
www.allitebooks.com

http://www.allitebooks.org

ffirs.indd ivffirs.indd iv 05/06/12 9:53 PM05/06/12 9:53 PM

www.allitebooks.com

http://www.allitebooks.org

BEGINNING XML

INTRODUCTION .xxvii

 � PART I INTRODUCING XML

CHAPTER 1 What Is XML? . 3

CHAPTER 2 Well-Formed XML . 25

CHAPTER 3 XML Namespaces . 53

 � PART II VALIDATION

CHAPTER 4 Document Type Defi nitions . 83

CHAPTER 5 XML Schemas . 117

CHAPTER 6 RELAX NG and Schematron. 175

 � PART III PROCESSING

CHAPTER 7 Extracting Data from XML . 211

CHAPTER 8 XSLT . 239

 � PART IV DATABASES

CHAPTER 9 XQuery . 307

CHAPTER 10 XML and Databases . 341

 � PART V PROGRAMMING

CHAPTER 11 Event-Driven Programming . 403

CHAPTER 12 LINQ to XML . 451

 � PART VI COMMUNICATION

CHAPTER 13 RSS, Atom, and Content Syndication . 485

CHAPTER 14 Web Services . 539

CHAPTER 15 SOAP and WSDL . 573

CHAPTER 16 AJAX. 615

ffirs.indd iffirs.indd i 05/06/12 9:53 PM05/06/12 9:53 PM

www.allitebooks.com

http://www.allitebooks.org

 � PART VII DISPLAY

CHAPTER 17 XHTML and HTML 5 . 649

CHAPTER 18 Scalable Vector Graphics (SVG) . 689

 � PART VIII CASE STUDY

CHAPTER 19 Case Study: XML in Publishing . 727

APPENDIX A Answers to Exercises . 749

APPENDIX B XPath Functions . 773

APPENDIX C XML Schema Data Types . 797

INDEX . 811

ffirs.indd iiffirs.indd ii 05/06/12 9:53 PM05/06/12 9:53 PM

www.allitebooks.com

http://www.allitebooks.org

BEGINNING

XML

ffirs.indd iiiffirs.indd iii 05/06/12 9:53 PM05/06/12 9:53 PM

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd ivffirs.indd iv 05/06/12 9:53 PM05/06/12 9:53 PM

www.allitebooks.com

http://www.allitebooks.org

BEGINNING

XML

Joe Fawcett
Liam R.E. Quin

Danny Ayers

John Wiley & Sons, Inc.

ffirs.indd vffirs.indd v 05/06/12 9:53 PM05/06/12 9:53 PM

www.allitebooks.com

http://www.allitebooks.org

Beginning XML

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by Joe Fawcett, Liam R.E. Quin, and Danny Ayers

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-16213-2
ISBN: 978-1-118-22612-4 (ebk)
ISBN: 978-1-118-23948-3 (ebk)
ISBN: 978-1-118-26409-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012937910

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 30/06/12 11:50 AM30/06/12 11:50 AM

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

I’d like to dedicate this book to my parents, especially

to my mother Sheila who, unfortunately, will never be

able to read this. I love you both.

—Joe Fawcett

Dedicated to Yuri Rubinsky, without whom there

would be no XML.

—Liam Quin

Dedicated to my mother, Mary (because this will

amuse her no end).

—Danny Ayers

ffirs.indd viiffirs.indd vii 05/06/12 9:53 PM05/06/12 9:53 PM

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd viiiffirs.indd viii 05/06/12 9:53 PM05/06/12 9:53 PM

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE AUTHORS

JOE FAWCETT (http://joe.fawcett.name) has been writing software, on and
off, for forty years. He was one of the fi rst people to be awarded the accolade of
Most Valuable Professional in XML by Microsoft. Joe is head of software
development for Kaplan Financial UK in London, which specializes in training
people in business and accountancy and has one of the leading accountancy
e-learning systems in the UK. This is the third title for Wrox that he has written in
addition to the previous editions of this book.

LIAM QUIN (http://www.holoweb.net/~liam) is in charge of the XML work
at the World Wide Web Consortium (W3C). He has been involved with markup
languages and text since the early 1980s, and was involved with XML from its
inception. He has a background in computer science and digital typography, and
also maintains a website dedicated to the love of books and illustrations at
www.fromoldbooks.org. He lives on an old farm near Milford, in rural Ontario,
Canada.

DANNY AYERS (http://dannyayers.com) is an independent researcher and
developer of Web technologies, primarily those related to linked data. He has been
an XML enthusiast since its early days. His background is in electronic music,
although this interest has taken a back seat since the inception of the Web. Offl ine,
he’s also an amateur woodcarver. Originally from the UK, he now lives in rural
Tuscany with two dogs and two cats.

ABOUT THE TECHNICAL EDITOR

KAREN TEGTMEYER is an independent consultant and software developer with more than 10 years
of experience. She has worked in a variety of roles, including design, development, training, and
architecture. She also is an Adjunct Computer Science Instructor at Des Moines Area Community
College.

ffirs.indd ixffirs.indd ix 05/06/12 9:53 PM05/06/12 9:53 PM

http://joe.fawcett.name
http://www.holoweb.net/~liam
http://dannyayers.com
http://www.fromoldbooks.org

ffirs.indd xffirs.indd x 05/06/12 9:53 PM05/06/12 9:53 PM

CREDITS

EXECUTIVE EDITOR

Carol Long

PROJECT EDITOR

Victoria Swider

TECHNICAL EDITOR

Karen Tegtmeyer

PRODUCTION EDITOR

Kathleen Wisor

COPY EDITOR

Kim Cofer

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADERS

James Saturnio, Word One

Sara Eddleman-Clute, Word One

INDEXER

Johnna VanHoose Dinse

COVER DESIGNER

Ryan Sneed

COVER IMAGE

© Marcello Bortolino

ffirs.indd xiffirs.indd xi 05/06/12 9:53 PM05/06/12 9:53 PM

ffirs.indd xiiffirs.indd xii 05/06/12 9:53 PM05/06/12 9:53 PM

ACKNOWLEDGMENTS

I’D LIKE TO HEARTILY ACKNOWLEDGE the help of the editor Victoria Swider and the acquisitions editor
Carol Long, who kept the project going when it looked as if it would never get fi nished. I’d like to
thank the authors of the previous edition, especially Jeff Rafter and David Hunter, who let us build
on their work when necessary. I’d also like to thank my wife Gillian and my children Persephone
and Xavier for putting up with my absences and ill humor over the last year; I’ll make it up to you,
I promise.

—Joe Fawcett

THANKS are due to my partner and to the pets for tolerating long and erratic hours, and of course to
Alexander Chalmers, for creating the Dictionary of Biography in 1810.

—Liam Quin

MANY THANKS to Victoria, Carol, and the team for making everything work. Thanks too to Joe for
providing the momentum behind this project and to Liam for keeping it going.

—Danny Ayers

ffirs.indd xiiiffirs.indd xiii 05/06/12 9:53 PM05/06/12 9:53 PM

ffirs.indd xivffirs.indd xiv 05/06/12 9:53 PM05/06/12 9:53 PM

CONTENTS

INTRODUCTION XXVII

PART I: INTRODUCING XML

CHAPTER 1: WHAT IS XML? 3

Steps Leading up to XML: Data Representation and Markups 4

Binary Files 4

Text Files 5

A Brief History of Markup 6

The Birth of XML 6

More Advantages of XML 10

XML Rules 10

Hierarchical Data Representation 11

Interoperability 12

XML in Practice 13

Data Versus Document 13

XML Scenarios 14

XML Technologies 16

Summary 23

CHAPTER 2: WELL-FORMED XML 25

What Does Well-Formed Mean? 26

Creating XML in a Text Editor 26

Forbidden Characters 26

XML Prolog 27

Creating Elements 30

Attributes 33

Element and Attribute Content 34

Processing Instructions 38

CDATA Sections 39

Advanced XML Parsing 40

XML Equivalence 41

Whitespace Handling 42

Error Handling 44

The XML Infoset 47

The Document Information Item 48

ftoc.indd xvftoc.indd xv 05/06/12 6:18 PM05/06/12 6:18 PM

xvi

CONTENTS

Element Information Items 48

Attribute Information Items 48

Processing Instruction Information Items 48

Character Information Item 49

Comment Information Item 49

Namespace Information Item 49

The Document Type Declaration Information Item 49

Unexpanded Entity Reference Information Item 49

Unparsed Entity Information Item 49

Notation Information Item 49

Summary 50

CHAPTER 3: XML NAMESPACES 53

Defi ning Namespaces 54

Why Do You Need Namespaces? 54

How Do You Choose a Namespace? 56

URLs, URIs, and URNs 56

Creating Your First Namespace 57

How to Declare a Namespace 58

How Exactly Does Scope Work? 62

Declaring More Than One Namespace 62

Changing a Namespace Declaration 64

Namespace Usage in the Real World 68

XML Schema 68

Documents with Multiple Namespaces 68

When to Use and Not Use Namespaces 72

When Namespaces are Needed 72

When Namespaces Are Not Needed 73

Versioning and Namespaces 74

Common Namespaces 75

The XML Namespace 75

The XMLNS Namespace 76

The XML Schema Namespace 76

The XSLT Namespace 76

The SOAP Namespaces 77

The WSDL Namespace 77

The Atom Namespace 77

The MathML Namespace 77

The Docbook Namespace 78

Summary 78

ftoc.indd xviftoc.indd xvi 05/06/12 6:18 PM05/06/12 6:18 PM

xvii

CONTENTS

PART II: VALIDATION

CHAPTER 4: DOCUMENT TYPE DEFINITIONS 83

What Are Document Type Defi nitions? 83

Working with DTDs 84

Using jEdit 84

The Document Type Declaration in Detail 88

Sharing DTDs 92

Anatomy of a DTD 93

Element Declarations 93

Attribute Declarations 103

Entity Declarations 109

DTD Limitations 114

Summary 114

CHAPTER 5: XML SCHEMAS 117

Benefi ts of XML Schemas 118

XML Schemas Use XML Syntax 118

XML Schema Namespace Support 118

XML Schema Data Types 119

XML Schema Content Models 119

XML Schema Specifi cations 119

XML Schemas in Practice 120

Defi ning XML Schemas 124

<schema> Declarations 124

<element> Declarations 128

Mixed Content 138

<group> Declarations 139

<attribute> Declarations 141

An XML Schema for Contacts 141

Data Types 148

<simpleType> Declarations 155

Creating a Schema from Multiple Documents 161

<import> Declarations 161

<include> Declarations 165

Documenting XML Schemas 167

XML Schema 1.1 170

Relaxed Rules 170

<assert> 171

Summary 171

ftoc.indd xviiftoc.indd xvii 05/06/12 6:18 PM05/06/12 6:18 PM

xviii

CONTENTS

CHAPTER 6: RELAX NG AND SCHEMATRON 175

Why Do You Need More Ways of Validating XML? 176

Setting Up Your Environment 176

Using RELAX NG 177

Understanding the Basics of RELAX NG 177

Understanding RELAX NG’s Compact Syntax 183

Converting Between the Two RELAX NG Formats 185

Constraining Content 186

Reusing Code in RELAX NG Schema 189

Using Schematron 193

Understanding the Basics of Schematron 193

Choosing a Version of Schematron 194

Understanding the Basic Process 194

Writing Basic Rules in Schematron 195

Creating a Schematron Document 196

Adding More Information to Messages 197

Constraining Values in Schematron 200

Handling Co-Constraints in Schematron 202

Using Schematron from Within XML Schema 203

Summary 207

PART III: PROCESSING

CHAPTER 7: EXTRACTING DATA FROM XML 211

Document Models: Representing XML in Memory 211

Meet the Models: DOM, XDM, and PSVI 212

A Sample DOM Tree 212

DOM Node Types 213

DOM Node Lists 214

The Limitations of DOM 215

The XPath Language 216

XPath Basics 216

XPath Predicates: The Full Story 218

XPath Steps and Axes 220

XPath Expressions 222

Variables in XPath Expressions 226

New Expressions in XPath 2 227

XPath Functions 231

ftoc.indd xviiiftoc.indd xviii 05/06/12 6:18 PM05/06/12 6:18 PM

www.allitebooks.com

http://www.allitebooks.org

xix

CONTENTS

XPath Set Operations 234

XPath and Namespaces 234

Summary 236

CHAPTER 8: XSLT 239

What XSLT Is Used For 240

XSLT as a Declarative Language 240

How Is XSLT a Functional Language? 242

Setting Up Your XSLT Development Environment 242

Setting Up Saxon for .NET 243

Setting Up Saxon for Java 244

Foundational XSLT Elements 245

The <xsl:stylesheet> Element 246

The <xsl:template> Element 247

The <xsl:apply-templates> Element 251

The <xsl:value-of> Element 251

The <xsl:for-each> Element 253

Push-Processing versus Pull-Processing 254

The Role of XPath in XSLT 254

Using Named Templates 256

The <xsl:call-template> Element 259

The document() Function in XSLT 260

Conditional Logic 266

The <xsl:param> element 270

The <xsl:sort> Element 271

<xsl:copy> and <xsl:copy-of> Elements 273

Reusing Code in XSLT 276

The <xsl:include> Element 276

The <xsl:import> Element 279

The <xsl:template> Mode Attribute 280

Understanding Built-In Templates and Built-In Rules 282

Using XSLT 2.0 284

Understanding Data Types in XSLT 2.0 285

Creating User-Defi ned Functions 285

Creating Multiple Output Documents 290

Using the collection() Function 291

Grouping in XSLT 2.0 292

Handling Non-XML Input with XSLT 2.0 295

XSLT and XPath 3.0: What’s Coming Next? 302

Summary 303

ftoc.indd xixftoc.indd xix 05/06/12 6:18 PM05/06/12 6:18 PM

xx

CONTENTS

PART IV: DATABASES

CHAPTER 9: XQUERY 307

XQuery, XPath, and XSLT 308

XQuery and XSLT 308

XQuery and XPath 308

XQuery in Practice 309

Standalone XQuery Applications 309

Part of SQL 309

Callable from Java or Other Languages 309

A Native-XML Server 310

XQuery Anywhere 310

Building Blocks of XQuery 313

FLWOR Expressions, Modules, and Functions 313

XQuery Expressions Do Not Have a Default Context 317

The Anatomy of a Query Expression 318

The Version Declaration 318

The Query Prolog 319

The Query Body 325

Some Optional XQuery Features 332

XQuery and XPath Full Text 332

The XQuery Update Facility 333

XQuery Scripting Extension 333

Coming in XQuery 3.0 333

Grouping and Windowing 334

The count Clause 335

Try and Catch 335

switch Expressions 336

Function Items and Higher Order Functions 337

JSON Features 338

XQuery, Linked Data, and the Semantic Web 338

Summary 338

CHAPTER 10: XML AND DATABASES 341

Understanding Why Databases Need to Handle XML 341

Analyzing which XML Features are Needed in a Database 343

Retrieving Documents 343

Retrieving Data from Documents 343

Updating XML Documents 344

Displaying Relational Data as XML 344

Presenting XML as Relational Data 344

ftoc.indd xxftoc.indd xx 05/06/12 6:18 PM05/06/12 6:18 PM

xxi

CONTENTS

Using MySQL with XML 345

Installing MySQL 345

Adding Information in MySQL 345

Querying MySQL 348

Updating XML in MySQL 353

Usability of XML in MySQL 353

Client-Side XML Support 354

Using SQL Server with XML 355

Installing SQL Server 355

Presenting Relational Data as XML 356

Understanding the xml Data Type 371

Creating Indexes with the xml Data Type 374

W3C XML Schema in SQL Server 384

Dealing with Namespaced Documents 385

Using eXist with XML 386

Downloading and Installing eXist 387

Interacting with eXist 389

Summary 399

PROGRAMMING
PART V: PROGRAMMING

CHAPTER 11: EVENT-DRIVEN PROGRAMMING 403

Understanding Sequential Processing 404

Using SAX in Sequential Processing 404

Preparing to Run the Examples 405

Receiving SAX Events 406

Handling Invalid Content 417

Using the DTDHandler Interface 427

EntityResolver Interface 428

Understanding Features and Properties 429

Using XmlReader 434

Using XmlReaderSettings 441

Controlling External Resources 447

Summary 448

CHAPTER 12: LINQ TO XML 451

What Is LINQ? 451

Why You Need LINQ to XML 454

Using LINQ to XML 454

ftoc.indd xxiftoc.indd xxi 05/06/12 6:18 PM05/06/12 6:18 PM

xxii

CONTENTS

Creating Documents 457

Creating Documents with Namespaces 459

Creating Documents with Prefi xed Namespaces 460

Extracting Data from an XML Document 461

Modifying Documents 468

Adding Content to a Document 468

Removing Content from a Document 470

Updating and Replacing Existing Content in a Document 470

Transforming Documents 472

Using VB.NET XML Features 474

Using VB.NET XML Literals 474

Understanding Axis Properties in VB.NET 478

Managing Namespaces in VB.NET 480

Summary 480

PART VI: COMMUNICATION

CHAPTER 13: RSS, ATOM, AND CONTENT SYNDICATION 485

Syndication 485

XML Syndication 486

Syndication Systems 488

Format Anatomy 491

Working with News Feeds 501

Newsreaders 501

Data Quality 501

A Simple Aggregator 502

Modeling Feeds 502

Program Flow 505

Implementation 505

Extending the Aggregator 521

Transforming RSS with XSLT 524

Generating a Feed from Existing Data 524

Processing Feed Data for Display 528

Browser Processing 531

Preprocessing Feed Data 532

Reviewing the Diff erent Formats 532

Useful Resources 534

Summary 535

ftoc.indd xxiiftoc.indd xxii 05/06/12 6:18 PM05/06/12 6:18 PM

xxiii

CONTENTS

CHAPTER 14: WEB SERVICES 539

What Is an RPC? 539

RPC Protocols 541

COM and DCOM 541

COBRA and IIOP 542

Java RMI 543

The New RPC Protocol: Web Services 543

The Same Origin Policy 544

Understanding XML-RPC 546

Choosing a Network Transport 548

Understanding REST Services 559

The Web Services Stack 564

SOAP 565

WSDL 566

UDDI 566

Surrounding Specifi cations 567

Summary 569

CHAPTER 15: SOAP AND WSDL 573

Laying the Groundwork 574

The New RPC Protocol: SOAP 574

Comparing SOAP to REST 579

Basic SOAP Messages 579

More Complex SOAP Interactions 587

Defi ning Web Services: WSDL 600

<defi nitions> 601

<types> 601

<messages> 602

<portTypes> 602

<binding> 603

<service> 605

Other Bindings 609

Summary 612

CHAPTER 16: AJAX 615

AJAX Overview 615

AJAX Provides Feedback 616

Loading Incomplete Data With AJAX 616

AJAX Performs Asynchronous Operations 617

ftoc.indd xxiiiftoc.indd xxiii 05/06/12 6:18 PM05/06/12 6:18 PM

xxiv

CONTENTS

Introduction to JavaScript 617

The Web Browser Console 618

Values, Expressions, and Variables 619

Control Flow Statements 621

Properties, Objects, Functions and Classes 622

The XMLHttpRequest Function 623

Using HTTP Methods with AJAX 628

Accessibility Considerations 629

The jQuery Library 630

Learning jQuery 631

The Domain-Specifi c Language (DSL) Approach 631

jQuery Plug-ins and Add-On Libraries 632

JSON and AJAX 635

JSON Example 635

JSON Syntax 636

JSON and jQuery 636

JSONP and CORS 637

The Web Sever Back End 637

Sending Images and Other Non-Textual Data 638

Performance 638

The Server Logs Are Your Friend 639

A Larger Example 639

Summary 644

PART VII: DISPLAY

CHAPTER 17: XHTML AND HTML 5 649

Background of SGML 650

HTML and SGML 650

XML and SGML 651

The Open Web Platform 651

Introduction to XHTML 652

The XHTML <html> Element 653

The XHTML <head> Element 654

The XHTML <body> Element 656

More Advanced HTML Topics 668

XHTML and HTML: Problems and Workarounds 669

Cascading Style Sheets (CSS) 670

CSS Levels and Versions 670

CSS at a Glance 671

CSS Selectors 673

CSS Properties 675

ftoc.indd xxivftoc.indd xxiv 05/06/12 6:18 PM05/06/12 6:18 PM

xxv

CONTENTS

CSS Special Rules 680

CSS and XML 681

Separating Style and Markup: Unobtrusive CSS 682

Unobtrusive JavaScript 682

HTML 5 683

Benefi ts of HTML 5 683

Caveats of HTML 5 683

New Elements in HTML 5 684

Summary 686

CHAPTER 18: SCALABLE VECTOR GRAPHICS (SVG) 689

Scalable Vector Graphics and Bitmaps 689

Procedural Graphics 690

Declarative Graphics 690

Bitmap Graphics 691

Vector Images 692

SVG Images 692

The SVG Graphics Model 694

SVG and CSS 696

SVG Tools 698

SVG Basic Built-in Shapes 700

Rectangles 701

Circles 702

Ellipses 702

Straight Lines 703

Polylines and Polygons 704

SVG Paths 705

SVG Transforms and Groups 708

Transforms 708

Groups 709

SVG Defi nitions and Metadata 709

The SVG <title> and <desc> Elements 709

The SVG <metadata> Element 710

The SVG <defs> Element and Reusable Content 711

Viewports and Coordinates 712

SVG Colors and Gradients 713

Including Bitmap Images in SVG 715

SVG Text and Fonts 716

SVG Animation Four Ways 717

Synchronized Multimedia Integration Language (SMIL) 718

Scripted Animation 719

ftoc.indd xxvftoc.indd xxv 05/06/12 6:18 PM05/06/12 6:18 PM

xxvi

CONTENTS

CSS Animation 719

External Libraries 720

SVG and HTML 5 720

SVG and Web Apps 721

Making SVG with XQuery or XSLT 722

Resources 722

Summary 723

PART VIII: CASE STUDY

CHAPTER 19: CASE STUDY: XML IN PUBLISHING 727

Background 727

Project Introduction: Current Workfl ow 728

Introducing a New XML-Based Workfl ow 728

Consultations 729

Documenting the Project 729

Prototyping 729

Creating a New Process 730

Challenging Criteria 730

The New Workfl ow 731

Document Conversion and Technologies 731

Costs and Benefi ts Analysis 732

Deployment 733

Some Technical Aspects 733

XQuery and Modules 734

XInclude 734

Equations and MathML 734

XProc: An XML Pipelining Language 737

XForms, REST, and XQuery 738

Formatting to PDF with XSL-FO 738

XML Markup for Documentation 741

Markup for the Humanities: TEI 741

The Hoy Books Website 741

Summary 746

APPENDIX A: ANSWERS TO EXERCISES 749

APPENDIX B: XPATH FUNCTIONS 773

APPENDIX C: XML SCHEMA DATA TYPES 797

INDEX 811

ftoc.indd xxviftoc.indd xxvi 05/06/12 6:18 PM05/06/12 6:18 PM

INTRODUCTION

THIS IS THE FIFTH EDITION OF A BOOK that has proven popular with professional developers and
academic institutions. It strives to impart knowledge on a subject that at fi rst was seen by some
as just another fad, but that instead has come to maturity and is now often just taken for granted.
Almost six years have passed since the previous edition — a veritable lifetime in IT terms. In review-
ing the fourth edition for what should be kept, what should be updated, and what new material was
needed, the current authors found that about three-quarters of the material was substantially out of
date. XML has far more uses than fi ve years ago, and there is also much more reliance on it under
the covers. It is now no longer essential to be able to handcraft esoteric confi guration fi les to get a
web service up and running. It has also been found that, in some places, XML is not always the best
fi t. These situations and others, along with a complete overhaul of the content, form the basis for
this newer version.

So, what is XML? XML stands for eXtensible Markup Language, which is a language that can
be used to describe data in a meaningful way. Virtually anywhere there is a need to store data,
especially where it may need to be consumed by more than one application, XML is a good place
to start. It has gained a reputation for being a candidate where interoperability is important, either
between two applications in different businesses or simply those within a company. Hundreds
of standardized XML formats now exist, known as schemas, which have been agreed on by
businesses to represent different types of data, from medical records to fi nancial transactions to GPS
coordinates representing a journey.

WHO THIS BOOK IS FOR

This book aims to suit a fairly wide range of readers. Most developers have heard of XML but may
have been a bit afraid of it. XML has a habit nowadays of being used behind the scenes, and it’s
only when things don’t work as expected or when developers want to do something a little different,
that users start to realize that they must open the hood. To those people we say: fear no longer. It
should also suit the developer experienced in other fi elds who has never had a formal grounding in
the subject. Finally, it can be used as reference when you need to try something out for the fi rst time.
Nearly all the technologies in the book have a Try It Out section associated with them that fi rst gets
you up and running with a simple example and then explains how to progress from there.

What you don’t need for this book is any knowledge of markup languages in general. This is all
covered in the fi rst few chapters. It is expected that most of the readership will have some
knowledge of and experience with web programming, but we’ve tried to spread our examples so
that knowledge could include using the Microsoft stack, Java, or one of the other open source
frameworks, such as PHP or Python.

And just in case you are worried about the Beginning part of the title, that’s a Wrox conceit that
applies more to the style of the book than to your level of experience. Many of the concepts covered,
especially in later chapters, are from the real world and are far from the Hello World genre.

flast.indd xxviiflast.indd xxvii 05/06/12 6:18 PM05/06/12 6:18 PM

INTRODUCTION

xxviii

WHAT THIS BOOK COVERS

This book aims to teach you all you need to know about XML — what it is, how it works, what
technologies accompany it, and how you can make it work for you, from simple data transfer to a
way to provide multi-channeled content. The book sets out to answer these fundamental questions:

 ➤ What is XML?

 ➤ How do you use XML?

 ➤ How does it work?

 ➤ What can you use it for?

The basic concepts of XML have remained unchanged since their launch, but the surrounding
technologies have changed dramatically. This book gives a basic overview of each technology and
how it arose, but the majority of the examples use the latest version available. The examples are also
drawn from more than one platform, with Java and .NET sharing most of the stage. XML products
have also evolved; at one time there were many free and commercial Extensible Stylesheet Language
Transformation (XSLT) processors; for example, XSLT is used to manipulate XML, changing
it from one structure to another, and is covered in Chapter 8, but since version 2 appeared the
number has reduced considerably as the work needed to develop and maintain the software
has risen.

HOW THIS BOOK IS STRUCTURED

We’ve tried to arrange the subjects covered in this book to lead you along the path of novice to
expert in as logical a manner as possible. The sections each cover a different area of expertise. Unless
you’re fairly knowledgeable about the basics, we suggest you read the introductory chapters in Part 1,
although skimming through may well be enough for the savvier user. The other sections can then be
read in order or can be targeted directly if they cover an area that you are particularly interested in.
For example, when your boss suddenly tells you that your next release must offer an XQuery add-in,
you can head straight to Chapter 9. A brief overview of the book is as follows:

 ➤ You begin by learning exactly what XML is and why people felt it was needed.

 ➤ We then take you through how to create XML and what rules need to be followed.

 ➤ Once you’ve mastered that, you move on to what a valid XML document is and how you
can be sure that yours is one of them.

 ➤ Then you’ll look at how you can manipulate XML documents to extract data and to trans-
form them into other formats.

 ➤ Next you deal with storing XML in databases — the advantages and disadvantages and
how to query them when they’re there.

 ➤ You then look at other ways to extract data, especially those suitable to dealing with large
documents.

flast.indd xxviiiflast.indd xxviii 05/06/12 6:18 PM05/06/12 6:18 PM

www.allitebooks.com

http://www.allitebooks.org

INTRODUCTION

xxix

 ➤ We then cover some uses of XML, how to publish data in an XML format, and how to
create and consume XML-based web services. We explain how AJAX came about and how it
works, alongside some alternatives to XML and when you should consider them.

 ➤ We follow up with a couple of chapters on how to use XML for web page and image
display.

 ➤ Finally, there’s a case study that ties a lot of the various XML-based technologies together
into a real-world example.

We’ve tried to organize the book in a logical fashion, such that you are introduced to the basics and
then led through the different technologies associated with XML. These technologies are grouped
into six sections covering most of topics that you’ll encounter with XML, from validation of the
original data to processing, storage, and presentation.

Part I: Introduction

This is where most readers should start. The chapters in this part cover the goals of XML
and the rules for constructing it. After reading this part you should understand the basic
concepts and terminology. If you are already familiar with XML, you can probably just
skim these chapters.

Chapter 1: What Is XML? — Chapter 1 covers the history of XML and why it is needed,
as well as the basic rules for creating XML documents.

Chapter 2: Well-Formed XML — This chapter goes into more detail about what is
and isn’t allowed if a document is to be called XML. It also covers the modern naming
system that is used to describe the different constituent parts of an XML document.

Chapter 3: XML Namespaces — Everyone’s favorite, the dreaded topic of namespaces,
is explained in a simple-to-understand fashion. After reading this chapter, you’ll be the
expert while everyone else is scratching their heads.

Part II: Validation

This part covers different techniques that help you verify that the XML you’ve created, or
received, is in the correct format.

Chapter 4: Document Type Defi nitions — DTDs are the original validation mechanism
for XML. This chapter shows how they are used to both constrain the document and to
supply additional content.

Chapter 5: XML Schemas — XML Schemas are the more modern way of describing
an XML document’s format. This chapter examines how they work and discusses the
advantages and disadvantages over DTDs.

Chapter 6: RELAX NG and Schematron — Sometimes neither DTDs nor schemas
provide what you need. This chapter discusses two other methods by which you can
check if your XML is valid, and also includes examples of mixing more than one
validation technique.

flast.indd xxixflast.indd xxix 05/06/12 6:18 PM05/06/12 6:18 PM

INTRODUCTION

xxx

Part III: Processing

This section covers retrieving data from an XML document and also transforming
one format of XML to another. Included is a thorough grounding in XPath, one of the
cornerstones of many XML technologies.

Chapter 7: Extracting Data from XML — This chapter covers the document object
model (DOM), one of the earliest ways devised to extract data from XML. It then goes
on to describe XPath, one of the cornerstone XML technologies that can be used to
pinpoint one or many items of interest.

Chapter 8: XSLT — XSLT is a way to transform XML from one format to another,
which is essential if you are receiving documents from external sources and need
your own systems to be able to read them. It covers the basics of version 1, the more
advanced features of the current version, and shows a little of what’s scheduled in the
next release.

Part IV: Databases

For many years there has been a disparity between data held in a database and that stored
as XML. This part brings the two together and shows how you can have the best of both
worlds.

Chapter 9: XQuery — XQuery is a mechanism designed to query existing documents and
create new XML documents. It works especially well with XML data that is stored in
databases, and this chapter shows how that’s done.

Chapter 10: XML and Databases — Many database systems now have functionality
designed especially for XML. This chapter examines three such products and shows how
you can both query and update existing data as well as create new XML, should the need
arise.

Part V: Programming

This part looks at two programming techniques for handling XML. Chapter 11 covers
dealing with large documents, and Chapter 12 shows how Microsoft’s latest universal data
access strategy, LINQ, can be used with XML.

Chapter 11: Event-Driven Programming — This chapter looks at two different ways
of handling XML that are especially suited to processing large fi les. One is based on
an open source API and the examples are implemented in Java. The second is a key part
of Microsoft’s .NET Framework and shows examples in C#.

Chapter 12: LINQ to XML — This chapter shows Microsoft’s latest way of handling
XML, from creation to querying and transformation. It contains a host of examples that
use both C# and VB.NET, which, for once, currently has more features than its .NET
cousin.

Part VI: Communication

This part has fi ve chapters that deal with using XML as a means of communication. It
covers presenting data in a way that many different systems can utilize and then shows
how web services can make data available to a variety of different clients. It concludes
with a discussion on how complex data can be described in a standard way that’s
accessible to all.

flast.indd xxxflast.indd xxx 05/06/12 6:18 PM05/06/12 6:18 PM

INTRODUCTION

xxxi

Chapter 13: RSS, Atom, and Content Syndication — This chapter covers the two main
ways in which content, such as news feeds, is presented in a platform-independent
fashion. It also covers how the same XML format can be used to present structured data
such as customer listings or sales results.

Chapter 14: Web Services — One of the biggest software success stories over the past ten
years has been web services. This chapter examines how they work and where XML fi ts
into the picture, which is essential knowledge, should things start to go wrong.

Chapter 15: SOAP and WSDL — This chapter burrows down further into web services
and describes two major systems used within them: SOAP, which dictates how
services are called, and Web Services Description Language (WSDL), which is used to
describe what a web service has to offer.

Chapter 16: AJAX — The fi nal chapter in this section deals with AJAX and how it can
help your website provide up-to-the-minute information, yet remain responsive and use
less bandwidth. Obviously XML is involved, but the chapter also examines the situations
when you’d want to abandon XML and use an alternative technology.

Part VII: Display

This part shows two ways in which XML can help display information in a user-friendly
form as well as in a format that can be read by a machine.

Chapter 17: XHTML and HTML 5 — This chapter covers how and where to use
XHTML and why it is preferred over traditional HTML. It then goes on to show the
newer features of HTML 5 and how it has removed some of these obstacles.

Chapter 18: Scalable Vector Graphics (SVG) — This chapter shows how images can be
stored in an XML format and what the advantages are to this method. It then shows how
this format can be combined with others, such as HTML, and why you would do this.

Part VIII: Case Study

This part contains a case study that ties in the many uses of XML and shows how they
would interact in a real-world example.

Chapter 19: Case Study: XML in Publishing — The case study shows how a fi ctional
publishing house goes from proprietary-based publishing software to an XML-based
workfl ow and what benefi ts this brings to the business.

Appendices

The three appendices contain reference material and solutions to the end-of-chapter exercises.

Appendix A: Answers to Exercises — This appendix contains solutions and suggestions
for the end-of-chapter exercises that have appeared throughout the book.

Appendix B: XPath Functions — This appendix contains information on the majority
of XPath functions, their signatures, return values, and examples of how and where you
would use them.

Appendix C: XML Schema Data Types — This appendix contains information on the
numerous built-in data types defi ned by XML Schema. It shows how they are related and
also how they can be constrained by different facets.

flast.indd xxxiflast.indd xxxi 05/06/12 6:18 PM05/06/12 6:18 PM

INTRODUCTION

xxxii

WHAT YOU NEED TO USE THIS BOOK

There’s no need to purchase anything to run the examples in this book; all the examples can
be written with and run on freely available software. You’ll need a machine with a standard
browser — Internet Explorer, Firefox, Chrome, or Safari should do as long it’s one of the more
recent editions. You’ll need a basic text editor, but even Notepad will do if you want to create the
examples rather than just download them from the Wrox site. You’ll also need to run a web server
for some of the code, either the free version of IIS for Windows or one of the many open source
implementations such as Apache for other systems will do. For some of the coding examples you’ll
need Visual Studio. You can either use a commercial version or the free one available for download
from Microsoft.

If you want to use the free version, Visual Studio Express 2010, then head to www.microsoft.com/
visualstudio/en-us/products/2010-editions/express. Each edition of Visual Studio concen-
trates on a specifi c area such as C# or web development, so to try all the examples you’ll need to
download the C# edition, the VB.NET edition, and the Web edition. You should also install service
pack 1 for Visual Studio 2010 which can be found at www.microsoft.com/ download/en/details
.aspx?id=23691. Once everything is installed you’ll be able to open the sample solutions or, failing
that, one of the sample projects within the solutions by Choosing File ➪ Open ➪ Project/Solution . . .
and browsing to either the solution fi le or the specifi c project you want to run. As this book went to
press Microsoft was preparing to release a new version, Visual Studio 2011. The examples in this
book should all work with this newer version although the screenshots may differ slightly.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.

1. They usually consist of a set of steps.

2. Each step has a number.

3. Follow the steps through with your copy of the database.

How It Works

After each Try It Out, the code you’ve typed will be explained in detail.

WARNING Boxes with a warning icon like this one hold important, not-to-be

forgotten information that is directly relevant to the surrounding text.

flast.indd xxxiiflast.indd xxxii 05/06/12 6:18 PM05/06/12 6:18 PM

http://www.microsoft.com/visualstudio/en-us/products/2010-editions/express
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/express
http://www.microsoft.com/download/en/details.aspx?id=23691
http://www.microsoft.com/download/en/details.aspx?id=23691

INTRODUCTION

xxxiii

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show fi lenames, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that’s particularly important in the present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code manually,
or to use the source code fi les that accompany the book. All the source code used in this book is available
for download at www.wrox.com. When at the site, simply locate the book’s title (use the Search box or
one of the title lists) and click the Download Code link on the book’s detail page to obtain all the source
code for the book. Code that is included on the website is highlighted by the following icon:

Available for
download on
Wrox.com

Listings include the fi lename in the title. If it is just a code snippet, you’ll fi nd the fi lename in a code
note such as this:

fi lename

NOTE Because many books have similar titles, you may fi nd it easiest to search

by ISBN; this book’s ISBN is 978-1-118-16213-2.

NOTE The pencil icon indicates notes, tips, hints, tricks, and asides to the

current discussion.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

flast.indd xxxiiiflast.indd xxxiii 05/06/12 6:18 PM05/06/12 6:18 PM

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://Wrox.com

INTRODUCTION

xxxiv

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors,
editors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P but in order to

post your own messages, you must join.

flast.indd xxxivflast.indd xxxiv 05/06/12 6:18 PM05/06/12 6:18 PM

http://p2p.wrox.com
http://www.wrox.com
http://www.wrox.com/
http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml
http://P2P.WROX.COM
http://p2p.wrox.com
http://p2p.wrox.com

INTRODUCTION

xxxv

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxvflast.indd xxxv 05/06/12 6:18 PM05/06/12 6:18 PM

flast.indd xxxviflast.indd xxxvi 05/06/12 6:18 PM05/06/12 6:18 PM

PART I
Introducing XML

 � CHAPTER 1: What Is XML?

 � CHAPTER 2: Well-Formed XML

 � CHAPTER 3: XML Namespaces

c01.indd 1c01.indd 1 05/06/12 5:13 PM05/06/12 5:13 PM

c01.indd 2c01.indd 2 05/06/12 5:13 PM05/06/12 5:13 PM

www.allitebooks.com

http://www.allitebooks.org

What Is XML?

WHAT YOU’LL WILL LEARN IN THIS CHAPTER:

 ➤ The story before XML

 ➤ How XML arrived

 ➤ The basic format of an XML document

 ➤ Areas where XML is useful

 ➤ A brief introduction to the technologies surrounding, and associated

with, XML

XML stands for Extensible Markup Language (presumably the original authors thought
that sounded more exciting than EML) and its development and usage have followed a com-
mon path in the software and IT world. It started out more than ten years ago and was
originally used by very few; later it caught the public eye and began to pervade the world of
data exchange. Subsequently, the tools available to process and manage XML became more
sophisticated, to such an extent that many people began to use it without being really aware
of its existence. Lately there has been a bit of a backlash in certain quarters over its perceived
failings and weak points, which has led to various proposed alternatives and improvements.
Nevertheless, XML now has a permanent place in IT systems and it’s hard to imagine any
non-trivial application that doesn’t use XML for either its confi guration or data to some
degree. For this reason it’s essential that modern software developers have a thorough under-
standing of its principles, what it is capable of, and how to use it to their best advantage. This
book can give the reader all those things.

1

c01.indd 3c01.indd 3 05/06/12 5:13 PM05/06/12 5:13 PM

4 ❘ CHAPTER 1 WHAT IS XML?

NOTE Although this chapter presents some short examples of XML, you aren’t

expected to understand all that’s going on just yet. The idea is simply to intro-

duce the important concepts behind the language so that throughout the book

you can see not only how to use XML, but also why it works the way it does.

STEPS LEADING UP TO XML: DATA REPRESENTATION
AND MARKUPS

There are two main uses for XML: One is a way to represent low-level data, for example confi gura-
tion fi les. The second is a way to add metadata to documents; for example, you may want to stress a
particular sentence in a report by putting it in italics or bold.

The fi rst usage for XML is meant as a replacement for the more traditional ways this has been done
before, usually by means of lists of name/value pairs as is seen in Windows’ INI or Java’s Property
fi les. The second application of XML is similar to how HTML fi les work. The document text is con-
tained in an overall container, the <body> element, with individual phrases surrounded by <i> or
tags. For both of these scenarios there has been a multiplicity of techniques devised over the years.
The problem with these disparate approaches has been more apparent than ever, since the increased
use of the Internet and extensive existence of distributed applications, particularly those that rely on
components designed and managed by different parties. That problem is one of intercommunication.
It’s certainly possible to design a distributed system that has two components, one outputting data
using a Windows INI fi le and the other which turns it into a Java Properties format. Unfortunately, it
means a lot of development on both sides, which shouldn’t really be necessary and detracts resources
from the main objective, developing new functionality that delivers business value.

XML was conceived as a solution to this kind of problem; it is meant to make passing data between
different components much easier and relieve the need to continually worry about different formats
of input and output, freeing up developers to concentrate on the more important aspects of coding
such as the business logic. XML is also seen as a solution to the question of whether fi les should be
easily readable by software or by humans; XML’s aim is to be both. You’ll be examining the distinc-
tion between data-oriented and document-centric XML later in the book, but for now let’s look a
bit more deeply into what the choices were before XML when there was need to store or communi-
cate data in an electronic format.

This section takes a mid-level look at data representation, without taking too much time to explain
low-level details such as memory addresses and the like. For the purposes here you can store data in
fi les two ways: as binary or as text.

Binary Files

A binary fi le, at its simplest, is just a stream of bits (1s and 0s). It’s up to the application that created
the binary fi le to understand what all of the bits mean. That’s why binary fi les can only be read and
produced by certain computer programs, which have been specifi cally written to understand them.

c01.indd 4c01.indd 4 05/06/12 5:13 PM05/06/12 5:13 PM

For example, when saving a document in Microsoft Word, using a version before 2003, the fi le cre-
ated (which has a doc extension) is in a binary format. If you open the fi le in a text editor such as
Notepad, you won’t be able to see a picture of the original Word document; the best you’ll be able to
see is the occasional line of text surrounded by gibberish rather than the prose, which could be in a
number of formats such as bold or italic. The characters in the document other than the actual text
are metadata, literally information about information. Mixing data and metadata is both common
and straightforward in a binary fi le. Metadata can specify things such as which words should be
shown in bold, what text is to be displayed in a table, and so on. To interpret this fi le you the need
the help of the application that created it. Without the help of a converter that has in-depth knowl-
edge of the underlying binary format, you won’t be able to open a document created in Word with
another similar application such as WordPerfect. The main advantage of binary formats is that they
are concise and can be expressed in a relatively small space. This means that more fi les can be stored
(on a hard drive, for example) but, more importantly nowadays, less bandwidth is used when trans-
porting these fi les across networks.

Text Files

The main difference between text and binary fi les is that text fi les are human and machine readable.
Instead of a proprietary format that needs a specifi c application to decipher it, the data is such that
each group of bits represents a character from a known set. This means that many different applica-
tions can read text fi les. On a standard Windows machine you have a choice of Notepad, WordPad,
and others, including being able to use command-line–based utilities such as Edit. Non-Windows
machines have a similar wide range insert of programs available, such as Emacs and Vim.

NOTE The way that characters are represented by the underlying data stream

is referred to as a fi le’s encoding. The specifi c encoding used is often present

as the fi rst few bytes in the fi le; an application checks these bytes upon opening

the fi le and then knows how to display and manipulate the data. There is also a

default encoding if these fi rst few bytes are not present. XML also has other

ways of specifying how a fi le was encoded, and you’ll see these later on.

The ability to be read and understood by both humans and machines is not the only advantage
of text fi les; they are also comparatively easier to parse than binary fi les. The main disadvantage
however, is their size. In order for text fi les to contain metadata (for example, a stretch of text to be
marked as important), the relevant words are usually surrounded by characters denoting this extra
information, which are somehow differentiated from the actual text itself. The most common exam-
ples of this can be found in HTML, where angle brackets are special symbols used to convey the
meaning that anything within them refers to how the text should be treated rather than the actual
data. For example, if I want mark a phrase as important I can wrap it like so:

returns must include the item order number

Steps Leading up to XML: Data Representation and Markups ❘ 5

c01.indd 5c01.indd 5 05/06/12 5:13 PM05/06/12 5:13 PM

6 ❘ CHAPTER 1 WHAT IS XML?

Another disadvantage of text fi les is their lack of support for metadata. If you open a Word docu-
ment that contains text in an array of fonts with different styles and save it as a text fi le, you’ll just
get a plain rendition; all of the metadata has been lost. What people were looking for was some way
to have the best of both worlds — a human-readable fi le that could also be read by a wide range
of applications, and could carry metadata along with its content. This brings us to the subject of
markup.

A Brief History of Markup

The advantages of text fi les made it the preferred choice over binary fi les, yet the disadvantages were
still cumbersome enough that people wanted to also standardize how metadata could be added.
Most agreed that markup, the act of surrounding text that conveyed information about the text,
was the way forward, but even with this agreed there was still much to be decided. The main two
questions were:

 ➤ How can metadata be differentiated from the basic text?

 ➤ What metadata is allowed?

For example, some documents needed the ability to mark text as bold or italic whereas others
were more concerned with who the original document author was, when was it created, and
who had subsequently modifi ed it. To cope with this problem a defi nition called Standard
Generalized Markup Language was released, commonly shortened to SGML. SGML is a step
removed from defi ning an actual markup language, such as the Hyper Text Markup Language,
or HTML. Instead it relays how markup languages are to be defi ned. SGML allows you to
create your own markup language and then defi ne it using a standard syntax such that any
SGML-aware application can consume documents written in that language and handle them
accordingly. As previously noted, the most ubiquitous example of this is HTML. HTML uses
angular brackets (< and >) to separate metadata from basic text and also defi nes a list of
what can go into these brackets, such as em for emphasizing text, tr for table, and td for
representing tabular data.

THE BIRTH OF XML

SGML, although well thought-out and capable of defi ning many different types of markup, suffered
from one major failing: it was very complicated. All the fl exibility came at a cost, and there were
still relatively few applications that could read the SGML defi nition of a markup language and use
it to correctly process documents. The concept was correct, but it needed to be simpler. With this
goal in mind, a small working group and a larger number of interested parties began working in the
mid-1990s on a subset of SGML known as Extensible Markup Language (XML). The fi rst working
draft was published in 1996 and two years later the W3C published a revised version as a recom-
mendation on February 10, 1998.

c01.indd 6c01.indd 6 05/06/12 5:13 PM05/06/12 5:13 PM

NOTE The World Wide Web Consortium (W3C) is the main international stan-

dards organization for the World Wide Web. It has a number of working groups

targeting diff erent aspects of the Web that discuss standardization and docu-

mentation of the diff erent technologies used on the Internet. The standards doc-

uments go through various stages such as Working Draft and Candidate
Recommendation before fi nally becoming a Recommendation. This process can

take many years. The reason that the fi nal agreement is called a recommenda-

tion rather than a standard is that you are still free to ignore what it says and use

your own. All web developers know the problems in developing applications that

work across all browsers, and many of these problems arise because the

browser vendors did not follow a W3C recommendation or they did not imple-

ment features before the recommendation was fi nalized. Most of the XML tech-

nologies discussed in this book have a W3C recommendation associated with

them, although some don’t have a full recommendation because they are still in

draft form. Additionally, some XML-related standards originate from outside the

W3C, such as SAX which is discussed in Chapter 11, “Event Driven Programming.”

and therefore they also don’t have offi cial W3C recommendations.

XML therefore derived as a subset of SGML, whereas HTML is an application of SGML. XML
doesn’t dictate the overall format of a fi le or what metadata can be added, it just specifi es a few
rules. That means it retains a lot of the fl exibility of SGML without most of the complexity. For
example, suppose you have a standard text fi le containing a list of application users:

Joe Fawcett
Danny Ayers
Catherine Middleton

This fi le has no metadata; the only reason you know it’s a list of people is your own knowledge and
experience of how names are typically represented in the western world. Now look at these names
as they might appear in an XML document:

<applicationUsers>
 <user firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
</applicationUsers>

Immediately it’s more apparent what the individual pieces of data are, although an application still
wouldn’t know just from that fi le how to treat a user or what firstName means. Using the XML
format rather than the plain text version, it’s much easier to map these data items within the appli-
cation itself so they can be handled correctly.

The two common features of virtually all XML fi le are called elements and attributes. In the pre-
ceding example, the elements are applicationUsers and user, and the attributes are firstName
and lastName.

The Birth of XML ❘ 7

c01.indd 7c01.indd 7 05/06/12 5:13 PM05/06/12 5:13 PM

8 ❘ CHAPTER 1 WHAT IS XML?

A big disadvantage of this metadata, however, is the consequent increase in the size of the fi le. The
metadata adds about 130 extra characters to the fi le’s original 43 character size, an increase of more
than 300 percent. The creators of XML decided that the power of metadata warranted this increase
and, indeed, one of their maxims during the design was that terseness is not an aim, a decision that
many would later come to regret.

NOTE Later on in the book you’ll see a number of ways to minimize the size of

an XML fi le if needed. However, all these methods are, to some extent, a trade-

off against readability and ease of use.

Following is a simple exercise to demonstrate the differences in how applications handle simple text
fi les against how XML is treated. Even though the application, in this case a browser, is told noth-
ing in advance of opening the two fi les, you’ll see how much more metadata is available in the XML
version compared to the text one.

TRY IT OUT Opening an XML File in a Browser

This example shows the differences in how XML fi les can be handled compared to plain text fi les.

1. Create a new text fi le in Notepad, or an equivalent simple text editor, and paste in the list of
names fi rst shown earlier.

2. Save this fi le at a convenient location as appUsers.txt.

3. Next, open a browser and paste the path to appUsers.txt into the address bar. You should see
something like Figure 1-1. Notice how it’s just a simple list:

FIGURE 1-1

4. Now create another text fi le based on the XML version and save it as appUsers.xml. If you’re
doing this in Notepad make sure you put quotes around the full name before saving or otherwise
you’ll get an unwanted .txt extension added.

5. Open this fi le and you should see something like Figure 1-2.

c01.indd 8c01.indd 8 05/06/12 5:13 PM05/06/12 5:13 PM

WARNING If you are using Internet Explorer for this or other activities, you’ll

probably have to go to Tools ➪ Internet Options and choose the Advanced tab.

Under the Security section, check the box in front of Allow Active Content to Run

in Files on My Computer. This eff ectively allows script to work on local fi les.

As you can see the XML fi le is treated very differently. The browser has shown the metadata in a dif-
ferent color than the base data, and also allows expansion and contraction of the applicationUsers
section. Even though the browser has no idea that this fi le represents three different users, it knows
that some of the content is to be handled differently from other parts and it is a relatively straightfor-
ward step to take this to the next level and start to process the fi le in a sensible fashion.

How It Works

Browsers use an XML stylesheet or transformation to display XML fi les. An XML stylesheet is a text-
based fi le with an XML format that can transform one format into another. They are most commonly
used to convert from a particular XML format to another or from XML to HTML, but they can also
be used to process plain text. In this case the original XML is transformed into HTML, which permits
the styling of elements to give the different colors as well as the ability to expand and contract sections
using script. Transformations are covered in depth in Chapter 8, “XSLT.”

NOTE If you want to view the default style sheet that Firefox uses to display

XML, type chrome://global/content/xml/XMLPrettyPrint.xsl into the

Firefox address bar. IE has a similar built-in style sheet but it’s not so easily view-

able and it’s written in an older, and now no longer used, version of XSLT that

Microsoft brought out before the current version was standardized.

FIGURE 1-2

The Birth of XML ❘ 9

c01.indd 9c01.indd 9 05/06/12 5:13 PM05/06/12 5:13 PM

10 ❘ CHAPTER 1 WHAT IS XML?

NOTE You’ll be using a browser a few times in this chapter to view XML fi les.

This has a number of advantages — they're easy, they give reasonable

messages if the XML fi le has errors, and you’d be unlikely to fi nd a machine

that doesn’t have one. However, for serious development they are not such a

good idea, especially if you are trying to convert XML to HTML as you do in the

next Try It Out. Because most browsers allow for poorly formed HTML you won’t

be able to see if what you’ve produced has errors, and you certainly won’t be

able to easily debug if something is wrong. For this reason we suggest you use

a proper XML editor when developing. Chapter 2, “Well-Formed XML” covers a

number of these.

MORE ADVANTAGES OF XML

One of the aims of XML is to implement a clear separation between data and presentation.
This means that the same underlying data can be used in multiple presentation scenarios. It also
means that when moving data, across a network for example, bandwidth is not wasted by having
to carry redundant information concerned only with the look and feel. This separation is simple
with XML as there are no built-in presentational features such as exist in HTML, and is one of
its main advantages.

XML Rules

In order to maintain this clear separation, the rules of XML have to be quite strict, but this also
works to the user’s advantage. For instance, in the appUsers.xml fi le you saw, values of the users’
fi rst and last names were within quotes; this is a prerequisite for XML fi les; therefore, the following
would not be considered XML:

<applicationUsers>
 <user firstName=Joe lastName=Fawcett />
 <user firstName=Danny lastName=Ayers />
 <user firstName=Catherine lastName=Middleton />
</applicationUsers>

The need for quotes in turn makes it easy to tell when certain data is missing, for example here:

<applicationUsers>
 <user lastName=”Fawcett” />
 <user lastName=”Ayers” />
 <user lastName=”Middleton” />
</applicationUsers>

None of the users has a fi rst name. Now your application may fi nd that acceptable or it may not,
but either way it’s easier to tell whether the fi le is legitimate, or valid as it’s known in XML, when
the data is in quotation marks. This means unsuitable fi les can be rejected at an early stage without

c01.indd 10c01.indd 10 05/06/12 5:13 PM05/06/12 5:13 PM

causing application errors. Additional ways of validating XML fi les are covered in Part 2 of this
book.

Another advantage is the easy extensibility of XML fi les. If you want to add more data, perhaps a
middle name for example, to the application users’ data, you can do that easily by creating a new
attribute, middleName:

<applicationUsers>
 <user firstName=”Joe” middleName=”John” lastName=”Fawcett” />
 <user firstName=”Danny” middleName=”John” lastName=”Ayers” />
 <user firstName=”Catherine” middleName=”Elizabeth” lastName=”Middleton” />
</applicationUsers>

Consider if you had an application that consumed the original version of the data, with just fi rst
name and last name stored in the fi le, and used it to present a list of application users on its main
screen. Originally the software was designed to show just the fi rst name and last name of each user
but a new requirement demands that the middle name is displayed as well. The newer version of the
XML adds the middleName attribute to satisfy this new requirement. Now the older version of the
application can still consume this data and simply ignore the middle name information while the
new versions can take advantage of it. This is more diffi cult to accomplish if the data is in the type
of simple text fi le such as appUsers.txt:

Joe John Fawcett
Danny John Ayers
Catherine Elizabeth Middleton

If the extra data is added to the middle column, the existing application will probably misinterpret
it, and even if the middle name becomes the third column it’s likely to cause problems parsing the
fi le. This occurs because there are no delimiters specifying where the individual data items begin
and end, whereas with the XML version it’s easy to separate the different components of a user’s
name.

Hierarchical Data Representation

Another area where XML-formatted data fl ourishes over simple text fi les is when representing a
hierarchy; for instance a fi lesystem. This scenario needs a root with several folders and fi les; each
folder then may have its own subfolders, which can also contain folders and fi les. This can go on
indefi nitely. If all you had was a text fi le, you could try something like this, which has a column rep-
resenting the path and one to describe whether it’s a folder or a fi le:

Path Type
C:\folder
C:\pagefile.sys file
C:\Program Files folder
C:\Program Files\desktop.ini file
C:\Program Files\Microsoft folder
C:\Program Files\Mozilla folder
C:\Windows folder
C:\Windows\System32 folder

More Advantages of XML ❘ 11

c01.indd 11c01.indd 11 05/06/12 5:13 PM05/06/12 5:13 PM

12 ❘ CHAPTER 1 WHAT IS XML?

C:\Temp folder
C:\Temp\~123.tmp file
C:\Temp\~345.tmp file

As you can see, this is not pretty and the information is hard for us humans to read and quickly
assimilate. It would be quite diffi cult to write code that interprets this neatly. Comparatively, now
look at one possible XML version of the same information:

<folder name=”C:\”>
 <folder name=”Program Files”>
 <folder name=”Microsoft”>
 </folder>
 <folder name=”Mozilla”>
 </folder>
 </folder>
 <folder name=”Windows>
 <folder name=”System32”>
 </folder>
 </folder>
 <folder name=”Temp”>
 <files>
 <file name=”~123.tmp”></file>
 <file name=”~345.tmp”></file>
 </files>
 </folder>
 <files>
 <file name=”pagefile.sys”></file>
 </files>
</folder>

This hierarchy is much easier to appreciate. There’s less repetition of data and it would be fairly easy
to parse.

Interoperability

The main advantage of XML is interoperability. It is much quicker to agree on or publish an XML
format and use that to exchange data between different applications (with the associated metadata
included in the fi le) than to have an arbitrary format that requires accompanying information for
processing. Due to the high availability of cheap XML parsers and the pieces of software that read
XML and enable interrogation of its data, anyone can now publish the format that their applica-
tion deals with and others can then either consume it or recreate it. One of the best examples of this
comes back to the binary fi les discussed at the beginning of this chapter. Before Microsoft Word
2003, Word used a binary format for its documents. However, creating an application that could
read and create these fi les was a considerable chore and often led to converters that only partially
worked. Since Word 2003, all versions of Word can save documents in an XML format with a
documented structure. This has meant the ability to read these documents in other applications
(Offi ceLibre, for example), as well as the ability to create Word documents using even the most basic
tools. It also means that corrupted documents, which would previously have been completely lost,
can now often be fi xed by opening them in a simple text editor and repairing them. With this and
the previously discussed advantages, XML is truly the best choice.

c01.indd 12c01.indd 12 05/06/12 5:13 PM05/06/12 5:13 PM

www.allitebooks.com

http://www.allitebooks.org

NOTE Offi ceLibre is an open source application that mimics, to a large extent,

other offi ce work applications such as Microsoft Offi ce. It was originally called

OpenOffi ce but split off when OpenOffi ce was taken over by Oracle. You can

obtain it at www.libreoffi ce.org.

XML IN PRACTICE

Since its fi rst appearance in the mid-’90s the actual XML specifi cation has changed little; the main
change being more freedom allowed for content. Some characters that were forbidden from earlier
versions are now allowed. However, there have been many changes in how and where XML is used
and a proliferation of associated technologies, most with their associated standards. There has also
been a massive improvement in the tools available to manage XML in its various guises. This is
especially true of the past several years, Five years ago any sort of manipulation of XML data in a
browser meant reams of custom JavaScript, and even that often couldn’t cope with the limited sup-
port in many browsers. Now many well-written script libraries exist that make sending, receiving,
and processing XML a relatively simple process, as well as taking care of the gradually diminishing
differences between the major makes of browser. Another recent change has been a more overall
consensus of when not to use XML, although plenty of die-hards still offer it as the solution to
every problem. Later chapters cover this scenario, as well as others. This section deals with some of
the current uses of XML and also gives a foretaste of what is coming in the chapters ahead.

NOTE You can fi nd the latest W3C XML Recommendation

at www.w3.org/TR/xml.

NOTE JSON stands for JavaScript Object Notation and is discussed more in

Chapters 14 and 16 which relate to web services and Ajax. If you need more

information in the meantime, head to www.json.org.

Data Versus Document

So far the examples you’ve seen have concentrated on what are known as data-centric uses of XML.
This is where raw data is combined with markup to help give it meaning, make it easier to use, and
enable greater interoperability. There is a second major use of XML and markup in general, which
is known as document-centric. This is where more loosely structured content (for example, a chap-
ter from a book or a legal document) is annotated with metadata. HTML is usually considered to

XML in Practice ❘ 13

c01.indd 13c01.indd 13 05/06/12 5:13 PM05/06/12 5:13 PM

http://www.libreoffice.org
http://www.w3.org/TR/xml
http://www.json.org
http://www.w3.org/TR/xml

14 ❘ CHAPTER 1 WHAT IS XML?

be a document-centric use of SGML (and XHTML, is similarly a document-oriented application of
XML) because HTML is generally content that is designed to be read by humans rather than data
that will be consumed by a piece of software. XML is designed to be read and understood by both
humans and software but, as you will see later, the ways of processing the different styles of XML
can vary considerably.

Document-centric XML is generally used to facilitate multiple publishing channels and provide ways
of reusing content. This is useful for instances in which regular content changes need to be applied
to multiple forms of media at once. For example, a few years ago I worked on a system that pro-
duced training materials for the fi nancial sector. A database held a large number of articles, quizzes,
and revision aids that could be collated into general training materials. These were all in an XML
format very similar to XHTML, the XML version of HTML. Once an editor fi nalized the content
in this database, it was transformed using XSLT (as described in Chapter 8) into media suitable for
both the Web and a traditional printed output. When using document-centric XML in this sort of
system, whenever content changes, it is only necessary to alter the underlying data for changes to
be propagated to all forms of media in use. Additionally, when a different form of the content is
needed, to support mobile web browsers for example, a new transformation is the only necessary
action.

XML Scenarios

In addition to document-centric situations, XML is also frequently used as a means of representing
and storing data. The main reasons for this use are XML’s fl exible nature and the relative ease with
which these fi les can be read and edited by both humans and machines. This section presents some
common, relevant scenarios in which XML is used in one way or another, along with some brief
reasons why XML is appropriate for that situation.

Confi guration Files

Nearly all modern confi guration fi les use XML. Visual Studio project fi les and the build scripts
used by Ant (a tool used to control the software build process in Java) are both examples of XML
confi guration fi les. The main reasons for using XML are that it’s so much easier to parse than the
traditional name/value pair style and it’s easy to represent hierarchies.

Web Services

Both the more long-winded SOAP style and the usually terser RESTful web services use XML,
although many now have the option to use JSON as well. XML is used both as a convenient way
to serialize objects in a cross-platform manner and as a means of returning results in a universally
accepted fashion. SOAP-style services (covered in depth in Chapters 15 and 16) are also described
using an XML format called WSDL, which stands for Web Services Description Language. WSDL
provides a complete description about a web service and its capabilities, including the format of the
initial request, the ensuing response, and details of exactly how to call the service, its hostname,
what port it runs on, and the format of the rest of the URL.

c01.indd 14c01.indd 14 05/06/12 5:13 PM05/06/12 5:13 PM

Web Content

Although many believe that XHTML (the XML version of HTML) has not really caught on and
will be superseded by HTML 5, it’s still used extensively on the Web. There’s also a lot of content
stored as plain XML, which is transformed either server-side or client-side when needed. The reason
for storing it as XML can be content re-use as mentioned earlier, but also it can be a way to save
on bandwidth and storage. Content that needs to be shown as an HTML table, for example, nearly
always takes up less room as XML combined with code to transform it.

Document Management

In addition to XML being used to store the actual content that will be presented via the Web, XML
is also used heavily in document-management systems to store and keep track of documents and
manage metadata, usually in conjunction with a traditional relational database system. XML is
used to store information such as a document’s author, the date of creation, and any modifi cations.
Keeping all this extra information together with the actual content means that everything about a
document is in one place, making it easier to extract when needed as well as making sure that meta-
data isn’t orphaned, or separated from the data it’s describing.

Database Systems

Most modern high-end database systems, such as Oracle and SQL Server, can store XML docu-
ments. This is good news because many types of data don’t fi t nicely into the relational structure
(tables and joins) that traditional databases implement. For example, a table of products may need
to store some instructions that are in an XML format that will be turned into a web page or a
printed manual when needed. This can’t be reduced to a simpler form and only needs modifying
very rarely, perhaps to insert a new section to support a different language. These modifi cations
are easy and straightforward if the data being manipulated is stored in a database system that has
a column designed specifi cally for XML. This XML should enable updates using the XQuery lan-
guage, which is briefl y covered later in this chapter. Both Oracle and SQL Server, as well as some
open source applications such as MySQL, provide such a column type, designed specifi cally to store
XML. These types have methods associated with them that allow for the extraction of particular
sections of the XML or for its modifi cation.

Image Representation

Vector images can be represented with XML, the SVG format being the most popular. The advan-
tage of using an XML format over a traditional bitmap when portraying images is that the images
can be manipulated far more easily. Scaling and other changes become transformations of the XML
rather than complex intensive calculations.

Business Interoperability

Hundreds of industries now have standard XML formats to describe the different entities that are
used in day-to-day transactions, which is one of the biggest uses of XML. A brief list includes:

 ➤ Medical data

 ➤ Financial transactions such as purchasing stocks and shares and exchanging currency

XML in Practice ❘ 15

c01.indd 15c01.indd 15 05/06/12 5:13 PM05/06/12 5:13 PM

16 ❘ CHAPTER 1 WHAT IS XML?

 ➤ Commercial and residential properties

 ➤ Legal and court records

 ➤ Mathematical and scientifi c formulas

XML Technologies

To enable the preceding scenarios you can use a number of associated technologies, standards, and
patterns. The main ones, which are all covered throughout the book, are introduced here to give a
broad overview of the world of XML.

XML Parsers

Before any work can be done with an XML document it needs to be parsed; that is, broken down
into its constituent parts with some sort of internal model built up. Although XML fi les are simply
text, it is not usually a good idea to extract information using traditional methods of string manipu-
lation such as Substring, Length, and various uses of regular expressions. Because XML is so rich
and fl exible, for all but the most trivial processing, code using basic string manipulation will be
unreliable.

Instead a number of XML parsers are available — some free, some as commercial products— that
facilitate the breakdown and yield more reliable results. You will be using a variety of these parsers
throughout this book. One of the reasons to justify using a handmade parser in the early days of
XML was that pre-built ones were overkill for the job and had too large a footprint, both in actual
size and in the amount of memory they used. Nowadays some very effi cient and lightweight parsers
are available; these mean developing your own is a waste of resources and not a task to be under-
taken lightly.

Some of the more common parsers used today include the following:

 ➤ MSXML (Microsoft Core XML Services): This is Microsoft’s standard set of XML tools
including a parser. It is exposed as a number of COM objects so it can be accessed using
older forms of Visual Basic (6 and below) as well as from C++ and script. The latest version
is 6.0 and, as of this writing it is not being developed further, although service packs are
still being released that address bugs and any other security issues. Although you probably
wouldn’t use this parser when writing your own application from scratch, this is the only
option when you need to parse XML from within older versions of Internet Explorer (6 and
below). In these browsers the MSXML parser is invoked using ActiveX technology, which
can present problems in some secure environments. Fortunately versions 7 and later have a
built-in parser and cross-browser libraries. Choose this one in preference if it’s available.

 ➤ System.Xml.XmlDocument: This class is part of Microsoft’s .NET library, which contains a
number of different classes related to working with XML. It has all the standard Document
Object Model (DOM, covered in the next section) features plus a few extra ones that, in
theory, make life easier when reading, writing, and processing XML. However, since the
world is trending away from using the DOM, Microsoft also has a number of other ways of
tackling XML, which are discussed in later chapters.

c01.indd 16c01.indd 16 05/06/12 5:13 PM05/06/12 5:13 PM

 ➤ Saxon: Ask any group of XML cognoscenti what the leading XML product is and Saxon
will likely be the majority verdict. Saxon’s offerings contain tools for parsing, transforming,
and querying XML, and it comes from the software house of Dr. Michael Kay, who has
written a number of Wrox books on XML and related technologies. Although Saxon offers
ways to interact using the document object model, it also has a number of more modern and
user-friendly interfaces available. Saxon offers a version for Java and .NET; the basic edition
is free to download and use.

 ➤ Java built-in parser: The Java library has its own parser. It has a reputation for being a bit
basic but is suitable for many XML tasks such as parsing and validation of a document. The
library is designed such that you can replace the built-in parser with an external implemen-
tation such as Xerces from Apache or Saxon.

 ➤ Xerces: Xerces is implemented in Java and is developed by the famous and open source
Apache Software Foundation. It is used as the basis for many Java-based XML applications
and is a more popular choice than the parser that comes with Java.

The Document Object Model

Once an XML parser has done its work, it produces an in-memory representation of the XML.
This model exposes properties and methods that let you extract information from and also modify
the XML. For example, you’ll fi nd methods such as createElement to manufacture new elements
in the document and properties such as documentElement that bring back the root element in the
document (applicationUsers in the example fi le).

One of the earliest models used was the Document Object Model (DOM). This model has an asso-
ciated standard but it doesn’t just apply to XML; it also works with HTML documents. At its heart,
the DOM is a tree-like representation of an XML document. You can start at the tree’s root and
move to its different branches, extracting or inserting data as you go. Although the DOM was used
for many years, it has a reputation for being a bit unwieldy and diffi cult to use. It also tends to take
up a lot of memory. For example, opening an XML document that is 1MB on a disk can use about
5MB of RAM. This can obviously be a problem if you want to open very large documents. As a
result of these problems, a number of other models have sprung up, especially because the DOM is
typically only an intermediate step in processing XML; it’s not a goal in itself. However, if you need
to extract just a few pieces of information from XML or HTML the DOM is widely supported,
especially across browsers, and is used a lot by many of the script libraries that are popular nowa-
days such as jQuery.

DTDs and XML Schemas

Both document type defi nitions (DTDs) and XML Schemas serve to describe the defi nition of
an XML document, its structure, and what data is allowed where. They can then be used to test
whether a document that has been received is consistent with the prescribed format, a process
known as validation. DTDs are the older standard and have been around since SGML. They are
gradually succumbing to XML Schemas but are still in widespread use particularly with (X)HTML.
They also have a few features that XML lacks, such as the ability to create entity declarations (cov-
ered in Chapter 4, “Document Type Defi nitions”) and the ability to add default attribute content.

XML in Practice ❘ 17

c01.indd 17c01.indd 17 05/06/12 5:13 PM05/06/12 5:13 PM

18 ❘ CHAPTER 1 WHAT IS XML?

In general, XML Schemas offer more functionality; they also have the advantage of being written in
XML so the same tools can be used with both the data and its schema. DTDs on the other hand use
a completely different format that is much harder to work with. In addition to assisting with valida-
tion, DTDs and XML Schema are also used to help authorship of XML documents. Most modern
XML editors allow you to create an XML document based on a specifi ed schema. They prompt you
with valid choices from the schema as you’re editing and also warn you if you’ve used an element
or attribute in the wrong location. Although many have misgivings about how XML Schemas have
developed it’s probably true to say that most recently developed XML formats are described using
schemas rather than DTDs.

There are also other ways of ensuring the documents you receive are in the correct format, ones that
can cope with some scenarios that neither DTDs nor XML Schemas can handle. A selection of these
alternatives are covered in Chapter 6, “RELAX NG and Schematron.” DTDs and XML Schemas
are covered in depth in Chapters 4 and 5, respectively.

NOTE If you take a look at the source for an XHTML document you’ll see the

reference to the DTD at the top of the page. It will look something like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

XML Namespaces

XML Namespaces were added to the XML specifi cation sometime after the initial recommenda-
tion. They have a reputation for being diffi cult to understand and also for being poorly imple-
mented. Basically, namespaces serve as a way of grouping XML. For instance, if one or two
different formats need to be used together, he element names can be grouped under a namespace;
this ensures that there is no confusion about what the elements represent, especially if the authors
of the different formats have chosen the same names for some of the elements. The same idea is
used in software all the time; in both .NET and Java, for example, you may design a class that
represents a type of XML document that you call XmlDocument. To prevent that class from con-
fl icting with other classes that might exist with the same name, the class is placed in a namespace.
(NET terminology) or a package (Java terminology). So your class may have a full name of Wrox.
Entities.XmlDocument, which will differentiate it from Microsoft’s System.Xml.XmlDocument.
See Chapter 3 for the full story on namespaces.

XPath

XPath is used in many XML technologies. It enables you to target specifi c elements or attributes (or
the other building blocks you’ll meet in the next chapter). It works similar to how paths in a fi lesys-
tem work, starting at the root and progressing through the various layers until the target is found.
For example, with the appUsers.xml fi le, you may want to select all the users. The XPath for this
would be:

/applicationUsers/user

c01.indd 18c01.indd 18 05/06/12 5:13 PM05/06/12 5:13 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

The path starts at the root, represented by a forward slash (/), then selects the applicationUsers
element, and then any user elements beneath there. XPaths can be very sophisticated and allow you
to traverse the document in a number of different directions as well as target specifi c parts using
predicates, which enable fi ltering of the results. In addition to being used in XSLT, XPath is also
used in XQuery, XML Schemas, and many other XML-related technologies. XPath is dealt with in
more detail in Chapter 7, “Extracting Data From XML.”

XSLT

One of the main places you fi nd XPath is XSLT. Extensible Stylesheet Language Transformations
(XSLT) is powerful way to transform fi les from one format to another. Originally it could only
operate on XML fi les, although the output could be any form of text fi le. Since version 2.0 however,
it also has the capability to use any text fi le as an input. XSLT is a declarative language and uses
templates to defi ne the output that should result from processing different parts of the source fi les.

XSLT is often used to transform XML to (X)HTML, either server-side or in the browser. The
advantages of doing a client-side transformation are that it offl oads the presentational side of the
process to the application layer that deals with the display. Additionally it frees resources on the
server making it more responsive, and it tends to reduce the amount of data transmitted between
the server and the browser. This is especially the case when the data consists of many rows of simi-
lar data that are to be shown in tabular form. HTML tables are very verbose and can easily double
or triple the amount of bandwidth between client and server.

The following Try It Out shows how browsers have been specially designed to be able to accept
an XML as an input and transform the data using a specifi ed transformation. You won’t be delv-
ing too deeply into the XSLT at this stage, (that’s left for Chapter 8) but you’ll get a good idea
of how XML enables you to separate the intrinsic data being shown from the visual side of the
presentation.

TRY IT OUT XSLT in the Browser

Use the appUsers.xml fi le created earlier to produce a demonstration of how a basic transformation
can be achieved within a browser:

1. To start, create the following fi le using any text editor and save it as appUsers.xslt in the same
folder as appUsers.xml:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
 <xsl:template match=”/”>
 <html>
 <head>
 <title>Application Users</title>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>First Name</th>

Available for
download on
Wrox.com

XML in Practice ❘ 19

c01.indd 19c01.indd 19 05/06/12 5:13 PM05/06/12 5:13 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com

20 ❘ CHAPTER 1 WHAT IS XML?

 <th>Last Name</th>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates select=”applicationUsers/user” />
 </tbody>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match=”user”>
 <tr>
 <td>
 <xsl:value-of select=”@firstName”/>
 </td>
 <td>
 <xsl:value-of select=”@lastName”/>
 </td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

code snippet appUsers.xslt

2. Next make a small change to appUsers.xml so that, if it is opened in a browser, the browser will
know to use the specifi ed XSLT to transform the XML, rather than the built-in default transfor-
mation that was used in earlier examples. Save the modifi ed fi le as appUsersWithXslt.xml.

<?xml-stylesheet type=”text/xsl” href=”appUsers.xslt” ?>
<applicationUsers>
 <user firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
</applicationUsers>

code snippet appUsersWithXslt.xml

3. Finally, open appUsersWithXslt.xml in a browser. The results will be similar to Figure 1-3.

Available for
download on
Wrox.com

FIGURE 1-3

c01.indd 20c01.indd 20 05/06/12 5:13 PM05/06/12 5:13 PM

http://Wrox.com

How It Works

When the browser sees the following line at the top of the XML:

<?xml-stylesheet type=”text/xsl” href=”appUsers.xslt” ?>

It knows that, instead of the default style sheet that produced the result shown in Figure 1-2, it should
use appUsers.xslt.

appUsers.xslt has two xsl:templates. The fi rst causes the basic structure of an HTML fi le to
appear along with the outline of an HTML table. The second template acts on any user element
that appears in the fi le and produces one row of data for each that is found. Once the transformation is
complete the resultant code is treated as if it were a traditional HTML page. The actual code produced
by the transformation is shown here:

<html>
 <head>
 <title>Application Users</title>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>First Name</th>
 <th>Last Name</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Joe</td>
 <td>Fawcett</td>
 </tr>
 <tr>
 <td>Danny</td>
 <td>Ayers</td>
 </tr>
 <tr>
 <td>Catherine</td>
 <td>Middleton</td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

XQuery

XQuery shares many features with XSLT and because of this, a common question on the XML
development forums is, “Is this a job for XSLT or XQuery?” The answer is, “It depends.” Like
XSLT, XQuery can operate against single documents, but it is also often used on large collections,
especially those that are stored in a relational database. Say you want to use XQuery to process the

XML in Practice ❘ 21

c01.indd 21c01.indd 21 05/06/12 5:13 PM05/06/12 5:13 PM

22 ❘ CHAPTER 1 WHAT IS XML?

appUsers.xml fi le from the previous examples and again produce an HTML page showing the users
in a tabular form. The XQuery needed would look like this:

<html>
 <head>
 <title>Application Users</title>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>First Name</th>
 <th>Last Name</th>
 </tr>
 </thead>
 <tbody>
 {for $user in doc(“appUsers.xml”)/applicationUsers/user
 return <tr><td>{data($user/@firstName)}</td>
 <td>{data($user/@lastName)}</td></tr>}
 </tbody>
 </table>
 </body>
</html>

As you can see, a lot of the query mimics the XSLT used earlier. One major difference is that
XQuery isn’t itself an XML format. This means that it’s less verbose to write, making it somewhat
simpler to author than XSLT. On the other hand, being as it’s not XML, it cannot be authored in
standard XML editors nor processed by an XML parser, meaning it needs a specialized editor to
write and custom built software to process.

NOTE There is an XML-based version of XQuery called XQueryX. It has never

gained much acceptance and nearly all examples of XQuery online use the sim-

pler non-XML format.

With regards to authoring XQuery, the main difference in syntax between it and XSLT is that
XQuery uses braces ({}) to mark parts of the document that need processing by the engine; the rest
of the document is simply output verbatim.

Therefore, in the example the actual code part is this section:

{for $user in doc(“appUsers.xml”)/applicationUsers/user
 return <tr><td>{data($user/@firstName)}</td>
 <td>{data($user/@lastName)}</td></tr>}

this uses the doc() function to read an external fi le, in this case the appUsers.xml fi le, and then cre-
ates one <tr> element for each user element found there. XQuery is covered in depth in Chapter 9.

There are many instances where the choice of XSLT or XQuery is simply a matter of which technol-
ogy you’re happier with. If you want a terser, more readable syntax or you need to process large

c01.indd 22c01.indd 22 05/06/12 5:13 PM05/06/12 5:13 PM

www.allitebooks.com

http://www.allitebooks.org

numbers of documents, particularly those found in databases, then XQuery, with its plain text syn-
tax and functions aimed at document collections, is probably a better choice. If you prefer an XML
style syntax that can be easily read by standard XML software, or your goal is to rearrange existing
XML into a different format rather than create a whole new structure, then XSLT will most likely
be the better option.

XML Pipelines

XML pipelines are used when single atomic steps are insuffi cient to achieve the output you desire.
For example, it may not be possible to design an XML transformation that copes with all the differ-
ent types of documents your application accepts. You may need to perform a preliminary transform
fi rst, depending on the input, and follow with a generalized transformation. Another example might
be that the initial input needs validating before being transformed. In the past, these pipelines or
workfl ows have been created in a rather ad hoc manner. More recently, there have been calls for
a recognized standard to defi ne how pipelines are described. The W3C recommendation for these
standards is called XProc and you can fi nd the relevant documentation at www.w3.org/TR/xproc.
Only a handful of implementations exist at the moment, but if you have the need for this type of
workfl ow it’s certainly worth taking a look at XProc rather than re-inventing the wheel.

SUMMARY

 ➤ The situation before XML and the problems with binary and plain text fi les

 ➤ How XML developed from SGML

 ➤ The basic building blocks of XML: elements and attributes

 ➤ Some of the advantages and disadvantages of XML

 ➤ The difference between data-centric and document-centric XML

 ➤ Some real-world uses of XML

 ➤ The associated technologies such as parsers, schemas, XPath, transformations with XSLT,
and XQuery

The next chapter discusses the rules for constructing XML and what different constituent parts can
make up a document.

EXERCISES

Answers to the exercises can be found in Appendix A.

 1. Change the format of the appUsers.xml document to remove the attributes and use elements to

store the data.

 2. State the main disadvantage to having the fi le in the format you’ve just created. Bear in mind that

data is often transmitted across networks rather than just being consumed where it is stored.

Summary ❘ 23

c01.indd 23c01.indd 23 05/06/12 5:13 PM05/06/12 5:13 PM

http://www.w3.org/TR/xproc

24 ❘ CHAPTER 1 WHAT IS XML?

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

Before XML Most data formats were proprietary, capable of being read by a very

small number of applications and not suitable for today’s distributed

systems.

XML’s Goals To make data more interchangeable, to use formats readable by both

humans and machines, and to relieve developers from having to write

low-level code every time they needed to read or write data.

Who’s In Charge of

Standardization?

No one, but many XML specifi cations are curated by the World Wide

Web Consortium, the W3C. These documents are created after a

lengthy process of design by committee followed by requests for

comments from stakeholders.

Data-centric versus

Document-centric

There are two main types of XML formats: those used to store pure

data, such as confi guration settings, and those used to add metadata

to documents, for example XHTML.

What Technologies Rely

On XML?

There are hundreds, but the main ones are XML Schemas, to validate

that documents are in the correct format; XSLT which is mainly used

to convert from one XML format to another; XQuery, which is used to

query large document collections such as those held in databases;

and SOAP which uses XML to represent the data that is passed to,

and returned from, a web service.

c01.indd 24c01.indd 24 05/06/12 5:13 PM05/06/12 5:13 PM

Well-Formed XML

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The meaning of well-formed XML

 ➤ The constituent parts of an XML document

 ➤ How these parts are put together

So far you’ve looked at the history before XML, why it came about, and some of its
advantages and disadvantages. You’ve also taken a whirlwind tour of some of the technologies
associated with XML that are featured in this book.

In this chapter you’ll be examining the rules that apply to a document that decide whether or
not it is XML. This knowledge is needed in two main situations: fi rst, when you’re designing
an XML format for your own data so that you can be sure that any standard XML parser can
handle your document; second, when you are designing a system that will accept XML input
from an external source so you’ll be sure that the data you receive is legitimate XML. There
are, unfortunately, a number of systems that purport to export data as XML but break some
of the rules, meaning that unless you can get the problem fi xed at source, you have to resort
to handling the input using non-XML tools. This makes for a lot of unnecessary development
and defeats the object of having a universally recognized method of data representation.

Additionally, you’ll take a look at the basic and more advanced building blocks of XML start-
ing with the most common, elements and attributes, and see how these are used to construct a
complete document. You’ll also be introduced to the modern terminology that describes these
constituent parts; this is one of the major changes from earlier editions of this book as great
efforts have been made in the XML world to have a vocabulary that is independent of the
technology used to handle XML, yet is precise and extensive enough to enable the XML stan-
dards to be clearly written and form the basis for technological development.

2

c02.indd 25c02.indd 25 05/06/12 5:17 PM05/06/12 5:17 PM

26 ❘ CHAPTER 2 WELL-FORMED XML?

WHAT DOES WELL-FORMED MEAN?

To the purist there is no such thing as well-formed XML; a document is either XML and therefore,
by defi nition, well-formed, or it’s just text. But in common parlance well-formed XML means a
document that follows the W3C’s XML Recommendation with all its rules governing the following:

 ➤ How the content is separated from the metadata (markup)

 ➤ What is used to identify the markup

 ➤ What the constituent parts are

 ➤ In what order and where these parts can appear

VARYING XML TERMINOLOGY

One small problem that exists when talking about XML is that its constituent parts
can be described in many different ways. These varying descriptions have arisen for
two reasons:

 ➤ The many different technologies associated with XML each have their
own jargon; only a few terms are common to all of them. For instance the
Document Object Model (covered in Chapter 7) and XSLT (covered in
Chapter 8) have very different vocabularies for the same concepts

 ➤ The offi cial W3C XML recommendations were fi nalized long after XML
had been in use. The terms used in these documents often differ from the
vernacular.

This chapter tries to stick with the terminology used by the W3C in two
Recommendations: the fi rst, simply called Extensible Markup Language
(www.w3.org/TR/xml), describes the lexical representation or, in simpler terms,
how XML is created in a text editor. The second, called Infoset Recommendation
(www.w3.org/TR/xml-infoset/), describes an idealized abstract representation of
an XML document.

CREATING XML IN A TEXT EDITOR

Creating XML in a text editor, something as simple as Notepad in Windows or Vim in Linux, is the
fi rst place to start when discussing the elements of XML. Throughout the process of creating XML,
you gradually build up an example document and, at each stage, identify the constituent parts and
what rules need to be followed in their construction.

Forbidden Characters

The fi rst thing to know before writing XML is that a few restrictions exist on what characters are
permitted in an XML document. These rules vary slightly depending on whether you’re using

c02.indd 26c02.indd 26 05/06/12 5:17 PM05/06/12 5:17 PM

http://www.w3.org/TR/xml
http://www.w3.org/TR/xml-infoset/

Creating XML in a Text Editor ❘ 27

version 1.0 or 1.1, the latter being a bit more permissive. Both versions forbid the use of null in a
document; this is the character represented by 0x0 in hexadecimal. In version 1.0 you are also for-
bidden to use the characters represented by the hexadecimal codes between 0x01 and 0x19, except
for three: the tab (0x9), the newline (0xA), and the carriage return (0xD).

NOTE These three characters, and a fourth, the standard space character

(0x20), are collectively known as whitespace and have special rules governing

their treatment in XML. These rules are covered later in the chapter.

For example, you cannot use the character 0x7, known as the bell character, because it sounds a
bell or a beep on some systems. In version 1.1 you can use all these control characters although their
use is a little unusual. You see how to specify which version you are using in the next section. A few
characters in the Unicode specifi cation also can’t be used but you’re unlikely to come across these.
You can fi nd the full list in the W3C’s XML Recommendation.

XML Prolog

The fi rst part of a document is the prolog. It is optional so you won’t see it every time, but if it does
exist it must come fi rst. The prolog begins with an XML declaration which, in its simplest form,
looks like the following:

<?xml version=”1.0”?>

This declaration contains only one piece of information, the version number, and currently this
will always be either 1.0 or 1.1. Sometimes the declaration may also contain information about the
encoding used in the document:

<?xml version=”1.0” encoding=”UTF-8”?>

Here the encoding is specifi ed as UTF-8, a variety of Unicode.

Encoding with Unicode

Encoding is the process of turning characters into their equivalent binary representation. Some
encodings use only a single byte, or eight bits; others use more. The disadvantage of using only
one byte is that you are limited to how many characters can be encoded without recourse; this
can go to such means as having a special sequence of bits to indicate that the next two bytes refer
to one character or other similar workarounds. When an XML processor reads a document, it
has to know which encoding was used; but, it’s a chicken-and-egg situation — if it doesn’t know
the encoding how can it read what you’ve put in the declaration? The simple answer to this lies
in the fact that the fi rst few bytes of a fi le can contain a byte order mark, or BOM. This helps

c02.indd 27c02.indd 27 05/06/12 5:17 PM05/06/12 5:17 PM

28 ❘ CHAPTER 2 WELL-FORMED XML?

the parser enough to be able to read the encoding specifi ed in the declaration. Once it knows
this it can decode the rest of the document. If, for some reason, the encoding specifi ed is not the
actual encoding used you’ll most likely get an error, or mistakes will be made interpreting the
content. If you want to see the full workings about how encodings are decided the URL is
www.w3.org/TR/2008/REC-xml-20081126/#sec-guessing.

Unicode is a text encoding specifi cation designed from scratch with internationalization in mind. It
tries to defi ne every possible character by giving it a name and a code point, which is a number that
can be used to represent it. It also assigns various categories to each character such as whether it’s a
letter, a numeral, or a punctuation mark. You will see how to use these code points when you look
at character references later in the chapter.

Two main encoding systems use Unicode: UTF-8 and UTF-16. UTF stands for UCS Transformation
Format, and UCS itself means Universal Character Set. The number refers to how many bits are
used to represent a simple character, either 8 or 16 (one or two bytes, respectively). The reason
UTF-8 manages with only one byte whereas UTF-16 needs two is because UTF-8 uses a single byte
to represent the more commonly used characters and two or three bytes for the less common ones.
UTF-16 uses two bytes for the majority of characters and three bytes for the rest. It’s a bit like your
keyboard — the lowercase letters and digits require only one key press but by using the Shift key
you have access to the uppercase letters and other symbols. The advantage of UTF-16 is that it’s
easier to decode because of its fi xed size of two bytes per character (very few need three); the disad-
vantage is that fi le sizes are typically larger than UTF-8 if you are only using the Latin alphabet plus
the standard numerals and punctuation marks

All XML processors are mandated to understand UTF-8 and UTF-16 even if those are the only
encodings they can read. UTF-8 is the default for documents without encoding information. Despite
the advantages of Unicode, many documents use other encodings such as ISO-8859-1, Windows-
1252, or EBCDIC (an encoding found on many mainframes). You will also come across fi les written
using ASCII — a basic set of characters that at one time was used for almost all fi les created. ASCII
is a subset of Unicode though so it can be read by any application that understands Unicode.

NOTE You will often see the side eff ects of fi les being encoded in one system and

then decoded using another when browsing the Web — seemingly meaningless

characters appear interspersed with otherwise readable text. This is a byproduct

of the fi les often being created on one machine, uploaded to a second, the web

server, and then read by a third, the one running the browser. If the encoding is not

correctly interpreted by all three machines in the chain then you’ll get some char-

acters misinterpreted. You’ll notice how the gibberish characters are usually those

not found in ASCII and hence have diff erent code points in diff erent systems.

In practical terms the UTF-8 encoding is probably best because it has a wide range of characters
and is supported by all XML parsers. UTF-8 encoding is also the default assumed if no specifi c
encoding is declared. If you do run into the problem of creating or reading fi les encoded with
characters UTF-8 doesn’t recognize, you should still manage without many problems by just

c02.indd 28c02.indd 28 05/06/12 5:17 PM05/06/12 5:17 PM

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-guessing

Creating XML in a Text Editor ❘ 29

creating these character yourself. You’ll learn how to do this later in the “Entity and Character
References” section. Additionally, the Unicode specifi cation grows in time as more characters are
added. You can fi nd the current version at http://unicode.org.

Completing the Declaration

Now that you have specifi ed the type of encoding you are using, you can fi nish the declaration. The
fi nal part of the declaration is determining whether the document is considered to be standalone:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>

Example.xml

Standalone applies only to documents that specify a DTD and then only when that DTD is used
to add or change content. Example.xml isn’t using a DTD (remember that most modern XML for-
mats rely on schemas instead), therefore you can set the standalone declaration to yes or leave it out
altogether.

Available for
download on
Wrox.com

NOTE DTD stands for document type defi nition and is a way to specify the

format the XML should take as well as describing any default content that

should appear and how references within the XML should be interpreted.

Chapter 4 is devoted to DTDs.

If you were to ever use a DTD, an example for an XHTML document would look something like
this: <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>. Chapter 4 goes into more detail on
DTD declarations.

Sometimes there are a few additional, elements to the XML prolog. These optional parts include
comments and processing instructions. Processing instructions are discussed later this chapter.
Comments are usually meant for human consumption and are not supposed to be part of the actual
data in a document. They are initiated by the sequence <!-- and terminated by -->. Following is
example.xml with a comment added:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<!-- This is a comment that follows the XML declaration -->

In general, comments are solely for the benefi t of humans; you might want to include the date you
created the fi le, your name, and other author details. However, if you think that the fi le will only be
processed by a software application there’s little point inserting them.

Once the XML prolog is fi nished you need to create the root element of the document. The follow-
ing section details elements and how to create them.

c02.indd 29c02.indd 29 05/06/12 5:17 PM05/06/12 5:17 PM

http://unicode.org
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://Wrox.com

30 ❘ CHAPTER 2 WELL-FORMED XML?

Creating Elements

Elements are the basic building blocks of XML and all documents will have at least one. All elements
are defi ned in one of two ways. At its simplest, an element with content consists of a start tag, which is
a left angle bracket (<) followed by the name of the element, such as myElement, and then a right angle
bracket(>). So a full start tag might be <myElement>. To close the element the end tag starts with a left
angle bracket, a forward slash, and then the name of the element and a right angle bracket. So the end
tag for <myElement> would be </myElement>. You can add spaces after the name in a start tag, such as
<myElement >, but not before the name as in < myElement>. You can add this to Example.xml:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<!-- This is a comment that follows the XML declaration -->
 <myElement></myElement>

Example.xml

There is an alternative syntax used to defi ne an element, and this can only be used for elements with
no content:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<!-- This is a comment that follows the XML declaration -->
 <myElement />

This sort of element is known as self-closing.

Naming Styles

In addition to the two ways to defi ne an element, there are a few different naming styles for ele-
ments and, as in many things IT-related, people can get quite evangelical about them. The one thing
almost everyone agrees on is to be consistent; choose a style for the document and stick with it.
Following are the main contenders for how you should name your elements — the main idea is how
you distinguish separate words in an element name:

 ➤ Pascal-casing: This capitalizes separate words including the fi rst: <MyElement />.

 ➤ Camel-casing: Similar to Pascal except that the fi rst letter is lowercase: <myElement />.

 ➤ Underscored names: Use an underscore to separate words: <my_element />.

 ➤ Hyphenated names: Separate words with a hyphen: <my-element />.

While there are many other styles to use, these four seem to work the best.

Naming Specifi cations

Along with naming styles come a few specifi c rules used when naming elements that you must fol-
low. These main rules include the following:

 ➤ An element name can begin with either an underscore or an uppercase or lowercase letter
from the Unicode character set. This means you can use the Roman alphabet used by English
and many other Western languages, the Cyrillic one used by Russian and its language

c02.indd 30c02.indd 30 05/06/12 5:17 PM05/06/12 5:17 PM

Creating XML in a Text Editor ❘ 31

relatives, characters from Greek, or any of the other numerous scripts, such as Thai or
Arabic, that are defi ned in the Unicode standard.

 ➤ Subsequent characters can also be a dash (-) or a digit.

 ➤ Names are case-sensitive, so the start and end tags must match exactly.

 ➤ Names cannot contain spaces

 ➤ Names beginning with the letters XML, either in uppercase- or lowercase, are reserved, and
shouldn’t be used (although many parsers allow them in practice).

NOTE Just because names are case-sensitive doesn’t mean it’s sensible to

have two elements that diff er only by case, such as <myElement /> and

<MyElement />. Just as this would be poor practice for variable names in a

case-sensitive programming language such as C#, you should not have ele-

ments with such similar names in XML.

In theory you can also use a colon (:) as part of a name but this confl icts with the way
XML Namespaces (covered in the next chapter) are handled, so in practice you should
avoid using it. If you want to see the full range of element naming specifi cations, visit
www.w3.org/TR/2008/REC-xml-20081126/#NT-Name.

Formatting your elements correctly is critical to creating well-formed XML. Table 2-1 provides
some examples of correctly and incorrectly formed elements:

TABLE 2-1: Legal and illegal elements

LEGAL ELEMENT REASON ILLEGAL ELEMENT REASON

<myElement>

</myElement>

Spaces are allowed after a

name.

<my Element /> Names cannot

contain spaces.

<my1stElement/> Digits can appear within a

name.

<1stName /> Names cannot

begin with a digit.

<myElement /> Spaces can appear between

the name and the forward slash

in a self-closing element.

< myElement /> Initial spaces are

forbidden.

<my-Element /> A hyphen is allowed within a

name.

<-myElement/> A hyphen is not

allowed as the fi rst

character.

<ó�oμ� /> Non-roman characters are

allowed if they are classifi ed as

letters by the Unicode specifi ca-

tion. In this case the element

name is forename in Greek.

<myElement>

</MyElement>

Start and end

tags must match

case-sensitively.

c02.indd 31c02.indd 31 05/06/12 5:17 PM05/06/12 5:17 PM

http://www.w3.org/TR/2008/REC-xml-20081126/#NT-Name

32 ❘ CHAPTER 2 WELL-FORMED XML?

Root Element

The next step after writing the prolog is creating the root element. All documents must have one
and only one root element. Everything else in the document lies under this element to form a hierar-
chical tree. The rule stating that there can only be one root element is one of the keystones of XML,
yet it has led to many complaints and a lot of people have put forward cases where having more
than one “root” would be advantageous. One example is when using XML as a logging format.
A typical log fi le might look like this:

<entry date=”2012-03-03T10:09:53” type=”audit”>Failed logon attempt
 with username jfawcett</entry>
<entry date=”2012-03-03T10:11:01” type=”audit”>Successful
 logon attempt with username jfawcett</entry>
<entry date=”2012-03-03T10:12:11” type=”information”>Successful folder
 synchronisation for use jfawcett</entry>

This is an easy format to manage. Each time the machine wants to add a log entry it opens the
relevant fi le and writes one line to the end of it, a standard task for any system. The problem
with this format, though, is that there isn’t a unique root element; you have to add one to make it
well-formed:

<log>
 <entry date=”2012-03-03T10:09:53” type=”audit”>Failed logon attempt
 with username jfawcett</entry>
 <entry date=”2012-03-03T10:11:01” type=”audit”>Successful
 logon attempt with username jfawcett</entry>
 <entry date=”2012-03-03T10:12:11” type=”information”>
 Successful folder synchronisation for use jfawcett</entry>
</log>

But now, with only one root element, it’s diffi cult to add new entries. A simple fi le writer would have
to open the fi le, fi nd the closing log tag (</log>), and then add a line. Alternatively, the fi le could be
opened by a parser, the root element (<log>) found, and a new child <entry> added at the end of all
the other <entry> children. This task is much more process-heavy, and might prove to be a problem
if dozens of entries need to be created every minute.

However the XML standards committees have stuck to their guns, deciding that the advantages of
having a single, all-encompassing element, (the main one being easier parsing) outweigh the issues,
such as the diffi culty creating log fi les. They have, however, agreed that there is a need for such a
construct and it is known as a document fragment. Document fragments do not need a single root
element but they cannot be processed in isolation; they need to be nested inside a document that
does have a single root. There are a number of ways that this can be done and some are covered in
the “Entity Declarations” section of Chapter 4.

Other Elements

Underneath the root element can lie other elements that follow the same rules for naming and attri-
butes and, as you saw earlier, there can also be free text. These nested elements can be used to show
individual or repetitive items of data depending on what you are trying to represent. For example,
your root element could be <person> and the elements underneath could show the person’s

c02.indd 32c02.indd 32 05/06/12 5:17 PM05/06/12 5:17 PM

www.allitebooks.com

http://www.allitebooks.org

Creating XML in a Text Editor ❘ 33

characteristics, such as <biography>and <address>. Alternatively, your main element could be
<people> and underneath that you could have one or more <person> elements, each with its own
children. You can add more elements and comments to the example document like so:

<?xml version=”1.0” encoding=”UTF-8”?>
<!-- This is a comment that follows the XML declaration -->
<!DOCTYPE myElement [
 <!ENTITY nbsp “ ”>
]>
<myElement myFirstAttribute="One"mySecondAttribute="Two">
Here is some text with a non-breaking space in it.
 <anotherElement>
 <aNestedElement anotherAttribute="Some data here">
Some more text</aNestedElement>
 <!-- a second comment -->
 </anotherElement>
</myElement>

Remember that all elements must be nested underneath the root element, so the following sort of
markup, which you may have gotten away with in HTML, is not allowed:

<myElement>
 <elementA><elementB></elementA></elementB>
</myElement>

You can’t have the end tag of an element before the end tag of one nested below it.

Attributes

Elements are one of the two main building blocks of XML — the other one is attributes. Attributes
are name-value pairs associated with an element. You can add a couple of attributes to the example
document like so:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<!-- This is a comment that follows the XML declaration -->
 <myElement myFirstAttribute=”One” mySecondAttribute=”Two”></myElement>

The way you style your attribute names should be consistent with the one chosen for elements, so
don’t mix and match like this: <applicationUser first-name=”Joe” />, where you have
camel-casing for the element names and hyphenated attributes.

A number of rules also govern attributes exist:

 ➤ Attributes consist of a name and a value separated by an equals sign. The name, for
example, myFirstAttribute, follows the same rules as element names.

 ➤ The attribute value must be in quotes. You can use either single or double quotes, the choice
is entirely yours. You can use single on some attributes and double on others, but you can’t
mix them in a single attribute.

 ➤ There must be a value part, even if it’s just empty quotes. You can’t have something like
<option selected> as you might in HTML.

c02.indd 33c02.indd 33 05/06/12 5:17 PM05/06/12 5:17 PM

34 ❘ CHAPTER 2 WELL-FORMED XML?

 ➤ Attribute names must be unique per element.

 ➤ If you use double quotes as the delimiter you can’t also use them as part of the value.
The same applies for single quotes.

Table 2-2 provides some examples of correct and incorrect usage:

TABLE 2-2: Legal and illegal attributes

LEGAL ATTRIBUTE REASON ILLEGAL ATTRIBUTE REASON

<myElement

value=”Joe’s

attribute” />

Single quote inside

double quote

delimiters.

<myElement

1stAttribute=

”value” />

Attribute names

cannot begin with

a digit.

<myElement

value=’”a quoted

value”’ />

Double quotes

inside single quote

delimiters.

<myElement value=

’Joe’s attribute’ />

Single quote inside

single quote

delimiters.

<myElement

name=”Joe”

name=”Fawcett” />

Two attributes with

the same name is not

allowed.

<myElement

name=’Joe” />

Mismatching

delimiters.

Element and Attribute Content

Attribute values and elements can both contain character data (called text in normal parlance).
You’ve already seen examples of attributes in earlier code snippets. A similar example for an element
would be:

<myElement>Here is some character content</myElement>

In addition to the rules described previously, there are only two more restrictions to follow regard-
ing character content. Two characters cannot appear in attribute values or direct element content:
the ampersand (&) and the left angle bracket (<). You cannot use the latter because it’s used to
delimit elements and it can confuse the parser. You cannot use the former because it’s used to begin
entity and character references.

Entity and Character References

There are two ways of inserting characters into a document that cannot be used directly, either
because they are forbidden by the specifi cation or because they don’t exist in the encoding you
have chosen. The fi rst is entity references. There are fi ve entity references in XML, shown in the
Table 2-3.

c02.indd 34c02.indd 34 05/06/12 5:17 PM05/06/12 5:17 PM

Creating XML in a Text Editor ❘ 35

References start with an ampersand and fi nish with a semicolon. The actual reference appears as
the middle part and is an abbreviation of the character; for instance, lt stands for less than. So
instead of using & or < as characters for instance, you must use the reference instead. References
' and " are especially useful if you need an attribute value to contain both types of
quote marks.

The references in Table 2-3 are the only built-in entity references. You can declare your own if you
want using a DTD — an example of this is shown shortly.

Character references take a similar form. They begin with &# and end with a semicolon, but
instead of an abbreviation as the middle part they have a number representing the character’s
Unicode code point. The number can be in hexadecimal or decimal. For example, if you wanted to
represent the Greek letter omega (Ω) as a reference it would be Ω in hexadecimal or &937#;
in decimal.

A common question in XML forums is how to represent the non-breaking space—the character that
has no visible output but prevents two words joined by it from breaking across a line. It’s commonly
used in web pages for formatting purposes where it’s represented by the reference . You have
four ways to insert this into an XML document. The fi rst is to simply insert it as a character; there’s
often no need to use a reference at all. For example, in Microsoft Word you can type the omega
character by fi rst typing 3A9 and then hitting Alt+X. Various other methods exist for different edi-
tors. The Unicode code point of the non-breaking space is xA0 so the same technique can be used.
The second and third ways use the character reference in hexadecimal and in deci-
mal. The fourth method requires that you create a DTD at the start of the document and declare the
entity. You might want to do this if the character is used many times in the XML and you want the
reader to recognize it more easily. In HTML, the reference is used to insert a non-breaking
space, so to mimic this in an XML document you’d do this:

<?xml version=”1.0” encoding=”UTF-8”?>
<!-- This is a comment that follows the XML declaration -->
<!DOCTYPE myElement [
 <!ENTITY nbsp “ ”>
]>
<myElement myFirstAttribute="One" mySecondAttribute="Two">
Here is some text with a non-breaking space in it.
</myElement>

TABLE 2-3: Entity References

CHARACTER REFERENCE

& &

< <

> >

“ "

‘ '

c02.indd 35c02.indd 35 05/06/12 5:17 PM05/06/12 5:17 PM

36 ❘ CHAPTER 2 WELL-FORMED XML?

The DTD (covered in more detail in Chapter 4) declares that the root element is named myElement,
and then there’s one entity declaration; wherever appears in the document the parser will
read it as the Unicode character A0, a non-breaking space.

You could also use this method to add references that refer to more than one character. For
instance, you may want a reference named copyright that outputs © Wrox 2012 wherever you put
©right, that way you can just update the DTD in one place if you want to change all your
references to read © Wrox 2013. This is achieved in exactly the same way as the preceding example,
using the following:

<!DOCTYPE myElement [
 <!ENTITY copyright “© Wrox 2012”>
]>

See Chapter 4 for more on these types of references.

WARNING It’s important to remember that you can’t add the forbidden charac-

ters, such as null, to your document using either entity or character references.

Elements Versus Attributes

On many occasions you will have a choice whether to represent data as an element or an attribute.
For example, take the appUsers.xml fi le from Chapter 1 (shown in Listing 2-1):

LISTING 2-1: appUsers.xml

<applicationUsers>
 <user firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
</applicationUsers>

You could choose to represent the users’ fi rst names and last names as elements instead as shown in
Listing 2-2:

LISTING 2-2: appUsers-elementCentric.xml

<applicationUsers>
 <user>
 <firstName>Joe</firstName>
 <lastName>Fawcett</lastName>
 </user>
 <user>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c02.indd 36c02.indd 36 05/06/12 5:17 PM05/06/12 5:17 PM

http://Wrox.com
http://Wrox.com

Creating XML in a Text Editor ❘ 37

 <firstName>Danny</firstName>
 <lastName>Ayers</lastName>
 </user>
 <user>
 <firstName>Catherine</firstName>
 <lastName>Middleton</lastName>
 </user>
</applicationUsers>

There are no fi xed rules regarding whether you should use one form or the other, but the following
are some things to consider when making your decision.

When to Use Attributes

Attributes are usually a good choice when there is only one piece of data to be shown. In Listing 2-1
a person can have only one fi rst name so an attribute is the best choice. Attribute names cannot be
repeated, though; putting a list into an attribute, perhaps by separating role names with a comma, makes
the fi le diffi cult to work with when you want to extract and manipulate this data later. Therefore, if you
need to show something like role names for a user multiple times, you would have to use elements.

Using attributes also results in a smaller fi le size because each element containing data needs an end
tag as well as the small overhead of the angle brackets, which means more characters are being used
to show the same amount of data. This might be a consideration if you know your fi les will often be
sent across a network where bandwidth is an issue.

Typically, veering toward using attributes is a good idea unless there is a fi rm reason not to.

When to Use Elements

Elements are useful when the data is not a simple type—that is, some text or a date that can be eas-
ily represented as a string in an attribute value. So something like an address would be better split
into its constituent parts and represented via elements rather than be represented as a delimited
string and squashed into an attribute.

Therefore use this:

<person firstName=”Joe” lastName=”Fawcett”>
 <address>
 <line1>Chapter House</line1>
 <line2>Crucifix Lane</line2>
 <city>London</city>
 <postCode>SE1 3JW</postCode>
 <country>England</country>
 </address>
</person>

Rather than this:

<person
 firstName=”Joe”
 lastName=”Fawcett”
 address=”Chapter House, Crucifix Lane, London, SE1 3JW, England” />

c02.indd 37c02.indd 37 05/06/12 5:17 PM05/06/12 5:17 PM

38 ❘ CHAPTER 2 WELL-FORMED XML?

Elements are also better when items may need to be repeated. To associate role names with a user in
the fi le previously shown, a structure like this one would work best:

<applicationUsers>
 <user firstName=”Joe” lastName=”Fawcett”>
 <roles>
 <role name=”administrators” />
 <role name=”general” />
 </roles
 <!-- other users here -->
</applicationUsers>

Notice how each role can have only one name, so an attribute rather than an element represents
that portion.

Another plus for elements is that they can be ordered. Attributes are, by defi nition, unordered. You
can place attributes in a special order in your document but the XML parser may ignore this order
for processing purposes. If you need data items in a specifi c sequence, elements are the way to go.

The other major case for using an element is when you have a large amount of content that is just
text. Technically, you could use an attribute in this instance, but that would mean you could get a
fi le that looks like this:

<longDocument data=”In here is a very long piece of text that goes on for many,
many,
many,
many,
lines” />

This can look very unusual. A fi le with a lot of text is normally easier to read if the content is within
an element and possibly uses a CDATA section to avoid having to escape special characters.

Processing Instructions

Another common building block of an XML document is the processing instruction. You already
saw one of these in Chapter 1 when you tried a browser-based XSL transformation. The processing
instruction, or PI, is used to communicate with the application that is consuming the XML. It is not
used directly by the XML parser at all.

A PI takes the form of a target that identifi es which application should be carrying out the instruc-
tion and some data that is fed to the application. A common PI is the one that tells a browser to per-
form a transformation on the XML and looks like this:

<?xml-stylesheet type=”text/xsl” href=”appUsers.xslt” ?>

The target in this example is xml-stylesheet, followed by two pseudo attributes: type=”text/xsl”
and href=”appUsers.xslt”. They are not true attributes because they don’t have to follow the rules
of having a name and value and using quotes; they’re just data that the target application will use.
In this case a browser will recognize the target as saying that the XML should be transformed before

c02.indd 38c02.indd 38 05/06/12 5:17 PM05/06/12 5:17 PM

Creating XML in a Text Editor ❘ 39

being shown; the fi rst attribute states that the type of the transform is XSL and the second attribute
points to its location. This particular processing instruction works only for a limited number of appli-
cations, mostly browsers; if you open the fi le in a standard text editor the PI will be ignored.

