 1.0 specification (recommendation)

number sum(node-set)

Sums the values of all nodes in the set when converted to a number.
sum(student/@age) returns the sum of the values of all age attributes on the student elements in
the child axis starting at the context node.

Parameter:
node-set

The node-set containing all values to be summed

Implemented: W3C 1.0 specification (recommendation)

Table continued on following page

935

Appendix B: XPath Reference

string translate (string1, string2, string3)

Translates characters in string1 to other characters. Translation pairs are specified by string2
and string3. For example, translate(‘A Space Odissei’, ‘i’, ‘y’) would result in A Space
Odyssey, and translate(‘abcdefg’, ‘aceg’, ‘ACE’) would result in AbCdEf. The characters
a, c, and e are translated to the corresponding uppercase character, as specified in the string3.
The final g is translated to nothing, because string3 has no counterpart for that position in
string2.

Parameter:
string1

String is to be translated character by character

Implemented: W3C 1.0 specification (recommendation)

boolean true()

Always returns true. This function is required in XPath because the expression True selects any
child element nodes whose name is True.

Implemented: W3C 1.0 specification (recommendation)

XPath 2.0 Functions
Functions within XPath 2.0 are now quite naturally syntactically different and currently parallel devel-
opment with XSLT 2.0. It would be no surprise if some XML editors currently were short some of these
functions; perhaps this would be the reason why you would favor one tool over another at this time. We
have listed some of the new functions in the following table. Note the fn: prefix to accommodate the
XML schema style, and the reference to processing of sequences as opposed to node-sets. A complete list
of XPath 2.0 and XSLT 2.0–compatible functions can be found on the W3C site. Keep in mind that the
combination of function capability with XPath 2.0 and XQuery 1.0 and XSLT 1.0 are different at the time
this book goes to press. As a practical note, the compatibility issues are born by the tool provider. It’s up
to you, the end user, to decide which tool is more useful or current.

936

Appendix B: XPath Reference

fn:add-timezone- fn:avg(atomic fn:base-uri(node fn:boolean(item* fn:ceiling(numeric?
to-date(date Value* $srcval) $srcval) => $srcval) => $srcval) => numeric?
$srcval) => date => numeric? anyURI?,returns boolean

String

fn:codepoints- fn:collection fn:compare(string? fn:compare fn:concat(string
to-string(integer* (string $srcval) $comparand1, (string? $arg1, ...) => string
codes) => string => node* string? $comparand1,

$comparand2) string?
=> integer? $comparand2)

=> integer?

n:contains(string? fn:data(node n:deep-equal fn:distinct- fn:distinct-
$operand1, $srcval) => (node values(item* values(item*
string? atomic value* $parameter1, node $srcval) => $srcval,
$operand2) $parameter2) item* anyURI
=> boolean? => boolean $collationLiteral)

=> item*

fn:error() fn:escape- fn:index-of fn:tokenize fn:unordered
uri(string $uri- (item* $seqParam, (string? $input, (item* $sequence)
part, boolean item $srchParam) string? $pattern, => item*
$escape- => unsignedInt* string? $flags) =>
reserved) => string*
string

937

Appendix B: XPath Reference

C
XSLT Reference

This appendix provides a reference to the elements and functions that are part of XSLT 1.0. A refer-
ence to XPath 1.0 constructs, including functions that can also be used with XSLT, is in Appendix C.

The XSLT 1.0 specification became a W3C Recommendation on November 16, 1999. As this book
goes to press, XSLT 2.0 has just been awarded W3C Recommendation status. XSLT 2.0 and XPath
2.0 go hand-in-hand, are inseparable, and have to be studied together. The development pace for
both will be the same. In addition, be aware that XSLT, XPath, and XQuery are so dependent upon
one another that you need to have all three skill sets or you will have serious problems. The good
news is that they are becoming increasingly similar, meaning that once you master one you can
master them all quickly.

XSLT 1.0 processors may or may not come with a description of the conformance to the XSLT 1.0
specification. However, most XSLT processors can be assumed to be close to 100 percent confor-
mant to the W3C XSLT 1.0 specification. Some experimental XSLT processors, such as recent ver-
sions of Saxon, include a conformant XSLT 1.0 implementation, which was used in Chapter 8, and
an experimental XSLT 2.0 processor. This new emerging XSLT 2.0 processor only works with
XPath 2.0. You cannot mix XSLT 2.0 and XPath 1.0, nor the other way around. This is not to say
that XSLT 1.0 features are obsolete, but that XSLT 2.0 will be different in philosophy, syntax, and
construct.

Both the attributes on XSLT 1.0 elements and the parameters of XSLT 1.0 functions can be of sev-
eral types. The end of this appendix contains a list of the types used in the elements and functions
of XSLT.

For more information on the meaning of the element or function types, see the “Types” table at
the end of this appendix.

XSLT stands for XSL Transformations and plays a major role in XSL. XSLT can transform an XML
document into another XML document type such as HTML and XHTML. Normally, XSLT does
this by transforming each XML element into an (X)HTML element.

With XSLT you can add/remove elements and attributes to/from the output file. You can also
rearrange and sort elements, perform tests, and make decisions about which elements to hide and

display, and a lot more. Think of XSLT as a transformation tool that when paired with XPath functional-
ity can be used to process information selectively and quickly.

In the transformation process, XSLT uses XPath to define parts of the source document that should
match one or more predefined templates, such as attribute templates. Attribute templates can be prede-
fined to standardize and simplify simple string substitutions used to process files known as result docu-
ments. When a match is found, XSLT will transform the matching part of the source document into the
result document reformatted in the new syntax.

Elements
An XSLT stylesheet is itself an XML document, using elements in the XSLT namespace. The namespace
URI is http://www.w3.org/1999/XSL/Transform. When XSLT is used, a namespace prefix is used in
the element name as a proxy for the namespace URI. In this appendix we use the namespace prefix xsl.

For each XSLT 1.0 element we provide a short description of its use, describe the attributes that can or
must be used on the element, and indicate where in the stylesheet the element can occur (as a child of
which other elements).

xsl:apply-imports

Used to add additional information to an existing stylesheet that has implemented the
xsl:apply-templates element using xsl:apply-imports. The information embedded using
the xsl:apply-imports will be a subset of or considered a lower precedence to that brought forth
using the xsl:templates element.

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

version=”1.0”>

<xsl:import href=”arith.xsl”/>

<xsl:import href=”str.xsl”/>

<xsl:template match=”op”>

<xsl:value-of select=”operand[1]”/>

<xsl:value-of select=”@symbol”/>

<xsl:value-of select=”operand[2]”/>

= <xsl:apply-imports/>

</xsl:template>

</xsl:stylesheet>

Implemented: W3C XSLT 1.0 specification

Can contain: No other elements

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, xsl:element,

xsl:fallback xsl:for-each, xsl:if, xsl:message, xsl:oth-

erwise, xsl:param xsl:processing-instruction, xsl:tem-

plate, xsl:variable, xsl:when

940

Appendix C: XSLT Reference

xsl:apply-templates

Used to select a set of nodes to be processed. The processor attempts to find templates that match
the specified operator. Using curly braces, {}, around an expression in an attribute is known as an
Attribute Value Template. You can use this technique on certain attributes to insert the result of an
XPath expression where normally a fixed string would be expected.

Attributes:

select (optional) Expression describing which nodes should be processed. Defaults to
child::*

Type: Location path

Attribute Value Template: No

mode (optional) By adding a mode attribute, the processor will process nodes using
only templates with a matching value for its mode attribute. This
enables us to process a node in the source tree more than once.

Type: QName

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:sort, xsl:with-param

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, xsl:element,

xsl:fallback, xsl:for-each, xsl:if, xsl:message,

xsl:otherwise, xsl:param, xsl:processing-instruction,

xsl:template, xsl:variable, xsl:when

xsl:attribute

Generates an attribute in the result document. It should be used in the context of an element (either
xsl:element or a literal result element). It must occur before any text or element content is added
to an element node.

Attributes:

name (required) The name of the attribute

Type: QName

Attribute Value Template: Yes

namespace (optional) The namespace URI of the attribute node. By default, it uses the
namespace of the element the attribute is placed on.

Type: Uri-reference

Attribute Value Template: Yes

Implemented: W3C XSLT 1.0 specification

Table continued on following page

941

Appendix C: XSLT Reference

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:call-tem-

plate, xsl:choose, xsl:copy, xsl:copy-of, xsl:fallback,

xsl:for-each, xsl:if, xsl:message, xsl:number, xsl:text,

xsl:value-of, xsl:variable

Can be contained by: xsl:attribute-set, xsl:copy, xsl:element, xsl:fallback,

xsl:for-each, xsl:if, xsl:message, xsl:otherwise,

xsl:param, xsl:template, xsl:variable, xsl:when

xsl:attribute-set

Used to define a set of attributes that can then be added to an element as a group by specifying the
xsl:attribute-set element’s name attribute value in the use-attribute-sets attribute on the
xsl:element element.

Attributes:

name (required) Name that can be used to refer to this set of attributes. Qualified
names were introduced by [XML Namespaces]. They were defined
for element and attribute names (only) and provide a mechanism for
concisely identifying a {URI, local-name} pair. See, for example, the
following document:

<?xml version=’1.0’?>

<doc xmlns:x=”http://example.com/ns/foo”>

<x:p/>

</doc>

Type: QName

Attribute Value Template: No

use-attribute-sets For including one or more existing attribute sets in this attribute set
(optional)

Type: QNames

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:attribute

Can be contained by: xsl:stylesheet, xsl:transform

942

Appendix C: XSLT Reference

xsl:call-template

Used to call a template by name. This element causes no change of context node as xsl:apply-
templates and xsl:for-each do. This element can be used to reuse the same functionality in
several templates.

Attributes:

name (required) Name of the template you want to call

Type: QName

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:with-param

Can be contained by: xsl:attribute, xsl:comment, xsl:copy xsl:element,

xsl:fall back, xsl:for-each, xsl:if, xsl:message,

xsl:otherwise, xsl:param, xsl:processing-instruction,

xsl:template, xsl:variable, xsl:when

xsl:choose

Used for implementing the choose/when/otherwise construct. Compare to Case/Select in
Visual Basic or switch in C and Java. The xsl:choose element has no attributes.

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:otherwise, xsl:when. The <xsl:when> children of the
<xsl:choose> element are tested, in order from top to bottom, until
a test attribute on one of these elements accurately describes condi-
tions in the source data, or until an <xsl:otherwise> element is
reached. Once an <xsl:when> or <xsl:otherwise> element is cho-
sen, the <xsl:choose> block is exited. No explicit break or exit
statement is required.

For simple conditional testing, use the <xsl:if> element.

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, xsl:element,

xsl:fallback, xsl:for-each, xsl:if, xsl:message,

xsl:otherwise, xsl:param, xsl:processing-instruction,

xsl:template, xsl:variable, xsl:when

943

Appendix C: XSLT Reference

xsl:comment

Needed for generating a comment node in the result document. The xsl:comment element has no
attributes.

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:call-tem-

plate, xsl:choose, xsl:copy, xsl:copy-of, xsl:fallback,

xsl:for-each, xsl:if, xsl:message, xsl:number, xsl:text,

xsl:value-of, xsl:variable

Can be contained by: xsl:copy, xsl:element, xsl:fallback, xsl:for-each,

xsl:if, xsl:message, xsl:otherwise, xsl:param, xsl:tem-

plate, xsl:variable, xsl:when

xsl:copy

Generates a copy of the context node in the destination document. Does not copy any child nodes
or attribute nodes.

Attributes:

use-attribute-sets For adding a set of attributes to the copied node, if it is an element
(optional) node

Type: QNames

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:attribute,

xsl:call-template, xsl:choose, xsl:comment, xsl:copy-

of, xsl:element, xsl:fallback, xsl:for-each, xsl:if,

xsl:message, xsl:number, xsl:processing-instruction,

xsl:text, xsl:value-of, xsl:variable

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, xsl:element,

xsl:fallback, xsl:for-each, xsl:if, xsl:message,

xsl:otherwise, xsl:param, xsl:processing-instruction,

xsl:template, xsl:variable, xsl:when

944

Appendix C: XSLT Reference

xsl:copy-of

Copies a node, together with any attribute nodes and child nodes, to the result tree. If multiple
nodes are matched by the select attribute, all are copied. If you have an XML fragment stored in a
variable, xsl:copy-of is a useful element for sending the variable’s content to the result tree.

Attributes:

select (required) XPath expression that selects the nodes to be copied

Type: Expression

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, , xsl:element,

xsl:fallback, xsl:for-each, xsl:if, xsl:message,

xsl:otherwise, xsl:param, xsl:processing-instruction,

xsl:template, xsl:variable, xsl:when

xsl:decimal-format

Declares a decimal format that controls the interpretation of a format pattern used by the format-
number() function. Among the aspects of the format defined are the decimal separator and the
thousands separator.

Attributes:

name (optional) The name of the defined format

Type: QName

Attribute Value Template: No

decimal-separator The character that will separate the integer part from the fraction
(optional) part. The default is a dot (.)

Type: Character

Attribute Value Template: No

grouping-separator The character that will separate the grouped numbers in the integer
(optional) part. The default is a comma (,)

Type: Character

Attribute Value Template: No

infinity (optional) The string that should appear if a number equals infinity. The default
is the string Infinity.

Type: String

Attribute Value Template: No

Table continued on following page

945

Appendix C: XSLT Reference

minus-sign (optional) The character that will be used to indicate a negative number. The
default is minus (-).

Type: Character

Attribute Value Template: No

NaN (optional) The string that should appear if a value is Not a Number. The default
is the string NaN.

Type: String

Attribute Value Template: No

percent (optional) The character that will be used as the percent sign. The default is %.

Type: Character

Attribute Value Template: No

per-mille (optional) The character that will be used as the per-thousand sign. The default
is the Unicode character #x2030, which looks like .

Type: Character

Attribute Value Template: No

zero-digit (optional) The character used as the digit zero. The default is 0.

<?xml version=”1.0”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:decimal-format zero-digit=”0” />

<xsl:template match=”doc”>

<out>

<xsl:value-of

select=”format number(931.4857,’000.0000’)”/>

</out>

</xsl:template>

</xsl:stylesheet>

Type: Character

Attribute Value Template: No

digit (optional) The character used in a pattern to indicate the place where a leading
zero is required. The default is 0.

Type: Character

Attribute Value Template: No

946

Appendix C: XSLT Reference

pattern-separator The character that is used to separate the negative and positive
(optional) patterns (if they are different). The default is a semicolon (;). Being

able to redefine the semicolon to an alternate character such as a
colon enables the semicolon to be used inside the pattern(s) and
resolves confusion regarding what is data and what is used as a
delimeter between patterns.

Type: Character

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:stylesheet, xsl:transform

xsl:element

Generates an element with the specified name in the destination document

Attributes:

name (required) Name of the element (this may include a namespace prefix bound to
a namespace in the stylesheet)

Type: QName

Attribute Value Template: Yes

namespace (optional) Specifies the namespace URI of the element to be created

Type: Uri-reference

Attribute Value Template: Yes

use-attribute-sets Adds a predefined set of attributes to the element
(optional)

Type: QNames

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:attribute,

xsl:call-template, xsl:choose, xsl:comment, xsl:copy,

xsl:copy-of, xsl:element, xsl:fallback, xsl:for-each,

xsl:if, xsl:message, xsl:number, xsl:processing-

instruction, xsl:text, xsl:value-of, xsl:variable

Can be contained by: xsl:copy, xsl:element, xsl:fallback, xsl:for-each,

xsl:if, xsl:otherwise, xsl:param, xsl:template,

xsl:variable, xsl:when

947

Appendix C: XSLT Reference

xsl:fallback

Can be used to specify actions to be executed if its parent element is not supported by the proces-
sor. In this case, the fallback action will be executed instead.

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”catalog/cd”>

<xsl:loop select=”title”>

<xsl:fallback>

<xsl:for-each select=”title”>

<xsl:value-of select=”.”/>

</xsl:for-each>

</xsl:fallback>

</xsl:loop>

</xsl:template>

</xsl:stylesheet>

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:attribute,

xsl:call-template, xsl:choose, xsl:comment, xsl:copy,

xsl:copy-of, xsl:element, xsl:for-each, xsl:if, xsl:mes-

sage, xsl:number, xsl:processing-instruction, xsl:text,

xsl:value-of, xsl:variable

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, xsl:element,

xsl:for-each, xsl:if, xsl:message, xsl:otherwise,

xsl:param, xsl:processing-instruction, xsl:template,

xsl:variable, xsl:when

xsl:for-each

Used for looping through the node-set selected by the XPath expression in the select attribute.
The context is shifted to the current node in the loop.

Attributes:

select (required) Expression that selects the node-set to loop through

Type: Node-set-expression

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:attribute,

xsl:call-template, xsl:choose, xsl:comment, xsl:copy,

xsl:copy-of, xsl:element, xsl:fallback, xsl:for-each,

xsl:if, xsl:message, xsl:number, xsl:processing-instruc-

tion, xsl:sort, xsl:text, xsl:value-of, xsl:variable

948

Appendix C: XSLT Reference

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, xsl:element,

xsl:fallback, xsl:for-each, xsl:if, xsl:message,

xsl:otherwise, xsl:param, xsl:processing-instruction,

xsl:template, xsl:variable, xsl:when

xsl:if

The contained instructions are instantiated only if the test expression returns true.

Attributes:

test (required) The expression that is tested. If it returns true the instructions con-
tained in the xsl:if element are executed.

Type Boolean-expression

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:attribute,

xsl:call-template, xsl:choose, xsl:comment, xsl:copy,

xsl:copy-of, xsl:element, xsl:fallback, xsl:for-each,

xsl:if, xsl:message, xsl:number, xsl:processing-

instruction, xsl:text, xsl:value-of, xsl:variable

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, xsl:element,

xsl:fallback, xsl:for-each, xsl:if, xsl:message,

xsl:otherwise, xsl:param, xsl:processing-instruction,

xsl:template, xsl:variable, xsl:when

xsl:import

Imports the templates from an external stylesheet document into the current document. The prior-
ity of these imported templates is lower than the priority of templates in the importing stylesheet,
so if a template in the importing document is implemented for the same pattern, it will always be
instantiated, rather than a similar template in the imported template being instantiated. An
imported template can be called from the overriding template using xsl:apply-imports.

Attributes:

href (required) Reference to the stylesheet to be imported

Type: Uri-reference

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:stylesheet, xsl:transform

949

Appendix C: XSLT Reference

xsl:include

Includes templates from an external document as if they were part of the stylesheet document that
contains the xsl:include element. This means that templates from the included stylesheet have
the same priority as they would have had if they were part of the including stylesheet. An error
occurs if a template with the same match and priority attributes exists in both the including and
included stylesheets.

Attributes:

href (required) Reference to the stylesheet to be imported

Type: Uri-reference

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:stylesheet, xsl:transform

xsl:key

Used to create indexlike structures that can be queried from the key() function. It is basically a
way to describe name/value pairs inside the source document (such as a Dictionary object in VB,
a hash table in Java, or an associative array in Perl). However, in XSLT, more than one value can be
found for one key and the same value can be accessed by multiple keys.

Attributes:

name (required) The name that can be used to refer to this key

Type: QName

Attribute Value Template: No

match (required) Contains a pattern that defines the nodes in the source document
that can be accessed using this key. In the name/value pair analogy,
this would be the definition of the value.

Type: Pattern

Attribute Value Template: No

use (required) This expression defines what the key for accessing each value would
be. For example, if an element PERSON is matched by the match
attribute and the use attribute equals “ @name”, the key() function
can be used to find this specific PERSON element by passing the value
of its name attribute.

Type: Expression

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:stylesheet, xsl:transform

950

Appendix C: XSLT Reference

xsl:message

Used to issue error messages or warnings. The content of the element is the message. What the
XSLT processor does with the message is left to the implementation. It could be displayed in a mes-
sage box or logged to an error log.

Attributes:

terminate (optional) If terminate is set to yes, the execution of the transformation is
stopped after issuing the message.

Type: Yes/no

Attribute Value Template: No

Implemented: W3C 1.0 XSLT specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:attribute,

xsl:call-template, xsl:choose, xsl:comment, xsl:copy,

xsl:copy-of, xsl:element, xsl:fallback, xsl:for-each,

xsl:if, xsl:message, xsl:number, xsl:processing-

instruction, xsl:text, xsl:value-of, xsl:variable,

xsl:attribute, xsl:comment

Can be contained by: xsl:copy, xsl:element, xsl:fallback, xsl:for-each,

xsl:if, xsl:message, xsl:otherwise, xsl:param, xsl:pro-

cessing-instruction, xsl:template, xsl:variable,

xsl:when

xsl:namespace-alias

Used to make a certain namespace appear in the result document without using the desired names-
pace prefix for that namespace in the stylesheet. The main use of this element is in generating new
XSLT stylesheets.

The <xsl:namespace-alias> element replaces the prefix associated with a given namespace with
another prefix. A simple substitution.

<xsl:namespace-alias stylesheet-prefix = NCName result-prefix = NCName/>

Attributes:

stylesheet-prefix The prefix for the namespace used in the stylesheet
(required)

Type: Prefix/#default

Attribute Value Template: No

result-prefix The prefix for the namespace that must replace the aliased
(required) namespace in the destination document

Type: Prefix/#default

Attribute Value Template: No

Table continued on following page

951

Appendix C: XSLT Reference

952

Appendix C: XSLT Reference

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:stylesheet, xsl:transform

xsl:number

Needed for outputting the number of a paragraph or chapter in a specified format. It has flexible
features to allow for different numbering rules.

Attributes:

level (optional) The value single counts the location of the nearest node matched
by the count attribute (along the ancestor axis) relative to its preced-
ing siblings of the same name. Typical output: chapter number.

The value multiple counts the location of all nodes matched by the
count attribute (along the ancestor axis) relative to their preceding
siblings of the same name. Typical output: paragraph number of
form 4.5.3.

The value any counts the location of the nearest node matched by
the count attribute (along the ancestor axis) relative to its preceding
nodes (not only siblings) of the same name. Typical output: book-
mark number.

Type: Single/multiple/any

Attribute Value Template: No

count (optional) Specifies the node-set that is to be counted

Type: Pattern

Attribute Value Template: No

from (optional) Specifies the starting point for counting

Type: Pattern

Attribute Value Template: No

value (optional) Used to specify the numeric value directly instead of using ‘level’,
‘count’ and ‘from’

Type: Number-expression

Attribute Value Template: No

format (optional) How to format the numeric value to a string (1 indicates 1, 2, 3, a
indicates a, b, c,)

Type: String

Attribute Value Template: Yes

lang (optional) Language used for alphabetic numbering

Type: Token

Attribute Value Template: Yes

letter-value (optional) Some languages have traditional orders of letters specifically for
numbering. These orders are often different from the alphabetic
order.

Type: Alphabetic/traditional

Attribute Value Template: Yes

grouping-separator Character to be used for group separation
(optional)

Type: Character

Attribute Value Template: Yes

grouping-size Number of digits to be separated. grouping-separator=”;” and
(optional) grouping-size=”3” causes: 1;000;000

Type: Number

Attribute Value Template: Yes

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, xsl:element,

xsl:fallback, xsl:for-each, xsl:if, xsl:message,

xsl:otherwise, xsl:param, xsl:processing-instruction,

xsl:template, xsl:variable, xsl:when

xsl:otherwise

Content is executed if none of the xsl:when elements in an xsl:choose is matched.

Implemented: W3C 1.0 specification (recommendation)

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:attribute,

xsl:call-template, xsl:choose, xsl:comment, xsl:copy,

xsl:copy-of, xsl:element, xsl:fallback, xsl:for-each,

xsl:if, xsl:message, xsl:number, xsl:processing-

instruction, xsl:text, xsl:value-of, xsl:variable

Can be contained by: xsl:choose

953

Appendix C: XSLT Reference

xsl:output

Top-level element for setting properties regarding the output characteristics of the result document.
The xsl:output element describes how serialization from a created tree of nodes to a string happens.

Attributes:

method (optional) xml is the default

html creates empty elements such as BR (with no end-tag) and uses
HTML entities such as .

text causes no output escaping to happen at all (no entity references
in output)

Type: xml/html/text/qname-but-not-ncname

To simplify a little, an NCName is any name that
begins with a letter or underscore and has no space
or colon in it (“NC” = “No Colon”). It can’t contain
a colon because a namespace prefix may be added
to its beginning, and namespace prefixes them-
selves are also defined as NCNames. Because the
prefix and the part after it are connected by a
colon, a colon within these names would confuse a
processor trying to figure out where the prefix
ended and the other part began, so they both must
be “No Colon” names. Further, QName is “Quali-
fied Name” and includes an optional namespace
prefix and colon before a required “local part,”
which is an NCName. For example, the value of an
xsl:template element’s name attribute is a QName.
It can be a simple name like “indexTemplate” or it
can include a namespace prefix and colon, as with
“foo:indexTemplate.”

Attribute No
Value
Template:

version (optional) The version number that will appear in the XML declaration of the
output document

Type: Token

Attribute Value Template: No

encoding (optional) The encoding of the output document

Type: String

Attribute Value Template: No

954

Appendix C: XSLT Reference

omit-xml-declaration Specifies whether the resulting document should contain an XML
(optional) declaration (<?xml version=”1.0”?>)

Type: Yes/no

Attribute Value Template: No

standalone (optional) Specifies whether the XSLT processor should output a stand-alone
document declaration

Type: Yes/no

Attribute Value Template: No

doctype-public Specifies the public identifier to be used in the DOCTYPE declaration
(optional)

Type: String

Attribute Value Template: No

doctype-system Specifies the system identifier to be used in the DOCTYPE declaration
(optional)

Type: String

Attribute Value Template: No

cdata-section- Specifies a list of elements that should have their content escaped by
elements (optional) using a CDATA section instead of entities

Type: QNames

Attribute Value Template: No

indent (optional) Specifies the addition of extra whitespace for readability

Type: Yes/no

Attribute Value Template: No

media-type (optional) Specifies a particular MIME type while writing out content

Type: String

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:stylesheet, xsl:transform

955

Appendix C: XSLT Reference

xsl:param

Defines a parameter in an xsl:template or xsl:stylesheet

Attributes:

name (required) Name of the parameter

Type: QName

Attribute Value Template: No

select (optional) Specifies the default value for the xsl:param to declare a local or
global parameter and to give that parameter a name and a default
value. The default value is used only if no other value is provided
when the template is called.

Type: Expression

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:attribute,

xsl:call-template, xsl:choose, xsl:comment, xsl:copy,

xsl:copy-of, xsl:element, xsl:fallback, xsl:for-each,

xsl:if, xsl:message, xsl:number, xsl:processing-

instruction, xsl:text, xsl:value-of, xsl:variable

Can be contained by: xsl:stylesheet, xsl:transform

xsl:preserve-space

Enables you to define which elements in the source document should have their whitespace pre-
served. See also xsl:strip-space.

Attributes:

elements (required) In this attribute you can list the elements (separated by whitespace)
for which you want to preserve the whitespace content.

Type: Tokens

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:stylesheet, xsl:transform

956

Appendix C: XSLT Reference

xsl:processing-instruction

Generates a processing instruction in the destination document

Attributes:

name (required) The name of the processing instruction (the part between the first
question mark and the first whitespace of the processing instruction)

Type: Ncname

Attribute Value Template: Yes

Implemented: W3C 1.0 specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:call-tem-
plate, xsl:choose, xsl:copy, xsl:copy-of, xsl:fallback,
xsl:for-each, xsl:if, xsl:message, xsl:number, xsl:text,
xsl:value-of, xsl:variable

Can be contained by: xsl:copy, xsl:element, xsl:fallback, xsl:for-each, xsl:if,
xsl:message, xsl:otherwise, xsl:param, xsl:template,
xsl:variable, xsl:when

xsl:sort

Enables you to specify a sort order for xsl:apply-templates and xsl:for-each elements. Mul-
tiple xsl:sort elements can be specified to provide primary, secondary, and other sorting keys.

Attributes:

select (optional) Expression that indicates the criterion that should be used for the
ordering

Type: String-expression

Attribute Value Template: No

lang (optional) Sets the language used while ordering. (In different languages the
rules for alphabetic ordering can be different.)

Type: Token

Attribute Value Template: Yes

data-type (optional) Specifies alphabetic or numeric ordering

Type: Text/number/qname-but-not-
ncname

Attribute Value Template: Yes

order (optional) Specifies ascending or descending ordering

Type: Ascending/descending

Attribute Value Template: Yes

Table continued on following page

957

Appendix C: XSLT Reference

case-order (optional) Specifies whether uppercase characters should come before or after
lowercase characters. Note that case-insensitive sorting is not
supported.

Type: Upper-first/lower-first

Attribute Value Template: Yes

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:apply-templates, xsl:for-each

xsl:strip-space

Enables you to define which elements in the source document should have their whitespace con-
tent stripped. See also xsl:preserve-space.

Attributes:

elements (required) Specifies the elements whose whitespace should be stripped

Type: Tokens

Attribute Value Template: No

Implemented: W3C 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:stylesheet, xsl:transform

xsl:stylesheet

The root element for a stylesheet. Synonym to xsl:transform.

Attributes:

id (optional) A reference for the stylesheet

Type: ID

Attribute Value Template: No

extension-element- Enables you to specify which namespace prefixes are XSLT extension
prefixes (optional) namespaces

Type: Tokens

Attribute Value Template: No

exclude-result- Namespaces that are only relevant in the stylesheet or in the source
prefixes (optional) document, but not in the result document, can be removed from the

output by specifying them here.

Type: Tokens

Attribute Value Template: No

958

Appendix C: XSLT Reference

959

Appendix C: XSLT Reference

version (required) Version number

Type: Number

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:attribute-set, xsl:decimal-format, xsl:import,
xsl:include, xsl:key, xsl:namespace-alias, xsl:output,

xsl:param, xsl:preserve-space, xsl:strip-space,

xsl:template, xsl:variable

Can be contained by: No other elements

xsl:template

Defines a transformation rule. Some templates are built in and don’t have to be defined. Refer to
Chapter 8 for more information about writing templates.

Attributes:

match (optional) Defines the set of nodes on which the template can be applied

Type: Pattern

Attribute Value Template: No

name (optional) Name to identify the template when calling it using xsl:call-template

Type: QName

Attribute Value Template: No

priority (optional) If several templates can be applied (through matches on their match
attributes) on a node, the priority attribute can be used to deter-
mine which template is instantiated.

Type: Number

Attribute Value Template: No

mode (optional) If a mode attribute is present on a template, the template will be
instantiated only if there is a matching mode attribute on an
xsl:apply-templates element whose select attribute’s value
matches the value of the template’s match attribute.

Type: QName

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:attribute,
xsl:call-template, xsl:choose, xsl:comment, xsl:copy,
xsl:copy-of, xsl:element, xsl:fallback, xsl:for-each,
xsl:if, xsl:message, xsl:number, xsl:processing-instruc-
tion, xsl:text, xsl:value-of, xsl:variable

Can be contained by: xsl:stylesheet, xsl:transform

xsl:text

Generates a text string from its content. Whitespace is never stripped from the content of an
xsl:text element.

Attributes:

disable-output- If set to yes, the output will not be escaped: this means that a string
escaping (optional) “ <” will be written to the output as “ <’’ instead of “ <”.

This means that the result document will not be a well-formed XML
document

Type: Yes/no

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, xsl:element,
xsl:fallback, xsl:for-each, xsl:if, xsl:message, xsl:oth-
erwise, xsl:param, xsl:processing-instruction, xsl:
template, xsl:variable, xsl:when

xsl:transform

Identical to xsl:stylesheet.

Attributes:

id (optional) A unique reference for the stylesheet

Type: ID

Attribute Value Template: No

extension-element- Enables you to specify which namespace prefixes are XSLT extension
prefixes (optional) namespaces

Type: Tokens

Attribute Value Template: No

exclude-result- Namespaces that are only relevant in the stylesheet or in the source
prefixes (optional) document, but not in the result document, can be removed from the

result document by specifying them here.

Type: Tokens

Attribute Value Template: No

version (required) The version of XSLT being used

Type: Number

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

960

Appendix C: XSLT Reference

Can contain: xsl:attribute-set, xsl:decimal-format, xsl:import,
xsl:include, xsl:key, xsl:namespace-alias, xsl:output,
xsl:param, xsl:preserve-space, xsl:strip-space, xsl:tem-
plate, xsl:variable

Can be contained by: No other elements. It is the document element.

xsl:value-of

Generates a text string from the value of the expression in its select attribute.

Attributes:

select (required) Expression that selects the node-set that will be converted to a string

Type: Expression

Attribute Value Template: No

disable-output- You can use this to output < instead of < to the destination
escaping (optional) document. Note that this will cause the result document to be not

well-formed XML. Normally used when generating HTML or text
files.

Type: Yes/no

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, xsl:element,
xsl:fallback, xsl:for-each, xsl:if, xsl:message, xsl:
otherwise, xsl:param, xsl:processing-instruction,
xsl:template, xsl:variable, xsl:when

xsl:variable

Defines a variable with a value. Note that in XSLT, the value of a variable cannot change — you can
bind a variable using xsl:variable but it cannot be changed afterward. The XSLT variable resem-
bles a constant in some other programming languages.

Attributes:

name (required) Name of the variable

Type: QName

Attribute Value Template: No

Table continued on following page

961

Appendix C: XSLT Reference

select (optional) Value of the variable (if the select attribute is omitted, the content
of the xsl:variable element is the value)

Type: Expression

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:attribute,

xsl:call-template, xsl:choose, xsl:comment, xsl:copy,

xsl:copy-of, xsl:element, xsl:fallback, xsl:for-each,

xsl:if, xsl:message, xsl:number, xsl:processing-

instruction, xsl:text, xsl:value-of, xsl:variable

Can be contained by: xsl:attribute, xsl:comment, xsl:copy, xsl:element,
xsl:fallback, xsl:for-each, xsl:if, xsl:message, xsl:oth-
erwise, xsl:param, xsl:processing-instruction,
xsl:stylesheet, xsl:template, xsl:transform,
xsl:variable, xsl:when

xsl:when

Represents an option for execution in a xsl:choose block

Attributes:

test (required) Expression to be tested

Type: Boolean-expression

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: xsl:apply-imports, xsl:apply-templates, xsl:attribute,
xsl:call-template, xsl:choose, xsl:comment, xsl:copy,
xsl:copy-of, xsl:element, xsl:fallback, xsl:for-each,
xsl:if, xsl:message, xsl:number, xsl:processing-instruc-
tion, xsl:text, xsl:value-of, xsl:variable

Can be contained by: xsl:choose

xsl:with-param

Used to pass a parameter to a template using xsl:apply-templates or xsl:call-template.
The template called must have a parameter of the same name defined using xsl:param.

Attributes:

name (required) Name of the parameter

Type: QName

Attribute Value Template: No

962

Appendix C: XSLT Reference

select (optional) XPath expression selecting the passed value

Type: Expression

Attribute Value Template: No

Implemented: W3C XSLT 1.0 specification

Can contain: Cannot contain other elements

Can be contained by: xsl:apply-templates, xsl:call-template

Functions
Within expressions in an XSLT stylesheet, you can use the XPath functions in Appendix C and a number
of XSLT functions. These XSLT functions are described in this section.

Each function is described by a line of the following form:

return-type function-name (parameters)

For each parameter, we display the type (object, string, number, node-set), and, where necessary, a
symbol indicating whether the parameter is optional (?) or can occur multiple times (+). The type
object means that any type can be passed.

If an expression is passed as a parameter, then it is first evaluated and (if necessary) converted to the
expected type before passing it to the function.

node-set current()

Returns the current context node-set, outside the current expression

Implemented: W3C 1.0 XSLT specification

node-set document(object, node-set?)

Used to get a reference to an external source document

Parameters:
object

If of type String, then this is the URL of the document to be retrieved. If a node-set, all
nodes are converted to strings and all these URLs are retrieved in a node-set.

node-set

Represents the base URL from where relative URLs are resolved.

Implemented: W3C 1.0 XSLT specification

Table continued on following page

963

Appendix C: XSLT Reference

boolean element-available(string)

Determines availability of a specified extension element

Parameters:
string

Name of the extension element

Implemented: W3C XSLT 1.0 specification

string format-number(number, string1, string2?)

Formats a numeric value into a formatted and localized string

Parameters:
number

The numeric value to be represented

string1

The format string that should be used for the formatting

<td>

<xsl:value-of select=”format-number(number(@TimeRate),’000.00’)” />

</td>

<td>

<xsl:value-of select=”format-number(number(@TimeRate),’$#00%’)” />

</td>

<td>

<xsl:value-of select=”format-number(number(@TimeRate),’###0.00’)” />

</td>

<td>

<xsl:value-of select=”format-number(number(@TimeRate),’#,00;(#,00)’)” />

</td>

string2

Reference to an xsl:decimal-format element to indicate localization parameters

Implemented: W3C XSLT 1.0 specification

boolean function-available(string)

Determines availability of a specified extension function

Parameter:
string

Name of the extension function

Implemented: W3C XSLT 1.0 specification

964

Appendix C: XSLT Reference

string generate-id(node-set?)

Generates a unique identifier for the specified node. Each node will be given a different ID, but the
same node will always generate the same ID. You cannot be sure that the IDs generated for a docu-
ment during multiple transformations will remain identical.

Parameter:
node-set

The first node of the passed node-set is used. If no node-set is passed, the context node is used.

Implemented: W3C XSLT 1.0 specification

node-set key(string, object)

Used to get a reference to a node using the specified xsl:key. The key() function returns a node-
set from the document, using the index specified by an <xsl:key> element. Once defined, a match
element can be used to evaluate the resulting expressions efficiently, similarly to any key used in a
data(base) environment.

Parameters:
string

The name of the referenced xsl:key

object

If of type String, this is the index string for the key. If of type node-set, all nodes are converted
to strings and are used to get nodes back from the key.

Implemented: W3C XSLT 1.0 specification

object system-property(string)

Used to get certain system properties from the processor

Parameter:
string

The name of a system property. Properties that are always available in a conformant XSLT proces-
sor are xsl:version, xsl:vendor, and xsl:vendor-url

Implemented: W3C XSLT 1.0 specification

string unparsed-entity-uri (string)

Returns the URI of the unparsed entity with the passed name

Parameter:
string

Name of the unparsed entity

Implemented: W3C XSLT 1.0 specification

965

Appendix C: XSLT Reference

Available XPath Functions
See Appendix C for information on the XPath functions. They can all be used in XSLT.

XPath 1.0 and XSLT 1.0 are natural pairs, and XPath 2.0 and XSLT 2.0 are natural pairs. The development
efforts are working in parallel and are most compatible when used appropriately. In both cases there has
been a combination of additional features and functionality, along with deprecated features. The current
transition of moving both specifications from 1.0 to 2.0 is under development. A detailed list of changes
is a matter of record at the W3C website. A complete list of compatibility issues is also documented
along with the changes and improvements.

boolean() not()

ceiling() number()

concat() position()

contains() round()

count() starts-with()

false() string()

floor() string-length()

id() substring()

lang() substring-after()

last() substring-before()

local-name() sum()

name() translate()

namespace-uri() true()

normalize-space()

Types
The following types are used to specify the types of the attributes for the XSLT elements provided in the
previous tables.

boolean Can have values true and false

character A single character

expression A string value containing an XPath expression

id A string value. Must be an XML name. The string value can
be used only once as an id in any document.

language-name A string containing one of the defined language identifiers.
American English = en-us

966

Appendix C: XSLT Reference

name A string value that conforms to the naming conventions of
XML. That means no whitespace, and it should start with
either a letter or an underscore (_).

names Multiple name values separated by whitespace

namespace-prefix Any string that is defined as a prefix for a namespace

ncname A name value that does not contain a colon

node A node in an XPath tree. It can be of several types, including
element, attribute, comment, processing instruction, text
node, etc.

node-set A set of nodes of any length

node-set-expression A string value containing an XPath expression that returns
nodes

number A numeric value that can be either floating point or integer

object Anything: a string, a node, a node-set or a Boolean

qname Qualified name; the full name of a node. It is made up of
two parts: the local name and the namespace identifier.

qnames A set of QName values separated by whitespace

string A string value

token A string value that contains no whitespace

tokens Multiple token values separated by whitespace

uri-reference Any string that conforms to the URI specification

New in XSLT 2.0
A new version of XSLT is on the horizon but is taking its time. Moving ever so slowly along with XPath
2.0, it uses only those basic XSLT 1.0 features that are somewhat generic and do not require modification
for use with the new regime. Since November 16, 1999, when XSLT 1.0 became a recommendation, it has
become quite apparent that many changes need to be made to satisfy the ever-growing sophistication of
XML parsing and processing. XSLT 2.0 has been totally rethought, with many added features and
enhanced capability.

More Powerful Expressions
The following table provides a comparison of XSLT 1.0 and XSLT 2.0. Note the use of parentheses in
XSLT 2.0 — bear in mind that the use of parentheses was forbidden in XSLT 1.0. The power to use this
new syntax will save many lines of code and make the code much more readable.

967

Appendix C: XSLT Reference

XSLT 1.0 XSLT 2.0

<xsl:for-each select = “//name” > <xsl:for-each

<xsl:sort />

<xsl:value-of select = “.” /> select=”(@name[.=’Position’] |

<xsl:text >

</xsl:text> @name[.=’AccountsType’])”>

</xsl:for-each>

Muenchian’s Everywhere
Grouping resulting processed data in XSLT has always been an interesting problem — not an easy one,
but an interesting one. A gentleman called Steve Muench worked diligently at solving this problem and
thus won notoriety for his solution, known as the Muenchian Method of grouping for XSLT processors.
A typical problem was trying to maintain information retrieved from either a database or other XML
query process in an orderly fashion during further processing by XSLT so that it would not lose its struc-
ture or relationships. In addition, he sought to do this with a minimal amount of code.

The basic premise of the method involves the use of keys that XPath can use to efficiently access node
data that has been grouped. This, of course, means that the Muenchian Method can only be used with
XSLT processors that implement support for keys and the necessary features and functions for XPath to
use the keys. We shall see which XSLT processors will support the XSLT key() functions. For example,
consider the following example of defining a key and then using the key.

First define an XSLT key:

<xsl:for-each select=”country
[generate-id(.)=generate-id
(key(‘country’,zipcode))]”>

Then use the key:

<xsl:for-each select =”key(‘country’, zipcode)”>

Planning on Using XSLT 2.0
The processors are starting to emerge. There are also many recommendations, tips, and tricks emerging
to help you move slowly from 1.0 stylesheets to 2.0 stylesheets. Whether you choose to perform a total
rewrite on your documents or just gradually transition is up to you, but be aware that not all processors
allow backward compatibility. Some processors allow you to combine 1.0 and 2.0 code via the
xsl:stylesheet element using an attribute of version=1.0 or version=2.0. (I need not lecture you
on how together your head has to be to take this on.) Alternately, just open your XSLT 1.0 code inside a
XSLT 2.0 processor and debug from there. It’s your choice.

Most but not all of the XSLT processors and tools offer a backward compatibility mode that enables you to
blend XSLT 1.0 and XSLT 2.0 features, but you need to do some research before choosing the tools to use.

968

Appendix C: XSLT Reference

New Functions
The list of new functions available with XSLT 2.0 is breathtaking. A complete list of XSLT 2.0 features is
available in the XSL Transformations (XSLT) Version 2.0 W3C Working Draft at http://www.w3
.org/TR/xslt20/#major-features. In addition, of course, they will be implemented inside all the
XSLT 2.0 proclaimed editors and processors available.

A Quick Note on XSLT 2.0 and XQuery 1.0
No doubt there is a lot of overlap here. Both XSLT 2.0 and XQuery 1.0 are used to manipulate the data
but have different features. XQuery 1.0 was strongly typed to compensate for the lack of datatype func-
tionality inside XPath 1.0, but now XPath 2.0 has improved greatly in this respect and now supports
XSLT 2.0. They may emerge as equivalent for some uses, but where XQuery shines is in its ability to
extract data with a minimal amount of code.

969

Appendix C: XSLT Reference

In
d
e
x

Index

In
d
e
x

Index

-- (double-dash string), 46

– (minus sign), 10

(hash mark), 133

##any value, 164, 181

##local value, 164, 181

##other value, 164, 181

##targetNamespace value, 164, 181

#FIXED keyword, 126

#IMPLIED keyword, 120

#PCDATA keyword, 108, 138

#REQUIRED keyword, 122, 127, 884

$ variableName notation, 321

$a variable, 369

$b variable, 369

$book variable, 368

$i variable, 363, 365

$input variable, 370

$lower variable, 278

$p variable, 423

$ParameterName syntax, 320

$searchLetter param, 321

$text variable, 278

$VariableName syntax, 320

% (percent sign), 139, 140

& (ampersand) character, 132, 135, 140, 599, 905

& character, 59, 60, 444, 756

& character, 444

& entity, 131

' entity, 132

> entity, 131

< entity, 131

" entity, 132

* (asterisk), 891

* cardinality indicator, 109, 217

* indicator, 114, 116

* node test, 924

/*/text() method, 658

/\)/ argument, 796

// Implementation comment, 855

//element() function, 284

//element(*, xs:token) function, 284

@ character, 262

@ symbol, 406

@BasketPointer variable, 412

@BasketXml variable, 412

@number location path, 890

@type attribute, 827

@XmlPointer variable, 410

[character, 101

<![CDATA[]]> declaration, 866

[none] indicator, 114

] character, 101

^\d+$ expression, 282

_ (underscore), 122, 135

__str__ method, Python, 547

_query parameter, 390

_xsl parameter, 393

{ } (curly braces), 72, 332, 343, 359, 540

posting techniques, 649–652

processing on server

AutoSuggest box, 658–681

JavaScript Object Notation (JSON), 652–653

payment card validator, 653–658

server-side proxies, 681–686

transport on server

AutoSuggest box, 658–681

JavaScript Object Notation (JSON), 652–653

payment card validator, 653–658

Ajax technologies, 808

alert() function, 15, 450, 919

alien command, Debian, 427

align attribute, 913, 914

<all> declarations, 168, 171–174

Alternate attribute, 700

American Standard Code for Information Interchange

(ASCII), 52

<amount> element, 218

ampersand (&) character, 132, 135, 140, 599, 905

ancestor axis, 260, 264–265, 271, 348, 925

ancestor element node, 265

ancestor-or-self axis, 260, 265, 348, 925

<annotation> declaration, 208, 209

annotations

Scalable Vector Graphics (SVG), 782–784

XML Schemas, 208–209

annual percentage rate (APR), 841

anonymous boxes, 705–706

anonymous complex types, 165

<AnotherTag> element, 38

any content, 110

ANY keyword, 110

any namespace, 208

<any> declaration, 163

<anyAttribute> declaration, 180

anyElement children, 240

AnyName name-class feature, 240–241

anyURI type, 189

Apache Batik, 770, 771, 800

Apache Xerces, 24

API (application programming interface), 483, 576

APP (Atom Publishing Protocol) interface, 394, 525

App_Code folder file, 683

appearance attribute

xforms:input element, 817

xforms:range element, 819

xforms:secret element, 819

xforms:select1 element, 822

xforms:trigger element, 820

xforms:upload element, 819

appendChild() method, 444, 461, 462, 478

<appinfo> element, 208, 209

Applet module, XHTML, 760

application programming interface (API), 483, 576

applications, Scalable Vector Graphics (SVG), 769

application/xhtml+xml mime type, 746, 747, 756,

757, 758

apply-templates instruction, 253

APR (annual percentage rate), 841

Arial typeface, 699

<article> element, 699

as attribute, 333

ASaying.xquery query, 369

ASCII (American Standard Code for Information

Interchange), 52

ASCII 7-bit character encoding, 52

ASP (Active Server Pages), 295

ASP.NET page, 609

asterisk (*), 891

Asynchronous JavaScript and XML (Ajax)

asynchronous updates

cross-browser solutions, 647–649

Microsoft versus Mozilla, 647

communicating with proxy web service using, 858–864

posting techniques, 649–652

processing on server

AutoSuggest box, 658–681

JavaScript Object Notation (JSON), 652–653

payment card validator, 653–658

server-side proxies, 681–686

transport on server

AutoSuggest box, 658–681

JavaScript Object Notation (JSON), 652–653

payment card validator, 653–658

asynchronous updates

Asynchronous JavaScript and XML (Ajax), 645–686

early attempts

cross-browser solutions, 647–649

Microsoft and Mozilla, 647

Atom, 533–535

atom prefix, 538

Atom Publishing Protocol (APP) interface, 394, 525

Atom site, 567

975

Atom site

In
d
e
x

| (vertical bar) character, 108, 125

+ cardinality indicator, 217

+ indicator, 114

+ symbol, 729

< (opening) character, 34

< character, 24, 59, 756, 880

<!-- string, 46

= (equals sign) references, 34, 228

= assign method, 230

= character, 355

> character, 756

--> string, 46

: (colon) character, 34, 490

- (dash) character, 34

! (exclamation mark), 99

- (hyphens), 135

; (semicolon), 132, 133, 135, 140

<? ?> notation, 56

? cardinality indicator, 217

/ character, 347

? indicator, 114

A
A command, 778

<a> tags, 721

<abbr> element, 764

abort() method, 672

absolute location path, 299

absolute positioning, 706, 714–716, 718

absolute units, 774

abstract modules, XHTML, 760

Accept header, 580

Accept-Encoding header, 580

Accept-Language header, 580

accesskey attribute

xforms:input element, 818

xforms:range element, 819

xforms:secret element, 819

xforms:select element, 822

xforms:select1 element, 822

xforms:trigger element, 820

xforms:upload element, 819

AchieveForms, 809

Acrobat Reader, 837

<acronym> element, 764

action attribute, 814, 845

Action Module, 835–836

Active Server Pages (ASP), 295

ActiveX component, 450

ActiveXObject() function, 588, 647

actualText public member, 672

actualText variable, 669

actuate attribute, 724, 725

add() method, 474

addNode() method, 465

<address> element, 107, 116, 134, 226

address-unknown entity, 138

AddToCart procedure, 614, 624

Adjacent sibling selector, 701

Adobe Acrobat Reader, 837

Adobe GoLive, 770

Adobe Illustrator, 770

Adobe LiveCycle, 837

Adobe SVG Viewer, 448

Adobe SVG Zone, 800

ADO.NET, 380

AElfred2 parser, 485

after clause, 419

:after pseudo-element, 726, 729, 731

aggregators

implementation

address list reader, 541–542

application controller, 543–546

extending, 555–557

handler helpers, 552–555

model, 546–548

XML markup handler, 548–552

modeling feeds

different syntaxes, 538–539

Simple API for XML (SAX), 539

program flow, 540

transforming RSS with XSLT

browser processing, 564–565

generating a feed from existing data, 558–559

pre-processing feed data, 565

processing feed data for display, 561–563

reviewing the different formats, 565–567

Ajax (Asynchronous JavaScript and XML)

asynchronous updates

cross-browser solutions, 647–649

Microsoft versus Mozilla, 647

communicating with proxy web service using, 858–864

974

| (vertical bar) character

Atom Syndication Format (RFC), 533

Atom Wiki site, 567

atomic value, 361

ATTLIST declaration, 120, 121, 127, 130, 134, 140,

141

Attr node, 480

attr property, 910

attribute axis, 259, 260, 261, 262–264, 890, 925

attribute declarations

attribute names, 120–121

attribute types

CDATA, 122

ENTITIES, 123

ENTITY, 123

enumerated, 124–125

ID, 122–123

IDREF, 122–123

IDREFS, 122–123

NMTOKEN, 124

NMTOKENS, 124

attribute value declarations

default values, 125–126

fixed values, 126

implied values, 127

required values, 126–127

specifying multiple attributes, 127

attribute minimization, 742

attribute nodes, 255, 256, 259, 262, 266, 890

attribute pattern, 213, 233, 237

attribute selectors, 701

attribute value, 40, 122

attribute value template, 343, 941

attribute values, XHTML 1.x, 742

attribute::*, 928

<attribute> declarations

attribute qualified form, 179

attribute use, 179–180

attribute wildcards, 180–182

default values, 180

fixed values, 180

global, 177–178

local, 177

naming attributes, 179

referring to existing global attributes, 179–183

attributeDecl event, DeclHandler interface, 514

attributeFormDefault attribute, 154, 179

<attributeGroup> declaration, 179, 180, 183–185,

186, 216

attributeName attribute, 730

attribute::number location path, 890

attributes

@type attribute, 827

accesskey attribute

xforms:input element, 818

xforms:range element, 819

xforms:secret element, 819

xforms:select element, 822

xforms:select1 element, 822

xforms:trigger element, 820

xforms:upload element, 819

action attribute, 814, 845

actuate attribute, 724, 725

align attribute, 913, 914

Alternate attribute, 700

<anyAttribute> declaration, 180

appearance attribute

xforms:input element, 817

xforms:range element, 819

xforms:secret element, 819

xforms:select1 element, 822

xforms:trigger element, 820

xforms:upload element, 819

as attribute, 333

from attribute, xsl:number, 952

attribute axis, 259, 260, 261, 262–264, 890, 925

attribute minimization, 742

attribute nodes, 255, 256, 259, 262, 266, 890

attribute pattern, 213, 233, 237

attribute selectors, 701

attribute value, 40, 122

attribute value template, 343, 941

attribute values, XHTML 1.x, 742

attribute::*, 928

<attribute> declarations

attribute names, 120–121

attribute qualified form, 179

attribute types, 122–126

attribute use, 179–180

attribute value declarations, 125–127

attribute wildcards, 180–182

default values, 180

fixed values, 180

976

Atom Syndication Format (RFC)

global, 177–178

local, 177

naming attributes, 179

referring to existing global attributes, 179–183

specifying multiple attributes, 127

attributeDecl event, DeclHandler interface, 514

attributeFormDefault attribute, 154, 179

<attributeGroup> declaration, 179, 180, 183–185,

186, 216

attributeName attribute, 730

attribute::number location path, 890

Attributes interface, 492, 494

attributes property, Node object, 458, 459, 471

attributes’ setNamedItem() method, 475

attributes.item(j) method, 920

base attribute, 195

bgcolor attribute, 694, 736, 913, 914

bind attribute

xforms:output element, 819

xforms:range element, 819

xforms:select1 element, 822

xforms:submission element, 815

case-order attribute, xsl:sort, 958

CDATA attribute, 121, 122

cdata-section-elements attribute

xforms:submission element, 815

xsl:output, 955

Charset attribute, 700

class attribute, 701, 764, 818

comments attribute, 207

compared to elements, 43–45

annotations, 45

complexity, 44–45

order, 45

separating information, 43–44

space, 44

visual preferences, 45

constraint attribute, 828, 833

contacts attribute, 223

ContentType attribute, 673

count attribute, xsl:number, 952

createAttribute() method, Document interface,

475, 479, 480

createAttributeNS() method, Document interface,

479, 480

cx attribute, 774

cy attribute, 774

d attribute, 777

data-type attribute, xsl:sort, 957

decimal-separator attribute, xsl:decimal-format

element, 945

default attribute, 162, 180

default values, 180

digit attribute, xsl:decimal-format element, 946

disable-output-escaping attribute

xsl:text, 960

xsl:value-of, 961

DOB attribute node, 264

doctype-public attribute, xsl:output, 955

doctype-system attribute, xsl:output, 955

duplicate attribute names, 120–121

elementFormDefault attribute, 151, 154, 161, 175

elements attribute

xsl:preserve-space, 956

xsl:strip-space, 958

encoding attribute, 50–51, 52, 740, 750, 815, 912,

954

encodingStyle attribute, 615

ENTITIES attribute, 121

ENTITIES attribute, 123

ENTITY attribute, 121

ENTITY attribute, 123

Enumerated List attribute, 121

env:encodingStyle attribute, rdf:RDF element, 616

event-handler attributes, 763

exclude-result-prefixes attribute

xsl:stylesheet, 958

xsl:transform, 960

extension-element-prefixes attribute

xsl:stylesheet, 958

xsl:transform, 960

fill attribute, 771, 775, 782, 785, 795, 799

fill-opacity attribute, 790

FirstName attribute, 300, 301

fixed attribute, 162, 163, 180, 183

fixed values, 180

font-size attribute, 782

form attribute, 161, 179

format attribute, xsl:number, 952

functions attribute, 813

gender attribute declaration, 884, 886

getTransformBlock attribute, 795

977

attributes

In
d
e
x

attributes (continued)

global attributes, 84, 177–178, 179

group-by attribute, 326

grouping-separator attribute

xsl:decimal-format, 945

xsl:number, 953

grouping-size attribute, xsl:number, 953

height attribute, 774, 787, 789

href attribute, 700, 722, 724, 764, 819, 949, 950

http-equiv attribute, 746

id attribute, 41, 83, 85, 121, 122–123, 126, 739,

740, 744, 747, 813, 814, 815, 820, 825, 913,

914, 958, 960

ID attribute nodes, 323

IDREF attribute, 121, 122–123

IDREFS attribute, 121, 122–123

implied attributes, 127

includenamespaceprefixes attribute, xforms:

submission element, 815

incremental attribute

xforms:input element, 818

xforms:range element, 820

xforms:select element, 822

xforms:select1 element, 822

indent attribute

xforms:submission element, 815

xsl:output, 955

infinity attribute, xsl:decimal-format element,

945

isPermalink attribute, 532

itemType attribute, 196

kind attribute, 122, 124, 125, 126, 128, 130, 178,

180, 186, 192, 193, 195, 196

lang attribute, 739, 745, 747, 953, 957

LastName attribute, 300

letter-value attribute, xsl:number, 953

level attribute, xsl:number, 952

local attributes, 177

margin attribute, 910

match attribute, 293, 296, 315, 319, 950, 959

maxOccurs attribute, 161, 163, 168, 170

Media attribute, 700

media-type attribute

xforms:submission, 815

xsl:output, 955

memberTypes attribute, 197

method attribute

xforms:submission element, 814

xsl:output element, 306, 954

minOccurs attribute, 161, 163, 164, 168, 170

minus-sign attribute, xsl:decimal-format ele-

ment, 946

mixed attribute, 176

mode attribute

xsl:apply-templates element, 315, 941

xsl:template element, 959

model attribute

xforms:itemset element, 827

xforms:select1 element, 826

mustUnderstand, 621–622

mustUnderstand attribute, 621–622, 623, 906

myAttr attribute, 40

myElement[myAttribute] selector, 729

myElement[myAttribute~=”myValue”] selector,

729

myElement[myAttribute=”myValue”] selector, 729

name attribute

xsl:attribute element, 941

xsl:attribute-set element, 942

xsl:call-template element, 943

xsl:decimal-format element, 945

xsl:element element, 303, 305, 947

xsl:key element, 950

xsl:param element, 956

xsl:processing-instruction element, 957

xsl:template element, 322, 959

xsl:variable element, 961

namespace attribute, 164, 180, 181, 204, 914, 941,

947

namespace pseudo-attribute, 807

namespaces, 83–86

naming, 179

NaN attribute, xsl:decimal-format element, 946

navigationindex attribute, xforms:select1

element, 822

navindex attribute, 818, 819, 820

ncname attribute, xsl:sort, 957

NMTOKEN attribute, 121, 124

NMTOKENS attribute, 121, 124

nodeset attribute

xforms:bind element, 828

xforms:itemset element, 827

978

attributes (continued)

noNamespaceSchemaLocation attribute, 152

NSAttributes object, 550

number attribute, 252, 265, 890

omit-xml-declaration attribute

xforms:submission element, 815

xsl:output element, 955

onclick attribute, 452, 785, 845, 864

onload attribute, 789, 793

onLoad value, actuate attribute, 725

optional attribute, 180

order attribute, xsl:sort, 957

orderID attribute, 910

from other namespaces, 207

padding attribute, 910

path data, d attribute, 777

pattern-separator attribute, xsl:decimal-format

element, 947

percent attribute, xsl:decimal-format element, 946

per-mille attribute, xsl:decimal-format element, 946

person attribute, 128

phone attribute declaration, 140

points attribute, 918

portrait attribute, 123

priority attribute, xsl:template, 959

processContents attribute, 164, 181, 887

qualification, 154–155

qualified form, 179

r attribute, 774

rdf:about attribute, 531, 535

ref attribute, 170, 178, 184, 815, 817, 819, 822,

826, 836

RELAX NG patterns, 216–223

cardinality, 216–217

compared to elements, 216

connector patterns and grouping, 217–220

co-occurrence constraints, 221

empty patterns, 222–223

enumerated values, 220–221

mixed content patterns, 222

relay, 622

relay attribute, 622

replace attribute, xforms:submission element, 815

required attribute, 180

result-prefix attribute, xsl:namespace-alias,

951

role, 622

role attribute, 622, 764

rotate attribute, 791

rotate expression, transform attribute, 776

scale expression, transform attribute, 777

schema attribute, 834

schemaLocation attribute, 152, 200, 204, 381

security attribute, 278, 280

select attribute

xsl:apply-templates element, 313, 318, 321,

941

xsl:copy-of element, 945

xsl:for-each element, 948

xsl:param element, 956

xsl:sort element, 314, 957

xsl:value-of element, 299, 961

xsl:variable element, 321, 962

xsl:with-param element, 963

selected attribute, 742

selection attribute, xforms:select element, 821

selection attribute, xforms:select1 element, 822

show attribute, 724, 725

source attribute, 120, 128, 130, 183, 185, 208, 209

specifying multiple, 127

src attribute, 764, 813, 825

standalone attribute, 50–54, 815, 955

status attribute, 353

step attribute, xforms:range element, 820

stroke attribute, 773, 776

stroke-width attribute, 773, 776

style attribute, 84, 86, 636, 736

stylesheet-prefix attribute, xsl:namespace-alias,

951

submission attribute, xforms:submit element, 820

tags attribute, 130, 192, 243

target attribute, 785

targetNamespace attribute, 151, 152, 175, 206

terminate attribute, xsl:message, 951

test attribute

xsl:if, 949

xsl:when, 962

xsl:with-param, 962

text-anchor attribute, 792

title attribute, 152, 177, 204, 216, 217, 226, 231,

234, 235, 700, 724

transform attribute, 776, 777, 793, 795, 798, 799,

871, 918, 919

979

attributes

In
d
e
x

attributes (continued)

translate attribute, 791

translate expression, transform attribute, 776

transport attribute, 636

type attribute, 157, 159, 196, 221, 494, 535, 700,

789

type=”html” attribute, 535

type=”text” attribute, 535

types, 122–125

CDATA, 122

ENTITIES, 123

ENTITY, 123

enumerated, 124–125

ID, 122–123

IDREF, 122–123

IDREFS, 122–123

NMTOKEN, 124

NMTOKENS, 124

use, 179–180

use attribute, 179, 637, 950

use-attribute-sets attribute

xsl:attribute-set element, 942

xsl:copy template, 944

xsl:element, 947

value attribute, xsl:number, 952

value attributes, 845

version attribute, 50–51, 127, 130, 152, 182, 183,

192, 815, 954, 959, 960

viewBox attribute, 774

width attribute, 774, 787, 789

wildcards, 180–182

x attribute, 777

xhtml:body attribute, 533

xlink:actuate attribute, 722

xlink:href attribute, 722

xlink:show attribute, 722, 725

xlink:title attribute, 722

xlink:type attribute, 722

xml:lang attribute, 270, 739, 745, 747

xmlns attribute, 74, 76, 77, 80, 912

xmlns=”” attribute, 882

xmlns:pers attribute, 72

xml:space attribute, 270, 469

xs:boolean value, incremental attribute, 818

xsi:nil attribute, 400

xsi:schemaLocation attribute, 185

xsl: attribute element, 941–942

xsl: attribute-set element, 942

xsl:attribute element, 301

y attribute, 777

zero-digit attribute, xsl:decimal-format

element, 946

Attributes interface, 492, 494

attributes property, Node object, 458, 459, 471

attributes’ setNamedItem() method, 475

attributes.item (j) method, 920

<authentication> header entry, 621

author element, 899

author elements, 368

authoring tools, 754

AUTO option, 405

AutoSuggest box, class design

adding suggestions, 666–667

coping with speed typists, 670–671

creating suggestions list, 663–665

handling control key, 662–663

handling input key, 662–663

handling keyboard selection, 667–670

handling mouse actions, 665–666

implementing suggest() method, 662

implementing SuggestionProvider, 671–673

implementing web service, 673–680

showing a suggestion, 660–662

AutoSuggest textbox, 653

AutoSuggestControl class, 659

AutoSuggestControl constructor, 663, 671, 678

AutoSuggestControl.suggest() method, 673

AutoSuggest.css file, 659, 678

AutoSuggestDemo.html file, 659, 678

AutoSuggest.js file, 659, 678

axes

ancestor, 925

ancestor-or-self, 925

attribute, 925

child, 925

descendant, 925

descendant-or-self, 926

following, 926

following-sibling, 926

namespace, 926

parent, 927

preceding, 927

preceding-sibling, 927

self, 927

in XQuery, 361

980

attributes (continued)