NOTE Processing instructions and XML declarations look quite similar, but the

declaration is not technically a processing instruction and therefore is not han-

dled as such.

CDATA Sections

One further construct you may need to use in a document is known as a CDATA section (CDATA
stands for character data and means that no markup is present). These are used as a way to avoid
repetitive escaping of characters. For example, suppose you have a simple document that contains
information that makes use of the less than sign (<). Normally this is taken as part of the markup so
it must be escaped using the entity reference <. So your document may look like this:

<conversionData>
 1 kilometer < 1 mile
 1 pint < 1 liter
 1 pound < 1 kilogram
</conversionData>

If you’d prefer the text to use the readily recognizable < sign, which makes it easier for humans to
read and write, you can mark the element’s contents as a CDATA section:

<conversionData><![CDATA[
 1 kilometer < 1 mile
 1 pint < 1 liter
 1 pound < 1 kilogram
]]></conversionData>

The CDATA section starts with <![CDATA[and ends with]]>. Anything inside is considered text,
not markup, and you can use any characters that normally need escaping such as the less than sign
and the ampersand. If you need to represent the combination]]>, which marks the end of a section,
you’ll have to escape the fi nal character of the sequence as so:]]>.

A common use of CDATA is in XHTML, the XML version of HTML. When you need to embed
some JavaScript in an XHTML page, many of the characters often need escaping. Rather than doing
this, which often then confuses the JavaScript parser, you can wrap the whole script section in a
CDATA section such as the following example. This example tests whether a customer is trying to
transfer more money from his account than he actually has:

c02.indd 39c02.indd 39 05/06/12 5:17 PM05/06/12 5:17 PM

40 ❘ CHAPTER 2 WELL-FORMED XML?

<script type=text/javascript>
//<![CDATA[
function validateTransfer(currentBalance, transferAmount)
{
 if (currentBalance > 0 && transferAmount < currentBalance)
 {
 return true;
 }
 alert(“Insufficient funds to transfer the requested amount.”);
 return false;
}
//]]>
</script>

Because the text has been wrapped in a CDATA section, the JavaScript can be written in its stan-
dard form; otherwise, if the test for the transfer amount is less than the current balance you would
have to escape the && and the < sign as shown in the following code:

if (currentBalance > 0 && transferAmount < currentBalance)

This leaves a line that’s diffi cult for both a human and a script parser to interpret.

Another noteworthy item is the JavaScript comments (//) before the CDATA section start and end
markers. This is meant to help older browsers that don’t know how to handle the construct.

Remember that a CDATA section is only a visual aid for human readers. The XML parser won’t
treat the two preceding examples differently, so once the XML has been parsed you won’t be able to
tell whether the character data was escaped using references or marked as CDATA. Some people use
CDATA sections as a way to embed one XML document inside another, like this:

<myDocument>
 <someData>
 <myNestedDocument><![CDATA[
 <anotherDocument>This is bad practice</anotherDocument>
]]></myNestedDocument>
 </someData>
</myDocument>

This sort of XML is diffi cult to work with and should be avoided. The correct way to handle mul-
tiple documents—without mixing up what belongs where—is with namespaces, which are covered
in the following chapter.

ADVANCED XML PARSING

You’ve now covered all the common building blocks of an XML document and can move on to
more advanced matters. The next three major areas of discussion relating to advanced XML parsing
include the following:

 ➤ XML equivalence: How documents that are written differently can still be treated as identi-
cal by the XML parser.

c02.indd 40c02.indd 40 05/06/12 5:17 PM05/06/12 5:17 PM

Advanced XML Parsing ❘ 41

 ➤ Whitespace handling: How characters such as spaces and tabs receive special treatment.

 ➤ Error handling: What happens if your document contains an error.

XML Equivalence

XML equivalence refers to the idea that many documents, though having a different lexical rep-
resentation, are considered equal by the XML parser. Once the document has been parsed it is
impossible to tell if a particular style was used to create the XML. For example, the following two
documents, Listing 2-3 and Listing 2-4, differ in three places:

LISTING 2-3: Document 1

<exampleData source=”web”>
 <section><![CDATA This is some example data]]></section>
 <section>Here’s some more data</section>
</exampleData>

LISTING 2-4: Document 2

<exampleData source=’web’>
 <section>This is some example data</section>
 <section>Here's some more data</section>
</exampleData>

The three lexical differences are as follows:

 ➤ In the fi rst fi le the attribute values are enclosed in double quotes whereas the second uses
single quotes.

 ➤ The fi rst fi le has a CDATA section for the fi rst <section> element whereas the second doesn’t.

 ➤ Finally, the second fi le uses an entity reference for the apostrophe in the second <section>
element and the fi rst does not.

There is nothing wrong with either of these two representations, it’s purely a matter of personal pref-
erence but once either of these fi les is parsed it will be impossible to tell which one was the source. To
the parser, how attribute values have been quoted and other differences have no bearing on the inter-
nal representation of the XML. Therefore, these documents have achieved XML equivalence.

The fact that more than one lexical version of an XML document can lead to the same in-memory
representation has some negative effects. For example, if you are going to transform the fi le and
want to treat data in a CDATA section differently than text that isn’t in a CDATA section, you’re
out of luck and will need a different approach. You can handle variations like these differently if you
prefer though, perhaps by preprocessing the fi le using a non-XML tool to add some markup identi-
fying which elements need to be treated differently.

Similarly, a common request in the XML forums is that people want to create XML with various
characters represented by references rather than the characters themselves, similar to Listing 2-4
where the apostrophe was shown as '. The reason for this is that the software that processes

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c02.indd 41c02.indd 41 05/06/12 5:17 PM05/06/12 5:17 PM

http://Wrox.com
http://Wrox.com

42 ❘ CHAPTER 2 WELL-FORMED XML?

the XML “needs” this particular format. The fact that these two forms are XML equivalent
indicates that the receiving application is not XML-compliant, otherwise it would accept either
variation, and the best thing to do with this request is to throw it back and fi x the relevant applica-
tion. Obviously this isn’t always going to be possible, but again there’s no way to insist on how an
apostrophe is represented. You’d have to fi nd a non–XML-based workaround in order to fulfi ll this
particular need if you couldn’t get the problem fi xed at source.

Whitespace Handling

Whitespace is text that is composed of a space, a tab, a newline, or a carriage return (the characters
defi ned in Unicode as 0x20, 0x9, 0xA, and 0xD, respectively). Whitespace does not include the
non-breaking space you saw earlier in the chapter that is in common use in web pages. Although
the non-breaking space cannot be seen it is treated as though it can be, just like any other letter or
punctuation mark:

Whitespace doesn’t sound like it would cause problems; any human reading a document can usually
cope with blank lines or occasionally two spaces together. But in XML it has to be treated carefully
for the following two main reasons:

 ➤ First, some whitespace is signifi cant. Take a standard English sentence; each word is sepa-
rated by a space, and without these spaces the text would be diffi cult to read. On the other
hand, some whitespace is insignifi cant — many books have blank pages at the front or back
that wouldn’t be missed and don’t add to the content. In XML there is a similar situation;
you will see a few examples shortly.

 ➤ The second reason whitespace is important in XML is that different operating systems
use different conventions regarding such things as the line endings in a fi le which are
constructed using the newline and carriage return whitespace characters. For example, a
Windows-produced text fi le would normally have line endings that mimic the old typewriter
action: a carriage return and a newline. On the contrary, fi les created on a UNIX environ-
ment will just have the newline character.

Therefore, whitespace handling rules exist to provide a consistent experience, and so that XML
fi les can be portable data formats. For example, when an XML fi le is processed, the line endings
(whether they started as a carriage return and newline, just newline, or just carriage return) will all
be transformed into a single newline character.

Signifi cant and Insignifi cant Whitespace

There is a big difference between how whitespace in XML documents is handled by XML parsers
and how HTML is treated by browsers. If you are used to developing HTML you know that multiple
consecutive whitespace characters are merged and that newlines and carriage returns are typically
ignored. For example, the following HTML markup has lots of whitespace between the letters and
two newlines in the middle.

<p>Here is some text with lots of whitespace

 That won’t show in a browser</p>

c02.indd 42c02.indd 42 05/06/12 5:17 PM05/06/12 5:17 PM

Advanced XML Parsing ❘ 43

You can see that neither the long spaces nor the newline characters are shown. This is because
HTML browsers normalize space by merging multiple spaces into one single space and ignoring
newlines. If you do want a newline character to appear in HTML you need to use markup, specifi -
cally the
 element.

XML isn’t as strict as HTML; the parser preserves whitespace that’s not part of markup. Take, for
example, the following snippet:

<chapter title=”What is XML? “>
 <para> XML stands for Extensible Markup Language (presumably the original authors
 thought that sounded more exciting than EML) and has followed a path similar to
others in the software and IT world.</para>
</chapter>

This design is such that there will never be any text directly inside the <chapter> element, but it
will just contain <para> elements. Due to this design, the whitespace at the end of the start tag and
the general indentation are just there to make it easier for a human to read and see the document’s
structure. There are also some extra spaces between the <chapter> element’s name and its attri-
bute, title. All this whitespace is deemed insignifi cant. Any whitespace that appears inside the
<para> element is known as signifi cant.

An XML parser can choose to ignore insignifi cant whitespace — but how does it know that the
element has no direct text content? It can only know the content type of an element if there is an
XML schema or DTD associated with the document. Schemas and DTDs are not fully covered until
Chapters 4 and 5; suffi ce it to say that insignifi cant whitespace does not have to be preserved by the
parser. If you do want all of your document’s whitespace to remain, there is a special attribute
that you can add to either the root element or one lower down: xml:space=”preserve”. This
informs the parser to leave your document completely intact. So for the preceding example you’d
add this to the <chapter> element:

<chapter xml:space=”preserve” title=”What is XML? “>
 <para> XML stands for Extensible Markup Language (presumably the original authors
 thought that sounded more exciting than EML) and has followed a path similar to
others in the software and IT world.</para>
</chapter>

There is also an xml:space=”default” if you need to reset whitespace handling back to its
default.

FIGURE 2-1

Figure 2-1 shows what you’ll see in a browser.

c02.indd 43c02.indd 43 05/06/12 5:17 PM05/06/12 5:17 PM

44 ❘ CHAPTER 2 WELL-FORMED XML?

Error Handling

As you’ve seen you have a few hurdles to overcome to make sure your document is classifi ed as
XML — matching tags, quoted attribute values, and escaped characters when necessary, to name a
few. If an XML parser fi nds that one of the rules has been broken it has two main options, which
depend on whether the specifi cation states that it’s an error or a fatal error.

You can recover from an error and continue document parsing if possible. A fatal error, as its name
suggests, cannot be recovered from and the processor’s only option is to report it. It can also report
other errors if necessary, but it can’t produce a parsed document at the end of the procedure. Any
errors that are to do with well-formedness are considered fatal.

This strict view was deliberately taken after seeing how allowing HTML writers to be lax with
their syntax has adversely affected the Web. Because browsers accept incorrect HTML and try to
second guess the author’s intention, there is inconsistency on how such pages are displayed — each
browser has a different set of rules on how to cope with badly formed content. It also means that
web pages cannot easily be processed by machines to extract meaningful information without fi rst
putting the content through a number of different algorithms. This was one of the problems that an
XML-based version of HTML, namely XHTML, was meant to solve. Unfortunately it didn’t work
in practice because it was too diffi cult to learn for many. Additionally there was not enough toolset
support and many browsers, Internet Explorer in particular, couldn’t handle it properly.

At the end of the day you can compare XML strict error checking to standard programming lan-
guages. Some enforce strict type checking at compile time whereas others only fail at runtime. The
XML view is that it’s better to fi nd errors earlier even if that means having the document rejected
for only minor glitches.

Most browsers have good error reporting facilities and are often used to help fi nd errors in a docu-
ment that aren’t immediately obvious. They are usually very strict and will terminate processing on
errors even if they are not defi ned as fatal. This is common with nearly all parsers and is in line with
the specifi cation that only states that they may recover. In practice it’s easier to just stop when an
error is encountered than try to repair it by divining the author’s original intention. This would also
lead to discrepancies in how parsers handled documents and lead to a similar unwanted situation to
that previously mentioned in regards to web pages. The following Try It Out deliberately creates a
badly-formed fi le to demonstrate how error reporting is handled in a browser.

WARNING As stated previously, XML parsers are obliged to preserve

whitespace unless they categorically know it to be insignifi cant. Unfortunately

Microsoft’s COM-based parser, known as MSXML Core Services, falls from

grace here and ignores the standards by stripping what it considers to be

insignifi cant space. This has caused many problems in the past for developers

who were forced to use this parser (for example, when working inside Internet

Explorer). You can overcome the problem in some scenarios by setting the

preserveWhitespace property of the parser to true.

c02.indd 44c02.indd 44 05/06/12 5:17 PM05/06/12 5:17 PM

Advanced XML Parsing ❘ 45

TRY IT OUT Using a Browser to Find Errors

To see how errors are reported in a browser use the following code fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<pangrams createdOn=”2012-01-04T10:19:45’>
 <!-- This file is designed to show
 how errors are reported in a browser -->
 <pangram>The quick brown fox jumps over the lazy dog.</pangram>
 <pangram>Pack my box with five dozen liquor jugs.</pangram>
 <pangram>Glib jocks quiz nymph to vex dwarf.</pangram>
 <pangram>The five boxing wizards jump quickly.</Pangram>
 <pangram>What you write deserves better than a jiggling, shaky,
 inexact & questionably fuzzy approximation of blur</pangram>
</pangrams>

XmlFileWithErrors.xml

This fi le contains three errors, which may or may not be immediately apparent depending on your
familiarity with XML and your general proofreading abilities. However, these errors are reported
differently in the browser in Figure 2-2 than how you might describe them yourself. In each case the
browser stops after reporting the error and simply shows content up to that point where possible.
Google’s Chrome browser is used for this demo.

1. Browse to the fi le locally and you see the fi rst error report, shown in Figure 2-2.

Available for
download on
Wrox.com

FIGURE 2-2

2. Look carefully at the fi le source you’ll see that the createdOn attribute uses mismatched
quotes — a double quote to start with and a single quote to fi nish. However, this isn’t the
error that’s reported. Instead the parser complains that there is an unescaped < present.
This is because it thinks the attribute hasn’t been closed yet and suddenly it’s found an illegal
character. So far it hasn’t read any textual content so there’s nothing to display apart from the
error message.

3. Correct the error by replacing the single quote with a double quote and reopen the fi le in Chrome.
You get a new message as shown in Figure 2-3.

c02.indd 45c02.indd 45 05/06/12 5:17 PM05/06/12 5:17 PM

http://Wrox.com

46 ❘ CHAPTER 2 WELL-FORMED XML?

4. This time Chrome reports mismatching tag names. The fourth <pangram> element has <pangram>
for a start tag but </Pangram> for the end tag and tags must match by case. This time, though,
some content has been read and so the text of the fi rst three <pangram> elements is shown.
Correct the mismatch and reopen the fi le. The fi nal error is reported, as shown in Figure 2-4.

FIGURE 2-3

FIGURE 2-4

5. This slightly confusing report claims you have an entity reference without a name. This is because
in XML the ampersand (&) is used to begin a character or entity reference as discussed previously.
In the fi le there is no name and no closing semicolon, so the parser thinks the reference is mal-
formed rather than the simpler explanation, which is that you’ve forgotten to escape the & alto-
gether. Correct this fi nal error and you see the entire fi le in Figure 2-5.

FIGURE 2-5

c02.indd 46c02.indd 46 05/06/12 5:17 PM05/06/12 5:17 PM

The XML Infoset ❘ 47

This time the fi le is displayed as a familiar tree and you can see the comment, plus you can expand and
collapse various regions.

How It Works

XML parsers typically work in a sequential fashion when checking for errors. They start reading
through the fi le and as soon as an error is encountered it is reported and any further parsing ceases.
This explains how, on each occasion, only one error is displayed by Chrome and how, after fi xing that
error, the parser is able to get a little further in the parsing each time until, eventually, all three errors
are removed and the browser can display the whole XML.

NOTE If you’re wondering about the fi le’s contents, a pangram is a sentence in a

language that uses each letter of the alphabet at least once.

Read the XML specifi cation carefully to learn more about determining which errors are defi ned as
fatal and which are not. Fatal errors are clearly pointed out, and any other infringement is a recover-
able error. As already noted, however, most parsers treat all errors as fatal and the best policy is to
make sure any fi les you create are entirely free of them and that fi les received by you are perfect. If
you do receive fi les that have errors your best choice, if you can’t afford to simply reject them, is to
correct them using non-XML means before moving them to your XML processing pipeline.

Now that you understand the building blocks of an XML fi le, the rules that need to be followed
when creating them, and how errors are reported you can move on to the next stage. The next sec-
tion deals with how a document is treated once it has been parsed.

THE XML INFOSET

Sometime after the W3C’s XML recommendation was published a need arose for a common way to
talk about the structure of an XML document after it had been parsed.

Up until this point there were many ways of describing a document depending on which technology it
was being used with. The document object model (DOM) referred to elements and attributes as differ-
ent types of nodes, as well as all the other building blocks such as comments and processing instruc-
tions. Other technologies (as you see in later chapters) had other terms, and part of the new model’s job
was to come up with a common vocabulary. This model was also meant to abstract away the individual
differences in the way an original fi le had been written, such as whether it used single- or double–
 quotation marked attribute values. Additionally, the new model enables other XML-related applica-
tions, such as those used to transform XML, to work against an idealized picture of the document. The
model was given the name the XML Information Set and is now commonly called the XML Infoset.

The XML Infoset consists of eleven components. This section takes a short look at each one to see
how it relates to the underlying lexical representation. These components have the offi cial title of
information items.

c02.indd 47c02.indd 47 05/06/12 5:17 PM05/06/12 5:17 PM

48 ❘ CHAPTER 2 WELL-FORMED XML?

The Document Information Item

Every XML document has one document information item. This item enables access to all the other
items in the document as well as possessing a number of properties of its own. Some of these prop-
erties are those seen in the XML declaration such as character encoding and whether the document
is standalone. Others are those such as the Base URI, which is essentially a pointer to the docu-
ment’s source, and the document element, which is the outermost element (what up until now has
been referred to as the root element). In the older DOM terminology the document information item
most closely resembles the root node of the entire XML.

To navigate from this item to other information items you can use the Document Element property,
which points to the root element, and the Children property , which gives access to any comments
or processing instructions that lie in the XML prolog (that is, before the root element).

Element Information Items

Element information items provide access to all element-related information, and each element has
one associated item. The element information item has a number of properties, including:

 ➤ Local Name: The name of the element without any namespace prefi xes (this is covered
in the next chapter). For example, the local name of both <pangram> and <ns:pangram>
would be pangram.

 ➤ Children: Any elements, comments, processing instructions, and references beneath this
element.

 ➤ Attributes: An unordered list of all the attributes of this element. Note that attributes are
not considered to be children of an element.

 ➤ Parent: The element, or in the case of the document element, the document, that has this
element as its child.

Attribute Information Items

Attribute information items give access to each attribute found on an element. Properties include:

 ➤ Local Name: As for elements, this is the name without a namespace prefi x.

 ➤ Normalized Value: The value of the attribute after the standard whitespace normalization,
such as various line feeds, all being changed to a single newline character and all references
being expanded.

 ➤ Owner Element: The element for which this attribute appears in its attributes property.

Processing Instruction Information Items

One processing instruction information item will be present for each processing instruction (PI) in
the document. The properties include the target, which represents the target of the PI, and content,
which is the rest of the text that appears. Quite often the content is split into what looks like attri-
butes—set of name/value pairs—but that’s not mandatory, so the information item does not parse
the content any further.

c02.indd 48c02.indd 48 05/06/12 5:17 PM05/06/12 5:17 PM

The XML Infoset ❘ 49

Character Information Item

In theory each character that appears in the document, either literally as a character reference or within
a CDATA section, will have an associated character information item. The properties of these include:

 ➤ Character Code: A value in the range of 0 to #x10FFFF indicating the character code. These
codes are defi ned by the ISO 10646 standard which, for this interpretation, is the same as
the Unicode one. Remember that some codes, such as 0, are not allowed in an XML docu-
ment so you won’t come across them if the XML is well-formed.

 ➤ Element Content Whitespace: This is a Boolean property indicating whether or not the
character is whitespace within an element.

 ➤ Parent: The element that contains this item in its children property.

In practice, XML applications often group characters into strings of text because it’s unlikely you’ll
want to process text one character at a time.

Comment Information Item

A comment information item refers to a comment in the source document. It has only two proper-
ties: content, which has the text of the comment, and parent.

Namespace Information Item

Each element in the document has one namespace information item for each namespace that is in
scope. The wonderful world of namespaces is covered in the next chapter.

The Document Type Declaration Information Item

If a document has a document type declaration, this information item will have details about it.
Properties include System Identifi er and Public Identifi er, which enable the XML to retrieve the DTD.
This information item (as well as the following three: unexpected entity reference, unparsed entity,
and notation) are only applicable when a document type defi nition is associated with the document.

Unexpanded Entity Reference Information Item

You’re unlikely to come across these; they are placeholders for an external entity that has not been
expanded. Most parsers will expand these references anyway, so they are quite rare.

Unparsed Entity Information Item

Again these are something declared in a DTD and you are unlikely to come across them.

Notation Information Item

One of these appears for each notation described in the DTD. Notations allow you to include refer-
ences to non-XML content, such as images, in your XML document by declaring a reference to that
content in the DTD.

c02.indd 49c02.indd 49 05/06/12 5:17 PM05/06/12 5:17 PM

50 ❘ CHAPTER 2 WELL-FORMED XML?

In addition to the XML Infoset there is also a version known as the Post Schema Validation Infoset
(PSVI), which brings additional information due to the fact that the XML has an associated schema
and has been checked against that schema. You’ll see some of this extra information in Chapter 5.

SUMMARY

 ➤ What exactly is meant by well-formed XML

 ➤ What characters are not allowed in an XML document

 ➤ What an encoding is and what is meant by Unicode

 ➤ The basic building blocks of XML, including elements and attributes

 ➤ How each of these blocks is formed and what rules need to be followed

 ➤ How some characters need to be escaped and how to represent characters that are not pres-
ent in your chosen encoding

 ➤ How whitespace is handled

 ➤ How errors are handled

 ➤ What to think about when choosing between elements and attributes

 ➤ The XML Infoset and how it is an idealized model of an XML document

EXERCISES

Answers to exercises can be found in Appendix A.

 1. What errors make the following fi le not well-formed?

<xmlLibrary>
 <play publicationYear=1898>
 <title>Arms & The Man</title>
 <author>George Bernard Shaw</author>
 <play description>Comedy dealing with the futility of war
 and the hypocrisy of human nature.</play description>
 <play>
 <play publicationYear=1950>
 <title>The Mousetrap</title>
 <author>Agatha Christie</author>
 <play description>A traditional whodunnit
 with an extraordinary twist.</play description>
 <play>
</xmlLibrary>

 2. How would you declare an entity reference for your e-mail address so that you could easily

change it in one place rather than many. Give a complete example.

c02.indd 50c02.indd 50 05/06/12 5:17 PM05/06/12 5:17 PM

Summary ❘ 51

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEYPOINTS

Why it’s essential

that your XML is

well-formed

If XML is not well-formed then it’s not XML and an XML parser won’t be

able to read it.

Certain characters

are not allowed in

XML documents

The null character (0x0) is forbidden in XML 1.0 and is the only forbidden

Unicode character in XML 1.1. XML 1.0 also forbids the characters in the

range 0x1 to 0x19 with the exception the whitespace characters tab (0x9),

newline (0xa), and carriage return (0xd).

Some charac-

ters have special

meanings

& and < are used for references and tags respectively so they need to be

escaped as & and < if they are needed as text.

XML fi les can use

a variety of charac-

ters encodings

If your fi le isn’t in the UTF-8 encoding then the encoding must be declared

in the XML declaration.

Basic structure XML fi les are mainly built from elements and attributes. An XML document

must have one all-encompassing root or document element.

Whitespace

receives special

treatment

In general, line endings consisting of newline and carriage return charac-

ters are compressed into a single newline and multiple spaces into a single

space unless the parser considers them to be signifi cant.

Elements or

Attributes

In general, choose elements for complex structures or data that is

repeated. Choose attributes for single atomic values.

The XML Infoset The infoset is an idealized version of an XML document created after a

document has been successfully parsed. Applications that consume XML

should base their behavior on this structure so that do not rely on insignifi -

cant diff erences in how the document was written.

c02.indd 51c02.indd 51 05/06/12 5:17 PM05/06/12 5:17 PM

c02.indd 52c02.indd 52 05/06/12 5:17 PM05/06/12 5:17 PM

XML Namespaces

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ What namespaces are

 ➤ Why you need namespaces

 ➤ How to choose a namespace

 ➤ How to declare a namespace

 ➤ How to show that items are in a namespace

 ➤ The relationship between namespaces and XML Schema

 ➤ When to use namespaces

 ➤ Common uses of namespaces

This chapter covers the thorny topic of XML Namespaces, something that should be quite
simple and straightforward but often seems to lead to confusion, even among experienced
developers. This chapter starts by explaining what is meant by the term namespace and how
it’s not limited to the world of XML. It then details when and why you would need them and
shows the problems you can experience if they were not available. Then you delve into the
implementation of namespaces, how they are declared in an XML document, and how you
specify that an item resides in a particular namespace. You are then introduced to one of the
main uses of namespaces, XML Schemas, which enable you to validate that a particular docu-
ment conforms to a pre-determined structure. The fi nal section lists some real-world examples
of namespace usage that you are likely to encounter and gives a brief description of where and
why they are used.

3

c03.indd 53c03.indd 53 05/06/12 5:18 PM05/06/12 5:18 PM

54 ❘ CHAPTER 3 XML NAMESPACES

DEFINING NAMESPACES

At their simplest, namespaces are a way of grouping elements and attributes under a common head-
ing in order to differentiate them from similarly-named items.

Take the following scenario: You overhear two people talking and one says to the other, “You need
a new table.” What does that mean? There could be quite a number of options depending on the
context. For example it could be:

 ➤ Someone discussing a dinner party with their spouse and they need a bigger dining table.

 ➤ A database developer who’s been asked to design a system to store user preferences on a
website — a new database table.

 ➤ An HTML developer who has been told to display some extra information on the user’s
account page — an HTML table.

You can tell only if you know the context, or if the complete names are used — dining table, data-
base table, or HTML table.

This is how namespaces work with elements and attributes. You can group these items under a
namespace so that they keep their familiar name, such as user, but also have a namespace so that they
can be differentiated, both by a human reader and a software application, from any other elements
that may be called user by someone else.

WHY DO YOU NEED NAMESPACES?

For a more concrete example on the need for namespaces, take the following scenario: You have
details about your company employees stored as XML and you want to be able to include a brief
biography in the form of some HTML within the document. Your basic document looks something
like Listing 3-1.

LISTING 3-1: employees-base.xml

<employees>
 <employee id=”001”>
 <firstName>Joe</firstName>
 <lastName>Fawcett</lastName>
 <title>Mr</title>
 <dateOfBirth>1962-11-19</dateOfBirth>
 <dateOfHire>2005-12-05</dateOfHire>
 <position>Head of Software Development</position>
 <biography><!-- biography here --></biography>
 </employee>
 <!-- more employee elements can be added here-->
</employees>

Available for
download on
Wrox.com

c03.indd 54c03.indd 54 05/06/12 5:18 PM05/06/12 5:18 PM

http://Wrox.com

Why Do You Need Namespaces? ❘ 55

This document doesn’t use namespaces, and it still works fi ne. Now say you want to add the biogra-
phy and you’re going to use XHTML. This is the perfect opportunity to use namespaces, but fi rst,
take a look at a document, shown in Listing 3-2, that doesn’t declare any namespaces and which
illustrates the problem:

LISTING 3-2: employees-with-bio.xml

<employees>
 <employee id=”001”>
 <firstName>Joe</firstName>
 <lastName>Fawcett</lastName>
 <title>Mr</title>
 <dateOfBirth>1962-11-19</dateOfBirth>
 <dateOfHire>2005-12-05</dateOfHire>
 <position>Head of Software Development</position>
 <biography>
 <html>
 <head>
 <title>Joe’s Biography</title>
 </head>
 <body>
 <p>After graduating from the University of Life
 Joe moved into software development,
 originally working with COBOL on mainframes in the 1980s.</p>
 </body>
 </html>
 </biography>
 </employee>
 <!-- more employee elements -->
</employees>

Now without namespaces you have a clash — two <title> elements performing two distinct
functions. One is for the employee’s salutation and the other is for the title of the biography. For a
human reader this isn’t a problem; you can see from the type of data and the general context what
each <title> element represents, but to a software program that isn’t the case. If asked to fi nd the
employee’s title, for example a report showing the title, fi rst name, and last name, there could be a
confl ict because it can’t choose the correct title without further help.

The way to get around this is to group the two sets of information — the employee data and the bio-
graphical information — into two different namespaces. You can see the fi nal document later in the
chapter, complete with namespaces, after you learn the methods by which you declare them.

If you didn’t want to use namespaces, you could use a different element name for the employee’s
title — salutation perhaps. Given that you designed the format of the basic XML and decided the
names of the elements, you’re perfectly entitled to use this approach; however, the elements that you
are using in the biography section are part of the XHTML standard and so you can’t arbitrarily go
and change the <title> element to be called something different.

However, the main reason why you would typically need namespaces is because you won’t always
be using your own XML formats entirely within your own systems. If you did that, you wouldn’t

Available for
download on
Wrox.com

c03.indd 55c03.indd 55 05/06/12 5:18 PM05/06/12 5:18 PM

http://Wrox.com

56 ❘ CHAPTER 3 XML NAMESPACES

have to worry about elements getting mixed up simply because they had the same name; you could
ensure that all your element and attribute names were unique across all your systems. In the real
world, though, it’s not like that. One of XML’s main purposes is to share data across systems and
organizations. So, although you probably will invent some XML formats that are only for internal
use, will never need to be shared, and will never come into contact with other formats, at some stage
you are going to need namespaces.

HOW DO YOU CHOOSE A NAMESPACE?

Chapter 1, “What is XML?” mentioned how namespaces were already heavily used in many
 programming languages such as C# and Java. In C# they are actually called namespaces whereas Java
prefers the term packages. So an example from C# could be the Timer class. The .NET library contains
three different timers, each under its own namespace:

 ➤ System.Windows.Forms.Timer: Fires an event at regular intervals on the main user inter-
face thread on a form.

 ➤ System.Timers.Timer: Fires an event on a worker thread.

 ➤ System.Threading.Timer: Designed for use in multi-threaded situations.

How these timers actually differ is unimportant. The point is that they all have a similar base name,
Timer, but all live in a different namespace, respectively System.Windows.Forms, System.Timers,
and System.Threading. When you declare one of these in code, the correct one is called because
the full namespace name is used; if you don’t declare the namespace correctly the compiler emits an
error message saying that it can’t fi nd the Timer class that you need.

For XML you need a similar system, a way to make sure that your elements and attributes have a
unique name. XML Namespaces provide a simple solution; you can choose virtually any string of
characters to make sure your element’s full name is unique. So you could choose your element to be
user, as before, and decide that it is in the BeginningXMLFifthEdition namespace. However, that
doesn’t guarantee that the full name will be unique; several authors contributed to this book and
one could also choose that string as the namespace. To avoid this problem in the real world you have
two ways to create a unique namespace: using URIs or URNs. That’s not to say people don’t use
other formats, but if you want to follow the W3C recommendation you’ll stick with one of these.

URLs, URIs, and URNs

Before you begin to choose your namespace you need to understand the difference between URLs,
URIs, and URNs.

A URL is a Uniform Resource Locator. It specifi es the location of a resource, for example a web
page, and how it can be retrieved. It has the following format:

[Scheme]://[Domain]:[Port]/[Path]?[QueryString]#[FragmentId]

The terms in square brackets are replaced by their actual values and the rest of the items other than
Scheme and Domain are optional. So a typical web URL would be http://www.wrox.com/
remtitle.cgi?isbn=0470114878.

c03.indd 56c03.indd 56 05/06/12 5:18 PM05/06/12 5:18 PM

http://www.wrox.com/remtitle.cgi?isbn=0470114878
http://www.wrox.com/remtitle.cgi?isbn=0470114878

How Do You Choose a Namespace? ❘ 57

The scheme is http, the domain is www.wrox.com, followed by the path and a querystring. This
URL enables you to locate a resource, in this case a web page about the previous edition of this
book, using the HTTP protocol. You can use many other schemes, such as FTP and HTTPS, but the
main point about URLs is that they enable you to locate a resource, whether that is a web page, a
fi le, or something else.

A URI, on the other hand, is a Uniform Resource Identifi er; it can have the same format as a URL
or it can be in the URN format, which you learn about next. It doesn’t have to point to anything
tangible — it’s just a unique string that identifi es something. All URLs are also URIs but the oppo-
site is not necessarily true. You’ll see that when designing your fi rst namespace, you end up with a
unique identifi er, but one that does not have a physical representation on the Internet.

URNs are slightly different again; the letters stand for Uniform Resource Name. A URN is a name
that uniquely defi nes something. In the non-computing world analogies would be Social Security
numbers and ISBNs. They both uniquely identify something — U.S. citizens and editions of books,
respectively.

URNs take the following format:

urn:[namespace identifier]:[namespace specific string]

As before, the items in square brackets need to be replaced by actual values and the three-character
prefi x, urn, is not case-sensitive.

The namespace identifi er is a string of characters such as isbn, which identifi es how the namespace
specifi c string should be interpreted. Namespace identifi ers can be registered with the Internet
Assigned Numbers Authority (IANA) if they are expected to be utilized by many different organiza-
tions. The latter part of the URN, the namespace specifi c string, identifi es the actual thing within
the category set by the identifi er. An example of a URN using a registered scheme would be:

urn:isbn:9780470114872

This URN uniquely identifi es the fourth edition of this book, but because it’s a URN, not a URL, it
doesn’t tell you anything about how to retrieve either the book itself or any information about it.

So, in brief, URLs and URNs are both URIs; a URL tells you the how and where of something,
and the URN is simply a unique name. Both URLs and URNs are used to create XML Namespace
URIs, as you’ll see next.

Creating Your First Namespace

When creating your fi rst namespace you should use the URI format. As stated earlier, the URI must
be unique because you don’t want it to clash with someone else’s choice. Because most companies
and independent software developers have their own registered domain, it’s become fairly standard
to use their domain name as a starting point. So your namespace starts with http://wrox.com/.
Following the domain name you can use most any combination of characters you want, although
you should avoid spaces and the question mark. The defi nitive list of what is and isn’t allowed
depends on whether you’re using XML Namespace version 1.0 or version 1.1 (see the note in the
later section on declaring namespaces for more details).

c03.indd 57c03.indd 57 05/06/12 5:18 PM05/06/12 5:18 PM

http://wrox.com/
http://www.wrox.com

58 ❘ CHAPTER 3 XML NAMESPACES

Now for your user element, which in the example scenario came from an application confi guration
fi le that may have been used by your HR system, you might choose the full namespace:
http://wrox.com/namespaces/applications/hr/config.

This actual string of characters chosen is known as the namespace URI. Namespaces are case-
sensitive so try to be consistent when inventing them; sticking to all lowercase can save having to
remember which letters were capitalized.

WARNING As mentioned previously, don’t be distracted by the fact that the

preceding namespace looks like a URL — it defi nitely isn’t one. If you type the

namespace into a browser’s address bar you won’t see anything returned. This

is one of the main problems experienced when fi rst meeting namespaces; the

domain part is there to make sure that the namespaces are unique across the

globe and has no bearing on whether they can be browsed to.

HOW TO DECLARE A NAMESPACE

You can declare a namespace in two ways, depending on whether you want all the elements in a
document to be under the namespace or just a few specifi c elements to be under it. If you want all
elements to be included, you can use the following style:

xmlns= “http://wrox.com/namespaces/applications/hr/config“

Therefore, if you take your appUsers.xml fi le from Chapter 1 you have what’s shown in
Listing 3-3.

LISTING 3-3: appUsers.xml

<applicationUsers>
 <user firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
</applicationUsers>

To add the namespace declaration, change it to the code shown in Listing 3-4.

LISTING 3-4: appUsersWithDefaultNamespace.xml

<applicationUsers
 xmlns=”http://wrox.com/namespaces/applications/hr/config”>
 <user firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
</applicationUsers>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c03.indd 58c03.indd 58 05/06/12 5:18 PM05/06/12 5:18 PM

http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/applications/hr/config
http://Wrox.com
http://Wrox.com

How to Declare a Namespace ❘ 59

This is known as declaring a default namespace, which is associated with the element on which it is
declared, in this case <applicationUsers>, and any element contained within it. The namespace
is said to be in scope for all these elements. Attributes, such as firstName, are not covered by a
default namespace.

WARNING One of the common complaints about the implementation of XML

Namespaces is that the declarations themselves look very much like attributes.

This can cause considerable confusion when trying to deal with the document

programmatically. Although they do look like attributes, they are treated com-

pletely diff erently and won’t appear in any attributes collection, for instance.

There have been many proposals to change the way they are declared but this

would mean breaking most existing parsers so it seems unlikely that a change

will occur.

Once an element has an associated namespace it no longer has a simple name such as user; the
namespace has to be taken into account as well. There is no W3C standard for showing the ele-
ment’s full name but there is a convention, called Clark notation (after James Clark, one of the
founding fathers of XML) that can be used. The Clark notation places the namespace URI in curly
braces before what is known as the local name. Using Clark notation, the user element would have
the full name:

{http://wrox.com/namespaces/applications/hr/config}user

WARNING Not realizing that a default namespace is present is one of the most

common causes of code failing to work in the XML world, particularly with XSLT,

as you see in Chapter 8.

As mentioned previously, a default namespace applies only to elements. Attributes need their
namespaces to be specifi cally declared, and other components of an XML document, such as com-
ments, don’t have associated namespaces at all.

To declare a namespace explicitly you have to choose a prefi x to represent it. This is partly because
it would be very onerous having to use the full name every time you created a tag or an attribute.
The prefi x can be more or less whatever you like; it follows the same naming rules as an element or
attribute, but cannot contain a colon (:).

WARNING Some prefi xes are reserved, such as xml, xmlns, and any other

combinations beginning with the characters xml. This means that you are not

allowed to use these prefi xes to represent your chosen namespace URIs when

designing your own XML.

c03.indd 59c03.indd 59 05/06/12 5:18 PM05/06/12 5:18 PM

http://wrox.com/namespaces/applications/hr/config

60 ❘ CHAPTER 3 XML NAMESPACES

Say you decide to use hr as your prefi x. You would then declare your namespace using the slightly
modifi ed form:

xmlns:hr=“http://wrox.com/namespaces/applications/hr/config“

Note the hr prefi x follows the xmlns in the declaration.

Listing 3-5 shows the full fi le, now including the namespace declaration that has a prefi x of hr.

LISTING 3-5: appUsersWithNamespace.xml

<applicationUsers xmlns:hr=”http://wrox.com/namespaces/applications/hr/config”>
 <user firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
</applicationUsers>

However, this just means that you have a namespace URI that is identifi ed by a prefi x of hr; so far
none of the elements or attributes are grouped in that namespace. To associate the elements with the
namespace you have to add the prefi x to the elements’ tags. For example, start by showing that
the <applicationUsers> element resides in the http://wrox.com/namespaces/applications/
hr/config namespace (referred to from now on as the hr namespace). The document would then
look like Listing 3-6.

LISTING 3-6: appUsersWithNamespaceUsedOnRoot.xml

<hr:applicationUsers xmlns:hr=”http://wrox.com/namespaces/applications/hr/config”>
 <user firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
</hr:applicationUsers>

Notice that the prefi x, hr, has been added to both the start and the end tags and is followed by a
colon and then the element’s local name.

NOTE It’s also possible to use a DTD to add namespace declarations to a docu-

ment. In general I don’t like this practice. It’s often unclear what the namespace

is because the DTD is usually referenced rather than embedded. Given that this

practice is dying out it won’t be covered in this chapter.

If you want the attributes in the document to be also in the hr namespace you follow a similar pro-
cedure as shown in Listing 3-7:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c03.indd 60c03.indd 60 05/06/12 5:18 PM05/06/12 5:18 PM

http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/applications/hr/config
http://Wrox.com
http://Wrox.com

How to Declare a Namespace ❘ 61

LISTING 3-7: appUsersWithNamespaceUsedOnAttributes.xml

<hr:applicationUsers xmlns:hr=”http://wrox.com/namespaces/applications/hr/config”>
 <user hr:firstName=”Joe” hr:lastName=”Fawcett” />
 <user hr:firstName=”Danny” hr:lastName=”Ayers” />
 <user hr:firstName=”Catherine” hr:lastName=”Middleton” />
</hr:applicationUsers>

Again the namespace prefi x is prepended to the attribute’s name and followed by a colon. In most
XML documents that use namespaces you’ll see that it’s very common that elements belong to a
particular namespace, but less so for attributes. The reason for this is that attributes are always
associated with an element; they can’t stand alone. Therefore, if the element itself is in a namespace,
the attribute is already uniquely identifi able and there’s really no need for it to be a namespace.

NOTE An element or attribute name with a prefi x is known as a Qualifi ed Name,

often abbreviated to QName. The part after the prefi x is technically known as a

Local Name.

Remember that the namespace declaration must come either on the element that uses it or on one
higher in the tree, an ancestor as it’s often called. This means that the fi le in Listing 3-8 is not well-
formed because the declaration is too far down the tree and therefore not in scope.

LISTING 3-8: appUsersWithIncorrectDeclaration.xml

<hr:applicationUsers>
 <user
 xmlns:hr=”http://wrox.com/namespaces/applications/hr/config”
 firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
</hr:applicationUsers>

It isn’t necessary to declare all your namespaces on the root element, but it is common practice to do
so (unless you have a good reason not to) and usually makes the document that much easier to read.

If your document uses only one namespace and all the elements in the document belong to it,
there’s little to choose between using a default namespace and one with a defi ned prefi x. As far
as the XML parser is concerned there is no difference between the document in Listing 3-4, which
used a default namespace declaration, and the one in Listing 3-9, which uses an explicit declaration
with the prefi x hr.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c03.indd 61c03.indd 61 05/06/12 5:18 PM05/06/12 5:18 PM

http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/applications/hr/config
http://Wrox.com
http://Wrox.com

62 ❘ CHAPTER 3 XML NAMESPACES

LISTING 3-9: appUsersWithExplicitNamespaceUsedThroughout.xml

<hr:applicationUsers xmlns:hr=”http://wrox.com/namespaces/applications/hr/config”>
 <hr:user firstName=”Joe” lastName=”Fawcett” />
 <hr:user firstName=”Danny” lastName=”Ayers” />
 <hr:user firstName=”Catherine” lastName=”Middleton” />
</hr:applicationUsers>

Notice how the declaration is made on the root element and all start and end tags have the hr pre-
fi x. This is a typical example of how a document with an explicitly-defi ned namespace looks and
many of the documents you will encounter in real life follow this pattern.

How Exactly Does Scope Work?

The principle of being in scope applies to any namespaces declared in an XML document and it’s
important to clearly understand this concept. In scope means the same for XML Namespaces as
it does in more traditional programming settings — the namespace is available to be used. Just
because a namespace is in scope doesn’t mean that an element belongs to it. Take Listing 3-10,
which takes the current example and modifi es it slightly, moving the declaration from the
<applicationUsers> element.

LISTING 3-10: appUsersWithNarrowScopeDeclaration.xml

<applicationUsers>
 <hr:user xmlns:hr=”http://wrox.com/namespaces/applications/hr/config”
 firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
</applicationUsers>

Now the namespace declaration is on the fi rst <user> element. It is only in scope for that element, its
attributes, and any elements it contains (in this case there aren’t any). Because of this the namespace
cannot be used on either the <applicationUsers> element or any of the other <user> elements —
trying to assign a prefi x to these elements would lead to an error when parsing the XML. It is usu-
ally considered good practice when designing an XML document to limit the scope of any namespace
declarations by declaring them at as low a level as possible in the document, as long as you still only
have to declare them once. This maintains standard programming practice in other languages, where
it is frowned on to declare all variables as global and better to declare them only when they are
needed and therefore limit their scope.

Declaring More Than One Namespace

Many documents use more than one namespace to group their elements. Typically, you have a
number of choices when you need to design XML in this fashion. One option is to choose a default
namespace for some elements and an explicit one for others. You can stick with the example docu-
ment but you need to incorporate a few changes:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c03.indd 62c03.indd 62 05/06/12 5:18 PM05/06/12 5:18 PM

http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/applications/hr/config
http://Wrox.com
http://Wrox.com

How to Declare a Namespace ❘ 63

 1. First, place the <applicationUsers> element in the hr namespace and the <user> elements
themselves in a different one, which is used by <user> elements across all company docu-
ments. This namespace will be http://wrox.com/namespaces/general/entities.

 2. Now create the hr namespace as the default and the entities namespace as explicit. You
need a prefi x for the newer one so choose ent. This means your document will look like
Listing 3-11.

LISTING 3-11: appUsersWithTwoNamespaces.xml

<applicationUsers
 xmlns=”http://wrox.com/namespaces/applications/hr/config”
 xmlns:ent=”http://wrox.com/namespaces/general/entities”>
 <ent:user firstName=”Joe” lastName=”Fawcett” />
 <ent:user firstName=”Danny” lastName=”Ayers” />
 <ent:user firstName=”Catherine” lastName=”Middleton” />
</applicationUsers>

Because both declarations are on the root element they are in scope for the whole of the document.
Therefore any elements without a prefi x fall into the hr namespace and any with an ent prefi x fall
into the entities namespace. None of the attributes in this document are in a namespace. If you
wanted you could just as easily have declared the entities namespace as the default and used the
hr prefi x for the other one; in real life you would probably choose the default for the namespace
that was most used.

Alternatively, if you want to avoid a default namespace because you think it makes which element
is grouped under which namespace clearer, you could make both namespace declarations explicit as
shown in Listing 3-12.

LISTING 3-12: appUsersWithTwoExplicitNamespaces.xml

<hr:applicationUsers
 xmlns:hr=”http://wrox.com/namespaces/applications/hr/config”
 xmlns:ent=”http://wrox.com/namespaces/general/entities”>
 <ent:user firstName=”Joe” lastName=”Fawcett” />
 <ent:user firstName=”Danny” lastName=”Ayers” />
 <ent:user firstName=”Catherine” lastName=”Middleton” />
</hr:applicationUsers>

However, there is a third option to consider when dealing with multiple namespaces that occurs less
commonly: declaring a namespace twice with different prefi xes, as shown in Listing 3-13.

LISTING 3-13: appUsersWithNamespaceDeclaredTwice.xml

<hr1:applicationUsers
 xmlns:hr1=”http://wrox.com/namespaces/applications/hr/config”
 xmlns:hr2=”http://wrox.com/namespaces/applications/hr/config”>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

continues

c03.indd 63c03.indd 63 05/06/12 5:18 PM05/06/12 5:18 PM

http://wrox.com/namespaces/general/entities
http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/general/entities
http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/general/entities
http://wrox.com/namespaces/general/entities
http://wrox.com/namespaces/applications/hr/config
http://Wrox.com
http://Wrox.com
http://Wrox.com

64 ❘ CHAPTER 3 XML NAMESPACES

LISTING 3-13 (continued)

 <hr2:user firstName=”Joe” lastName=”Fawcett” />
 <hr2:user firstName=”Danny” lastName=”Ayers” />
 <hr2:user firstName=”Catherine” lastName=”Middleton” />
</hr1:applicationUsers>

Notice how both prefi xes, hr1 and hr2, point to the same namespace URI. The document element,
<applicationUsers>, uses the hr1 prefi x whereas the other elements use hr2. It’s not something
you’re likely to need but you do occasionally come across it when two different applications have
had a part in creating an XML fi le and the prefi xes were chosen independently.

What you can’t have, though, is the same prefi x pointing to different namespace URIs, as shown in
Listing 3-14.

LISTING 3-14: appUsersWithPrefi xedMappedTwiceIllegally.xml

<hr:applicationUsers
 xmlns:hr=”http://wrox.com/namespaces/applications/hr/config”
 xmlns:hr=”http://wrox.com/namespaces/general/entities”>
 <hr:user firstName=”Joe” lastName=”Fawcett” />
 <hr:user firstName=”Danny” lastName=”Ayers” />
 <hr:user firstName=”Catherine” lastName=”Middleton” />
</hr:applicationUsers>

In this example, the parser can’t tell which namespace URI to use when it encounters the hr prefi x, so
the XML is not well-formed or, to use the full technical terminology, it’s not namespace–well-formed.

Changing a Namespace Declaration

Although it’s not something that you would want to do regularly, there are a few instances in which
you would want to change a namespace declaration; this is most likely when a document has been
created from components coming from different sources. You can do this in one of three ways:

 ➤ Change the mapping between a prefi x and a namespace URI

 ➤ Change the default namespace

 ➤ Remove a namespace from scope by undeclaring it

First, take an example of changing the mapping between a prefi x and its namespace URI. In a realis-
tic scenario, you need an XML document with at least two levels of nesting, shown in Listing 3-15.

LISTING 3-15: ChangingNamespaceBindings.xml

<hr:config xmlns:hr=”http://wrox.com/namespaces/applications/hr/config”>
 <hr:applicationUsers xmlns:hr=”http://wrox.com/namespaces/general/entities”>
 <hr:user firstName=”Joe” lastName=”Fawcett” />
 <hr:user firstName=”Danny” lastName=”Ayers” />
 <hr:user firstName=”Catherine” lastName=”Middleton” />
 </hr:applicationUsers>
</hr:config>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c03.indd 64c03.indd 64 05/06/12 5:18 PM05/06/12 5:18 PM

http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/general/entities
http://wrox.com/namespaces/general/entities
http://wrox.com/namespaces/applications/hr/config
http://Wrox.com
http://Wrox.com

How to Declare a Namespace ❘ 65

This is not a good practice, so this example is a little contrived, but it shows the namespace declara-
tion on the <config> element being mapped to the hr prefi x and then, on the <applicationUsers>
element, a different namespace URI is mapped to the same prefi x. Although this is confusing, it can
happen when you receive different parts of an XML fi le from separate sources. There are certainly
no benefi ts to using this technique unless it’s absolutely necessary and, although a software applica-
tion should have no trouble reading the document, it makes human consumption diffi cult.

You can also use this technique to change the document’s default namespace as shown in
Listing 3-16.

LISTING 3-16: ChangingDefaultNamespaceBindings.xml

<config xmlns=”http://wrox.com/namespaces/applications/hr/config”>
 <applicationUsers xmlns=”http://wrox.com/namespaces/general/entities”>
 <user firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
 </applicationUsers>
</config>

Now the <config> element is in the http://wrox.com/namespaces/applications/hr/config
namespace but the other elements contained within it are in the http://wrox.com/namespaces/
general/entities one. Again, this is not something you’d strive for yourself but it’s a scenario that
might occur in fi les you receive from others. For example you may have two documents that both
use a default namespace but you need to embed one inside the other. As you know, an application
can cope with reading this sort of hybrid document but if you also want humans to edit it, using
more than one default namespace is defi nitely something to avoid.

A slightly different scenario occurs when you want to undeclare a namespace mapping completely.
Whether you can do this depends on if it’s a default mapping and which version of the XML
Namespaces recommendation you are using. The default mapping can be undeclared in all ver-
sions (currently there are versions 1.0 and 1.1) and you just need to use an empty namespace URI as
shown in Listing 3-17.

LISTING 3-17: UndeclaringTheDefaultNamespaceMapping.xml

<config xmlns=”http://wrox.com/namespaces/applications/hr/config”>
 <applicationUsers xmlns=””>
 <user firstName=”Joe” lastName=”Fawcett” />
 <user firstName=”Danny” lastName=”Ayers” />
 <user firstName=”Catherine” lastName=”Middleton” />
 </applicationUsers>
</config>

In this variation the <config> element is in the http://wrox.com/namespaces/applications/hr/
config namespace, but the other elements are not in any namespace (otherwise known as being in
the empty or null namespace). This is because the xmlns=”” on the <applicationUsers> element
undeclares the namespace mapping.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c03.indd 65c03.indd 65 05/06/12 5:18 PM05/06/12 5:18 PM

http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/general/entities
http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/general/entities
http://wrox.com/namespaces/general/entities
http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/applications/hr/config
http://Wrox.com
http://Wrox.com

66 ❘ CHAPTER 3 XML NAMESPACES

If you want to do a similar operation when using an explicit namespace — one with a prefi x
defi ned — you need to specify that you’re using version 1.1 in the XML declaration. This means that
you need to check that the XML parser you’re intending to use supports this newer version. Most of
the big names do, although Microsoft’s .NET parser doesn’t and many other lesser-known ones don’t
either. Listing 3-18 shows an XML document that declares the correct version and then maps and
unmaps a namespace to a prefi x.

LISTING 3-18: UndeclaringAPrefi xedNamespaceMapping.xml

<?xml version=”1.1” ?>
<hr:config xmlns:hr=”http://wrox.com/namespaces/applications/hr/config”>
 <applicationUsers xmlns:hr=»»>
 <user firstName=»Joe» lastName=»Fawcett» />
 <user firstName=»Danny» lastName=»Ayers» />
 <user firstName=»Catherine» lastName=»Middleton» />
 </applicationUsers>
</hr:config>

Here the hr prefi x is mapped to a namespace URI on the <config> element and then unmapped on
the <applicationUsers> element. This means that it would be illegal to try to use the prefi x from
this point. Note that for this to be legal syntax you must declare that you’re using version 1.1 as
shown on the fi rst line of the listing.

NOTE Another change made in version 1.1 is that namespace URIs (Uniform

Resource Identifi ers) are now offi cially IRIs (Internationalized Resource

Identifi ers). This means that they can contain characters from sets other than the

basic ASCII ones. You may have noticed that web addresses sometimes have

characters that need to be escaped using the %xx format, where xx represents

the Unicode code point for the character (refer to Chapter 2 for more on

Unicode). With IRIs these characters can be used directly so, for example, a

Russian website can use characters from the Cyrillic alphabet in its page names.

You can fi nd the full specifi cation for URIs and IRIs on the W3C’s website.

Returning to the XML fi le showing the employee data example from earlier, you can see how you
separate the two sets of information using namespaces. You use an explicit declaration for the
basic employee data and a default declaration for the biographical data that uses elements from the
XHTML namespace, as shown in Listing 3-19:

LISTING 3-19: employees.xml

<emp:employees xmlns:emp=”http://wrox.com/namespaces/general/employee”>

 <emp:employee id=”001”>

 <emp:firstName>Joe</emp:firstName>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c03.indd 66c03.indd 66 05/06/12 5:18 PM05/06/12 5:18 PM

http://wrox.com/namespaces/applications/hr/config
http://wrox.com/namespaces/general/employee
http://Wrox.com
http://Wrox.com

How to Declare a Namespace ❘ 67

 <emp:lastName>Fawcett</emp:lastName>

 <emp:title>Mr</emp:title>

 <emp:dateOfBirth>1962-11-19</emp:dateOfBirth>

 <emp:dateOfHire>2005-12-05</emp:dateOfHire>

 <emp:position>Head of Software Development</emp:position>

 <emp:biography>

 <html xmlns=”http://www.w3.org/1999/xhtml”>

 <head>

 <title>Joe’s Biography</title>

 </head>

 <body>

 <p>After graduating from the University of Life

 Joe moved into software development, originally working with COBOL on mainframes in
the 1980s.</p>

 </body>

 </html>

 </emp:biography>

 </emp:employee>

 <!-- more employee elements can be added here -->
</emp:employees>

The fi rst declaration is on the <emp:employees> element, so it is in scope for the whole document.
The second declaration is on the <html> element, so it applies only to this element and those con-
tained within it. Now any software processing this document can easily differentiate between the
two <title> elements because one has the full name of:

{ http://wrox.com/namespaces/general/employee}title

And the other has:

{ http://www.w3.org/1999/xhtml}title

Thus far you have learned the following important concepts about namespaces:

 ➤ Their main purpose is to group elements and to differentiate an element from others with a
similar name.

 ➤ You can choose any string of characters for the namespace URI, although it’s common prac-
tice to start it with your domain name.

 ➤ You can choose between a default namespace, where all elements are included automati-
cally, or a prefi xed namespace declaration, where you need to add the prefi x to the start and
end tags of any elements you wish to include.

 ➤ Your prefi x can be more or less what you want, with the exception of being unable to use
colons; it makes sense to use a short, simple character string.

The next section will introduce you to a number of real-world applications that make use of
namespaces.

c03.indd 67c03.indd 67 05/06/12 5:18 PM05/06/12 5:18 PM

http://www.w3.org/1999/xhtml
http://wrox.com/namespaces/general/employee
http://www.w3.org/1999/xhtml

68 ❘ CHAPTER 3 XML NAMESPACES

NAMESPACE USAGE IN THE REAL WORLD

You will most likely encounter namespaces whenever you use XML that has been designed for mass
consumption rather than for just one application. Although the primary reason to use namespaces
is still to group elements that are used together and to differentiate them from others with the same
name, there are other common uses as well. These include the following:

 ➤ XML Schemas: Defi ning the structure of a document.

 ➤ Combination documents: Merging documents from more than one source.

 ➤ Versioning: Differentiating between different versions of an XML format.

This section shows some common uses of namespaces in some real-life situations, starting with
XML Schema.

XML Schema

XML Schema gets a whole chapter to itself later in this book so this section just gives a quick over-
view of the basics and how namespaces are used within this branch of XML.

The basic idea behind XML Schemas is that they describe the legitimate format that an XML docu-
ment can take. This goes beyond being well-formed, which is discussed in Chapter 2, and moves on
to exactly which elements and attributes are allowed where, and what sort of content these items
can contain. For example, an attribute of creationDate on an element of <logEntry> would nor-
mally be expected to contain a date or possibly a date and time. The schema associated with this
document would detail that requirement. Besides the date and time data types there are a host of
others such as decimal, string, and Boolean.

XML Schema works by assigning the format and content type based on namespaces; any rules target a
single given namespace. If your XML format deals with elements from different namespaces, you need
to create a schema for each one and then merge these together using techniques you learn in Chapter 5.

Given that the XML Schema recommendation has already declared a broad range of types dealing
with numbers, text, dates, and times, it’s handy to be able to use these types in other documents,
not just when you’re describing the content of elements and attributes. For example, XSLT, which
is described in Chapter 8, was primarily designed to convert one XML format into another. It has
the facility to create functions to help in this matter and these functions need a way to specify
their return type, as is common in most programming languages. Rather than reinvent the wheel
and come out with another long list of types that may be returned, XSLT can use the same types
as XML Schema. You simply have to declare the XML Schema namespace, which is
http://www.w3.org/2001/XMLSchema, and assign a prefi x such as xs in your XSLT document.
You can then declare that your function returns an xs:string or an xs:boolean, for example.
You see some full examples of this in Chapter 8, which covers XSLT in depth.

Documents with Multiple Namespaces

Another common example of needing a document with more than one namespace is when you
want to embed XML into a web page. For example, Scalable Vector Graphics (SVG) provides for a

c03.indd 68c03.indd 68 05/06/12 5:18 PM05/06/12 5:18 PM

http://www.w3.org/2001/XMLSchema

Namespace Usage in the Real World ❘ 69

 standardized XML representation of graphics. The advantages of being able to describe these as XML
are that any manipulation of them, such as stretching or changing the colors or rotation, is now a
relatively simple process of transforming the XML rather than processor-hungry manipulation of bit-
maps. You can use SVG from within a web page but you need to be careful to make sure the browser
knows which part is to be rendered as traditional HTML and which part needs to be processed by the
SVG plug-in. You do this by creating different namespaces for the two distinct parts of the document.
The following Try It Out takes you through the process of creating a simple web page and then adding
extra content, in the form of SVG. It shows how the browser needs this extra content defi ned in the
SVG namespace so that it can choose which plug-in parses the XML and renders it as an image.

TRY IT OUT SVG within a Web Page

Even with two different namespaces, the main browsers — such as Internet Explorer, Firefox, and
Chrome — struggle. That’s because, at heart, they are not strict XML processors but have to deal with
plain HTML (possibly with incorrect syntax), XHTML, and a number of other formats. To get around
this you should embed the SVG fi le within the XHTML using an iframe rather than have the two syn-
taxes intermingled on the one page. You will still need two namespaces, though, to make sure that ele-
ments are handled correctly.

1. Start with a bare-bones XHTML page as shown in the following snippet and save it as
EmbeddedSVG.htm:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>
 <title>Embedded SVG</title>
</head>
<body>
<h1>Embedded SVG Example</h1>
<!-- SVG will go here -->
</body>
</html>

EmbeddedSVG.htm

Because this is XHTML rather than HTML it has a default namespace declared,
http://www.w3.org/1999/xhtml, on the root element. It also has a doctype, which is
not essential from an XML point of view but the browser needs this to know whether the
document conforms to the agreed format for XHTML.

2. Now you need to create a simple SVG document. Using a simple text editor such as Notepad, cre-
ate a fi le named shapes.svg and add the following code to form the basis of the document:

<?xml version=”1.0” encoding=”utf-8” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
“http://www.w3.org/TR/SVG/DTD/svg10.dtd”>
<svg viewBox=”0 0 270 400” width=”100%” height=”100%”
xmlns=”http://www.w3.org/2000/svg”>

 <!-- body of svg document -->
</svg>

Available for
download on
Wrox.com

c03.indd 69c03.indd 69 05/06/12 5:18 PM05/06/12 5:18 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/SVG/DTD/svg10.dtd
http://www.w3.org/2000/svg
http://Wrox.com

70 ❘ CHAPTER 3 XML NAMESPACES

3. Save it in the same folder as EmbeddedSVG.htm. Remember that SVG stands for Scalable Vector
Graphics and the format is used to describe shapes, from very simple to highly complex ones. Your
SVG fi le will display three basic shapes: a rectangle, a circle, and an ellipse. A caption will also be
associated with each item. The SVG fi le also has a doctype and its own namespace, http://www
.w3.org/2000/svg. You can see that after the XML prolog the root element is <svg> which is in
the http://www.w3.org/2000/svg namespace.

4. Further down the hierarchy, after a <g> element (which represents a graphics item), come three
elements named <rect>, <circle>, and <ellipse> as shown in the following snippet:

<g id=”mainlayer”>
 <rect fill=”red” stroke=”black” x=”15” y=”15” width=”100” height=”50”/>
 <circle fill=”yellow” stroke=”black” cx=”62” cy=”135” r=”20”/>
 <ellipse fill=”green” stroke=”black” cx=”200” cy=”135” rx=”50” ry=”20”/>
 <!-- shape descriptions -->
 </g>

5. After these comes another <g> element containing the three captions for the shapes:

<g font-size=”20px”>
 <text x=”44” y=”88”>rectangle</text>
 <text x=”36” y=”180”>circle</text>
 <text x=”170” y=”180”>ellipse</text>
 </g>

6. When you are fi nished, the full document should look like the following:

<?xml version=”1.0” encoding=”utf-8” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
“http://www.w3.org/TR/SVG/DTD/svg10.dtd”>
<svg viewBox=”0 0 270 400” width=”100%” height=”100%”
xmlns=”http://www.w3.org/2000/svg”>
 <g id=”mainlayer”>
 <rect fill=”red” stroke=”black” x=”15” y=”15” width=”100” height=”50”/>
 <circle fill=”yellow” stroke=”black” cx=”62” cy=”135” r=”20”/>
 <ellipse fill=”green” stroke=”black” cx=”200” cy=”135” rx=”50” ry=”20”/>
 <g font-size=”20px”>
 <text x=”44” y=”88”>rectangle</text>
 <text x=”36” y=”180”>circle</text>
 <text x=”170” y=”180”>ellipse</text>
 </g>
 </g>
</svg >

Shapes.svg

7. Now you need to embed the SVG in the web page. You have three possible ways of doing this:

 ➤ Use an <embed> element. This works in most browsers but isn’t part of strict XHTML.

 ➤ Use an <object> element. This works in Firefox and Chrome but can be problematic in
Internet Explorer.

 ➤ Use an <iframe> element. Probably the simplest technique and one that you’ll use here. It
works in all browsers capable of displaying SVG.

Available for
download on
Wrox.com

c03.indd 70c03.indd 70 05/06/12 5:18 PM05/06/12 5:18 PM

http://www.w3.org/2000/svg
http://www.w3.org/2000/svg
http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/DTD/svg10.dtd
http://www.w3.org/2000/svg
http://Wrox.com

Namespace Usage in the Real World ❘ 71

Note that if you’re using an older version of IE you may need to download the Adobe SVG plugin from
http://www.adobe.com/svg/viewer/install/.

8. So your fi nal fi le will look like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>Embedded SVG</title>
</head>
<body>
 <h1>
 Embedded SVG Example</h1>
 <iframe src=”shapes.svg” width=”400” height=”400”></iframe>
</body>
</html>

The shapes.svg fi le needs to be in the same folder as EmbeddedSVG.htm. The fi nal result looks some-
thing like Figure 3-1.

FIGURE 3-1

How it Works
All modern browsers can handle a variety of different data formats. The majority of web pages contain
HTML formatted text and images, which can be JPGs, PNGs or GIFs to name but a few. Browsers
can also handle a variety of other text-based formats provided that they have either native support or

c03.indd 71c03.indd 71 05/06/12 5:18 PM05/06/12 5:18 PM

http://www.adobe.com/svg/viewer/install/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

72 ❘ CHAPTER 3 XML NAMESPACES

access to a suitable plug-in. Whichever of these two options apply, it is necessary for the browser to be
able to differentiate which specifi c content is passed to each handler. The most common way that this
occurs is by declaring XML-based content in a specifi c namespace. In this example the main content is
XHTML, rendered by the standard browser display engine. XHTML elements are grouped under the
http://www.w3.org/1999/xhtml namespace. The SVG content is contained in an iframe. When the
browser encounters the SVG namespace, http://www.w3.org/2000/svg, it realizes that the standard
XHTML parser won’t suffi ce and it looks for a handler that can process the content. Some browsers
come with a built-in SVG parser; others require you to have installed one separately. Whichever option
is needed, any content in the SVG namespace is rendered using the rules defi ned in the SVG standards
as a graphic.

WHEN TO USE AND NOT USE NAMESPACES

When designing an XML format for some data that doesn’t already possess a standard representa-
tion, you should consider carefully whether or not the document should use a namespace. Although
there are a number of good reasons to use one there are also scenarios where a namespace will only
add to the work involved in designing and utilizing your XML. In general the case normally favors
using a namespace, and the extra work involved is usually offset by the fl exibility achieved as well as
future-proofi ng your design; it’s almost impossible to tell for example, when designing data formats,
how long they will remain in existence and how they will be used in situations other than the ones
which initially warranted their creation. For a concrete example of this, cast your mind back to the
Millennium Bug. Masses of software rewriting was caused by developers in the 1970s not appreci-
ating that the chosen date format using just two digits for the year limited their work to a twenty
to thirty year life span. The next two sections cover common situations for when you should use
namespaces and when you shouldn’t.

When Namespaces are Needed

You’ve seen the main reason for using namespaces: to differentiate between elements that have the
same name. This is one of the main reasons for using namespaces in your documents. The other rea-
sons to do so are discussed in this section. Once you have got the hang of XML Namespaces you’ll
naturally assume that documents generally use them, and it’s certainly unusual to fi nd XML made
for consumption by more than one client to not have any.

When There’s No Choice

The fi rst situation is the easiest; sometimes you have no choice in the matter. For example, if you
choose to use a format designed by someone else to represent your data, the chances are that the
format insists on the elements being in a namespace. If you decide to change this and just use the
prescribed format but without namespaces, you’ll fi nd three things:

 ➤ You won’t be able to validate whether the documents you create are in the correct format
because, as was pointed out earlier, any XML Schema that describes the document’s format
will be targeting items in the relevant namespace.

c03.indd 72c03.indd 72 05/06/12 5:18 PM05/06/12 5:18 PM

http://www.w3.org/1999/xhtml
http://www.w3.org/2000/svg

When to Use and Not Use Namespaces ❘ 73

 ➤ You won’t be able to share these documents outside your own systems; others will expect
the namespaced version.

 ➤ Your system won’t accept documents from external sources because these will be
namespaced.

If you decide that a previously-developed format suits your data, you should adopt it completely and
not try to change it. This will leave you capable of using standard tools designed to work with that
format and increase the chances of interoperability.

When You Need Interoperability

If you decide that an XML format is the best way to represent your data, your next question
may well be, “Do I need to share this data with other systems, particularly those not developed
externally?”

If the answer to this question is yes, you should probably group your elements under a namespace.
Even if, in your local systems the document will always stand alone and there’s no danger of a clash
of element names, you can’t tell how other systems will use this information. They may well need to
embed your XML into a larger document and need the namespaces to differentiate your data from
the complete structure.

When You Need Validation

Validation is covered in the next two chapters, but earlier you saw that XML Schemas provide a
way to dictate the structure of an XML document and which content types the elements and attri-
butes can contain. Although it’s possible to have a schema that works without using namespaces
it’s quite rare and can cause problems when document collation is needed. So if you want to be able
validate your document, it needs to use namespaces.

When Namespaces Are Not Needed

The main case for avoiding namespaces is when you have the need to store or exchange data for rel-
atively small documents that will be seen only by a limited number of systems, ideally those devel-
oped internally by yourself or others in your organization.

A typical example of this situation might be when a web page needs to retrieve snippets of data
from a web service using Ajax. If you have a page that accepts two numeric values and two currency
descriptors that are used to convert from one denomination to another, you might be expecting a
response that looks something like:

<conversion amount= “100” from= “USD” to= “GBP”>60.86</conversion>

In this case the response is so small and the chance of the service being used externally is so low that
it doesn’t make sense to add the complexity of namespaces.

c03.indd 73c03.indd 73 05/06/12 5:18 PM05/06/12 5:18 PM

74 ❘ CHAPTER 3 XML NAMESPACES

Versioning and Namespaces

One way in that people have used namespaces in the past is to differentiate between various ver-
sions of their formats. For example, if you go back to the employees.xml fi le from earlier, you used
a namespace of http://wrox.com/namespaces/general/employee. Suppose you come out with a
newer version of the format — you may decide to change it to http://wrox.com/namespaces/
general/employee/v2. Superfi cially this seems like a good idea because the two formats will
probably only differ slightly; there may be some extra elements and attributes in the later version
but the general structure is likely to be similar. In practice, though, it rarely is.

The reason for this becomes clear when you ask the question, “How do I want the application to
handle the two different versions?” There are four different scenarios:

 ➤ Version one of the application opens a version one fi le.

 ➤ Version one of the application opens a version two fi le.

 ➤ Version two of the application opens a version one fi le.

 ➤ Version two of the application opens a version two fi le.

The fi rst and the last cases are easy, but the other two need some thought. If version one of the soft-
ware opens a version two fi le, would you expect it to be able to read it or not? Will it just ignore any
elements it does not recognize and process the rest as normal, or just reject the fi le out of hand? A
similar issue applies in the third case. Should the version two system recognize an earlier XML ver-
sion and just add some defaults for any missing values, or should it just announce that the fi le is not
the correct format?

If you’re happy for the applications to reject a mismatching fi le, you can safely use different
namespaces for each version. It won’t matter because, for all intents and purposes, to the version
two application a version one fi le may as well be a random XML document such as an XHTML
page; it’s just not going to read it. If, however, you want the applications to be able to cope with
both the earlier and the later formats it’s important that the two namespaces are the same. If this
isn’t the case, the systems would need to know the namespaces of all possible future XML formats
that could be accepted. This isn’t very practical; in fact, the best way to cope with versioning is to
have something like a separate attribute on the fi le, something like this:

<emp:employees
 xmlns:emp=”http://wrox.com/namespaces/general/employee”
 version=”1.0”>
 <!-- rest of data -->
</emp:employee>

NOTE Many might argue that with such small amounts of data and the fact that

it’s only going to be consumed directly by a browser, XML isn’t a good choice for

the data format in the fi rst place, never mind whether you should worry about

using a namespace. This sort of situation is where you might reject XML in favor

of a more lightweight format such as JSON, which, along with AJAX, is covered

in more depth Chapter 16.

c03.indd 74c03.indd 74 05/06/12 5:18 PM05/06/12 5:18 PM

http://wrox.com/namespaces/general/employee
http://wrox.com/namespaces/general/employee/v2
http://wrox.com/namespaces/general/employee/v2
http://wrox.com/namespaces/general/employee

Common Namespaces ❘ 75

As stated earlier, more experienced XML developers tend to veer towards using namespaces in
their documents as opposed to using their own formats, but ultimately the choice is up to you. And
this choice isn’t set in stone by any means. There are plenty of public data formats that began by
not using namespaces in earlier versions but changed to using them in subsequent designs. There
are also examples that show the opposite — documents that originally used a namespace but then
decided that it wasn’t needed and reverted to a simpler format. Now that you’ve seen the pros and
cons regarding using namespaces in your own documents you should be in a better position to make
your own decision. Next you look at some common namespaces used in XML documents.

COMMON NAMESPACES

Hundreds, possibly thousands, of namespaces are accepted as standard for different XML formats.
However, you will likely fi nd yourself using many of the same ones over and over. This section just
discusses some of the most common namespaces you’ll encounter if your systems accept documents
from external sources.

The XML Namespace

The XML Namespace is a special case. The prefi x xml is bound to the URI http://www.w3.org/
XML/1998/namespace and this is hard-coded into all XML parsers so you don’t need to declare it
yourself. This means that you can use various special attributes in your XML document, such as
xml:lang, which is used to denote which natural language an element’s content is in. For example,
you may want to store phrases in multiple languages, as shown in Listing 3-20.

LISTING 3-20: UsingXmlLangAttribute.xml

<phrases>
 <phrase id=”1”>
 <text xml:lang=”en-gb”>Please choose a colour</text>
 <text xml:lang=”en-us”>Please choose a color</text>
 <text xml:lang=”es-es”>Por favor, elija un color</text>
 </phrase>
 <phrase id=”2”>
 <text xml:lang=”en-gb”>How large is your organisation?</text>
 <text xml:lang=”en-us”>>How large is your organization?</text>
 <text xml:lang=”es-es”>¿Qué tan grande es su organización?</text>
 </phrase>
</phrases>

Here the translations can be found by using a combination of the id attribute and the contents of
xml:lang, which uses the fi rst two letters for the language and the second two for the region where
it’s spoken. So you have each phrase in British English, U.S. English, and Spanish as spoken in
Spain. Of course, you could just use your own attribute, such as lang, but using the standard one
means that you’ll get alerted if you choose an invalid language-region combination such as en-fr
because there’s no offi cial version of English particular to France.

Available for
download on
Wrox.com

c03.indd 75c03.indd 75 05/06/12 5:18 PM05/06/12 5:18 PM

http://www.w3.org/XML/1998/namespace
http://www.w3.org/XML/1998/namespace
http://Wrox.com

76 ❘ CHAPTER 3 XML NAMESPACES

The other attributes and identifi ers you might encounter that are in the XML Namespace are:

 ➤ xml:space: You met this in Chapter 2. It is used so the author of the document can specify
whether whitespace is signifi cant or not. It takes the values preserve or default.

 ➤ xml:base: This is used in a similar way to the base attribute in HTML. It enables you to
specify a base URL from which any relative URLs in the document will be resolved.

 ➤ xml:id: This specifi es that the value of this attribute is a unique identifi er within the document.

 ➤ xml:Father: Although rarely seen in practice, its existence proves that the W3C’s XML
committee is actually human. It refers to Jon Bosak, a leading light in the XML community
who chaired the original XML working group. It could be used, for example, when specify-
ing a document’s author such as <document author=”xml:Father” />.

There’s no reason for you to declare the XML Namespace but you can if want to; what you must
not do is either try to bind the xml prefi x to another URI or undeclare it — that would lead to the
parser throwing an error.

The XMLNS Namespace

As you’ve seen throughout this chapter the xmlns prefi x is used to declare a prefi xed namespace
in an XML document. Again it is hard-coded into parsers and is bound to the URI
http://www.w3.org/2000/xmlns/. Trying to declare it yourself, or trying to bind it to another
URI, is an error. This makes sense because how would you do this anyway? You need the xmlns
prefi x itself to declare or undeclare so you’re creating an infi nite loop if you try to bind it yourself.

The XML Schema Namespace

This namespace, with a URI of http://www.w3.org/2001/XMLSchema, is used in schema documents
describing the legitimate structure of a particular XML format. As mentioned earlier, the data types in
this namespace, such as decimal, string, and Boolean, are often used by other schemas instead of having
to re-invent the list themselves. They are usually bound to the prefi x xs or xsd but that’s purely a per-
sonal choice. With the exception of the xml and xmlns you can choose whatever prefi x you like when
binding a namespace. So it is perfectly acceptable if you want a document that looks like the following:

<myVeryLongPrefix:schema
 xmlns:myVeryLongPrefix=”http://www.w3.org/2001/XMLSchema”>
 <!-- rest of document here -->
</myVeryLongPrefix:schema>

The XSLT Namespace

XSLT, covered in Chapter 8, is primarily used to convert XML into a different format, either a
 differently-formatted XML or perhaps HTML or just plain text. Because XSLT is XML itself, it’s
essential that its elements are in a namespace; otherwise it would be impossible to tell which parts
of the document are instructions for processing and which are new elements to be output. All but
the most trivial XSLT documents, therefore, have elements in multiple namespaces. The XSLT
Namespace URI is http://www.w3.org/1999/XSL/Transform and is most commonly bound to the
xsl or xslt prefi x.

c03.indd 76c03.indd 76 05/06/12 5:18 PM05/06/12 5:18 PM

http://www.w3.org/2000/xmlns/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/1999/XSL/Transform

Common Namespaces ❘ 77

The SOAP Namespaces

SOAP is covered in depth in Chapters 15 and 16. It’s an XML format designed to enable method
calls between a client and a web service. There are two namespaces depending on which version
you use (presumably, as discussed in the section on versioning using namespaces, the authors of the
specifi cations didn’t want interoperability between the two formats). The original namespace URI
for SOAP 1.1 is http://schemas.xmlsoap.org/soap/envelope/ and is usually bound to the pre-
fi x soap. The later one, for version 1.2, is http://www.w3.org/2003/05/soap-envelope, which is
commonly bound to the prefi x soap12. The SOAP namespace contains such elements as
<soap:Envelope>, which wraps the entire message; <soap:Header>, which contains details such
as user credentials; and <soap:Body>, which contains the method being called and its arguments.

The WSDL Namespace

The Web Services Description Language (WSDL) is used to describe a web service in such a way
that clients can programmatically connect to a server, know what methods are available, and format
their method calls appropriately. It’s closely associated with the SOAP specifi cation from the preced-
ing paragraph. The URI is http://www.w3.org/ns/wsdl for both versions 1.0 and 2.0 of this for-
mat and is usually bound to the prefi x wsdl if it’s not used as the default namespace.

The Atom Namespace

This namespace is used for publishing information (such as newsfeeds) and has also been adopted by
Microsoft for use in ODATA, a format where results from database queries can be presented in an
XML format. The URI is http://www.w3.org/2005/Atom.

Atom is a rival format to RSS, which has long been used for the XML formatting of informational
lists, such as blog posts or news.

The MathML Namespace

MathML is used to describe mathematical notations such as equations and their content and struc-
ture. It uses the namespace URI http://www.w3.org/1998/Math/MathML. It is a rather verbose lan-
guage compared to traditional ways of representation but is designed to be consumed only by suitable
software applications. For example, the simple equation ax2 + bx + c could be represented by
Listing 3-21.

LISTING 3-21: SimpleEquationInMathML.xml

<!DOCTYPE math
 PUBLIC “-//W3C//DTD MathML 2.0//EN”
 “http://www.w3.org/Math/DTD/mathml2/mathml2.dtd”>
<math xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink” overflow=”scroll”>
<mrow xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink”>
 <mi xmlns=”http://www.w3.org/1998/Math/MathML”

continues

c03.indd 77c03.indd 77 05/06/12 5:18 PM05/06/12 5:18 PM

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/ns/wsdl
http://www.w3.org/2005/Atom
http://www.w3.org/1998/Math/MathML
http://www.w3.org/Math/DTD/mathml2/mathml2.dtd
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xlink
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xlink
http://www.w3.org/1998/Math/MathML

78 ❘ CHAPTER 3 XML NAMESPACES

LISTING 3-21 (continued)

xmlns:xlink=”http://www.w3.org/1999/xlink”>a</mi>
- <mo xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink”>
 ?
<!-- ⁢
 -->
 </mo>
<msup xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink”>
 <mi xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink”>x</mi>
 <mn xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink”>2</mn>
 </msup>
 <mo xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink”>+</mo>
 <mi xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink”>b</mi>
- <mo xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink”>
 ?
- <!-- ⁢
 -->
 </mo>
 <mi xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink”>x</mi>
 <mo xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink”>+</mo>
 <mi xmlns=”http://www.w3.org/1998/Math/MathML”
xmlns:xlink=”http://www.w3.org/1999/xlink”>c</mi>
 </mrow>
 </math>

If you have Word 2007 or greater you can try this XML by pasting it into a new document. Word
understands MathML and will simply show the equation rather than the markup.

The Docbook Namespace

Finally, the Docbook namespace is normally used to mark up such things as technical publications
and software and hardware manuals, although there’s no reason it can’t be used for other topics. It
has elements such as <book>, <title>, <chapter>, and <para> to represent the various stories of a
document. The namespace URI is http://docbook.org/ns/docbook.

SUMMARY

This chapter introduced you to XML Namespaces. You should now understand:

 ➤ The primary purpose of namespaces is to group related elements and to differentiate them
from elements with the same name that were designed to represent different types of data.

c03.indd 78c03.indd 78 05/06/12 5:18 PM05/06/12 5:18 PM

http://www.w3.org/1999/xlink
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xlink
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xlink
http://www.w3.org/1999/xlink
http://www.w3.org/1999/xlink%E2%80%9D%3Ex%3C/mi
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xlink%E2%80%9D%3E2%3C/mn
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xlink%E2%80%9D%3E+%3C/mo
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xlink%E2%80%9D%3Eb%3C/mi
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xlink
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xlink%E2%80%9D%3Ex%3C/mi
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xlink%E2%80%9D%3E+%3C/mo
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xlink%E2%80%9D%3Ec%3C/mi
http://docbook.org/ns/docbook

Summary ❘ 79

 ➤ The accepted way to choose a unique namespace is to use a domain name that you control
combined with a unique string of characters indicating its usage.

 ➤ There are differences between URLs, URNs, and URIs; namespaces are not URLs.

 ➤ How to declare a namespace using xmlns.

 ➤ There are two ways of specifying namespaces: default and prefi xed.

 ➤ Documents can have more than one namespace; this makes it possible for software applica-
tions to treat the two content types differently.

 ➤ The basics of XML Schemas and how they use namespaces.

The next few chapters cover how to describe the format and content types of an XML document
and how to determine if it has the correct structure.

EXERCISES

Answers to Exercises can be found in Appendix A.

 1. There are three things wrong with the following namespaced document. What are they?

<xmlData:document>
 <xmlData:item xmlns:xmlData=”http://www.wrox.com/chapter3/exercise1/data”>
 <ns:details>What’s wrong with this document?</ns:details>
 </xmlData:item>
</xmldata:document>

Exercise1-question.xml

 2. There are three reasons why the following namespace URI is a poor choice for an XML format

you designed. What are they?

http://www.wrox.com/namespaces/HR application/%7eConfig

Available for
download on
Wrox.com

c03.indd 79c03.indd 79 05/06/12 5:18 PM05/06/12 5:18 PM

http://www.wrox.com/chapter3/exercise1/data
http://www.wrox.com/namespaces/HRapplication/%7eConfig
http://Wrox.com

80 ❘ CHAPTER 3 XML NAMESPACES

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

The reason for

namespaces

Namespaces exist to group-related elements and to diff er-

entiate them from other elements with the same name.

Choosing

namespaces

Use a unique character string; for example, a domain that

you control followed by a string giving an idea of what

area it is used in.

Types of

namespaces

There are two types: default namespaces and those using

prefi xes.

Declaring

default

namespaces

Add xmlns=”your namespace URI here”. The element

on which this declaration appears and any under it will be

in this namespace; attributes will not be in a namespace.

Declaring

prefi xed

namespaces

Add xmlns:prefix=”your namespace URI here”.

Elements must now be written as <prefix:myElement/>

to be included in the namespace.

Reasons to use

namespaces

in your own

documents

You are following a predefi ned schema.

You need to incorporate your document into another XML

format.

You want to make validation easier.

You expect your document to be consumed by many

diff erent applications.

Reasons

not to use

namespaces

in your own

documents

You are only using the documents internally on one

system.

You don’t need to validate the documents.

c03.indd 80c03.indd 80 05/06/12 5:18 PM05/06/12 5:18 PM

PART II
Validation

 � CHAPTER 4: Document Type Defi nitions

 � CHAPTER 5: XML Schemas

 � CHAPTER 6: RELAX NG and Schematron

c04.indd 81c04.indd 81 05/06/12 5:20 PM05/06/12 5:20 PM

c04.indd 82c04.indd 82 05/06/12 5:20 PM05/06/12 5:20 PM

Document Type Defi nitions

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to create DTDs

 ➤ How to validate an XML document against a DTD

 ➤ How to use DTDs to create XML documents from multiple fi les

As you have seen so far, you can write well-formed XML by following a few simple rules. In
effect, these rules describe how to determine one of XML’s key characteristics: its structure.
Without the rules, the material is ambiguous. But well-formedness only goes so far. Several
other technologies are available for validating XML documents, each with their own
advantages and disadvantages. Document Type Defi nitions (DTDs) offer a way of specifying
further rules that help in the interpretation of documents and their structure. By using
namespaces (see Chapter 3) it’s possible to create unambiguously distinct sets of elements
and attributes according the purpose you have in mind. Whether or not they appear in a
namespace, such special-purpose sets of terms are sometimes known as vocabularies. You
can describe an XML language’s structure and vocabulary in a software-friendly fashion,
which can be used to check whether XML documents meet the requirements. This checking is
known as validation.

WHAT ARE DOCUMENT TYPE DEFINITIONS?

When the vocabulary and structure of potential XML documents for a given purpose are
considered together, you can talk about the type of the documents: the elements and attributes
in these documents, and how they interrelate are designed to cover a particular subject of
interest. Generally speaking, this isn’t any more than using a specifi c XML language, for
example XMLTV (used for television listings) or X3D (for 3D graphics). But for validation
purposes, the nature of an XML language can be much more specifi c, and Document Type

4

c04.indd 83c04.indd 83 05/06/12 5:20 PM05/06/12 5:20 PM

84 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

Defi nitions (DTDs) are a way to describe fairly precisely the “shape” of the language. This idea has
parallels in human language.

If you want to read or write in English or German, you must have some understanding of the
grammar of the language in question. In a similar fashion, it’s useful to make sure the structure and
vocabulary of XML documents are valid against the grammatical rules of the appropriate XML
language. Fortunately, XML languages are considerably simpler than human languages. As you
would expect, the grammars of XML languages are expressed with computer processing in mind.
The breaking down of a human-language sentence into its grammatical components is known as
parsing. The same applies with XML, although being simpler, a machine parser can do the job.

As mentioned in Chapter 1, parsers are the software subsystems that read the information
contained in XML documents into our programs. The XML specifi cation separates parsers into
two categories: validating and nonvalidating. Validating parsers must implement validity checking
using DTDs. With a validating parser, a lot of content-checking code you might otherwise need in
your application is unnecessary; you can depend on the parser to verify the content of the XML
document against the DTD.

NOTE Although you learn everything you need to know about DTDs in this chapter,

you might like to see the XML Recommendation and its discussion of DTDs for

yourself. If so, you can look it up at www.w3.org/TR/REC-xml#dt-doctype.

Working with DTDs

There are two ways of associating a DTD with a document: internally and externally. The internal
approach includes the DTD within the XML document. Although this isn’t a very common way of
using DTDs in the wild, it can be very useful during development because you can easily change the
shape of the XML and associated DTD and you can quickly confi rm they are consistent with each
other. Once a DTD has been developed, typically XML documents will be associated with it by
reference. It’s very likely you will have seen such a reference already; a large proportion of HTML
pages include a line like the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

You will soon see what all of this means, but fi rst you need to get equipped to write your own
DTDs. To get started, the following section examines a text editor with DTD support that can be
used to parse and validate XML documents.

Using jEdit

To author XML documents and DTDs all you need is a text editor, but if you want to experiment
with validation you’ll want something with dedicated support built in. Lots of free, open source,
and commercial tools are available for XML, and many support validation. Most Integrated

c04.indd 84c04.indd 84 05/06/12 5:20 PM05/06/12 5:20 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/REC-xml#dt-doctype

What Are Document Type Defi nitions? ❘ 85

Development Environments (IDEs), such as Eclipse and NetBeans, have some XML facilities,
and if you’re already using one of these you may want to read the appropriate parts of your
IDE’s documentation. For the practical examples in this chapter and the next, you’ll be using the
jEdit programmer’s editor available from www.jedit.org. It’s open source and a free download
is available for all major operating systems. At its core jEdit is a simple, relatively lightweight
text editor. But a vast number of plugins are available which enable you to customize it to the
programming language(s) of your choice.

NOTE jEdit is built in Java so you will also need Java Virtual Machine (JVM)

support. There’s a good chance you’ll already have JVM installed because lots

of software depends on it. Check for this and if necessary download what’s

needed at www.java.com.

Once you have downloaded and installed jEdit you will need to add XML support. This is very easy.

 1. First run jEdit and click the Plugins menu.

 2. On the submenus you will see Plugins Manager; click this. You will be presented with a
table with three tabs at the top: Manage, Update, and Install.

 3. Click Install. After a moment’s delay (while jEdit downloads the latest plugin list) you will
see a list of available plugins, each with a checkbox to the left.

 4. Scroll down to the entry for XML and click the checkbox.

 5. An Install button below will be enabled; click this.

 6. Once the download has fi nished, close the Plugin Manager window and you’re ready to go.

Now that you’ve set up your development environment, you’ll use jEdit’s DTD capabilities to validate
an XML document. You’ll also see what happens when the content doesn’t match the structure
specifi ed in the DTD.

TRY IT OUT What’s in a Name?

In this example, you embed a DTD that defi nes the <name> vocabulary directly within an XML docu-
ment. The editor plugin is used to confi rm that the XML is valid against the DTD. You can experiment
to see what is and isn’t considered valid. Later, you will see how the more common approach of sepa-
rating the defi nition from the XML document can be useful in distributed environments.

1. Run jEdit and type in the following document, making sure you include the spaces as shown.
This document simply holds details of a person’s full name:

<?xml version=”1.0”?>
<!DOCTYPE name [
 <!ELEMENT name (first, middle, last)>
 <!ELEMENT first (#PCDATA)>
 <!ELEMENT middle (#PCDATA)>

c04.indd 85c04.indd 85 05/06/12 5:20 PM05/06/12 5:20 PM

http://www.jedit.org
http://www.java.com

86 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

 <!ELEMENT last (#PCDATA)>
]>
<name>
 <first>Joseph</first>
 <middle>John</middle>
 <last>Fawcett</last>
</name>

 2. Click File ➪ Save As and save the fi le as name-dtd.xml.

 3. You are now ready to validate the document. Click the Plugins menu, and choose XML ➪ Parse
XML. This will look like Figure 4-1. A Sidekick window will appear showing the structure of
the XML. Just close this.

FIGURE 4-1

 4. If any part of your document is now underlined in red, then the parser encountered an error.
Moving the mouse over the red line will produce a pop-up describing the error. Correct the error
and try again. When editing XML manually, it is common to make errors when you fi rst begin.
Very soon you will fi nd yourself spotting and correcting errors as you go along.

 5. Create a new document called name-dtd-2.xml by clicking File ➪ Save As again. Change the
name of the <first> element to <given> within the document:

<?xml version=”1.0”?>
<!DOCTYPE name [
 <!ELEMENT name (first, middle, last)>
 <!ELEMENT first (#PCDATA)>
 <!ELEMENT middle (#PCDATA)>
 <!ELEMENT last (#PCDATA)>
]>
<name>
 <given>Joseph</given>
 <middle>John</middle>
 <last>Fawcett</last>
</name>

c04.indd 86c04.indd 86 05/06/12 5:20 PM05/06/12 5:20 PM

What Are Document Type Defi nitions? ❘ 87

 6. Save the fi le and try validating again: Plugins ➪ XML ➪ Parse as XML. This time the program
should indicate errors, as shown in Figure 4-2.

If you move your mouse over the red lines you will get the reports that (under the opening <given>
tag), “Element type given must be declared” and (under the closing </name> tag), “The content of the
element type name must match (first, middle, last).” The program is letting you know that
the content of the XML document didn’t match what was specifi ed in the DTD.

FIGURE 4-2

How It Works

This Try It Out used the DTD to check whether the content within the XML document matched the
vocabulary. This was achieved using the DTD-aware parser built into the jEdit plugin. Internally, pars-
ers handle these checks in different ways (usually it’s best to think of them as black boxes). At the most
basic level, the parser reads the DTD declarations and stores them in memory. Then, as it reads the
document, it validates each element that it encounters against the matching declaration. If it fi nds an
element or attribute that does not appear within the declarations or appears in the wrong position, or if
it fi nds a declaration that has no matching XML content, it raises a validity error.

Let’s break the DTD down into smaller pieces so that you can get a preview of what you will learn
later. As you have learned so far, you begin with the XML declaration. This is optional, but it is
recommended that you include it to avoid potential XML version confl icts in the future:

<?xml version=”1.0”?>

Immediately following the XML header is the document type declaration, commonly referred to as
the DOCTYPE:

<!DOCTYPE name [

c04.indd 87c04.indd 87 05/06/12 5:20 PM05/06/12 5:20 PM

88 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

The DOCTYPE informs the parser that a DTD is associated with this XML document. When using a
DTD, the document type declaration must appear at the start of the document (preceded only by the
XML header) — it is not permitted anywhere else within the document. The DOCTYPE declaration
has an exclamation mark (!) at the start of the element name. The XML Recommendation indicates
that declaration elements must begin with an exclamation mark. Declaration elements may appear
only as part of the DTD. They may not appear within the main XML content.

WARNING At this point, you may have noticed that the syntax for DTDs is very

diff erent from the rules for basic XML documents. DTDs were originally used

with the Standard Generalized Markup Language (SGML). To maintain compat-

ibility with SGML, the designers of XML decided to keep the declaration lan-

guage similar.

In the previous example, you created a relatively simple DOCTYPE declaration. Directly following the
DOCTYPE declaration is the body of the DTD. This is where you declare elements, attributes, entities,
and notations:

<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

In the preceding DTD, you have declared several elements that make up the vocabulary of the
<name> document. Like the DOCTYPE declaration, the element declarations must start with an
exclamation mark.

Finally, the declaration section of the DTD is closed using a closing bracket and a closing angle
bracket (]>). This effectively ends the defi nition, and the XML document immediately follows.

Now that you have seen a DTD and a validating parser in action, you may feel ready to create DTDs
for all of your XML documents. Bear in mind that validation uses more processing power than
simply reading a document into an application, so it’s a good idea to be systematic about your use
of DTDs. But if you’re hand-authoring with a tool like jEdit then it certainly makes sense to validate
before saving.

The Document Type Declaration in Detail

The document type declaration, or DOCTYPE, informs the parser that your document should conform
to a DTD. It also indicates where the parser can fi nd the rest of the defi nition. In the fi rst example,
the DOCTYPE was simple:

<!DOCTYPE name []>

c04.indd 88c04.indd 88 05/06/12 5:20 PM05/06/12 5:20 PM

What Are Document Type Defi nitions? ❘ 89

The document type declaration always begins in the same way, with <!DOCTYPE, followed by some
whitespace, just as there is after element names. Note that whitespace is not allowed to appear in
between DOCTYPE and the opening <!.

After the whitespace, the name of the XML document’s root element must appear exactly as it will
in the document, including any namespace prefi x. Because the document’s root element is <name>,
the word name follows the opening <!DOCTYPE in the previous declaration.

WARNING Remember that XML is case sensitive. Therefore, anytime you see

a name in XML, it is case sensitive. When the recommendation says the name

must appear exactly as it will in the document, this includes character case.

You will see this throughout the DTD; any reference to XML names implies case

sensitivity.

Following the name of the root element, you have several options for specifying the rest of the
document type declaration. In the <name> example, the element declarations appeared
between the [and] of the DTD. When declarations appear between the [and], as in the
example, they are called internal subset declarations. It is also possible to have some or all of your
declarations in a separate document. DTD declarations that appear in external documents are
external subset declarations. You can refer to an external DTD by either using system identifi ers or
public identifi ers.

NOTE Aside from experimentation and development, it’s rarely necessary to

use internal DTDs, and external DTDs have many advantages. For example,

because the DTD appears in a single separate document, it is easier to make

changes that apply to all documents that use the DTD. Later in the chapter, you

look at XML documents and DTDs that consist of many fi les using entities.

You must remember, however, that looking up the DTD fi le takes extra process-

ing time. In addition, if the DTD fi le is located on the Internet, you have to wait for

it to download. Usually it is better to keep a local copy of the DTD for validation

purposes or ensure the tools you are using have a caching mechanism. If you

are maintaining a local copy, you should check for changes to the DTD at the

original location.

System Identifi ers

A system identifi er enables you to specify the location of an external fi le containing DTD
declarations. It is comprised of two parts: the keyword SYSTEM, and a URI reference pointing to
the document’s location. A URI can be a fi le on your local hard drive, a fi le on your intranet or
network, or even a fi le available on the Internet:

<!DOCTYPE name SYSTEM “name.dtd” [...]>

c04.indd 89c04.indd 89 05/06/12 5:20 PM05/06/12 5:20 PM

90 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

You must type the word SYSTEM after the name of the root element in your declaration. Following
the SYSTEM keyword is the URI reference to the location of the fi le, in quotation marks. The
following examples use system identifi ers:

<!DOCTYPE name SYSTEM “file:///c:/name.dtd” []>
<!DOCTYPE name SYSTEM “http://wiley.com/hr/name.dtd” []>
<!DOCTYPE name SYSTEM “name.dtd”>

Notice that the last example has no [and]characters. This is perfectly normal. Specifying an
internal subset is optional. An XML document might conform to a DTD that uses only an internal
subset, only an external subset, or both. If you do specify an internal subset, it appears between the
[and], immediately following the system identifi er.

You’ll see how to use an external DTD in the next Try It Out, but before you do, take a look at an
alternative way to refer to external DTDs: public identifi ers.

Public Identifi ers

Public identifi ers provide a second mechanism to locate DTD resources and look like this:

<!DOCTYPE name PUBLIC “-//Beginning XML//DTD Name Example//EN”>

Much like the system identifi er, the public identifi er begins with a keyword, PUBLIC, followed by a
specialized identifi er. However, instead of a reference to a fi le, public identifi ers are used to identify
an entry in a catalog. According to the XML specifi cation, public identifi ers can follow any format;
however, a commonly used format is called Formal Public Identifi ers, or FPIs.

NOTE The syntax for an FPI is defi ned in the document ISO 9070. ISO 9070 also

defi nes the process for registration and recording of formal public identifi ers.

The International Organization for Standardization, or ISO, is a group that

designs government-approved standards. You can learn more about the ISO

by going to its website at www.iso.ch.

The syntax for FPIs matches the following basic structure:

-//Owner//Class Description//Language//Version

At the most basic level, all public identifi ers function similarly to namespace names, but public
identifi ers cannot be used to combine two different vocabularies in the same document. This makes
namespaces much more powerful than public identifi ers.

Following the public identifi er string, you can include an optional system identifi er as well. This
enables the processor to fi nd a copy of the document if it cannot resolve the public identifi er (most
processors cannot resolve public identifi ers). When including the optional system identifi er, the
SYSTEM keyword shown earlier isn’t required. A valid document type declaration that uses a public
identifi er might look like the following:

c04.indd 90c04.indd 90 05/06/12 5:20 PM05/06/12 5:20 PM

http://wiley.com/hr/name.dtd
http://www.iso.ch

What Are Document Type Defi nitions? ❘ 91

<!DOCTYPE name PUBLIC “-//Beginning XML//DTD Name Example//EN” “name.dtd”>

The preceding declaration assumes you are defi ning a document type for a document whose root
element is <name>. The defi nition has the following public identifi er:

-//Beginning XML//DTD Name Example//EN

In case this cannot be resolved, there is a URI to a fi le called name.dtd. In the preceding example,
no internal subset is included.

Now that you have learned how to use public and system identifi ers, in the following Try It Out you
create an external DTD fi le and associate it with the XML document. Remember that you can have
an internal subset, an external subset, or both. When using an internal subset, the DTD declarations
will appear within the XML document. When using an external subset, the DTD declarations will
appear in a separate fi le.

TRY IT OUT The External DTD

By using an external DTD, you can easily share your vocabulary with others in your company, or even
your own industry. Likewise, you can use vocabularies that others have already developed, by referring
to external fi les they have created. This exercise reconfi gures the <name> example so that the DTD is
defi ned separately from the XML document:

 1. Create a new document to form the external DTD. In jEdit, click File ➪ New and type in the
following:

<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

 2. Click File ➪ Save As and save the document as name.dtd.

 3. Again click File ➪ New and type in the following:

<?xml version=”1.0”?>
<!DOCTYPE name PUBLIC “-//Beginning XML//DTD Name Example//EN” “name.dtd”>
<name>
 <first>Joseph</first>
 <middle>John</middle>
 <last>Fawcett</last>
</name>

 4. Save this as name-doc.xml.

 5. You are ready to validate the document again. Click Plugins ➪ XML ➪ Parse as XML (again, just
close the Sidekick window that pops up).

If you received any errors, check whether you have typed everything correctly and try again.

c04.indd 91c04.indd 91 05/06/12 5:20 PM05/06/12 5:20 PM

92 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

How It Works

In this Try It Out, you used an external DTD to check the XML content. As you may have guessed, the
syntax for the DTD changed very little. The main difference between the internal DTD and external
DTD was the absence of a DOCTYPE declaration within the external DTD. The DOCTYPE declaration
is always located within the main XML document. In addition, within the name-doc.xml document,
there was no internal subset. Instead, you used a public identifi er and system identifi er to indicate
which DTD the validation program should use.

In this case, the validation program had no way to resolve public identifi ers. The processor instead
used the optional URI reference that you included to fi nd the correct DTD for validation. In this
 example, the XML parser had to fi nd the fi le name.dtd. Because this is a relative reference (it does not
contain a website address or drive letter), the parser began looking in the current directory — where
the XML document it was parsing was located. The XML Recommendation does not specify how
parsers should handle relative URL references, but most XML parsers will treat the path of the XML
document as the base path, just as this example did. If, when working with another parser you fi nd
it doesn’t locate the DTD, be sure to check your XML parser’s documentation.

Sharing DTDs

In reality, most DTDs will be much more complex than the example here; for instance, the DocBook
DTD (used for any kind of documentation) runs to over 4000 lines. Due to this complexity, it is
better to use DTDs that are widely accepted, wherever possible. However, in the cases where you
are covering new ground, you can actually share DTDs, which not only removes the burden for
others to have to create the declarations, but it also enables you to more easily integrate with other
companies and developers.

Many individuals and industries have developed DTDs that are de facto standards; your favorite
search engine will probably fi nd what you need. If you do want to publish your own, here are a few
good practices to bear in mind:

 ➤ It should be error-free: This is rather obvious, but mistakes are easy to make. The best
way to be sure is to use the DTD yourself for a while before making it public (or at least
announcing it).

 ➤ Choose a simple, informative URL: Again this is something that applies more generally, but
you should think particularly carefully about how you might publish any revisions — for
instance, whether to include the date in the URL or reuse the same URL for subsequent
versions.

 ➤ Make sure your server is delivering the DTD using the correct media (MIME) type in the
HTTP headers: IETF RFC 3023: XML Media Types states that application/xml-dtd
should be used for DTDs. This may happen automatically if the fi le is saved on the server
with the extension .dtd. Online tools are available to check the HTTP MIME type, but
every developer should have a copy of the cURL command-line tool. It’s available from
http://curl.haxx.se, free and open source. The command for showing the HTTP head-
ers from a URL looks like this:

c04.indd 92c04.indd 92 05/06/12 5:20 PM05/06/12 5:20 PM

http://curl.haxx.se

Anatomy of a DTD ❘ 93

curl -I http://dannyayers.com/dtd/name.dtd

Somewhere in the results you also want to see the following:

Content-Type: application/xml-dtd

If that doesn’t appear, you should check your server documentation.

 ➤ Provide documentation: Though you may prefer to provide explanatory documentation
inside the DTD itself (comments use the same syntax as XML), keep in mind that your
DTD may be repeatedly downloaded by tools that lack caching and therefore gobble up
a lot of bandwidth. A good alternative is to just provide a single link to an HTML page
describing the DTD, for example:

<!-- DTD for naming people, see http://example.org/name -->

ANATOMY OF A DTD

In addition to the different types of DTDs and their basic function, DTD declarations can be broken
down into even more detail. Generally, DTDs consist of three basic parts:

 ➤ Element declarations

 ➤ Attribute declarations

 ➤ Entity declarations

The following sections examine these three parts. To achieve a full understanding of each DTD
part, you will create an XML vocabulary for listing contacts — all of your friends and family. Note,
however, that many existing vocabularies for contacts are available on the Internet and using a
simplifi ed format like that enables you to quickly create your own vocabulary.

Element Declarations

The beginning of this chapter demonstrated element declarations in use, but you have not yet looked
at an element declaration in detail. When using a DTD to defi ne the content of an XML document,
you must declare each element that appears within the document. Additionally, DTDs can include
declarations for optional elements: elements that may or may not appear in the XML document.
Element declarations consist of three basic parts:

 ➤ The ELEMENT declaration

 ➤ The element name

 ➤ The element content model

<!ELEMENT name (first, middle, last)>

The ELEMENT declaration is used to indicate to the parser that you are about to defi ne an element,
and following the ELEMENT keyword is the name of the element that you are defi ning. Just as you
saw in the DOCTYPE, the element name must appear exactly as it will within the XML document,
including any namespace prefi x.

c04.indd 93c04.indd 93 05/06/12 5:20 PM05/06/12 5:20 PM

http://dannyayers.com/dtd/name.dtd
http://example.org/name

94 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

After the element name, an element’s content model defi nes the allowable content within the
element. An element may contain element children, text, a combination of children and text, or
the element may be empty. As far as the XML Recommendation is concerned, four kinds of content
models exist:

 ➤ Element

 ➤ Mixed

 ➤ Empty

 ➤ Any

Let’s look at each of these content models in more detail.

Element Content

When defi ning a content model with element content, simply include the allowable elements within
parentheses. For example, if you have a <contact> element that is allowed to contain only a <name>
element, the declaration should read as follows:

<!ELEMENT contact (name)>

In the contact list, however, the <contact> element needs to include more than just the name.
This example includes as its children a <name>, <location>, <phone>, <knows>, and
<description> element:

<!ELEMENT contact (name, location, phone, knows, description)>

Each element specifi ed within this element’s content model must also have its own defi nition within
the DTD. Therefore, in the preceding example, ELEMENT declarations are included for the <name>,
<location>, <phone>, <knows>, and <description> elements to complete the DTD. The processor
needs this information so that it knows how to handle each element when it is encountered. You can
put the ELEMENT declarations in any order you like.

NOTE The fact that you must specify the namespace prefi x within DTDs is a

major limitation. Essentially this means that users are not able to choose their

own namespace prefi x but must use the prefi x defi ned within the DTD. This limi-

tation exists because the W3C completed the XML Recommendation before

fi nalizing how namespaces would work. As you will see in the next two chapters,

XML Schemas and RELAX NG documents are not limited in this way.

NOTE Even if an element is used in multiple content models, you should declare

it only once. You cannot declare two elements with the same name inside a DTD.

c04.indd 94c04.indd 94 05/06/12 5:20 PM05/06/12 5:20 PM

Anatomy of a DTD ❘ 95

Of course, even in the small example at the start of the chapter the element had more than one
child. There are two fundamental ways of specifying the element children:

 ➤ Sequences

 ➤ Choices

Sequences

Often the elements within these documents must appear in a distinct order. If this is the case, you
defi ne the content model using a sequence. When specifying a sequence of elements, you simply list
the element names separated by commas, as in:

<!ELEMENT name (first, middle, last)>

The declaration indicates that the <name> element must have exactly three children — <first>,
<middle>, and <last> — and that they must appear in this order. Likewise, here the <contact>
element must have exactly fi ve children in the order specifi ed, like so:

<!ELEMENT contact (name, location, phone, knows, description)>

Take care when creating this line of code. The parser raises an error in three instances:

 ➤ If your XML document is missing one of the elements within the sequence

 ➤ If your document contains more elements

 ➤ If the elements appeared in another order

Choices

Suppose you needed to allow one element or another, but not both. Consider a <location> element,
which specifi es where each contact lives:

<!ELEMENT location (address)>

Instead of requiring one element, you could require a choice between two elements:

<!ELEMENT location (address | GPS)>

This declaration allows the <location> element to contain one <address> or one <GPS> element. If
the <location> element were empty, or if it contained more than one of these elements, the parser
would raise an error.