B
 element, 694, 701, 913

B2B (business-to-business) e-commerce, 21

B2B (business-to-business) transactions, 342

B2C (business-to-consumer) transactions, 21

background property, CSS, 695

Background property, CSS, 695

background-attachment property, CSS, 695

background-color property, 694, 695

background-image property, 695, 725

background-position property, 695

background-repeat property, 695

balancePath variable, 870

bandwidth, 8

base attribute, 195

Base module, 761, 762

base64Binary type, 187

base-uri declaration, XQuery, 356

Basic forms module

XHTML, 760

XHTML Basic, 762

Basic tables module

XHTML, 760

XHTML Basic, 762

BasicRetrievalDemo.aspx page, 650

BasicRetrievalDemo.html, 657

Batik, Apache, 770, 771, 800

before clause, 419

:before pseudo-element, 726, 729

BegXML.xslt stylesheet, 318

bgcolor attribute, 694, 736, 913, 914

BibAdapted.xml file, 349, 352, 367

BibQuery1Out.xml file, 351

BibQuery3Out.xml file, 353

Bidirectional text module, XHTML, 760

bin directory, 291, 382

binary file formats, 6

binary files, 4

bind attribute

xforms:output element, 819

xforms:range element, 819

xforms:select1 element, 822

xforms:submission element, 815

bind elements, compared to XML Schema, 834

<binding> element, 635

bits, 4

blank node, 527

bLoaded variable, 453

block boxes, 703–704

blog collection, 385

Blogger blogging service, 524

blogging tools, 523

blogitem1.xml file, 385

blogitem2.xml file, 385

Bloglines, 536

body blocks, 614

<body> element, 593, 614–615, 696, 846, 913, 914,

915

BOL (Books Online), 404

<bold> element, 880

book element, 359

book-indented.xml file, 469

Books element node, 252, 257, 279, 347, 351, 370

Books Online (BOL), 404

book.xml file, 469

book-xml-space.xml file, 469

boolean() function, 274, 964

boolean flags, 513

boolean function-available function, 964

boolean object, 929

boolean type, 188, 966

Booleans

functions, 274–275

XPath 1.0, 258

border, 702

border-collapse property, CSS, 695

border-spacing caption-side property, CSS, 695

Both value, clear property, 713

BottomFeeder, 536

boundary whitespace, 358

boundary-space declaration, XQuery, 357–358

box model, 702

boxes

anonymous, 705–706

block, 703–704

inline, 703–704

BPEL4WS (Business Process Execution Language

for Web Services), 603

br elements, 743

 element, 32, 50, 109, 110, 222, 223, 236, 549,

553, 743, 888, 890

981

 element

In
d
e
x

branches, 15

browsers

plug-ins, 804

processing, 564–565

XML Document Object Model (DOM), 450

Browsing Collection, eXist, 384

building, proxy web services, 849–853

built-in datatypes, 187–192

built-in entities, 131–132

<bulletPoint> element, 728

Business Process Execution Language

for Web Services (BPEL4WS), 603

business protocols, 603

business-to-business (B2B) e-commerce, 21

business-to-business (B2B) transactions, 342

business-to-consumer (B2C) transactions, 21

byte type, 187

C
C command, 778

C++ language, 517

Calculate function, 857, 858

calculate property, XForms model items, 828

CalculatePassThrough function, 852, 858

Candidate Recommendation, 633

cardinality

Document Type Definitions (DTDs), 114–119

RELAX NG patterns, 216–217

XML Schemas, 161–162

cardinality indicator, 109

carriage return characters, 38

Cascading Style Sheets (CSS)

attaching to an XML document, 699–700

attribute content

attribute selectors, 729

using attribute values in documents, 729–731

images in XML documents, 725–726

inheritance, 695–699

laying out tabular data, 719–721

layout of XML documents

box model, 702–706

positioning, 706–719

links in XML documents

forcing links using the XHTML namespace, 725

XLink support in Firefox, 721–724

overview, 693–701

properties, 694–695

purpose, 692–693

selectors, 700–701

using to add content to documents, 726–729

case sensitivity, 35, 742

case-order attribute, xsl:sort, 958

CASTing, 414

Castor, 380

CDATA (character data) sections, 61–62

CDATA attribute, 121, 122

CDATA keyword, 120

CDATA section, 394, 785

CDATA type, 182

CDATASection node, 449

cdata-section-elements attribute

xforms:submission element, 815

xsl:output, 955

CDF (Content Definition Format), Microsoft, 525–526

ceiling() function, 275

center object, 796

Chameleon components, 206

channel description, 528

channel resource, 538

channel start-tag, 560

channel template, 564

<channel> element, 563, 903

Chapter element nodes, 252, 265, 279, 280

Chapter elements, 254, 256, 266, 280, 353

Chapter nodes, 318, 480

<Chapter> element, 253, 259

character code, 51

character content, ContentHandler interface,

494–497

character data (CDATA) sections, 61–62

Character element nodes, 309

Character elements, 307

character entities, 132–133

character entity reference, 133

Character Map application, 874

character references, 61

character type, 966

Characteristic element nodes, 312, 314

characters

/, 347

&, 59, 60, 444, 756

&, 444

982

branches

@, 262

[, 101

], 101

<, 24, 59, 756, 880

=, 355

>, 756

type, 966

ampersand (&), 132, 135, 140, 599, 905

ASCII 7-bit encoding, 52

carriage return s, 38

closing >, 34

colon (:), 34, 490

dash (-), 34

encoding

specifying, 52–53, 746

Unicode, 52

end <...>, 563

French, 874

illegal, 60–61, 133

linefeed, 38

newline, 38, 549, 553, 902, 920

opening (<), 34

parsed character data (PCDATA)

illegal characters, 60–62

whitespace, 38–39

raw, 60

un-escaped, 60

vertical bar (|), 108, 125

characters callbacks, 495

characters event, 487, 494

characters function, 495, 539, 551, 896

Characters.xslt stylesheet, 307

charCode property, 919

Charset attribute, 700

Chemical Markup Language (CML), 13, 104

Chiba, 808

child axis, 252, 258, 259, 260–261, 279, 280, 925

child element nodes, 279

child elements, 27, 44, 239, 876

child node, 347

Child selector, 701

child::comment() function, 928

childNodes property, 458, 459, 475, 798

child::text() function, 928

choice (sequence) connector, 217–219

choice declaration, 176

choice pattern, 217

<choice> declarations, 169–170

choices

combining with sequences using groups, 108

name-classes, 238–239

Choreography Definition Language, 603

CHTML (Compact HTML), 759

Chumpalogica, 525

<circle> element, 771, 776, 783, 916

class attribute, 701, 764

xforms:input element, 818

class selector, 701

classes

AutoSuggestControl, 659

ContentHandler class, 504

current class, 664

DefaultHandler class, 504, 510, 515

design

adding suggestions, 666–667

coping with speed typists, 670–671

creating suggestions list, 663–665

handling control key, 662–663

handling input key, 662–663

handling keyboard selection, 667–670

handling mouse actions, 665–666

implementing suggest() method, 662

implementing SuggestionProvider, 671–673

implementing web service, 673–680

showing a suggestion, 660–662

dtstart class, 764

ErrorHandler class, 504–509

feed , 546–548

Feed class, 546–548

FeedHandler , 548–552

FeedHandler class, 548–552, 553

FeedReader, 543–546

FeedReader class, 543–546

item, 546–548

item class, 546–548

ListReader, 541–542

ListReader class, 541–542, 545

MSXML2.XMLHTTP class, 588

MyClass class, 486

SuggestionProvider class, 659, 671–673

System.Xml class, 674

TextRange class, 660

983

classes

In
d
e
x

classes (continued)

TrainReader class, 515, 897

XmlHttp class, 592, 646

XMLHttpRequest class, 462, 592, 650

XMLSerializer class, 457

XslCompiledTransform class, 675

zXPath class, 595, 658

CLASSPATH environment variable, 290, 486, 490

clauses

OPENXML, 409–413

order by, 366–367

where, 365–366

FOR XML, 396–425

FOR XML AUTO, 401–404

FOR XML EXPLICIT, 405

FOR XML PATH, 405–409

FOR XML RAW, 396–401

clear property, 713

clearTimeout() method, 670

client.bat script, 386

client-consumer syndication systems, 523

client-producer syndication systems, 523–524

clients, creating, 684–686

client/server implementations, 805, 808

client.sh script, 386

Client-side image map module, XHTML, 760

client-side scripting, 804

client-side validation, 804

cloneNode() method, Node object, 461, 462

closepath Z command, 779

closing > character, 34

cm absolute unit, SVG, 774

CML (Chemical Markup Language), 13, 104

Cocoon, 808

<Code> element, 622

Codeplot editor, 96, 213

collection() function, 346, 348

collections, 384

colon (:) character, 34, 490

color property, 695, 699

<color> element, 498, 896

<column1> element, 716

<column2> element, 716

COM (Component Object Model), 573

combining

grammars, 227–236

patterns, 227–236

sequences and choices using groups, 108

command-line user interface, 537

commands

A, 778

alien, 427

C, 778

closepath Z, 779

dpkg -i, 427

elliptical arc, 779

H, 778

horizontal lineto, 778

L, 778

line, 870

M, 778

path commands, 779

Q, 778

rotate, 793

rotate(degrees), 871

S, 778

special, 499

T, 778

translate(x,y), 871

V, 778

vertical lineto, 778

Z, 778

comment() function, 928

comment event, LexicalHandler interface, 515

Comment nodes, 255, 257, 449, 459

Comment objects, 448

comments

RELAX NG, 244

Scalable Vector Graphics (SVG), 782–784

XML Schemas, 206–207

XQuery, 360

comments attribute, 207

Common Object Request Broker Architecture (CORBA),

574

communicating with proxy web service using Ajax,

858–864

Compact HTML (CHTML), 759

<comparison> element, 60

com/pers namespace, 83

<complexType> element, 151, 157, 158, 160,

165–166, 168, 170, 175, 178, 180, 182,

183–184, 186, 192, 216, 886

Compliance Studio, 842, 849, 852, 857

Component Object Model (COM), 573

component-based software, 573

composition, 234

984

classes (continued)

computing, distributed, 21

concat() function, 276, 369

conceptual resource, 87

conditional expressions, 367–368

conditional processing

<xsl:choose> element, 308–311

<xsl:if> element, 306–308

<conductors> element, 899

Configure Database Sources button, Database Explorer

window, 389

connector patterns, and grouping, 217–220

connectors

interleave, 219–220

sequence (choice), 217–219

constraining XForms instances

choosing between schema and bind elements, 834

W3C XML Schema in XForms, 833–834

xforms:bind element, 828–833

constraint attribute, 828, 833

constraint property, XForms model items, 828

constructors

computed, 358–359

element, 351–355

consumers, Simple API for XML (SAX), 516

<contact> element, 106, 107, 115, 124, 192, 203,

884, 885, 886

contacts attribute, 223

contacts element, 175

contacts namespace, 241

contacts prefix, 178, 237

contacts schema, 242

contacts vocabulary, 234

<contacts> element, 120, 127, 130, 181, 182, 185,

226, 235

contacts19.rnc schema file, 888

contacts4.xml document, 139

contacts-main.rnc declaration, 888

contacts-names.rnc declaration, 888

ContactTagsListType type, 197

containing block, 705

containing box, 705

containing element, 705

contains() function, 276

content

any, 110

element

choices, 107–108

combining sequences and choices using groups, 108

sequences, 106–107

empty, 110

incorporating from other people, 757

mixed, 108–109

Content Definition Format (CDF), Microsoft, 525–526

content model, 105

content model inheritance, 147, 533

content models

<all> declarations, 171–174

<choice> declarations, 169–170

<group> references, 170–171

XML Schemas, 147

content prefix, 538

content property, 730, 731, 910

content syndication

aggregators

implementation, 540–557

modeling feeds, 537–539

program flow, 540

transforming RSS with XSLT, 557–567

meta data

evolution of systems, 525–535

syndication systems, 522–525

news feeds

data quality, 536–537

newsreaders, 536

resources, 567–568

<content> element, 534, 535

ContentHandler class, 504

ContentHandler interface

character content, 494–497

element events, 491–494

handling special commands with processing

instructions, 499

ignorableWhitespace events, 498

namespace prefixes, 499

providing the location of the error, 502–504

skipped entities, 498–499

stopping process, 500–502

Content-Length header, 581

ContentType attribute, 673

Content-Type header, 581

Content-Type HTTP header, 747

context, XPath, 252–254

context node, 252, 264, 266, 271, 278, 923

985

context node

In
d
e
x

controllers, application, 543–546

controls, XForms

xforms:input element, 817–818

xforms:output element, 818–819

xforms:range element, 819–820

xforms:secret element, 818

xforms:select element, 821–822

xforms:select1 element, 822–824

xforms:submit element, 820–821

xforms:textarea element, 818

xforms:trigger element, 820

xforms:upload element, 819

conventional databases

data binding, 380–381

moving XML to relational databases, 380

producing XML from relational databases, 380

ConversionRate() method, 684

CONVERTing, 414

co-occurrence constraints, 221

coordination, web services, 603–604

copyright symbol ((c)), 61

CORBA (Common Object Request Broker Architecture),

574

count() function, 258, 275, 298, 368, 369–370

count attribute, xsl:number, 952

count node-set, 930

<countries> element, 676

CountriesSuggestionProvider2.js file, 681

CountriesSuggestionProvider.js file, 659, 678

countries.xml file, 659, 673, 674, 676, 678

countries.xslt file, 673, 677, 678

<country> element, 673, 675, 677, 681

Count.xquery query, 369

Cover Pages, 104

CPAN, 771

Create Collection button, eXist, 385

create table SQL instruction, 428

create_item method, 547

create_parser method, 544, 545

createAttribute() method, Document interface,

475, 479, 480

createAttributeNS() method, Document interface,

479, 480

createCDATASection() method, Document interface,

479, 480

createComment() method, Document interface, 479,

480

createDocumentFragment() method, Document

interface, 479

createElement() method, Document interface, 444,

465, 478, 479, 480, 894

createElementNS() method, Document interface,

480, 894

createElementNS method, Document interface, 479

createEntityReference method, Document interface,

479

createProcessing Instruction() method,

Document interface, 479, 480

createSuggestionsBox() method, 664, 670

createTextNode method, Document interface, 479

createTextNode property, 465

createTextRange method, 662

Creative Commons license, 533

<credit> element, 218

Crimson parser, 485, 502

Croczilla SVG, 800

cross-domain posting, 595

Cross-Domain XML HTTP Requests, 849

Cross-Site Scripting (XSS), 849

CSR (customer service representative), 26

CSS (Cascading Style Sheets)

attaching to an XML document, 699–700

attribute content

attribute selectors, 729

using attribute values in documents, 729–731

images in XML documents, 725–726

inheritance, 695–699

laying out tabular data, 719–721

layout of XML documents

box model, 702–706

positioning, 706–719

links in XML documents

forcing links using the XHTML namespace, 725

XLink support in Firefox, 721–724

overview, 693–701

properties, 694–695

purpose, 692–693

selectors, 700–701

using to add content to documents, 726–729

Curl language, 517

curly braces ({ }), 72, 332, 343, 359, 540

currency converter proxy

creating clients, 684–686

creating web services, 682–683

implementing GetRate() method, 683–684

986

controllers, application

CurrencyProxyService folder, 684

currencyProxyServiceDemo.html, 684

current class, 664

current-date() function, 283

current-DateTime() function, 283

current-group() function, 324

current-grouping-key() function, 324, 326, 332

currentSuggestionIndex variable, 668

current-time() function, 283

cust_id parameter, 905

custom __str__ method, 548

customer service representative (CSR), 26

cx attribute, 774

cy attribute, 774

D
d attribute, 777

danny-description entity value, 139

dash (-) character, 34

data binding, conventional databases, 380–381

data files

binary files, 4

history of markup languages, 6–7

text files, 5

data models

XPath 2.0, 360

XQuery

axes in, 361

shared with XPath 2.0 and XSLT 2.0, 360

types in, 361

XSLT 2.0, 323, 360

Data Modification Language (DML), 416, 417

data quality, news feeds, 536–537

Database Explorer, 389

databases

choosing a database to store XML, 438

commercial relational database management systems

(RDBMSs)

Web service support, 426

XML functionality in SQL Server 2000, 395

efficient data stores

XML growth, 376–377

XML-based data and relational data compared, 377

future of, 438

native databases

eXist, 382–394

interacting with eXist, 384–394

open source relational database management systems

(RDBMSs)

adding information in MySQL, 427–430

client-side XML support, 437

installing MySQL, 426–427

querying MySQL, 430–435

updating XML in MySQL, 435–436

usability of XML in MySQL, 436

storing XML

conventional databases, 379–381

file systems, 378–379

native databases, 381–382

DataEncodingUnknown identifier, 623

data-type attribute, xsl:sort, 957

datatype value, 220

datatypes

built-in, 187–192

document type definitions (DTDs), 143

RELAX NG, 241–243

user-defined, 193

validation, 221

xml, 413–416

XML Schemas, 147

datatyping, control, 924

Date element nodes, 261, 265

date properties, 545

date type, 188

date values, 547

date_labels container, 870

<date> element, 539

dateTime type, 188

david-description entity, 138

day-from-date() function, 283

/db/blog collection, 385, 391

dc prefix, 538

DCOM (Distributed Component Object Model),

573–574, 609

dc:source extension, 900

<dc:title> element, 550

.deb packages, 427

Debian, 427

Debian alien package, 427

debugging

SVG in Firefox, 770

XForms, 836

987

debugging

In
d
e
x

decimal type, 187, 193

decimal-separator attribute, xsl:decimal-format

element, 945

declarations

<all>, 171–174

attribute value

default values, 125–126

fixed values, 126

implied values, 127

required values, 126–127

<attribute>

attribute qualified form, 179

attribute use, 179–180

attribute wildcards, 180–182

default values, 180

fixed values, 180

global, 177–178

local, 177

naming attributes, 179

referring to existing global attribute, 179

<attributeGroup>, 183–185

attributes

names, 120–121

specifying multiple, 127

types, 121–125

value declarations, 125–127

base-uri, 356

boundary-space, 357–358

character encoding

specifying, 52–53

Unicode, 52

<choice>, 169–170

<complexType>, 165–166

DOCTYPE, 741

<element>

any content, 110

cardinality, 114–119, 161–162

default values, 162–163

element content, 106–108

element qualified form, 161

element wildcards, 163–165

empty content, 110

fixed values, 162–163

global, 156, 157–158

local, 156–157

mixed content, 108–109

naming elements, 160–161

referring to existing global element, 159–160

<group>, 167–168

<import>, 200–204

<include>, 204–206

<list>, 196–197

namespace, 356

<restriction>, 194–196

<schema>

element and attribute qualification, 154–155

target namespaces, 153–154

XML Schema namespaces, 153

<simpleType>, 193

standalone attribute, 53–54

<union>, 197–199

validation, 357

variable, 357

version, 355

version attribute, 51

XML, 740

DeclHandler events, 897

DeclHandler extension interface, 514

DeclHandler property, 513

default attribute, 162, 180

default namespaces, 75–81, 204, 236, 237, 881

default values, 125–126, 162–163, 180

default XPath behavior, 432

DefaultHandler class, 504, 510, 515

DefaultHandler2 events, 897

DefaultPhoneKind parameter, 140

definitions, combining named pattern, 230–231

<definitions> element, 633

delete keyword, 416, 417

deleteNode() method, 464, 465

demilitarized zone (DMZ), 583

derived types, 193

desc element, 784

<desc> element, 783, 784, 788

descendant axis, 260, 265–266, 890, 925

Descendant selector, 701

descendant text nodes, 256

descendant-or-self axis, 260, 266, 890, 926

Description element node, 298

<description> element, 109, 110, 132, 138, 139,

166, 222, 236, 239, 533, 561, 887

descriptionContents pattern, 890

988

decimal type

DescriptionType <complexType> definition, 176

<Detail> element, 623

details parameter, 578

DHTML (Dynamic HTML), 14

digit attribute, xsl:decimal-format element, 946

direction property, CSS, 695

disable-output-escaping attribute

xsl:text, 960

xsl:value-of, 961

display property, 703, 704, 719, 721, 911

display:table; value, 719

display:table-caption; value, 719

display:table-cell; value, 719

display:table-row; value, 719

Distributed Component Object Model (DCOM),

573–574, 609

distributed systems, 571

<div> element, 535, 758, 843, 845, 847, 913

divisions, RELAX NG, 244

</DL> tags, 543

DLL hell, 574

DML (Data Modification Language), 416, 417

DMZ (demilitarized zone), 583

DOB attribute node, 264

doc() function, 346, 347–348

doc directory, Saxon, 345

doc expression, 352

DocBook documents, 376, 697

Docs table, 425

DOCTYPE (document type declaration), 100–104, 251,

741

DOCTYPE declaration, 99, 103, 105, 117, 136, 251,

563, 740, 747, 750, 789, 843, 912, 914

doctype property, Document interface, 479

doctype-public attribute, xsl:output, 955

doctype-system attribute, xsl:output, 955

document() function, XSLT, 323, 347

document element, 462

Document interface, 446, 478–480

Document node, 444, 446, 447, 448, 449, 894

document object, 15

Document object, 448, 459

Document Object Model (DOM), 14, 17, 20, 83, 147,

250, 251, 341–342, 376, 448, 483, 588, 893

Document Object Model Level 1 Recommendation, 446

document start-tag, 881

document type, 17, 70

document type declaration (DOCTYPE), 100–104, 251,

741

Document Type Definitions (DTDs)

compared to XML Schemas, 147–148

developing, 141–142

example

document type declaration (DOCTYPE), 100–104

preparing to create, 96–100

limitations

data types, 143

limited content model descriptions, 143

namespaces, 143

syntax, 142–143

parts of

attribute declarations, 120–131

element declarations, 105–131

entities, 131–141

sharing vocabularies, 104

XHTML 1.x, 738–739

document types, 17–18

document value, 636

document views, 774

<documentation> element, 208, 209

documentElement property, 446, 454, 464, 479, 862

DocumentFragment node, 449

documenting XML Schemas

annotations, 208–209

attributes from other namespaces, 207

comments, 206–207

document.rss element, 564

documents

links in XML

forcing using XHTML namespace, 725

XLink support in Firefox, 721–724

order, 361

XForms, XML namespaces in, 816–817

XHTML

attribute values, 742

case sensitivity, 742

character encoding, 745–747

DOCTYPE declaration, 741

IDs, 744

names, 744

specifying language, 745

styling, 751–752

989

documents

In
d
e
x

documents (continued)

validating, 754–757

well-formedness, 743–744

XML declaration, 740

XML

attaching Cascading Style Sheets (CSS), 699–700

layout using Cascading Style Sheets (CSS), 701–719

loading, 462–468

modeling, 250–251

ways of representing, 250

DocumentType node, 449

DocumentType object, 448

document.write() method, 757

document.xml element, 564

Dojo Toolkit, 771

DOM (Document Object Model), 14, 17, 20, 83, 147,

250, 251, 341–342, 376, 448, 483, 588, 893

DOMException.html file, 476

DOMParser property, 456, 457

DOMParser.parseFromStream() method, 462

doPost() function, 587

double type, 188

double-dash string (--), 46

dpkg -i command, Debian, 427

draconian error handling, 64

drawChart function, 868

Dreamweaver, Macromedia, 753

DROP XMLSCHEMA statement, 425

DTDHandler interface, 509

DTDs (Document Type Definitions)

compared to XML Schemas, 147–148

developing, 141–142

example

document type declaration (DOCTYPE), 100–104

preparing to create, 96–100

limitations

data types, 143

limited content model descriptions, 143

namespaces, 143

syntax, 142–143

parts of

attribute declarations, 120–131

element declarations, 105–131

entities, 131–141

sharing vocabularies, 104

XHTML 1.x, 738–739

dtstart class, 764

Dublin Core Metadata Initiative standard, 530, 556

duplicate attribute names, 120–121

duration type, 188

Dynamic HTML (DHTML), 14

E
ECMAScript, 447, 769, 784, 788, 792

e-commerce, 21–22

EDI (Electronic Data Interchange), 603

Edit module, XHTML, 760

Edit System Variable window, 291

editorial judgment, 536

editors, Scalable Vector Graphics (SVG), 770

Electronic Data Interchange (EDI), 603

element constructors, 351–355, 358

element content

choices, 107–108

combining sequences and choices using groups, 108

sequences, 106–107

element content model, 105

ELEMENT declaration, 105, 106, 127, 134, 139

element declarations

any content, 110

cardinality, 114–119

element content

choices, 107–108

combining sequences and choices using groups, 108

sequences, 106–107

empty content, 110

mixed content, 108–109

element events, ContentHandler interface, 491–494

ELEMENT keyword, 105

Element node, 449, 468, 471, 480, 817, 890, 894

Element object, 448

element pattern, 213, 237

element wildcards, 163, 168

<element> declarations

cardinality, 161–162

default values, 162–163

element qualified form, 161

element wildcards, 163–165

fixed values, 162–163

global, 156, 157–158

990

documents (continued)

local, 156–157

naming elements, 160–161

referring to existing global element, 159–160

elementDecl event, DeclHandler interface, 514

elementDecl function, 898

elementFormDefault attribute, 151, 154, 161, 175

elements

bind, compared to XML Schema, 834

<binding>, 635

<Body>, 614–615

compared to attributes

annotations, 45

complexity, 44–45

order, 45

separating information, 43–44

space, 44

visual preferences, 45

creating with simple content and attributes, 185–186

<definitions>, 633

empty, 49–50, 743–744

<Envelope>, 614

<Fault>, 622–632

<Header>

mustUnderstand attribute, 621–622

relay attribute, 622

role attribute, 622

<messages>, 634

naming, 160–161

nesting, 744

<portTypes>, 635

qualification, 154–155

qualified form, 161

RELAX NG patterns

cardinality, 216–217

compared to attributes, 216

connector patterns and grouping, 217–220

co-occurrence constraints, 221

empty patterns, 222–223

enumerated values, 220–221

mixed content patterns, 222

rules

case sensitivity, 35

matching start- and end-tags, 31–32

naming conventions, 34–35

properly nested, 32–33

root elements, 33–34

whitespace, 36–39

<service>, 638–641

<soap:binding>, 636

<soap:body>, 637

<soap:operation>, 636–637

<types>, 633–634

unique root HTML, 743

wildcards, 163–165

xforms:bind, 828–833

xforms:input, 817–818

xforms:instance, 813–814

xforms:model, 812–813

xforms:output, 818–819

xforms:range, 819–820

xforms:secret, 818

xforms:select, 821–822

xforms:select1, 822–824

xforms:submission, 814–815

xforms:submit, 820–821

xforms:textarea, 818

xforms:trigger, 820

xforms:upload, 819

xsl: apply-imports, 940

xsl: apply-templates, 941

xsl: attribute, 941–942

xsl: attribute-set, 942

xsl: call-template, 943

xsl: choose, 943

xsl: comment, 944

xsl: copy, 944

xsl: copy-of, 945

xsl: decimal-format, 945–947

xsl: element, 947

xsl: fallback, 948

xsl: for-each, 948–949

xsl: if, 949

xsl: import, 949

xsl: include, 950

xsl: key, 950

xsl: message, 951

xsl: namespace-alias, 951–952

xsl: number, 952–953

xsl: otherwise, 953

xsl: output, 954–955

xsl: param, 956

xsl: preserve-space, 956

991

elements

In
d
e
x

elements (continued)

xsl: processing-instruction, 957

xsl: sort, 957–958

xsl: strip-space, 958

xsl: stylesheet, 958–959

xsl: template, 959

xsl: text, 960

xsl: transform, 960–961

xsl: value-of, 961

xsl: variable, 961–962

xsl: when, 962

xsl: with-param, 962–963

<xsl:apply-templates>, 296–297

<xsl:call-template>, 322

<xsl:choose>, 308–311

<xsl:copy>, 299–303

<xsl:copy-of>, 303–305

<xsl:for-each>, 311–312

<xsl:if>, 306–308

<xsl:sort>, 312–314

<xsl:stylesheet>, 295–296

for XSLT 2.0, 323

<xsl:template>, 296

<xsl:value-of>, 297–299

<abbr> element, 764

<acronym> element, 764

<address> element, 107, 116, 134, 226

:after pseudo-element, 726, 729, 731

<amount> element, 218

ancestor element node, 265

<AnotherTag> element, 38

<appinfo> element, 208, 209

<article> element, 699

author elements, 368, 899

 element, 694, 701, 913

:before pseudo-element, 726, 729

bind, compared to XML Schema, 834

bind elements, compared to XML Schema, 834

binding, 635

<binding> element, 635

<Body>, 614–615

<body> element, 593, 614–615, 696, 846, 913, 914,

915

<bold> element, 880

book element, 359

br elements, 743

 element, 32, 50, 109, 110, 222, 223, 236, 549,

553, 743, 888, 890

<bulletPoint> element, 728

<channel> element, 563, 903

<Chapter> element, 253, 259

child elements, 27, 44, 239, 876

<circle> element, 771, 776, 783, 916

<Code> element, 622

<color> element, 498, 896

<column1> element, 716

<column2> element, 716

compared to attributes

annotations, 45

complexity, 44–45

order, 45

separating information, 43–44

space, 44

visual preferences, 45

<comparison> element, 60

<complexType> element, 151, 157, 158, 160,

165–166, 168, 170, 175, 178, 180, 182,

183–184, 186, 192, 216, 886

<conductors> element, 899

<contact> element, 106, 107, 115, 124, 192, 203,

884, 885, 886

<contacts> element, 120, 127, 130, 175, 181, 182,

185, 226, 235

<content> element, 534, 535

<countries> element, 676

<country> element, 673, 675, 677, 681

creating with simple content and attributes, 185–186

<credit> element, 218

<date> element, 539

<dc:title> element, 550

<definitions>, 633

<definitions> element, 633

<desc> element, 783, 784, 788

<description> element, 109, 110, 132, 138, 139,

166, 222, 236, 239, 298, 533, 561, 887

<Detail> element, 623

<div> element, 535, 758, 843, 845, 847, 913

<documentation> element, 208, 209, 462

document.rss element, 564

document.xml element, 564

Element object, 448

<element> element

992

elements (continued)

cardinality, 161–162

default values, 162–163

element qualified form, 161

element wildcards, 163–165

fixed values, 162–163

global, 156, 157–158

local, 156–157

naming elements, 160–161

referring to existing global element, 159–160

elements attribute

xsl:preserve-space, 956

xsl:strip-space, 958

ELEMENTS keyword, 400

elementValue variable, 896

 element, 32, 109, 138, 139, 222, 236, 239,

888, 890

<email> element, 885, 886

empty, 49–50, 743–744

empty element syntax, 49–50

empty elements, 163, 222, 740, 743–744

<entry> element, 535

<env:Body> element, 636

<Envelope>, 614

<Envelope> element, 612, 614, 621

evt.target <polygon> element, 799

<example> element, 62, 64

<family> element, 232

<Fault>, 622–632

<Fault> element, 614, 622–632

<feed> element, 556

:first_letter pseudo-element, 726

<first> element, 17, 35, 73, 114, 161, 170, 216,

221, 232

:first-line pseudo-element, 726

FirstName element, 264, 814, 816

 element, 693, 736, 737, 914

<footnoteNumber> element, 707

<form> element, 305, 844, 845, 847

<g> element, 776, 788, 790

<generation> element, 234

getTemperature element, 634

<given> element, 98, 232

global elements, 156–160

<GPS> element, 107

group elements, 365

<guid> element, 531

<h1> element, 564, 693, 752, 843, 913, 914

<h2> element, 696, 752

<h3> element, 696

<head> element, 812, 843, 848, 912, 914

<Header>

mustUnderstand attribute, 621–622

relay attribute, 622

role attribute, 622

<Header> element, 614, 620–632

<heading> element, 718

<hr> element, 743, 764

<html> element, 62, 78, 139, 743, 748, 750, 807,

812, 816, 913, 915

<ID> element, 41

<id> element, 535

<iframe> element, 787, 866, 868

<image> element, 781

 element, 433, 701, 721, 743, 845, 847

<im:nickname> element, 556

<info> element, 565

<input> element, 452, 844, 847

<interfaces> element, 635

invalid element names, 161

Invoice element, 260, 304

Invoices element, 265

is_content_element method, 552

Item element, 261, 265

item element, 333, 365

items element, 362, 363, 522

<keyword> element, 704, 707, 708

<knows> element, 123, 128, 131, 176, 223

<label> element, 844, 847

<last> element, 17, 115, 162, 170, 232, 234, 875

LastName element, 301

<latitude> element, 108, 116, 189, 197, 199, 226

 element, 751, 753, 913, 915

library element, 359, 370

<line> element, 773, 776, 916

<link> element, 535, 751, 848

<list> element, 196–197, 728

<listitem> element, 699

literal result elements, 296, 351

local elements, 156–157

<location> element, 107, 116

<longitude> element, 108, 116, 189, 197, 199, 226

<member> element, 589

993

elements

In
d
e
x

elements (continued)

<messages>, 634

<messages> element, 634

<meta> element, 746, 750, 843, 912, 914

<metadata> element, 783, 784

methodName element, 577

<middle> element, 12, 17, 49, 110, 114, 115, 170,

172, 216, 232

myNewBib element, 352

mySubmit xforms:submission element, 827

<name> element, 12, 16, 17, 78, 80, 83, 96, 106,

107, 151, 155, 160, 162, 164, 165, 168, 172,

177, 200, 203, 216, 231, 882, 883

naming, 160–161

nested elements, 406

nesting, 744

nesting of, 743

nom element, 875

<noscript> element, 763

<note> element, 45

object element, 806

<occupants> element, 899

 element, 728

<option> element, 742

optional elements, 105

<Order> element, 30, 43

<Orders> element, 41

output element, 560

<p> element, 31, 32, 35, 69, 76, 78, 85, 549, 553,

564, 699, 701, 751, 758, 844, 882, 913

<page> element, 705, 707, 714

<pageNumber> element, 705

<para> element, 699

<paragraph> element, 250, 280, 704, 705, 707, 712

<parent> element, 16

parsererror document element, 457

Part element node, 271

<path> element, 777, 780, 917

<payment> element, 218

payments_ table container element, 848

payments_table <div> element, 848

<PAYMENTSTREAM> elements, 862

<person> element, 68, 72, 73, 76, 78, 83, 264, 267,

296, 299, 300, 303, 814

<pers:person> element, 72

<pers:title> element, 69

<phone> element, 126, 186, 192, 193, 195, 241,

885, 886

<polygon> element, 776, 785, 789, 790, 791, 793,

794, 797, 798, 799, 916, 919

polyGroup element, 920

<portTypes>, 635

<portTypes> element, 635

<Product> element, 41

pseudo-elements, 726

pubDate element, 552

publisher element, 366

<pullQuote> element, 712

<purchaseOrder> element, 258, 910

qualification, 154–155

qualified form, 161

<rdf:RDF> element, 527, 529, 531, 616

<rect> element, 771, 774, 776, 916

<reference> element, 704, 707

RELAX NG patterns

cardinality, 216–217

compared to attributes, 216

connector patterns and grouping, 217–220

co-occurrence constraints, 221

empty patterns, 222–223

enumerated values, 220–221

mixed content patterns, 222

<résumé> element, 68

<review> element, 712

<root> element, 25, 33–34, 100, 134, 151, 348,

454, 459, 560, 563, 743, 902

<row> element, 398

<rss> element, 538, 563

rss:channel element, 567

rules

case sensitivity, 35

matching start- and end-tags, 31–32

naming conventions, 34–35

properly nested, 32–33

root elements, 33–34

whitespace, 36–39

<schema> element, 151, 153–155, 156, 158, 160,

161, 175, 179, 209

<script> element, 46, 756, 763, 785, 788, 866

<section> element, 259, 264, 265, 278, 279, 280,

764

<separator> element, 764

994

elements (continued)

<sequence> element, 151, 168, 175, 176

<service>, 638–641

<service> element, 638–641

<simpleContent> element, 185

<simpleType> element, 157, 178, 193, 194, 195,

197, 199, 216, 886

<soap:binding>, 636

<soap:binding> element, 636

<soap:body>, 637

<soap:Body> element, 614, 636, 637, 677, 680

<soap:Envelope> element, 677, 680

<soap:operation>, 636–637

<soap:operation> element, 636–637

 element, 843

 element, 32, 109, 138, 139, 222, 236,

239, 888, 890, 913

<style> element, 736, 763

<summary> element, 764

<svg> element, 771, 789, 793, 866, 867

<system.web> element, 686

<table> element, 719

<Tag> element, 38

<Text> element, 623

<text> element, 782, 870

<title> element, 67–68, 75, 83, 264, 367, 550,

552, 560, 561, 699, 714, 783, 784, 788, 843

<tr> element, 863

<types>, 633–634

<types> element, 633–634

 element, 701, 728

unique root HTML, 743

use element, 917

<version> element, 163

<website> element, 885, 886

weight element, 498

wildcards, 163–165

<wrox:countries> element, 677

<wrox:GetCountriesResponse> element, 677

xforms:action element, 835

xforms:alert element, 819, 820

xforms:bind, 828–833

xforms:bind element, 813, 828–833, 834

xforms:dispatch element, 835

xforms:filename element, 819

xforms:help element, 820

xforms:hint element, 820

xforms:input, 817–818

xforms:input element, 815, 816, 817–818, 836

xforms:instance, 813–814

xforms:instance element, 813–814, 815, 816, 822,

824, 825, 826, 832, 833

xforms:itemset element, 826, 827

xforms:label element, 819, 820, 826, 827

xforms:load element, 835

xforms:mediatype element, 819

xforms:message element, 835

xforms:model element, 812–813, 814, 815, 828

xforms:output element, 818–819

xforms:range element, 819–820

xforms:rebuild element, 835

xforms:recalculate element, 835

xforms:refresh element, 835

xforms:reset element, 836

xforms:revalidate element, 836

xforms:secret element, 818, 821–822, 825, 827,

921

xforms:select, 821–822

xforms:select1 element, 821, 822–824, 826, 827,

921

xforms:send element, 836

xforms:setfocus element, 836

xforms:setvalue element, 836

xforms:submission element, 813, 814–815, 820,

824, 832, 921

xforms:submit element, 814, 820–821, 827, 921

xforms:textarea element, 818

xforms:trigger element, 820, 835

xforms:upload element, 819

xforms:value element, 821, 827

xhtml elements, 239

<xhtml> element, 743

xhtml:body element, 560

xhtml:br element, 239

xhtml:h1 element, 560, 561

xhtml:html element, 560

<xhtml:object> element, 239

xhtml:p element, 561

<xhtml:script> element, 239

<xhtml:title> element, 69, 560

xmml:Book element node, 270

xmml:SizeAvailable element, 827

xmml:ToppingAvailable elements, 827

995

elements

In
d
e
x

elements (continued)

xs:date element, 834

xsl: apply-imports element, 940

xsl: apply-templates element, 941

xsl: attribute element, 941–942

xsl: attribute-set element, 942

xsl: call-template element, 943

xsl: choose element, 943

xsl: comment element, 944

xsl: copy element, 944

xsl: copy-of element, 945

xsl: decimal-format element, 945–947

xsl: element element, 947

xsl: fallback element, 948

xsl: for-each element, 948–949

xsl: if element, 949

xsl: import element, 949

xsl: include element, 950

xsl: key element, 950

xsl: message element, 951

xsl: namespace-alias element, 951–952

xsl: number element, 952–953

xsl: otherwise element, 953

xsl: output element, 954–955

xsl: param element, 956

xsl: preserve-space element, 956

xsl: processing-instruction element, 957

xsl: sort element, 957–958

xsl: strip-space element, 958

xsl: stylesheet element, 958–959

xsl: template element, 959

xsl: text element, 960

xsl: transform element, 960–961

xsl: value-of element, 961

xsl: variable element, 961–962

xsl: when element, 962

xsl: with-param element, 962–963

xsl:apply-templates element, 253, 296–297, 300,

304, 307, 312, 314, 315, 317, 891, 940

<xsl:apply-templates>, 296–297

xsl:attribute element, 301

<xsl:call-template> element, 322

<xsl:choose> element, 306, 307, 308–311, 330,

891

xsl:copy element, 287, 299, 300, 302

<xsl:copy>, 299–303

<xsl:copy-of> element, 287, 299–305, 332

xsl:decimal-format element, 323

xsl:element element, 303, 941, 942

<xsl:for-each> element, 267, 268, 272, 311–312,

314, 342, 362, 943

xsl:if element, 306, 307, 318, 362, 891

<xsl:if>, 306–308

<xsl:if> element, 306–308

<xsl:namespace-alias> element, 951

xsl:non-matching-substring element, 327, 328,

329

xsl:otherwise element, 309, 891

<xsl:output> element, 680

xsl:param element, 320

<xsl:Param> element, 677

xsl:parameter element, 320

xsl:result-document element, 330, 332

<xsl:sort> element, 312–314, 327, 362

<xsl:stylesheet> element, 295–296, 320, 322,

333, 564, 676, 968

for XSLT 2.0, 323

<xsl:template> element, 293, 296, 297, 307, 318,

940

xsl:text element, 318, 563

xsl:transform element, 295

<xsl:value-of> element, 254, 259, 264, 273, 280,

287, 297–299, 301, 318, 321, 334–335

xsl:variable element, 320, 362

xsl:when element, 309, 891

xsl:with-param element, 322

xs:token element, 834

zero-digit attribute, xsl:decimal-format

element, 946

ZipCode element, 258

elements attribute

xsl:preserve-space, 956

xsl:strip-space, 958

ELEMENTS keyword, 400

elementValue variable, 896

elliptical arc command, 779

em absolute unit, SVG, 774

 element, 32, 109, 138, 139, 222, 236, 239, 888,

890

<email> element, 885, 886

emp prefix, 882

empty content, 110

996

elements (continued)

empty element syntax, 49–50

empty elements, 163, 222, 740, 743–744

EMPTY keyword, 110

empty patterns, 222–223

empty-cells property, CSS, 695

encodeURIComponent, 646

encoding attribute, 50–51, 52, 740, 750, 815, 912,

954

encoding rules, 613

encodingStyle attribute, 615

end <...> characters, 563

endCDATA event, LexicalHandler interface, 515

endDocument event, 487

endDocument function, 491, 502, 894, 895

endDTD event, LexicalHandler interface, 515

endElement event, 487, 497

endElement function, 539, 896, 900

endElementNS method, 551, 899, 900

endEntity event, LexicalHandler interface, 515

end-of-line logic, 38

endPrefixMapping event, 488, 499

end-tags, 23, 24, 31–32, 73, 250, 358

enhancing, display with Scalable Vector Graphics

(SVG), 865–868

enterprise-level database management system, 414

entities

built-in, 131–132

character, 132–133

general, 134–138

parameter, 139–140

skipped, 498–499

ENTITIES attribute, 121

ENTITIES attribute, 123

ENTITY attribute, 121

ENTITY attribute, 123

ENTITY declaration, 134, 141, 147

ENTITY functionality, 147

ENTITY keyword, 134, 139

entity reference, 60–61, 132

EntityResolver interface, 510

<entry> element, 535

enumerated list, 124

Enumerated List attribute, 121

enumerated values, 220–221

enumeration facet, 194

Enumeration Pattern, 220

<enumeration> facet, 196

Enum.Parse() method, 684

<env:Body> element, 636

<Envelope> element, 612, 614, 621

envelopes, 613

env:encodingStyle attribute, rdf:RDF element, 616

environment variable, 357

Environment Variables window, 290

equals sign (=) references, 34, 228

error event, 505

Error events, 835

error messages, 341

ErrorHandler class, 504–509

errors, providing location, 502–504

escaping illegal characters, 60–61

ev namespace prefix, 835

eval() function, 653

event callbacks, 497

Event object, 662

event object, 662

event-handler attributes, 763

events

element, 491–494

ignorableWhitespace, 498

Simple API for XML (SAX)

ContentHandler interface, 487–504

DTDHandler interface, 509

EntityResolver interface, 510

ErrorHandler interface, 504–509

extension interfaces, 514–515

features, 510–513

properties, 513–514

XForms, 834–835

evt object, 785, 793

evt.target <polygon> element, 799

ex absolute unit, SVG, 774

<example> element, 62, 64

exception mechanism, 502

exclamation mark (!), 99

exclude-result-prefixes attribute

xsl:stylesheet, 958

xsl:transform, 960

exec function, 796

executable business processes, 603

exercise solutions, 873–921

997

exercise solutions

In
d
e
x

eXist

clients, 386–387

installing, 382–394

interacting with

choosing interfaces, 394

eXist client, 386–387

other interfaces, 394

REpresentational State Transfer (REST)

interface, 390–394

web interface, 384–386

Web-based Distributed Authoring and Versioning

(WebDAV), 387–389

XML Integrated Development Environment (IDE),

389–390

obtaining, 382–394

exist() method, 893

eXist documentation, 388

eXist XQuery engine, 389

expand/collapse functionality, 30

Expat, 24

EXPLICIT option, 405

expression type, 966

expressions

conditional, 367–368

FLWOR

conditional expressions, 367–368

for expressions, 362–365

filtering with where clause, 365–366

sorting with order by clause, 366–367

for, 362–365

structure of XPath, 278–281

XQuery

FLWOR expressions, 362-367

XSLT 2.0, 967–968

extensibility, 12–13

extensible acronym, 555

Extensible Markup Language (XML)

benefits of

extensibility, 12–13

parsers, 11–12

compared to HyperText Markup Language (HTML),

13–14

data files

binary files, 4

history of markup languages, 6–7

text files, 5

description, 7–10

document types, 17–18

grouping of information, 15–17

growth of, 376–377

SQL Server 2000, 395–425

standards

components, 19–20

World Wide Web Consortium (W3C), 18–19

storing

conventional databases, 379–381

file systems, 378–379

native databases, 381–382

uses

distributed computing, 21

e-commerce, 21–22

reducing server load, 20

website content, 20–21

XML-based data, compared to relational data, 377

Extensible Stylesheet Language Transformations (XSLT)

conditional processing

<xsl:choose> element, 308–311

<xsl:if> element, 306–308

declarative programming, 292–293

defined

presenting XML content, 288

restructuring XML, 288

elements

xsl: apply-imports, 940

xsl: apply-templates, 941

xsl: attribute, 941–942

xsl: attribute-set, 942

xsl: call-template, 943

xsl: choose, 943

xsl: comment, 944

xsl: copy, 944

xsl: copy-of, 945

xsl: decimal-format, 945–947

xsl: element, 947

xsl: fallback, 948

xsl: for-each, 948–949

xsl: if, 949

xsl: import, 949

xsl: include, 950

xsl: key, 950

xsl: message, 951

xsl: namespace-alias, 951–952

998

eXist

xsl: number, 952–953

xsl: otherwise, 953

xsl: output, 954–955

xsl: param, 956

xsl: preserve-space, 956

xsl: processing-instruction, 957

xsl: sort, 957–958

xsl: strip-space, 958

xsl: stylesheet, 958–959

xsl: template, 959

xsl: text, 960

xsl: transform, 960–961

xsl: value-of, 961

xsl: variable, 961–962

xsl: when, 962

xsl: with-param, 962–963

example, 289–292

foundational elements

<xsl:apply-templates> element, 296–297

<xsl:stylesheet> element, 295–296

<xsl:template> element, 296

functions, 323, 963–967

influencing output with <xsl:output> element, 306

modes, 314–319

named templates, 322

parameters, 320–322

procedural programming, 292

processors, 288–289

Saxon XSLT processor, 289–292

transforming RDF Site Summary (RSS) with

browser processing, 564–565

generating feed from existing data, 558–559

pre-processing feed data, 565

processing feed data for display, 561–563

syndication formats, 565–567

using information from source tree

<xsl:copy> element, 299–303

<xsl:copy-of> element, 303–305

<xsl:value-of> element, 297–299

variables, 320–322

<xsl:call-template> element, 322

<xsl:for-each> element, 311–312

<xsl:sort> element, 312–314

XSLT 2.0

expressions, 967–968

grouping, 324–327

Muenchian Method, 968–969

multiple outputs, 330–332

non-XML input and string handling, 327–330

user-defined functions, 332–334

using, 968–969

and XQuery 1.0, 969

xsl:value-of changes, 334–335

Extensible Stylesheet Language Transformations

(XSLT) 2.0

compared to XQuery, 342–343

development of, 341–342

expressions, 967–968

grouping, 324–327

Muenchian Method, 968–969

multiple outputs, 330–332

non-XML input and string handling, 327–330

user-defined functions, 332–334

using, 968–969

and XQuery 1.0, 969

xsl:value-of changes, 334–335

Extensible Stylesheet Language (XSL), 19

extension interfaces, Simple API for XML (SAX),

514–515

<extension> declaration, 186

extension-element-prefixes attribute

xsl:stylesheet, 958

xsl:transform, 960

extensions, to XQuery in SQL Server 2005, 416–423

external entity declaration, 135

external subset declarations, 100

external variable, 357

externalEntityDecl event, DeclHandler interface,

514

external-general-entities feature, 498

external-parameter-entities feature, 498

ExtractValue function, 431

extraneous whitespace, 38

F
facets, 241

FactorialFunction.xquery query, 372

false() function, 274, 832

<family> element, 232

fatal errors, 64

999

fatal errors

In
d
e
x

fatalError event, 505

fault codes, 622

<Fault> element, 614, 622–632

Feed class, 546–548

feed data

generating from existing data, 558–559

pre-processing, 565

processing for display, 561–563

Feed object, 537

feed reader.py file, 554

feed_ handler instance, 544

feed_handler.py file, 540, 552

feed_reader.py file, 540, 543

<feed> element, 556

FeedHandler class, 548–552, 553

feed.py file, 540, 546

FeedReader class, 543–546

feed-reader user interface, 523

feeds.txt file, 543

Ferna Distribution, 26, 30

fetchData() function, 651

fetchSuggestions() method, 659, 670, 671, 672,

681

file protocol, 814

file systems

building, 379

document size, 378

indexes, 379

updates, 378–379

files

binary, 4

data, 3–7

text, 5

fill attribute, 771, 775, 782, 785, 795, 799

fill-opacity attribute, 790

filter events, 516

filtering, with where clause, 365–366

filters, Simple API for XML (SAX), 516

Firebug extension, 770

Firefox, Mozilla

network transports, 591–594

XLink support in, 721–724

firewalls, network transports, 583–584

first clause, 419

first element, 114, 216, 221

:first_letter pseudo-element, 726

<first> element, 17, 35, 73, 161, 170, 232

firstChild method, 867

firstChild property, 458, 459, 461

:first-line pseudo-element, 726

FirstName attribute, 300, 301

FirstName element, 264, 814, 816

fixed attribute, 162, 163, 180, 183

fixed positioning, 717–718

fixed values, 126, 162–163, 180

float positioning, 706, 709–711, 712

float property, 709

float type, 188, 193

float values, 198

floated positioning, 706

floor() function, 275, 931

FLWOR expressions

conditional expressions, 367–368

for expressions, 362–365

filtering with where clause, 365–366

sorting with order by clause, 366–367

fn: prefix, 936

FOAF (Friend-of-a-Friend) Personal Profile Document,

567

FOAF profile, 903

foaf:maker property, 901

foaf:mbox_sha1 property, 901

foaf:name property, 901

foaf:nick property, 901

foaf:Person property, 901

foaf:weblog property, 901

focus() method, 661

following axis, 260, 266–267, 348, 926

following-sibling axis, 260, 266, 268, 348, 926

font property, CSS, 694

 element, 693, 736, 737, 914

font-family property, 694, 696

font-size attribute, 782

font-size property, CSS, 694

font-style property, CSS, 694

font-variant property, 694

font-weight property, 694, 696

foo division, XHTML document, 758

<footnoteNumber> element, 707

for ... in expression, 362

for ... in ... to option, 363

for clause, 362, 423, 892

1000

fatalError event

for expressions, 362–365

for statement, 362, 365, 368, 370

FOR XML AUTO clause, 401–404

FOR XML clause, 395, 396–425

FOR XML EXPLICIT clause, 405

FOR XML EXPLICIT option, 404

FOR XML PATH clause, 405–409

FOR XML PATH option, 404

FOR XML RAW clause, 396–401

ForIn2.xquery query, 363

ForIn3Out.xml query, 364

ForIn3.xquery query, 364

ForIn4Out.xml query, 364

ForIn4.xquery query, 364

ForIn.xquery query, 362

form attribute, 161, 179

<form> element, 844, 845, 847

Formal Public Identifiers (FPIs), 101

format attribute, xsl:number, 952

format-number() function, 323

formats, syndication, 565–567

formatted text, 32

formatting objects, 19

FormFaces, 808

Forms module, XHTML, 760

formsPlayer plugin, 806

FPIs (Formal Public Identifiers), 101

fractionDigits facet, 194

frames, adding to main page, 868–872

Frames module, XHTML, 760

Frameset documents, 741

frameset flavor, 90

French characters, 874

Friend-of-a-Friend (FOAF) Personal Profile Document,

567

from attribute, xsl:number, 952

From element nodes, 305

FrontPage, Microsoft, 753

full-axis feature, 348

full-text index, 416

function types, 939

functional language, 293

functions

//element() function, 284

//element(*, xs:token) function, 284

ActiveXObject() function, 588, 647

alert() function, 15, 450, 919

Boolean, 274–275

boolean() function, 274, 964

boolean function-available function, 964

Calculate function, 857, 858

CalculatePassThrough function, 852, 858

ceiling() function, 275

characters function, 495, 539, 551, 896

child::comment() function, 928

child::text() function, 928

collection(), 348

collection() function, 346, 348

comment(), 928

comment() function, 928

concat() function, 276, 369

contains() function, 276

count() function, 258, 275, 298, 368, 369–370

current-date() function, 283

current-DateTime() function, 283

current-group() function, 324

current-grouping-key() function, 324, 326, 332

current-time() function, 283

day-from-date() function, 283

doc(), 347–348

doc() function, 346, 347–348

document() function, XSLT, 323, 347

doPost() function, 587

drawChart function, 868

elementDecl function, 898

endDocument function, 491, 502, 894, 895

endElement function, 539, 896, 900

ENTITY functionality, 147

eval() function, 653

exec function, 796

expand/collapse functionality, 30

Extensible Stylesheet Language Transformations (XSLT)

types, 966–967

XPath, 966

ExtractValue function, 431

false() function, 274, 832

fetchData() function, 651

floor() function, 275, 931

format-number() function, 323

functional language, 293

functions attribute, 813

generate-id() function, 323

1001

functions

In
d
e
x

functions (continued)

getCenter(polygon) function, 793, 796, 797

getDateValue() function, 862

getDom() function, 452

getDomFromXml() function, 456

getElementById function, 479, 860

getFeature function, 511, 514

getFloatValue() function, 861, 862

get-order-total() function, 284

getPolygonDetails function, 919

getPrepaidDays() function, 861, 862

getProperty function, 514

getRotateAngle helper function, 797

getRotateAngle(polygon) function, 796

getSelectValue() function, 861, 862

getTransformBlock(poly, index) function, 795

getXml() function, 453

handleClick function, 785

handleKeyUp() function, 667

handleReadyState() function, 588

handleReadyStateChange() function, 589, 651,

657–658, 685

hideProgress function, 860, 863

hour-from-time() function, 283

id() function, 256, 275

init(evt) function, 793, 794

input, 346–348

input functions, XQuery

collection() function, 348

doc() function, 347–348

key() function, 256, 323, 968

lang() function, 274

last() function, 252, 254, 275, 318, 932

local-name() function, 275

lower-case() function, 278

main() function, 489, 491, 544, 546

matches() function, 282

mouseout function, 795

mouseout(evt) functions, 793

mouseup function, 795

mouseup(evt) functions, 793

move(evt) function, 795

move(evt) function, 799

moveToFront(polygon) function, 793, 797

name() function, 257, 275

namespace-uri() node-set function, 275

node(), 928

node() function, node tests, 928

node-set, 275

node-set current() function, 963

node-set document function, 963

node-set key function, 965

normalize-space() function, 276

normalize-unicode() function, 282

not() function, 275

number() function, 275

numeric, 275–276

numeric functions, 275–276

object system-property function, 965

onreadystatechange function, 862

parse function, 508, 511

parseFloat(string) function, 796

parseFromString() function, 456

position() function, 252, 254, 275, 318, 933

processing-instruction() function, 928

processing-instruction(Literal) function, 928

receiveLoanInformation function, 862, 868

recursive function, 371

reset() function, 792, 793, 798, 799

resolveEntity function, 510

rotatePolygon function, 797

rotateString function, 796

round() number function, 275

SAXNotRecognizedException function, 511

SAXNotSupportedException function, 511

scramble() function, 792, 793, 798

self::node() function, 314

setDTDHandler function, 509

setEntityResolver function, 510

setFeature function, 511, 514

showProgress function, 860

showProperties() function, 452, 453, 456

sql:column function, 422, 423

sql:function function, 422

sql:variable function, 423

startDocument function, 491, 497, 895

startElement function, 491, 497, 539, 895

starts-with() function, 276, 433

str function, 544

string, 276–278

string() function, 276

string format-number function, 964

1002

functions (continued)

string generate-id function, 965

string unparsed-entity-uri function, 965

StringBuffer function, 894

string-length() function, 276

submitLoanInformation function, 864

substring() function, 276

substring-after() function, 276

substring-before() function, 276

sum() function, 276

text(), 928

text() function, 928

tokenize() function, 282

translate() function, 276

true() function, 275, 832, 936

types, 939

unparsed-text() function, 327, 328, 329

UpdateXML function, 431, 435

upper-case() function, 278

user-defined, 332–334, 371–372

user-defined functions, 342, 371–372

xml_schema_ namespace intrinsic function, 425

XPath, 929–937

XPath 2.0, 282, 936–937

XQuery

concat(), 369

count(), 369–370

XSLT

types, 966–967

XPath, 966

for XSLT 2.0, 323

XSLT 2.0, 969

years-from-yearMonthDuration() function, 283

functions attribute, 813

G
<g> element, 776, 788, 790

GAC (global assemble cache), 291

Garrett, Jesse James, 645

gDay type, 188

gender attribute declaration, 884, 886

general entities, 134–138

generate-id() function, 323

generating, feed from existing data, 558–559

<generation> element, 234

Geographic Information Systems (GIS), 768

GET method, 464, 524, 581

get_feed_uris method, 545

get_formatted_date method, 548

get_newest_items method, 546

get_uris method, 541, 543, 545

getCenter(polygon) function, 793, 796, 797

getChannels() method, 578, 582, 596

getColumnNumber method, 502

GetCountries.aspx file, 659, 673, 678

GetCountries.aspx.cs file, 659, 673, 678

getDateValue() function, 862

getDateValue() method, 861

getDom() function, 452

getDomFromXml() function, 456

getElementById function, 479, 860

getElementsByTagName() method, 475, 479, 480,

757

getElementsByTagNameNS() method, 479, 480

GetFailureXML() method, 627

getFeature function, 511, 514

getFloatValue() function, 861, 862

getIndex method, 492

getLength method, 492

getLineNumber method, 502

getLocalName method, 493

getNamedItem() method, 471, 472

getNamedItemNS method, NamedNodeMap object, 471

get-order-total() function, 284

getOwnerDocument() method, 447

getPolygonDetails function, 919

getPrepaidDays() function, 861, 862

getProperty function, 514

getPublicId method, 503

getQName method, 493

GetQuantityDiscount() method, 612

getRadioOperators() method, 906

getRate() method, 682, 683–684, 685

getRotateAngle helper function, 797

getRotateAngle(polygon) function, 796

getSelectValue() function, 861, 862

getSystemId method, 502

getTemperature element, 634

getTemperature method, 636

getTop() method, 665

getTransformBlock attribute, 795

1003

getTransformBlock attribute

In
d
e
x

getTransformBlock(poly, index) function, 795

getType method, 493

getURI method, 493

getValue method, 493, 494

getXml() function, 453

.gif file, 86

gigabytes, 375

GIS (Geographic Information Systems), 768

<given> element, 98, 232

Gleaning Resource Descriptions from Dialects

of Languages (GRDDL), 561

global assemble cache (GAC), 291

global attributes, 84, 177–178, 179

global declarations, 156

global elements, 156–160

global <first> declaration, 161

global variables, 322, 794

gMonth type, 188

gMonthDay type, 188

GNOME, 388

GNU Public License (GPL), 24

GoLive, 770

Google Reader, 536

goToSelection() method, 669

goToSuggestion() method, 668

GPL (GNU Public License), 24

<GPS> element, 107

grammar declaration, 235

grammar pattern, 235

grammars

combining, 227–236

extensions, 234

nested, 235–236

restrictions, 234

reusing, 227–236

graphics, Scalable Vector Graphics (SVG), 769

GRDDL (Gleaning Resource Descriptions from Dialects

of Languages), 561

Great Push Revolution, 526

green pages, 602

group elements, 365

group pattern, 217

<group> declarations, 167–168, 175, 183, 216

<group> references, 170–171

group-by attribute, 326

groupedContacts.xslt, 325

groupedContacts.xslt instruction, 332

grouping

and connector patterns, 217–220

elements, 324

Scalable Vector Graphics (SVG), 776

XSLT 2.0, 324–327

grouping-separator attribute

xsl:decimal-format, 945

xsl:number, 953

grouping-size attribute, xsl:number, 953

groups

combining sequences and choices using, 108

name-classes, 238–239

<guid> element, 531

gYear type, 188

gYearMonth type, 188

H
H command, 778

<h1> element, 564, 693, 752, 843, 913, 914

<h2> element, 696, 752

<h3> element, 696

HamSearchPort portType interface, 907

handleAddToCartResponse() method, 627

handleClick function, 785

handleKeyDown() method, 669

handleKeyUp() function, 667

handleReadyState() function, 588

handleReadyStateChange() function, 589, 651,

657–658, 685

handler.feed.items instance, 544

handlers

helpers, 552–555

XML markup, 548–552

hasAttributes() method, Node object, 461

hasChildNodes() method, Node object, 461

hash mark (#), 133

head element, 812

<head> element, 843, 848, 912, 914

header blocks, 621

<Header> element, 614, 620–632

headers

Accept, 580

Accept-Encoding, 580

Accept-Language, 580

<authentication>, 621

1004

getTransformBlock(poly, index) function

Content-Length, 581

Content-Type, 581

Content-Type HTTP, 747

header blocks, 621

<Header> element, 614, 620–632

SOAPAction, 636

<heading> element, 718

height attribute, 774, 787, 789

HelloWorld method, 851

hexadecimal Unicode value, 133

hexBinary type, 187

hidden frames, 646

hideProgress function, 860, 863

hideSuggestionsBox() method, 670

highlightSuggestion() method, 664, 665, 668

horizontal lineto command, 778

hour-from-time() function, 283

<hr> element, 743, 764

href attribute, 700, 722, 724, 764, 819, 949, 950

HTML (HyperText Markup Language)

compared to Extensible Markup Language (XML),

13–14

forms

alternative to XForms, 838

compared to XForms, 804

grouping of information in, 14–15

pages, 288

html document element, XHTML, 812

html element, 807, 812, 816

HTML markup, 737

html output method, 563

html prefix, 74, 80

<html> element, 62, 78, 139, 743, 748, 750, 913, 915

HTTP (Hypertext Transfer Protocol), using for XML-RPC,

584–587

http://blogs.it/0100198/rss.xml root element,

566

http-equiv attribute, 746

http://icite.net/blog/?flavor=atom &smm=y:

root element, 567

http://localhost/WroxServices/

AutoSuggestDemo.html, 678

http://purl.org/net/morten/ blog/feed/rdf/

root element, 566

http://swordfish.rdfweb.org/people/libby/

rdfweb/webwho.xrdf root element, 567

http://www.w3.org/2003/05/soap-envelope/

role/next, 622

http://www.w3.org/2003/05/soap-envelope/

role/none, 622

http://www.w3.org/2003/05/soap-envelope/

role/ultimateReceiver, 622

http://www.wiley.com/pers namespace, 883

http://www.wiley.com/soap/ordersystem namespace,

614

http://www.XMML.com/namespace, 816

http://xml.org/sax/features/

externalgeneral-entities feature, 512

http://xml.org/sax/features/

externalparameter-entities feature, 512

http://xml.org/sax/features/isstandalone

feature, 512

http://xml.org/sax/features/lexicalhandler/

paramaterentities feature, 512

http://xml.org/sax/features/

namespaceprefixes feature, 511

http://xml.org/sax/features/namespaces

feature, 511

http://xml.org/sax/features/resolvedtd-uris

feature, 512

http://xml.org/sax/features/stringinterning

feature, 513

http://xml.org/sax/features/

unicodenormalizationchecking feature, 513

http://xml.org/sax/features/useattributes2

feature, 512

http://xml.org/sax/features/

useentity-resolver2 feature, 513

http://xml.org/sax/features/uselocator2

feature, 512

http://xml.org/sax/features/validation

feature, 511

http://xml.org/sax/features/xml-1.1 feature,

513

http://xml.org/sax/features/xmlns-uris

feature, 511

http://xml.org/sax/properties/

declaration-handler property, 514

http://xml.org/sax/properties/

documentxml-version property, 514

http://xml.org/sax/properties/lexicalhandler

property, 514

1005

http://xml.org/sax/properties/lexicalhandler property

In
d
e
x

hybrid document type, 761

hyperlinks, 6

HyperText Markup Language (HTML)

compared to Extensible Markup Language (XML),

13–14

forms

alternative to XForms, 838

compared to XForms, 804

grouping of information in, 14–15

pages, 288

Hypertext module, XHTML, 760, 762

Hypertext Transfer Protocol (HTTP), using for XML-RPC,

584–587

hyphens (-), 135

I
IBM MQSeries, 579

id() function, 256, 275

id attribute, 41, 83, 85, 121, 122–123, 126, 739, 740,

744, 747, 813, 814, 815, 820, 825, 913, 914,

958, 960

ID attribute nodes, 323

id elements, 220

ID mechanism, 122

id node-set, 931

ID selector, 701

id type, 966

<ID> element, 41

<id> element, 535

IDE (Integrated Development Environment), XML,

389–390

identifiers

public, 101–102

system, 100–101

ID/IDREF mechanism, 131

IDL (Interface Definition Language), 601

IDLE (Integrated Development Environment tool), 541

IDREF attribute, 121, 122–123

IDREFS attribute, 121, 122–123

IETF (Internet Engineering Task Force), 86, 387, 533

if keyword, 367

if/else construct, 283

IFrame module, XHTML, 760

<iframe> element, 787, 866, 868

iframes, 646

ignorableWhitespace events, 487, 498

IIOP (Internet Inter-ORB Protocol), 573, 574

IIS (Internet Information Services), 608, 842

illegal characters, 133

Illustrator, Adobe, 770

Image module, XHTML, 760, 762

Image object, 646

<image> element, 781

images, Scalable Vector Graphics (SVG), 780–781

 element, 433, 701, 721, 743, 845, 847

im:nickname property, 556

<im:nickname> element, 556

implementation property, Document interface, 479

implementations

module, 761

network transports, 582

XML Document Object Model (DOM), 447–448

implementing

aggregators

address list reader, 541–542

application controller, 543–546

extending, 555–557

handler helpers, 552–555

model, 546–548

XML markup handler, 548–552

GetRate() method, 683–684

suggest() method, 662

SuggestionProvider, 671–673

web services, 673–680

implied attributes, 127

implied values, 127

import processing instruction, 807

import utilities, 4

<import> declarations, 200–204

importNode method, Document interface, 480

in absolute unit, SVG, 774

in keyword, 363

IN_CONTENT constant, 549

IN_ITEM constant, 549

IN_NONE constant, 549

include directive, 231–232, 235, 237

include pattern, 232

include statement, 233

<include> declarations, 204–206

includenamespaceprefixes attribute, xforms:

submission element, 815

1006

hybrid document type

incomingCall event, 763

incorporating, content from other people, 757

incremental attribute

xforms:input element, 818

xforms:range element, 820

xforms:select element, 822

xforms:select1 element, 822

indent attribute

xforms:submission element, 815

xsl:output, 955

infinity attribute, xsl:decimal-format element,

945

<info> element, 565

InfoPath, Microsoft, 836–837

InfoPath 2003, 444

InfoPath 2007, XML DOM used in, 481–482

information set, 633

Inherit value, clear property, 713

inheritance, Cascading Style Sheets (CSS), 695–699

iniFile variable, 329

init() method, 474, 544, 618, 663, 670, 797

init(evt) function, 793, 794

Initialization events, XForms, 834, 835

inline boxes, 703–704

in-memory representation, 443

inner content models, 168

inner query, 407

innerHTML property, 863

input element, 452

input functions, XQuery

collection() function, 348

doc() function, 347–348

input key, handling, 662–663

<input> element, 844, 847

in-scope namespaces, 257

insert keyword, 416, 418

insert operation, 419

INSERT query, 416

insert statement, 428

insertBefore() method, Node object, 461, 462

installing

eXist, 382–394

MySQL, 426–427

Saxon XSLT processor

Java version, 290–291

.NET version, 291–292

instance data, 813

instance document, 150

instructions, 296

int type, 187

integer datatype, 241

integer type, 187

Integrated Development Environment (IDE), XML,

389–390

Integrated Development Environment tool (IDLE), 541

Interaction events

XForms, 834

XForms Action Module, 835

InterestOnlyOption loan program, 857

Interface Definition Language (IDL), 601

interfaces

ContentHandler

character content, 494–497

element events, 491–494

handling special commands with processing

instructions, 499

ignorableWhitespace events, 498

namespace prefixes, 499

providing location of errors, 502–504

skipped entities, 498–499

stopping process, 500–502

Document, 478–480

DTDHandler, 509

EntityResolver, 510

ErrorHandler, 504–509

eXist

choosing, 394

other, 394

REpresentational State Transfer (REST)

interface, 390–394

extension, 514–515

XML Document Object Model (DOM), 445–446

<interfaces> element, 635

interleave connector, 219–220

internal entity declaration, 134

internal parameter entity, 139

internal subset declarations, 100

internalEntityDecl event, DeclHandler interface,

514

Internationalized Resource Identifier (URI), 535

Internet Engineering Task Force (IETF), 86, 387, 533

Internet Explorer Parser, 24

Internet Information Services (IIS), 608, 842

Internet Inter-ORB Protocol (IIOP), 573, 574

1007

Internet Inter-ORB Protocol (IIOP)

In
d
e
x

Internet Protocol (IP), 572

Internet Topic Exchange, 576

Internet zone, 647

interoperability, web services, 603

/intl/en directory, 87

into clause, 419

Intrinsic events module, XHTML, 760

invalid element names, 161

invalid value, 125

Invoice element, 304

Invoice element node, 260

Invoices element node, 265

IP (Internet Protocol), 572

is_content_element method, 552

ISO 639 language code, 745

isPermalink attribute, 532

isSupported method, Node object, 462

item() method, 475

item class, 546–548

item element, 333, 365, 561

Item element nodes, 261, 265

item method, NamedNodeMap object, 471

item start-tag, 363

items, XQuery, 361

items element, 362, 363, 522

Items node, 333

items property, 531, 538

itemType attribute, 196

IzPack, 382

J
Java Development Kit (JDK), 483

Java Integrated Development Environment (Java IDE),

490

Java Remote Method Invocation (RMI), 575, 609

Java Runtime Environment (JRE), 290

Java Software Development Kit (SDK), 290

Java toolkit, for SVG, 770

Java Virtual Machine (JVM), 290

JavaScript, 14, 756–757, 805, 838

JavaScript Object Notation (JSON), 652–653

JavaServer Page (JSP), 295, 382

JDK (Java Development Kit), 483

jeff-description entity value, 138

jetty, 383

JRE (Java Runtime Environment), 290

JScript, 450

JSON (JavaScript Object Notation), 652–653

JSP (JavaServer Page), 295, 382

JVM (Java Virtual Machine), 290

K
Katmai, 346, 395

key() function, 256, 323, 968

keyboard selection, handling, 667–670

keyCode property, 662

keydown event, 662, 669

keypress event, 662

keys, 377

keyup event, 662

<keyword> element, 704, 707, 708

keywords

#FIXED keyword, 126

#IMPLIED keyword, 120

#PCDATA keyword, 108, 138

#REQUIRED keyword, 122, 127, 884

ANY keyword, 110

CDATA keyword, 120

delete keyword, 416, 417

ELEMENT keyword, 105

ELEMENTS keyword, 400

EMPTY keyword, 110

ENTITY keyword, 134, 139

if keyword, 367

insert keyword, 416, 418

in keyword, 363

<keyword> element, 704, 707, 708

list keyword, 244

mixed keyword, 222

OPENXML keyword, 410

PUBLIC keyword, 101

RAW keyword, 398

RNC keywords, 227

ROOT keyword, 398

SYSTEM keyword, 100

text keyword, 221

xquery keyword, 355

XSINIL keyword, 400

1008

Internet Protocol (IP)

kind attribute, 122, 124, 125, 126, 128, 130, 178,

180, 186, 192, 193, 195, 196

KindType global type, 178

<knows> element, 123, 128, 131, 176, 223

KnowsType <complexType> declaration, 192

L
L command, 778

<label> element, 844, 847

lang() function, 274

lang attribute, 739, 745, 747, 953, 957

language type, 189

language-name type, 966

last() function, 252, 254, 275, 318, 932

<last> element, 17, 115, 162, 170, 232, 234, 875

lastChild property, 458, 459

LastName attribute, 300

LastName element, 301

latitude declaration, 193

latitude pattern, 226

<latitude> element, 108, 116, 189, 197, 199, 226

Left value, clear property, 713

Legacy module, XHTML, 761

length facet, 194

length property, 475

let clause, 342, 362, 892

letter-spacing property, CSS, 695

letter-value attribute, xsl:number, 953

level attribute, xsl:number, 952

LexicalHandler extension interface, 514

LexicalHandler property, 513

 element, 751, 753, 913, 915

library element, 359, 370

library module, 355, 356

Library.xquery query, 358

line command, 870

<line> element, 773, 776, 916

linefeed characters, 38

Link module

XHTML, 761

XHTML Basic, 762

<link> element, 535, 751, 848

links, in XML documents

forcing using XHTML namespace, 725

XLink support in Firefox, 721–724

Linux Documentation Project, 697

list keyword, 244

List module

XHTML, 760

XHTML Basic, 762

list patterns, RELAX NG, 243–244

List property, CSS, 695

list types, 193

list_reader available, 542

list_reader.py file, 540, 541, 543

<list> element, 196–197, 728

<listitem> element, 699

ListReader class, 541–542, 545

list-style property, CSS, 695

list-style-image property, CSS, 695

list-style-position property, CSS, 695

list-style-type property, CSS, 695

literal name node, 924

literal result elements, 296, 351

LiveCycle, Adobe, 837

load() method, 462, 471

Load() method, 612

loading, XML documents, 462–468

loadXML() method, 453, 471, 588

Loan Origination System Identifier, 856

loancalculator2. html, 859

loancalculator2.js file, 869

loancalculator3.html, 868

loancalulator2.html, 864

local attributes, 177

local declarations, 156

local elements, 156–157

local intranet zone, 647

local-name() function, 275

localName parameter, 492, 494

localName property, 458, 459

localname string, 900

<location> element, 107, 116

LocationType <complexType> definition, 176

Locator interface, 503

Locator object, 502, 504

Locator2 interface, 503

long type, 187

<longitude> element, 108, 116, 189, 197, 199, 226

loosely structured data, 376

lower-case() function, 278

1009

lower-case() function

In
d
e
x

lowercaseSearch variable, 677

Lucene, 379

Luhn’s algorithm, 653

M
M command, 778

machine-readability, 522

Macromedia Dreamweaver, 753

main() function, 489, 491, 544, 546

margin attribute, 910

margins, 702

Marker property, CSS, 695

markup languages, history of, 6–7

match attribute, 293, 296, 315, 319, 950, 959

matches() function, 282

MathML, 13

matrix mathematics, 768

maxExclusive facet, 194

maxInclusive facet, 194

maxLength facet, 194

maxOccurs attribute, 161, 163, 168, 170

MCF (Meta Content Framework), 525

Media attribute, 700

media-type attribute

xforms:submission, 815

xsl:output, 955

<member> element, 589

memberTypes attribute, 197

message property, 478

<messages> element, 634

meta character *:, node tests, 928

Meta Content Framework (MCF), 525

meta data

evolution of systems

Atom, 533–535

Microsoft’s Content Definition Format (CDF), 525–526

Netscape’s RDF Site Summary (RSS) 0.9, 526

RSS 0.9x, 528–529

RSS-DEV and RSS 1.0, 529–531

simplicity, 526–528

UserLand’s RSS 2.0, 531–533

UserLand’s Scripting News format, 526

Scalable Vector Graphics (SVG), 782–784

syndication systems

client-consumer, 523

client-producer, 523–524

server-consumer, 524–525

server-producer, 523

meta information, 621

<meta> element, 746, 750, 843, 912, 914

<metadata> element, 783, 784

Meta-information module

XHTML, 760

XHTML Basic, 762

MetaWeblog API, 524

method attribute

xforms:submission element, 814

xsl:output element, 306, 954

methodName element, 577

methods

/*/text() method, 658

__str__ method, Python, 547

= assign method, 230

abort() method, 672

add() method, 474

addNode() method, 465

appendChild() method, 444, 461, 462, 478

attributes’ setNamedItem() method, 475

attributes.item(j) method, 920

AutoSuggestControl.suggest() method, 673

clearTimeout() method, 670

cloneNode() method, Node object, 461, 462

ConversionRate() method, 684

create_item method, 547

create_parser method, 544, 545

createAttribute() method, Document interface,

475, 479, 480

createAttributeNS() method, Document interface,

479, 480

createCDATASection() method, Document

interface, 479, 480

createComment() method, Document interface,

479, 480

createDocumentFragment() method, Document

interface, 479

createElement() method, Document interface,

444, 465, 478, 479, 480, 894

createElementNS() method, Document interface,

480, 894

createElementNS method, Document interface, 479

createEntityReference method, Document

interface, 479

createProcessing Instruction() method,

Document interface, 479, 480

1010

lowercaseSearch variable

createSuggestionsBox() method, 664, 670

createTextNode method, Document interface, 479

createTextRange method, 662

custom __str__ method, 548

deleteNode() method, 464, 465

document.write() method, 757

DOMParser.parseFromStream() method, 462

endElementNS method, 551, 899, 900

Enum.Parse() method, 684

exist() method, 893

fetchSuggestions() method, 659, 670, 671, 672,

681

firstChild method, 867

focus() method, 661

GET method, 464, 524, 581

get_feed_uris method, 545

get_formatted_date method, 548

get_newest_items method, 546

get_uris method, 541, 543, 545

getChannels() method, 578, 582, 596

getColumnNumber method, 502

getDateValue() method, 861

getElementsByTagName() method, 475, 479, 480,

757

getElementsByTagNameNS() method, 479, 480

GetFailureXML() method, 627

getIndex method, 492

getLength method, 492

getLineNumber method, 502

getLocalName method, 493

getNamedItem() method, 471, 472

getNamedItemNS method, NamedNodeMap object, 471

getOwnerDocument() method, 447

getPublicId method, 503

getQName method, 493

GetQuantityDiscount() method, 612

getRadioOperators() method, 906

getRate() method, 682, 683–684, 685

getSystemId method, 502

getTemperature method, 636

getTop() method, 665

getType method, 493

getURI method, 493

getValue method, 493, 494

goToSelection() method, 669

goToSuggestion() method, 668

handleAddToCartResponse() method, 627

handleKeyDown() method, 669

hasAttributes() method, Node object, 461

hasChildNodes() method, Node object, 461

HelloWorld method, 851

hideSuggestionsBox() method, 670

highlightSuggestion() method, 664, 665, 668

html output method, 563

importNode method, Document interface, 480

init() method, 474, 544, 618, 663, 670, 797

insertBefore() method, Node object, 461, 462

is_content_element method, 552

isSupported method, Node object, 462

item() method, 475

item method, NamedNodeMap object, 471

Java Remote Method Invocation (RMI), 575, 609

load() method, 462, 471

Load() method, 612

loadXML() method, 453, 471, 588

modify() method, 417, 419, 422, 474, 475, 893

mousedown method, 794

mouseover(evt) method, 793, 794

moveEnd() method, 661

moveStart() method, 661

newer_than method, 546

nextSibling method, 867

nodes() method, 893

normalize() method, Node object, 462

onkeyup() method, 663

open() method, 588, 591

output method, 306

Page_Load method, 674, 675

PerformLuhnCheck() method, 656

ping() method, 596

POST method, 581, 624

preventDefault() method, 669

print method, 543

print_items method, 546

process_tags method, 552, 553

put method, xforms:submission element, 824

query() method, 423–424, 893

read() method, 489, 544

remove() method, 474, 475

removeChild() method, 462, 465

removeEntities() method, 457

removeNamedItem() method, 471, 475

removeNamedItemNS method, 471

replace() method, 467

1011

methods

In
d
e
x

methods (continued)

replaceChild() method, 462, 467

Response.Write() method, 675

rotatePolygon(evt) method, 794

select() method, 660

selectNodes() method, 471

selectSingleNode() method, 589

selectTextRange() method, 661

send() method, 464, 588, 591

SendError() method, 680

SendErrorXml() method, 676

SendResponse() method, 657

SendXmlError() method, 680

serializeToString() method, 457

set_w3cdtf_time method, 547

setContentHandler method, 505

setErrorHandler method, 505

setNamedItem method, NamedNodeMap object, 472

setNamedItemNS method, NamedNodeMap object, 472

setPriceAndQuantity() method, 618

setProperty() method, 513, 514, 589

setSelectionRange() method, 661, 662

setTimeout() method, 670, 671

showFullSuggestion() method, 661, 667

showOutput() method, 658

showParseError() method, 453

split method, 543, 795, 796

startDocument method, 487

startElementNS method, 550

struct topicExchange.getChannelInfo

(string topicName) method, 576

struct topicExchange.getChannels() method,

576

struct topicExchange.ping(string

topicName, struct details) method, 576

suggest() method, 662, 666, 668, 671

topicExchange.getChannels() method, 577

topicExchange.ping() method, 577

trim method, 553

tryAddElement() method, 477

unescape method, 552

using GetBasicTotal() method, 612

validateCardNumber() method, 657

value() method, 893

var xhHTTP = new XmlHttpRequest() method,

591

xml output method, 563

Microsoft Core XML Services (MSXML), 923

Microsoft FrontPage, 753

Microsoft Internet Explorer Parser, 24

Microsoft Message Queue (MSMQ), 579

<middle> element, 12, 17, 49, 110, 114, 115, 170,

172, 216, 232

MIME type, 757–759, 781

minExclusive facet, 194

minInclusive facet, 194

minLength facet, 194

minOccurs attribute, 161, 163, 164, 168, 170

minus sign (–), 10

minus-sign attribute, xsl:decimal-format element,

946

mixed attribute, 176

mixed content, 108–109, 222

mixed keyword, 222

mixed pattern, 222, 227

mm absolute unit, SVG, 774

mode attribute

xsl:apply-templates element, 315, 941

xsl:template element, 959

model attribute

xforms:itemset element, 827

xforms:select1 element, 826

model item properties, 815

modeling feeds

different syntaxes, 538–539

Simple API for XML (SAX), 539

modify() method, 417, 419, 422, 474, 475, 893

modifying

requests, 853–857

responses, 853–857

modularization, of schemas using include directive,

231–232

module declaration, 355, 356

mouse actions, handling, 665–666

mousedown method, 794

mouseout function, 795

mouseout(evt) functions, 793

mouseover(evt) method, 793, 794

mouseup function, 795

mouseup(evt) functions, 793

moveEnd() method, 661

move(evt) function, 795

move(evt) function, 799

moveStart() method, 661

1012

methods (continued)

moveToFront(polygon) function, 793, 797

Mozilla Firefox

network transports, 591–594

XLink support in, 721–724

MSMQ (Microsoft Message Queue), 579

MSXML (Microsoft Core XML Services), 923

MSXML component, 445

MSXML2 library, 647

MSXML2.XMLHTTP class, 588

Muenchian Method, 324, 968–969

MultiAuthor.xquery query, 367

multipane styles, of feed-reader user interface, 523

multiple outputs, for XSLT 2.0, 323

mustUnderstand attribute, 621–622, 623, 906

myAttr attribute, 40

MyClass class, 486

myDoc variable, 417, 419

myElement[myAttribute] selector, 729

myElement[myAttribute~=”myValue”] selector, 729

myElement[myAttribute=”myValue”] selector, 729

myLoggingPage.aspx page, 646

myNewBib element, 352

MySQL

adding information in, 427–430

installing, 426–427

querying, 430–435

updating XML in, 435–436

usability of XML in, 436

mysql commandline utility, 437

mysql prompt, 427

mysql.sql file, 429

mySubmit xforms:submission element, 827

N
name() function, 257, 275

name attribute

xsl:attribute element, 941

xsl:attribute-set element, 942

xsl:call-template element, 943

xsl:decimal-format element, 945

xsl:element element, 303, 305, 947

xsl:key element, 950

xsl:param element, 956

xsl:processing-instruction element, 957

xsl:template element, 322, 959

xsl:variable element, 961

name element, 203, 216

Name element node, 264, 298, 299

Name identification module, XHTML, 761

name pattern, 230, 231, 234

name type, 188, 967

name vocabulary, 233

<name> element, 12, 16, 17, 78, 80, 83, 96, 106, 107,

151, 155, 160, 162, 164, 165, 168, 172, 177,

200, 231, 882, 883

name-classes, RELAX NG

AnyName name-class feature, 240–241

basic names, 238

choices, 238–239

groups, 238–239

namespaces with wildcards, 239

nameContents pattern, 234

named node map, 471

named pattern choice, 230

named pattern interleave, 230

named templates, 322

NamedNodeMap object, 471–475, 893, 894

names type, 967

namespace attribute, 164, 180, 181, 204, 914, 941,

947

namespace axis, 260, 268–270, 348, 361, 926

namespace declaration, 237, 807

Namespace Identifier (NID), 87

namespace node, 255, 257, 266

namespace prefix, 72, 154, 170, 204, 238

namespace pseudo-attribute, 807

Namespace Recommendation, 121, 146

namespace string, 900

namespace-prefix type, 967

namespaces

attributes from other, 207

declaration, 356

document type definitions (DTDs), 143

need for

prefixes, 69–70

Uniform Resource Identifiers (URIs), 70–72

prefixes, 499

RELAX NG, 236–237

syntax

attributes, 83–86

default namespaces, 75–81

different notations, 81–83

target, 153–154

1013

namespaces

In
d
e
x

namespaces (continued)

Uniform Resource Identifiers (URIs)

meaning, 88–89

Resource Directory Description Language (RDDL), 89

Uniform Resource Locators (URLs), 86–88

Universal Resource Names (URNs), 87–88

when to use, 89–90

with wildcards, 239

in XForms documents, 816–817

XHTML, 725

XML Schema, 153

XML Schemas, 146

namespace-uri() node-set function, 275

namespaceURI property, 458, 459

name.xml document, 24

naming

attributes, 179

conventions, 34–35

elements, 160–161

NaN attribute, xsl:decimal-format element, 946

native browser implementations, 804

native databases, eXist

installing, 382–383

interacting with, 384–394

obtaining, 382–383

native functionality, 426

native XML database, 376, 381

Nautilus, 388

navigationindex attribute, xforms:select1

element, 822

navindex attribute, 818, 819, 820

ncname attribute, xsl:sort, 957

NCName type, 188

ncname type, 967

negativeInteger type, 187

nested elements, 406

nested grammars, 235

nested iteration, 342

nested patterns, 213, 227

nesting, 32–33

.NET classes, 853

.NET code, 396

.NET framework redistributable, 291

.NET language, 517

Netscape

network transports, 591–594

RSS 0.9, 526

network transports

firewall-ready, 583–584

Hypertext Transfer Protocol (HTTP), 579–582

posting with Firefox, 591–594

posting with Netscape, 591–594

request/response paradigm, 582–583

security, 584

using Hypertext Transfer Protocol (HTTP) for XML-RPC,

584–587

wide implementation, 582

New System Variable, 291

newer_than method, 546

newline character, 38, 549, 553, 902, 920

news feeds, 536–537

newsreaders, 536

nextSibling method, 867

nextSibling property, 458, 459

NID (Namespace Identifier), 87

NMTOKEN attribute, 121, 124

NMTOKENS attribute, 121, 124

No cardinality indicator, 217

node() function, node tests, 928

Node interface, 449, 458

Node object

DOMException object, 476–478

effect of Text nodes, 468–471

loading XML documents, 462–468

methods, 461–462

NamedNodeMap object, 471–475

NodeList object, 475

properties, 458–461

node tests, 927, 928

node type, 967

NodeList object, 475, 893, 894

nodeName property, 454, 458, 459

nodes

attribute, 256

comment, 257

comparing with items, 361

element, 255–256

kinds, 361

namespace, 257

processing instruction, 257

retrieving, 348–351

root, 255

Text, 256, 468–471

XML Document Object Model (DOM), 448–449

1014

namespaces (continued)

nodes() method, 893

node-set, 252, 343

nodeset attribute

xforms:bind element, 828

xforms:itemset element, 827

node-set current() function, 963

node-set document function, 963

node-set key function, 965

node-set type, 967

node-set-expression type, 967

node-sets

functions, 275

sequences of, 361

XPath 1.0, 258

nodeType property, 458

nodeValue property, 458, 459, 869

nom element, 875

noNamespaceSchemaLocation attribute, 152

nonbreaking space, 36

None value, clear property, 713

nonNegativeInteger type, 187

nonPositiveInteger type, 187

normalize() method, Node object, 462

normalizedString type, 187

normalize-space() function, 276

normalize-unicode() function, 282

<noscript> element, 763

not() function, 275

not boolean, 933

notAllowed pattern, 233–234

Notation node, 449

notationDecl event, 509

<note> element, 45

Notification events, 835

NSAttributes object, 550

null locator object, 503

number() function, 275

number attribute, 252, 265, 890

number object, 933

number type, 967

numbers, XPath 1.0, 258

numeric expression, 280

numeric functions, 275–276

_ (copyright symbol)), 61

O
object element, 806

Object element nodes, 312, 314

object inheritance, 147

Object Management Group (OMG), 574

object model, 14

Object module

XHTML, 760

XHTML Basic, 762

Object Request Broker (ORB), 574

object system-property function, 965

object type, 967

<object> tag, 866

objects

DOMException, 476–478

NamedNodeMap, 471–475

Node

DOMException object, 476–478

effect of Text nodes, 468–471

loading XML documents, 462–468

methods, 461–462

NamedNodeMap object, 471–475

NodeList object, 475

properties, 458–461

NodeList, 475

XML Document Object Model (DOM), 445–446

<occupants> element, 899

ODF (Open Document Format), 809

oDocumentElement.xml file, 461

oDom variable, 474

offsetLeft property, 664

offsetParent property, 664

offsetTop property, 664

offsetWidth property, 664

 element, 728

OMG (Object Management Group), 574

omit-xml-declaration attribute

xforms:submission element, 815

xsl:output element, 955

onclick attribute, 452, 785, 845, 864

onkeyup() method, 663

online XML IDEs, 754

onload attribute, 789, 793

onload event, 474

1015

onload event

In
d
e
x

onLoad value, actuate attribute, 725

onmousedown mouse action, 665

onmouseover mouse action, 665

onmouseup mouse action, 665

onreadystatechange function, 862

onreadystatechange property, 588

open() method, 588, 591

Open Document Format (ODF), 809

opening (<) character, 34

open-source graphical editor, 770

OPENXML clause, 409–413

OPENXML keyword, 410

OPENXML rowset provider, 395

OPENXML statement, 412

Opera browser, 783

operators, 923

<option> element, 742

optional attribute, 180

optional elements, 105

Oracle parser, 485, 502

ORB (Object Request Broker), 574

Orbeon Forms, 808, 838

order attribute, xsl:sort, 957

order by clause, 366–367, 892

order_id parameter, 905

<Order> element, 30, 43

order2.xml file, 46

OrderByTitleOut.xml query, 367

OrderByTitle.xquery query, 366

orderID attribute, 910

<Orders> element, 41

orderSummary.xslt document, 333

orders.xml document, 333

order.xml file, 29, 41

outer query, 407

output element, 560

output method, 306

overlapping

absolutely positioned elements, 718

floated boxes, 712

relative positioning, 708–709

using clear property to prevent, 713

ownerDocument property, 447, 458, 459

oXmlHttp variable, 651

oXygen 8.0, 389

P
<p> element, 31, 32, 35, 69, 76, 78, 85, 549, 553,

564, 699, 701, 751, 758, 844, 882, 913

p3ptype property, XForms model items, 828

padding, 702

padding attribute, 910

Page_Load method, 674, 675

<page> element, 705, 707, 714

<pageNumber> element, 705

painter’s model, Scalable Vector Graphics (SVG),

774–776

<para> element, 699

paragraph bar object, 758

Paragraph element, 250, 280

<paragraph> element, 704, 705, 707, 712

parameter entities, 139–141

ParameterExample.xquery query, 370

parameters

$ParameterName syntax, 320

_query, 390

_xsl, 393

cust_id, 905

DefaultPhoneKind, 140

details, 578

Extensible Stylesheet Language Transformations

(XSLT), 320–322

external-parameter-entities feature, 498

http://xml.org/sax/features/

externalparameter-entities feature, 512

internal entity, 139

localName, 492, 494

order_id, 905

parameter entities, 139–141

ParameterExample.xquery query, 370

person, 321

prefix, 499, 873

qName, 492, 494

uri, 492, 499

using with XQuery, 370

XML-remote procedure call (RPC), 577

xsl:parameter element, 320

parent axis, 260, 271, 927

parent grammar, 236

parent node, 264, 271

1016

onLoad value, actuate attribute

parent pattern, 236

<parent> element, 16

parentNode property, 458, 459, 465

parse function, 508, 511

parsed character data (PCDATA)

illegal characters

character data (CDATA) sections, 61–62

escaping, 60–61

whitespace, 38–39

parseError object, 453

parseFloat(string) function, 796

parseFromString() function, 456

parsererror document element, 457

parser.parse instance, 544

parsers, 11–12, 24, 40, 74, 135, 878

parsing, 444, 484

Part element node, 271

Pascal language, 517

path commands, 779

path data, d attribute, 777

path element, 917

PATH environment variable, 291, 490

PATH option, 405

PATH query, 405

<path> element, 777, 780

paths, Scalable Vector Graphics (SVG), 777–780

pattern definitions, 244

pattern facet, 194

patterns

attribute

cardinality, 216–217

compared to elements, 216

connector patterns and grouping, 217–220

co-occurrence constraints, 221

empty pattern, 222–223

enumerated values, 220–221

mixed content pattern, 222

combining, 227–236

connector, and grouping, 217–220

element

cardinality, 216–217

compared to attributes, 216

connector patterns and grouping, 217–220

co-occurrence constraints, 221

empty pattern, 222–223

enumerated values, 220–221

mixed content pattern, 222

empty, 222–223

extensions, 234

list, 243–244

mixed content, 222

named

combining definitions, 230–231

redefining included, 232–233

notAllowed, 233–234

restrictions, 234

reusing, 227–236

text

cardinality, 216–217

connector patterns and grouping, 217–220

co-occurrence constraints, 221

elements and attributes, 216

empty pattern, 222–223

enumerated values, 220–221

mixed content pattern, 222

pattern-separator attribute, xsl:decimal-format

element, 947

payloads, 613

payment calculator (case study)

list of needs, 842

mortgage calculations, 841–842

online loan calculator

adding frame to main page, 868–872

enhancing display with SVG, 865–868

integrating calculation web service, 849–865

payment card validator, 653–658

payment schedules, 842

<payment> element, 218

payments_ table container element, 848

payments_table <div> element, 848

payments_table container, 863

payments_table template, 848

<PAYMENTSTREAM> elements, 862

pc absolute unit, SVG, 774

PCDATA (parsed character data)

illegal characters

character data (CDATA) sections, 61–62

escaping, 60–61

whitespace, 38–39

People.xml file, 293

percent attribute, xsl:decimal-format element, 946

percent sign (%), 139, 140

percentages, 774

PerformLuhnCheck() method, 656

1017

PerformLuhnCheck() method

In
d
e
x

Perl language, 517

per-mille attribute, xsl:decimal-format element,

946

pers namespace prefix, 72

pers prefix, 69, 70, 74

pers: prefix, 80

person attribute, 128

Person element node, 296, 299, 303

person parameter, 321

<person> element, 68, 72, 73, 76, 78, 83, 267, 300,

814

PersonData element node, 264

Perspective menu, 389

<pers:person> element, 72

<pers:title> element, 69

phone attribute declaration, 140

<phone> element, 126, 186, 192, 193, 195, 241, 885,

886

phoneContents declaration, 242

PhoneType <complexType> declaration, 192

ping() method, 596

PIs (processing instructions), 56–59

PITarget, 56

Planet Venus aggregator, 525

Planète Web Sémantique, 525

pluggable datatypes, 212

points attribute, 918

polygon variable, 785

<polygon> element, 776, 785, 789, 790, 791, 793,

794, 797, 798, 799, 916, 919

polyGroup element, 920

polyGroup object, 919

portrait attribute, 123

portType interface, 907

<portTypes> element, 635

position() function, 252, 254, 275, 318, 933

position property, 707, 717, 718

positioning, in Cascading Style Sheets (CSS)

absolute, 714–716

fixed, 717–718

float, 709–711

normal flow, 706–707

overlapping absolutely positioned elements, 718

overlapping floated boxes, 712

overlapping relative, 708–709

relative, 707–708

using clear property to prevent overlap, 713

vertical margins collapse in normal flow, 707

z-index property, 718

positiveInteger type, 187

POST method, 581, 624

POST operation, 620

Post Schema Validation Infoset (PSVI), 148

posting techniques, 649–652

PostTester-IE.html, PostTester-CrossBrowser .html, 593

post-to-blog facilities, 523

<pre> tag, 37

preceding axis, 260, 271–272, 348, 927

preceding-sibling axis, 260, 272–273, 348, 927

predicates, XPath, 278

prefix contacts, 175

prefix parameter, 499, 873

prefix property, 458, 459

prefix target, 175

prefixes, 69–70, 74, 499

Presentation module, XHTML, 760

preserveWhitespace property, 471

preventDefault() method, 669

previousSibling property, Node object, 458

print method, 543

print_items method, 546

priority attribute, xsl:template, 959

procedural programming, XSLT, 292

process_tags method, 552, 553

processContents attribute, 164, 181, 887

processing

conditional

<xsl:choose> element, 308–311

<xsl:if> element, 306–308

feed data for display, 561–563

pre-processing feed data, 565

processing instruction node, 255, 257

processing instructions (PIs), 56–59

processing-instruction() function, 928

processingInstruction event, 487, 499

ProcessingInstruction node, 448, 449

ProcessingInstruction objects, 448

processing-instruction(Literal) function, node

tests, 928

processors

Saxon XSLT

installing Java version, 290–291

installing .NET version, 291–292

XSLT, 288–289

1018

Perl language

producers, Simple API for XML (SAX), 516

<Product> element, 41

programming

declarative, 292–293

procedural, 292

tools, 770–771

ProgramType enumeration, 856

prolog, XQuery

base-uri declaration, 356

boundary-space declaration, 357–358

default namespace declarations, 356

modules, 355–356

namespace declaration, 356

schema imports, 357

validation declaration, 357

variable declarations, 357

version declaration, 355

properties

attr property, 910

attributes property, Node object, 458, 459, 471

Background property, CSS, 695

background property, CSS, 695

background-attachment property, CSS, 695

background-color property, 694, 695

background-image property, 695, 725

background-position property, 695

background-repeat property, 695

border-collapse property, CSS, 695

border-spacing caption-side property, CSS, 695

calculate property, XForms model items, 828

charCode property, 919

childNodes property, 458, 459, 475, 798

clear, 713

clear property, 713

color property, 695, 699

constraint property, XForms model items, 828

content property, 730, 731, 910

createTextNode property, 465

DeclHandler property, 513

direction property, CSS, 695

display property, 703, 704, 719, 721, 911

doctype property, Document interface, 479

documentElement property, 446, 454, 464, 479, 862

DOMParser property, 456, 457

empty-cells property, CSS, 695

firstChild property, 458, 459, 461

float property, 709

foaf:maker property, 901

foaf:mbox_sha1 property, 901

foaf:name property, 901

foaf:nick property, 901

foaf:Person property, 901

foaf:weblog property, 901

font property, CSS, 694

font-family property, 694, 696

font-size property, CSS, 694

font-style property, CSS, 694

font-variant property, 694

font-weight property, 694, 696

http://xml.org/sax/properties/declaration-

handler property, 514

http://xml.org/sax/properties/documentxml-

version property, 514

http://xml.org/sax/properties/

lexicalhandler property, 514

im:nickname property, 556

implementation property, Document interface, 479

Inherit value, clear property, 713

innerHTML property, 863

items property, 531, 538

keyCode property, 662

lastChild property, 458, 459

Left value, clear property, 713

length property, 475

letter-spacing property, CSS, 695

LexicalHandler property, 513

List property, CSS, 695

list-style property, CSS, 695

list-style-image property, CSS, 695

list-style-position property, CSS, 695

list-style-type property, CSS, 695

localName property, 458, 459

Marker property, CSS, 695

message property, 478

namespaceURI property, 458, 459

nextSibling property, 458, 459

nodeName property, 454, 458, 459

nodeType property, 458

nodeValue property, 458, 459, 869

None value, clear property, 713

offsetLeft property, 664

offsetParent property, 664

offsetTop property, 664

offsetWidth property, 664

onreadystatechange property, 588

ownerDocument property, 447, 458, 459

1019

properties

In
d
e
x

properties (continued)

p3ptype property, XForms model items, 828

parentNode property, 458, 459, 465

position property, 707, 717, 718

prefix property, 458, 459

preserveWhitespace property, 471

previousSibling property, Node object, 458

readonly property, XForms model items, 828

receiving SAX events, 513–514

referrer property, 646

relevant property, XForms model items, 829

required property, XForms model items, 829

responseXML property, 464, 652

Right value, clear property, 713

Simple API for XML (SAX) events, 513–514

Table property, CSS, 695

table-layout property, CSS, 695

Text property, CSS, 694

text-align property, CSS, 695

text-decoration property, CSS, 695

text-indent property, CSS, 695

text-transform property, CSS, 695

title property, 15, 528

type property, XForms model items, 829

unicode-bidi property, CSS, 695

white-space property, CSS, 695

width property, 709, 712, 718

word-spacing property, CSS, 695

z-index, 718

z-index property, 718–719

Proposal Recommendation status, 341

proxy web service, 853

ProxyCalculationService website, 850

pseudo-elements, 726

PSVI (Post Schema Validation Infoset), 148

pt absolute unit, SVG, 774

pubDate element, 552

public identifiers, 101–102, 140

PUBLIC keyword, 101

publisher element, 366

PublisherOut.xml query, 366

Publisher.xquery query, 366

publishing Scalable Vector Graphics (SVG) on websites,

785–786

PubSub, 524

pull process, 484

<pullQuote> element, 712

<purchaseOrder> element, 258, 910

push model, 525

push processors, 484

put method, xforms:submission element, 824

px absolute unit, SVG, 774

Python, 517, 541, 771

PyXML, 540, 554

Q
Q command, 778

qName parameter, 492, 494

qname string, 550

QName type, 188

qname type, 967

qnames type, 967

Qualified Names (QNames), 72, 255, 813

query() method, 423–424, 893

Query dialog, 387

querying MySQL, 430–435

Quirks mode, 843

quot entity, 138

quoted string value, 220

Qurvi, 770

R
r attribute, 774

raw characters, 60

RAW keyword, 398

RDBMSs (relational database management systems)

commercial

Web service support, 426

XML functionality in SQL Server 2000, 395

open source

adding information in MySQL, 427–430

client-side XML support, 437

installing MySQL, 426–427

querying MySQL, 430–435

updating XML in MySQL, 435–436

usability of XML in MySQL, 436

RDDL (Resource Directory Description Language), 89

RDF (Resource Description Framework), 526, 568, 783

RDF Site Summary (RSS)

Atom, 533–535

RSS 0.9, 526

1020

properties (continued)

RSS 0.91, 528–529

RSS 1.0, 529–531

RSS-DEV, 529–531

transforming with XSLT

browser processing, 564–565

generating feed from existing data, 558–559

pre-processing feed data, 565

processing feed data for display, 561–563

syndication formats, 565–567

rdf:about attribute, 531, 535

rdf:RDF element, 529, 616

<rdf:RDF> element, 527, 531

read() method, 489, 544

readers, address list, 541–542

readonly property, XForms model items, 828

readystatechange event, 651

Really Simple Syndication (RSS). See RDF Site

Summary (RSS)

receiveLoanInformation function, 862, 868

Receiver identifier, 623

<rect> element, 771, 774, 776, 916

recursive entity reference, 134

recursive function, 371

recursive patterns, 213

redefining included named patterns, 232–233

ref attribute, 170, 178, 184, 815, 817, 819, 822, 826,

836

<reference> element, 704, 707

references

to built-in entities, 132

to character entities, 133

to general entities, 135–138

<group>, 170–171

to parameter entities, 140–141

referrer property, 646

regular expressions, 795

Regular Language description for XML (RELAX), 211

relational data, compared to XML-based data, 377

relational database management systems (RDBMSs)

commercial

Web service support, 426

XML functionality in SQL Server 2000, 395

open source

adding information in MySQL, 427–430

client-side XML support, 437

installing MySQL, 426–427

querying MySQL, 430–435

updating XML in MySQL, 435–436

usability of XML in MySQL, 436

relational databases, moving XML to/producing

XML from, 380

relative location path, 299

relative positioning, 707–709

relative units, 774

RELAX (Regular Language description for XML), 211

RELAX NG

comments, 244

compact (RNC) syntax, 212–213

datatypes, 241–243

divisions, 244

grammars

combining, 227–236

reusing, 227–236

list patterns, 243–244

name-classes

AnyName name-class feature, 240–241

basic names, 238

choices, 238–239

groups, 238–239

namespaces with wildcards, 239

namespaces, 236–237

patterns

attribute patterns, 213–227

combining, 227–236

element patterns, 213–227

reusing, 227–236

text patterns, 213–227

useful resources, 245

RELAX NG compact (RNC) syntax, 212–213

relay attribute, 622

relevant property, XForms model items, 829

remote procedure call (RPC)

Distributed Component Object Model (DCOM),

573–574

Internet Inter-ORB Protocol (IIOP), 574

Java Remote Method Invocation (RMI), 575

network transports

firewall-ready, 583–584

Hypertext Transfer Protocol (HTTP), 579–582

posting with Firefox, 591–594

posting with Netscape, 591–594

request/response paradigm, 582–583

security, 584

using Hypertext Transfer Protocol (HTTP) for XML-RPC,

584–587

wide implementation, 582

1021

remote procedure call (RPC)

In
d
e
x

remote procedure call (RPC) (continued)

XML-RPC

application programming interface (API), 576

parameters, 577

requests, 577

struct value sets, 577–579

remove() method, 474, 475

removeChild() method, 462, 465

removeEntities() method, 457

removeNamedItem() method, 471, 475

removeNamedItemNS method, 471

replace() method, 467

replace attribute, xforms:submission element, 815

replaceChild() method, 462, 467

replacement text, 134

REpresentational State Transfer (REST), 390–394,

596–600, 612–613

requests

modifying, 853–857

XML-remote procedure call (RPC), 577

Requests For Comments (RFCs), 387

required attribute, 180

required property, XForms model items, 829

required values, 126–127

reset() function, 792, 793, 798, 799

resolveEntity event, EntityResolver interface,

510

resolveEntity function, 510

Resource Description Framework (RDF), 526, 568, 783

Resource Directory Description Language (RDDL), 89

responses, modifying, 853–857

Response.Write() method, 675

responseXML property, 464, 652

REST (REpresentational State Transfer), 390–394,

596–600, 612–613

rest-query-results.xsl file, 392

restriction types, 193

<restriction> declarations, 194–196

result documents, 289, 940

result set, 924

result tree, 289, 342

result-prefix attribute, xsl:namespace-alias,

951

<résumé> element, 68

retrieving, nodes, 348–351

return clause, 423

return statement, 363, 368, 796

returning data, as XML using FOR XML clause

extensions to XQuery in SQL Server 2005, 416–423

OPENXML clause, 409–413

query() method, 423–424

W3C XML Schema in SQL Server 2005, 424–425

FOR XML AUTO clause, 401–404

xml datatype, 413–416

FOR XML EXPLICIT clause, 405

FOR XML PATH clause, 405–409

FOR XML RAW clause, 396–401

XQuery in SQL Server 2005, 416

reusable references, 123

reusing

grammars, 227–236

patterns, 227–236

<review> element, 712

RFCs (Requests For Comments), 387

Rich Site Summary. See RDF Site Summary (RSS)

Right value, clear property, 713

RMI (Java Remote Method Invocation), 575, 609

RNC (RELAX NG compact) syntax, 212–213

RNC keywords, 227

role attribute, 622, 764

root element, 25, 33–34, 100, 134, 151, 348, 454,

459, 560, 563, 743, 902

root <html> element, 912

ROOT keyword, 398

root node, 251, 252, 254, 255, 264, 271, 361

root start-tag, 454

rootElement object, 794

rotate attribute, 791

rotate command, 793

rotate expression, transform attribute, 776

rotate transform, 916, 917

rotate(degrees) command, 871

rotatePolygon event listener, 919

rotatePolygon function, 797

rotatePolygon(evt) method, 794

rotateString function, 796

round() number function, 275

round number, 934

<row> element, 398

RPC (remote procedure call)

Distributed Component Object Model (DCOM),

573–574

Internet Inter-ORB Protocol (IIOP), 574

Java Remote Method Invocation (RMI), 575

1022

remote procedure call (RPC) (continued)

network transports

firewall-ready, 583–584

Hypertext Transfer Protocol (HTTP), 579–582

posting with Firefox, 591–594

posting with Netscape, 591–594

request/response paradigm, 582–583

security, 584

using Hypertext Transfer Protocol (HTTP) for XML-RPC,

584–587

wide implementation, 582

XML-RPC

application programming interface (API), 576

parameters, 577

requests, 577

struct value sets, 577–579

rpc value, 636

.rpm packages, 427

RSS (RDF Site Summary)

Atom, 533–535

RSS 0.9, 526

RSS 0.91, 528–529

RSS 1.0, 529–531

RSS-DEV, 529–531

transforming with XSLT

browser processing, 564–565

generating feed from existing data, 558–559

pre-processing feed data, 565

processing feed data for display, 561–563

syndication formats, 565–567

RSS Bandit, 536

rss prefix, 538

rss start-tag, 560

<rss> element, 538, 563

rss:channel element, 567

Ruby annotation module, XHTML, 761

S
S command, 778

same source origin policy, 645

SAX (Simple API for XML)

advantages, 515–516

consumers, 516

description

history, 484–485

setting up, 486

source, 485

drawbacks, 516

filters, 516

modeling feeds, 539

other languages, 516–517

producers, 516

receiving SAX events

ContentHandler interface, 487–504

DTDHandler interface, 509

EntityResolver interface, 510

ErrorHandler interface, 504–509

extension interfaces, 514–515

features, 510–513

properties, 513–514

SAX pipeline, 516

sax2.jar file, 486

sax2r2.jar file, 490

SAXException object, 500, 504

SAXNotRecognizedException function, 511

SAXNotSupportedException function, 511

Saxon, 343–345

Saxon error message, 291

Saxon XQuery engine, 389

Saxon XSLT processor

installing Java version, 290–291

installing .NET version, 291–292

SAXParseException object, 506, 507

Scalable Vector Graphics (SVG)

advantages, 768

annotation, 782–784

comments, 782–784

described, 767–771

enhancing display with, 865–868

example, 771–774

grouping, 776

images, 780–781

metadata, 782–784

painter’s model, 774–776

paths, 777–780

publishing on website, 785–786

resources, 799–800

sample application

script, 792–800

SVG shapes, 788–792

XHTML wrapper, 787

scripting, 784–785

text, 781–782

tools, 769–771

transformations, 776–777

1023

Scalable Vector Graphics (SVG)

In
d
e
x

Scalable Vector Graphics (SVG) (continued)

units, 774

uses, 769

views, 774

scale expression, transform attribute, 777

schema attribute, 834

schema elements, 888

schema imports, XQuery, 357

schema validators, 148, 175, 207

<schema> element, 151, 153–155, 156, 158, 160, 161,

175, 179, 209

schemaLocation attribute, 152, 200, 204, 381

schemas, 19, 145

Schematron, 209

scramble() function, 792, 793, 798

screenscraping techniques, 561

script file, 789

<script> element, 46, 756, 763, 785, 788, 866

Scripting module, XHTML, 760

Scripting News format, 526

scripts, Scalable Vector Graphics (SVG), 792–800

SDD (Standalone Document Declaration), 54, 56

<section> element, 259, 264, 265, 278, 279, 280,

764

Secure Sockets Layer (SSL), 582, 584

security

network transports, 584

web services, 604

security attribute, 278, 280

select() method, 660

select attribute

xsl:apply-templates element, 313, 318, 321, 941

xsl:copy-of element, 945

xsl:for-each element, 948

xsl:param element, 956

xsl:sort element, 314, 957

xsl:value-of element, 299, 961

xsl:variable element, 321, 962

xsl:with-param element, 963

SELECT query, 416

SELECT statement, 395, 417, 419, 423

selected attribute, 742

selectedPoly variable, 794, 795

selection attribute, xforms:select element, 821

selection attribute, xforms:select1 element, 822

selectNodes() method, 471

selectors, Cascading Style Sheets (CSS), 700–701

selectSingleNode() method, 589

selectTextRange() method, 661

self axis, 260, 273–274, 927

self:: node() expression, 257

self-closing tag, 31, 49

self-contained applications, Scalable Vector Graphics

(SVG), 769

self::node() function, 314

semantic markup, 692

Semantic Web initiative, 526

semicolon (;), 132, 133, 135, 140

semi-structured data, 376

send() method, 464, 588, 591

Sender identifier, 623

SendError() method, 680

SendErrorXml() method, 676

SendResponse() method, 657

SendXmlError() method, 680

separatedContacts.xslt instruction, 330

<separator> element, 764

sequence (choice) connector, 217–219

sequence pattern, 217

<sequence> element, 151, 168, 175, 176

sequences, 106–108

sequencing XPath 2.0, 924

serialization, 444

serialized XML, 250

serializeToString() method, 457

sernaDirect subscription service, 26

server script, eXist, 382

server-based applications, Scalable Vector Graphics

(SVG), 769

server-consumer syndication systems, 524–525

server-producer syndication systems, 523

servers

AutoSuggest box, 658–681

JavaScript Object Notation (JSON), 652–653

payment card validator, 653–658

processing on, 652–681

reducing load, 20

transport on, 652–681

server-side content types, 747

Server-side image map module, XHTML, 760

server-side proxies, currency converter proxy

creating clients, 684–686

creating web services, 682–683

implementing GetRate() method, 683–684

1024

Scalable Vector Graphics (SVG) (continued)

server-side validation, 804

<service> element, 638–641

Service.asmx file, 852, 858

Service.cs file, 851, 854

serviceUrl public member, 672

SET statement, 417

set_w3cdtf_time method, 547

setContentHandler method, 505

setDocumentLocator callback, 502, 503

setDocumentLocator event, 488, 504

setDTDHandler function, 509

setEntityResolver function, 510

setErrorHandler method, 505

setFeature function, 511, 514

setNamedItem method, NamedNodeMap object, 472

setNamedItemNS method, NamedNodeMap object, 472

setPriceAndQuantity() method, 618

setProperty() method, 513, 514, 589

setSelectionRange() method, 661, 662

setTimeout() method, 670, 671

SGML (Standard Generalized Markup Language), 6, 7,

11, 99, 148

shapes, Scalable Vector Graphics (SVG), 788–792

sharing vocabularies, 104

short type, 187

show attribute, 724, 725

showFullSuggestion() method, 661, 667

showOutput() method, 658

showParseError() method, 453

showProgress function, 860

showProperties() function, 452, 453, 456

shredding, 380, 409, 893

Simple API for XML (SAX)

advantages, 515–516

consumers, 516

description

history, 484–485

setting up, 486

source, 485

drawbacks, 516

filters, 516

modeling feeds, 539

other languages, 516–517

producers, 516

receiving SAX events

ContentHandler interface, 487–504

DTDHandler interface, 509

EntityResolver interface, 510

ErrorHandler interface, 504–509

extension interfaces, 514–515

features, 510–513

properties, 513–514

simple content, 16

Simple Extension Element, 555

Simple Object Access Protocol (SOAP)

groundwork, 608

messages

<Body> element, 614–615

encoding style, 615–620

<Envelope> element, 614

<Fault> element, 622–632

<Header> element, 620–632

REpresentational State Transfers (RESTs), 612–613

Windows 2000, 608

Windows 2003, 608

Windows XP, 608

SimpleBooks2WRONGOut.xml output document, 352

SimpleBooks2.xquery file, 351

SimpleBooks.xquery query, 347

<simpleContent> element, 185

SimpleFunction.xquery query, 371

<simpleType> element, 157, 178, 193, 194, 195, 197,

199, 216, 886

single pane styles, 523

single-element pattern, 219

skewX expression, 777

skewY expression, 777

skipped entities, 498–499

skippedEntity event, 487, 498

SOAP (Simple Object Access Protocol)

groundwork, 608

messages

<Body> element, 614–615

encoding style, 615–620

<Envelope> element, 614

<Fault> element, 622–632

<Header> element, 620–632

REpresentational State Transfers (RESTs), 612–613

Windows 2000, 608

Windows 2003, 608

Windows XP, 608

SOAPAction header, 636

<soap:binding> element, 636

<soap:Body> element, 614, 636, 637, 677, 680

1025

<soap:Body> element

In
d
e
x

<soap:Envelope> element, 677, 680

<soap:operation> element, 636–637

sorting, with order by clause, 366–367

source attribute, 120, 128, 130, 183, 185, 208, 209

source pattern, 236

source tree, using information from

<xsl:copy> element, 299–303

<xsl:copy-of> element, 303–305

<xsl:value-of> element, 297–299

SourceForge, 485

source-text, 134

sp_xml_prepareDocument stored procedure, 410

sp_xml_removedocument stored procedure, 410

 element, 843

speed typists, coping with, 670–671

split method, 543, 795, 796

SQL (Structured Query Language), 340

SQL Express, 395

SQL Server 2000

returning data as XML using FOR XML

extensions to XQuery in SQL Server 2005, 416–423

OPENXML clause, 409–413

query() method, 423–424

W3C XML Schema in SQL Server 2005, 424–425

FOR XML AUTO clause, 401–404

xml datatype, 413–416

FOR XML EXPLICIT clause, 405

FOR XML PATH clause, 405–409

FOR XML RAW clause, 396–401

XQuery in SQL Server 2005, 416

returning data as XML using FOR XML clause, 396–425

SQL Server 2005

extensions to XQuery in, 416–423

XML Schema in, 424–425

XQuery in, 416

sql:column function, 422, 423

sql:function function, 422

sql:variable function, 423

SQLXML, 395

square brackets, 929

Squiggle, 770

src attribute, 764, 813, 825

SSL (Secure Sockets Layer), 582, 584

stacking context, 718

standalone attribute, 50–54, 815, 955

Standalone Document Declaration (SDD), 54, 56

Standard Generalized Markup Language (SGML), 6, 7,

11, 99, 148

standards

components, 19–20

World Wide Web Consortium (W3C), 18–19

start pattern, 231, 233, 234

startCDATA event, LexicalHandler interface, 515

startDocument event, 487

startDocument function, 491, 497, 895

startDocument method, 487

startDTD event, LexicalHandler interface, 515

startElement event, 487, 492

startElement function, 491, 497, 539, 895

startElementNS method, 550

startEntity event, LexicalHandler interface, 515

startPrefixMapping event, 488, 499

starts-with() function, 276, 433

start-tags, 23, 24, 31–32, 73, 250, 358

startup script, eXist, 383

state variable, 549

statements, 526

static documents, 378

static graphics, Scalable Vector Graphics (SVG), 769

status attribute, 353

step attribute, xforms:range element, 820

stored procedures, 396

str function, 544

Strict documents, 741

strict flavor, 90

strict option, 553

Strict XHTML 1.0, 757, 761

string() function, 276

string format-number function, 964

string generate-id function, 965

string handling for XSLT 2.0, 323

string object, 934

string type, 175, 187, 189, 967

string unparsed-entity-uri function, 965

string value, 163, 256

StringBuffer function, 894

string-length() function, 276

strings

delimiting, 360

functions, 276–278

handling, 327–330

representation, 444

XPath 1.0, 259

stroke attribute, 773, 776

stroke-width attribute, 773, 776

1026

<soap:Envelope> element

 element, 32, 109, 138, 139, 222, 236, 239,

888, 890, 913

struct topicExchange.getChannelInfo

(string topicName) method, 576

struct topicExchange.getChannels() method,

576

struct topicExchange.ping(string topicName,

struct details) method, 576

struct value sets, XML-remote procedure call (RPC),

577–579

structural markup, of (X)HTML documents, 692

Structure module

XHTML, 760

XHTML Basic, 762

structured data, 17, 376

Structured Extension Element, 555

Structured Query Language (SQL), 340

style attribute, 84, 86, 636, 736

<style> element, 736, 763

Stylesheet module, XHTML, 761

stylesheet-prefix attribute, xsl:namespace-alias,

951

styling XHTML documents, 751–752

stylistic markup, 692, 736

submission attribute, xforms:submit element, 820

submitLoanInformation function, 864

subquery, 407

substring() function, 276

substring-after() function, 276

substring-before() function, 276

Subversion, 378, 379

suggest() method, 662, 666, 668, 671

SuggestionProvider class, 659, 671–673

suggestions

adding, 666–667

creating list, 663–665

showing, 660–662

suggestionsBox instance variable, 663

sum() function, 276

<summary> element, 764

surface syntax, 279

SVG (Scalable Vector Graphics)