Constructing a choice content model is very similar to constructing a sequence content model. The
main difference is that instead of separating the elements by commas, you must use the pipe (|)
character. The pipe functions as an exclusive OR. An exclusive OR allows one and only one element of
the possible options.

Combining Sequences and Choices

Many XML documents need to leverage much more complex rules. DTDs offer an intuitive way of
achieving this: using both simple sequences and choices as building blocks.

c04.indd 95c04.indd 95 05/06/12 5:20 PM05/06/12 5:20 PM

96 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

Suppose you wanted to declare <latitude> and <longitude> elements within the <location>
content model instead of the single <GPS> element. When creating the <location> declaration,
you would need to specify that the content can include either an <address> element or the
<latitude> and <longitude> sequence of elements, but not both. The model could be declared
as follows:

<!ELEMENT location (address | (latitude, longitude))>

The entire content model is enclosed within parentheses as before, but here you have a second set of
parentheses within the content model. Think of this as a content model within a content model. The
inner content model is a sequence specifying the elements <latitude> and <longitude>. The XML
Recommendation allows content models within content models within content models, and so on,
indefi nitely.

Mixed Content

The XML Recommendation doesn’t really talk about mixed content or text content on its own.
Instead, it specifi es that any element with text in its content is a mixed content model element.
Within mixed content models, text can appear by itself or it can be interspersed between elements.

NOTE In everyday usage, people refer to elements that can contain only text as

text-only elements or text-only content.

The rules for mixed content models are similar to the element content model rules that you learned
in the preceding section. You have already seen some examples of the simplest mixed content
model — text-only:

<!ELEMENT first (#PCDATA)>

The preceding declaration specifi es the keyword #PCDATA within the parentheses of the content
model. PCDATA is a keyword derived from Parsed Character DATA. It simply indicates that the
character data within the content model should be parsed by the parser. Here’s an example element
that conforms to this declaration:

<first>John</first>

Mixed content models can also contain elements interspersed within the text. Suppose you wanted
to include a description of each contact in your XML document. You could create a new element
<description>:

<description>Joe is a developer and author for <title>Beginning XML</title>, now in

 its <detail>5th Edition</detail></description>.

In this example, you have a <description> element. Within the <description> element, the text is
interspersed with the elements <title> and <detail>.

c04.indd 96c04.indd 96 05/06/12 5:20 PM05/06/12 5:20 PM

Anatomy of a DTD ❘ 97

There is only one way to declare a mixed content model within DTDs — by using the choice
mechanism when adding elements. This means that each element within the content model must be
separated by the pipe (|) character:

<!ELEMENT description (#PCDATA | title | detail)*>

The preceding example declares the new <description> element. Notice that you use the choice
mechanism to describe the content model; a pipe separates each element. You cannot use commas to
separate the choices.

When including elements in the mixed content model, the #PCDATA keyword must always appear
fi rst in the list of choices. Unlike element-only content models, you cannot have inner content
models in a mixed declaration.

The * outside the parentheses of the content model indicates that the element may appear zero
or more times. You can have an unlimited number of <title> elements, an unlimited number
of <detail> elements, and any amount of text. All of this can appear in any order within the
<description> element. This potential variation is a limitation of validation by DTD. Later you
learn how XML Schema has improved validation of mixed content models.

In summary, every time you declare elements within a mixed content model, they must follow four rules:

 ➤ They must use the choice mechanism (the pipe (|) character) to separate elements.

 ➤ The #PCDATA keyword must appear fi rst in the list of elements.

 ➤ There must be no inner content models.

 ➤ If there are child elements, the * cardinality indicator must appear at the end of the model.

Empty Content

Some elements within your XML documents may or may not have content, and some might never
need to contain content. For example, if you were working on an HTML-like XML language you
might have a
 element indicating a line break. It wouldn’t really make any sense for this to have
any child elements or text content.

To defi ne an element with an empty content model, simply include the word EMPTY following the
element name in the declaration:

<!ELEMENT br EMPTY>

Remember that this requires the element to be empty within the XML document. Using the EMPTY
keyword, you shouldn’t declare elements that may contain content. For example, a <middle>
element used to hold a middle name may or may not contain text, and therefore should not use the
EMPTY keyword.

Any Content

Finally, you can declare an element using the ANY keyword. For example:

<!ELEMENT description ANY>

c04.indd 97c04.indd 97 05/06/12 5:20 PM05/06/12 5:20 PM

98 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

Here, the ANY keyword indicates that text (PCDATA) and/or any elements declared within the DTD
can be used within the content of the <description> element and that they can be used in any
order any number of times. However, the ANY keyword does not allow you to include elements that
are not declared within the DTD.

The following Try It Out builds on the previous one. You’ll see how to defi ne more complicated
structures that are more representative of real-life XML. These structures include mixed content,
where you have text and XML interleaved, as well as situations where the author of a document has
a choice of content type.

TRY IT OUT “Making Contact”

The fi rst practical example you saw demonstrated how to defi ne simple nested XML in DTDs. In this
exercise, you will see how to extend the basic model to include coverage of mixed content and make use
of combinations of sequences and choices.

 1. Open jEdit and type in the following XML document:

<?xml version=”1.0”?>
<!DOCTYPE contacts PUBLIC “-//Beginning XML//DTD Contact Example//EN”
“contacts1.dtd”>
<contacts>
 <contact>
 <name>
 <first>Joseph</first>
 <middle>John</middle>
 <last>Fawcett</last>
 </name>
 <location>
 <latitude>50.7218</latitude>
 <longitude>-3.533617</longitude>
 </location>
 <phone>001-234-567-8910</phone>
 <knows>John Doe, Danny Ayers</knows>
 <description>Joseph is a developer and author for Beginning XML 5th
edition.
Joseph loves XML!</description>
 </contact>
</contacts>

 2. Save it as contacts1.xml. Notice that you have added a document type declaration that refers to
an external system fi le called contacts1.dtd. In addition, the root element in this document and
the element name within the DOCTYPE declaration are the same.

 3. Create a new document called contacts1.dtd. This fi le will be where you defi ne your DTD.

Because you have a sample XML document, you can base most of your declarations on the text
that you have. When designing a DTD, it is much easier to create a sample and let the document
evolve before the vocabulary is set in stone.

 4. In the XML document, <contacts> is the root element. This is the easiest place to start, so begin
by declaring it in the DTD:

<!ELEMENT contacts ()>

c04.indd 98c04.indd 98 05/06/12 5:20 PM05/06/12 5:20 PM

Anatomy of a DTD ❘ 99

 5. You haven’t specifi ed a content model. Looking at the sample document, you can see that the
<contacts> element contains a <contact> element. There is only one child element, so this con-
tent model should be easy to defi ne; enter the following line:

<!ELEMENT contacts (contact)>

Allowing for only one contact as you have done is a little clumsy, but you’ll improve this content
model a little later in the chapter.

 6. Because you have specifi ed a contact element in the content model, you now must declare it in
the DTD:

<!ELEMENT contact (name, location, phone, knows, description)>

 7. Remember to also declare each element that is used within the content model. Declare the <name>
element and each of its children:

<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

The <first>, <middle>, and <last> elements represent each part of the contact’s name. They are
all text-only elements, so you have declared that they can contain only #PCDATA. Remember that
this qualifi es as a mixed content model even though there are no element children.

 8. Use a complex content model for the <location> element, as shown earlier in the chapter in the
“Combining Sequences and Choices” section:

<!ELEMENT location (address | (latitude, longitude))>

This declaration allows each location to include either an address or the latitude and longitude
coordinates. Even though you didn’t include the <latitude> or <longitude> elements in the
<location> element in the sample, you should still include them in the content model declaration
so that they can be used in other documents.

The <address>, <latitude>, and <longitude> elements are text-only elements:

<!ELEMENT address (#PCDATA)>
<!ELEMENT latitude (#PCDATA)>
<!ELEMENT longitude (#PCDATA)>

 9. Declare the <phone> element in your DTD; this will also be text-only:

<!ELEMENT phone (#PCDATA)>

 10. There is a <knows> element in the sample document. This contains structured information, so
ideally that should be represented using XML’s structure. But for the sake of simplicity in this
example, declare it as text-only:

<!ELEMENT knows (#PCDATA)>

c04.indd 99c04.indd 99 05/06/12 5:20 PM05/06/12 5:20 PM

100 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

 11. You can use a truly mixed content model for the description. This time you’ll have some layout
elements borrowed from HTML. Add the following line:

<!ELEMENT description (#PCDATA | em | strong | br)*>

 12. Finally, you must include declarations for the , , and
 elements:

<!ELEMENT em (#PCDATA)>
<!ELEMENT strong (#PCDATA)>
<!ELEMENT br EMPTY>

At this point you have completed the DTD. All of the children that were listed in content
models now have their own element declarations. The fi nal DTD should look like the
following:

<!ELEMENT contacts (contact)>
<!ELEMENT contact (name, location, phone, knows, description)>

<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT location (address | (latitude, longitude))>
<!ELEMENT address (#PCDATA)>
<!ELEMENT latitude (#PCDATA)>
<!ELEMENT longitude (#PCDATA)>

<!ELEMENT phone (#PCDATA)>
<!ELEMENT knows (#PCDATA)>

<!ELEMENT description (#PCDATA | em | strong | br)*>
<!ELEMENT em (#PCDATA)>
<!ELEMENT strong (#PCDATA)>
<!ELEMENT br EMPTY>

 13. Now save the fi le and prepare to validate the document again. Open the contacts1.xml docu-
ment (there’s a drop-down list above the text area that gives quick access to recent fi les) and click
Plugins ➪ XML ➪ Parse as XML. If you received any errors (red underlining), confi rm that you
input the documents correctly and click Validate again.

How It Works

Just as you saw with the original <name> example, the validator processed your XML document,
checking that each element it encountered was declared in the DTD. The DTD for your contacts list
used all choice and sequence content models, text-only content models, and mixed content models. You
even declared an empty element.

c04.indd 100c04.indd 100 05/06/12 5:20 PM05/06/12 5:20 PM

Anatomy of a DTD ❘ 101

The preceding example provides a great overview of using the four different types of element
content, however, the contacts DTD is still limited. It allows only one contact. You now need a
way to tell the processor that the (contact) sequence may appear many times or not at all.

Cardinality

An element’s cardinality defi nes how many times it will appear within a content model. DTDs allow
four indicators for cardinality, as shown here in Table 4-1:

TABLE 4-1: Cardinality Indicators

INDICATOR DESCRIPTION

[none] As you have seen in all of the content models thus far, when no cardinality

indicator is used, it indicates that the element must appear once and only once.

This is the default behavior for elements used in content models.

? Indicates that the element may appear either once or not at all.

+ Indicates that the element may appear one or more times.

* Indicates that the element may appear zero or more times.

These indicators are associated with elements in the DTD to correspond to the requirements of
the document model. The following activity improves the example you have been working with
by expressing the cardinality of the elements in the DTD, making it a more accurate description
and hence allowing tighter validation of documents. As you will now see, the syntax for this is
straightforward: the cardinality indicators are simply appended to the element names.

TRY IT OUT “Making Contact” — Part 2

Now that you have learned how to correct and improve the DTD, it is time to integrate cardinality
requirements to certain of the elements.

 1. Reopen the fi le contacts1.dtd and modify the highlighted sections:

<!ELEMENT contacts (contact*)>
<!ELEMENT contact (name, location, phone, knows, description)>

<!ELEMENT name (first+, middle?, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT location (address | (latitude, longitude))*>
<!ELEMENT address (#PCDATA)>
<!ELEMENT latitude (#PCDATA)>
<!ELEMENT longitude (#PCDATA)>

c04.indd 101c04.indd 101 05/06/12 5:20 PM05/06/12 5:20 PM

102 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

<!ELEMENT phone (#PCDATA)>
<!ELEMENT knows (#PCDATA)>

<!ELEMENT description (#PCDATA | em | strong | br)*>
<!ELEMENT em (#PCDATA)>
<!ELEMENT strong (#PCDATA)>
<!ELEMENT br EMPTY>

 2. Save this modifi ed version as contacts2.dtd.

 3. Now that you have created a new DTD fi le, you need to update your XML document to refer
to it. Reopen contacts1.xml and save it as contacts2.xml. In addition to modifying the
DOCTYPE declaration so that it refers to the new DTD, make a few more changes as
highlighted here:

<?xml version=”1.0”?>
<!DOCTYPE contacts PUBLIC “-//Beginning XML//DTD Contact Example//EN”
“contacts2.dtd”>
<contacts>
 <contact>
 <name>
 <first>Joseph</first>
 <first>John</first>
 <last>Fawcett</last>
 </name>
 <location>
 <address>Exeter, UK</address>
 <latitude>50.7218</latitude>
 <longitude>-3.533617</longitude>
 </location>
 <phone>001-234-567-8910</phone>
 <knows>John Doe, Danny Ayers</knows>
 <description>Joseph is a developer and author for Beginning XML 5th
 edition.
Joseph loves XML!</description>
 </contact>
 <contact>
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <location>
 <address>Address is not known</address>
 </location>
 <phone>321 321 3213</phone>
 <knows>Joseph Fawcett, Danny Ayers</knows>
 <description>Senior Technical Consultant for LMX.</description>
 </contact>
</contacts>

 4. Save the modifi ed fi le and prepare to validate the document again. Click Plugins ➪ XML ➪ Parse
as XML.

Again, if anything is underlined in red, check whether you have typed everything correctly and try
again.

c04.indd 102c04.indd 102 05/06/12 5:20 PM05/06/12 5:20 PM

Anatomy of a DTD ❘ 103

How It Works

This Try It Out implements much of what you learned throughout this section. You set out to design
a DTD that could be used to describe a complete list of contacts. You used an assortment of complex
content models so that your DTD would refl ect various XML documents. Of course, when you fi rst
began designing your DTD, you didn’t include many options, but after you had the basic structure
designed, you modifi ed the DTD to correct some problems and add some features. This design strategy
is very common among XML developers.

Attribute Declarations

Attribute declarations are similar to element declarations in many ways except one. Instead of
declaring allowable content models for elements, you declare a list of allowable attributes for each
element. These lists are called ATTLIST declarations, and look like this:

<!ELEMENT contacts (contact*)>
<!ATTLIST contacts source CDATA #IMPLIED>

The preceding example has the same element declaration for your <contacts> element from
the contacts list example. This particular ATTLIST declares only one attribute, source, for the
<contacts> element.

An ATTLIST declaration consists of three basic parts:

 ➤ The ATTLIST keyword

 ➤ The associated element’s name

 ➤ The list of declared attributes

Following the ATTLIST keyword in the example is the name of the associated element, contacts.
Each attribute is then listed in turn with three pieces of information:

 ➤ The attribute name

 ➤ The attribute type

 ➤ The attribute value declaration

In the example the name of the attribute is source. This source attribute can contain character
data — the CDATA keyword is used to give the attribute’s type. Lastly, the declaration indicates that
the attribute has no default value, and that this attribute does not need to appear within the element
using the #IMPLIED keyword. This third part of the attribute declaration is known as the value
declaration; it controls how the XML parser handles the attribute’s value.

Attribute Names

In addition to the basic XML naming rules, you must also ensure that you don’t have duplicate
names within the attribute list for a given element. To declare an attribute name, simply type the
name exactly as it appears in the XML document, including any namespace prefi x.

c04.indd 103c04.indd 103 05/06/12 5:20 PM05/06/12 5:20 PM

104 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

Attribute Types

When declaring attributes, you can specify how the processor should handle the data that appears
in the value. Within the element declarations, you could specify that an element contained text, but
you couldn’t specify how the processor should treat the text value. Several new features are available
for attribute declaration.

Table 4-2 provides a summary of the different attribute types:

WARNING As far as DTDs are concerned, namespace declarations, such as

xmlns:contacts= “http://wiley.com/contacts”, are also treated as attri-

butes. Although the Namespace Recommendation insists that xmlns statements

are declarations and not attributes, DTDs must declare them in an ATTLIST dec-

laration if they are used. This is because the W3C fi nalized the syntax for DTDs

before the Namespace Recommendation was completed.

TABLE 4-2: Attribute Data Types

TYPE DESCRIPTION

CDATA Indicates that the attribute value is character data, the default type. Notice

that this is slightly diff erent from the PCDATA keyword in ELEMENT declarations.

Unlike PCDATA, within CDATA, the parser can ignore certain reserved characters.

ID Indicates that the attribute value uniquely identifi es the containing element.

IDREF Indicates that the attribute value is a reference, by ID, to a uniquely identifi able

element.

IDREFS Indicates that the attribute value is a whitespace-separated list of IDREF values.

ENTITY Indicates that the attribute value is a reference to an external unparsed entity

(you’ll learn more about entities later).

ENTITIES Indicates that the attribute value is a whitespace-separated list of ENTITY values.

NMTOKEN Indicates that the attribute value is a name token. An NMTOKEN is a string of

character data consisting of standard name characters.

NMTOKENS Indicates that the attribute value is a whitespace-separated list of NMTOKEN

values.

Enumerated List Apart from using the default types, you can also declare an enumerated list of

possible values for the attribute.

c04.indd 104c04.indd 104 05/06/12 5:20 PM05/06/12 5:20 PM

http://wiley.com/contacts

Anatomy of a DTD ❘ 105

There isn’t space here to go into these attribute types in depth, though a couple of the more
common ones are used in the next example. As usual, the key reference for this material is the XML
Recommendation (http://www.w3.org/TR/xml), and your favorite search engine will fi nd you a lot
more explanatory material on the Web.

Attribute Value Declarations

Within each attribute declaration you must specify how the value will appear in the document. The
XML Recommendation allows you to specify that the attribute either:

 ➤ Has a default value

 ➤ Has a fi xed value

 ➤ Is required

 ➤ Is implied (or is optional)

Default Values

By specifying a default value for the attribute, you can be sure that it is included in the fi nal output.
As the document is being processed, a validating parser automatically inserts the attribute with the
default value if the attribute has been omitted. If the attribute has a default value but a value has
also been included in the document, the parser uses the attribute included in the document, rather
than the default.

So what does this look like in practice? Try starting with an enumerated list to say that the kind
attribute of the <phone> element should have the value of one of several alternatives like so:

<!ATTLIST phone kind (Home | Work | Cell | Fax)>

Given this in the DTD, one possible valid form of the element with attribute would be:

<phone kind=”Work”>

You can then easily specify the default attribute by simply including the value in quotation marks
after the attribute type:

<!ATTLIST phone kind (Home | Work | Cell | Fax) “Home”>

Here, the default value is Home. When a validating parser is reading the <phone> element, if the kind
attribute has been omitted, the parser will automatically insert the attribute kind with the value
Home. If the parser encounters a kind attribute within the <phone> element, it will use the value that
has been specifi ed within the document.

Fixed Values

When an attribute’s value can never change, you use the #FIXED keyword followed by the fi xed
value. Fixed values operate much like default values. As the parser is validating the fi le, if the fi xed
attribute is encountered, the parser checks whether the fi xed value and attribute value match. If they
do not match, the parser raises an error. If the parser does not encounter the attribute within the
element, it inserts the attribute with the fi xed value.

c04.indd 105c04.indd 105 05/06/12 5:20 PM05/06/12 5:20 PM

http://www.w3.org/TR/xml

106 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

A common use of fi xed attributes is specifying version numbers. Often, DTD authors fi x the version
number for a specifi c DTD, like this:

<!ATTLIST contacts version CDATA #FIXED “1.0”>

So this would be valid:

<contacts version=”1.0”>

But this would not:

<contacts version=”1.1”>

Required Values

When you specify that an attribute is required, it must be included within the XML document.
Suppose you require this kind attribute:

<!ATTLIST phone kind (Home | Work | Cell | Fax) #REQUIRED>

In the preceding example, the declaration indicates that the kind attribute must appear within
every <phone> element in the document. If the parser encounters a <phone> element without a kind
attribute as it is processing the document, it raises an error.

When declaring that an attribute is required, you are not permitted to specify a default value.

Implied Values

These are the most common form of values. When declaring an attribute, you must always specify
a value declaration. If the attribute you are declaring has no default value, has no fi xed value, and is
not required, then you must declare that the attribute is implied. You can declare that an attribute
is implied by simply adding the keyword #IMPLIED after the attribute’s type declaration, like the
following:

<!ATTLIST knows contacts IDREFS #IMPLIED>

Specifying Multiple Attributes

The ATTLIST declaration enables you to declare more than one attribute, like so:

<!ATTLIST contacts version CDATA #FIXED “1.0”
 source CDATA #IMPLIED>

In the preceding ATTLIST declaration for the <contacts> element, there is both a version and a
source attribute. These declarations don’t have to be expressed together; an alternative is to use
multiple ATTLISTs, each describing characteristics of the attributes one at a time:

<!ATTLIST contacts version CDATA #FIXED “1.0”>
<!ATTLIST contacts source CDATA #IMPLIED>

c04.indd 106c04.indd 106 05/06/12 5:20 PM05/06/12 5:20 PM

Anatomy of a DTD ❘ 107

Either style for declaring multiple attributes is legal; it’s really a matter of taste.

Now that you have seen how to describe attributes in a DTD, you can try it in practice in the
following activity.

TRY IT OUT “Making Contact” — Part 3

Once again you can revisit the contact list example and make further improvements. This time you’ll
add attributes to some of the elements to provide more information in the document.

 1. Reopen contacts2.xml and save it as contacts3.xml. Now make the following modifi cations:

<?xml version=”1.0”?>
<!DOCTYPE contacts PUBLIC “-//Beginning XML//DTD Contact Example//EN”
“contacts3.dtd”>
<contacts source=”Beginning XML 5E” version=”1.0”>
 <contact person=”Joe_Fawcett” tags=”author xml poetry”>
 <name>
 <first>Joseph</first>
 <first>John</first>
 <last>Fawcett</last>
 </name>
 <location>
 <address>Exeter, UK</address>
 <latitude>50.7218</latitude>
 <longitude>-3.533617</longitude>
 </location>
 <phone kind=”Home”>001-234-567-8910</phone>
 <knows contacts=”John_Doe Danny_Ayers”/>
 <description>Joseph is a developer and author for Beginning XML 5th
 edition.
Joseph loves XML!</description>
 </contact>
 <contact person=”John Doe” tags=”author consultant CGI”>
 <name>
 <first>John</first>
 <last>Doe</last>
 </name>
 <location>
 <address>Address is not known</address>
 </location>
 <phone>321 321 3213</phone>
 <knows contacts=”Joseph Fawcett Danny_Ayers”/>
 <description>Senior Technical Consultant for LMX.</description>
 </contact>
</contacts>

 2. You now must declare these new attributes within the DTD. Create a new fi le named contacts3
.dtd. Again, you can base this document on contacts2.dtd. Make the following modifi cations
and save the fi le:

<!ELEMENT contacts (contact*)>
<!ATTLIST contacts version CDATA #FIXED “1.0”>
<!ATTLIST contacts source CDATA #IMPLIED>

<!ELEMENT contact (name, location, phone, knows, description)>

c04.indd 107c04.indd 107 05/06/12 5:20 PM05/06/12 5:20 PM

108 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

<!ATTLIST contact person ID #REQUIRED>
<!ATTLIST contact tags NMTOKENS #IMPLIED>

<!ELEMENT name (first+, middle?, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT location (address | (latitude, longitude))*>
<!ELEMENT address (#PCDATA)>
<!ELEMENT latitude (#PCDATA)>
<!ELEMENT longitude (#PCDATA)>

<!ELEMENT phone (#PCDATA)>
<!ATTLIST phone kind (Home | Work | Cell | Fax) “Home”>

<!ELEMENT knows EMPTY>
<!ATTLIST knows contacts IDREFS #IMPLIED>

<!ELEMENT description (#PCDATA | em | strong | br)*>
<!ELEMENT em (#PCDATA)>
<!ELEMENT strong (#PCDATA)>
<!ELEMENT br EMPTY>

 3. You are ready to validate your document again. Open contacts3.xml and once again click
Plugins ➪ XML ➪ Parse as XML.

How It Works

In this Try It Out example, you added several ATTLIST declarations to your DTD. You added the
attributes version and source to your <contacts> element. The version attribute could be used to
indicate to an application which version of the DTD this contact list matches. Using the source attri-
bute, you can provide a friendly description of who provided the information. If you had omitted the
version attribute the XML parser would have passed the value 1.0 to the application because you
declared that it had a fi xed value.

The unique identifi ers were created by simply using the contact’s name and replacing all the whitespace
with underscores (so that it was a valid XML name). The tags attribute included names that weren’t
declared anywhere in the DTD but which still followed the rules for the NMTOKEN attribute type.

You also added a kind attribute that provided a list of possible phone number entries for the contact.
Because there were only four choices for the value of the kind attribute, you used an enumerated list.
You also set the default value to Home because many of the contacts you listed included home phone
numbers and you didn’t want to type it repeatedly. Note that there was no kind attribute on the phone
number in the contact for David Hunter. Because the kind attribute was omitted, a processor, as it is
parsing the document, will automatically insert the attribute with the default value.

Finally, the <knows> element was modifi ed, specifying that it would be EMPTY and contain a single
IDREFS attribute. This allowed you to connect contacts together through the ID/IDREF mechanism built
into DTDs. This can be a very powerful feature. Unfortunately, though, the names you refer to must
be present within your contacts list. Therefore, you couldn’t say that Jeff knows Andrew_Watt because
there is no Andrew_Watt ID within the contacts list.

c04.indd 108c04.indd 108 05/06/12 5:20 PM05/06/12 5:20 PM

Anatomy of a DTD ❘ 109

Entity Declarations

In Chapter 2, you saw how you could escape characters or use entity references to include special
characters within the XML document. You learned that fi ve entities built into XML enable you
to include characters that have special meaning in XML documents. In addition to these built-in
entities, you also learned that you can use character references to include characters that are diffi cult
to type, such as the (c) character in the following example:

<contacts source=”Beginning XML 5E's Contact List” version=”1.0”>
 <description>Joseph is a developer and author for Beginning XML 5th

 edition © 2012 Wiley Publishing.

Joseph loves XML!</description>

The fi rst entity reference here is an ' within the attribute content. This allows you to include
a (‘) character without the XML parser treating it as the end of the attribute value. As part of the
description there is an © character reference within the element content. This allows you to
include the (c) character by specifying the character’s Unicode value.

In fact, entities are not limited to simple character references within XML documents. Entities
can be used throughout the XML document to refer to sections of replacement text, other XML
markup, and even external fi les. You can separate entities into four primary types, each of which
may be used within an XML document:

 ➤ Built-in entities

 ➤ Character entities

 ➤ General entities

 ➤ Parameter entities

You’ve already seen the roles the fi ve built-in entities play in well-formed XML. Here they are again
as a reminder:

 ➤ & — The & character

 ➤ < — The < character

 ➤ > — The > character

 ➤ ' — The ‘ character

 ➤ " — The “ character

All XML parsers must support these. In general, you can use these entity references anywhere you
can use normal text within the XML document, such as in element contents and attribute values.
You can also use entity references in your DTD within default and fi xed attribute value
declarations, as well as entity declarations (as shown later). Although the built-in entities allow you
to refer to markup characters, they cannot be used in place of XML markup. For example,
the following is legal:

<description>Author & programmer</description>

c04.indd 109c04.indd 109 05/06/12 5:20 PM05/06/12 5:20 PM

110 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

Here, the & built-in entity allows you to include an ampersand (&) in the content of the
<description> element. This is allowed because it is within the element’s text content. Conversely,
the following would be illegal:

<contacts version="1.0">

The XML within the document is fi rst checked for well-formedness errors; only then are entity
references resolved.

There are actually three other general kinds of entities you can use within an XML document:
character entities, general entities, and parameter entities. The latter two are of particular relevance
to DTDs, but here’s as good a place as any to mention character entities.

Character Entities

Character entities are typically used when unusual characters are needed in a document. Their form
is similar to the built-in entities, beginning with an ampersand (&) and ending with a semicolon(;).
In between there is a numeric reference to the required Unicode character code. For example, the
Unicode value for the (c) character is 169, so to include a (c) in an XML document you can use
the following:

©

The extra # character before the number indicates that it’s a decimal number. You can also refer to a
character entity by using the hexadecimal Unicode value for the character:

©

Here, the hexadecimal value 00A9 is used in place of the decimal value 169.

Charts listing the numeric values that correspond to different characters are available from
www.unicode.org/charts/.

General Entities

General entities must be declared within the DTD before they can be used within an XML
document. Most commonly, XML developers use general entities to create reusable sections of
replacement text. Instead of representing only a single character, general entities can represent
characters, paragraphs, and even entire documents.

You can declare general entities within the DTD in two ways. You can specify the value of the entity
directly in the declaration or you can refer to an external fi le. Let’s begin by looking at an internal
entity declaration:

<!ENTITY source-text “Beginning XML”>

Following the ENTITY keyword is the name of the entity, in this case source-text. You use this
name when referring to the entity elsewhere in the XML document, like so:

&source-text;

c04.indd 110c04.indd 110 05/06/12 5:20 PM05/06/12 5:20 PM

http://www.unicode.org/charts/

Anatomy of a DTD ❘ 111

After the entity name in the preceding declaration is a line of replacement text. Whenever an XML
parser encounters a reference to this entity, it will supply the replacement text to the application at
the point of the reference. This example is an internal entity declaration because the replacement
text appears directly within the declaration in the DTD.

Within a general entity, the replacement text can consist of any well-formed XML content, although
content without a root element is allowed. For example, the following are legal general entity values:

<!ENTITY address-unknown “The address for this location is "Unknown"”>
<!ENTITY empty-gps “<latitude></latitude><longitude></longitude>”>

Notice that entity references can be included within the replacement text. Although you can include
entity references within replacement text, an entity is not permitted to contain a reference to itself.
The following declaration is not legal:

<!ENTITY address-unknown “The address for this location is &address-unknown;”>

Because no limits exist on the length of replacement text, your DTD can quickly become cluttered by
sections of replacement text, making it more diffi cult to read. When declaring your entities, instead
of declaring the replacement text internally you can refer to external fi les. In this case the entity is
declared using an external entity declaration. For example, you could declare your entities as:

<!ENTITY joe-description SYSTEM “joe.txt”>

or:

<!ENTITY joe-description PUBLIC
 “-//Beginning XML//Joe Description//EN” “joe.txt”>

Just as you saw with the document type declaration, when referring to external fi les, you can use
a system identifi er or a public identifi er. When you use a public identifi er, you can also include an
optional URI reference, as this example does. Each of these declarations refers to an external fi le
named jeff.txt. As an XML parser is processing the DTD, if it encounters an external entity
declaration, it might open the external fi le and parse it. If the XML parser is a validating parser, it
must open the external fi le, parse it, and be able to use the content when it is referenced. If the XML
parser is not a validating parser, it might or might not attempt to parse the external fi le; you need to
check the parser documentation.

Parameter Entities

Parameter entities, much like general entities, enable you to create reusable sections of replacement
text. However, parameter entities cannot be used in general content; you can refer to parameter
entities only within the DTD. Unlike other kinds of entities, the replacement text within a
parameter entity can be made up of DTD declarations or pieces of declarations.

Parameter entities can also be used to build modular DTDs from multiple fi les. This is very helpful
in their reuse; you only need to use the parts relevant to your application.

c04.indd 111c04.indd 111 05/06/12 5:20 PM05/06/12 5:20 PM

112 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

Parameter entity declarations are very similar to general entity declarations. Here is an example:

<!ENTITY % DefaultPhoneKind “Home”>

This example contains a declaration for an internal parameter entity named DefaultPhoneKind.
The percent sign (%) before the name of the entity indicates this is a parameter entity.

Like general entities, parameter entities can also refer to external fi les using a system or public
identifi er. The references look like this:

<!ENTITY % NameDeclarations SYSTEM “name.dtd”>

or:

<!ENTITY % NameDeclarations
 PUBLIC “-//Beginning XML//DTD External module//EN” “name.dtd”>

Instead of redeclaring the <name>, <first>, <middle>, and <last> elements in the DTD for
the contacts list, you could refer to the name.dtd from earlier in the chapter. Reusing existing
declarations in your DTD through external parameter entities is a good way to modularize your
vocabulary.

References to Parameter Entities

When referring to a parameter entity within a DTD, the syntax changes slightly. Instead of using an
ampersand (&) you must use a percent sign (%), as shown in the following example:

%NameDeclarations;

The reference consists of a percent sign (%), followed by the entity name, followed by a semicolon
(;). References to parameter entities are permitted only within the DTD. Suppose you wanted to
make use of the DefaultPhoneKind parameter entity within the ATTLIST declaration for the phone
element. You could change the declaration as follows:

<!ENTITY % DefaultPhoneKind “"Home"”>
<!ATTLIST phone kind (Home | Work | Cell | Fax) %DefaultPhoneKind;>

In this example, the parameter entity called DefaultPhoneKind is used in place of the attribute
value declaration. Parameter entity references can be used in place of DTD declarations or parts
of DTD declarations. Unfortunately, you can’t use the built-in entity " because general
entities and built-in entities that appear in parameter entity values are not expanded as they are
elsewhere. Therefore, you instead use character entities for the quotation marks. The following is
perfectly legal:

<!ATTLIST phone kind (Home | Work | Cell | Fax) “%DefaultPhoneKind;”>

Now that you have seen how to express the different kinds of entities, you’re ready to try them in
the following DTD activity.

c04.indd 112c04.indd 112 05/06/12 5:20 PM05/06/12 5:20 PM

Anatomy of a DTD ❘ 113

TRY IT OUT “Making Contact” — Part 4

In this exercise you take what you just learned and use it to add a parameter entity reference to your
contacts DTD. This will enable you to parameterize the phone attribute declaration within your DTD.

1. Begin by making the appropriate modifi cations to the DTD fi le. Create a new document
called contacts4.dtd. You can copy the content from contacts3.dtd, adding the new
DefaultPhoneKind parameter entity and modifying the ATTLIST declaration for the <phone>
element. When you have made the changes, save the contacts4.dtd fi le:

<!ENTITY % DefaultPhoneKind ‘“Home”’>
<!ATTLIST phone kind (Home | Work | Cell | Fax) %DefaultPhoneKind;>

 2. Change the XML fi le to refer to the new DTD. This is the only change you need to make within
your XML document. Create a new document based on contacts3.xml, the document you cre-
ated in the previous Try it Out. Change the Document Type Declaration to refer to your new
DTD, and save the fi le as contacts4.xml:

<!DOCTYPE contacts PUBLIC “-//Beginning XML//DTD Contact Example//EN”
 “contacts4.dtd”>

3. You are ready to validate the document again. Open contacts4.xml and click
Plugins ➪ XML ➪ Parse as XML.

Your output should show a complete validation without errors. If you received any errors this time,
confi rm that you have typed everything correctly and try again.

How It Works

You were able to change ATTLIST declarations by using a parameter entity for the content model
and a parameter entity for the attribute declarations. Just as you have seen throughout this section,
parameter entities enable you to reuse DTD declarations or pieces of declarations. As the parser
attempts to process the content model for the <contact> declaration, it encounters the parameter
entity reference. It replaces the entity reference with the replacement text specifi ed in the ENTITY
declaration.

Note that the declaration of a parameter entity must occur in the DTD before any references to
that entity.

NOTE When a parser builds the replacement value for a parameter entity, it

adds a single space character before and after the value you specify. This can

create all kinds of confusion if you are not careful in defi ning your parameter

entities. In fact, this is why you need to include the quotation marks as part of

the parameter entity — so that there won’t be extra spaces in the value.

c04.indd 113c04.indd 113 05/06/12 5:20 PM05/06/12 5:20 PM

114 ❘ CHAPTER 4 DOCUMENT TYPE DEFINITIONS

DTD LIMITATIONS

DTDs are a rather old technology and over time various limitations have become apparent. Most
signifi cantly, DTDs have:

 ➤ Poor support for XML namespaces

 ➤ Poor data typing

 ➤ Limited content model descriptions

However, it is important to remember that even with their limitations, DTDs are a fundamental
part of the XML Recommendation. DTDs will continue to be used in many diverse situations, even
as other methods of describing documents emerge.

SUMMARY

In this chapter, you learned the following:

 ➤ By using DTDs, you can easily validate your XML documents against a defi ned vocabulary
of elements and attributes. This reduces the amount of code needed within your application.

 ➤ An XML parser can be used to check whether the contents of an XML document are valid
according to the declarations within a DTD.

 ➤ DTDs enable you to exercise much more control over your document content than simple
well-formedness checks do.

 ➤ Use a DTD to provide a description against which documents can be validated.

 ➤ Create element declarations using the <!ELEMENT ... > construct.

 ➤ Create attribute declarations using the <!ATTLIST ... > construct.

 ➤ Create entity declarations using the <!ENTITY ... > construct.

 ➤ Specify the DTD associated with an XML document using the <!DOCTYPE ... > construct.

 ➤ DTDs have several limitations. The next two chapters illustrate how these limitations have
been addressed in newer standards, such as XML Schemas and RELAX NG.

EXERCISES

You can fi nd suggested solutions to these questions in Appendix A.

 1. Build a contact for yourself in the list based on the declarations in the contacts DTD. Once you

have added the new contact, validate your document to ensure that it is correct.

 2. Add a gender attribute declaration for the <contact> elements. The attribute should allow two

possible values: male and female. Make sure the attribute is required.

 3. Currently, each contact can have only one phone number. Modify the contact declaration so that

each contact can have zero or more phone numbers. In addition, add declarations for website

and email elements.

c04.indd 114c04.indd 114 05/06/12 5:20 PM05/06/12 5:20 PM

Summary ❘ 115

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

Purpose of DTDs To describe the structure of XML documents in a way that they may be

validated.

Associating XML

documents to DTDs

The DTD can be included within the XML document itself, or specifi ed

by reference in the document’s DOCTYPE declaration.

Element declarations Elements and their allowed children can be specifi ed in DTDs, e.g.

<!ELEMENT name (first, middle, last)>.

Content models DTDs support four diff erent kinds of content model: Element (child

elements only); Mixed (elements and text); Empty (no content); and Any

(unrestricted).

Child element structure The structure of the children of an element may be specifi ed using a

combination of sequences (comma-separated lists) or choices (lists

separated by the “|” character), e.g. <!ELEMENT location (address

| (latitude, longitude))>.

Cardinality indicators When no cardinality indicator is used on an element, by default it

indicates that the element should appear once and once only. The

indicators are: ? (zero or one occurrence of the element); + (one or more

occurrences); and * (zero or more occurrences).

Attribute declarations Attributes and the details of their nature can be specifi ed in DTDs, e.g.

<!ATTLIST phone kind (Home | Work | Cell | Fax)>.

Entity declarations There are four kinds of entities to be found in XML: Built-in (for example

& for the & character); Character (for example © for the

copyright symbol); General (replacement text); and Parameter

(replacement text for use in DTDs).

c04.indd 115c04.indd 115 05/06/12 5:20 PM05/06/12 5:20 PM

c04.indd 116c04.indd 116 05/06/12 5:20 PM05/06/12 5:20 PM

XML Schemas

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The benefi ts of XML Schemas

 ➤ How to create and use XML Schemas

 ➤ How to document your XML Schemas

Like DTDs, XML Schemas are used for defi ning XML vocabularies. They describe the structure and
content of XML documents in more detail than DTDs, and hence allow more precise validation.

Today, XML Schemas are a mature technology used in a variety of XML applications.
Apart from their use in validation, aspects of XML Schemas are used in various other XML
technologies such as XQuery and SOAP, which are covered in later chapters.

The XML Schema 1.0 specifi cations were fi rst published by the W3C in 2001 and then revised
to a Second Edition in 2004. The 2004 documents are currently the primary reference for
XML Schema, although a 1.1 version is under development. At the time of this writing, these
documents are at Candidate Recommendation status. The main ideas of the 1.1 specifi cation are
the same as the 1.0 version and this newer version is clearer and a little easier to read, so generally
speaking it makes a better reference (a handful of changes and additions are covered at the end of
this chapter). All the relevant specifi cations are available at www.w3.org/XML/Schema.

5

NOTE In general, a schema is any type of model document that defi nes the

structure of something, such as database layout or documents. For example,

DTDs are a type of schema. The word schema is often interchangeable with the

word vocabulary. But more specifi cally, the term XML Schema is used to refer to

the W3C XML Schema technology. When referring to W3C XML Schemas, the

“S” in “Schema” should be capitalized, and sometimes you will see “WXS” used

to refer to this technology. A more common set of initials is “XSD” for XML

Schema Document, referring to the actual defi nition fi les, which are typically

saved with the fi lename extension .xsd.

c05.indd 117c05.indd 117 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/XML/Schema

118 ❘ CHAPTER 5 XML SCHEMAS

BENEFITS OF XML SCHEMAS

At this point you have already invested time in learning DTDs. You know the syntax and can
create complex, even modular, defi nitions for your vocabulary. XML Schemas look a lot different
from DTDs (and in many ways are!), but they use the same underlying principles in specifying a
vocabulary and grammar for your XML documents. Before jumping in to the details, it’s worth
looking at the benefi ts of XML Schemas:

 ➤ XML Schemas are created using basic XML, whereas DTDs utilize a separate syntax.

 ➤ XML Schemas fully support the Namespace Recommendation.

 ➤ XML Schemas enable you to validate text element content based on built-in and
user-defi ned data types.

 ➤ XML Schemas enable you to more easily create complex and reusable content models.

 ➤ XML Schemas enable the modeling of programming concepts such as object inheritance
and type substitution.

The following sections look at some of these benefi ts in more detail.

XML Schemas Use XML Syntax

In the previous chapter, you spent most of your time learning the DTD syntax. When creating an
XML Schema, the syntax is entirely in XML. But as with DTDs you are defi ning rules for XML
documents, so there are similarities. For example, in the previous chapter you saw rules for elements
that looked like this:

<!ELEMENT first (#PCDATA)>

The same rule (approximately) is expressed in XML Schema as:

<element name=”first” type=”string”/>

A big advantage of XML Schemas (written in XML) is that you can use generic XML tools for writ-
ing and processing them.

XML Schema Namespace Support

Because XML Schemas were fi nalized after the Namespace Recommendation, unlike DTDs,
they support namespaces (which were covered in Chapter 3). With XML Schemas you can defi ne
vocabularies that use namespace declarations and mix namespaces in XML documents with
more fl exibility. For example, when designing an XML Schema, it is not necessary to specify
namespace prefi xes as you must in DTDs. Instead, the XML Schema (in line with the
XML namespaces spec) leaves this decision to the user of the document.

c05.indd 118c05.indd 118 05/06/12 5:22 PM05/06/12 5:22 PM

Benefi ts of XML Schemas ❘ 119

XML Schema Data Types

When you develop DTDs, you can specify that an element has mixed content, element content, or
empty content. Unfortunately, when your elements contain only text, you can’t add any constraints
on the format of the text. Attribute declarations give you some control, but even then the data types
you can use in attribute declarations are very limited.

XML Schemas divide data types into two broad categories: complex and simple. Elements that may
contain attributes or other elements are declared using complex types. Attribute values and text
content within elements are declared using simple types.

For example, by utilizing these types you could specify that an element may contain only date
values, only positive numbers, or only numbers within a certain range. Many commonly-used
simple types are built into XML Schemas. This is, perhaps, the single most important feature within
XML Schemas. By enabling you to specify the allowable type of data within an element or attribute,
you can exercise more rigid control over documents. This enables you to easily create documents
that are intended to represent databases, programming languages, and objects within programming
languages. Simple types and complex types are exemplifi ed later in this chapter.

XML Schema Content Models

To reuse a content model within a DTD, you have to utilize parameter entities. Using multiple
parameter entities can lead to complex declarations within the DTD. XML Schemas provide several
mechanisms for reusing content models. In addition to the simple models that you create in DTDs,
XML Schema declarations can use object inheritance and content model inheritance. The advanced
features of XML Schemas enable you to build content models upon content models, modifying the
defi nition in each step.

XML Schema Specifi cations

The specifi cation for XML Schemas (version 1.0) is provided in three documents available from
www.w3.org/XML/Schema. These specifi cation documents are as follows:

 ➤ Part 0: Primer: A (comparatively) easy-to-read overview of XML Schema.

 ➤ Part 1: Structures: This describes the concepts behind XML Schema and defi nes its
component parts, how they are used to describe document structure, and how XML
Schema is used for validation.

 ➤ Part 2: Datatypes: This defi nes the different kinds of data types XML Schema can support,
including simple built-in types (such as decimal numbers). It additionally describes the
system by which complex data types can be built up from simpler components (for example,
a list of 10 negative integers).

NOTE Version 1.1 has revised versions of these three specifi cation documents,

together with a few auxiliary documents.

c05.indd 119c05.indd 119 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/XML/Schema

120 ❘ CHAPTER 5 XML SCHEMAS

Given the size and complexity of these specifi cations, XML Schemas cannot be covered completely
in one chapter. But many tools don’t support the advanced features properly; in fact, experts often
recommend against many that don’t. So this chapter covers the basic features — those that are
most useful.

XML SCHEMAS IN PRACTICE

Most XML Schemas are stored within a separate document in a similar fashion to external DTDs;
that is, an XML document contains a reference to the XML Schema that defi nes its vocabulary.
An XML document that adheres to a particular XML Schema vocabulary is called an XML Schema
instance document.

Like DTDs, XML Schemas can be used for a variety of purposes, including, for example, assisting
in the authoring of documents. But their most common use is to validate XML documents.

As shown in the previous chapter, validating a document against its vocabulary requires the use
of a special parser. The XML Schema Recommendation calls these parsers schema validators.
Not only do schema validators render a verdict on the document’s schema validity, but many also
provide type information to the application. This set of type information is called the Post Schema
Validation Infoset (PSVI). You may never need to use this notion in practice, but you are most
likely to encounter the phrase in documentation. For example, PSVI output is used by XQuery and
XPath2. The XML Infoset (defi ned at http://www.w3.org/TR/xml-infoset/) is an abstract view of
the data contained in XML documents. It may not be made explicit anywhere, but if you are work-
ing with XML in an object-oriented programming language, this is the basic model you’re dealing
with. When using XML Schema, there’s even more information to work with. The PSVI contains
all of the information in the XML document plus a basic summary of everything declared in the
schema.

RUNNING THE SAMPLES

Throughout this chapter, the examples assume you are using the jEdit editor
(www.jedit.org). In addition to being able to work with DTDs, jEdit is capable of
checking an XML Schema instance document against its XML Schema. It is possible
to create a program that validates your XML against an XML Schema using a
validating parser library. More information on using parsers in your own programs
is available in the next chapter.

You have learned some of the benefi ts of XML Schemas, but it helps if you see an entire XML
Schema before you look at each part in detail. To illustrate how the XML Schema works, in the
following activity you will modify the name example from the previous chapter that used a DTD to
defi ne a vocabulary for documents providing contact information. Here you will use XML Schema
to defi ne a similar vocabulary, and use it to validate documents.

c05.indd 120c05.indd 120 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/TR/xml-infoset/
http://www.jedit.org

XML Schemas in Practice ❘ 121

TRY IT OUT What’s in a Name?

This example creates an XML Schema that defi nes the name vocabulary. It shows how to refer to the
XML Schema from the instance document:

1. Begin by creating the XML Schema. Run jEdit and copy the following. Save the fi le as name5.xsd:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
xmlns:target=”http://www.example.com/name”
targetNamespace=”http://www.example.com/name” elementFormDefault=”qualified”>
 <element name=”name”>
 <complexType>
 <sequence>
 <element name=”first” type=”string”/>
 <element name=”middle” type=”string”/>
 <element name=”last” type=”string”/>
 </sequence>
 <attribute name=”title” type=”string”/>
 </complexType>
 </element>
</schema>

name5.xsd

2. Create the instance document. This document is very similar to the name4.xml example from the
previous chapter. Instead of referring to a DTD, refer to the newly created XML Schema. Create a
new document called name5.xml and copy the following; when you are fi nished, save the fi le:

<?xml version=”1.0”?>
<name
 xmlns=”http://www.example.com/name”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.example.com/name name5.xsd”
 title=”Mr.”>
 <first>John</first>
 <middle>Fitzgerald Johansen</middle>
 <last>Doe</last>
</name>

name5.xml

3. You are ready to validate your XML instance document against the XML Schema. Because you
refer to your XML Schema within name5.xml, you don’t need to select it within the validator.
As in the previous chapter, in jEdit you validate by clicking the Plugins menu, selecting XML, and
clicking the Parse as XML option. You should see something like Figure 5-1, with “XML parsing
complete, 0 error(s)” in jEdit’s status bar at the bottom. If the output suggests that the
validation completed but there is an error in the document, correct the error and try again.

4. If you would like to see what happens when there is an error, simply modify your name5.xml
document and try validating it again.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c05.indd 121c05.indd 121 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/name
http://www.example.com/name
http://www.example.com/name
http://www.example.com/namename5.xsd
http://Wrox.com
http://Wrox.com
http://www.w3.org/2001/XMLSchema-instance

122 ❘ CHAPTER 5 XML SCHEMAS

How It Works

In this Try It Out you created an XML Schema for the name vocabulary. You used the XML Schema
to determine whether your instance document was schema-valid. To connect the two documents, you
included a reference to the XML Schema within your instance document. The schema validator can
then read the declarations within the XML Schema. As it is parsing the instance document, it validates
each element that it encounters against the matching declaration. If it fi nds an element or attribute that
does not appear within the declarations, or if it fi nds a declaration that has no matching XML content,
it raises a schema validity error.

The XML begins like this:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:target=”http://www.example.com/name”
 targetNamespace=”http://www.example.com/name”
 elementFormDefault=”qualified”>

The root element within your XML Schema is the <schema> element. Within the <schema> element,
you have its namespace declaration http://www.w3.org/2001/XMLSchema. You also include a
targetNamespace attribute indicating that you are developing a vocabulary for the namespace
http://www.example.com/name. You also declared a namespace that matches your targetNamespace
with the prefi x target. If you need to refer to any declarations within your XML Schema, you need
this declaration, so you include it just in case. As with all namespace declarations, you are not required
to use target as your prefi x; you could choose any prefi x you like.

You also included the attribute elementFormDefault with the value qualified. Essentially, this
controls the way namespaces are used within your corresponding XML document. For now, it is best
to get into the habit of adding this attribute with the value qualified, because it will simplify your
instance documents. You will see what this means a little later in the chapter.

Next, in the XML you have:

<element name=”name”>

FIGURE 5-1

c05.indd 122c05.indd 122 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/name
http://www.example.com/name
http://www.w3.org/2001/XMLSchema
http://www.example.com/name

XML Schemas in Practice ❘ 123

Within the <schema> element is an <element> declaration. Within this <element>, you specifi ed that
the name of the element is name. In this example, the content model is specifi ed by including a
<complexType> defi nition within the <element> declaration:

<complexType>
 <sequence>
 <element name=”first” type=”string”/>
 <element name=”middle” type=”string”/>
 <element name=”last” type=”string”/>
 </sequence>
 <attribute name=”title” type=”string”/>
</complexType>

Because the <name> element contains the elements <first>, <middle>, and <last>, it must be declared
as a complex type. A <complexType> defi nition enables you to specify the allowable elements and their
order as well as any attribute declarations.

In this example, you have indicated that you are using a sequence by including a <sequence> element.
The <sequence> declaration contains three <element> declarations. Within these declarations, you
have specifi ed that their type is string. This indicates that the elements must adhere to the XML
Schema simple type string, which allows any textual content.

In addition, within the <complexType> defi nition is an <attribute> declaration. This <attribute>
declaration appears at the end of the <complexType> defi nition, after any content model information.
By declaring a title attribute, you can easily specify how you should address the individual described
by your XML document. Because the title attribute is declared in the <complexType> declaration for
the <name> element, the attribute is allowed to appear in the <name> element in the instance document.

Before moving on, take a quick look at the instance document from the preceding activity:

<name
 xmlns=”http://www.example.com/name”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.example.com/name name5.xsd”
 title=”Mr.”>

Within the root element of the instance document are two namespace declarations. The
fi rst indicates that the default namespace is http://www.example.com/name. This namespace
matches the targetNamespace that you declared within your XML Schema. You also declare
the namespace http://www.w3.org/2001/XMLSchema-instance. Several attributes from this
namespace can be used within your instance document.

The instance document includes the attribute schemaLocation. This attribute tells the schema
validator where to fi nd the XML Schema document for validation. The schemaLocation attribute
is declared within the namespace http://www.w3.org/2001/XMLSchema-instance, so the
attribute has the prefi x xsi. The value of the schemaLocation attribute is http://www.example
.com/name name5.xsd. This is known as a namespace-location pair; it is the namespace of your
XML document and the URL of the XML Schema that describes your namespace. This example used

c05.indd 123c05.indd 123 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/name
http://www.w3.org/2001/XMLSchema-instance
http://www.example.com/namename5.xsd
http://www.example.com/name
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.example.com/namename5.xsd
http://www.example.com/namename5.xsd

124 ❘ CHAPTER 5 XML SCHEMAS

a very simple relative URL, name5.xsd. The XML Schema Recommendation allows you to declare
several namespace-location pairs within a single schemaLocation attribute — simply separate the
values with whitespace. This is useful when your XML document uses multiple namespaces.

The schemaLocation attribute is only a hint for the processor to use — the processor doesn’t have
to use the provided location. For example, the validator may have a local copy of the XML Schema
instead of loading the fi le specifi ed, to decrease processor usage. If your XML Schema has no
targetNamespace, you cannot use a namespace-location pair. Instead, you must refer to the XML
Schema using the noNamespaceSchemaLocation attribute within your instance document.

This has been an extremely brief overview of some diffi cult concepts in XML Schemas. Don’t
worry; the Try It Out from this section is intended to give you an overall context for what you will
be learning throughout the chapter. Each of these concepts is covered in much greater detail.

DEFINING XML SCHEMAS

Now you have a general feel for what XML Schemas look like and how they are used, it’s time
to move onto the details of their construction. The following sections go over the structure and
function of the various components and declarations in in an XML Schema.

<schema> Declarations

The <schema> element is the root element within an XML Schema and it enables you to declare
namespace information as well as defaults for declarations throughout the document. You can
also include a version attribute that helps to identify the XML Schema and the version of your
vocabulary, like so:

<schema targetNamespace=”URI”
 attributeFormDefault=”qualified or unqualified”
 elementFormDefault=”qualified or unqualified”
 version=”version number”>

The XML Schema Namespace

In the fi rst example, the namespace http://www.w3.org/2001/XMLSchema was declared as the
default within the <schema> element. This enables you to indicate that the <schema> element is part
of the XML Schema vocabulary. Remember that because XML is case sensitive, namespaces
are case sensitive.

Instead of making this the default, you could have used a prefi x. For the following example, the
XML Schema Recommendation itself uses the prefi x xs:

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

As shown in Chapter 3, the namespace prefi x is insignifi cant — it is only a shortcut to the
namespace declaration. Which prefi x you use is a matter of personal preference; just remember to
be consistent throughout your document.

c05.indd 124c05.indd 124 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

Defi ning XML Schemas ❘ 125

Target Namespaces

The primary purpose of XML Schemas is to declare vocabularies. These vocabularies can be
identifi ed by a namespace that is specifi ed in the targetNamespace attribute. Not all XML
Schemas will have a targetNamespace. Many XML Schemas defi ne vocabularies that are reused
in another XML Schema, or vocabularies that are used in documents where the namespace is
not necessary.

When declaring a targetNamespace, it is important to include a matching namespace declaration.
You can choose any prefi x you like, or you can use a default namespace declaration. The namespace
declaration is used when you are referring to declarations within the XML Schema. You will see
what this means in more detail later in the section “Referring to an Existing Global Element.”

Some possible targetNamespace declarations include the following:

<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 targetNamespace=”http://www.example.com/name”
 xmlns:target=”http://www.example.com/name”>

or

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 targetNamespace=”http://www.example.com/name”
 xmlns=”http://www.example.com/name”>

Notice that in the fi rst declaration the <schema> element uses the default namespace. Because of
this, the target namespace http://www.example.com/name requires the use of a prefi x. However,
in the second declaration you see the exact opposite; the <schema> element requires the use of a
prefi x because the target namespace http://www.example.com/name is using a default namespace
declaration. Again, user preference is the only difference.

Element and Attribute Qualifi cation

Within the instance document, elements and attributes may be qualifi ed or unqualifi ed. An element
or attribute is qualifi ed if it has an associated namespace. For example, the following elements
are qualifi ed:

<name xmlns=”http://www.example.com/name”>
 <first>John</first>
 <middle>Fitzgerald</middle>
 <last>Doe</last>
</name>

Even though the elements in this example don’t have namespace prefi xes, they still have an
associated namespace, http://www.example.com/name, making them qualifi ed but not prefi xed.
Each of the child elements is also qualifi ed because of the default namespace declaration in the
<name> element. Again, these elements have no prefi xes.

c05.indd 125c05.indd 125 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/name
http://www.w3.org/2001/XMLSchema
http://www.example.com/name
http://www.example.com/name
http://www.example.com/name
http://www.example.com/name
http://www.example.com/name
http://www.example.com/name
http://www.example.com/name

126 ❘ CHAPTER 5 XML SCHEMAS

In the following example, all of the elements are qualifi ed and prefi xed:

<n:name xmlns:n=”http://www.example.com/name”>
 <n:first>John</n:first>
 <n:middle>Fitzgerald</n:middle>
 <n:last>Doe</n:last>
</n:name>

Unqualifi ed elements have no associated namespace:

<n:name xmlns:n=”http://www.example.com/name”>
 <first>John</first>
 <middle>Fitzgerald</middle>
 <last>Doe</last>
</n:name>

The <name> element is qualifi ed, but the <first>, <middle>, and <last> elements are not. The
<first>, <middle>, and <last> elements have no associated namespace declaration (default or
otherwise); therefore, they are unqualifi ed. This mix of qualifi ed and unqualifi ed elements may seem
strange; nevertheless, it is the default behavior in XML Schemas.

Within the <schema> element you can modify the defaults specifying how elements should be
qualifi ed by including the following attributes:

 ➤ elementFormDefault

 ➤ attributeFormDefault

The elementFormDefault and attributeFormDefault attributes enable you to control the default
qualifi cation form for elements and attributes in the instance documents. The default value for both
elementFormDefault and attributeFormDefault is unqualified.

Even though the value of the elementFormDefault attribute is unqualified, some elements
must be qualifi ed regardless. For example, global element declarations must always be qualifi ed in
instance documents (global and local declarations are discussed in detail in the next section).
In the preceding example, this is exactly what was done. The <name> element was qualifi ed with a
namespace, but not the <first>, <middle>, and <last> elements.

On some occasions you will want a mix of qualifi ed and unqualifi ed elements; for example, XSLT
and SOAP documents may contain both. But as a rule of thumb it’s best to qualify all of the
elements in your documents. In other words, always include the elementFormDefault attribute
with the value qualified. This makes reuse of the vocabulary a little easier.

NOTE The default value for attributeFormDefault is unqualified.

Usually you won’t have to change this value, because most attributes in XML

vocabularies are unqualifi ed.

c05.indd 126c05.indd 126 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/name
http://www.example.com/name

Defi ning XML Schemas ❘ 127

Content Models

XML Schemas specify what may appear in a document by providing a structural model of the
allowable content. Where elements and attributes could be seen as the “atoms” of XML, it’s also
possible to group these together into “molecules.” These molecules are the content models.

In the fi rst example you saw a <complexType> and a <sequence> declaration used to specify
an element’s allowable content. The <sequence> declaration is one of three distinct ways of
interpreting a list of elements. All three are as follows:

 ➤ <sequence>: Elements must appear in the given order.

 ➤ <choice>: Only one of the elements in the list may appear.

 ➤ <all>: Elements can appear in any order, with each child element occurring zero
or one time.

What’s more, the contents of the <sequence> and <choice> elements aren’t limited to individual
elements. You can use these structures as components of other structures. For example:

 <complexType name=”NameOrEmail”>
 <choice>
 <element name=”email” type=”string”/>
 <sequence>
 <element name=”first” type=”string”/>
 <element name=”middle” type=”string”/>
 <element name=”last” type=”string”/>
 </sequence>
 </choice>
 </complexType>

Here, the content model specifi es that the NameOrEmail type is something that’s either a string in an
<email> element or an ordered list of <first>, <middle>, <last> elements containing strings.

There is also the <group> declaration, which, as you see later, can be used to wrap <sequence>,
<choice>, or <all> blocks for reuse elsewhere in the schema.

The <sequence> and <choice> declarations are pretty straightforward in their interpretations, but
there are some special rules that govern the use of <all>.

Restrictions on <all>

The <all> declaration says that the elements can appear in any order, with each child element
occurring zero or one time.

To use this mechanism, you must adhere to several rules:

 ➤ The <all> declaration must be the only content model declaration that appears as a child of
a <complexType> defi nition.

 ➤ The <all> declaration can contain only <element> declarations as its children. It is not
permitted to contain <sequence>, <choice>, or <group> declarations.

c05.indd 127c05.indd 127 05/06/12 5:22 PM05/06/12 5:22 PM

128 ❘ CHAPTER 5 XML SCHEMAS

 ➤ The <all> declaration’s children may appear once each in the instance document.
This means that within the <all> declaration, the values for minOccurs for maxOccurs
are limited to 0 or 1.

Even with these additional restrictions, the <all> declaration can be very useful. It is commonly
used when the expected content is known, but not the order.

Suppose you declared the <name> content model using the <all> mechanism:

<element name=”name”>
 <complexType>
 <all>
 <element name=”first” type=”string”/>
 <element name=”middle” type=”string”/>
 <element name=”last” type=”string”/>
 </all>
 <attribute name=”title” type=”string”/>
 </complexType>
</element>

Notice that the <all> element is the only content model declaration within the <complexType>
(<attribute> declarations do not count as content model declarations). In addition, note that the
<all> declaration contains only <element> declarations as its children. Because the default value
for minOccurs and maxOccurs is 1, each element can appear in the instance document once and
only once. By declaring the content model as shown in the preceding example, you can validate your
element content but still allow your elements to appear in any order. The allowable content for a
<name> element declared using an <all> declaration might include

<first>John</first>
<middle>Fitzgerald</middle>
<last>Doe</last>

or

<first>John</first>
<last>Doe</last>
<middle>Fitzgerald</middle>

As long as all of the elements you have specifi ed appear, they can appear in any order. In the second
example, the <middle> element was added last. Because the content model is declared using <all>,
this is still allowable.

<element> Declarations

When declaring an element, you are actually performing two primary tasks — specifying the
element name and defi ning the allowable content:

<element
 name=”name of the element”
 type=”global type”
 ref=”global element declaration”

c05.indd 128c05.indd 128 05/06/12 5:22 PM05/06/12 5:22 PM

Defi ning XML Schemas ❘ 129

 form=”qualified or unqualified”
 minOccurs=”non-negative number”
 maxOccurs=”non-negative number or ‘unbounded’”
 default=”default value”
 fixed=”fixed value”>

When specifying the name, standard XML restrictions exist on what names you can give elements.
Though XML names can include numerical digits, periods (.), hyphens (-), and underscores (_),
they must begin with a letter or an underscore (_). Because of the way namespaces are dealt with in
XML Schema, the colon (:) is also disallowed anywhere in the name.

An element’s allowable content is determined by its type, which may be simple or complex. You can
specify the type in three main ways: by creating a local type, using a global type, or by referring to a
global element declaration.

Global versus Local

Before you can understand these different methods for declaring elements, you must understand the
difference between global and local declarations:

 ➤ Global declarations are declarations that appear as direct children of the <schema> element.
Global element declarations can be reused throughout the XML Schema.

 ➤ Local declarations do not have the <schema> element as their direct parent and can be used
only in their specifi c context.

Look at the fi rst example (name5.xsd) again:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:target=”http://www.example.com/name”
 targetNamespace=”http://www.example.com/name”
 elementFormDefault=”qualified”>
 <element name=”name”>
 <complexType>
 <sequence>
 <element name=”first” type=”string”/>
 <element name=”middle” type=”string”/>
 <element name=”last” type=”string”/>
 </sequence>
 <attribute name=”title” type=”string”/>
 </complexType>
 </element>
</schema>

This XML Schema has four element declarations. The fi rst declaration, the <name> element, is a
global declaration because it is a direct child of the <schema> element. The declarations for the
<first>, <middle>, and <last> elements are considered local because the declarations are not
direct children of the <schema> element. The declarations for the <first>, <middle>, and <last>
elements are valid only within the <sequence> declaration — they cannot be reused elsewhere in
the XML Schema.

c05.indd 129c05.indd 129 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/name
http://www.example.com/name

130 ❘ CHAPTER 5 XML SCHEMAS

Creating a Local Type

Of the two methods of element declaration, creating a local type should seem the most familiar.
This model was used when declaring the <name> element in the example. To create a local type,
you simply include the type declaration as a child of the element declaration, as in the
following example:

<element name=”name”>
 <complexType>
 <sequence>
 <element name=”first” type=”string”/>
 <element name=”middle” type=”string”/>
 <element name=”last” type=”string”/>
 </sequence>
 <attribute name=”title” type=”string”/>
 </complexType>
</element>

or

<element name=”name”>
 <simpleType>
 <restriction base=”string”>
 <enumeration value=”Home”/>
 <enumeration value=”Work”/>
 <enumeration value=”Cell”/>
 <enumeration value=”Fax”/>
 </restriction>
 </simpleType>
</element>

These examples show that an element declaration can contain a <complexType> defi nition or a
<simpleType> defi nition, but it cannot contain both at the same time.

Creating a Global Type

Often, many of your elements will have the same content. Instead of declaring duplicate local types
throughout your schema, you can create a global type. Within your element declarations, you can
refer to a global type by name. In fact, you have already seen this:

<element name=”first” type=”string”/>

Here, the type attribute refers to the built-in data type string. XML Schemas have many built-in
data types, most of which will be described in the “Data Types” section later in the chapter. You
can also create your own global declarations and refer to them. For example, suppose you had
created a global type for the content of the <name> element like so:

<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:target=”http://www.example.com/name”
 targetNamespace=”http://www.example.com/name”
 elementFormDefault=”qualified”>
 <complexType name=”NameType”>

c05.indd 130c05.indd 130 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/name
http://www.example.com/name

Defi ning XML Schemas ❘ 131

 <sequence>
 <element name=”first” type=”string”/>
 <element name=”middle” type=”string”/>
 <element name=”last” type=”string”/>
 </sequence>
 <attribute name=”title” type=”string”/>
 </complexType>
 <element name=”name” type=”target:NameType”/>
</schema>

Even though the type is global, it is still part of the target namespace. Therefore, when referring to
the type, you must include the target namespace prefi x (if any). This example used the prefi x target
to refer to the target namespace, but it is equally correct to do the following:

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 xmlns=”http://www.example.com/name”
 targetNamespace=”http://www.example.com/name”
 elementFormDefault=”qualified”>
 <xs:complexType name=”NameType”>
 <xs:sequence>
 <xs:element name=”first” type=”xs:string”/>
 <xs:element name=”middle” type=”xs:string”/>
 <xs:element name=”last” type=”xs:string”/>
 </xs:sequence>
 <xs:attribute name=”title” type=”xs:string”/>
 </xs:complexType>
 <xs:element name=”name” type=”NameType”/>
</xs:schema>

Here, the XML Schema namespace is declared using the prefi x xs, and the target namespace has no
prefi x. Therefore, to refer to the global type NameType, you do not need to include any prefi x.

Now that you know the theory behind global types, you can try them out in practice.

TRY IT OUT Creating Reusable Global Types

Creating global types within an XML Schema is straightforward. In this example you convert the
<name> example to use a named global type, rather than a local type. Once a global type is defi ned you
can use it anywhere in your schema, so you don’t have to repeat yourself. Here’s how it’s done:

1. Begin by making the necessary changes to your XML Schema. Run jEdit and reopen name5.xsd.
Then make the highlighted changes in the following code, and save the result as name6.xsd.

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:target=”http://www.example.com/name”
 targetNamespace=”http://www.example.com/name”
 elementFormDefault=”qualified”>
 <complexType name=”NameType”>
 <sequence>
 <element name=”first” type=”string”/>
 <element name=”middle” type=”string”/>

Available for
download on
Wrox.com

c05.indd 131c05.indd 131 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/name
http://www.example.com/name
http://www.w3.org/2001/XMLSchema
http://www.example.com/name
http://www.example.com/name
http://Wrox.com

132 ❘ CHAPTER 5 XML SCHEMAS

 <element name=”last” type=”string”/>
 </sequence>
 <attribute name=”title” type=”string”/>
 </complexType>
 <element name=”name” type=”target:NameType”/>
</schema>

name6.xsd

2. Before you can validate your document, you must modify it so that it refers to your new XML
Schema. Reopen name5.xml and change the xsi:schemaLocation attribute, as follows:

xsi:schemaLocation=”http://www.example.com/name name6.xsd”

Save this modifi ed version as name6.xml.

3. You are ready to validate your XML instance document against your XML Schema. In jEdit click
Plugins ➪ XML ➪ Parse as XML. This should validate with no errors, as before.

How It Works

You had to make minor modifi cations to your schema in order to create a reusable complex type. First,
you moved the <complexType> defi nition from within your <element> declaration to your <schema>
element. Remember that a declaration is global if it is a direct child of the <schema> element. Once you
made the <complexType> defi nition global, you needed to add a name attribute so that you could refer
to it later. You named the <complexType> defi nition NameType so it would be easy to identify.

After you declared the NameType <complexType>, you modifi ed your <name> element declaration to
refer to it. You added a type attribute to your element declaration with the value target:NameType.
Keep in mind that you have to include the namespace prefi x target when referring to the type so the
validator knows which namespace it should look in.

So within <complexType> defi nitions, you specify the allowable element content for the declaration:

<complexType
 mixed=”true or false”
 name=”Name of complexType”>

Earlier, when you created a local declaration, you did not include a name attribute in your
<complexType> defi nition. Local <complexType> defi nitions are never named; in fact, they are
called anonymous complex types. As you have already seen, however, global <complexType>
defi nitions are always named, so that they can be identifi ed later.

Referring to an Existing Global Element

As shown in the preceding example, referring to global types enables you to reuse content model
defi nitions within your XML Schema. Often, you may want to reuse entire element declarations

c05.indd 132c05.indd 132 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/namename6.xsd

Defi ning XML Schemas ❘ 133

instead of just the type. To refer to a global element declaration, simply include a ref attribute and
specify the name of the global element as the value, like so:

<element ref=”target:first”/>

Again, the name of the element must be qualifi ed with the namespace. The preceding example is an
element reference to a global element named first that was declared in the target namespace. Notice
that when you refer to a global element declaration, you have no type attribute and no local type
declaration. Your element declaration uses the type of the <element> declaration in the reference.

This is very straightforward; now you can add a reference to the global type.

TRY IT OUT Referring to Global Element Declarations

In the last Try It Out you created a global type. In this one you will modify the schema from the
previous activity to refer to global element declarations. Here’s how to do it:

1. Begin by making the necessary changes to the XML Schema. Reopen name6.xsd and save it
as name7.xsd.

2. Make the following changes:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:target=”http://www.example.com/name”
 targetNamespace=”http://www.example.com/name”
 elementFormDefault=”qualified”>
 <element name=”first” type=”string”/>
 <element name=”middle” type=”string”/>
 <element name=”last” type=”string”/>
 <complexType name=”NameType”>
 <sequence>
 <element ref=”target:first”/>
 <element ref=”target:middle”/>
 <element ref=”target:last”/>
 </sequence>
 <attribute name=”title” type=”string”/>
 </complexType>
 <element name=”name” type=”target:NameType”/>
</schema>

name7.xsd

3. Before you can schema-validate your XML document, you must modify it so that it refers to
your new XML Schema. Reopen name6.xml, save it as name7.xml, and change the
xsi:schemaLocation attribute to point to the new schema:

xsi:schemaLocation=”http://www.example.com/name name7.xsd”

4. You are ready to validate your XML instance document against your XML Schema. In jEdit,
click Plugins ➪ XML ➪ Parse as XML.

Available for
download on
Wrox.com

c05.indd 133c05.indd 133 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/name
http://www.example.com/name
http://www.example.com/namename7.xsd
http://Wrox.com

134 ❘ CHAPTER 5 XML SCHEMAS

How It Works

This Try It Out utilized references to global element declarations within your content model. First
you moved the declarations for the <first>, <middle>, and <last> elements from within your
<complexType> defi nition to your <schema> element, making them global. After you created your
global declarations, you inserted references to the elements within your <complexType>. In each
reference, you prefi xed the global element name with the prefi x target.

What a Validator Does with Global Types

At this point, it might help to examine what the schema validator is doing in more detail. As the
schema validator processes your instance document, it fi rst encounters the root element, in this
case <name>. When it encounters the <name> element, it looks it up in the XML Schema. When
attempting to fi nd the declaration for the root element, the schema validator looks through only the
global element declarations.

Once the schema validator fi nds the matching declaration, it fi nds the associated type (in this case
it is a global <complexType> defi nition NameType). It then validates the content of the <name>
element within the instance against the content model defi ned in the associated type. When the
schema validator encounters the <element> reference declarations, it imports the global <element>
declarations into the <complexType> defi nition, as if they had been included directly.

Now that you have learned some of the basics of how elements are declared, the following sections
look briefl y at some of the features element declarations offer.

Cardinality

Cardinality specifi es the number of times a particular element appears within a content model.
In XML Schemas, you can modify an element’s cardinality by specifying the minOccurs and
maxOccurs attributes within the element declaration.

WARNING The minOccurs and maxOccurs attributes are not permitted within

global element declarations. Instead, use these attributes within the element

references in your content models.

Some possible uses of the minOccurs and maxOccurs attributes include the following:

<element name=”first” type=”string” minOccurs=”2” maxOccurs=”2”/>

<element ref=”target:first” maxOccurs=”10”/>

<element name=”location” “minOccurs=”0” maxOccurs=”unbounded”/>

c05.indd 134c05.indd 134 05/06/12 5:22 PM05/06/12 5:22 PM

Defi ning XML Schemas ❘ 135

The fi rst of the preceding examples declares that the element <first> must appear within the
instance document a minimum of two times and a maximum of two times. The second example
declares your element using a reference to the global <first> declaration. Even though it is declared
using the ref attribute, you are permitted to use the minOccurs and maxOccurs attributes to specify
the element’s cardinality. In this case, a maxOccurs attribute was included with the value 10.
A minOccurs attribute was not included, so a schema validator would use the default value, 1.
The fi nal example specifi es that <location> may or may not appear within your instance document
because the minOccurs attribute has the value 0. It also indicates that it may appear an infi nite
number of times because the value of maxOccurs is unbounded.

The default value for the minOccurs attribute and the maxOccurs attribute is 1. This means that,
by default, an element must appear only once. You can use the two attributes separately or in
conjunction. The maxOccurs attribute enables you to enter the value unbounded, which indicates
there is no limit to the number of occurrences. The only additional rule you must adhere to when
specifying minOccurs and maxOccurs is that the value of maxOccurs must be greater than or equal
to the value for minOccurs.

Default and Fixed Values

When designing the DTD for your contacts list in the previous chapter, you made use of attribute
default and fi xed values. In XML Schemas, you can declare default and fi xed values for elements as
well as attributes. When declaring default values for elements, you can only specify a text value.
You are not permitted to specify a default value for an element whose content model will contain
other elements, unless the content model is mixed. By specifying a default value for your element,
you ensure that the schema validator will treat the value as if it were included in the XML
document — even if it is omitted.

To specify a default value, simply include the default attribute with the desired value. Suppose your
<name> elements were being used to design the Doe family tree. You might want to make “Doe” the
default for the last name element, like so:

<element name=”last” type=”string” default=”Doe”/>

This example declares that the element <last> has the default value of “Doe”, so when a schema
validator encounters the <last> element in the instance document, it inserts the default value if
there is no content. For example, if the schema validator encounters:

<last></last>

or

<last/>

it would treat the element as follows:

<last>Doe</last>

Note that if the element does not appear within the document or if the element already has content,
the default value is not used.

c05.indd 135c05.indd 135 05/06/12 5:22 PM05/06/12 5:22 PM

136 ❘ CHAPTER 5 XML SCHEMAS

In some circumstances you may want to ensure that an element’s value does not change, such as
an element whose value is used to indicate a version number. As the schema validator processes an
element declared to have a fi xed value, it checks whether the element’s content and fi xed attribute
values match. If they do not match, the validator raises a schema-validity error. If the element is
empty, the parser inserts the fi xed value.

To specify a fi xed value, simply include the fixed attribute with the desired value, like so:

<element name=”version” type=”string” fixed=”1.0”/>

The preceding example specifi es that the <version> element, if it appears, must contain the
value 1.0. The fi xed value is a valid string value (the type of the <version> element is string).
Therefore, the following elements are legal:

<version>1.0</version>

<version></version>

<version/>

As the schema validator processes the fi le, it accepts elements with the value 1.0 or empty elements.
When it encounters empty elements, it treats them as though the value 1.0 had been included.
The following value is not legal:

<version>2.0</version>

When specifying fi xed or default values in element declarations, you must ensure that the value
you specify is allowable content for the type you have declared. For example, if you specify that an
element has the type positiveInteger, you cannot use Doe as a default value because it is not a
positive integer.

Element Wildcards: the <any> Declaration

You’ll often want to include elements in your XML Schema without explicitly declaring which
elements should be allowed. Suppose you want to specify that your element can contain any
of the elements declared in your namespace, or any elements from another namespace. Declarations
that allow you to include any element from a namespace are called element wildcards.

To declare an element wildcard, use the <any> declaration, like so:

<any
 minOccurs=”non negative number”
 maxOccurs=”non negative number or unbounded”
 namespace=”allowable namespaces”
 processContents=”lax or skip or strict”>

The <any> declaration can appear only within a content model. You are not allowed to create global
<any> declarations. When specifying an <any> declaration, you can specify the cardinality just as you
would within an <element> declaration. By specifying the minOccurs or the maxOccurs attributes,
you can control the number of wildcard occurrences allowed within your instance document.

c05.indd 136c05.indd 136 05/06/12 5:22 PM05/06/12 5:22 PM

Defi ning XML Schemas ❘ 137

The <any> declaration also enables you to control which namespace or namespaces the elements
are allowed to come from. You do this by including the namespace attribute. The namespace
attribute allows several values, shown in Table 5-1:

TABLE 5-1: Namespace Values

VALUE DESCRIPTION

##any Enables elements from all namespaces to be included as part of

the wildcard.

##other Enables elements from namespaces other than the

targetNamespace to be included as part of the wildcard.

##targetNamespace Enables elements from only the targetNamespace to be

included as part of the wildcard.

##local Enables any well-formed elements that are not qualifi ed by a

namespace to be included as part of the wildcard.

Whitespace-separated Enables elements from any listed namespaces to be included as

part of the list of allowable wildcards. Possible list values also

include ##targetNamespace namespace URIs

and ##local.

For example, suppose you wanted to allow any well-formed XML content from any namespace
within the <name> element. To do this, you simply include an element wildcard within the content
model for your NameType complex type, like so:

<complexType name=”NameType”>
 <sequence>
 <element ref=”target:first”/>
 <element ref=”target:middle”/>
 <element ref=”target:last”/>
 <!-- allow any element from any namespace -->
 <any namespace=”##any”
 processContents=”lax”
 minOccurs=”0”
 maxOccurs=”unbounded”/>
 </sequence>
 <attribute name=”title” type=”string”/>
</complexType>

By setting the namespace attribute to ##any, you have specifi ed that elements from all namespaces
can be included as part of the wildcard. You have also included cardinality attributes to indicate the

c05.indd 137c05.indd 137 05/06/12 5:22 PM05/06/12 5:22 PM

138 ❘ CHAPTER 5 XML SCHEMAS

number of allowed wildcard elements. This case specifi es any number of elements because the value
of the minOccurs attribute is set to 0 and the value of maxOccurs is set to unbounded. Therefore,
the content model must contain a <first>, <middle>, and <last> element in sequence, followed by
any number of elements from any namespace.

When the schema validator is processing an element that contains a wildcard declaration, it
validates the instance documents in one of three ways:

 ➤ If the value of the processContents attribute is set to skip, the processor skips any
wildcard elements in the instance document.

 ➤ If the value of processContents attribute is set to lax, the processor attempts to validate
the wildcard elements if it has access to a global XML Schema defi nition for them.

 ➤ If the value of the processContents attribute is set to strict (the default) or there is no
processContents attribute, the processor attempts to validate the wildcard elements.
However, in contrast to using the lax setting, the schema validator raises a validity error if
a global XML Schema defi nition for the wildcard elements cannot be found.

Mixed Content

Mixed content models enable you to include both text and element content within a single content
model. To create a mixed content model in XML Schemas, simply include the mixed attribute with
the value true in your <complexType> defi nition, like so:

<element name=”description”>
 <complexType mixed=”true”>
 <choice minOccurs=”0” maxOccurs=”unbounded”>
 <element name=”em” type=”string”/>
 <element name=”strong” type=”string”/>
 <element name=”br” type=”string”/>
 </choice>
 </complexType>
</element>

The preceding example declares a <description> element, which can contain an infi nite number
of , , and
 elements. Because the complex type is declared as mixed, text can be
interspersed throughout these elements. An allowable <description> element might look like the
following:

<description>Joe is a developer & author for Beginning XML 5th
 edition</description>

In this <description> element, textual content is interspersed throughout the elements declared
within the content model. As the schema validator is processing the preceding example, it skips
over the textual content and entities while performing standard validation on the elements. Because
the elements , , and
 may appear repeatedly (maxOccurs=”unbounded”), the
example is valid.

c05.indd 138c05.indd 138 05/06/12 5:22 PM05/06/12 5:22 PM

Defi ning XML Schemas ❘ 139

To declare an empty content model in a <complexType> defi nition, you simply create the
<complexType> defi nition without any <element> or content model declarations. Consider the
following declarations:

<element name=”knows”>
 <complexType>
 </complexType>
</element>

<element name=”knows”>
 <complexType/>
</element>

Each of these declares an element named knows. In both cases, the <complexType> defi nition is
empty, indicating that knows will not contain text or element children. When used in your instance
document, <knows> must be empty.

<group> Declarations

In addition to <complexType> defi nitions, XML Schemas also enable you to defi ne reusable groups
of elements. By creating a global <group> declaration like the following, you can easily reuse and
combine entire content models:

<group name=”name of global group”>

Just as you have seen with global <complexType> defi nitions, all global <group> declarations must
be named. Simply specify the name attribute with the desired name. Again, the name that you
specify must follow the rules for XML names and should not include a prefi x. The basic structure of
a global <group> declaration follows:

<group name=”NameGroup”>
 <!-- content model goes here -->
</group>

In the following activity you will practice creating and naming a global <group> declaration.

TRY IT OUT Using a Global Group

This example redesigns the schema so that you can create a reusable global <group> declaration:

1. Begin by making the necessary changes to your XML Schema. Create a new document called
name8.xsd. Copy the contents from name7.xsd and make the following changes:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:target=”http://www.example.com/name”
 targetNamespace=”http://www.example.com/name”
 elementFormDefault=”qualified”>
 <group name=”NameGroup”>

Available for
download on
Wrox.com

c05.indd 139c05.indd 139 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/name
http://www.example.com/name
http://Wrox.com

140 ❘ CHAPTER 5 XML SCHEMAS

 <sequence>
 <element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
 <element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
 <element name=”last” type=”string”/>
 </sequence>
 </group>
 <complexType name=”NameType”>
 <group ref=”target:NameGroup”/>
 <attribute name=”title” type=”string”/>
 </complexType>
 <element name=”name” type=”target:NameType”/>
</schema>

name8.xsd

2. Before you can schema-validate your XML document, you must modify it so that it refers to
your new XML Schema. Create a new document called name8.xml. Copy the contents from
name7.xml and change the xsi:schemaLocation attribute as follows:

xsi:schemaLocation=”http://www.example.com/name name8.xsd”

3. You are ready to validate your XML instance document against the XML Schema. Open the
name8.xml document with jEdit and click Plugins ➪ XML ➪ Parse as XML. This should validate
with no errors, as shown in the previous Try It Out.

How It Works

This Try It Out modifi ed your XML Schema to use a global <group> declaration. Within the global
<group> declaration named NameGroup, you declared the allowable elements for your content model.
Instead of including element declarations in the <complexType> defi nition for your <name> element,
you created a <group> reference declaration. When referring to the global <group> declaration, you
included a ref attribute with the value target:NameGroup.

You also updated the <element> declarations to make use of the minOccurs and maxOccurs attributes.
The values used in the minOccurs and maxOccurs attributes enabled you to mimic the various
cardinality indicators used in the original DTD.

Notice that the <attribute> declaration still appeared within the <complexType> declaration and
not within the <group> declaration. This should give you some indication of the difference between a
<group> and a <complexType> defi nition. A <complexType> declaration defi nes the allowable content
for a specifi c element or type of element. A <group> declaration simply allows you to create a reusable
content model that can replace other content model declarations in your XML Schema.

As the schema validator is processing the instance document, it processes the <name> element, similarly
to the earlier examples. When it encounters the <name> element, it looks it up in the XML Schema.
Once it fi nds the declaration, it fi nds the associated type (in this case it is a local <complexType>
defi nition). When the schema validator encounters the <group> reference declaration, it treats the
items within the group as if they had been included directly within the <complexType> defi nition. Even
though the <group> declaration is global, the <element> declarations within the <group> are not.

c05.indd 140c05.indd 140 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/namename7.xsd

Defi ning XML Schemas ❘ 141

<attribute> Declarations

So far, you have spent most of this chapter learning how to create element declarations. Within
XML Schemas, attribute declarations are very similar to element declarations. So rather than
describe all the features of attribute declarations in detail, here is a quick overview, followed by an
example of attributes used in practice through which you can work.

In the examples for the <name> element, you have already seen an attribute declaration for the
title attribute. As with element declarations, you have two primary methods for declaring
attributes: creating a local type and using a global type.

Unlike elements, which are divided into simple types and complex types, attribute declarations are
restricted to simple types. Remember that complex types are used to defi ne types that contain
attributes or elements; simple types are used to restrict text-only content. A basic attribute
declaration looks like this:

<attribute name=”title”>
 <simpleType>
 <!-- type information -->
 </simpleType>
</element>

Like elements, you can also reuse attributes by referring to global declarations.

At this point you have heard about most of the major features of XML Schema, and before you go
on to learn the remaining ones, you should apply what you know so far in a longer example to see
how everything thus far fi ts together.

NOTE There may be a few features of XML Schema in the following example

that haven’t been discussed in detail yet, but don’t worry. You will get to them

shortly after and you will still be able to perform the example in the meantime.

An XML Schema for Contacts

In the previous chapter you saw a way of expressing contact lists in XML, backed by a DTD. Here,
the same idea will be revisited using an XML Schema for validation.

Listing 5-1 provides a sample document to work from.

LISTING 5-1: contacts5.xml

<?xml version=”1.0”?>
<contacts xmlns=”http://www.example.com/contacts”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.example.com/contacts contacts5.xsd”
 source=”Beginning XML 5E”

Available for
download on
Wrox.com

continues

c05.indd 141c05.indd 141 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/contacts
http://www.w3.org/2001/XMLSchema-instance
http://www.example.com/contactscontacts5.xsd
http://Wrox.com

142 ❘ CHAPTER 5 XML SCHEMAS

LISTING 5-1 (continued)

 version=”1.0”>

 <contact>
 <name>
 <first>Joseph</first>
 <first>John</first>
 <last>Fawcett</last>
 </name>
 <location>
 <address>Exeter, UK</address>
 <latitude>50.7218</latitude>
 <longitude>-3.533617</longitude>
 </location>
 <phone kind=”Home”>001-234-567-8910</phone>
 <knows/>
 <description> Joseph is a developer and author for Beginning XML
5th edition.
Joseph loves XML!</description>
 </contact>
 <contact>

 <name>

 <first>Liam</first>

 <last>Quin</last>

 </name>

 <location>

 <address>Ontario, Canada</address>

 </location>

 <phone>+1 613 476 8769</phone>

 <knows/>

 <description>XML Activity Lead at W3C</description>

 </contact>
</contacts>

This is very similar to the instance documents you saw in the previous chapter, but with one
signifi cant change: the declarations on the root element, highlighted here:

<contacts xmlns=”http://www.example.com/contacts”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.example.com/contacts contacts5.xsd”

 source=”Beginning XML 5E”
 version=”1.0”>

This document is associated with the identifi ed XML Schema, which will live in the fi le contacts5.xsd.

c05.indd 142c05.indd 142 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/contacts
http://www.w3.org/2001/XMLSchema-instance
http://www.example.com/contacts

Defi ning XML Schemas ❘ 143

To begin to build your XML, perform the following steps:

 1. Start building your XML at root. Following is a suitable opening for the <schema> element:

<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:contacts=”http://www.example.com/contacts”
 targetNamespace=”http://www.example.com/contacts”
 elementFormDefault=”qualifi ed”>

Here, the correct namespace is given for XML Schemas. This is followed by the
namespace that will be used within instance documents, which is also specifi ed as the
targetNamespace for your vocabulary. Finally, there is the attribute elementFormDefault
with the value qualified, which says the elements should be given a namespace (see the
“Element and Attribute Qualifi cation” section earlier).

 2. Next, consider the contacts root element of the instance document. You created a global
<element> declaration for your contacts element. Recall that this must be declared as
a global <element> because you are using it as the root. When your schema validator
eventually processes your instance document, it encounters the contacts element.
The schema validator then opens your XML Schema document based on the xsi:
schemaLocation attribute hint and fi nds the global declaration for the contacts element.

Describe the contacts element by declaring a local <complexType> within your <element>
declaration, and within that defi nition, use a <sequence> content model containing only
one element. Even if you have only one element inside of a complex type, you still need
to declare it as part of a suitable block container. Following the shape of the instance
document, it makes sense to specify that the <contact> element could occur an unbounded
number of times or not occur at all. These decisions lead to the following chunk in the
XML Schema:

<element name=”contacts”>
 <complexType>
 <sequence>
 <element name=”contact” minOccurs=”0” maxOccurs=”unbounded”>

 3. Next, use another local <complexType> to defi ne the content model for this element.
It is possible to use local <complexType> declarations inside of other <complexType>
declarations. In fact, you could defi ne an entire schema in this manner. In general, it is better
to use global type defi nitions whenever possible, but for demonstration purposes there’s a
mix here. Use global <complexType> defi nitions for the name and location elements:

 <complexType>
 <sequence>
 <element name=”name” type=”contacts:NameType”/>
 <element name=”location” type=”contacts:LocationType”/>

 4. Now defi ne the <phone> element in the schema like so:

 <element name=”phone”>
 <complexType>
 <simpleContent>
 <extension base=”string”>

c05.indd 143c05.indd 143 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/contacts
http://www.example.com/contacts

144 ❘ CHAPTER 5 XML SCHEMAS

 <attribute name=”kind” type=”string” default=”Home” />
 </extension>
 </simpleContent>
 </complexType>
 </element>

This is declared locally as another nested <complexType>. The <simpleContent> element
indicates that the <complexType> cannot contain child elements, though it may contain
attributes.

Within the <simpleContent> element, you have an <extension> declaration. This specifi es
what kind of data type should be used to validate your simple content. An <extension>
declaration is necessary because you are extending an existing data type by adding
attribute declarations.

In the <extension> declaration, the base attribute specifi es the data type string to use as
the basis for your element’s content. Here, the built-in string type is the base type, but you
are not limited to using built-in data types. You can also refer to any global <simpleType>
in your XML Schema.

 5. After specifying the base type, declare the attribute you want to use. The attribute
declaration has a name and type just like element declarations. Here you also have a default
value of Home. Any of the following examples are allowable <phone> elements based on
the declaration:

<phone kind=”Home”>001-909-555-1212</phone>
<phone>001-909-555-1212</phone>
<phone />

In the fi rst, the <phone> element contains a phone number string and a kind attribute. In
the second example, the kind attribute is omitted. If a schema-aware parser encountered
this element, it would use the default value Home specifi ed in the attribute declaration.

 6. The rest of the contact block is comprised of the <knows> element and the <description>
element. Here, for the sake of experimentation, defi ne their allowable content by the global
KnowsType and DescriptionType declarations, and defer their defi nition until later in
the schema:

 <element name=”knows” type=”contacts:KnowsType”/>
 <element name=”description” type=”contacts:DescriptionType”/>
 </sequence>
 </complexType>
 </element>

 7. Zooming back out of the nesting, you can see that so far the contents of the <contacts>
element have been described up to the <sequence> of elements it contains. But the
<contacts> element itself has some attribute information; cover this like so:

 <element name=”contacts”>
 <complexType>
 <sequence>
 <element name=”contact” ...

c05.indd 144c05.indd 144 05/06/12 5:22 PM05/06/12 5:22 PM

Defi ning XML Schemas ❘ 145

...
 </sequence>
 <attributeGroup ref=”contacts:ContactAttributes”/>
 </complexType>
 </element>

 8. The <attributeGroup> here refers to a global grouping named ContactAttributes.
Defi ne this next in the schema like so:

 <attributeGroup name=”ContactAttributes”>
 <attribute name=”version” type=”string” fi xed=”1.0” />
 <attribute name=”source” type=”string”/>
 </attributeGroup>

When the schema validator encounters the <attributeGroup> reference declaration, it treats
the source <attribute> declaration within the group as if it had been included directly
within the <complexType> defi nition. It does this for each attribute declaration in the group.

The fi xed declaration for the source attribute still applies even though you are using a group.
Because the version of your contacts list is 1.0, it matches the fi xed value. You could have
omitted the version attribute altogether. As the document is being processed, the schema valida-
tor adds the fi xed value from the XML Schema if no value is specifi ed in the XML document.

 9. Defi ne the content model for the global NameType using a reference to a <group> as shown in
the following code. To refer to the global <group> declaration, prefi x the group name with the
namespace prefi x for your targetNamespace. In reality, you don’t need to use a global group to
specify the content of the <name> element, but the name elements are fairly common, and global
groups can be more easily combined and reused. Global complex types are more useful when
using type-aware tools such as XPath2 and XQuery. When designing your own schemas it is really
a matter of personal preference and which tools you plan on using with your XML Schemas.

 <group name=”NameGroup”>
 <sequence>
 <element name=”fi rst” type=”string” minOccurs=”1”
 maxOccurs=”unbounded”/>
 <element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
 <element name=”last” type=”string”/>
 </sequence>
 </group>

The <group> declaration for the NameGroup is very straightforward. It lists the allowable
elements for the content model within a <sequence> declaration. This should look very
similar to the <name> examples you have already seen.

 10. Next, in the LocationType <complexType> defi nition, use a choice declaration to allow either
the element address or the sequence of elements, including latitude and longitude, like this:

 <complexType name=”LocationType”>
 <choice minOccurs=”0” maxOccurs=”unbounded”>
 <element name=”address” type=”string”/>
 <sequence>
 <element name=”latitude” type=”string”/>

c05.indd 145c05.indd 145 05/06/12 5:22 PM05/06/12 5:22 PM

146 ❘ CHAPTER 5 XML SCHEMAS

 <element name=”longitude” type=”string”/>
 </sequence>
 </choice>
 </complexType>

Here you’ve specifi ed that the choice may or may not appear and that it could appear an
unbounded number of times.

 11. The global declaration for KnowsType didn’t contain a content model. Because of this, make
the <knows> element in the instance document empty like so:

 <complexType name=”KnowsType”>
 </complexType>
 <complexType name=”DescriptionType” mixed=”true”>
 <choice minOccurs=”0” maxOccurs=”unbounded”>
 <element name=”em” type=”string”/>
 <element name=”strong” type=”string”/>
 <element name=”br” type=”string”/>
 </choice>
</complexType>

The DescriptionType <complexType> defi nition here is a mixed declaration. To specify
this, you have a mixed attribute with the value true. Within the mixed content model,
to allow an unbounded number of , , and
 elements to be interspersed
within the text, you used a <choice> declaration. Again, minOccurs is set to 0 and
maxOccurs is set to unbounded so that the choice would be repeated.

 12. Finally, close off your schema to fi nish up:

</schema>

After reading and following along with all the preceding steps, you now know how to develop an XML
Schema. The following activity builds on these steps to express a list of contacts using XML Schema.

TRY IT OUT Making Contact in XML Schema

This example recycles the idea of expressing contacts listings in XML that you saw in the previous
chapter, only this time instead of using a DTD to specify the format you use an XML Schema. Before
reading the How It Works section, take a few minutes to read through the listing and try to imagine
what the XML documents it specifi es might look like.

1. Begin by opening jEdit and enter the XML Schema you have just developed (refer to Listing 5-1).
Save it as contacts5.xsd.

<?xml version=“1.0“?>
<schema xmlns=“http://www.w3.org/2001/XMLSchema“
xmlns:contacts=“http://www.example.com/contacts“
targetNamespace=“http://www.example.com/contacts“ elementFormDefault=“qualified“>

 <element name=“contacts“>
 <complexType>
 <sequence>
 <element name=“contact“ minOccurs=“0“ maxOccurs=“unbounded“>

c05.indd 146c05.indd 146 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/contacts
http://www.example.com/contacts

Defi ning XML Schemas ❘ 147

 <complexType>
 <sequence>
 <element name=“name“ type=“contacts:NameType“/>
 <element name=“location“ type=“contacts:LocationType“/>

 <element name=“phone“>
 <complexType>
 <simpleContent>
 <extension base=“string“>
 <attribute name=“kind“ type=“string“ default=“Home“ />
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name=“knows“ type=“contacts:KnowsType“/>
 <element name=“description“ type=“contacts:DescriptionType“/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attributeGroup ref=“contacts:ContactAttributes“/>
 </complexType>
 </element>

 <attributeGroup name=“ContactAttributes“>
 <attribute name=“version“ type=“string“ fixed=“1.0“ />
 <attribute name=“source“ type=“string“/>
 </attributeGroup>

 <attribute name=“title“ type=“string“/>

 <complexType name=“NameType“>
 <group ref=“contacts:NameGroup“/>
 </complexType>

 <group name=“NameGroup“>
 <sequence>
 <element name=“first“ type=“string“ minOccurs=“1“ maxOccurs=“unbounded“/>
 <element name=“middle“ type=“string“ minOccurs=“0“ maxOccurs=“1“/>
 <element name=“last“ type=“string“/>
 </sequence>
 </group>

 <complexType name=“LocationType“>
 <choice minOccurs=“0“ maxOccurs=“unbounded“>
 <element name=“address“ type=“string“/>
 <sequence>
 <element name=“latitude“ type=“string“/>
 <element name=“longitude“ type=“string“/>
 </sequence>
 </choice>
 </complexType>

 <complexType name=“KnowsType“></complexType>

c05.indd 147c05.indd 147 05/06/12 5:22 PM05/06/12 5:22 PM

148 ❘ CHAPTER 5 XML SCHEMAS

 <complexType name=“DescriptionType“ mixed=“true“>
 <choice minOccurs=“0“ maxOccurs=“unbounded“>
 <element name=“em“ type=“string“/>
 <element name=“strong“ type=“string“/>
 <element name=“br“ type=“string“/>
 </choice>
 </complexType>
</schema>

2. Now enter the instance document from Listing 5-1.

3. You are ready to validate your XML instance document against your XML Schema. Click
Plugins ➪ XML ➪ Parse as XML.

How It Works

The operation here is exactly the same as the one you’ve seen before, with jEdit’s validator comparing
the XML instance document against its schema.

Data Types

You have seen how to declare allowable elements and attributes using <complexType> defi nitions.
In addition, you can defi ne the allowable content for text-only elements and attribute values. The
XML Schema Recommendation allows you to use two kinds of data types:

 ➤ Built-in data types

 ➤ User-defi ned data types

Built-in Data Types

The examples throughout this chapter have used the string type for our text-only content. The
string type is a primitive data type that allows any textual content. XML Schemas provide a
number of built-in simple types that allow you to exercise greater control over textual content in
your XML document. Table 5-2 lists all of the simple types built into XML Schemas:

TYPE DESCRIPTION

string Any character data

normalizedString A whitespace-normalized string in which all spaces, tabs, carriage

returns, and linefeed characters are converted to single spaces

token A string that does not contain sequences of two or more spaces,

tabs, carriage returns, or linefeed characters

TABLE 5-2: XML Schema simple Types

c05.indd 148c05.indd 148 05/06/12 5:22 PM05/06/12 5:22 PM

Defi ning XML Schemas ❘ 149

TYPE DESCRIPTION

byte A numeric value from -128 to 127

unsignedByte A numeric value from 0 to 255

base64Binary Base64-encoded binary information

hexBinary Hexadecimal-encoded binary information

integer A numeric value representing a whole number

positiveInteger An integer whose value is greater than 0

negativeInteger An integer whose value is less than 0

nonNegativeInteger An integer whose value is 0 or greater

nonPositiveInteger An integer whose value is less than or equal to 0

int A numeric value from –2147483648 to 2147483647

unsignedInt A numeric value from 0 to 4294967295

long A numeric value from –9223372036854775808 to

9223372036854775807

unsignedLong A numeric value from 0 to 18446744073709551615

short A numeric value from –32768 to 32767

unsignedShort A numeric value from 0 to 65535

decimal A numeric value that may or may not include a fractional part

float A numeric value that corresponds to the IEEE single-precision

32-bit fl oating-point type defi ned in the standard IEEE 754-1985.

-0, INF, -INF, and NaN are also valid values.

double A numeric value that corresponds to the IEEE double-precision

64-bit fl oating-point type defi ned in the standard IEEE 754-1985.

-0, INF, -INF, and NaN are also valid values.

boolean A logical value, including true, false, 0, and 1

time An instant of time that occurs daily as defi ned in Section 5.3 of

ISO 8601. For example, 15:45:00.000 is a valid time value.

dateTime An instant of time, including both a date and a time value,

as defi ned in Section 5.4 of ISO 8601. For example,

1998–07–12T16:30:00.000 is a valid dateTime value.

duration A span of time as defi ned in Section 5.5.3.2 of ISO 8601. For

example, P30D is a valid duration value indicating a duration of

30 days.

continues

c05.indd 149c05.indd 149 05/06/12 5:22 PM05/06/12 5:22 PM

150 ❘ CHAPTER 5 XML SCHEMAS

In addition to the types listed, the XML Schema Recommendation also allows the types defi ned
within the XML Recommendation. These types include ID, IDREF, IDREFS, ENTITY, ENTITIES,
NOTATION, NMTOKEN, and NMTOKENS.

Although you have used the string type throughout most of the examples, any of the preceding
types can be used to restrict the allowable content within your elements and attributes. Suppose you
want to modify the declarations of the <latitude> and <longitude> elements within your

TYPE DESCRIPTION

date A date according to the Gregorian calendar as defi ned in Section

5.2.1 of ISO 8601. For example, 1995–05–25 is a valid date value.

gMonth A month in the Gregorian calendar as defi ned in Section 3 of ISO

8601. For example, —07 is a valid gMonth value.

gYear A year in the Gregorian calendar as defi ned in Section 5.2.1 of

ISO 8601. For example, 1998 is a valid gYear value.

gYearMonth A specifi c month and year in the Gregorian calendar as defi ned

in Section 5.2.1 of ISO 8601. For example, 1998–07 is a valid

gYearMonth value.

gDay A recurring day of the month as defi ned in Section 3 of ISO 8601,

such as the 12th day of the month. For example, —-12 is a valid

gDay value.

gMonthDay A recurring day of a specifi c month as defi ned in Section 3 of ISO

8601, such as the 12th day of July. For example, —07–12 is a valid

gMonthDay value.

name An XML name according to the Namespace Recommendation.

XML names must begin with a letter or an underscore. Though

this type can allow for “:” characters, it is best to avoid them for

compatibility.

QName A qualifi ed XML name as defi ned in the Namespaces

Recommendation. QNames may or may not contain a namespace

prefi x and colon.

NCName A noncolonized XML name that does not include a namespace

prefi x or colon as defi ned in the Namespaces Recommendation

anyURI A valid Uniform Resource Identifi er (URI)

language A language constant as defi ned in RFC 1766, such as en-US

(RFC 1766 can be found at www.ietf.org/rfc/rfc1766.txt)

TABLE 5-2 (continued)

c05.indd 150c05.indd 150 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.ietf.org/rfc/rfc1766.txt

Defi ning XML Schemas ❘ 151

contacts XML Schema. By specifying a more restrictive type, you could ensure that users of your
XML Schema enter valid values. You could modify your declarations as follows:

<element name=”latitude” type=”float”/>
<element name=”longitude” type=”float”/>

Now, instead of allowing any textual content, you require that users specify a fl oating-point
number. For a more in-depth look at these types, see the XML Schema Recommendation at
www.w3.org/TR/xmlschema-2.

It will be straightforward to integrate built-in data types with the contacts example, as you will now see.

TRY IT OUT Making Contact — Built-in XML Schema Data Types

This Try It Out modifi es the contacts example so that you can take advantage of the built-in XML
Schema data types. You will also include some additional attributes that utilize the built-in types:

1. Begin by making the necessary changes to your XML Schema. Open the fi le contacts5.xsd, save
it as contacts6.xsd, and make the following changes:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:contacts=”http://www.example.com/contacts”
 targetNamespace=”http://www.example.com/contacts”
 elementFormDefault=”qualified”>

 <attributeGroup name=”ContactAttributes”>
 <attribute name=”version” type=”decimal” fixed=”1.0” />
 <attribute name=”source” type=”string”/>
 </attributeGroup>

 <element name=”contacts”>
 <complexType>
 <sequence>
 <element name=”contact” minOccurs=”0” maxOccurs=”unbounded”>
 <complexType>
 <sequence>
 <element name=”name” type=”contacts:NameType”/>
 <element name=”location” type=”contacts:LocationType”/>
 <element name=”phone” type=”contacts:PhoneType”/>
 <element name=”knows” type=”contacts:KnowsType”/>
 <element name=”description” type=”contacts:DescriptionType”/>
 </sequence>
 <attribute name=”tags” type=”token”/>
 <attribute name=”person” type=”ID”/>
 </complexType>
 </element>
 </sequence>
 <attributeGroup ref=”contacts:ContactAttributes”/>
 </complexType>
 </element>

 <complexType name=”NameType”>

Available for
download on
Wrox.com

c05.indd 151c05.indd 151 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/contacts
http://www.example.com/contacts
http://www.w3.org/TR/xmlschema-2
http://Wrox.com

152 ❘ CHAPTER 5 XML SCHEMAS

 <group ref=”contacts:NameGroup”/>
 <attribute name=”title” type=”string”/>
 </complexType>

 <group name=”NameGroup”>
 <sequence>
 <element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
 <element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
 <element name=”last” type=”string”/>
 </sequence>
 </group>

 <complexType name=”LocationType”>
 <choice minOccurs=”0” maxOccurs=”unbounded”>
 <element name=”address” type=”string”/>
 <sequence>
 <element name=”latitude” type=”float”/>
 <element name=”longitude” type=”float”/>
 </sequence>
 </choice>
 </complexType>

 <complexType name=”PhoneType”>
 <simpleContent>
 <extension base=”string”>
 <attribute name=”kind” type=”string” default=”Home” />
 </extension>
 </simpleContent>
 </complexType>
 <complexType name=”KnowsType”>
 <attribute name=”contacts” type=”IDREFS”/>
 </complexType>

 <complexType name=”DescriptionType” mixed=”true”>
 <choice minOccurs=”0” maxOccurs=”unbounded”>
 <element name=”em” type=”string”/>
 <element name=”strong” type=”string”/>
 <element name=”br” type=”string”/>
 </choice>
 </complexType>

</schema>

contacts6.xsd

2. Before you can schema-validate your XML document, you must modify it so that it refers to your new
XML Schema. You should also add some attributes. Open contacts5.xml and save it as contacts6
.xml. Now change the xsi:schemaLocation attribute and add these highlighted attributes:

<?xml version=”1.0”?>
<contacts
 xmlns=”http://www.example.com/contacts”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

Available for
download on
Wrox.com

c05.indd 152c05.indd 152 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/contacts
http://www.w3.org/2001/XMLSchema-instance
http://Wrox.com

Defi ning XML Schemas ❘ 153

 xsi:schemaLocation=”http://www.example.com/contacts contacts6.xsd”>
 <contacts source=”Beginning XML 5E” version=”1.0”>
 <contact person=”Joe_Fawcett” tags=”author xml poetry”>

 <name>
 <first>Joseph</first>
 <first>John</first>
 <last>Fawcett</last>
 </name>

 <location>
 <address>Exeter, UK</address>
 <latitude>50.7218</latitude>
 <longitude>-3.533617</longitude>
 </location>

 <phone kind=”Home”>001-234-567-8910</phone>
 <knows contacts=”Liam_Quin Danny_Ayers”/>
 <description>Joseph is a developer and author for Beginning XML 5th
edition.
Joseph loves XML!</description>
 </contact>

 <contact person=”Liam_Quin” tags=”author consultant w3c”>

 <name>
 <first>Liam</first>
 <last>Quin</last>
 </name>

 <location>
 <address>Ontario, Canada</address>
 </location>

 <phone>+1 613 476 8769</phone>
 <knows contacts=”Joe Fawcett Danny_Ayers”/>
 <description>XML Activity Lead at W3C</description>
 </contact>

</contacts>

contacts6.xml

3. You are ready to validate your XML instance document against your XML Schema. Open
 contacts9.xml and click Plugins ➪ XML ➪ Parse as XML in the jEdit editor. This should
validate with no warnings and no errors, but if you do get a validation error, correct it and
try validating it again.

How It Works

This Try It Out used some of the XML Schema built-in data types. These data types enable you to
exercise more control over the textual content within your instance documents. Let’s look at some

c05.indd 153c05.indd 153 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/contacts

154 ❘ CHAPTER 5 XML SCHEMAS

of the types in a little more detail. You began by changing the type of your version attribute from
string to decimal like so:

 <attribute name=”version” type=”decimal” fixed=”1.0” />

This is a perfect fi t because your version number must always be a valid decimal number. (If you ever
needed a complex version number such as 1.0.1, however, this data type would be insuffi cient.)

Next, you added a tags attribute to the <complexType> declaration for the contact element as
shown here:

 <attribute name=”tags” type=”token”/>

You specifi ed that the type should be token, which allows you to use a whitespace-separated list as the
value. You added a person attribute as well, specifying the type as ID as in the following:

 <attribute name=”person” type=”ID”/>

To complement this attribute, you modifi ed the KnowsType <complexType> declaration like so:

 <complexType name=”KnowsType”>
 <attribute name=”contacts” type=”IDREFS”/>
 </complexType>

Here you used the built-in types ID and IDREFS. Remember that these types were added to XML
Schema for compatibility with DTDs and other XML tools. XML Schema actually allows you to build
complex keys and key-references using its own built-in mechanism. Until recently these features were
not widely supported, so it is usually better to use ID and IDREFS whenever possible.

Next, the phone <element> declaration was modifi ed to refer to a new global type PhoneType
shown here:

 <element name=”phone” type=”contacts:PhoneType”/>

And the PhoneType was added to the XML Schema like so:

 <complexType name=”PhoneType”>
 <simpleContent>
 <extension base=”string”>
 <attribute name=”kind” type=”string” default=”Home” />
 </extension>
 </simpleContent>
 </complexType>

The PhoneType <complexType> declaration allowed you to specify that the <phone> element could
contain simple string content as well as a kind attribute.

Instead of using the built-in string type for the latitude and longitude <element> declarations,
you modifi ed these to use the built-in type float. The float type is similar to the decimal type,

c05.indd 154c05.indd 154 05/06/12 5:22 PM05/06/12 5:22 PM

Defi ning XML Schemas ❘ 155

in that it allows you to have decimal numbers, but it offers even more control and compatibility.
Because the float type is based on existing standards, it is useful across various computer languages.
For example, some XML applications such as XQuery and XPath2 can natively understand fl oating-
point arithmetic.

As the schema validator processes the document, not only is it checking whether the element content
models you have specifi ed are correct, it is also checking whether the textual data you included in your
elements and attributes is valid based on the type you specifi ed.

User-Defi ned Data Types

Although the XML Schema Recommendation includes a wealth of built-in data types, it doesn’t
include everything. As you are developing your XML Schemas, you will run into many elements and
attribute values that require a type not defi ned in the XML Schema Recommendation. Consider the
kind attribute for the <phone> element. Because you restricted its value to the string type, it still
accepts unwanted values such as the following:

kind=”Walkie-Talkie”

According to the declaration for the kind attribute, the value Walkie-Talkie is valid. What
you need is to create a list of allowable values as you did in your DTD. No such built-in type
exists within the XML Schema Recommendation, so you must create a new type using a
<simpleType> defi nition.

<simpleType> Declarations

When designing your XML Schemas, you may need to design your own data types. You can create
custom user-defi ned data types using the <simpleType> defi nition that follows:

<simpleType
 name=”name of the simpleType”
 final=”#all or list or union or restriction”>

When you declare a <simpleType>, you must always base your declaration on an existing data type.
The existing data type may be a built-in XML Schema data type, or it may be another custom
data type. Because you must derive every <simpleType> defi nition from another data type,
<simpleType> defi nitions are often called derived types. There are three primary derived types:

 ➤ Restriction types

 ➤ List types

 ➤ Union types

The following sections describe these three derived types in detail.

c05.indd 155c05.indd 155 05/06/12 5:22 PM05/06/12 5:22 PM

156 ❘ CHAPTER 5 XML SCHEMAS

<restriction> Declarations

The most common <simpleType> derivation is the restriction type. Restriction types are declared
using the <restriction> declaration as follows:

<restriction base=”name of the simpleType you are deriving from”>

A derived type declared using the <restriction> declaration is a subset of its base type.
Facets control all simple types within XML Schemas. A facet is a single property or trait of a
<simpleType>. For example, the built-in numeric type nonNegativeInteger was created by
deriving from the built-in Integer type and setting the facet minInclusive to zero. This specifi es
that the minimum value allowed for the type is zero. By constraining the facets of existing types,
you can create your own more restrictive types.

There are 12 constraining facets, described in Table 5-3:

TABLE 5-3: simpleType Constraining Facets

FACET DESCRIPTION

minExclusive Enables you to specify the minimum value for your type that excludes the

value you specify

minInclusive Enables you to specify the minimum value for your type that includes the

value you specify

maxExclusive Enables you to specify the maximum value for your type that excludes

the value you specify

maxInclusive Enables you to specify the maximum value for your type that includes the

value you specify

totalDigits Enables you to specify the total number of digits in a numeric type

fractionDigits Enables you to specify the number of fractional digits in a numeric type

(for example, the number of digits to the right of the decimal point)

length Enables you to specify the number of items in a list type, or the number of

characters in a string type

minLength Enables you to specify the minimum number of items in a list type, or the

minimum number of characters in a string type

maxLength Enables you to specify the maximum number of items in a list type, or the

maximum number of characters in a string type

enumeration Enables you to specify an allowable value in an enumerated list

whiteSpace Enables you to specify how whitespace should be treated within the type

pattern Enables you to restrict string types using regular expressions

c05.indd 156c05.indd 156 05/06/12 5:22 PM05/06/12 5:22 PM

Defi ning XML Schemas ❘ 157

Not all types use every facet. In fact, most types can be constrained only by a couple of facets.

Within a <restriction> declaration, you must specify the type you are restricting using the base
attribute. The value of the base attribute is a reference to a global <simpleType> defi nition or built-
in XML Schema data type. As you have seen with all references in your XML Schema, the reference
is a namespace-qualifi ed value and, therefore, may need to be prefi xed.

Suppose you want to create a restriction type that uses enumeration facets to restrict the allowable
values for the kind attribute in your <phone> element. The declaration would look like this:

<attribute name=”kind”>
 <simpleType>
 <restriction base=”string”>
 <enumeration value=”Home”/>
 <enumeration value=”Work”/>
 <enumeration value=”Cell”/>
 <enumeration value=”Fax”/>
 </restriction>
 </simpleType>
</attribute>

This declaration contains a <restriction> declaration with the base type string. Within the
restriction are multiple enumeration facets to create a list of all of the allowable values for your type.

Now that you have seen the theory, you can use the preceding Try It Out to practice.

TRY IT OUT Making Contact — Creating a Restriction Simple Type

As shown in the section “User-Defi ned Data Types” earlier in the chapter, the kind attribute should
be more restrictive. Now that you know how to create your own <simpleType> defi nitions, this Try It
Out enables you to create a <restriction> type for the kind attribute:

1. Begin by making the necessary changes to your XML Schema. Create a new document called
contacts7.xsd. Copy the contents from the fi le contacts6.xsd and make the following changes.
You only need to modify the <attribute> declaration for the kind attribute. The rest of the
XML Schema remains the same:

<complexType name=”PhoneType”>
 <simpleContent>
 <extension base=”string”>
 <attribute name=”kind” default=”Home”>
 <simpleType>
 <restriction base=”string”>
 <enumeration value=”Home”/>
 <enumeration value=”Work”/>
 <enumeration value=”Cell”/>
 <enumeration value=”Fax”/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
</complexType>

c05.indd 157c05.indd 157 05/06/12 5:22 PM05/06/12 5:22 PM

158 ❘ CHAPTER 5 XML SCHEMAS

2. Before you can schema-validate your XML document, you must modify it so that it refers to your
new XML Schema. Create a new document called contacts10.xml. Copy the contents of the fi le
contacts9.xml and change the xsi:schemaLocation attribute as follows:

xsi:schemaLocation=”http://www.example.com/contacts contacts7.xsd

3. You are ready to validate your XML instance document against your XML Schema.
Open contacts10.xml and click Plugins ➪ XML ➪ Parse as XML in the jEdit editor. This
should validate without warnings or errors. If you do get a validation error, correct it and try
validating it again.

How It Works

In this Try It Out, you modifi ed the kind attribute declaration. You created a local <simpleType>
defi nition that is a restriction derived from the built-in type string. This allowed you to limit which
string values could be used within the kind attribute in your instance document. Each possible string
was defi ned with a separate <enumeration> facet, as in the following:

<attribute name=”kind” default=”Home”>
 <simpleType>
 <restriction base=”string”>
 <enumeration value=”Home”/>
 <enumeration value=”Work”/>
 <enumeration value=”Cell”/>
 <enumeration value=”Fax”/>
 </restriction>
 </simpleType>
</attribute>

Because you changed your attribute’s type to a local <simpleType>, you had to remove the original
type by removing the type attribute.

The changes you made here had the effect of tightening up the constraints allowed in the instance
document. As always, there’s a trade-off between the fl exibility of allowing a wide range of values
in the XML document and restricting those values to simplify processing.

<list> Declarations

You’ll often need to create a list of items. Using a <list> declaration like the following, you can
base your list items on a specifi c <simpleType>:

<list itemType=”name of simpleType used for validating items in the list”>

When creating your <list> declaration, you can specify the type of items in your list by including
the itemType attribute. The value of the itemType attribute should be a reference to a global
<simpleType> defi nition or built-in XML Schema data type. The reference is a namespace-qualifi ed

c05.indd 158c05.indd 158 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/contacts

Defi ning XML Schemas ❘ 159

value, so it may need to be prefi xed. The <list> declaration also allows you to specify your
itemType by creating a local <simpleType> defi nition.

When choosing the itemType, remember that you are creating a whitespace-separated list, so
your items cannot contain whitespace. Therefore, types that include whitespace cannot be used as
itemTypes. A side effect of this limitation is that you cannot create a list whose itemType is
itself a list.

Suppose you created a global <simpleType> called ContactTagsType whereby you enumerated all
of the allowable tags for a contact, like so:

 <simpleType name=”ContactTagsType”>
 <restriction base=”string”>
 <enumeration value=”author”/>
 <enumeration value=”xml”/>
 <enumeration value=”poetry”/>
 <enumeration value=”consultant”/>
 <enumeration value=”CGI”/>
 <enumeration value=”semantics”/>
 <enumeration value=”animals”/>
 </restriction>
 </simpleType>

This simple type only allows for one of the enumerated values to be used. If you want to allow for
multiple items, you can make a type called ContactTagsListType, which allows for a list of tags
using the <list> declaration, as in the following:

<simpleType name=”ContactTagsListType”>
 <list itemType=”contacts:ContactTagsType”/>
 </simpleType>

If you use this within your contacts XML Schema, it would allow you to specify multiple tags
within your instance document, but still require that they adhere to the enumerations you provide.
In practice, you would probably want to expand your list of possible tags to include all kinds of
values, but for now this ensures that each tag is validated.

<union> Declarations

Finally, when creating your derived types, you may need to combine two or more types.
By declaring a <union> in the following example, you can validate the values in your instance
document against multiple types at once:

<union memberTypes=”whitespace separated list of types”>

When creating a <union> declaration, you can specify the types you are combining by including
the memberTypes attribute. The value of the memberTypes attribute should be a whitespace-
separated list of references to global <simpleType> defi nitions or built-in XML Schema data
types. Again, these references are namespace-qualifi ed values, so they may need to be prefi xed.

c05.indd 159c05.indd 159 05/06/12 5:22 PM05/06/12 5:22 PM

160 ❘ CHAPTER 5 XML SCHEMAS

The <union> declaration also allows you to specify your memberTypes by creating local
<simpleType> defi nitions.

Suppose that you wanted to allow the value Unknown in the <latitude> and <longitude> elements.
To do this you could use a union of the built-in float type and a custom type that allows only the
string Unknown, as shown in the following example:

 <simpleType name=”UnknownString”>
 <restriction base=”string”>
 <enumeration value=”Unknown”/>
 </restriction>
 </simpleType>

 <simpleType name=”UnknownOrFloatType”>
 <union memberTypes=”float contacts:UnknownString”/>
 </simpleType>

In this declaration, you have created the custom UnknownString type and a union of the two simple
types, float and UnknownString. Note that when you refer to the names of the <simpleType>
defi nitions, you must make sure they are qualifi ed with a namespace. In this case, the reference to
float has no prefi x because the default namespace for this document is the XML Schema namespace.
The prefi x contacts is used when referring to the type UnknownString, however, because it was
declared in the target namespace. By referring to your newly created type, you can specify that your
<latitude> and <longitude> elements must contain either float values or the string
Unknown, shown here:

<element name=”latitude” type=”contacts:UnknownStringOrFloatType”/>
<element name=”longitude” type=”contacts:UnknownStringOrFloatType”/>

Some valid elements include the following:

<latitude>43.847156</latitude>
<longitude>Unknown</longitude>

Some invalid elements include these:

<latitude>unknown</latitude>
<longitude>43.847156 Unknown</longitude>

The fi rst two elements both contain valid values. The third element is invalid because the value
unknown is not listed in either of the unioned types — the values are case sensitive. The fourth
element is invalid because the schema validator treats this as a single value. Although Unknown
and 43.847156 are allowable by themselves, the value 43.847156 Unknown is not listed in either of
the union types.

In this section you have seen (and experimented with) many of the constructs that can be used inside
XML Schema. In the next section you will zoom out a little to see a technique for simplifying the
management of schemas.

c05.indd 160c05.indd 160 05/06/12 5:22 PM05/06/12 5:22 PM

Creating a Schema from Multiple Documents ❘ 161

CREATING A SCHEMA FROM MULTIPLE DOCUMENTS

So far, the XML Schemas in this chapter have used a single schema document to keep things
simple. The XML Schema Recommendation introduces mechanisms for combining XML
Schemas and reusing defi nitions. As mentioned in Chapter 4, “Document Type Defi nitions,”
 reusing existing defi nitions is good practice — it saves you time when creating the documents
and increases your document’s interoperability.

The XML Schema Recommendation provides two primary declarations for use with multiple
XML Schema documents:

 ➤ <import>

 ➤ <include>

<import> Declarations

The <import> declaration, as the name implies, allows you to import global declarations from other
XML Schemas. The <import> declaration is used primarily for combining XML Schemas that have
different targetNamespaces. By importing the declarations, the two XML Schemas can be used in
conjunction within an instance document. Note that the <import> declaration allows you to refer to
declarations only within other XML Schemas.

This is the typical shape of an import declaration:

<import
 namespace=””
 schemaLocation=””>

The <import> declaration is always declared globally within an XML Schema (it must be a direct
child of the <schema> element). This means that the <import> declaration applies to the entire
XML Schema. When importing declarations from other namespaces, the schema validator attempts
to look up the document based on the schemaLocation attribute specifi ed within the correspond-
ing <import> declaration. Of course, as shown earlier, the schemaLocation attribute serves only
as a hint to the processor. The processor may elect to use another copy of the XML Schema. If the
schema validator cannot locate the XML Schema for any reason, it may raise an error or proceed
with lax validation.

To get a better idea of how this works, you need a sample XML Schema that uses the <import>
declaration. Let’s combine the examples that you have been working with throughout this
chapter.

Within the XML Schema for your contacts listing, import the declarations from your <name>
vocabulary. Use the imported <name> declarations in place of the existing declarations. Though
it means you need to remove some declarations in this case, it is better to reuse XML Schemas
whenever possible.

Next, you will use <import> declarations to combine the example you have already worked on.

c05.indd 161c05.indd 161 05/06/12 5:22 PM05/06/12 5:22 PM

162 ❘ CHAPTER 5 XML SCHEMAS

TRY IT OUT Making Contact — Importing XML Schema Declarations

This example modifi es your contacts listing to introduce an <import> declaration using the name
vocabulary that you developed earlier in the chapter. You need to remove some existing declarations
and modify your instance document to refl ect the changes in your XML Schemas:

1. Begin by modifying your contacts vocabulary. Import the name vocabulary and use the imported
types. Create a new document called contacts8.xsd. Copy the contents of the fi le contacts7
.xsd and make the following changes:

<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:contacts=”http://www.example.com/contacts”
 xmlns:name=”http://www.example.com/name”
 targetNamespace=”http://www.example.com/contacts”
 elementFormDefault=”qualified”>

 <import namespace=”http://www.example.com/name” schemaLocation=”name8.xsd”/>

2. You also need to modify the declaration of the <contact> element to refer to the global <name>
element declared in name8.xsd:

<element name=”contacts”>
 <complexType>
 <sequence>
 <element name=”contact” minOccurs=”0” maxOccurs=”unbounded”>
 <complexType>
 <sequence>
 <element ref=”name:name”/>
 <element name=”location” type=”contacts:LocationType”/>
 <element name=”phone” type=”contacts:PhoneType”/>
 <element name=”knows” type=”contacts:KnowsType”/>
 <element name=”description” type=”contacts:DescriptionType”/>
 </sequence>
 <attribute name=”person” type=”ID”/>
 <attribute name=”tags” type=”token”/>
 </complexType>
 </element>
 </sequence>
 <attributeGroup ref=”contacts:ContactAttributes”/>
 </complexType>
</element>

3. Remove the NameType <complexType> declaration and the NameGroup <group> declaration from
your schema.

4. Now that you have modifi ed your XML Schema document, you can create an instance document
that refl ects the changes. This document is very similar to the contacts10.xml document. Only
the <name> elements will change. Create a new document called contacts11.xml. Copy the
contents of the fi le contacts10.xml and make the following changes:

<?xml version=”1.0”?>
<contacts
 xmlns=”http://www.example.com/contacts”
xmlns:name=”http://www.example.com/name”

c05.indd 162c05.indd 162 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/contacts
http://www.example.com/contacts
http://www.example.com/contacts
http://www.example.com/name
http://www.example.com/contacts
http://www.example.com/name

Creating a Schema from Multiple Documents ❘ 163

 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://www.example.com/contacts contacts8.xsd”

 source=”Beginning XML 5E”
 version=”1.0”>
 <contact person=”Joe_Fawcett” tags=”author xml”>
 <name:name title=”Mr.”>
 <name:first>Joseph</name:first>
 <name:middle>John</name:middle>
 <name:last>Fawcett</name:last>
 </name:name>

 <location>
 <address>Exeter, UK</address>
 <latitude>50.7218</latitude>
 <longitude>-3.533617</longitude>
 </location>
 <phone kind=”Home”>001-909-555-1212</phone>
 <knows contacts=”Joe_Fawcett Danny_Ayers”/>
 <description>Joe is a developer and author for Beginning XML 5th edition</
em>.
Joe loves XML!</description>
 </contact>
 <contact person=”Liam_Quin” tags=”author consultant w3c”>
 <name:name>
 <name:first>Liam</name:first>
 <name:last>Quin</name:last>
 </name:name>

 <location>
 <address>Ontario, Canada</address>
 </location>
 <phone kind=”Work”>+1 613 476 8769</phone>
 <knows contacts=”Joe_Fawcett Danny_Ayers”/>
 <description>XML Activity Lead at W3C</description>
 </contact>
 <contact person=”Danny_Ayers” tags=”author semantics animals”>
 <name:name>
 <name:first>Daniel</name:first>
 <name:middle>John</name:middle>
 <name:last>Ayers</name:last>
 </name:name>

 <location>
 <latitude>43.847156</latitude>
 <longitude>10.50808</longitude>
 <address>Mozzanella, Italy</address>
 </location>
 <phone>+39-0555-11-22-33-</phone>
 <knows contacts=”Joe_Fawcett Liam_Quin”/>
 <description>Web Research and Development.</description>
 </contact>
</contacts>

c05.indd 163c05.indd 163 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema-instance
http://www.example.com/contacts

164 ❘ CHAPTER 5 XML SCHEMAS

5. You are ready to validate your XML instance document against your XML Schema. Open
contacts11.xml and click Plugin ➪ XML ➪ Parse as XML in the jEdit editor. As before, this should
validate with no warnings and no errors. If not, then correct any errors and try validating it again.

How It Works

In this Try It Out, you imported one XML Schema into another. You used the <import> declaration
because the two XML Schemas were designed for different targetNamespaces. Within your fi rst XML
Schema, you had already declared a single global element that could be used to describe names. In your
second XML Schema, you were forced to do some more work:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:contacts=”http://www.example.com/contacts”
 xmlns:name=”http://www.example.com/name”
 targetNamespace=”http://www.example.com/contacts”
 elementFormDefault=”qualified”>

The fi rst addition you had to make was an XML namespace declaration in the root element. You added
a namespace declaration for the namespace http://www.example.com/name. You needed to add this
declaration so that you could refer to items declared within the namespace later in your XML Schema.

Next, you added an <import> declaration:

 <import namespace=”http://www.example.com/name”
 schemaLocation=”name8.xsd”/>

This <import> declaration is straightforward. You are importing the declarations from the http://
www.example.com/name namespace, which is located in the fi le name8.xsd. This declaration enables
you to reuse the declarations from your name8.xsd XML Schema within your contacts12.xsd XML
Schema. (If you are using another schema validator, you should check the documentation for special
rules when referring to external fi les. For example, the Xerces parser handles relative URL references
differently in older versions.)

Finally, you modifi ed the name element declaration within your <contact> declaration:

<element ref=”name:name” />

Notice that you use the namespace prefi x declared within the root element when referring to the name
element declaration from your name8.xsd fi le. Instead of using an element reference, you could have
referred to the global type NameType.

Once you made these changes, you had to create a new, compliant instance document. The major
difference (apart from the namespace declaration in the root element) was the modifi ed content of your
<contact> elements:

 <contact person=”Jeff_Rafter” tags=”author xml poetry”>
 <name:name title=”Mr.”>
 <name:first>Jeff</name:first>
 <name:middle>Craig</name:middle>
 <name:last>Rafter</name:last>

c05.indd 164c05.indd 164 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/contacts
http://www.example.com/name
http://www.example.com/contacts
http://www.example.com/name
http://www.example.com/name
http://www.example.com/name
http://www.example.com/name

Creating a Schema from Multiple Documents ❘ 165

 </name:name>
 <location>
 <address>Redlands, CA, USA</address>
 <latitude>34.031892</latitude>
 <longitude>-117.207642</longitude>
 </location>
 <phone kind=”Home”>001-909-555-1212</phone>
 <knows contacts=”David_Hunter Danny_Ayers”/>
 <description>Jeff is a developer and author for Beginning XML 4th
 edition.
Jeff loves XML!</description>
 </contact>

This might seem a little more confusing than you would expect. Because you declared that the
elementFormDefault of both XML Schemas was qualified, you are required to qualify all
your elements with namespace prefi xes (or a default namespace declaration).

In your instance document you were already using the default namespace to refer to elements from the
namespace http://www.example.com/contacts. Therefore, you had to use a namespace prefi x, in this
case name, when referring to the elements from the namespace http://www.example.com/name. The
<first>, <middle>, and <last> elements are all declared within the http://www.example
.com/name namespace; therefore, you must qualify them with the name prefi x you declared in the root
element of your instance document.

The title attribute doesn’t need to be qualifi ed, because you didn’t modify the
attributeFormDefault within your XML Schemas — so it uses the default value unqualified.

<include> Declarations

The <include> declaration is very similar to the <import> declaration, except that the
<include> declaration allows you to combine XML Schemas that are designed for the same
targetNamespace (or no targetNamespace) much more effectively. When a schema validator
encounters an <include> declaration, it treats the global declarations from the included
XML Schema as if they had been declared in the XML Schema that contains the <include>
declaration. This subtle distinction makes quite a difference when you are using many modules to
defi ne a single vocabulary.

This is the shape of a typical <include> declaration:

<include
 schemaLocation=””>

Notice that within the <include> declaration there is no namespace attribute. Again, unlike the
<import> declaration, the <include> declaration can be used only on documents with the same
targetNamespace, or no targetNamespace. Because of this, a namespace attribute would be
redundant. Just as you saw before, the schemaLocation attribute allows you to specify the location
of the XML Schema you are including. The schemaLocation value functions as a validator hint. If
the schema validator cannot locate a copy of the XML Schema for any reason, it may raise an error
or proceed with lax validation.

c05.indd 165c05.indd 165 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/contacts
http://www.example.com/name
http://www.example.com/name
http://www.example.com/name

166 ❘ CHAPTER 5 XML SCHEMAS

To demonstrate the <include> declaration, you will now create an example that utilizes two
XML Schema documents with the same targetNamespace. To do this, you will break your
contacts XML Schema into two parts — moving the type declarations for the ContactTagsType to
a new XML Schema that can be included in your main document. The following Try It Out
exemplifi es this process.

TRY IT OUT Making Contact — Including XML Schema Declarations

In this Try It Out you divide your XML Schema into two parts and include one in the other. This is
known as dividing an XML Schema into modules — separate fi les that make up the overall XML Schema:

1. Create a new XML Schema called contact_tags.xsd that declares all of the allowable tags
in your contact listing. To create the declarations, you can simply copy the declarations from
contacts8.xsd:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:contacts=”http://www.example.com/contacts”
 targetNamespace=”http://www.example.com/contacts”
 elementFormDefault=”qualified”>
 <simpleType name=”ContactTagsType”>
 <restriction base=”string”>
 <enumeration value=”author”/>
 <enumeration value=”xml”/>
 <enumeration value=”poetry”/>
 <enumeration value=”consultant”/>
 <enumeration value=”CGI”/>
 <enumeration value=”semantics”/>
 <enumeration value=”animals”/>
 </restriction>
 </simpleType>
</schema>

Contact_tags.xsd

2. Now that you have created the contact_tags.xsd XML Schema, create a new document called
contacts9.xsd. Copy the contents of the fi le contacts8.xsd. You need to insert an <include>
declaration, and be sure to remove the ContactTagsType declaration. So the new contacts9.xsd
document will begin like this:

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:contacts=”http://www.example.com/contacts”
 xmlns:name=”http://www.example.com/name”
 targetNamespace=”http://www.example.com/contacts”
 elementFormDefault=”qualified”>

 <include schemaLocation=”contact_tags.xsd”/>

 <import namespace=”http://www.example.com/name” schemaLocation=”name8.xsd”/>

contacts9.xsd

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c05.indd 166c05.indd 166 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.example.com/contacts
http://www.w3.org/2001/XMLSchema
http://www.example.com/contacts
http://www.example.com/name
http://www.example.com/contacts
http://www.example.com/name
http://Wrox.com
http://Wrox.com

Documenting XML Schemas ❘ 167

3. Before you can schema-validate your instance document, you must modify it so that it refers to
your new XML Schema. Create a new document called contacts12.xml. Copy the contents of
the fi le contacts11.xml and change the xsi:schemaLocation attribute as follows:

xsi:schemaLocation=”http://www.example.com/contacts contacts12.xsd”

4. You are ready to validate your XML instance document against your XML Schema. Open
contacts12.xml and click Plugins ➪ XML ➪ Parse as XML in the jEdit editor. This should
validate with no warnings or errors. If not, correct any errors and try validating it again.

How It Works

Dividing complex XML Schemas into modules can be an excellent design technique. In this Try It Out,
you divided your contacts vocabulary into two modules. You declared these modules in separate XML
Schema documents, each with http://www.example.com/contacts as the targetNamespace. Because
the two documents utilized the same targetNamespace, you simply used an <include> declaration to
combine them:

<include schemaLocation=”contact_tags.xsd” />

As the schema validator processes contacts13.xsd, it includes the declarations from
contact_tags.xsd with the declarations for contacts13.xsd as if they had been declared in
one document. Therefore, you were able to use all of the types as if they were declared within
contacts13.xsd. Because you didn’t introduce any namespace complexities, there was no need to
change the instance document to support the new modular design.

NOTE Declarations within XML Schemas that have no targetNamespace are

treated diff erently. These declarations are known as Chameleon components.

Chameleon components take on the targetNamespace of the XML

Schema that includes them. Therefore, even though they were declared with no

targetNamespace, when they are included they take the targetNamespace

of the XML Schema that is including them.

DOCUMENTING XML SCHEMAS

For other people to be able to reuse your schemas, and for them to make sense to you at a later date,
it’s good practice to include documentation. The XML Schema Recommendation provides several
mechanisms for documenting your code:

 ➤ XML comments

 ➤ Other-namespace components

 ➤ XML Schema annotations

c05.indd 167c05.indd 167 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/contacts
http://www.example.com/contacts

168 ❘ CHAPTER 5 XML SCHEMAS

You should already be reasonably familiar with the fi rst two of these — they exploit the fact that
XML Schemas are XML themselves. Standard XML techniques can be used to include information
that won’t be used by the primary processor, the validator, or any other tool. However, they will be
available to any human reader and/or dedicated documentation tool.

But XML Schemas also have their own system for including documentation known as annotations.
This is provided by three terms in the XSD namespace: annotation, appinfo, and documentation.

These are all very straightforward, so in a moment you will see an example that includes all three
kinds of documentation. But fi rst it’s worth mentioning again the special XML attribute xml:lang.
This is used to specify that a particular chunk of text is in a specifi c (human) language. Obviously
this can be very important in documentation. The following example includes only English text
(xml:lang=”en”, the language codes being defi ned in www.ietf.org/rfc/bcp/bcp47.txt). But it’s
not uncommon to see pieces of text repeated in different languages within a document.

Listing 5-2 is a self-documenting XML Schema:

LISTING 5-2: name-documented.xsd

<?xml version=”1.0”?>
<schema xmlns=”http://www.w3.org/2001/XMLSchema”
 xmlns:target=”http://www.example.com/name”
 xmlns:doc=”http://www.example.com/documentation”
 targetNamespace=”http://www.example.com/name”
 elementFormDefault=”qualified”>
 <annotation>
 <appinfo source=”name-sample.xml”/>
 <documentation xml:lang=”en”>
 The name vocabulary was created for an example of a DTD. We have
 recycled it into an XML Schema.
 </documentation>
 </annotation>

 <!-- Specification of name elements -->
 <group name=”NameGroup”>
 <sequence>
 <element name=”first” type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
 <element name=”middle” type=”string” minOccurs=”0” maxOccurs=”1”/>
 <element name=”last” type=”string”/>
 </sequence>
 </group>
 <!-- Specification of name datatype -->

<complexType name=”NameType” doc:comments=”This complexType allows you to
 describe a person’s name broken down by first, middle and last parts of the
name. You can also specify a greeting by including the title attribute.”>

 <group ref=”target:NameGroup” />
 <attribute name=”title” type=”string”/>
 </complexType>
 <element name=”name” type=”target:NameType”/>
</schema>

Available for
download on
Wrox.com

c05.indd 168c05.indd 168 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.example.com/name
http://www.example.com/documentation
http://www.example.com/name
http://www.ietf.org/rfc/bcp/bcp47.txt
http://Wrox.com

Documenting XML Schemas ❘ 169

The fi rst thing to notice here is the added namespace declaration:

 xmlns:doc=”http://www.example.com/documentation”

This namespace has been invented for demonstration purposes. Its purpose here is effectively to hide
an attribute from processors for which it has no meaning. That attribute is doc:comments, included
here on the <complexType> element:

<complexType name=”NameType” doc:comments=”This complexType allows you to
describe a person’s name broken down by first, middle and last parts of the name.
You can also specify a greeting by including the title attribute.”>

When applied to an XML document, an XML Schema validator will read and apply the
appropriate rules for the <complexType> element, but it will ignore this “foreign” attribute.
However, you can write your own custom processing; for example, to convert the XML Schema
to HTML for documentation purposes, which could pull out and display these comments as
you see fi t.

The <annotation> element is used as a block container with two distinct elements. The
<appinfo> element is used to pass information to external tools (such as documentation
formatters). The XML Schema specifi cation includes the defi nition of one attribute for this
element, source, which is used here to point to a sample document that conforms to this schema.
You can also add any foreign-namespace attributes here as well. This is the shape of a typical
<annotation> element:

 <annotation>
 <appinfo source=”name-sample.xml”/>

The <documentation> element is used to wrap human-oriented text. It too may contain a source
attribute, although one is not included here. What is included is an xml:lang attribute to say that
the text is in English, as shown in the following code snippet:

 <documentation xml:lang=”en”>
 The name vocabulary was created for an example of a DTD. We have
 recycled it into an XML Schema.
 </documentation>
 </annotation>

The <annotation> element can contain as many <appinfo> and <documentation>
sub- elements as you like (including zero), so providing documentation in multiple languages
is straightforward.

Finally, the third kind of documentation in this document is the regular XML comment:

 <!-- Specification of name elements -->

Primarily intended for readers of the document source, these will be ignored by most processors.

c05.indd 169c05.indd 169 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.example.com/documentation

170 ❘ CHAPTER 5 XML SCHEMAS

XML SCHEMA 1.1

As mentioned in the introduction, at the time of this writing the 1.1 revision of the specifi cation is
under development. Although not quite fi nished, it is at the W3C’s Candidate Recommendation
status, so only minor changes are likely to be made before it achieves full Recommendation status.

As the small increment suggests, this version isn’t very much different from XML Schema 1.0. The
important thing to note is that in general, schemas developed according to the 1.0 specifi cation will
still work with the 1.1 specifi cation. Compatibility is maintained to the extent of reusing the same
namespace URI (http://www.w3.org/2001/XMLSchema). So an XML document defi ned using a
1.0 schema can be validated using a 1.1 schema processor/validator.

The main changes in XML Schema 1.1 from 1.0 are:

 ➤ It relaxes certain rules

 ➤ Assertions can be defi ned over the document content

 ➤ The spec is clearer and a little easier to read

Relaxed Rules

One of the rules that has relaxed is when a particular block in the schema specifi es both an explicit
element and a wildcard that may include that element. When the validator encounters the element in
a document, it can’t tell whether to interpret it as specifi ed by the explicit element (and check
whatever other conditions apply there) or by the wildcard.

For example, say you have a schema containing the following:

<sequence>
 <element name=”size” type=”xsd:decimal” minOccurs=”0”/>
 <any namespace=”##any” minOccurs=”0”/>
</sequence>

This could try to validate a document that contains:

<size>large</size>

Is that element valid, because the <any> declaration allows any element from any namespace, or
invalid because the <element> declaration states it should be a decimal?

To avoid this situation XML Schema 1.0 disallowed any such ambiguity; such constructions
are forbidden in the schema. However, in XML Schema 1.1 this kind of thing is allowed, with
ambiguity being avoided by using the rule that named elements take precedence over wildcards.
So in XML Schema 1.1 the <size> element is associated with the named element in the schema, and
in this example is judged invalid because the content types don’t match.

Other changes in XML Schema 1.1 relate to other restrictions but they are quite detailed, and
beyond the scope of this book. Once the new specifi cation has been fi nalized and published, status
updates will be linked from http://www.w3.org/XML/Schema.

c05.indd 170c05.indd 170 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/2001/XMLSchema
http://www.w3.org/XML/Schema

Summary ❘ 171

<assert>

XML Schema 1.1 adds an <assert> component to provide rule-based validation (along similar lines
of Schematron, which you will see in the next chapter).

The rule is specifi ed using a Boolean XPath expression. The assertion may pass (true) or fail (false)
depending on the evaluation of the expression. Assertions are treated like other validation features;
failure of the assertion means the document isn’t valid.

Here’s an example:

<element name=”sizeRange”>
 <complexType>
 <sequence>
 <element name=”minSize” type=”xsd:decimal”/>
 <element name=”maxSize” type=”xsd:decimal”/>
 </sequence>
 <assert test=”minSize le maxSize”/>
</complexType>
</element>

Here, the schema specifi es an element <sizeRange> with two nested elements, <minSize> and
 <maxSize>, each of which should contain a decimal value. The assertion tests whether the value
in <minSize> is less than or equal to the value in <maxSize>. The XPath expression for this
comparison is le.

As you will see later, XPath is a powerful language. In the context of XML Schema 1.1 this means
much more sophisticated assertions are possible.

NOTE Now that you understand the basics of XML Schemas, you are ready to

create your own vocabularies. Even with the basics, however, you have many

styles and options when designing your XML Schemas. Roger Costello, with the

help of many volunteers, has created an XML Schemas Best Practices document

that gives advice on what the best choice or style is for many diff erent

situations. See www.xfront.com/BestPracticesHomepage.html.

SUMMARY

 ➤ XML Schemas can be used to schema-validate your XML documents.

 ➤ XML Schemas have many advantages over Document Type Defi nitions.

 ➤ You can associate XML Schema with an XML Document by declaring element and
 attribute groups.

 ➤ You can specify allowable XML content using simple types and complex types.

 ➤ You can create an XML Schema using multiple documents and namespaces.

c05.indd 171c05.indd 171 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.xfront.com/BestPracticesHomepage.html

172 ❘ CHAPTER 5 XML SCHEMAS

EXERCISE

Answers to Exercises can be found in Appendix A.

 1. Add a gender attribute declaration for the <contact> elements. The attribute should allow two

possible values: male and female. Make sure the attribute is required.

 2. Currently, each contact can have only one phone number. Modify the contact declaration so that

each contact can have zero or more phone numbers.

 3. Modify the <description> declaration to include an element wildcard. Within the wildcard,

specify that the description element can accept any elements from the namespace

http://www.w3.org/1999/xhtml. Set the processContents attribute to lax.

c05.indd 172c05.indd 172 05/06/12 5:22 PM05/06/12 5:22 PM

http://www.w3.org/1999/xhtml

Summary ❘ 173

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

Advantages of XML Schemas over DTDs XML syntax

Associating an XML Schema with an XML

document

Options include direct linking and association

with a fi le and/or indirectly using <import> or

<include> declarations

Declaring element and attribute types These are based on the XML Schema depending

on the <element> and <attribute> elements

Declaring groups and attribute groups Use <sequence>, <choice>, and <all> blocks

Specifying allowable XML content Constraints may build up from combinations of

simple types and complex types

Creating an XML Schema using

namespace and multiple documents

Various approaches are available, notably using

<import> and <include>declarations

c05.indd 173c05.indd 173 05/06/12 5:22 PM05/06/12 5:22 PM

c05.indd 174c05.indd 174 05/06/12 5:22 PM05/06/12 5:22 PM

RELAX NG and Schematron

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Why you need more ways of validating

 ➤ Defi nition of RELAX NG and its aims

 ➤ How to write and use RELAX NG

 ➤ How to convert between RELAX NG and other validation methods

 ➤ Defi nition of Schematron and its aims

 ➤ How to write and use Schematron

Validation of XML documents is an exceedingly common requirement, especially when
your software is accepting XML from another source. Unfortunately, checking whether the
XML you have received meets the expectations of the software that will process it can be
diffi cult, as there are a myriad of rules that may need to be applied. You’ve already met two
different ways of validating XML documents to make sure they conform to a specifi c format:
document type defi nitions (DTDs) and W3C XML Schema. Both of these techniques have
their uses but neither offers a full validation solution; in fact, most experts agree that there
isn’t a single technique that can cope with every validation rule that you may want to apply.
In this chapter you meet two further solutions, RELAX NG and Schematron. Neither of
these is expected to completely replace DTDs or Schemas; they are actually both designed to
be used in conjunction with other validation methods. The expectation is that combining two
or more techniques will enable users to completely specify the rules that a document must
follow before it is said to be valid and therefore suitable for consumption by their business
applications.

In this chapter you fi rst see how RELAX NG and Schematron can be used in isolation to
perform validation, and then you’ll learn how they are used in conjunction with different
aspects of XML Schemas to produce a complete solution.

6

c06.indd 175c06.indd 175 05/06/12 5:24 PM05/06/12 5:24 PM

176 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

WHY DO YOU NEED MORE WAYS OF VALIDATING XML?

As you’ve seen in the preceding two chapters, it’s important to be able to assert whether or not
an XML document conforms to a predetermined structure. One of the main driving forces behind
XML — interoperability — means that the XML output by one application will most likely be used
as the input to another. If both of these applications are your own home-grown systems, you might
be able to assume that everything will function correctly and validation is not a primary concern.
If, however, you are receiving documents from external suppliers, especially if they are from people
with whom you have had no previous contact, you need to be sure that the document is valid and
will not, unintentionally or maliciously, cause an error in your systems.

People have not been satisfi ed with the two most popular validation methods, DTDs and XML
Schema, for a few reasons. DTDs were designed long before XML was created to work with SGML.
Although SGML is a superset of XML, DTDs are too limited in many respects to cope with the
huge diversity of constraints that occur in many XML formats. They have very limited support for
namespaces and only a very small range of data types. W3C XML Schemas are more versatile but
extremely complicated; they have a wider variety of data types available as well as ways to extend
and restrict these types. They also have built-in support for namespaces, and the advantage that
they themselves are written in XML means that you can often use the same tools to create them as
you would for the actual instance documents, something not possible with DTDs.

Both of the alternatives in this chapter seek to address these limitations. RELAX NG (usually
pronounced as relaxing) tries to be a simple yet powerful and natural way to describe the format
of an XML document, without some of the baggage carried by XML Schema, such as appending
information to the document in the form of default attributes. Schematron’s main selling point is
that it provides a way of reporting errors in the document in a very friendly manner. The messages
from Schematron, which are defi ned by the author, can be in a non-technical format such as The
book element must have an ID, rather than the sometimes more cryptic output received from XML
Schema–based parsers. Schematron can also cope with constraints in XML documents that are
diffi cult or impossible to express using other validation methods.

The fi rst stage in learning about these two validation techniques is to set up your environment.

SETTING UP YOUR ENVIRONMENT

The examples in this chapter use the <oXygen/> XML editor. This editor is widely acknowledged
as one of the leading applications in its fi eld. Unfortunately, but perhaps not surprisingly, it is not
free, but it does have a 31-day trial period. One of the reasons it was chosen for the examples in this
chapter is that it has good support for both RELAX NG and Schematron, which is a change from

NOTE In keeping with the rest of the book, this chapter uses the capitalized

form, Schema or XML Schema, when referring to the W3C standard; schema, in

lowercase, is used as a more generic term.

c06.indd 176c06.indd 176 05/06/12 5:24 PM05/06/12 5:24 PM

Using RELAX NG ❘ 177

the command-line operations that you’ve been using a lot elsewhere in the book. It only takes a few
steps to get started with the editor:

 1. Download the editor at http://www.oxygenxml.com/download_oxygenxml_editor.html.

 2. Choose the XML Editor version and either apply for a license from the site or wait until
your fi rst use, when you’ll be prompted to register.

 3. Once you’ve downloaded the install fi le, run it. Accepting the defaults when prompted is
suffi cient.

 4. Start the application when asked and, if given a choice, ask for the enterprise license, which
means you have access to all the functionality of the software.

Now that the environment is ready you can start to learn what RELAX NG is all about.

USING RELAX NG

RELAX NG came out shortly after XML Schema and one of its aims—simplicity—arose because
many thought that W3C XML Schemas were too diffi cult to use. Users were also hopeful that
having a more compact non-XML format would make it easier to hand-write RELAX NG, while
the XML version would be more suitable for creation and use by software. The main precepts of
RELAX NG include the following:

 ➤ Simple to learn

 ➤ Has two representations, both XML and textual

 ➤ Does not alter the target document in any way

 ➤ Can cope with namespaces

 ➤ Treats elements and attributes equally as far as possible

 ➤ Can use data types from other vocabularies such as W3C XML Schema

 ➤ Has a solid theoretical basis

There was also a feeling that DTDs suffered two main failings: they could be used to add default
content to documents at run-time, making it diffi cult to determine what data the document held just
by inspection, and could only deal with a very limited set of data types. Both these defi ciencies are
addressed in RELAX NG: no default content is added and data types from other technologies can
be used if the built-in ones are insuffi cient. RELAX NG has therefore stood the test of time and is
extensively used. In the rest of the chapter you cover all these points in detail and you should be able
to judge if RELAX NG succeeds in its goals.

Understanding the Basics of RELAX NG

RELAX NG is built on the idea of pattern matching. The XML document you are trying to
validate, commonly called the target document, can be visualized as a tree, starting with the root
element and spreading out to cover all child elements and attributes. Other items, such as comments
and processing instructions, cannot be validated using RELAX NG; this is similar to the situation
with DTDs and XML Schema.

c06.indd 177c06.indd 177 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.oxygenxml.com/download_oxygenxml_editor.html

178 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

The following examples use an XML fi le that represents a collection of books. The document
element is <library> and underneath are one or more <book> elements. Each book element has
attributes and elements that contain information about the authors, the characters in the book, a
description, and technical data such as publication date. The full fi le is shown in Listing 6-1.

NOTE As stated previously, there are two representations for RELAX NG: an

XML and a plain text version. When authoring strictly by hand it’s usually

considered easier to use the plain text version, known as the compact syntax. If

you are using an editor such as <oXygen/> then it’s more down to personal

preference; you can easily convert between the two using the built-in schema

converter (you’ll be using this later). To start with you’ll use the XML format. You’ll

see examples of both usages in the next few sections.

LISTING 6-1: Library.xml

<library>
 <book id=”ACMAS-20” publishedDate=”1920” genre=”Detective Fiction”>
 <title>The Mysterious Affair at Styles</title>
 <authors count=”1”>
 <author id=”AC”>Agatha Christie</author>
 </authors>
 <characters>
 <character id=”HP”>
 <name>Hercule Poirot</name>
 <description>A former Belgian detective,
 now a private investigator.</description>
 </character>
 <character id=”JJ”>
 <name>James Japp</name>
 <description>A detective from London’s
 Scotland Yard.</description>
 </character>
 <character id=”AH”>
 <name>Arthur Hastings</name>
 <description>The narrator of the tale
 and an old friend of Poirot.</description>
 </character>
 <character id=”AI”>
 <name>Alfred Inglethorpe</name>
 <description>The new husband of Emily Cavendish,
 who is disliked by her family.</description>
 </character>
 </characters>
 <description>Emily Cavendish, a wealthy widow,
 marries again to Alfred Inglethorp.
 One night she is found poisoned and

Available for
download on
Wrox.com

c06.indd 178c06.indd 178 05/06/12 5:24 PM05/06/12 5:24 PM

http://Wrox.com

Using RELAX NG ❘ 179

 Alfred immediately becomes the main suspect.</description>
 </book>
 <book id=”EGOSC-77” publishedDate=”1977” genre=”Science Fiction”>
 <title>Ender’s Game</title>
 <authors count=”1”>
 <author id=”OSC”>Orson Scott Card</author>
 </authors>
 <characters>
 <character id=”AW”>
 <name>Andrew “Ender” Wiggin</name>
 <description>A young boy
 who is selected for Battle School following an incident
 with a local bully.</description>
 </character>
 <character id=”MR”>
 <name>Mazer Rackham</name>
 <description>A hero from the earlier Formic wars.</description>
 </character>
 </characters>
 <description>Earth is at war with an alien species known as Formics
 which nearly succeeded in destroying the human race.
 Ender is unwittingly thrust into combat against
 them.</description>
 </book>
</library>

If you were to describe this document in plain English, you would probably start by stating that:

 ➤ A <library> element is composed of:

 ➤ one or more <book> elements that have

 ➤ id, publishedDate, and genre attributes

 ➤ a <title> element

 ➤ an <authors> element

 ➤ a <characters> element

 ➤ a <description> element

RELAX NG tries to mimic this explanation, stating the patterns that different elements and attributes
match. To show that an element matches a certain pattern you need to use an <element> element. So,
because all XML documents start with an element, the basic RELAX NG schema starts with

<element xmlns=”http://relaxng.org/ns/structure/1.0” name=”library”></element>

where the name attribute of <element> is the document element of the target XML. Note that there
is a default namespace associated with the document identifying it as a RELAX NG schema. So far
you’ve provided a pattern for the <library> element but haven’t described its children; you describe
them by adding a pattern for the <book> element. There can be one or more <book> elements so you
start with a <oneOrMore> element and within the <oneOrMore> element is another <element> to

c06.indd 179c06.indd 179 05/06/12 5:24 PM05/06/12 5:24 PM

http://relaxng.org/ns/structure/1.0

180 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

match <book>. The following snippet shows how the RELAX NG schema looks when the <book>
element is included:

<element xmlns=”http://relaxng.org/ns/structure/1.0” name=”library”>
 <oneOrMore>
 <element name=”book”></element>
 </oneOrMore>
</element>

A <book> element has three attributes; these are described using an <attribute> matching element
like so:

<element xmlns=”http://relaxng.org/ns/structure/1.0” name=”library”>
 <oneOrMore>
 <element name=”book”>
 <attribute name=”id”/>
 <attribute name=”publishedDate”/>
 <attribute name=”genre”/>
 </element>
 </oneOrMore>
</element>

You can now use your editor to see if your schema is accurate so far.

 1. Create a new fi le, Library-1.xml, which contains just the <library> and <book> elements
together with the latter’s attributes. It will look like Listing 6-2. Save the fi le in a folder
named RELAXNG.

LISTING 6-2: Library-1.xml

<library>
 <book id=”ACMAS-20” publishedDate=”1920” genre=”Detective Fiction”>

 </book>
 <book id=”EGOSC-77” publishedDate=”1977” genre=”Science Fiction”>

 </book>
</library>

 2. Now save the schema you’ve created as Library-1.rng, again in the RELAXNG folder. The
code is shown in Listing 6-3.

LISTING 6-3: Library-1.rng

<element xmlns=”http://relaxng.org/ns/structure/1.0” name=”library”>
 <oneOrMore>
 <element name=”book”>
 <attribute name=”id”/>
 <attribute name=”publishedDate”/>
 <attribute name=”genre”/>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c06.indd 180c06.indd 180 05/06/12 5:24 PM05/06/12 5:24 PM

http://relaxng.org/ns/structure/1.0
http://relaxng.org/ns/structure/1.0
http://relaxng.org/ns/structure/1.0
http://Wrox.com
http://Wrox.com

Using RELAX NG ❘ 181

 </element>
 </oneOrMore>
</element>

 3. Now open both these fi les in the <oXygen/> editor. To validate, make sure that the
Library-1.xml fi le is open in the front tab and choose Document ➪ Validate ➪ Validate
with . . . from the menu. See the dialog box shown in Figure 6-1.

FIGURE 6-1

 4. In the URL textbox, browse for the Library-1.rng fi le and in the Schema Type drop-down
choose RelaxNG XML Syntax. Now click the OK button and you should see a green box in
the application’s status bar with the words “Validation successful.” If you go and make a small
change to Library-1.xml, perhaps by removing the id attribute from fi rst book element
and revalidating, you’ll see a message stating that element “book” missing required
attribute “id”.

 5. The next stage to building up your schema is to add patterns that match the child elements
of <book>. Modify the current schema, Library-1.rng to give the following:

 <element xmlns=”http://relaxng.org/ns/structure/1.0” name=”library”>
 <oneOrMore>
 <element name=”book”>
 <attribute name=”id”/>

c06.indd 181c06.indd 181 05/06/12 5:24 PM05/06/12 5:24 PM

http://relaxng.org/ns/structure/1.0

182 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

 <attribute name=”publishedDate”/>
 <attribute name=”genre”/>
 <element name=”title”>
 <text/>
 </element>
 <element name=”authors”>
 <attribute name=”count”/>
 </element>
 <element name=”characters”/>
 <element name=”description”>
 <text/>
 </element>
 </element>
 </oneOrMore>
 </element>

 6. Notice how the elements <title> and <description> contain a <text/> element. This
pattern matcher states that these elements contain only text and no other markup. The
fi nal step is to fi ll in the patterns that match the <author> and <character> elements.
Specify that there must be at least one <author> element but there don’t have to be any
<character> ones. Save the changes so far as Library-2.rng. This leads to the code shown
in Listing 6-4.

LISTING 6-4: Library-2.rng

<element xmlns=”http://relaxng.org/ns/structure/1.0” name=”library”>
 <oneOrMore>
 <element name=”book”>
 <attribute name=”id”/>
 <attribute name=”publishedDate”/>
 <attribute name=”genre”/>
 <element name=”title”>
 <text/>
 </element>
 <element name=”authors”>
 <attribute name=”count”/>
 <oneOrMore>
 <element name=”author”>
 <attribute name=”id”/>
 <text/>
 </element>
 </oneOrMore>
 </element>
 <element name=”characters”>
 <zeroOrMore>
 <element name=”character”>
 <attribute name=”id”/>
 <element name=”name”>
 <text/>
 </element>
 <element name=”description”>
 <text/>
 </element>
 </element>

Available for
download on
Wrox.com

c06.indd 182c06.indd 182 05/06/12 5:24 PM05/06/12 5:24 PM

http://relaxng.org/ns/structure/1.0
http://Wrox.com

Using RELAX NG ❘ 183

 </zeroOrMore>
 </element>
 <element name=”description”>
 <text/>
 </element>
 </element>
 </oneOrMore>
</element>

To specify that you want one or more <author> elements, you surround the block with a
<oneOrMore> element. Conversely, you can omit <character> elements altogether, so there
you use a <zeroOrMore> containing element.

 7. You can now validate your complete Library.xml fi le against this schema; it should pass
validation with no error messages. You can test if your <zeroOrMore> stipulation works by
deleting or commenting out all the character elements from one of the <book> elements; the
fi le will still validate. So far all the solitary elements and attributes have been mandatory;
the only options you’ve had are how many <author> and <character> elements were
allowed.

Now suppose you decide that the <description> element of the book is not mandatory — it can
be omitted from the XML. To denote this in your RELAX NG schema you can make use of the
<optional> element, which looks like the following:

 <optional>
 <element name=”description”>
 <text/>
 </element>
 </optional>

If you now comment out one of the <description> elements like this:

 </characters>
 <!-- <description>Emily Cavendish, a wealthy widow,
 marries again to Alfred Inglethorp. One night
 she is found poisoned and
 Alfred immediately becomes the main suspect.</description> -->
</book>

and then revalidate, you fi nd the fi le still passes.

You’ve now covered the basics of RELAX NG, but only using the XML representation. You’ll now
see how to describe the same XML using the compact syntax.

Understanding RELAX NG’s Compact Syntax

Instead of XML elements, the compact syntax makes use of curly braces ({}), parentheses (()), and
commas (,) in its syntax. There are two ways to make a declaration:

 ➤ For your basic declaration — that the fi le starts with a <library> element — you use the
following:

element library {}

c06.indd 183c06.indd 183 05/06/12 5:24 PM05/06/12 5:24 PM

184 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

 ➤ A similar structure can declare an attribute named id that has a data type of text, which is
the only data type that is recognized by RELAX NG without recourse to external defi nition
sets such as W3C XML Schema:

attribute id { text }

You can now use these two declarations to build your schema using the compact syntax:

 1. Follow the common convention to put new declarations on separate lines as far as possible:

element library {
 element book {}+ }

The preceding snippet says that the document element is <library> and underneath this are
one or more <book> elements (as indicated by the + sign). You can use one of three signs for
optionally occurring items:

 ➤ ?: Indicates that the item is optional, zero or one occurrence at most

 ➤ +: Indicates that the item occurs at least once with no maximum

 ➤ *: Indicates that the item occurs zero or more times, again with no upper limit

If none of these signs are used, the item must occur once and only once. Note that attributes
can only use the ? sign because XML doesn’t allow repetition of attribute names within a
single element.

 2. After defi ning the <book> element, fi ll in the attributes it needs. These need to be separated
by commas:

element library {
 element book {
 attribute id { text },
 attribute publishedDate { text },
 attribute genre { text }
 }+
}

The indentation is purely for readability. You have now described the basic structure of your
library. You can use <oXygen/> to validate against the simplifi ed version, Library-1.xml,
as you did earlier.

 3. Save the preceding code as Library-1.rnc (notice the different extension) and validate as
before. The only thing you need to do differently is change your choice in the validation
dialog box drop-down to be RelaxNG Compact Syntax.

 4. Now add the remaining defi nitions to the <book> element to the compact version to give the
following schema:

element library {
 element book {
 attribute id { text },
 attribute publishedDate { text },
 attribute genre { text },

c06.indd 184c06.indd 184 05/06/12 5:24 PM05/06/12 5:24 PM

Using RELAX NG ❘ 185

 element title { text },
 element authors {
 attribute count { text }
 },
 element characters {},
 element description { text }?
 }+
}

Notice how the <description> element is made optional by the addition of the question mark after
the closing curly brace.

 5. The fi nal stage is to fi ll in the patterns covering the <author> and <character> elements.
The full schema is shown in Listing 6-5.

LISTING 6-5: Library.rnc

element library {
 element book {
 attribute id { text},
 attribute publishedDate { text },
 attribute genre { text },
 element title { text },
 element authors {
 attribute count { text },
 element author {
 attribute id { text },
 text
 }+
 },
 element characters {
 element character {
 attribute id { text },
 element name { text },
 element description { text }
 }*
 },
 element description { text }?
 }+
}

In general, most people fi nd it easier to write RELAX NG schema using the compact syntax. If you
compare the two versions you’ll see that the XML one is more than 65 percent longer for the same
functionality. The best thing is that the two formats are completely interchangeable; you can test
this out using the <oXygen/> editor.

Converting Between the Two RELAX NG Formats

Conversion using your chosen editor is very straightforward, as demonstrated by converting the
XML version, Library.rng, to the compact version.

Available for
download on
Wrox.com

c06.indd 185c06.indd 185 05/06/12 5:24 PM05/06/12 5:24 PM

http://Wrox.com

186 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

 1. In the editor go to Tools ➪ Generate/Convert Schema. . . . In the dialog box that is displayed
on the left-hand side, choose RELAX NG Schema - XML as the Input and browse to
Library.rng in the fi le entry box. In the right-hand pane, choose RELAX NG
Schema - Compact as the Output; browse to the same folder as your input but choose
Library-converted.rnc as the fi le name.

 2. Click the Convert button and open the newly created fi le; you’ll fi nd that it’s exactly the
same as the version created earlier, Library.rnc. If you try the reverse process, (converting
from the compact syntax to the XML one), then you’ll fi nd that this works just as well with
a copy of Library.rng being produced.

NOTE Although the conversion from compact to XML has produced the same

version as the hand-crafted one, this won’t always be the case because there is

often more than one way to express an XML structure using the XML syntax. It

worked nicely this time because the schema is a fairly simple one.

So far, although you’ve described the format of the XML documents you want to validate,
you haven’t constrained the actual values that elements or attributes hold. For example, the
publishedDate attribute should hold a valid year but your document just defi nes the content as
text. In the next section you see how to further constrain content to suit your requirements.

Constraining Content

The fi rst type of constraint you’ll look at is limiting content to an enumeration — a list of specifi c
values. For example, in your Library.xml fi le the <book> element has a genre attribute. It’s likely
that this is taken from a fi xed list of values. You can specify this in your schema by using the
following declaration in the XML format:

 <attribute name=”genre”>
 <choice>
 <value>Detective Fiction</value>
 <value>Science Fiction</value>
 <value>General Fiction</value>
 <value>Non-fi ction</value>
 </choice>
 </attribute>

This limits the value of genre to one of four values. If you modify Library.xml so that the genre
attribute of the fi rst <book> is Crime Fiction the validator will mark it as an error. If you want to
use the compact syntax, use this:

 attribute genre {
 “Detective Fiction”
 | “Science Fiction”
 | “General Fiction”
 | “Non-fi ction”
 }

c06.indd 186c06.indd 186 05/06/12 5:24 PM05/06/12 5:24 PM

Using RELAX NG ❘ 187

In compact syntax the pipe character (|) is used to indicate a choice.

RELAX NG has a deliberately limited set of data types; in fact, there are only two: string and
token. You’re no doubt familiar with the fi rst of these, which represents a sequence of characters.
Token is more diffi cult to describe. It’s a way of normalizing string types such that insignifi cant
whitespace is removed. In practice this means that leading and trailing whitespace is removed and
any sequence of more than one whitespace character is combined to form a single space.

NOTE As a reminder from earlier chapters, whitespace, in the XML world, is

defi ned as one of the following Unicode characters: 0x9 (tab), 0xa (newline), 0xd

(carriage return), and 0x20 (space). Any other characters, including the often-

used non-breaking space in HTML, are not counted as whitespace.

Token is the default data type used when no other is specifi ed, as is the case with the genre attribute
defi ned previously. If you want to explicitly state which type you want, use the type attribute,
like so:

 <attribute name=”genre”>
 <choice>
 <value type=”token”>Detective Fiction</value>
 <value type=”token”>Science Fiction</value>
 <value type=”token”>General Fiction</value>
 <value type=”token”>Non-fiction</value>
 </choice>
 </attribute>

or, in the compact syntax:

 attribute genre {
 token “Detective Fiction”
 | token “Science Fiction”
 | token “General Fiction”
 | token “Non-fiction”
 }

Having only two data types is a bit limiting, so RELAX NG schemas are able to import data types
from other libraries. The most common library used is the W3C XML Schema library; this then
gives access to a host of useful types. To show that you want data types from the XML Schema
library, use the datatypeLibrary attribute on the schema’s document element, like so:

<element xmlns=”http://relaxng.org/ns/structure/1.0”
 datatypeLibrary=”http://www.w3.org/2001/XMLSchema-datatypes”
 name=”library”>

Now that you have access to the XML Schema data types, you can constrain content, such as the
following publishedDate attribute:

c06.indd 187c06.indd 187 05/06/12 5:24 PM05/06/12 5:24 PM

http://relaxng.org/ns/structure/1.0
http://www.w3.org/2001/XMLSchema-datatypes

188 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

 <attribute name=”publishedDate”>
 <data type=”gYear”></data>
 </attribute>

Notice how the type is specifi ed within a <data> element. The <data> element is more restrictive
than the <text> pattern because, in theory, content specifi ed with the <text> pattern can contain
unlimited text nodes, whereas the <data> pattern can accept only one text node, which can be
further constrained by the type attribute. If you want to use the XML Schema types within the
compact syntax, it’s slightly easier. The use is so common that these types are accessible without an
initial declaration. All that is needed is to prefi x the data type with xsd::

 attribute publishedDate { xsd:gYear }

The XML Schema data type gYear specifi es a Gregorian year, which means a year without any
associated month and day information. If the target document contains anything else, there will be
a validation error.

An alternative library to the XML Schema library is the DTD Compatibility Library. You can specify
that you’re using this library by using the namespace http://relaxng.org/ns/compatibility/
datatypes/1.0 on the document element as before. Alternatively, you can declare it in situ, on the
actual pattern that needs it. For example, using the following code you could use the ID type from
this library for the id attribute on the <book> attribute while keeping the XML Schema library for
the rest of the document:

<element name=”book”>
 <attribute name=”id”>
 <data
 datatypeLibrary=”http://relaxng.org/ns/compatibility/datatypes/1.0”
type=”ID”/>
 </attribute>

If you want to use the compact syntax, use this:

datatypes dtd = “http://relaxng.org/ns/compatibility/datatypes/1.0”

element library {
 element book {
 attribute id { dtd:ID }

NOTE Be sure to put a declaration at the top of the fi le that nominates a prefi x;

this prefi x is used to qualify the data type whenever it’s used.

As an alternative, or in combination with external data types, you can also use regular expressions
to constrain data. For example, suppose you want to specify that the id attribute for characters must
consist of two or three uppercase characters from the Latin alphabet. The regular expression for this is:

[A-Z]{2,3}

c06.indd 188c06.indd 188 05/06/12 5:24 PM05/06/12 5:24 PM

http://relaxng.org/ns/compatibility/datatypes/1.0
http://relaxng.org/ns/compatibility/datatypes/1.0
http://relaxng.org/ns/compatibility/datatypes/1.0
http://relaxng.org/ns/compatibility/datatypes/1.0

Using RELAX NG ❘ 189

This means any character in the range A to Z. The curly braces indicate the minimum and
maximum times the characters must appear. To use this expression in your schema you add the
following code:

<element name=”character”>
 <attribute name=”id”>
 <data type=”token”>
 <param name=”pattern”>[A-Z]{2,3}</param>
 </data>
 </attribute>

In the RELAX NG compact version it looks like this:

 element character {
 attribute id {
 xsd:token { pattern = “[A-Z]{2,3}” }
 }

The fi nal aspect of RELAX NG is that of code re-use.

Reusing Code in RELAX NG Schema

In most programming languages there is the facility to defi ne blocks of code that can be reused;
RELAX NG is no exception in this regard. The idea behind this is similar to other languages — it

WARNING If you change one of the characters’ IDs to be something other

than two characters, you’ll get an error message on validating pointing out the

correct pattern to use.

saves having to write the same code more than once, and when modifi cations are needed the schema
has to be changed only in one place. This facility enables patterns to be defi ned, which can then
be used throughout the document. For example, suppose you want to reuse the constraint you
developed for the <character> element’s id attribute — that it must be two or three uppercase
letters. You can defi ne this constraint separately from the main schema and apply it when needed.

 1. First you need a way to defi ne the constraint, like so:

 <defi ne name=”person-id”>
 <attribute name=”id”>
 <data type=”token”>
 <param name=”pattern”>[A-Z]{2,3}</param>
 </data>
 </attribute>
 </defi ne>

c06.indd 189c06.indd 189 05/06/12 5:24 PM05/06/12 5:24 PM

190 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

The name attribute on the <define> element enables you to reference the defi nition later in
the schema. The rest of the code is just the defi nition of the attribute as before. In the com-
pact version you use a construct similar to defi ning a variable with the name before an equal
sign and the defi nition itself on the right-hand side:

 person-id =
 attribute id {
 xsd:token { pattern = “[A-Z]{2,3}” }
 }

 2. Second, you need to be able to reference this defi nition, fi rst for the <author> element:

 <oneOrMore>
 <element name=”author”>
 <ref name=”person-id”/>
 <text/>
 </element>
 </oneOrMore>

In the <character> element it’s similar:

 <zeroOrMore>
 <element name=”character”>
 <ref name=”person-id”/>
 <element name=”name”>
 <text/>
 </element>
 <element name=”description”>
 <text/>
 </element>
 </element>
 </zeroOrMore>

The compact version looks like this in the <author> element:

 element author { person-id, text }+

In the <character> element it’s:

 element character {
 person-id,
 element name { text },
 element description { text }
 }*

 3. There’s one fi nal tweak needed for the XML version. Because XML documents can have
only one root element, you need to separate your defi nitions from the actual schema (which
is contained within a <start> element) and then wrap all the content in a <grammar>
element. The complete schema is shown in Listing 6-6.

c06.indd 190c06.indd 190 05/06/12 5:24 PM05/06/12 5:24 PM

Using RELAX NG ❘ 191

LISTING 6-6: LibraryWithConstraints.rng

<?xml version=”1.0” encoding=”UTF-8”?>
<grammar xmlns=”http://relaxng.org/ns/structure/1.0”
 datatypeLibrary=”http://www.w3.org/2001/XMLSchema-datatypes”>
 <define name=“person-id“>
 <attribute name=“id“>
 <data type=“token“>
 <param name=“pattern“>[A-Z]{2,3}</param>
 </data>
 </attribute>
 </define>
 <start>
 <element name=”library”>
 <oneOrMore>
 <element name=”book”>
 <attribute name=”id”>
 <data
 datatypeLibrary=”http://relaxng.org/ns/compatibility/datatypes/1.0”
 type=”ID”/>
 </attribute>
 <attribute name=”publishedDate”>
 <data type=”gYear”/>
 </attribute>
 <attribute name=”genre”>
 <choice>
 <value type=”token”>Detective Fiction</value>
 <value type=”token”>Science Fiction</value>
 <value type=”token”>General Fiction</value>
 <value type=”token”>Non-fiction</value>
 </choice>
 </attribute>
 <element name=”title”>
 <text/>
 </element>
 <element name=”authors”>
 <attribute name=”count”/>
 <oneOrMore>
 <element name=”author”>
 <ref name=”person-id”/>
 <text/>
 </element>
 </oneOrMore>
 </element>
 <element name=”characters”>
 <zeroOrMore>
 <element name=”character”>
 <ref name=”person-id”/>
 <element name=”name”>
 <text/>
 </element>
 <element name=”description”>
 <text/>

continues

Available for
download on
Wrox.com

c06.indd 191c06.indd 191 05/06/12 5:24 PM05/06/12 5:24 PM

http://relaxng.org/ns/structure/1.0
http://www.w3.org/2001/XMLSchema-datatypes
http://relaxng.org/ns/compatibility/datatypes/1.0
http://Wrox.com

192 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

LISTING 6-6 (continued)

 </element>
 </element>
 </zeroOrMore>
 </element>
 <element name=”description”>
 <text/>
 </element>
 </element>
 </oneOrMore>
 </element>
 </start>
</grammar>

The complete version in the compact syntax is shown in Listing 6-7.

LISTING 6-7: LibraryWithConstraints.rnc

datatypes d = “http://relaxng.org/ns/compatibility/datatypes/1.0”

person-id =
 attribute id {
 xsd:token { pattern = “[A-Z]{2,3}” }
 }
start =
 element library {
 element book {
 attribute id { d:ID },
 attribute publishedDate { xsd:gYear },
 attribute genre {
 xsd:token “Detective Fiction”
 | xsd:token “Science Fiction”
 | xsd:token “General Fiction”
 | xsd:token “Non-fiction”
 },
 element title { text },
 element authors {
 attribute count { text },
 element author { person-id, text }+
 },
 element characters {
 element character {
 person-id,
 element name { text },
 element description { text }
 }*
 },
 element description { text }
 }+
 }

There’s plenty more to RELAX NG — there are ways to describe most of the XML formats that
you’re likely to come across in real-world situations. Unless you’re a dyed-in-the-wool XML

Available for
download on
Wrox.com

c06.indd 192c06.indd 192 05/06/12 5:24 PM05/06/12 5:24 PM

http://relaxng.org/ns/compatibility/datatypes/1.0
http://Wrox.com

Using Schematron ❘ 193

Schema afi cionado, you’ll almost certainly fi nd them easier to write by hand, and converting them to
other formats is easy enough with tools, such as the <oXygen/> editor you’ve used, and others, such as
Trang, a free conversion tool, which you can fi nd at http://www.thaiopensource.com/relaxng/
trang.html.

That concludes your introduction to RELAX NG. Next, you meet Schematron and see what unique
features it has that make it particularly attractive when designing schemas that will be used by more
non-technical users.

NOTE There is an excellent guide to RELAX NG by Wrox author Eric van der

Vlist at http://books.xmlschemata.org/relaxng/page2.html.

USING SCHEMATRON

The second validation tool discussed is Schematron, which looks at the problem of describing and
validating an XML document in a different way than the three methods you’ve encountered thus
far. These other methods (DTDs, XML Schema, and RELAX NG) all set to create a model of
the target document. If the document doesn’t match that model, an error is raised. Schematron’s
approach uses hand-crafted rules to describe what should appear and where in a document. It’s up
to the author to decide how many rules are needed, how strict they are and, most importantly, what
messages should appear if any of them are broken.

Understanding the Basics of Schematron

As stated, Schematron revolves around the concept of rules; you can create any number of rules,
such as:

 ➤ The <character> element’s id attribute must be two or three uppercase letters from the
Roman alphabet.

 ➤ The count attribute on the <authors> element must equal the number of <author>
elements.

You can add as many rules as you see fi t and attach a message to each one alerting the user if it has
been broken. Schematron uses XPath to express these rules; XPath is a fundamental part of many
XML-related technologies and is covered in depth in Chapter 7. This section gives a very quick
introduction and sticks to simple examples. This will give you enough to appreciate Schematron’s
power, which can be harnessed in full when your XPath skills are honed later on.

Understanding XPath

Similar to the way RELAX NG portrays an XML document, XPath also seeks to represent an XML
document as a tree, starting at the root node and branching out through the document element
and all its children. It uses a format similar to that used for paths in the fi lesystem. The root is
represented by a forward slash (/) and then you can specify the direction or axis you want to travel

c06.indd 193c06.indd 193 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.thaiopensource.com/relaxng/trang.html
http://www.thaiopensource.com/relaxng/trang.html
http://books.xmlschemata.org/relaxng/page2.html

194 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

and the name of any element you want to target. There are many directions that you can use but in
this chapter you’ll use only two: you can travel along the child axis or the attribute axis. So, if you
want to single out the <library> element in your Library.xml fi le, you would use the following
XPath expression:

/library

You have moved from the root (/) along the child axis (which is the default, so it doesn’t need
specifying) to all elements named library, which are directly under the root. In this case there is
only one such element. You could then move to all the <book> elements by using:

/library/book

If you then change by switching onto the attribute axis, denoted by the @ sign, you can pick out the
genre attributes:

/library/book/@genre

Finally, you can fi lter these expressions using a predicate, which is denoted using square brackets
([]). For instance, if you want to target all <book> elements that have an id attribute of ACMAS-20,
you can specify:

/library/book[@id = ‘ACMAS-20’]

Now that you have a basic understanding of XPath you can put this knowledge to good use by
employing Schematron to validate XML. First though, you need to decide exactly which version of
Schematron to use.

Choosing a Version of Schematron

Schematron comes in more than one fl avor. The original version was developed by Rick Jelliffe in
1999 and is generally known as Schematron 1.5. Since Schematron’s origin, there has been an effort
for it to be recognized as an international standard, which led to the development of a new version
known as ISO Schematron. The original, however, is typically more popular, probably because it
seems easier to use. This is likely due to the fact that it was designed by one man rather than the
newer version that was designed by a group of people, all with their own favorite parts that they
wanted to include, forced to compromise over what exactly was left in and what was omitted. This
group design led to a product that doesn’t quite suit anybody. For these reasons you’ll be using the
original Schematron 1.5. Most of the examples will work in either version; where this is not the case
it will be mentioned explicitly.

Understanding the Basic Process

Although Schematron relies on the creation of rules to describe an XML document, how those
rules are tested deserves a mention. Once the rules are written, using an XML format, they are
transformed using XSLT. The basic usage of XSLT is to transform XML from one format to another
using templates (see Chapter 8, “XSLT” for more information). So Schematron takes the rules and

c06.indd 194c06.indd 194 05/06/12 5:24 PM05/06/12 5:24 PM

Using Schematron ❘ 195

uses XSLT to produce a second transformation. This is then applied to the XML to be validated,
and the output produced lists whether the document passes all the tests or, if not, what rules have
been broken. Although this may seem quite complicated, it’s fairly straightforward once you’ve seen
it in action. The <oXygen/> application you’re using also hides a lot of the background processing,
enabling you to concentrate on the core tasks in Schematron: rule creation and error messages.

Writing Basic Rules in Schematron

The fi rst thing a rule needs is a context — when is this rule to be applied? Schematron rules start by
defi ning this context using an attribute like so:

<rule context=”...”>
 <!-- rest of rule -->

The context is an XPath expression that defi nes when the rule should be tested. Say you want to
defi ne a rule relating to your Library.xml fi le you used in Listing 6-1. You know that <book>
elements should possess three attributes: id, publishedDate, and genre. You can test that this is the
case by choosing the <book> element as your context and adding three tests, one for each attribute.

In Schematron there are two types of tests: a positive one that says this statement should be true; if
it’s not show an error message; or a negative one that says this statement should not be true; if it is
show an error message. The positive test is defi ned using an <assert> element and the negative test
is defi ned using a <report> element.

You can therefore write your fi rst test — that there is an id attribute — by using a positive
<assert> element after setting the context attribute to book:

<rule context=”book”>
 <assert test=”@id”>The ‘book’ element must have an ‘id’ attribute.</assert>
</rule>

Here, the test is simple. The Schematron processor looks for an id attribute on all <book> elements.
The XPath expression @id returns the id attribute if it exists, otherwise no value is returned. The
test attribute on the <assert> element expects a Boolean. Using XPath’s built-in rules, if there is
no value returned then it is treated as false, if any value is returned then the test is true. So if an
id attribute is returned, the <assert> succeeds; otherwise, if no id attribute is returned, the test is
false and the <assert> fails. If the <assert> fails, the text within the element is shown to the user. In
simple English this rule asserts that every <book> element has an id attribute.

You could equally well have written this <rule> using the <report> element, as follows:

<rule context=”book”>
 <report test=”not(@id)”>The ‘book’ element does not have
 an ‘id’ attribute.</report>
</rule>

This time the test has been changed; if any <book> element does not have an id attribute, the
message is shown to the user. It’s entirely up to you whether you use <assert> or <report> elements.

c06.indd 195c06.indd 195 05/06/12 5:24 PM05/06/12 5:24 PM

196 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

It’s really a matter of style. Before you decide, think about the test you are going to write — which way
will be easier, the positive assert or the negative report?

You can extend this rule to cover the other two attributes, publishedDate and genre like so:

<rule context=”book”>
 <assert
 test=”@id”>The ‘book’ element must have an ‘id’ attribute.</assert>
 <assert
 test=”@publishedDate”>
 The ‘book’ element must have a ‘publishedDate’ attribute.</assert>
 <assert
 test=”@genre”>The ‘book’ element must have a ‘genre’ attribute.</assert>
</rule>

Again, you could have used <report> elements for the tests or, if feeling very contrary, mixed the
use of <assert> and <report>:

<rule context=”book”>
 <assert
 test=”@id”>The ‘book’ element must have an ‘id’ attribute.</assert>
 <report
 test=”not(@publishedDate)”>
 The ‘book’ element does not have a ‘publishedDate’ attribute.</report>
 <assert
 test=”@genre”>The ‘book’ element must have a ‘genre’ attribute.</assert>
</rule>

The practice of using both <assert> and <report> elements for the sake of it, rather than sticking
to one or the other, isn’t recommended, but it’s perfectly legal in Schematron.

So far your rules have targeted a <book> element, but Schematron lets you target items other
than elements; for example, comments, processing instructions, and text. This makes it stand out
from other validation techniques. DTDs and W3C Schema can’t handle comments and processing
instructions. Schematron doesn’t, however, let you target attributes directly; you need to target their
parent element as you did in the previous examples.

NOTE ISO Schematron diff ers from traditional Schematron in that it lets you set

an attribute as a context. On the other hand, ISO Schematron can’t target text

items.

So far you’ve seen how to write simple rules; it’s now time to put these rules into the framework of a
full Schematron document.

Creating a Schematron Document

A Schematron 1.5 document begins with a <schema> element that is in the www.ascc.net/xml/
Schematron namespace. The <rule> elements themselves are grouped under <pattern> elements.
The reason for this is that once a node has passed or failed a rule within a pattern, no more rules

c06.indd 196c06.indd 196 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.ascc.net/xml/Schematron
http://www.ascc.net/xml/Schematron

Using Schematron ❘ 197

are processed against that node. Therefore, if you want two rules to be applied to a node, you need
to put each <rule> into a separate <pattern> element. Your fi rst Schematron document therefore
looks like Listing 6-8.

LISTING 6-8: Library-1.sch

<schema xmlns=”http://www.ascc.net/xml/schematron”>
 <pattern name=”book attributes”>
 <rule context=”book”>
 <assert
 test=”@id”>The ‘book’ element must have an ‘id’ attribute.</assert>
 <assert
 test=”@publishedDate”>The ‘book’ element must have a ‘publishedDate’
 attribute.</assert>
 <assert
 test=”@genre”>The ‘book’ element must have a ‘genre’ attribute.</assert>
 </rule>
 </pattern>
</schema>

You’ve grouped the rule applying to <book> elements into a <pattern> element with the name
book attributes (this name is just for your benefi t; it is ignored by the validator).

You can use this schema to validate Library.xml. The process is similar to before — open
Library.xml in <oXygen/> and choose Document ➪ Validate ➪ Validate with . . . from the menu.
Then browse to Library-1.sch in the URL text box and click OK. You should see a
Validation successful message next to a green square in the status bar. If you modify Library.
xml by removing the id=”EGOSC-77” from the second <book> element and revalidate, you’ll see
the message: The ‘book’ element must have an ‘id’ attribute. (@id) [assert]. The fi rst
part of this is the text from your <assert> element; the latter parts indicate the XPath of the test
attribute and that an assert caused the message, rather than a report.

Although this message informs you of the problem, it doesn’t specify which <book> caused the
problem. This is an essential piece of information — after all, you could have thousands of <book>
elements in your <library>. Next, you see how to add extra information to messages to help the
user correct any errors.

Adding More Information to Messages

Two techniques are available that help you improve any error messages. The fi rst is of limited use
and only really makes your code less repetitious and more maintainable; this method is to make use
of the <name> element.

Using the <name> Element

The <name> element enables you to output the name of any node that can be accessed from the current
context. For example, instead of hard-coding the name book into your error message you could write:

<assert test=”@id”>
The ‘<name path=”.”/>’ element must have an ‘id’ attribute.</assert>

Available for
download on
Wrox.com

c06.indd 197c06.indd 197 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.ascc.net/xml/schematron
http://Wrox.com

198 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

Here the <name> element has an attribute, path, that points to the current context, which is the
<book> element that is being processed.

NOTE In XPath the period (.) is used to represent the context, much as the

same symbol can be used in a fi le path to represent the current directory. This is

covered fully in Chapter 7.

For this example, using the <name> element is not very helpful. Your rule is set only to process
<book> elements so it will always resolve to book in the output. However, your rule could have
been specifi ed differently such that knowing the name of the failing element would have been more
helpful. In this example supplying the path attribute is actually unnecessary. It’s so common to
output the name of the element currently being processed that including just <name/> in the message
is suffi cient. It’s only if you want the name of a different element that the path attribute is needed.
So your full schema would now look like Listing 6-9:

LISTING 6-9: Library-2.sch

<schema xmlns=”http://www.ascc.net/xml/schematron” >
 <pattern name=”book attributes”>
 <rule context=”book”>
 <assert test=”@id”>
 The ‘<name/>’ element must have an ‘id’ attribute.</assert>
 <assert test=”@publishedDate”>
 The ‘<name/>’ element must have a ‘publishedDate’ attribute.</assert>
 <assert test=”@genre”>
 The ‘<name/>’ element must have a ‘genre’ attribute.</assert>
 </rule>
 </pattern>
 </schema>

The second technique you can use to improve error messages is much more useful; this is the
<diagnostic> element.

Using the <diagnostic> Element

The <diagnostic> element has three advantages:

 ➤ It allows you to easily reuse error messages that apply to more than one context.

 ➤ It allows you to display more than one error message for each rule violation.

 ➤ It enables more detailed inspection of the offending node.

 ➤ The <diagnostic> element has the following form:

 <diagnostic id=”id-attribute”><!-- error message --></diagnostic>

The id attribute needs to be unique and is used to associate the message with the <assert> or
<report> that uses it. Within the error message you can use a <value-of> element that lets you

Available for
download on
Wrox.com

c06.indd 198c06.indd 198 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.ascc.net/xml/schematron
http://Wrox.com

Using Schematron ❘ 199

obtain data from any part of the targeted XML document. This means you can show the user
exactly where the error occurred.

To associate a <diagnostic> element with an <assert> or <report> that uses it, add a
diagnostics attribute like so:

<assert
 diagnostics=”id-attribute”
 test=”@id”>The ‘book’ element must have an ‘id’ attribute.</assert>

Now the <diagnostic> element with the relevant id will be called if this assertion fails.

You can add a <value-of> element to make the output even more useful. This has a select attribute,
which takes an XPath expression. You can use this expression to retrieve the title of the invalid <book>
element to make it easier for the user to identify where the target XML needs modifying.

To keep the <diagnostic> elements separate they are wrapped in a <diagnostics> element. The
full schema is shown in Listing 6-10.

LISTING 6-10: Library-3.sch

<schema xmlns=”http://www.ascc.net/xml/schematron” >
 <pattern name=”book attributes”>
 <rule context=”book”>
 <assert
 diagnostics=”id-attribute”
 test=”@id”>The ‘book’ element must have an
 ‘id’ attribute.</assert>
 <assert test=”@publishedDate”>
 The ‘book’ element must have a ‘publishedDate’ attribute.</assert>
 <assert test=”@genre”>
 The ‘book’ element must have a ‘genre’ attribute.</assert>
 </rule>
 </pattern>

 <diagnostics>
 <diagnostic id=”id-attribute”>The ‘id’ was missing on book/title:
 <value-of select=”title”/></diagnostic>
 </diagnostics>
 </schema>

If you validate the example fi le with the id attribute missing from the second book, you’ll get an
error message this time like this one:

Diagnostics: [id-attribute] The ‘id’ was missing on book/title: Ender’s Game

When it comes to choosing where to put what in error messages, again it’s somewhat a matter of
style. In general the <assert> and <report> elements should contain a simple explanation of
the broken rule. The <diagnostic> elements should help narrow down exactly where the rule was
broken. You can associate more than one <diagnostic> element to an <assert> or <report>
element if you want; you just need to separate the id values by a single space. A common use of this
facility is to display the more detailed message in more than one language, as shown in Listing 6-11.

Available for
download on
Wrox.com

c06.indd 199c06.indd 199 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.ascc.net/xml/schematron
http://Wrox.com

200 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

LISTING 6-11: Library-4.sch

<schema xmlns=”http://www.ascc.net/xml/schematron” >
 <pattern name=“book attributes“>
 <rule context=“book“>
 <assert
 diagnostics=“id-attribute-en id-attribute-fr“
 test=“@id“>The ‘book’ element must have an ‘id’ attribute.</assert>
 <assert test=“@publishedDate“>
 The ‘book’ element must have a ‘publishedDate’ attribute.</assert>
 <assert test=“@genre“>
 The ‘book’ element must have a ‘genre’ attribute.</assert>
 </rule>
 </pattern>

<diagnostics>
 <diagnostic id=“id-attribute-en”>
 The ‘id’ was missing on book/title: <value-of select=”title”/></diagnostic>
 <diagnostic id=”id-attribute-fr”>
book/title: <value-of select=”title”/> manque de l’attribut ‘id’.
</diagnostic>
 </diagnostics>

</schema>

Now the user will see a full explanation in both English and French if the id attribute is missing.

So far your checks have been fairly perfunctory, just testing for the presence of an attribute. The
next section details what to do if you want to test not only for the existence, but also that the value
it contains is valid.

Constraining Values in Schematron

Testing for the existence of attributes is not really enough; you also need to make sure that the
actual value is a valid one. For example, you tested that there was an id attribute on the <book>
element; however, it could have been empty and the test would still have passed.

Using publishedDate as an example, you know that it represents the year the book was fi rst
published. You can express this in a test by seeing if the actual value can be cast to a gYear.

Because gYear is defi ned as one of the W3C XML Schema types, you’ll need a way to reference
these. You can declare a namespace mapping using the <ns> element, which takes two attributes to
hold the namespace URI and the prefi x you want to use to refer to it:

<schema xmlns=”http://www.ascc.net/xml/schematron”>
 <ns uri=“http://www.w3.org/2001/XMLSchema“ prefi x=“xs“/>
 <pattern name=”book attributes”>
 <!-- rest of schema -->
</schema>

You then need an assertion that the value is suitable. For this you’ll use the castable as operator
in XPath.

Available for
download on
Wrox.com

c06.indd 200c06.indd 200 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.ascc.net/xml/schematron
http://www.ascc.net/xml/schematron
http://www.w3.org/2001/XMLSchema
http://Wrox.com

Using Schematron ❘ 201

NOTE For this example to work you need to make sure you’re using XPath 2.0.

Go to Options ➪ Preferences ➪ XML ➪ XML Parser ➪ Schematron ➪

Schematron XPath Version and make sure 2.0 is selected.

You’ll test whether the publishedDate is castable as a gYear:

<schema xmlns=”http://www.ascc.net/xml/schematron”>
 <ns uri=“http://www.w3.org/2001/XMLSchema“ prefix=“xs“/>
 <pattern name=“book attributes“>
 <rule context=“book“>
 <assert
 diagnostics=“id-attribute-en id-attribute-fr“ test=“@id“>The 'book‘ element
 must have an 'id‘ attribute.</assert>
 <assert test=“@publishedDate“>
 The 'book‘ element must have a 'publishedDate‘ attribute.</assert>
 <assert test=”@publishedDate castable as xs:gYear”>
 The publishedDate attribute must contain a valid year.</assert>
 <!-- rest of schema -->
</schema>

Now you can test your new schema. If you replace the date of the fi rst book in your example fi le,
1920, with an illegal entry, such as xxxx, you’ll get an error message such as that shown in Figure 6-2.

FIGURE 6-2

You’ve now covered the basics of Schematron and seen how it copes with some of the traditional
validation requirements, such as mandatory content and checking whether data is of the correct

c06.indd 201c06.indd 201 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.ascc.net/xml/schematron
http://www.w3.org/2001/XMLSchema

202 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

type. However these things can be done equally well with XML Schemas. One of the reasons
for Schematron being popular is that is can also cope with scenarios that can’t be handled using
constructs found in existing technologies. One of these situations is known as co-constraints, a
common requirement that neither DTDs nor XML Schemas can handle but which is easy using
Schematron.

Handling Co-Constraints in Schematron

A co-constraint refers to the situation where you want to say if this then that. This is impossible
to with DTDs and is achievable in W3C XML Schema only if you are using version 1.1, which
adds the <assert> element to provide this capability. Unfortunately, few products implement XML
Schema 1.1 yet.

As an example, notice that the <authors> element in Library-1.xml document has a count
attribute, the value of which is equal to the number of <author> elements contained within it. If you
want to check that this is indeed the case you need to create a new rule to deal with it.

 1. First you add a new <pattern> element and, within that, a <rule> that has authors as a
context. Try the following:

 <pattern name=”authors”>
 <rule context=”authors”>
 <!-- asserts to go here -->
 </rule>
 </pattern>

 2. Then you need to add an <assert> that checks if the count attribute is equal to the number
of <author> elements, like so:

 <pattern name=”authors”>
 <rule context=”authors”>
 <assert test=”@count = count(author)”>
 The count attribute must equal the number of author elements.</assert>
 </rule>
 </pattern>

 3. The XPath expression compares @count, the value of the count attribute, with the number
of <author> elements, obtained using the built-in count() function. If you change the
value of the count attribute on the fi rst <author> element to indicate that there are two
authors for The Mysterious Affair at Styles, you’ll see the error message reported when you
try to validate. The full schema is shown in Listing 6-12.

LISTING 6-12: Library-6.sch

<schema xmlns=”http://www.ascc.net/xml/schematron”>
 <ns uri=”http://www.w3.org/2001/XMLSchema” prefix=”xs”/>
 <pattern name=”book attributes”>
 <rule context=”book”>
 <assert
 diagnostics=”id-attribute-en id-attribute-fr” test=”@id”>
 The ‘book’ element must have an ‘id’ attribute.</assert>

Available for
download on
Wrox.com

c06.indd 202c06.indd 202 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.ascc.net/xml/schematron
http://www.w3.org/2001/XMLSchema
http://Wrox.com

Using Schematron ❘ 203

 <assert
 test=”@publishedDate”>
The ‘book’ element must have a ‘publishedDate’ attribute.</assert>
 <assert
 test=”@publishedDate castable as xs:gYear”>
 The publishedDate attribute must contain a valid year.</assert>
 <assert test=”@genre”>
 The ‘book’ element must have a ‘genre’ attribute.</assert>
 </rule>
 </pattern>

 <pattern name=”authors”>
 <rule context=”authors”>
 <assert test=”@count = count(author)”>
 The count attribute must equal the number of author elements.</assert>
 </rule>
 </pattern>

 <diagnostics>
 <diagnostic id=”id-attribute-en”>
 The ‘id’ was missing on book/title: <value-of select=”title”/>
 </diagnostic>
 <diagnostic id=”id-attribute-fr”>
 book/title: <value-of select=”title”/> manque de l’attribut ‘id’.</diagnostic>
 </diagnostics>
</schema>

You’ve looked at the basics of Schematron and it defi nitely has its advantages over XML Schema.
However, it’s inconvenient to have to write every rule by hand, and specifying the basic structure of the
target document is tiresome. A better way to go about this is to have some basic validation performed
using XML Schema and then use Schematron to add rules that are diffi cult or impossible to express
otherwise. You can then also take advantage of Schematron’s friendlier error messages. This is a
supported scenario and achieved by embedding Schematron rules within a W3C XML Schema.

Using Schematron from Within XML Schema

The code download for this chapter contains a simple W3C XML Schema, Library.xsd, which can
be used to validate your example fi le. You’ll now go through the process of adding a Schematron
rule to test the co-constraint that you used previously — that the count attribute on the <authors>
element does in fact equal the number of <author> elements.

TRY IT OUT Embedding Schematron Rules in XML Schema

This Try It Out takes you through the process of combining a basic XML Schema validation
with Schematron and shows how you can use XML Schema to do the grunt work while utilizing
Schematron’s fl exible validation rules to supplement when necessary.

 1. First, modify your XML Schema to accept Schematron rules. To do so just add the Schematron
namespace to your XML Schema, Library.xsd:

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 xmlns:sch=“http://www.ascc.net/xml/schematron“ elementFormDefault=”qualified”>

c06.indd 203c06.indd 203 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.w3.org/2001/XMLSchema
http://www.ascc.net/xml/schematron

204 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

 2. Next, create the new rule. Simply take your old rule and reform it so that the elements use the sch
prefi x to show that they are in the Schematron namespace, like so:

<sch:pattern id=”authors”>
 <sch:rule context=”authors”>
 <sch:assert
 test=”@count = count(author)”>
 The count attribute must equal the number of author elements.
 </sch:assert>
 </sch:rule>
</sch:pattern>

This is exactly the same as the original, but you use a prefi xed namespace rather than the
default one.

 3. Add the rule to the XML Schema by taking advantage of the <xs:annotation> element. This
enables you to embed user-friendly documentation or machine-readable data into the schema.
Embed the latter, so underneath the <xs:annotation> you have an <xs:appinfo> element:

<xs:annotation>
 <xs:appinfo>
 <!-- Schematron patterns go here -->
 </xs:appinfo>
</xs:annotation>

 4. The best place to put the Schematron rules is near the defi nitions of the elements they
are testing, so put this block immediately after the defi nition of the <authors> element,
like the following code snippet. Once these changes have been made, save the fi le as
LibraryWithSchematronRules.sch:

<xs:element name=”authors”>
 <xs:annotation>
 <xs:appinfo>
 <sch:pattern id=”authors”>
 <sch:rule context=”authors”>
 <sch:assert
 test=”@count = count(author)”>
 The count attribute must equal the number of author elements.</sch:assert>
 </sch:rule>
 </sch:pattern>
 </xs:appinfo>
 </xs:annotation>
 <xs:complexType>
 <!-- rest of authors element definition -->
</xs:element>

 5. The fi nal step is to make two changes to Library.xml. Open the fi le in the <oXygen/> editor and
add the xsi:noNamespaceSchemaLocation attribute to the <library> element, as well as a new
namespace declaration for the Schema Instance library:

<library xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:noNamespaceSchemaLocation=”LibraryWithSchematronRules.xsd”>

c06.indd 204c06.indd 204 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.w3.org/2001/XMLSchema-instance

Using Schematron ❘ 205

The second change is purely for the benefi t of the <oXygen/> editor. It needs to know that,
as well as validating using the standard XML Schema, it must also extract the Schematron
rules from the document and validate against those. This is accomplished by using an XML
processing instruction, which is inserted at the top of the target XML:

<?oxygen SCHSchema=”LibraryWithSchematronRules.xsd”?>

You then need to save the document as LibraryForValidation.xml.

 6. To test the validation, open LibraryForValidation.xml in <oXygen/> and change the name
of fi rst <book> element to <tome>. Then validate by using the shortcut, Ctrl+Shift+V. You’ll get
an error about an unexpected element — <tome> where <book> was expected. This shows that
the W3C XML Schema is being used to validate. Now change the element back to <book> and
alter one of the <authors> element’s count attributes to be incorrect. Re-validate and you’ll see a
message similar to the previous one, that the count is incorrect.

The full code for LibraryWithSchematronRules.xsd is shown in Listing 6-13.

LISTING 6-13: LibraryWithSchematronRules.xsd

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 xmlns:sch=”http://www.ascc.net/xml/schematron”
 elementFormDefault=“qualified“>
 <xs:element name=“library“>
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs=“unbounded“ ref=“book“/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name=“book“>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref=“title“/>
 <xs:element ref=“authors“/>
 <xs:element ref=“characters“/>
 <xs:element ref=“description“/>
 </xs:sequence>
 <xs:attribute name=“genre“ use=“required“/>
 <xs:attribute name=“id“ use=“required“ type=“xs:token“/>
 <xs:attribute name=“publishedDate“ use=“required“ type=“xs:gYear“/>
 </xs:complexType>
 </xs:element>
 <xs:element name=“title“ type=“xs:string“/>
 <xs:element name=“authors“>
 <xs:annotation>
 <xs:appinfo>
 <sch:pattern id=“authors“>
 <sch:rule context=“authors“>
 <sch:assert test=“@count = count(author)“>

continues

Available for
download on
Wrox.com

c06.indd 205c06.indd 205 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.w3.org/2001/XMLSchema
http://www.ascc.net/xml/schematron
http://Wrox.com

206 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

LISTING 6-13 (continued)

The count attribute must equal the number of author elements.</sch:assert>
 </sch:rule>
 </sch:pattern>
 </xs:appinfo>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref=“author“/>
 </xs:sequence>
 <xs:attribute name=“count“ use=“required“ type=“xs:integer“/>
 </xs:complexType>
 </xs:element>
 <xs:element name=“author“>
 <xs:complexType mixed=“true“>
 <xs:attribute name=“id“ use=“required“ type=“xs:token“/>
 </xs:complexType>
 </xs:element>
 <xs:element name=“characters“>
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs=“unbounded“ ref=“character“/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name=“character“>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref=“name“/>
 <xs:element ref=“description“/>
 </xs:sequence>
 <xs:attribute name=“id“ use=“required“ type=“xs:token“/>
 </xs:complexType>
 </xs:element>
 <xs:element name=“name“ type=“xs:string“/>
 <xs:element name=“description“ type=“xs:string“/>
</xs:schema>

How It Works

The <oXygen/> editor fi rst validates using the XML Schema as indicated by the
xsi:noNamespaceSchemaLocation attribute on the <library> element. Second, it extracts all the
Schematron elements it can fi nd that are within any <xs:appinfo> sections. It processes these just as it
would a standalone Schematron schema.

Some of the features you haven’t covered are phases, where you split the validation into separate
sections and only validate specifi c phases at any one time. This is useful where the full validation
takes a long time and you only want to check a specifi c part of the document. There are also
abstract patterns and rules, where you can defi ne commonly occurring functionality that can then

c06.indd 206c06.indd 206 05/06/12 5:24 PM05/06/12 5:24 PM

Summary ❘ 207

be inherited by concrete ones later, similar to abstract classes in traditional computer languages. If
you’re interested you can fi nd a list of online resources at www.schematron.com.

SUMMARY

 ➤ There is a need for other schema languages; no one language can express all possible rules.

 ➤ The reasons behind RELAX NG include simplicity and the ability to use data types from
other languages.

 ➤ RELAX NG has two possible formats: an XML version where the fi les have a .rng
extension and the compact syntax where the fi les have a .rnc suffi x.

 ➤ Conversion between the two different schema formats or between other formats, such as
XML Schema and RELAX NG, is possible and there are many tools that can do this.

 ➤ Schematron’s idea of using XPath for validation rules enables complicated rules that are not
possible in other languages.

 ➤ Schematron deals with co-constraints by comparing values from more than one item using
XPath.

 ➤ XML Schema can combine with Schematron to get the best of both technologies.

In the next chapter, you see some of the different ways that you can extract data from XML
documents.

EXERCISES

Answers to the exercises can be found in Appendix A.

 1. Modify the RELAX NG schema for Library.xml to allow for an optional url attribute on <book>

and make sure it’s typed to allow only xs:anyUri as its value.

 2. Add a Schematron rule to LibraryWithSchematronRules.xsd to make sure that a character’s

description is longer than the name of the character.

c06.indd 207c06.indd 207 05/06/12 5:24 PM05/06/12 5:24 PM

http://www.schematron.com

208 ❘ CHAPTER 6 RELAX NG AND SCHEMATRON

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

The reasons for more

validation languages

Each language has its own strong and weak points. None can manage to

express every possible validation rule.

The main principles of

RELAX NG

Simplicity.

Two formats, XML and plain text.

Can use data types from elsewhere.

Does not add extra data.

The main principles of

Schematron

Designed to be used in conjunction with other validation languages

(mainly XML Schemas).

Uses XPath to specify rules.

Can defi ne co-constraints (a constraint on data based on another

item’s data).

Combining

Schematron with XML

Schema

Standard practice is to use a basic XML Schema to describe the format

of an XML document and then add Schematron rules where the ability to

reference more than one information item is needed.

c06.indd 208c06.indd 208 05/06/12 5:24 PM05/06/12 5:24 PM

PART III
Processing

 � CHAPTER 7: Extracting Data from XML

 � CHAPTER 8: XSLT

c07.indd 209c07.indd 209 05/06/12 5:27 PM05/06/12 5:27 PM

c07.indd 210c07.indd 210 05/06/12 5:27 PM05/06/12 5:27 PM

Extracting Data from XML

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How XML is usually represented in memory

 ➤ What the DOW and the XDM are

 ➤ What XPath is

 ➤ How to read and write XPath expressions

 ➤ How to learn more about the XPath language when you need it

There’s quite a lot packed into a small space here, but XPath is both important and useful.
Most useful languages for querying and extracting data have fairly powerful expression
languages and XPath is no exception. It’s everywhere, too: XPath “engines” are available for
pretty much every programming environment, from JavaScript to Java, from PHP and Perl
to Python, from C to SQL. XPath is also central to XSLT and XQuery.

DOCUMENT MODELS: REPRESENTING XML IN MEMORY

XML is a text-based way to represent documents, but once an XML document has been
read into memory, it’s usually represented as a tree. To make developers’ lives easier, several
standard ways exist to represent and access that tree. All of these ways have differences in
implementation, but once you have seen a couple, the others will generally seem very similar.

This chapter briefl y introduces three of the most widely used models; you learn more about
each of them later in the book. You also learn how to avoid using these data models altogether
using XPath (in this chapter) and XQuery (in Chapter 9).

7

c07.indd 211c07.indd 211 05/06/12 5:27 PM05/06/12 5:27 PM

212 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

Meet the Models: DOM, XDM, and PSVI

The best-known data model for storing and processing XML trees is called the W3C document
object model, or the DOM for short. The DOM was originally designed for handling HTML in web
browsers; the XML DOM is actually a separate specifi cation, but it’s supported by all modern
web browsers, and a host of other applications and libraries.

XPath 2 and 3, XQuery, and XSLT 2 all use the XQuery and XPath Data Model, or XDM, which
is a slightly different data model than DOM. The XDM is more powerful than the DOM, includes
support for objects with types described by W3C XML Schema, and also supports items such as
fl oating-point numbers and sequences intermingled with the XML data.

Finally, W3C XML Schema defi nes an abstract model with the catchy name Post-Validation
Information Set, or PSVI. The PSVI is the result of validating an XML document against a W3C
XML Schema and “augmenting” the XML document with type annotations; for example, saying
a <hatsize> element contains an integer. The term information set comes from a specifi cation (the
XML Information Set), which provides a standard set of terminology for other specifi cations (like
XSD) to use. You will sometimes also hear people refer to the infoset as if it was a data model, but
this is not strictly accurate.

This chapter focuses fi rst on the DOM, and then on using XPath to get at XML elements and
attributes, whether they are stored using the DOM or otherwise.

WARNING The XPath 1.0 specifi cation did not rely on the DOM, and, in fact,

some slight incompatibilities exist between XPath 1 and the DOM. However, the

DOM is so widely used with XPath 1.0 that this is not an issue in practice.

A Sample DOM Tree

There are three main reasons why it is important to talk about the DOM in this book:

 ➤ Some of the most widely used XPath implementations return DOM node lists.

 ➤ jQuery and other similar libraries are built on top of the DOM and described in terms of
the DOM.

 ➤ The XDM used by XPath 2 and later is based on the same principles as DOM.

To start off, take a look at Listing 7-1 that shows how the XML text is taken to represent a tree
in memory:

LISTING 7-1: Armstrong.xml

<entry id=”armstrong-john”>
 <title>Armstrong, John</title>
 <body>
 <p>, an English physician and poet,

Available for
download on
Wrox.com

c07.indd 212c07.indd 212 05/06/12 5:27 PM05/06/12 5:27 PM

http://Wrox.com

 was born in <born>1715</born> in the parish of Castleton in Roxburghshire,
 where his father and brother were clergymen; and having
 completed his education at the University of Edinburgh,
 took his degree in physics, Feb. 4, 1732, with much reputation.
 . . .
 </p>
 </body>
</entry>

Figure 7-1 illustrates how an implementation might represent this short snippet of XML in memory.
In the diagram, the element nodes are drawn as circles, text nodes as pentagons, and attribute
properties as boxes. The dotted part of the diagram is there to remind you that the illustration is
not complete. The snippet includes only one entry, although the actual full dictionary has a <book>
element and more than 10,000 entries. You see a larger example later in this chapter.

document root

element
name: entry

attribute
name: id
value: armstrong-john

element
name: body

element
name: title

element
name: p

. . . .

text
value: an English physician
 and poet, was born in

text
value: 1715

element
name: born

text
value: in the parish of Castleton in Roxburghshire,
 where his father and brother were clergymen; and having
 completed his education at the university of Edinburgh,
 took his degree in physic, Feb. 4, 1732, with much reputation.
 . . .

FIGURE 7-1

DOM Node Types

The in-memory representation of any XML item in a DOM tree such as an element, an attribute, a
piece of text, and so on is called a node; XDM uses the word node in the same way. There are many

Document Models: Representing XML in Memory ❘ 213

c07.indd 213c07.indd 213 05/06/12 5:27 PM05/06/12 5:27 PM

214 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

different types of nodes; you take care not to get them confused. The following list helps spell
the different node types out:

 ➤ Document Node: The node at the very top of the tree, Document, is special; it is not an ele-
ment, it does not correspond to anything in the XML, but represents the entire document.

 ➤ DocumentFragment Node: A DocumentFragment is a node used for holding part of a
document, such as a buffer for copy and paste. It does not need to meet all of the well-
formedness constraints — for example, it could contain multiple top-level elements.

 ➤ Element Node: An Element node in a DOM tree represents a single XML element and its
contents.

 ➤ Attr (Attribute) Node: Attr nodes each represent a single attribute with its name, value, and
possibly, type information. They are normally only found hidden inside element nodes,
and you have to use a method such as getAttributeNode(name) to retrieve them.

 ➤ Text node: A text node is the textual content of an element.

 ➤ DocumentType, CDATASection, Notation, Entity, and Comment Nodes: These are for
more advanced use of the DOM.

DOM nodes also have properties; you just saw an example of this in Figure 7-1 — an element
node has a property called tagName. Most DOM programs will contain code that tests the various
properties of a node, especially its type (element, attribute, text and so on) and behaves accordingly,
even though this is not usual in object-oriented design.

Look at the previous code example to put all of this information about nodes together in context:
<title>Armstrong, John</title> has a start tag (<title>), text content (Armstrong, John),
and an end tag (</title>), and as a whole, represents an element called title.

NOTE In this book the convention <x> is used in the text to refer to the element

x. However, in the examples, and in actual XML fi les, <title> is a tag and not

an element. The element is a logical idea, and the text representation of the

element in an XML fi le includes the start tag, the end tag, and the content, which

is everything between the tags.

The resulting part of the DOM tree has an element node whose tagName property has the value title,
and that element node contains a reference to a text node whose text value is Armstrong, John.

So a tag, an element, and a node are three different things. This may seem subtle, but it will really
help you with XPath and XSLT.

DOM Node Lists

When you access parts of a DOM tree from a program, you generally get back a node list. As the
name suggests, this is simply a list of nodes. You often then use an iterator to march through the list
one item at a time. In particular, XPath queries return a node list.

c07.indd 214c07.indd 214 05/06/12 5:27 PM05/06/12 5:27 PM

An unusual thing about DOM node lists is that they are live: the items in the list are really
references or pointers into the tree, so that if you generate a node list and then change one of the
nodes in that list, those changes are refl ected in the tree, and also in any other lists containing
that node. Not all implementations support live node lists, however, so you should check the
environment you plan to use before relying on the feature.

For example, code using the DOM, depending on the programming language, often looks
something like this:

foreach (e in document.getelementsbytagname(“p”)) {
 if (e.attributes[“role”] = “introduction”) {
 document.delete(e);
 }
}

In this code, document.getelementsbytagname(“p”) is a DOM function that returns a node list,
and the code then processes each element in turn, deleting the nodes whose role attribute is set
to introduction. In some languages you would need to call string comparison functions to test
against “introduction” and in others you might need to save the node list in a variable and iterate
over it one item at a time using the length property of the node list. Although the details vary, the
basic ideas are the same in all languages supporting the DOM.

The Limitations of DOM

The DOM provides a low-level application programming interface (API) for accessing a tree in
memory. Although the DOM has some object-oriented features, it does not support the two most
important features: information hiding (a concept alien to XML) and implicit dispatch, the idea
that the compiler or interpreter chooses the right function or “method” to call based on the type
or class of a target object. Therefore, since the DOM doesn’t support implicit dispatch, you have to
write code that says, “if the node is an element, do this; if it’s a text node, do this,” and so on, and
it can be easy to forget a node type. In fact, it feels like playing snooker by giving a robot verbal
commands — “left a bit, further, slower, right a bit, that’s good.” With XPath and XQuery, you just
pick up the snooker cue and hit the ball.

The DOM nodes also have a lot of methods and properties, which use a lot of memory in many
programming languages. It’s not uncommon for DOM-based applications to get 10- to 100-times
smaller when rewritten in XQuery, and for DOM expressions to fi nd a node to get 10- to
100-times smaller and much easier to understand when they’re rewritten in XPath. Additionally,
because code using the DOM is verbose and tedious it is often expensive to maintain and error-prone.