advantages, 768

annotation, 782–784

comments, 782–784

described, 767–771

enhancing display with, 865–868

example, 771–774

grouping, 776

images, 780–781

metadata, 782–784

painter’s model, 774–776

paths, 777–780

publishing on website, 785–786

resources, 799–800

sample application

script, 792–800

SVG shapes, 788–792

XHTML wrapper, 787

scripting, 784–785

text, 781–782

tools, 769–771

transformations, 776–777

units, 774

uses, 769

views, 774

SVG Validator, 770

SVG Viewer, 448, 842

SVG wiki, 799

SVG Zone, Adobe, 800

SVG#, 771

<svg> element, 771, 789, 793, 866, 867

svgDoc variable, 793

SVGDraw, 771

SVG.org, 799

SVGStudio, 770

svgWindow variable, 866, 869

syndication, 522

syndication feed, 522

syndication servers, 524

syndication systems

client-consumer, 523

client-producer, 523–524

evolution

Atom, 533–535

Microsoft’s Content Definition Format (CDF), 525–526

Netscape’s RDF Site Summary (RSS) 0.9, 526

RSS 0.91, 528–529

RSS-DEV and RSS 1.0, 529–531

simplicity, 526–528

UserLand’s RSS 2.0, 531–533

UserLand’s Scripting News format, 526

server-consumer, 524–525

server-producer, 523

1027

syndication systems

In
d
e
x

syntax

attributes, 39–45

comments, 45–49

declarations

character encoding, 51–53

standalone attribute, 53–54

version attribute, 51

document type definitions (DTDs), 142–143

elements, 25–39, 49–50

errors, 64

illegal parsed character data (PCDATA) characters

character data (CDATA) sections, 61–62

escaping characters, 60–61

modeling feeds, 538–539

namespaces

attributes, 83–86

default namespaces, 75–81

different notations, 81–83

parsers, 24

processing instructions (PIs), 56–59

RELAX NG compact (RNC), 212–213

tags, 24–39

XML Path Language (XPath), 259

XML Schemas, 146

XQuery, 359–360

system identifiers, 100–101, 102, 140

SYSTEM keyword, 100

System Variables section, 290

System.IO file, 854

<system.web> element, 686

System.Xml class, 674

System.Xml package, 851

T
T command, 778

Table module, XHTML, 760

Table property, CSS, 695

table variable, 412

<table> element, 719

table-layout property, CSS, 695

tabular data, laying out, 719–721

<Tag> element, 38

tagList datatype, 244

tags, rules

case sensitivity, 35

matching start- and end-tags, 31–32

naming conventions, 34–35

properly nested, 32–33

root elements, 33–34

whitespace, 36–39

tags attribute, 130, 192, 243

Tailrank, 524

Tamino database, 346

tangram.es file, 787, 792

tangram.html file, 787

tangram.svg file, 787

target attribute, 785

Target module, XHTML, 761

target prefix, 151, 157

targetNamespace attribute, 151, 152, 175, 206

TCP (Transmission Control Protocol), 572

TechMeme, 524

temperatureRequestType type, 634

templates, named, 322

terminate attribute, xsl:message, 951

test attribute

xsl:if, 949

xsl:when, 962

xsl:with-param, 962

text

RELAX NG patterns, 213–227

cardinality, 216–217

connector patterns and grouping, 217–220

co-occurrence constraints, 221

elements and attributes, 216

empty patterns, 222–223

enumerated values, 220–221

mixed content patterns, 222

Scalable Vector Graphics (SVG), 781–782

text() function, node tests, 928

text accumulator, 551

text files, 5

text instance variable, 549

text keyword, 221

Text module

XHTML, 760

XHTML Basic, 762

Text nodes, 251, 255, 256, 432, 468–471

text pattern, 213, 242

Text property, CSS, 694

text string, 543

<Text> element, 623

<text> element, 782, 870

text-align property, CSS, 695

1028

syntax

text-anchor attribute, 792

text-decoration property, CSS, 695

text/html MIME type, 745, 746, 747, 754, 758, 759

text-indent property, CSS, 695

TextNodes.html file, 468

TextRange class, 660

text-transform property, CSS, 695

throws Exception declaration, 489

time type, 188

title attribute, 152, 177, 204, 216, 217, 226, 231,

234, 235, 700, 724

title property, 15, 528

<title> element, 67–68, 75, 83, 264, 367, 550, 552,

560, 561, 699, 714, 783, 784, 788, 843

To element node, 304

token type, 187, 967

tokenize() function, 282

tokens type, 967

tools

Scalable Vector Graphics (SVG)

editors, 770

programming tools, 770–771

viewers, 770

XForms, 804–810

XHTML, 753–754

XML Document Object Model (DOM), 450–458

XQuery

Microsoft SQL Server 2005, 346

Oracle, 346

Saxon, 343–345

Tamino database, 346

X-Hive database, 346

X-Hive.com online, 345–346

topicExchange.getChannels() method, 577

topicExchange.ping() method, 577

Topologi Schematron Validator, 209

totalDigits facet, 194

<tr> element, 863

Trace tab, Results window, 387

track variable, 794, 795

trainElementValue buffer, 895

TrainReader class, 515, 897

Transact-SQL, 416, 418

transform attribute, 776, 777, 793, 795, 798, 799,

871, 918, 919

transform string, 796

transformations, 289, 776–777

Transitional DOCTYPE, 787

transitional document type, 738

Transitional documents, 741

transitional flavor, 90

Transitional XHTML 1.0, 757

translate() function, 276

translate attribute, 791

translate expression, transform attribute, 776

translate transformation, 792

translate(x,y) command, 871

translators, 4

Transmission Control Protocol (TCP), 572

transport attribute, 636

tree, 15

TREX (Tree Regular Expression for XML), 211

trim method, 553

TRIM_LENGTH constant, 549, 553

true() function, 275, 832, 936

tryAddElement() method, 477

try/catch block, 453, 456, 478, 514, 796, 860, 862

try...except block, 544

try...finally block, 502

tuple, 550

.txt extension, 9

txtXml, 459

type attribute, 157, 159, 196, 221, 494, 535, 700,

789

type channel, 528

TYPE option, 407

type property, XForms model items, 829

Type selector, 700

type=”html” attribute, 535

type=”text” attribute, 535

typed XML data, 414

types

MIME, 757–759

server-side content, 747

in XQuery, 361

<types> element, 633–634

U
UDDI (Universal Discovery, Description, and Integra-

tion), 602

 element, 701, 728

ultra-liberal parser, 537

1029

ultra-liberal parser

In
d
e
x

UML (Unified Modeling Language), 119

unabbreviated syntax, 259

UName, 76

unbounded number, 176

undeclared namespace, 69

underscore (_), 122, 135

unescape method, 552

un-escaped characters, 60

Unicode, 51, 52, 61, 131, 340

unicode-bidi property, CSS, 695

Unified Modeling Language (UML), 119

Uniform Resource Identifiers (URIs), 70–72, 355, 459,

812

Uniform Resource Locators (URLs), 71, 86–88, 378,

459, 535

union types, 193

<union> declarations, 197–199

unique identifiers, 130

unique root HTML element, 743

United Press International (UPI), 536

units, Scalable Vector Graphics (SVG), 774

universal data format, 6

Universal Discovery, Description, and Integration

(UDDI), 602

universal identifier (URI), 526

universal name, 76

Universal Resource Names (URNs), 71, 86, 87–88

Universal selector, 700

Unix paths, 378

UnknownString type, 198

unparsed entity, 123

unparsedEntityDecl event, 509

unparsed-text() function, 327, 328, 329

unsignedByte type, 187

unsignedInt type, 187

unsignedLong type, 187

unsignedShort type, 187

untyped XML data, 414

Update specifications, 340

UpdateXML function, 431, 435

updating XML in MySQL, 435–436

UPI (United Press International), 536

upper-case() function, 278

uri parameter, 492, 499

uri-reference type, 967

URIs (Uniform Resource Identifiers), 70–72, 355, 459,

812

URLs (Uniform Resource Locators), 71, 86–88, 378,

459, 535

urn string, 87

URNs (Universal Resource Names), 71, 86, 87–88

use attribute, 179, 637, 950

use element, 917

use-attribute-sets attribute

xsl:attribute-set element, 942

xsl:copy template, 944

xsl:element, 947

user-defined datatypes, 193

user-defined functions, 342, 371–372

UserLand

RSS 2.0, 531–533

Scripting News format, 526

using directives, 851, 854

using GetBasicTotal() method, 612

using-xquery.html file, 345

V
V command, 778

valid element names, 160

validate documents, 95

validateCardNumber() method, 657

validating XHTML documents, 754–757

validation declaration, XQuery, 357

value() method, 893

value attribute, xsl:number, 952

value attributes, 845

value declaration, 120

<value> child, 589

values

attribute, XHTML 1.x, 742

default, 125–126, 162–163

enumerated, 220–221

fixed, 126, 162–163

implied, 127

required, 126–127

var xhHTTP = new XmlHttpRequest() method,

591

varchar datatype, 425

variable declaration, 357, 370

Variable Name text box, 291

Variable Value text box, 291

1030

UML (Unified Modeling Language)

variables

$book variable, 368

$i variable, 363, 365

$input variable, 370

$lower variable, 278

$p variable, 423

$text variable, 278

@BasketPointer variable, 412

@BasketXml variable, 412

@XmlPointer variable, 410

actualText variable, 669

balancePath variable, 870

bLoaded variable, 453

CLASSPATH environment variable, 290, 486, 490

currentSuggestionIndex variable, 668

elementValue variable, 896

environment variable, 357

external variable, 357

global variables, 322, 794

iniFile variable, 329

lowercaseSearch variable, 677

myDoc variable, 417, 419

New System Variable, 291

oDom variable, 474

oXmlHttp variable, 651

PATH environment variable, 291, 490

polygon variable, 785

selectedPoly variable, 794, 795

state variable, 549

suggestionsBox instance variable, 663

svgDoc variable, 793

svgWindow variable, 866, 869

table variable, 412

text instance variable, 549

track variable, 794, 795

window variable, 866

xhHTTP variable, 587

zXml variable, 592, 595

zXmlHttp variable, 595

variables, XSLT, 320–322

vector-based diagrams, 769

Verdana typeface, 699

version attribute, 50–51, 127, 130, 152, 182, 183,

192, 815, 954, 959, 960

version declaration, XQuery, 355

<version> element, 163

VersionMismatch identifier, 623

vertical bar (|) character, 108, 125

vertical lineto command, 778

viewBox attribute, 774

viewers, Scalable Vector Graphics (SVG), 770

views, Scalable Vector Graphics (SVG), 774

virtual folder, 609

Visual Basic language, 517

Visual Web Developer 2005, 842

vocabularies, sharing, 104

W
W3C (World Wide Web Consortium)

overview, 18–19

XForms page, 804

XML Document Object Model (DOM), 446–448

XML Schema, 281, 323, 804, 807, 833–834, 837

warning event, 505

.wav file, 581

Web Applications 1.0, 764

Web Forms 2.0, 764, 838

web interface, eXist, 384–386

Web Service Description Language (WSDL) file, 853

web services

creating, 682–683

implementing, 673–680

proxy

building, 849–853

communicating with using Ajax, 858–864

remote procedure call (RPC)

Distributed Component Object Model (DCOM),

573–574

Internet Inter-ORB Protocol (IIOP), 574

Java Remote Method Invocation (RMI), 575

network transports, 579–596

XML-RPC, 576–579

REpresentational State Transfers (RESTs), 596–600

standards

Simple Object Access Protocol (SOAP), 600–601

specifications, 602–604

Universal Discovery, Description, and Integration

(UDDI), 602

Web Services Description Language (WSDL),

601–602

1031

web services

In
d
e
x

Web Services Business Process Execution Language

(WS-BPEL), 603

Web Services Description Language (WSDL)

<binding> element, 635

<definitions> element, 633

groundwork, 608

<messages> element, 634

other bindings, 641–644

<portTypes> element, 635

<service> element, 638–641

<soap:binding> element, 636

<soap:body> element, 637

<soap:operation> element, 636–637

<types> element, 633–634

Windows 2000, 608

Windows 2003, 608

Windows XP, 608

web.config file, 686, 852

WebDAV (Web-based Distributed Authoring and Version-

ing), 378, 387–389

weblog tools, 523

webservicex.CurrencyConvertor instance, 684

<website> element, 885, 886

weight element, 498

wget command-line application, 565, 903

wget download tool, 786

where clause, 365–366, 892

while loop, 870

white pages, 602

whitespace, 36, 123, 132, 152

whiteSpace facet, 194

white-space property, CSS, 695

width attribute, 774, 787, 789

width property, 709, 712, 718

wildcards

attributes, 180–182

declaration, 164

elements, 163–165

namespaces with, 239

window variable, 866

Wireless Markup Language (WML), 288, 759

WITH clause, 410

WML (Wireless Markup Language), 288, 759

word processors, 4

word-spacing property, CSS, 695

World Wide Web Consortium (W3C)

overview, 18–19

XForms page, 804

XML Document Object Model (DOM), 446–448

XML Schema, 281, 323, 804, 807, 833–834, 837

wrappers, XHTML, 787

writing XHTML

attribute values, 742

case sensitivity, 742

changes between XHTML and HTML, 747–750

character encoding, 745–747

DOCTYPE declaration, 741

IDs, 744

specifying language, 745

well-formedness, 743–744

XML declaration, 740

<wrox:countries> element, 677

<wrox:GetCountriesResponse> element, 677

WroxServices virtual directory, 677

WS Reliable Messaging, 604

WS-Addressing, 603

WS-BPEL (Web Services Business Process Execution

Language), 603

WS-Choreography, 603

WSDL (Web Service Description Language) file, 853

WSDL (Web Services Description Language)

<binding> element, 635

<definitions> element, 633

groundwork, 608

<messages> element, 634

other bindings, 641–644

<portTypes> element, 635

<service> element, 638–641

<soap:binding> element, 636

<soap:body> element, 637

<soap:operation> element, 636–637

<types> element, 633–634

Windows 2000, 608

Windows 2003, 608

Windows XP, 608

WS-Eventing, 603

WS-Policy, 604

WS-Security, 604

1032

Web Services Business Process Execution Language (WS-BPEL)

X
x attribute, 777

XDR schemas, 395

Xerces parser, 502, 508

Xerces2 parser, 485

xercesImpl.jar file, 486, 490

XFormation, 807, 836

XForms

Action Module, 835–836

alternatives

Adobe LiveCycle, 837

HTML forms, 838

Microsoft InfoPath, 836–837

compared to HTML forms, 804

constraining instances

choosing between schema and bind elements, 834

W3C XML Schema in XForms, 833–834

xforms:bind element, 828–833

controls

xforms:input element, 817–818

xforms:output element, 818–819

xforms:range element, 819–820

xforms:secret element, 818

xforms:select element, 821–822

xforms:select1 element, 822–824

xforms:submit element, 820–821

xforms:textarea element, 818

xforms:trigger element, 820

xforms:upload element, 819

events, 834–835

example, 810–817

tools, 804–810

xforms:instance element, 813–814

xforms:model element, 812–813

xforms:submission element, 814–815

XML namespaces in XForms documents, 816–817

XML Schema in, 833–834

XPath 1.0 in, 815–816

xforms namespace prefix, 810

xforms:action element, 835

xforms:alert element, 819, 820

xforms:bind element, 813, 828–833, 834

xforms:dispatch element, 835

xforms:filename element, 819

xforms:help element, 820

xforms:hint element, 820

xforms:input element, 815, 816, 817–818, 836

xforms:instance element, 813–814, 815, 816, 822,

824, 825, 826, 832, 833

xforms:itemset element, 826, 827

xforms:label element, 819, 820, 826, 827

xforms:load element, 835

xforms:mediatype element, 819

xforms:message element, 835

xforms:model element, 812–813, 814, 815, 828

XForms:output control, 827

xforms:output element, 818–819

xforms:range element, 819–820

xforms:rebuild element, 835

xforms:recalculate element, 835

xforms:refresh element, 835

xforms:reset element, 836

xforms:revalidate element, 836

xforms:secret element, 818, 821–822, 825, 827,

921

xforms:select1 element, 821, 822–824, 826, 827,

921

xforms:send element, 836

xforms:setfocus element, 836

xforms:setvalue element, 836

xforms:submission element, 813, 814–815, 820,

824, 832, 921

xforms:submit element, 814, 820–821, 827, 921

xforms:textarea element, 818

xforms:trigger element, 820, 835

xforms:upload element, 819

xforms:value element, 821, 827

xforms-value-changed event, 818, 822

xhHTTP variable, 587

X-Hive database, 346

X-Hive.com online, 345–346

XHTML

future of, 763–765

modularized

module implementations, 761

XHTML 1.1, 761–762

XHTML Basic, 762–763

1033

XHTML

In
d
e
x

XHTML (continued)

namespaces, 725

separating style from content, 736–738

wrappers, 787

XHTML 1.x

constraints, 753

Document Type Definitions (DTDs), 738–739

MIME types pitfalls, 757–759

styling documents, 751–752

tools, 753–754

validating XHTML documents, 754–756

validation pitfalls, 756–757

writing, 740–751

XHTML Basic, 738, 741, 762–763

xhtml elements, 239

xhtml: namespace, 560

xhtml prefix, 69, 538, 560

XHTML wrappers, Scalable Vector Graphics (SVG), 787

<xhtml> element, 743

xhtml:body attribute, 533

xhtml:body element, 560

xhtml:br element, 239

xhtml:h1 element, 560, 561

xhtml:html element, 560

<xhtml:object> element, 239

xhtml:p element, 561

<xhtml:script> element, 239

<xhtml:title> element, 69, 560

XLink, 89, 721–724

xlink prefix, 917

xlink:actuate attribute, 722

xlink:href attribute, 722

xlink:show attribute, 722, 725

xlink:title attribute, 722

xlink:type attribute, 722

xlm.sax .ContentHandler instance, 548

XML (Extensible Markup Language)

benefits of

extensibility, 12–13

parsers, 11–12

compared to HyperText Markup Language (HTML),

13–14

data files

binary files, 4

history of markup languages, 6–7

text files, 5

description, 7–10

document types, 17–18

grouping of information, 15–17

growth of, 376–377

SQL Server 2000, 395–425

standards

components, 19–20

World Wide Web Consortium (W3C), 18–19

storing

conventional databases, 379–381

file systems, 378–379

native databases, 381–382

uses

distributed computing, 21

e-commerce, 21–22

reducing server load, 20

website content, 20–21

XML-based data, compared to relational data, 377

xml datatype, 381, 413–416, 424, 425

XML Document Object Model (DOM)

Document interface, 478–480

Node object

DOMException object, 476–478

effect of Text nodes, 468–471

loading XML documents, 462–468

methods, 461–462

NamedNodeMap object, 471–475

NodeList object, 475

properties, 458–461

nodes, 448–449

purpose of, 445–446

tools, 450–458

used in InfoPath 2007, 481–482

W3C specifications, 446–448

XML namespace, 810

--xml option, 437

xml output method, 563

XML parser, 34, 88, 133, 875

XML Path Language (XPath)

axes

ancestor, 925

ancestor-or-self, 925

attribute, 925

child, 925

descendant, 925

descendant-or-self, 926

1034

XHTML (continued)

following, 926

following-sibling, 926

namespace, 926

parent, 927

preceding, 927

preceding-sibling, 927

self, 927

functions, 929–937

node tests

comment() function, 928

examples using meta character *:, 928

node() function, 928

processing-instruction(Literal) function, 928

text() function, 928

predicates, 278

structure of XPath expressions, 278–281

syntax, 259

visualizing

context, 252–254

nodes, 254–257

XPath 1.0 expression types, 257–259

XML documents

modeling, 250–251

ways of representing, 250

XML Pointer (XPointer), 249

XML Query Language (XQuery), 281

XML Schemas

<attribute> declarations

attribute qualified form, 179

attribute use, 179–180

attribute wildcards, 180–182

default values, 180

global, 177–178

local, 177

naming attributes, 179

referring to existing global attribute, 179

<attributeGroup> declarations, 183–185

benefits of

content models, 147

data types, 147

namespace support, 146

XML syntax, 146

compared to bind elements, 834

compared to document type definitions (DTDs),

147–148

<complexType> declarations, 165–166

content models

<all> declarations, 171–174

<choice> declarations, 169–170

<group> references, 170–171

creating elements with simple content and attributes,

185–186

creating from multiple documents

<import> declarations, 200–204

<include> declarations, 204–206

datatypes

built-in datatypes, 187–192

user-defined datatypes, 193

documenting

annotations, 208–209

attributes from other namespaces, 207

comments, 206–207

documents, 148

<element> declarations

cardinality, 161–162

default values, 162–163

element qualified form, 161

element wildcards, 163–165

fixed values, 162–163

global, 156, 157–158

local, 156–157

naming elements, 160–161

referring to existing global element, 159–160

example, 148–152

<group> declarations, 167–168

<list> declarations, 196–197

modularization using the include directive, 231–232

<restriction> declarations, 194–196

<schema> declarations

attribute qualification, 154–155

element qualification, 154–155

target namespaces, 153–154

XML Schema namespaces, 153

<simpleType> declarations, 193

in SQL Server 2005, 424–425

<union> declarations, 197–199

in XForms, 833–834

xml_schema_ namespace intrinsic function, 425

XML-aware tool, 81

XmlDocument object, 852

XML-enabled relational database, 381

XMLFilter interface, 516

1035

XMLFilter interface

In
d
e
x

XmlHttp class, 592, 646

xmlhttp library, 859

xmlhttp object, 859, 860, 861, 862

xmlhttp.js library, 859

XMLHttpRequest class, 462, 592, 650

XMLHttpRequest object, 592, 909

xml:lang attribute, 270, 739, 745, 747

xmlns attribute, 74, 76, 77, 80, 912

xmlns=”” attribute, 882

xmlns:pers attribute, 72

XMLReader object, 491, 509, 513, 516

XML-remote procedure call (RPC)

application programming interface (API), 576

parameters, 577

requests, 577

struct value sets, 577–579

using HTTP for, 584–587

XMLSerializer class, 457

xml:space attribute, 270, 469

XMLSpy, 836

xml-stylesheet processing instruction, 806

<?xml-stylesheet?> processing instruction, 699, 751

XMLwriter, 836

xmml namespace prefix, 270, 812, 817

xmml:Book element node, 270

xmml:SizeAvailable element, 827

xmml:ToppingAvailable elements, 827

xmml:Toppings node, 827

XP parser, 485

XPath (XML Path Language)

axes

ancestor, 925

ancestor-or-self, 925

attribute, 925

child, 925

descendant, 925

descendant-or-self, 926

following, 926

following-sibling, 926

namespace, 926

parent, 927

preceding, 927

preceding-sibling, 927

self, 927

functions, 929–937

node tests

comment() function, 928

examples using meta character *:, 928

node() function, 928

processing-instruction(Literal) function, 928

text() function, 928

predicates, 278

structure of XPath expressions, 278–281

syntax, 259

visualizing

context, 252–254

nodes, 254–257

XPath 1.0 expression types, 257–259

XML documents

modeling, 250–251

ways of representing, 250

XPath 1.0

axes

ancestor axis, 264–265

ancestor-or-self axis, 265

attribute axis, 262–264

child axis, 260–261

descendant axis, 265–266

descendant-or-self axis, 266

following axis, 266–267

following-sibling axis, 268

namespace axis, 268–270

parent axis, 271

preceding axis, 271–272

preceding-sibling axis, 272–273

self axis, 273–274

expression types

Booleans, 258

node-sets, 258

numbers, 258

strings, 259

functions

Boolean, 274–275

node-set, 275

numeric, 275–276

string, 276–278

in XForms, 815–816

XPath 2.0

compared to XPath 1.0, 282–285

compared to XQuery, 342–343

datatyping control, 924

development of, 341–342

1036

XmlHttp class

features, 282–285

new sequencing, 924

revised ata model, 281

revised data model, 281

W3C XML Schema data types, 281

XPointer (XML Pointer), 249

XQuery

creation of

compared to XSLT and XPath, 342–343

current status, 341–343

historical factors, 340–343

technical factors, 340–341

data model

axes in, 361

comparing items and nodes, 361

document order, 361

node kinds, 361

sequences of node-sets, 361

shared with XPath 2.0 and XSLT 2.0, 360

types in, 361

examples

computed constructors, 358–359

element constructors, 351–355

input functions, 346–348

prolog, 355

retrieving nodes, 348–351

syntax, 359–360

expressions

FLWOR expressions, 362–368

extensions to in SQL Server 2005, 416–423

functions, 368–370

future of, 372

in SQL Server 2005, 416

tools

Microsoft SQL Server 2005, 346

Oracle, 346

Saxon, 343–345

Tamino database, 346

X-Hive database, 346

X-Hive.com online, 345–346

user-defined functions, 371–372

using parameters with, 370

XQuery (XML Query Language), 281

xquery keyword, 355

XQuery prolog, 371

XQuery Recommendation, 20

.xquery suffix, 347

xs prefix, 153, 158, 178, 357

xs: prefix maps, 924

xs:boolean value, incremental attribute, 818

xsd datatype prefix, 241

xsd:anyURI value, 348

xs:date datatype, 824

xs:date element, 834

xsd:decimal type, 243

xsd:float type, 243

xsi prefix, 400

xsi:nil attribute, 400

XSINIL keyword, 400

xsi:schemaLocation attribute, 185

XSL (Extensible Stylesheet Language), 19

xsl: apply-imports element, 940

xsl: apply-templates element, 941

xsl: attribute element, 941–942

xsl: attribute-set element, 942

xsl: call-template element, 943

xsl: choose element, 943

xsl: comment element, 944

xsl: copy element, 944

xsl: copy-of element, 945

xsl: decimal-format element, 945–947

xsl: element element, 947

xsl: fallback element, 948

xsl: for-each element, 948–949

xsl: if element, 949

xsl: import element, 949

xsl: include element, 950

xsl: key element, 950

xsl: message element, 951

xsl: namespace, 560

xsl namespace prefix, 940

xsl: namespace-alias element, 951–952

xsl: number element, 952–953

xsl: otherwise element, 953

xsl: output element, 954–955

xsl: param element, 956

xsl: preserve-space element, 956

xsl: processing-instruction element, 957

xsl: sort element, 957–958

xsl: strip-space element, 958

xsl: stylesheet element, 958–959

xsl: template element, 959

1037

xsl: stylesheet element

In
d
e
x

xsl: text element, 960

xsl: transform element, 960–961

xsl: value-of element, 961

xsl: variable element, 961–962

xsl: when element, 962

xsl: with-param element, 962–963

xsl:analyze-string instruction, 327, 328, 329

xsl:apply-templates element, 300, 304, 307, 312,

314, 315, 317, 891, 940

xsl:applytemplates template, 943

<xsl:apply-templates> element, 253, 296–297

xsl:attribute element, 301

<xsl:call-template> element, 322

<xsl:choose> element, 306, 307, 308–311, 330, 891

XslCompiledTransform class, 675

xsl:copy element, 287, 299, 300, 302

<xsl:copy> element, 299–303

<xsl:copy-of> element, 287, 299, 303–305, 332

xsl:decimal-format element, 323

xsl:element element, 303, 941, 942

<xsl:for-each> element, 267, 268, 272, 311–312,

314, 342, 362, 943

xsl:for-each-group instruction, 324, 326

xsl:if element, 306, 307, 318, 362, 891

<xsl:if> element, 306–308

xsl:matching-substring instruction, 327

<xsl:namespace-alias> element, 951

xsl:non-matching-substring element, 327, 328,

329

xsl:otherwise element, 309, 891

<xsl:output> element, 680

xsl:param element, 320

<xsl:Param> element, 677

xsl:parameter element, 320

xsl:result-document element, 330, 332

<xsl:sort> element, 312–314, 327, 362

<xsl:stylesheet> element, 295–296, 320, 322, 333,

564, 676, 968

XSLT (Extensible Stylesheet Language Transformations)

conditional processing

<xsl:choose> element, 308–311

<xsl:if> element, 306–308

declarative programming, 292–293

defined

presenting XML content, 288

restructuring XML, 288

elements

xsl: apply-imports, 940

xsl: apply-templates, 941

xsl: attribute, 941–942

xsl: attribute-set, 942

xsl: call-template, 943

xsl: choose, 943

xsl: comment, 944

xsl: copy, 944

xsl: copy-of, 945

xsl: decimal-format, 945–947

xsl: element, 947

xsl: fallback, 948

xsl: for-each, 948–949

xsl: if, 949

xsl: import, 949

xsl: include, 950

xsl: key, 950

xsl: message, 951

xsl: namespace-alias, 951–952

xsl: number, 952–953

xsl: otherwise, 953

xsl: output, 954–955

xsl: param, 956

xsl: preserve-space, 956

xsl: processing-instruction, 957

xsl: sort, 957–958

xsl: strip-space, 958

xsl: stylesheet, 958–959

xsl: template, 959

xsl: text, 960

xsl: transform, 960–961

xsl: value-of, 961

xsl: variable, 961–962

xsl: when, 962

xsl: with-param, 962–963

example, 289–292

foundational elements

<xsl:apply-templates> element, 296–297

<xsl:stylesheet> element, 295–296

<xsl:template> element, 296

functions, 323, 963–967

influencing output with <xsl:output> element, 306

modes, 314–319

named templates, 322

parameters, 320–322

procedural programming, 292

processors, 288–289

1038

xsl: template element

Saxon XSLT processor, 289–292

transforming RDF Site Summary (RSS) with

browser processing, 564–565

generating feed from existing data, 558–559

pre-processing feed data, 565

processing feed data for display, 561–563

syndication formats, 565–567

using information from source tree

<xsl:copy> element, 299–303

<xsl:copy-of> element, 303–305

<xsl:value-of> element, 297–299

variables, 320–322

<xsl:call-template> element, 322

<xsl:for-each> element, 311–312

<xsl:sort> element, 312–314

XSLT 2.0

expressions, 967–968

grouping, 324–327

Muenchian Method, 968–969

multiple outputs, 330–332

non-XML input and string handling, 327–330

user-defined functions, 332–334

using, 968–969

and XQuery 1.0, 969

xsl:value-of changes, 334–335

XSLT (Extensible Stylesheet Language

Transformations) 2.0

compared to XQuery, 342–343

development of, 341–342

expressions, 967–968

grouping, 324–327

Muenchian Method, 968–969

multiple outputs, 330–332

non-XML input and string handling, 327–330

user-defined functions, 332–334

using, 968–969

and XQuery 1.0, 969

xsl:value-of changes, 334–335

<xsl:template> element, 293, 296, 297, 307, 318,

940

xsl:text element, 318, 563

xsl:transform element, 295

<xsl:value-of> element, 254, 259, 264, 273, 280,

287, 297–299, 301, 318, 321, 334–335

xsl:variable element, 320, 362

xsl:when element, 309, 891

xsl:with-param element, 322

X-Smiles browser, 805

XSS (Cross-Site Scripting), 849

xs:token element, 834

Y
y attribute, 777

years-from-yearMonthDuration() function, 283

Z
Z command, 778

zero-digit attribute, xsl:decimal-format element,

946

z-index property, 718–719

ZipCode element, 258

zoom, 768

zXml library, 461, 651, 685

zXml variable, 592, 595

zXmlHttp variable, 595

zXml.js file, 459, 593, 659, 678

zXPath class, 595, 658

1039

zXPath class

In
d
e
x

Get more Wrox

Programmer to Programmer TM

at Wrox.com!
Special Deals

Take advantage of special offers

every month

Free Chapter Excerpts

Be the first to preview chapters from

the latest Wrox publications

Unlimited Access. . .

. . . to over 70 of our books in the

Wrox Reference Library (see more

details online)

Forums, Forums, Forums

Take an active role in online

discussions with fellow programmers

Meet Wrox Authors!

Read running commentaries from authors on their programming experiences

and whatever else they want to talk about

Join the community!

Sign-up for our free monthly newsletter at
newsletter.wrox.com

BROWSE BOOKS P2P FORUM FREE NEWSLETTER ABOUT WROX

Browse Books

.NET

SQL Server

Java

XML

Visual Basic

C#/C++

22
Case Study: Payment

Calculator — Ruby on Rails

Throughout this book, you have learned how XML can be used to construct and validate docu-
ments and how it is used for communications between systems. You have also learned how to use
several important XML display formats. Sometimes it can be difficult seeing how all of these tech-
nologies fit together without a real-world business case. This case study demonstrates how you
can build an online home loan calculator using a public web service, a Ruby on Rails web applica-
tion, JavaScript, and several of the XML technologies you have learned.

In this chapter, you will:

❑ Create a Ruby on Rails application.

❑ Create a web page to enter loan information.

❑ Call a web service to calculate the payments using SOAP.

❑ Display the results using Ajax (Asynchronous JavaScript and XML) and SVG.

Mortgage Calculations
Mortgages are commonly used throughout the world when purchasing a home or land. The word
“mortgage” comes from French and literally means “death pledge.” Before making such a pledge,
the consumer often wants to see what the proposed payments for the loan would be. The pay-
ments may generally include interest and a principal reduction component, depending on various
laws or religious guidelines.

In the most common mortgages, the schedule of payments (based on a repayment agreement or
Note) must be determined before the annual percentage rate (APR) can be calculated. The amount
of interest and principal paid in each payment is based on the loan terms selected and generally
changes over the course of the loan. Depending on the kind of loan and the country where the
loan is being originated, these calculations can become extremely complex. In the United States,

the complexity of the calculations is only the first hurdle. The calculations must adhere to a strict and
evolving set of laws that can vary by the combination of jurisdictions in effect.

In this case study, you will use a mortgage calculation web service from Compliance Studio
(http://compliancestudio.com). The Compliance Studio engine has been used by mortgage indus-
try companies in the U.S. to handle complex lending compliance checks and simple mortgage estimates.
Luckily, Compliance Studio offers a number of its programs for free, which will allow you to build a pro-
fessional grade application quickly. Because Compliance Studio is a United States-based company, the
calculations may not be applicable for loans in other countries. Regardless, the examples in this case
study can be applied to any number of alternate calculation engines.

What You Need for the Example
In this case study, you will use Ruby on Rails to create your web application. For this sample, you will
just use the built-in web server that comes with Rails. (If you prefer another web server, you are wel-
come to use it.) An alternate version of this case study is available within the printed version of
Beginning XML which uses .NET instead of Ruby on Rails and the Internet Information Server (IIS)
instead of the built-in Rails web server.

For the examples in this chapter, you need:

❑ Ruby and Rails

❑ A text editor

❑ An SVG-enabled browser or an SVG plug-in for Internet Explorer

Ruby on Rails is a framework for web applications that is based on the Ruby programming language.
Ruby on Rails can be downloaded and installed on most platforms and is available at
http://www.rubyonrails.com. The examples in this chapter assume that you are working in Linux. If
so, you will need to install Ruby and RubyGems and then run the following command to install Rails:

gem install rails –include-dependencies

The sample code included with this chapter assumes you are using Rails 1.2.1. If you are using another
version of Rails it should be compatible, however, you may need to modify the version in the environ-
ment.rb file in the config folder. If you are working in Windows, follow the instructions on the website
for installing Instant Rails.

A list of SVG-enabled browsers and viewers can be found in Chapter 19. If you plan on using Internet
Explorer to test and debug your website, at the time of this writing you will need an SVG plug-in.
Currently, the most popular plug-in is Adobe’s SVG Viewer, available for download at
http://www.adobe.com/svg. Recent versions of Firefox, Opera, and Konqueror have built-in SVG
support.

Some of the samples in this chapter are long. You can download the all of the code for these examples
from this book’s website instead of typing them in yourself.

BC2

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Creating the Project
Before you can begin building the various parts of the sample you need to create a new Ruby on Rails
application. Once you have installed Ruby on Rails this is very easy.

1. Open a terminal window and change to the directory that should contain your project. This can
be in your home directory or at another path such as /var/www. Run the command:

rails loancalculator

This will create a new application path called loancalculator in the current folder. It also cre-
ates many of the files your application will need.

2. After the command completes, change to the new directory:

cd loancalculator

3. At this point the application should be ready to run. It won’t do much yet, but it is worth testing
that everything runs correctly. Start the built-in web server by running:

script/server

In other environments you may need to specify that the server should be run using Ruby:

ruby ./script/server

If there are no errors (warnings are okay), you should be able to view the default Ruby on Rails
page by opening your web browser and going to http://localhost:3000, as shown in
Figure 22-1.

Figure 22-1

BC3

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

This page is really just a placeholder and doesn’t mean much. In fact, it suggests that you set up the
database you will be using in your application. This example will not use a database so you can skip that
step. What it does prove is that your Rails application is set up correctly and you can move on to creat-
ing the rest of your calculator application.

You can leave this server running as you work through the chapter. In general, as you make changes to
your application the web server will use the new versions automatically.

Building the Online Loan Calculator
There are many different ways to build an online mortgage calculation tool. Throughout the rest of this
chapter you will build a simple calculation tool that accepts loan request information from the user, exe-
cutes a number of calculations and returns the proposed payments and balance. To develop the applica-
tion you’ll need to:

1. Develop the main web page to collect information

2. Integrate the calculation web service

3. Add Ajax support

4. Enhance the display with SVG

Developing the Main Web Page
As in the development of any web application, the easiest place to begin is the main web page. This page
will serve as the entry point into your complex server interactions. It will allow the user to input various
mortgage details, request a calculation, and see the resulting payment schedule. For starters, this page
will be simple; it will contain some basic text, an entry form, and the payment schedule. You shouldn’t
spend a lot of time on the design of the page at first, but you can make basic styling decisions using CSS.

The Rails Framework follows the Model, View, Controller programming methodology. This means that
data (the model) is kept separate from the application logic (the controller) and that the display (the
view) of data is handled in another layer. When you created your application, the rails command gen-
erated folders for models, controllers, and views inside of the app folder.

Building the calculator page requires two steps:

1. Creating a calculator controller to display the page.

2. Creating a view for the calculator.

The Try It Outs in this section lead you through these two steps.

Because this example doesn’t store any data, you don’t need to worry about creating a model. If you
wanted to store the results of the calculation in a database you would also need to generate classes for
your data models.

BC4

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Try It Out Building the Loan Calculator

In this Try It Out you generate the basic controller for your loan calculator. Throughout this chapter you
will continue to improve the controller. You will also construct the HTML page that will be displayed in
the browser by defining a view for the action and a layout for the controller.

1. Open a terminal window and change to the loancalculator folder you created using the
rails command. Run the following command to generate the controller:

script/generate controller Calculator

You should see the following output:

exists app/controllers/
exists app/helpers/
create app/views/calculator
exists test/functional/
create app/controllers/calculator_controller.rb
create test/functional/calculator_controller_test.rb
create app/helpers/calculator_helper.rb

The generator has created a number of default files and folders. Notice that it has automatically
created test files for you. Because this chapter focuses on how to use XML in Ruby on Rails, it
does not go into detail about its support for test-driven development.

2. Even though rails generated the skeleton of the application there is still some work to do.
Open the file app/controllers/calculator_controller.rb in a text editor (the app direc-
tory will be located inside your main the loancalculator directory). By default the generate
command only created the class:

class CalculatorController < ApplicationController
end

You need to add “actions” to the controller so that it can respond to requests. Do this by adding
public functions to the class. The default action for a controller is the index action:

class CalculatorController < ApplicationController
def index
render index.rhtml

end
end

The index action for the loan calculator doesn’t need to do very much. It simply needs to ren-
der a view template that can be returned to the browser. It might be helpful to leave a comment
in the function to remind others reading your code that this is expected. Once you have added
the index action you should save the file

3. By default the controller will look for a template with the same name as the action, in this case
index. In addition to the view template, the controller will also look for a layout that has the
same name as the controller, in this case calculator. Having a layout for a controller is
optional, but it is considered good practice. It allows you to design a consistent look that
can be reused for each action. Create a new layout file called calculator.rhtml in the
app/views/layouts folder. Rails templates, or rhtml files, are nothing more than XHTML
files that contain embedded commands. Begin your layout like this:

BC5

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Loan Calculator</title>
<meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

</head>
<body>

The template page begins with a DOCTYPE declaration pointing to the transitional version of
XHTML 1.0. Remember, this will tell the web browser what specific version and flavor of
XHTML you’re using. Also notice that you haven’t included an <?xml version=”1.0”?> dec-
laration at the start of the page. Though it is allowable in the template, some web browsers will
render the page in “quirks mode” if this included. Quirks mode is a rendering mode that doesn’t
always adhere to publish web standards. This means that you can’t be sure that your page will
be rendered correctly in the user’s browser. To avoid that, it is best to leave off the XML declara-
tion.

The namespace declaration http://www.w3.org/1999/xhtml is also included in the root ele-
ment. It is a default namespace declaration that indicates that all of the elements in this docu-
ment belong to the XHTML namespace by default.

In the <head> element, there is a <title> element. The <title> element is required for the
web page to be valid. Also included is a <meta> element. This element isn’t required; in fact, it
uses a non-standard media type as well. Regardless, this helps avoid other problems you might
face when using different browsers.

4. The main content of the calculator.rhtml layout is fairly simple. To start with, it will contain
some basic header text:

<div id=”container”>
<div id=”header”>
<div id=”title”>
<h1>Loan Calculator</h1>

</div>
</div>

Notice that there are quite a few extra <div> elements, and inside the <h1> there is an extra
 element. All of this is unnecessary for the page rendering and validation; but it will pro-
vide many more options when applying a Cascading Style Sheet to the page. If you are working
with a professional designer for your website, he or she will appreciate the increased flexibility.

5. Next you will need a little bit of Rails magic. The view for each action needs to be rendered
inside of the layout:

<%= yield %>

In Rails templates you can include commands with the special symbols <% and %>. Of course,
this isn’t legal XML markup, but the Rails framework will process and remove all of these tem-
plate pieces before the page is sent to the browser. This command begins with <%= which indi-
cates that result of any processing should be included in the template. Here the yield function
is called, which tells the controller to take over and render the view for the current action.

BC6

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

6. After rendering the view, the controller will return to complete the current template. All that’s
left is add the closing tags for the container <div>, <body> and <html> elements:

</div>
</body>

</html>

Save the file calculator.rhtml.

7. Before you can view the page you will need to make the index.rhtml template. Because the
layout already contains all of the header information, the index.rhtml template doesn’t need
to repeat the <html> and <head> elements. In fact, you should only include a sub-header and
the form components themselves. This follows the Ruby on Rails principle of not repeating
yourself. Create a new file called index.rhtml in the app/views/calculator folder and copy
the following:

<h2>Tell us about the loan you would like</h2>

Having a sub-heading is useful for introducing the form. The form itself will use the Rails
form_tag helper:

<% form_tag :action => :calculate do %>

The form_tag helper is useful when creating a form that isn’t connected to a particular model
object in Rails. The form points to the calculate action, which means that when the user sub-
mits the form data it will be passed to the calculate method defined on the server. You’ll cre-
ate the calculate action a little later in this chapter.

Inside of the form tag you’ll need to include the <input> and <select> elements for the loan
details. Again, you should use a mix of Rails helper functions and XHTML elements:

<div id=”program_group”>
<label for=”program_name”>Choose the loan program</label>
<%= select_tag :program_name, options_for_select(

{“Fixed” => “FIXED 360/360”,
“Fixed Hybrid” => “FIXED 50 30 10”,
“Interest Only Option” => “GMAC IO Option Neg ARM”}) %>

</div>
<div id=”amounts_group”>
<label for=”original_loan_amount”>Loan Amount</label>
<%= text_field_tag :original_loan_amount %>
<label for=”disclosed_total_sales_price_amount”>Sales Price</label>
<%= text_field_tag :disclosed_total_sales_price_amount %>
<label for=”property_appraised_value_amount”>Appraised Value</label>
<%= text_field_tag :property_appraised_value_amount %>

</div>
<div id=”terms_fees_group”>
<label for=”loan_original_maturity_term_months”>Term</label>
<%= text_field_tag :loan_original_maturity_term_months %>
<label for=”total_apr_fees_amount”>Total Fees</label>
<%= text_field_tag :total_apr_fees_amount %>

</div>
<div id=”rate_group”>
<label for=”note_rate_percent”>Note Rate</label>
<%= text_field_tag :note_rate_percent %>

BC7

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

<label for=”index_value”>Index Value</label>
<%= text_field_tag :index_value %>
<label for=”margin_value”>Margin Value</label>
<%= text_field_tag :margin_value %>

</div>
<div id=”buttons”>
<%= submit_tag “Calculate” %>

</div>

Here the elements are broken into logical groups based on the kind of data. Again, this will be
useful when applying a stylesheet to the page. Also included are <label> elements to describe
each of the inputs. Technically, you could use <p> elements for the descriptions, but the
<label> element allows you to link the <label> and the form control using a for attribute.
Most browsers have special support for labels that utilize the for attribute, such as focusing the
control when the <label> is clicked.

Additional information on each of the mortgage concepts is available on the Compliance Studio website
or at http://en.wikipedia.org/wiki/Mortgage.

Finally, you need to include a matching end command for the form_tag:

<% end %>

This completes the index.rhtml template. Save the file.

8. At this point you should be able to navigate to the newly created page. If your web server is still
running, open http://localhost:3000/calculator in your web browser (see Figure 22-2).

Figure 22-2

How It Works
In this Try It Out, you built the main web page for the loan calculator. Though the page was divided
across several files, the Rails engine was able to process all of the templates and create a valid XHTML

BC8

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

page. In fact, if you view the source of the page in the web browser you won’t see any of the <% and %>
symbols. One of the strengths of the Rails is that the creators focused on making sure that the engine
would output standards-compliant markup. It means that for the most part you can trust that your page
will work in most browsers.

The page is fairly simple and, apart from some extra <div> elements, is entirely content driven. Notice
that you haven’t included any extra information about the layout of the page or any visuals. Separating
the content of a web page from its presentation layer simplifies maintenance of the page in the future.
Unfortunately, though, because you haven’t yet created a stylesheet for the page, it isn’t very pretty.

Before you add more functionality, you can add a basic stylesheet to the page.

Try It Out Improving the Look of the Loan Calculator

In many professional sites, a design team is hired to create stunning graphics and page layouts. In this
case study, you will focus on the basics and try to build a CSS document that makes testing a little more
enjoyable.

1. Open your text editor, and create a new stylesheet document named
public/stylesheets/calculator.css. The public/stylesheets folder should have been
generated by the rails command and can be found inside of the loancalculator folder.

The stylesheet should begin with a default rule:

* { margin: 0; padding: 0; }

Even though you are building a basic stylesheet, it is good to follow best practice guidelines. Beginning
a stylesheet by setting the margin and padding for all elements to 0 ensures that different browsers will
treat these properties the same. Tips like this are shared freely in online CSS communities like
irc://irc.freenode.net/css.

2. Next, define a template for the <body> tag:

body {
background-color:white;
color:black;
font-family:arial, sans-serif;
margin-left:10px;

}

Again, it isn’t required to set default background and text colors but it is good practice. Also,
choosing a font you like and providing a fallback font such as sans-serif will guarantee that the
page will remain fairly consistent across various platforms.

3. The biggest problem with the loan calculator is the layout of the <input> elements. Because
you have grouped them in uniquely named <div> elements, you can be very precise with their
position. Use absolute positioning to define the layout of the various groups based on the id
attribute of each <div> element:

#program_group {
position:absolute;
left:10px;
top:70px;

BC9

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

}
#amounts_group {
position:absolute;
left:10px;
top:120px;

}
#terms_fees_group {
position:absolute;
left:170px;
top:120px;

}
#rate_group {
position:absolute;
left:330px;
top:120px;

}

4. The <label> elements also need a template. Right now the labels appear next to the <input>
controls. Instead, treat them as block level elements with a line break after each one:

label {
display:block;

}

5. Create a template for the <form> element which is generated by the form_tag helper. Because
you used absolute positioning for the <input> groups, the <form> has no actual height,- but
you need to leave a space where the form contents should go. The height and min-height
CSS properties are not implemented consistently in all browsers, so you can cheat and add
padding to the top and bottom of the form instead:

form {
padding-top:190px;
padding-bottom:10px;

}

Save the stylesheet.

6. Finally, modify the layout to refer to the stylesheet. In the calculator.rhtml layout file in
app/views/layouts add a <link> element into the <head> section of the document. Add the
highlighted line and save the file:

<head>
<title>Loan Calculator</title>
<meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />
<%= stylesheet_link_tag ‘calculator’ %>

</head>

Once you have completed the changes, save the file.

How It Works
In this Try It Out, you added a CSS stylesheet to the main web page for the loan calculator. The
stylesheet may not win any design awards, but working with the input fields and visualizing the results
is now much more pleasant, as you can see in Figure 22-3. In the stylesheet you followed best-practice

BC10

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

guidelines and used a mix of CSS features. Some elements were styled using ID selectors, while others
used element names. Using this stylesheet as a basis, you could alter the look of your page very quickly.

Figure 22-3

Integrating the Calculation Web Service
Now that you have the main loan calculator web page, all you have to do is connect it to the Compliance
Studio web service and display the results. Unfortunately, the web page cannot communicate directly
with the Compliance Studio web service because the web page and the service are hosted in different
domains. Currently, browsers do not permit web pages to make HTTP requests to URLs that have a dif-
ferent domain. These requests are commonly called Cross-Domain XML HTTP Requests or Cross Site
Scripting (XSS). Cross Site Scripting is the source of many common security problems. Instead, you need
to have the browser call an action on your own web server and let the web server talk with the
Compliance Studio calculation service. This middle-man approach allows you to use the server as a
proxy for the interaction.

The action for the loan calculator form was calculate. The calculate action is just another method
within the calculator controller. It will need to do three things:

❑ Convert the incoming form data to XML.

❑ Call the Compliance Studio web service using SOAP.

❑ Display the payments for the loan.

Try It Out The calculate Action

In this Try It Out you create the various parts of the calculate action to communicate with the
Compliance Studio web service.

BC11

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

1. Begin by modifying the calculator_controller.rb inside the app/controllers folder to
define a new method called calculate. The calculate method definition can go immediately
after the index method. Unlike the index method, though, you need to do more than let
calculate render the default template:

def calculate
begin
@xml = Builder::XmlMarkup.new
@soap_request = render_to_string :partial => “soap”
@calculation_result = call_calculation_service
@payments = @calculation_result[“TRANSACTION”][“RESPONSE”][“PAYMENTSTREAM”]

rescue Exception => e
flash.now[:error] = “There was an error communicating with the service”

end
render :partial => “calculate”, :layout => true

end

This method starts with the begin keyword. In Ruby you can handle exceptions by creating a
begin/rescue/end block. If an exception is raised within the begin block the code within the
rescue will be executed and the function will continue. When communicating with remote ser-
vices it is a good idea make sure your code can handle exceptions.

You will use the RequestCalculation function within the The Compliance Studio web service. You
can find information about the RequestCalculation function at
http://compliancestudio.com/apr/1.0/service.asmx?op=RequestCalculation.

The RequestCalculation function expects only one parameter, TransactionEnvelope,
which should contain an XML document fragment with all of the loan details. Compliance
Studio provides an XML Schema for the document fragment at
http://compliancestudio.com/apr/APRData-1-0.xsd.

Ruby on Rails has several different tools to create XML in your application. Using an
XmlMarkup builder with an RXML template is the most common. Though you could create an
XML document using string concatenation, it is considered bad practice. Outputting XML
directly can often lead to well-formedness errors.

@soap_request = render_to_string :partial => “soap”

This example uses the render_to_string helper to set the variable @soap_request. The @
symbol indicates that the variable is an instance variable. Instance variables can be used by other
Rails functions and classes. A partial template called soap is rendered. Partial templates are ren-
dered without the controller layout you created earlier in the chapter. You haven’t created the
soap template yet; you’ll do that in the next step.

@calculation_result = call_calculation_service
@payments = @calculation_result[“TRANSACTION”][“RESPONSE”][“PAYMENTSTREAM”]

The actual SOAP interaction will be done in the call_calculation_service function. The
result of that function will contain a set of SOAP mappings which correspond to the returned
XML response. The PAYMENTSTREAM mappings can be used to display each payment back to the

BC12

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

user. Again, these are saved as an instance variable so that they can be used in other functions
and templates.

rescue Exception => e
flash.now[:error] = “There was an error communicating with the service”

end

Whenever there is an error communicating with the web service, it is caught and added to the
flash hash. Using flash.now ensures that the message will be removed from the hash after
the next render. The exception message is not included in the string that is added to the flash
message for security reasons. (In production sites you would probably want to provide a more
descriptive message.)

render :partial => “calculate”, :layout => true

Finally, the method renders a partial template called calculate. The only reason to use a par-
tial template instead of letting the controller render the default template for the action is for
later reuse. Because partial templates do not include the layout by default, you need to explicitly
specify that you want the layout included. You haven’t created the calculate template yet
either; you’ll do that in a couple more steps. Save the file.

2. The calculate method tries to build the XML for the SOAP request using a template. Unlike the
other templates used in this chapter, it will need to be a Rails XML (RXML) template. Create a
new file called _soap.rxml inside of the app/views/calculator folder. The file needs the lead-
ing underscore because it is a partial template. You can construct the XML using the XmlMarkup
builder called xml, which is built into every RXML template. The builder interprets unknown
method names as element creation calls. This is a form of meta-programming. It means that you
can call xml.TRANSACTION to create a <TRANSACTION> element. Some of the elements need to
contain other elements. To support this, the builder allows you to define the element using the
meta-programming method and a do..end block. You can also pass a list of attributes and values
as options to the meta-functions. This makes creating the XML very simple:

xml.TRANSACTION do
xml.REQUEST do
xml.REQUESTOPTIONS(
“PaymentStreamAndApr” => “true”,
“ReverseApr” => “false”,
“ManualPaymentStream” => “false”,
“AdditionalPrincipal” => “false”) do
xml.DATA(
“PaymentStreamRequestType” => “Long”,
“AllowOddLastPayment” => “true”,
“DaysPerYear” => “360”,
“ConstructionTILType” => “Seperate”,
“AprIterations” => “1”,
“FeeIterations” => “0”)

end
xml.APRREQUEST “TotalAPRFeesAmount” => “#{params[:total_apr_fees_amount]}”

if (params[:index_value] && params[:index_value].to_f > 0)
xml.INDEXVALUES(
“IndexValue” => “#{params[:index_value]}”,
“IndexMonths” => “#{params[:loan_original_maturity_term_months]}”)

end

BC13

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

if (params[:margin_value] && params[:margin_value].to_f > 0)
xml.MARGINVALUES(
“MarginValue” => “#{params[:margin_value]}”,
“MarginMonths” => “#{params[:loan_original_maturity_term_months]}”)

end

xml.LOANDATA do
xml.TERMS(
“ProgramName” => “#{params[:program_name]}”,
“LoanOriginationSystemLoanIdentifier” => “Beginning XML Calculator”,
“OriginalLoanAmount” => “#{params[:original_loan_amount]}”,
“DisclosedTotalSalesPriceAmount” =>
“#{params[:disclosed_total_sales_price_amount]}”,

“PropertyAppraisedValueAmount” =>
“#{params[:property_appraised_value_amount]}”,

“NoteRatePercent” => “#{params[:note_rate_percent]}”,
“InitialPaymentRatePercent” => “#{params[:note_rate_percent]}”,
“LoanOriginalMaturityTermMonths” =>
“#{params[:loan_original_maturity_term_months]}”,

“ApplicationSignedDate” => “2007-01-15”,
“LoanEstimatedClosingDate” => “2007-01-15”,
“ScheduledFirstPaymentDate” => “2007-01-15”,
“EstimatedPrepaidDays” => “15”)

end
end

end

Notice that most of the attribute values are strings that contain the interpolation evaluator #{}.
Ruby will evaluate everything inside of the #{ and } braces and output a string in its place. This
allows you to insert values from the params hash that were submitted by the loan calculator
form. (Again, this case study does not define these mortgage concepts in detail; more informa-
tion about each of these terms can be found on the Compliance Studio website or at
http://en.wikipedia.org/wiki/Mortgage.) Save the file.

3. Before you define the call_calculation_service method, we should take a small detour.
Ruby on Rails comes with a default SOAP library called soap4r. The library makes SOAP com-
munications very simple. Accessing the elements in the SOAP response is also very easy.
Unfortunately though, it doesn’t provide friendly methods to retrieve attribute values from the
SOAP response. Luckily, Ruby allows you to extend built-in classes to add new functionality.
Create a new file called soap_extensions.rb in the lib folder which was generated inside
your main loancalculator folder. Start by including the existing SOAP and XML Parser
libraries:

require ‘soap/wsdlDriver’
require ‘xsd/xmlparser/rexmlparser’

Next, declare the new module. In this case you can call it SOAP::Mapping::Extensions. You
could actually call it anything you like, but having a more expressive name is considered good
practice:

module SOAP::Mapping::Extensions

BC14

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Inside the module, create a function to retrieve an attribute value by namespace URI and
attribute name:

def attribute_value(uri, name)
__xmlattr[XSD::QName.new(uri, name)]

end

This function creates a QName object for the uri and name parameters and passes it to the funda-
mental method __xmlattr which already exists inside of the SOAP::Mapping::Object class.
The result of the __xmlattr method is returned as the result of the function. If the attribute is
not found, the function will return nil.

To make the extension module even more useful, you could also add a meta-programming
method by overriding the method_missing function:

def method_missing(method_id, *arguments, &block)
attr = attribute_value(nil, method_id.to_s)
attr || super

end

If you try to call a method that doesn’t exist, the method_missing function will be executed.
The missing method name is passed to the new attribute_value function as an attribute
name and assigned to the attr variable. The last line in the function returns the attr variable if
it is not nil, otherwise it calls the inherited method_missing function by using the super key-
word. You could continue to add extension functions but that’s all that is needed for this exam-
ple. Add the module end statement:

end

Of course, this module isn’t actually part of the SOAP module yet. You need to tell Ruby to
include the methods in the new module inside of the SOAP::Mapping::Object class. At the
end of the file (after the module end statement) add the following:

SOAP::Mapping::Object.send(:include, SOAP::Mapping::Extensions)

This tells Ruby to include the methods in your new extension module inside of
SOAP::Mapping::Object.

4. With the extensions module completed you can now implement the call_calculation_
service and communicate with the Compliance Studio web service. Add this as a private
method of the CalculatorController class inside of the calculator_controller.rb file. Just
before the end of the class add the private keyword, and then below that define the method:

private
def call_calculation_service
require “soap_extensions”
endpoint_url = “http://compliancestudio.com/apr/1.0/service.asmx?WSDL”
factory = SOAP::WSDLDriverFactory.new(endpoint_url)
compliance_studio_service = factory.create_rpc_driver
defined_elements =
compliance_studio_service.proxy.literal_mapping_registry.definedelements

defined_elements.delete(defined_elements.find_name(“RequestCalculation”))
param_name = XSD::QName.new(“http://compliancestudio.com/apr/1.0”,
“TransactionEnvelope”)

result = compliance_studio_service.RequestCalculation(param_name =>

BC15

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

@soap_request)
result[“RequestCalculationResult”]

end

Let’s break down each part of the method. At the start of the function you included the new
soap_extensions module.

require “soap_extensions”

The SOAP classes are created dynamically based on the Web Service Description at Compliance
Studio.

endpoint_url = “http://compliancestudio.com/apr/1.0/service.asmx?WSDL”
factory = SOAP::WSDLDriverFactory.new(endpoint_url)
compliance_studio_service = factory.create_rpc_driver

Creating the service wrapper dynamically allows your application to deal with changes more
gracefully. Unfortunately, there is a significant performance penalty in dynamically creating the
service. In a production application you would want to generate the service class once and
include it as a library file. This can be done using the wsdl2ruby library.

The built-in SOAP classes cannot send arbitrary XML parameters by default. Many .NET based
web services use this style of parameter passing. To get around this you need to remove the
default definition for the RequestCalculation element:

defined_elements =
compliance_studio_service.proxy.literal_mapping_registry.definedelements

defined_elements.delete(defined_elements.find_name(“RequestCalculation”))

Finally, the function calls the remote method RequestCalculation, with the
TransactionEnvelope paramter set to the @soap_request instance variable that was created
earlier.

param_name = XSD::QName.new(“http://compliancestudio.com/apr/1.0”,
“TransactionEnvelope”)

result = compliance_studio_service.RequestCalculation(param_name =>
@soap_request)

result[“RequestCalculationResult”]

The mapped object RequestCalculationResult is returned as the result of the method. Save
the controller.

5. With all of the main functionality completed, all that’s left is to display the payments. To do this
you need to create a partial template for the calculate action. Create a new file called _calcu-
late.rhtml inside of the app/views/calculator folder (remember, the leading underscore
indicates it is a partial template). The template should begin by displaying any error messages
that were appended to the flash hash.

<p class=”flash”><%= flash[:error] %></p>

As with the index.rhtml template, you want to include a sub-heading:

<h2>Payments</h2>

BC16

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Next, create a <div> to hold the payments. If there are no payments listed, a friendly message
should be displayed asking the user to submit a new request, otherwise the payments, payment
dates, and ending balances should be displayed:

<div id=”payments_table”>
<% if @payments && @payments.length > 0 %>
<table border=”0” cellpadding=”0” cellspacing=”0”>
<tr>
<th>Payment Date</th>
<th>Payment Amount</th>
<th>Remaining Balance</th>

</tr>
<% for payment in @payments do %>
<tr class=”<%= cycle(“even_row”, “odd_row”) -%>”>
<td>
<%= payment.PmtDate %>

</td>
<td class=”numeric_cell”>
<%= number_to_currency(payment.PmtTotal) %>

</td>
<td class=”numeric_cell”>
<%= number_to_currency(payment.PmtEndingBalance) %>

</td>
</tr>

<% end %>
</table>

<% else %>
Please submit a request and the payments will be displayed.

<% end %>
</div>

Here the rows for the payment table are constructed using a for loop. The class attribute of
the <tr> element is set using the helper function cycle. The cycle function alternates between
two options. The first time it is called it will return even_row, the second time odd_row. If you
define CSS styles for the even_row and odd_row classes the payment rows can be displayed
using alternating colors.

The number_to_currency helper function allows you to easily format floating point numbers as
strings. The default uses dollars and cents, but the units and precision can be modified to make it
compatible with other kinds of currency. Each payment object is a SOAP::Mapping::Object
class. The attributes PmtDate, PmtTotal, and PmtEndingBalance are accessed using the meta-
programming extension you created in your SOAP::Mapping::Extensions module.

Save the template.

6. At this point, you should be able to use the loan calculator form to find out the payments for a
specific loan. Because you have added a new library, you need to restart the built-in web server.
Once it is running, open your browser to http://localhost:3000/calculator. Fill in the
form with the values shown in Figure 22-4 or make up your own.

BC17

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Figure 22-4

After inputting the values, click the Calculate button. You should see the output shown in
Figure 22-5.

Figure 22-5

If you don’t see the expected output you have probably left an empty value. The error messages that
come back from the application are very cryptic and difficult to solve. Check the Rails logs for more
detailed information if you see an error, and try to correct the values.