Older languages and APIs restrict you to using the DOM, but these days in most cases you should
be able to avoid it and use something higher-level. If you do end up using the DOM, see if there’s
a higher-level language or API that also returns a DOM node list. You should consider switching
to XPath (described later in this chapter), XQuery (see Chapter 9), XSLT (see Chapter 8), or in
JavaScript, jQuery. You will learn more about jQuery and JavaScript in Chapter 16, “AJAX”. The
rest of this chapter focuses on a higher-level language for accessing parts of a document, XPath.

Document Models: Representing XML in Memory ❘ 215

c07.indd 215c07.indd 215 05/06/12 5:27 PM05/06/12 5:27 PM

216 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

THE XPATH LANGUAGE

The XML Path Language, XPath, is used to point into XML documents and select parts of them
for later use. XPath was designed to be embedded and used by other languages — in particular by
XSLT, XLink, and XPointer, and later by XQuery — and this means that XPath isn’t a complete
programming language. But when you use it from Python, PHP, Perl, C, C++, JavaScript, Schema,
Java, Scala, XSLT, XQuery, and a host of other languages, you’ll quickly come to like it!

XPath Basics

The most common way to use XPath is to pass an XPath expression and one or more XML
documents to an XPath engine: the XPath engine evaluates the expression and gives you back the
result. This can be via a programming language API, using a standalone command-line program, or
indirectly, as when XPath is included in another language such as XQuery or XSLT.

NOTE If your program is going to read the same XML document repeatedly, you

can often get better performance using XQuery than with XPath alone. If, on the

other hand, you want to process an entire document rather than just grab small

parts, you should consider using XSLT. In any case, you’ll need to know about

XPath, because XQuery and XSLT are both based on it.

With XPath version 1.0, the result of evaluating an XPath expression is a node list, and in practice
this is often a DOM node list. With later versions of XPath you are more likely to get back an XDM
sequence, but it depends on the exact API and environment of the language embedding the XPath
engine. As of 2012, web browsers are still using XPath 1.

XPath is deceptively simple at fi rst, and can be very easy to use. Following is an example from the
start of the chapter showing how to get at John Armstrong’s date of birth:

/entry/body/p/born

If there was a whole book with lots of entries, and you just wanted the one for John Armstrong,
then you would use this instead:

/book/entry[@id = “armstrong-john”]/body/p/born

Each level of this XPath expression, from the root element down to born is a separate call to a DOM
API, with a loop needed to handle the test for the attribute value. But what’s equally as important
is that an XPath engine has the freedom to evaluate this expression in any order, so, for example, it
could start with the <born> element and work upward, which is sometimes a much faster strategy.

Understanding Context

In many environments using XPath you can “navigate” through the document and evaluate an
XPath expression against any node in the tree. When an environment enables navigation and
evaluation, the node becomes the context item.

c07.indd 216c07.indd 216 05/06/12 5:27 PM05/06/12 5:27 PM

The XPath context item can be set in three places: the fi rst one you have seen before in the previous
XPath examples that have all started with a slash (/), explicitly setting the initial context to the
document node. The context can also be set before evaluation by the language or environment
embedding XPath. You’ll see examples of the “host language” setting the initial context outside
XPath in Chapter 8, “XSLT” with xsl:for-each and xsl:apply-templates. Finally, when you
use a predicate, the context is set by XPath inside the predicate. See the following example:

/book/entry[@id = “armstrong-john”]

Conceptually, the XPath engine fi nds the top-level <book> element, then makes a list of all <entry>
elements underneath that <book> element. Then, for each of those <entry> elements, the XPath
engine evaluates the predicate and keeps only the <entry> nodes for which the predicate is
true — in this case, it keeps those <entry> elements having an id attribute whose value is equal
to “armstrong-john”. The context for the predicate each time is a different <entry> element.

You’ll see later that you can access the initial context node with the current() function, and that
you can get at the current context node with a period (.). The names make more sense when XPath
is used within XSLT, but for now all you need to remember is that there’s always a context and you
can access it explicitly if you need to.

XPath Node Types and Node Tests

So far you’ve seen XPath used only with XML elements, attributes, and text nodes, but XML
documents can also contain node types such as processing instructions and comments. In addition,
XPath 2 introduced typed nodes: all the types defi ned by W3C XML Schema are available.

Just as entry matches an element of that name, and @id matches an attribute called id, you can test
for various node types including processing instructions, comments, and text. You can also match
an element that was validated against a schema and assigned a particular type. Table 7-1 contains a
list of all the different node tests you can use in XPath.

TABLE 7-1: XPath Node Types and Node Tests

NODE TEST NODE TYPES MATCHED

node() Matches any node at all.

text() A text node.

processing-instruction() A processing instruction.

comment() A comment node (if the XML processor didn’t remove them from

the input!).

prefix:name This is called a QName, and matches any element with the same

namespace URI as that to which the prefi x is bound and the same

“local name” as name (see the section “XPath and Namespaces”

later in this chapter for an English translation of this!).

Examples: svg:circle, html:div.

name An element with the given name (entry, body, and so on).

continues

The XPath Language ❘ 217

c07.indd 217c07.indd 217 05/06/12 5:27 PM05/06/12 5:27 PM

218 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

You can use any of these node tests in a path. In Listing 7-1, for example, /entry/body/title/
text() would match the text node inside the <title> element. The parentheses in text() are
needed to show it’s a test for a text node, and not looking for an element called text instead.

NODE TEST NODE TYPES MATCHED

@attr An attribute of the given name (id, href, and so on); can be

prefi xed as a QName, for example, @xlink:href, but remember

that attributes are not in any namespace by default.

* Any element.

element(name, type) An element of given name (use * for any), and of the given

schema type, for example, xs:decimal.

Examples: entry/p/element(*, xs:gYear) to fi nd any

element declared with XSD to have content of type xs:gYear;

entry/p/element(born, *), which is essentially the same as

entry/p/born.

attribute(name, type) Same as element() but for attributes.

TABLE 7-1 (continued)

NOTE In practice it’s pretty unusual to fetch processing instructions or comments

from XML documents, but you do sometimes need to, especially if you’re working

on a general library for other people to use.

XPath Predicates: The Full Story

Earlier in this chapter you saw a predicate used to select <entry> elements having an attribute
called id with a particular value. The general pattern is that you can apply a predicate to any node
list. The result is those nodes for which the predicate evaluated to a true, or non-zero, value. You
can even combine predicates like so:

/book/chapter[position() = 2]/p[@class = ‘footnote’][position() = 1]

This example fi nds all <chapter> elements in a book, then uses a predicate to pick out only those
chapters that are the second child of the book (this is just the second chapter of the book). It then
fi nds all the <p> children of that chapter, and uses a predicate to fi lter out all except those <p>
elements that have a class attribute with the value footnote, Finally, it uses yet another predicate
to choose only the fi rst node in the list — that is, the fi rst such <p> element.

c07.indd 218c07.indd 218 05/06/12 5:27 PM05/06/12 5:27 PM

The expression inside the predicate can actually be any XPath expression! Wow! So you could write
something like this:

/entries/entry[body/p/born = /entries/entry/@born]

This expression fi nds all the entry elements that contain a born element whose value is equal to
the born attribute on some (possibly different) entry element. You’ll see more examples like this
in Chapter 9, “XQuery”). For now, just notice that you can have fairly complex expressions inside
predicates.

Positional Predicates

Let’s slow down a bit and look at a simpler example for a moment. The simplest predicate is
just a number, like [17], which selects only the seventeenth node. You could write /book/
chapter[2] to select the second chapter: that’s because it’s exactly the same as writing
/book/chapter[position() = 2]. This is often called a positional predicate. It’s really still
a boolean (true or false) expression because of the way it expands to position() = 17.

NOTE The predicate is not like an array dereference in many programming

languages, but rather a fi lter with a boolean expression inside. An expression

like p[0] is actually like p[false()] and does not select anything at all. The fi rst

node is therefore numbered node one, and p[1] gets you the fi rst p node.

So the full story on XPath predicates is that they can have any XPath expression in them, and that it
will be evaluated to true or false for each node in the current list, winnowing down the list to leave
only the nodes for which the predicate was true. And a plain number will be true if it matches the
position in the list.

WARNING A common source of confusion is the diff erence between //table/

tbody/tr[1] and (//table/tbody/tr)[1]. The fi rst expression selects all

tr elements that are the fi rst child of tbody elements. The second expression

fi nds all tr elements that are any direct child of a tbody element, makes a list of

them all in document order, and takes the fi rst one. In most cases it’s the second

form that you actually want!

The Context in Predicates

At the start of this chapter you learned how every XPath expression is evaluated in a context. The
step (/) and the predicate change the context. For example, if the initial context is the top-level
document node in Figure 7-1, then given the expression /entry[@id], the context for the predicate

The XPath Language ❘ 219

c07.indd 219c07.indd 219 05/06/12 5:27 PM05/06/12 5:27 PM

220 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

after /entry will be the <entry> element, and so the expression looks for an id element on each
entry node in turn; in this example there’s only one such node, so it won’t take long!

The shorthand “.” (a dot, or period) refers to the context node (the <entry> element), and the
function current() refers to the initial context (the document node in this example).

For example, if you’re processing an SVG document you might want to know if a defi nition is used,
so, in the context of a <def> element, you might look for

//*[@use = current()/@id]

to fi nd every element with an attribute called use whose value is equal to the id attribute on the
current <def> element. You couldn’t just write

//*[@use = @id]

because that would look for every element having use and id attributes with the same value, which
is not at all what you want.

Eff ective Boolean Value

You’ve learned, informally, that a predicate is evaluated for each node, and that if it’s true the node
is kept. Formally this is called the effective boolean value of the expression in the predicate. Here
are the rules XPath uses for working out whether a predicate is true (add the node to the list of
results) or false (don’t add the node to the list):

 ➤ An empty sequence is false.

 ➤ Any sequence whose fi rst item is a node is true.

 ➤ A boolean value, true() or false(), returns its value.

 ➤ A string or string-like value is false if it is zero length, and true otherwise. String-like values
are xs:string, xs:anyURI, xs:untypedAtomic, and types derived from them using XML
Schema.

 ➤ Numeric values are false if they are zero or NaN, and true otherwise.

XPath Steps and Axes

An XPath axis is really just a direction, like up or down. (Note that the plural, axes, is pronounced
akseez and is not related to chopping wood.) And a step moves you along the axis you have chosen.

The most common XPath axis is called child, and is the direction the XPath engine goes when you
use a slash. Formally,

/book/chapter

is just a shorthand for

/child::book/child::chapter

c07.indd 220c07.indd 220 05/06/12 5:27 PM05/06/12 5:27 PM

You won’t need the long form of the child axis very often, but it’s there for completeness. The
slash (/) is the actual step. Similarly, there’s an attribute axis, and you can probably guess that
the shorthand for it is the at sign (@).

Table 7-2 shows all of the different XPath axes, together with the short forms where they exist.

TABLE 7-2: XPath Axes

SHORTHAND FULL NAME MEANING

name child:: The default axis; /a/child::b matches <a>

elements that contain one or more elements.

// descendant:: descendant::born is true if there’s at least one

born element anywhere in the tree beneath the

context node.

a//b matches all b elements anywhere under a in

the tree; a leading // searches the whole document.

@ attribute:: Matches an attribute of the context node, with the

given name; for example, @href.

self:: Matches the context node. For example, self::p is

true if the context node is an element named “p.”

descendant-or-self:: Matches the current node or any child or child’s

child, all the way to the bottom. p/descendant-

or-self::p matches the fi rst p as well as the

descendants called p.

following-sibling:: Elements that come after the context node in the

document are at the same level and have the same

immediate parent.

following:: Elements anywhere in the document after the

current node.

.. parent:: The parent of the current node.

ancestor:: Parent, grandparent, and so on up to the top.

For example, ancestor::div returns all the div

elements that enclose (are above) the context node.

preceding-sibling:: The reverse of following-sibling.

preceding:: The reverse of following.

ancestor-or-self:: The reverse of descendant-or-self.

namespace:: See Chapter 8 on XSLT.

The XPath Language ❘ 221

c07.indd 221c07.indd 221 05/06/12 5:27 PM05/06/12 5:27 PM

222 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

Now take a look at an example XPath expression that uses some of these axes:

//a[preceding-sibling::a/@href = ./@href]

This expression matches <a> elements anywhere in the document (because //a at the start is the
same as /descendant::a), and then uses a predicate to choose only those <a> elements that have a
preceding sibling — that is, another <a> element earlier in the document, but only going back as far
as the start of the parent element — where that other <a> element has the same value for its href
attribute as this one (the dot meaning the node you’re testing with the predicate). You might use
this expression to match the second and subsequent links in a paragraph to the same footnote, for
example.

XPath Expressions

Like most computer languages, XPath has expressions. In XPath 1 the outermost expression had to
match nodes in the XPath 1 data model; more recent versions of XPath remove this restriction. This
means that the following are all valid XPath expressions:

 ➤ count(//p): The number of <p> elements in the document.

 ➤ 2 + 2: Five. Wait, three. No, four, that’s it, four!

 ➤ 1 + count(//p) + string-length(@id): One more than the number of <p> elements in
the whole document, plus the number of characters in the id attribute of the current ele-
ment (the context node).

 ➤ 10 idiv 4: Two (idiv is integer division). XPath can’t use “/” for division because that’s
already used for paths.

 ➤ (1, 2, 3): In XPath 2 and later, this makes a sequence, in this case a sequence of integers
(whole numbers).

 ➤ (1 to 100)[. mod 5 eq 0] (XPath 2 and later): Those numbers between 1 and 100
(inclusive) that are divisible by fi ve.

Table 7-3 lists the operators you can use in an XPath expression.

NOTE Strictly speaking, a//b is equivalent to a/descendant-or-self::node()/

child::b rather than being shorthand for the descendant axis. The diff erence is

only really visible in obscure cases, but reference books often say // is short for

descendant-or-self; don’t be misled by this!

NOTE Check www.w3.org/TR/ for the latest version of the XPath and XQuery

Functions and Operators document; at the time this book was written the latest

stable version of XPath was 2.0, and 3.0 was still being developed.

c07.indd 222c07.indd 222 05/06/12 5:27 PM05/06/12 5:27 PM

http://www.w3.org/TR/

Equality in XPath

Two values are said to be equal if they are the same, and checking to see if things are equal is called
testing for equality. The reason a precise term is needed for this action is because equality is a very
important and precise concept in computing, and in XPath in particular. The following sections
describe the main ways XPath has to compare items and their values to see if they are equal. There
are also some sneaky unoffi cial ways you’ll see mentioned as well.

The = Operator Works on Lists

The = operator in XPath actually operates on sequences (or, in XPath 1, on node lists). If A and B
are two sequences, you could read A = B as “there’s at least one value that appears in both A and B.”
Here are some examples:

 ➤ (1, 2, 3) = (2, 4, 6, 8): True, because 2 appears on both sides.

 ➤ (“a”, “hello”, “b”) = (“c”, “Hello”, “A”): False (XPath, like XML, is case-sensitive).

 ➤ 3 = (1, 2, 3): True, the single value on the left is just treated like a short sequence.

TABLE 7-3: XPath Operators

XPATH OPERATOR MEANING

+ - * idiv div

mod

Addition, subtraction, multiplication, integer division (3 idiv 2 gives 1),

division (3 div 2 gives 1.5), modulus, or remainder (12 mod 7 gives 5).

eq, ne, gt, lt,

ge, le

Equals, not equals, greater than, less than, greater than or equal, less

than or equal. See the section “Equality in XPath,” later in the chapter.

<<, >> A << B is true if A and B are nodes in a document (for example,

elements) and A occurs before B; A >> B is true if A comes after B. Note

that these operators generally need to be escaped in XML documents.

union, intersect,

|, except

A union B gives all nodes matched by either A or B, and is the same

as A|B; A intersect B gives nodes in both A and B. See the section

“XPath Set Operations.”

to 3 to 20 gives a sequence of integers 3, 4, 5,...18, 19, 20.

, The comma separates items in sequences, as well as arguments to

functions.

+, - The so-called unary operators, for negative and positive numbers, like

-2 and +42.

e(list) Calls e as a function with the given arguments; e can be the literal name

of a function, like concat(“hello”, “ “, “world”), or can be an

expression returning a “function item.” See the section “Defi ning Your

Own Functions” later in this chapter.

(e1, e2, e3...) A sequence of values.

The XPath Language ❘ 223

c07.indd 223c07.indd 223 05/06/12 5:27 PM05/06/12 5:27 PM

224 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

This behavior may seem odd at fi rst, but it’s very useful with XML documents. Consider the
following example:

/book/entry[p/place = “Oxford”]

This fi nds all the <entry> elements that contain a <p> element, which, in turn, contains a <place>
element whose string value is equal to Oxford. There might be lots of <place> elements, and that’s
perfectly normal: if any of them has the value Oxford, the predicate will be true, and the containing
<entry> will be returned.

The = operator works on simple (atomic) values; see the deep-equal() function for comparing
structure.

The eq Operator Works on Single Values

If you know you intend to compare exactly one pair of values, you can use the singleton operator
eq instead: @chapterNumber eq 7, for example. Two reasons to use this are: fi rst, that if your
assumption is incorrect and there’s more than one value, you’ll get an error; second, that eq is often
slightly faster than =. But it is much better for code to be correct and slow than wrong and fast, so
use eq only when you are sure there will only be one value on the left and one on the right.

The is Operator Works on Identity

In larger programs you’ll often have variables that refer to nodes, and you may want to know if two
variables refer to the same node. If you used the eq operator you’d be asking if you have two nodes
whose contents have the same value, but with is you can ask if the two nodes are actually the same
node, in the same place on the tree. In XQuery, you might write the following to treat a particular
node differently:

if ($input is $target) then $target
else process ($input)

NOTE If you’re ever feeling lonely at a party, you can quickly become the center

of attention by explaining that the equals sign in XPath stands for “implicit

existential quantifi cation,” a term from predicate calculus (the mathematical

study of logic).

NOTE If you are using XPath 1, and don’t have the “is” operator available, you

can use count() like this:

count($input) = count($input|.)

This will be true if the current node (.) is in the list of nodes referred to by $input.

c07.indd 224c07.indd 224 05/06/12 5:27 PM05/06/12 5:27 PM

The deep-equal() Function Works on Subtrees

Finally, you can compare two entire subtrees to see if they are the same:

deep-equal(e1, e2)

This will be true if the structures and content are equal. Consider Listing 7-2:

LISTING 7-2: try.xml

<?xml version=”1.0”?>
<store>
 <item id=”shoes”><quantity>12</quantity></item>
 <street-address>12</street-address>
 <name>Shoe Store</name>
</store>

The XPath expression /store/item = /store/street-address is true. But deep-equal(/store/
item, /store/street-address) is false.

Available for
download on
Wrox.com

NOTE The deep-equal function was added in XPath 2, so you can’t see this

with the widely-used xmllint program, which implements only XPath 1. The

oXygen XML editor does include XPath 2 support, so you could experiment with

deep-equal in oXygen; in Chapter 9 on XQuery you’ll be using BaseX, which

also has XPath 2 and 3 support.

XPath Literal Values, Types, and Constructors

You’ve already seen quite a few examples of literal values in XPath. Table 7-4 puts them all together
in one place, and you can also look back to Chapter 5, “XML Schemas” for more examples of
XSD simple types. The table also shows the constructors, which are functions that take a string
and return a value of the given type. In most cases you don’t need to use the constructors, however
in a few cases they can make your code clearer, and they are needed when you want to distinguish
between values of different types, such as a number that’s a shoe size and another that’s a price. For
example, the following two snippets of XSLT have the same effect, but it’s easy to miss the single
quotes in the fi rst line:

<xsl:value-of select=”’/’”/>
<xsl:value-of select=”string(‘/’)”/>

NOTE In XPath 2 and later, the functions are in a namespace that by default is

bound to the prefi x fn:, so instead of string() you can write fn:string() if

you prefer. If you defi ne your own functions (for example in PHP, Python, XSLT,

or XQuery), you should put them in your own namespace.

The XPath Language ❘ 225

c07.indd 225c07.indd 225 05/06/12 5:27 PM05/06/12 5:27 PM

http://Wrox.com

226 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

XPath alone can never construct or remove document nodes. An XPath expression that returns a node
will therefore also return all of the descendants of that node. If you want to do more extensive changes
to the input, use XSLT or XQuery. Once you’ve learned XPath, XSLT and XQuery are plain sailing.

XPath String Quoting

Sometimes you need to include an apostrophe in a string, and this can get tricky. In XPath 2 or later
you can double the apostrophe, ‘can’’t’, but in XPath 1 you may have to resort to tricks using the
concat() function to join its arguments together and make a single string. In XSLT 1 you could also
sometimes use numeric character references — " for the double quote and ' for the single
quote (apostrophe). In all versions of XPath, a string with single quotes around it can contain double
quotes, and a string with double quotes around it can contain single quotes without a problem.

Variables in XPath Expressions

XPath is a declarative language. This means that you describe the results you want, and it’s up to
the computer to fi gure out how to get there. There’s no looping, and no way to change the value of
variables. In fact, you can’t even set variables in the fi rst place in XPath 1, so all XPath variables
come from the host language outside of XPath.

Variables are marked by a dollar sign ($); they can contain node lists or sequences as well as the
“atomic” types like numbers and strings. Here is an example in which $year is given the value 1732
and $e is the top-level <book> element in a large biographical dictionary:

TABLE 7-4: XPath Literal Values and Types

VALUE TYPE DESCRIPTION

Integer 0, 1, 2, and so on. Note that -1 is (strictly speaking) a unary minus operator

applied to a number.

Constructor: xs:integer(“12”)

Float, double Same as for XSD, for example, 2.5, NaN.

Constructors: xs:double(“2.5e-17”), xs:float(“42”)

String Use either double or single quotes, like XML attribute values. See also the

following section “XPath String Quoting.”

Constructors: string(“hello world”) and xs:string(“hello world”)

Boolean Use true() or false() to make them, and combine them with and, or,

and the pseudo-function not(expr).

xs:dateTime,

xs:anyURI, other

Schema types

You can make any XSD simple type using the name of the type and a string,

just as with float. See Chapter 5 “XML Schemas” for examples

of values.

Function Items and

Inline Functions

See the section “Defi ning Your Own Functions” later in this chapter.

Sequences The comma constructs a sequence in XPath 2 and later: (1, 2, 42, 3)

c07.indd 226c07.indd 226 05/06/12 5:27 PM05/06/12 5:27 PM

$e/entry[@born le $year and @died ge $year]

This expression gets all the entry elements for people alive during the given year.

In XPath 2 and 3 you can defi ne variables using for and let, although you still can’t change their values.

New Expressions in XPath 2

XPath 2 introduces for, let, if, some, and every expressions, as well as casts. All of these
expressions are really useful, but only work in XPath 2 and later. You won’t be able to try them
in the popular open-source xmllint program, nor in other programs based on libxml2, because
that supports only XPath 1. However, if you have a version of the oXygen XML editor that uses
the Saxon XPath engine, you can type them into the XPath 2.0 box in the upper right of the XML
editor program. They also work in XQuery, so you could try the BaseX open source XQuery
program used for some of the examples in Chapter 9, “XQuery.”

XPath “for” Expressions

The format of a for expression is simple. Take a look at the following one that is a complete XPath
expression that returns the numbers 5, 10, 15, 20, and so on up to 100:

for $i in (1 to 20)
return $i * 5

Figure 7-2 shows a screenshot of oXygen after entering this expression.

FIGURE 7-2

The XPath Language ❘ 227

c07.indd 227c07.indd 227 05/06/12 5:27 PM05/06/12 5:27 PM

228 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

The return clause is evaluated once for each distinct value of $i and the result is a sequence.

You can also include multiple variables with a comma between them, like this:

for $lastname in (//person/name/last),
 $i in (1 to string-length($lastname))
return substring($lastname, 1, $i)

If you have a single <last> element containing Smith, this XPath expression generates
SSmSmiSmitSmith.

Now you’ve seen some examples it’s time to try something yourself. In the activity that follows,
you’ll learn how XPath expressions can return any sequence of values, and you’ll experience XPath
in action.

TRY IT OUT XPath for Expressions

In this Try It Out you generate a sequence of numbers separated by commas and spaces. You also learn
about another way to explore XPath expressions and XML documents, using the oXygen XML editor,
and also start to see how to join together, or “compose,” XPath expressions.

 1. Open the oXygen XML editor; you can use an XML document from one of the earlier chapters or
the biography example armstrong.xml from Listing 7-1.

 2. Because oXygen supports XPath 2, try a for expression. Type this into the XPath 2 box and
press Enter:

for $i in (1 to 20) return $i * 5

 3. When you press the Enter key, oXygen evaluates the expression against whichever document you
have loaded; your expression doesn’t refer to a document, but oXygen shows the results one per
line. It’s not the single string of comma-separated numbers you wanted though, so you need to fi x it.

 4. The XPath function string-join takes two arguments—a sequence of strings and a string,
respectively—and produces a single string as output. It sounds ideal, except that you’re generating
a sequence of numbers. You could try it anyway:

string-join(for $i in (1 to 20) return $i * 5, “, “)

 5. When you press the Enter key this time, oXygen gives you an error message, because string-join
works on strings, not numbers. So now you need to convert the individual numbers in your
sequence into strings, which will give you a sequence of strings! Change the entry in the box to
be like this:

string-join(for $i in (1 to 20) return string($i * 5), “, “)

How It Works

The key insight you need here is that wherever you can put a value in an XPath expression, you can
put a whole expression. So really you call the string-join function with two arguments: a sequence,
and a string to put between the things in that sequence.

c07.indd 228c07.indd 228 05/06/12 5:27 PM05/06/12 5:27 PM

The sequence will start out (“5”, “10”, “15”, ...).

If you need more convincing, try just the following:

string-join((“apple”, “orange”, “banana”), “===”)

This results in:

apple===orange===banana

You can explore more XPath expressions this way. If your expression selects part of the document, such
as //*[3] to get all elements anywhere in the document (recall that the leading // searches the whole
document) that are the third child of their parent element), you can click in the results list in oXygen to
see the corresponding parts of the document.

XPath “let” Expressions

The syntax of a let expression is very simple; see the following:

let $v := 6 return $v + 1

As with the for expression, you can have more than one variable like so:

let $entry := //entry[@id = “galileo”],
 $born := $entry/@born, $died := $entry/@died
 return $died - $born

XPath “if” Expressions

Like many programming and query languages, XPath 2 introduced if/then/else. Unlike many
other languages, though, the else is always required. See the following:

if (name() eq “entry”) then “yes” else “no”

Note that you can’t use if-then-else to guard against errors:

if (true()) then population/$i else population/0

This will likely raise a divide-by-zero error even though the “else” part is never used. The XPath 2
and XQuery languages were designed this way to give implementations as much power as possible
to rewrite your expressions to make them go faster.

XPath “some” and “every” Expressions

XPath calls some and every quantifi ed expressions; they are like the “implicit existential quantifi er”
that you learned about: the “=” operator. For example the following code could be read as “some node
$n2 whose value appears in $list1 is equal to some other node $n2 whose value appears in $list2.”

$list1 = $list2

The XPath Language ❘ 229

c07.indd 229c07.indd 229 05/06/12 5:27 PM05/06/12 5:27 PM

230 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

You could also write this as:

some $v in $list1 satisfies length(index-of($list2, $v)) ge 1

The “some . . . satisfi es” expression returns true if the expression after “satisfi es” is true, using the
variable (or variables) you bind after the keyword, for at least one value in $list1.

Similarly, if you replace some by every, the expression returns true if the expression is true for every
separate value in the list. Here is a longer example:

let $list := (1, 2, 3, 4, 5),
 $squares := (1, 4, 9, 25)
return
 every $i in $list satisfies ($i * $i) intersect $squares

The example makes use of effective boolean value — the expression intersecting a list with one
item, the square of $i, with the list of squares will be true if it’s not an empty set. The result of the
whole XPath expression is false though because the value sixteen is missing from the list of squares.

These four expressions — if-then-else, let-return, some-satisfies, and every-satisfies —
are all very useful in their place, and you should be aware of them in case you have to work with
someone else’s XPath expressions! The last two in particular, some and every, are often used simply
because they were used as examples in the W3C XQuery 1.0 Use Cases document that you can fi nd
on http://www.w3.org/TR/.

XPath Cast and Type Expressions

XPath 2 added expressions that work on the XML Schema type of expressions and values: instance
of, cast, castable, and treat as. In practice these may be useful when XPath is embedded in
SQL expressions or when XPath is used inside XSLT and XQuery, but tend not to be useful when
XPath is used alone because it’s rare to have Schema-type information available outside of type-aware
environments.

instance of

You can use instance of to determine if a value is in fact of a particular type. The following example
will copy a <sock> element to its output, but will ignore anything else:

if ($input instance of element(sock))
then $input
else ()

cast

Sometimes you need to convert a value from one type to another. The way you do this is usually
with a cast, although in some more complex cases, especially for complex user-defi ned types, you
may end up writing a function to do it instead. You can only cast to atomic types, not elements,
and, unlike in languages like C++, casting can affect the value. For example, you could cast an
attribute to an integer in order to pass its value to a function expecting numbers. In the following
snippet, if you tried to compare @born to 1700 directly, you’d get a type error unless the XPath

c07.indd 230c07.indd 230 05/06/12 5:27 PM05/06/12 5:27 PM

http://www.w3.org/TR/

engine knew that @born attribute held an integer, perhaps because of some XML Schema validation
episode that had already happened:

//entry[(@born cast as xs:integer) gt 1700]

castable

In XPath 2 there’s no way to catch errors, so if a cast fails you end up with no results. The castable
expression lets you do the cast only if it is going to work:

if ($entry/@born castable as xs:integer)
then $entry/@born cast as xs:integer
else 42

NOTE Optimization rules enable the XPath processor to evaluate the then and

else parts of if-then-else expressions in either order, even before the test, but

any dynamic errors in the branch not used are silently ignored.

treat as

The treat as expression is used as a sort of assertion: A treat as T says that the XPath compiler
is to behave as if A really does have type T, and allows you to write anything that you could write in
that case. If, at runtime, A does not have type T, the XPath processor will raise an error. Normally
XPath is actually interpreted rather than compiled, and the compiler part is called static analysis;
this is done before evaluating expressions to make sure there are no type errors. The difference
between cast and treat as is that cast affects the dynamic type of the value that is actually
supplied, and maybe even changes it, whereas treat as does not change the value and will raise a
runtime error if the value does not have the right type, but will allow you to write expressions like
math:sqrt($x treat as xs:double).

XPath Functions

A function in mathematics is way of giving a name to a calculation; in XPath, functions work in
much the same way. A function is said to take arguments, also called parameters, meaning that they
have input; the output is called the result of the function.

For example, string-length(“Jerusalem”) is a call to the function string-length with
argument “Jerusalem”, and the result is, of course, 9. Like most computer languages XPath
includes quite a few predefi ned functions. XPath 2 added considerably to their number, and XPath
3 will add even more. Most of the new functions since XPath 1 come from one of two sources: fi rst,
from handling XML Schema types, since that ability was added for XPath 2; second, because users
wanted them and showed a compelling reason to add them, often on the W3C public “bugzilla”
tracking system, and sometimes by asking their vendor or implementer to add a feature.

The XPath Language ❘ 231

c07.indd 231c07.indd 231 05/06/12 5:27 PM05/06/12 5:27 PM

232 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

There’s a complete list of the XPath functions in Appendix B at the back of this book, along with a
list of the W3C XML Schema types. This section looks at a few of the functions to give you a feel
for some of the things you can do.

Document Handling

The doc() and document() functions read an external XML document and return the document
node, through which you can access the rest of the document. The document must, of course, parse
as well-formed XML.

WARNING Not everything that looks like a name followed by parentheses is

a function in XPath! You have already seen some node tests like text() and

comment(), and those are not functions; you also have sequences like (a, b, c).

NOTE The document() function belongs to XSLT 1.0 rather than XPath, and is

slightly more complex than the doc() function. You should use doc() with XPath

2 or later, but you may still see document() in older XSLT style sheets.

Take Listing 7-3, which contains extra information about people in the biography, such as this:

LISTING 7-3: extra.xml

<?xml version=”1.0” encoding=”utf-8”?>
<people>
 <person id=”armstrong-john”>
 <p>W. J. Maloney’s 1954 book
 “George and John Armstrong of Castleton,
 2 Eighteenth-Century Medical Pioneers”
 was reviewed by Dr. Jerome M Schneck.</p>
 </person>
 <person id=”newton-sir-isaac”>
 <p>Invented the apple pie.</p>
 </person>
</people>

Now you could use XPath to extract the names of people who are in both the biography and the
extra fi le like so:

/entry[@id = doc(“extra.xml”)//person/@id]/title

If you try this in oXygen with the armstrong.xml (Listing 7-1) fi le open, and with extra.xml
(Listing 7-3) in the same folder as armstrong.xml, you will fi nd the result shown is Armstrong, John.

Available for
download on
Wrox.com

c07.indd 232c07.indd 232 05/06/12 5:27 PM05/06/12 5:27 PM

http://Wrox.com

You won’t be able to try this example with xmllint or other XPath 1 programs, because XPath 1
didn’t have a function to load a fi le; it came from XSLT.

String-Handling Functions

People do a lot of string-handling in XPath, especially from XSLT or XQuery. String functions include
substring(), substring-before(), substring-after(), translate(), matches(), replace(),
concat(), string-length(), and more. See Appendix B, “Xpath Functions” for a full list.

It’s worth learning about substring-before() and substring-after() because they’re a
little unusual. The call substring-before(“abcdefcdef”, “cd”) returns ab, and substring-
after(“abcdefcdef”, “cd”) returns efcdef. In other words, the functions search the string you
give, and look for the fi rst occurrence of the second argument (“cd” in this example). Then they
return either everything before that fi rst occurrence or everything after it.

The matches() and replace() functions use regular expressions. They were introduced in XPath
2, although you can fi nd implementations for XSLT 1 at www.exslt.org. Regular expressions,
also called patterns, are extremely useful for anyone working extensively with text, and if that’s
your situation, it’s worth using an XSLT 2 or XPath 2 processor such as Saxon just for that single
feature.

Numeric Functions

XPath 1 includes only a very few numeric functions: sum(), floor(), ceiling(), round(), and,
to construct a number from a string, number(). There were also some named operators such as
div, idiv, and mod.

XPath 2 adds abs(), round-half-to-even(), and trigonometric and logarithmic functions such as
sin(), sqrt(), and so forth.

The XPath 3 draft adds format-number().

One reason to add the trigonometric functions to XPath was that people are now using XSLT and
XQuery to generate graphics using SVG. You will learn more about SVG in Chapter 18, “Scalable
Vector Graphics (SVG)”.

Defi ning Your Own Functions

You can defi ne your own functions for use in XPath expression in two ways. The fi rst, starting in
XPath 3, is by using inline functions like so:

let $addTax := function($a as xs:double) {
 $a * 1.13
} return $addTax(/invoice/amounts/total)

Inline functions are mainly useful with XQuery and XSLT; if you’re using XPath from a traditional
programming language, you’re more likely to want to do that processing in the parent language.
However, inline functions in XPath 3 can help to simplify large and complex XPath expressions.

The second way to defi ne your own function is to write (or call) an external function. For example,
if you are using the Saxon XSLT engine, which is written in Java, you can call out to functions

The XPath Language ❘ 233

c07.indd 233c07.indd 233 05/06/12 5:27 PM05/06/12 5:27 PM

http://www.exslt.org

234 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

that are implemented in XSLT (the host language) as well as to external functions written in Java.
They’re called external because they’re outside not only XPath, but also the language (in this case
XSLT) that is using XPath. Chapter 8 returns to this topic and gives you examples of defi ning
functions.

In XPath 3 you can also refer to functions using function items. A function item is the name of a
function (complete with namespace prefi x if needed) followed by a hash (#) and the number
of arguments. For example you could use fn:round#1 because round() has only one argument.
If you defi ne a variable to contain a function item you can use the variable like the function. For
example, the following expression returns the value 4:

let $r := round#1 return $r(3.5)

XPath Set Operations

XPath node lists are not really sets: every time you do a step, they are sorted into document order
and duplicate nodes are eliminated. But it’s still useful to do set-like operations on them.

Suppose $a and $b are two unimaginatively named node lists. Table 7-5 shows some set-like
operations you can do using XPath 1, XPath 2, or later.

TABLE 7-5: XPath Set-like Operations

OPERATION XPATH EXPRESSION

. occurs within $a count($a|.) = count($a)

All nodes in $a or $b $a|$b

or, in Xpath 2 or later,

$a union $b

Only nodes in both $a and $b $a[count(.|$b) = count($b)]

or, in XPath 2 or later,

$a intersect $b

Nodes in $a but not in $b $a[not(count(.|$b) = count($b)]

or, in XPath 2 or later,

$a except $b

XPath and Namespaces

One of the most common questions people ask when they start to use XPath is “why doesn’t my
XPath expression match anything?”

By far the most common reason is that the elements in the document have an associated XML
namespace, and the XPath expression don’t account for this.

c07.indd 234c07.indd 234 05/06/12 5:27 PM05/06/12 5:27 PM

XPath does not give a complete way to handle namespaces itself: you need the cooperation of the
host language. You have to bind (connect) a prefi x string that you choose to the exact same URI,
byte for byte, that’s in the document.

Take a look at Listing 7-4 for an example:

LISTING 7-4: tiny.html

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

 <head>
 <title>This is not a title</title>
 </head>
 <body>
 <h1>No h1 here</h1>
 <p>No p here</p>
 </body>
</html>

You might think (as most people do at fi rst) that you could extract the title of this document like this:

/html/head/title

But if you try this you’ll discover it doesn’t work. Recall that a namespace URI is actually a part of
the element’s name in XML. So there’s no element called “title” in this document. Instead, there’s
one whose namespace URI is that of XHTML and whose local name is “title”.

The following will work but is cumbersome:

/*[local-name() = “html”]/*[local-name() = “head”]/*[local-name() = “title”]

Strictly speaking, you should also test namespace-uri() in each of those predicates too, in case
there are elements from some other namespace in the document with the same local names, but it’s
already too complicated to work with. Use this approach only as a last resort.

The preferred way to use XPath in documents with namespaces is to bind a prefi x to the document’s
namespace and use that. For example, in PHP you might do something like this:

$sxe = new SimpleXMLElement($html);

$sxe->registerXPathNamespace(‘h’, ‘http://www.w3.org/1999/xhtml’);
$result = $sxe->xpath(‘/h:html/h:body/h:title’);

foreach ($result as $title) {

 echo $title . “\n”;

}

Available for
download on
Wrox.com

The XPath Language ❘ 235

c07.indd 235c07.indd 235 05/06/12 5:27 PM05/06/12 5:27 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://Wrox.com

236 ❘ CHAPTER 7 EXTRACTING DATA FROM XML

The loop at the end is because XPath returns a node list, although in this case of course you’ll only
get one item back.

WARNING You can use any prefi x you like, because it’s the namespace URI

that matters, but the URI you use must be character-for-character, byte-for-byte

identical to the one in the document. If the URI in the document has an escape,

like %7e for a tilde, then yours must use the same escape in the same place, and

%7e and %7E would not be the same!

The same sort of technique works in most other languages, including Java, JavaScript, Perl, Python,
Ruby, C, C++, Scala, and so forth. XSLT and XQuery also provide ways to work with XML
namespaces, as you’ll learn in Chapters 8 and 9.

SUMMARY

 ➤ XML is often stored in memory in a tree structure like DOM.

 ➤ XPath is a terse, powerful way to refer to parts of an XML document.

 ➤ XPath works on trees, including both DOM and XDM; not on tags.

 ➤ XPath uses node tests, predicates, and steps.

 ➤ XPath works with W3C XML Schema types as well as with plain untyped XML.

 ➤ XPath provides the foundation for XSLT and XQuery, and is also available in most
programming languages.

 ➤ XPath cannot change the document, and cannot return elements that are not part of the
document; to do those things you need a language such as XSLT, the subject of the next
chapter.

EXERCISES

You can fi nd answers to these exercises in Appendix A.

 1. Write an XPath expression to fi nd all <entry> elements (anywhere in the input document) having

a born element anywhere inside them.

 2. What does the XPath expression /html/body//div[1] return?

 3. Write an XPath expression to fi nd all <div> elements (anywhere in the input document) that do

not have an id attribute.

c07.indd 236c07.indd 236 05/06/12 5:27 PM05/06/12 5:27 PM

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

How XML is stored in

memory

XML is usually stored in trees, using DOM, XDM, or some other

data model.

What is XPath? XPath is an expression language used primarily for fi nding items in

XML trees.

Is XPath a programming

language?

Although XPath is a complete language, it is designed to be

“hosted” in another environment, such as XSLT, a Web browser,

Query, or Java.

XPath and Namespaces You generally have to bind a prefi x to a namespace URI outside of

XPath and use expressions like /h:html/h:body/h:div to match

elements with an associated namespace.

Can XPath change the

document, or return

elements without their

children, or make new

elements?

No. Use XQuery or XSLT for that.

When should I program

with the DOM?

The DOM API is low-level; use XPath, XQuery, or XSLT in

preference to direct access of the DOM.

Summary ❘ 237

c07.indd 237c07.indd 237 05/06/12 5:27 PM05/06/12 5:27 PM

c07.indd 238c07.indd 238 05/06/12 5:27 PM05/06/12 5:27 PM

XSLT

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ What XSLT is used for

 ➤ How writing XSLT code is diff erent than writing code in traditional

languages

 ➤ The basic XSLT constructs

 ➤ How XSLT uses XPath

 ➤ The more advanced XSLT constructs

 ➤ XSLT 2.0 improvements

 ➤ The future of XSLT

XSLT stands for Extensible Stylesheet Language Transformations and is one of the big suc-
cess stories among the various XML technologies. In this chapter you’ll fi nd out why there is
constant need for transformations from one XML format to another, or from an XML format
to a plain text document. You will see how XSLT, as a declarative language (you tell it what
you want done in a specifi c circumstance and you let the XSLT processor decide how it should
be done), differs from the majority of common coding languages such as Java and C# because
they are procedural (essentially a series of low-level instructions on how to manipulate data).
You’ll then be introduced to the mainstay of XSLT, the template, and see how judicious use
of this makes processing XML simpler than having to provide detailed instructions. You will
also see how XSLT is a functional language where results are defi ned as the result of function
calls, rather than data being directly manipulated. Programming with declarative, functional
languages can take some getting used to; it needs a different mindset from that used in proce-
dural code, and this puts off many people when they start with XSLT. You shouldn’t fall into
that group because the examples shown in this chapter will make you appreciate the simplicity
and power that XSLT possesses. You’ll also see how XPath integrates closely with XSLT; it

8

c08.indd 239c08.indd 239 05/06/12 5:29 PM05/06/12 5:29 PM

240 ❘ CHAPTER 8 XSLT

pops up in a number of places so what you learned in Chapter 7 will be invaluable. After demon-
strating a number of basic techniques you’ll take a look at version 2.0 of XSLT and see how its new
features have been designed to cope with many day-to-day problems that people have struggled
with in version 1.0. The chapter concludes with a brief look at what’s scheduled to appear in version
3.0, which promises to make XSLT an extremely powerful functional language, along the lines of
Haskell, Lisp, or F#.

WHAT XSLT IS USED FOR

At its heart, XSLT has a simple use case: to take an existing XML document and transform it to
a different format. The new format might be XML, HTML, or just plain text, such as a comma-
 separated values (CSV) fi le. This is an extremely common scenario. One of the main reasons for
XML is to have a facility to store data in a presentation- and application-neutral format so that it
can easily be reused. XSLT is used in two common situations:

 ➤ To convert from XML into a presentation-specifi c format, such as HTML.

 ➤ To convert from the format understood by one application into the structure required
by another. This is particularly common when exchanging data between different
organizations.

Since XSLT was originally conceived it has grown and now has the ability to process non-XML fi les
too, so you can take a plain text fi le and transform it into XML or any other format.

NOTE Two technologies come under the umbrella of XSL: XSLT, dealt with in

this chapter, and XSL-FO (the FO stands for Formatting Objects). XSL-FO is a

technique that enables you to defi ne the layout, structure, and general format of

content designed to be published; for example, an article or book that will be

issued in electronic format, perhaps as a PDF, or printed in a traditional way.

You can fi nd out more about XSL-FO at www.w3.org/standards/xml/

publishing.

XSLT differs from many mainstream programming languages such as C# or Java in two main ways.
First, XSLT is a declarative language, and second, it is a functional language.

XSLT as a Declarative Language

Most mainstream programming languages are considered procedural. Data is fed to the software,
which then manipulates it step-by-step. Each code statement or block generally has a clearly defi ned
task which is responsible for minor changes to the data; these individual changes are combined to
produce the overall data transformation required. Take a typical example: you have a collection
of Author objects, each of which has a FirstName and a LastName property. You are asked to dis-
play the full name of each Author in the collection. The Author collection is zero-based so the fi rst
Author has an index of zero and the last has an index of one less than the total number of

c08.indd 240c08.indd 240 05/06/12 5:29 PM05/06/12 5:29 PM

http://www.w3.org/standards/xml/publishing
http://www.w3.org/standards/xml/publishing

What XSLT Is Used For ❘ 241

Author objects. Your code will probably look something like this (this code is not written in any
particular language but uses the C#/Java style):

int index;
for (index = 0; index < allAuthors.Count; index++)
{
 Author thisAuthor = allAuthors[index];
 Console.WriteLine(thisAuthor.FirstName + “ “ + thisAuthor.LastName);
}

This is a standard piece of coding. You loop through all the authors by using an index that is gradu-
ally incremented from zero to the number of Author objects minus one. At each pass through the
loop, you assign the current Author to a variable, thisAuthor, and then access the two properties
you are interested in, FirstName and LastName. Now, this is fairly low-level coding; you have to
determine the total number of Author objects using the Count property and keep track of which
Author you are processing using an index. Many languages let you write this code at a more declara-
tive level, where it’s not necessary to keep track of these things. In C#, for example, you can use the
foreach construct:

foreach (Author thisAuthor in allAuthors)
{
 Console.WriteLine(thisAuthor.FirstName + “ “ + thisAuthor.LastName);
}

This is more declarative code. You’re not worried about keeping track of the individual Author
objects—you just ask for each Author, one by one, and display its details. Another example of
declarative programming is SQL, used to query relational databases. In SQL, if you wanted to see
the names of all the authors in a table you’d use something like this:

SELECT FirstName, LastName FROM Authors;

Again, in this code, you don’t need to keep track of the individual rows in the Authors table. You
let the database query engine worry about the low-level operations.

XSLT takes this idea of letting the processor look after the low-level details one stage further. It is
designed from the ground up as a declarative language, so you needn’t concern yourself with how
something is done. Rather, you concentrate on describing what you want done. For example, if you
want to perform a similar operation to output all author names from an XML document containing
many <author> elements, such as this one:

<authors>
 <author>
 <firstName>Danny</firstName>
 <lastName>Ayers</lastName>
 </author>
 <author>
 <firstName>Joe</firstName>
 <lastName>Fawcett</lastName>
 </author>
 <author>
 <firstName>William</firstName>

c08.indd 241c08.indd 241 05/06/12 5:30 PM05/06/12 5:30 PM

242 ❘ CHAPTER 8 XSLT

 <lastName>Shakespeare</lastName>
 </author>
</authors>

you’d use an XSLT template such as:

<xsl:template match=”author” />
 <xsl:value-of select=”firstName” /> <xsl:value-of select=”lastName” />
</xsl:template>

As you can see, you haven’t had to declare a variable to keep track of the <author> elements or
write any code that loops through them. You just tell the XSLT processor to output the value of
the <firstName> and the <lastName> element whenever you come across an <author> element.
You’ll learn more about how this all works when you’ve dealt with another aspect of XSLT
programming—the fact that it’s a functional language.

How Is XSLT a Functional Language?

If you’ve grown up with languages such as Java, C++, C#, PHP, or others, you’ve used what are known
as imperative programming languages; imperative literally means that you order the computer exactly
what you want it to do. Imperative languages tend to manipulate the state of an object to represent
changes of circumstance. To stick with the current example, if an author changed his last name, the
standard paradigm to refl ect this in code would be to get a reference to an Author object representing
the particular person and modify the LastName property. The pseudo-code for this would look like:

Author authorToEdit = getAuthor(12345); //Get the required author using their ID
authorToEdit.LastName = “Marlowe”; //Change last name

A functional language takes a different approach. The output is considered the result of one or more
functions applied to the input. In a strict functional language you cannot change the value of a vari-
able, nor have any functions that have side effects, such as incrementing a counter while reading a
value. XSLT follows this pattern, the main advantage of which is that often the order of execution of a
complete transformation is irrelevant, leaving the processor free to optimize the proceedings. The main
downside to functional programming is that it takes some getting used to at fi rst. You are likely far too
accustomed to be able to re-assign values to variables, rely on the order of your code to determine the
order of operations, and have functions that have global side effects. However, once you get the hang
of the functional way of doing things you’ll fi nd that tasks such as testing become much easier and also
that making changes to any particular piece of code is much less likely to break something elsewhere.

SETTING UP YOUR XSLT DEVELOPMENT ENVIRONMENT

Before you start to run any XSLT code, you need to set up an environment to write and process
your transformations. The Saxon processor runs the examples in this chapter for three reasons:

 ➤ It’s the acknowledged leader in its fi eld with the most up-to-date implementation of XSLT.

 ➤ It’s free to use (although commercial versions have more features).

 ➤ It has both a Java and a .NET version, making it suitable to run on nearly all environments.

c08.indd 242c08.indd 242 05/06/12 5:30 PM05/06/12 5:30 PM

Setting Up Your XSLT Development Environment ❘ 243

The version used for this chapter is 9.3HE (home edition), which you can download from http://
saxon.sourceforge.net/. As stated before, you can choose to use the .NET or the Java version. If
you’re running a machine with .NET installed, this version is slightly easier to use but it’s really a
personal preference.

To begin set-up, create a folder called saxon on your C Drive and download the .NET or Java ver-
sion of the zip fi le to:

C:\saxon

Once the zip fi le has downloaded you will need to take a few further steps, which differ slightly
depending on whether you are going to run the .NET version or the Java one. The following sec-
tions cover each scenario.

Setting Up Saxon for .NET

Running the Saxon for .NET installation should add the path to the Saxon executables to your
machine’s PATH environment variable. It’s worth checking, however, because sometimes security
settings prevent this from happening. The advantage of having the Saxon in your PATH is that you
won’t have to type the full path to the executable each time you want to run a transformation from
the command line.

How to change the PATH environment variable depends slightly on which version of Windows you
are running. For Windows 7:

 1. Right-click My Computer and choose Properties.

 2. Then choose Advanced System Settings from the left-hand menu and click the Environment
Variables button toward the bottom of the tab that is shown.

 3. Click Path in the upper panel and then click the Edit button.

 4. If necessary, add the path to the Saxon bin folder, preceded by a semicolon if there’s not
one there already. For example, on my machine I needed to add ;c:\Program Files\
Saxonica\SaxonHE9.3N\bin. Then click OK on each of the three dialog boxes.

You can now test whether everything is working as expected by opening a command window
(Start ➪ Run, type in cmd, and press Enter). When the command window appears type Transform -?
and press Enter. You should see some information regarding Saxon and a miniature help screen.
If you don’t get this screen, check that you are on the correct drive where Saxon is installed—if it’s
on the C: drive, type C: and press Enter. If you are on the correct drive and still don’t get the help
screen, double-check that the PATH environment variable is set correctly. That’s all you need to
do to enable command-line transformations. If you need more help with the installation
there is a full online guide at www.saxonica.com/documentation/about/ installationdot
net.xml.

c08.indd 243c08.indd 243 05/06/12 5:30 PM05/06/12 5:30 PM

http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://www.saxonica.com/documentation/about/installationdotnet.xml
http://www.saxonica.com/documentation/about/installationdotnet.xml

244 ❘ CHAPTER 8 XSLT

Setting Up Saxon for Java

If you want to run the Java version of Saxon you need a Java Virtual Machine (JVM) installed. You
can fi nd out if this is the case by opening a command window, as described previously, and typing:

java -version

If Java is installed, you’ll see something like this:

java version “1.6.0_23”
Java(TM) SE Runtime Environment (build 1.6.0_23-b05)
Java HotSpot(TM) 64-Bit Server VM (build 19.0-b09, mixed mode)

Otherwise you’ll see this:

‘java’ is not recognized as an internal or external command,
operable program or batch file.

If the latter happens, you can download the required fi les from www.oracle.com/technetwork/
java/javase/downloads/index.html. If you just want to perform command-line transformations,
download and install the JVM (or JRE as it is referred to on the download site); otherwise, if you
want to use Saxon programmatically, i.e. calling it from within code rather than from the command
line, download the full Java SDK. To run the examples in this chapter you’ll only need the JVM, not
the full JDK. You’ll also need to add the Saxon jar fi le to your machine’s CLASSPATH variable.

Adding Saxon to your CLASSPATH environment variable for Windows is much the same process
as editing the PATH environment variable. Follow the initial steps but look for a variable named
CLASSPATH. This might be in the upper panel, as was PATH, or in the lower panel with the system
environment variables. If it’s not there, click the New button in the upper panel and add the variable
name, CLASSPATH, and the path to the Saxon jar, such as <installation path>/saxon9he.jar.

You should now be able to test whether everything is set up by opening a command window
(Start ➪ Run ➪ CMD [Enter]) and typing:

java net.sf.saxon.Transform -?

You should see a mini help screen detailing various Saxon options. If this doesn’t happen,
double-check that the CLASSPATH environment variable is set correctly. If you need more help
with the installation, there is a full online guide at www.saxonica.com/documentation/about/
installationjava.xml. That completes the set up needed for both the .NET and the Java
versions.

NOTE Another option to actually run the transformations is Kernow, available

from http://kernowforsaxon.sourceforge.net/. This provides a graphical

user interface on top of Saxon.

c08.indd 244c08.indd 244 05/06/12 5:30 PM05/06/12 5:30 PM

http://kernowforsaxon.sourceforge.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.saxonica.com/documentation/about/installationjava.xml
http://www.saxonica.com/documentation/about/installationjava.xml

Foundational XSLT Elements ❘ 245

Next, you look at the basic elements used in XSLT and how they are combined to produce both sim-
ple and sophisticated transformations.

FOUNDATIONAL XSLT ELEMENTS

XSLT is based on the idea of templates. The basic concept is that you specify a number of templates
that each match XML in the source document. When the matching XML is found, the template is
activated and its contents are added to the output document. For example, you may have a template
that matches a <Person> element. For each <Person> element encountered in the source docu-
ment the corresponding template will be activated. Any code inside the template will be executed
and added to the output. The code within the templates can be complex and has full access to the
item that was matched and caused the template to run as well as other information about the input
document.

Using templates to process various parts of the source document in this manner is one of the most
powerful features of XSLT and one that you’ll be exploring in this section. Initially you’ll be intro-
duced to the following basic XSLT constructs that enable you to write basic transformations:

 ➤ <xsl:stylesheet>: This is the all-encompassing document element used to hold all your
templates. You also use it for some confi guration, such as setting which version of XSLT
you want to use.

 ➤ <xsl:template>: This is the bedrock of XSLT and has two main features. It details what
items from the source document it should handle and uses its content to specify what should
be added to the output when it is executed.

 ➤ <xsl:apply-templates>: This element is responsible for deciding which items in the source
document should be processed; they are then handled by the appropriate template.

 ➤ <xsl:value-of>: This element is used to evaluate an expression and add the result to the
output. For example, you may be processing a <Person> element and use <xsl:value-of>
to add the contents of its <Name> element to the output.

 ➤ <xsl:for-each>: Occasionally you need to process a number of items in a similar fashion
but using an <xsl:template> isn’t a good option. In that case you can use this element to
group the items and produce output based on each one.

WHICH XSLT EDITOR TO USE?

XSL transformations are themselves XML documents, so to create them you can
use anything from a simple text editor such as Notepad or Vim to a fully-fl edged
XML designer such as Altova’s XML Spy, jEdit or the <oXygen/> editor. At the
time of writing, both of these products have trial versions available that are suit-
able for trying out the examples in this chapter. They also have the facility to run
 transformations from within the development environment, although you’ll have to
confi gure them to use Saxon as their XSLT processor.

c08.indd 245c08.indd 245 05/06/12 5:30 PM05/06/12 5:30 PM

246 ❘ CHAPTER 8 XSLT

Before you start learning about these templates, you are going to need an XML input docu-
ment for your transformations. Listing 8-1 is a fairly simple document that details some famous
politicians.

LISTING 8-1: People.xml

<People>
 <Person bornDate=”1874-11-30” diedDate=”1965-01-24”>
 <Name>Winston Churchill</Name>
 <Description>
 Winston Churchill was a mid-20th century British politician who
 became famous as Prime Minister during the Second World War.
 </Description>
 </Person>
 <Person bornDate=”1917-11-19” diedDate=”1984-10-31”>
 <Name>Indira Gandhi</Name>
 <Description>
 Indira Gandhi was India’s first female prime minister and was
 assassinated in 1984.
 </Description>
 </Person>
 <Person bornDate=”1917-05-29” diedDate=”1963-11-22”>
 <Name>John F. Kennedy</Name>
 <Description>
 JFK, as he was affectionately known, was a United States president
 who was assassinated in Dallas, Texas.
 </Description>
 </Person>
</People>

The style of this XML, mixing attributes and elements in the way it does, is probably not the best,
but it’s typical of fi les that you’ll have to deal with and demonstrates the different techniques needed
to deal with these items. Your fi rst XSLT concentrates on a common use case: transforming the
XML into an HTML page.

Available for
download on
Wrox.com

NOTE The current version of XSLT is 2.0, but few processors other than Saxon

completely support this version. Therefore the fi rst examples you’ll see stick to

version 1.0. Later in the chapter you’ll move on to the new features in version 2.0.

Unfortunately, Microsoft has abandoned attempts to produce a version 2.0 for

.NET so if you need the extra facilities in a .NET environment you have little

choice but Saxon.

The <xsl:stylesheet> Element

Listing 8-2 shows the basic shell used by all XSL transformations.

c08.indd 246c08.indd 246 05/06/12 5:30 PM05/06/12 5:30 PM

http://Wrox.com

Foundational XSLT Elements ❘ 247

LISTING 8-2: Shell.xslt

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
 <!-- rest of XSLT here -->
</xsl:stylesheet>

Available for
download on
Wrox.com

NOTE XSLT has something quite unusual in regards to its schema; you have a

choice of document elements—either <xsl:transform> or <xsl:stylesheet>.

The reason for this is that in its early days the W3C committee was torn

between the two aspects of the technology: transforming from one format to

another or creating a presentation-specifi c format, such as HTML. This latter

process was considered something akin to using cascading style sheets (CSS) to

alter a web page’s appearance. Although it’s legal to use either element at the

start of your XSLT, <xsl:stylesheet> is favored most in the XML community.

An analysis of this fi le shows that the XSLT elements are in the http://www.w3.org/1999/XSL/
Transform namespace. The second point is that the version number is declared as 1.0. Although
Saxon is a version 2.0 processor it will run fi les marked as version 1.0 in backward-compatibility
mode. This namespace URI doesn’t change between the two versions, so to change the version you’d
just need change this attribute.

NOTE The <xsl:stylesheet> element doesn’t have many attributes but one

useful one that can appear is exclude-result-prefixes. You use this attribute

to prevent unnecessary namespace URIs appearing in your output. You will see

this attribute being used a few times in some of the examples in this chapter.

Although Listing 8-2 is a legal style sheet, it doesn’t actually do anything very useful. (It will pro-
duce some output if run against your example XML, but you’ll see why this is after you’ve covered
the other basic elements.)

To actually create a new output you need to do two things: you have to select some elements or
attributes to process; and you need to describe the output required based on these items. The ele-
ment used to describe what output to create is the <xsl:template> instruction.

The <xsl:template> Element

The <xsl:template> element is a cornerstone of the entire technology, so understanding how it
works is key to the entire process. If you add an <xsl:template> element to your example transfor-
mation you get Listing 8-3.

c08.indd 247c08.indd 247 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://Wrox.com

248 ❘ CHAPTER 8 XSLT

LISTING 8-3: PeopleToHtml-Basic.xslt

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:template match=”/”>
 <!-- basic output here -->
 </xsl:template>
</xsl:stylesheet>

This instruction, as it’s known in XSLT terminology, essentially says to the processor: Execute the
code in this template whenever you meet an item that matches those specifi ed in my match attri-
bute. Because the match attribute specifi es / as its value, the template is called when the root node
is encountered by the XSLT processor.

Available for
download on
Wrox.com

XSL PATTERN

The match attribute in Listing 8-3 (as well as a small number of other attributes
in XSLT) uses a similar syntax to XPath, which was described in Chapter 7. This
syntax is actually called XSL Pattern and is a subset of XPath. The main difference
is that XSL Pattern has access to a much more limited number of axes, namely the
forward-looking, child and attribute, rather than ones such as preceding-
sibling. For the full specifi cation see www.w3.org/TR/xslt#patterns.

The contents of the template are then evaluated using the root element as the context. In XSLT the
term context has a very specifi c meaning as most XPath expressions are evaluated relative to the
context.

NOTE In Listing 8-3 there is no direct inner textual content, other than a com-

ment, so nothing will be added to the output.

What Exactly Is Meant by Context?

Context has a specifi c meaning when it comes to XSLT. Nearly all processing is executed in the
context of a particular item, or node as they are termed in XSLT, of the document. In Listing 8-3
the root is the context node. This means that any requests for data that use XPath are made rela-
tive to the root node. Take the following XPath in relation to the Listing 8-1 document shown
previously:

People/Person

This XPath, executed in the context of the root node, will bring back three elements named
<Person>. This is because you are starting at the root, then moving one level down, along the child

c08.indd 248c08.indd 248 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/TR/xslt#patterns
http://Wrox.com

Foundational XSLT Elements ❘ 249

axis, to the <People> element, and then, following the child axis once more, to reach the <Person>
elements. If you change the XPath to read

Person

and then execute this in the context of the root node, you’ll fi nd that no elements are returned. This
is because if you start at the root node and move one step along the child axis there are no <Person>
elements. For this XPath to succeed you’d need to execute it in the context of the <People> element.
You’ll be meeting the concept of context many times in this chapter; so remember that within an XSL
transformation the context will determine the starting point of any relative XPath statements that occur.

You now need to see how you can add some output to the <xsl:template> element.

Adding Output to a Template

Adding output to an <xsl:template> element is easy. Anything appearing between the start tag
and the end tag will be sent to the result tree, the technical term for the output from a transforma-
tion. You’ll start by using your template to create an HTML shell as shown in Listing 8-4

LISTING 8-4: PeopleToHtml-BasicStructure.xslt

<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr />
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

You’ve now added some basic HTML elements to the template; note that because an XSLT docu-
ment is XML, the contents must be well-formed. This means that you have to use constructs such
as <hr /> rather than just <hr>. XSLT processors have the special rules about HTML embedded in
them, so they’ll automatically output these elements correctly if they can recognize that you’re creat-
ing an HTML fi le.

You can now try to run this transformation, just to see if everything’s working as expected.
Open a command window and navigate to the folder where the People.xml and PeopleToHtml-
BasicStructure.xslt fi les (from Listings 8-3 and 8-4) are located. If you’re using the Java version,
type the following line before pressing Enter (this command needs to be all on one line):

java net.sf.saxon.Transform -s:People.xml
 -xsl:PeopleToHtml-BasicStructure.xslt -o:People-BasicStructure.html

Available for
download on
Wrox.com

c08.indd 249c08.indd 249 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com

250 ❘ CHAPTER 8 XSLT

If you are using the .NET version use the following command:

Transform -s:People.xml -xsl:PeopleToHtml-BasicStructure.xslt
 -o:People- BasicStructure.html

The command options used in these transformation examples are:

 ➤ -s: The source document, that is, the XML you want to transform.

 ➤ -xsl: The path to the XSL transform.

 ➤ -o: The name of the output fi le you want to create. It can be left blank if you want the
results to be displayed in the console.

Once you run this transformation, you should see that a new fi le, People-BasicStructure.html,
has been created in the same directory as the XML and XSLT. This is shown in Listing 8-5.

LISTING 8-5: People-BasicStructure.html

<html>
 <head>
 <META http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr>
 </body>
</html>

You can see that the basics of an HTML page have been created, along with a <META> element to
declare the content type. You now need to include some of the information from Listing 8-1. As a
fi rst step you’ll just output their names using a bulleted list. To do this, fi rst you need to create a new
template to process the individual <Person> elements and add this to the transformation as shown
in Listing 8-6.

LISTING 8-6: PeopleToHtml-PersonTemplate.xslt

<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr />
 </body>
 </html>
 </xsl:template>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 250c08.indd 250 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com
http://Wrox.com

Foundational XSLT Elements ❘ 251

 <xsl:template match=”Person”>
 <!-- Person details here -->
 </xsl:template>
</xsl:stylesheet>

Next, you need to instruct the transform to actually process these elements, and for this you’ll need
a new instruction.

The <xsl:apply-templates> Element

The <xsl:apply-templates> element uses a select attribute to choose which nodes to
process. The processor then searches the XSLT for an <xsl:template> element that has a
match attribute that matches those nodes. To instruct the XSLT engine to process the <Person>
elements add the <xsl:apply-templates> instruction to your transformation code and put it inside
HTML unordered list tags (), as shown in Listing 8-7.

LISTING 8-7: PeopleToHtml-ProcessPerson.xslt

<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr />

 <xsl:apply-templates select=”People/Person” />

 </body>
 </html>
 </xsl:template>

 <xsl:template match=”Person”>
 <!-- Person details here -->
 </xsl:template>
</xsl:stylesheet>

You can see that you used the XPath mentioned earlier, People/Person, to choose the nodes you want
to display. This will select the three <Person> elements and pass them to the template that matches them.

Finally, you’ll need to extract some data—in this case, the fi rst and last names—from the <Person>
elements. You have a number of ways to extract information from nodes in an XML document;
when it’s simply textual content the normal choice is to use <xsl:value-of>.

The <xsl:value-of> Element

The <xsl:value-of> element is very simple to use. It has an attribute, named select, which takes
an XPath to the node you need. If you specify an element as the target you get all the text within

Available for
download on
Wrox.com

c08.indd 251c08.indd 251 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com

252 ❘ CHAPTER 8 XSLT

that element; if you specify an attribute you get the value of the attribute as a string. Because you
are inside the template that matches the <Person> element, this is the current context; therefore, the
XPath you need is just Name. You wrap this inside a list item as shown in Listing 8-8.

LISTING 8-8: PeopleToHtml-PersonName.xslt

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr />

 <xsl:apply-templates select=”People/Person” />

 </body>
 </html>
 </xsl:template>

 <xsl:template match=”Person”>

 <xsl:value-of select=”Name” />

 </xsl:template>
</xsl:stylesheet>

Now run one of the following command lines (the fi rst is for Java, the second for .NET):

java net.sf.saxon.Transform -s:People.xml
 -xsl:PeopleToHtml-PersonName.xslt -o:People-PersonName.html

or:

Transform -s:People.xml -xsl:PeopleToHtml-PersonName.xslt -o:People-PersonName.html

The output created will now look like Listing 8-9.

LISTING 8-9: People-PersonName.html

<html>
 <head>
 <META http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Famous People</title>
 </head>
 <body>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 252c08.indd 252 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com
http://Wrox.com

Foundational XSLT Elements ❘ 253

 <h1>Famous People</h1>
 <hr>

 Winston Churchill
 Indira Gandhi
 John F. Kennedy

 </body>
</html>

You now have a complete working transformation using a combination of <xsl:apply-templates>
to specify the nodes to be processed and <xsl:template> elements to handle them. This method
is often known as push processing because the processor marches through the source XML and
pushes the nodes selected by <xsl:apply-templates> to the relevant <xsl:template>. Sometimes,
however, it’s more convenient to use pull processing by grabbing nodes directly and using their con-
tents. For this type of processing you need the <xsl:for-each> element.

The <xsl:for-each> Element

The <xsl:for-each> element enables you to select a group of nodes and to apply an operation to each
of them. It does not work like the similarly named construct in other languages, which is used to loop
through an array or collection. As stated earlier, XSLT is a functional language, and within the process-
ing there is no guarantee to the order of processing within the group of nodes selected. Similarly, you
can exit the loop using a break statement. Listing 8-10 shows how the example XSLT you have so far
looks if you replace the call to <xsl:apply-templates> with an <xsl:for-each> instruction.

LISTING 8-10: PeopleToHtml-ForEach.xslt

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr />

 <xsl:for-each select=”People/Person”>

 <xsl:value-of select=”Name” />

 </xsl:for-each>

 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Available for
download on
Wrox.com

c08.indd 253c08.indd 253 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com

254 ❘ CHAPTER 8 XSLT

The <xsl:for-each> element has a select attribute that points to the nodes you want to process.
For each node in the group the contents of the <xsl:for-each> instruction is executed. Therefore,
the select attribute uses the People/Person XPath as before and for each <Person> a list item is
created. For this XSLT, the output is identical to that of the previous version.

Push-Processing versus Pull-Processing

So now you have two ways of processing nodes: pushing them to an <xsl:template> or pulling
them using <xsl:for-each>. Which one is best? Although there’s no fi rm rule, it’s typically best to
start by trying to use an <xsl:template>. They are more fl exible and, as later examples show, they
are usually easier to maintain. They also give you the chance to build up XSL transformations from
smaller modules, something not really possible using <xsl:for-each>. In general I use <xsl:
for-each> only for quick and dirty code or small snippets that I don’t think will need to
change over time.

Before you move on to using some of the other XSLT instructions, you need to understand the role
of XPath.

The Role of XPath in XSLT

You’ve already seen a number of cases of XPath being used in XSLT as the select attribute.
These have included:

 ➤ <xsl:apply-templates>

 ➤ <xsl:for-each>

 ➤ <xsl:value-of>

Typically, a select attribute takes an XPath expression to the set of nodes you want to process.
There is, however, no golden rule about which attributes can take an XPath expression—you
just have to refer to the specifi cation if you’re in doubt. The XSLT 2.0 version is located at www
.w3.org/TR/xslt20.

WARNING Remember that the match attribute on an <xsl:template> element

does not take an XPath expression, but an XSL Pattern. This is also generally

the case for other elements that have a match attribute.

In addition to the select attribute, there are many more XSLT instructions that use XPath, and
this section takes a look at these alternative instructions. You can start by extending the example in
Listing 8-8 in two ways: fi rst you’ll make the output page more interesting by using an HTML table
and displaying the born and died dates as well as the description. You are going to stick with
the <xsl:apply-templates> version, using push-processing. This means that you only need to
modify the main template so that the basic HTML table is created and then alter the template
that matches the Person elements. The new XSLT looks like Listing 8-11.

c08.indd 254c08.indd 254 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/TR/xslt20
http://www.w3.org/TR/xslt20

Foundational XSLT Elements ❘ 255

LISTING 8-11: PeopleToHtml-WithTable.xslt

<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr />
 <table>
 <caption>Famous People</caption>
 <thead>
 <tr>
 <th>Name</th>
 <th>Born</th>
 <th>Died</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates select=”People/Person” />
 </tbody>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match=”Person”>
 <tr>
 <td>
 <xsl:value-of select=”Name” />
 </td>
 <td>
 <xsl:value-of select=”@bornDate” />
 </td>
 <td>
 <xsl:value-of select=”@diedDate” />
 </td>
 <td>
 <xsl:value-of select=”Description” />
 </td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

Notice how you selected the two date attributes using the XPath @bornDate and @diedDate. You
can see the results of running the transformation in Figure 8-1.

Available for
download on
Wrox.com

c08.indd 255c08.indd 255 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com

256 ❘ CHAPTER 8 XSLT

You can see that the dates aren’t in a very user-friendly format; they are still using the offi cial XML
format of year-month-date. If you want to change that you need to process that value before dis-
playing it. In version 2.0 you have a number of choices but in version 1.0 you are going to have to
use named templates. These act in a similar way to the templates you’ve already seen; they process
nodes. The difference is that they are called by name, rather than by using a match attribute, which
makes them similar to functions in standard programming languages.

FIGURE 8-1

NOTE The XML date format is actually an ISO format known as ISO 8601. There’s

a good explanatory article at http://en.wikipedia.org/wiki/ISO_8601.

Using Named Templates

Your fi nal addition to the HTML page is to display the full date in an unambiguous fashion. Named
templates can act in a similar way to functions and do some basic processing on the date so that the
year falls at the end. You can also remove the ambiguity about which value represents the month
by using the month’s name instead of a two-digit code. This will give you a chance to use a named
template and also show how to use XPath functions to manipulate a string value. Start by creating
a named template that accepts a parameter of a date in the standard XML format as shown in the
following snippet:

<xsl:template name=”iso8601DateToDisplayDate”>
 <xsl:param name=”iso8601Date” />
 <xsl:variable name=”yearPart”
 select=”substring($iso8601Date, 1, 4)” />
 <xsl:variable name=”monthPart”
 select=”substring($iso8601Date, 7, 2)” />
 <xsl:variable name=”datePart”
 select=”substring($iso8601Date, 9, 2)” />
 <xsl:value-of
 select=”concat($datePart, ‘/’, $monthPart, ‘/’, $yearPart)” />
</xsl:template>

c08.indd 256c08.indd 256 05/06/12 5:30 PM05/06/12 5:30 PM

http://en.wikipedia.org/wiki/ISO_8601

Foundational XSLT Elements ❘ 257

A named template obviously needs a name and, not surprisingly, there is a name attribute that
refl ects this. You normally have an <xsl:template> that has either a match or a name attribute. In
some instances, however, it’s useful for them to have both. You can’t have an <xsl:template> with
neither a match nor a name attribute though.

A named template can also have any number of <xsl:param> elements as its children. These
are used in the same way that parameters are used in functions within standard programming
 languages—they let you pass values into the template. The preceding example has one parameter
that is passed in, the date from which you will extract the individual components of year, month
and day. You extract the different parts of the full date—the date, month, and year—and place
them into three variables named $datePart, $monthPart, and $yearPart, respectively. To do this
you use the XPath substring function. This takes three parameters, of which the third is optional:

 ➤ The string on which to operate

 ➤ The character on which to start the operation

 ➤ The length of the result string

If the third parameter is omitted, the whole of the string, starting at the character in the second
parameter, is returned. So to access the month part, start with the full date and take two
characters starting at the sixth character. You then repeat this operation for the day by taking
two characters starting at the ninth character. Once you have the three separate parts you use
another XPath function, concat(), to chain them back together separated by a suitable delimiter.

The <xsl:variable> element is a little strange compared to its counterpart in standard
non- functional languages. It can be initialized only once within its lifetime. You can do this in
two ways: use a select attribute, as was exhibited earlier, or use the contents of the element itself.
This second method looks like this:

<xsl:variable name=”myVariable”>
 <myElement>Some content</myElement>
</xsl:variable>

In general, if you can use the select attribute to specify what you want in the variable, you should.
The second way can lead to complications because a new tree has to be constructed and an outer
node added. This can lead to problems when using the variable. Once you have set the contents of a
variable, you can access it by using the name of the variable preceded by a $ sign. It is important to
note that the scope of variables is enforced strictly by the processor. If you declare a variable as a top-
level element, a direct child of <xsl:stylesheet>, then it can be used anywhere in the document.
If you create it within an <xsl:template>, it can only be used there, and it can only be used within
the parent in which it was created. As an example, the following code snippet contains two attempts
to use the variable named $demo. The fi rst time is fi ne because $demo is declared with the <xsl:
for-each> element as its parent and is used within that element. The second attempt will produce an
error because an attempt is made to access $demo outside of the parent in which it was created.

<xsl:template name=”usingVariables”>
 <xsl:for-each select=”someElements/someElement”>
 <xsl:variable name=”demo” select=”’Some text’” />
 <!-- this next line is okay as $demo is in scope -->

c08.indd 257c08.indd 257 05/06/12 5:30 PM05/06/12 5:30 PM

258 ❘ CHAPTER 8 XSLT

 <xsl:value-of select=”concat(someElement, $demo)” />
 </xsl:for-each>
 <!-- this next line is an error as $demo is out of scope -->
 <xsl:value-of select=”$demo” />
</xsl:template>

To utilize this template you need to modify the code that creates the table and take advantage of the
<xsl:call-template> element; the new version of the style sheet that does just that is shown in
Listing 8-12.

NOTE Note how two sets of quotes are needed to set the value of $demo to a

string—one to enclose the attribute value itself and a second pair for the string. If

the inner quotes were missing the processor would treat Some text as an XPath

expression, which, in this case, would lead to an error.

LISTING 8-12: PeopleToHtml-FriendlyDate.xslt

<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr />
 <table>
 <caption>Famous People</caption>
 <thead>
 <tr>
 <th>Name</th>
 <th>Born</th>
 <th>Died</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates select=”People/Person” />
 </tbody>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match=”Person”>
 <tr>
 <td>

Available for
download on
Wrox.com

c08.indd 258c08.indd 258 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com

Foundational XSLT Elements ❘ 259

 <xsl:value-of select=”Name” />
 </td>
 <td>
 <xsl:call-template name=”iso8601DateToDisplayDate”>
 <xsl:with-param
 name=”iso8601Date” select=”@bornDate” />
 </xsl:call-template>
 </td>
 <td>
 <xsl:call-template name=”iso8601DateToDisplayDate”>
 <xsl:with-param
 name=”iso8601Date” select=”@diedDate” />
 </xsl:call-template>
 </td>
 <td>
 <xsl:value-of select=”Description” />
 </td>
 </tr>
 </xsl:template>

 <xsl:template name=”iso8601DateToDisplayDate”>
 <xsl:param name=”iso8601Date” />
 <xsl:variable name=”yearPart”
 select=”substring($iso8601Date, 1, 4)” />
 <xsl:variable name=”monthPart”
 select=”substring($iso8601Date, 6, 2)” />
 <xsl:variable name=”datePart”
 select=”substring($iso8601Date, 9, 2)” />
 <xsl:value-of
 select=”concat($datePart, ‘/’, $monthPart, ‘/’, $yearPart)” />
 </xsl:template></xsl:stylesheet>

The <xsl:call-template> Element

The <xsl:call-template> element has an attribute, name, that identifi es which template to call.
Contained within the element can be any number of <xsl:with-param> elements that pass values
to the <xsl:template>. These values are received by the <xsl:param> elements within the called
template. The <xsl:with-param> elements have a select attribute to retrieve whatever values are
required. The results of this new transformation are shown in Figure 8-2.

FIGURE 8-2

c08.indd 259c08.indd 259 05/06/12 5:30 PM05/06/12 5:30 PM

260 ❘ CHAPTER 8 XSLT

As you can see, though, the date format, although clear enough in this instance, is not really suit-
able for a page that may be viewed in many different countries. It follows the European standard of
date-month-year rather than the U.S. standard of month-date-year. To remove this ambiguity you
can modify the named template to show the month using its name. This will give you a chance to
see a new aspect of XSLT—how to embed and retrieve lookup information both from an external
source and within the transformation using the document() function.

The document() Function in XSLT

The document() function is one of the most useful functions in the XSLT library. At its simplest it
takes one argument, which is a string pointing to an external document, usually in the form of a URL.
XSLT processors can support schemes other than HTTP and HTTPS but those tend to be the only
ones that most can cope with. So if you have an XSL transformation that processes an XML fi le but
you also want to incorporate information from a document held at http:// www.wrox.com/books
.xml, you’d use code similar to the following:

<xsl:variable name=”books” select=”document(‘http://www.wrox.com/books.xml’)” />

Assuming the URL http://www.wrox.com/books.xml points to a well-formed document and is
accessible, the variable $books will now hold a reference to the root node of the document and other
nodes can be accessed in the usual way using XPath. For example, each book might be found using
the expression:

$books/Books/Book

NOTE You can call the document function in some other ways. For example, a

node-set passed as an argument will retrieve a document composed of each

individual document found after each node in the set is turned into a URL. For the

full details see http://www.w3.org/TR/xslt#document.

You’ll now see how the document() function can help you complete your current task, turning the
month represented as a number into the full month name.

 1. Start by constructing a lookup “table,” some XML that lets you map the number of a
month to its name as shown in Listing 8-13.

LISTING 8-13: Months.xml

<?xml version=”1.0” encoding=”utf-8”?>
<Months>
 <Month index=”1”>January</Month>
 <Month index=”2”>February</Month>
 <Month index=”3”>March</Month>
 <Month index=”4”>April</Month>

Available for
download on
Wrox.com

c08.indd 260c08.indd 260 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.wrox.com/books.xml
http://www.wrox.com/books.xml
http://www.wrox.com/books.xml
http://www.wrox.com/books.xml
http://www.w3.org/TR/xslt#document
http://Wrox.com

Foundational XSLT Elements ❘ 261

 <Month index=”5”>May</Month>
 <Month index=”6”>June</Month>
 <Month index=”7”>July</Month>
 <Month index=”8”>August</Month>
 <Month index=”9”>September</Month>
 <Month index=”10”>October</Month>
 <Month index=”11”>November</Month>
 <Month index=”12”>December</Month>
</Months>

 2. Nothing dramatic here—just what is effectively a serialized array of the months. Now use
the document() function to access this fi le from within your transformation. Use a variable
to hold the results:

 <xsl:variable name=”allMonths” select=”document(‘months.xml’)” />

 3. This will be a top-level element; that is, a direct child of <xsl:stylesheet>. Alter the tem-
plate that manipulates the date so that it fi nds the text of the month where the index attri-
bute matches the value held in $monthPart:

 <xsl:template
 name=”iso8601DateToDisplayDate”>
 <xsl:param name=”iso8601Date” />
 <xsl:variable
 name=”yearPart” select=”substring($iso8601Date, 1, 4)” />
 <xsl:variable
 name=”monthPart” select=”substring($iso8601Date, 6, 2)” />
 <xsl:variable
 name=”monthName”
 select=”$allMonths/Months/Month[@index = number($monthPart)]” />
 <xsl:variable
 name=”datePart” select=”substring($iso8601Date, 9, 2)” />
 <xsl:value-of select=”concat($datePart, ‘ ‘, $monthName, ‘ ‘, $yearPart)” />
 </xsl:template>

 4. Next, remove the forward slashes from the fi nal <xsl:value-of> and replace them with a
single space. The new XSLT is shown in Listing 8-14.

LISTING 8-14: PeopleToHtml-MonthNames.xslt

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:variable name=”allMonths” select=”document(‘months.xml’)” />

 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>

Available for
download on
Wrox.com

continues

c08.indd 261c08.indd 261 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com

262 ❘ CHAPTER 8 XSLT

LISTING 8-14 (continued)

 <h1>Famous People</h1>
 <hr />
 <table>
 <caption>Famous People</caption>
 <thead>
 <tr>
 <th>Name</th>
 <th>Born</th>
 <th>Died</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates select=”People/Person” />
 </tbody>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match=”Person”>
 <tr>
 <td>
 <xsl:value-of select=”Name” />
 </td>
 <td>
 <xsl:call-template name=”iso8601DateToDisplayDate”>
 <xsl:with-param name=”iso8601Date” select=”@bornDate” />
 </xsl:call-template>
 </td>
 <td>
 <xsl:call-template name=”iso8601DateToDisplayDate”>
 <xsl:with-param name=”iso8601Date” select=”@diedDate” />
 </xsl:call-template>
 </td>
 <td>
 <xsl:value-of select=”Description” />
 </td>
 </tr>
 </xsl:template>

 <xsl:template
 name=”iso8601DateToDisplayDate”>
 <xsl:param name=”iso8601Date” />
 <xsl:variable
 name=”yearPart” select=”substring($iso8601Date, 1, 4)” />
 <xsl:variable
 name=”monthPart” select=”substring($iso8601Date, 6, 2)” />
 <xsl:variable
 name=”monthName” select=”$allMonths/Months/Month[@index = number($monthPart)]” />
 <xsl:variable
 name=”datePart” select=”substring($iso8601Date, 9, 2)” />

c08.indd 262c08.indd 262 05/06/12 5:30 PM05/06/12 5:30 PM

Foundational XSLT Elements ❘ 263

 <xsl:value-of select=”concat($datePart, ‘ ‘, $monthName, ‘ ‘, $yearPart)” />
 </xsl:template>

</xsl:stylesheet>

The results of running this transformation are shown in Figure 8-3.

FIGURE 8-3

The document() function opens some exciting possibilities. There’s no reason, for instance, that the
fi le you try to access has to be a static fi le—it could be the results of a web service call. As long as
the content returned is well-formed, the document() function will treat what is returned as a valid
XML document. However, there’s no way of posting data—the web service has to be able to accept
parameters in the querystring or be a RESTful type. For example, you might have coded a web
service that accepts the number of the month and returns the full name. It might be called like this,
using querystring parameters:

<xsl:variable name=”monthName”
 select=”document(‘http://www.wrox.com/services/getMonthName.asmx?index=3’)” />

or this, using a RESTful-style service:

<xsl:variable name=”monthName”
 select=”document(‘http://www.wrox.com/services/months/3’)” />

To be fair, the example with an external lookup fi le for the months was somewhat overkill—in
many cases you might just want to embed the lookup data within the actual XSLT. To embed some-
thing within the XSLT, you use the same format for the data; the only small change is to ensure the
processor understands that this is your data and that it is clearly separate from both the XSLT itself
and any elements you want to appear in the output. To ensure this separation, you need to group the
elements under a namespace.

 1. First, add an extra namespace declaration to the <xsl:stylesheet> element and then add
the lookup information to the beginning of the XSLT:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:myData=”http://wrox.com/namespaces/embeddedData” >

 <xsl:variable name=”allMonths” select=”document(‘months.xml’)” />

Available for
download on
Wrox.com

c08.indd 263c08.indd 263 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://wrox.com/namespaces/embeddedData
http://www.wrox.com/services/getMonthName.asmx?index=3
http://www.wrox.com/services/months/3
http://Wrox.com

264 ❘ CHAPTER 8 XSLT

 <myData:Months>
 <Month index=”1”>January</Month>
 <Month index=”2”>February</Month>
 <Month index=”3”>March</Month>
 <Month index=”4”>April</Month>
 <Month index=”5”>May</Month>
 <Month index=”6”>June</Month>
 <Month index=”7”>July</Month>
 <Month index=”8”>August</Month>
 <Month index=”9”>September</Month>
 <Month index=”10”>October</Month>
 <Month index=”11”>November</Month>
 <Month index=”12”>December</Month>
 </myData:Months>

 <!-- rest of stylesheet -->
</xsl:stylesheet>

PeopleToHtml-LocalDocument.xslt

 2. To access this XML from within the transformation use the document() function, but this
time you will need to access the style sheet itself rather than an external fi le. Use an empty
string as the argument to the function. This gives you a reference to the currently executing
XSLT.

 3. Change the variable declared at the beginning of the transformation as in the following—it
no longer refers to the months so you’ll call it thisDocument:

 <xsl:variable name=”thisDocument” select=”document(‘’)” />

 4. Now drill down further to the <myData:Months> element. Because this element is in a
namespace, you need to include the namespace prefi x in the path $thisDocument/xsl:
stylesheet/myData:Months/Month[@index = number($monthPart)]. Remember that
only the <myData:Months> element was put into the http://wrox.com/namespaces/
embeddedData namespace so only that one needs the myData prefi x. The fi nal style sheet
looks like Listing 8-15. The result of this transformation will be exactly the same as the
previous one.

LISTING 8-15: PeopleToHtml-LocalDocument.xslt

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:myData=”http://wrox.com/namespaces/embeddedData”>

 <xsl:variable name=”thisDocument” select=”document(‘’)” />

 <myData:Months>
 <Month index=”1”>January</Month>
 <Month index=”2”>February</Month>

Available for
download on
Wrox.com

c08.indd 264c08.indd 264 05/06/12 5:30 PM05/06/12 5:30 PM

http://wrox.com/namespaces/embeddedData
http://wrox.com/namespaces/embeddedData
http://www.w3.org/1999/XSL/Transform
http://wrox.com/namespaces/embeddedData
http://Wrox.com

Foundational XSLT Elements ❘ 265

 <Month index=”3”>March</Month>
 <Month index=”4”>April</Month>
 <Month index=”5”>May</Month>
 <Month index=”6”>June</Month>
 <Month index=”7”>July</Month>
 <Month index=”8”>August</Month>
 <Month index=”9”>September</Month>
 <Month index=”10”>October</Month>
 <Month index=”11”>November</Month>
 <Month index=”12”>December</Month>
 </myData:Months>

 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr />
 <table>
 <caption>Famous People</caption>
 <thead>
 <tr>
 <th>Name</th>
 <th>Born</th>
 <th>Died</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates select=”People/Person” />
 </tbody>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match=”Person”>
 <tr>
 <td>
 <xsl:value-of select=”Name” />
 </td>
 <td>
 <xsl:call-template name=”iso8601DateToDisplayDate”>
 <xsl:with-param name=”iso8601Date” select=”@bornDate” />
 </xsl:call-template>
 </td>
 <td>
 <xsl:call-template name=”iso8601DateToDisplay”>
 <xsl:with-param name=”iso8601Date” select=”@diedDate” />
 </xsl:call-template>
 </td>
 <td>

continues

c08.indd 265c08.indd 265 05/06/12 5:30 PM05/06/12 5:30 PM

266 ❘ CHAPTER 8 XSLT

LISTING 8-15 (continued)

 <xsl:value-of select=”Description” />
 </td>
 </tr>
 </xsl:template>

 <xsl:template name=”iso8601DateToDisplayDate”>
 <xsl:param name=”iso8601Date” />
 <xsl:variable name=”yearPart”
 select=”substring($iso8601, 1, 4)” />
 <xsl:variable name=”monthPart”
 select=”substring($iso8601Date, 6, 2)” />
 <xsl:variable name=”monthName” select=
“$thisDocument/xsl:stylesheet/myData:Months/Month[@index = number($monthPart)]”
 />
 <xsl:variable name=”datePart”
 select=”substring($iso8601Date, 9, 2)” />
 <xsl:value-of select=”concat($datePart, ‘ ‘, $monthName, ‘ ‘, $yearPart)” />
 </xsl:template>

</xsl:stylesheet>

Now there’s one main area of processing that you haven’t covered yet and that is conditional
logic—how can you change what processing occurs depending on a condition?

Conditional Logic

There are two main ways to use conditional logic in XSLT version 1.0, with a third appearing in
version 2.0 courtesy of the enhanced powers of XPath available in the later version. The fi rst way is
to use an <xsl:if> element. This enables you to make simple tests but doesn’t give you the option
of an else statement. The basic structure of the element is:

<xsl:if test=”test condition goes here”>
 <!-- instructions if the condition is true -->
</xsl:if>

The <xsl:if> element has an attribute named test. The value of this attribute is an XPath expres-
sion that produces a Boolean value of true or false. If the condition evaluates to true, the instruc-
tions within the element are carried out. Example tests might be:

 ➤ Person: Evaluates to true if there is at least one Person element.

 ➤ Name = ‘Indira Gandhi’: Evaluates to true if the Name element has the text
‘Indira Gandhi’.

 ➤ number(substring(Person/@bornDate, 1, 2)) = 19: Takes the fi rst two characters of
the bornDate attribute and returns true if they are equal to 19.

You can use this last test in your current transformation to mark the names of people born in
the twentieth century in a different color. To do so, add the test to the template that matches the
<Person> element and then perform the following steps:

c08.indd 266c08.indd 266 05/06/12 5:30 PM05/06/12 5:30 PM

Foundational XSLT Elements ❘ 267

 1. Declare an <xsl:variable> element named nameCSS to hold the relevant style information.

 2. Then test the bornDate attribute as described previously. If this evaluates true, set the value
of the variable to color:red;, otherwise it will remain blank.

 3. Next add a style attribute to the <td> element holding the name. To retrieve the value of
$nameCSS you can use a common shortcut: enclose the name of the variable in curly braces
to tell the XSLT processor that the value needs to be evaluated as an XPath expression.

The fi nal result looks like the following code snippet:

<xsl:template match=”Person”>
 <xsl:variable name=”nameCSS”>
 <xsl:if
 test=”number(substring(@bornDate, 1, 2)) = 19”>color:red</xsl:if>
 </xsl:variable>
 <tr>
 <td style=”{$nameCSS}”>
 <xsl:value-of select=”Name” />
 </td>

 <!-- remainder of template -->

</xsl:template>

PeopleToHtml-ColoredNames.xslt

When you run the transformation you get the result shown in Figure 8-4 where the fi rst politician,
Winston Churchill, is in black and the others are colored red.

Available for
download on
Wrox.com

FIGURE 8-4

<xsl:if> is quite limited. When you need something more powerful to handle more than one con-
dition, use <xsl:choose>. This instruction takes the following form:

<xsl:choose>
 <xsl:when test=”test condition goes here”>
 <!-- instructions if the condition is true -->
 </xsl:when>
 <!-- more when elements can go here -->

c08.indd 267c08.indd 267 05/06/12 5:30 PM05/06/12 5:30 PM

http://Wrox.com

268 ❘ CHAPTER 8 XSLT

 <!-- the otherwise is optional -->
 <xsl:otherwise>
 <!-- instructions if all when conditions fail -->
 </xsl:otherwise>
</xsl:choose>

Basically, you can have any number of <xsl:when> elements inside <xsl:choose>. You can also
have an optional <xsl:otherwise> that is executed if all the previous tests have failed. As an exam-
ple of using choose suppose you want to improve the look of your output document by giving every
odd numbered row in the table a different background color than the even numbered ones. You can
accomplish this by testing against the results of the position() function, which gives the index of
the node being processed starting at one. So in your Person template you can add the following:

<xsl:template match=”Person”>
 <xsl:variable name=”rowCSS”>
 <xsl:choose>
 <xsl:when test=”position() mod 2 = 0”>color:#0000aa;</xsl:when>
 <xsl:otherwise>color:#006666;</xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <!-- rest of template -->
</xsl:template>

PeopleToHtml-ColoredRows.xslt

The test here uses the position() function, which tells you which <Person> element you are pro-
cessing, and the mod operator, which returns the remainder after dividing the position by two. If
the remainder is zero, it’s an even numbered row and you assign a color of #0000aa, otherwise you
assign a color of #006666.

You can then add this variable to the style attribute of the <tr> element:

 <tr style=”{$rowCSS}”>
 <td style=”{$nameCSS}”>
 <xsl:value-of select=”Name” />
 </td>

The complete template now looks like:

 <xsl:template match=”Person”>
 <xsl:variable name=”rowCSS”>
 <xsl:choose>
 <xsl:when test=”position() mod 2 = 0”>color:#0000aa;</xsl:when>
 <xsl:otherwise>color:#006666;</xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:variable name=”nameCSS”>
 <xsl:if test=”number(substring(@bornDate, 1, 2)) = 19”>color:red;</xsl:if>
 </xsl:variable>
 <tr style=”{$rowCSS}”>
 <td style=”{$nameCSS}”>
 <xsl:value-of select=”Name” />

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c08.indd 268c08.indd 268 05/06/12 5:30 PM05/06/12 5:30 PM

http://Wrox.com
http://Wrox.com

Foundational XSLT Elements ❘ 269

 </td>
 <td>
 <xsl:call-template name=”iso8601DateToDisplayDate”>
 <xsl:with-param name=”iso8601Date” select=”@bornDate” />
 </xsl:call-template>
 </td>
 <td>
 <xsl:call-template name=”iso8601DateToDisplayDate”>
 <xsl:with-param name=”iso8601Date” select=”@diedDate” />
 </xsl:call-template>
 </td>
 <td>
 <xsl:value-of select=”Description” />
 </td>
 </tr>
 </xsl:template>

PeopleToHtml-ColoredRows.xslt

When you run this transformation using one of the following command lines you get the result
shown in Figure 8-5 where the fi rst name, Winston Churchill, is in black but the names after that
are in red:

java net.sf.saxon.Transform -s:People.xml
 -xsl:PeopleToHtml-ColoredRows.xslt -o:People-ColoredRows.html

or:

Transform -s:People.xml -xsl:PeopleToHtml-ColoredRows.xslt
 -o:People-ColoredRows.html

FIGURE 8-5

NOTE Occasionally you will need to test explicitly against the values true or

false. XPath does not have any keywords to represent those values; if you do

use true or false, the processor will just assume they are element names. To

remedy this situation, there are two built-in functions, true() and false(),

which return the values true and false, respectively.

c08.indd 269c08.indd 269 05/06/12 5:30 PM05/06/12 5:30 PM

270 ❘ CHAPTER 8 XSLT

The technique of using a variable or any XPath expression within an attribute’s value, as used in the
preceding snippet, is a powerful one. In the snippet the variable, $rowCSS was embedded inside
the style attribute’s value as shown here:

<tr style=”{$rowCSS}” >

The variable is surrounded by braces, {}, to inform the XSLT processor that the contents need to be
treated as XPath and replaced with whatever value the XPath expression evaluates to. These braces
are only needed when the element whose attribute they appear in is not a built-in XSLT instruction.
For example in the following snippet the braces are not required as the <xsl:value-of> element is
intrinsic to XSLT and its select attribute expects the following XPath expression:

<xsl:value-of select=”$rowCSS” />

So the rule to decide whether or not an XPath expression needs to be surrounded by braces is sim-
ple: Does the attribute expect XPath or not? If it does, just write the XPath expression; if it doesn’t,
use the XPath surrounded by braces. The technique of embedding XPath within attributes that
usually take literal values is known as attribute value templates (AVT) and if you look at the XSLT
specifi cation you will see that attributes defi nitions are accompanied with whether or not attribute
value templates can be used with them.

So far you’ve seen how to process both a main input document and how to take advantage of
 external documents using the document() function. Next you see how to pass in simple pieces
of information to a transformation using the <xsl:param> element.

The <xsl:param> element

To make your transformations reusable it’s often necessary to pass arguments to them that affect
the processing. To do that you can declare any number of <xsl:param> elements as children of the
<xsl:stylesheet> element. These can be set before the transformation takes place. The way these
parameters are initialized is not defi ned by the XSLT specifi cation but is left to the designer of the
processor. The processor you are using, Saxon, enables parameters to be set on the command line or
via Java or .NET code. In reference to the ongoing example, suppose you want to modify the part
of the transform that highlights the name in the resulting HTML. Currently you highlight anyone
born in the twentieth century or later by checking the fi rst two digits of the year. To change that,
pass in a parameter specifying a year and highlighting anyone born after that by performing the fol-
lowing steps.

 1. First, add an <xsl:param> element to the XSLT, like so:

 <xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:myData=”http://wrox.com/namespaces/embeddedData”>

 <xsl:param name=”targetYear” select=”3000” />

PeopleToHtml-BornAfter

c08.indd 270c08.indd 270 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://wrox.com/namespaces/embeddedData

Foundational XSLT Elements ❘ 271

 2. The parameter is named targetYear and is given a default value of 1000, which makes
sure the XSLT works as expected if no year is passed in. Now change the logic that tests the
bornDate attribute, like so:

 <xsl:variable name=”nameCSS”>
 <xsl:if test=”number(substring(@bornDate, 1, 4)) > $targetYear”>color:red;</xsl:if>
 </xsl:variable>

PeopleToHtml-BornAfter

 3. This time you take the fi rst four characters of the date, the complete year, and only high-
light if the value is greater than the $targetYear parameter. To test this XSLT, set the
parameter on the command line by using the following syntax (all on one line):

 java net.sf.saxon.Transform -s:people.xml -xsl:peopleToHtml-BornAfter.xslt
 -o:People-BornAfter.html targetYear=1916

 or:

 Transform -s:people.xml -xsl:peopleToHtml-BornAfter.xslt
 -o:People-BornAfter.html targetYear=1916

 4. The result should look the same as Figure 8-5. If you change the targetYear parameter to
be 1816, all names will be highlighted; if you leave the declaration off entirely, the default
value of 3000 is used so no names are colored red.

When processing nodes from the source document it’s sometimes important to be able to sort them
based on various criteria rather than just have them appear in the output in the same order as the
input. For this task you can use the <xsl:sort> element.

The <xsl:sort> Element

The <xsl:sort> element is fairly simple. It can be used as a child of <xsl:apply-templates> or
<xsl:for-each>. It has the following attributes to control the sorting process:

 ➤ select: An XPath expression pointing to the node(s) to sort on.

 ➤ data-type: How to treat the node values, usually either text or number.

 ➤ order: Either ascending or descending. Ascending is the default.

Say you want to sort the people in your HTML table based on their year of birth. This is going to
need two stages: fi rst you need to convert the full date, which is currently in the format yyyy-mm-
dd, into a number that can be sorted; and second, you need to use the <xsl:sort> element.

For the fi rst stage you need to make use of the translate() function. This function takes three
arguments. The fi rst is an expression pointing to the data to work on, the second parameter is what
to search for, and the third is what to replace any found characters with. For example:

translate(‘The first of the few ‘, ‘fiw’, ‘wot’)

c08.indd 271c08.indd 271 05/06/12 5:30 PM05/06/12 5:30 PM

272 ❘ CHAPTER 8 XSLT

This would look for the characters f, i, and w and change them to w, o, and t, respectively. This
would result in:

The worst of the wet.

WARNING The translate() function can only cope with one-to-one mappings.

In XSLT version 2.0 you can use the replace() function if you need more

fl exibility.

Now back in the example, use the translate() function to remove the hyphens from the dates:

translate(@bornDate, ‘- ‘, ‘’)

This leaves you with an eight-digit string that can be compared with directly with another simi-
larly treated date meaning that a number of different dates can be sorted solely on their numeric
value. The <xsl:sort> element is a child of the call to <xsl:apply-templates>, as shown in the
following:

<xsl:apply-templates select=”People/Person”>
 <xsl:sort select=”translate(@bornDate, ‘-’, ‘’)” data-type=”number”/>
</xsl:apply-templates>

The select attribute in this snippet uses the @bornDate but with the hyphens removed and the
data-type attribute set to number.

Now that you have enabled sorting the dates by translating them into numeric values and then
added the <xsl:sort> instruction within the call to <xsl:apply-templates>, you can try the
transformation again. When this new code is run the HTML table produced looks like Listing 8-16.

LISTING 8-16: People-SortedRows.html

<html xmlns:myData=”http://wrox.com/namespaces/embeddedData”>
 <head>
 <META http-equiv=”Content-Type” content=”text/html; charset=utf-8”>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr>
 <table>
 <caption>Famous People</caption>
 <thead>
 <tr>
 <th>Name</th>
 <th>Born</th>

Available for
download on
Wrox.com

c08.indd 272c08.indd 272 05/06/12 5:30 PM05/06/12 5:30 PM

http://wrox.com/namespaces/embeddedData
http://Wrox.com

Foundational XSLT Elements ❘ 273

 <th>Died</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <tr style=”color:#006666;”>
 <td style=””>Winston Churchill</td>
 <td>30 November 1874</td>
 <td>24 January 1965</td>
 <td>
 Winston Churchill was a mid-20th century British politician who
 became famous as Prime Minister during the Second World War.
 </td>
 </tr>
 <tr style=”color:#0000aa;”>
 <td style=””>John F. Kennedy</td>
 <td>29 May 1917</td>
 <td>22 November 1963</td>
 <td>
 JFK, as he was affectionately known, was a United States president
 who was assassinated in Dallas, Texas.
 </td>
 </tr>
 <tr style=”color:#006666;”>
 <td style=””>Indira Gandhi</td>
 <td>19 November 1917</td>
 <td>31 October 1984</td>
 <td>
 Indira Gandhi was India’s first female prime minister and was
 assassinated in 1984.
 </td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

Note that the order of the people has now changed with Indira Gandhi appearing last because she
was born latest.

When extracting information from the source document you have so far only used the
<xsl:value-of> instruction. This is handy when you want snippets of data but less useful when
you need to copy entire elements. <xsl:value-of> always returns the text from an element or
the value of an attribute. If it is passed a set of nodes, it returns the text of the fi rst element or the
value of the fi rst attribute (in version 1.0 at least). In XSLT terminology it returns an atomic value
as opposed to a node or a node set. If you want to copy elements in their entirety you have two
options: <xsl:copy> and <xsl:copy-of>.

<xsl:copy> and <xsl:copy-of> Elements

Both these elements can be used to copy content from the source to the output tree. <xsl:copy>
performs a shallow copy—it just copies the current node without any children, or attributes if it’s

c08.indd 273c08.indd 273 05/06/12 5:30 PM05/06/12 5:30 PM

274 ❘ CHAPTER 8 XSLT

an element. If you want any other nodes to appear you need to add them manually. <xsl:copy-of>
performs a deep copy—it copies the specifi ed node with all its children and attributes. Creating a
simple transformation can better examine the difference between <xsl:value-of>, <xsl:copy>,
and <xsl:copy-of. Listing 8-17 shows a basic XSLT that processes each of the <Person> elements.

LISTING 8-17: CopyingNodes.xslt

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
 <xsl:output method=”xml” indent=”yes”/>

 <xsl:template match=”/”>
 <People>
 <xsl:apply-templates select=”People/Person” />
 </People>
 </xsl:template>

 <xsl:template match=”Person”>
 <valueOf>
 <xsl:value-of select=”.” />
 </valueOf>

 <copy>
 <xsl:copy />
 </copy>

 <copyOf>
 <xsl:copy-of select=”.”/>
 </copyOf>
 </xsl:template>
</xsl:stylesheet>

Available for
download on
Wrox.com

WARNING If you are generating HTML for use on the Web, you should use xsl:

output method=”html”; XSLT 2 also introduces method=”xhtml”. See Chapter

17, “XHTML and HTML 5”, for more information on why you need to do this.

After the initial <xsl:stylesheet> element you have added an <xsl:output> element. This has
a number of uses. Its primary purpose is to specify what format the output will take using the
method attribute. The options are xml (the default), html, and text, with the fourth option of xhtml
available if you are using XSLT version 2.0. So far you haven’t had to use this element because any
output document starting with an <html> tag is assumed to be HTML. Similarly, any document
beginning with any other element is treated as XML. The reason you use the element in this trans-
formation is that you want to specify that the output is indented to make it easier to read—this is
achieved when the indent attribute is set to yes. Another attribute often seen on <xsl:output> is
encoding. This allows you to state whether the output should be in something other than utf-8, for
example iso-8859-1.

c08.indd 274c08.indd 274 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com

Foundational XSLT Elements ❘ 275

In Listing 8-17, the fi rst <xsl:template> matches the root node (/), and this simply adds a
<People> element at the document element of output. Then <xsl:apply-templates> is called as
before and the <Person> elements are selected for processing. They are caught by the second
<xsl:template>, which outputs three different views of each <Person>. The fi rst, contained within
a <valueOf> element, uses <xsl:value-of>. This just extracts all the text and ignores all attributes
and child elements. The second outputs a <copy> element and then uses <xsl:copy>. This just
outputs the <Person> element itself without any attributes or children. The third view of the
<Person> element uses the <xsl:copy-of> instruction. This makes a deep copy and includes
the <Person> element along with its attributes and all children, including the text nodes. The results
of the transformation are shown in Listing 8-18.

LISTING 8-18: CopyingNodes.xml

<?xml version=”1.0” encoding=”utf-8”?>
<People>
 <valueOf>
 Winston Churchill

 Winston Churchill was a mid-20th century British politician who
 became famous as Prime Minister during the Second World War.

 </valueOf>
 <copy>
 <Person />
 </copy>
 <copyOf>
 <Person bornDate=”1874-11-30” diedDate=”1965-01-24”>
 <Name>Winston Churchill</Name>
 <Description>
 Winston Churchill was a mid-20th century British politician who
 became famous as Prime Minister during the Second World War.
 </Description>
 </Person>
 </copyOf>
 <valueOf>
 Indira Gandhi

 Indira Gandhi was India’s first female prime minister and was
 assassinated in 1984.

 </valueOf>
 <copy>
 <Person />
 </copy>
 <copyOf>
 <Person bornDate="1917-11-19" diedDate="1984-10-31">
 <Name>Indira Gandhi</Name>
 <Description>
 Indira Gandhi was India’s first female prime minister and was
 assassinated in 1984.
 </Description>

Available for
download on
Wrox.com

continues

c08.indd 275c08.indd 275 05/06/12 5:30 PM05/06/12 5:30 PM

http://Wrox.com

276 ❘ CHAPTER 8 XSLT

LISTING 8-18 (continued)

 </Person>
 </copyOf>
 <valueOf>
 John F. Kennedy

 JFK, as he was affectionately known, was a United States president
 who was assassinated in Dallas, Texas.

 </valueOf>
 <copy>
 <Person />
 </copy>
 <copyOf>
 <Person bornDate="1917-05-29" diedDate="1963-11-22">
 <Name>John F. Kennedy</Name>
 <Description>
 JFK, as he was affectionately known, was a United States president
 who was assassinated in Dallas, Texas.
 </Description>
 </Person>
 </copyOf>
</People>

REUSING CODE IN XSLT

Another important facet of development, in any language, is code reuse. XSLT has two ways to let
you write style sheets that can be used in more than one place: <xsl:include> and <xsl:import>.

The <xsl:include> Element

<xsl:include> allows you to include one style sheet within another. This has the same effect as
simply copying and pasting the code from the included style sheet into the main one, but enables
you to build up modules of useful code. For example, the template you used earlier to convert a date
into a more user-friendly format could be extracted from the main transformation. It could then
be included in a number of other transformations without having to write the code again.

The following Try It Out takes you through a scenario that is often found in software development,
refactoring code into separate and reusable modules. These modules can then be incorporated into
multiple transformations. Reusing code in this fashion has two main advantages. First, it means not
having to write the same functionality time and again; and second, if you fi nd a mistake within the
reusable code module, you can simply correct it in one place and any other transformation using
that module will benefi t.

TRY IT OUT Using <xsl:include>

The following steps extract the code used to replace an XML formatted date with a user friendly ver-
sion and place it in its own transformation. You will then incorporate this stylesheet into another one
using the <xsl:include> element.

c08.indd 276c08.indd 276 05/06/12 5:30 PM05/06/12 5:30 PM

Reusing Code in XSLT ❘ 277

1. Extract the template named iso8601DateToDisplayDateToDisplayDate to its own style sheet
and then include it in the main XSLT.

2. Create a new XSLT, DateTemplates.xslt, and include the code in Listing 8-19.

LISTING 8-19: DateTemplates.xslt

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:myData=”http://wrox.com/namespaces/embeddedData”
 exclude-result-prefixes=”myData”>

 <xsl:variable name=”thisDocument” select=”document(‘’)” />

 <myData:Months>
 <Month index=”1”>January</Month>
 <Month index=”2”>February</Month>
 <Month index=”3”>March</Month>
 <Month index=”4”>April</Month>
 <Month index=”5”>May</Month>
 <Month index=”6”>June</Month>
 <Month index=”7”>July</Month>
 <Month index=”8”>August</Month>
 <Month index=”9”>September</Month>
 <Month index=”10”>October</Month>
 <Month index=”11”>November</Month>
 <Month index=”12”>December</Month>
 </myData:Months>

 <xsl:template name=”iso8601DateToDisplayDate”>
 <xsl:param name=”iso8601Date” />
 <xsl:variable name=”yearPart”
 select=”substring($iso8601Date, 1, 4)” />
 <xsl:variable name=”monthPart”
 select=”substring($iso8601Date, 6, 2)” />
 <xsl:variable name=”monthName”select=
“$thisDocument/xsl:stylesheet/myData:Months/Month[@index = number($monthPart)]” />
 <xsl:variable name=”datePart”
 select=”substring($iso8601Date, 9, 2)” />
 <xsl:value-of select=”concat($datePart, ‘ ‘, $monthName, ‘ ‘, $yearPart)” />
 </xsl:template>

</xsl:stylesheet>

This contains all the code from the actual template plus the lookup data for the months and the
variable that holds the reference to the document itself.

3. Now create a second XSLT, PeopleToHtml-UsingIncludes.xslt, with the code in
Listing 8-20.

Available for
download on
Wrox.com

c08.indd 277c08.indd 277 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://wrox.com/namespaces/embeddedData
http://Wrox.com

278 ❘ CHAPTER 8 XSLT

LISTING 8-20: PeopleToHtml-UsingIncludes.xslt

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:myData=”http://wrox.com/namespaces/embeddedData”>

 <xsl:include href=”DateTemplates.xslt” />

 <xsl:param name=”targetYear” select=”3000” />

 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr />
 <table>
 <caption>Famous People</caption>
 <thead>
 <tr>
 <th>Name</th>
 <th>Born</th>
 <th>Died</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates select=”People/Person”>
 <xsl:sort
 select=”translate(@bornDate, ‘-’, ‘’”)
 data-type="number"/>
 </xsl:apply-templates>
 </tbody>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="Person">
 <xsl:variable name="rowCSS">
 <xsl:choose>
 <xsl:when test="position() mod 2 = 0">color:#0000aa;</xsl:when>
 <xsl:otherwise>color:#006666;</xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:variable name="nameCSS">
 <xsl:if
 test="number(substring(@bornDate, 1, 4)) > $targetYear">color:red;</xsl:if>
 </xsl:variable>
 <tr style="{$rowCSS}">
 <td style="{$nameCSS}">
 <xsl:value-of select="Name" />

Available for
download on
Wrox.com

c08.indd 278c08.indd 278 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://wrox.com/namespaces/embeddedData
http://Wrox.com

Reusing Code in XSLT ❘ 279

 </td>
 <td>
 <xsl:call-template name="iso8601DateToDisplay">
 <xsl:with-param name="iso8601Date" select="@bornDate" />
 </xsl:call-template>
 </td>
 <td>
 <xsl:call-template name="iso8601DateToDisplayDate">
 <xsl:with-param name="iso8601Date" select="@diedDate" />
 </xsl:call-template>
 </td>
 <td>
 <xsl:value-of select=”Description” />
 </td>
 </tr>
 </xsl:template>

</xsl:stylesheet>

Note how the <xsl:include> element points to DateTemplates.xslt.

4. Use one of the following command lines to run the transformation:

java net.sf.saxon.Transform -s:people.xml -xsl: PeopleToHtml-UsingIncludes.xslt
 -o:People-UsingIncludes.html

or:

Transform -s:people.xml -xsl: PeopleToHtml-UsingIncludes.xslt
 -o:People-UsingIncludes.html

The results are the same as Listing 8-16.

How It Works

The <xsl:include> element uses the href attribute to point to another XSLT fi le. The processor
takes the code from the referenced fi le, removes the outer <xsl:stylesheet> element, and builds an
in-memory representation consisting of both the main style sheet and any included ones. Then the
transformation is carried out in the usual fashion.

The <xsl:import> Element

This element acts in a very similar way to <xsl:include> with one difference—if the templates
imported clash with any already in the main XSLT, they take a lower precedence. This means that
if you have two templates that match <Person>, for example, the one in the main style sheet is exe-
cuted rather than the template in the imported one. For many transformations this is irrelevant, and
as long as you don’t have any templates that match the same nodes then <xsl:import> and
<xsl:include> behave in the same way.

c08.indd 279c08.indd 279 05/06/12 5:30 PM05/06/12 5:30 PM

280 ❘ CHAPTER 8 XSLT

Another common use case that arises is when you want to process the same node more than once.
This can occur when you want to show a summary or a table of contents. To process nodes more
than once you need to use two <xsl:template> elements and specify a mode attribute.

The <xsl:template> Mode Attribute

Say you want to add a menu to your People.html page. This will take the form of three anchors at
the start of the HTML that link to the relevant section in the table below. To create this new menu,
perform the following:

 1. First you need to create a new <xsl:template> to create your menu. Notice in the follow-
ing code snippet that this template has a mode attribute, which has the value menu. The tem-
plate simply creates three <a> elements with an href of #Person followed by the position of
the person in the node set. This means the links will point to Person1, Person2, and so on.

 <xsl:template match=”Person” mode=”menu”>

 <xsl:value-of select=”Name” />

 </xsl:template>

 2. To call this template, add an <xsl:apply-templates> instruction with a mode also set to
menu toward the start of the XSLT:

 <body>
 <h1>Famous People</h1>
 <hr />
 <xsl:apply-templates select=”People/Person” mode=”menu”>
 <xsl:sort select=”translate(@bornDate, ‘-’, ‘’)” data-type=”number”/>
 </xsl:apply-templates>
 <hr />
 <table>

 3. Next, add an anchor when you create the cell holding the name:

 <td style=”{$nameCSS}”>

 <xsl:value-of select=”Name” />

 </td>

 4. Again create an <a> element but with a name attribute consisting of #Person followed by a
digit indicating the position in the set.

 5. Finally, add a mode to the original <xsl:template> that matches <Person> and include this
when you use <xsl:apply-templates> to process the <Person> nodes for a second time:

 <tbody>
 <xsl:apply-templates select=”People/Person” mode=”details”>
 <xsl:sort

c08.indd 280c08.indd 280 05/06/12 5:30 PM05/06/12 5:30 PM

Reusing Code in XSLT ❘ 281

 select=”translate(@bornDate, ‘-’, ‘’)” data-type=”number”/>
 </xsl:apply-templates>
 </tbody>

The complete style sheet is shown in Listing 8-21.

LISTING 8-21: PeopleToHtml-WithMenu.xslt

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:myData=”http://wrox.com/namespaces/embeddedData”
 exclude-result-prefixes=”myData”>

 <xsl:include href=”DateTemplates.xslt” />
 <xsl:param name=”targetYear” select=”3000” />

 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr />
 <xsl:apply-templates select=”People/Person” mode=”menu”>
 <xsl:sort select=”translate(@bornDate, ‘-’, ‘’)” data-type=”number”/>
 </xsl:apply-templates>
 <hr />
 <table>
 <caption>Famous People</caption>
 <thead>
 <tr>
 <th>Name</th>
 <th>Born</th>
 <th>Died</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates select=”People/Person” mode=”details”>
 <xsl:sort
 select=”translate(@bornDate, ‘-’, ‘’)” data-type=”number”/>
 </xsl:apply-templates>
 </tbody>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match=”Person” mode=”menu”>

 <xsl:value-of select=”Name” />

Available for
download on
Wrox.com

continues

c08.indd 281c08.indd 281 05/06/12 5:30 PM05/06/12 5:30 PM

http://wrox.com/namespaces/embeddedData
http://www.w3.org/1999/XSL/Transform
http://Wrox.com

282 ❘ CHAPTER 8 XSLT

LISTING 8-21 (continued)

 </xsl:template>

 <xsl:template match=”Person” mode=”details”>
 <xsl:variable name=”rowCSS”>
 <xsl:choose>
 <xsl:when test=”position() mod 2 = 0”>color:#0000aa;</xsl:when>
 <xsl:otherwise>color:#006666;</xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:variable name=”nameCSS”>
 <xsl:if
 test=”number(substring(@bornDate, 1, 4)) > $targetYear”>color:red;</xsl:if>
 </xsl:variable>
 <tr style=”{$rowCSS}”>
 <td style=”{$nameCSS}”>

 <xsl:value-of select=”Name” />

 </td>
 <td>
 <xsl:call-template name=”iso8601DateToDisplayDate”>
 <xsl:with-param name=”iso8601Date” select=”@bornDate” />
 </xsl:call-template>
 </td>
 <td>
 <xsl:call-template name=”iso8601DateToDisplayDate”>
 <xsl:with-param name=”iso8601Date” select=”@diedDate” />
 </xsl:call-template>
 </td>
 <td>
 <xsl:value-of select=”Description” />
 </td>
 </tr>
 </xsl:template>

</xsl:stylesheet>

If you’ve been experimenting with your own style sheets, or when you do so in future, you may
experience a strange phenomenon—some of the text from the source document will appear in the
output even when you didn’t ask for it. This is a problem often encountered and occurs because of
two features of XSLT: built-in templates and built-in rules.

UNDERSTANDING BUILT-IN TEMPLATES AND BUILT-IN RULES

Before the built-in templates and rules are explained in depth it will be best to start with an
example of how they operate. Create a basic shell transformation consisting entirely of
an <xsl:stylesheet> element, as shown in the following snippet:

c08.indd 282c08.indd 282 05/06/12 5:30 PM05/06/12 5:30 PM

Understanding Built-In Templates and Built-In Rules ❘ 283

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
</xsl:stylesheet>

Now if you run it against the People.xml fi le you’ll fi nd that, although there are no
<xsl:templates> in the transformation, the output consists of all the actual text within the XML.
However, no elements are output. This happens because there is a built-in rule for each of the
different item types in a document—elements, attributes, comments, and so on—that is applied if
you haven’t specifi ed an explicit one yourself. The basic rule for the root node or an element
is simply: apply templates to the children of the root node or element. This means that the empty
style sheet in the preceding code is the equivalent of the following:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:template match=”/”>
 <xsl:apply-templates select=”*” />
 </xsl:template>
</xsl:stylesheet></xsl:stylesheet>

Now there isn’t a template matching the child of the root node, which is <People>, so the built-in
template kicks in. This simply outputs all text content of the element. In effect there is a template
added for <People>, which just selects the element’s value, like so:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:template match=”/”>
 <xsl:apply-templates select=”*” />
 </xsl:template>

 <xsl:template match=”People”>
 <xsl:value-of select=”.”/>
 </xsl:template>
</xsl:stylesheet>

As long as you provide templates for any elements you select you won’t have this problem; if you
do select elements using <xsl:apply-templates> and there are no matching <xsl:template> ele-
ments to process them, you’ll most likely encounter unwanted text in your output. You can always
get around this by overriding the built-in template with one of your own that outputs nothing; in the
following simple example a template matches all text nodes and effectively discards them getting rid
of all the output created by the built-in rules:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
 <xsl:template match=”text()” />
</xsl:stylesheet>

If you run this transformation against People.xml, or any other fi le, you shouldn’t see any output
because there is now an <xsl:template> element that matches any text found and ignores it.

You’ve now covered the majority of elements and their attributes found in version 1.0 of
XSLT. You’ve seen how the whole idea of the language is based on the premise of <xsl:template>
elements that deal with specifi c parts of the input document. You’ve also seen how these

c08.indd 283c08.indd 283 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

284 ❘ CHAPTER 8 XSLT

templates are executed, either being called by name using an <xsl:call-template> instruction or
by matching the nodes selected by <xsl:apply-templates>. You also saw that inside
<xsl:template> it was possible to extract values relative to the node being processed, known as
the context node. You saw how you have a number of different choices of what format this
 information takes, using <xsl:value-of> to extract a simple string value or using <xsl:copy>
and <xsl:copy-of> to output full nodes as XML. The other main elements covered were
<xsl:include> and <xsl:import> which are designed to enable reusable XSLT modules to be
designed that can then be incorporated in other transformations.

You are now going to look at version 2.0 of XSLT and see what new features were introduced and
what problems they are designed to help solve.

USING XSLT 2.0

After XSLT 1.0 had been in use for some time, it became apparent that there were a number of areas
that could be improved and a number of use cases that it couldn’t cope with, at least in a relatively
simple manner.

NOTE Use cases are scenarios that occur in real-life situations. They are often

used to help document software requirements before development begins.

Some of the new features in version 2.0 that you’ll be looking at in this section include:

 ➤ Stronger data typing: Version 1.0 only really dealt with numbers, text, Booleans, and, to a
limited extent, dates. In version 2.0 there is much more granular control.

 ➤ User-defi ned functions: Although you can use <xsl:call-template> as a limited function
substitute in version 1.0, version 2.0 enables you to create your own functions that can be
called from within an XPath expression.

 ➤ Multiple result documents: In version 2.0 you can produce more than one fi le from a single
transformation; this is a common use case when you need to split a large XML document
into smaller ones.

 ➤ Multiple input documents: Version 1.0 allowed extra input by way of the document() func-
tion. Version 2.0 adds a collection() function that allows processing of multiple docu-
ments; for example, you could process a whole folder.

 ➤ Support for grouping: Grouping in version 1.0 was very diffi cult; in version 2.0 it’s much
simpler.

 ➤ The ability to process non-XML input: You can now take a CSV fi le, for example, and turn
it into XML.

c08.indd 284c08.indd 284 05/06/12 5:30 PM05/06/12 5:30 PM

Using XSLT 2.0 ❘ 285

 ➤ Better text handling: A number of new elements can assist in the parsing of textual content;
for example, using a regular expression to break long pieces of text into smaller chunks.

 ➤ Support for XPath 2.0: XPath 2.0 contains a wealth of new functions that can all be used in
the newer version of XSLT.

You’ll take a look at these features in the next few sections and see how they help solve problems
that were diffi cult or impossible in version 1.0.

Understanding Data Types in XSLT 2.0

XSLT 1.0 had very limited type support—basically text, numbers, and Booleans. There was no sup-
port for other common types found in many other languages and even dates were often manipulated
as numbers. In version 2.0 you can specify a much wider range of types based on those found in
XML Schema; this includes integers, doubles, and decimals as well as support for time durations
such as day, month, and year. You can also import types from other XML Schemas if you are using
a schema-aware processor.

NOTE XSLT 2.0 allows for two types of processors: basic and schema-aware.

The latter allows you to use data types from third-party schema as well as the

built-in ones from XML Schema; they also allow validation of both the input and

the output document based on a schema. Saxon has a schema-aware version

but it requires a paid-for license so this aspect of version 2.0 in is not covered in

the examples.

Support for these extra types means that you can now label variables, templates and functions as
holding, outputting and returning, respectively, a particular type. This means that if you try to use
text where an integer had been expected, the processor will fl ag an error rather than try to perform
a silent conversion. This makes debugging much easier. The full list of built-in types is available at
http://www.w3.org/TR/xpath-functions/#datatypes. You’ll see how to use some of the newer
date time types when you’ve covered the next new feature, functions.

Creating User-Defi ned Functions

The ability to create functions was sorely missing in version 1.0. In version 2.0 this is remedied
by adding the <xsl:function> element. The resulting function can be used anywhere the built-in
XPath functions, such as concat() and substring(), can be used.

The following Try It Out shows how to write a function in XSLT using the <xsl:function>
 element. You'll see the process involved in converting a named template to a function, how the code
differs, and what advantages a function has over a template.

c08.indd 285c08.indd 285 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/TR/xpath-functions/#datatypes

286 ❘ CHAPTER 8 XSLT

TRY IT OUT Creating a User-Defi ned Function

You’re going to take another look at the example shown in Listing 8-19 where you converted a date
in the standard XML format, yyyy-mm-dd, to a more user-friendly date month-name year. This time
you’ll replace the named template with a function.

1. Create the fi le in Listing 8-22, DateFunctions.xslt, which will replace DateTemplates.xslt.

LISTING 8-22: DateFunctions.xslt

<xsl:stylesheet version=”2.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:myData=”http://wrox.com/namespaces/embeddedData”
 xmlns:myFunc=”http://wrox.com/namespaces/functions/datetime”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 exclude-result-prefixes=”myFunc”>

 <xsl:variable name=”thisDocument” select=”document(‘’)” />

 <myData:Months>
 <Month index=”1”>January</Month>
 <Month index=”2”>February</Month>
 <Month index=”3”>March</Month>
 <Month index=”4”>April</Month>
 <Month index=”5”>May</Month>
 <Month index=”6”>June</Month>
 <Month index=”7”>July</Month>
 <Month index=”8”>August</Month>
 <Month index=”9”>September</Month>
 <Month index=”10”>October</Month>
 <Month index=”11”>November</Month>
 <Month index=”12”>December</Month>
 </myData:Months>

 <xsl:function name=”myFunc:iso8601DateToDisplayDate” as=”xs:string”>
 <xsl:param name=”iso8601Date” as=”xs:date” />
 <xsl:variable name=”yearPart”
 select=”year-from-date($iso8601Date)” as=”xs:integer” />
 <xsl:variable name=”monthPart”
 select=”month-from-date($iso8601Date)” as=”xs:integer” />
 <xsl:variable name=”monthName” select=
“$thisDocument/xsl:stylesheet/myData:Months/Month[@index = number($monthPart)]”
/>
 <xsl:variable name=”datePart”
 select=”day-from-date($iso8601Date)” as=”xs:integer” />
 <xsl:value-of select=”concat($datePart, ‘ ‘, $monthName, ‘ ‘, $yearPart)” />
 </xsl:function>
</xsl:stylesheet>

Notice how you need to add two new namespaces to the top of the fi le: one for the function you are
going to declare, and one to use the data types from the XML Schema namespace. You also need to make
sure that the version attribute is now set to 2.0; this will be the case for all transforms from now on.

Available for
download on
Wrox.com

c08.indd 286c08.indd 286 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://wrox.com/namespaces/embeddedData
http://wrox.com/namespaces/functions/datetime
http://www.w3.org/2001/XMLSchema
http://Wrox.com

Using XSLT 2.0 ❘ 287

2. Modify Listing 8-21 so that instead of calling the named templates, it uses the newly created func-
tion as shown in Listing 8-23. Notice how you need to add the myFunc namespace to the top of
this fi le too.

LISTING 8-23: PeopleToHtml-UsingFunctions.xslt

<xsl:stylesheet version=”2.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:myFunc=”http://wrox.com/namespaces/functions/datetime”>

 <xsl:include href=”DateFunctions.xslt” />
 <xsl:param name=”targetYear” select=”3000” />

 <xsl:template match=”/”>
 <html>
 <head>
 <title>Famous People</title>
 </head>
 <body>
 <h1>Famous People</h1>
 <hr />
 <xsl:apply-templates select=”People/Person” mode=”menu”>
 <xsl:sort select=”translate(@bornDate, ‘-’, ‘’)” data-type=”number”/>
 </xsl:apply-templates>
 <hr />
 <table>
 <caption>Famous People</caption>
 <thead>
 <tr>
 <th>Name</th>
 <th>Born</th>
 <th>Died</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates select=”People/Person” mode=”details”>
 <xsl:sort select=”translate(@bornDate, ‘-’, ‘’)”
 data-type="number"/>
 </xsl:apply-templates>
 </tbody>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="Person" mode="menu">

 <xsl:value-of select="Name" />

 </xsl:template>

Available for
download on
Wrox.com

continues

c08.indd 287c08.indd 287 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://wrox.com/namespaces/functions/datetime
http://Wrox.com

288 ❘ CHAPTER 8 XSLT

LISTING 8-23 (continued)

 <xsl:template match="Person" mode="details">
 <xsl:variable name="rowCSS">
 <xsl:choose>
 <xsl:when test="position() mod 2 = 0">color:#0000aa;</xsl:when>
 <xsl:otherwise>color:#006666;</xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:variable name="nameCSS">
 <xsl:if
 test="number(substring(@bornDate, 1, 4)) > $targetYear">color:red;</xsl:if>
 </xsl:variable>
 <tr style="{$rowCSS}">
 <td style="{$nameCSS}">

 <xsl:value-of select="Name" />

 </td>
 <td>
 <xsl:value-of select=”myFunc:iso8601DateToDisplayDate(@bornDate)” />
 </td>
 <td>
 <xsl:value-of select=”myFunc:iso8601DateToDisplayDate(@diedDate)” />
 </td>
 <td>
 <xsl:value-of select=”Description” />
 </td>
 </tr>
 </xsl:template>

</xsl:stylesheet>

3. Run the transformation using one of the following command lines:

java net.sf.saxon.Transform -s:people.xml
 -xsl:peopleToHtml-UsingFunctions.xslt -o:people-usingFunctions.html

or:

transform -s:people.xml -xsl:peopleToHtml-UsingFunctions.xslt -o:people-usingFunctions
.html

The results will be the same as the named template version.

How It Works

The following code snippet shows the basic structure of the function:

<xsl:function name=”myFunc:iso8601DateToDisplayDate” as=”xs:string”>
 <xsl:param name=”iso8601Date” as=”xs:date” />
 <!-- rest of function -->
</xsl:function>

c08.indd 288c08.indd 288 05/06/12 5:30 PM05/06/12 5:30 PM

Using XSLT 2.0 ❘ 289

The function is declared using the new <xsl:function> element. This has a name parameter, which
must take a qualifi ed name, that is, one with a prefi x referring to a previously declared namespace.
It’s also good practice to specify the return type of the function; in this case it will be an xs:string as
defi ned in the XML Schema specifi cation so this too will be a qualifi ed name. Inside the function you
have an <xsl:param> as before—the only difference is that this too has its type declared; in this case it
will be an xs:date as shown in the following code:

<xsl:function name=”myFunc:iso8601DateToDisplayDate” as=”xs:string”>
 <xsl:param name=”iso8601Date” as=”xs:date” />
 <xsl:variable name=”yearPart”
 select=”year-from-date($iso8601Date)” as=”xs:integer” />
 <xsl:variable name=”monthPart”
 select=”month-from-date($iso8601Date)” as=”xs:integer” />
 <xsl:variable
 name=”monthName” select=
 “$thisDocument/xsl:stylesheet/myData:Months/Month[@index = number($monthPart)]” />
 <xsl:variable name=”datePart”
 select=”day-from-date($iso8601Date)” as=”xs:integer” />
 <xsl:value-of select=”concat($datePart, ‘ ‘, $monthName, ‘ ‘, $yearPart)” />
</xsl:function>

The body of the function is similar to the named template from Listing 8-19. You separate the parts of
the date into different variables; this time, though, you don’t use string manipulation but take advan-
tage of some of XPath’s newer date handling functions, such as year-from-date(). Again the variables
have an as attribute to specify the type they will hold.

To be fair, this hasn’t added a lot of value; the function is still much the same size and complexity. The
bigger win comes in using it. The ungainly call to the named template is now a simple one-line
<xsl:value> instruction:

<td>
 <xsl:value-of select=”myFunc:iso8601DateToDisplayDate(@bornDate)” />
</td>

In fact, although this example used converting a date to a more user-friendly format as an example of
how to write a function, this was such a common request from version 1.0 users that XSLT now has a
built-in format-date() function. This can take a standard date and an output pattern. This allows you
to dispense with your included DateFunctions.xslt and just use the following:

<td>
 <xsl:value-of select=”format-date(@bornDate, ‘[D1] [MNn] [Y]’)” />
</td>

PeopleToHtml-FormatDate.xslt

The full fi le is included in the code download as PeopleToHtml-FormatDate.xslt.

You can fi nd plenty of examples of how to use the format-date() function and the different options
available for the pattern, as well as how to request different languages for the month names, at
www.w3.org/TR/xslt20/#format-date.

Available for
download on
Wrox.com

c08.indd 289c08.indd 289 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/TR/xslt20/#format-date
http://Wrox.com

290 ❘ CHAPTER 8 XSLT

The next new features you’ll cover are how to create multiple documents from one transformation
and how to use multiple documents as input.

Creating Multiple Output Documents

Many people using version 1.0 requested the ability to produce more than one output document
from a single transformation. A common use case was where the input document had many child
elements underneath the root, perhaps a list of employees, and each one was to be formatted
and output separately. Many processor vendors added extensions to their products to allow this
but in XSLT 2.0 there is a new instruction, <xsl:result-document>, that allows this task to be
performed quite simply. For this example you’ll take People.xml and create a transformation
that splits it into three documents, one for each <Person> element. The code is shown in
Listing 8-24.

LISTING 8-24: PeopleToSeparateFiles.xslt

<xsl:stylesheet version=”2.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:template match=”/”>
 <personCount>
 <xsl:value-of select=”count(People/Person)”/>
 </personCount>
 <xsl:apply-templates select=”People/Person” />
 </xsl:template>

 <xsl:template match=”Person”>
 <xsl:result-document href=”Person{position()}.xml”>
 <xsl:copy-of select=”.” />
 </xsl:result-document>
 </xsl:template>

</xsl:stylesheet>

The fi rst template matches the root node and outputs an element containing the number of
<Person> elements in the source fi le. This acts as a report for the transformation. The Person
elements are then selected using <xsl:apply-templates> and matched by the second template.
To output a second document you use the <xsl:result-document> element along with its href
attribute to specify the name of the output fi le. Here you’ve said that the name should be
PersonN.xml with the N replaced by the position of the Person element in the set. Within
the <xsl:result-document> you’ve simply done a deep copy of the current node, so all of the
<Person> elements will appear. If you run one of the following command lines:

java net.sf.saxon.Transform -s:people.xml
 -xsl:peopleToSeparateFiles.xslt -o:peopleReport.xml

or:

transform -s:people.xml -xsl:peopleToSeparateFiles.xslt -o:peopleReport.xml

Available for
download on
Wrox.com

c08.indd 290c08.indd 290 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com

Using XSLT 2.0 ❘ 291

you’ll get four new fi les. There will be a standard output, which will contain the following code:

<personCount>3</personCount>

peopleReport.xml

Then there will be three fi les named Person1.xml, Person2.xml, and Person3.xml produced in the
same folder as the XSLT. They will each contain one <Person> element. For example, Person2.xml
looks like:

<Person bornDate=”1917-11-19” diedDate=”1984-10-31”>
 <Name>Indira Gandhi</Name>
 <Description>
 Indira Gandhi was India’s first female prime minister and was
 assassinated in 1984.
 </Description>
</Person>

Person2.xml

This technique of splitting a larger XML document into smaller ones is often used in situations
where orders are received via XML. The actual orders, from various clients, are typically aggregated
by a third party into one large document and need to be treated separately. They are fi rst split into
individual orders and then processed. The advantages of splitting before processing are to make
it easier to identify which order is a problem if an error should arise as well as being able to process
each order differently if, for example, there were varying business rules for each customer.

Using the collection() Function

The opposite task of splitting one fi le into many is processing many fi les at once, and this is achieved
using the collection() function. The collection() function can be used in a number of ways,
but commonly it is used to process a complete folder or tree of folders. As a simple example you’ll
create a style sheet that takes the three PersonN.xml fi les created in Listing 8-24 and recombines
them. The way that processors fully implement the collection() function is vendor dependent and
Saxon has a number of extra features that allow the documents in the folder to be fi ltered based on
their name. You will pass a fi lter along with the name of the folder to be treated so that only the tar-
get fi les are combined. The XSLT is shown in Listing 8-25.

LISTING 8-25: CombinePersonElements.xslt

<xsl:stylesheet version=”2.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:template name=”main”>
 <People>
 <xsl:for-each
 select=”collection(‘file:///C:/Xml/Examples/Files?select=Person*.xml’)”>
 <xsl:copy-of select=”.”/>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

continues

c08.indd 291c08.indd 291 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com
http://Wrox.com
http://Wrox.com

292 ❘ CHAPTER 8 XSLT

LISTING 8-25 (continued)

 </xsl:for-each>
 </People>
 </xsl:template>

</xsl:stylesheet>

The fi rst thing to note is the name attribute on the <xsl:template> element. Because you won’t be
processing a single source document you need to be able to specify where processing starts. The tem-
plate contains a literal element, <People>, which will hold all the combined <Person> elements. It
then uses <xsl:for-each> to process all fi les returned from the collection() function. This takes
a single string parameter, which takes the URI to a folder and then adds a querystring parameter
named select. This accepts a pattern that any found fi les must match if they are to be returned.
The pattern says the name must start with Person, be followed by some extra characters, and end
with .xml. The path to the folder needs to be a URI so even in Windows it uses the forward slash as
a folder delimiter and must start with the file:// scheme. You’ll obviously have to modify the path
to your fi les if you want to test this example. To run this transformation you need a slightly different
command line, like so:

java saxon.net.sf.Transform -it:main
 -xsl:combinePersonElements.xslt -o:CombinedPerson.xml

or:

transform -it:main -xsl:combinePersonElements.xslt -o:CombinedPerson.xml

Instead of supplying a source document with the -s switch you specify an initial template with
the -it switch. The output fi le will be the same as your initial People.xml.

Grouping in XSLT 2.0

A common use case in XSLT is to group elements in various ways and then process them together.
For example, an input fi le may contain a list of all employees and the requirement is to group them
alphabetically before displaying their information. This was a challenge in version 1.0 but has
become much simpler in version 2.0 with the addition of the new elements and functions.

The fi le used for the examples so far, People.xml from Listing 8-1, doesn’t have enough <Person>
elements for grouping to be demonstrated so another fi le, Employees.xml, is used for this example.
The fi le is shown in Listing 8-26.

LISTING 8-26: Employees.xml

<employees>
 <employee firstName=”Joe” lastName=”Fawcett”
 jobTitle=”Developer” department=”IT”/>
 <employee firstName=”Max” lastName=”Bialystock”
 jobTitle=”CEO” department=”Management”/>

Available for
download on
Wrox.com

c08.indd 292c08.indd 292 05/06/12 5:30 PM05/06/12 5:30 PM

http://Wrox.com

Using XSLT 2.0 ❘ 293

 <employee firstName=”Phineas” lastName=”Barnum”
 jobTitle=”Head of Sales” department=”Sales and Marketing”/>
 <employee firstName=”Leo” lastName=”Bloom”
 jobTitle=”Auditor” department=”Accounts”/>
 <employee firstName=”Danny” lastName=”Ayers”
 jobTitle=”Developer” department=”IT”/>
 <employee firstName=”Carmen” lastName=”Ghia”
 jobTitle=”PA to the VP of Products” department=”Management”/>
 <employee firstName=”Ulla” lastName=”Anderson”
 jobTitle=”Head of Promotions” department=”Sales and Marketing”/>
 <employee firstName=”Grace” lastName=”Hopper”
 jobTitle=”Developer” department=”IT”/>
 <employee firstName=”Bob” lastName=”Cratchit”
 jobTitle=”Bookkeeper” department=”Accounts”/>
 <employee firstName=”Charles” lastName=”Babbage”
 jobTitle=”Head of Infrastructure” department=”IT”/>
 <employee firstName=”Roger” lastName=”De Bris”
 jobTitle=”VP of Products” department=”Management”/>
 <employee firstName=”Willy” lastName=”Loman”
 jobTitle=”Salesman” department=”Sales and Marketing”/>
 <employee firstName=”Franz” lastName=”Liebkind”
 jobTitle=”Developer” department=”IT”/>
 <employee firstName=”Luca” lastName=”Pacioli”
 jobTitle=”Accountant” department=”Accounts”/>
 <employee firstName=”Lorenzo” lastName=”St. DuBois”
 jobTitle=”Project Manager” department=”IT” />
</employees>

Your requirement is to output each department in a separate element and, within each depart-
ment, output the employees in alphabetical order. You’ll be using the new <xsl:for-each-group>
instruction as well as the current-group() and current-grouping-key() functions.

The style sheet is shown in Listing 8-27.

LISTING 8-27: EmployeesByDepartment.xslt

<xsl:stylesheet version=”2.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:template match=”/”>
 <employeesByDepartment>
 <xsl:for-each-group select=”employees/employee” group-by=”@department”>
 <xsl:sort select=”@department” data-type=”text” />
 <department name=”{current-grouping-key()}”>
 <xsl:apply-templates select=”current-group()”>
 <xsl:sort select=”@lastName” data-type=”text” />
 <xsl:sort select=”@firstName” data-type=”text” />
 </xsl:apply-templates>
 </department>
 </xsl:for-each-group>
 </employeesByDepartment>
 </xsl:template>

Available for
download on
Wrox.com

continues

c08.indd 293c08.indd 293 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com

294 ❘ CHAPTER 8 XSLT

LISTING 8-27 (continued)

 <xsl:template match=”employee”>
 <employee jobTitle=”{@jobTitle}”>
 <xsl:value-of select=”concat(@lastName, ‘, ‘, @firstName)”/>
 </employee>
 </xsl:template>
</xsl:stylesheet>

The following steps explain how the transformation is accomplished and what role the newly intro-
duced elements, such as <xsl:for-each-group>, play in the proceedings:

 1. After matching the root node and creating an <employeesByDepartment> element to hold
your results, use the new <xsl:for-each-group> element to select all the <employee>
elements.

 2. Then specify, via the group-by attribute, that you want to group on the department
attribute.

 3. Follow this with a standard <xsl:sort> to make sure that the department names are out-
put in alphabetical order.

 4. After sorting, output a <department> element with its name attribute set to the value of
the current-grouping-key() function. This is a handy way to fi nd out the actual value of
each department.

 5. Once the <department> element is output, use <xsl:apply-templates> to process the
individual <employee> elements. Select these by using the current-group() function,
which holds all of the nodes currently being processed as part of the <xsl:for-each-
group> element. Again these elements are sorted, fi rst on the lastName attribute and then
by firstName.

The second template, matching the <employee> elements, just uses standard methods to output a
new <employee> element along with their department and their full name. If you run one of the fol-
lowing commands (on one line):

java net.sf.saxon.Transform -s:employees.xml
 -xsl:EmployeesByDepartment.xslt -o:EmployeesByDepartment.xml

or:

transform -s:employees.xml
 -xsl:EmployeesByDepartment.xslt -o:EmployeesByDepartment.xml

you’ll see the resulting fi le as shown in Figure 8-6.

c08.indd 294c08.indd 294 05/06/12 5:30 PM05/06/12 5:30 PM

Using XSLT 2.0 ❘ 295

The next new feature you’ll cover is how to process non-XML input using XSLT.

Handling Non-XML Input with XSLT 2.0

As with most of the new features in version 2.0, many 1.0 users requested that 2.0 be equipped to
handle input documents that were not XML. A typical use case is to convert a traditional CSV fi le,
maybe exported from Excel or a legacy database system, into an XML format that could then be
consumed by a separate application. There are two new features in version 2.0 that make this pos-
sible. First is the unparsed-text() function, which, as the name implies, enables the retrieval of a
text fi le the URI of which is specifi ed as an argument, similar to the document() function. The sec-
ond feature is the XPath tokenize() function, which is used to split the text into separate tokens
based on a regular expression. The example that follows takes a simple three-column CSV fi le and
uses these two new features to create an XML representation of the data.

The fi rst fi le is shown in Listing 8-28. This is the CSV that you should import to perform the
 following steps. It has three columns for last name, fi rst name, and job title.

FIGURE 8-6

NOTE If you only have access to version 1.0 and need to fulfi ll this requirement,

the best approach is known as Muenchian grouping. It’s not easy but it is doable;

there are some good examples at www.jenitennison.com/xslt/grouping/

muenchian.html.

c08.indd 295c08.indd 295 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.jenitennison.com/xslt/grouping/muenchian.html
http://www.jenitennison.com/xslt/grouping/muenchian.html

296 ❘ CHAPTER 8 XSLT

LISTING 8-28: Employees.csv

Fawcett, Joe, Developer
Ayers, Danny, Developer
Lovelace, Ada, Project Manager

 1. Start the XSLT by declaring a variable to hold the path to the CSV fi le; this is passed to the
transformation on the command line:

 <xsl:stylesheet version=”2.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

 <xsl:param name=”dataPath” select=”’’” as=”xs:string”/>
 </xsl:stylesheet>

 2. Next add a variable that uses dataPath as the argument to unparsed-text() and stores it
for use later:

 <xsl:stylesheet version=”2.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

 <xsl:param name=”dataPath” select=”’’” as=”xs:string”/>
 <xsl:variable name=”employeesText” select=”unparsed-text($dataPath)”
 as=”xs:string” />
 </xsl:stylesheet>

 3. Now comes the main template. First take the CSV data and split it into separate lines by
using the tokenize() function with a second argument of \r?\n; this means split the data
whenever you encounter either a carriage return followed by a newline character or just a
newline character.

 <xsl:stylesheet version=”2.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

 <xsl:param name=”dataPath” select=”’’” as=”xs:string”/>
 <xsl:variable name=”employeesText” select=”unparsed-text($dataPath)”
 as=”xs:string” />

 <xsl:template name=”main”>
 <xsl:variable name=”lines” select=”tokenize($employeesText, ‘\r?\n’)”
 as=”xs:string*” />

 </xsl:template>
 </xsl:stylesheet>

 4. Then use <xsl:for-each> to process each line and use tokenize() once more, this
time splitting on a comma followed by optional whitespace as indicated by the regular
expression, \s*:

Available for
download on
Wrox.com

c08.indd 296c08.indd 296 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2001/XMLSchema
http://Wrox.com

Using XSLT 2.0 ❘ 297

 <xsl:stylesheet version=”2.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

 <xsl:param name=”dataPath” select=”’’” as=”xs:string”/>
 <xsl:variable name=”employeesText” select=”unparsed-text($dataPath)”
 as=”xs:string” />

 <xsl:template name=”main”>
 <xsl:variable name=”lines” select=”tokenize($employeesText, ‘\r?\n’)”
 as=”xs:string*” />
 <employees>
 <xsl:for-each select=”$lines”>
 <employee>
 <xsl:variable name=”employeeData” select=”tokenize(., ‘,\s*’)”
 as=”xs:string+” />

 </employee>
 </xsl:for-each>
 </employees>
 </xsl:template>
 </xsl:stylesheet>

 5. Finally, add the XML elements you need and use the information held in employeeData.
Because there were three columns in your CSV there will be three tokens that can be
accessed by position. The full XSLT is shown in Listing 8-29.

LISTING 8-29: EmployeesFromCSV.xslt

<xsl:stylesheet version=”2.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

 <xsl:param name=”dataPath” select=”’’” as=”xs:string”/>
 <xsl:variable name=”employeesText” select=”unparsed-text($dataPath)”
 as=”xs:string” />

 <xsl:template name=”main”>
 <xsl:variable name=”lines” select=”tokenize($employeesText, ‘\r?\n’)”
 as=”xs:string*” />
 <employees>
 <xsl:for-each select=”$lines”>
 <employee>
 <xsl:variable name=”employeeData” select=”tokenize(., ‘,\s*’)”
 as=”xs:string+” />
 <lastName>
 <xsl:value-of select=”$employeeData[1]”/>
 </lastName>
 <firstName>
 <xsl:value-of select=”$employeeData[2]”/>
 </firstName>
 <jobTitle>
 <xsl:value-of select=”$employeeData[3]”/>

Available for
download on
Wrox.com

continues

c08.indd 297c08.indd 297 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/1999/XSL/Transform
http://Wrox.com

298 ❘ CHAPTER 8 XSLT

LISTING 8-29 (continued)

 </jobTitle>
 </employee>
 </xsl:for-each>
 </employees>
 </xsl:template>
</xsl:stylesheet>

If you run this by using the following command line (on one line):

java saxon.net.sf.Transform -it:main -xsl:EmployeesFromCSV.xslt
 dataPath=Employees.csv -o:EmployeesFromCSV.xml

or:

transform -it:main -xsl:EmployeesFromCSV.xslt
 dataPath=Employees.csv -o:EmployeesFromCSV.xml

then, assuming Employees.csv is in the same directory as the style sheet, you’ll see the results as in
Listing 8-30.

LISTING 8-30: EmployeesFromCSV.xml

<employees xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
 <employee>
 <lastName>Fawcett</lastName>
 <firstName>Joe</firstName>
 <jobTitle>Developer</jobTitle>
 </employee>
 <employee>
 <lastName>Ayers</lastName>
 <firstName>Danny</firstName>
 <jobTitle>Developer</jobTitle>
 </employee>
 <employee>
 <lastName>Lovelace</lastName>
 <firstName>Ada</firstName>
 <jobTitle>Project Manager</jobTitle>
 </employee>
</employees>

Available for
download on
Wrox.com

NOTE You’ll notice there’s an unused namespace declaration in the output fi le.

This is because you declared it in the XSLT and it was copied to the output, just in

case it was needed. If you want to tidy the output and remove it you can modify

the <xsl:stylesheet> element by adding an exclude-result-prefixes

attribute and giving it the value of xs, hence: <xsl:stylesheet exclude-

result-prefixes=”xs” …… />. This tells the processor that you don’t need the

declaration appearing in the output XML.

c08.indd 298c08.indd 298 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/2001/XMLSchema
http://Wrox.com

Using XSLT 2.0 ❘ 299

As well as incorporating plain text from external sources and being able to use the tokenize()
function to break it into smaller parts there is also a powerful new element in XSLT 2.0 that can be
used to separate textual content into two groups, those that match a regular expression and those
that don’t. This element is <xs:analyze-string>.

For an example of its use take a look at the source document in Listing 8-31:

LISTING 8-31: Addresses.xml

<addresses>
 <address name=”The White House”>
 1600 Pennsylvania Ave NW, Washington, DC 20500-0001
 </address>
 <address name=”The Statue of Liberty”>
 Liberty Island, New York, NY 10004
 </address>
 <address name=”The Empire State Building”>
 350 5th Avenue, New York, NY 10118
 </address>
 <address name=”Utopia”>
 Who knows?
 </address>
</addresses>

Listing 8-31 shows the addresses of three famous landmarks and a fi ctitious address, designed to
show that it can cope with data that is in an unexpected format. The aim is to transform this fi le so
that each valid address is split into four constituent parts representing the fi rst line of the address,
city, state and zip code. The transformation will use the <xsl:analyze-string> element as shown
in Listing 8-32:

LISTING 8-32: Analyze-String.Xslt

xsl:stylesheet version=”2.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:output indent=”yes” />

 <xsl:template match=”addresses”>
 <addresses>
 <xsl:apply-templates select=”address” />
 </addresses>
 </xsl:template>

 <xsl:template match=”address”>
 <address name=”{@name}”>
 <xsl:analyze-string select=”.”
 regex=
 “^\s*([^,]+)\s*,\s*([^,]+)\s*,\s*([A-Z]{{2}})\s*(\d{{5}}(\-\d{{4}})?)\s*$”>
 <xsl:matching-substring>
 <addressLine1><xsl:value-of select=”regex-group(1)”/></addressLine1>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

continues

c08.indd 299c08.indd 299 05/06/12 5:30 PM05/06/12 5:30 PM

http://www.w3.org/1999/XSL/Transform
http://Wrox.com
http://Wrox.com

300 ❘ CHAPTER 8 XSLT

LISTING 8-32 (continued)

 <city><xsl:value-of select=”regex-group(2)”/></city>
 <state><xsl:value-of select=”regex-group(3)”/></state>
 <zip><xsl:value-of select=”regex-group(4)”/></zip>
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <xsl:value-of select=”.” />
 </xsl:non-matching-substring>
 </xsl:analyze-string>
 </address>
 </xsl:template>
</xsl:stylesheet>

The code starts in the usual way, matching the <addresses> element and, within that template,
calling <xsl:apply-templates> to process each individual <address>.

The second template, the one that matches <address>, contains the new <xsl:analyze-string>
element. This has two attributes: select, that chooses what text to process, and regex which
defi nes the regular expression used to break down the text into smaller units.

The regular expression is little complex, but it can be broken down into four main parts:

 ➤ ^\s*([^,]+)\s*,

The fi rst section starts with the caret (̂), which means match from the beginning of the
string, and \s* means any number of spaces, including none should come fi rst. These are
followed by a group, in parentheses, which is defi ned as [^,]+ representing any character
that is not a comma occurring one or more times. This is followed by any number of spaces
(\s*) and then another comma (,). This will be your fi rst regular expression group and is
used as the value for <addressLine1>.

 ➤ \s*([^,]+)\s*,

The next part of the expression is almost identical; again it looks for any number of spaces
(\s*) followed by a number of non-comma characters, some more spaces, and a comma.
This group is used for the <city> element.

 ➤ \s*([A-Z]{{2}})

The third part of the regular expression is used to populate the <state> element.
It looks for a number of spaces followed by two uppercase characters in the range A to Z
([A-Z]). Notice how the quantity specifi er, 2, must appear between doubled braces, {{2}},
as opposed to the standard single braces, {}, normally used in regular expressions. This is
because single braces are used to defi ne embedded XPath in XSLT.

 ➤ \s*(\d{{5}}(-\d{{4}})?)\s*$

The last part of the expression is used to extract the contents for the <zip> element. It
searches for some spaces followed by digits (\d) that occur precisely fi ve times ({{5}}). It
then looks for a hyphen followed by four digits (\d{{4}}). This secondary group is followed
by a question mark (?) meaning that the latter part of the zip code is optional. The fi nal $
sign is used to show that the regular expression extends to cover all the way to the end of
the string being analyzed.

c08.indd 300c08.indd 300 05/06/12 5:30 PM05/06/12 5:30 PM

Using XSLT 2.0 ❘ 301

The <xsl:matching-substring> element is called whenever the regex succeeds (as shown in the
following code). Within this element you use the regex-group(n) function to output any matching
sections of the regular expression that appear within parentheses. You specify which section by
passing in an index to regex-group(). There are fi ve sets of parentheses in the expression, but only
four are needed as the last one is for the second part of the zip code and this group is also contained
within the fourth one.

 <xsl:matching-substring>
 <addressLine1><xsl:value-of select=”regex-group(1)”/></addressLine1>
 <city><xsl:value-of select=”regex-group(2)”/></city>
 <state><xsl:value-of select=”regex-group(3)”/></state>
 <zip><xsl:value-of select=”regex-group(4)”/></zip><!-- -->
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <xsl:value-of select=”.” />
 </xsl:non-matching-substring>
 </xsl:analyze-string>

The fi nal part of the code is called if the regular expression doesn’t match all or part of the string
being analyzed. In this case you use it when an address does not appear in the expected format. In
this case the original address is simply output verbatim.

You can try the code for yourself by using one of the following command lines:

java net.sf.saxon.Transform -s:addresses.xml -xsl:analyze-string.xslt
 -o:ParsedAddresses.xml

or:

Transform -s:addresses.xml -xsl:analyze-string.xslt -o:ParsedAddresses.xml

You should get a result similar to Listing 8-33:

LISTING 8-33: ParsedAddresses.xml

<addresses>
 <address name=”The White House”>
 <addressLine1>1600 Pennsylvania Ave NW</addressLine1>
 <city>Washington</city>
 <state>DC</state>
 <zip>20500-0001</zip>
 </address>
 <address name=”The Statue of Liberty”>
 <addressLine1>Liberty Island</addressLine1>
 <city>New York</city>
 <state>NY</state>
 <zip>10004</zip>
 </address>
 <address name=”The Empire State Building”>
 <addressLine1>350 5th Avenue</addressLine1>
 <city>New York</city>

Available for
download on
Wrox.com

continues

c08.indd 301c08.indd 301 05/06/12 5:30 PM05/06/12 5:30 PM

http://Wrox.com

302 ❘ CHAPTER 8 XSLT

LISTING 8-33 (continued)

 <state>NY</state>
 <zip>10118</zip>
 </address>
 <address name=”Utopia”>
 Who knows?
 </address>
</addresses>

NOTE There is a much better all-purpose CSV-to-XML converter available from

http://andrewjwelch.com/code/xslt/csv/csv-to-xml_v2.html that allows

for quoted values and column headings. A study of it will provide further insight

into the string handling features of XSLT 2.0 such as the <xsl:analyze-string>

element shown in Listing 8-32.

That concludes your tour of XSLT 2.0; you’ll now take a brief look at what’s possibly coming in
version 3.0.

XSLT AND XPATH 3.0: WHAT’S COMING NEXT?

XSLT 3.0 is currently at draft status. By looking at the W3C’s specifi cations it seems like the main
drive is to make it a much more powerful functional language. Most functional languages share cer-
tain features, the main one being the ability to treat functions as arguments to other functions; for
example, the map() function, which takes two arguments, a sequence of nodes, and a function to
apply to each node in turn. This and similar functions are present in the current XPath draft and it
seems certain that they’ll be included in the fi nal spec.

There are also a number of new instructions for XSLT. These include <xsl:try> and <xsl:catch>
for better error handling; and <xsl:iterate> which can select a sequence of nodes and then pro-
cess them one by one but which also has the ability to cease processing and break out of the loop if
required—something not currently possible with <xsl:for-each> because there is no guaranteed
order of processing. There is also <xsl:evaluate>, which enables dynamic evaluation of XPath.
You can construct a string and have it treated as an XPath expression; this is something that has
been requested since XSLT launched.

If you’re desperate to try out these new features some of them are implemented already in the Saxon
processor. Go to www.saxonica.com/documentation/using-xsl/xslt30.xml for more informa-
tion on how to turn on version 3.0 processing, but note that currently it’s still in an experimental
state and is only available for the paid for versions of Saxon.

c08.indd 302c08.indd 302 05/06/12 5:30 PM05/06/12 5:30 PM

http://andrewjwelch.com/code/xslt/csv/csv-to-xml_v2.html
http://www.saxonica.com/documentation/using-xsl/xslt30.xml

Summary ❘ 303

SUMMARY

In this chapter you’ve learned:

 ➤ The basic premise behind XSLT is transforming an XML document to a different XML
format, HTML or plain text.

 ➤ The basic <xsl:template> element matches specifi ed XML and outputs new content

 ➤ <xsl:apply-templates> groups nodes that are then processed by their matching
<xsl:template>.

 ➤ XPath is used throughout XSLT to specify nodes to process and to extract specifi c
data items.

 ➤ The more advanced elements <xsl:include> and <xsl:import> enable you to write
reusable code modules.

 ➤ Improvements in XSLT 2.0 include better handling of non-XML content using the
unparsed-text() function as well as better processing of text through regular expressions
by using functions such as tokenize() and elements such as <analyze-string>.

 ➤ Better error handling using <try>/<catch> and dynamic evaluation of strings as XPath
using <xsl:evaluate> are coming up in the next version of XSLT.

EXERCISES

Answers to Exercises can be found in Appendix A.

 1. Give three examples of functions that are available in XSLT but not in pure XPath.

 2. Write a style sheet that accepts two currency codes and an amount as parameters and outputs

the appropriate converted values using a simulated web service that is actually a hard-coded

XML document (or write a web service if you’re feeling adventurous).

c08.indd 303c08.indd 303 05/06/12 5:30 PM05/06/12 5:30 PM

304 ❘ CHAPTER 8 XSLT

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

XSLT 1.0 Uses To transform XML to another XML format, HTML, or plain text.

XSLT 2.0 Uses Same as for 1.0 but can also transform plain text.

Language Style Declarative: Specify what you want not how you want

Functional: Output is a function of input

Main Elements: <xsl:template> elements are executed when the processor encoun-

ters items that correspond to their match attribute.

<xsl:apply-templates> elements are used to select groups of nodes

that will then be tested against each <xsl:template> elements are

used to see if they match.

Code Reusability Achieved using <xsl:import> and <xsl:include>.

XSLT 2.0 Improvements Plain text input to transformations.

Ability to declare functions.

Better text analysis using regular expressions.

Ability to group nodes and process them as a group.

c08.indd 304c08.indd 304 05/06/12 5:30 PM05/06/12 5:30 PM

PART IV
Databases

 � CHAPTER 9: XQuery

 � CHAPTER 10: XML and Databases

c09.indd 305c09.indd 305 05/06/12 5:33 PM05/06/12 5:33 PM

c09.indd 306c09.indd 306 05/06/12 5:33 PM05/06/12 5:33 PM

XQuery

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Why you should learn XQuery

 ➤ How XQuery uses and extends XPath

 ➤ Introduction to the XQuery language

 ➤ How to make and search an XML database

 ➤ When to use XQuery and when to use XSLT

 ➤ The future of XQuery, and how to learn more

XQuery is a language for searching and manipulating anything that can be represented as a
tree using the XQuery and XPath Data Model (the “XDM” that you heard about in
Chapter 7, “Extracting Data from XML”). XQuery programs (or expressions as they are
called) can access multiple documents, or even multiple databases, and extract results very
effi ciently.

XQuery builds on and extends XPath. This means that XQuery’s syntax is like XPath and
not XML element–based like XSLT.

In this chapter you will learn all about this XQuery language: what it is and how to use it. You
will also learn some rough guidelines for when to use XQuery, when to use XSLT, and when to
use both, in Chapter 19, “Case Study: XML in Publishing.” The short story is that XSLT is
often best if you expect to process entire XML documents from start to fi nish and XQuery
is often best if you are processing only part of a document, if you work with the same
document repeatedly, or if you are processing a large number of documents.

9

c09.indd 307c09.indd 307 05/06/12 5:33 PM05/06/12 5:33 PM

308 ❘ CHAPTER 9 XQUERY

XQUERY, XPATH, AND XSLT

XQuery, XPath, and XSLT share a lot of components. The best way to break down the various
relationships though is this: where XSLT uses XPath — for example, in match expressions and in
<xslt:value-of> — XQuery extends XPath. Any XPath 2 expression that you can write is also an
XQuery expression. Let’s look at each relationship separately.

NOTE Because XSLT 1 and XPath 1 were released a long time before XQuery,

XQuery 1 extends XPath version 2. W3C published a draft of XQuery 1.1 that

extended an XPath 2.1, but it was all starting to get confusing, especially since

W3C was working on XSLT 2.1 at the same time. W3C decided to rename XPath

2.1, XSLT 2.1, and XQuery 1.1 to XPath 3, XSLT 3 and XQuery 3 before they were

released as standards.

The latest versions (at the time of this writing) were still drafts, but were 3.0, so

that XQuery 3.0 and XSLT 3.0 both used XPath 3.0, built on the Data Model

(XDM) 3.0, used the Serialization 3.0 specifi cation, and so on.

In this chapter “XQuery” means XQuery 1.0 or later, and “XPath” means XPath 2

or later, unless specifi ed otherwise (for example, XPath 1).

XQuery and XSLT

Like XSLT (see Chapter 8), XQuery implementations often support a collection() function
to work on databases or on the fi lesystem (for example, with collection(“*.xml”)); however,
whereas XSLT’s greatest strength lies in apply-templates and processing entire documents, XQuery
is often best for extracting and processing small parts of documents, perhaps doing “joins” across
multiple documents. The two languages are largely equivalent, but implementations tend to be opti-
mized for these two different usages.

XQuery and XPath

Both XPath (starting with version 2) and XQuery are built on the same abstract data model, the
XDM. Because of this, XQuery is not defi ned to operate over XML documents. Instead, like XPath
2, it is defi ned to work on abstract trees called data model instances; these could be constructed
from XML documents, but they could also come from relational databases, RDF triple stores, geo-
graphical information systems, remote databases, and more.

NOTE If you have already worked through Chapter 7, you have seen two

widely-used tree structures for storing XML in memory: the document object

model (DOM) and the XPath and XQuery Data Model (XDM). If you haven’t read

that chapter, go take a quick look now, because XQuery is built on top of XPath,

the main topic of Chapter 7.

c09.indd 308c09.indd 308 05/06/12 5:33 PM05/06/12 5:33 PM

XQuery in Practice ❘ 309

Some differences do exist between XQuery and XPath, of course. The biggest one you’ll see in prac-
tice is that there is no default context item in XQuery. For example, if you try a query like the fol-
lowing you’ll get an error about no default context item.

/dictionary/entry[6]

This is because XQuery is commonly used to get information out of databases, or out of whole col-
lections of documents. So, instead you write

doc(“dictionary.xml”)/dictionary/entry[6]

and all is well.

The biggest difference between XQuery and XPath, though, and by far the most important, is that
there’s more of XQuery: it’s a full language in its own right. You look at some more examples in a
moment, but fi rst you should learn a little about where and how XQuery is used.

XQUERY IN PRACTICE

XQuery is widely used today, and lots of different implementations exist. The examples in this chap-
ter focus on two implementations, Saxon and BaseX. In addition, this section covers some of the
other areas in which XQuery has been quietly transforming whole industries.

Standalone XQuery Applications

In the previous chapter you used Saxon, a Java-based XSLT engine that you ran from the command
line. Saxon also implements XQuery, so you could use Saxon to run the examples later in this chap-
ter. Saxon reads your XML document, reads your query, runs the query against the document, and
then prints the result.

Another open source standalone application for running XQuery is BaseX, which can be used either
standalone or as a server, and which also has a graphical user interface. Dozens of other similar
XQuery programs are available.

Part of SQL

Recent editions of the SQL standard from the International Organization for Standards (ISO, not an
acronym) include a way to embed XQuery expressions in the middle of SQL statements. The major
relational databases such as Oracle, IBM DB2, and Microsoft SQL Server all implement XQuery.

Callable from Java or Other Languages

Saxon, BaseX, Qizx, and a host of other programs come with Java libraries so that Java prog-
rammers can use XQuery instead of, or alongside, the document object model (DOM). Java
programmers have reported that their programs became 100 times smaller when they moved to
using XQuery instead of the DOM, and therefore much easier to understand and maintain.

c09.indd 309c09.indd 309 05/06/12 5:33 PM05/06/12 5:33 PM

310 ❘ CHAPTER 9 XQUERY

XQuery libraries are also available for other languages, such as PHP, C++, and Perl: BaseX, Zorba,
Berkeley DB XML, and others.

A Native-XML Server

BaseX, MarkLogic (commercial), eXist, Qizx, and several other programs exist that make an index
of any number of XML documents, and can run queries against those documents using a server, so
that there’s no large startup time.

Some of these programs can also be called from a web server, using the servlet API or even as an
Apache HTTP Web Server module; some of them include web servers so that you can write entire
web-based applications in XQuery.

These programs tend to be mature, solid, robust, and very fast.

XQuery Anywhere

You can use XQuery on the cloud, in web browsers, on mobile devices, embedded inside devices —
there are too many variations to list them all! Sometimes XQuery is hidden, or forms an inconspicuous
part of a system. Apple’s Sherlock program was extensible using XQuery; a number of commercial
decision management and business support systems use XQuery, but don’t generally make a big deal
out of it.

In this chapter you’ll use two different XQuery programs. One, Saxon, is a command-line program
that reads an XQuery expression and one or more XML documents and produces a result. The sec-
ond, BaseX, is a database server that’s fast and easy to install and confi gure. BaseX runs XQuery
expressions too, but instead of loading XML documents from your hard drive it can also use a
database for better performance. You have already used Saxon in its XSLT mode. In the following
exercise you’ll install BaseX and see how easy it is to use.

TRY IT OUT Install BaseX and Run a Query

In this Try It Out you start by installing an XQuery engine to run the examples. The examples will
work in Saxon, BaseX, Qizx, Zorba, or any of a number of other XQuery programs, and you can even
run them directly from the oXygen XML editor. But, for these examples you’ll use BaseX so as to have
something specifi c to talk about.

 1. Go to www.basex.org and fi nd the Download link. It’s usually at the end of the text introducing
the product, right there on the front page.

 2. Choose the Offi cial Release. BaseX has frequent releases — at the time of writing, the current one
is BaseX 7.0.2.exe. There are a few fi les to choose from: a Windows installer as well as a .dmg
archive for Mac OS X users, and a Zip archive for others such as Linux. Download whichever fi le
is appropriate for your operating system.

 3. When you extract the archive you’ll end up with a folder that contains, amongst other things,
BaseX.jar, and possibly a batch or shell script called bin/basexgui. Either run basexgui, fi nd

c09.indd 310c09.indd 310 05/06/12 5:33 PM05/06/12 5:33 PM

http://www.basex.org

XQuery in Practice ❘ 311

and double-click the BaseX.jar fi le, or run the following at a command prompt, taking care to
keep the spaces and remembering that uppercase and lowercase are different:

java -cp BaseX.jar org.basex.BaseXGUI

 4. Make the following simple XML document (for example, in jEdit or oXygen), and call it arm-
strong.xml — you could also use the fi le from Chapter 7 if you have it, or download it from this
book’s website.

<?xml version=”1.0”?><?xml version=”1.0” encoding=”utf-8”?>
<entry id=”armstrong-john”>
 <title>Armstrong, John</title>
 <body><p>, an English physician and poet,
 was born in <born>1715</born> in the parish of Castleton in Roxburghshire,
 where his father and brother were clergymen; and having
 completed his education at the university of Edinburgh,
 took his degree in physic, Feb. 4, 1732, with much reputation.</p>
 </body>
</entry>

armstrong.xml

 5. You might want to check your fi le by running the following command; if the fi le is well-formed
(no mistakes), there will be no errors:

xmllint --noout armstrong.xml

 6. If xmllint worked, your fi le is OK. If you don’t have xmllint installed you can install it from
www.libxml.org, or just move on, because BaseX will also tell you if there are problems.

 7. Now go back to the BaseX window and, from the Database menu, choose Open And
Manage. Create a new database called “armstrong” using the armstrong.xml fi le. You
should see something like Figure 9-1, although the actual layout may vary if you have a
version of BaseX newer than 7.0.2. In the Editor region, in the tab marked File, type the
following short query:

collection(“armstrong”)//title

 8. Run the query by clicking the green triangular icon at the bottom-right of the File area, near the
middle of the entire BaseX window. You’ll see the result appear in the area underneath the arrow,
and as well as some statistics about how long the query took to run — 1.72 milliseconds in
Figure 9-1. That was running on a laptop computer; XQuery can run very fast indeed!

Available for
download on
Wrox.com

c09.indd 311c09.indd 311 05/06/12 5:33 PM05/06/12 5:33 PM

http://www.libxml.org
http://Wrox.com

312 ❘ CHAPTER 9 XQUERY

How It Works

In this Try It Out you have done three things. First, you downloaded and installed a database program.
Second, you loaded an XML document into a database. Third, you ran a query against the database
and saw the results. That’s quite a lot to do all at once! But it’s worth it, because now you can try the
other examples in this chapter in BaseX when you get to them.

The little query you just ran fi rst tells BaseX which database to use, with collection(“armstrong”),
and then uses the descendant-or-self/child shorthand // to fi nd all child elements named title
anywhere in the database. The database is rather small, with only one document, and only a single
<title> element in it, so that’s what was found.

Notice that BaseX has loaded your XML document into a database, so that it doesn’t need to parse the
XML each time. Not all XQuery implementations do that, but the ones that do can be very fast.

If you prefer, you can put your XQuery expression into a fi le, call it thetitle.xq (for example), and
run it with Saxon; you’ll also need to change collection(“armstrong”) into doc(“armstrong.xml”)
because Saxon doesn’t use a database. You can run Saxon in a command prompt window like this:

java -cp saxon9he.jar net.sf.saxon.Query thetitle.xq

You should see the same result, after the Java virtual machine has loaded.

FIGURE 9-1

c09.indd 312c09.indd 312 05/06/12 5:33 PM05/06/12 5:33 PM

Building Blocks of XQuery ❘ 313

BUILDING BLOCKS OF XQUERY

In the previous section you saw a very simple XQuery expression, just to get something working.
Your sample query was just one line long, and a lot of useful XQuery expressions are like that in
practice. But just as often you’ll see longer and more complicated constructions, some scaling up to
entire applications.

Before you learn about XQuery in detail, there are some things you should know that will help you.
This section takes a more in-depth look at some building blocks of XQuery.

FLWOR Expressions, Modules, and Functions

You learn about each of these things in detail later, but for now, you should know that whereas tem-
plates are the heart of XSLT, the heart of XQuery is in “FLWOR” expressions, in functions, and in
modules.

FLWOR (pronounced “fl ower”) stands for For, Let, Where, Order by, Return; you can think of it
as XQuery’s equivalent to the SQL SELECT statement. Here is a simple example:

for $boy in doc(“students.xml”)/students/boy
where $boy/eye-color = “yellow”
return $boy/name

students.xml

The keywords are bold just so you can see how they fi t in with the FLWOR idea; you don’t have to
type them in bold, of course. If you downloaded BaseX or Saxon, you can fetch students.xml from
the website for this book and run the example just as it is.

Although this short example doesn’t use all the components — it has no let or order by
clauses — it is still a FLWOR expression.

Following is a slightly bigger example, using a much larger XML document The sample XML docu-
ment is 4,000 lines long, and too large to print in this book; it is from the two-hundred-year-old
dictionary of biography edited by Chalmers. The full 32-volume dictionary is online at http://
words.fromoldbooks.org/, but this is just a tiny fraction of it, with simplifi ed markup:

for $dude in doc(“chalmers-biography-extract.xml”)//entry
where xs:integer($dude/@died) lt 1600
order by $dude/@died
return $dude/title

dudes-simple.xq

On the fi rst line you can see there’s a for expression starting. If you’re familiar with procedural
languages like PHP or C, note that this for is very different! In XQuery, for generates a sequence
of values. It does this by making a sequence of tuples, evaluating the body of the for expression for
each tuple, and constructing a sequence out of the result.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c09.indd 313c09.indd 313 05/06/12 5:33 PM05/06/12 5:33 PM

http://words.fromoldbooks.org/
http://words.fromoldbooks.org/
http://Wrox.com
http://Wrox.com

314 ❘ CHAPTER 9 XQUERY

Here is a simple example to help you understand tuples:

for $a in 1 to 5, $b in (“a”, “b”, “c”)
return <e id=”{$b}{$a}”/>

If you type this into the BaseX query window and run it, or put it in a text fi le and run Saxon on it
in XQuery mode (not XSLT mode), you will see this result:

<e id=”a1”/>
<e id=”b1”/>
<e id=”c1”/>
<e id=”a2”/>
<e id=”b2”/>
<e id=”c2”/>
<e id=”a3”/>
<e id=”b3”/>
<e id=”c3”/>
<e id=”a4”/>
<e id=”b4”/>
<e id=”c4”/>
<e id=”a5”/>
<e id=”b5”/>
<e id=”c5”/>

This shows fi fteen lines of output, one for each possible combination of the numbers 1 through 5
and the letters a, b, and c. The XQuery processor has generated all fi fteen combinations and, for
each combination, has evaluated the query body on the second line. The results are then put into the
sequence you see as the result. Each combination, such as (3, a), represents a single tuple.

A multi-threaded XQuery processor might evaluate the query body in parallel; on a large database
it might be faster to generate the tuples in some particular order, making best use of an in-memory
cache. All that matters is that the results end up in the right order. This is generally true in XQuery:
optimizers can rearrange your query, sometimes in quite surprising ways, as long as the result is the
same. Most times you won’t have to think about this, but if you call external functions that interact
with the outside world, you might be able to see this happening.

Now that you know a bit about tuples and for, let’s return to the code example:

for $dude in doc(“chalmers-biography-extract.xml”)//entry
where xs:integer($dude/@died) lt 1600
order by $dude/@died
return $dude/title

dudes-simple.xq

The fi rst line starts the FLWOR expression: the tuples consist of a single item each, bound to $dude,
and the items are each <entry> elements.

The next line weeds out the results, keeping only tuples in which the dude (or dudette) died after the
year 1600. The xs:integer() function converts the attribute to a number so that you can do the
comparison.

Available for
download on
Wrox.com

c09.indd 314c09.indd 314 05/06/12 5:33 PM05/06/12 5:33 PM

http://Wrox.com

Building Blocks of XQuery ❘ 315

The third line tells the XQuery processor to sort the resulting sequence by the (string) value of the
$dude/@died attribute. Hmm, that’s going to go wrong if someone died before the year 1000, so
you should change it like so:

order by xs:integer($dude/@died) ascending

ascending is the default, but now you can guess how to sort with most recent fi rst, using descend-
ing instead. The default, if there is no order by clause, is to use document order if that applies, but
otherwise it’s in the order in which the tuples are generated.

Finally, the fourth line of the listing says what to generate in the result for each tuple that was
accepted: return the title element. If you run this, you’ll get output that starts like this:

<title>
 <csc>Abu</csc>-<csc>Nowas</csc>
</title>
<title>
 <csc>Ado</csc>
</title>
<title>
 <csc>Alfes</csc>,<csc>Isaac</csc>
</title>
<title>
 <csc>Algazeli</csc>,<csc>Abou</csc>-<csc>Hamed</csc>-<csc>Mohammed</csc>
</title>

There are two diffi culties with the output generated by this example. The fi rst is that it’s hard to
read, and the second is that there’s no outermost element to make it legal XML output. It turns out
to be rather easy to generate XQuery output that is not well-formed XML, a problem that may be
partly addressed in XQuery 3.0 with an option to validate the output automatically. In the follow-
ing exercise you’ll make a version of the query that generates nicer output.

TRY IT OUT Formatting Query Results

In this exercise you’ll start with the dudes-simple.xq example fi le but change it very slightly so that
the output is formatted more readably.

 1. Type the following code into a fi le called dudes.xq; it’s similar to the previous example, so the
differences are highlighted.

<results>{
 for $dude in doc(“chalmers-biography-extract.xml”)//entry

 let $name := normalize-space(string-join($dude/title//text(), “”)),
 $died := xs:integer($dude/@died)
 where $died lt 1600
 order by $died ascending
 return <dude>{$name} (d. {$died})</dude>
}</results>

dudes.xq

Available for
download on
Wrox.com

c09.indd 315c09.indd 315 05/06/12 5:33 PM05/06/12 5:33 PM

http://Wrox.com

316 ❘ CHAPTER 9 XQUERY

 2. Run the BaseX GUI program. In the Editor area (usually on the upper left of the BaseX window,
depending on the View options you have chosen) use the Open File icon to load dudes.xq into the
editor, or copy and paste the text into the tab, or type it in directly.

 3. You will need the chalmers-biography-extract.xml fi le for this activity; you can get it from
the website for this book or from http://words.fromoldbooks.org/xml/ instead.

 4. Press the green triangle in BaseX to run the query. Alternatively, you can also run the same query
with Saxon:

java -jar saxon9he.jar -query dudes.xq > results.xml

 5. Here are the fi rst few results:

<?xml version=”1.0” encoding=”UTF-8”?>
<results>
 <dude>Abu-Nowas (810)</dude>
 <dude>Ado (875)</dude>
 <dude>Alfes, Isaac (1103)</dude>
 <dude>Algazeli, Abou-Hamed-Mohammed (1111)</dude>
 <dude>Aben-Ezra (1165)</dude>
 <dude>Ailred (1166)</dude>
 <dude>Accorso, Francis (1229)</dude>
 . . .
</results>

How It Works

The revised version of the query is a little more complex.

In this version of the query you can see that a variable, $name, was used; this is the purpose of the let
part of the FLWOR expression. You can have any number of let expressions, separated by commas.

The defi nition of $name is a little more complex. Because the defi nition is inside a FLWOR expression,
$name is defi ned once for each tuple — in this case, once for each <entry> element in the document.

First, you make a list of all the text nodes in the entry, with this XPath expression:

$dude/title//text()

Recall from what you learned about XPath in Chapter 7 that //text() is short for descendant-or-
self::text(). You can use either form, but the important thing is to get all the text nodes. For exam-
ple, in the following snippet, the <title> element contains fi ve text nodes:

<title>
 <csc>Abel</csc>, <csc>Gaspar</csc>
</title>

They are (1) the space between <title> and <csc>, (2) Abel, (3) “, ”, (4) Gaspar, and (5) the space
between </csc> and </title>. It’s the newlines at the start and end that were messing up the output

c09.indd 316c09.indd 316 05/06/12 5:33 PM05/06/12 5:33 PM

http://words.fromoldbooks.org/xml/

Building Blocks of XQuery ❘ 317

before, along with the clutter of the <csc> elements. But you don’t want to lose the spaces between
words. So you make $name be the result of taking all those text nodes and joining them together with
string-join(), but then strip leading and trailing spaces and turning multiple consecutive blanks,
including newlines, into a single space, with the normalize-space(), as follows:

normalize-space(string-join($dude/title/descendant-or-self::text(), “”))

After defi ning $name, the query defi nes $died to be the result of casting the <entry> element’s died
attribute to an integer. This step would not be needed in a schema-aware XQuery processor, if a suit-
able schema had been applied. The $died variable is just used to avoid repeating that type conversion
to integer, since the value is used twice. In general, it’s good style to avoid duplicating code.

The where clause is the same as before, except that it uses $died instead of xs:integer
($entry/@died).

The order by clause is new, and sorts the results so the people who died earlier in history are listed
sooner in the results.

The return clause previously returned a <title> element for each entry in the dictionary, and now
constructs a new <dude> element containing the person’s name and the year in which he died. But this
time the person’s name is formatted nicely, because of the work you did in defi ning the $name variable.

Finally, note that the entire query is inside a <results> element, and uses {…} to put the query expres-
sion inside the constructor for <results>. Having a single top-level element means the results are now
well-formed XML.

WARNING When you create a database or import a fi le with BaseX, there

is an option to drop spaces between elements, which will make the fi rst and

last name run together in the result. Dropping spaces is appropriate for data-

 oriented XML, but not for document-oriented XML such as this example.

XQuery Expressions Do Not Have a Default Context

In XSLT or XPath, there’s usually a current node and a context item. You can write things like //
boy[eye-color = “yellow”] or <xsl:apply-templates/>, and because there’s a default context,
the right thing happens.

In XQuery you have to be explicit, and write things like:

doc(“students.xml”)//boy[eye-color = “yellow”]/name

or, more commonly:

for $boy in doc(“students.xml”)/students/boy
where $boy/eye-color = “yellow”
return $boy/name

c09.indd 317c09.indd 317 05/06/12 5:33 PM05/06/12 5:33 PM

318 ❘ CHAPTER 9 XQUERY

THE ANATOMY OF A QUERY EXPRESSION

Now that you’ve learned a bit more about XQuery, this section gets more formal and goes over the
basic parts of a query.

Every complete query has two parts: the prolog and the query body. There is also an optional third
part, the version declaration. Often the optional version declaration is left out and the prolog is
empty, making the entire query just a query body. This is how the examples in the chapter thus far
have been constructed, but not for long. Look at the following example for a complete query.

NOTE If you like, you can follow along in the XQuery Specifi cation (informally

known as the “Language Book” to its friends): the Language Book is much eas-

ier to read than most formal computer language, and of course it’s always the

fi rst place to go if you need to answer a question about the language.

NOTE These names — VersionDecl, LibraryModule, MainModule — do not

appear in the actual query. They are just names the specifi cation uses, so as to

be able to talk about the various parts of a query.

In section 4 of http://www.w3.org/TR/xquery-30/ you will see the following:

[1]Module ::= VersionDecl? (LibraryModule | MainModule)
[3]MainModule ::= Prolog QueryBody

Rule [1] says that, in XQuery, a module starts with a version declaration, which (because of that ques-
tion mark after it) is optional; then there is either a LibraryModule or a MainModule. If you look at
the defi nition of MainModule on the next line, it consists of a prolog followed by a query body.

You’ll come back to modules later in this chapter. For now, the important part to know is that every
complete XQuery consists of a version declaration, a prolog, and a body. (Remember that in the
examples so far the optional version declaration was left out and the prolog was empty.)

The following sections introduce the version declaration and the various things you can put into the
query prolog; you’ll see some examples along the way, and after the prolog you’ll come back to the
query body, which is where your FLWOR expressions go.

The Version Declaration

Every XQuery query body can begin with a version declaration like so:

xquery version “1.0” encoding “utf-8”;

c09.indd 318c09.indd 318 05/06/12 5:33 PM05/06/12 5:33 PM

http://www.w3.org/TR/xquery-30/

The Anatomy of a Query Expression ❘ 319

The values 1.0 (for the version of XQuery in use) and utf-8 (for the encoding of the fi le contain-
ing the query) are defaults. If you use features from versions of XQuery newer than 1.0, you should
indicate the minimum required version in the version declaration. If you don’t use a version declara-
tion, the default is 1.0. You can leave out the encoding or the version if you like, as shown here:

xquery version “1.0”;
xquery encoding “utf-8”;

WARNING All XQuery implementations are defi ned to use Unicode internally,

or at least to behave as if they do. If you use some encoding other than UTF-8 or

UTF-16 for your query fi le, it just means that query processors will have to trans-

code the fi le into the Unicode character set before interpreting it. It is generally

best to stick to UTF-8 on Linux or Macintosh systems, and either UTF-8 or

UTF-16 on Windows or in Java.

The Query Prolog

The XQuery prolog is a place for defi nitions and settings to go, before the actual query body
itself. The prolog is everything after the (optional) version declaration but before the start
of the query.

You can defi ne functions, bind prefi xes to namespaces, import schemas, defi ne variables, and more.
The items can appear in any order, although, for example, a namespace declaration has to appear
before you try to use the namespace it declares.

Namespace Declarations

Use a namespace declaration to connect a short name, called a prefi x, to a namespace URI like so:

declare namespace fobo = “http://www.fromoldbooks.org/ns/”;

The prefi x fobo here is said to be bound to the namespace URI http://www.fromoldbooks
.org/ns/.

XQuery comes with a number of namespace bindings already built in:

xml = http://www.w3.org/XML/1998/namespace
xs = http://www.w3.org/2001/XMLSchema
xsi = http://www.w3.org/2001/XMLSchema-instance
fn = http://www.w3.org/2005/xpath-functions
local = http://www.w3.org/2005/xquery-local-functions

You can bind them yourself too if you prefer¸ using declare namespace in the same way. The local
namespace is for use in your own functions, as you’ll learn shortly.

c09.indd 319c09.indd 319 05/06/12 5:33 PM05/06/12 5:33 PM

http://www.fromoldbooks.org/ns/
http://www.fromoldbooks.org/ns/
http://www.fromoldbooks.org/ns/
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2005/xpath-functions
http://www.w3.org/2005/xquery-local-functions

320 ❘ CHAPTER 9 XQUERY

Importing Schemas

You can “import” a W3C XML Schema into your query so that you can then refer to the types it
defi nes, and so that an XQuery engine can use it for validation. The schema must be an XSD-format
XML document, or at least, that’s the only format that the XQuery specifi cation demands. The fol-
lowing example shows you how to import an XML Schema:

import schema fobo=”http://www.fromoldbooks.org/Search/”;
import schema “http://www.exmple.org/” at “http://www.example.org/xsdfiles/”;
import schema fobo=”http://www.fromoldbooks.org/Search/”
 at “http://www.fromoldbooks.org/Search/xml/search.xsd”,
 “http://www.fromoldbooks.org/Search/xml/additional.xsd”;

The fi rst example instructs the XQuery processor to import a schema associated with the namespace
URI http://www.fromoldbooks.org/Search and also to bind that URI to prefi x fobo, but does
not tell the XQuery processor where to fi nd the schema.

The second example imports a schema for a given namespace URI, and gives the URI for its loca-
tion. You can use a relative URI for the location hint if you like, but it’s up to the implementation as
to how to fetch the schema, unfortunately.

The third example gives all three elements: a prefi x, a namespace URI, and then not one, but two,
location hints. Again, it’s up to the individual implementation as to whether both locations are used
or only the fi rst one found.

If you want to import an XML Schema document that does not use namespaces, use the empty
string (“”) as the target namespace.

When you import a schema into a query, two things happen: fi rst, the things defi ned in the schema
(types, elements, attributes) become available in the “in-scope schema defi nitions” in the query.
You can use the types defi ned in the schema just as if they were built-in types, and you can validate
XML fragments against the schema defi nitions. Second, validated XML document nodes have
schema type information associated with them (this attribute’s value is an integer, that element con-
tains a BirthplaceCity, and so on).

You can use the imported schema types in XPath element tests — for example, element(*, my:
typename) to match any element whose type is declared in an imported schema to be typename
in the namespace associated in the query with the prefi x my. You can use element(my:entry, my:
entrytype) to match only an element called entry and of schema type entrytype, again in an
appropriately declared namespace. You can leave out the type name and use element(student:
boy) to match any element whose name is boy; you can also write element() or element(*) to
match any element.

You see more examples of how you can use the schema types when you write your own functions
in just a moment; see Chapter 5 for examples of defi ning your own types, although not all XQuery
implementations support user-defi ned types. Because not all XQuery implementations support user-
defi ned schema types, a detailed description is out of the scope of this book, but most implementa-
tions do at least support types for variables and function arguments, and queries can run much
faster if you use them.

c09.indd 320c09.indd 320 05/06/12 5:33 PM05/06/12 5:33 PM

http://www.fromoldbooks.org/Search/
http://www.fromoldbooks.org/Search/
http://www.fromoldbooks.org/Search/xml/search.xsd
http://www.fromoldbooks.org/Search/xml/additional.xsd
http://www.exmple.org/
http://www.example.org/xsdfiles/
http://www.fromoldbooks.org/Search

The Anatomy of a Query Expression ❘ 321

Importing Modules and Writing Your Own Modules

You can also import modules. A module is a collection of XQuery defi nitions. Following is how
you’d tell your XQuery processor that you wanted to use a module:

import module namespace fobo=”http://www.example.org/ns/” at “fobo-search.xqm”;
import module “global-defs.xqm”;

As with schemas, you can assign a prefi x; unlike importing schemas, however, modules always asso-
ciate their names with a namespace URI, so you can’t just use an empty string. The location URI is
a hint, and different implementations may do different things with it.

Once you import a module you can use the public functions and variables that it defi nes.

Modules are most often written in XQuery, and are just the same as the main XQuery fi le, except
that they start with a module declaration instead of a module import statement, like so:

import module namespace fobo = “http://www.example.org/ns/”;

Modules are very useful. They let you:

 ➤ Organize larger applications into more manageable parts

 ➤ Manage having multiple people working on the same application

 ➤ Have multiple implementations of an API, to separate out the non-portable (implementa-
tion-dependent) parts clearly

 ➤ Share libraries of code with other people

You can fi nd some community-contributed library modules at www.exquery.org that you
can try.

Variable Declarations

XQuery is a declarative language, like XSLT, so the “variables” are really more like the symbols
used in algebra than variables in a regular programming language: you can’t change their values!
There’s no assignment.

Here are some example variable declarations:

declare variable $socks := “black”;
declare variable $sockprice as xs:decimal := 3.6;
declare variable $argyle as element(*) := <sock>argyle</sock>;

The full syntax is:

declare variable $name [as type] := [external] value;

The brackets ([]) mean you can leave off the things inside of them (don’t include the brackets either,
of course!). Notice how XQuery is a language in which values can include XML elements: anything
that can go in an XDM instance can be used as a value.

c09.indd 321c09.indd 321 05/06/12 5:33 PM05/06/12 5:33 PM

http://www.example.org/ns/
http://www.example.org/ns/
http://www.exquery.org

322 ❘ CHAPTER 9 XQUERY

You can refer to variables outside the query — for example, variables exported in a host language
such as PHP or Java — by calling them external.

One common use for a variable is to put confi guration at the top of a program or module like so:

declare variable $places as xs:string := doc(“places.xml”);

Putting the call to doc() in a variable in the query prolog is no different from putting it everywhere
you want to use it: the document will still be loaded only once. But this way you only have to change
it in once place.

The value used to initialize a variable can be any expression. You can also give an explicit type to a
variable like so:

declare variable $items-per-page as xs:integer := 16;
declare variable $config as element(config, mytype:config) :=
 <config>36</config>;

WARNING Support for XML Schema and for the optional “static typing” fea-

ture in XQuery varies considerably between implementations; you may well be

restricted to type names from the XSD specifi cation itself, rather than being able

to defi ne your own types. It’s still worth marking the types of variables, because

the query optimizer can make use of it, and also because it can help the system

to fi nd errors in your query.

Functions and Function Items

Just as XQuery variables are a useful way to give a name to some meaningful value, a function is a
way to give a name to a meaningful expression.

Although XQuery expressions can use all of the functions defi ned by XPath (see Appendix B for
a full list), it’s often useful to defi ne your own. If you fi nd yourself repeating some fragment of
XQuery over and over again, or if naming a calculation will make the query clearer, you should use
a function. Here is a complete example of a query with a variable, a function, and a one-line query
body:

declare variable $james := <person><name>James</name><socks>argyle</socks></person>;

declare function local:get-sock-color(

 $person as element(person)) as xs:string

{

 xs:string($person/socks)

};

local:get-sock-color($james)

function.xq

Available for
download on
Wrox.com

c09.indd 322c09.indd 322 05/06/12 5:33 PM05/06/12 5:33 PM

http://Wrox.com

The Anatomy of a Query Expression ❘ 323

The fi rst line declares a variable called $james as a fragment of XML.

The next line declares a function called local:get-sock-color(). The local namespace is reserved
in XQuery for user-defi ned functions like this.

The function takes as input a <person> element and uses a simple XPath expression to return the
value of the <socks> subelement, converted to a string.

Finally, you have a query body, the actual part that does the work, and all it does here is pass the
variable as an argument, or parameter, to the function and return the result, which shows that
James wears argyle socks.

User-defi ned functions are the second-most important aspect of XQuery, after the FLWOR
expression.

Recursive Functions

Although this topic is often considered advanced in programming language courses, recursion, once
grasped, is a fundamental part of XML processing. The idea is very simple: you write a function
that handles the fi rst part of its input, and then, to handle the rest, the function calls another copy
of itself! Here is a very simple example you can try:

declare variable $numbers as xs:integer* := (1, 2, 3, 4, 5, 6);
declare function local:sum-of-squares($input as xs:integer*) as xs:integer
{
 if (empty($input)) then 0
 else
 let $first := $input[1]
 return $first * $first + local:sum-of-squares($input[position() gt 1])
};

local:sum-of-squares($numbers)

recursive-function.xq

In this example the function is declared to be in the predefi ned local namespace. The function
sum-of-squares takes a list of numbers as input and returns a single number as a result.

On the fourth line the function checks to see if the input is empty, and, if it is, returns zero
(nothing to do). Every recursive function must do something like this or it will never stop, and
your query will never fi nish!

If the input is not empty, there must be at least one number, so you take the fi rst such number
and multiply it by itself. If the input list had only one number inside it, that would be all the func-
tion ever had to do. But the input might have more than one number, so you need to produce the
square of the fi rst number in the list added to the sum of the squares of the rest of the numbers.
You already have (most of) a function to calculate the sum of squares, so you call it to do the work.
Notice that you give it not $input but $input with the fi rst element removed, $input[position()
gt 1], so that the list is shorter. That way you know that eventually the entire list will be processed
and the function will fi nish.

Available for
download on
Wrox.com

c09.indd 323c09.indd 323 05/06/12 5:33 PM05/06/12 5:33 PM

http://Wrox.com

324 ❘ CHAPTER 9 XQUERY

Recursion turns out to be a very natural fi t for working with XML, because XML trees are them-
selves recursive: elements can contain elements, which in turn can contain more elements, all the
way down! If you work with XQuery (or XSLT) a lot, you should take the time to become comfort-
able with recursion.

External Functions

When XQuery is called from another “host” programming language, such as Java, C++, or Perl, you
might want to call functions in that host language from within your XQuery expressions. Not all
implementation support this, and restrictions usually exist on the sorts of functions you can call, so
you’ll have to read the documentation that came with the XQuery engine or host environment.

External functions usually consist of two steps: the fi rst is to expose the function from the host
language, and the second is to declare it inside your query. It is really only feasible to give you an
example for the second part. Here’s the part you’d put in your query:

declare function java:imagesize($imgfile as xs:anyURI) as xs:integer* external;

Now you can use that function in XQuery just like any other. The host language or the XQuery
implementation’s documentation will tell you which namespace to use and how to declare it (or it
should, at least!).

Module Imports

XQuery lets you write collections of functions and variables and save them; later, you can reuse such
a named collection as a library module. This can be an excellent way to structure larger applica-
tions, and even with smaller queries, it can help if more than one person or department is involved.
You could provide a set of functions that hide the representation of information behind a set of
functions, so that you can later change the representation; you could also provide a set of functions
that work the same way across multiple XQuery implementations just by importing the appropriate
version of a module.

The following example shows how to import a module called wikidates that might provide func-
tions for fi nding birth and death dates for people based on the XML version of Wikipedia:

import module namespace
 wiki = “http://www.example.org/wikidates” at “wikidates.xqm”;

This is a fi ctional example, and uses example.org, a domain intended only for use in books and
examples.

You can leave out the namespace wiki = part if you like, but that would be a fairly advanced
usage.

The only difference between the main query itself (also called the main module in the specifi cation)
and a module fi le is this: a module fi le must have, immediately after the optional version and encod-
ing declaration, a module declaration, like so:

module namespace w = “http://www.example.org/wikidates”;

c09.indd 324c09.indd 324 05/06/12 5:33 PM05/06/12 5:33 PM

http://www.example.org/wikidates
http://www.example.org/wikidates
http://example.org

The Anatomy of a Query Expression ❘ 325

As usual with XML namespaces, when you import the module you must use the exact same
namespace URI, although the prefi x (w in this example) doesn’t have to be the same. Within the
module a function might be named w:getDateOfBirth, and if you imported the module using
the prefi x wiki, you’d call the function as wiki:getDateOfBirth(). The XQuery engine knows you
mean the same function because the prefi xes are bound to the same namespace URI, once in the
library module and once in the main module.

In addition, where the main module has a prolog followed by a query body, the library module has
only a prolog, and no query body.

Some XQuery modules are available at www.exquery.org and are worth exploring, and some
XQuery engines also come with module libraries of their own.

Optional Prolog Features

You can specify various options in the prolog; these are defi ned by specifi c XQuery engines, so you
should look at the documentation for the product you’re using.

The most common options have to do with serialization: the way that the results are written out. If
you are using an in-memory query that just returns a tree or stores results directly back to a data-
base, serialization is probably not an issue. If you are creating HTML (or, more likely, XHTML),
you need to use the right options: XHTML is not the same as writing HTML elements in XML
syntax. For example, the
 HTML element must be written
 in HTML, with a space
between the r and / — it cannot be written as
</br>. In XQuery 3.0, serialization is likely to
be a standard part of the language, but for now just be aware that you’ll probably need to read the
documentation for the XQuery engines you use.

The Query Body

You have now seen all of the main parts of the query prolog, and you have also seen some sample
queries. The query body is a single XQuery expression after the prolog; it’s the actual query, and
although it’s only a single expression, it can be very long! You can also give a sequence of expres-
sions, separated by commas. Because the items in the prolog are all optional, an entire query could
be a single simple expression. When XQuery is used from within Java or SQL, this is not uncommon;
when XQuery is used to handle complex business transactions, much longer queries are more likely.

Because XQuery extends XPath, you can use pretty much any XPath expression in XQuery. The
biggest extensions after FLWOR are described in the following sections.

Typeswitch Expressions

The idea of a typeswitch expression is that you can write code to behave differently based on the
type of an expression, such as the argument to a function.

Suppose in the dictionary of biography you have what are called blind entries; these are entries that
just have a headword or title, such as “Isaac Newton,” and then just say, “See Newton, Isaac.”

You might defi ne two separate types in your schema for the dictionary, entry and blindentry per-
haps, even though both use the same element name. Then you could process them differently like so:

c09.indd 325c09.indd 325 05/06/12 5:33 PM05/06/12 5:33 PM

http://www.exquery.org

326 ❘ CHAPTER 9 XQUERY

typeswitch ($entry)
 case $e as element(entry, blindEntry) return ()
 case $e as element(entry, entry) return process-entry($e)
 default return fn:error(xs:QName(“my:err042”), “bad entry type”)

Element Constructors

XPath expressions can only ever return pointers into the document tree (or, more correctly, refer-
ences into XDM instances). People frequently want to do things like “return all of the school ele-
ments without any of their children” or to make entirely new elements not in the input. For this you
need to use XQuery.

Anywhere you can have an expression or literal value, you can have an element constructor. Two
types of element constructors exist: direct and computed.

Direct Element Constructors

You have already seen some examples of direct element constructors:

let $isaac := <entry id=”newton-isaac” born=”1642” died=”1737”>
 <title>Sir Isaac Newton</title>
</entry>
return $isaac/title

A direct element constructor can also have namespace declarations, and can contain expressions;
you’ll come back to this next example in Chapter 18, “Scalable Vector Graphics (SVG),” but for
now all that matters is you could generate a <rect> element with some expressions in the attribute
values or content, like so:

let $box:= <rect xmlns=”http://www.w3.org/2000/svg”
 width=”{$width}” height=”{$width * 2}”
 x=”{$isaac/@born}” y=”{math:sin(xs:integer($isaac/@died))}” />,
 $text := <text>His name was {$isaac/title/text()}.</text>

Your XQuery implementation may provide an option to say whether space at the start and end of
elements is included or ignored; this space is called boundary space.

You can also make comments and processing instructions like so:

let $c := <--* this is an example of a direct XML comment constructor *-->,
 $p := <?php echo date() ?>

WARNING If you are working with XML and PHP, you will have to confi gure

your server to use the <?php …?> syntax rather than just <? …?> so that your

fi les can be legal XML documents. To do this on most systems, edit /etc/php.

ini and set short_open_tag = Off, noting that it may occur in more than one

place in the fi le.

c09.indd 326c09.indd 326 05/06/12 5:33 PM05/06/12 5:33 PM

http://www.w3.org/2000/svg

The Anatomy of a Query Expression ❘ 327

Computed Element Constructors

If you don’t know the name of an element in advance, sometimes you have to use a computed ele-
ment constructor. You can mix the two styles, and you can always use the computed element
constructors, so some people choose to use these all the time, but they can be harder to read. The
following example shows computed element constructors:

declare namespace svg = “http://www.w3.org/2000/svg”;
let $width := 30,
 $height := 20,
 $isaac := <entry id=”newton-isaac” born=”1622” died=”1736”>
 <title>Sir Isaac Newton</title>
 </entry>,
$box := element svg:box {
 attribute width { $width },
 attribute height { $height },
 attribute x { $isaac/@born },
 attribute y { math:sin(xs:integer($isaac/@died)) }
},
 $p := element text {
 fn:concat(
 “His name was “,
 data($isaac/title),
 “.”)
 } return ($box, $p)

This example generates the following output:

<svg:box xmlns:svg=”http://www.w3.org/2000/svg” width=”30” height=”20” x=”1622”
 y=”0.96375518644307”/>
<text>His name was Sir Isaac Newton.</text>

The computed syntax is harder to work with when you are mixing text and values (mixed content).
In that case, it’s usually best to use the direct constructors, or to mix the two syntaxes like so:

 $p := elememt wrapper {
 <text>His name was {data($isaac/title)) }</text>
};

You can also construct text nodes and documents, using text and document instead of element or
attribute.

FLWOR Expressions Revisited

It’s time to give the full syntax for FLWOR expressions. You have already seen most of the parts in
the “Building Blocks of XQuery” section. Note that XQuery 1, the stable version of XQuery, has a
very basic FLWOR expression, and XQuery 3 extends it (there was no XQuery 2). In what follows,
the parts that were introduced in 3.0 are marked like this: 3.0.

A FLWOR expression starts with one of the keywords for, let, or window3.0, and its associated
clause like so:

c09.indd 327c09.indd 327 05/06/12 5:33 PM05/06/12 5:33 PM

http://www.w3.org/2000/svg
http://www.w3.org/2000/svg

328 ❘ CHAPTER 9 XQUERY

for | let | window3.0

After the initial for, let, or window3.0, there can be any number of optional clauses as shown here:

(for | let | window3.0 | where | group by3.0 | order by | count3.0)*

The end of the FLWOR expression is signaled by a return clause:

return ExprSingle

Here, ExprSingle in the XQuery grammar means any
single XQuery expression. Figure 9-2 shows a railroad
diagram in which you start on the left and follow
arrows until you get to the right. You can go round the
middle loop as many times as you like, or not at all.

The individual parts of the FLWOR expression
expand as shown in the following sections. In the
explanations square brackets are used to mean some-
thing can be left out: [at $pos] means either put
at $pos there, or don’t. The square brackets are just
to show you it’s optional, and are not part of the
query. The following explanations also use italics to
show where you where you can put a value of your
own, so as type means you’d type the literal word as followed by a space, and then the name of
any type you wanted, such as xs:integer* to mean a sequence of whole numbers.

A type can be empty-sequence() to mean (of course) the empty sequence, or it can be a type name,
such as xs:integer, optionally followed by an occurrence indicator: * to mean zero or more, ?
to mean zero or one, + to mean one or more, or with no indicator to mean exactly one. Thus,
xs:integer? will accept either the empty sequence (no integers) or exactly one number. You can’t
put an occurrence indicator after empty-sequence() because XQuery does not support sequences of
sequences.

The for Clause

Every FLWOR expression starts with a for clause, a let clause, or a window clause. The for clause
has the following syntax:

for $var [as xs:integer] [allowing empty] [at $pos] in expr

Here are some examples; you can try them in the BaseX query window:

 ➤ Using the at position feature:

for $entry as element(entry) at $n in //entry
return {$n}. {$entry/@id}

 ➤ Using two variables:

for $a in (1, 2, 3),

for
let
window

return

for
let
window
where
group by
order by
count

FIGURE 9-2

c09.indd 328c09.indd 328 05/06/12 5:33 PM05/06/12 5:33 PM

The Anatomy of a Query Expression ❘ 329

 $b in (4, 5)
return $a + $b

 ➤ Generating a tuple even for the empty sequence:

for $a allowing empty in ()
return 42

The let Clause

Use let to bind a variable to a value; you can have more than one let clause by separating them
with commas. The syntax is:

let $var [as type] := expression

Here are two examples:

 ➤ Specifying a type:

let $x as xs:decimal := math:sin(0.5)
return $x

 ➤ With both for and let, and a direct element constructor:

for $a in (1, 2, 3)
let $b := $a * $a
return <r>{$b}</r>

The window Clause

The window clause lets you process several adjacent tuples at a time; it’s described in the section
“Coming In XQuery 3.0” later in this chapter.

The where Clause

The where part of a FLWOR is used to weed out tuples, leaving just the ones you want. If you have
only a single bound variable in your for part, it’s the same as using a predicate. For example:

for $person in /dictionary/entry[@born lt 1750]

has the same effect as

for $person in /dictionary/entry
where #born lt 1750

However, because the where clause operates on tuples rather than nodes, if you have more than one
item in each tuple, you have to use a where clause like so:

for $a in (1 to 50), $b in (2, 3, 5, 7)
where $a mod $b eq 0
return $a * $b

c09.indd 329c09.indd 329 05/06/12 5:33 PM05/06/12 5:33 PM

330 ❘ CHAPTER 9 XQUERY

Some implementations also do different optimizations on predicates and where, so one may be
faster than the other, but in most cases you should concentrate on making your query as easy to
read as possible.

The group by Clause

Grouping is introduced in XQuery 3.0, and is described later in this chapter.

The order by Clause

Use the order by clause to sort the tuples based on the value of an expression. The following com-
plete example sorts all the people in the dictionary by their date of birth, lowest (earliest) fi rst:

for $person in //entry[@born]
order by xs:integer(@born) ascending
return $person/title

The syntax is:

[stable] order by expression [direction] [collation “URI”]

You can have any number of the clauses after order by, separated by commas. The direction looks
like this:

ascending|descending [empty (greatest|least)]

empty greatest and empty least say how the empty sequence is to be compared: whether it goes
after all other values or before them.

The stable keyword tells the query processor to keep items in the same order if they have equal
keys; sometimes it’s much faster if the implementation can return items with equal sort keys in any
order, but that’s not always what you want.

ascending and descending say whether to put the results least fi rst or greatest fi rst.

The collation names a set of sorting rules, usually for comparing strings. For example, your
implementation might provide a collation that’s case insensitive, or one in which letters with accents
or diacriticals (é, ô, Æ, ñ, ü) sort the same as if they did not have the marks (e, o, AE, n, u, or ue).
The actual URIs you can use are implementation defi ned, meaning you have to look them up in the
manual for the XQuery engine you’re using.

Here are some more examples, showing just the order by clause:

order by $b ascending empty least
order by $b descending empty greatest
order by $b stable ascending
order by $e

The count Clause

Earlier, you saw how the for clause has an optional at $n to associate a variable with the position
in the sequence selected by the for clause.

c09.indd 330c09.indd 330 05/06/12 5:33 PM05/06/12 5:33 PM

The Anatomy of a Query Expression ❘ 331

The count clause is similar, but numbers the overall tuples. The following example shows the
difference:

for $boy at $boypos in (“Simon”, “Nigel”, “David”),
 $game at $gamepos in (“pushups”, “situps”)
 count $count
return
 <tuple n=”{$count”}>
 boy {$boypos} is {$boy}, item {$gamepos}: {$game}
 </tuple>

Count-boys-games.xq

The output is as follows:

<tuple n=”1”>boy 1 is Simon, item 1: pushups</tuple>
<tuple n=”2”>boy 1 is Simon, item 2: situps</tuple>
<tuple n=”3”>boy 2 is Nigel, item 1: pushups</tuple>
<tuple n=”4”>boy 2 is Nigel, item 2: situps</tuple>
<tuple n=”5”>boy 3 is David, item 1: pushups</tuple>
<tuple n=”6”>boy 3 is David, item 2: situps</tuple>

The count clause was introduced for XQuery 3.0, and at the time of writing was not yet widely
implemented. You can simulate it, if needed:

for $activity at $n in (
 for $boy at $boypos in (“Simon”, “Nigel”, “David”),
 $game at $gamepos in (“pushups”, “situps”)
 return
 concat(“boy “, $boypos, “ is “, $boy,
 “ item “, $gamepos, “: “, $game)
)
return <tuple n=”{$n}”>{$activity}</tuple>

The trick here is to use a nested FLWOR expression. The inner expression generates a sequence of
strings, each one corresponding to the content of one of those <tuple> elements from the previous
example. Then the outer FLWOR maps each of those strings to a <tuple> element, and because
there’s only one input sequence, the list of strings, the at $pos clause numbers the strings.

This is a fairly advanced example, and shows how you can use a FLWOR expression wherever you
can use as a sequence.

Available for
download on
Wrox.com

NOTE There’s actually an extra open and close parenthesis in the example,

around the inner FLWOR expression. They are not needed, and if you take them

away you can see you get the same output, for example with Saxon or BaseX.

They are there for readability, to try to make clear how the for and return

clauses go together and nest. Tricks like this can also make your queries more

robust in the face of careless editing!

c09.indd 331c09.indd 331 05/06/12 5:33 PM05/06/12 5:33 PM

http://Wrox.com

332 ❘ CHAPTER 9 XQUERY

SOME OPTIONAL XQUERY FEATURES

At the same time that the XQuery language itself was being developed, three fairly large add-on
facilities were being developed. They are Full Text Search, XQuery Update, and XQuery Scripting.
The fi rst two are widely supported; scripting is less widely used, but still useful to know about.

Describing these facilities in much depth is beyond the scope of a “Beginning” book; they could eas-
ily each have a chapter on their own. But you will learn in this section what these three facilities are
for, see some examples, and learn how to fi nd out more.

XQuery and XPath Full Text

This optional facility adds the idea of an external index to words or tokens occurring in the data-
base, so that you can fi nd all elements containing a given phrase very quickly. The Full Text lan-
guage extends XPath, but in practice only really makes sense in XQuery, even though it could also
be used with XSLT. Because the Full Text facility was fi nalized after XQuery 1.0, implementations
vary a lot in how they support it. However, where it’s available it can be very powerful.

One advantage of using full text searching is that it’s usually pretty fast, even when you have tera-
bytes or petabytes of data in your database. The speed is also predictable, which makes it useful for
implementing interactions with human users.

Here is an example, using the biographical dictionary:

for $e in //entry where $e//p contains text “Oxford”
return (normalize-space($e/title), “
”)

This returns results like this:

 Adams, Fitzherbert
 Airay, Henry
 Aldrich, Robert

The entries returned are those for which the where clause is true: the entries that have a <p>
element (a paragraph) that contains the word “Oxford.” The query actually returns a sequence of
two items for each matching entry. The fi rst item is the title, converted to a string and with
leading and trailing spaces removed, and the second item in the sequence is a newline, represented
in hexadecimal as an XML character reference, “
” — the newline is just to make each title be
on a separate line.

WARNING The most often requested feature for the Full Text facility in XQuery

is the ability to highlight matches, showing the actual words that were found.

This is not, in general, possible today, but a new version of the Full Text speci-

fi cation is in preparation that will probably off er this functionality. Some imple-

mentations do have ways to identify matches as a vendor extension.

c09.indd 332c09.indd 332 05/06/12 5:33 PM05/06/12 5:33 PM

Coming in XQuery 3.0 ❘ 333

The Full Text specifi cation has a lot of features: you can enable stemming, so that hop might also
match hopped, hopping, and hops; you also can enable a thesaurus, so that walk might also match
amble, shuffl e, stroll, path, and so on.

The XQuery Update Facility

So far all of the XQuery expressions you have seen return some fraction of the original document,
and leave the document unchanged. If you’re using a database, the chances are high that you’ll need
to change documents from time to time. A content management system might let users edit articles,
or might represent users and their profi les as XML documents.

You might insert a new entry at the end of the biography like so:

insert nodes
 <entry id=”bush-george”><title>George Bush</title></entry>
as last into doc(“dictionary.xml”)/dictionary

The XQuery Update Facility Use Cases, which you can fi nd at http://www.w3.org/TR/(choose the
“all items sorted by date” option), has many more examples. However, you will need to check the
documentation for your system to see if it supports the Update Facility and, if so, exactly how.

XQuery Scripting Extension

This specifi cation is still a draft at the time of writing. The XQuery Working Group at W3C does
not have agreement on the language. However, some aspects are very useful and are widely imple-
mented. In particular, whereas the Update Facility does not let what it calls an updating expression
return a value, the scripting extension makes it possible to mix updates and value returns. You
could, for example, report on whether a database insert was successful, something not possible with
just the Update Facility.

The scripting extension also adds procedural-programming constructs such as loops, variable
assignment, and blocks.

COMING IN XQUERY 3.0

When this book was written, XQuery 1.0 was well-established, and the W3C XML Query
Working Group (in conjunction with the W3C XSLT Working Group) had skipped over 2.0 and
was working on XQuery 3.0. The details were not fi nal (XQuery was a “working draft” and not a
“Recommendation”) and you should consult http://www.w3.org/TR/ for the latest published ver-
sion of XQuery; the specifi cation is readable and has examples. If you’ve followed along this far you
should have little diffi culty in reading the specifi cation, especially after reviewing this section with
its introductory descriptions of some of the new features. You can also fi nd Use Cases documents
parallel to the specifi cations, containing further examples, and these do generally get updated as the
language specifi cation evolves.

The following sections will give you an idea of what’s coming in XQuery 3.0.

c09.indd 333c09.indd 333 05/06/12 5:33 PM05/06/12 5:33 PM

http://www.w3.org/TR/
http://www.w3.org/TR/

334 ❘ CHAPTER 9 XQUERY

Grouping and Windowing

Suppose you want to make a table showing all the entries in your XML extract from the dictionary
of biography, but you want to sort the entries by where the people were born. The following query
generates such a list, putting a <group> element around all the people born in the same place:

for $e in /dictionary/entry[@birthplace]
let $d := $e/@birthplace
group by $d
order by $d
return
 if (count($e) eq 1) then () else
 <group birthplace=”{$e[1]/@birthplace}”>
 {
 for $person in $e
 return
 <person id=”{$person/id}”
 born=”{$person/@born}”
 died=”{$person/@died}”
 >{
 data($person/title)
 }
 </person>
 }
 </group>

Here is a snippet of the output, showing the fi rst two groups:

<group birthplace=”Amsterdam”>
 <person id=”” born=”1519” died=”1585”>
 Aersens, Peter
 </person>
 <person id=”” born=”1622” died=”1669”>
 Anslo, Reiner
 </person>
</group>
<group birthplace=”Bologna”>
 <person id=”” born=”1466” died=”1558”>
 Achillini, John
 Philotheus
 </person>
 <person id=”” born=”1574” died=”1640”>
 Achillini, Claude
 </person>
 <person id=”” born=”1570” died=”1632”>
 Agucchio, John
 Baptista
 </person>
 <person id=”” born=”1479” died=”1552”>
 Alberti, Leander
 </person>
 <person id=”” born=”1578” died=”1638”>
 Alloisi, Balthazar
 </person>
</group>

c09.indd 334c09.indd 334 05/06/12 5:33 PM05/06/12 5:33 PM

Coming in XQuery 3.0 ❘ 335

More formally, the syntax of a windowing expression (in the XQuery 3.0 draft document, at least)
is that you can have either:

for tumbling window $var [as type] in expression windowStart [windowEnd]

or

for sliding window $var [as type] in expression windowStart windowEnd

The fi rst form, the tumbling window, is for processing the tuples one clump at a time. Each time
the windowStart expression is true, a new clump is started. If you give an end condition, the clumps
will contain all the tuples from the start to when the end is true, inclusive; if you don’t give an end
condition, a new clump of tuples starts each time the start condition is true.