How It Works
In this Try It Out, you completed the basic functionality of the loan calculator. The form now calls the
calculate action, which builds an XML request sends it to the Compliance Studio service and displays
the result. In addition to the view templates and actual controller code, you added a custom extension

BC18

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

module to simplify access to attribute values in the response. Ruby’s extensibility is one of the things
that makes Rails so powerful.

Before you add more functionality, you can add styles for the payments in the loancalculator.css
stylesheet.

Try It Out Improving the Look of the Payments

Like the other styles in this chapter, the payment style declarations will be fairly simple. Again, in pro-
fessional sites you may have a team of designers to modify the style definitions.

1. Open your text editor, and open the stylesheet document public/stylesheets/
calculator.css. The public/stylesheets folder should have been generated by the rails
command and can be found inside of the loancalculator folder. Add the following declara-
tions to the end of the stylesheet:

#payments_table {
overflow:auto;
margin:10px;
padding:5px;
width:488px;
height:200px;
border:1px solid black;

}
#payments_table td, #payments_table th{
margin:0px;
padding:10px;

}
.numeric_cell {
text-align:right;

}
.even_row {
color:black;
background-color:#eee;

}

Notice that the overflow property of the payments_table template is set to auto. Each loan
can have a lot of payments, so instead of causing the page to become very long; the value auto
means that the contents of the payments_table <div> element will scroll. Also, there is a style
for the even_row class. This class is inserted using the cycle helper and is used by alternating
table rows. Setting the background to light gray (#eee) gives the table a spreadsheet look. Once
you have added the new declarations, save the stylesheet.

How It Works
In this Try It Out, you added declarations to the CSS stylesheet for the loan calculator. The enhanced
stylesheet improved the look of the payments table. Again, the declarations that were added are fairly
simple and can easily be improved. You can submit the calculate form again and you should see result-
ing payments with improved style, as in Figure 22-6.

BC19

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Figure 22-6

Adding Ajax Support
Asynchronous JavaScript and XML, or Ajax, has been growing in popularity over the past few years. In
fact, Ajax has been possible in browsers for much longer than that. In the loan calculator you can use
Ajax to call the calculate action you built in the previous examples. When the user clicks Calculate,
instead of changing pages, the payment table can be inserted into the current page. This kind of behav-
ior allows you to create very advanced web applications that improve the user experience.

Unfortunately, at the time of this writing, each of the major browsers provides different mechanisms for
using XML over HTTP. To get around this, you will need to use a custom library that hides the differ-
ences. Though there are many JavaScript libraries that do this, Ruby on Rails has built-in support for the
Prototype library. Because of this you should use it within the loan calculator. You will also want to use
the Script.aculo.us JavaScript library to include advanced visual effects. The library is included with
Rails but more information about it can be found at http://script.aculo.us/.

You may be wondering why we spent time building a traditional web application prior to building the
Ajax version. Some browsers do not support JavaScript. Sometimes users have turned off their
JavaScript support for security reasons. Because of this it is important to have a non-JavaScript fallback
for your application. Even though you will be adding JavaScript functionality to the loan calculator, the
existing functionality will still be in place for users that do not have JavaScript support.

Try It Out Adding Ajax to the Loan Calculator

In this Try It Out, you make a number of changes to enable Ajax in the loan calculator. These include
making sure your layout includes the Prototype and Script.aculo.us libraries, modifying the loan calcu-
lator form, and displaying a status indicator to the user.

BC20

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

1. From your text editor, open the calculator.rhtml layout document in the folder app/views/
layouts. You need to include the Prototype and Script.aculo.us JavaScript libraries in the
<head> element. Again, Ruby on Rails has built-in support for these libraries, so you can simply
instruct the layout to include the JavaScript defaults. Add the highlighted line:

<head>
<title>Loan Calculator</title>
<meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />
<%= stylesheet_link_tag ‘calculator’ %>
<%= javascript_include_tag :defaults %>

</head>

2. Next, update the index.rhtml template in the folder app/views/calculator. Instead of
using the form_tag helper, change it to use the form_remote_tag helper. The Rails framework
considers Ajax forms “remote” forms because they will handle the POST remotely. Replace the
existing form_tag with the following:

<% form_remote_tag :url => { :action => :calculate },
:before => visual_effect(:appear, :working, :duration => 1.2),
:complete => visual_effect(:fade, :working, :duration => 1.2),
:update => :payments do %>

The form_remote_tag helper is quite a bit different from the original form_tag helper. Instead
of including the action directly, it has been included as part of the url parameter. By default,
when the form is submitted it will attempt to send a POST to the url. If JavaScript is not enabled
it will use a traditional POST instead. This example also includes parameters to handle event
callbacks. The form_remote_tag actually provides quite a few callback events; however, the
before, complete and update are the most common.

:before => visual_effect(:appear, :working, :duration => 1.2)

The before callback allows you to include JavaScript to be executed before the remote action is
called. Instead of including JavaScript directly, this example uses the visual_effect helper
that is part of the Script.aculo.us library. The visual_effect function will generate the
JavaScript code to make the specified element appear over a duration of 1.2 seconds. In this
case the specified element is called working. The Script.aculo.us library will look for an element
in the current document with the id attribute set to working. Use this to provide an indication
that the remote call is being performed. When the remote call completes it will perform another
visual_effect to hide the working element:

:complete => visual_effect(:fade, :working, :duration => 1.2)

Finally, you need to specify what the form_remote_tag should do with the response it receives
from the calculate action:

:update => :payments

In this case, the form_remote_tag will update the specified element payments using the
response. The helper will generate JavaScript to find an element in the current document with
the id attribute set to payments and will update its inner HTML with the HTML response from
the calculate action.

BC21

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

2. Add a new element that has an id attribute set to working. You can put it just after the submit
button:

<div id=”buttons”>
<%= submit_tag “Calculate” %>

<%= image_tag “indicator.gif”, :alt => “Working...” %>

</div>

Here the element has its id attribute set to working. This means that the code gener-
ated by the visual_effect helper will be able to modify its display. When the page is loaded
the form isn’t doing any communications, so you should default the display style to none.
Though you could do this in your external stylesheet, the Script.aculo.us library cannot override
an external style definition.

Inside the element is an image_tag helper for the image indicator.gif. The image,
which can be downloaded with the rest of the code at http://www.wrox.com/, was designed
by Jakob Skjerning and is available at http://mentalized.net/activity-indicators/
along with several other public domain indicator graphics. Download the image and save it in
the public/images folder inside of your loancalculator folder. If the image can’t be found,
or if the user does not have support for images, the alt text will be displayed.

3. You also need a placeholder for the payments in the calculation response. Include an empty
<div> element just after the end of the template:

<div id=”payments”></div>

Again, the element’s id attribute should be set to payments so that the update callback in the
form_remote_tag can find it.

4. You should be able to see Ajax in action. Make sure that the built-in web server is running, fill in
the form, and click Calculate (see Figure 22-7).

BC22

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Figure 22-7

How It Works
In this Try It Out, you added Ajax support to the loan calculator. Instead of using a traditional form, you
used a remote form. When the user clicks Calculate, an Ajax request is created and the contents of the
form are passed to the server without the page changing. When the response is returned it is dynami-
cally inserted into the page. In addition to the basic communications, the form_remote_tag helper also
let you perform specialized callbacks to make an indicator fade in and fade out. Note that the loan calcu-
lator will still work even when the user has no JavaScript support. You could test this by temporarily
disabling your JavaScript support in your browser. The loan calculator should revert to the traditional
form behavior.

BC23

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

You may have noticed that the “Loan Calculator” heading appeared twice on the page. This is because
the calculate action rendered its response using the default controller layout. This is important when
the response is displayed by itself, but when it is being accessed by a remote form through Ajax it should
be left out. You can do this by making a small change to the CalculatorController class.

Try It Out Removing the Layout in the Ajax Response

You’ll need to modify the calculate method inside of the CalculatorController. If the incoming
request is an Ajax request, you need to render the _calculate.rhtml template without the default lay-
out, otherwise the method should render the template normally.

1. Open your text editor, and open the calculator_controller.rb document in the folder
app/controllers. Add the highlighted code to the end of the calculate method:

def calculate
begin
@soap_request = render_to_string :action => ‘soap’, :layout => false
@calculation_result = call_calculation_service
@payments = @calculation_result[“TRANSACTION”][“RESPONSE”][“PAYMENTSTREAM”]

rescue Exception => e
flash.now[:error] = “There was an error communicating with the service”

end
if request.xhr?
render :partial => “calculate”

else
render :partial => “calculate”, :layout => true

end
end

Each method within the controller has access to the request object. The request object contains impor-
tant information about the HTTP request and also a number of helper methods. The xhr? method will
return true if the request is an Ajax request and false otherwise. The “xhr” refers to the
XMLHttpRequest object, which is used to make Ajax requests from web browsers. Though you haven’t
explicitly used this object in your code, the Prototype library which is used by the form_remote_tag
uses it to send Ajax requests to the web server.

If the xhr? method returns true then the calculate method will render without the layout (partials do
not include the layout by default). If the xhr? method returns false, you need to render the partial tem-
plate with the layout included.

Save the file.

How It Works
In this Try It Out, you made sure that the calculate action didn’t render the response using a layout if
the request was made using Ajax. This fixed the problem of the duplicated “Loan Calculator” heading. If
you input the loan details and click Calculate again, the duplicate heading is removed (see Figure 22-8).

BC24

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Figure 22-8

Enhancing the Display with SVG
Displaying the payments and ending balance in a table is very useful, but by using a chart of the balance
over time, you can quickly compare the various loan programs visually. You can use Scalable Vector
Graphics to construct the chart and display it in the loan calculator web page. Again, for your users to
see the SVG graphic, they will need to have a browser that supports SVG or an SVG plug-in.

To build the chart, you need to:

1. Create a base SVG document for the chart.

2. Display the SVG in an <iframe> element.

3. Use JavaScript to replace the SVG and assign the chart data.

BC25

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Notice that an <iframe> is used to display the SVG content. Ideally, you could include the <svg> ele-
ments directly in an XHTML page and, using namespaces, the browser would know how to render the
document. At the time of this writing, however, that isn’t possible in some of the major browsers. In fact,
because Internet Explorer relies on a plugin to render SVG content, <iframe> is the only standard cross-
browser solution. Though, the <object> tag is another solution, support for it is lacking in older
browsers.

Because of this, you need to create an SVG document that can be loaded into the <iframe> element
when the page is loaded. Manipulating the contents of an <iframe> through JavaScript (especially
when that frame has an ActiveX object in its content) can be cumbersome. The .NET version of this chap-
ter shows how the parent XHTML document and SVG can communicate with one another. In this chap-
ter, however, you will instead use JavaScript and Ajax to replace the entire SVG document. This greatly
simplifies the code and more easily integrates with Rails using Remote JavaScript (RJS) templates.

Try It Out Creating a Base SVG Chart

In this Try It Out, you build the base for the loan balance chart that will be displayed in the loan calcula-
tor web page. You will add an <iframe> to the index.rhtml template, define a new action for the chart
inside of the controller, and create an SVG template that can display the chart.

1. Open the index.rhtml file in the folder app/views/calculator to add an <iframe> element
that refers to the chart to the bottom of the template. Add the highlighted code and then save
the file:

<div id=”chart”>
<h3>Lending Balance</h3>
<iframe src=”<%= url_for :action => :chart -%>” width=”650” height=”260”
frameborder=”0” id=”chart_frame” name=”chart_frame”>
<p>It looks like your browser doesn’t support frames</p>

</iframe>
</div>

The <iframe> uses the url_for helper to generate the src URL for the SVG. In this case, all
that is needed is to point to a new action inside of the current controller called chart. In addi-
tion to the URL, you should specify width and height parameters and clear the frame border.
You’ll need to refer to the frame from JavaScript later, so it is a good idea to provide name and
id attributes. Just as you saw with JavaScript and images, you need to provide a fallback in case
the user’s browser doesn’t support frames. In this case the fallback isn’t very useful, just an
indication that certain functionality has been turned off because the browser doesn’t support
frames.

2. Create the new chart action that the <iframe> refers to. Open the calculator_
controller.rb file in the folder app/controllers. You will need to add a new method called
chart. The method cannot be private so make sure that you put it above the private keyword
in the class. Add the following:

def chart
render :partial => “chart”, :content_type => “image/svg+xml”

end

BC26

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Again, because you are rendering a partial template, you don’t need to specify that you don’t
want the template to include the layout. Also, in order for the SVG to be viewable in your
browser (if you have the correct plug-in installed or if you are using a browser that supports
SVG natively), you must specify the content as the SVG MIME (“image/svg+xml”). Some web
servers do not have this configured by default so it is useful to send within your Rails applica-
tion. For more information, see http://wiki.svg.org/MIME_Type.

Save the controller.

3. The chart action will attempt to render a view template called _chart.rhtml. Because SVG is
an XML format, you can simply include the SVG information in the template. You can also use
the built in Rails helpers as you would in any other template. The file extension itself is not
important because you are explicitly setting the content-type to image/svg+xml. Create a new
file called _chart.rhtml in the app/views/calculator folder.

Begin creating this chart as you would begin any SVG document. Include a <title> element
even though it won’t be displayed:

<svg xmlns=”http://www.w3.org/2000/svg”>
<g id=”contents”>
<title>Loan Balance over Time</title>
<g id=”grid”>
<rect x=”10” y=”10” width=”500” height=”200” fill=”#f0f0f0”
stroke=”#000” stroke-width=”2”/>

<path stroke=”#ddd” d=”M11,60 l 498,0
M11,110 l 498,0
M11,160 l 498,0
M11,210 l 498,0”/>

</g>
</g>

</svg>

The SVG is very simple; it has one main group element (<g>) with its id set to contents. It also
includes a grid for the data. The grid is drawn using a simple <rect> and a <path> which
draws four lines. In a more complete application, you might enhance this with a decorative gra-
dient or other design features. Save the chart.

How It Works
In this Try It Out, you built a basic chart using SVG. The SVG is included as part of the index.rhtml
template using an <iframe> element. Like the other pieces of loan calculator, you defined the SVG
using a partial template and within the chart method, rendered it with a specific content-type. If you
open your browser to http://localhost:3000/calculator (or refresh if necessary), you should see
the rendered chart (see Figure 22-9).

BC27

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Figure 22-9

If you click Calculate, you will see the payments appear but the chart itself won’t change. You’ll
need to add some additional code for this. With the basic functionality complete, you can inte-
grate the chart with the rest of the Ajax callbacks.

Try It Out Bringing the Chart to Life

In this Try It Out, you add data to the chart and have it update whenever the payments are calculated.
To do this you will need to utilize an RJS template, add a JavaScript function to replace the contents of
the SVG document, and modify your _chart.rhtml template.

1. Currently, the form_remote_tag inside of the index.rhtml template calls the calculate
action and updates the payments element using the response:

<% form_remote_tag :url => { :action => :calculate },
:before => visual_effect(:appear, :working, :duration => 1.2),
:complete => visual_effect(:fade, :working, :duration => 1.2),
:update => :payments do %>

BC28

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Unfortunately, you need the form_remote_tag to update the payments element and the SVG
chart. You can’t do this with a single HTML response. Luckily, the Rails framework allows you
to define Remote JavaScript that can be generated on the server and passed back as a single
response to be executed in the user’s browser. When using RJS, you don’t need specify an
update action in your form_remote_tag; instead you handle the replacement in the
calculate action in your controller. Modify the form_remote_tag as follows:

<% form_remote_tag :url => { :action => :calculate },
:before => visual_effect(:appear, :working, :duration => 1.2),
:complete => visual_effect(:fade, :working, :duration => 1.2) do %>

The Prototype JavaScript library doesn’t have support for working with SVG content, so you
need to create a special JavaScript function that can be used to replace the SVG. You can add
another <script> element to the end of the index.rhtml template as follows:

<script type=”text/javascript”>
function replace_svg(content) {
// try to retrieve the frame
var frame = frames[‘chart_frame’];
if (!frame) return;
var frame_doc = frame.document;
// parse the content
try {
var doc = null;
if (DOMParser) {
doc = new DOMParser().parseFromString(content,”text/xml”);

} else if (frames[‘chart_frame’].parseXML) {
doc = frames[‘chart_frame’].parseXML(content, null);

}
// replace the content
var old_contents = frame_doc.getElementById(“contents”);
var new_contents = doc.getElementById(“contents”);
new_contents = frame_doc.importNode(new_contents, true);
frame_doc.documentElement.replaceChild(new_contents, old_contents);

} catch(e) {
alert(“There was an error attempting to update the chart”);

}
}

</script>

The replace_svg function expects a single parameter called content. The first part of the func-
tion attempts to find the frame for the chart in the current document:

var frame = frames[‘chart_frame’];
if (!frame) return;
var frame_doc = frame.document;

Once the frame is retrieved the function parses the content:

if (DOMParser) {
doc = new DOMParser().parseFromString(content,”text/xml”);

} else if (frames[‘chart_frame’].parseXML) {
doc = frames[‘chart_frame’].parseXML(content, null);

}

BC29

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Unfortunately, the methods for parsing a string as XML aren’t standardized across all browsers.
In this function there are two ways to parse the incoming content: either using a DOMParser
object if it exists or by using the parseXML function if it exists. The DOMParser will be used in
Firefox and Opera browsers, while the parseXML method will be used by the Adobe SVG plug-
in within Internet Explorer.

Replacing the entire document can have side-effects in some browsers. To get around this you
can instead replace the contents group within the SVG document. To do this, import the newly
parsed XML into the old document’s object hierarchy using the importNode DOM method and
then call replaceChild:

var old_contents = frame_doc.getElementById(“contents”);
var new_contents = doc.getElementById(“contents”);
new_contents = frame_doc.importNode(new_contents, true);
frame_doc.documentElement.replaceChild(new_contents, old_contents);

All of the code is safely wrapped inside of a try..catch block to handle any errors.

2. You also need to modify the calculator_controller.rb file inside of the app/controllers
folder. The calculate method will need to respond to Ajax requests using RJS instead of an
RHTML template. Additionally, you can calculate the maximum ending balance for the pay-
ment stream. This will be useful when updating the chart template in the next step. Add the
highlighted code:

def calculate
begin
@soap_request = render_to_string :partial => “soap”
@calculation_result = call_calculation_service
@payments = @calculation_result[“TRANSACTION”][“RESPONSE”][“PAYMENTSTREAM”]
@max_balance = @payments.max { |a,b|
a.PmtEndingBalance.to_f <=> b.PmtEndingBalance.to_f

}.PmtEndingBalance.to_f
rescue Exception => e
flash.now[:error] = “There was an error communicating with the service”

end
if request.xhr?
render :update do |page|
page.replace_html “payments”, :partial => “calculate”
page.call “replace_svg”, page.send(:render, {:partial => “chart”})

end
else
render :partial => “calculate”, :layout => true

end
end

The maximum ending balance is assigned to the instance variable @max_balance:

@max_balance = @payments.max { |a,b|
a.PmtEndingBalance.to_f <=> b.PmtEndingBalance.to_f

}.PmtEndingBalance.to_f

The maximum was determined using a bit of Ruby magic. In Ruby the array class has a max
function that requires a comparison block. Inside the block you can write a comparison that will
be used for all of the items in the array to determine the one with the highest value. The max
function returns the actual item from the array, so at the end of the function you need to again

BC30

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

convert the PmtEndingBalance attribute to a floating point number. Though this code could
have been included in the chart template itself, it is best to include as little code in your views as
possible.

The function no longer renders a single template in response to Ajax requests. Instead an inline
RJS block is rendered:

render :update do |page|
page.replace_html “payments”, :partial => “calculate”
page.call “replace_svg”, page.send(:render, {:partial => “chart”})

end

Inside the block, two RJS commands are executed on the page variable. The first is very similar
to the :update parameter that was part of the form_remote_for helper. An element with the
id attribute payments has its HTML content replaced with the output of the rendered partial
template calculate. The second RJS line is similar. The custom JavaScript function
replace_svg that you added to the index.rhtml template is called. Remember that the
replace_svg function expected a single string argument which contained the XML for the
SVG. Unfortunately you cannot generate the string using the render_to_string function you
used earlier in the chapter. In the current version of Rails the render_to_string function con-
flicts with the RJS response. Instead you need to call the page object’s internal render method
which will return a string.

Save the changes to the controller.

3. Finally, modify the _chart.rhtml template inside of the app/views/calculator folder. The
beginning of the SVG will remain the same:

<svg xmlns=”http://www.w3.org/2000/svg”>
<g id=”contents”>
<title>Loan Balance over Time</title>
<g id=”grid”>
<rect x=”10” y=”10” width=”500” height=”200” fill=”#f0f0f0”
stroke=”#000” stroke-width=”2”/>

<path stroke=”#ddd” d=”M11,60 l 498,0
M11,110 l 498,0
M11,160 l 498,0
M11,210 l 498,0”/>

</g>

Following the initial grid group, you begin outputting the data. Of course, you only want to do
this if the @max_balance is greater than 0 and if the @payments array is not blank:

<% if @max_balance && !@payments.blank? %>

Inside the block, start with a couple of calculations:

<% payment_width = 500.to_f / @payments.length %>
<% balance_height = 200.to_f / @max_balance %>

In order to accurately display the chart data you will need to scale the information to the exist-
ing chart. To do this you can divide the width of the chart (500) by the number of payments
(@payments.length). This way the information for each payment can be spaced to fill the
entire width of the chart. A similar calculation is made to determine the amount of height that
should be used when plotting the ending balance for each payment.

BC31

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Why include calculations like this in the view? In most cases it is better to include calculations
like this in the controller instead of the view template. However, because the calculation relies
on the actual height and width of the chart (500 and 200 respectively), it should be kept inside
the view. This way if the chart dimensions are modified later, the calculation can quickly be
updated as well.

With the payment_width and balance_height determined you can plot the information on
the chart:

<g id=”data” transform=”translate(11, 10)”>
<path id=”balance” fill=”#77c” stroke=”#aaf” fill-opacity=”0.3”
transform=”scale(<%=payment_width%>, <%=balance_height%>)”
d=”M 0,<%=@max_balance%>

<% @payments.each_with_index do |payment, i| %>
L <%=i%>,<%=@max_balance-payment.PmtEndingBalance.to_f%>

<% end %>
L <%=@payments.length%>,<%=@max_balance%> z” />

</g>

The data is plotted using a <path> element, which is placed inside of a <g> element for conve-
nience. The <path> itself is transformed using a scale command. The data is scaled using the
payment_width and balance_height variables. The data for the <path> element begins with
the move command (M) and moves the cursor to the point 0, @max_balance. In this example the
@max_balance variable will have the value 249832.25. But the chart is only 200 pixels high! The
scale command included in the transform attribute actually modifies the coordinate system
of the <path> such that, when scaled the coordinate (0, 249832.25) will place the cursor in the
lower left corner of the chart.

The rest of the data is drawn by looping through the @payments array and drawing a line (L)
from the current point to a point with an X position equal to the index in the array and a Y posi-
tion which is determined by the payment ending balance. Remember, because of the scale, the
payments will be equally spaced across the chart.

A final line (L) is added to the end of the chart which places the cursor in the lower right corner
of the chart. The close-path command (z) completes the data.

In order for users to understand the data in the chart, you need to provide informative labels.
You can do this by adding <text> labels in the SVG:

<g id=”balance_labels” font-size=”8pt” font-weight=”bold”>
<text id=”balance100Percent” x=”520” y=”20”>
<%= number_to_currency(@max_balance)%>

</text>
<text id=”balance75Percent” x=”520” y=”65”>
<%= number_to_currency(0.75 * @max_balance)%>

</text>
<text id=”balance50Percent” x=”520” y=”115”>
<%= number_to_currency(0.5 * @max_balance)%>

</text>
<text id=”balance25Percent” x=”520” y=”165”>
<%= number_to_currency(0.25 * @max_balance)%>

</text>
</g>

BC32

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

The labels are placed to the right of the chart and are spaced at 25 percent intervals. The text for
the label is constructed using the number_to_currency helper. The value for each label is
determined by multiplying the @max_balance by the appropriate factor.

In addition to the balance labels, you should add labels for the payment dates along the bottom
of the chart. Instead of adding a label for every payment, you can add one label per year:

<g id=”date_labels” font-size=”6pt” font-weight=”normal”
transform=”translate(20, 220)”>
<% (0...@payments.length).step(12) do |i| %>
<text text-anchor=”end”
transform=”translate(<%=(i*payment_width)-%>,0) rotate(-45)”>
<%= @payments[i].PmtDate -%>

</text>
<% end %>

</g>

The loop for the payments uses another special Ruby construction. An inclusive range from 0 to
the number of payments is created (using the ... operator). The step function is used to step
though every 12th item in the range. For each iteration, a new <text> element is added with
the payment date as the value. Instead of scaling the entire container, the offset of each payment
is set using the scale. Each payment is also rotated at a 45 degree angle so that they don’t over-
lap.

Include the end command for the block:

<% end %>

All of the information for the chart is completed, so the final step is to finish the SVG:

</g>
</svg>

Save the changes to the chart. You should be able to see Ajax and chart in action. Make sure that
the built-in web server is running, fill in the form, and click Calculate. Open your browser to
http://localhost:3000/calculator (or refresh if necessary), you should see the rendered
chart with data, as in Figure 22-10.

How It Works
In this Try It Out, you added the data for the SVG chart. You also modified the calculate action to use
Remote JavaScript. Using the RJS you could simultaneously update the payments table and chart SVG.
Having a visual representation of the loan payoff makes comparing different programs very easy. In the
fixed loan program, the payment amount doesn’t change. However, at the start of the loan much of the
payment is applied to the interest on the loan rather than the balance. Because of this the chart shows a
curve for the remaining balance.

The ComplianceStudio calculation can handle any number of programs and loan details. For example, if
you change the term to 180 months and recalculate, you will notice that the payments do not affect the
balance much at all. At the end of the loan one final payment (called a balloon payment) is made to pay
off the loan.

To create the chart you needed to use a number of Ruby tricks and SVG tricks. The power of XML is real-
ized when combining many different technologies. In this case you have created a very useful display by
combining XHTML, SOAP, and SVG.

BC33

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

Figure 22-10

Summary
In this case study, you used a variety of XML technologies to build an advanced online loan calculator.
By connecting to a freely available web service using a local proxy service, you were able to quickly exe-
cute advanced mortgage calculations and display the results to users. Though you may not be working
in the mortgage industry, this pattern of connecting to a web service and displaying the results in your
own page is used throughout the web.

Of course, there is no reason to limit the loan calculator to a single web service. You could easily connect
to other web services and combine the results on your page. Often online applications combine calcula-
tion engines, search engines, and mapping engines and even other mashups to build successful sites.

BC34

Chapter 22: Case Study: Payment Calculator — Ruby on Rails

D
The XML Document Object

Model

This appendix lists the interfaces in the Document Object Model (DOM) Level 3. Examples show-
ing how to use some of these interfaces appear in Chapter 11.

Unfortunately, the DOM Working Group defines too many “modules” for DOM functionality to be
covered in this one appendix. In fact, at the time of writing, the W3C’s site listed the following
seven Technical Reports for different types of DOM activities:

❑ The Core interfaces, which are the base set of interfaces used for working with HTML and
XML documents

❑ The Load and Save interfaces, which are used to load XML documents into a DOM (from a
file, URI, stream, etc.) or save an XML document from a DOM (to a file, URI, stream, etc.)

❑ The Validation interfaces, which are used to ensure that an XML document is valid, per its
schema document(s)

❑ The XPath interfaces, for accessing a DOM tree using XPath syntax

❑ The Views and Formatting interfaces, which can be used to dynamically access and mod-
ify a document’s structure, style, and contents

❑ The Events interfaces, which allow for event handlers

❑ The Abstract Schemas interfaces, which allow an interface to schema documents (DTD
and XML Schema)

In addition, there is another Technical. Report on “DOM Requirements,” which doesn’t specifi-
cally list interfaces.

At the time of writing, only the Core, Load and Save, and Validation modules were full W3C
Recommendations, so these are the modules covered in this appendix. Luckily, these are the ones
that you are most likely to access in day-to-day work with the DOM.

This appendix provides a handy guide to the DOM interfaces, but if you’d like further information, you
can always go to the W3C’s website to view the actual recommendations:

❑ Core: http://www.w3.org/TR/DOM-Level-3-Core

❑ Load and Save : http://www.w3.org/TR/DOM-Level-3-LS

❑ Validation: http://www.w3.org/TR/DOM-Level-3-Val

The interfaces are illustrated in the figures in the following section.

Notation
The notation used for the DOM interfaces is Interface Definition Language (IDL). For example, a prop-
erty named length that returns an integer value might be defined in the DOM Recommendation as fol-
lows:

readonly attribute unsigned long length;

This appendix uses the following, more friendly approach:

Property Type Description

length unsigned long (read-only) A description of the property would go here

If you’re not familiar with terms such as unsigned long or unsigned short, don’t worry; just think of either
of these as an integer — that is, a number that doesn’t have a decimal. Unless you’re writing a DOM
implementation yourself, it doesn’t matter too much how big the numbers are for the purpose of this
appendix.

Figure D-1 shows the DOM Core interfaces.

BC36

Appendix D: The XML Document Object Model

Figure D-1

doctype
implementation
documentElement
inputEncoding
xmlEncoding
xmlStandalone
xmlVersion
strictErrorChecking
documentURI
domConfig

createElement()
createDocumentFragment()
createTextNode()
createComment()
createCDATASection()
createProcessinginstruction()
createAttribute()
createEntityReference()
getElementsByTagName()
importNode()
createElementNS()
createAttributeNS()
getElementsByTagNameNS()
getElementByld()
normalizeDocument()
renameNode()

Document

parameterNames

setParameter()
getParameter()
canSetParameter()

DOMConfiguration

nodeName
nodeValue
nodeType
parentNode
childNode
firstChild
IastChild
previousSibling
nextSibiing
attributes
ownerdocument
namespaceURl
prefix
IocalName

baseURI
textContent
insertBefore()
replaceChild()
removeChild()
appendChild()
hasChildNodes()
cloneNode()
normalize()
is-Supported()
hasAttrlbutes()
compareDocumentPosition()
isSameNode()
lookupPrefix()
isDefaultNamespace()
IookupNamespace()
isEqualNode()
getFeature()
setUserData()
getUserData()

Node

DocumentFragment

tagName
schemaTypeinfo

getAttribute()
setAttribute()
removeAttribute()
setAttributeNode()
getAttributeNode()
removeAttributeNode()
getEIementsByTagName()
getAttributeNS()
setAttributeNS()
removeAttributeNS()
getAttributeNodeNS()
setAttributeNodeNS()
getElementsByTagNameNS()
hasAttribute()
hasAttributeNS()
setldAttribute()
setldAtlributeNS()
setldAttributeNode()

Element

name
specified
value
ownerElement
schemaTypeInfo
isld

Attr

target
data

<<XML>>
ProcessingInstruction

publicID
systemId

<<XML>>
Notation publicID

systemId

<<XML>>
EntityReference

publicId
systemld
notationName
inputEncoding
xmlEncoding
xmlVersion

<<XML>>Entity

name
entitles
notations
publicId
systemId
internalSubset

<<XML>>
DocumentType

<<XML>>
CDATASection

data
length

substringData()
appendData()
insertData()
deleteData()
replaceData()

CharacterData

typeName
typeNamespace

isDerivedFrom()

TypeInfo

IineNumber
columnNumber
byteOffset
utf160ffset
retatedNode
uri

DOMLocator

handleError()

DOMLocator

handle()

UserDataHandler

getDOMImplementation()
getDOMImplementationList()

DOMImplementationSource

length

item()

Lists/Collections

DOMImplementationList

length

item()

NodeList

length

contains()
item()

DOMStringList
length

getName()
getNamespaceURI()
contains()
containsNS()

NameList

length

getNamedItem()
setNamedItem()
removeNamedItem()
item()
getNamedltemNS()
setNamedltemNS()
removeNamedltemNS()

NamedNodeMap

hasFeature()
createDocumentType()
createDocument()
petFeature()

DOMImplementation

isElementContentWhitespace
wholeText

spldText()
replaceWholeText()

Text Comment

BC37

Appendix D: The XML Document Object Model

Figure D-2 shows the DOM Load and Save interfaces.

Figure D-2

Figure D-3 shows the DOM Validation interfaces.

domConfig
filter
async
busy
parse()
parseURI()
parseWithContext()
abort()

<<Load and Save>>
LSParser

newDocument
input

<<Load and Save>>
LSLoadEvent

domConfig
newLine
filter

write()
writeToURI()
writeToString()

<<Load and Save>>
LSSerializer

characterStream
byteStream
systemId
encoding

<<Load and Save>>
LSOutput

characterStream
byteStream
stringData
systemId
publicId
baseURL
encoding
certifedText

<<Load and Save>>
LSinput

whatToShow

startElement()
acceptNode

<<Load and Save>>
LSParserFilter

whatToShow

<<Load and Save>>
LSSerializerFilter

input
position
totalSize

<<Load and Save>>
LSProgressEvent

createLSParser()
createLSSerializer()
createLSInput()
createLSOutput()

<<Load and Save>>
DOMImplementationLS

resolveResource()

<<Load and Save>>
LSResourceResolver

BC38

Appendix D: The XML Document Object Model

Figure D-3

Basic Datatypes
Because the DOM is language- and platform-independent, there are some inherent difficulties in making
it generic. For example, you can’t just specify that a particular property or method will return a “string,”
because the different programming languages used to implement the DOM have a different idea of what
a “string” is.

To get around this, the DOM Recommendation(s) specify some basic datatypes that are used throughout
the interface descriptions. DOM implementers can create their own objects to implement these
datatypes, or simply use built-in ones. (For example, Java programmers could use String instead of
DOMString, as a Java String is the same as a DOMString, as specified by the DOM Recommendation.)

allowedChildren
allowedFirstChildren
allowedParents
allowedNextSiblings
allowedPreviousSiblings
allowedAttributes
requiredAttributes
contentType

canSetText()
canSetAttribute()
canSetAttributeNode()
canSetAttributeNS()
canRemoveAttribute()
canRemoveAttributeNS()
canRemoveAttributeNode()
isElementDefined()
isElementDefinedNS()

<<Validation>>
ElementEditVAL

defaultValue
enumeratedValues

canInsertBefore()
canRemoveChild()
canReplaceChild()
canAppendChild()
nodeValidity()

<<Validation>>
NodeEditVAL

isWhitespaceOnly()
canSetData()
canAppendData()
canReplaceData()
canInsertData()
canDeleteData()

<<Validation>>
CharacterEditVAL

continuousValidityChecking
domConfig

getDefinedElements()
validateDocument()

<<Validation>>
DocumentEditVAL

BC39

Appendix D: The XML Document Object Model

Strings
To ensure interoperability, the DOM specifies a DOMString datatype, which is a sequence of 16-bit char-
acters. These characters must be in the UTF-16 encoding.

However, even though the DOM Recommendation always uses this DOMString datatype, the actual
datatype used by a programming language may be an inherent string datatype. For example, in Java, a
DOM implementation would use a normal String, as would a Visual Basic DOM implementation,
because both Java and VB strings are UTF-16.

This appendix uses the DOMString type for consistency.

User Data
The DOM Level 3 introduces the concept of user data, which can be assigned to a node. This information
is not part of the XML document, but it is considered useful to the programmer.

The DOMUserData datatype is used to store this user-defined data. It is defined as using the any datatype,
meaning that it is very generic. In Java, it would probably be represented by the Object datatype; in Visual
Basic, probably by the Variant datatype.

Objects
There are various places in the DOM Recommendations where a method or property simply returns
some type of object, which doesn’t necessarily implement any of the interfaces defined. In this case, the
DOMObject type is used.

Again, this would be very similar to the Object datatype in Java.

Fundamental Interfaces: Core Module
The DOM Fundamental Interfaces are interfaces that all DOM implementations must provide, even if
they aren’t designed to work with XML documents.

DOMException
An object implementing the DOMException interface is thrown whenever an error occurs in the DOM.

Property Type Description

code unsigned short Represents the exception code this DOMException is reporting

The code property can take the following values:

BC40

Appendix D: The XML Document Object Model

Exception Code Value Description

INDEX_SIZE_ERR 1 The index or size is negative or greater than
the allowed value

DOMSTRING_SIZE_ERR 2 The specified range of text does not fit into a
DOMString

HIERARCHY_REQUEST_ERR 3 The node is inserted somewhere it doesn’t
belong

WRONG_DOCUMENT_ERR 4 The node is used in a document other than the
one that created it, and that document doesn’t
support it

INVALID_CHARACTER_ERR 5 A character was passed that is not valid in
XML

NO_DATA_ALLOWED_ERR 6 Data was specified for a node that does not
support data

NO_MODIFICATION_ 7 An attempt was made to modify an object that
ALLOWED_ERR doesn’t allow modifications

NOT_FOUND_ERR 8 An attempt was made to reference a node that
does not exist

NOT_SUPPORTED_ERR 9 The implementation does not support the type
of object requested

INUSE_ATTRIBUTE_ERR 10 An attempt was made to add a duplicate
attribute

INVALID_STATE_ERR 11 An attempt was made to use an object that is
not, or is no longer, usable

SYNTAX_ERR 12 An invalid or illegal string was passed

INVALID_MODIFICATION_ERR 13 An attempt was made to modify the type of
the underlying object

NAMESPACE_ERR 14 An attempt was made to create or change an
object in a way that is incompatible with
namespaces

INVALID_ACCESS_ERR 15 A parameter was passed or an operation
attempted that the underlying object does not
support

VALIDATION_ERR 16 The XML document was modified in such a
way that it would become invalid

TYPE_MISMATCH_ERR 17 A parameter was passed to a DOM method
that wasn’t the correct type; for example, an
Element was passed when an Attr was
expected.

BC41

Appendix D: The XML Document Object Model

DOMError
This interface describes an error. There are no methods, just attributes.

Property Type Description

severity unsigned short (read-only) The severity of the error, as defined in the fol-
lowing table

message DOMString (read-only) A string describing the type of error that
occurred

type DOMString (read-only) A string indicating which related data is
expected in the relatedData

relatedException DOMObject (read-only) The related platform-dependent exception, if
any

relatedData DOMObject (read-only) Related dependent data, if any

location DOMLocator (read-only) The location of the error

ErrorSeverity Constant Description

SEVERITY_WARNING A “warning,” meaning that the parser found a
problem with the XML document, but it is not
severe enough to be an error or fatal error

SEVERITY_ERROR An “error” whereby the XML document vio-
lates the rules in the XML recommendation;
results are undefined

SEVERITY_FATAL_ERROR A “fatal error” whereby the XML parser must
stop processing the XML document (except to
find additional errors)

DOMErrorHandler
This is a callback interface that the DOM implementation can call when it comes across an error while
processing a document. In other words, you can implement this interface yourself, in your own code;
whenever your DOM implementation comes across an error, it will call your object, which implements
this interface so that you can handle it.

Method Description

boolean handleError(DOMError error) This method is called by the DOM implementa-
tion whenever an error occurs. If your code
returns true and the error is not a “fatal error,”
it means that you’re indicating to the DOM
implementation that it should continue to try
parsing the XML document.

BC42

Appendix D: The XML Document Object Model

Node
The Node interface is the base interface upon which most of the DOM objects are built, and contains
methods and attributes that can be used for all types of nodes. The interface also includes some helper
methods and attributes that only apply to particular types of nodes.

Remember that any part of an XML document — an element, an attribute, a piece of text, a processing
instruction, and so on — is considered a “node,” so this interface is very generic.

Property Type Description

nodeName DOMString (read-only) The name of the node. Will return different
values, depending on the nodeType, as listed
in the next table.

nodeValue DOMString The value of the node. Will return different
values, depending on the nodeType, as listed
in the next table.

nodeType unsigned short (read-only) The type of node. Will be one of the values
from the next table.

parentNode Node (read-only) The node that is this node’s parent

childNodes NodeList (read-only) A NodeList containing all of this node’s
children. If there are no children, an empty
NodeList is returned, not NULL.

firstChild Node (read-only) The first child of this node. If there are no
children, this returns NULL.

lastChild Node (read-only) The last child of this node. If there are no
children, this returns NULL.

previousSibling Node (read-only) The node immediately preceding this node. If
there is no preceding node, this returns NULL.

nextSibling Node (read-only) The node immediately following this node. If
there is no following node, this returns NULL.

attributes NamedNodeMap A NamedNodeMap containing the attributes of
(read-only) this node. If the node is not an element, this

returns NULL.

ownerDocument Document (read-only) The document to which this node belongs

namespaceURI DOMString (read-only) The namespace URI of this node. Returns
NULL if a namespace is not specified.

prefix DOMString The namespace prefix of this node. Returns
NULL if a namespace is not specified.

localName DOMString (read-only) Returns the local part of this node’s QName

Table continued on following page

BC43

Appendix D: The XML Document Object Model

Property Type Description

baseURI DOMString (read-only) This property returns the node’s “base URI,”
as defined in the XML Information Set Recom-
mendation. This recommendation is beyond
the scope of this book, but suffice it to say that
a base URI allows namespace names to use
relative paths; for example, if I specify a base
URI of http://www.wiley.com, I might
declare my namespace to be /pers and the
XML parser would figure out that the full
namespace name is actually http://www
.wiley.com/pers. You can find more infor-
mation at http://www.w3.org/TR/xmlbase/
and http://www.w3.org/TR/xml-infoset/.

textContent DOMString Returns the text content of this node, and any
descendent nodes. When this property is set, be
aware that any existing children of the node
will be removed and replaced with a Text
node containing the value you set it to.

The values of the nodeName and nodeValue properties depend on the value of the nodeType property,
which can return one of the following constants:

nodeType Property Constant nodeName NodeValue

ELEMENT_NODE Tag name NULL

ATTRIBUTE_NODE Name of attribute Value of attribute

TEXT_NODE #text Content of the text
node

CDATA_SECTION_NODE #cdata-section Content of the
CDATA section

ENTITY_REFERENCE_NODE Name of entity referenced NULL

ENTITY_NODE Entity name NULL

PROCESSING_INSTRUCTION_NODE Target Entire content
excluding the target

COMMENT_NODE #comment Content of the
comment

DOCUMENT_NODE #document NULL

DOCUMENT_TYPE_NODE Document type name NULL

DOCUMENT_FRAGMENT_NODE #document-fragment NULL

NOTATION_NODE Notation name NULL

BC44

Appendix D: The XML Document Object Model

The position of a node is specified using a DocumentPosition, which can be one of the following:

DocumentPosition Constant Description

DOCUMENT_POSITION_ The node is contained by the reference node
CONTAINED_BY

DOCUMENT_POSITION_CONTAINS The node contains the reference node

DOCUMENT_POSITION_ The nodes are not connected
DISCONNECTED

DOCUMENT_POSITION_FOLLOWING The node follows the reference node

DOCUMENT_POSITION_ Whether this node precedes or follows the
IMPLEMENTATION_SPECIFIC reference node is implementation-specific

DOCUMENT_POSITION_PRECEDING The reference node follows this node

Method Description

Node insertBefore(Node newChild, Inserts the newChild node before the existing
Node refChild) refChild. If refChild is NULL, it inserts the node at

the end of the list. Returns the inserted node.

Node replaceChild(Node newChild, Replaces oldChild with newChild. Returns
Node oldChild) oldChild.

Node removeChild(Node oldChild) Removes oldChild from the list and returns it

Node appendChild(Node newChild Adds newChild to the end of the list and returns it

boolean hasChildNodes() Returns a Boolean: true if the node has any children,
false otherwise

Node cloneNode(boolean deep) Returns a duplicate of this node. If the boolean deep
parameter is true, this will recursively clone the sub-
tree under the node; otherwise, it will only clone the
node itself.

void normalize() If there are multiple adjacent Text child nodes (from a
previous call to Text.splitText()), this method
will combine them again. It doesn’t return a value.

boolean isSupported(DOMString Indicates whether this implementation of the DOM
feature, DOMString version) supports the feature passed. Returns a Boolean:

true if it supports the feature, false otherwise.

boolean hasAttributes() Returns true if this node has attributes, or false
otherwise

Table continued on following page

BC45

Appendix D: The XML Document Object Model

Method Description

unsigned short Compares this node with the one passed in the other
compareDocumentPosition(Node other) parameter, to determine the relative position of the

two nodes. The return value is one of the values of the
DocumentPosition constants.

boolean isSameNode(Node other) Returns true if the Node object passed in other is the
same as this one — in other words, if there are two ref-
erences to the same object

This is different from the case where there are two dis-
tinct nodes that happen to have the same attributes,
text children, etc; that condition would be tested using
the isEqualNode() method.

DOMString lookupPrefix Looks up the namespace prefix associated with the
(DOMString namespaceURI) passed namespace URI. Default namespace declara-

tions are ignored by this method.

boolean isDefaultNamespace Returns true if the specified namespace URI is the
(DOMString namespaceURI) default namespace for the document, false otherwise

DOMString lookupNamespaceURI Returns the namespace URI associated with the prefix
(DOMString prefix) passed.

boolean isEqualNode(Node arg) Returns true if the node passed in the arg parameter
is equal to this node. In other words, the other node
has the same namespace URI and local name, same
nodeValue, same attributes and values (if applicable),
etc. If any of this differs between the two nodes,
false is returned.

If the two Node objects point to the same in-memory
object, true would be returned, just as it would from
the isSameNode() method.

DOMObject getFeature Returns a specialized object that implements the
(DOMString feature, DOMString API(s) specified by the feature and version
version) parameters

DOMUserData setUserData Associates a DOMUserData object with the specified
(DOMString key, DOMUserData data) key for this node. The value can later be retrieved

using the getUserData() method.

DOMUserData getUserData Returns the DOMUserData object specified by the key
(DOMString key) attribute. If there is no object for the specified key,

NULL is returned.

BC46

Appendix D: The XML Document Object Model

Document
An object implementing the Document interface represents the entire XML document. This object is also
used to create other nodes at runtime. The Document interface extends the Node interface.

Property Type Description

Doctype DocumentType Returns a DocumentType object indicating the
(read-only) document type associated with this document. If the

document has no document type specified, it returns
NULL.

implementation DOMImplemen- The DOMImplementation object used for this
tation (read-only) document

documentElement Element (read-only) The root element for this document

inputEncoding DOMString The encoding that was used for this document at the
(read-only) time of parsing. Returns NULL if the input encoding is

not known.

xmlEncoding DOMString The encoding of this document, as specified in the
(read-only) XML declaration. Returns NULL when not known.

xmlStandalone boolean Returns whether this document is “standalone,” as
specified in the XML declaration. Returns false if this
value was not set on the XML declaration. It should
also be noted, per the DOM Recommendation, that
this attribute is not validated; the DOM will simply
return whatever was specified in the XML declaration.

xmlVersion DOMString The XML version number specified in the XML decla-
ration. If there is no XML declaration but the docu-
ment supports the XML feature — in other words, if it
is XML — then 1.0 is returned. For non-XML docu-
ments (such as HTML), this attribute returns NULL.

strictErrorChecking boolean Indicates whether the DOM implementation should
enforce error checking. (Set to true by default.)

documentURI DOMString The location of the document. If the document’s loca-
tion is not known — or if the document was created
programmatically, rather than retrieved from a URI —
then NULL is returned.

domConfig DOMConfigura- Returns the configuration used when the
tion (read-only) normalizeDocument() method is called

BC47

Appendix D: The XML Document Object Model

Method Description

Element createElement Creates an element with the name specified
(DOMString tagName)

DocumentFragment Creates an empty DocumentFragment object
createDocumentFragment()

Text createTextNode Creates a Text node, containing the text in data
(DOMString data)

Comment createComment Creates a Comment node, containing the text in data
(DOMString data)

CDATASection createCDATASection Creates a CDATASection node, containing the text
(DOMString data) in data

ProcessingInstruction Creates a ProcessingInstruction node, with the
createProcessingInstruction specified target and data
(DOMString target, DOMString data)

Attr createAttribute(DOMString name) Creates an attribute, with the specified name

EntityReference createEntityReference Creates an entity reference, with the specified name
(DOMString name)

NodeList getElementsByTagName Returns a NodeList of all elements in the document
(DOMString tagname) with this tagname. The elements are returned in docu-

ment order.

Node importNode(Node Imports importedNode from another document into
importedNode, boolean deep) this one. The original node is not removed from the

old document; it is just cloned. (The boolean deep
parameter specifies whether it is a deep or shallow
clone: deep means the subtree under the node is also
cloned; shallow means only the node itself is cloned.)
Returns the new node.

Element createElementNS Creates an element, with the specified namespace and
(DOMString namespaceURI, QName
DOMString qualifiedName)

Attr createAttributeNS(DOMString Creates an attribute, with the specified namespace
namespaceURI, DOMString and QName
qualifiedName)

NodeList getElementsByTagNameNS Returns a NodeList of all the elements in the
(DOMString namespaceURI, document that have the specified local name and
DOMString localName) are in the namespace specified by namespaceURI

Element getElementById Returns the element with the ID specified in
(DOMString elementID) elementID. If there is no such element, it returns

NULL.

BC48

Appendix D: The XML Document Object Model

Method Description

normalizeDocument() This method causes the DOM implementation to
“normalize” itself. For example, any contiguous Text
nodes would be grouped together into one Text node,
and the replacement tree of EntityReference nodes
would be updated. Other actions might take place as
well, as specified by the domConfig property.

Node renameNode(Node n, Renames the node, specified by n, using the new
DOMString namespaceURI, namespace URI and qualified name
DOMString qualifiedName)

DOMImplementation
The DOMImplementation interface provides methods that are not specific to any particular document,
but to any document from this DOM implementation. You can get a DOMImplementation object from
the implementation property of the Document interface.

Method Description

boolean hasFeature(DOMString Returns a boolean indicating whether this DOM
feature, DOMString version) implementation supports the feature requested.

version is the version number of the feature to test.

DocumentType createDocumentType Creates a DocumentType object with the specified
(DOMString qualifiedName, attributes
DOMString publicID, DOMString
systemID)

Document createDocument Creates a Document object, with the document
(DOMstring namespaceURI, element specified by qualifiedName. The doctype
DOMString qualifiedName, property must refer to an object of type
DocumentType doctype) DocumentType.

DOMObject getFeature(DOMString Returns an object that implements the required APIs
feature, DOMString version) specified in the feature and version attributes

DOMImplementationSource
This interface is used to get a DOM implementation. It is also used to get the DOMImplementationList
(in the next table).

BC49

Appendix D: The XML Document Object Model

Method Description

DOMImplementation Returns a DOMImplementation that supports the
getDOMImplementation features specified in the features attribute
(DOMString features)

DOMImplementationList Returns a DOMImplementationList of DOM
getDOMImplementationList implementations that support the features specified
(DOMString features) in the features attribute. Feature names are not case

sensitive, meaning that “Core” would be treated the
same as “core.”

Keep in mind that the list of “features” a DOM implementation might support are limitless; anyone
implementing the DOM recommendation could think of other enhanced functionality they might want
to provide, and create a feature. Every DOM implementation supports the “core” feature, because that
feature represents the core interfaces. DOM implementations implementing the “extended interfaces”
also support the “XML” feature. DOM implementations that support the Load and Save functionality
support the “LS” feature, while DOM implementations that support the Validation interfaces will sup-
port the “Validation” feature.

DOMImplementationList
There are several different, interrelated modules in relation to the DOM. For example, this appendix
lists the Core, Load and Save, and Validation modules, but many others might also be implemented.
Furthermore, there have been various stages in the evolution of the DOM recommendations. This
appendix covers DOM Level 3, which is the third incarnation of the DOM recommendations, while
previous editions of this book covered DOM Level 2.

Therefore, a toolkit might provide more than one DOM implementation that developers could use; one
might implement DOM Level 2, while another implements various modules from DOM Level 3. The
DOMImplementationList interface is used to get the various DOM implementations provided by a
particular toolkit.

Property Type Description

length unsigned long (read-only) Returns the number of items in the list

Method Description

DOMImplementation item Returns the DOMImplementation at the position
(unsigned long index) indicated by the index parameter

The items are numbered starting at 0, so the first item is “item 0,” the second is “item 1,” etc.

BC50

Appendix D: The XML Document Object Model

DocumentFragment
A document fragment is a temporary holding place for a group of nodes, usually created with the intent
of inserting the nodes back into the document at a later point. The DocumentFragment interface extends
the Node interface, without adding any additional properties or methods.

NodeList
A NodeList contains an ordered group of nodes, accessed via an index.

Property Type Description

length unsigned long (read-only) The number of nodes contained in this list. The range
of valid child node indices is 0 to length –1 inclusive.

Method Description

Node item(unsigned long index) Returns the Node in the list at the indicated index.
If index is the same as or greater than length, it
returns NULL.

DOMStringList
The DOMStringList interface is used for working with a collection of strings. It represents an array or
collection of DOMString objects.

Property Type Description

length unsigned long (read-only) The number of DOMString objects in this list

Method Description

boolean contains(DOMString str) Indicates whether the string in the str parameter is in
this list of DOMString objects. That is, if one of the
DOMString objects in the list is the same as the str
parameter, contains() will return true; otherwise,
it will return false.

DOMString item(unsigned long index) Returns the DOMString from this list, which is at
the location specified by the index parameter.
Returns NULL if there is no item with the specified
index location.

The items are numbered starting at 0, so the first item is “item 0,” the second is “item 1,” etc.

BC51

Appendix D: The XML Document Object Model

NameList
The NameList interface is similar to the DOMStringList interface, except that it is used for an array or
collection of namespace names and values, instead of DOMString objects.

Property Type Description

length unsigned long (read-only) Returns the number of items in the list

Method Description

DOMString getName(unsigned Returns the namespace name at the position indicated
long index) by the index parameter

DOMString getNamespaceURI Returns the namespace URI for the item at the
(unsigned long index) position indicated by the index parameter

boolean contains(DOMString str) Returns true if the specified name is part of this
NameList; otherwise, it returns false

boolean containsNS(DOMString Returns true if the namespace URI/name combination
namespaceURI, DOMString name) exists in this NameList; otherwise, it returns false

The items are numbered starting at 0, so the first item is “item 0,” the second is “item 1,” etc.

Element
The Element interface provides properties and methods for working with an element. It extends the
Node interface.

Property Type Description

tagName DOMString (read-only) The name of the element

schema TypeInfo (read-only) The type information associated with this element.
TypeInfo See the TypeInfo interface for more information.

Method Description

DOMString getAttribute Returns the value of the attribute with the specified
(DOMString name) name, or an empty string if that attribute does not

have a specified or default value

void setAttribute(DOMString name, Sets the value of the specified attribute to this new
DOMString value) value. If no such attribute exists, a new one with this

name is created.

BC52

Appendix D: The XML Document Object Model

Method Description

void removeAttribute Removes the specified attribute. If the attribute has a
(DOMString name) default value, it is immediately replaced with an iden-

tical attribute containing this default value.

Attr getAttributeNode Returns an Attr node containing the named attribute.
(DOMString name) Returns NULL if there is no such attribute.

Attr setAttributeNode (Attr newAttr) Adds a new attribute node. If an attribute with the
same name already exists, it is replaced. If an Attr
has been replaced, it is returned; otherwise, NULL is
returned.

Attr removeAttributeNode Removes the specified Attr node and returns it. If the
(Attr oldAttr) attribute has a default value, it is immediately

replaced with an identical attribute containing this
default value.

NodeList getElementsByTagName Returns a NodeList of all descendants with the given
(DOMString name) node name

DOMString getAttributeNS Returns the value of the specified attribute, or an
(DOMString namespaceURI, empty string if that attribute does not have a specified
DOMString localName) or default value

void setAttributeNS(DOMString Sets the value of the specified attribute to this new
namespaceURI, DOMString value. If no such attribute exists, a new one with this
qualifiedName, DOMString value) namespace URI and QName is created.

void removeAttributeNS(DOMString Removes the specified attribute. If the attribute has a
namespaceURI, DOMString localName) default value, it is immediately replaced with an iden-

tical attribute containing this default value.

Attr getAttributeNodeNS(DOMString Returns an Attr node containing the specified
namespaceURI, DOMString localName) attribute. Returns NULL if there is no such attribute.

Attr setAttributeNodeNS(Attr newAttr) Adds a new Attr node to the list. If an attribute with
the same namespace URI and local name exists, it is
replaced. If an Attr object is replaced, it is returned;
otherwise, NULL is returned.

NodeList getElementsByTagNameNS Returns a NodeList of all the elements matching
DOMString namespaceURI, DOMString these criteria
localName)

boolean hasAttribute(DOMString name) Returns true when the node has an attribute with the
given name — whether explicitly or by default from
the schema

boolean hasAttributeNS(DOMString Returns true when the node has an attribute with the
namespaceURI, DOMString localName) given namespace URI and local name — whether

explicitly or by default from the schema

Table continued on following page

BC53

Appendix D: The XML Document Object Model

Method Description

setIdAttribute(DOMString name, Used to make an attribute an ID attribute or to set it to
boolean isId) not be an ID attribute; the isId parameter specifies

whether the attribute specified by name should be set
to an ID or not.

setIdAttributeNS(DOMString Used to make an attribute an ID attribute or to set it to
namespaceURI, DOMString not be an ID attribute; the isId parameter specifies
localName, boolean isId) whether the attribute specified by the namespace URI

and local name should be set to an ID or not.

setIdAttributeNode(Attr idAttr, Sets the specified attribute node to be an ID or not to
boolean isId) be an ID; the isId parameter specifies whether the

node should be set to an ID or not.

NamedNodeMap
A named node map represents an unordered collection of nodes, retrieved by name.

Property Type Description

length unsigned long (read-only) The number of nodes in the map

Method Description

Node getNamedItem(DOMString name) Returns a Node, where the nodeName is the same as
the name specified, or NULL if no such node exists

Node setNamedItem(Node arg) The arg parameter is a Node object, which is added to
the list. The nodeName property is used for the name
of the node in this map. If a node with the same name
already exists, it is replaced. If a Node is replaced, it is
returned; otherwise, NULL is returned.

Node removeNamedItem Removes the Node specified by name and returns it
(DOMString name)

Node item(unsigned long index) Returns the Node at the specified index. If index is
the same as or greater than length, it returns NULL.

Node getNamedItemNS (DOMString Returns a Node matching the namespace URI and
namespaceURI, DOMString localName) local name, or NULL if no such node exists

Node setNamedItemNS(Node arg) The arg parameter is a Node object, which is added to
the list. If a node with the same namespace URI and
local name already exists, it is replaced. If a Node is
replaced, it is returned; otherwise, NULL is returned.

Node removeNamedItemNS Removes the specified node and returns it
(DOMString namespaceURI,
DOMString localName)

BC54

Appendix D: The XML Document Object Model

Attr
The Attr interface provides properties for dealing with an attribute. It extends the Node interface.

Property Type Description

name DOMString (read-only) The name of the attribute

specified boolean (read-only) A boolean indicating whether this attribute was speci-
fied (true) or just defaulted (false)

value DOMString The value of the attribute

owner Element (read-only) An Element object, representing the element to which
Element this attribute belongs

schema TypeInfo (read-only) The type information associated with this attribute
TypeInfo by its schema. See the TypeInfo interface for more

information.

isId boolean (read-only) Returns true if this attribute is an ID attribute, mean-
ing that it was specified to be such by the document’s
DTD or schema.

CharacterData
The CharacterData interface provides properties and methods for working with character data. It
extends the Node interface.

Property Type Description

data DOMString The text in this CharacterData node

length unsigned long (read-only) The number of characters in the node

Method Description

DOMString substringData(unsigned Returns a portion of the string, starting at the offset.
long offset, unsigned long count) Will return the number of characters specified in

count or until the end of the string, whichever is less.

void appendData(DOMString arg) Appends the string in arg to the end of the string

void insertData(unsigned long offset, Inserts the string in arg into the middle of the string,
DOMString arg) starting at the position indicated by offset

void deleteData(unsigned long Deletes a portion of the string, starting at the offset.
offset, unsigned long count) Will delete the number of characters specified in

count or until the end of the string, whichever is less.

Table continued on following page

BC55

Appendix D: The XML Document Object Model

Method Description

void replaceData(unsigned long offset, Replaces a portion of the string, starting at the
unsigned long count, DOMString arg) offset. Will replace the number of characters specified

in count or until the end of the string, whichever is less.
The arg parameter is the new string to be inserted.

Text
The Text interface provides additional methods and properties for working with text nodes. It extends
the CharacterData interface.

Property Type Description

isElement boolean (read-only) Returns true if the text content is “element content
Content whitespace” — the type of whitespace that can usually
Whitespace be ignored by a parser, because the element is not

declared in its DTD or schema to have text content —
or false otherwise

wholeText DOMString (read-only) Returns a DOMString containing all of the Text nodes
logically adjacent to this one. In other words, it would
be similar to normalizing the parent node of this Text
node, and then getting the text.

Method Description

Text splitText(unsigned long offset) Separates this single Text node into two adjacent
Text nodes. All of the text up to the offset point
goes into the first Text node, and all of the text start-
ing at the offset point to the end goes into the sec-
ond Text node.

Text replaceWholeText(DOMString Replaces the text of this node — and all logically
content) adjacent Text nodes — with the text specified in the

DOMString parameter. In other words, if you have
previously used the splitText() method to split
this Text node into multiple Text nodes, then calling
replaceWholeText() would remove all of those
Text nodes and replace them with one single node
containing the contents of the content parameter.

Comment
The Comment interface encapsulates an XML comment. It extends the CharacterData interface, without
adding any additional properties or methods. As mentioned in Chapter 2, however, remember that not
all XML parsers will pass on comments, so your DOM implementation can only make comments avail-
able to you if the parser it’s using under the hood gives it access to them.

BC56

Appendix D: The XML Document Object Model

TypeInfo
The TypeInfo interface represents type information, as specified by a document’s DTD or schema.

Property Type Description

typeName DOMString (read-only) The name of the attribute’s or element’s type, or NULL
if unknown

type DOMString (read-only) The namespace of the attribute’s or element’s type,
Namespace or NULL if unknown.

If the node in question is an attribute, and the schema for the document is a DTD, the namespace
returned is http://www.w3.org/TR/REC-xml.

DerivationMethods Constant Description

DERIVATION_RESTRICTION Indicates derivation by restriction

DERIVATION_EXTENSION Indicates derivation by extension

DERIVATION_UNION Indicates derivation by union

DERIVATION_LIST Indicates derivation by list

Method Description

boolean isDerivedFrom Returns true if the type of the current node is
(DOMString typeNamespaceArg, derived from the specified type
DOMString typeNameArg,
unsigned long derivationMethod)

UserDataHandler
If you’re going to make use of “user data,” you should implement the UserDataHandler interface in
your code. When user data is specified for a node and that node is cloned, renamed, or imported, the
DOM implementation will call your object, implementing this interface, enabling you to do whatever
you wish with the data.

OperationType Constant Description

NODE_CLONED The node is being cloned.

NODE_IMPORTED The node is being imported.

NODE_DELETED The node is being deleted.

NODE_RENAMED The node is being renamed.

NODE_ADOPTED The node is being adopted by a new parent node.

BC57

Appendix D: The XML Document Object Model

Method Description

void handle(unsigned short operation, Whenever a node for which this handler is registered
DOMString key, DOMUserData data, is cloned, imported, deleted, renamed, or adopted,
Node src, Node dest) this method is called. The operation parameter is

one of the OperationType values defined above.

DOMLocator
This interface describes a location in an XML document. For example, it might be used to indicate where
an error occurred.

Property Type Description

line long (read-only) The line number this locator is pointing to, or -1 if not
Number available

column long (read-only) The column number this locator is pointing to, or -1
Number if not available

byteOffset long (read-only) The number of bytes into the document this locator is
pointing to, or -1 if no byte offset is available

utf16Offset long (read-only) The UTF 16 offset into the document this locator is
pointing to, or -1 if there is no UTF 16 offset available

related Node (read-only) The node this locator is pointing to, or NULL if no
Node node is available

uri DOMString The URI this locator is pointing to, or NULL if no URI
is available

DOMConfiguration
This interface represents a document’s configuration and parameters. Using this interface, developers
can change many aspects of the way a DOM behaves.

The list of parameters that can be used with DOMConfiguration is limitless. Several are defined in the
DOM Recommendation(s), but others can be created by other recommendations or specifications or even
by specific DOM implementers.

Property Type Description

parameter DOMStringList (read-only) The list of parameters supported by this
Names DOMConfiguration object — in other words, by this

DOM implementation

BC58

Appendix D: The XML Document Object Model

Method Description

setParameter(DOMString name, Sets the value of the parameter
DOMUserData value)

DOMUserData getParameter Returns the value of the parameter, if known
(DOMString name)

boolean canSetParameter(DOMString Returns true if the DOM implementation is able to
name, DOMUserData value) set the given parameter to the given value

Extended Interfaces: XML Module
So far, we’ve been looking at the Core DOM interfaces; these are interfaces that must always be imple-
mented, by every DOM implementation. However, not every DOM implementation is meant for working
with XML documents; some DOM implementations only work with HTML documents.

The XML Module provides the DOM Extended Interfaces for XML, which need only be provided by
DOM implementations that will be working with XML documents.

CDATASection
The CDATASection interface encapsulates an XML CDATA section. It extends the Text interface,
without adding any additional properties or methods.

ProcessingInstruction
The ProcessingInstruction interface provides properties for working with an XML processing
instruction (PI). It extends the Node interface.

Property Type Description

target DOMString (read-only) The PI target — in other words, the name of the
application to which the PI should be passed

data DOMString The content of the PI

DocumentType
The DocumentType interface provides properties for working with an XML document type. It can be
retrieved from the Document interface’s doctype property. (If a document doesn’t have a document
type, doctype will return NULL.) DocumentType extends the Node interface.

BC59

Appendix D: The XML Document Object Model

Property Type Description

name DOMString (read-only) The name of the DTD

entities NamedNodeMap A NamedNodeMap containing all entities declared in
(read-only) the DTD (both internal and external). Parameter enti-

ties are not contained, and duplicates are discarded
according to the rules followed by validating XML
parsers.

notations NamedNodeMap A NamedNodeMap containing the notations contained
(read-only) in the DTD. Duplicates are discarded.

publicId DOMString (read-only) The external subset’s public identifier

systemId DOMString (read-only) The external subset’s system identifier

internal DOMString (read-only) The internal subset, as a string
Subset

Notation
The Notation interface provides properties for working with an XML notation. Notations are read-only
in the DOM. It extends the Node interface.

Property Type Description

publicId DOMString (read-only) The public identifier of this notation. If the public
identifier was not specified, it returns NULL.

systemId DOMString (read-only) The system identifier of this notation. If the system
identifier was not specified, it returns NULL.

Entity
The Entity interface provides properties for working with parsed and unparsed entities. Entity nodes
are read-only. This interface extends the Node interface.

Property Type Description

publicId DOMString (read-only) The public identifier associated with the entity, or
NULL if none is specified

systemId DOMString (read-only) The system identifier associated with the entity, or
NULL if none is specified

notation DOMString (read-only) For unparsed entities, the name of the notation for the
Name entity. NULL for parsed entities.

BC60

Appendix D: The XML Document Object Model

Property Type Description

input DOMString (read-only) The encoding used for this entity at the time of
Encoding parsing, when it is an external parsed entity. (It is NULL

otherwise.)

xml DOMString (read-only) The encoding of this entity, when it is an external parsed
Encoding entity. (It is NULL otherwise.)

xmlVersion DOMString (read-only) The XML version number of the entity, when it is an
external parsed entity. (It is NULL otherwise.)

EntityReference
The EntityReference interface encapsulates an XML entity reference. It extends the Node interface,
without adding any properties or methods.

Load and Save Interfaces
The interfaces defined in this section are used for loading and saving XML documents. These interfaces
are a welcome addition to the DOM Recommendations; when the DOM Level 2 Recommendation(s)
were published, there was no standard way to load an XML document into a DOM implementation nor
to save it.

You will notice that the interface and data type names all contain “LS” — short for “Load and Save” — to
distinguish them from other interface names.

Data Types
In addition to the data types listed earlier in this appendix —DOMString, DOMObject, etc. — some
fundamental data types are defined specifically for the Load and Save interfaces.

First, there are two data types defined for a sequence of bytes, representing data. LSInputStream
defines a sequence of bytes into a DOM, while LSOutputStream defines a sequence of bytes out of a
DOM. For reference, the LSInputStream would be analogous to the Java java.io.InputStream
object, and the LSOutputstream would be analogous to the Java java.io.OutputStream object.

While these two stream data types are used for working with a series of bytes, there are also two data
types defined for working with 16-bit units, such as UTF-16 characters. These are LSReader and
LSWriter.

LSException
This interface defines an exception that can be raised when reading or writing a document with a DOM
implementation.

BC61

Appendix D: The XML Document Object Model

Property Type Description

code unsigned short The exception code, which will be one of the values in
the following table

LSExceptionCode Constant Description

PARSE_ERR The error was a result of parsing an XML document.

SERIALIZE_ERR The error was a result of writing an XML document.

DOMImplementationLS
This interface contains factory methods for creating load and save objects.

Note that not all DOM implementations support asynchronous processing. To determine whether your
DOM implementation does, use the DOMImplementation.getFeature() method to find out if the
DOM implementation supports the LS-Async feature.

DOMImplementationLSMode Constant Description

MODE_SYNCHRONOUS Synchronous mode — the method will not return until
the document is finished loading or writing

MODE_ASYNCHRONOUS Asynchronous mode — the method will return immedi-
ately, and processing will continue in the background.
When working asynchronously, objects in your applica-
tion will have to implement the LSLoadEvent or
LSProgressEvent interface, so that the parser can
inform the application when parsing is complete.

Method Description

LSParser createLSParser(unsigned short Creates a new LSParser object, for use in parsing
mode, DOMString schemaType) a document

LSSerializer createLSSerializer() Creates a new LSSerializer object, for use in serial-
izing a document

LSInput createLSInput() Creates a new, empty LSInput object

LSOutput createLSOutput() Creates a new, empty LSOutput object

LSParser
This interface is used to parse an XML document from scratch or to augment an already existing XML
document.

BC62

Appendix D: The XML Document Object Model

Property Type Description

domConfig DOMConfiguration The DOMConfiguration object, which will be used
(read-only) when parsing an input source. This object can be used

to configure how the input will be parsed.

filter LSParserFilter When a filter is provided, it can cause the result of the
parse operation to omit anything that was filtered. For
more information, see the LSParseFilter interface.

async boolean (read-only) Returns true if the LSParser is asynchronous, false
otherwise

busy boolean (read-only) Returns true if the LSParser is currently loading a
document, false otherwise

ActionType Constant Description

ACTION_APPEND_AS_CHILDREN The result of the parsing should be appended as chil-
dren of the context node.

ACTION_REPLACE_CHILDREN All children of the context node should be replaced by
the result of the parsing.

ACTION_INSERT_BEFORE The result of the parse operation should be inserted
into the document as children of the context node,
before any other children.

ACTION_INSERT_AFTER The result of the parse operation should be inserted
into the document as children of the context node,
after any other children.

ACTION_REPLACE The context node should be replaced by the result of
the parse operation.

Method Description

Document parse(LSInput input) Parse an XML document from the LSInput input
source.

Document parseURI(DOMString uri) Parse an XML document that resides at the specified
URI.

Node parseWithContext(LSInput Parse an XML document from the LSInput input
input, Node contextArg, unsigned source, and put the result into the context of the
short action) contextArg node. The action parameter would

specify the type of action, per the ActionType con-
stants listed above.

abort() Aborts the current parse process. If nothing is currently
being parsed, this method does nothing.

BC63

Appendix D: The XML Document Object Model

LSSerializer
This interface represents an object that can serialize an XML document to an output stream or a string.

Property Type Description

domConfig DOMConfig (read-only) The DOMConfiguration object used to configure how
the document will be serialized

newLine DOMString The end-of-line sequence characters to be used in the
XML being written out

filter LSSerializerFilter If provided, the filter can be used to control which
parts of the XML document will be serialized.

Method Description

boolean write(Node nodeArg, Serializes the XML to the destination parameter.
LSOutput destination) Returns true if successful, false otherwise.

boolean writeToURI(Node A convenience method; it is the same as calling
nodeArg, DOMString uri) write() with the destination specifying no encod-

ing, and the systemId set to a URI.

DOMString writeToString(Node Serializes the XML, and returns it in the DOMString
nodeArg) return value

LSInput
This interface is used for working with the “input” to a parse operation. It doesn’t provide any methods,
just attributes, which specify the source XML document.

Property Type Description

character LSReader A stream of characters that contains the XML to
Stream be parsed

byteStream LSInputStream A stream of bytes that contains the XML to be parsed

stringData DOMString ADOMString that contains the XML to be parsed. If you
have a string containing XML data, this is the property
you want to use, not the characterStream property.

systemId DOMString The system ID for the input XML

publicId DOMString The public identifier of the input XML

baseURI DOMString The base URI to be used when resolving a relative
system ID

BC64

Appendix D: The XML Document Object Model

Property Type Description

encoding DOMString The encoding of the XML, if known

certifiedText boolean Set this attribute to true if you want the parser to
assume that the XML has been “certified,” as specified
in section 2.13 of XML 1.1.

LSOutput
This interface represents an output destination, where XML data will be serialized.

Property Type Description

character LSWriter A writeable stream of 16-bit characters, where the
Stream serialized XML will be sent

byteStream LSOutputStream A writeable stream of bytes, where the serialized XML
will be sent

systemId DOMString A URI for the output destination

encoding DOMString The character encoding to use for the serialized XML

LSResourceResolver
This interface is used for resolving external resources. It defines only one method.

Method Description

LSInput resolveResource(DOMString Resolves the external resource, specified by the
type, DOMString namespaceURI, various input parameters. The result of the resolution
DOMString publicId, DOMString is returned in an LSInput object.
systemId, DOMString baseURI)

LSParserFilter
This interface can be used during parsing, to filter the result. For example, you might want to parse an
XML document but specifically ignore some sections of it that you know you don’t need.

Property Type Description

whatTo unsigned long (read-only) Indicates to the LSParser what types of nodes to
Show show to the acceptNode() method

BC65

Appendix D: The XML Document Object Model

Filter Constant Description

FILTER_ACCEPT Accept the node.

FILTER_REJECT Reject the node and its children.

FILTER_SKIP Skip this single node; children will still be looked at.

FILTER_INTERRUPT Interrupt the normal processing of the document.

Method Description

unsigned short startElement This method is called at the beginning of the parsing
(Element elementArg) of each element, by the parser. The return value indi-

cates to the parser how it should handle the node,
using one of the constants defined in the preceding
table.

This method is called before the element is parsed, not
at the end, so it can be used to quickly skip processing
of an element.

unsigned short acceptNode This method is called by the parser at the completion
(Node nodeArg) of parsing each node. It returns to the parser how the

node should be handled, using one of the constants
defined in the preceding table.

LSSerializerFilter
Similar to the LSParserFilter, this interface can be used to filter an XML document that is being seri-
alized and to control which parts are written to the output.

Property Type Description

whatTo unsigned long (read-only) Indicates the type of nodes to show the filter
Show

LSProgressEvent
This event is raised at various points during the parsing of a document, to indicate progress. It has no
methods, just attributes, which provide information about the progress.

BC66

Appendix D: The XML Document Object Model

Property Type Description

input LSInput (read-only) The input source that is currently being parsed

position unsigned long (read-only) The current position of the parser

totalSize unsigned long (read-only) The total size of the document being parsed —
including all external entities

LSLoadEvent
This interface defines an event that is raised when a document has completed loading. As with the
LSProgressEvent interface, it has no methods, just properties.

Property Type Description

new Document (read-only) The document that finished loading
Document

input LSInput (read-only) The input source that was parsed

Validation Interfaces
The interfaces in this section are concerned with document validation — that is, ensuring that a docu-
ment conforms to a DTD or schema.

For the purposes of the DOM Validation interfaces, no particular schema technology is implied; when
the word “schema” is referred to, it may be the W3C XML Schema Recommendation, but the DOM
interfaces don’t assume this. Any other schema technology could be used, as long as the DOM imple-
mentation you’re using supports it.

As a naming convention, all of the interfaces in the DOM Validation module end with “VAL.”

ExceptionVAL
There is just one exception interface for the DOM Validation functionality, which is the ExceptionVAL
exception.

Property Type Description

code unsigned short A code indicating the reason for the exception. This
code is one of the values in the ExceptionVALCode
constants — of which there is only one!

BC67

Appendix D: The XML Document Object Model

ExceptionVALCode Constant Description

NO_SCHEMA_AVAILABLE_ERR Indicates that the operation could not be performed,
because the schema was not available

NodeEditVAL
This interface is used for validation of a particular node in a document. The majority of methods defined
for this interface are simply questions the programmer can ask: Is it okay if I do this or will it make the
document invalid?

Property Type Description

defaultValue DOMString (read-only) The element’s or attribute’s default value, according
to the schema, if any

enumerated DOMStringList If the element or attribute is defined in its schema to
Values (read-only) have an enumerated list of values, this property will

return the list of possible values.

Validation Type Constant Description

VAL_WF Check whether the node is well-formed

VAL_NS_WF Check whether the node is namespace well-formed

VAL_INCOMPLETE This type of validation checks only the node’s imme-
diate children. This type of validation also includes
VAL_NS_WF.

VAL_SCHEMA Check whether the node, and all of its descendants,
are valid according to the document’s schema

Validation State Constant Description

VAL_TRUE The node is valid according to the operation performed.

VAL_FALSE The node is not valid according to the operation
performed.

VAL_UNKNOWN The node’s validity is unknown.

Method Description

unsigned short canInsertBefore Indicates whether the specified node could be
(Node newChild) inserted before this one, according to the schema

unsigned short canRemoveChild Indicates whether the specified node could be
(Node oldChild) removed from the document, according to the schema

BC68

Appendix D: The XML Document Object Model

Method Description

unsigned short canReplaceChild Indicates whether the specified new node could be
(Node newChild, Node oldChild) used to replace the old one, according to the schema

unsigned short canAppendChild Indicates whether the specified node could be
(Node newChild) appended to this one, according to the schema

unsigned short nodeValidity Returns the current validity of the node
(unsigned short valType)

All of these methods return a Validation State constant, indicating the validity being requested.

DocumentEditVAL
This interface extends the NodeEditVAL interface, and is used for validating an entire document. The
Recommendation states that an object which implements this interface must also implement the
Document interface.

Property Type Description

continuous boolean Setting this property to true indicates that the
Validity programmer wants the DOM implementation to
Checking continually check the document for validity; that is,

every time an element or attribute is added, removed,
or modified, the DOM implementation should ensure
that the document is still valid.

domConfig DOMConfiguration The DOMConfiguration object, which can be used for
(read-only) validation-related settings. Note that this is redundant,

as the Recommendation states that objects implement-
ing DocumentEditVAL must also implement Document,
which has its own domConfig attribute!

Method Description

NameList getDefinedElements Returns a list of all of the element names defined
(DOMString namespaceURI) (with global declaration) for the specified namespace.

If no schema is available (or there are no names for
the specified namespace), NULL is returned.

unsigned short validateDocument() Validates the document against its schema. The result of
the validation is returned; see the NodeEditVAL inter-
face for information on the Validation State constants.

ElementEditVAL
This interface extends the NodeEditVAL interface for functionality specifically related to the validation
of elements.

BC69

Appendix D: The XML Document Object Model

Most of the properties simply return lists, indicating what the document’s schema will permit the docu-
ment to contain; for example, the allowedChildren property returns a NameList, which contains the
names of all elements that are allowed as children of this element, per the schema.

Many of these properties and methods would be more useful when creating a document than when
working with a document that’s already been fully parsed. Or, if validation has been turned off, the
properties and methods here can be used to programmatically ensure that the document adheres to its
schema.

Property Type Description

allowedChildren NameList A list of all child elements that can be children of this
(read-only) element, including wildcards

allowedFirstChildren NameList A list of all child elements that could appear as the
(read-only) first child of this element

allowedParents NameList A list of all elements that could possibly be the parent
(read-only) of this element

allowedNextSiblings NameList A list of all elements that could follow this element in
(read-only) the document

allowedPrevious NameList A list of all elements that could precede this element
Siblings (read-only) in the document

allowedAttributes NameList A list of attribute names that can be attached to
(read-only) this element

requiredAttributes NameList A list of all attributes that must appear on this element
(read-only)

contentType unsigned short The element’s content type, as defined in the
(read-only) ContentTypeVAL constants (see the next table)

ContentTypeVAL Constant Description

VAL_EMPTY_CONTENTTYPE The element has no content

VAL_ANY_CONTENTTYPE The element contains unordered children —
corresponds to the ANY content model used by DTDs

VAL_MIXED_CONTENTTYPE The element can have child elements, along with text
children

VAL_ELEMENTS_CONTENTTYPE The element contains only elements (optionally with
whitespace)

VAL_SIMPLE_CONTENTTYPE The element has only text content

BC70

Appendix D: The XML Document Object Model

Method Description

unsigned short canSetTextContent Indicates whether the specified text could be set as
(DOMString possibleTextContent) this element’s text content

unsigned short canSetAttribute Indicates whether the specified attribute could be set
(DOMString attrname, DOMString attrval) on this element

unsigned short canSetAttributeNode Indicates whether the specified attribute could be set
(Attr attrNode) on this element

unsigned short canSetAttributeNS Indicates whether the specified attribute could be set
(DOMString namespaceURI, on this element
DOMString qualifiedName,
DOMString value)

unsigned short canRemoveAttribute Indicates whether the specified attribute could be
(DOMString attrname) removed from the element

unsigned short canRemove Indicates whether the specified attribute could be
AttributeNS(DOMString removed from the element
namespaceURI, DOMString
localName)

unsigned short canRemove Indicates whether the specified attribute could be
AttributeNode(Node attrNode) removed from the element

unsigned short isElement Determines whether this element is actually defined
Defined(DOMString name) in the document’s schema

unsigned short isElement Determines whether this element is actually defined
DefinedNS(DOMString in the document’s schema
namespaceURI, DOMString name)

CharacterDataEditVAL
This interface extends the NodeEditVAL interface. It is for working with character data within a docu-
ment. No attributes are defined aside from those already defined for the NodeEditVAL interface, just
methods that can be used to determine validity under various conditions.

Method Description

unsigned short isWhitespaceOnly() Indicates whether the character data is defined in the
schema to be whitespace

unsigned short canSetData Indicates whether the specified text can be set as this
(DOMString arg) character data’s content

unsigned short canAppendData Indicates whether the specified text can be appended
(DOMString arg) to this character data’s content

Table continued on following page

BC71

Appendix D: The XML Document Object Model

Method Description

unsigned short canReplaceData Indicates whether the specified text can be used to
(unsigned long offset, unsigned replace a section of this character data’s content
long count, DOMString arg)

unsigned short canInsertData Indicates whether the specified text can be inserted
(unsigned long offset, DOMString arg) into this character data’s content at the specified

location

unsigned short canDeleteData(unsigned Indicates whether the character data content can be
long offset, unsigned long count) deleted

BC72

Appendix D: The XML Document Object Model

E
XML Schema Element and

Attribute Reference

This appendix provides a full listing of all elements within the XML Schema Structures
Recommendation (found at http://www.w3.org/TR/xmlschema-1/). The elements appear
in alphabetical order. Each element is described with examples and a table detailing all the
attributes used in the element. When attributes are required, it is noted in the attribute listings.

The end of this appendix presents a table of the attributes in the XML Schema Instance namespace
that can be used in instance documents.

all
The <all> element is used within content model declarations. It indicates that all elements
declared within it may appear in the instance document in any order and may appear at most
once. The <all> element is used within a <complexType> or <group> element. It can contain
<element> or <annotation> elements. Note that when using minOccurs and maxOccurs on
<element> declarations within an <all> element, you are restricted to using a maxOccurs of 1
or 0. You can make an element optional by setting the minOccurs to 0. For more information, see
§3.8.2 of the Recommendation.

Example

<xs:element name=”Rucksack”>
<xs:complexType>

<xs:all>
<xs:element name=”Sunglasses” type=”xs:string” maxOccurs=”1” />
<xs:element name=”Sweater” type=”xs:string” maxOccurs=”1” />
<xs:element name=”Book” type=”xs:string” />
<xs:element name=”Lunchbox” type=”xs:string” />
<xs:element name=”Flask” type=”xs:string” />

</xs:all>
</xs:complexType>

</xs:element>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

maxOccurs 1 The maximum number of times the <all> model group
can occur

minOccurs 0 or 1 The minimum number of times the <all> model group
can occur

annotation
The <annotation> element is used to provide additional data for XML Schema declarations. It may
contain the <appinfo> and <documentation> elements, which are used to contain instructions for the
XML Schema processing application or for additional documentation. It is contained by most elements
(excluding itself); specific cases are detailed in the following examples. For more information, see §3.13.2
of the Recommendation.

Example

This example uses <annotation> with <documentation>:

<xs:element name=”Person”>
<xs:annotation>

<xs:documentation>
Used to contain personal information. Note that the last name
is mandatory, while the first name is optional.

</xs:documentation>
</xs:annotation>
<!-- definition of Person element goes here -->

</xs:element>

This example uses <annotation> with <appinfo>:

<xs:element name=”Person” type=”PersonType”>
<xs:annotation>

<xs:appinfo>
<sch:pattern name=”Top Level Person elements”>

<sch:rule context=”/*”>
<sch:assert test=”self::Person”>

The root element must be a “Person”
</sch:assert>

</sch:rule>
</sch:pattern>

</xs:appinfo>
</xs:annotation>

</xs:element>

In this second example, the <annotation> element is used to contain a Schematron schema inside the
<appinfo> element.

BC74

Appendix E: XML Schema Element and Attribute Reference

any
The <any> element is used within content model declarations. It is a wildcard element that acts as a
placeholder for any element in a model group. Using the <any> declaration it is possible to specify from
which namespaces allowable elements may come. This is useful, for instance, if unspecified XHTML or
MathML content might be included within the instance document. It may contain an <annotation> ele-
ment, and can be contained by <choice> or <sequence> elements. For more information, see §3.10.2 of
the Recommendation.

Example

<xs:element name=”XHTMLSection”>
<xs:complexType>

<xs:sequence>
<xs:any namespace=”http://www.w3.org/1999/xhtml”

minOccurs=”0” maxOccurs=”unbounded”
processContents=”lax” />

</xs:sequence>
</xs:complexType>

</xs:element>

Here, an XHTMLSection element in an instance document can contain any well-formed markup that is
valid in the XHTML namespace.

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

maxOccurs nonNegativeInteger The maximum number of times the model group
or unbounded can occur

minOccurs nonNegative The minimum number of times the model group
Integer can occur

namespace ##any |##other | ##any means that the content can be from any
namespace. ##other refers to any namespace other

List of (anyURI than the target namespace of the schema.
| ##targetNamespace

|##local) The value can also be a list of actual namespaces such
as http://www.example.com/name. Additionally
the list can include the value ##targetNamespace to
allow elements in the target namespace of the schema,
and ##local to allow elements in no namespace. The
default is ##any.

process skip | lax | strict If lax, then validation is performed only when an
Contents associated schema can be found for the wildcard ele-

ments. If skip, then no validation occurs. If strict,
then validation is enforced, and the validator needs
access to the declarations for the elements used or a
validity error will be raised. The default is skip.

BC75

Appendix E: XML Schema Element and Attribute Reference

anyAttribute
The <anyAttribute> element is used within content model declarations. It acts as a placeholder for any
attribute within an element declaration. It allows any unspecified attributes to be present. These can be
validated against a specific namespace. For example, XML Schema documents allow elements to have
any attributes as long as they’re not in the XML Schema namespace and are qualified with a prefix for
another namespace. You might encounter a situation where you need to allow the use of any XLink
attribute within a specific element. The <anyAttribute> can be contained by <attributeGroup>,
<complexType>, <extension>, or <restriction> elements; and like most elements it can contain an
annotation. For more information, see §3.4.2 of the Recommendation.

Example

<xs:element name=”Description”>
<xs:complexType>

<!-- content definition goes here-->
<xs:anyAttribute namespace=”http://www.w3.org/1999/xlink” />

</xs:complexType>
</xs:element>

Here, a Description element in an instance document can contain any attribute that is valid in the
XLink namespace.

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

namespace ##any | ##other | ##any means that the content can be of any
namespace. ##other refers to any namespace other

List of (anyURI | than the target namespace of the schema. (The
##targetNamespace attributes must be namespace qualified.)
| ##local)”

The value can also be a list of actual namespaces such
as http://www.example.com/name. Additionally
the list can include the value ##targetNamespace to
allow elements in the target namespace of the schema,
and ##local to allow elements in no namespace. The
default is ##any.

process skip | lax | strict If lax, then validation is performed only if an
Contents associated schema can be found for the wildcard

attributes. If skip, then no validation occurs. If
strict, then validation is enforced, and the validator
needs access to the declarations for the attributes used
or a validity error will be raised. The default is skip.

BC76

Appendix E: XML Schema Element and Attribute Reference

appinfo
The <appinfo> element is used within <annotation> declarations. It allows information to be supplied
to an application reading the schema, and may contain unique identifiers or additional tags to help an
application perform further processing on the schema. Although the XML Schema Recommendation does
not specify allowable uses for the <appinfo> element, many XML Schema designers use it to combine
Schematron validation with XML Schema validation. For more information on combining XML Schema
and Schematron validation, see http://www.topologi.com/public/Schtrn_XSD/Paper.html.
Multiple <appinfo> elements may appear within a single <annotation> declaration. For more informa-
tion, see §3.13.2 of the Recommendation.

Example

<xs:element name=”Person” type=”PersonType”>
<xs:annotation>

<xs:appinfo>
<sch:pattern name=”Top Level Person elements”>

<sch:rule context=”/*”>
<sch:assert test=”self::Person”>

The root element must be a “Person”
</sch:assert>

</sch:rule>
</sch:pattern>

</xs:appinfo>
</xs:annotation>

</xs:element>

Attributes

Attribute Value Space Description

source anyURI Specifies a URI where the parser can acquire the required
<appinfo> content. If the source attribute is not
included, then the parser will check the contents of the
<appinfo> element.

attribute
The <attribute> element is used to declare allowable attributes within elements. It is usually found
within an <attributeGroup> or a <complexType> element and defines the attributes for that particu-
lar content model. It can also be used in an <extension> or <restriction> element when deriving a
new type. Attribute declarations may appear in the root <schema> element to create global attribute def-
initions that can be referenced from other declarations. The <attribute> element may contain an
<annotation> element. It may also contain an anonymous <simpleType> declaration if no type
attribute is specified. For more information, see §3.2 of the Recommendation.

BC77

Appendix E: XML Schema Element and Attribute Reference

Example

<xs:attribute name=”Amount”>
<xs:simpleType name=”positiveDecimalN.2” >

<xs:restriction base=”xs:decimal” >
<xs:minInclusive value=”0” />
<xs:fractionDigits value=”2” />

</xs:restriction>
</xs:simpleType>

</xs:attribute>

<xs:element name=”Payment”>
<xs:complexType >

<xs:attribute ref=”Amount” />
<xs:attribute name=”Currency” type=”xs:string” default=”US”

use=”optional” />
</xs:complexType>

</xs:element>

Attributes

Attribute Value Space Description

default string A string containing a default value for the attribute that
is used if the attribute is not specified in the instance
document

fixed string If present, the value of the attribute in an instance docu-
ment must always match the value specified by fixed.

form qualified| If qualified, the attribute must be namespace qualified
unqualified in the instance document. Note that if the form attribute

is present on the attribute element, then it overrides
attributeFormDefault on the schema element. All
global attribute declarations must be qualified regardless
of the value of the form attribute or attributeForm
Default attribute. For an attribute to be qualified in an
instance document, it must have a prefix associated with
the namespace; default namespace declarations do not
apply to attributes.

id ID Gives a unique identifier to the element

name NCName The name of the attribute conforming to the XML NCName

data type

ref QName Refers a previously defined global attribute by name.
The ref attribute cannot be used in global <attribute>
declarations

type QName The data type of the attribute

use optional | If optional, the attribute may be omitted in the instance
prohibited | document. If required, it must be included. If prohibited,
required it cannot be included. The default is optional.

BC78

Appendix E: XML Schema Element and Attribute Reference

attributeGroup
The <attributeGroup> element is used to declare a group of attributes or to refer to an existing global
<attributeGroup> declaration. This is useful when more than one element contains the same group of
attributes. It may contain <annotation>, <attribute>, <attributeGroup>, and <anyAttribute> dec-
larations. You can create a global declaration for a group of attributes by declaring the <attributeGroup>
element as a direct child of the <schema> element. Attribute group definitions can be nested, so an
<attributeGroup> can contain or be contained by another <attributeGroup>. It can also be used as
a reference from within a <complexType>, <redefine>, <extension>, or <restriction> declaration.
For more information, see §3.6.2 of the Recommendation.

Example

<xs:attributeGroup name=”PhysicalDescriptionAttrGroup”>
<xs:attribute name=”weight” type=”xs:decimal” use=”optional” />
<xs:attribute name=”height” type=”xs:decimal” use=”optional” />

</xs:attributeGroup>

<xs:element name=”Person”>
<xs:complexType>

<xs:sequence>
<!-- element content here -->

</xs:sequence>
<xs:attributeGroup ref=”PhysicalDescriptionAttrGroup” />

</xs:complexType>
</xs:element>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

name NCName The name of this attribute group

ref QName Refers to a previously defined global attribute group;
used within a <complexType> definition to include a
group of attributes. The ref attribute cannot be used in
global <attributeGroup> declarations.

choice
The <choice> element is used within content model declarations. It is used to indicate that only one of
its contained declarations can be used within the content model in the instance document. It may con-
tain <annotation> and <element> declarations. In addition, because you can nest content models, it
may contain <choice>, <sequence>, <group>, and <any> elements. Similarly, it can be contained by
<choice>, <group>, <sequence>, or <complexType> elements. For more information, see §3.8.2 of the
Recommendation.

BC79

Appendix E: XML Schema Element and Attribute Reference

Example

<xs:element name=”IceCream”>
<xs:complexType>

<xs:sequence>
<xs:choice>

<xs:element name=”Strawberry” type=”xs:string” />
<xs:element name=”Chocolate” type=”xs:string” />

</xs:choice>
<xs:choice>

<xs:element name=”Cone” type=”xs:string” />
<xs:element name=”Tub” type=”xs:string” />

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

maxOccurs nonNegative The maximum number of times the model group
Integer or can occur
unbounded

minOccurs nonNegative The minimum number of times the model group can
Integer occur

complexContent
The <complexContent> element is used when descending new complex types using extension or
restriction. It indicates that the resulting content model can have attributes and can contain element con-
tent or mixed content or even be empty. This element is used inside a <complexType> declaration and
can contain an <annotation>, <restriction>, or <extension> element. For more information, see
§3.4.2 of the Recommendation.

Example

<xs:complexType name=”CAN_Address”>
<xs:complexContent>

<xs:extension base=”Address”>
<xs:sequence>

<xs:element name=”Province” type=”xs:string” />
<xs:element name=”PostalCode” type=”CAN_PostalCode”/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

BC80

Appendix E: XML Schema Element and Attribute Reference

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

mixed boolean If true, the element can contain text and element content.
The default is false.

complexType
The <complexType> element is used to specify the allowable type of content for elements. Complex
type definitions are the key to the creation of complex structures and content models in XML Schemas.
They should be used when an element will contain anything that is more complex than simple character
data, such as attributes and child elements. A <complexType> can be declared globally (for example, as
a direct child of the <schema> element) or locally (for example, as a direct child of an <element> decla-
ration. They can also be used from within a <redefine> element. A <complexType> may contain an
optional <annotation> element. It may be derived from another type, in which case it must contain a
<simpleContent> or <complexContent> element. Alternatively, you can specify the allowable content
model directly using <group>, <all>, <choice>, or <sequence> elements, followed by attribute decla-
rations using <attribute>, <attributeGroup>, or <anyAttribute> elements. For more information,
see §3.4.2 of the Recommendation.

Example

<xs:element name=”ResearchPaper”>
<xs:complexType mixed=”true”>

<xs:sequence>
<xs:element name=”Hypothesis” type=”xs:string” />
<xs:element name=”Conclusion” type=”ConclusionType” />

</xs:sequence>
<xs:attribute name=”paperID” type=”xs:integer” />

</xs:complexType>
</xs:element>

<xs:complexType name=”ConclusionType” block=”#all”>
<xs:simpleContent>
<xs:extension base=”xs:string”>

<xs:attribute name=”accepted” type=”xs:boolean” />
</xs:extension>

</xs:simpleContent>
</xs:complexType>

BC81

Appendix E: XML Schema Element and Attribute Reference

Attributes

Attribute Value Space Description

abstract boolean This specifies whether the complex type can be used to
validate an element. If abstract is true, then it can’t; you
have to derive other types from it for use in an instance
document. Note that this behavior is distinct from using
the abstract attribute on an element declaration (for more
information, refer to “element,” later in this appendix).
The default is false.

block #all | Enables the schema author to prevent derived types from
being used in the instance document in place of this type.

List of (extension | The values extension and restriction prevent the use
restriction) of types derived by extension and restriction, respectively,

and #all prevents the use of any derived type.

Final #all | This attribute restricts the derivation of a new data type
by extension or restriction within the schema. The

List of (extension | values extension and restriction prevent the creation
restriction) of types derived by extension and restriction, respectively,

and #all prevents the creation of any derived type.

id ID Gives a unique identifier to the type

Mixed boolean Specifies whether the content of this data type is mixed

Name NCName The name of the complex data type being declared

documentation
The <documentation> element is used within <annotation> declarations. It provides a consistent
location for comments about the declarations in your XML Schema. The <documentation> element
allows any content (such as well-formed XHTML), and external references can be made using the
source attribute. Though the XML Schema Recommendation does not outline specific uses for the
<documentation> element, many XML Schema designers use it to produce automatically generated
help files for their XML Schemas. Multiple <documentation> elements may appear within a single
<annotation> declaration. For more information, see §3.13.2 of the Recommendation.

Example

<xs:element name=”Person”>
<xs:annotation>

<xs:documentation>
Used to contain personal information. Note that the last name
is mandatory, while the first name is optional.

</xs:documentation>
</xs:annotation>
<!-- definition of Person element goes here -->

</xs:element>

BC82

Appendix E: XML Schema Element and Attribute Reference

Attributes

Attribute Value Space Description

Source anyURI Specifies the URI where the content of this element may be
found. You don’t need this attribute if the content is specified
within the documentation tag, as in the previous example.

xml:lang language Specifies the language, using a code defined by RFC 3066.
Most languages can be identified by a simple two-letter code.

element
The <element> declaration is possibly the most important schema namespace element because it is used
to declare the elements that can occur in the instance document. It may contain a <simpleType> or a
<complexType>, creating a local type for the allowable content. Alternatively, the type of content may
be specified using the type attribute. The <element> declaration may also contain <unique>, <key>,
or <keyref> elements to define identity constraints. As with most elements, it may also contain an
<annotation>. Elements are declared within model groups using <all>, <choice>, or <sequence>,
or can be declared globally as children of the <schema> element. For more information, see §3.3.2 of the
Recommendation.

Example

<xs:element name=”Customer”>
<xs:complexType>

<xs:sequence>
<xs:element name=”FirstName” type=”xs:string” />
<xs:element name=”MiddleInitial” type=”xs:string” />
<xs:element name=”LastName” type=”xs:string” />

</xs:sequence>
<xs:attribute name=”customerID” type=”xs:string” />

</xs:complexType>
</xs:element>

Attributes

Attribute Value Space Description

abstract boolean Specifies that the element is abstract and cannot appear in
the instance document, but must be substituted with
another element. The default is false.

block #all | Prevents derived types from being used in place of this
element in the instance document (which can be done

List of with the xsi:type attribute), and/or substituting
(substitution | another element in its place. The values extension and
extension | restriction prevent the use of types derived by exten
restriction) sion and restriction, respectively, and #all prevents the

use of any derived type.

Table continued on following page

BC83

Appendix E: XML Schema Element and Attribute Reference

Attribute Value Space Description

default string This attribute enables you to specify a default value for
the element, which is used when the element appears in
the instance document but is empty.

final #all | Prevents the element from being nominated as the head
element in a substitution group, which has members

List of derived by extension and/or restriction as
(extension | appropriate.
restriction)

fixed string If present, the value of the element in the instance docu-
ment must always match the specified fixed value.

form qualified | If qualified, the element must be namespace qualified
unqualified in the instance document. The value of this attribute over-

rides whatever is specified by the elementFormDefault
on the schema element. All global element declarations
must be qualified regardless of the value of the form
attribute or elementFormDefault attribute.

id ID Gives a unique identifier to the type

maxOccurs nonNegative The maximum number of times the element can occur.
Integer | Global element declarations can’t use the maxOccurs
unbounded attribute.

minOccurs nonNegative The minimum number of times the element can occur.
Integer Global element declarations cannot use the minOccurs

attribute.

name NCName The name of the element

nillable boolean If true, the element may have a nil value specified with
xsi:nil in the instance document. The default is false.

ref QName Enables you to reference a globally defined element using
the value of that element’s name attribute. The ref
attribute can’t be used in global <element> declarations.

substitution QName The element becomes a member of the substitution group
Group specified by this attribute. Wherever the head element of

the substitution group is used in a model group, you can
substitute this element in its place.

type QName The type of content of this element, which could be sim-
ple or complex. If the element contains a <simpleType>
or <complexType> element, the type attribute must not
be used.

BC84

Appendix E: XML Schema Element and Attribute Reference

extension
The <extension> element is used when descending new complex types. Using this declaration, you can
extend a base type by adding additional element or attribute declarations. When adding element content
to a type, the extension element may contain <group>, <choice> or <sequence> elements. When adding
attributes, it will contain one or more <attribute>, <attributeGroup>, or <anyAttribute> declara-
tions. Note that when an <extension> element is contained inside a <complexContent> declaration it
can introduce new elements and/or attributes, whereas when it is inside a <simpleContent> declaration
it can be used only to add attributes to a type. For more information, see §3.4.2 of the Recommendation.

Example

Extending a complex type:

<xs:complexType name=”Address”>
<xs:sequence>
<xs:element name=”country” type=”xs:string”/>
<xs:element name=”address” type=”xs:string”/>
<xs:element name=”city” type=”xs:string”/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=”CANAddress”>
<xs:complexContent>
<xs:extension base=”Address” >
<xs:sequence>
<xs:element name=”province” type=”xs:string”/>
<xs:element name=”postalcode” type=”xs:string”/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:complexType name=”USAddress”>
<xs:complexContent>
<xs:extension base=”Address” >
<xs:sequence>
<xs:element name=”state” type=”xs:string”/>
<xs:element name=”zipcode” type=”xs:string”/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Extending a simple type to produce a complex type with simple content:

<xs:complexType name=”ConclusionType” block=”#all”>
<xs:simpleContent>
<xs:extension base=”xs:string”>

<xs:attribute name=”accepted” type=”xs:boolean” />
</xs:extension>

</xs:simpleContent>
</xs:complexType>

BC85

Appendix E: XML Schema Element and Attribute Reference

Attributes

Attribute Value Space Description

base (required) QName Specifies the base internal or derived data type that will be
extended

id ID Gives a unique identifier to the element

field
The <field> element is used when creating identity constraints, such as <key>, <keyref>, and
<unique> declarations. An identity constraint allows you to both specify that certain nodes in the docu-
ment are unique and create relationships between multiple nodes in a document using the node’s
unique or shared identity. By default, XML allows you to use the built in ID and IDREF identity con-
straints. With XML Schema you can use most datatypes as part of an identity constraint, and apply them
to attributes or elements. When creating identity constraints, you must specify a context, or scope, for
the constraint using a <selector> declaration, and the specific node that is constrained using a
<field> declaration. It may contain an <annotation> element. For a complete example, please see
key. For more information, see §3.11.2 of the Recommendation.

Example

<xs:element name=”Employees”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”example:Employee” minOccurs=”1” maxOccurs=”unbounded” />

</xs:sequence>
</xs:complexType>
<xs:unique name=”employeeIdentificationNumber”>

<xs:selector xpath=”example:Employee” />
<xs:field xpath=”@employeeID” />

</xs:unique>
</xs:element>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

xpath XPath Used to select the element context affected by the identity
(required) constraint. The path is relative to the current element

declaration.

group
The <group> element is used to declare a group of elements or content model declarations or to refer to
an existing global <group> declaration. This is useful when more than one element contains the same
content model. When the <group> element is a direct child of the <schema> element, it must be used as

BC86

Appendix E: XML Schema Element and Attribute Reference

a global declaration for a content model group and it may contain a <sequence>, <choice>, or <all>
declaration. It can also be used as a reference from within a <complexType>, <redefine>, <extension>,
or <restriction> declaration. Because content models can be nested, the <group> element can also
be referenced within a <sequence> or <choice> declaration. For more information, see §3.7.2 of the
Recommendation.

Example

<xs:element name=”Customer”>
<xs:complexType>

<xs:group ref=”FirstOrLastNameGroup” />
</xs:complexType>

</xs:element>

<xs:group name=”FirstOrLastNameGroup”>
<xs:choice>

<xs:element name=”FirstName” type=”xs:string” />
<xs:element name=”LastName” type=”xs:string” />

</xs:choice>
</xs:group>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

maxOccurs nonNegative The maximum number of times the group can occur
Integer |
unbounded

minOccurs nonNegative The minimum number of times the group can occur
Integer

name NCName Defines the name of a global model group. If you are creating
a global model group, the ref, minOccurs, and maxOccurs
attributes are not permitted.

ref QName Refers to a previously defined global group. When using
this attribute, you cannot include a name attribute, but you
can set occurrence constraints with minOccurs and/or
maxOccurs. The ref attribute cannot be used in global
<group> declarations.

import
The <import> declaration is used to combine multiple XML Schemas. It enables you to import the dec-
larations from an XML Schema for another namespace. If you are trying to combine XML Schemas that
utilize the same namespace or have no namespace, you should instead use the <include> declaration.
The <import> element should be declared as a child of the root <schema> element, and has an optional
<annotation>. An XML Schema may contain multiple <import> declarations. For more information,
see §4.2.3 of the Recommendation.

BC87

Appendix E: XML Schema Element and Attribute Reference

Example

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.example.com/Order”
xmlns=”http://www.example.com/Order”
xmlns:products=”http://www.example.com/Products”
xmlns:types=”http://www.example.com/Types”
elementFormDefault=”qualified”>

<xs:import schemaLocation=”Products.xsd”
namespace=”http://www.example.com/Products” />

<xs:import schemaLocation=”TypeLib.xsd”
namespace=”http://www.example.com/Types” />

<!-- rest of schema definition here -->
</xs:schema>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

namespace anyURI The namespace of the imported declarations

schemaLocation anyURI The location of the schema to import

include
The <include> declaration is used to combine multiple XML Schemas that have the same target names-
pace, or no target namespace. If you include an XML Schema with no target namespace, the declarations
will be treated as if they were declared using the target namespace of the including XML Schema. If you
are trying to combine XML Schemas that utilize different namespaces, you should instead use the
<import> declaration. The <include> element should be declared as a child of the root <schema> ele-
ment, and has an optional <annotation>. An XML Schema may contain multiple <include> declara-
tions. Reusing existing definitions is good practice — it saves you time when creating the documents and
increases your document’s interoperability. Utilizing the <include> declaration is ideal in a team envi-
ronment, when you need to develop and maintain distinct parts of a large schema. For more informa-
tion, see §4.2.1 of the Recommendation.

Example

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.example.com/ECommerce”
xmlns=”http://www.example.com/ECommerce”
elementFormDefault=”qualified”>

<xs:include schemaLocation=”Products.xsd” />
<xs:include schemaLocation=”TypeLib.xsd” />

<!-- rest of schema definition here -->
</xs:schema>

BC88

Appendix E: XML Schema Element and Attribute Reference

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

schemaLocation anyURI The location of the schema to include
(required)

key
The <key> declaration, along with the <keyref> declaration, enables you to define a relationship between
two elements. The key/keyref mechanism functions similarly to database keys or to the ID/IDREF mecha-
nism built into XML DTDs. For example, an element might contain a <key> that is unique within a speci-
fied context or scope. Another element can refer to the key using a <keyref> element. A <key> is always
defined inside an <element> declaration. It contains a <selector> element that defines the context or
scope of the key, and a <field> element that defines the specific key node. Like other elements, it can also
contain an <annotation>. For more information, see §3.11.2 of the Recommendation.

Example

<?xml version=”1.0”?>
<xs:schema
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://example.com”
xmlns:example=”http://example.com”
targetNamespace=”http://example.com”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>
<xs:element name=”Company”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Departments”>
<xs:complexType>
<xs:sequence minOccurs=”0” maxOccurs=”unbounded”>

<xs:element name=”Department”>
<xs:complexType>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”building” type=”xs:string”/>
<xs:attribute name=”departmentID” type=”xs:string”/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”Employees”>
<xs:complexType>
<xs:sequence minOccurs=”0” maxOccurs=”unbounded”>

<xs:element name=”Employee”>
<xs:complexType>
<xs:attribute name=”name” type=”xs:string”/>
<xs:attribute name=”position” type=”xs:string”/>
<xs:attribute name=”department” type=”xs:string”/>

BC89

Appendix E: XML Schema Element and Attribute Reference

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
<xs:key name=”KeyDepartmentByID”>
<xs:selector xpath=”example:Departments/example:Department” />
<xs:field xpath=”@departmentID” />

</xs:key>
<xs:keyref name=”RefEmployeeToDepartment” refer=”example:KeyDepartmentByID”>
<xs:selector xpath=”example:Employees/example:Employee” />
<xs:field xpath=”@department” />

</xs:keyref>
</xs:element>

</xs:schema>

A corresponding instance document might be as follows:

<Company
xmlns=”http://example.com”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://example.com test2.xsd”>
<Departments>
<Department name=”Human Resources” building=”Building 1”

departmentID=”hr_dept”/>
<Department name=”Development” building=”Building 2”

departmentID=”development_dept”/>
<Department name=”Testing” building=”Building 2” departmentID=”testing_dept”/>

</Departments>
<Employees>
<Employee name=”Oliver” position=”Developer” department=”development_dept”/>
<Employee name=”Mwatha” position=”Developer” department=”development_dept”/>
<Employee name=”Soyapi” position=”Developer” department=”development_dept”/>
<Employee name=”Mike” position=”Testing” department=”testing_dept”/>

</Employees>
</Company>

It is important to recognize that you have to explicitly refer to each element’s namespace in the selector
and field xpath attributes. Even though there is a default namespace declaration in the document, it is
not applied to the XPath statements in keys and key references. Therefore, you must use a namespace
prefix (in this case example) to refer to the elements if there is a target namespace in your XML Schema.
Though identity constraints are now widely supported, the quality of support varies. For example, some
processors require that you use a namespace prefix in the refer attribute as well.

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

name (required) NCName The name of the key used

BC90

Appendix E: XML Schema Element and Attribute Reference

keyref
The <keyref> element is used to specify a reference to a <key> (see the previous discussion of <key>).
Like the <key> element it may be used within an <element> declaration. It may contain an <annotation>
element, and can define the context of the key reference by including a <selector> declaration and
<field> declaration. For a complete example, please see key. For more information, see §3.11.2 of the
Recommendation.

Example

<xs:keyref name=”RefEmployeeToDepartment” refer=”example:KeyDepartmentByID”>
<xs:selector xpath=”example:Employees/example:Employee” />
<xs:field xpath=”@department” />

</xs:keyref>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

name (required) NCName The name of the key reference

refer (required) QName The name of the key to which this key reference refers

list
The <list> element is used to declare a specialized simple type, which is a sequence of whitespace-
separated <simpleType> names. The itemType attribute defines the allowable type for each item con-
tained in the list. Because you cannot create a list of lists, the itemType cannot refer to an existing list
type. Moreover, because lists use whitespace to separate the values, item types that refer to any type that
can contain whitespace can be problematic. For example, the XML Schema string value may contain
spaces, such as “This is a string of text”. When treated as a list, an XML Schema processor would
see six separate values, not one value with five spaces. A <list> declaration must appear within a
<simpleType> definition and can contain optional <annotation> and <simpleType> elements. For
more information, see §3.14.2 of the Recommendation.

Example

<xs:simpleType name=”AgesList”>
<xs:list itemType=”xs:integer” />

</xs:simpleType>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

itemType QName The base data type for each item in the list

BC91

Appendix E: XML Schema Element and Attribute Reference

notation
A <notation> declaration is used to associate a particular type of file with the location of an application
that can process it. Within XML Schemas, notations must be declared globally (the <notation> element
must be a direct child of the <schema> element). A <notation> declaration has a global name that is
specified using the name attribute. In addition to the name, the <notation> provides public and system
attributes that can be used to specify the public identifier and system identifier, respectively. The public
identifier is optional. In general, the <notation> declaration should be avoided because of compatibility
issues and poor implementation support. For more information, see §3.12.2 of the Recommendation.

Example

<xs:notation name=”jpeg” public=”image/jpeg” system=”JPEGViewer.exe” />
<xs:notation name=”png” public=”image/png” system=”PNGViewer.exe” />

<xs:simpleType name=”ImageTypeNotation” >
<xs:restriction base=”xs:NOTATION”>
<xs:enumeration value=”jpeg”/>
<xs:enumeration value=”png”/>

</xs:restriction>
</xs:simpleType>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

name (required) NCName The name of the specified NOTATION data type

public anyURI Any URI; usually some relevant identifier, such as a
Multipurpose Internet Mail Extension (MIME) type.
MIME types are used to identify file types on the World
Wide Web. The MIME types for XML include text/xml
and application/xml.

system anyURI Any URI; usually some local processing application

redefine
The <redefine> declaration is used to combine multiple XML Schemas. It enables you to modify com-
plex types, simple types, model groups, or attribute groups as they are included from another external
schema. The external schema must have no namespace or it must have the same target namespace as the
schema where <redefine> is used. Within the <redefine> element, you must refer to an existing type
and amend it as necessary using extension or restriction. A <redefine> declaration must appear within
the root <schema> element, and may contain <annotation>, <simpleType>, <complexType>,
<group>, or <attributeGroup> elements. Though this seems cumbersome, it can be very useful to
override existing schema definitions using <redefine> declarations. Because this feature allows you to
modify existing declarations without modifying the existing schemas it is very powerful. However, it is
often not supported by tools that attempt to build programming language bindings from an XML
Schema, so use it sparingly. For more information, see §4.2.2 of the Recommendation.

BC92

Appendix E: XML Schema Element and Attribute Reference

Example

From one schema you have the following:

<xs:complexType name=”NameType”>
<xs:sequence>
<xs:element name=”FirstName” type=”xs:string” />
<xs:element name=”MiddleInitial” type=”xs:string” minOccurs=”0” />
<xs:element name=”LastName” type=”xs:string” />

</xs:sequence>
</xs:complexType>

You can redefine this in another schema like so:

<xs:redefine schemaLocation=”firstSchema.xsd”>
<xs:complexType name=”NameType”>

<xs:complexContent>
<xs:restriction base=”NameType”>

<xs:sequence>
<xs:element name=”FirstName” type=”xs:string” />
<xs:element name=”LastName” type=”xs:string” />

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:redefine>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

schemaLocation anyURI Specifies the location of the schema
(required)

restriction
Use the <restriction> element when descending new complex types. Using this declaration, you can
restrict a base type and limit the allowable content within <complexType> or <simpleType> declarations.
You might use restriction in three different situations: to restrict a simple type, to restrict a complex type
using simple content, or to restrict a complex type using complex content.

When restricting <complexType> declarations you must start with a base type and create the derivation
by removing elements or attributes. Instead of specifying which elements you want to remove, when
creating your restricted <complexType> declarations you must redeclare all elements you want to keep.
Because of this, restricting <complexType> declarations is far more difficult than extending them. By
default, attributes are automatically included in the newly restricted type.

The rules for restricting a <complexType> are very involved. Instead of listing all the conditions and
exceptions, we focus on two basic rules: First, you cannot introduce anything new when restricting a

BC93

Appendix E: XML Schema Element and Attribute Reference

<complexType>. Essentially, this means that you can’t add elements or attributes that don’t exist in the
base type. When modifying existing declarations you must also be careful that the modifications are per-
mitted. Second, you cannot remove anything that must appear in the base type. For example, if your
base type declares that an element has a minOccurs value of 1 (the default), it cannot be removed in
your restriction. This rule was created so that applications designed to handle the base type can also
handle the restricted type without raising an error.

The <restriction> element may appear inside <simpleType>, <simpleContent>, or <complex
Content>. In the first two situations, the element may contain a <simpleType> element and one of
the constraining facets: <minExclusive>, <maxExclusive>, <minInclusive>, <maxInclusive>,
<totalDigits>, <fractionDigits>, <length>, <minLength>, <maxLength>, <enumeration>,
<whiteSpace>, or <pattern>. When restricting a <complexType>, a <restriction> declaration may
also contain <attribute>, <attributeGroup>, and <anyAttribute>. If the <restriction> declara-
tion appears inside a <complexContent> element, it may also include <group>, <all>, <choice>, and
<sequence> declarations. The <restriction> element also has an optional <annotation> element.
For more information, see §3.4.2 and §3.14.2 of the Recommendation.

Example

Here’s how you can derive a simple type:

<xs:simpleType name=”Char”>
<xs:restriction base=”xs:string”>
<xs:length value=”1” />

</xs:restriction>
</xs:simpleType>

Here’s the code for deriving a complex type with simple content:

<xs:complexType name=”Person”>
<xs:simpleContent>
<xs:extension base=”xs:string”>
<xs:attribute name=”age” type=”xs:integer” />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<xs:complexType name=”RestrictedPerson”>
<xs:simpleContent>
<xs:restriction base=”Person”>
<xs:attribute name=”age”>
<xs:simpleType>
<xs:restriction base=”xs:integer”>
<xs:minInclusive value=”1” />
<xs:maxInclusive value=”120” />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:restriction>

</xs:simpleContent>
</xs:complexType>

BC94

Appendix E: XML Schema Element and Attribute Reference

Here’s how to derive a complex type with complex content:

<xs:complexType name=”ShortAddress”>
<xs:complexContent>
<xs:restriction base=”Address” >
<xs:sequence>
<xs:element name=”Name” type=”xs:string” />
<xs:element name=”Street” type=”xs:string” maxOccurs=”2” />
<xs:element name=”City” type=”xs:string” />

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

base (required) QName The base type from which the new type is derived

schema
This <schema> element is the root element within an XML Schema. Details, such as target namespace
and global defaults, are specified within the <schema> element. It may contain <include>, <import>,
<redefine>, <annotation>, <simpleType>, <complexType>, <group>, <attributeGroup>,
<element>, <attribute>, or <notation>. For more information, see §3.15.2 of the Recommendation.

Example

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.example.com/”
xmlns=”http://www.example.com/”
elementFormDefault=”qualified”>
<!--rest of content goes here-->

</xs:schema>

BC95

Appendix E: XML Schema Element and Attribute Reference

Attributes

Attribute Value Space Description

attribute qualified | Enables you to specify a default for attribute qualification in
FormDefault unqualified the instance document. If qualified, then all attributes

must be namespace qualified in the instance document.
Note that if the form attribute is present on the attribute
element, then it overrides attributeFormDefault on the
schema element. All global attribute declarations must be
qualified regardless of the value of the form attribute or
attributeFormDefault attribute. For an attribute to be
qualified in an instance document, it must have a prefix
associated with the namespace.

blockDefault #all | Enables you to block some or all of the derivations of data
List of types from being used in substitution groups. The values
(extension | extension and restriction block type substitutions,
restriction | while the value substitution blocks element substitutions.
substitution) This can be overridden by the block attribute of an

<element> or <complexType> declaration in the schema.

element qualified | Enables you to specify a default value for element
FormDefault unqualified qualification in the instance document. If qualified, then

all elements must be namespace qualified in the instance
document. Note that if the form attribute is present on the
<element> declaration, then it overrides elementForm
Default on the <schema> element. All global element dec-
larations must be qualified regardless of the value of the
form attribute or elementFormDefault attribute.

finalDefault #all | Enables you to disallow some or all of the derivations of
data types from being created in the XML Schema. This can

List of be overridden by the final attribute of an <element> or
(extension | <complexType> element in the schema.
restriction |

list |union)

id ID Gives a unique identifier to the element

target anyURI This is used to specify the namespace that the schema is
Namespace defining.

version token Used to specify the version of the XML Schema being
defined. This can take a token data type, and is intended
for use by XML Schema authors.

xml:lang language Specifies the language of the XML Schema being defined,
using a code defined by RFC 3066. Most languages can be
identified by a simple two-letter code.

BC96

Appendix E: XML Schema Element and Attribute Reference

selector
The <selector> element is used when creating identity constraints, such as <key>, <keyref>, and
<unique> declarations. When creating identity constraints, you must specify a context, or scope, for the
constraint using a <selector> declaration, and the specific node that is constrained using a <field>
declaration. It may contain an <annotation> element. For a complete example and further discussion
on identity constraints, please see key. For more information, see §3.11.2 of the Recommendation.

Example

<xs:key name=”KeyDepartmentByID”>
<xs:selector xpath=”example:Departments/example:Department” />
<xs:field xpath=”@departmentID” />

</xs:key>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

xpath XPath A relative XPath expression (relative to the element on which
(required) the identity constraint is defined) that specifies to which ele-

ments the identity constraint applies

sequence
The <sequence> element is used within content model declarations. It is used to declare a specific order
of elements and content model declarations to be used within the content model in the instance docu-
ment. It may contain <annotation> and <element> declarations. Because you can nest content models,
it may contain <choice>, <sequence>, <group>, and <any> elements. Similarly, it can be contained by
<choice>, <group>, <sequence>, or <complexType> elements. For more information, see §3.8.2 of the
Recommendation.

Example

<xs:sequence>
<xs:element name=”FirstName” type=”xs:string” />
<xs:element name=”MiddleInitial” type=”xs:string” />
<xs:element name=”LastName” type=”xs:string” />

</xs:sequence>

BC97

Appendix E: XML Schema Element and Attribute Reference

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

maxOccurs nonNegative The maximum number of times the model group can occur
Integer or
unbounded

minOccurs nonNegative The minimum number of times the model group can occur
Integer

simpleContent
The <simpleContent> element is used when extending or restricting complex types. It indicates that the
resulting content model may contain attributes and text data, but cannot contain element content or mixed
content. This element is used inside a <complexType> declaration and can contain an <annotation>,
<restriction>, or <extension> element. For more information, see §3.4.2 of the Recommendation.

Example

<xs:complexType name=”LengthType”>
<xs:simpleContent>
<xs:extension base=”xs:nonNegativeInteger”>
<xs:attribute name=”unit” type=”xs:NMTOKEN”/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

simpleType
The <simpleType> element is used to specify the allowable type of content for attributes and text-only
elements. Simple type definitions are the key to the validation of text content within XML Schemas. A
<simpleType> declaration can be contained within an <attribute>, <element>, <list>, <redefine>,
<restriction>, <schema>, or <union> declaration. It may contain <annotation>, <list>,
<restriction>, or <union> declarations. For more information, see §3.14.2 of the Recommendation.

Example

<xs:simpleType name=”FixedLengthString”>
<xs:restriction base=”xs:string”>
<xs:length value=”120” />

</xs:restriction>

BC98

Appendix E: XML Schema Element and Attribute Reference

</xs:simpleType>

<xs:simpleType name=”Size” >
<xs:restriction base=”xs:string” >
<xs:enumeration value=”S” />
<xs:enumeration value=”M” />
<xs:enumeration value=”L” />
<xs:enumeration value=”XL” />

</xs:restriction>
</xs:simpleType>

Attributes

Attribute Value Space Description

final #all | Restricts how new data types may be derived from this
simple type

List of (union |
restriction)

id ID Gives a unique identifier to the element

name NCName The name of the data type that this element is defining.
The name attribute is only used on global <simpleType>
declarations.

union
The <union> declaration enables you to join numerous simple data types together. You can include
existing types in the union by referring to them within a whitespace-separated list in the memberTypes
attribute. They are joined along with any contained <simpleType> declarations to form the new data
type. The <union> declaration must be contained within a <simpleType> declaration and may contain
<annotation>, or <simpleType> declarations. For more information, see §3.14.2 of the
Recommendation.

Example

<xs:simpleType name=”CatsAndDogs”>
<xs:union memberTypes=”CatBreeds DogBreeds” />

</xs:simpleType>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

memberTypes List of QName A whitespace-separated list of simple data types that you
want to join together to form a new <simpleType>.

BC99

Appendix E: XML Schema Element and Attribute Reference

unique
The <unique> declaration enables you to specify that an element or attribute must have a unique value
within a document or part of a document. The unique value might be the element content, a specific
attribute’s content, an ancestor’s element or attribute content, or a combination of any of these options.
You may specify the item that contains the unique value using the <selector> and <field> declarations.
The <unique> element must be contained by an <element> declaration and may contain <annotation>,
<selector>, or <field> declarations. For more information about identity constraints, please see key.
For more information, see §3.11.2 of the Recommendation.