In the second form, the sliding window, a tuple can appear in more than one window.
For example, you could use a tumbling window to add a running average of the most recent fi ve
items to a table of numbers. Each row of the table would be processed fi ve times, and you might add
a table column showing the average of the number on that row and the numbers on the four rows
before it.

The count Clause

The count clause in the FLWOR expression has already been described in this chapter, but since
this is a list of XQuery 3.0 additions you should know that count was added for XQuery 3.

Try and Catch

Try and catch are familiar to programmers using Java or C++; it’s a way to evaluate some code and
then, if the code raised an error, instead of ending the query right then and there, you use the emer-
gency fallback code you supply in the catch clause.

The syntax of a try/catch expression is very simple:

try { expression } catch errorlist { expression }

You can also have multiple catch clauses, one after the other with no comma between them.

Here is a complete try/catch example:

for $i in (2, 0.2, 0.0, 4)
return
 try {
 12 div $i
 } catch * {
 42
}

c09.indd 335c09.indd 335 05/06/12 5:33 PM05/06/12 5:33 PM

336 ❘ CHAPTER 9 XQUERY

If you try this with BaseX, you will see the following result:

6 60 42 3

When the XQuery engine (BaseX) came to fi nd the resulting value for the input tuple (0.0), it had
to evaluate 12 divided by zero, and that’s an error. Because the error happened inside a try clause,
BaseX checked to see if there was a catch clause that matched the error. There was indeed: the
* means to catch any error. So BaseX used the expression in the catch block for the value, and
returned 42.

If you try without the try/catch,

for $i in (0.5, 0.2, 0.0, 4)
return 12 div $i

you’ll see the following error in the BaseX Query Info window:

Error: [FOAR0001] ‘12’ was divided by zero.

You can catch specifi c errors, and even more than one error at a time like so:

for $i in (2, 0.2, 0.0, 4)
return
 try {
 12 div $i
 } catch FOAR0001|FOAR0002 { 42 }

The error codes in XQuery are designed so that the fi rst two letters tell you which specifi cation
defi nes them: for example, Functions and Operators for FO. You can look in the corresponding spec-
ifi cation to see what the code means.

WARNING Because of optimization, XQuery processors might raise errors

other than the one you expect. It’s wise to use a catch-all clause if error recov-

ery is important, perhaps using multiple catch blocks:

try { 12 div $i }
catch FOAR0001 { 42 } catch * { 43 }

switch Expressions

The switch expression was introduced because long chains of if-then-else conditions can be hard to
read, and, more importantly, because sometimes switch expresses the writer’s intent more clearly.
Take the following example:

for $word in (“the”, “an”, “a”, “apple”, “boy”, “girl”)
return (“ “,

c09.indd 336c09.indd 336 05/06/12 5:33 PM05/06/12 5:33 PM

Coming in XQuery 3.0 ❘ 337

switch (substring($word, 1, 1))
case “a” return upper-case($word)
case “t” return $word
case “b” case “B” return {$word}
default return $word)

This example produces the following output:

 the AN A APPLE boy girl

The switch statement looks at the fi rst letter of the item it was given, and behaves differently
depending on the value, converting words starting with an “a” to uppercase, and surrounding words
starting with a “b” with a element, and so on. Notice the two case expression clauses for “b”
and “B”, which share an action.

The rather sparse syntax of switch, with no punctuation between cases and no marking at the end,
means that if you get syntax errors you may want to put the entire construct in parentheses, to help
you fi nd the mistake. In this example there’s a FLWOR for clause with its return, constructing a
sequence of a single space followed by whatever the switch expression returns, for each item (actu-
ally each tuple) in the for.

Function Items and Higher Order Functions

With XQuery 3.0, the language designers fi nally admitted that XQuery is a functional language,
and added a number of functional programming tools. Some of these are very advanced, and some
are very straightforward. This section sticks to the straightforward parts.

Function Items

A “function item” is really just the name of a function together with the number of arguments it
takes. For example, you can make a function item to refer to the math:sqrt() function, which
takes a single numeric argument and returns its square root, just by writing sqrt#1 in your query.

Why on earth would you want to do this? Read on!

Higher Order Functions

A higher order function is just a fancy name for a function that works with other functions.
Consider the following simple function:

declare function local:double-root($x as xs:double)
as xs:double
{
 2 * math:sqrt($x)
};

local:double-root(9.0)

If you try this, you’ll discover that, because the square root of nine is three, you get two times three,
which is six, as a result.

c09.indd 337c09.indd 337 05/06/12 5:33 PM05/06/12 5:33 PM

338 ❘ CHAPTER 9 XQUERY

But what if you wanted to write local:double-sin($x) as well? Or local:double-cos($x)?
After a while you start to wonder if you could pass in the name of the function to call instead of
sqrt(). And you can, as shown in the following code.

declare function local:double-f(
 $x as xs:double,
 $f as function($x as xs:double) as xs:double
) as xs:double {
 2 * $f($x)
};

local:double-it(9.0, math:sqrt#1)

higher-order.xq

Now you could call double-it() with any function, not only math:sqrt().

This ability to use functions as arguments also lets you write XQuery modules that can accept func-
tions for defi ning their confi guration options, or to change the way they behave.

You can also declare functions inside expressions (actually an XPath 3 feature), and LISP program-
mers will be pleased to see map and apply as well as fold.

JSON Features

At the time of writing, support for JSON was under discussion in the W3C XQuery Working
Group, but no defi nite resolution had been reached. One proposal is called JSONIQ. In any case, it
seems likely that interoperability between JSON and XML will be a part of XQuery in the future.
See Chapter 16, “AJAX” for more about JSON.

XQuery, Linked Data, and the Semantic Web

If you are working with RDF, whether as RSS feeds or as Semantic Web Linked Data, XQuery has
something to offer you.

You can fairly easily generate RSS and RDF/XML with XQuery, of course. The query language for
RDF is called SPARQL, and there’s even a SPARQL query processor written in XQuery that turns
out to be faster than many native SPARQL engines. SPARQL engines can produce results in XML,
and that too can be processed with XQuery.

XML and RDF both have their separate uses, as do SPARQL and XQuery, and you can use them
together when it makes sense.

SUMMARY

 ➤ XQuery is a W3C-standardized language for querying documents and data.

 ➤ XQuery operates on instances of the XPath and XQuery Data Model, so you can use
XQuery to work with anything that can build a suitable model. This often includes rela-
tional databases and RDF triple stores.

Available for
download on
Wrox.com

c09.indd 338c09.indd 338 05/06/12 5:33 PM05/06/12 5:33 PM

http://Wrox.com

Summary ❘ 339

 ➤ Objects in the data model and objects and values created by XQuery expressions have types
as defi ned by W3C XML Schema.

 ➤ XQuery and XSLT both build on XPath; XSLT is an XML-syntax language which includes
XPath expressions inside attributes and XQuery uses XPath syntax extended with more
keywords.

 ➤ There are XQuery processors (sometimes called XQuery engines) that work inside relational
databases, accessing the underlying store directly rather than going through SQL. There are
also XML-native databases, and some XQuery engines just read fi les from the hard drive,
from memory, or over the network.

 ➤ XQuery Update is a separate specifi cation for making changes to data model instances.

 ➤ XPath and XQuery Full Text is a separate specifi cation for full-text searching of XML
documents or other data model instances.

 ➤ XQuery Scripting is a separate specifi cation that adds procedural programming to XQuery,
but it is currently not a fi nal specifi cation.

 ➤ The two most important building-blocks of XQuery are the FLWOR expression and
functions.

 ➤ XQuery FLWOR stands for for-let-where-order by-return.

 ➤ User-defi ned functions can be recursive, and can be collected together along with user-
defi ned read-only “variables” into separate library fi les called modules.

EXERCISES

You can fi nd suggested solutions to these exercises in Appendix A.

 1. Write a query expression to take the sequence of numbers from 1 to 100 and produce a list of

their squares.

 2. Find all of the people in the dictionary of biography who lived longer than 88 years; sort the list

with the person who lived the longest at the start.

 3. Build an interstellar space ship and travel to a place where all XML documents are well formed.

 4. Find all entries in the dictionary of biography that have fi ve or more paragraphs (<p> elements) in

them.

c09.indd 339c09.indd 339 05/06/12 5:33 PM05/06/12 5:33 PM

340 ❘ CHAPTER 9 XQUERY

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

What is XQuery? XQuery is a database query language, and also a general-purpose lan-

guage in which XML elements are a native data type.

XQuery is widely implemented, fairly popular, and easy to learn.

There are standalone XQuery implementations, embedded implementa-

tions, and implementations that work with XML databases.

XQuery and XPath XQuery extends the XPath syntax, unlike XSLT, which embeds XPath

inside XML attributes in the XSLT language.

FLWOR expressions The most important part of XQuery; use them to do joins, to construct

and manipulate sequences, to sort, and to fi lter.

Functions and

modules

You can defi ne function libraries, called modules, with XQuery.

c09.indd 340c09.indd 340 05/06/12 5:33 PM05/06/12 5:33 PM

XML and Databases

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Why databases need to handle XML

 ➤ The diff erences between relational and native XML databases

 ➤ What basic XML features are needed from a database

 ➤ How to use the XML features in MySQL

 ➤ How to use the XML features in SQL Server

 ➤ How to use features in eXist

Not very along ago, you had two main options when deciding where to store your data. You
could go for the traditional solution, a relational database such as Oracle, Microsoft’s SQL
Server, or the ever-popular open source MySQL. Alternatively, you could choose to use XML.
A relational database has the advantage of effi ciently storing data that can be expressed
in a tabular form, although performance can be a problem if you need to join many tables
together. XML has the advantage of coping with nested data or documents that can’t be easily
broken down further. After a while, it became apparent that a hybrid of the two was needed: a
system that could store tabular data alongside XML documents, giving the user the ability to
query and modify the XML as well as perform standard operations against the relational data.
This would create an all-purpose storage center giving the best of both worlds.

UNDERSTANDING WHY DATABASES NEED
TO HANDLE XML

Relational databases grew from the work of Edgar Codd in the 1970s. He was the fi rst to
provide a solid mathematical foundation for the main concepts found in these systems, such
as tables (which he called relations), primary keys, normalization (where efforts are made

10

c10.indd 341c10.indd 341 05/06/12 5:37 PM05/06/12 5:37 PM

342 ❘ CHAPTER 10 XML AND DATABASES

to reduce any duplication of data), and relationships, such as one-to-many and many-to-many.
Nowadays, hundreds of relational database management systems are available. They range from
top-end databases such as Oracle, SQL Server, and DB2, to ones designed for desktop use, such as
Microsoft’s Access.

These systems have widely different feature sets, but they generally have two things in common.
First, they use a special language called Structured Query Language (SQL) to query the data that
resides in them. Second, they cope well with data that can be broken down and stored in a tabular
form, where items are typically represented as rows in a table. The different properties of these items
are represented by the different fi elds, or columns, of these rows.

If you are trying to represent data for your customers and their orders, a relational system is fi ne.
You probably have one table for basic customer details, one for the order summary, and another
table for the order items. You can combine these tables to extract and report on the state of your
business; the orders table has a reference to the customer who made the order and the order details
table has a reference to the order number.

However, in many situations you need to store data that doesn’t fi t easily into this pattern. If you
expand the customer and order scenario further, how would you store information regarding an
actual order once it has been dispatched? It is not enough to keep a record of the actual items and
their quantity because the price will almost certainly change in the future. If you wanted to go with
this model, you’d need to keep track of historic prices, tax rates, and discounts. One solution is to
store a copy of the order document as a binary fi le; this is a little infl exible because it can’t be que-
ried if necessary. A better alternative is to store the order details as an XML document detailing
the actual items and their prices, customer, and shipping information and any discounts that were
applied. This XML document can then be transformed to provide a confi rmation e-mail, a delivery
note, or the order itself. Because it is XML, it can also be queried easily using the techniques shown
in this book and precludes the need to keep historical data. This makes the database schema and
any associated queries much simpler.

An alternative to storing these documents within a database is to just keep them as documents in a
fi lesystem. This is quite easy to do, but leads to a number of problems:

 ➤ You need to set up a folder structure manually and decide on a naming convention to aid
easy retrieval.

 ➤ You need to have two systems: the database (to manage the tabular style data) and a sepa-
rate XML processor (to query the XML documents).

 ➤ Retrieving whole documents is straightforward, but retrieving a fragment is more diffi cult.

 ➤ It’s extremely diffi cult to index the data to allow queries that perform well. Maintaining the
indexing system is yet one more system to manage.

 ➤ You need two separate backups, one for the database and one for the XML fi les.

Having a database that can both store XML documents and query them solves these problems and
is much easier to use.

You can take two approaches if you want to store your documents in a database. You can use a tra-
ditional relational database such as SQL Server, which comes with the capability to store, query, and

c10.indd 342c10.indd 342 05/06/12 5:37 PM05/06/12 5:37 PM

Analyzing which XML Features are Needed in a Database ❘ 343

modify XML documents. Alternatively, you can choose a native XML database, one designed from
the ground up to store XML documents effi ciently; these usually have limited relational capabilities.
Your decision should therefore be based on what data it is you want to store. If your data consists
of a large number of XML documents that need to be accessed or queried then a native XML data-
base is probably your best option. This might be the case if your software is a content management
system where different snippets of data can be merged to form complete texts. If, however, you have
a situation where you store details of customers but need to attach some XML documents, a tradi-
tional relational database with XML capabilities is a better choice.

Now that you understand why XML documents and databases are a good mix, you will next learn
which XML features you usually need in a database to accomplish common tasks.

ANALYZING WHICH XML FEATURES ARE NEEDED
IN A DATABASE

Whether you’ve chosen a relational or native XML database, you’ll need a number of features to
address the common tasks associated with XML documents. Not every application will necessar-
ily need all features, and some will defi nitely be used less frequently than others. This section deals
with each task separately, and gives an indication of how important each one is likely to be. This
will help you choose between the many systems available.

Retrieving Documents

This is a must-have requirement; there’s little use in storing documents that can’t be accessed later.
However, you have a couple of points to consider:

 ➤ How will you specify which document you want? If it’s just a question of retrieving an
order associated with a customer in a relational database, as detailed previously, there’s no
problem. All systems allow that. On the other hand, if you need to specify a document by
some data held within it (such as an invoice number or a specifi c date) you’ll need some sort
of XML querying facility. The standard way to specify documents is by using XPath to tar-
get a particular value and return any documents that match what you need. (See Chapter 7
for a review of XPath) For example, you may want to view all invoices over $1000, so you’d
specify an XPath expression similar to /order[total > 1000].

 ➤ How effi cient does the search need to be? This will probably depend on how many docu-
ments you have stored, but once you get past a few hundred your system will have to do
some background indexing to prevent searches being slow.

Retrieving Data from Documents

It’s quite likely that you’ll want to retrieve sections of a document rather than the entire thing. For
example, you may want to see the shipping address or all the line items with their respective dis-
counts. You may also need the information in a slightly different format. This is where XQuery, cov-
ered in Chapter 9, becomes invaluable. Nearly all XML-enabled databases that expose this sort of
functionality have settled on XQuery as the standard way of querying and transforming XML data
(if necessary) before returning it to the user.

c10.indd 343c10.indd 343 05/06/12 5:37 PM05/06/12 5:37 PM

344 ❘ CHAPTER 10 XML AND DATABASES

However, there is a huge variation in how much of the standard is supported. The winners here
are the native XML databases. These databases often implement the full capabilities of XQuery,
whereas some of the relational databases that have had XML features added on support only a
limited subset. If this sort of operation is likely to be used heavily in your application, you’ll
want to check carefully just how much of XQuery is implemented before you decide which
application to use.

Updating XML Documents

Although it seems like updating XML documents should be standard, this feature is more likely
to be needed in a native XML database rather than a relational one. This is because in a relational
database, XML documents are often used more as snapshots of the data at a point in time and
therefore it doesn’t make sense to change them. In a native application all your data is in the form
of XML, so you’ll probably need to modify it at some time. Again, the facilities for such modifi ca-
tions vary widely between databases; one reason for this is that the standard syntax for updating an
XML document was agreed on much later than the one for retrieval.

Displaying Relational Data as XML

Displaying relational data as XML applies only to relational databases. Many relational databases
have the capability to present the results of a standard SQL query as XML instead of the usual
tabular format. Some have just a basic capability that wraps each row and each column in an ele-
ment. With others, you can specify the format more precisely, perhaps by introducing nesting
(where appropriate). Some systems also allow you to insert an XSL transformation into the pipeline.
Although this is something that can be achieved easily enough once the data has been returned, it’s
often easier and more effi cient to incorporate the transformation as part of the whole data retrieval
process and let the client concentrate on the presentational aspect.

Presenting XML as Relational Data

Again, presenting XML as relational data really applies only to relational databases. Sometimes you
need to combine a data from a relational source and an XML source—perhaps your XML refers to
a customer’s ID and you want to include some data from the customer table in your query. One way
to do this is to present the XML document as a regular table and join it to the customer table. This
works if the XML data is fairly regular and doesn’t use a hierarchical structure.

A companion problem is called shredding, which means taking all or parts of an XML document
and storing them in a regular database table. This is common when you receive the data from a
third party and decide that the benefi ts of XML storage are outweighed by the need to integrate
with an existing database structure. It’s quite common in this situation to place the data you require
into a table and retain the XML document as an extra column on that table. This way you can still
use the XML if needed, but have the advantage of being able to join on other tables easily with the
data you’ve extracted.

Now that you’ve seen some of the features that are available, the following section looks at three
applications that implement some or all of these features, beginning with the XML functionality
in MySQL.

c10.indd 344c10.indd 344 05/06/12 5:37 PM05/06/12 5:37 PM

Using MySQL with XML ❘ 345

USING MYSQL WITH XML

The driving factors to add XML support within open source Relational Database Management
Systems (RDBMS) are the same as those of their commercial competitors, except that open-source
RDBMSs appear to lag well behind in this area of functionality. The reasons are diverse. Open-
source projects are often less prone than commercial companies to “get big fast” and absorb all
their surroundings. They are also more used to collaborating with other projects. In addition, it is
possible that they are less infl uenced to incorporate what many regard as just another trendy fea-
ture, XML in this case. In addition, open-source projects usually have fewer fi nancial resources for
their development.

MySQL is one of the leading open source databases, although the management of its development
was taken over by Oracle a short time ago. It is used heavily in conjunction with both PHP- and Java-
based websites. It has a few XML features, although in comparison to the other two commercial
products examined in this chapter, it’s sadly lacking. In fact, MySQL is the only database discussed in
this chapter that hasn’t added anything to its XML features since the last edition of this book in 2007.

Installing MySQL

You can download MySQL from www.my.mysql.com/downloads/. Follow the links to Community
Server and choose version 5.5 (or later if available). Stable versions of MySQL are available for both
Windows and Unix/Linux platforms.

The download page includes a sources download and a number of binary downloads for the most
common platforms, including Windows, many Linux distributions, and Mac OS X. Choose the
option that is the best match for your platform and follow the instructions.

For this chapter, you need to install the server and the client programs. If you are a Debian or
Ubuntu user, select “Linux x86 generic RPM (dynamically linked) downloads,” convert the .rpm
packages into .deb packages using the Debian alien package and alien command, and install it like
any other package using the Debian dpkg -i command.

You can also install the front-end tools, which give you a graphical user interface. However,
for these examples you can just use the command shell, which is reminiscent of a Windows
command prompt.

If you are installing a MySQL database for anything other than test purposes, it is recommended
that you set up proper users and passwords to protect your database. For the tests covered in this
chapter, you can just choose a password for the root/admin account. You’ll be prompted to do that
during the install, and you will access the system using that account.

Adding Information in MySQL

You can use a GUI tool to interact with MySQL, but if you really want to understand what’s going
on behind the scenes, the mysql command-line utility is your best friend. Open a Unix or Windows
command window and navigate to the bin folder of the installation, for example: C:\Program
Files\MySQL\MySQl Server 5.5\bin. Then type mysql -u root –p. If everything is working
correctly, you should see the mysql prompt asking for the password you chose during installation:

c10.indd 345c10.indd 345 05/06/12 5:37 PM05/06/12 5:37 PM

http://www.my.mysql.com/downloads/

346 ❘ CHAPTER 10 XML AND DATABASES

C:\Program Files\MySQL\MySQl Server 5.5\bin>mysql –u root -p
Enter password: **********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.5.15 MySQL Community Server (GPL)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the current input statement.

mysql>

In the following Try It Out, you will create a new database and add information.

TRY IT OUT Creating and Populating a MySQL Database

Before you can add information in MySQL, you must create a database. A database acts as a container
in which you group information related to a project.

 1. To create a database named Blog with UTF-8 as a character set, type the following:

mysql> create database Blog DEFAULT CHARACTER SET ‘utf8’;
Query OK, 1 row affected (0.00 sec)

mysql>

 2. Move into the newly created database by typing the following:

mysql> use Blog;
Database changed
mysql>

A big difference between a native XML database, such as eXist (which you look at later), and a
relational database is that a relational database is highly structured. An XML database can learn
the structure of your documents when you load them, without needing any prior defi nition. This
isn’t possible with a relational database. In a relational database, information is stored in tables
with rows and columns. These tables are similar to spreadsheet tables, except that the name and
type of the columns need to be defi ned before you can use them.

 3. Create one of these tables to hold the information needed for the exercises in this chapter. Name it
BlogPost and, for the sake of simplicity, give it only two columns:

 ➤ A column named PostId that will be used as a primary key when you want to retrieve a
specifi c blog entry

 ➤ A column named Post to hold the blog entry in XML

c10.indd 346c10.indd 346 05/06/12 5:37 PM05/06/12 5:37 PM

Using MySQL with XML ❘ 347

Of course, this is a very minimal schema. You might want to add more columns to this table to
simplify and optimize specifi c queries.

To create this table, type the following:

mysql> create table BlogPost (
 -> PostId INT PRIMARY KEY,
 -> Post LONGTEXT
 ->);

Query OK, 0 rows affected (0.27 sec)

mysql>

Note that you don’t have to type the -> at the beginning of the second and subsequent lines of the
create table SQL instruction; these are just prompts sent by the mysql command-line utility.

 4. The database is now ready to accept your blog entries. In a real-world application, these entries
would be added by a nice web application, but this chapter continues to use the mysql command-
line utility to add them. In SQL, you add information through an insert statement. Enter a
couple of your own blog entries following this pattern:

mysql> INSERT BlogPost (PostId, Post) SELECT 1,

‘<post xmlns:x=”http://www.w3.org/1999/xhtml”

 id=”1” author=”Joe Fawcett” dateCreated=”2011-09-18”>

 <title>A New Book</title>

 <body>

 <x:p>

 <x:b>I\’ve been asked to co-author a new edition of <x:a

 href=”http://www.wrox.com/WileyCDA/WroxTitle/productCd-470114878.html”>

Beginning XML</x:a> by Wrox</x:b>

 </x:p>

 <x:p>It\’s incredible how much has changed since the book was

 published nearly five years ago. XML

 is now a bedrock of many systems, contrarily you see less of it

 than previously as it\’s buried under more layers.</x:p>

 <x:p>There are also many places where it has stopped being an automatic

 choice for data transfer,

 JSON has become a popular replacement where the data is to

 be consumed directly by a

 JavaScript engine such as in a browser.</x:p>

 <x:p>The new edition should be finished towards the end of the year

 and be published early in 2012.</x:p>

 </body>

</post>’;

Query OK, 1 row affected (0.34 sec)

mysql>

CreateAndLoadDatabse.sql

Available for
download on
Wrox.com

c10.indd 347c10.indd 347 05/06/12 5:37 PM05/06/12 5:37 PM

http://www.w3.org/1999/xhtml
http://www.wrox.com/WileyCDA/WroxTitle/productCd-470114878.html
http://Wrox.com

348 ❘ CHAPTER 10 XML AND DATABASES

If you don’t want to bother typing in the individual statements to create the database, the table,
and to insert the data, you can run the following command from the mysql shell, which processes
the fi le found in the code download. You will need to make sure the path to the fi le that the
 previous code snippet was from is correct for your machine:

source C:\mySQL\CreateAndLoadDatabase.sql

How It Works

In this Try It Out, you created a database that serves as the container where information is stored, and
a table that defi nes the structure of your data. Then you entered data in this structure. So far none of
this has been XML-specifi c; you’ve just used standard SQL statements as supported by all relational
database systems.

Querying MySQL

Now that you have your fi rst two blog entries, what can you do with them? Because MySQL is a
SQL database, so you can use all the power of SQL to query the content of your database. To show
all the entries, just type the following:

SELECT * FROM BlogPost;

The result is too verbose to print in a book, but if you want something more concise, you can select
only the fi rst characters of each entry:

mysql> SELECT PostId, substring(Post, 1, 60) FROM BlogPost;
+--------+--+
| PostId | substring(Post, 1, 70) |
+--------+--+
1	<post xmlns:x=”http://www.w3.org/1999/xhtml” id=”1” author=”Joe Fawc
2	<post xmlns:x=”http://www.w3.org/1999/xhtml” id=”2” author=”Joe Fawc
3	<post xmlns:x=”http://www.w3.org/1999/xhtml” id=”3” author=”Joe Fawc
+--------+--+
3 rows in set (0.02 sec)

mysql>

Or, if you just want the number of entries:

NOTE The XML document that you’re including is embedded in a SQL string

delimited by single quotes. Any single quotes within your XML document must

be escaped to fi t in that string, and the SQL way to escape is by preceding it

with a backslash as follows: \’.

c10.indd 348c10.indd 348 05/06/12 5:37 PM05/06/12 5:37 PM

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

Using MySQL with XML ❘ 349

mysql> SELECT COUNT(*) FROM BlogPost;
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+
1 row in set (0.13 sec)

mysql>

This is pure SQL, however, and could be done with any SQL database without XML support. But
what if you wanted, for instance, to display the content of the title element?

The XML support in MySQL 5.5 comes from two XML functions documented at http://dev
.mysql.com/doc/refman/5.5/en/xml-functions.html. These are ExtractValue and UpdateXML.
The following Try It Out shows you how to use ExtractValue to query data.

TRY IT OUT Using ExtractValue to Extract Title Data

In this Try It Out you’ll use one of MySQL’s XML functions, ExtractValue, to burrow into the XML
representing a blog post and extracting its title. You’ll be using the MySQL command shell to carry out
the tasks, as in previous examples.

 1. The ExtractValue function evaluates the result of an XPath expression over an XML frag-
ment passed as a string. Only a fairly restricted subset of XPath is currently implemented, which
severely limits your ability to query XML fragments, but this is still enough to extract the title
from content columns:

mysql> SELECT PostId, ExtractValue(Post, ‘/post/title’) Title FROM BlogPost;
+--------+--------------------------+
| PostId | Title |
+--------+--------------------------+
1	A New Book
2	Go, Neutrino, Go!
3	Size of the Solar System
+--------+--------------------------+
3 rows in set (0.01 sec)

mysql>

 2. You are not limited to using the ExtractValue function in the SELECT statement; you can
also use it in the WHERE clause. To retrieve the ID of the blog entry with a specifi c title, use the
following:

mysql> SELECT PostId FROM BlogPost
 -> WHERE ExtractValue(Post, ‘/post/title’) =
 -> ‘A New Book’;

c10.indd 349c10.indd 349 05/06/12 5:37 PM05/06/12 5:37 PM

http://dev.mysql.com/doc/refman/5.5/en/xml-functions.html
http://dev.mysql.com/doc/refman/5.5/en/xml-functions.html

350 ❘ CHAPTER 10 XML AND DATABASES

+--------+
| PostId |
+--------+
| 1 |
+--------+
1 row in set (0.00 sec)

mysql>

How It Works

ExtractValue works by taking an XPath expression and evaluating it against the target document.
It doesn’t, however, return an exact copy of any XML it fi nds. Instead, it returns any text that is a
child of the element selected, or, in the case that an attribute is selected, its value. This means that you
extract the title of a post easily because the actual title is directly contained in a <title> element. You
can also fi lter results by using ExtractValue in a WHERE clause; providing the value you want to test is
simple text and not a full element.

If you are familiar with XPath, the behavior of ExtractValue is often somewhat counterintuitive.
For instance, if you try to apply the same technique to fetch the <body> of your blog entries, you’ll
get the following:

mysql> SELECT PostId, ExtractValue(Post, ‘post/body’) Body
 -> FROM BlogPost;
+--------+---+
| PostId | Body |
+--------+---+
| 1 |

 |
| 2 |

 |
| 3 |

 |
+--------+---+
3 rows in set (0.04 sec)

mysql>

c10.indd 350c10.indd 350 05/06/12 5:37 PM05/06/12 5:37 PM

Using MySQL with XML ❘ 351

If you are used to the XPath behavior that translates elements into strings by concatenating the text
nodes from all their descendants, you might assume that ExtractValue would do the same, but
that’s not the case: ExtractValue only concatenates the text nodes directly embedded in elements.
In this case, the only text nodes that are direct children from description elements are whitespaces,
which explains the preceding output.

To get the default XPath behavior, you need to explicitly state that you want the text nodes at any
level like so:

mysql> SELECT PostId, ExtractValue(Post, ‘post/body//text()’) Body
 -> FROM BlogPost;
+| PostId | Body
+--------+--
| 1 |

 I’ve been asked to co-author a new edition of Beginning XML
 by Wrox

 It’s incredible how much has changed since the book was published
 nearly five years ago. XML
 is now a bedrock of many systems, contrarily you see less of it
than previously as it’s buried....

3 rows in set (0.00 sec)

mysql>mysql>

Note that this listing has been edited for conciseness.

How would you select entries that contain images? In XPath, you use //img directly in a test, and
this would be considered true if and only if there were at least one element somewhere in the
document. If you’re familiar with XPath, you might be tempted to write something like this:

mysql> SELECT PostId, ExtractValue(Post, ‘/post/title’) Title
 -> FROM BlogPost
 -> WHERE ExtractValue(Post, ‘//x:img’) != ‘’;
Empty set (0.00 sec)

mysql>

NOTE MySQL’s XML functions don’t really understand namespaces. You don’t

have a way of binding a namespace URI to a prefi x, so you just have to use the

same prefi x that exists in the source document.

This doesn’t work, however, because elements are empty: they don’t have any child text
nodes, and ExtractValue converts them into empty strings. To make that query work, you need to
select a node that will have a value (such as //x:img/@src) or count the number of elements
and test that the result is greater than zero. This method is shown in the following code snippet:

c10.indd 351c10.indd 351 05/06/12 5:37 PM05/06/12 5:37 PM

352 ❘ CHAPTER 10 XML AND DATABASES

mysql> SELECT PostId, ExtractValue(Post, ‘/post/title’) Title
 -> FROM BlogPost
 -> WHERE ExtractValue(Post, ‘//x:img/@src’) != ‘’;
+--------+--------------------------+
| PostId | Title |
+--------+--------------------------+
| 3 | Size of the Solar System |
+--------+--------------------------+
1 row in set (0.02 sec)

mysql> SELECT PostId, ExtractValue(Post, ‘/post/title’) Title
 -> FROM BlogPost
 -> WHERE ExtractValue(Post, ‘count(//x:img)’) > 0;
+--------+--------------------------+
| PostId | Title |
+--------+--------------------------+
| 3 | Size of the Solar System |
+--------+--------------------------+
1 row in set (0.04 sec)

mysql>

You’ll hit another limitation pretty soon if you use this function. Most of the string functions of
XPath are not implemented. For instance, if you want to fi nd entries with links to URIs from www
.wrox.com, you might be tempted to write something such as the following:

mysql> SELECT PostId, ExtractValue(Post, ‘/post/title’) Title
 -> FROM BlogPost
 -> WHERE ExtractValue
 -> (Post, ‘count(//x:a[starts-with(@href, “http://www.wrox.com”)])’) > 0;

Unfortunately, the starts-with function is not implemented, so you’ll get an error message—and
not an informative one at that. It will just state that there’s a syntax error; you need to use SQL to
do what you can’t do with XPath:

mysql> SELECT PostId, ExtractValue(Post, ‘/post/title’) Title
 -> FROM BlogPost
 -> WHERE ExtractValue(Post, ‘//x:a/@href’)
 -> LIKE ‘http://www.wrox.com/%’;
+--------+------------+
| PostId | Title |
+--------+------------+
| 1 | A New Book |
+--------+------------+
1 row in set (0.06 sec)

mysql>

This ensures that any href attribute begins with the Wrox domain.

Now that you’ve seen how to make the most of MySQL’s somewhat limited select functionality, it’s
time to try updating an XML document.

c10.indd 352c10.indd 352 05/06/12 5:37 PM05/06/12 5:37 PM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

Using MySQL with XML ❘ 353

Updating XML in MySQL

The second XML function introduced by MySQL 5.5 is called UpdateXML. Like any SQL function,
UpdateXML doesn’t perform database updates, but it is handy when you use it in update statements.

UpdateXML takes three parameters:

 ➤ A string containing an XML document

 ➤ An XPath expression that points to an element

 ➤ An XML fragment

UpdateXML takes the XML document, looks for the content pointed to by the XPath expression
passed as the second parameter and replaces it with the XML fragment passed as the third param-
eter. It then returns the new XML formed by the function as a string.

To change the title of the second blog entry, for example, use the following:

mysql> UPDATE BlogPost
 -> SET Post = UpdateXml(Post, ‘/post/title’,
 -> ‘<title>Faster Than Light?</title>’)
 -> WHERE PostId = 2;
Query OK, 1 row affected (0.13 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT PostId, ExtractValue(Post, ‘/post/title’) Title
 -> FROM BlogPost;
+--------+--------------------------+
| PostId | Title |
+--------+--------------------------+
1	A New Book
2	Faster Than Light?
3	Size of the Solar System
+--------+--------------------------+
3 rows in set (0.00 sec)

mysql>

This function is obviously handy in this situation, but note that the XPath expression must point to
an element. This means that the granularity of updates is at element level, so if you want to update
an attribute value, you are out of luck.

Usability of XML in MySQL

After this introduction to the XML features of MySQL 5.5, you may be wondering, how usable
these features are in real-world applications? To answer this question, fi rst note that support of
XML in MySQL 5.5 is limited to the two string functions already shown. In other words, there’s no
such thing as an XML column type. Your documents are stored as text and need to be parsed each
time you use one of these functions.

Consider one of the queries that you have seen:

c10.indd 353c10.indd 353 05/06/12 5:37 PM05/06/12 5:37 PM

354 ❘ CHAPTER 10 XML AND DATABASES

SELECT PostId FROM BlogPost WHERE
ExtractValue(Post, ‘/post/title’) = ‘A New Book’;

To process this query, the database engine needs to read the full content of all the blog entries, parse
this content, and apply the XPath expression that extracts the title. That’s fi ne with your couple of
blog entries, but likely not something you want to do if you are designing a WordPress clone able to
store millions of blog entries.

To optimize the design of the sample database that you created, you would extract the information
that is most commonly used in user queries and move it into table columns. In the Blog example
created earlier, obvious candidates would be the title, the author, and the publication date. Having
this data available as columns enables direct access for the engine. If you need further optimization,
you can use these columns to create indexes.

The other consideration to keep in mind is the mismatch between the current implementation and
the XPath usages. You saw an example of that when you had to explicitly specify that you wanted
to concatenate text nodes from all the descendants. If you use these functions, you will see more
examples where behavior differs from the generally accepted XML standards. This mismatch may
be reduced in future releases, and is something to watch carefully because it could lead to incompat-
ible changes.

With these restrictions in mind, if you are both a MySQL and an XML user, you will fi nd these fi rst
XML features most welcome, and there is no reason to ignore them. They don’t turn MySQL into a
native XML database yet, but they are a step in the right direction!

Client-Side XML Support

The features that you have seen so far are all server-side features implemented by the database
engine. You don’t need anything to support XML on the client side, and it is very easy to use any
programming language to convert SQL query results into XML. However, you might fi nd it disap-
pointing to leave this chapter without at least a peek at an XML feature that can be handy when
you use the mysql command-line utility. To see this feature in action, start a new session but add
the --xml option:

C:\Program Files\MySQL\MySQL Server 5.5\bin>mysql -u root -p --xml
Enter password: **********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 15
Server version: 5.5.15 MySQL Community Server (GPL)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the current input statement.

mysql>

c10.indd 354c10.indd 354 05/06/12 5:37 PM05/06/12 5:37 PM

Using SQL Server with XML ❘ 355

The --xml option has switched on the XML mode, and the query results will now be output
as XML:

mysql> USE Blog
Database changed
mysql> SELECT PostId, ExtractValue(Post, ‘/post/title’) Title
 -> FROM BlogPost;
<?xml version=”1.0”?>

<resultset statement=”SELECT PostId, ExtractValue(Post, ‘/post/title’) Title
FROM BlogPost” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 <row>
 <field name=”PostId”>1</field>
 <field name=”Title”>A New Book</field>
 </row>

 <row>
 <field name=”PostId”>2</field>
 <field name=”Title”>Faster Than Light?</field>
 </row>

 <row>
 <field name=”PostId”>3</field>
 <field name=”Title”>Size of the Solar System</field>
 </row>
</resultset>
3 rows in set (0.00 sec)

mysql>

Although that’s not very readable as is, it’s a useful feature when you use mysql in shell or DOS
scripts. When you get your results as XML documents, you can run XML tools such as XSLT trans-
formations. If you need a truly simple way to turn out a query result in XHTML, this is defi nitely
something that you’ll fi nd useful.

Now that you’ve seen an open source implementation, it’s time to move on to a commercial product,
SQL Server.

USING SQL SERVER WITH XML

Microsoft’s SQL Server has had XML functionality since version 2000. Version 2005 added a lot
more, but since then there haven’t been many changes. The version you use in this section is 2008
R2, but the examples work with any version from 2005 upwards unless otherwise specifi ed.

Installing SQL Server

For these examples you’ll use the free Express edition of SQL Server. You can download it from
www.microsoft.com/sqlserver/en/us/editions/express.aspx. You’ll need to choose the
appropriate option depending on whether you need the 32 or 64 bit version. Make sure you select
the install that comes with the developer tools so that you can use SQL Server Management

c10.indd 355c10.indd 355 05/06/12 5:37 PM05/06/12 5:37 PM

http://www.w3.org/2001/XMLSchema-instance
http://www.microsoft.com/sqlserver/en/us/editions/express.aspx

356 ❘ CHAPTER 10 XML AND DATABASES

Studio to run the examples. You will also need to download a sample database to work with. The
AdventureWorks OLTP database is available at http://msftdbprodsamples.codeplex.com/
releases/view/55926 and represents a fi ctitious bicycle manufacturing company. When down-
loaded into SQL Server Management Studio, the database is referred to as AdventureWorks.

DOWNLOADING DATABASES FOR SQL SERVER

If you are having trouble downloading and installing the sample databases
you can use the fi les in the code download for this chapter and perform the
following steps:

 1. Copy AdventureWorks_Data.mdf and AdventureWorks_Data_log.
ldf to a suitable folder and then open SQL Server Management Studio
(SSMS).

 2. Connect to the local instance and right-click the Databases node in the
object explorer and choose Attach....

 3. Use the Add button to browse for the AdventureWorks_Data.mdf fi le
and Click OK and then OK again.

 4. You can then refresh the Databases node by pressing F5 and the new
database should appear. You can then right-click on it and choose
Rename and call it AdventureWorks2008R2 and hit F5 to complete the
task.

The fi rst piece of functionality discussed is how to present standard relational data as XML.

Presenting Relational Data as XML

Transforming tabular data to an XML format is a rather common requirement. SQL Server offers a
number of options to achieve this, and they all involve appending the phrase FOR XML <mode> to the
end of a regular SELECT query. You can use four different modes; each one enables you to tailor the
results to a lesser or greater degree. The most basic mode of FOR XML is RAW.

Using FOR XML RAW

The simplest mode you can use is RAW. Suppose you have the following query, which selects the basic
details of orders that have a value greater than $300,000:

SELECT [PurchaseOrderID]
 ,[RevisionNumber]
 ,[Status]
 ,[EmployeeID]
 ,[VendorID]
 ,[ShipMethodID]

Available for
download on
Wrox.com

c10.indd 356c10.indd 356 05/06/12 5:37 PM05/06/12 5:37 PM

http://msftdbprodsamples.codeplex.com/releases/view/55926
http://msftdbprodsamples.codeplex.com/releases/view/55926
http://Wrox.com

Using SQL Server with XML ❘ 357

 ,[OrderDate]
 ,[ShipDate]
 ,[SubTotal]
 ,[TaxAmt]
 ,[Freight]
 ,[TotalDue]
 ,[ModifiedDate]
 FROM [Purchasing].[PurchaseOrderHeader]
 WHERE [TotalDue] > 300000;

ForXmlQueries.sql

The example queries in this section are available in the code download for the chapter in a fi le
named ForXmlQueries.sql. The results, three rows, are shown in Figure 10-1.

FIGURE 10-1

To return XML, add FOR XML RAW to the query:

SELECT [PurchaseOrderID]
 ,[RevisionNumber]
 ,[Status]
 ,[EmployeeID]
 ,[VendorID]
 ,[ShipMethodID]
 ,[OrderDate]
 ,[ShipDate]
 ,[SubTotal]
 ,[TaxAmt]
 ,[Freight]

Available for
download on
Wrox.com

c10.indd 357c10.indd 357 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com

358 ❘ CHAPTER 10 XML AND DATABASES

 ,[TotalDue]
 ,[ModifiedDate]
 FROM [Purchasing].[PurchaseOrderHeader]
 WHERE [TotalDue] > 300000
 FOR XML RAW;

ForXmlQueries.sql

You’ll now get an attribute-centric XML view of the data, with each row wrapped in a <row> ele-
ment. However, there’s no document element added so it’s actually an XML fragment. One of the
rows is shown in the following code:

<row PurchaseOrderID=”4007” RevisionNumber=”13” Status=”2”
 EmployeeID=”251” VendorID=”1594” ShipMethodID=”3”
 OrderDate=”2008-04-01T00:00:00” ShipDate=”2008-04-26T00:00:00”
 SubTotal=”554020.0000” TaxAmt=”44321.6000” Freight=”11080.4000”
 TotalDue=”609422.0000” ModifiedDate=”2009-09-12T12:25:46.407” />

If you want an element-centric view, add the ELEMENTS directive to the query:

SELECT [PurchaseOrderID]
 ,[RevisionNumber]
 ,[Status]
 ,[EmployeeID]
 ,[VendorID]
 ,[ShipMethodID]
 ,[OrderDate]
 ,[ShipDate]
 ,[SubTotal]
 ,[TaxAmt]
 ,[Freight]
 ,[TotalDue]
 ,[ModifiedDate]
 FROM [Purchasing].[PurchaseOrderHeader]
 WHERE [TotalDue] > 300000
 FOR XML RAW, ELEMENTS;

ForXmlQueries.sql

You’ll then get rows like the following:

<row>
 <PurchaseOrderID>4007</PurchaseOrderID>
 <RevisionNumber>13</RevisionNumber>
 <Status>2</Status>
 <EmployeeID>251</EmployeeID>
 <VendorID>1594</VendorID>
 <ShipMethodID>3</ShipMethodID>
 <OrderDate>2008-04-01T00:00:00</OrderDate>
 <ShipDate>2008-04-26T00:00:00</ShipDate>
 <SubTotal>554020.0000</SubTotal>
 <TaxAmt>44321.6000</TaxAmt>

Available for
download on
Wrox.com

c10.indd 358c10.indd 358 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com

Using SQL Server with XML ❘ 359

 <Freight>11080.4000</Freight>
 <TotalDue>609422.0000</TotalDue>
 <ModifiedDate>2009-09-12T12:25:46.407</ModifiedDate>
</row>

As mentioned before, the query returns an XML fragment rather than a full document. To add a
surrounding root element, use the ROOT directive combined with the name of the root element you
want:

SELECT [PurchaseOrderID]
 ,[RevisionNumber]
 ,[Status]
 ,[EmployeeID]
 ,[VendorID]
 ,[ShipMethodID]
 ,[OrderDate]
 ,[ShipDate]
 ,[SubTotal]
 ,[TaxAmt]
 ,[Freight]
 ,[TotalDue]
 ,[ModifiedDate]
 FROM [Purchasing].[PurchaseOrderHeader]
 WHERE [TotalDue] > 300000
 FOR XML RAW, ELEMENTS, ROOT(‘orders’);

ForXmlQueries.sql

You’ll now get an <orders> element around all the <row> elements.

You may also want to change the name of the default row container, which is <row>. Simply add the
name in parentheses after the RAW keyword:

SELECT [PurchaseOrderID]
 ,[RevisionNumber]
 ,[Status]
 ,[EmployeeID]
 ,[VendorID]
 ,[ShipMethodID]
 ,[OrderDate]
 ,[ShipDate]
 ,[SubTotal]
 ,[TaxAmt]
 ,[Freight]
 ,[TotalDue]
 ,[ModifiedDate]
 FROM [Purchasing].[PurchaseOrderHeader]
 WHERE [TotalDue] > 300000
 FOR XML RAW(‘order’), ELEMENTS, ROOT(‘orders’);

This will give you results similar to the following:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 359c10.indd 359 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com
http://Wrox.com

360 ❘ CHAPTER 10 XML AND DATABASES

<orders>
 <order>
 <PurchaseOrderID>4007</PurchaseOrderID>
 <RevisionNumber>13</RevisionNumber>
 <Status>2</Status>
 <EmployeeID>251</EmployeeID>
 <VendorID>1594</VendorID>
 <ShipMethodID>3</ShipMethodID>
 <OrderDate>2008-04-01T00:00:00</OrderDate>
 <ShipDate>2008-04-26T00:00:00</ShipDate>
 <SubTotal>554020.0000</SubTotal>
 <TaxAmt>44321.6000</TaxAmt>
 <Freight>11080.4000</Freight>
 <TotalDue>609422.0000</TotalDue>
 <ModifiedDate>2009-09-12T12:25:46.407</ModifiedDate>
 </order>
 <!-- more order elements -->
</orders>

Another issue that commonly arises is how to treat nulls in the results. The default is to not output
the element or attribute at all if its value is null. Sometimes it’s easier to process the results if the
element is there, but empty; to differentiate between an element that contains a null value and one
which has an empty string there needs to be a marker on the element to signify that its value is null
rather than an empty string. The marker used is xsi:nil=”true “. This is a standard attribute from
the schema instance namespace, so SQL Server also needs to add the correct namespace binding. If
you want this treatment, use the XSINIL directive after the ELEMENTS keyword. The following code
shows how to ensure that elements that have a null value are output rather than being omitted:

SSELECT [PurchaseOrderID]
 ,[RevisionNumber]
 ,[Status]
 ,[EmployeeID]
 ,[VendorID]
 ,[ShipMethodID]
 ,[OrderDate]
 ,[ShipDate]
 ,[SubTotal]
 ,[TaxAmt]
 ,[Freight]
 ,[TotalDue]
 ,[ModifiedDate]
 FROM [Purchasing].[PurchaseOrderHeader]
 WHERE [TotalDue] > 300000
 FOR XML RAW(‘order’), ELEMENTS XSINIL, ROOT(‘orders’);

ForXmlQueries.sql

The result is as follows:

<orders xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 <order>
 <PurchaseOrderID>4007</PurchaseOrderID>

Available for
download on
Wrox.com

c10.indd 360c10.indd 360 05/06/12 5:37 PM05/06/12 5:37 PM

http://www.w3.org/2001/XMLSchema-instance
http://Wrox.com

Using SQL Server with XML ❘ 361

 <RevisionNumber>14</RevisionNumber>
 <Status>2</Status>
 <EmployeeID>251</EmployeeID>
 <VendorID>1594</VendorID>
 <ShipMethodID>3</ShipMethodID>
 <OrderDate>2008-04-01T00:00:00</OrderDate>
 <ShipDate xsi:nil=”true” />
 <SubTotal>554020.0000</SubTotal>
 <TaxAmt>44321.6000</TaxAmt>
 <Freight>11080.4000</Freight>
 <TotalDue>609422.0000</TotalDue>
 <ModifiedDate>2009-09-12T12:25:46.407</ModifiedDate>
 </order>
 <!-- more order elements -->
</orders>

If your copy of the database doesn’t have a null shipping date, you can always change one—the code
in ForXmlQueries.sql makes the requisite change and then restores it at the end.

One fi nal feature that might be useful, especially if your data is being passed to a third party, is the
ability to add an XML schema. This is done by appending the previous code with the XMLSCHEMA
directive like so:

SELECT [PurchaseOrderID]
 ,[RevisionNumber]
 ,[Status]
 ,[EmployeeID]
 ,[VendorID]
 ,[ShipMethodID]
 ,[OrderDate]
 ,[ShipDate]
 ,[SubTotal]
 ,[TaxAmt]
 ,[Freight]
 ,[TotalDue]
 ,[ModifiedDate]
 FROM [Purchasing].[PurchaseOrderHeader]
 WHERE [TotalDue] > 300000
 FOR XML RAW(‘order’), ELEMENTS XSINIL, ROOT(‘orders’), XMLSCHEMA;

ForXmlQueries.sql

The schema (highlighted here) is included just after the document element and before the actual
results:

<orders xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 <xsd:schema targetNamespace=”urn:schemas-microsoft-com:sql:SqlRowSet1”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:sqltypes=”http://schemas.microsoft.com/sqlserver/2004/sqltypes”
 elementFormDefault=”qualified”>
 <xsd:import namespace=”http://schemas.microsoft.com/sqlserver/2004/sqltypes”
 schemaLocation=

Available for
download on
Wrox.com

c10.indd 361c10.indd 361 05/06/12 5:37 PM05/06/12 5:37 PM

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.microsoft.com/sqlserver/2004/sqltypes
http://schemas.microsoft.com/sqlserver/2004/sqltypes
http://Wrox.com

362 ❘ CHAPTER 10 XML AND DATABASES

 “http://schemas.microsoft.com/sqlserver/2004/sqltypes/sqltypes.xsd” />
 <xsd:element name=”order”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”PurchaseOrderID” type=”sqltypes:int” nillable=”1” />
 <xsd:element name=”RevisionNumber” type=”sqltypes:tinyint” nillable=”1”/>
 <xsd:element name=”Status” type=”sqltypes:tinyint” nillable=”1” />
 <xsd:element name=”EmployeeID” type=”sqltypes:int” nillable=”1” />
 <xsd:element name=”VendorID” type=”sqltypes:int” nillable=”1” />
 <xsd:element name=”ShipMethodID” type=”sqltypes:int” nillable=”1” />
 <xsd:element name=”OrderDate” type=”sqltypes:datetime” nillable=”1” />
 <xsd:element name=”ShipDate” type=”sqltypes:datetime” nillable=”1” />
 <xsd:element name=”SubTotal” type=”sqltypes:money” nillable=”1” />
 <xsd:element name=”TaxAmt” type=”sqltypes:money” nillable=”1” />
 <xsd:element name=”Freight” type=”sqltypes:money” nillable=”1” />
 <xsd:element name=”TotalDue” type=”sqltypes:money” nillable=”1” />
 <xsd:element name=”ModifiedDate” type=”sqltypes:datetime” nillable=”1” />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <order xmlns=”urn:schemas-microsoft-com:sql:SqlRowSet1”>
 <PurchaseOrderID>4007</PurchaseOrderID>
 <RevisionNumber>14</RevisionNumber>
 <Status>2</Status>
 <EmployeeID>251</EmployeeID>
 <VendorID>1594</VendorID>
 <ShipMethodID>3</ShipMethodID>
 <OrderDate>2008-04-01T00:00:00</OrderDate>
 <ShipDate xsi:nil=”true” />
 <SubTotal>554020.0000</SubTotal>
 <TaxAmt>44321.6000</TaxAmt>
 <Freight>11080.4000</Freight>
 <TotalDue>609422.0000</TotalDue>
 <ModifiedDate>2009-09-12T12:25:46.407</ModifiedDate>
 </order>
 <!-- rest of order elements -->
</orders>

Although the RAW mode has a few options, it fails miserably when dealing with hierarchical data. To
have more control and to be able to handle hierarchical data more effectively you can use FOR XML
AUTO.

Using FOR XML AUTO

If you try to use the RAW mode with nested data, such as orders along with the line items, you’ll
get a repetitive block of XML in which the order is repeated for every line item. One of the
strengths of XML is the ability to show hierarchical data cleanly, so this sort of repetition is
something to be avoided. You examine how the AUTO mode copes with this in the following
activity.

c10.indd 362c10.indd 362 05/06/12 5:37 PM05/06/12 5:37 PM

http://schemas.microsoft.com/sqlserver/2004/sqltypes/sqltypes.xsd

Using SQL Server with XML ❘ 363

TRY IT OUT Using FOR XML AUTO

In this Try It Out you’ll be using the more sophisticated FOR XML AUTO directive. You’ll see how this
gives greater control than the FOR XML RAW queries that you met earlier. Primarily FOR XML AUTO is
much better at handling the XML returned when two or more tables are joined in a query, for example
when joining PurchaseOrderHeader with PurchaseOrderDetail to give a full view of an order.

 1. To try FOR XML AUTO, simply replace the RAW keyword with AUTO in the basic query introduced in
the preceding section:

 SELECT [PurchaseOrderID]
 ,[RevisionNumber]
 ,[Status]
 ,[EmployeeID]
 ,[VendorID]
 ,[ShipMethodID]
 ,[OrderDate]
 ,[ShipDate]
 ,[SubTotal]
 ,[TaxAmt]
 ,[Freight]
 ,[TotalDue]
 ,[ModifiedDate]
 FROM [Purchasing].[PurchaseOrderHeader]
 WHERE [TotalDue] > 300000
 FOR XML AUTO;

ForXmlQueries.sql

You won’t see much difference in the results of this query compared to the RAW version, other
than the fact that the name of the element holding the data is derived from the table name rather
than being a generic row element:

<Purchasing.PurchaseOrderHeader PurchaseOrderID=”4007” RevisionNumber=”14”
 Status=”2” EmployeeID=”251” VendorID=”1594” ShipMethodID=”3”
 OrderDate=”2008-04-01T00:00:00” SubTotal=”554020.0000” TaxAmt=”44321.6000”
 Freight=”11080.4000” TotalDue=”609422.0000”
 ModifiedDate=”2009-09-12T12:25:46.407” />

Again, the result is a fragment with no all-enclosing document element.

 2. The real difference becomes apparent when a query extracting data from two linked tables is
executed. The following SQL shows all the previous orders along with their individual line items:

 SELECT POH.[PurchaseOrderID]
 ,POH.[RevisionNumber]
 ,POH.[Status]
 ,POH.[EmployeeID]
 ,POH.[VendorID]
 ,POH.[ShipMethodID]
 ,POH.[OrderDate]
 ,POH.[ShipDate]

Available for
download on
Wrox.com

c10.indd 363c10.indd 363 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com

364 ❘ CHAPTER 10 XML AND DATABASES

 ,POH.[SubTotal]
 ,POH.[TaxAmt]
 ,POH.[Freight]
 ,POH.[TotalDue]
 ,POH.[ModifiedDate]
 ,POD.[OrderQty]
 ,POD.[ProductID]
 ,POD.[UnitPrice]
 FROM [Purchasing].[PurchaseOrderHeader] POH
 INNER JOIN Purchasing.PurchaseOrderDetail POD
 ON POH.PurchaseOrderID = POD.PurchaseOrderID
 WHERE [TotalDue] > 300000;

ForXmlQueries.sql

Here, the tables have been joined on the PurchaseOrderId fi eld and the tables have
been aliased to use the shorter names, POH and POD. The results of this query are shown
in Figure 10-2.

FIGURE 10-2

 3. Now modify the query by adding FOR XML AUTO:

 SELECT POH.[PurchaseOrderID]
 ,POH.[RevisionNumber]

c10.indd 364c10.indd 364 05/06/12 5:37 PM05/06/12 5:37 PM

Using SQL Server with XML ❘ 365

 ,POH.[Status]
 ,POH.[EmployeeID]
 ,POH.[VendorID]
 ,POH.[ShipMethodID]
 ,POH.[OrderDate]
 ,POH.[ShipDate]
 ,POH.[SubTotal]
 ,POH.[TaxAmt]
 ,POH.[Freight]
 ,POH.[TotalDue]
 ,POH.[ModifiedDate]
 ,POD.[OrderQty]
 ,POD.[ProductID]
 ,POD.[UnitPrice]
 FROM [Purchasing].[PurchaseOrderHeader] POH
 INNER JOIN Purchasing.PurchaseOrderDetail POD
 ON POH.PurchaseOrderID = POD.PurchaseOrderID
 WHERE [TotalDue] > 300000
 FOR XML AUTO, ROOT(‘orders’);

ForXmlQueries.sql

Notice that a root element has been specifi ed, as with the RAW option. The results appear as fol-
lows with the hierarchical nature much more apparent:

<orders>
 <POH PurchaseOrderID=”4007” RevisionNumber=”16” Status=”2” EmployeeID=”251”
 VendorID=”1594” ShipMethodID=”3” OrderDate=”2008-04-01T00:00:00”
 SubTotal=”554020.0000” TaxAmt=”44321.6000” Freight=”11080.4000”
 TotalDue=”609422.0000” ModifiedDate=”2009-09-12T12:25:46.407”>
 <POD OrderQty=”5000” ProductID=”849” UnitPrice=”24.7500” />
 <POD OrderQty=”5000” ProductID=”850” UnitPrice=”24.7500” />
 <POD OrderQty=”5000” ProductID=”851” UnitPrice=”24.7500” />
 <POD OrderQty=”750” ProductID=”852” UnitPrice=”30.9400” />
 <POD OrderQty=”750” ProductID=”853” UnitPrice=”30.9400” />
 <POD OrderQty=”750” ProductID=”854” UnitPrice=”30.9400” />
 <POD OrderQty=”1050” ProductID=”855” UnitPrice=”37.1000” />
 <POD OrderQty=”1000” ProductID=”856” UnitPrice=”37.1000” />
 <POD OrderQty=”1000” ProductID=”857” UnitPrice=”37.1000” />
 </POH>
 <!-- more POH elements -->
</orders>

Note that the elements have taken on the names of the table aliases used in the query, which gives you a
way to name them anything you like.

How It Works

The original query, without the FOR XML AUTO directive, leads to a very repetitive result set with each
order line also containing the full details from the header. Adding FOR XML AUTO, ROOT(‘orders’)
to the query produces a nested set of records, something XML excels at, making each order header an

c10.indd 365c10.indd 365 05/06/12 5:37 PM05/06/12 5:37 PM

366 ❘ CHAPTER 10 XML AND DATABASES

 element with its details such as order date and ID displayed as attributes. Underneath each <POH> ele-
ment is one <POD> element representing a line from the order. Again each of these elements uses attri-
butes to show values such as order quantity and product ID.

The other options available to FOR XML RAW, such as ELEMENTS, XSINIL, and XMLSCHEMA, are also avail-
able to FOR XML AUTO.

NOTE Also available are several less commonly used features, such as those to

return binary data and to use GROUP BY in XML queries. These are covered at

length in the SQL Server Books Online (BOL), available from within the SQL

Server Management Studio or online at msdn.microsoft.com/en-us/library/

ms130214.aspx.

Despite the different options available to both the RAW and the AUTO versions of FOR XML, you will
likely encounter cases where neither alternative produces the output needed. The most common sce-
nario is when you need a combination of elements and attributes, rather than one or the other. Two
options are available for this purpose: FOR XML EXPLICIT and FOR XML PATH; the latter is available
only in post-2000 versions.

Using FOR XML EXPLICIT

The EXPLICIT option enables almost unlimited control over the resulting XML format, but this
comes at a price. The syntax is diffi cult to grasp, and because the mechanism used to construct the
resulting XML is based on a forward-only XML writer, the results must be grouped and ordered
in a very specifi c way. Unless you are stuck with SQL Server 2000, the advice from Microsoft and
other experts is to use the PATH option instead. If you do need to use EXPLICIT, the full details are
available in the SQL Server BOL.

Using FOR XML PATH

The PATH option, based on using XPath to specify the format of the output, makes building nested
XML with combinations of elements and attributes relatively simple. Take one of the earlier query
result examples, in which orders over $300,000 were retrieved and returned as attribute-centric
XML using the AUTO option:

<orders>
 <Purchasing.PurchaseOrderHeader PurchaseOrderID=”4007” RevisionNumber=”16”
 Status=”2” EmployeeID=”251” VendorID=”1594” ShipMethodID=”3”
 OrderDate=”2008-04-01T00:00:00” SubTotal=”554020.0000” TaxAmt=”44321.6000”
 Freight=”11080.4000” TotalDue=”609422.0000”
 ModifiedDate=”2009-09-12T12:25:46.407” />
</orders>

c10.indd 366c10.indd 366 05/06/12 5:37 PM05/06/12 5:37 PM

http://msdn.microsoft.com/en-us/library/ms130214.aspx
http://msdn.microsoft.com/en-us/library/ms130214.aspx

Using SQL Server with XML ❘ 367

What if a different layout was needed, one where the PurchaseOrderID, EmployeedID, and status
were attributes but the other data appeared as elements? The PATH option uses aliases of the col-
umns to specify how the XML is structured. The syntax is similar to XPath (covered in Chapter 7),
hence the PATH keyword.

The PATH query for the order data as a mix of attributes and elements would be as follows:

 SELECT [PurchaseOrderID] [@PurchaseOrderID]
 ,[Status] [@Status]
 ,[EmployeeID] [@EmployeeID]
 ,[VendorID]
 ,[ShipMethodID]
 ,[OrderDate]
 ,[ShipDate]
 ,[SubTotal]
 ,[TaxAmt]
 ,[Freight]
 ,[TotalDue]
 FROM [Purchasing].[PurchaseOrderHeader] POH
 WHERE [TotalDue] > 300000
 FOR XML PATH(‘order’), ROOT(‘orders’);

ForXmlQueries.sql

Notice how data that needs to be returned as attributes is aliased to a column name beginning with
@. Unaliased columns are returned as elements. The results of this query would resemble the follow-
ing XML:

<orders>
 <order PurchaseOrderID=”4007” Status=”2” EmployeeID=”251”>
 <VendorID>1594</VendorID>
 <ShipMethodID>3</ShipMethodID>
 <OrderDate>2008-04-01T00:00:00</OrderDate>
 <SubTotal>554020.0000</SubTotal>
 <TaxAmt>44321.6000</TaxAmt>
 <Freight>11080.4000</Freight>
 <TotalDue>609422.0000</TotalDue>
 </order>
 <!-- more order elements -->
</orders>

The PATH option also provides control over nesting. The usual way to do this, rather than use a SQL
JOIN as shown previously, is to use a subquery. The following snippet shows the order header as
attributes, with the order details as nested elements:

SELECT [POH].[PurchaseOrderID] [@PurchaseOrderID]
 ,[POH].[Status] [@Status]
 ,[POH].[EmployeeID] [@EmployeeID]
 ,[POH].[VendorID] [@VendorID]

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 367c10.indd 367 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com
http://Wrox.com

368 ❘ CHAPTER 10 XML AND DATABASES

 ,[POH].[ShipMethodID] [@ShipMethodID]
 ,[POH].[OrderDate] [@OrderDate]
 ,[POH].[ShipDate] [@ShipDate]
 ,[POH].[SubTotal] [@SubTotal]
 ,[POH].[TaxAmt] [@TaxAmt]
 ,[POH].[Freight] [@Freight]
 ,[POH].[TotalDue] [@TotalDue]
 ,(
 SELECT [POD].[OrderQty]
 ,[POD].[ProductID]
 ,[POD].[UnitPrice]
 FROM [Purchasing].[PurchaseOrderDetail] POD
 WHERE POH.[PurchaseOrderID] =
 POD.[PurchaseOrderID]
 ORDER BY POD.[PurchaseOrderID]
 FOR XML PATH(‘orderDetail’), TYPE
)
FROM [Purchasing].[PurchaseOrderHeader] POH
WHERE [POH].[TotalDue] > 300000
FOR XML PATH(‘order’), ROOT(‘orders’);

ForXmlQueries.sql

The main part of the query, without the inner SELECT, is much the same as before except
all the output columns are specifi ed as attributes, as shown by the alias name beginning
with the @ symbol:

SELECT [POH].[PurchaseOrderID] [@PurchaseOrderID]
 ,[POH].[Status] [@Status]
 ,[POH].[EmployeeID] [@EmployeeID]
 ,[POH].[VendorID] [@VendorID]
 ,[POH].[ShipMethodID] [@ShipMethodID]
 ,[POH].[OrderDate] [@OrderDate]
 ,[POH].[ShipDate] [@ShipDate]
 ,[POH].[SubTotal] [@SubTotal]
 ,[POH].[TaxAmt] [@TaxAmt]
 ,[POH].[Freight] [@Freight]
 ,[POH].[TotalDue] [@TotalDue]
 (
 -- Inner query here
)
FROM [Purchasing].[PurchaseOrderHeader] POH
WHERE [POH].[TotalDue] > 300000
FOR XML PATH(‘order’), ROOT(‘orders’);

ForXmlQueries.sql

The inner query returns the order detail relating to the customer specifi ed in the outer query. This is
accomplished by equating the PurchaseOrderDetail.PurchaseOrderId fi eld in the outer query to
the PurchaseOrderDetail.PurchaseOrderID in the nested query as shown in the following code
snippet. (In SQL terms, this is known as a correlated subquery.)

Available for
download on
Wrox.com

c10.indd 368c10.indd 368 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com

Using SQL Server with XML ❘ 369

 SELECT [POD].[OrderQty]
 ,[POD].[ProductID]
 ,[POD].[UnitPrice]
 FROM [Purchasing].[PurchaseOrderDetail] POD
 WHERE POH.[PurchaseOrderID] =
 POD.[PurchaseOrderID]
 ORDER BY POD.[PurchaseOrderID]
 FOR XML PATH(‘orderDetail’), TYPE

ForXmlQueries.sql

Note the TYPE option at the end of the subquery. This specifi es that the resulting data should be con-
verted to the XML data type (this is covered in more detail later in the chapter). This option ensures
that the data is inserted as XML, rather than a string. The actual output from the query appears as
follows:

<orders>
 <order PurchaseOrderID=”4007” Status=”2” EmployeeID=”251” VendorID=”1594”
 ShipMethodID=”3” OrderDate=”2008-04-01T00:00:00” SubTotal=”554020.0000”
 TaxAmt=”44321.6000” Freight=”11080.4000” TotalDue=”609422.0000”>
 <orderDetail>
 <OrderQty>5000</OrderQty>
 <ProductID>849</ProductID>
 <UnitPrice>24.7500</UnitPrice>
 </orderDetail>
 <orderDetail>
 <OrderQty>5000</OrderQty>
 <ProductID>850</ProductID>
 <UnitPrice>24.7500</UnitPrice>
 </orderDetail>
 <orderDetail>
 <OrderQty>5000</OrderQty>
 <ProductID>851</ProductID>
 <UnitPrice>24.7500</UnitPrice>
 </orderDetail>
 <orderDetail>
 <OrderQty>750</OrderQty>
 <ProductID>852</ProductID>
 <UnitPrice>30.9400</UnitPrice>
 </orderDetail>
 <!-- more orderDetail elements -->
 </order>
 <!-- more order elements -->
</orders>

Because no aliasing was applied to the inner query, the columns are represented by XML elements.

Available for
download on
Wrox.com

WARNING If you remove the , TYPE from the inner query, the order details are

inserted as escaped XML because they are treated as text data, not markup.

c10.indd 369c10.indd 369 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com

370 ❘ CHAPTER 10 XML AND DATABASES

Plenty of other options are available to customize the results returned from a FOR XML PATH query.
The fi nal example shows how to group data within elements. The two dates associated with the
order are grouped under a <Dates> element, and an <orderDetail> element is used to hold the
individual line items:

SELECT [POH].[PurchaseOrderID] [@PurchaseOrderID]
 ,[POH].[Status] [@Status]
 ,[POH].[EmployeeID] [@EmployeeID]
 ,[POH].[VendorID] [@VendorID]
 ,[POH].[ShipMethodID] [@ShipMethodID]
 ,[POH].[SubTotal] [@SubTotal]
 ,[POH].[TaxAmt] [@TaxAmt]
 ,[POH].[Freight] [@Freight]
 ,[POH].[TotalDue] [@TotalDue]
 ,[POH].[OrderDate] [Dates/Order]
 ,[POH].[ShipDate] [Dates/Ship]

 ,(
 SELECT [POD].[OrderQty]
 ,[POD].[ProductID]
 ,[POD].[UnitPrice]
 FROM [Purchasing].[PurchaseOrderDetail] POD
 WHERE POH.[PurchaseOrderID] =
 POD.[PurchaseOrderID]
 ORDER BY POD.[PurchaseOrderID]
 FOR XML PATH(‘orderDetail’), TYPE
)
FROM [Purchasing].[PurchaseOrderHeader] POH
WHERE [POH].[TotalDue] > 300000
FOR XML PATH(‘order’), ROOT(‘orders’);

ForXmlQueries.sql

In the preceding code, the key change is to the OrderDate and ShipDate in the outer SELECT. The
columns are aliased to Date/Order and Dates/Ship, so SQL Server creates a new element, Dates,
to hold these two values. There is also an alias on the entire subquery, OrderDetails, that causes
all of its results to be grouped under one element. The resulting XML looks like this:

<orders>
 <order PurchaseOrderID=”4008” Status=”2” EmployeeID=”258” VendorID=”1676”
 ShipMethodID=”3” SubTotal=”396729.0000” TaxAmt=”31738.3200” Freight=”7934.5800”
 TotalDue=”436401.9000”>
 <Dates>
 <Order>2008-05-23T00:00:00</Order>
 <Ship>2008-06-17T00:00:00</Ship>
 </Dates>
 <orderDetail>
 <OrderQty>700</OrderQty>
 <ProductID>858</ProductID>
 <UnitPrice>9.1500</UnitPrice>
 </orderDetail>
 <orderDetail>

Available for
download on
Wrox.com

c10.indd 370c10.indd 370 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com

Using SQL Server with XML ❘ 371

 <OrderQty>700</OrderQty>
 <ProductID>859</ProductID>
 <UnitPrice>9.1500</UnitPrice>
 </orderDetail>
 <!-- more orderDetail elements -->
 </order>
 <order PurchaseOrderID=”4012” Status=”2” EmployeeID=”254” VendorID=”1636”
 ShipMethodID=”3” SubTotal=”997680.0000” TaxAmt=”79814.4000” Freight=”19953.6000”
 TotalDue=”1097448.0000”>
 <Dates>
 <Order>2008-07-25T00:00:00</Order>
 <Ship>2008-08-19T00:00:00</Ship>
 </Dates>
 <orderDetail>
 <OrderQty>6000</OrderQty>
 <ProductID>881</ProductID>
 <UnitPrice>41.5700</UnitPrice>
 </orderDetail>
 <!-- more orderDetail elements -->
 </order>
</orders>

NOTE Dozens of additional options for PATH queries are available, including

how to produce comments, how to create text content, and how to add

namespace declarations. For a full discussion, refer to Books Online, http://

msdn.microsoft.com/en-us/library/ms130214.aspx.

That covers the basics of the FOR XML instruction. Next you take a look at storing XML within a
table, starting with the xml data type.

Understanding the xml Data Type

SQL Server 2005 added an xml data type to those available, which means that XML documents
can be stored in a SQL Server 2005 (or later) database. This is a vast improvement on earlier ver-
sions where there were two options for storing XML, neither of which was satisfactory. The fi rst
alternative was to shred the data into its constituent parts, which were then stored in multiple
relational tables—defeating the purpose of using XML. The second choice was to convert the
XML to a simple string of characters, which loses the logical content of the XML document. The
additional ability to store XML data as an xml data type means that such data can be treated as
if it were still an XML document. In reality, the xml data type is stored in a proprietary binary
format, but, as far as the developer is concerned, it is accessible as XML, with its logical struc-
ture intact.

c10.indd 371c10.indd 371 05/06/12 5:37 PM05/06/12 5:37 PM

http://msdn.microsoft.com/en-us/library/ms130214.aspx
http://msdn.microsoft.com/en-us/library/ms130214.aspx

372 ❘ CHAPTER 10 XML AND DATABASES

The existence of the xml data type means that XML documents stored as this type can be treated
as if they were collections of XML documents sitting on your hard drive. Of course, the details of
the interface to that XML is specifi c to SQL Server. Other advantages to having a specifi c data type
devoted to XML are that you can store intermediate results in queries that return XML and you can
use the methods of the xml data type to search and modify the XML stored in it.

There are several general advantages to storing your data in SQL Server. For one, XML storage
benefi ts from the security, scalability, and other aspects of an enterprise-level database management
system. You can also associate XML schemas with the column and, when querying the document,
the appropriate type will be returned. This is a vast improvement over the previous version, where
CASTing or CONVERTing was needed.

XML documents stored in SQL Server can be treated as XML in any other setting. One practical
effect of that is that you can use XQuery (introduced in Chapter 9) to query these XML columns.
Surprisingly, two XML document instances cannot be compared in this release, in part because
of the fl exibility of XML syntax. Consider, for example, the subtleties of trying to compare two
lengthy XML documents that can have paired apostrophes or paired quotes to contain attribute
values, differently-ordered attributes, different namespace prefi xes although the namespace URI
may be the same, and empty elements written with start tags and end tags or with the empty
 element tag.

Documents stored as the xml data type can be validated against a specifi ed W3C XML Schema
document. XML data that is not associated with a schema document is termed untyped, and XML
associated with a schema document is termed typed.

In the following activity you create a simple table to contain XML documents in SQL Server. SQL
Server Management Studio is the main graphical tool for manipulating database objects and writ-
ing SQL code, although Visual Studio and a number of third-party applications are also available.
Refer to the “Installing SQL Server” section for instructions on how to download SQL Server
Management Studio.

TRY IT OUT Creating XML Documents in SQL Server

The following Try It Out shows how to create a table designed specifi cally to hold XML documents
in their native state, rather than as text. Once the table has been created you’ll see how to insert a few
sample XML documents and then retrieve them using SQL.

 1. Open the SQL Server Management Studio (SSMS) and connect to the local instance of SQL
Server (or whichever server you want to create the test database on).

NOTE One or two diff erences exist between the data stored by SQL Server and

the original document, and it is not possible to round-trip between the two and

get an identical copy, although the XML Infoset is preserved (see Chapter 2 for

details).

c10.indd 372c10.indd 372 05/06/12 5:37 PM05/06/12 5:37 PM

Using SQL Server with XML ❘ 373

 2. In the Object Explorer, expand the nodes so that User Databases is shown. Right-click and
select the New Database option. When dialog box opens, insert the name of the database—for
this example, XMLDocTest. Before clicking OK, make sure that the Full Text Indexing option is
checked.

 3. Create a table called Docs using the following SQL:

CREATE TABLE dbo.Docs (
 DocID INTEGER IDENTITY PRIMARY KEY,
 XMLDoc XML
)

XmlDataType.sql

The column XMLDoc is of type xml. Because this is a SQL statement, the data type is not case sen-
sitive. Now you have an empty table.

 4. For the purposes of this example, add simple XML documents with the following structure:

<Person>
 <FirstName></FirstName>
 <LastName></LastName>
</Person>

 5. Insert XML documents using the SQL INSERT statement, as follows, which shows insertion of a
single XML document:

INSERT Docs
VALUES (‘<Person><FirstName>Joe</FirstName>
<LastName>Fawcett</LastName></Person>’
)

XmlDataType.sql

 6. After modifying the values of the FirstName and LastName elements and adding a few documents
to the XMLDoc column, confi rm that retrieval works correctly using the following SQL statement:

SELECT * FROM Docs

The result of this SQL Query is shown in Figure 10-3.

Available for
download on
Wrox.com

c10.indd 373c10.indd 373 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com

374 ❘ CHAPTER 10 XML AND DATABASES

The values contained in the XMLDoc column are displayed in the lower pane of the fi gure. A little
later, you will create some simple XQuery queries.

How It Works

The fi rst step created a table, Docs, which had one of the columns, XmlDoc, defi ned as the new XML
type. The next stage used a traditional INSERT query to add some text to this column. Because the col-
umn was defi ned as XML, the data was converted from text to an XML document. The document can
be retrieved by using a traditional SELECT query.

As an alternative to retrieving the whole XML document, you can also select only parts of it (see the
upcoming sections starting with “Using the query() Method”).

Creating Indexes with the xml Data Type

XML documents in SQL Server can also be indexed for more effi cient retrieval, and a full-text index
can be created. To create a full-text index on a document, use a command like the following:

--If no catalog exists so far
CREATE FULLTEXT CATALOG ft ON DEFAULT
CREATE FULLTEXT INDEX ON dbo.Docs(XmlDoc) KEY INDEX <primary key name>

FIGURE 10-3

c10.indd 374c10.indd 374 05/06/12 5:37 PM05/06/12 5:37 PM

Using SQL Server with XML ❘ 375

The xml data type enables you to use the following methods to manipulate the data and to extract it
in various forms: modify(), query(), value(), exist(), and nodes(). The following sections look
at each method in turn and describe how they are used.

Using the modify() Method

The xml data type can be queried using the XQuery language, which was introduced in Chapter 9.
In SQL Server, XQuery expressions are embedded inside Transact-SQL. Transact-SQL is the fl avor
of the SQL language used in SQL Server.

Microsoft introduced the modify() method before XQuery had fi nalized a syntax. At the time
there was talk of updating to the offi cial standard when it appeared, but so far that hasn’t
happened.

The W3C XQuery 1.0 specifi cation is limited in that it can query only an XML (or XML-enabled)
data source. There is no facility in XQuery 1.0 to carry out deletions, to insert new data, or (com-
bining those actions) to modify data. In SQL Server, the XML Data Modifi cation Language (DML)
adds three keywords to the functionality available in XQuery 1.0. You can see these keywords in
action in the following exercise:

 ➤ delete

 ➤ insert

 ➤ replace value of

WARNING Note that although SQL itself is not case sensitive, the commands

used to manipulate XML within the modify() method are. For example, if you

use DELETE instead of delete, you will receive a cryptic error message.

TRY IT OUT Deleting with XML DML

This Try It Out looks at how to delete part of an XML document using the modify() method in con-
junction with the delete keyword. You’ll use a simple XML document stored in a local variable rather
than a table and then target a specifi c part for deletion. The following code shows an example of how it
can be used:

c10.indd 375c10.indd 375 05/06/12 5:37 PM05/06/12 5:37 PM

376 ❘ CHAPTER 10 XML AND DATABASES

DECLARE @myDoc xml;
SET @myDoc = ‘<Person><FirstName>Joe</FirstName>
 <LastName>Fawcett</LastName></Person>’;

SELECT @myDoc;
SET @myDoc.modify(‘ delete /Person/*[2]’);
SELECT @myDoc;

XmlDataType.sql

To try this out in SSMS, follow these steps:

 1. Open the SQL Server Management Studio.

 2. Connect to the default instance.

 3. From the toolbar, select New SQL Server Query, which appears on the far left.

 4. Enter the preceding code.

 5. Press F5 to run the SQL code. If you have typed in the code correctly, the original document
should be displayed, with the modifi ed document displayed below it. In the modifi ed document,
the LastName element has been removed.

 6. Adjust the width of the columns to display the full XML.

How It Works

The fi rst line of the code declares a variable, myDoc, and specifi es the data type as xml. The SET state-
ment specifi es a value for the myDoc variable, shown in the following snippet. It’s a familiar Person ele-
ment with FirstName and LastName child elements and corresponding text content.

SET @myDoc = ‘<Person><FirstName>Joe</FirstName>
 <LastName>Fawcett</LastName></Person>’;

The SELECT statement following the SET statement causes the value of myDoc to be displayed. Next, the
modify function is used to modify the value of the xml data type:

SET @myDoc.modify(‘ delete /Person/*[2]’);

The Data Modifi cation Language statement inside the modify () function is, like XQuery, case
sensitive. The delete keyword is used to specify which part of the XML document is to be deleted.
In this case, the XPath expression /Person/*[2] specifi es that the second child element of the Person
element is to be deleted, which is the LastName element.

The fi nal SELECT statement shows the value of myDoc after the deletion has taken place. Figure 10-4
shows the results of both SELECT statements.

Available for
download on
Wrox.com

c10.indd 376c10.indd 376 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com

Using SQL Server with XML ❘ 377

The following Try It Out again uses the modify() method but this time, instead of deleting
unwanted XML, you insert a new element into the document.

TRY IT OUT Inserting with XML DML

This Try It Out shows how to add data to existing XML. It uses the modify() method together with
the insert keyword. Again you’ll see the operation performed on an xml data type represented by a
local variable rather than that found in a table. The Transact-SQL code is shown here:

DECLARE @myDoc XML;

SET @myDoc = ‘<Person><LastName>Fawcett</LastName></Person>’;
SELECT @myDoc;
SET @myDoc.modify(‘ insert <FirstName>Joe</FirstName> as first into /Person[1]’);
SELECT @myDoc;

XmlDataType.sql

To run this code, follow these steps:

 1. Open the SQL Server Management Studio.

 2. Connect to the default instance.

 3. From the toolbar, select New SQL Server Query which appears on the far left.

 4. Enter the preceding code.

Available for
download on
Wrox.com

FIGURE 10-4

c10.indd 377c10.indd 377 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com

378 ❘ CHAPTER 10 XML AND DATABASES

 5. Press F5 to run the SQL code. If you have typed in the code correctly, the original document
should be displayed, with the modifi ed document displayed below it. The modifi ed document has
a new FirstName element.

 6. Adjust the width of the columns to display the full XML.

How It Works

In the fi rst line you declare a variable, myDoc, and specify that it has the data type xml. In the following
code:

SET @myDoc = ‘<Person><LastName>Fawcett</LastName></Person>’;

you set the value of the myDoc variable. You then specify a Person element that contains only a
LastName element, which contains the text Fawcett.

The modify () function is used to contain the XQuery extension that you want to use. The insert
keyword specifi es that the modifi cation is an insert operation, that is, you are going to introduce
new content into an existing document rather than create a complete document or replace some pre-
existing XML. The XML to be inserted follows the insert keyword. Notice that it is not enclosed by
apostrophes or quotes. The clause as first specifi es that the inserted XML is to be inserted fi rst. The
into clause uses an XPath expression, /Person, to specify that the FirstName element and its content
is to be added as a child element to the Person element. Given the as first clause, you know that the
FirstName element is to be the fi rst child of the Person element.

As alternatives to into, you could also use after or before. Whereas into adds children to a parent
node, after and before add siblings. The preceding query could be rewritten as follows:

DDECLARE @myDoc XML;
SET @myDoc = ‘<Person><LastName>Fawcett</LastName></Person>’;
SELECT @myDoc;
SET @myDoc.modify(‘ insert <FirstName>Joe</FirstName> before
 (/Person/LastName)[1]’);
SELECT @myDoc;

XmlDataType.sql

When you run the Transact-SQL, the fi rst SELECT statement causes the original XML to be displayed,
and the second SELECT statement causes the XML to be displayed after the insert operation has
 completed.

The fi nal example of the modify() function shows how you can update, or replace, a section of
XML.

Available for
download on
Wrox.com

c10.indd 378c10.indd 378 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com

Using SQL Server with XML ❘ 379

TRY IT OUT Updating with XML DML

The fi nal example using the Data Modifi cation Language updates the content of an XML variable so
that the value of the FirstName element is changed from Joe to Gillian. The code is shown here:

DECLARE @myDoc XML;
SET @myDoc =
‘<Person><FirstName>Joe</FirstName><LastName>Fawcett</LastName></Person>’
SELECT @myDoc;
SET @myDoc.modify(‘ replace value of (/Person/FirstName/text())[1] with
 “Gillian” ‘);
SELECT @myDoc;

XmlDataType.sql

To run this code, follow these steps:

 1. Open the SQL Server Management Studio.

 2. Connect to the local instance or the server you want to run the query on.

 3. From the toolbar, select New SQL Server Query which appears on the far left .

 4. Enter the preceding code.

 5. Press F5 to run the SQL code. If you have typed in the code correctly, the original document
should be displayed, with the modifi ed document displayed below it. The document now has
Gillian instead of Joe for the FirstName element’s contents.

 6. Adjust the width of the columns to display the full XML.

How It Works

Notice the modify function:

SET @myDoc.modify(‘ replace value of (/Person/FirstName/text())[1] with
 “Gillian” ‘);

The replace value of keyword indicates an update, and an XPath expression indicates which part of
the XML the update is to be applied to. In this case it is the text node that is the child of the FirstName
element—in other words, the value of the FirstName element—specifi ed by the XPath expression
/Person/FirstName/text().

The results of the two SELECT statements are shown in Figure 10-5.

Available for
download on
Wrox.com

c10.indd 379c10.indd 379 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com

380 ❘ CHAPTER 10 XML AND DATABASES

One of the main problems with using the modify() method is that it expects a hard-coded string
as its argument. It is therefore diffi cult to make dynamic queries that are needed in the real
world—for example, queries in which the new XML is brought in from another table. You have two
ways around this. First, you can construct the query as a string and execute it dynamically using
EXEC. Alternatively, you can use the built-in functions sql:column and sql:function.
An example of each of these techniques follows.

For these examples you can use the Docs table created earlier. First, here’s a reminder of what a
static update looks like:

UPDATE Docs
SET XmlDoc.modify
(‘ replace value of (/Person/FirstName/text())[1] with “Joseph”’)
WHERE DocId = 1;

XmlDataType.sql

Now suppose you want to replace the hard-coded value Joseph with a variable. You might
fi rst try this:

DECLARE @NewName NVARCHAR(100);
SET @NewName = N’Joseph’;
UPDATE Docs
SET XmlDoc.modify(‘ replace value of (/Person/FirstName/text())[1] with “’
 + @NewName + ‘”’)
WHERE DocId = 1;

XmlDataType.sql

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 10-5

c10.indd 380c10.indd 380 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com
http://Wrox.com

Using SQL Server with XML ❘ 381

Unfortunately, that won’t work. The modify() method complains that it needs a string literal. One
way around this is to build the whole SQL statement dynamically:

DECLARE @NewName NVARCHAR(100);
SET @NewName = N’Joseph’;

DECLARE @SQL NVARCHAR(MAX);

SET @SQL = ‘UPDATE Docs SET XmlDoc.modify(‘’ replace value of (/Person/FirstName/text())

[1] with “’ + @NewName + ‘”’’)

 WHERE DocId = 1’;

PRINT(@SQL);

EXEC(@SQL);

XmlDataType.sql

You can see the SQL before it is executed by running only as far as the PRINT statement, that is, not
executing the last line, EXEC (@SQL); (the following is displayed on a single line):

UPDATE Docs SET XmlDoc.modify(‘ replace value of (/Person/FirstName/text())[1] with
“Joseph”’)
 WHERE DocId = 1

This is exactly the same as the code you started with.

The recommended way to update based on data that will only be known at run-time, however, is to
use the built-in functions sql:column or sql:variable. The sql:column function is used when the
new data is being retrieved from a table, so here sql:variable is needed:

DECLARE @NewName NVARCHAR(100);
SET @NewName = N’Joseph’;
UPDATE Docs
SET XmlDoc.modify
(‘ replace value of (/Person/FirstName/text())[1] with sql:variable(“@NewName”)’)
WHERE DocId = 1;

XmlDataType.sql

The basic syntax is the name of the variable enclosed in double quotes as an argument to
sql:variable(). Next you will see how to use standard XQuery against the xml data type.

Using the query() Method

The query() method enables you to construct XQuery statements in SQL Server. The syntax fol-
lows the XQuery syntax discussed in Chapter 9, and all the queries in that chapter can be run
against a suitable XML data column.

The following query uses the query() method to output the names of each person in a newly con-
structed Name element, with the value of the LastName element followed by a comma and then the
value of the FirstName element. The code is shown here:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 381c10.indd 381 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com
http://Wrox.com

382 ❘ CHAPTER 10 XML AND DATABASES

SELECT XMLDoc.query
(‘for $p in /Person return
 <Name>{$p/LastName/text()}, {$p/FirstName/text()}</Name>’)
FROM Docs;

XmlDataType.sql

The fi rst line indicates that a selection is being made using the query() method applied to the
XMLDoc column (which, of course, is of data type xml).

The for clause specifi es that the variable $p is bound to the Person element node.

The return clause specifi es that a Name element is to be constructed using an element construc-
tor. The fi rst part of the content of each Name element is created by evaluating the XQuery expres-
sion $p/LastName/text(), which, of course, is the text content of the LastName element. A literal
comma is output, and then the XQuery expression $p/FirstName/text() is evaluated.

Figure 10-6 shows the output when the SELECT statement containing the XQuery query is run.

Available for
download on
Wrox.com

FIGURE 10-6

Using the value() Method

The value() method uses XPath to pinpoint specifi c data in an XML document and then converts
it into a standard SQL Server data type. It’s often used in the WHERE part of a SQL query. Suppose
you want to return all the people in your Docs table who have the fi rst name of Joe. This is one way
of doing it:

SELECT * FROM Docs
WHERE XmlDoc.value(‘(/*/FirstName)[1]’, ‘nvarchar(100)’) = ‘Joe’;

XmlDataType.sql
Available for
download on
Wrox.com

c10.indd 382c10.indd 382 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com
http://Wrox.com

Using SQL Server with XML ❘ 383

This returns just one row for the fi rst document you added. Notice how the data type that you are
converting to needs to be quoted; it’s quite a common mistake to forget this. Obviously, you can
also use the value() method in the SELECT list as well. If you just wanted the last name of every-
one, you’d use the following:

SELECT DocId, XmlDoc.value(‘(/*/LastName)[1]’, ‘nvarchar(100)’) LastName
FROM Docs;

XmlDataType.sql

This returns a standard two-column result set.

Using the exist() Method

The exist() method does what its name suggests—it checks if a value exists. It returns a 0 if it
doesn’t, a 1 if it does, and null if the XML column contains null.

So, you could rewrite the query to return people with a fi rst name of Joe this way:

SELECT * FROM Docs
WHERE XmlDoc.exist(‘/*/FirstName[. = “Joe”]’) = 1;

XmlDataType.sql

This returns the same results as the query using the value() method to do the fi lter did previously.

Using the nodes() Method

The nodes() method is used to present an XML document as a regular SQL table. You often need
this when your query needs one row of data from a table combined with a child element of your
XML. For a simple example, look at the following code:

DECLARE @People xml;
SET @People =
‘<people><person>Joe</person>
 <person>Danny</person>
 <person>Liam</person></people>’
SELECT FirstName.value(‘text()[1]’, ‘nvarchar(100)’) FirstName FROM
@People.nodes(‘/*/person’) Person(FirstName);

XmlDataType.sql

The nodes() method takes an XPath that points to some repetitive child elements of the
main document. You then provide a table name and a column name to use later in the form
TableName(ColumnName). Here, the table is Person and the column is FirstName. The FirstName
column is then queried using value() to get the text. The results are shown in Figure 10-7.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 383c10.indd 383 05/06/12 5:37 PM05/06/12 5:37 PM

http://Wrox.com
http://Wrox.com
http://Wrox.com

384 ❘ CHAPTER 10 XML AND DATABASES

One thing that can affect how queries are written and processed is whether SQL Server knows the
structure of the XML document held in a column. There needs to be some way to specify a schema
alongside an XML data type. The following section explains how you tell SQL Server exactly what
format the XML stored as an xml data type should take.

W3C XML Schema in SQL Server

It was mentioned earlier that the new xml data type is now a fi rst-class data type in SQL Server.
This data type can be used to store untyped and typed XML data, so it shouldn’t be surprising that,
just as relational data is specifi ed by a schema, the new xml data type can be associated with a W3C
XML Schema document to specify its structure.

Take a look at how you can specify a schema for data of type xml. The fi rst task is to create
a schema collection together with its fi rst XML Schema. You need to give the collection a
name—in this example, EmployeesSchemaCollection—and the W3C XML Schema document
itself needs to be delimited with single quote marks. For example, if you wanted to create a very
simple schema for a document that could contain a Person element and child elements named
FirstName and LastName, you could do so using the following syntax:

CREATE XML SCHEMA COLLECTION EmployeesSchemaCollection AS
‘<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema” targetNamespace=
“http://wiley.com/namespaces/Person” xmlns=”http://wiley.com/namespaces/Person”>
 <xsd:element name=“Person“>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=“FirstName“ />
 <xsd:element name=“LastName“ />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>‘

XmlDataType.sql

Available for
download on
Wrox.com

FIGURE 10-7

c10.indd 384c10.indd 384 05/06/12 5:37 PM05/06/12 5:37 PM

http://www.w3.org/2001/XMLSchema
http://wiley.com/namespaces/Person
http://wiley.com/namespaces/Person
http://Wrox.com

Using SQL Server with XML ❘ 385

If you want to drop the XML Schema collection, you need to issue a DROP XMLSCHEMA statement:

DROP XML SCHEMA COLLECTION EmployeesSchemaCollection

Once you have a collection, you can add new schemas using the following syntax:

ALTER XML SCHEMA COLLECTION EmployeesSchemaCollection ADD
‘<xsd:schema>
 <!--new schema inserted here -->
</xsd:schema>’

Untyped and typed XML data can be used in a SQL Server column, variable, or parameter. If you
want to create a Docs table and associate it with a W3C XML Schema document, you can do so
using code like the following:

CREATE TABLE [dbo].[Docs](
 [DocID] [int] IDENTITY(1,1) PRIMARY KEY,
 [XMLDoc] [xml] (EmployeesSchemaCollection))

The advantage of applying a schema collection is twofold. First, it acts as a validation check; XML
not conforming to one of the schemas in the collection will be rejected in the same way that a col-
umn declared as an INT will not accept random textual data. Second, queries against the XML will
return typed data as specifi ed by the schema, rather than generic text.

For optimization, XML Schemas are shredded and stored internally in a proprietary format. Most
of the schema can be reconstructed as an XML document from this proprietary format using the
xml_schema_namespace intrinsic function. Therefore, if you had imported the schema into the
EmployeesSchemaCollection shown in the XmlDataType.sql snippet, you could retrieve it using
the following code:

SELECT xml_schema_namespace(N’dbo’, N’EmployeesSchemaCollection’)

Remember, too, that there can be multiple ways of writing a functionally equivalent W3C XML
Schema document—for example, using references, named types, or anonymous types. SQL Server
will not respect such differences when reconstituting a schema document.

In addition, the parts of the schema that are primarily documentation—for example, annotations and
comments—are not stored in SQL Server’s proprietary format. Therefore, to ensure precise recovery
of an original W3C XML Schema document, it is necessary to store the serialized XML Schema docu-
ment separately. One option is to store it in a column of type xml or varchar(max) in a separate table.

Your fi nal look at SQL Server concerns how to specify namespaces.

Dealing with Namespaced Documents

Often the documents you are working with will have namespaced elements or attributes, and you’ll
need to specify a prefi x to namespace URI binding in order to query them. You accomplish this by
using the WITH XMLNAMESPACES statement.

c10.indd 385c10.indd 385 05/06/12 5:37 PM05/06/12 5:37 PM

386 ❘ CHAPTER 10 XML AND DATABASES

The following example creates a document with a namespace and then queries it:

DECLARE @NamespacedData xml;
SET @NamespacedData = ‘<x:data xmlns:x=”http://wrox.com/namespaces/examples”>
 <x:item id=”1”>One</x:item>
 <x:item id=”2”>Two</x:item>
 <x:item id=”1”>Three</x:item>
 </x:data>’;
WITH XMLNAMESPACES (’http://wrox.com/namespaces/examples’ as x)
SELECT @NamespacedData.value(’(/x:data/x:item[@id = 2])[1]’, ’nvarchar(10)’) Item;

XmlDataType.sql

This returns the value of the element that has an id equal to 2; in this case the result is Two.

The key point here is that you specify the namespace URI and a suitable prefi x. The prefi x chosen
doesn’t have to match the one in the document. One thing to note is that WITH XMLNAMESPACES
must be preceded by a semicolon. If the previous statement doesn’t end in a semicolon, place it
before the WITH:

;WITH XMLNAMESPACES (‘http://wrox.com/namespaces/examples’ as x)

You can also specify a default namespace if you need to:

DECLARE @NamespacedData xml;
SET @NamespacedData = ‘<data xmlns=”http://wrox.com/namespaces/examples”>
 <item id=”1”>One</item>
 <item id=”2”>Two</item>
 <item id=”1”>Three</item>
 </data>’;
WITH XMLNAMESPACES (DEFAULT ’http://wrox.com/namespaces/examples’)
SELECT @NamespacedData.value(’(/data/item[@id = 2])[1]’, ’nvarchar(10)’) Item;

XmlDataType.sql

This produces the same result as when you used an explicit prefi x, x, bound to the namespace as
shown in the XmlDataType.sql snippet.

So far you’ve seen two examples of how XML features and functionality have been added on to an
existing relational database. In the next section you take the next step and examine an application
designed from the ground up for the express purpose of storing and managing large numbers of
XML documents.

USING EXIST WITH XML

The eXist XML database has been around since 2000, and has a solid reputation in its fi eld. It is
used as the basis for many systems, particularly those concerned with document and content man-
agement. Your fi rst step is to download and install it.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c10.indd 386c10.indd 386 05/06/12 5:37 PM05/06/12 5:37 PM

http://wrox.com/namespaces/examples
http://wrox.com/namespaces/examples
http://wrox.com/namespaces/examples
http://wrox.com/namespaces/examples
http://wrox.com/namespaces/examples
http://Wrox.com
http://Wrox.com

Using exist with XML ❘ 387

Downloading and Installing eXist

Before doing anything with eXist, visit its website at http://exist-db.org/. From there, you’ll fi nd
links to download the latest version. The download is available for different platforms: a .jar fi le
suitable for Unix/Linux and an .exe for Windows. The examples in this chapter use the Windows
installation, version 1.4.1. You may need to make sure that the version of Java installed is recent
enough for the version of eXist. For version 1.4.x, you’ll need Java 1.4 or higher.

NOTE If you are not sure which version of Java is installed on your computer,

type java -version in a DOS or Unix terminal.

Once you have your download ready and have the right version of Java installed, you should be able
to install eXist by clicking the .jar or .exe fi le on any properly confi gured workstation. If that’s
not the case, open a command window and type the following:

java -jar eXist-<version>.jar

A fancy graphical installer will pop up and guide you through the installation, which is very
straightforward.

WARNING When installing on Windows, you should install to somewhere other

than the traditional Program Files. A good alternative is C:\Exist if you are on

Windows Vista or later because the install package was designed before the

User Account Control (UAC) security measures were introduced. Alternatively,

you can temporarily disable UAC before running the install.

WARNING At some stage during the install you’ll be prompted for a master

password. Do not make the mistake of choosing one with an ampersand (&) in it.

There’s a bug in the installer that causes the ampersand and anything after it to

be truncated.

c10.indd 387c10.indd 387 05/06/12 5:37 PM05/06/12 5:37 PM

http://exist-db.org/

388 ❘ CHAPTER 10 XML AND DATABASES

When that’s done, you have a ready-to-run native XML database that can be used in three different
modes:

 ➤ You can use eXist as a Java library to embed a database server in your own Java application.

 ➤ You can run it as a standalone database server as you would run a SQL database server.

 ➤ You can run it embedded in a web server and get the features of both a standalone database
and a web interface to access the database.

After the installation, eXist can be used in the last two modes using a different set of scripts that
you can fi nd in its bin subdirectory:

 ➤ server (.sh or .bat depending on your platform) is used to run eXist as a standalone data-
base server.

 ➤ startup (.sh or .bat) is used to start eXist embedded in a web server, and shutdown
(.sh or .bat) is used to stop this web server. This is the mode that you will use for the exer-
cises in this chapter because it is the one that includes most features.

To check that the installation is correct, launch startup.sh or startup.bat in a terminal. If you
chose to install to the default directory on Windows (Program Files\Exist), you’ll need to run
the command prompt as administrator because standard users can’t write to this folder. You should
see a series of warnings and information, concluding with (if everything is okay) the following lines
with the date and time refl ecting that of installation:

29 Sep 2011 14:03:57,021 [main] INFO (JettyStart.java [run]:175)
 - eXist-db has started on port 8080. Configured contexts:
29 Sep 2011 14:03:57,022 [main] INFO (JettyStart.java [run]:177)
 - http://localhost:8080/exist
29 Sep 2011 14:03:57,023 [main] INFO (JettyStart.java [run]:179)
 - --

These lines mean that jetty (the Java web server that comes with this eXist download) is ready to
accept connections on port 8080.

NOTE By default, the web server listens to port 8080. This means that it will fail

to start if another service is already bound to this port on your computer. If that’s

the case, either stop this service before you start eXist or change eXist’s confi gu-

ration to listen to another port. You can fi nd instructions how to do so on eXist’s

website at http://exist-db.org/exist/quickstart.xml#installation.

The last step to check that everything runs smoothly is to open your favorite web browser to
http://localhost:8080/exist/ and confi rm that eXist’s home page, shown in Figure 10-8,
opens.

c10.indd 388c10.indd 388 05/06/12 5:37 PM05/06/12 5:37 PM

http://localhost:8080/exist
http://exist-db.org/exist/quickstart.xml#installation
http://localhost:8080/exist/

Using exist with XML ❘ 389

Interacting with eXist

Congratulations—you have your fi rst native XML database up and running! Now it’s time to
fi nd out how you can interact with it. You will soon see that eXist is so open that you have
many options.

Using the Web Interface

The fi rst option is to use the web interface at http://localhost:8080/exist/. Scroll
down this web page to the Administration section (on the left side). Click Admin to go to
http://localhost:8080/exist/admin/admin.xql, where you need to log in as user admin with the
password you chose during the installation process.

Once you’re logged in, you have access to the commands from the left-side menu. Feel free to
explore by yourself how you can manage users and set up the example that eXist suggests
you install.

When you are ready to continue this quick tour of eXist, click Browse Collection (see Figure 10-9).

FIGURE 10-8

c10.indd 389c10.indd 389 05/06/12 5:37 PM05/06/12 5:37 PM

http://localhost:8080/exist/
http://localhost:8080/exist/admin/admin.xql

390 ❘ CHAPTER 10 XML AND DATABASES

A brand-new eXist installation has a number of existing collections, but you will create a new one
named blog using the Create Collection button in Listing 10-1. Once this collection is created, fol-
low the link to browse it. This new collection is empty. Using the Upload button, upload the docu-
ments blog-1.xml, blog-2.xml, and blog-3.xml, which you can download from the code samples
for this chapter on the Wrox site. These documents are sample blog entries such as the one shown in
Listing 10-1.

LISTING 10-1: Blog-1.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<post xmlns:x=”http://www.w3.org/1999/xhtml” id=”1”
 author=”Joe Fawcett” dateCreated=”2011-09-18”>
 <title>A New Book</title>

Available for
download on
Wrox.com

NOTE XML documents are organized in collections; a collection is equivalent to

a directory on a fi le system. They are really the same concept. You can think of

an eXist database as a black box that packages the features you lack when you

store XML documents on disk, while retaining the same paradigm of a hierarchi-

cal structure of collections, or directories.

FIGURE 10-9

c10.indd 390c10.indd 390 05/06/12 5:37 PM05/06/12 5:37 PM

http://www.w3.org/1999/xhtml
http://Wrox.com

Using exist with XML ❘ 391

 <body>
 <x:p>
 <x:b>I’ve been asked to co-author a new edition of <x:a
 href=”http://www.wrox.com/WileyCDA/WroxTitle/productCd-0470114878.html”>
Beginning XML</x:a>
 by Wrox</x:b>
 </x:p>
 <x:p>It’s incredible how much has changed since the
 book was published nearly five years ago. XML
 is now a bedrock of many systems, contrarily you see less of it than
 previously as it’s buried
 under more layers.</x:p>
 <x:p>There are also many places where it has stopped being an automatic
 choice for data transfer,
 JSON has become a popular replacement where the data
 is to be consumed directly by a
 JavaScript engine such as in a browser.</x:p>
 <x:p>The new edition should be finished towards the end of the year
 and be published early in
 2012.</x:p>
 </body>
</post>

After you have uploaded these documents, you can display them by clicking their links. Now that
you have documents in the /db/blog collection, you can query these documents, still using the
web interface. To do so, click the Home link to go back to the home page and follow the link to the
XQuery sandbox, which you can reach at http://localhost:8080/exist/sandbox/
sandbox.xql.

Recall what you learned of XPath in Chapter 7 and XQuery in Chapter 9: the large text area sur-
rounded by a yellow border expects a query written in XPath or XQuery. If you start with some-
thing simple, such as /item[@id=’1’], and click Send, you’ll get all the documents from all the
collections that have an item root element with an id attribute equal to 1. If you’ve followed the
instructions that led to this point, you should get only the content of the fi rst blog entry.

Of course, you can write more complex queries. For example, if you want to determine the
titles, IDs, and links of blog entries with a link on the Wrox site, you can write the following
(Listing 10-2).

LISTING 10-2: PostsWithWroxLinks.xquery

xquery version “1.0”;
declare namespace x=”http://www.w3.org/1999/xhtml”;

for $item in /post
 where .//x:a[contains(@href, ‘wrox.com’)]
 return <match>
 <id>{string($item/@id)}</id>
 {$item/title}
 {$item//x:a[contains(@href, ‘wrox.com’)]}
 </match>

Available for
download on
Wrox.com

c10.indd 391c10.indd 391 05/06/12 5:37 PM05/06/12 5:37 PM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-0470114878.html
http://localhost:8080/exist/sandbox/sandbox.xql
http://localhost:8080/exist/sandbox/sandbox.xql
http://www.w3.org/1999/xhtml
http://wrox.com
http://wrox.com
http://Wrox.com

392 ❘ CHAPTER 10 XML AND DATABASES

Note that you need to bind the namespace URI to a prefi x as XQuery, and eXist has full support for
namespaces.

Feel free to try as many queries as you like, and then move on to discover the eXist client.

Using the eXist Client

The eXist client is a standalone graphical tool that can perform the same kind of operations as the
web interface. To start the client, perform the following steps:

 1. Click the client.sh or client.bat script, depending on your environment. You should see
a login screen. Enter the password that you set up for the admin user. Before you click the
OK button, note the URL entry fi eld. By default, this fi eld has the value xmldb: exist://
localhost:8080/exist/xmlrpc. Details about the different components of this URL won’t
be covered here, but note the localhost:8080 piece: it means that this client tool uses
HTTP to connect to the eXist database and that you can administer eXist databases on
other machines.

 2. The next screen enables you to browse the collections or your database. Click the blog link
in the Name column to fi nd your three blog entries; and, if you click one of them, you get a
window where you can edit the entry.

 3. Back at the main window, click the button with binoculars to open the Query dialog. Here
you can try your XPath and XQuery skills again. Paste the same query from Listing 10-2
into the upper panel and click the button that has a pair of binoculars and the word Submit.
Note the Trace tab in the Results window at the bottom. There you fi nd the execution
path of your queries, which may contain useful information to debug or optimize them.
Figure 10-10 shows the query in Listing 10-2 run in the eXist client.

FIGURE 10-10

c10.indd 392c10.indd 392 05/06/12 5:37 PM05/06/12 5:37 PM

Using exist with XML ❘ 393

There is much more to explore with this client. For example, you can also save and restore col-
lections or full databases. Once you’re done exploring, read on to see how eXist can be used as a
WebDAV server.

Using WebDAV

WebDAV stands for Web-based Distributed Authoring and Versioning. It designates a set of IETF
RFCs that defi ne how HTTP can be used to not only read resources, but also to write them.
WebDAV is widely and natively implemented in most common operating systems and tools, and
eXist’s capability to expose its collections as WebDAV repositories can greatly facilitate the way you
import and export documents.

NOTE The IETF (Internet Engineering Task Force) is the standardization organi-

zation that publishes most of the protocol-oriented Internet specifi cations,

including HTTP. Its specifi cations are called RFCs (Requests For Comments); and

despite this name, they are de facto standards.

As a fi rst contact with WebDAV, point your web browser to http://localhost:8080/exist/
webdav/db/. You need to enter the login and password of your database admin again. Then you
will see a page where you can browse the collections and content of your database. Without browser
extensions, you have read-only access; you need to set up your WebDAV client to gain write access
and see the eXist database as a repository.

The eXist documentation available on your local database at http://localhost:8080/exist/
webdav.xml includes detailed instructions for setting up Microsoft Windows, KDE Konqueror,
oXygen, and XML Spy to use WebDAV. WebDAV support is also built into the fi nder on Mac OS X.
In Windows XP and later, this feature is known as web folders and is fairly easy to confi gure; just
note that if you are using IE8 or later, you’ll need to open the File Explorer, choose Map Network
Drive from the Tools menu, and use the Connect to a Website that You can Use to Store Your
Documents and Pictures link. Because these setups are well described in the eXist documentation,
they aren’t covered here.

The only feature that you lack using the WebDAV interface is the capability to execute queries, but
you'll see next that you can regain this feature if you use an XML IDE.

Using an XML IDE

Your favorite XML IDE can probably access your eXist database through WebDAV. If it is inter-
faced with eXist, you can also execute queries from the IDE itself. This is the case with oXygen 8.0
which is available as a 30-day evaluation license from its site at www.oxygenxml.com/.

c10.indd 393c10.indd 393 05/06/12 5:37 PM05/06/12 5:37 PM

http://localhost:8080/exist/webdav/db/
http://localhost:8080/exist/webdav/db/
http://localhost:8080/exist/webdav.xml
http://localhost:8080/exist/webdav.xml
http://www.oxygenxml.com/

394 ❘ CHAPTER 10 XML AND DATABASES

To confi gure the connection to your eXist database, perform the following steps:

 1. Select the database perspective using either its icon on the toolbar or Windows ➪ Open
Perspective ➪ Database from the main menu. Then click the Confi gure Database Sources
button situated at the upper-right corner of the Database Explorer window. This opens the
database preferences window.

 2. Create a new data source with type eXist and add the following fi les:

 ➤ exist.jar

 ➤ lib/core/xmlrpc-client-3.1.1.jar

 ➤ lib/core/xmlrpc-common-3.1.1.jar

 ➤ lib/core/xmlrpc-common-3.1.1.jar

 ➤ lib/core/ws-commons-util-1.0.2.jar

(The version numbers may be slightly different, but there will be only one version of each.)

 3. Save this data source and create a connection using it with the eXist connection parameters.
Save this connection and the database preferences, and you’re all set.

The Database Explorer shows the newly created connection, and you can now browse and update
the eXist database as you would browse and open documents on your local fi lesystem.

So far, all this could be done through WebDAV, but not the following, which interrogates the data.
To execute a query, perform the following steps:

 1. Create a new document through the File New icon or menu item.

 2. Choose type XQuery for this document and type your query. When you’re done, click
the Apply Transformation Scenario button on the toolbar or select this action though the
Document ➪ XML Document ➪ Apply Transformation Scenario menu item. Because
no scenario is attached to this document yet, eXist opens the Confi gure Transformation
Scenario dialog. The default scenario uses the Saxon XQuery engine.

 3. To use the eXist XQuery engine, create a new scenario and select your eXist database con-
nection as the Transformer.

 4. Save this scenario and click Transform Now to run the query. You should get the same
results as previously.

 5. Now that this scenario is attached to your query document, you can update the query and
click the Apply Transformation Scenario button to run it without needing to go through this
confi guration again.

Thus far you’ve seen a number of different ways to interact with the XML data using a variety of
graphical tools, but you still need to see how web applications can access your database. This is dis-
cussed in the next section.

Using the REST Interface

What better way to interface your database with a web application could there be than using HTTP
as it was meant to be used? This is the purpose of the REST interface.

c10.indd 394c10.indd 394 05/06/12 5:37 PM05/06/12 5:37 PM

Using exist with XML ❘ 395

As a fi rst step, you can point your browser to http://localhost:8080/exist/rest/. Doing so
shows you the content of your database root exposed as an XML document. This XML format is
less user-friendly than browsing the content of your collections through the admin web interface or
even through browsing the WebDAV repository, but far more easy to process in an application!

The full content of the database is available through this interface. For instance, http://
localhost:8080/exist/rest/db/blog/ shows the content of the blog collection, and
http://localhost:080/exist/rest/db/blog/blogItem1.xml gets you the fi rst blog item. This
becomes more interesting when you start playing with query strings. The REST interface accepts
a number of parameters, including a _query parameter that you can use to send XPath or XQuery
simple queries straight away!

For instance, if you want to get all the titles from all the documents in the collection /db/blog, you
can query http://localhost:8080/exist/rest/db/blog/?_query=//title. The results are shown
in Figure 10-11.

NOTE REST stands for Representational State Transfer and is seen, in many

cases, as a simpler and more effi cient alternative to using SOAP based web

services. It uses the intrinsic HTTP commands to create, update and retrieve

data from a remote web service. REST and SOAP are covered in depth in

Chapters 14 and 15.

FIGURE 10-11

This XML deserves an XSLT transformation to be presented as HTML; and if you remember what
you learned in Chapter 8, a simple transformation such as the one shown in Listing 10-3 would dis-
play the results better than the raw XML shown in Figure 10-11.

LISTING 10-3: Links.xslt

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:exist=”http://exist.sourceforge.net/NS/exist” version=”1.0”>
 <xsl:template match=»/exist:result»>
 <html>
 <head>
 <title>Query results</title>

Available for
download on
Wrox.com

continues

c10.indd 395c10.indd 395 05/06/12 5:37 PM05/06/12 5:37 PM

http://localhost:8080/exist/rest/
http://localhost:8080/exist/rest/db/blog/
http://localhost:8080/exist/rest/db/blog/
http://localhost:080/exist/rest/db/blog/blogItem1.xml
http://localhost:8080/exist/rest/db/blog/?_query=//title
http://www.w3.org/1999/XSL/Transform
http://exist.sourceforge.net/NS/exist
http://Wrox.com

396 ❘ CHAPTER 10 XML AND DATABASES

LISTING 10-3 (continued)

 </head>
 <body>
 <h1>eXist query results</h1>
 <p>Showing results
<xsl:value-of select="@exist:start"/> to
<xsl:value-of
 select="@exist:end"/> out of <xsl:value-of select="@exist:hits"/>:</p>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>
 <xsl:template match="*">
 <p>
 <xsl:copy-of select="."/>
 </p>
 </xsl:template>
</xsl:stylesheet>

The good news is that the eXist REST interface can execute this transformation for you if you
like. But before you can do that, you need to store the transformation in the database. To do
so, you can use any of the methods you have seen so far to upload documents in the database
(the web interface, the eXist client, WebDAV, or your favorite XML IDE). Because this section is
about the REST interface, you can use REST to upload the document.

Storing documents with the REST interface uses an HTTP PUT request; unfortunately, you can’t
do that with your web browser. To send an HTTP PUT request, you need to either do a bit of
programming (all the programming languages have libraries available to support this) or use a
utility such as curl (http://curl.haxx.se/), which is available for most platforms. This program
has a lot of different command-line options. If you have curl installed on your machine, to store the
document Links.xslt at location http://localhost:8080/exist/rest/db/xslt/, just type the fol-
lowing command in a Unix or Windows command window:

curl -T links.xslt http://localhost:8080/exist/rest/db/xslt/

This command simply sends this document through an HTTP PUT. The eXist REST interface also
supports HTTP DELETE requests, and you can also delete this document. To do so, use the -X option,
which enables you to defi ne the HTTP method that you want to use and write:

curl -X DELETE localhost:8080/exist/rest/db/xslt/links.xslt

Of course, if you have run the previous command, you need to upload the transformation again
before you can use it! Now that your style sheet is stored in the database, to use it just add an _xsl
parameter, specifying its location. Then paste or type this URL in your browser: http://local
host:8080/exist/rest/db/blog/?_query=//title&_xsl=/db/xslt/links.xslt. The result is
shown in Figure 10-12.

c10.indd 396c10.indd 396 05/06/12 5:37 PM05/06/12 5:37 PM

http://curl.haxx.se/
http://localhost:8080/exist/rest/db/xslt/
http://localhost:8080/exist/rest/db/xslt/
http://localhost:8080/exist/rest/db/blog/?_query=//title&_xsl=/db/xslt/links.xslt
http://localhost:8080/exist/rest/db/blog/?_query=//title&_xsl=/db/xslt/links.xslt

Using exist with XML ❘ 397

You have now seen how to use HTTP GET, PUT, and DELETE methods. If you are familiar with HTTP,
you may be wondering whether the REST interface supports the HTTP POST method. The answer is
yes; this method is used to send requests that are too big to be easily pasted in the query string of an
HTTP GET request. These queries have to be wrapped into an XML document, the structure of which
is defi ned in the eXist documentation. For instance, the query encountered in Listing 10-3 would
need to be in the format shown in Listing 10-4.

LISTING 10-4: PostsWithWroxLinks.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<query xmlns=”http://exist.sourceforge.net/NS/exist”>
 <text>
 <![CDATA[
 declare namespace x=”http://www.w3.org/1999/xhtml”;

for $item in /post
 where .//x:a[contains(@href, ‘wrox.com’)]
 return <match>
 <id>{string($item/@id)}</id>
 {$item/title}
 {$item//x:a[contains(@href, ‘wrox.com’)]}
 </match>
]]>
 </text>
</query>

Note how the query itself has been cautiously embedded within a CDATA section so that it quali-
fi es as well-formed XML. To send this query using the REST interface, you can use curl and a -d
option. The command looks like the following:

curl -d @linksToWrox.xml http://localhost:8080/exist/rest/db/

Available for
download on
Wrox.com

FIGURE 10-12

c10.indd 397c10.indd 397 05/06/12 5:37 PM05/06/12 5:37 PM

http://exist.sourceforge.net/NS/exist
http://www.w3.org/1999/xhtml
http://localhost:8080/exist/rest/db/
http://wrox.com
http://wrox.com
http://Wrox.com

398 ❘ CHAPTER 10 XML AND DATABASES

Other Interfaces

You’ve already seen four ways to interact with eXist, but there are many more out there. The follow-
ing list briefl y covers a few.

 ➤ XML:DB API: The XML:DB API is a common API defi ned by a number of XML database
editors. Its original purpose was to defi ne a vendor-neutral API to play the same role with
XML databases that JDBC plays with SQL databases. Unfortunately, the project failed to
attract commercial vendors and seems to have lost all its momentum. The XML:DB is still
the API of choice to access your eXist database if you are developing in Java.

 ➤ XML-RPC: XML-RPC interface has the same functionality as the REST interface together
with some added features—for example, you can update an XML fragment without upload-
ing whole documents and administer your database entirely within this interface.

 ➤ SOAP: A SOAP interface is also available with the same features of the XML-RPC interface
for those of you who prefer SOAP over XML-RPC.

 ➤ Atom Publishing Protocol (APP): An APP interface has been recently developed so that you
can see your collections as Atom feeds.

Choosing an Interface

With so many options, how do you decide which one you should be using? Ask yourself whether it
really matters. You can think of your eXist database as a black box that encapsulates your XML
documents. These documents are located in collections that are similar to fi le directories. The black
box acts like a fi lesystem with XQuery capabilities and provides a number of different interfaces
to access the same set of documents in different ways. Whichever interface is used, the effect is the
same. You can choose, case by case, the interface that is most convenient for the task you have to
do. The following is a list of tips to help you decide:

 ➤ If you need a fi lesystem-like type of access to your documents, WebDAV is a sure choice.

 ➤ If all you have is a browser, the web interface is what you need.

 ➤ If your XML IDE supports eXist, that makes your life easier. If you’re using a tool that is a
good web citizen and can use the different HTTP, you can plug the REST interface directly.

 ➤ If you’re developing in Java, have a look at the XML:DB API.

 ➤ If you want to integrate your database with Atom tools, the APP interface is designed
for you.

 ➤ If you’re a web services fan, you will choose either the XML-RPC or the SOAP interface.

The richness of this set of interfaces means that your documents will never be locked in the database
and can remain accessible in any environment.

c10.indd 398c10.indd 398 05/06/12 5:37 PM05/06/12 5:37 PM

Summary ❘ 399

SUMMARY

In this chapter you’ve learned about the following:

 ➤ Much of today’s data comes in the form of tabular data and XML combined.

 ➤ You need a dedicated storage type for XML rather than just use a text fi eld. You also need
methods to extract specifi c values and fragments of XML as well as methods to create new
XML formats combining the relational and XML data. You will probably want the facility
to update XML documents although this is not always a necessity.

 ➤ A relational database handles both tabular data and XML documents, whereas a native
XML database is designed to cope solely with XML documents.

 ➤ High-end systems such as Oracle and SQL Server XML have their own data type and there
are suitable methods available on these types for retrieval and manipulation of the XML.

 ➤ The features available in a native XML database include the ability to store large document
collections as well as the ability to effi ciently query across these documents.

EXERCISES

You can fi nd suggested answers to these questions in Appendix A.

 1. List the main reasons to choose a relational database with XML features over a native XML

database.

 2. What fi ve methods are available against an XML data type? (No peeking!)

 3. MySQL has only two XML-related functions. If you could ask for one more feature or function,

what would it be?

c10.indd 399c10.indd 399 05/06/12 5:37 PM05/06/12 5:37 PM

400 ❘ CHAPTER 10 XML AND DATABASES

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

Storage needs There is a big diff erence between relational data, data in a tabular for-

mat, and XML data. Therefore, special mechanisms are needed to store

XML within relational systems.

Essential features in

databases.

XML needs to be stored in a native format, rather than as text. There

must also be ways to query it for specifi c values and a way to return frag-

ments of XML. Ideally there should also be a way to treat XML as tabular

data if possible.

Choosing an

application

Most commercial relational databases have fairly advanced XML fea-

tures, particularly Oracle and SQL Server. Native XML databases are

designed to cope with the situation in which all data is held as XML.

c10.indd 400c10.indd 400 05/06/12 5:37 PM05/06/12 5:37 PM

PART V
Programming

 � CHAPTER 11: Event-Driven Programming

 � CHAPTER 12: LINQ to XML

c11.indd 401c11.indd 401 05/06/12 5:39 PM05/06/12 5:39 PM

c11.indd 402c11.indd 402 05/06/12 5:39 PM05/06/12 5:39 PM

Event-Driven Programming

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Necessity of XML data access methods: SAX and .NET’s

XMLReader

 ➤ Why SAX and XMLReader are considered event-driven methods

 ➤ How to use SAX and XMLReader

 ➤ The right time to choose one of these methods to process your XML

There are many ways to extract information from an XML document. You’ve already seen
how to use the document object model and XPath; both of these methods can be used to fi nd
any relevant item of data. Additionally, in Chapter 12 you’ll meet LINQ to XML, Microsoft’s
latest attempt to incorporate XML data retrieval in its universal data access strategy.

Given the wide variety of methods already available, you may be wondering why you need
more, and why in particular do you need event-driven methods? The main answer is because
of memory limitations. Other XML processing methods require that the whole XML docu-
ment be loaded into memory (that is, RAM) before any processing can take place. Because
XML documents typically use up to four times more RAM than the size of the fi le containing
the document, some documents can take up more RAM than is available on a computer; it is
therefore necessary to fi nd an alternative method to extract data. This is where event-driven
paradigms come into play. Instead of loading the complete fi le into memory, the fi le is pro-
cessed in sequence. There are two ways to do this: SAX and .NET’s XMLReader. Both are cov-
ered in this chapter.

11

c11.indd 403c11.indd 403 05/06/12 5:39 PM05/06/12 5:39 PM

404 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

UNDERSTANDING SEQUENTIAL PROCESSING

There are two main ways of processing a fi le sequentially. The fi rst relies on events being fi red when-
ever specifi c items are found; whether you respond to these events is up to you. For example, say an
event is fi red when the opening tag of the root element is encountered, and the name of this element
is passed to the event handler. Any time any textual content is found after this, another event is
fi red. In this scenario there would also be events that capture the closing of any elements with the
fi nal event being fi red when the closing tag of the root element is encountered.

The second method is slightly different in that you tell the processor what sort of content you are
interested in. For example, you may want to read an attribute on the fi rst child under the root ele-
ment. To do so, you instruct the XML reader to move to the root element and then to its fi rst child.
You would then begin to read the attributes until you get to the one you need. Both of these meth-
ods are similar conceptually, and both cope admirably with the problem of larger memory usage
posed by using the DOM that requires the whole XML document to be loaded into memory before
being processed.

Processing fi les in a sequential fashion includes one or two downsides, however. The fi rst is that you
can’t revisit content. If you read an element and then move on to one of its siblings or children,
you can’t then go back and examine one of its attributes without starting from the beginning
again. You need to plan carefully what information you’ll need. The second problem is validation.
Imagine you receive the document shown here:

<document>
 <data>Here is some data.</data>
 <data>Here is some more data.</data>
</document>

This document is well-formed, but what if its schema states that after all <data> elements there
should be a <summary> element? The processor will report the elements and text content that it
encounters, but won’t complain that the document is not valid until it reaches the relevant point.
You may not care about the extra element, in which case you can just extract whatever you need,
but if you want to validate before processing begins, this usually involves reading the document
twice. This is the price you pay for not needing to load the full document into memory.

In the following sections you’ll examine the two methods in more detail. The pure event-driven
method is called SAX and is commonly used with Java, although it can be used from any language
that supports events. The second is specifi c to .NET and uses the System.Xml.XmlReader class.

USING SAX IN SEQUENTIAL PROCESSING

SAX stands for the Simple API for XML, and arose out of discussions on the XML-DEV list in the
late 1990s.

c11.indd 404c11.indd 404 05/06/12 5:39 PM05/06/12 5:39 PM

Using SAX in Sequential Processing ❘ 405

Back then people were having problems because different parsers were incompatible. David
Megginson took on the job of coordinating the process of specifying a new API with the group. On
May 11, 1998, the SAX 1.0 specifi cation was completed. A whole series of SAX 1.0–compliant pars-
ers then began to emerge, both from large corporations, such as IBM and Sun, and from enterpris-
ing individuals, such as James Clark. All of these parsers were freely available for public download.

Eventually, a number of shortcomings in the specifi cation became apparent, and David Megginson
and his colleagues got back to work, fi nally producing the SAX 2.0 specifi cation on May 5, 2000.
The improvements centered on added support for namespaces and tighter adherence to the XML
specifi cation. Several other enhancements were made to expose additional information in the XML
document, but the core of SAX was very stable. On April 27, 2004, these changes were fi nalized and
released as version 2.0.2.

SAX is specifi ed as a set of Java interfaces, which initially meant that if you were going to do any
serious work with it, you were looking at doing some Java programming using Java Development
Kit (JDK) 1.1 or later. Now, however, a wide variety of languages have their own version of SAX,
some of which you learn about later in the chapter. In deference to the SAX tradition, however, the
examples in this chapter are written in Java.

All the latest information about SAX is at www.saxproject.org. It remains a public domain, open
source project hosted by SourceForge. To download SAX, go to the homepage and browse
for the latest version, or go directly to the SourceForge project page at http://sourceforge
.net/projects/sax.

This is one of the extraordinary things about SAX — it isn’t owned by anyone. It doesn’t belong to
any consortium, standards body, company, or individual. In other words, it doesn’t survive because
some organization or government says that you must use it to comply with their standards, or
because a specifi c company supporting it is dominant in the marketplace. It survives because it’s
simple and it works.

Preparing to Run the Examples

The SAX specifi cation does not limit which XML parser you use with your document. It simply sits
on top of it and reports what content it fi nds. A number of different parsers are available out in the
wild, but these examples use the one that comes with the JDK.

If you don’t have the JDK already installed, perform the following steps to do so:

 1. Go to http://www.oracle.com/technetwork/java/javase/downloads/index
.html. Download the latest version under the SE section. These examples use 1.6 but 1.7 is
the latest available version and will work just as well.

NOTE The archives for the XML-DEV list are available at http://lists.xml

.org/archives/xml-dev/. The list is still very active and any XML-related

 problems are usually responded to within hours, if not minutes.

c11.indd 405c11.indd 405 05/06/12 5:39 PM05/06/12 5:39 PM

http://lists.xml.org/archives/xml-dev/
http://lists.xml.org/archives/xml-dev/
http://sourceforge.net/projects/sax
http://sourceforge.net/projects/sax
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.saxproject.org

406 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

 2. Once you have completed the download and installed the fi les, make sure that the <install
location>\bin folder is in your PATH environment variable. This will mean that you can
access the Java compiler and other necessary fi les from any folder on your machine.

 3. Next, create a folder where you will keep your Java code, for example C:\Java\.

 4. Open a command prompt and navigate to this folder (alternatively, in modern Windows
systems you can right-click with the Shift key down within the folder pane of Windows
Explorer). Then run the following command:

java -version

You should see output similar to the following:

java version “1.6.0_25”
Java(TM) SE Runtime Environment (build 1.6.0_25-b06)
Java HotSpot(TM) 64-Bit Server VM (build 20.0-b11, mixed mode)

where the version number matches the JDK you downloaded earlier. If you get a message
saying that java is not recognized as an internal or external command, you haven’t set up
the PATH environment variable correctly. See this link (which also advises on how to set it
on other operating systems) for help on this: http://www.java.com/en/download/help/
path.xml.

Once you have the correct output showing, you are all set to try the examples in this chapter.

Receiving SAX Events

SAX works by fi ring an event each time it comes across any content. An abbreviated list of events is
shown in Table 11-1.

TABLE 11-1: SAX Events

EVENT NAME DESCRIPTION EXAMPLE CONTENT

startDocument Processing has started and the fi rst

event fi red.

endDocument The document is fully read, the last

event fi red.

startElement The opening tag of an element is

encountered.

<document>

endElement The closing tag of an element is

encountered.

</document>

characters A string of pure text is encountered,

and can be fi red multiple times for

the same text node.

This is some example

text

c11.indd 406c11.indd 406 05/06/12 5:40 PM05/06/12 5:40 PM

http://www.java.com/en/download/help/path.xml
http://www.java.com/en/download/help/path.xml

Using SAX in Sequential Processing ❘ 407

When SAX was originally developed, it was quite a chore to create a class that handled all these
events. Even if you didn’t care about any comments or processing instructions, you still had to
write a method to cope with them being fi red from the SAX processor. The situation has improved
since then and you can base your class on what is known as the DefaultHandler. This handles
all the events for you, and you have to write methods only for those in which you are interested.
For example, the startDocument, startElement, and characters events are the most commonly
handled ones.

The following Try It Out puts the previous theory into practice. You’ll use SAX to read a simple
XML fi le and report back on some of the events that are received.

TRY IT OUT Using SAX to Read an XML File

This Try It Out guides you through the steps needed to create a SAX handler that can read a simple
XML fi le and show the data that is contained within it.

1. Create or download the fi le in Listing 11-1 and save it as People.xml.

LISTING 11-1: People.xml

<People>
 <Person bornDate=”1874-11-30” diedDate=”1965-01-24”>
 <Name>Winston Churchill</Name>
 <Description>
 Winston Churchill was a mid-20th century British politician who
 became famous as Prime Minister during the Second World War.
 </Description>
 </Person>
 <Person bornDate=”1917-11-19” diedDate=”1984-10-31”>

Available for
download on
Wrox.com

EVENT NAME DESCRIPTION EXAMPLE CONTENT

processingInstruction A processing instruction was

encountered.

xml-stylesheet

href=”web.xsl”

type=”text/xml”

ignorableWhitespace Called when whitespace that is not

an inherent part of the document is

encountered.

skippedEntity Called when an external entity has

been skipped.

setDocumentLocator Enables the parser to pass a Locator

object to the application.

continues

c11.indd 407c11.indd 407 05/06/12 5:40 PM05/06/12 5:40 PM

http://Wrox.com

408 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

LISTING 11-1 (continued)

 <Name>Indira Gandhi</Name>
 <Description>
 Indira Gandhi was India’s first female prime minister and was
 assassinated in 1984.
 </Description>
 </Person>
 <Person bornDate=”1917-05-29” diedDate=”1963-11-22”>
 <Name>John F. Kennedy</Name>
 <Description>
 JFK, as he was affectionately known, was a United States president
 who was assassinated in Dallas, Texas.
 </Description>
 </Person>
</People>

2. Create or download the fi le in Listing 11-2 and save it as SaxParser1.java (you can just use a
simple text editor, or, if you have a Java development environment such as Eclipse, use a full Java
editor).

LISTING 11-2: SaxParser1.java

import org.xml.sax.*;
import org.xml.sax.helpers.*;
import java.io.*;

public class SaxParser1 extends DefaultHandler {

 public void startDocument() throws SAXException {
 System.out.println(“SAX Event: START DOCUMENT”);
 }

 public void endDocument() throws SAXException {
 System.out.println(“SAX Event: END DOCUMENT”);
 }

 public void startElement(String namespaceURI,
 String localName,
 String qName,
 Attributes attr) throws SAXException {
 System.out.println(“SAX Event: START ELEMENT[“ + localName + “]”);
 }

 public void endElement(String namespaceURI,
 String localName,
 String qName) throws SAXException {
 System.out.println(“SAX Event: END ELEMENT[“ + localName + “]”);
 }

 public void characters(char[] ch,
 int start,

Available for
download on
Wrox.com

c11.indd 408c11.indd 408 05/06/12 5:40 PM05/06/12 5:40 PM

http://Wrox.com

Using SAX in Sequential Processing ❘ 409

 int length) throws SAXException {
 System.out.print(“SAX Event: CHARACTERS[“);

 try {
 OutputStreamWriter output = new OutputStreamWriter(System.out);
 output.write(ch, start,length);
 output.flush();
 } catch (Exception e) {
 e.printStackTrace();
 }

 System.out.println(“]”);
 }

 public static void main(String[] argv){
 String inputFile = argv[0];
 System.out.println(“Processing ‘” + inputFile + “’.”);
 System.out.println(“SAX Events:”);
 try {
 XMLReader reader = XMLReaderFactory.createXMLReader();
 reader.setContentHandler(new SaxParser1());
 reader.parse(new InputSource(
 new FileReader(inputFile)));

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

3. Open a command window and navigate to the folder where you stored the two fi les just created.
Enter the following command, which compiles the code in SaxParser1.java and produces the
fi le SaxParser1.class (note that the executable fi le is called javac, the Java compiler):

javac SaxParser1.java

4. Execute the code you have just created by using the following command. Note that you do not have
any extension on SaxParser1 and that you are passing in the name of the XML fi le to process:

java SaxParser1 People.xml

5. You should see the following output displayed:

SAX Events:
SAX Event: START DOCUMENT
SAX Event: START ELEMENT[People]
SAX Event: CHARACTERS[
]
SAX Event: START ELEMENT[Person]
SAX Event: CHARACTERS[
]
SAX Event: START ELEMENT[Name]
SAX Event: CHARACTERS[Winston Churchill]
SAX Event: END ELEMENT[Name]

c11.indd 409c11.indd 409 05/06/12 5:40 PM05/06/12 5:40 PM

410 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

SAX Event: CHARACTERS[
]
SAX Event: START ELEMENT[Description]
SAX Event: CHARACTERS[
 Winston Churchill was a mid-20th century British politician who
 became famous as Prime Minister during the Second World War.]
SAX Event: CHARACTERS[
]
SAX Event: END ELEMENT[Description]
SAX Event: CHARACTERS[
]
SAX Event: END ELEMENT[Person]
SAX Event: CHARACTERS[
]
SAX Event: START ELEMENT[Person]
SAX Event: CHARACTERS[
]
SAX Event: START ELEMENT[Name]
SAX Event: CHARACTERS[Indira Gandhi]
SAX Event: END ELEMENT[Name]
SAX Event: CHARACTERS[
]
SAX Event: START ELEMENT[Description]
SAX Event: CHARACTERS[
 Indira Gandhi was India’s first female prime minister and was
 assassinated in 1984.]
SAX Event: CHARACTERS[
]
SAX Event: END ELEMENT[Description]
SAX Event: CHARACTERS[
]
SAX Event: END ELEMENT[Person]
SAX Event: CHARACTERS[
]
SAX Event: START ELEMENT[Person]
SAX Event: CHARACTERS[
]
SAX Event: START ELEMENT[Name]
SAX Event: CHARACTERS[John F. Kennedy]
SAX Event: END ELEMENT[Name]
SAX Event: CHARACTERS[
]
SAX Event: START ELEMENT[Description]
SAX Event: CHARACTERS[
 JFK, as he was affectionately known, was a United States president
 who was assassinated in Dallas, Texas.]
SAX Event: CHARACTERS[
]
SAX Event: END ELEMENT[Description]
SAX Event: CHARACTERS[
]
SAX Event: END ELEMENT[Person]
SAX Event: CHARACTERS[
]

c11.indd 410c11.indd 410 05/06/12 5:40 PM05/06/12 5:40 PM

Using SAX in Sequential Processing ❘ 411

SAX Event: END ELEMENT[People]
SAX Event: END DOCUMENT

How It Works

For each item of the XML document you are interested in, you override the event receiver in the
DefaultHandler class with one of your own. The DefaultHandler class simply receives the events; it
doesn’t actually do anything with them.

The startDocument override is executed at the very start of the processing as shown here; there’s no
extra information made available, and you simply output that the event has occurred:

 public void startDocument() throws SAXException {
 System.out.println(“SAX Event: START DOCUMENT”);
 }

The following handler is the last to fi re, and again, there’s no information available so you just note
that it has happened:

 public void endDocument() throws SAXException {
 System.out.println(“SAX Event: END DOCUMENT”);
 }

The startHandler handler fi res whenever a new opening tag is encountered and gives you four poten-
tially useful pieces of information as shown in the following code: the namespace URI that the element
is in, the local name, the prefi x (if there is one) that is mapped to the namespace URI, and a collection
of attributes appearing on the element. You’ll see how to use this collection shortly:

 public void startElement(String namespaceURI,
 String localName,
 String qName,
 Attributes attr) throws SAXException {
 System.out.println(“SAX Event: START ELEMENT[“ + localName + “]”);
 }

The endElement is the complementary handler to the startElement one. It executes when an end tag is
encountered and gives you the same information as before, with the exception of the attributes collection:

 public void endElement(String namespaceURI,
 String localName,
 String qName) throws SAXException {
 System.out.println(“SAX Event: END ELEMENT[“ + localName + “]”);
 }

The fi nal handler is used to notify you about text content. The content is presented as an array of char-
acters with two integers, which point to the fi rst character in the array and the number of characters
available:

 public void characters(char[] ch,
 int start,
 int length) throws SAXException {
 System.out.print(“SAX Event: CHARACTERS[“);

 try {
 OutputStreamWriter output = new OutputStreamWriter(System.out);

c11.indd 411c11.indd 411 05/06/12 5:40 PM05/06/12 5:40 PM

412 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

 output.write(ch, start,length);
 output.flush();
 } catch (Exception e) {
 e.printStackTrace();
 }

 System.out.println(“]”);
 }

It’s possible that pieces of text will be broken up into multiple calls to the characters handler, so don’t
assume that you will get all the text appearing in a block in one go; you’ll see how to cope with this in
a later example.

The rest of the class is simply the entry point. It fi rst reads the single argument from the command
line to see which fi le to process. It then creates an XMLReader that reads the XML and passes to it
the class that will be used as a ContentHandler; in this case, itself. Invoking the parse() method
on the XMLReader causes the fi le to be read and the SAX events to be fi red:

 public static void main(String[] argv){
 String inputFile = argv[0];
 System.out.println(“Processing ‘” + inputFile + “’.”);
 System.out.println(“SAX Events:”);
 try {
 XMLReader reader = XMLReaderFactory.createXMLReader();
 reader.setContentHandler(new SaxParser1());
 reader.parse(new InputSource(
 new FileReader(inputFile)));
 }catch (Exception e) {
 e.printStackTrace();
 }
 }

Now that you’ve seen the basics in action, in the following activity you see how you can deal with
attributes within an XML document.

TRY IT OUT Using SAX to Read Attributes

This Try It Out builds on the code form Listing 11-2 and adds the ability to display any attributes,
along with their values, when they are encountered.

1. Modify SaxParser1.java so that the startElement method now contains code to handle attributes:

 public void startElement
 (String namespaceURI,
 String localName,
 String qName,
 Attributes attr) throws SAXException {
 System.out.println(“SAX Event: START ELEMENT[“ + localName + “]”);
 for (int i = 0; i < attr.getLength(); i++){
 System.out.println(“ ATTRIBUTE: “ + attr.getLocalName(i) + “ VALUE: “
 + attr.getValue(i));
 }
 }

c11.indd 412c11.indd 412 05/06/12 5:40 PM05/06/12 5:40 PM

Using SAX in Sequential Processing ❘ 413

2. Save this fi le as SaxParser2.java.

3. Repeat the command to compile the code, this time with SaxParser2.java:

 javac SaxParser2.java

4. Run the code as before:

 java SaxParser2 People.xml

5. You should see similar results, but the attributes showing the dates of birth and death will also
appear, as shown in the following snippet:

SAX Event: START ELEMENT[Person]
 ATTRIBUTE: bornDate VALUE: 1917-05-29
 ATTRIBUTE: diedDate VALUE: 1963-11-22
SAX Event: CHARACTERS[
]
SAX Event: START ELEMENT[Name]
SAX Event: CHARACTERS[John F. Kennedy]
SAX Event: END ELEMENT[Name]
SAX Event: CHARACTERS[
]
SAX Event: START ELEMENT[Description]
SAX Event: CHARACTERS[
 JFK, as he was affectionately known, was a United States president
 who was assassinated in Dallas, Texas.]
SAX Event: CHARACTERS[
]
SAX Event: END ELEMENT[Description]
SAX Event: CHARACTERS[
]
SAX Event: END ELEMENT[Person]
SAX Event: CHARACTERS[
]
SAX Event: END ELEMENT[People]

How It Works

The following code simply uses the attr parameter, which is passed by the SAX parser to the start
Element event handler. attr is a special collection of type Attributes. It provides various methods
such as getLocalName() and getValue(), which take an integer specifying which attribute in the col-
lection you need:

 for (int i = 0; i < attr.getLength(); i++){
 System.out.println(“ ATTRIBUTE: “ + attr.getLocalName(i) + “ VALUE: “
 + attr.getValue(i));
 }

Although there is no inherent order to the attributes, if you want to just read the value of a specifi c one
you can use the getValue() method, which takes either a string representing the attribute’s qualifi ed
name, or two strings representing the namespace URI and the local name.

c11.indd 413c11.indd 413 05/06/12 5:40 PM05/06/12 5:40 PM

414 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

The two previous Try It Outs have both used the characters event to directly display any text nodes
in the XML document reported by the SAX parser. There are two problems with this approach. First
is the fact that you simply wrote any content directly to the output stream, in this case the console
window. Usually you will want to store the text in a variable for processing. The second problem
with the characters event is that it is not guaranteed to return all of an element’s content in one call.
Many times you’ll fi nd that a long block of text is broken down into one or more characters events.
The next section shows a more sophisticated way to handle one or more characters events.

Handling the characters Event

A better way to handle the characters event is to build up the entire text content from the multiple
fi rings of the event using the startElement and endElement events to indicate which characters
belong to each element. To do so, follow these steps:

 1. Start by declaring a StringBuffer in the class to hold the character data:

public class SaxParser3 extends DefaultHandler {

 private StringBuffer buffer = new StringBuffer();

 2. Then, in the startElement event handler, make sure the buffer is cleared:

public void startElement(String namespaceURI,
 String localName,
 String qName,
 Attributes attr) throws SAXException {
 System.out.println(“SAX Event: START ELEMENT[“ + localName + “]”);
 for (int i = 0; i < attr.getLength(); i++){
 System.out.println(“ ATTRIBUTE: “
 + attr.getLocalName(i) + “ VALUE: “ + attr.getValue(i));
 }

 buffer.setLength(0);
 }

 3. In the characters event, append any text to the buffer:

 public void characters(char[] ch,
 int start,
 int length) throws SAXException {
 try {
 buffer.append(ch, start, length);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 4. Then, in the endElement event, convert the buffer to a string and, in this instance, output it
to the screen:

 public void endElement(String namespaceURI,
 String localName,
 String qName) throws SAXException {

c11.indd 414c11.indd 414 05/06/12 5:40 PM05/06/12 5:40 PM

Using SAX in Sequential Processing ❘ 415

 System.out.print(“SAX Event: CHARACTERS[“);
 System.out.println(buffer.toString());
 System.out.println(“]”);
 System.out.println(“SAX Event: END ELEMENT[“ + localName + “]”);
 }

The entire code is shown in Listing 11-3.

LISTING 11-3: SaxParser3.java

import org.xml.sax.*;
import org.xml.sax.helpers.*;
import java.io.*;

public class SaxParser3 extends DefaultHandler {

 private StringBuffer buffer = new StringBuffer();

 public void startDocument() throws SAXException {
 System.out.println(“SAX Event: START DOCUMENT”);
 }

 public void endDocument() throws SAXException {
 System.out.println(“SAX Event: END DOCUMENT”);
 }

 public void startElement(String namespaceURI,
 String localName,
 String qName,
 Attributes attr) throws SAXException {
 System.out.println(“SAX Event: START ELEMENT[“ + localName + “]”);
 for (int i = 0; i < attr.getLength(); i++){
 System.out.println(“ ATTRIBUTE: “
 + attr.getLocalName(i) + “ VALUE: “ + attr.getValue(i));
 }

 buffer.setLength(0);
 }

 public void endElement(String namespaceURI,
 String localName,
 String qName) throws SAXException {
 System.out.print(“SAX Event: CHARACTERS[“);
 System.out.println(buffer.toString());
 System.out.println(“]”);
 System.out.println(“SAX Event: END ELEMENT[“ + localName + “]”);
 }

 public void characters(char[] ch,
 int start,
 int length) throws SAXException {
 try {
 buffer.append(ch, start, length);
 } catch (Exception e) {

Available for
download on
Wrox.com

continues

c11.indd 415c11.indd 415 05/06/12 5:40 PM05/06/12 5:40 PM

http://Wrox.com

416 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

LISTING 11-3 (continued)

 e.printStackTrace();
 }
 }

 public static void main(String[] argv){
 String inputFile = argv[0];
 System.out.println(“Processing ‘” + inputFile + “’.”);
 System.out.println(“SAX Events:”);
 try {
 XMLReader reader = XMLReaderFactory.createXMLReader();
 reader.setContentHandler(new SaxParser3());
 reader.parse(new InputSource(
 new FileReader(inputFile)));
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The results from running this are the same as the earlier version, but now you have a much more
fl exible way of coping with textual data. This technique does not work, however, if you have mixed
content. In that case you would need to have separate buffers for each element’s content and keep
track of which one was needed via fl ags set in startElement and endElement.

So far you’ve treated all character data as signifi cant, even the whitespace that comes between ele-
ments such as <Name> and <Description>, which is only there to make the XML more human-
readable. The next section shows how you can use the ignorableWhitespace event to treat
signifi cant and insignifi cant whitespace differently.

Using the ignorableWhitespace Event

The ignorableWhitespace event is very similar to the characters event. It has the same signature:

public void ignorableWhitespace(char[] ch, int start, int len)
 throws SAXException

As with the characters event, it can be called multiple times for a block of contiguous whitespace.
The reason that the event was not called at all when parsing the People.xml fi le is that the parser
can tell if whitespace is signifi cant or not only by referring to a document type defi nition (DTD). If
there were a DTD associated with your document that said that each <Person> element contained
only parsed character data (PCDATA), the linefeeds between elements would be taken as insignifi -
cant whitespace and reported accordingly.

Another event that is thrown by the SAX parser is when an external entity is encountered, but for
some reason not retrieved or expanded.

Understanding the skippedEntity Event

The skippedEntity event, much like the ignorableWhitespace event, alerts the application that
the SAX parser has encountered information it believes the application can or must skip. In the case

c11.indd 416c11.indd 416 05/06/12 5:40 PM05/06/12 5:40 PM

Using SAX in Sequential Processing ❘ 417

of the skippedEntity event, the SAX parser has not expanded an entity reference it encountered in
the XML document. An entity might be skipped for several reasons:

 ➤ The entity is a reference to an external resource that cannot be parsed or cannot be found

 ➤ The entity is an external general entity and the http://xml.org/sax/features/
external-general-entities feature is set to false

 ➤ The entity is an external parameter entity and the http://xml.org/sax/features
/external-parameter-entities feature is set to false

You learn more about the external-general-entities and external-parameter-entities fea-
tures later in this chapter. The skippedEntity event is declared as follows:

public void skippedEntity(String name)
 throws SAXException

The name parameter is the name of the entity that was skipped. It begins with % in the case of a param-
eter entity. SAX considers the external DTD subset an entity, so if the name parameter is [dtd], it
means the external DTD subset was not processed. For more information on DTDs, refer to Chapter 4.

Applications can make use of processing instructions within an XML document, although they are
not that common. The most common one is xml-stylesheet, which is recognized by browsers as
an instruction to transform the current XML using the specifi ed XSLT.

Handling the processingInstruction Event

The signature of the processingInstruction event is as follows:

public void processingInstruction(String target, String data)
 throws SAXException

If you were writing an application that needed to process the common xml-stylesheet instruction
and it encountered the following:

<?xml-stylesheet type=”text/xsl” href=”myTransform.xsl”?>

The target parameter would be set to xml-stylesheet and the data parameter would contain
type=”text/xsl” href=”myTransform.xsl”. Notice how the data is not broken into separate
attributes; this is because processing instructions don’t have them. The fact that two pieces of data
are referred to as type and href is really just coincidental — these two items are usually called
pseudo-attributes.

You probably don’t need to be reminded at this point that the XML declaration at the start of
an XML document is not really a processing instruction, and as such it shouldn’t result in a
 processingInstruction event. If it does, you should switch to another parser quickly.

Handling Invalid Content

What happens if, while you are parsing a document, you come across some data that is invalid?
Hopefully this would have already been caught by an earlier validation process, either via a
DTD, XML Schema, or one of the other methods discussed in previous chapters. However,

c11.indd 417c11.indd 417 05/06/12 5:40 PM05/06/12 5:40 PM

http://xml.org/sax/features/external-general-entities
http://xml.org/sax/features/external-general-entities
http://xml.org/sax/features/external-parameter-entities
http://xml.org/sax/features/external-parameter-entities

418 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

sometimes business rules exist that cannot be expressed easily in the chosen validation language.
For example, in DTDs and version 1.0 of XML Schema, it’s not possible to say: if attribute x
equals y then the next element should be <a>, otherwise it should be . If you come across this
sort of situation or a similar one where you want to report a fatal error, the standard way to do
so is to throw a SAXException. You may have noticed that all the standard parser events throw
this. The SAXException has three constructors. The simplest takes a string as its parameter; this
can be used to specify the reason for the error and any other information such as the location. The
second constructor takes an Exception as its sole argument. This is for when you have already
trapped an Exception and want to wrap it. The third constructor takes both a string and an
Exception. This means you can trap an Exception and then add your own message to add details
about where the error occurred, and so on. One way to do this is to use another event handler,
setDocumentLocator.

Using the setDocumentLocator Event

The setDocumentLocator event has only one argument, an instance of the Locator class. The
methods for this class are shown in Table 11-2:

TABLE 11-2: Locator Methods

METHOD DESCRIPTION

getLineNumber() Retrieves the line number for the current event.

getColumnNumber() Retrieves the column number for the current event (the SAX specifi cation

assumes that the column number is based on right-to-left reading modes).

getSystemId() Retrieves the system identifi er of the document for the current event.

Because XML documents may be composed of multiple external entities,

this may change throughout the parsing process.

getPublicId() Retrieves the public identifi er of the document for the current event.

Because XML documents may be composed of multiple external entities,

this may change throughout the parsing process.

Although it is often used for increasing the helpfulness of error messages, it can be used elsewhere,
as the following activity shows.

TRY IT OUT Using the setDocumentLocator Event

This Try It Out shows how you can use the setDocumentLocator event to retrieve information about
the XML document you are parsing and use this information to add line number information to the
output.

1. Modify SaxParser3.java so that you have a variable to hold the current instance of the Locator
and change the name of the class to SaxParser4:

c11.indd 418c11.indd 418 05/06/12 5:40 PM05/06/12 5:40 PM

Using SAX in Sequential Processing ❘ 419

public class SaxParser4 extends DefaultHandler {

 private Locator docLocator = null;
 private StringBuffer buffer = new StringBuffer();

2. Add a new method to handle the setDocumentLocator event:

 public void setDocumentLocator(Locator locator)
 {
 docLocator = locator;
 }

3. In the startElement method add the following code to check if docLocator is not null and
retrieve the current line number:

 public void startElement(String namespaceURI,
 String localName,
 String qName,
 Attributes attr) throws SAXException {
 int lineNumber = 0;
 if (docLocator != null)
 {
 lineNumber = docLocator.getLineNumber();
 }
 System.out.println(“SAX Event: START ELEMENT[“ + localName + “]”);
 if (lineNumber != 0)
 {
 System.out.println(\t”(Found at line number: “ + lineNumber + “.)”);
 }
 for (int i = 0; i < attr.getLength(); i++){
 System.out.println(“ ATTRIBUTE: “ + attr.getLocalName(i) +
 “ VALUE: “ + attr.getValue(i));
 }

4. Change the code in the main() method to use SaxParser4:

 try {
 XMLReader reader = XMLReaderFactory.createXMLReader();
 reader.setContentHandler(new SaxParser4());
 reader.parse(new InputSource(
 new FileReader(inputFile)));
 }

5. Save the fi le as SaxParser4.java and compile it in the usual manner.

6. Run using:

java SaxParser4 People.xml

You should see similar results as the previous Try It Out but this time with a line number shown after
each element’s start tag, as shown in the following snippet:

Processing ‘people.xml’.
SAX Events:
SAX Event: START DOCUMENT
SAX Event: START ELEMENT[People]

c11.indd 419c11.indd 419 05/06/12 5:40 PM05/06/12 5:40 PM

420 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

(Found at line number: 1.)
SAX Event: START ELEMENT[Person]
(Found at line number: 2.)
 ATTRIBUTE: bornDate VALUE: 1874-11-30
 ATTRIBUTE: diedDate VALUE: 1965-01-24
SAX Event: START ELEMENT[Name]
(Found at line number: 3.)
SAX Event: CHARACTERS[Winston Churchill
]
SAX Event: END ELEMENT[Name]
SAX Event: START ELEMENT[Description]
(Found at line number: 4.)
SAX Event: CHARACTERS[
 Winston Churchill was a mid 20th century British politician who
 became famous as Prime Minister during the Second World War.
]
SAX Event: END ELEMENT[Description]
SAX Event: CHARACTERS[
 Winston Churchill was a mid 20th century British politician who
 became famous as Prime Minister during the Second World War.

]
SAX Event: END ELEMENT[Person]

How It Works

There is not much to the code. The setDocumentLocator event handler stores the instance of the
Locator class in a local variable, docLocator like so:

 public void setDocumentLocator(Locator locator)
 {
 docLocator = locator;
 }

The startElement handler checks to make sure the docLocator isn’t null (this is a standard safety
measure) and then calls its getLineNumber() method. After the element’s name is reported, you check
if the lineNumber variable has been updated, from zero to a real line number, and, if so, output it to
the screen.

 int lineNumber = 0;
 if (docLocator != null)
 {
 lineNumber = docLocator.getLineNumber();
 }
 System.out.println(“SAX Event: START ELEMENT[“ + localName + “]”);
 if (lineNumber != 0)
 {
 System.out.println(“\t(Found at line number: “ + lineNumber + “.)”);
 }

The full code is shown in Listing 11-4.

c11.indd 420c11.indd 420 05/06/12 5:40 PM05/06/12 5:40 PM

Using SAX in Sequential Processing ❘ 421

LISTING 11-4: SaxParser4.java

import org.xml.sax.*;
import org.xml.sax.helpers.*;
import java.io.*;

public class SaxParser4 extends DefaultHandler {

 private Locator docLocator = null;
 private StringBuffer buffer = new StringBuffer();

 public void setDocumentLocator(Locator locator)
 {
 docLocator = locator;
 }

 public void startDocument() throws SAXException {
 System.out.println(“SAX Event: START DOCUMENT”);
 }

 public void endDocument() throws SAXException {
 System.out.println(“SAX Event: END DOCUMENT”);
 }

 public void startElement(String namespaceURI,
 String localName,
 String qName,
 Attributes attr) throws SAXException {
 int lineNumber = 0;
 if (docLocator != null)
 {
 lineNumber = docLocator.getLineNumber();
 }
 System.out.println(“SAX Event: START ELEMENT[“ + localName + “]”);
 if (lineNumber != 0)
 {
 System.out.println(“\t(Found at line number: “ + lineNumber + “.)”);
 }
 for (int i = 0; i < attr.getLength(); i++){
 System.out.println(“ ATTRIBUTE: “ + attr.getLocalName(i) + “ VALUE: “
 + attr.getValue(i));
 }

 buffer.setLength(0);
 }

 public void endElement(String namespaceURI,
 String localName,
 String qName) throws SAXException {
 System.out.print(“SAX Event: CHARACTERS[“);
 System.out.println(buffer.toString());
 System.out.println(“]”);
 System.out.println(“SAX Event: END ELEMENT[“ + localName + “]”);
 }

Available for
download on
Wrox.com

continues

c11.indd 421c11.indd 421 05/06/12 5:40 PM05/06/12 5:40 PM

http://Wrox.com

422 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

LISTING 11-4 (continued)

 public void characters(char[] ch,
 int start,
 int length) throws SAXException {
 try {
 buffer.append(ch, start, length);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] argv){
 String inputFile = argv[0];
 System.out.println (“Processing ‘” + inputFile + “’.”);
 System.out.println(“SAX Events:”);
 try {
 XMLReader reader = XMLReaderFactory.createXMLReader();
 reader.setContentHandler(new SaxParser4());
 reader.parse(new InputSource(
 new FileReader(inputFile)));
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
}

It’s easy to see how using setDocumentLocator and storing the reference to the input document
could be used to improve the information produced by an error handler. Instead of just the reason
for the error, the location of the offending item could also be given.

Using the ErrorHandler Interface

So far all the information about the XML has been passed via the ContentHandler interface. Error
information, however, comes from ErrorHandler. Fortunately, the DefaultHandler class also pro-
vides stubs for the three events this interface fi res. The three events are shown in the Table 11-3.

TABLE 11-3: Events Fired By ErrorHandler

EVENT DESCRIPTION

warning Allows the parser to notify the application of a warning it has encountered in the

parsing process. Though the XML Recommendation provides many possible warn-

ing conditions, very few SAX parsers actually produce warnings.

error Allows the parser to notify the application of an error it has encountered. Even

though the parser has encountered an error, parsing can continue. Validation errors

should be reported through this event.

fatalError Allows the parser to notify the application of a fatal error it has encountered and that it

cannot continue parsing. Well-formedness errors should be reported through this event.

c11.indd 422c11.indd 422 05/06/12 5:40 PM05/06/12 5:40 PM

Using SAX in Sequential Processing ❘ 423

The default implementation within DefaultHandler simply throws a SAXException when these
events are fi red. If you want to do anything other than that, such as include the line number of the
offending code, you need to do two things:

 1. Use the SetErrorHandler method on the reader to make sure errors are passed through the
interface:

 XMLReader reader = XMLReaderFactory.createXMLReader();
 SaxParser5 parser = new SaxParser5();
 reader.setContentHandler(parser);
 reader.setErrorHandler(parser);

 2. Write a method that handles one or more of the three events shown in Table 11-3; for example,
warning.

If you want to trap specifi c errors, such as those generated when document validation fails, you will
also need to use feature activation to enable this. Feature activation is covered later in the chapter.

The following Try It Out shows how to make use of the events of ErrorHandler. It demonstrates
the preliminary steps you need to take to turn on full error handling and then deliberately gives the
parser a fl awed document to see the events in action.

TRY IT OUT Using the ErrorHandler Interface

This Try It Out demonstrates the full process needed to confi gure ErrorHandler. You’ll need to specify
which class will be used to receive the ErrorHandler events and also turn on the SAX validation fea-
ture. Once those two tasks are complete you’ll also need to specify what format the document should
take, otherwise it wouldn’t be possible to say that it’s invalid; this is done using a DTD.

1. Modify SaxParser4.java so that the class is now SaxParser5 and change the main() method to
set the ErrorHandler as shown previously:

 public static void main(String[] argv){
 String inputFile = argv[0];
 System.out.println(“Processing ‘” + inputFile + “’.”);
 System.out.println(“SAX Events:”);
 try {
 XMLReader reader = XMLReaderFactory.createXMLReader();
 SaxParser5 parser = new SaxParser5();
 reader.setContentHandler(parser);
 reader.setErrorHandler(parser);
 reader.parse(new InputSource(
 new FileReader(inputFile)));
 }catch (Exception e) {
 e.printStackTrace();
 }
 }

2. Add in the following lines to activate the validation feature:

 reader.setErrorHandler(parser);
 try
 {
 reader.setFeature(“http://xml.org/sax/features/validation”, true);
 } catch (SAXException e) {

c11.indd 423c11.indd 423 05/06/12 5:40 PM05/06/12 5:40 PM

http://xml.org/sax/features/validation

424 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

 System.err.println(“Cannot activate validation”);
 }

 reader.parse(new InputSource(
 new FileReader(inputFile)));

3. Create a DTD for People.xml and add it to the top of a new fi le, PeopleWithDTD.xml, with the
older content underneath:

<!DOCTYPE People [
 <!ELEMENT People (Person*)>
 <!ELEMENT Person (Name, Description)>
 <!ATTLIST Person bornDate CDATA #REQUIRED>
 <!ATTLIST Person diedDate CDATA #REQUIRED>
 <!ELEMENT Name (#PCDATA)>
 <!ELEMENT Description (#PCDATA)>
]>
<People>
<!-- rest of people.xml -->
</People>

4. Add three methods to override the ErrorHandler interface:

 public void warning (SAXParseException exception)
 throws SAXException {
 System.err.println(“[Warning] “ +
 exception.getMessage() + “ at line “ +
 exception.getLineNumber() + “, column “ +
 exception.getColumnNumber());
 }

 public void error (SAXParseException exception)
 throws SAXException {
 System.err.println(“[Error] “ +
 exception.getMessage() + “ at line “ +
 exception.getLineNumber() + “, column “ +
 exception.getColumnNumber());
 }

 public void fatalError (SAXParseException exception)
 throws SAXException {
 System.err.println(“[Fatal Error] “ +
 exception.getMessage() + “ at line “ +
 exception.getLineNumber() + “, column “ +
 exception.getColumnNumber());
 throw exception;
 }

5. Compile and run the class against PeopleWithDTD.xml. You shouldn’t see any change in the
output.

6. Now remove the diedDate attribute from the second <Person> element, Indira Gandhi. This time
you’ll get an error message displayed as the element is parsed:

[Error] Attribute “diedDate” is required and must be specifi ed for element type
“Person” at line 17, column 33

c11.indd 424c11.indd 424 05/06/12 5:40 PM05/06/12 5:40 PM

Using SAX in Sequential Processing ❘ 425

SAX Event: START ELEMENT[Person]
 (Found at line number: 17.)
 ATTRIBUTE: bornDate VALUE: 1917-11-19

How It Works

The ErrorHandler interface is brought into play by using the setErrorHandler code in main(). The
next stage is to activate the validation feature, which is covered in more detail shortly. Finally, methods
are declared that override the DefaultHandler’s implementation of warning, error, and fatalError.

The full code for SaxParser5 is shown in Listing 11-5.

LISTING 11-5: SaxParser5.java

import org.xml.sax.*;
import org.xml.sax.helpers.*;
import java.io.*;

public class SaxParser5 extends DefaultHandler {

 private Locator docLocator = null;
 private StringBuffer buffer = new StringBuffer();

 public void setDocumentLocator(Locator locator)
 {
 docLocator = locator;
 }

 public void startDocument() throws SAXException {
 System.out.println(“SAX Event: START DOCUMENT”);
 }

 public void endDocument() throws SAXException {
 System.out.println(“SAX Event: END DOCUMENT”);
 }

 public void startElement(String namespaceURI,
 String localName,
 String qName,
 Attributes attr) throws SAXException {
 int lineNumber = 0;
 if (docLocator != null)
 {
 lineNumber = docLocator.getLineNumber();
 }
 System.out.println(“SAX Event: START ELEMENT[“ + localName + “]”);
 if (lineNumber != 0)
 {
 System.out.println(“\t(Found at line number: “ + lineNumber + “.)”);
 }
 for (int i = 0; i < attr.getLength(); i++){
 System.out.println(“ ATTRIBUTE: “ + attr.getLocalName(i) +

Available for
download on
Wrox.com

continues

c11.indd 425c11.indd 425 05/06/12 5:40 PM05/06/12 5:40 PM

http://Wrox.com

426 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

LISTING 11-5 (continued)

 “ VALUE: “ + attr.getValue(i));
 }

 buffer.setLength(0);
 }

 public void endElement(String namespaceURI,
 String localName,
 String qName) throws SAXException {
 System.out.print(“SAX Event: CHARACTERS[“);
 System.out.println(buffer.toString());
 System.out.println(“]”);
 System.out.println(“SAX Event: END ELEMENT[“ + localName + “]”);
 }

 public void characters(char[] ch,
 int start,
 int length) throws SAXException {
 try {
 buffer.append(ch, start, length);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public void warning (SAXParseException exception)
 throws SAXException {
 System.err.println(“[Warning] “ +
 exception.getMessage() + “ at line “ +
 exception.getLineNumber() + “, column “ +
 exception.getColumnNumber());
 }

 public void error (SAXParseException exception)
 throws SAXException {
 System.err.println(“[Error] “ +
 exception.getMessage() + “ at line “ +
 exception.getLineNumber() + “, column “ +
 exception.getColumnNumber());
 }

 public void fatalError (SAXParseException exception)
 throws SAXException {
 System.err.println(“[Fatal Error] “ +
 exception.getMessage() + “ at line “ +
 exception.getLineNumber() + “, column “ +
 exception.getColumnNumber());
 throw exception;
 }

 public static void main(String[] argv){
 String inputFile = argv[0];

c11.indd 426c11.indd 426 05/06/12 5:40 PM05/06/12 5:40 PM

Using SAX in Sequential Processing ❘ 427

 System.out.println(“Processing ‘” + inputFile + “’.”);
 System.out.println(“SAX Events:”);
 try {
 XMLReader reader = XMLReaderFactory.createXMLReader();
 SaxParser5 parser = new SaxParser5();
 reader.setContentHandler(parser);
 reader.setErrorHandler(parser);
 try
 {
 reader.setFeature(“http://xml.org/sax/features/validation”, true);
 } catch (SAXException e) {
 System.err.println(“Cannot activate validation”);
 }

 reader.parse(new InputSource(
 new FileReader(inputFile)));
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
}

You may want to use two other interfaces to receive notifi cations when the document is parsed.
These are covered in the next two sections.

Using the DTDHandler Interface

Now that you have added a DTD to your document, you may want to receive some events about the
declarations. The logical place to turn is the DTDHandler interface. Unfortunately, the DTDHandler
interface provides you with very little information about the DTD itself. In fact, it allows you to see
the declarations only for notations and unparsed entities. Table 11-4 shows the two events produced
by the DTDHandler interface and their use.

TABLE 11-4: DTDHandler Events

EVENT DESCRIPTION

notationDecl Allows the parser to notify the application that it has read a

notation declaration.

unparsedEntityDecl Allows the parser to notify the application that it has read an

unparsed entity declaration.

When parsing documents that make use of notations and unparsed entities to refer to external
fi les — such as image references in XHTML or embedded references to non-XML documents — the
application must have access to the declarations of these items in the DTD. This is why the creators
of SAX made them available through the DTDHandler, one of the default interfaces associated with
an XMLReader.

c11.indd 427c11.indd 427 05/06/12 5:40 PM05/06/12 5:40 PM

http://xml.org/sax/features/validation

428 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

The declarations of elements, attributes, and internal entities, however, are not required for general
XML processing. These declarations are more useful for XML editors and validators. Therefore, the
events for these declarations were made available in one of the extension interfaces, DeclHandler.
You look at the extension interfaces in more detail later in the chapter.

Using the DTDHandler interface is very similar to using the ContentHandler and ErrorHandler
interfaces. The DefaultHandler class you used as the base class of the TrainReader also imple-
ments the DTDHandler interface, so working with the events is simply a matter of overriding the
default behavior, just as you did with the ErrorHandler and ContentHandler events. To tell the
XMLReader to send the DTDHandler events to your application, you can simply call the setDTDHan-
dler function, as shown in the following code:

reader.setDTDHandler(SaxParser5);

WARNING You may be wondering if there is an interface for receiving

XML Schema events. Surprisingly, there isn’t. In fact, no events are fi red for XML

Schema declarations either. The creators of SAX wanted to ensure that all the

information outlined in the XML Recommendation was available through the

interfaces. Remember that DTDs are part of the XML Recommendation, but XML

Schemas are defi ned in their own, separate recommendation.

The second interface is EntityResolver, used for providing information and control when an
external entity reference is encountered.

EntityResolver Interface

The EntityResolver interface enables you to control how a SAX parser behaves when it attempts
to resolve external entity references within the DTD, so much like the DTDHandler, it is frequently
not used. However, when an XML document utilizes external entity references, it is highly recom-
mended that you provide an EntityResolver.

The EntityResolver interface defi nes only one function, resolveEntity, which enables the appli-
cation to handle the resolution of entity lookups for the parser.

As shown with the other default interfaces, the EntityResolver interface is implemented by
the DefaultHandler class. Therefore, to handle the event callback, you simply override the
resolveEntity function in the TrainReader class and make a call to the setEntityResolver
function like so:

reader.setEntityResolver(SaxParser5);

Consider the following entity declaration:

<!ENTITY People PUBLIC “-//People//people xml 1.0//EN”
 “http://wrox.com/people.xml”>

c11.indd 428c11.indd 428 05/06/12 5:40 PM05/06/12 5:40 PM

http://wrox.com/people.xml

Using SAX in Sequential Processing ❘ 429

In this case, the resolveEntity function would be passed — //People//people xml 1.0//EN
as the public identifi er, and http://wrox.com/people.xml as the system identifi er. The
DefaultHandler class’s implementation of the resolveEntity function returns a null
InputSource by default. When handling the resolveEntity event, however, your application can
take any number of actions. It could create an InputSource based on the system identifi er, or it
could create an InputSource based on a stream returned from a database, hash table, or catalog
lookup that used the public identifi er as the key. It could also simply return null. These options
and many more enable an application to control how the processor opens and connects to external
resources.

Earlier you saw how validation was turned on by setting a feature; in the next section you’ll look at
this in more detail.

Understanding Features and Properties

As shown earlier in this chapter, some of the behavior of SAX parsers is controlled through setting
features and properties. For example, to activate validation, you needed to set the http://xml
.org/sax/features/validation feature to true. In fact, all features in SAX are controlled this
way, by setting a fl ag to true or false. The feature and property names in SAX are full URIs so
that they can have unique names — much like namespace names.

Working with Features

To change a feature’s value in SAX, you simply call the setFeature function of the XMLReader
like so:

public void setFeature(String name, boolean value)
 throws SAXNotRecognizedException, SAXNotSupportedException

When doing this, however, it is important to remember that parsers may not support, or even rec-
ognize, every feature. If a SAX parser does not recognize the name of the feature, the setFeature
function raises a SAXNotRecognizedException. If it recognizes the feature name but does not
support a feature (or does not support changing the value of a feature at a certain time), the set-
Feature function raises a SAXNotSupportedException. For example, if a SAX parser does not
support validation, it raises a SAXNotSupportedException when you attempt to change the value
to true.

The getFeature function enables you to check the value of any feature like so:

public boolean getFeature(String name)
 throws SAXNotRecognizedException, SAXNotSupportedException

Like the setFeature function, the getFeature function may raise exceptions if it does not recog-
nize the name of the feature or does not support checking the value at certain times (such as before,
during, or after the parse function has been called). Therefore, place all of your calls to the set-
Feature and getFeature functions within a try/catch block to handle any exceptions.

All SAX parsers should recognize, but may not support, the following features in Table 11-5:

c11.indd 429c11.indd 429 05/06/12 5:40 PM05/06/12 5:40 PM

http://wrox.com/people.xml
http://xml.org/sax/features/validation
http://xml.org/sax/features/validation

430 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

TABLE 11-5: Confi gurable SAX Features

FEATURE DEFAULT DESCRIPTION

http://xml.org/sax/

features/validation

Unspecifi ed Controls whether the parser will validate the docu-

ment as it parses. In addition to controlling validation,

it also aff ects certain parser behaviors. For example, if

the feature is set to true, all external entities must be

read.

http://xml.org/sax/

features/namespaces

true In the latest version of SAX, this feature should always

be true, meaning that namespace URI and prefi x val-

ues will be sent to the element and attribute functions

when available.

http://xml.org/sax/

features/namespace-

prefixes

false In the latest version of SAX, this feature should

always be false. It means that names with colons

will be treated as prefi xes and local names. When this

fl ag is set to true, raw XML names are sent to the

application.

http://xml.org/sax/

features/xmlns-uris

false Enables you to control whether xmlns declarations are

reported as having the namespace URI http://www

.w3.org/2000/xmlns/. By default, SAX conforms to

the original namespaces in the XML Recommendation

and will not report this URI. The 1.1 Recommendation

and an erratum to the 1.0 edition modifi ed this behav-

ior. This setting is used only when xmlns declarations

are reported as attributes.

http://xml.org/sax/

features/resolve-

dtd-uris

true Controls whether the SAX parser will “absolutize”

system IDs relative to the base URI before reporting

them. Parsers will use the Locator’s systemID

as the base URI. This feature does not apply to

EntityResolver.resolveEntity, nor does it apply

to LexicalHandler.startDTD.

http://xml.org/sax/

features/external-

general-entities

Unspecifi ed Controls whether external general entities should be

processed. When the validation feature is set to true,

this feature is always true.

http://xml.org/sax/

features/external-

parameter-entities

Unspecifi ed Controls whether external parameter entities should

be processed. When the validation feature is set to

true, this feature is always true.

http://xml.org/sax/

features/lexical-

handler/parameter-

entities

Unspecifi ed Controls the reporting of the start and end of param-

eter entity inclusions in the LexicalHandler.

c11.indd 430c11.indd 430 05/06/12 5:40 PM05/06/12 5:40 PM

http://xml.org/sax/features/validation
http://xml.org/sax/features/validation
http://xml.org/sax/features/namespaces
http://xml.org/sax/features/namespaces
http://xml.org/sax/features/namespaceprefixes
http://xml.org/sax/features/namespaceprefixes
http://xml.org/sax/features/namespaceprefixes
http://xml.org/sax/features/xmlns-uris
http://xml.org/sax/features/xmlns-uris
http://www.w3.org/2000/xmlns/
http://www.w3.org/2000/xmlns/
http://xml.org/sax/features/resolvedtd-uris
http://xml.org/sax/features/resolvedtd-uris
http://xml.org/sax/features/resolvedtd-uris
http://xml.org/sax/features/externalgeneral-entities
http://xml.org/sax/features/externalgeneral-entities
http://xml.org/sax/features/externalgeneral-entities
http://xml.org/sax/features/externalparameter-entities
http://xml.org/sax/features/externalparameter-entities
http://xml.org/sax/features/externalparameter-entities
http://xml.org/sax/features/lexicalhandler/parameterentities
http://xml.org/sax/features/lexicalhandler/parameterentities
http://xml.org/sax/features/lexicalhandler/parameterentities
http://xml.org/sax/features/lexicalhandler/parameterentities

Using SAX in Sequential Processing ❘ 431

FEATURE DEFAULT DESCRIPTION

http://xml.org/sax/

features/is-

standalone

None Enables you to determine whether the standalone fl ag

was set in the XML declaration. This feature can be

accessed only after the startDocument event has

completed. This feature is read-only and returns true

only if the standalone fl ag in the XML declaration has a

value of yes.

http://xml.org/sax/

features/use-

attributes2

Unspecifi ed Check this read-only feature to determine whether the

Attributes interface passed to the startElement

event supports the Attributes2 extensions. The

Attributes2 extensions enable you to examine

 additional information about the declaration of the attribute

in the DTD. Because this feature was introduced in a later

version of SAX, some SAX parsers will not recognize it.

http://xml.org/sax/

features/use-

locator2

Unspecifi ed Check this read-only feature to determine whether the

Locator interface passed to the setDocumentLocator

event supports the Locator2 extensions. The Locator2

extensions enable to you determine the XML version

and encoding declared in an entity’s XML declaration.

Because this feature was introduced in a later version of

SAX, some SAX parsers will not recognize it.

http://xml.org/sax/

features/use-entity-

resolver2

true (if

recognized)

Set this feature to true (the default) if the

EntityResolver interface passed to the setEnti-

tyResolver function supports the EntityResolver2

extensions. If it does not support the extensions, set this

feature to false. The EntityResolver2 extensions

allow you to receive callbacks for the resolution of

 entities and the external subset of the DTD. Because

this feature was introduced in a later version of SAX,

some SAX parsers will not recognize it.

http://xml.org/sax/

features/string-

interning

Unspecifi ed Enables you to determine whether the strings

reported in event callbacks were interned using the

Java function String.intern. This allows for fast

 comparison of strings.

http://xml.org/sax/

features/unicode-

normalization-

checking

false Controls whether the parser reports Unicode

 normalization errors as described in Section 2.13 and

Appendix B of the XML 1.1 Recommendation. Because

these errors are not fatal, if encountered they are

reported using the ErrorHandler.error callback.

http://xml.org/sax/

features/xml-1.1

Unspecifi ed Read-only feature that returns true if the parser

 supports XML 1.1 and XML 1.0. If the parser does

not support XML 1.1, this feature will be false.

c11.indd 431c11.indd 431 05/06/12 5:40 PM05/06/12 5:40 PM

http://xml.org/sax/features/isstandalone
http://xml.org/sax/features/isstandalone
http://xml.org/sax/features/isstandalone
http://xml.org/sax/features/useattributes2
http://xml.org/sax/features/useattributes2
http://xml.org/sax/features/useattributes2
http://xml.org/sax/features/uselocator2
http://xml.org/sax/features/uselocator2
http://xml.org/sax/features/uselocator2
http://xml.org/sax/features/use-entityresolver2
http://xml.org/sax/features/use-entityresolver2
http://xml.org/sax/features/use-entityresolver2
http://xml.org/sax/features/stringinterning
http://xml.org/sax/features/stringinterning
http://xml.org/sax/features/stringinterning
http://xml.org/sax/features/unicodenormalizationchecking
http://xml.org/sax/features/unicodenormalizationchecking
http://xml.org/sax/features/unicodenormalizationchecking
http://xml.org/sax/features/unicodenormalizationchecking
http://xml.org/sax/features/xml-1.1
http://xml.org/sax/features/xml-1.1

432 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

Working with Properties

Working with properties is very similar to working with features. Instead of boolean fl ags, how-
ever, properties may be any kind of object. The property mechanism is most often used to connect
helper objects to an XMLReader. For example, SAX comes with an extension set of interfaces called
DeclHandler and LexicalHandler that enable you to receive additional events about the XML
document. Because these interfaces are considered extensions, the only way to register these event
handlers with the XMLReader is through the setProperty function:

public void setProperty(String name, Object value)
 throws SAXNotRecognizedException, SAXNotSupportedException

public Object getProperty(String name)
 throws SAXNotRecognizedException, SAXNotSupportedException

As you saw with the setFeature and getFeature functions, all calls to setProperty and get-
Property should be safely placed in try/catch blocks, because they may raise exceptions. Some of
the default property names are listed in Table 11-6:

TABLE 11-6: Confi gurable SAX Properties

PROPERTY NAME DESCRIPTION

http://xml.org/sax/

properties/declaration-handler

Specifi es the DeclHandler object registered to receive

events for declarations within the DTD.

http://xml.org/sax/

properties/lexical-handler

Specifi es the LexicalHandler object registered to

receive lexical events, such as comments, CDATA sections,

and entity references.

http://xml.org/sax/

properties/document-xml-

version

Read-only property that describes the actual version of

the XML document, such as 1.0 or 1.1. This property

can only be accessed during the parse and after the

 startDocument callback has been completed.

Using the Extension Interfaces

The two primary extension interfaces are DeclHandler and LexicalHandler. Using these inter-
faces, you can receive events for each DTD declaration and specifi c items such as comments, CDATA
sections, and entity references as they are expanded. It is not required by the XML specifi cation that
these items be passed to the application by an XML processor. All the same, the information can be
very useful at times, so the creators of SAX wanted to ensure that they could be accessed.

The DeclHandler interface declares the following events in Table 11-7:

c11.indd 432c11.indd 432 05/06/12 5:40 PM05/06/12 5:40 PM

http://xml.org/sax/properties/declaration-handler
http://xml.org/sax/properties/declaration-handler
http://xml.org/sax/properties/lexical-handler
http://xml.org/sax/properties/lexical-handler
http://xml.org/sax/properties/document-xmlversion
http://xml.org/sax/properties/document-xmlversion
http://xml.org/sax/properties/document-xmlversion

Using SAX in Sequential Processing ❘ 433

TABLE 11-7: DeclHandler Interface Defi nition

EVENT DESCRIPTION

attributeDecl Allows the parser to notify the application that it has read an

 attribute declaration.

elementDecl Allows the parser to notify the application that it has read

an element declaration.

externalEntityDecl Allows the parser to notify the application that it has read

an external entity declaration.

internalEntityDecl Allows the parser to notify the application that it has read an

internal entity declaration.

The LexicalHandler interface declares the following events in Table 11-8:

TABLE 11-8: LexicalHandler Interface Defi nition

EVENT DESCRIPTION

comment Allows the parser to notify the document that it has read a comment. The

entire comment is passed back to the application in one event call; it is

not buff ered, as it may be in the characters and ignorableWhitespace

events.

startCDATA Allows the parser to notify the document that it has encountered a CDATA

section start marker. The character data within the CDATA section is always

passed to the application through the characters event.

endCDATA Allows the parser to notify the document that it has encountered a CDATA

section end marker.

startDTD Allows the parser to notify the document that it has begun reading a DTD.

endDTD Allows the parser to notify the document that it has fi nished reading a DTD.

startEntity Allows the parser to notify the document that it has started reading or

expanding an entity.

endEntity Allows the parser to notify the document that it has fi nished reading or

expanding an entity.

c11.indd 433c11.indd 433 05/06/12 5:40 PM05/06/12 5:40 PM

434 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

Because these are extension interfaces, they must be registered with the XMLReader using
the property mechanism, as you just learned. For example, to register a class as a handler or
LexicalHandler events, you might do the following:

reader.setProperty(“http://xml.org/sax/properties/lexical-handler”, lexHandler);

NOTE The DefaultHandler class, which you used as the basis of the

SaxParser classes, does not implement any of the extension interfaces. In the

newer versions of SAX, however, an extension class was added called

DefaultHandler2. This class not only implements the core interfaces, but the

extension interfaces as well. Therefore, if you want to receive the

LexicalHandler and DeclHandler events, it is probably a good idea to

descend from DefaultHandler2 instead of the DefaultHandler class.

The great thing about SAX is that it’s not just limited to Java. Implementations exist for C++, PHP,
and Microsoft’s COM as well as many other languages. People have accepted the fact that a good
way to handle large documents is to use an event-based method.

Now that you’ve seen how SAX copes with documents using events, in the next section you look at
.NET’s answer to the problems posed by large documents, System.Xml.XmlReader.

USING XMLREADER

Whereas with SAX you handle events thrown by the parser, XmlReader takes a different approach,
albeit one that needs a similar mindset to work with. Again you are working through the document
in a serial fashion, but whereas with SAX the process is somewhat akin to watching a conveyor belt
loaded with goods go by, with you plucking items from it as it passes, with XmlReader the process
is more like the XML being laid out like a long buffet, where you need to move along picking up
whatever items you want.

XmlReader has similar advantages and disadvantages to SAX, too. It is very effi cient from a memory
point of view because the whole document is not loaded into RAM. This also means that once
you’ve passed a particular spot, you can’t go back; you have to begin the process anew. You also
can’t validate a complete document. You can only know that the XML is valid or invalid up to the
furthest point you’ve reached. If you want full validation before you start processing, you’ll need
two passes.

In the following activity you see how to get started with XmlReader. You’ll start out with the basics:
how to load an XML document and how to use basic navigation to read its content.

c11.indd 434c11.indd 434 05/06/12 5:40 PM05/06/12 5:40 PM

http://xml.org/sax/properties/lexical-handler

Using XmlReader ❘ 435

TRY IT OUT Loading a Document with XmlReader

This Try It Out walks you through creating an XmlReader, loading a document, and reading the name
of the document’s root element. If you just want to follow along, the code is available in the download
for this chapter. The solution is named XmlReaderDemo.

1. If you are using the full version of Visual Studio then open it and create a blank solution named
XmlReaderDemo as shown in Figure 11-1. If you are using Visual Studio Express open the C#
version and move on to step 2.

2. Add a new Windows Console project named XmlReaderBasics.

3. Right-click the project and choose Add ➪ Existing Item. Choose the People.xml fi le shown ear-
lier in the chapter in Listing 11-1.

4. Go to the properties of People.xml and make sure that Copy to Output Directory is set to Copy
If Newer as shown in the bottom right corner of Figure 11-2. This makes it easier to locate
because it will be in the same folder as the application.

5. Replace the code in Program.cs with the code in Listing 11-6.

FIGURE 11-1

c11.indd 435c11.indd 435 05/06/12 5:40 PM05/06/12 5:40 PM

436 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

FIGURE 11-2

LISTING 11-6: Program.cs (in project XmlReaderBasics)

using System;
using System.Xml;

namespace XmlReaderBasics
{
 internal class Program
 {
 private static void Main(string[] args)
 {
 var xmlUri = “People.xml”;
 var reader = DisplayRootElement(xmlUri);
 Console.ReadLine();
 }

 private static XmlReader DisplayRootElement(string uri)
 {
 var reader = XmlReader.Create(uri);
 reader.MoveToContent();
 var rootElementName = reader.Name;
 Console.WriteLine(“Root element name is: {0}”, rootElementName);
 return reader;
 }
 }
}

6. Save all fi les (Ctrl+Shift+S) and then build (Ctrl+Shift+B).

7. Assuming there are no build errors, run the program using F5.

Available for
download on
Wrox.com

c11.indd 436c11.indd 436 05/06/12 5:40 PM05/06/12 5:40 PM

http://Wrox.com

Using XmlReader ❘ 437

8. You should see the following output in the console window. Press Enter to close the window.

Root element name is: People

How It Works

The DisplayRootElement() method fi rst creates an XmlReader using a static factory method on the
XmlReader class as shown in the following code. XmlReader is actually an abstract class and it there-
fore can’t have an instance:

var reader = XmlReader.Create(uri);

What is actually returned in this example is an XmlTextReader, the simplest implementation of the
abstract class. It’s also possible to create other versions such as an XmlValidatingReader if you want
document validation; you learn how to do this later in the chapter in the “Using XMLReaderSettings”
section.

The Create() method takes the path to the fi le. In this case, this is a relative path because the fi le is in
the same folder as the executable, but you can also pass in a full path or a URL. The Create() method
can take other parameters, some of which you see later.

If there is a problem loading the XML — for example, the fi le cannot be found or there is a per-
missions problem — a suitable exception will be thrown such as FileNotFoundException or
SecurityException.

Once the XmlReader has loaded the XML, the most common action is to use the MoveToContent()
method to position the reader’s cursor on the root element:

reader.MoveToContent();

The MoveToContent() method checks to see if the cursor is currently located at content; if not, it
moves to the fi rst content it can fi nd. Content is defi ned as non-whitespace text, an element, or entity
reference. Comments, processing instructions, document types, and whitespace are skipped over. This
means that everything between the start of the document and the actual root element will be ignored
and the cursor will be pointing to the fi rst element in the document. Microsoft terms this the current
node in the XmlReader documentation.

Once the reader has a current node, properties of this node are available. In this case you used the
Name property as shown here but you could use dozens of others such as Attributes, Value, and
NamespaceURI:

var rootElementName = reader.Name;

Finally, the name of the element is displayed and the reader is returned so that it can be used to extract
more information:

Console.WriteLine(“Root element name is: {0}”, rootElementName);
return reader;

c11.indd 437c11.indd 437 05/06/12 5:40 PM05/06/12 5:40 PM

438 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

So far you’ve seen the basics in action — loading a document and moving to the document element. The
next step is to read some useful information from the document, which you do in the following activity.

TRY IT OUT Getting Element and Attribute Data

This Try It Out shows you how to do basic navigation through a document and read element and attri-
bute values.

1. Using the XmlReaderBasics project, add a new method named DisplayPeopleWithDates to
Program.cs as shown here:

 private static XmlReader DisplayPeopleWithDates(XmlReader reader)
 {
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element
 && reader.Name == “Person”)
 {
 DateTime bornDate = new DateTime();
 DateTime diedDate = new DateTime();
 var personName = string.Empty;
 while (reader.MoveToNextAttribute())
 {
 switch (reader.Name)
 {
 case “bornDate”:
 bornDate = reader.ReadContentAsDateTime();
 break;
 case “diedDate”:
 diedDate = reader.ReadContentAsDateTime();
 break;
 }
 }

 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element
 && reader.Name == “Name”)
 {
 personName = reader.ReadElementContentAsString();
 break;
 }
 }
 Console.WriteLine(“{0} was born in {1} and died in {2}”,
 personName,
 bornDate.ToShortDateString(),
 diedDate.ToShortDateString());
 }
 }

 return reader;
 }

c11.indd 438c11.indd 438 05/06/12 5:40 PM05/06/12 5:40 PM

Using XmlReader ❘ 439

2. Now add the following line to the Main() method:

 private static void Main(string[] args)
 {
 var xmlUri = “People.xml”;
 var reader = DisplayRootElement(xmlUri);
 reader = DisplayPeopleWithDates(reader);
 Console.ReadLine();
 }

3. Rebuild the project and press F5 to run. This time you’ll see the names of the three politicians
along with the dates on which they were born and died, as shown in the following code. The
actual format of the date may differ, depending on the regional settings on your machine:

Root element name is: People
Winston Churchill was born in 30/11/1874 and died in 24/01/1965
Indira Gandhi was born in 19/11/1917 and died in 31/10/1984
John F. Kennedy was born in 29/05/1917 and died in 22/11/1963

How It Works

The DisplayPeopleWithDates() method accepts an XmlReader as a parameter. The current node for
the reader is People so any operations will begin from there:

 private static XmlReader DisplayPeopleWithDates(XmlReader reader)
 {
 while (reader.Read())

One of XmlReader’s most commonly called methods, Read(), is used to move through the nodes
within the XML. This method reads the next node from the input stream; the node can be any one of
the types defi ned by the XmlNodeType enumeration.

If a node is successfully read, the Read() method returns true, otherwise it returns false. This means
that the standard way to traverse a document is to use the Read() method in a while loop, which will
automatically exit when the method returns false. In the body of the loop you can see which node
type the reader is pointing at and then use other information, such as its name if it’s an element, to gar-
ner whatever data you need.

In your method you test to see if you have an element and whether its name is Person:

 if (reader.NodeType == XmlNodeType.Element
 && reader.Name == “Person”)
 {
 DateTime bornDate = new DateTime();
 DateTime diedDate = new DateTime();
 var personName = string.Empty;

If that is the case, you initialize three variables that will hold the three pieces of data that you’re going
to display: two dates and a string for the person’s name.

c11.indd 439c11.indd 439 05/06/12 5:40 PM05/06/12 5:40 PM

440 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

You then use the MoveToNextAttribute() method, which cycles through an element’s attributes.

 while (reader.MoveToNextAttribute())
 {
 switch (reader.Name)
 {
 case “bornDate”:
 bornDate = reader.ReadContentAsDateTime();
 break;
 case “diedDate”:
 diedDate = reader.ReadContentAsDateTime();
 break;
 }
 }

Again, this method returns a Boolean, so a while loop is the easiest way to make sure you’ve read all
the attributes you need. To read the attribute’s value you use one of several ReadContentAs...() meth-
ods, in this case ReadContentAsDateTime().

You next move to the <Name> element and you use a similar tactic as before, wrapping the Read()
method in a while loop and testing that you have an element that has the appropriate name.

 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element
 && reader.Name == “Name”)
 {
 personName = reader.ReadElementContentAsString();
 break;
 }
 }

You can read the text content of an element in many ways; here you use ReadElementContentAsStrin
g(). Again, many variations of this return different types.

Once you have the three data items you need, you output them to the console. The outer while loop
now continues until the Read() method returns false:

 Console.WriteLine(“{0} was born in {1} and died in {2}”,
 personName,
 bornDate.ToShortDateString(),
 diedDate.ToShortDateString());

The preceding Try It Out example made use of the XmlNodeType enumeration. The most common
test is for elements but there are times when you are targeting other content types. The full list of
values returned by XmlReader is shown in Table 11-9.

c11.indd 440c11.indd 440 05/06/12 5:40 PM05/06/12 5:40 PM

Using XmlReader ❘ 441

So far you’ve used the basic XmlReader.Create() method to get a standard XmlTextReader.
In the next section you see how you can use the XmlReaderSettings class to more tightly control
how the reader will work.

Using XmlReaderSettings

Many questions can arise when parsing and reading XML, for example:

 ➤ How do you want to treat whitespace?

 ➤ Do you want validation?

TABLE 11-9: XmlNodeType Enumeration

NAME DESCRIPTION

None The Read() method has not yet been called.

Element An element has been read.

Attribute An attribute has been read.

Text The text content of a node, such as an element or an attri-

bute, has been read.

CDATA A CDATA section was read.

EntityReference An entity reference, such as é, has been read.

ProcessingInstruction A processing instruction has been read.

Comment A comment has been read.

DocumentType A document type declaration has been read.

Whitespace Whitespace between markups has been read.

SignificantWhitespace Whitespace that is known to be signifi cant (because a

schema or DTD has been used, for instance) has been read.

EndElement The closing tag of an element has been read.

XmlDeclaration The document’s XML declaration has been read.

There are other members of the enumeration, such as Document, but these are never returned by the
XmlReader.

c11.indd 441c11.indd 441 05/06/12 5:40 PM05/06/12 5:40 PM

442 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

 ➤ If you do want validation, where are the relevant schemas?

 ➤ Do you want attention paid to any document type defi nition?

 ➤ Are you interested in comments, or can they be ignored?

 ➤ What should be done with the stream after reading? Should it be closed or left open?

 ➤ How do you provide credentials to access secured online resources?

All these questions, along with others, can be answered by using the XmlReaderSettings
class — to create a new instance of the class, set the appropriate properties, and then pass it as a
second argument to the XmlReader.Create() method.

For example, suppose you want to ignore any comments in the document; you are not going to do
anything with them so they’ll only get in the way. The following code shows how to do this:

var settings = new XmlReaderSettings();
settings.IgnoreComments = true;
var reader = XmlReader.Create(xmlUri, settings);

The next example shows a more complicated scenario: how to provide credentials for a secured
online resource. Any time an XmlReader needs to access a resource, it uses an XmlResolver. The
built-in resolver uses the credentials of the account running the code, which may not be suffi cient.
You can access the resolver and change the credentials via the XmlReaderSettings in the following
manner:

var settings = new XmlReaderSettings();
var resolver = new XmlUrlResolver();
var credentials = new Syystem.Net.NetworkCredential(username,
 password,
 domainName);
resolver.Credentials = credentials;
settings.XmlResolver = resolver;
var reader = XmlReader.Create(xmlUri, settings);

NOTE You can use a standard string to specify the password, but you should

really use the SecureString class, which makes sure that the data is wiped

from memory as soon as is practical.

The next activity illustrates another common scenario: how to use an XmlReader to validate a docu-
ment. You’ll see how you need to specify in advance that you want a validating reader and how any
validation errors are handled.

c11.indd 442c11.indd 442 05/06/12 5:40 PM05/06/12 5:40 PM

Using XmlReader ❘ 443

TRY IT OUT Validating a Document with XmlReader

This Try It Out will show you how to validate a document using XmlReader. You’ll see how to use the
XmlReaderSettings class to specify that you want validation and what validation method is required.
You’ll then see how validation messages are reported when reading an invalid document.

1. If you are using the full version of Visual Studio in the XmlReaderDemo solution, right-click the
solution icon and choose Add ➪ New Project. If using the Express version then close any existing
projects and choose File ➪ New Project.

2. Choose a Windows Console Application and call it ValidationDemo.

3. Within the project add a new item, an XML fi le named PeopleWithNamespace.xml.

4. Copy the XML from the People.xml in Listing 11-1 fi le and add the following namespace decla-
ration to the document element to put all the elements into a default namespace:

<People xmlns=”http://wrox.com/namespaces/BeginningXml/People”>

5. Add another new fi le to the project, this time an XSD schema, and call it
PeopleWithNamespace.xsd.

6. Add the code in Listing 11-7 to the XSD.

LISTING 11-7: PeopleWithNamespace.xsd

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema attributeFormDefault=”unqualified”
 elementFormDefault=”qualified”
 targetNamespace=”http://wrox.com/namespaces/BeginningXml/People”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
 <xs:element name=”People”>
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs=”unbounded” name=”Person”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”Name” type=”xs:string” />
 <xs:element name=”Description” type=”xs:string” />
 </xs:sequence>
 <xs:attribute name=”bornDate” type=”xs:date” use=”required” />
 <xs:attribute name=”diedDate” type=”xs:date” use=”required” />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

7. Make sure that Copy to Output Directory property for both these fi les is set to Copy If Newer.

8. Open Program.cs and replace the code with the code in Listing 11-8.

Available for
download on
Wrox.com

c11.indd 443c11.indd 443 05/06/12 5:40 PM05/06/12 5:40 PM

http://wrox.com/namespaces/BeginningXml/People
http://wrox.com/namespaces/BeginningXml/People
http://www.w3.org/2001/XMLSchema
http://Wrox.com

444 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

LISTING 11-8: Program.cs (in project ValidationDemo)

using System;
using System.Xml;
using System.Xml.Schema;

namespace ValidationDemo
{
 internal class Program
 {
 private static void Main(string[] args)
 {
 var xmlUri = “PeopleWithNamespace.xml”;
 var targetNamespace =
 “http://wrox.com/namespaces/BeginningXml/People”;
 var schemaUri = “PeopleWithNamespace.xsd”;
 ValidateDocument(xmlUri, targetNamespace, schemaUri);
 Console.ReadLine();
 }

 private static void ValidateDocument(string uri,
 string targetNamespace,
 string schemaUri)
 {
 var schemaSet = new XmlSchemaSet();
 schemaSet.Add(targetNamespace, schemaUri);
 var settings = new XmlReaderSettings();
 settings.ValidationType = ValidationType.Schema;
 settings.Schemas = schemaSet;
 settings.ValidationEventHandler += ValidationCallback;
 var reader = XmlReader.Create(uri, settings);
 while (reader.Read()) ;
 Console.WriteLine(“Validation complete.”);
 }

 private static void ValidationCallback(object sender,
 ValidationEventArgs e)
 {
 Console.WriteLine(
 “Validation Error: {0}\n\tLine number {1}, position {2}.”,
 e.Message,
 e.Exception.LineNumber,
 e.Exception.LinePosition);
 }
 }
}

9. Right-click the project and set it as the startup project for the solution as shown in Figure 11-3.

Available for
download on
Wrox.com

c11.indd 444c11.indd 444 05/06/12 5:40 PM05/06/12 5:40 PM

http://wrox.com/namespaces/BeginningXml/People
http://Wrox.com

Using XmlReader ❘ 445

10. Save (Ctrl+Shift+S) and build (Ctrl+Shift+B) the project and run with F5.

11. You should see the following message in the console:

Validation complete.

12. Modify PeopleWithNamespace.xml by removing the diedDate attribute from the second
<Person> element, as shown here:

 <Person bornDate=”1917-11-19”>
 <Name>Indira Gandhi</Name>

13. Rerun the solution. This time you should see a message reporting a validation error as follows:

Validation Error: The required attribute ‘diedDate’ is missing.
 Line number 9, position 4.
Validation complete.

FIGURE 11-3

c11.indd 445c11.indd 445 05/06/12 5:40 PM05/06/12 5:40 PM

446 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

How It Works

ValidateDocument begins by setting up an XmlSchemaSet that will hold the necessary schema for
validating your document. In this case there is only one, PeopleWithNamespace.xsd. You add this
using the Add() method, which specifi es the target namespace, http://wrox.com/namespaces/
BeginningXml/People, and the path to the schema. The corresponding code follows:

 private static void ValidateDocument(string uri,
 string targetNamespace,
 string schemaUri)
 {
 var schemaSet = new XmlSchemaSet();
 schemaSet.Add(targetNamespace, schemaUri);
 // method continues

The next stage involves creating an XmlReaderSettings object and specifying the ValidationType.
This defaults to ValidationType.None. In the following code you set it to ValidationType.Schema,
which means that instead of the XmlReader.Create() method returning an XmlTextReader, you’ll get
an XsdValidatingReader. Then you set the settings’ Schemas property to be the XmlSchemaSet previ-
ously created:

 var settings = new XmlReaderSettings();
 settings.ValidationType = ValidationType.Schema;
 settings.Schemas = schemaSet;

The next step is to provide a method that is called whenever a validation error occurs; here the method
is named ValidationCallback:

 settings.ValidationEventHandler += ValidationCallback;

The last lines of the method create the XmlReader, passing in the all-important settings, and then call
the Read() method in the familiar while loop. Notice how you are not doing anything extra within the
loop; this is just to make sure the whole XML document is read and validated:

 var reader = XmlReader.Create(uri, settings);
 while (reader.Read()) ;
 Console.WriteLine(“Validation complete.”);

The callback that handles any errors is fairly straightforward, shown here:

 private static void ValidationCallback(object sender,
 ValidationEventArgs e)
 {
 Console.WriteLine(“Validation Error: {0}\n\tLine number {1}, position {2}”,
 e.Message,
 e.Exception.LineNumber,
 e.Exception.LinePosition);
 }
 }

Whenever an error occurs, the method is called with the familiar .NET signature of the sender as an
object and an EventArgs. In this case, the EventArgs is of type ValidationEventArgs and provides

c11.indd 446c11.indd 446 05/06/12 5:40 PM05/06/12 5:40 PM

http://wrox.com/namespaces/BeginningXml/People
http://wrox.com/namespaces/BeginningXml/People

Using XmlReader ❘ 447

both a Message property, which is the reason the validation failed, and an Exception property, which
can be used to garner more details. In this case the line number and position of the error is extracted.
If you wanted more detail, you could cast the sender object to an XmlReader and use properties such as
Name to fi nd out which node was being read when the error occurred.

Now that you’ve covered most of the standard scenarios in reading data, using Read() to move through
the XML and returning content from elements and attributes, next you’ll look at the role of the
XmlResolver more deeply and see how you can limit where external resources are loaded from.

Controlling External Resources

You saw earlier how an XmlReaderSettings class has a property, XmlResolver, which, by default,
returns an instance of an XmlUrlResolver. By default, the XmlUrlResolver handles requests for
fi les using the file:// and http:// protocols, but it’s possible to write your own class that inherits
from XmlResolver, which knows how to handle other ones. The XmlResolver class is also used when
transforming XML using the System.Xml.Xsl.CompiledTransform, again to govern how external
resources are dealt with. A common requirement when loading or especially transforming a fi le is to
have access to data that resides in a traditional SQL database. Many people have therefore written
XmlResolvers that can do this. Most of them allow you to specify a resource such as the following:

sql://executeProcedure?name=GetAllCustomers&City=Seattle

This would cause the data returned by the procedure — all customers who reside in Seattle — to be
embedded in the XML.

Another common request is to be able to call a web service. This can be achieved in a limited way if
the service is a RESTful one that only uses the querystring to provide data, but is impossible to do
so where a post is required, as is the case for most SOAP-based services.

Both of the preceding scenarios involve writing your own implementation of XmlResolver, but there
is another case that is so common that Microsoft has done the work for you. This is when you want to
restrict access to external fi les, normally based on where they reside. Why would you want to do this?
The common reason is that you are accepting XML fi les from a third party. Maybe your web orders
are sent from other businesses using a business-to-business (B2B) system and you need to process these.
Although it’s legitimate for these fi les to contain references to external resources (maybe a schema, a
DTD, or an entity), these resources should only reside on servers that have been approved beforehand.
To prevent the chance of infected fi les getting on to your servers, or to prevent a denial of service (DoS)
attack, it’s essential to have a way of limiting the locations from where fi les are retrieved.

NOTE A DoS attack is one which tries to use all the resources on a machine by

either issuing an extremely large number of requests or by injecting very large

fi les into the processing pipeline.

For these and related reasons, Microsoft offers the XmlSecureResolver class, whereby you can easily
restrict which domains can be accessed.

c11.indd 447c11.indd 447 05/06/12 5:40 PM05/06/12 5:40 PM

448 ❘ CHAPTER 11 EVENT-DRIVEN PROGRAMMING

For this scenario, assume that any external resources can only come from two specifi c URLs,
http://myWebServer.com and http://myDataServer.com. Now perform the following steps:

 1. To limit access, fi rst defi ne a new System.Net.WebPermission:

var permission = new WebPermission(PermissionState.None);

This creates a WebPermission that, by default, blocks all external access.

 2. Next, add your two exceptions:

permission.AddPermission(NetworkAccess.Connect, “http://myWebServer.com”);
permission.AddPermission(NetworkAccess.Connect, “http://myDataServer.com”);

 3. Then add the WebPermission to a PermissionSet, which enables you to create different
permissions with different criteria if necessary:

var permissionSet = new PermissionSet(PermissionSet.None);
permissionSet.AddPermission(permission);

Again, the PermissionSet blocks everything by default. Then your WebPermission is
added that allows access to your two safe URLs.

 4. Finally, create the XmlSecureResolver and give it your PermissionSet:

var resolver = new XmlSecureResolver(new XmlUrlResolver(), permissionSet);

 5. Once that is complete, you use the resolver as shown earlier:

var settings = new XmlReaderSettings();
settings.XmlResolver = resolver;
var reader = XmlReader.Create(xmlUri, settings);

SUMMARY

 ➤ There are two new methods for processing XML: SAX and .NET’s XmlReader.

 ➤ SAX is an event-driven paradigm whereby the SAX parser fi res events when different types
of content are found. Registered listeners can react to these events.

 ➤ In XmlReader the programmer instigates moving through the document and stops when the
target content is reached.

EXERCISES

Answers to the exercises can be found in Appendix A.

 1. Add a LexicalHandler to the SaxParser5 class so that you can read any comments in the

PeopleWithDTD.xml fi le. Add some comments to test it out.

 2. Write a working example that shows how to use XmlSecureResolver to limit fi le access to the

local machine.

c11.indd 448c11.indd 448 05/06/12 5:40 PM05/06/12 5:40 PM

http://myWebServer.com
http://myDataServer.com
http://myWebServer.com
http://myDataServer.com

Summary ❘ 449

TOPIC KEY POINTS

The need for event-driven

methods

Building an XML tree in memory consumes a lot of RAM. Large

documents need a more effi cient way of being processed.

SAX Developed with Java in mind but available in many other languages,

SAX is an interface that relies on events being fi red as content is

encountered when a document is read sequentially.

Features Extra features, such as validation, can be confi gured by specifying

them using the setFeature(name, value) method.

Properties Properties, such as which handlers are registered, can be confi g-

ured using the setProperty(name, value) method.

XmlReader .NET’s XmlReader also reads a document sequentially. However, it

does not fi re events but relies on the developer to pinpoint a target

by specifying its features. For example: Is it an element or an attri-

bute? What is its name?

XmlReaderSettings Advanced options, such as wanting validation for an XML docu-

ment, can be confi gured by using the XmlReaderSettings class

which is then passed to the XmlReader.Create() method.

 XmlResolver Access to supplementary documents that are needed to complete

processing of the XML, such as DTDs and external entities, is con-

trolled via the XmlResolver used by XmlReader. For example, you

can limit fi le access to specifi c locations using XmlSecureResolver

combined with a PermissionSet.

 � WHAT YOU LEARNED IN THIS CHAPTER

c11.indd 449c11.indd 449 05/06/12 5:40 PM05/06/12 5:40 PM

c11.indd 450c11.indd 450 05/06/12 5:40 PM05/06/12 5:40 PM

LINQ to XML

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ What LINQ is and how it is used

 ➤ Why you need LINQ to XML

 ➤ The basic LINQ to XML process

 ➤ More advanced features of LINQ to XML

 ➤ XML Literals in .NET

So far you’ve seen a number of ways that you can read, process, and create XML. You can use
the document object model (DOM), which loads the whole document into memory, or one
of the streaming methods covered in the previous chapter, such as Microsoft’s XmlReader or
the SAX interface. This chapter presents yet another option, which unifi es the task of interact-
ing with XML with one of Microsoft’s core programming technologies, LINQ.

WHAT IS LINQ?

One aim of most programming languages is to be consistent. One area in which most lan-
guages fail in this respect is querying. The codes to query a database, a collection of objects,
and an XML fi le are radically different. Microsoft has tried to abstract the querying pro-
cess so that these, and other data sources, can be treated in a similar fashion. To this end,
Microsoft invented Language Integrated Query, or LINQ.

LINQ is loosely based on SQL (the standard way to query a relational database), but gives
you two ways to specify your query. The fi rst, and some would say easier of the two because it
tries to imitate natural language, takes the following form:

from <range variable> in <collection>
where <predicate>
select <something using the range variable>

12

c12.indd 451c12.indd 451 05/06/12 5:56 PM05/06/12 5:56 PM

452 ❘ CHAPTER 12 LINQ TO XML

Here, range variable is a standard identifi er that is used to refer to the items selected,
collection is a collection of objects to be queried, and predicate is an expression that yields true
or false to determine whether to include the objects in the fi nal results. It’s not essential to have a
predicate, and you can also incorporate ordering, grouping, and all the standard operations you may
need. For a concrete example, take the simple task of extracting the even numbers from an array
(these examples are in C#, although there’s little difference from VB.NET or other .NET languages):

// Define an array of integers
int[] numbers = new int[10] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

var evenNumbers =
 from num in numbers
 where (num % 2) == 0
 select num;

Here the range variable is num, the collection is an array of numbers named numbers, and the
 predicate is (num % 2) == 0. (The remainder after dividing by two is zero; in other words,
the number is even.)

With LINQ, the query isn’t executed immediately. For now, evenNumbers holds the details of the
query, not the actual results. The query will actually run when the results are used as shown in
the following snippet:

// Define an array of integers
int[] numbers = new int[10] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

var evenNumbers =
 from num in numbers
 where (num % 2) == 0
 select num;
// Output the even numbers to the console
// This will actually execute the LINQ operation
foreach(int number in evenNumbers)
{
 Console.WriteLine(number);
}

If you execute this code in the debugger and step through it line by line, you’ll see that the LINQ
operation doesn’t execute until the foreach loop outputs the results.

Using keywords to defi ne the query is a very similar process across all the .NET languages. It has
the advantage of being easy to read, but unfortunately many LINQ operations don’t have keywords
associated with them. That’s why there’s another way of specifying a query: using standard method
syntax. In standard method syntax, the preceding example would now look like this:

// Define an array of integers
int[] numbers = new int[10] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

var evenNumbers = numbers.Where(num => num % 2 == 0);
// Output the even numbers to the console
// This will actually execute the LINQ operation

c12.indd 452c12.indd 452 05/06/12 5:56 PM05/06/12 5:56 PM

What Is LINQ? ❘ 453

foreach(int number in evenNumbers)
{
 Console.WriteLine(number);
}

This time you just use an extension method, Where(), which takes a lambda expression as its
 argument. This lambda expression is equivalent to the predicate used in the fi rst example.

NOTE Because this chapter delves into LINQ only for the purpose of processing

XML, it doesn’t cover the background topics of expression trees, lambdas,

extension methods, and implicitly typed local variables, which are all part of

how LINQ works. If you want to learn more about these topics, go to

http://www.4guysfromrolla.com/articles/021809-1.aspx.

So far you’ve seen how you can query a locally-defi ned array. If this were all you could do with
LINQ, it wouldn’t be worth the trouble. However, LINQ can also deal with queries against data-
base objects using, among other things, either LINQ to SQL or LINQ to Entities. Following is a
sample query that (after you have set up the required database connection) queries for all customers
who live in the USA:

// Get database context by opening the SQL Server mdf file
var northwind = new Northwind(“Northwnd.mdf”);
var customersInUSA = from customer in northwind.Customers
 where customer.Country == “USA”
 select customer;
// Do something with customersInUSA

This book doesn’t cover the intricacies of how the northwind object is created from the database
fi le, but you can see how the actual query has the same format as the one that processed the
integer array.

You’ve seen in this section how LINQ can cope with many different types of collections; strictly
speaking though, LINQ doesn’t work against collections, it operates against the IEnumerable<T>
interface. This interface represents any collection of objects that can be enumerated and contain
objects of type T. Any collection that implements this interface then acquires all the methods, such
as Where(), OrderBy(), and so on, that are defi ned using extension methods (methods that are
added to the class using external assemblies). The reason LINQ to XML works is that the classes it
exposes implement IEnumerable<T>, enabling you to use the same syntax for querying as you use
against other data sources.

This is the beauty of LINQ. It means that when you work with collections you always use a similar
syntax to query them, and this applies to XML as well. At this stage, though, you may be asking
yourself, “Why do I need yet another way of working with XML? I already have a number of other
options.” The following section explains the importance of this new method.

c12.indd 453c12.indd 453 05/06/12 5:56 PM05/06/12 5:56 PM

http://www.4guysfromrolla.com/articles/021809-1.aspx

454 ❘ CHAPTER 12 LINQ TO XML

Why You Need LINQ to XML

LINQ to XML is a useful addition to your XML armory for several reasons, spelled out in the fol-
lowing list:

 ➤ LINQ to XML enables you to use a similar technique to query a wide variety of data
sources.

 ➤ LINQ to XML offers a way to extract data from an XML document that is much easier
than both the DOM and the streaming/event-driven styles of .NET’s XmlReader and SAX
(which were covered in the previous chapter).

LINQ to XML offers a new way of creating XML documents that is easier than using the DOM or
an XmlWriter, including a simple way to deal with namespaces that mimics how they are declared
in XML. It is recommended that if you are developing in .NET and have to extract information
from an XML document, your default choice should be LINQ to XML. You should choose some
other way only if there is a good reason to—for example, the document is too large to load into
memory and needs one of the streaming handlers. These advantages are discussed in greater detail
later in this chapter, but fi rst you need to learn how to use LINQ to XML.

Using LINQ to XML

Now that you know a little about LINQ and why it might be a good choice for reading or creating
XML, this section shows you how LINQ works in practice.

NOTE The examples in this chapter are in both C# and VB.NET. If you want to

run them and don’t have the full version of Visual Studio installed you can down-

load the free edition, Visual Studio Express, at http://www.microsoft.com/

visualstudio/en-us/products/2010-editions/express. You need to sepa-

rately install both the C# and the VB version. These examples were tested

against the 2010 versions but the newer 2011 version should work, although the

user interface may be slightly diff erent. If you do stick with the 2010 version you

will also need to install Service Pack 1, available at: http://www.microsoft

.com/download/en/details.aspx?displaylang=en&id=23691. Refer to the

introduction of this book for more details on installing Visual Studio.

Often, with LINQ to XML tutorials, you’re presented with a sample XML document and shown
how to query it. You’re going to do the opposite here: you’ll see how to create an XML document
using what is known as functional construction. The standard way of creating XML using the
document object model is to create the root element and then append whatever child elements and
attributes are needed. A small sample in C# that creates an XML fi le describing a music collection is
shown here:

c12.indd 454c12.indd 454 05/06/12 5:56 PM05/06/12 5:56 PM

http://www.microsoft.com/visualstudio/en-us/products/2010-editions/express
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/express
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=23691
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=23691

What Is LINQ? ❘ 455

XmlDocument doc = new XmlDocument();
XmlElement root = doc.CreateElement("musicLibrary");
doc.DocumentElement = root;
XmlElement cd = doc.CreateElement("cd");
cd.SetAttribute("id", "1");
XmlElement title = doc.CreateElement("title");
title.InnerText = "Parallel Lines";
cd.AppendChild(title);
XmlElement year = doc.CreateElement("year");
year.InnerText = "2001";
cd.AppendChild(year);
XmlElement artist = doc.CreateElement("artist");
artist.InnerText = "Blondie";
cd.AppendChild(artist);
XmlElement genre = doc.CreateElement("genre");
genre.InnerText = "New Wave";
cd.AppendChild(genre);
doc.DocumentElement.AppendChild(cd);
// Add more <cd> elements

Program.cs in XmlDocumentDemo project

The preceding code adds one <cd> element with its attributes and children to the collection.
By repeating the code, other <cd> elements can be added to form the complete music collection. You
will end up with the fi le shown in Listing 12-1:

LISTING 12-1: MusicLibrary.xml

<musicLibrary>
 <cd id=”1”>
 <title>Parallel Lines</title>
 <year>2001</year>
 <artist>Blondie</artist>
 <genre>New Wave</genre>
 </cd>
 <cd id=”2”>
 <title>Bat Out of Hell</title>
 <year>2001</year>
 <artist>Meatloaf</artist>
 <genre>Rock</genre>
 </cd>
 <cd id=”3”>
 <title>Abbey Road</title>
 <year>1987</year>
 <artist>The Beatles</artist>
 <genre>Rock</genre>
 </cd>
 <cd id=”4”>
 <title>The Dark Side of the Moon</title>
 <year>1994</year>
 <artist>Pink Floyd</artist>
 <genre>Rock</genre>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

continues

c12.indd 455c12.indd 455 05/06/12 5:56 PM05/06/12 5:56 PM

http://Wrox.com
http://Wrox.com

456 ❘ CHAPTER 12 LINQ TO XML

LISTING 12-1 (continued)

 </cd>
 <cd id=”5”>
 <title>Thriller</title>
 <year>2001</year>
 <artist>Michael Jackson</artist>
 <genre>Pop</genre>
 </cd>
</musicLibrary>

Although this code gets the job done, it’s not particularly easy to read and it’s quite long-winded,
having to create, set, and append values for every element. LINQ to XML’s functional approach is
shorter and more legible, as shown here:

XElement musicLibrary =
 new XElement(“musicLibrary”,
 new XElement(“cd”,
 new XAttribute(“id”, 1),
 new XElement(“title”, “Parallel Lines”),
 new XElement(“year”, 2001),
 new XElement(“artist”, “Blondie”),
 new XElement(“genre”, “New Wave”)));

Program.cs in BasicDocumentCreation project

This code uses classes form the System.Linq.Xml namespace. The basic building blocks in this
library are XElement and XAttribute. The fi rst one, XElement, has an overloaded constructor; two
of the most commonly used constructors take the name of the element, or more technically an XName,
followed by its content or an