Example

<xs:unique name=”employeeIdentificationNumber”>
<xs:selector xpath=”example:Employees/example:Employee” />
<xs:field xpath=”@employeeID” />

</xs:unique>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

name NCName The name of the identity constraint for the unique value
being defined

XML Schema Instance Attributes
The XML Schema Instance namespace is declared in an instance document to refer to instance-specific
XML Schema attributes. (The namespace does not include any elements.) For example, the document
can indicate to the parser the location of the schema to which it conforms using the schemaLocation
attribute. The XML Schema instance namespace is: http://www.w3.org/2001/XMLSchema-instance,
and is declared in the document element like this:

<root xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

All the attributes detailed in the following table would be prefixed by xsi: as in the previous case.

Attribute Value Space Description

nil boolean Used to indicate that an element is valid despite having
an empty value. Necessary for simple types, such as
dates and numbers, for which empty values aren’t valid:

<OrderDate xsi:nil=”true”></OrderDate>

BC100

Appendix E: XML Schema Element and Attribute Reference

Attribute Value Space Description

noNamespace anyURI Used to specify the location of a schema without a target
SchemaLocation namespace:

xsi:noNamespaceSchemaLocation=

“name.xsd”

schemaLocation List of anyURI Used to specify the location of a schema with a target
(in namespace / namespace. The namespace of the schema is specified
location pairs) first, followed by a space, followed by the location of the

schema. Multiple namespace/location pairs can be pro-
vided as a whitespace-separated list:

xsi:schemaLocation=” http://www.example.org/

name example.xsd

http://www.example.com/contacts contacts.xsd”

type QName Enables you to override the current element type by
specifying the qualified name of a type in an existing
XML Schema. Note that the data type has to be derived
from the one that the element is declared with. In addi-
tion, the substitution of the derived type cannot be
blocked by the element or type declaration:

<returnAddress xsi:type=”ipo:USAddress”>

BC101

Appendix E: XML Schema Element and Attribute Reference

F
XML Schema Datatypes

Reference

This appendix provides a quick reference to the W3C Recommendation for XML Schemas, Part 2:
Datatypes. Datatypes were separated into a specification in their own right so that XML Schemas
as well as other XML-related technologies (for example, RELAX NG) can use them.

The XML Schema defines several datatypes that can be used to validate the content of attributes
and text-only elements. These datatypes enable you to specify that the content must be formatted
as a date, a Boolean, a floating-point number, and so on. The second part of the XML Schema
Recommendation defines two sorts of datatype:

❑ Built-in types, which are available to all XML Schema authors, and should be implemented
by a conforming processor

❑ User-derived types, which are defined in individual schema documents, and are particu-
lar to that schema (although it is possible to import and reuse these definitions in other
XML Schemas). These types are based on the existing built-in types.

Built-in types include two subgroups:

❑ Built-in primitive types, which are types in their own right. They are not defined in terms
of other datatypes. Primitive types are also known as base types because they are the basis
from which all other types are built.

❑ Built-in derived types, which are built from definitions of other primitive and derived
datatypes

The first part of this appendix provides a quick overview of all the XML built-in datatypes, both
primitive and derived. The second part provides details about all of the constraining facets, or
characteristics, of these datatypes. Facets can be used to restrict the allowed set of values for a
datatype. Also provided in this appendix are tables that illustrate which of these constraining
facets can be applied to which datatype.

XML Schema Built-in Datatypes
The following table shows the primitive types that XML Schemas offer, from which you can derive other
datatypes. Many of the datatypes have limitations on the maximum or minimum value; others require
that the value match a specific format. When an XML Schema validator is used to check instance docu-
ments, it determines whether the content matches the declarations in the XML Schema. If a value is
declared to be a date and is not formatted correctly, the XML Schema validator will raise a validity error.

Primitive Type Description Example

string Represents any legal character string This is a string

in XML that matches the Char
production in XML 1.0 (http:// If you need to include a character
www.w3.org/TR/REC-xml). that is not easily typed, such as the

copyright symbol, or one that may
not appear directly in content, you
can use a general or character entity
reference. Entity references are
replaced before validation of con-
tent occurs.

boolean Represents binary logic, true or false true, false, 1, 0

These are the only permitted values
for this datatype.

decimal Represents a subset of real numbers 3.141

that can be shown using numerical
digits. The decimal point and trailing The plus sign (+) and minus sign (-)
zeroes are optional. may be used to represent positive or

negative numbers — for example,
-1.23, +00042.00.

float Standard concept of real numbers -INF, -1E4, 4.5E-2, 37,

patterned after an IEEE single- INF, NaN

precision 32-bit floating-point type.
The values INF, -INF, -0, and NaN NaN denotes not a number and is
are permitted. neither less than nor greater than

any other number. It cannot be com-
pared with other numbers.

INF denotes infinity.

BC104

Appendix F: XML Schema Datatypes Reference

Primitive Type Description Example

double Standard concept of real numbers -INF, 765.4321234E11, 7E7,

patterned after an IEEE double- 1.0, INF, NaN

precision 64-bit floating-point type.
The values INF, -INF, -0, and NaN denotes not a number and is
NaN are permitted. neither less than nor greater than

any other number. It cannot be com-
pared with other numbers.

INF denotes infinity.

duration Represents a duration of time in the P1Y0M1DT20H25M30.120S

format PnYnMnDTnHnMnS, where
1 year and 1 day, 20 hours,

P is a designator that must always 25 minutes and 30.120 seconds.
be present. An optional + or -sign is
allowed before P. Limited forms of this datatype are

also allowed. It is not required to
nY represents number of years include every part of the duration —

for example, P120D denotes
nM represents number of months 120 days.

nD represents number of days

T is the date/time separator. If any
time elements are included in the
duration, T must be present.

nH is number of hours

nM is number of minutes

nS is number of seconds. Seconds
allows a fractional part (arbitrary
precision) to appear after a decimal
point.

Based on ISO 8601.

Table continued on following page

BC105

Appendix F: XML Schema Datatypes Reference

Primitive Type Description Example

dateTime A specific instance in time in the 2004-09-13T14:51:26
following format:

Represents the 13th of September
CCYY-MM-DDThh:mm:ss where: 2004, at 2:51 and 26 seconds in the

afternoon.
A leading minus (-) sign is permitted
at the beginning of the value to 2004-09-13T14:51:26T-05:00
indicate that the year is negative.

2004-09-13T14:51:26Z
CC represents the century

In addition to the format require-
YY represents the year ments, the date and time must be

valid. For example,
MM represents the month 2004-19-01T14:51:26Z would not

be valid because there is no 19th
DD represents the day month. Likewise, the day portion

could never be 32. (Note that the
T is the date/time separator year 0000 is prohibited in XML

Schema version 1.0, and each of the
hh represents hours fields CC, YY, MM, DD, hh, and mm

must be exactly two digits).
mm represents minutes

ss represents seconds. Seconds
allows a fractional part (arbitrary
precision) to appear after a decimal
point.

There is also an optional time zone
indicator. The time zone must follow
this format:

-hh:mm

A leading + sign or - minus sign
followed by the number of hours and
minutes indicates the difference
between the local time and UTC. A Z

may be used to indicate that the time
zone is UTC.

Based on ISO 8601.

BC106

Appendix F: XML Schema Datatypes Reference

Primitive Type Description Example

time Represents an instance of time that 14:12:30

occurs every day, in the format
hh:mm:ss.sss. Represents 12 minutes and 30

seconds past 2:00 in the afternoon.
Fractional seconds can be added to
arbitrary precision and there is an In addition to the format require-
optional time zone indicator ments, the time must be valid. For
(see dateTime). example, 25:51:26 would not be

valid because there is no 25th hour.
Based on ISO 8601.

date Represents a calendar date from the 2004-09-13
Gregorian calendar (the whole day)
in the format CCYY-MM-DD. A leading Represents the 13th of
+ sign or - sign is permitted at the September 2004.
beginning of the value to indicate
whether the year is positive or negative. In addition to the format require-

ments, the date and time must be
There is also an optional time zone valid. For example, 2004-19-01
indicator (see dateTime). would not be valid because there is

no 19th month. Likewise, the day
Based on ISO 8601. portion could never be 32. (Note

that the year 0000 is prohibited in
XML Schema version 1.0).

gYearMonth Represents a month in a year in 2004-09
the Gregorian calendar in the
format CCYY-MM. A leading minus Represents September 2004.
(-) sign is permitted at the beginning In addition to the format require-
of the value to indicate that the year ments, the year and month must be
is negative. valid. For example, 2004-19 would

not be valid because there is no 19th
A leading + sign or - sign is permitted month. (Note that the year 0000 is
at the beginning of the value to indicate prohibited in XML Schema
whether the year is positive or negative. version 1.0).

There is also an optional time zone
indicator (see dateTime).

Based on ISO 8601.

Table continued on following page

BC107

Appendix F: XML Schema Datatypes Reference

Primitive Type Description Example

gYear Represents a year in the Gregorian -0001

calendar in the format CCYY. A leading
+ sign or - sign is permitted at the Represents 1 B.C.E. (or 1 B.C.).
beginning of the value to indicate
whether the year is positive or (Note that the year 0000 is
negative. prohibited in XML Schema

version 1.0).
There is also an optional time zone
indicator (see dateTime).

Based on ISO 8601.

gMonthDay Represents a recurring day of a --07-12
recurring month in the Gregorian
calendar, in the format --MM-DD. Represents the 12th of July. Ideal for
No preceding sign (positive or birthdays, anniversaries, holidays,
negative) is permitted. and recurring events.

There is also an optional time
zone indicator (see dateTime).

Based on ISO 8601.

gDay Represents a recurring day of a ---16

month in the Gregorian calendar,
in the format ---DD. No preceding Represents the 16th day of a month.
sign (positive or negative) is Ideal for monthly occurrences, such
permitted. as pay day.

There is also an optional time
zone indicator (see dateTime).

Based on ISO 8601.

gMonth Represents a recurring month in --01

the Gregorian calendar, in the
format --MM. No preceding sign Represents January.
(positive or negative) is permitted.

There is also an optional time
zone indicator (see dateTime).

Based on ISO 8601.

hexBinary Represents hex-encoded arbitrary 0FB7

binary data

BC108

Appendix F: XML Schema Datatypes Reference

Primitive Type Description Example

base64Binary Represents Base64-encoded GpM7

arbitrary binary data. The encoding
adheres to RFC 2045.

anyURI Represents a Uniform Resource http://www.example.com

Identifier (URI). The value can be
absolute or relative, and may have mailto://info@example.com

an optional fragment identifier.
mySchemafile.xsd

QName Represents any XML name qualified contact:FirstName

by a namespace. This includes a local
name together with an optional
prefix bound to a namespace and
separated by a colon.

The XML Namespace
Recommendation can be found
at: http://www.w3.org/TR/
REC-xml-names/. Namespaces
are discussed in Chapter 3.

NOTATION Represents the NOTATION type <xs:notation name=”jpeg”

from XML 1.0. There must be a system=”JPEGViewer.exe” />

corresponding notation declaration
within the XML Schema. Only <xs:notation name=”png”

datatypes derived from a system=”PNGViewer.exe” />

NOTATION base type (by
specifying a value for enumeration) <xs:simpleType name=

are allowed to be used as references ”imageNotation”>

to notation declarations.
<xs:restriction base=

Should only be used for attribute ”xs:NOTATION” >

values and in XML Schemas
without a target namespace. <xs:enumeration value=

”jpeg”/>

<xs:enumeration value=

”png”/>

</xs:restriction>

</xs:simpleType>

BC109

Appendix F: XML Schema Datatypes Reference

To create new simple datatypes — known as derived types — you place further restrictions on an existing
built-in type (or another simple type that has been defined). The type on which you place the restrictions
is known as the new type’s base type. Here is a list of the built-in derived types:

Derived type Description Example

normalized Represents whitespace-normalized strings. Hello World

String Whitespace-normalized strings do not contain
carriage return (#xD), linefeed (#xA) or tab (#x9)
characters.

Base type: string

token Represents tokenized strings, which do not contain One Two Three

linefeed (#xA), carriage return (#xD), or tab characters
(#x9) and contain no leading or trailing spaces, and
no internal sequences of two or more spaces.

Base type: normalizedString

language Natural language identifiers, as defined in RFC 3066. en-GB, en-US, fr

Base type: token

NMTOKEN Represents the NMTOKEN attribute type from small

XML 1.0. Should only be used on attributes.

An NMTOKEN is a “name token” as defined in XML 1.0

Base type: token

NMTOKENS Represents the NMTOKENS attribute type from small medium large

XML 1.0. Should be used only on attributes.

NMTOKENS is a set of NMTOKEN values separated
by XML whitespace characters.

Base type: A list of items of type NMTOKEN

Name Represents XML Names as defined in XML 1.0. In html, sch:assert,
most cases a colon is allowed, though its use is Address

discouraged.

Base type: token

NCName Represents XML “noncolonized” Names (without Address

the prefix and colon), as defined in the Namespaces
in XML recommendation.

Base type: Name

BC110

Appendix F: XML Schema Datatypes Reference

Derived type Description Example

ID Represents the ID attribute type from XML 1.0. <address id=

Should be used only on attributes. ”Address1” />

Base type: NCName

IDREF Represents the IDREF attribute type from XML 1.0. <bill sendTo=

Should be used only on attributes. “Address1” />

Base type: NCName

IDREFS Represents the IDREFS attribute type from XML 1.0. <employee

Should be used only on attributes. addresses=

”Address1

IDREFS is a set of IDREF values separated by Address2” />

XML whitespace characters.

Base type: A list of items of type IDREF

ENTITY Represents the ENTITY attribute type from Note that the ENTITY
XML 1.0. Should be used only on attributes. has to be declared as

an unparsed entity in
Base type: NCName a DTD.

ENTITIES Represents the ENTITIES attribute type from Note that each ENTITY
XML 1.0. Should be used only on attributes. in the list has to be

declared as an
ENTITIES is a set of ENTITY values separated by unparsed entity in
an XML whitespace character. a DTD.

Base type: A list of items of type ENTITY

integer Standard mathematical concept of integer -4, 0, 2, 7
numbers, where no fractional value is allowed

Base type: decimal

nonPositive Standard mathematical concept of a non-positive -4, -1, 0
Integer integer (includes 0)

Base type: integer

negative Standard mathematical concept of a negative -4, -1
Integer integer (does not include 0)

Base type: nonPositiveInteger

long An integer between -23568323,
-9223372036854775808 and 9223372036854775807 52883773203895

Base type: integer

Table continued on following page

BC111

Appendix F: XML Schema Datatypes Reference

Derived type Description Example

int An integer between -2147483648 and 2147483647 -24781982,
24781924

Base type: long

short An integer between -32768 and 32767 -31353, -43, 345,
31347

Base type: int

byte An integer between -128 and 127 -127, -42, 0, 54, 125

Base type: short

nonNegative Standard mathematical concept of a non-negative 0, 1, 42
Integer integer (includes 0)

Base type: integer

unsignedLong A nonNegativeInteger between 0 and 0, 356, 38753829383
18446744073709551615.

Base type: nonNegativeInteger

unsignedInt An unsignedLong between 0 and 4294967295 46, 4255774,
2342823723

Base type: unsignedLong

unsigned An unsignedInt between 0 and 65535 78, 64328
Short

Base type: unsignedInt

unsignedByte An unsignedShort between 0 and 255 0, 46, 247

Base type: unsignedShort

positive Standard mathematical concept of a positive 1, 24, 345343
Integer integer (does not include 0)

Base type: nonNegativeInteger

Constraining Facets
The constraining facets defined in the XML Schema Datatypes specification are as follows:

❑ length

❑ minLength

❑ maxLength

❑ pattern

BC112

Appendix F: XML Schema Datatypes Reference

❑ enumeration

❑ whitespace

❑ maxInclusive

❑ minInclusive

❑ maxExclusive

❑ minExclusive

❑ totalDigits

❑ fractionDigits

length
The length facet enables you to specify the exact length of a datatype. If the datatype is a string, it spec-
ifies the number of characters in it. If it’s a list, it specifies the number of items in the list. If the base
type is hexBinary or base64Binary, the length is measured in octets. It can only be used inside a
<restriction> element, and can contain an <annotation> element. For more information, see §4.3.1
of the XML Schema Datatypes Recommendation.

Example

<xs:simpleType name=”USA_SSN”>
<xs:restriction base=”xs:string”>

<xs:length value=”11” />
</xs:restriction>

</xs:simpleType>

Attributes

Attribute Value Space Description

fixed boolean If true, any datatypes derived from this type cannot
alter the value of length. The default is false.

id ID Gives a unique identifier to the type

value nonNegativeInteger The actual length of the datatype. You may not use the
length facet and the minLength or maxLength facet in
the same datatype declaration.

minLength
The minLength facet sets the minimum length of a datatype. If the base type is string, it sets the mini-
mum number of characters. If it is a list, it sets the minimum number of members. If the base type is
hexBinary or base64Binary, the length is measured in octets. It is always used inside a <restriction>
element, and it can contain an <annotation> element. For more information, see §4.3.2 of the XML
Schema Datatypes Recommendation.

BC113

Appendix F: XML Schema Datatypes Reference

Example

<xs:simpleType name=”Password”>
<xs:restriction base=”xs:string”>

<xs:minLength value=”5” />
<xs:maxLength value=”20” />

</xs:restriction>
</xs:simpleType>

Attributes

Attribute Value Space Description

fixed boolean If true, any datatypes derived from this type cannot
alter the value of minLength. The default is false.

id ID Gives a unique identifier to the type

value nonNegativeInteger Sets the minimum length of the datatype, which must be
a non-negative integer. You may not use the length facet
and minLength facet in the same datatype declaration.

maxLength
The maxLength factor sets the maximum length of a datatype. If the base type is string, it sets the maxi-
mum number of characters. If it is a list, it sets the maximum number of members. If the base type is
hexBinary or base64Binary, the length is measured in octets. It is always used inside a <restriction>
element, and it can contain an <annotation> element. For more information, see §4.3.3 of the XML
Schema Datatypes Recommendation.

Example

<xs:simpleType name=”DesiredItems”>
<xs:restriction base=”ItemList”>

<xs:minLength value=”0” />
<xs:maxLength value=”3” />

</xs:restriction>
</xs:simpleType>

Attributes

Attribute Value Space Description

fixed boolean If true, any datatypes derived from this type cannot
alter the value of maxLength. The default is false.

id ID Gives a unique identifier to the type

value nonNegativeInteger Sets the maximum length of the datatype, which must be
a non-negative integer. You may not use the length facet
and maxLength facet in the same datatype declaration.

BC114

Appendix F: XML Schema Datatypes Reference

pattern
The pattern facet enables you to restrict any simple datatype by specifying a regular expression. It
acts on the lexical representation of the type, rather than the value itself. It is always used inside a
<restriction> element, and it can contain an <annotation> element. If the pattern facet is used in a
declaration with the base type list, the pattern applies to the entire list, not each item. For more infor-
mation, see §4.3.4 of the XML Schema Datatypes Recommendation.

Example

<xs:simpleType name=”USA_SSN”>
<xs:restriction base=”xs:string”>

<xs:pattern value=”[0-9]{3}-[0-9]{2}-[0-9]{4}” />
</xs:restriction>

</xs:simpleType>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the type

value string The value contained within this attribute is any valid regu-
lar expression. The regular expression is implicitly anchored
to the start (head) and end (tail) of the string.

enumeration
The enumeration facet is used to restrict the values allowed within a datatype to a set of specified val-
ues. It is always used inside a <restriction> element, and it can contain an <annotation> element.
For more information, see §4.3.5 of the XML Schema Datatypes Recommendation.

Example

<xs:simpleType name=”Sizes”>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”S” />
<xs:enumeration value=”M” />
<xs:enumeration value=”L” />
<xs:enumeration value=”XL” />

</xs:restriction>
</xs:simpleType>

Attributes

Attribute Value Space Description

id ID Gives a unique identifier to the element

value anySimpleType One of the values of an enumerated datatype. Multiple
enumeration elements are used for the different value
options.

BC115

Appendix F: XML Schema Datatypes Reference

whiteSpace
The whiteSpace facet dictates what (if any) whitespace transformation is performed upon the datatype
content before validation constraints are tested. It is always used inside a <restriction> element, and
it can contain an <annotation> element. For more information, see §4.3.6 of the XML Schema
Datatypes Recommendation.

Example

<xs:simpleType name=”token”>
<xs:restriction base=”xs:normalizedString”>

<xs:whiteSpace value=”collapse” />
</xs:restriction>

</xs:simpleType>

Attributes

Attribute Value Space Description

fixed boolean If true, any datatypes derived from this type cannot
alter the value of whiteSpace. The default is false.

id ID Gives a unique identifier to the type

value preserve | preserve means that all whitespace is preserved as it is
replace| declared in the element. If replace is used, then all
collapse whitespace characters, such as linefeed (#xA), carriage

return (#xD), and tab (#x9), are replaced by single
whitespace characters (#x20). collapse means all
whitespace characters, such as linefeed (#xA), carriage
return (#xD), and tab (#x9), are replaced by single
whitespace characters (#x20), and then any series of two
or more whitespace characters are collapsed into a sin-
gle whitespace character.

Note that a type with its whiteSpace facet set to
replace or preserve cannot be derived from one with
a value of collapse, and similarly, one with a value of
preserve cannot be derived from one with a value of
replace.

maxInclusive
The maxInclusive facet sets the inclusive upper limit of an ordered datatype (number, date type, or
ordered list), so the value stated here is therefore the highest value that can be used in this datatype.
maxInclusive must be equal to or greater than any value of minInclusive and greater than the
value of minExclusive. It is always used inside a <restriction> element, and it can contain
an <annotation> element. For more information, see §4.3.7 of the XML Schema Datatypes
Recommendation.

BC116

Appendix F: XML Schema Datatypes Reference

Example

The following example enables you to pick a number between 1 and 10 (the values 1 and 10 are permitted):

<xs:simpleType name=”PickANumber”>
<xs:restriction base=”xs:integer”>

<xs:minInclusive value=”1” />
<xs:maxInclusive value=”10” />

</xs:restriction>
</xs:simpleType>

Attributes

Attribute Value Space Description

fixed boolean If true, then any datatypes derived from this type cannot
alter the value of maxInclusive. The default is false.

id ID Gives a unique identifier to the type

value anySimpleType If the base datatype is numerical, then this would be a
number; if a date, then this would be a date. The value
must be allowable in the base type.

minInclusive
The minInclusive facet sets the inclusive lower limit of an ordered datatype (number, date type, or
ordered list). The value stated here is therefore the lowest value that can be used in this datatype.
minInclusive must be equal to or less than any value of maxInclusive and must be less than the
value of maxExclusive. It is always used inside a <restriction> element, and it can contain an
<annotation> element. For more information, see §4.3.10 of the XML Schema Datatypes
Recommendation.

Example

The following example enables you to pick a number between 1 and 10 (the values 1 and 10 are permitted):

<xs:simpleType name=”PickANumber”>
<xs:restriction base=”xs:integer”>

<xs:minInclusive value=”1” />
<xs:maxInclusive value=”10” />

</xs:restriction>
<xs:simpleType>

BC117

Appendix F: XML Schema Datatypes Reference

Attributes

Attribute Value Space Description

fixed boolean If true, then any datatypes derived from this type cannot
alter the value of minInclusive. The default is false.

id ID Gives a unique identifier to the type

value anySimpleType If the base datatype is numerical, then this would be a num-
ber; if a date, then a date. The value must be allowable in
the base type.

maxExclusive
The maxExclusive facet sets the exclusive upper limit of an ordered datatype (number, date type, or
ordered list). The maxExclusive value is therefore one higher than the maximum value that can be
used. maxExclusive must be greater than or equal to the value of minInclusive and greater than the
value of minExclusive. It is always used inside a <restriction> element, and it can contain an
<annotation> element. For more information, see §4.3.8 of the XML Schema Datatypes
Recommendation.

Example

The following example enables you to pick a number between 0 and 11; however, the values 0 and 11
are not permitted:

<xs:simpleType name=”PickANumber”>
<xs:restriction base=”xs:integer”>

<xs:minExclusive value=”0” />
<xs:maxExclusive value=”11” />

</xs:restriction>
</xs:simpleType>

Attributes

Attribute Value Space Description

fixed boolean If true, then any datatypes derived from this type cannot
alter the value of maxExclusive. The default is false.

id ID Gives a unique identifier to the type

value anySimpleType If the base datatype is numerical, then this is a number; if a
date, then it is a date. The value must be allowable in the
base type, or must be equal to the value of the maxExclu-
sive facet in the base type.

BC118

Appendix F: XML Schema Datatypes Reference

minExclusive
The minExclusive facet sets the exclusive lower limit of an ordered datatype (number, date type, or
ordered list). The minExclusive value is therefore one lower than the lowest value the data will allow.
minExclusive must be less than the value of maxExclusive and less than or equal to the value of
maxInclusive. It is always used inside a <restriction> element, and it can contain an <annota-
tion> element. For more information, see §4.3.9 of the XML Schema Datatypes Recommendation.

Example

The following example enables you to pick a number between 0 and 11; however, the values 0 and 11
are not permitted:

<xs:simpleType name=”PickANumber”>
<xs:restriction base=”xs:integer”>

<xs:minExclusive value=”0” />
<xs:maxExclusive value=”11” />

</xs:restriction>
</xs:simpleType>

Attributes

Attribute Value Space Description

fixed boolean If true, then any datatypes derived from this type cannot
alter the value of minExclusive. The default is false.

id ID Gives a unique identifier to the type

value anySimpleType If the base datatype is numerical, then this is a number; if
a date, then a date. The value must be allowable in the
base type, or must be equal to the value of the minExclu-
sive facet in the base type.

totalDigits
The totalDigits facet applies to all datatypes derived from the decimal type. The value stated is the
maximum number of significant digits allowed for the number (the totalDigits value must always be
a positive integer). Note that leading zeros and trailing zeros after the decimal point are not considered
when counting the total number of digits. Because the facet can only be applied to types derived from
decimal, there are functional limits on the number of digits and the level of precision that can be
expressed. The facet applies to only the value and not text representation. For more information, see
§4.3.11 of the XML Schema Datatypes Recommendation.

Example

<xs:simpleType name=”InterestRatePercent”>
<xs:restriction base=”xs:decimal”>

<xs:totalDigits value=”5” />
<xs:fractionDigits value=”3” />

</xs:restriction>
</xs:simpleType>

BC119

Appendix F: XML Schema Datatypes Reference

Attributes

Attribute Value Space Description

fixed boolean If true, then any datatypes derived from this type
cannot alter the value of totalDigits. The default is
false.

id ID Gives a unique identifier to the type

value positiveInteger The maximum number of totalDigits allowed for
the value

fractionDigits
The fractionDigits facet applies to all datatypes derived from the decimal type. The value stated is
the maximum number of digits in the fractional portion of the number (the fractionDigits value is
always a non-negative integer that is less than or equal to the value of totalDigits). Note that trailing
zeros after the decimal point are not considered when counting the total number of digits. Because the
facet can only be applied to types derived from decimal, there are functional limits on the number of
digits and the level of precision that can be expressed. The facet applies only to the value, not text repre-
sentation. For more information, see §4.3.12 of the XML Schema Datatypes Recommendation.

Example

<xs:simpleType name=”InterestRatePercent”>
<xs:restriction base=”xs:decimal”>

<xs:totalDigits value=”5” />
<xs:fractionDigits value=”3” />

</xs:restriction>
</xs:simpleType>

Attributes

Attribute Value Space Description

fixed boolean If true, then any datatypes derived from this type can-
not alter the value of fractionDigits. The default is
false.

id ID Gives a unique identifier to the type

value nonNegativeInteger The actual value of the value fractionDigits
attribute. This cannot be any larger than the
totalDigits value for the current type or base type.

The following table indicates which of these constraining facets may be applied to which built-in
datatypes in order to derive new types:

BC120

Appendix F: XML Schema Datatypes Reference

BC121

Appendix F: XML Schema Datatypes Reference

D
a

ta
ty

p
e

s
le

n
g

th
m

in
m

a
x

w
h

it
e

S
p

a
ce

p

a
tt

e
rn

e
n

u
m

e
r-

m
in

m
a

x
m

in
m

a
x

to
ta

l
fr

a
c

L
e

n
g

th
L

e
n

g
th

(a
ll

o
w

e
d

a

ti
o

n
E

x
cl

u
si

v
e

E
x

cl
u

si
v

e
In

cl
u

si
v

e
In

cl
u

si
v

e
D

ig
it

s
ti

o
n

v
a

lu
e

s)
D

ig
it

s

S
tr

in
g

 T
y

p
e

s

s
t
r
i
n
g

X
X

X
p
r
e
s
e
r
v
e

X
X

r
e
p
l
a
c
e

c
o
l
l
a
p
s
e

a
n
y
U
R
I

X
X

X
c
o
l
l
a
p
s
e

X
X

N
O
T
A
T
I
O
N

c
o
l
l
a
p
s
e

X
X

Q
N
a
m
e

c
o
l
l
a
p
s
e

X
X

B
in

a
ry

E

n
co

d
in

g

T
y

p
e

s

b
o
o
l
e
a
n

c
o
l
l
a
p
s
e

X

h
e
x
B
i
n
a
r
y

X
X

X
c
o
l
l
a
p
s
e

X
X

b
a
s
e
6
4
B
i
n
a
r
y

X
X

X
c
o
l
l
a
p
s
e

X
X

N
u

m
e

ri
c

T
y

p
e

s

d
e
c
i
m
a
l

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
X

f
l
o
a
t

c
o
l
l
a
p
s
e

X
X

X
X

X
X

d
o
u
b
l
e

c
o
l
l
a
p
s
e

X
X

X
X

X
X

Ta
bl

e
co

n
ti

n
u

ed
 o

n
 f

ol
lo

w
in

g
pa

ge

BC122

Appendix F: XML Schema Datatypes Reference
D

a
ta

ty
p

e
s

le
n

g
th

m
in

m
a

x
w

h
it

e
S

p
a

ce

p
a

tt
e

rn
e

n
u

m
e

r-
m

in
m

a
x

m
in

m
a

x
to

ta
l

fr
a

c
L

e
n

g
th

L
e

n
g

th
(a

ll
o

w
e

d

a
ti

o
n

E
x

cl
u

si
v

e
E

x
cl

u
si

v
e

In
cl

u
si

v
e

In
cl

u
si

v
e

D
ig

it
s

ti
o

n
v

a
lu

e
s)

D
ig

it
s

D
a

te
/T

im
e

T

y
p

e
s

d
u
r
a
t
i
o
n

c
o
l
l
a
p
s
e

X
X

X
X

X
X

d
a
t
e
T
i
m
e

c
o
l
l
a
p
s
e

X
X

X
X

X
X

d
a
t
e

c
o
l
l
a
p
s
e

X
X

X
X

X
X

t
i
m
e

c
o
l
l
a
p
s
e

X
X

X
X

X
X

g
Y
e
a
r

c
o
l
l
a
p
s
e

X
X

X
X

X
X

g
Y
e
a
r
M
o
n
t
h

c
o
l
l
a
p
s
e

X
X

X
X

X
X

g
M
o
n
t
h

c
o
l
l
a
p
s
e

X
X

X
X

X
X

g
M
o
n
t
h
D
a
y

c
o
l
l
a
p
s
e

X
X

X
X

X
X

g
D
a
y

c
o
l
l
a
p
s
e

X
X

X
X

X
X

BC123

Appendix F: XML Schema Datatypes Reference

D
a

ta
ty

p
e

s
le

n
g

th
m

in
m

a
x

w
h

it
e

S
p

a
ce

p

a
tt

e
rn

e
n

u
m

e
r-

m
in

m
a

x
m

in
m

a
x

to
ta

l
fr

a
c

L
e

n
g

th
L

e
n

g
th

(a
ll

o
w

e
d

a

ti
o

n
E

x
cl

u
si

v
e

E
x

cl
u

si
v

e
In

cl
u

si
v

e
In

cl
u

si
v

e
D

ig
it

s
ti

o
n

v
a

lu
e

s)
D

ig
it

s

T
y

p
e

s
D

e
ri

v
e

d

fr
o

m
 s

tr
in

g

n
o
r
m
a
l
i
z
e
d

X
X

X
p
r
e
s
e
r
v
e

X
X

S
t
r
i
n
g

r
e
p
l
a
c
e

c
o
l
l
a
p
s
e

t
o
k
e
n

X
X

X
c
o
l
l
a
p
s
e

X
X

l
a
n
g
u
a
g
e

X
X

X
c
o
l
l
a
p
s
e

X
X

N
a
m
e

X
X

X
c
o
l
l
a
p
s
e

X
X

N
C
N
a
m
e

X
X

X
c
o
l
l
a
p
s
e

X
X

I
D

X
X

X
c
o
l
l
a
p
s
e

X
X

I
D
R
E
F

X
X

X
c
o
l
l
a
p
s
e

X
X

I
D
R
E
F
S

X
X

X
c
o
l
l
a
p
s
e

X
X

N
M
T
O
K
E
N

X
X

X
c
o
l
l
a
p
s
e

X
X

N
M
T
O
K
E
N
S

X
X

X
c
o
l
l
a
p
s
e

X
X

E
N
T
I
T
Y

X
X

X
c
o
l
l
a
p
s
e

X
X

E
N
T
I
T
I
E
S

X
X

X
c
o
l
l
a
p
s
e

X
X

Ta
bl

e
co

n
ti

n
u

ed
 o

n
 f

ol
lo

w
in

g
pa

ge

The following table indicates which of these constraining facets may be applied to which derived built-in
datatypes in order to derive new types:

BC124

Appendix F: XML Schema Datatypes Reference
D

a
ta

ty
p

e
s

le
n

g
th

m
in

m
a

x
w

h
it

e
S

p
a

ce

p
a

tt
e

rn
e

n
u

m
e

r-
m

in
m

a
x

m
in

m
a

x
to

ta
l

fr
a

c
L

e
n

g
th

L
e

n
g

th
(a

ll
o

w
e

d

a
ti

o
n

E
x

cl
u

si
v

e
E

x
cl

u
si

v
e

In
cl

u
si

v
e

In
cl

u
si

v
e

D
ig

it
s

ti
o

n
v

a
lu

e
s)

D
ig

it
s

T
y

p
e

s
D

e
ri

v
e

d

fr
o

m
 d

e
ci

m
a

l

i
n
t
e
g
e
r

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

n
e
g
a
t
i
v
e

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

I
n
t
e
g
e
r

p
o
s
i
t
i
v
e

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

I
n
t
e
g
e
r

n
o
n

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

N
e
g
a
t
i
v
e

I
n
t
e
g
e
r

n
o
n

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

P
o
s
i
t
i
v
e

I
n
t
e
g
e
r

b
y
t
e

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

s
h
o
r
t

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

i
n
t

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

l
o
n
g

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

u
n
s
i
g
n
e
d
B
y
t
e

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

u
n
s
i
g
n
e
d
S
h
o
r
t

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

u
n
s
i
g
n
e
d
I
n
t

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

u
n
s
i
g
n
e
d
L
o
n
g

c
o
l
l
a
p
s
e

X
X

X
X

X
X

X
0

G
SAX 2.0.2 Reference

This appendix contains the specification of the SAX interface, version 2.0.2, some of which is
explained in Chapter 12. It is taken largely verbatim from the definitive specification to be found
at www.saxproject.org, with editorial comments added in italics. The classes and interfaces are
described in alphabetical order and include the primary SAX interfaces and classes and SAX exten-
sions. Deprecated classes and helper classes that are distributed with SAX 2.0.2 are not covered.

The SAX specification is in the public domain. (See the website mentioned previously for a state-
ment of policy on copyright.) Essentially, the policy says do what you like with it, copy it as you
wish, but no one accepts any liability for errors or omissions.

SAX 2.0.2 contains complete namespace support, which is available by default from any XMLReader
object. An XML reader can also optionally supply raw XML 1.0 names. An XML reader is fully con-
figurable: It is possible to attempt to query or change the current value of any feature or property.
Features and properties are identified by fully qualified URIs, and parties are free to invent their
own names for new extensions.

The ContentHandler and Attributes interfaces are similar to the deprecated DocumentHandler
and AttributeList interfaces, but they add support for namespace-related information.
ContentHandler also adds a callback for skipped entities, and the Attributes interface adds
the capability to look up an attribute’s index by name.

The following interfaces were included in SAX 1.0 but have been deprecated:

❑ org.xml.sax.Parser

❑ org.xml.sax.DocumentHandler

❑ org.xml.sax.AttributeList

❑ org.xml.sax.HandlerBase

These interfaces are not covered in this appendix, as their use is not widespread.

Classes and Interfaces
SAX is comprised of three packages. The first package, org.xml.sax, includes all the default interfaces
and classes required to create a basic SAX application. The second package, org.xml.sax.helpers,
provides default implementations of the interfaces as well as additional classes that can be used to sup-
port namespaces and work with legacy parsers. The third package, org.xml.sax.ext, includes exten-
sion interfaces that provide applications with additional details from the XML document. The following
classes are included in this appendix.

From the org.xml.sax package:

❑ Attributes

❑ ContentHandler

❑ DTDHandler

❑ EntityResolver

❑ ErrorHandler

❑ InputSource

❑ Locator

❑ SAXException

❑ SAXNotRecognizedException

❑ SAXNotSupportedException

❑ SAXParseException

❑ XMLFilter

❑ XMLReader

From the org.xml.sax.ext package:

❑ DeclHandler

❑ LexicalHandler

The following extension interfaces were added in version 2.0.1:

❑ Attributes2

❑ EntityResolver2

❑ Locator2

More detailed explanation appears in Chapter 12 for the commonly used interfaces and classes.

BC126

Appendix G: SAX 2.0.2 Reference

Interface org.xml.sax.Attributes
This interface for a list of XML attributes enables access to a list of attributes in three different ways:

❑ By attribute index

❑ By namespace-qualified name

❑ By qualified (prefixed) name

The list will not contain attributes that were declared #IMPLIED but not specified in the start-tag. Nor
will it contain attributes used as namespace declarations (xmlns*) unless the http://xml.org/sax/
features/namespace-prefixes feature is set to true (it is false by default). Because SAX 2.0.2 conforms
to the original “Namespaces in XML” recommendation, it normally does not give namespace declaration
attributes a namespace URI.

Some SAX 2.0.2 parsers may support using an optional feature flag (http://xml.org/sax/features/
xmlns-uris) to request that those attributes be given URIs, conforming to a later backwardly incompat-
ible revision of that recommendation. (The attribute’s “local name” will be the prefix, or “xmlns” when
defining a default element namespace.) For portability, handler code can be created that emulates or
masks this feature, rather than require the use of parsers that can change the setting of that feature flag.

If the namespace-prefixes feature is false, then access by a qualified name may not be available; if the
http://xml.org/sax/features/namespaces feature is false, then access by namespace-qualified
names may not be available.

This interface replaces the now deprecated SAX AttributeList interface, which does not contain
namespace support. In addition to namespace support, it adds the getIndex methods (covered in the
following table).

The order of attributes in the list is unspecified and varies from implementation to implementation.

Method Name Description

getIndex(String) public int getIndex(String qName)

Look up the index of an attribute by XML qualified name.

Parameters:
qName: The qualified (prefixed) name.

Returns:
The index of the attribute, or -1 if it does not appear in the list.

Table continued on following page

BC127

Appendix G: SAX 2.0.2 Reference

Method Name Description

getIndex(String, public int getIndex(String uri, String localName)

String)

Look up the index of an attribute by namespace name.

Parameters:
uri: The namespace URI, or the empty string if the name has no
namespace URI.

localName: The attribute’s local name.

Returns:
The index of the attribute, or -1 if it does not appear in the list.

getLength public int getLength()

Return the number of attributes in the list. Once you know the number
of attributes, you can iterate through the list.

Returns:
The number of attributes in the list.

getLocalName(int) public String getLocalName(int index)

Look up an attribute’s local name by index.

Parameters:
index: The attribute index (zero-based).

Returns:
The local name, or the empty string if namespace processing is not
being performed, or null if the index is out of range.

getQName(int) public String getQName(int index)

Look up an attribute’s XML qualified name by index.

Parameters:
index: The attribute index (zero-based).

Returns:
The XML qualified name, or the empty string if none is available, or
null if the index is out of range.

BC128

Appendix G: SAX 2.0.2 Reference

Method Name Description

GetType(int) public String getType(int index)

Look up an attribute’s type by index.

The attribute type is one of the strings “CDATA”, “ID”, “IDREF”,
“IDREFS”, “NMTOKEN”, “NMTOKENS”, “ENTITY”, “ENTITIES”, or
“NOTATION” (always in uppercase).

If the parser has not read a declaration for the attribute, or if the parser
does not report attribute types, then it must return the value “CDATA” as
stated in the XML 1.0 Recommendation (clause 3.3.3, “Attribute-Value
Normalization”).

For an enumerated attribute that is not a notation, the parser reports
the type as “NMTOKEN”.

Parameters:
index: The attribute index (zero-based).

Returns:
The attribute’s type as a string, or null if the index is out of range.

GetType(String) public String getType(String qName)

Look up an attribute’s type by XML 1.0 qualified name.

See getType(int) for a description of the possible types.

Parameters:
qName: The XML 1.0 qualified name.

Returns:
The attribute type as a string, or null if the attribute is not in the list or
if qualified names are not available.

GetType(String, public String getType(String uri, String localName)

String)

Look up an attribute’s type by namespace name.

See getType(int) for a description of the possible types.

Parameters:
uri: The namespace URI, or the empty string if the name has no
namespace URI.
localName: The attribute’s local name.

Returns:
The attribute type as a string, or null if the attribute is not in the list or
if namespace processing is not being performed.

Table continued on following page

BC129

Appendix G: SAX 2.0.2 Reference

Method Name Description

getURI(int) public String getURI(int index)

Look up an attribute’s namespace URI by index.

Parameters:
index: The attribute index (zero-based).

Returns:
The namespace URI, or the empty string if none is available, or null if
the index is out of range.

getValue(int) public String getValue(int index)

Look up an attribute’s value by index.

If the attribute value is a list of tokens (IDREFS, ENTITIES, or NMTOKENS),
then the tokens are concatenated into a single string, with each token sep-
arated by a single space.

Parameters:
Index: The attribute index (zero-based).

Returns:
The attribute’s value as a string, or null if the index is out of range.

getValue(String) public String getValue(String qName)

Look up an attribute’s value by XML 1.0 qualified name.

See getValue(int) for a description of the possible values.

Parameters:
qName: The XML 1.0 qualified name.

Returns:
The attribute value as a string, or null if the attribute is not in the list or
if qualified names are not available.

getValue(String, public String getValue(String uri, String localName)

String)

Look up an attribute’s value by namespace name.

See getValue(int) for a description of the possible values.

Parameters:
uri: The namespace URI, or the empty string if the name has no
namespace URI.
localName: The attribute’s local name.

Returns:
The attribute value as a string, or null if the attribute is not in the list.

BC130

Appendix G: SAX 2.0.2 Reference

Interface org.xml.sax.ext.Attributes2
This is a SAX extension to augment the per-attribute information provided though attributes. If
an implementation supports this extension, then the attributes provided in ContentHandler
.startElement()implement this interface, and the http://xml.org/sax/features/
use-attributes2 feature flag will have the value true.

XMLReader implementations are not required to support this information, and it is not part of core-only
SAX distributions.

Note that if an attribute was defaulted (isSpecified() is false), then it will of necessity also have
been declared (isDeclared() is true) in the DTD. Similarly, if an attribute’s type is anything except
CDATA, then it must have been declared.

Method Name Description

isDeclared(int) public boolean isDeclared(int index)

Returns false unless the attribute was declared in the DTD. This helps
distinguish two kinds of attributes that SAX reports as CDATA: ones that
were declared (and hence are usually valid), and those that were not
(and which are never valid).

Parameters:
Index: The attribute index (zero-based).

Returns:
true if the attribute was declared in the DTD, false otherwise.

Throws:
ArrayIndexOutOfBoundsException: When the supplied index does
not identify an attribute.

isDeclared(String) public boolean isDeclared(String qName)

Returns false unless the attribute was declared in the DTD. This helps
distinguish two kinds of attributes that SAX reports as CDATA: ones that
were declared (and hence are usually valid), and those that were not
(and which are never valid).

Parameters:
qName: The XML 1.0 qualified name.

Returns:
true if the attribute was declared in the DTD, false otherwise.

Throws:
IllegalArgumentException: When the supplied name does not
identify an attribute.

Table continued on following page

BC131

Appendix G: SAX 2.0.2 Reference

Method Name Description

isDeclared public boolean isDeclared(String uri, String localName)

(String, String)

Returns false unless the attribute was declared in the DTD. This helps
distinguish two kinds of attributes that SAX reports as CDATA: ones that
were declared (and hence are usually valid), and those that were not
(and which are never valid).

Remember that since DTDs do not “understand” namespaces, the name-
space URI associated with an attribute may not have come from the DTD.
The declaration will have applied to the attribute’s qualified name.

Parameters:
uri: The namespace URI, or the empty string if the name has no
namespace URI.
localName: The attribute’s local name.

Returns:
true if the attribute was declared in the DTD, false otherwise.

Throws:
IllegalArgumentException: When the supplied names do not iden-
tify an attribute.

isSpecified(int) public boolean isSpecified(int index)

Returns true unless the attribute value was provided by DTD defaulting.

Parameters:
Index: The attribute index (zero-based).

Returns:
true if the value was found in the XML text, false if the value was
provided by DTD defaulting.

Throws:
ArrayIndexOutOfBoundsException: When the supplied index does
not identify an attribute.

isSpecified public boolean isSpecified(String qName)

(String)

Returns true unless the attribute value was provided by DTD defaulting.

Parameters:
qName: The XML 1.0 qualified name.

Returns:
true if the value was found in the XML text, false if the value was
provided by DTD defaulting.

BC132

Appendix G: SAX 2.0.2 Reference

Method Name Description

Throws:
IllegalArgumentException: When the supplied name does not
identify an attribute.

isSpecified public boolean isSpecified(String uri, String localName)

(String, String)

Returns true unless the attribute value was provided by DTD defaulting.

Remember that since DTDs do not “understand” namespaces, the name-
space URI associated with an attribute may not have come from the DTD.
The declaration will have applied to the attribute’s qualified name.

Parameters:
uri: The namespace URI, or the empty string if the name has no
namespace URI.
localName: The attribute’s local name.

Returns:
true if the value was found in the XML text, false if the value was
provided by DTD defaulting.

Throws:
IllegalArgumentException: When the supplied names do not iden-
tify an attribute.

Interface org.xml.sax.ContentHandler
This interface enables you to receive notification of the logical content of a document.

This is the main interface that most SAX applications implement: If the application needs to be informed
of basic parsing events, it implements this interface and registers an instance with the SAX parser using
the setContentHandler method. The parser uses the instance to report basic document-related events
such as the start and end of elements and character data.

The order of events in this interface is important, and mirrors the order of information in the document
itself. For example, all of an element’s content (character data, processing instructions, and/or sub-
elements) will appear, in order, between the startElement event and the corresponding endElement
event.

This interface is similar to the now deprecated SAX 1.0 DocumentHandler interface, but it adds support
for namespaces and for reporting skipped entities (in nonvalidating XML processors).

Implementors should note that there is also a Java class ContentHandler in the java.net package;
therefore, it’s probably a bad idea to do the following:

import java.net.*;
import org.xml.sax.*;

BC133

Appendix G: SAX 2.0.2 Reference

Method Name Description

characters public void characters(char[] ch, int start, int length)

(char[], int, int)

throws SAXException

Receive notification of character data.

The parser calls this method to report each chunk of character data.
SAX parsers may return all contiguous character data in a single chunk,
or they may split it into several chunks; however, all the characters in
any single event must come from the same external entity so that the
Locator provides useful information.

The application must not attempt to read from the array outside of the
specified range.

Individual characters may consist of more than one Java char value.
There are two important cases where this happens, because characters
can’t be represented in just sixteen bits. In one case, characters are rep-
resented in a surrogate pair, using two special Unicode values. Such
characters are in the so-called “Astral Planes,” with a code point above
U+FFFF. A second case involves composite characters, such as a base
character combining with one or more accent characters.

Your code should not assume that algorithms using char-at-a-time idioms
will be working in character units; in some cases they split characters. This
is relevant wherever XML permits arbitrary characters, such as attribute
values, processing instruction data, and comments, as well as in data
reported from this method. It’s also generally relevant whenever Java
code manipulates internationalized text; the issue isn’t unique to XML.

Note that some parsers report whitespace in element content using the
ignorableWhitespace method, rather than this one (validating
parsers must do so).

Parameters:
ch: The characters from the XML document.
start: The start position in the array.
length: The number of characters to read from the array.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

BC134

Appendix G: SAX 2.0.2 Reference

Method Name Description

endDocument public void endDocument()

throws SAXException

Receive notification of the end of a document.

There is an apparent contradiction between the documentation for this
method and the documentation for ErrorHandler.fatalError. Until
this ambiguity is resolved in a future major release, clients should make
no assumptions about whether endDocument will or will not be invoked
when the parser has reported a fatalError or thrown an exception.

The SAX parser invokes this method only once, and it will be the last
method invoked during the parse. If the parser does call this method,
then it will not invoke it until it has either abandoned parsing (because
of an unrecoverable error) or reached the end of input.

For more information, see the discussion in Chapter 12.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

endElement(String, public void endElement(String uri, String localName,

String, String) String qName)

throws SAXException

Receive notification of the end of an element.

The SAX parser invokes this method at the end of every element in the
XML document; there will be a corresponding startElement event for
every endElement event (even when the element is empty).

For information on the names, see startElement.

Parameters:
uri: The namespace URI, or the empty string if the element has no
namespace URI or if namespace processing is not being performed.
localName: The local name (without prefix), or the empty string if
namespace processing is not being performed.
qName: The qualified XML 1.0 name (with prefix), or the empty string if
qualified names are not available.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

Table continued on following page

BC135

Appendix G: SAX 2.0.2 Reference

Method Name Description

endPrefixMapping public void endPrefixMapping(String prefix)

(String)

throws SAXException

End the scope of a prefix-URI mapping.

See startPrefixMapping for details. These events always occur
immediately after the corresponding endElement event, but the order
of endPrefixMapping events is not otherwise guaranteed.

Parameters:
prefix: The prefix that was being mapped. This is the empty string
when a default mapping scope ends.

Throws:
SAXException: The client may throw an exception during processing.

ignorable public void ignorableWhitespace(char[] ch, int start,

Whitespace(char[], int length)

int, int)

throws SAXException

Receive notification of ignorable whitespace in element content.

Validating parsers must use this method to report each chunk of
whitespace in element content (see the W3C XML 1.0 Recommendation,
section 2.10): nonvalidating parsers may also use this method if they
are capable of parsing and using content models.

SAX parsers may return all contiguous whitespace in a single chunk, or
they may split it into several chunks; however, all of the characters in
any single event must come from the same external entity, so that the
locator provides useful information.

The application must not attempt to read from the array outside of the
specified range.

Parameters:
ch: The characters from the XML document.
start: The start position in the array.
length: The number of characters to read from the array.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

BC136

Appendix G: SAX 2.0.2 Reference

Method Name Description

processing public void processingInstruction(String target,

Instruction String data)

(String, String)

throws SAXException

Receive notification of a processing instruction.

The parser will invoke this method once for each processing instruction
found. Note that processing instructions may occur before or after the
main document element.

A SAX parser must never report an XML declaration (XML 1.0, section
2.8) or a text declaration (XML 1.0, section 4.3.1) using this method.

Like characters(), processing instruction data may have characters
that need more than one char value.

Parameters:
target: The processing instruction target.
data: The processing instruction data, or null if none was supplied.
The data does not include any whitespace separating it from the target.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

setDocument public void setDocumentLocator(Locator locator)

Locator(Locator)

Receive an object for locating the origin of SAX document events.

SAX parsers are strongly encouraged (though not absolutely required)
to supply a locator: if it does so, it must supply the locator to the appli-
cation by invoking this method before invoking any of the other
methods in the ContentHandler interface.

The locator allows the application to determine the end position of any
document-related event, even if the parser is not reporting an error.
Typically, the application uses this information for reporting its own
errors (such as character content that does not match an application’s
business rules). The information returned by the locator is probably not
sufficient for use with a search engine.

Note that the locator returns correct information only during the invo-
cation SAX event callbacks after startDocument returns and before
endDocument is called. The application should not attempt to use it at
any other time.

Table continued on following page

BC137

Appendix G: SAX 2.0.2 Reference

Method Name Description

setDocument Parameters:
Locator(Locator) locator: An object that can return the location of any SAX document

event.

skippedEntity public void skippedEntity(String name)

(String)

throws SAXException

Receive notification of a skipped entity. This is not called for entity
references within markup constructs, such as element start-tags or
markup declarations. (The XML Recommendation requires reporting
skipped external entities. SAX also reports internal entity
expansion/nonexpansion, except within markup constructs.)

The parser invokes this method each time the entity is skipped.
Nonvalidating processors may skip entities if they have not seen
the declarations (because, for example, the entity was declared in an
external DTD subset). All processors may skip external entities,
depending on the values of the http://xml.org/sax/features/
external-general-entities and the http://xml.org/sax/
features/external-parameter-entities properties.

Parameters:
name: The name of the skipped entity. If it is a parameter entity, then
the name begins with ‘%’, and if it is the external DTD subset, then it is
the string “[dtd]”.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

startDocument() public void startDocument()

throws SAXException

Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other
event callbacks (except for setDocumentLocator).

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

BC138

Appendix G: SAX 2.0.2 Reference

Method Name Description

startElement public void startElement(String uri, String localName,

(String, String, String qName, Attributes atts)

String, Attributes)

throws SAXException

Receive notification of the beginning of an element.

The parser will invoke this method at the beginning of every element in
the XML document; there will be a corresponding endElement event
for every startElement event (even when the element is empty). All
of the element’s content will be reported, in order, before the corre-
sponding endElement event.

This event allows up to three name components for each element:
The namespace URI
The local name
The qualified (prefixed) name

Any or all of these may be provided, depending on the values of the
http://xml.org/sax/features/namespaces and http://xml
.org/sax/features/namespace-prefixes properties:

The namespace URI and local name are required when the namespaces
feature is true (the default), and are optional when the namespaces
feature is false (if one is specified, then both must be);

The qualified name is required when the namespace-prefixes feature is
true, and is optional when the namespace-prefixes feature is false
(the default).

Note that the attribute list provided will contain only attributes with
explicit values (specified or defaulted); #IMPLIED attributes will be
omitted. The attribute list will contain attributes used for namespace
declarations (xmlns* attributes) only if the http://xml.org/sax/
features/namespace-prefixes feature is true (it is false by
default, and support for a true value is optional).

Like characters(), attribute values may have characters that need
more than one char value.

Table continued on following page

BC139

Appendix G: SAX 2.0.2 Reference

Method Name Description

startElement Parameters:
(String, String, uri: The namespace URI, or the empty string if the element has no
String, Attributes) namespace URI or if namespace processing is not being performed.

localName: The local name (without prefix), or the empty string if
namespace processing is not being performed.
qName: The qualified XML 1.0 name (with prefix), or the empty string if
qualified names are not available.
atts: The attributes attached to the element. If there are no attributes, it
shall be an empty Attributes object. The value of this object after
startElement returns is undefined.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

startPrefix public void startPrefixMapping(String prefix, String uri)

Mapping(String,

String) throws SAXException

Begin the scope of a prefix-URI namespace mapping.

The information from this event is not necessary for normal namespace
processing: The SAX XMLReader will automatically replace prefixes
for element and attribute names when the http://xml.org/sax/
features/namespaces feature is true (the default).

There are cases, however, when applications need to use prefixes in
character data or attribute values, where they cannot safely be
expanded automatically; the start/endPrefixMapping event sup-
plies the information to the application to expand prefixes in those con-
texts itself, if necessary.

Note that start/endPrefixMapping events are not guaranteed to be
properly nested relative to each other: all startPrefixMapping events
occur immediately before the corresponding startElement event, and
all endPrefixMapping events occur immediately after the correspond-
ing endElement event, but their order is not otherwise guaranteed.

There should never be start/endPrefixMapping events for the xml
prefix, since it is predeclared and immutable.

Parameters:
prefix: The namespace prefix being declared. An empty string is used
for the default element namespace, which has no prefix.
uri: The namespace URI the prefix is mapped to.

Throws:
SAXException: The client may throw an exception during processing.

BC140

Appendix G: SAX 2.0.2 Reference

Interface org.xml.sax.ext.DeclHandler
This interface is the SAX extension handler for DTD declaration events.

It is an optional extension handler for SAX to provide more complete information about DTD declara-
tions in an XML document. XML readers are not required to recognize this handler, and it is not part of
core-only SAX distributions.

Note that data-related DTD declarations (unparsed entities and notations) are already reported through
the DTDHandler interface. If you are using the declaration handler with a lexical handler, all the events
will occur between the startDTD and the endDTD events.

To set the DeclHandler for an XML reader, use the setProperty method with the property name
http://xml.org/sax/properties/declaration-handler and an object implementing this
interface (or null) as the value. If the reader does not report declaration events, it will throw a
SAXNotRecognizedException when you attempt to register the handler.

Method Name Description

attributeDecl public void attributeDecl(String eName, String aName,

(String, String, String type, String mode, String value)

String, String,

String) throws SAXException

Report an attribute type declaration.

Only the effective (first) declaration for an attribute will be reported.
The type will be one of the strings CDATA, ID, IDREF, IDREFS, NMTOKEN,
NMTOKENS, ENTITY, ENTITIES, a parenthesized token group with the
separator | and all whitespace removed, or the word NOTATION fol-
lowed by a space followed by a parenthesized token group with all
whitespace removed.

The value will be the value as reported to applications, appropriately
normalized and with entity and character references expanded.

Parameters:
eName: The name of the associated element.

aName: The name of the attribute.

type: A string representing the attribute type.

mode: A string representing the attribute defaulting mode (#IMPLIED,
#REQUIRED, or #FIXED) or null if none of these applies.

value: A string representing the attribute’s default value, or null if
there is none.

Table continued on following page

BC141

Appendix G: SAX 2.0.2 Reference

Method Name Description

attributeDecl Throws:
(String, String, SAXException: The application may raise an exception.
String, String,

String)

elementDecl public void elementDecl(String name, String model)

(String, String)

throws SAXException

Report an element type declaration.

The content model consists of the string EMPTY, the string ANY, or a
parenthesized group, optionally followed by an occurrence indicator.
The model will be normalized so that all parameter entities are fully
resolved and all whitespace is removed, and will include the enclosing
parentheses. Other normalization (such as removing redundant paren-
theses or simplifying occurrence indicators) is at the discretion of the
parser.

Parameters:
name: The element type name.
model: The content model as a normalized string.

Throws:
SAXException: The application may raise an exception.

externalEntity public void externalEntityDecl(String name, String

Decl(String, publicId, String systemId)

String, String)

throws SAXException

Report a parsed external entity declaration.

Only the effective (first) declaration for each entity will be reported. If
the system identifier is a URL, the parser must resolve it fully before
passing it to the application.

Parameters:
name: The name of the entity. If it is a parameter entity, the name will
begin with ‘%’.
publicId: The declared public identifier of the entity, or null if none
was declared.
systemId: The declared system identifier of the entity.

Throws:
SAXException: The application may raise an exception.

BC142

Appendix G: SAX 2.0.2 Reference

Method Name Description

internalEntity public void internalEntityDecl(String name, String value)

Decl(String,

String) throws SAXException

Report an internal entity declaration.

Only the effective (first) declaration for each entity will be reported. All
parameter entities in the value will be expanded, but general entities
will not.

Parameters:
name: The name of the entity. If it is a parameter entity, the name will
begin with ‘%’.
value: The replacement text of the entity.

Throws:
SAXException: The application may raise an exception.

Interface org.xml.sax.DTDHandler
You use this interface to receive notification of basic DTD-related events.

If a SAX application needs information about notations and unparsed entities, then the application imple-
ments this interface and registers an instance with the SAX parser using the parser’s setDTDHandler
method. The parser uses the instance to report notation and unparsed entity declarations to the application.

Note that this interface includes only those DTD events that the XML recommendation requires proces-
sors to report: notation and unparsed entity declarations.

The SAX parser may report these events in any order, regardless of the order in which the notations and
unparsed entities were declared; however, all DTD events must be reported after the document handler’s
startDocument event, and before the first startElement event. (If the LexicalHandler is used, these
events must also be reported before the endDTD event.)

It is up to the application to store the information for future use (perhaps in a hash table or object tree).
If the application encounters attributes of type NOTATION, ENTITY, or ENTITIES, it can use the informa-
tion that it obtained through this interface to find the entity and/or notation corresponding with the
attribute value.

BC143

Appendix G: SAX 2.0.2 Reference

Method Name Description

notationDecl public void notationDecl(String name, String publicId,

(String, String, String systemId)

String)

throws SAXException

Receive notification of a notation declaration event.

It is up to the application to record the notation for later reference, if
necessary; notations may appear as attribute values and in unparsed
entity declarations, and are sometime used with processing instruction
target names.

At least one of publicId and systemId must be non-null. If a system
identifier is present, and it is a URL, then the SAX parser must resolve
it fully before passing it to the application through this event.

There is no guarantee that the notation declaration will be reported
before any unparsed entities that use it.

Parameters:
name: The notation name.
publicId: The notation’s public identifier, or null if none was given.
systemId: The notation’s system identifier, or null if none was given.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

unparsedEntity public void unparsedEntityDecl(String name, String

Decl(String, publicId, String systemId, String notationName)

String, String,

String) throws SAXException

Receive notification of an unparsed entity declaration event.

Note that the notation name corresponds to a notation reported by the
notationDecl event. It is up to the application to record the entity for
later reference, if necessary; unparsed entities may appear as attribute
values.

If the system identifier is a URL, then the parser must resolve it fully
before passing it to the application.

BC144

Appendix G: SAX 2.0.2 Reference

Method Name Description

unparsedEntity Parameters:
Decl(String, name: The unparsed entity’s name.
String, String, publicId: The entity’s public identifier, or null if none was given.
String) systemId: The entity’s system identifier.

notationName: The name of the associated notation.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

Interface org.xml.sax.EntityResolver
This is a basic interface for resolving entities.

If a SAX application needs to implement customized handling for external entities, it must implement
this interface and register an instance with the SAX driver using the setEntityResolver method. The
XML reader will then allow the application to intercept any external entities (including the external DTD
subset and external parameter entities, if any) before including them.

Many SAX applications will not need to implement this interface, but it is especially useful for applica-
tions that build XML documents from databases or other specialized input sources, or for applications
that use URI types other than URLs.

The following resolver would provide the application with a special character stream for the entity with
the system identifier http://www.myhost.com/today:

import org.xml.sax.EntityResolver;
import org.xml.sax.InputSource;

public class MyResolver implements EntityResolver {
public InputSource resolveEntity (String publicId, String systemId)
{
if (systemId.equals(“http://www.myhost.com/today”)) {

// return a special input source
MyReader reader = new MyReader();
return new InputSource(reader);

} else {
// use the default behaviour

return null;
}

}
}

The application can also use this interface to redirect system identifiers to local URIs or to look up
replacements in a catalog (possibly by using the public identifier).

BC145

Appendix G: SAX 2.0.2 Reference

Method Name Description

resolveEntity public InputSource resolveEntity(String publicId, String

(String, String) systemId)

throws SAXException, IOException

Allow the application to resolve external entities.

The parser will call this method before opening any external entity
except the top-level document entity. Such entities include the external
DTD subset and external parameter entities referenced within the DTD
(in either case, only if the parser reads external parameter entities), and
external general entities referenced within the document element (if the
parser reads external general entities). The application may request
that the parser locate the entity itself, that it use an alternative URI, or
that it use data provided by the application (as a character or byte
input stream).

Application writers can use this method to redirect external system
identifiers to secure and/or local URIs, to look up public identifiers in a
catalogue, or to read an entity from a database or other input source
(including, for example, a dialog box). Neither XML nor SAX specifies a
preferred policy for using public or system IDs to resolve resources.
However, SAX specifies how to interpret any InputSource returned
by this method, and that if none is returned, the system ID will be
dereferenced as a URL.

If the system identifier is a URL, then the SAX parser must resolve it
fully before reporting it to the application.

Parameters:
publicId: The public identifier of the external entity being referenced,
or null if none was supplied.
systemId: The system identifier of the external entity being referenced.

Returns:
An InputSource object describing the new input source, or null to
request that the parser open a regular URI connection to the system
identifier.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.
IOException: A Java-specific IO exception, possibly the result of
creating a new InputStream or Reader for the InputSource, or an
illegal URL.

BC146

Appendix G: SAX 2.0.2 Reference

Interface org.xml.sax.ext.EntityResolver2
This is an extended interface for mapping external entity references to input sources, or providing a
missing external subset. The XMLReader.setEntityResolver() method is used to provide
implementations of this interface to parsers. When a parser uses the methods in this interface, the
EntityResolver2.resolveEntity() method (in this interface) is used instead of the older
EntityResolver.resolveEntity() method.

If a SAX application requires the customized handling, which this interface defines for external entities,
it must ensure that it uses an XMLReader with the http://xml.org/sax/features/use-entity-
resolver2 feature flag set to true (which is its default value when the feature is recognized). If that
flag is unrecognized, or its value is false, or the resolver does not implement this interface, then only
the EntityResolver method will be used.

Method Name Description

getExternalSubset public InputSource getExternalSubset(String name,

(String, String) String baseURI)

throws SAXException, IOException

Allows applications to provide an external subset for documents that
don’t explicitly define one. Documents with DOCTYPE declarations that
omit an external subset can thus augment the declarations available for
validation, entity processing, and attribute processing (normalization,
defaulting, and reporting types including ID). This augmentation is
reported through the startDTD() method as if the document text had
originally included the external subset; this callback is made before any
internal subset data or errors are reported.

This method can also be used with documents that have no DOCTYPE
declaration. When the root element is encountered but no DOCTYPE
declaration has been seen, this method is invoked. If it returns a value
for the external subset, that root element is declared to be the root ele-
ment, with the effect of splicing a DOCTYPE declaration at the end of
the prolog of a document that could not otherwise be valid. The
sequence of parser callbacks in that case logically resembles this:

... comments and PIs from the prolog (as usual)

startDTD (“rootName”, source.getPublicId (), source.get-

SystemId ());

startEntity (“[dtd]”);

... declarations, comments, and PIs from the external subset

Table continued on following page

BC147

Appendix G: SAX 2.0.2 Reference

Method Name Description

getExternalSubset endEntity (“[dtd]”);

(String, String)

endDTD ();

... then the rest of the document (as usual)

startElement (..., “rootName”, ...);

Note that the InputSource gets no further resolution. Implementa-
tions of this method may wish to invoke resolveEntity() to gain
benefits such as use of local caches of DTD entities. Also, this method is
never used by a (nonvalidating) processor that is not including external
parameter entities.

Uses for this method include facilitating data validation when interop-
erating with XML processors that would always require undesirable
network accesses for external entities, or which for other reasons adopt
a “no DTDs” policy. Nonvalidation motives include forcing documents
to include DTDs so that attributes are handled consistently. For exam-
ple, an XPath processor needs to know which attributes have type “ID”
before it can process a widely used type of reference.

Warning: Returning an external subset modifies the input document.
Providing definitions for general entities can make a malformed docu-
ment appear to be well formed.

Parameters:
name: Identifies the document root element. This name comes from a
DOCTYPE declaration (where available) or the actual root element.
baseURI: The document’s base URI, serving as an additional hint for
selecting the external subset. This is always an absolute URI, unless it is
null because the XMLReader was given an InputSource without one.

Returns:
An InputSource object describing the new external subset to be used
by the parser, or null to indicate that no external subset is provided.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.
IOException: A Java-specific IO exception, possibly the result of
creating a new InputStream or Reader for the InputSource, or an
illegal URL.

BC148

Appendix G: SAX 2.0.2 Reference

Method Name Description

resolveEntity public InputSource resolveEntity(String name, String

(String, String, publicId, String baseURI, String systemId)

String)

throws SAXException, IOException

Allows applications to map references to external entities into input
sources, or to tell the parser it should use conventional URI resolution.
This method is only called for external entities that have been properly
declared. It provides more flexibility than the EntityResolver inter-
face, supporting implementations of more complex catalogue schemes
such as the one defined by the OASIS XML Catalogs specification.

Parsers configured to use this resolver method will call it to determine
the input source to use for any external entity being included because
of a reference in the XML text. That excludes the document entity, and
any external entity returned by getExternalSubset(). When a (non-
validating) processor is configured not to include a class of entities
(parameter or general) through use of feature flags, this method is not
invoked for such entities.

Note that the entity naming scheme used here is the same one used in
the LexicalHandler, or in the ContentHandler.skippedEntity()
method.

Parameters:
name: Identifies the external entity being resolved. Either [dtd] for the
external subset, or a name starting with % to indicate a parameter entity,
or else the name of a general entity. This is never null when invoked by
a SAX parser.
publicId: The public identifier of the external entity being referenced
(normalized as required by the XML specification), or null if none was
supplied.
baseURI: The URI with respect to which relative system IDs are inter-
preted. This is always an absolute URI, unless it is null (likely because
the XMLReader was given an InputSource without one). This URI is
defined by the XML specification to be the one associated with the <
starting the relevant declaration.
systemId: The system identifier of the external entity being referenced:
either a relative or absolute URI. This is never null when invoked by a
SAX parser; only declared entities, and any external subset, are
resolved by such parsers.

Returns:
An InputSource object describing the new input source to be used by
the parser. Returning null directs the parser to resolve the system ID
against the base URI and open a connection to resulting URI.

Table continued on following page

BC149

Appendix G: SAX 2.0.2 Reference

Method Name Description

resolveEntity Throws:
(String, String, SAXException: Any SAX exception, possibly wrapping another
String) exception.

IOException: A Java-specific IO exception, possibly the result of
creating a new InputStream or Reader for the InputSource, or an
illegal URL.

Interface org.xml.sax.ErrorHandler
This is a basic interface for SAX error handlers.

If a SAX application needs to implement customized error handling, then it must implement this inter-
face and then register an instance with the XMLReader using the setErrorHandler method. The parser
then reports all errors and warnings through this interface.

For XML processing errors, a SAX driver must use this interface in preference to throwing an exception:
It is up to the application to decide whether to throw an exception for different types of errors and warn-
ings. Note, however, that there is no requirement that the parser continue to report additional errors
after a call to fatalError. In other words, a SAX driver class may throw an exception after reporting
any fatalError. Also, parsers may throw appropriate exceptions for non-XML errors. For example,
XMLReader.parse() would throw an IOException for errors accessing entities or the document.

Warning: If an application does not register an ErrorHandler, XML parsing errors go unreported,
except that SAXParseExceptions is thrown for fatal errors. In order to detect validity errors, an
ErrorHandler that does something with error() calls must be registered.

Method Name Description

error(SAXParse public void error(SAXParseException exception)

Exception)

throws SAXException

Receive notification of a recoverable error.

This corresponds to the definition of “error” in Section 1.2 of the W3C
XML 1.0 Recommendation. For example, a validating parser would use
this callback to report the violation of a validity constraint. The default
behavior is to take no action. Additionally, parsers that support XML 1.1
may report an error when a Unicode Normalization error is encountered.

The SAX parser must continue to provide normal parsing events after
invoking this method: It should still be possible for the application to
process the document through to the end. If the application cannot do so,
then the parser should report a fatal error even if the XML 1.0 recommen-
dation does not require it to do so.

Filters may use this method to report other, non-XML errors as well.

BC150

Appendix G: SAX 2.0.2 Reference

Method Name Description

Parameters:
exception: The error information encapsulated in a SAX parse exception.

Throws:
SAXException: Any SAX exception, possibly wrapping another exception.

fatalError public void fatalError(SAXParseException exception)

(SAXParseException)

throws SAXException

Receive notification of a nonrecoverable error.

This corresponds to the definition of “fatal error” in Section 1.2 of the
W3C XML 1.0 Recommendation. For example, a parser would use this
callback to report the violation of a well-formedness constraint.

The application must assume that the document is unusable after the
parser has invoked this method, and should continue (if at all) only for
the sake of collecting additional error messages: In fact, SAX parsers are
free to stop reporting any other events once this method has been
invoked.

Parameters:
exception: The error information encapsulated in a SAX parse
exception.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

warning public void warning(SAXParseException exception)

(SAXParseException)

throws SAXException

Receive notification of a warning.

SAX parsers use this method to report conditions that are not errors or
fatal errors as defined by the XML 1.0 Recommendation. The default
behavior is to take no action.

The SAX parser must continue to provide normal parsing events after
invoking this method: It should still be possible for the application to
process the document through to the end.

Filters may use this method to report other, non-XML warnings as well.

Table continued on following page

BC151

Appendix G: SAX 2.0.2 Reference

Method Name Description

warning Parameters:
(SAXParseException) exception: The warning information encapsulated in a SAX parse

exception.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.

Class org.xml.sax.InputSource
This class is a single input source for an XML entity. It enables a SAX application to encapsulate informa-
tion about an input source in a single object, which may include a public identifier, a system identifier, a
byte stream (possibly with a specified encoding), and/or a character stream.

The application can deliver an input source to the parser as the return value of the EntityResolver
.resolveEntity method.

The SAX parser uses the InputSource object to determine how to read XML input. If a character stream
is available, the parser reads that stream directly, disregarding any text encoding declaration found in
that stream. If there is no character stream but there is a byte stream, then the parser uses that byte
stream, using the encoding specified in the InputSource or (if no encoding is specified) auto-detecting
the character encoding using an algorithm such as the one in the XML Specification. If neither a charac-
ter stream nor a byte stream is available, the parser will attempt to open a URI connection to the resource
identified by the system identifier.

An InputSource object belongs to the application: The SAX parser shall never modify it in any way (it
may modify a copy if necessary). However, standard processing of both byte and character streams is to
close them as part of end-of-parse cleanup, so applications should not attempt to reuse such streams
after they have been handed to a parser.

Constructor Description

InputSource public InputSource()

Zero-argument default constructor.

InputSource public InputSource(InputStream byteStream)

(InputStream)

Create a new input source with a byte stream.

Application writers should use setSystemId() to provide a base for
resolving relative URIs, may use setPublicId to include a public identi-
fier, and may use setEncoding to specify the object’s character encoding.

Parameters:
byteStream: The raw byte stream containing the document.

BC152

Appendix G: SAX 2.0.2 Reference

Constructor Description

InputSource public InputSource(Reader characterStream)

(Reader)

Create a new input source with a character stream.

Application writers should use setSystemId() to provide a base for
resolving relative URIs, and may use setPublicId to include a public
identifier.

The character stream shall not include a byte order mark.

Parameters:
characterStream: The character stream containing the document.

InputSource public InputSource(String systemId)

(String)

Create a new input source with a system identifier.

Applications may use setPublicId to include a public identifier as
well, or setEncoding to specify the character encoding, if known.

If the system identifier is a URL, it must be fully resolved (it may not be
a relative URL).

Parameters:
systemId: The system identifier (URI).

Method Name Description

getByteStream public InputStream getByteStream()

Get the byte stream for this input source.

The getEncoding method will return the character encoding for this
byte stream, or null if unknown.

Returns:
The byte stream, or null if none was supplied.

getCharacter public Reader getCharacterStream()

Stream

Get the character stream for this input source.

Returns:
The character stream, or null if none was supplied.

Table continued on following page

BC153

Appendix G: SAX 2.0.2 Reference

Method Name Description

getEncoding public String getEncoding ()

Get the character encoding for a byte stream or URI. This value is
ignored when the application provides a character stream.

Returns:
The encoding, or null if none was supplied.

getPublicId public String getPublicId()

Get the public identifier for this input source.

Returns:
The public identifier, or null if none was supplied.

getSystemId public String getSystemId()

Get the system identifier for this input source.

The getEncoding method will return the character encoding of the
object pointed to, or null if unknown.

If the system ID is a URL, then it will be fully resolved.

Returns:
The system identifier, or null if none was supplied.

setByteStream public void setByteStream(InputStream byteStream)

(InputStream)

Set the byte stream for this input source.

The SAX parser ignores this if there is also a character stream specified,
but it will use a byte stream in preference to opening a URI connection
itself.

If the application knows the character encoding of the byte stream, it
should set it with the setEncoding method.

Parameters:
byteStream: A byte stream containing an XML document or other
entity.

setCharacter public void setCharacterStream(Reader characterStream)

Stream(Reader)

Set the character stream for this input source.

If a character stream is specified, then the SAX parser will ignore any
byte stream and not attempt to open a URI connection to the system
identifier.

BC154

Appendix G: SAX 2.0.2 Reference

Method Name Description

Parameters:
characterStream: The character stream containing the XML docu-
ment or other entity.

setEncoding public void setEncoding(String encoding)

(String)

Set the character encoding, if known.

The encoding must be a string acceptable for an XML encoding declara-
tion (see Section 4.3.3 of the XML 1.0 Recommendation).

This method has no effect when the application provides a character
stream.

Parameters:
encoding: A string describing the character encoding.

setPublicId public void setPublicId(String publicId)

(String)

Set the public identifier for this input source.

The public identifier is always optional: If the application writer
includes one, it will be provided as part of the location information.

Parameters:
publicId: The public identifier as a string.

setSystemId public void setSystemId(String systemId)

(String)

Set the system identifier for this input source.

The system identifier is optional if there is a byte stream or a character
stream, but it is still useful to provide one, as the application can use it
to resolve relative URIs and can include it in error messages and warn-
ings (the parser will attempt to open a connection to the URI only when
no byte stream or character stream is specified).

If the application knows the character encoding of the object pointed to
by the system identifier, then it can register the encoding using the
setEncoding method.

If the system identifier is a URL, then it must be fully resolved (it may
not be a relative URL).

Note: Though this is a SAX requirement, most implementations sup-
port relative URLs in the XML document.

Parameters:
systemId: The system identifier as a string.

BC155

Appendix G: SAX 2.0.2 Reference

Interface org.xml.sax.ext.LexicalHandler
This is an optional SAX extension handler for SAX to provide lexical information about an XML docu-
ment, such as comments and CDATA section boundaries. XML readers are not required to recognize this
handler, and it is not part of core-only SAX distributions.

The events in the lexical handler apply to the entire document, not just to the document element, and all
lexical handler events must appear between the content handler’s startDocument and endDocument
events.

To set the LexicalHandler for an XMLReader, use the setProperty method with the property name
http://xml.org/sax/properties/lexical-handler and an object implementing this interface (or
null) as the value. If the reader does not report lexical events, then it will throw a SAXNotRecognized
Exception when you attempt to register the handler.

Method Name Description

comment(char[], public void comment(char[] ch, int start, int length)

int, int)

throws SAXException

Report an XML comment anywhere in the document.

This callback is used for comments inside or outside the document
element, including comments in the external DTD subset (if read).
Comments in the DTD must be properly nested inside start/endDTD
and start/endEntity events (if used).

Parameters:
ch: An array holding the characters in the comment.
start: The start position in the array.
length: The number of characters to read from the array.

Throws:
SAXException: The application may raise an exception.

endCDATA public void endCDATA()

throws SAXException

Report the end of a CDATA section.

Throws:
SAXException: The application may raise an exception.

BC156

Appendix G: SAX 2.0.2 Reference

Method Name Description

endDTD public void endDTD()

throws SAXException

Report the end of DTD declarations.

This method is intended to report the end of the DOCTYPE declaration;
if the document has no DOCTYPE declaration, then this method is not
invoked.

Throws:
SAXException: The application may raise an exception.

endEntity(String) public void endEntity(String name)

throws SAXException

Report the end of an entity.

Parameters:
name:The name of the entity that is ending.

Throws:
SAXException: The application may raise an exception.

startCDATA public void startCDATA()

throws SAXException

Report the start of a CDATA section.

The contents of the CDATA section will be reported through the regular
characters event; this event is intended only to report the boundary.

Throws:
SAXException: The application may raise an exception.

startDTD(String, public void startDTD(String name, String publicId,

String, String) String systemId)

throws SAXException

Report the start of DTD declarations, if any.

This method is intended to report the beginning of the DOCTYPE dec-
laration; if the document has no DOCTYPE declaration, this method is
not invoked.

Table continued on following page

BC157

Appendix G: SAX 2.0.2 Reference

Method Name Description

startDTD(String, All declarations reported through DTDHandler or DeclHandler events
String, String) must appear between the startDTD and endDTD events. Declarations

are assumed to belong to the internal DTD subset unless they appear
between startEntity and endEntity events. Comments and pro-
cessing instructions from the DTD should also be reported between the
startDTD and endDTD events, in their original order of (logical) occur-
rence; they are not required to appear in their correct locations relative
to DTDHandler or DeclHandler events, however.

Note that the start/endDTD events will appear within the
start/endDocument events from ContentHandler and before.

Parameters:
name: The document type name.
publicId: The declared public identifier for the external DTD subset,
or null if none was declared.
systemId: The declared system identifier for the external DTD subset,
or null if none was declared. (Note that this is not resolved against the
document base URI.)

Throws:
SAXException: The application may raise an exception.

startEntity public void startEntity(String name)

(String)

throws SAXException

Report the beginning of some internal and external XML entities.

The reporting of parameter entities (including the external DTD subset)
is optional, and SAX drivers that report LexicalHandler events may
not implement it; you can use the http://xml.org/sax/features/
lexical-handler/parameter-entities feature to query or control
the reporting of parameter entities.

General entities are reported with their regular names, parameter enti-
ties have % prepended to their names, and the external DTD subset has
the pseudo-entity name [dtd].

When a SAX driver is providing these events, all other events must be
properly nested within start/endEntity events. There is no addi-
tional requirement that events from DeclHandler or DTDHandler be
properly ordered.

BC158

Appendix G: SAX 2.0.2 Reference

Method Name Description

Note that skipped entities are reported through the skippedEntity
event, which is part of the ContentHandler interface.

Because of the streaming event model that SAX uses, the following
types of entity boundaries cannot be reported under any circumstances:

General entities within attribute values
Parameter entities within declarations

These will be silently expanded, with no indication of where the origi-
nal entity boundaries were. Note also that the boundaries of character
references are not reported.

All start/endEntity events must be properly nested.

Parameters:
name: The name of the entity. If it is a parameter entity, then the name
begins with %, and if it is the external DTD subset, then it is [dtd].

Throws:
SAXException: The application may raise an exception.

Interface org.xml.sax.Locator
This is an interface for associating a SAX event with a document location.

If a SAX parser provides location information to the SAX application, then it does so by implementing this
interface and then passing an instance to the application using the content handler’s setDocumentLocator
method. The application can use the object to obtain the location of any other SAX event in the XML source
document.

Note that the results returned by the object are valid only during the scope of each callback method: The
application will receive unpredictable results if it attempts to use the locator at any other time or after
parsing completes.

SAX parsers are not required to supply a locator, but they are very strongly encouraged to do so. If the
parser supplies a locator, then it must do so before reporting any other document events. If no locator
has been set by the time the application receives the startDocument event, then the application should
assume that a locator is not available.

BC159

Appendix G: SAX 2.0.2 Reference

Method Name Description

getColumnNumber public int getColumnNumber()

Return the column number where the current document event ends.
This is a one-based number of Java char values since the last line end.

Warning:
The return value from the method is intended only as an approxima-
tion for the sake of diagnostics; it is not intended to provide sufficient
information to edit the character content of the original XML docu-
ment. For example, when lines contain combining character sequences,
wide characters, surrogate pairs, or bi-directional text, the value may
not correspond to the column in a text editor’s display.

The return value is an approximation of the column number in the doc-
ument entity or external parsed entity where the markup triggering the
event appears.

If possible, the SAX driver should provide the line position of the first
character after the text associated with the document event. The first
column in each line is column 1.

Returns:
The column number, or -1 if none is available.

getLineNumber public int getLineNumber()

Return the line number where the current document event ends. Lines
are delimited by line ends, which are defined in the XML Specification.

Warning: The return value from the method is intended only as an
approximation for the sake of diagnostics; it is not intended to provide
sufficient information to edit the character content of the original XML
document. In some cases, these “line” numbers match what would be
displayed as columns, and in others they may not match the source text
due to internal entity expansion.

The return value is an approximation of the line number in the docu-
ment entity or external parsed entity where the markup triggering the
event appears.

If possible, the SAX driver should provide the line position of the first
character after the text associated with the document event. The first
line is line 1.

Returns:
The line number, or -1 if none is available.

BC160

Appendix G: SAX 2.0.2 Reference

Method Name Description

getPublicId public String getPublicId()

Return the public identifier for the current document event.

The return value is the public identifier of the document entity or the
external parsed entity in which the markup triggering the event appears.

Returns:
A string containing the public identifier, or null if none is available.

getSystemId public String getSystemId()

Return the system identifier for the current document event.

The return value is the system identifier of the document entity or the
external parsed entity in which the markup triggering the event appears.

If the system identifier is a URL, then the parser must resolve it fully
before passing it to the application. For example, a filename must
always be provided as a file:// URL, and other kinds of relative URI
are also resolved against their bases.

Returns:
A string containing the system identifier, or null if none is available.

Interface org.xml.sax.ext.Locator2
This is a SAX extension to augment the entity information provided though a Locator. If an implementa-
tion supports this extension, then the Locator provided in ContentHandler.setDocumentLocator()
will implement this interface, and the http://xml.org/sax/features/use-locator2 feature flag will
have the value true.

XMLReader implementations are not required to support this information, and it is not part of core-only
SAX distributions.

Method Name Description

getEncoding public String getEncoding()

Returns the name of the character encoding for the entity. If the encod-
ing was declared externally (for example, in a MIME Content-Type
header), then that will be the name returned. If there was an <?xml
...encoding=’...’?> declaration at the start of the document, then
that encoding name will be returned. Otherwise, the encoding will be
inferred (normally to be UTF-8, or some UTF-16 variant), and that
inferred name will be returned.

Table continued on following page

BC161

Appendix G: SAX 2.0.2 Reference

Method Name Description

getEncoding When an InputSource is used to provide an entity’s character stream,
this method returns the encoding provided in that input stream.

Note that some recent W3C specifications require that text in some
encodings be normalized, using Unicode Normalization Form C, before
processing. Such normalization must be performed by applications,
and would normally be triggered based on the value returned by this
method.

Encoding names may be those used by the underlying virtual machine,
and comparisons should be case insensitive.

Returns:
Name of the character encoding used to interpret the entity’s text, or
null if this was not provided for a character stream passed through an
InputSource or if this was otherwise not yet available in the current
parsing state.

getXMLVersion public String getXMLVersion()

Returns the version of XML used for the entity. This will normally be
the identifier from the current entity’s <?xml version=’...’ ...?>
declaration, or is defaulted by the parser.

Returns:
Identifier for the XML version being used to interpret the entity’s text, or
null if that information is not yet available in the current parsing state.

Exception org.xml.sax.SAXException
This class encapsulates a general SAX error or warning. It can contain basic error or warning information
from the XML parser or the application: A parser writer or application writer can subclass it to provide
additional functionality. SAX handlers may throw this exception or any exception subclassed from it.

If the application needs to pass through other types of exceptions, then it must wrap those exceptions in
a SAXException or an exception derived from a SAXException. If the parser or application needs to
include information about a specific location in an XML document, it should use the
SAXParseException subclass.

Constructor Description

SAXException public SAXException()

Create a new SAXException.

BC162

Appendix G: SAX 2.0.2 Reference

Constructor Description

SAXException public SAXException(Exception e)

(Exception)

Create a new SAXException wrapping an existing exception.

The existing exception will be embedded in the new one, and its mes-
sage becomes the default message for the SAXException.

Parameters:
e: The exception to be wrapped in a SAXException.

SAXException public SAXException(String message)

(String)

Create a new SAXException.

Parameters:
message: The error or warning message.

SAXException public SAXException(String message, Exception e)

(String, Exception)

Create a new SAXException from an existing exception.

The existing exception will be embedded in the new one, but the new
exception will have its own message.

Parameters:
message: The detail message.
e: The exception to be wrapped in a SAXException.

Method Name Description

getException public Exception getException()

Return the embedded exception, if any.

Returns:
The embedded exception, or null if there is none.

getMessage public String getMessage()

Return a detail message for this exception.

If there is an embedded exception and if the SAXException has no
detail message of its own, then this method returns the detail message
from the embedded exception.

Returns:
The error or warning message.

Table continued on following page

BC163

Appendix G: SAX 2.0.2 Reference

Method Name Description

toString public String toString()

Override toString to pick up any embedded exception.

Returns:
A string representation of this exception.

Exception org.xml.sax.SAXNotRecognizedException
This is an exception class for an unrecognized identifier.

An XMLReader will throw this exception when it finds an unrecognized feature or property identifier;
SAX applications and extensions may use this class for other similar purposes.

Constructor Description

SAXNotRecognized public SAXNotRecognizedException()

Exception

Construct a new exception with no message.

SAXNotRecognized public SAXNotRecognizedException(String message)

Exception(String)

Construct a new exception with the given message.

Parameters:
message: The text message of the exception.

Exception org.xml.sax.SAXNotSupportedException
This is the exception class for an unsupported operation.

An XMLReader will throw this exception when it recognizes a feature or property identifier, but cannot
perform the requested operation (setting a state or value). Other SAX applications and extensions may
use this class for similar purposes.

Constructor Description

SAXNotSupported public SAXNotSupportedException()

Exception

Construct a new exception with no message.

SAXNotSupported public SAXNotSupportedException(String message)

Exception(String)

Construct a new exception with the given message.

Parameters:
message: The text message of the exception.

BC164

Appendix G: SAX 2.0.2 Reference

Exception org.xml.sax.SAXParseException
This exception encapsulates an XML parse error or warning. It may include information for locating the
error in the original XML document, as if it came from a Locator object. Note that although the applica-
tion will receive a SAXParseException as the argument to the handlers in the ErrorHandler interface,
the application is not actually required to throw the exception; instead, it can simply read the informa-
tion in it and take a different action.

Since this exception is a subclass of SAXException, it inherits the ability to wrap another exception.

Constructor Description

SAXParseException public SAXParseException(String message, Locator locator)

(String, Locator)

Create a new SAXParseException from a message and a Locator.

This constructor is especially useful when an application is creating its
own exception from within a ContentHandler callback.

Parameters:
message: The error or warning message.
locator: The locator object for the error or warning (may be null).

SAXParseException public SAXParseException(String message, Locator locator,

(String, Locator, Exception e)

Exception)

Wrap an existing exception in a SAXParseException.

This constructor is especially useful when an application is creating its
own exception from within a ContentHandler callback and needs to
wrap an existing exception that is not a subclass of SAXException.

Parameters:
message: The error or warning message, or null to use the message
from the embedded exception.
locator: The locator object for the error or warning (may be null).
e: Any exception.

SAXParseException public SAXParseException(String message, String publicId,

(String, String, String systemId, int lineNumber, int columnNumber)

String, int, int)

Create a new SAXParseException.

This constructor is most useful for parser writers.

All parameters except the message are as if they were provided by a
Locator. For example, if the system identifier is a URL (including rela-
tive filename), then the caller must resolve it fully before creating the
exception.

Table continued on following page

BC165

Appendix G: SAX 2.0.2 Reference

Constructor Description

SAXParseException Parameters:
(String, String, message: The error or warning message.
String, int, int) publicId: The public identifier of the entity that generated the error

or warning.
systemId: The system identifier of the entity that generated the error
or warning.
lineNumber: The line number of the end of the text that caused the
error or warning.
columnNumber: The column number of the end of the text that caused
the error or warning.

SAXParseException public SAXParseException(String message, String publicId,

(String, String, String systemId, int lineNumber, int columnNumber,

String, int, int, Exception e)

Exception)

Creates a new SAXParseException with an embedded exception.

This constructor is most useful for parser writers who need to wrap an
exception that is not a subclass of SAXException.

All parameters except the message and exception are as if they were
provided by a Locator. For example, if the system identifier is a URL
(including relative filename), then the caller must resolve it fully before
creating the exception.

Parameters:
message: The error or warning message, or null to use the message
from the embedded exception.
publicId: The public identifier of the entity that generated the error
or warning.
systemId: The system identifier of the entity that generated the error
or warning.
lineNumber: The line number of the end of the text that caused the
error or warning.
columnNumber: The column number of the end of the text that caused
the error or warning.
e: Another exception to embed in this one.

BC166

Appendix G: SAX 2.0.2 Reference

Method Name Description

getColumnNumber public int getColumnNumber()

The column number of the end of the text where the exception
occurred.

The first column in a line is position 1.

Returns:
An integer representing the column number, or -1 if none is available.

getLineNumber public int getLineNumber()

The line number of the end of the text where the exception occurred.

The first line is line 1.

Returns:
An integer representing the line number, or -1 if none is available.

getPublicId public String getPublicId()

Get the public identifier of the entity where the exception occurred.

Returns:
A string containing the public identifier, or null if none is available.

getSystemId public String getSystemId()

Get the system identifier of the entity where the exception occurred.

If the system identifier is a URL, then it will have been resolved fully.

Returns:
A string containing the system identifier, or null if none is available.

Interface org.xml.sax.XMLFilter
This is an interface for an XML filter.

An XMLFilter is like an XMLReader, except that it obtains its events from another XMLReader rather
than from a primary source such as an XML document or database. Filters can modify a stream of events
as they pass on to the final application.

The XMLFilterImpl helper class provides a convenient base for creating SAX filters, by passing on all
EntityResolver, DTDHandler, ContentHandler, and ErrorHandler events automatically.

BC167

Appendix G: SAX 2.0.2 Reference

Method Name Description

getParent public XMLReader getParent()

Get the parent reader.

This method enables the application to query the parent reader
(which may be another filter). It is generally a bad idea to perform any
operations on the parent reader directly: They should all pass through
this filter.

Returns:
The parent filter, or null if none has been set.

setParent public void setParent(XMLReader parent)

(XMLReader)

Set the parent reader.

This method enables the application to link the filter to a parent reader
(which may be another filter). The argument may not be null.

Parameters:
reader - The parent reader.

Interface org.xml.sax.XMLReader
This is an interface for reading an XML document using callbacks.

Note: Despite its name, this interface does not extend the standard Java Reader interface, because
reading XML is a fundamentally different activity than reading character data.

XMLReader is the interface that an XML parser’s SAX driver must implement. This interface enables an
application to set and query features and properties in the parser, to register event handlers for docu-
ment processing, and to initiate a document parse.

All SAX interfaces are assumed to be synchronous: The parse methods must not return until parsing is
complete, and readers must wait for an event-handler callback to return before reporting the next event.

This interface replaces the (now deprecated) SAX 1.0 Parser interface. The XMLReader interface con-
tains two important enhancements over the old Parser interface (as well as some minor ones):

❑ It adds a standard way to query and set features and properties.

❑ It adds namespace support, which is required for many higher-level XML standards.

BC168

Appendix G: SAX 2.0.2 Reference

Method Name Description

getContentHandler public ContentHandler getContentHandler()

Return the current content handler.

Returns:
The current content handler, or null if none has been registered.

getDTDHandler public DTDHandler getDTDHandler()

Return the current DTD handler.

Returns:
The current DTD handler, or null if none has been registered.

getEntityResolver public EntityResolver getEntityResolver()

Return the current entity resolver.

Returns:
The current entity resolver, or null if none has been registered.

getErrorHandler public ErrorHandler getErrorHandler()

Return the current error handler.

Returns:
The current error handler, or null if none has been registered.

getFeature(String) public boolean getFeature(String name)

throws SAXNotRecognizedException,

SAXNotSupportedException

Look up the value of a feature flag.

The feature name is any fully qualified URI. It is possible for an
XMLReader to recognize a feature name but temporarily be unable to
return its value. Some feature values may be available only in specific
contexts, such as before, during, or after a parse. Also, some feature
values may not be programmatically accessible. (In the case of an
adapter for SAX 1.0 Parser, there is no implementation-independent
way to expose whether the underlying parser is performing validation,
expanding external entities, and so forth.)

All XMLReaders are required to recognize the http://xml.org/
sax/features/namespaces and http://xml.org/sax/features/
namespace-prefixes feature names.

Table continued on following page

BC169

Appendix G: SAX 2.0.2 Reference

Method Name Description

getFeature(String) Typical usage is something like this:

XMLReader r = new MySAXDriver();

// try to activate validation

try {

r.setFeature(

“http://xml.org/sax/features/validation”, true);

} catch (SAXException e) {

System.err.println(“Cannot activate feature.”);

}

// register event handlers

r.setContentHandler(new MyContentHandler());

r.setErrorHandler(new MyErrorHandler());

// parse the first document

try {

r.parse(“http://www.foo.com/mydoc.xml”);

} catch (IOException e) {

System.err.println(“I/O exception reading XML”);

} catch (SAXException e) {

System.err.println(“XML error in document.”);

}

Implementers are free (and encouraged) to invent their own features,
using names built on their own URIs.

BC170

Appendix G: SAX 2.0.2 Reference

Method Name Description

Parameters:
name: The feature name, which is a fully qualified URI.

Returns:
The current value of the feature (true or false).

Throws:
SAXNotRecognizedException: If the feature value can’t be assigned
or retrieved.
SAXNotSupportedException: When the XMLReader recognizes the
feature name but cannot determine its value at this time.

getProperty public Object getProperty(String name)

(String)

throws SAXNotRecognizedException,

SAXNotSupportedException

Look up the value of a property.

The property name is any fully qualified URI. It is possible for an
XMLReader to recognize a property name but temporarily be unable to
return its value. Some property values may be available only in specific
contexts, such as before, during, or after a parse.

XMLReaders are not required to recognize any specific property names,
though an initial core set is documented for SAX.

Implementers are free (and encouraged) to invent their own properties,
using names built on their own URIs.

Parameters:
name: The property name, which is a fully qualified URI.

Returns:
The current value of the property.

Throws:
SAXNotRecognizedException: If the property value can’t be assigned
or retrieved.
SAXNotSupportedException: When the XMLReader recognizes the
property name but cannot determine its value at this time.

parse(InputSource) public void parse(InputSource input)

throws IOException, SAXException

Parse an XML document.

Table continued on following page

BC171

Appendix G: SAX 2.0.2 Reference

Method Name Description

parse(InputSource) The application can use this method to instruct the XML reader to
begin parsing an XML document from any valid input source (a charac-
ter stream, a byte stream, or a URI).

Applications may not invoke this method while a parse is in progress
(they should create a new XMLReader instead for each nested XML doc-
ument). Once a parse is complete, an application may reuse the same
XMLReader object, possibly with a different input source. Configura-
tion of the XMLReader object (such as handler bindings and values
established for feature flags and properties) is unchanged by comple-
tion of a parse, unless the definition of that aspect of the configuration
explicitly specifies other behavior (e.g., feature flags or properties
exposing characteristics of the document being parsed).

During the parse, the XMLReader provides information about the XML
document through the registered event handlers.

This method is synchronous: It won’t return until parsing has ended.
If a client application wants to terminate parsing early, then it should
throw an exception.

Parameters:
input: The input source for the top level of the XML document.

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.
IOException: An IO exception from the parser, possibly from a byte
stream or character stream supplied by the application.

parse(String) public void parse(String systemId)

throws IOException, SAXException

Parse an XML document from a system identifier (URI).

This method is a shortcut for the common case of reading a document
from a system identifier. It is the exact equivalent of the following:

parse(new InputSource(systemId));

If the system identifier is a URL, then it must be fully resolved by the
application before it is passed to the parser.

Parameters:
systemId: The system identifier (URI).

BC172

Appendix G: SAX 2.0.2 Reference

Method Name Description

Throws:
SAXException: Any SAX exception, possibly wrapping another
exception.
IOException: An IO exception from the parser, possibly from a byte
stream or character stream supplied by the application.

setContentHandler public void setContentHandler(ContentHandler handler)

(ContentHandler)

Allow an application to register a content event handler.

If the application doesn’t register a content handler, then all content
events reported by the SAX parser are silently ignored.

Applications may register a new or different handler in the middle
of a parse, and the SAX parser must begin using the new handler
immediately.

Parameters:
handler: The content handler.

setDTDHandler public void setDTDHandler(DTDHandler handler)

(DTDHandler)

Allow an application to register a DTD event handler.

If the application does not register a DTD handler, then all DTD events
reported by the SAX parser are silently ignored.

Applications may register a new or different handler in the middle
of a parse, and the SAX parser must begin using the new handler
immediately.

Parameters:
handler: The DTD handler.

setEntityResolver public void setEntityResolver(EntityResolver resolver)

(EntityResolver)

Allow an application to register an entity resolver.

If the application does not register an entity resolver, then the XML-
Reader will perform its own default resolution.

Applications may register a new or different resolver in the middle
of a parse, and the SAX parser must begin using the new resolver
immediately.

Parameters:
resolver: The entity resolver.

Table continued on following page

BC173

Appendix G: SAX 2.0.2 Reference

Method Name Description

setErrorHandler public void setErrorHandler(ErrorHandler handler)

(ErrorHandler)

Allow an application to register an error event handler.

If the application does not register an error handler, then all error events
reported by the SAX parser are silently ignored; however, normal pro-
cessing may not continue. It is highly recommended that all SAX appli-
cations implement an error handler to avoid unexpected bugs.

Applications may register a new or different handler in the middle
of a parse, and the SAX parser must begin using the new handler
immediately.

Parameters:
handler: The error handler.

setFeature public void setFeature(String name, boolean value)

(String, boolean)

throws SAXNotRecognizedException,

SAXNotSupportedException

Set the value of a feature flag.

The feature name is any fully qualified URI. It is possible for an XML-
Reader to expose a feature value but to be unable to change the current
value. Some feature values may be immutable or mutable only in spe-
cific contexts, such as before, during, or after a parse.

All XMLReaders are required to support setting
http://xml.org/sax/features/namespaces to true and
http://xml.org/sax/features/namespace-prefixes to false.

Parameters:
name: The feature name, which is a fully qualified URI.
value: The requested value of the feature (true or false).

Throws:
SAXNotRecognizedException: If the feature value can’t be assigned
or retrieved.
SAXNotSupportedException: When the XMLReader recognizes the
feature name but cannot set the requested value.

BC174

Appendix G: SAX 2.0.2 Reference

Method Name Description

setProperty public void setProperty(String name, Object value)

(String, Object)

throws SAXNotRecognizedException,

SAXNotSupportedException

Set the value of a property.

The property name is any fully qualified URI. It is possible for an XML-
Reader to recognize a property name but to be unable to change the
current value. Some property values may be immutable or mutable
only in specific contexts, such as before, during, or after a parse.

XMLReaders are not required to recognize setting any specific property
names, though a core set is defined by SAX.

This method is also the standard mechanism for setting extended
handlers.

Parameters:
name: The property name, which is a fully qualified URI.
value: The requested value for the property.

Throws:
SAXNotRecognizedException: If the property value can’t be assigned
or retrieved.

SAXNotSupportedException: When the XMLReader recognizes the
property name but cannot set the requested value.

BC175

Appendix G: SAX 2.0.2 Reference

	About the Authors������������������������
	Credits��������������
	Acknowledgments����������������������
	Contents���������������
	Introduction�������������������
	Part I - Introduction����������������������������
	Chapter 1: What Is XML?������������������������������
	Of Data��������������
	Binary Files�������������������
	Text Files�����������������
	A Brief History of Markup��������������������������������

	So What Is XML?����������������������
	What Does XML Buy Us?����������������������������
	HTML and XML: Apples and Red Delicious Apples��
	Hierarchies of Information���������������������������������
	What’s a Document Type?������������������������������
	No���������

	Origin of the XML Standards����������������������������������
	What Is the World Wide Web Consortium?���
	Components of XML������������������������

	Where XML Can Be Used����������������������������
	Reducing Server Load���������������������������
	Website Content����������������������
	Distributed Computing����������������������������
	e-Commerce�����������������

	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Chapter 2: Well-Formed XML���������������������������������
	Parsing XML������������������
	Tags and Text and Elements���������������������������������
	Rules for Elements�������������������������

	Attributes�����������������
	When to Use Attributes�����������������������������

	Comments���������������
	Empty Elements���������������������
	XML Declarations�����������������������
	Version��������������
	Encoding���������������
	Standalone�����������������

	Processing Instructions������������������������������
	Illegal PCDATA Characters��������������������������������
	Escaping Characters��������������������������
	CDATA Sections���������������������

	Errors in XML��������������������
	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Chapter 3: XML Namespaces��������������������������������
	Why We Need Namespaces�����������������������������
	Using Prefixes���������������������
	Why Doesn’t XML Just Use These Prefixes?���

	How XML Namespaces Work������������������������������
	Default Namespaces�������������������������
	Do Different Notations Make Any Difference?��
	Namespaces and Attributes��������������������������������

	Understanding URIs�������������������������
	URLs�����������
	URNs�����������
	Why Use URLs for Namespaces����������������������������������
	What Do Namespace URIs Really Mean?��
	RDDL�����������

	When to Use Namespaces�����������������������������
	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������

	Part II - Validation���������������������������
	Chapter 4: Document Type Definitions���
	Running the Samples��������������������������
	Preparing the Ground���������������������������
	The Document Type Declaration������������������������������������

	Sharing Vocabularies���������������������������
	Anatomy of a DTD�����������������������
	Element Declarations���������������������������
	Attribute Declarations�����������������������������
	Entities���������������

	Developing DTDs����������������������
	DTD Limitations����������������������
	DTD Syntax�����������������
	XML Namespaces���������������������
	Data Typing������������������
	Limited Content Model Descriptions���

	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������

	Chapter 5: XML Schemas�����������������������������
	Benefits of XML Schemas������������������������������
	XML Schemas Use XML Syntax���������������������������������
	XML Schema Namespace Support�����������������������������������
	XML Schema Data Types����������������������������
	XML Schema Content Models��������������������������������

	Do We Still Need DTDs?�����������������������������
	XML Schemas������������������
	The XML Schema Document������������������������������
	Running the Samples��������������������������
	<schema> Declarations����������������������������
	<element> Declarations�����������������������������
	<complexType> Declarations���������������������������������
	<group> Declarations���������������������������
	Content Models���������������������
	<attribute> Declarations�������������������������������
	<attributeGroup> Declarations������������������������������������
	Creating Elements with Simple Content and Attributes���
	Datatypes����������������
	<simpleType> Declarations��������������������������������

	Creating a Schema from Multiple Documents��
	<import> Declarations����������������������������
	<include> Declarations�����������������������������

	Documenting XML Schemas������������������������������
	Comments���������������
	Attributes from Other Namespaces���������������������������������������
	Annotations������������������

	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������

	Chapter 6: RELAX NG��������������������������
	XML and Compact Syntaxes�������������������������������
	Running the Samples��������������������������

	RELAX NG Patterns������������������������
	Element��������������

	Combining and Reusing Patterns and Grammars��
	Named Patterns���������������������
	Combining Named Pattern Definitions��
	Schema Modularization Using the include Directive��
	Redefining Included Named Patterns���
	Removing Patterns with the notAllowed Pattern��
	Extensions and Restrictions����������������������������������
	Nested Grammars����������������������

	Additional RELAX NG Features�����������������������������������
	Namespaces�����������������
	Name-Classes�������������������
	Datatypes����������������
	List Patterns��������������������
	Comments and Divisions�����������������������������

	Useful Resources�����������������������
	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Part III - Processing����������������������������
	Chapter 7: XPath�����������������������
	Ways of Looking at an XML Document���
	Modeling XML Documents�����������������������������
	Visualizing XPath������������������������
	Understanding Context����������������������������
	What Is a Node?����������������������
	XPath 1.0 Types����������������������

	Abbreviated and Unabbreviated Syntax���
	XPath 1.0 Axes���������������������
	Child Axis�����������������
	attribute Axis���������������������
	ancestor Axis��������������������
	ancestor-or-self Axis����������������������������
	descendant Axis����������������������
	descendant-or-self Axis������������������������������
	following Axis���������������������
	following-sibling Axis�����������������������������
	namespace Axis���������������������
	parent Axis������������������
	preceding Axis���������������������
	preceding-sibling Axis�����������������������������
	self Axis����������������

	XPath 1.0 Functions��������������������������
	Boolean Functions������������������������
	Node-Set Functions�������������������������
	Numeric Functions������������������������
	String Functions�����������������������

	Predicates�����������������
	Structure of XPath Expressions�������������������������������������
	XPath 2.0����������������
	Revised XPath Data Model�������������������������������
	W3C XML Schema Data Types��������������������������������
	Additional XPath 2.0 Functions�������������������������������������
	XPath 2.0 Features�������������������������

	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Chapter 8: XSLT����������������������
	What Is XSLT?��������������������
	Restructuring XML������������������������
	Presenting XML Content�����������������������������

	How an XSLT Processor Works����������������������������������
	Running the Examples���������������������������
	Introducing the Saxon XSLT Processor���
	Installing the Saxon XSLT Processor��

	Procedural versus Declarative Programming��
	Procedural Programming�����������������������������
	Declarative Programming������������������������������

	Foundational XSLT Elements���������������������������������
	The <xsl:stylesheet> Element�����������������������������������
	The <xsl:template> Element���������������������������������
	The <xsl:apply-templates> Element��

	Getting Information from the Source Tree���
	The <xsl:value-of> Element���������������������������������
	The <xsl:copy> Element�����������������������������
	The <xsl:copy-of> Element��������������������������������

	Influencing the Output with the <xsl:output> Element���
	Conditional Processing�����������������������������
	The <xsl:if> Element���������������������������
	The <xsl:choose> Element�������������������������������

	The <xsl:for-each> Element���������������������������������
	The <xsl:sort> Element�����������������������������
	XSLT Modes�����������������
	XSLT Variables and Parameters������������������������������������
	Named Templates and the <xsl:call-template> Element��
	XSLT Functions���������������������
	XSLT 2.0���������������
	Grouping in Version 2.0������������������������������
	Non-XML Input and String Handling��
	Multiple Outputs�����������������������
	User-Defined Functions�����������������������������
	xsl:value-of changes���������������������������

	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Part IV - Databases��������������������������
	Chapter 9: XQuery, the XML Quey Language
	Why XQuery?������������������
	Historical Factors�������������������������
	Technical Factors������������������������
	Current Status���������������������

	XQuery Tools�������������������
	Saxon������������
	X-Hive.com Online������������������������
	X-Hive Database����������������������
	Tamino Database����������������������
	Microsoft SQL Server 2005��������������������������������
	Oracle�������������

	Some XQuery Examples���������������������������
	Input Functions����������������������
	Retrieving Nodes�����������������������
	Element Constructors���������������������������
	The XQuery Prolog������������������������
	Computed Constructors����������������������������
	Syntax�������������

	The XQuery Data Model����������������������������
	Shared Data Model with XPath 2.0 and XSLT 2.0��
	Node Kinds�����������������
	Sequences of Node-Sets�����������������������������
	Document Order���������������������
	Comparing Items and Nodes��������������������������������
	Types in XQuery����������������������
	Axes in XQuery���������������������

	XQuery Expressions�������������������������
	FLWOR Expressions������������������������

	XQuery Functions�����������������������
	The concat() Function����������������������������
	The count() Function���������������������������

	Using Parameters with XQuery�����������������������������������
	User-Defined Functions�����������������������������
	Looking Ahead��������������������
	Update Functionality���������������������������
	Full-Text Search�����������������������

	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Chapter 10: XML and Databases������������������������������������
	The Need for Efficient XML Data Stores���
	The Increasing Amount of XML�����������������������������������
	Comparing XML-Based Data and Relational Data���

	Approaches to Storing XML��������������������������������
	Storing XML on File Systems����������������������������������
	Using XML With Conventional Databases��
	Native XML Databases���������������������������

	Using Native XML Databases���������������������������������
	Obtaining and Installing eXist�������������������������������������
	Interacting with eXist�����������������������������

	XML in Commercial RDBMSs�������������������������������
	XML Functionality in SQL Server 2000���
	Web Service Support��������������������������

	XML in Open Source RDBMS�������������������������������
	Installing MySQL�����������������������
	Adding Information in MySQL����������������������������������
	Querying MySQL���������������������
	Updating XML in MySQL����������������������������
	Usability of XML in MySQL��������������������������������
	Client-Side XML Support������������������������������

	Choosing a Database to Store XML���������������������������������������
	Looking Ahead��������������������
	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������

	Part V - Programming���������������������������
	Chapter 11: The XML Document Object Model (DOM)��
	Purpose of the XML DOM�����������������������������
	Interfaces and Objects�����������������������������

	The Document Object Model at the W3C���
	XML DOM Implementations������������������������������

	Two Ways to View DOM Nodes���������������������������������
	Overview of the XML DOM������������������������������

	Tools to Run the Examples��������������������������������
	Browser Differences��������������������������

	The Node Object����������������������
	Properties of the Node Object������������������������������������
	Methods of the Node Object���������������������������������
	Loading an XML Document������������������������������
	The Effect of Text Nodes�������������������������������
	The NamedNodeMap Object������������������������������
	The NodeList Object��������������������������
	The DOMException Object������������������������������

	The Document Interface�����������������������������
	How the XML DOM Is Used in InfoPath 2007���
	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Chapter 12: Simple API for XML (SAX)���
	What Is SAX and Why Was It Invented?���
	A Brief History of SAX�����������������������������
	Where to Get SAX�����������������������
	Setting Up SAX���������������������

	Receiving SAX Events���������������������������
	ContentHandler Interface�������������������������������
	ErrorHandler Interface�����������������������������
	DTDHandler Interface���������������������������
	EntityResolver Interface�������������������������������
	Features and Properties������������������������������
	Extension Interfaces���������������������������

	Good SAX and Bad SAX���������������������������
	Consumers����������������
	Other Languages����������������������
	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Part VI - Communication������������������������������
	Chapter 13: RSS Atom, and Content Syndication
	Syndication and Meta Data��������������������������������
	Syndication Systems��������������������������
	The Origin of RSS Species��������������������������������
	RSS-DEV and RSS 1.0��������������������������
	UserLand and RSS 2.0���������������������������
	Atom�����������

	Working with News Feeds������������������������������
	Newsreaders������������������
	Data Quality�������������������

	A Simple Aggregator��������������������������
	Modeling Feeds���������������������
	Program Flow�������������������
	Implementation���������������������
	Transforming RSS with XSLT���������������������������������

	Useful Resources�����������������������
	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Chapter 14: Web Services�������������������������������
	What Is an RPC?����������������������
	RPC Protocols��������������������
	DCOM�����������
	IIOP�����������
	Java RMI���������������

	The New RPC Protocol: Web Services���
	XML-RPC��������������
	The Network Transport����������������������������

	Taking a REST��������������������
	The Web Services Stack�����������������������������
	SOAP�����������
	WSDL�����������
	UDDI�����������
	Surrounding Specifications���������������������������������

	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Chapter 15: SOAP and WSDL��������������������������������
	Laying the Groundwork����������������������������
	Running Examples in Windows 2003���������������������������������������
	The New RPC Protocol: SOAP���������������������������������
	Just RESTing�������������������
	Basic SOAP Messages��������������������������
	More Complex SOAP Interactions�������������������������������������

	Defining Web Services: WSDL����������������������������������
	<definitions>��������������������
	<types>��������������
	<messages>�����������������
	<portTypes>������������������
	<binding>����������������
	<soap:body>������������������
	<service>����������������
	Other Bindings���������������������

	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Chapter 16: Ajax�����������������������
	Early Attempts at Asynchronous Updates���
	Microsoft versus Mozilla�������������������������������
	Cross-Browser Solutions������������������������������

	Basic Posting Techniques�������������������������������
	Transport and Processing on the Server���
	JSON�����������
	Payment Card Validator�����������������������������
	The AutoSuggest Box��������������������������

	Server-Side Proxies��������������������������
	The Currency Converter Proxy�����������������������������������

	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������

	Part VII - Display�������������������������
	Chapter 17: Cascading Style Sheets (CSS)���
	Why Stylesheets?�����������������������
	Introducing CSS����������������������
	CSS Properties���������������������
	Inheritance������������������
	Attaching the Stylesheet to an XML Document��
	Selectors����������������

	Using CSS for Layout of XML Documents��
	Understanding the Box Model����������������������������������
	Positioning in CSS�������������������������

	Laying Out Tabular Data������������������������������
	Links in XML Documents�����������������������������
	XLink Support in Firefox�������������������������������
	Forcing Links Using the XHTML Namespace��

	Images in XML Documents������������������������������
	Using CSS to Add Content to Documents��
	Attribute Content������������������������
	Attribute Selectors��������������������������
	Using Attribute Values in Documents��

	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������
	Question 4�����������������

	Chapter 18: XHTML������������������������
	Separating Style from Content������������������������������������
	Learning XHTML 1.x�������������������������
	Document Type Definitions for XHTML��
	Basic Changes in Writing XHTML�������������������������������������
	Styling XHTML Documents������������������������������
	Stricter Documents Make Faster and Lighter Processors��
	XHTML Tools������������������
	Validating XHTML Documents���������������������������������
	Validation Pitfalls��������������������������
	Mime Types Pitfalls��������������������������

	Modularized XHTML������������������������
	Module Implementations�����������������������������
	XHTML 1.1����������������
	XHTML Basic������������������

	What’s Next for XHTML����������������������������
	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Chapter 19: Scalable Vector Graphics (SVG)���
	What Is SVG?�������������������
	Scalable���������������
	Putting SVG to Work��������������������������
	An SVG Toolkit���������������������

	Getting Started����������������������
	Views and Units����������������������
	The Painter’s Model��������������������������
	Grouping���������������
	Transformations����������������������
	Paths������������
	Images�������������
	Text�����������
	Comments���������������
	Scripting����������������
	SVG on Your Website��������������������������

	Tangram: A Simple Application������������������������������������
	XHTML Wrapper��������������������
	SVG Shapes�����������������
	Tangram Script���������������������

	Useful Resources�����������������������
	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Chapter 20: XForms�������������������������
	How XForms Improves on HTML Forms��
	XForms Tools�������������������
	An Illustrative XForms Example�������������������������������������
	XForms Form Controls���������������������������
	The xforms:input Element�������������������������������
	The xforms:secret Element��������������������������������
	The xforms:textarea Element����������������������������������
	The xforms:output Element��������������������������������
	The xforms:upload Element��������������������������������
	The xforms:range Element�������������������������������
	The xforms:trigger Element���������������������������������
	The xforms:submit Element��������������������������������
	The xforms:select Element��������������������������������
	The xforms:select1 Element���������������������������������

	Constraining XForms Instances������������������������������������
	The xforms:bind Element������������������������������
	W3C XML Schema in XForms�������������������������������
	Schema or Bind Elements: Which One to Choose?��

	XForms Events��������������������
	The XForms Action Module�������������������������������
	Developing and Debugging XForms��������������������������������������

	Alternatives to XForms�����������������������������
	Microsoft InfoPath�������������������������
	Adobe LiveCycle����������������������
	HTML Forms�����������������

	Summary��������������
	Exercise Questions�������������������������
	Question 1�����������������
	Question 2�����������������

	Part VIII - Case Study�����������������������������
	Chapter 21: Case Study: Payment Calculator���
	Mortgage Calculations����������������������������
	What You’ll Need�����������������������
	Online Loan Calculator�����������������������������
	Integrating the Calculation Web Service��
	Enhancing the Display with SVG�������������������������������������
	Adding the Frame to the Main Page��

	Summary��������������

	Appendix A: Exercise Solutions�������������������������������������
	Chapter 1����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 2����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 3����������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������

	Chapter 4����������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������

	Chapter 5����������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������

	Chapter 6����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 7����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 8����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 9����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 10�����������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������

	Chapter 11�����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 12�����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 13�����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 14�����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 15�����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 16�����������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������

	Chapter 17�����������������
	Question 1�����������������
	Question 2�����������������
	Question 3�����������������
	Question 4�����������������

	Chapter 18�����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 19�����������������
	Question 1�����������������
	Question 2�����������������

	Chapter 20�����������������
	Question 1�����������������
	Question 2�����������������

	Appendix B: XPath Reference����������������������������������
	XPath 2.0 Is Emerging Slowly�����������������������������������
	The New Sequencing�������������������������
	Datatyping Control�������������������������

	Axes�����������
	Node Tests�����������������
	Functions����������������
	XPath 2.0 Functions��������������������������

	Appendix C: XSLT Reference���������������������������������
	Elements���������������
	Functions����������������
	Available XPath Functions��������������������������������
	Types������������

	New in XSLT 2.0����������������������
	More Powerful Expressions��������������������������������
	Muenchian’s Everywhere�����������������������������

	Planning on Using XSLT 2.0���������������������������������
	New Functions��������������������

	A Quick Note on XSLT 2.0 and XQuery 1.0��

	Index������������
	Chapter 22: Case Study: Payment Calculator — Ruby on Rails���
	Mortgage Calculations����������������������������
	What You Need for the Example������������������������������������
	Creating the Project���������������������������
	Building the Online Loan Calculator��
	Developing the Main Web Page�����������������������������������
	Integrating the Calculation Web Service��
	Adding Ajax Support��������������������������
	Enhancing the Display with SVG�������������������������������������

	Summary��������������

	Appendix D: The XML Document Obect Model���
	Notation���������������
	Basic Datatypes����������������������
	Strings��������������
	User Data����������������
	Objects��������������

	Fundamental Interfaces: Core Module��
	DOMException�������������������
	DOMError���������������
	DOMErrorHandler����������������������
	Node�����������
	Document���������������
	DOMImplementation������������������������
	DOMImplementationSource������������������������������
	DOMImplementationList����������������������������
	DocumentFragment�����������������������
	NodeList���������������
	DOMStringList��������������������
	NameList���������������
	Element��������������
	NamedNodeMap�������������������
	Attr�����������
	CharacterData��������������������
	Text�����������
	Comment��������������
	TypeInfo���������������
	UserDataHandler����������������������
	DOMLocator�����������������
	DOMConfiguration�����������������������

	Extended Interfaces: XML Module��������������������������������������
	CDATASection�������������������
	ProcessingInstruction����������������������������
	DocumentType�������������������
	Notation���������������
	Entity�������������
	EntityReference����������������������

	Load and Save Interfaces�������������������������������
	Data Types�����������������
	LSException������������������
	DOMImplementationLS��������������������������
	LSParser���������������
	LSSerializer�������������������
	LSInput��������������
	LSOutput���������������
	LSResourceResolver�������������������������
	LSParserFilter���������������������
	LSSerializerFilter�������������������������
	LSProgressEvent����������������������
	LSLoadEvent������������������

	Validation Interfaces����������������������������
	ExceptionVAL�������������������
	NodeEditVAL������������������
	DocumentEditVAL����������������������
	ElementEditVAL���������������������
	CharacterDataEditVAL���������������������������

	Appendix E: XML Schema Element and Attribute Reference���
	Unknown��������������
	all����������
	annotation�����������������
	any����������
	anyAttribute�������������������
	appinfo��������������
	attribute����������������
	attributeGroup���������������������
	choice�������������
	complexContent���������������������
	complexType������������������
	documentation��������������������
	element��������������
	extension����������������
	field������������
	group������������
	import�������������
	include��������������
	key����������
	keyref�������������
	list�����������
	notation���������������
	redefine���������������
	restriction������������������
	schema�������������
	selector���������������
	sequence���������������
	simpleContent��������������������
	simpleType�����������������
	union������������
	unique�������������

	XML Schema Instance Attributes�������������������������������������

	Appendix F: XML Schema Datatypes Reference���
	XML Schema Built-in Datatypes������������������������������������
	Constraining Facets��������������������������
	length�������������
	minLength����������������
	maxLength����������������
	pattern��������������
	enumeration������������������
	whiteSpace�����������������
	maxInclusive�������������������
	minInclusive�������������������
	maxExclusive�������������������
	minExclusive�������������������
	totalDigits������������������
	fractionDigits���������������������

	Appendix G: SAX 2.0.2 Reference��������������������������������������
	Classes and Interfaces�����������������������������
	Interface org.xml.sax.Attributes���������������������������������������
	Interface org.xml.sax.ext.Attributes2��
	Interface org.xml.sax.ContentHandler���
	Interface org.xml.sax.ext.DeclHandler��
	Interface org.xml.sax.DTDHandler���������������������������������������
	Interface org.xml.sax.EntityResolver���
	Interface org.xml.sax.ext.EntityResolver2��
	Interface org.xml.sax.ErrorHandler���
	Class org.xml.sax.InputSource������������������������������������
	Interface org.xml.sax.ext.LexicalHandler���
	Interface org.xml.sax.Locator������������������������������������
	Interface org.xml.sax.ext.Locator2���
	Exception org.xml.sax.SAXException���
	Exception org.xml.sax.SAXNotRecognizedException��
	Exception org.xml.sax.SAXNotSupportedException���
	Exception org.xml.sax.SAXParseException��
	Interface org.xml.sax.XMLFilter��������������������������������������
	Interface org.xml.sax.XMLReader��������������������������������������

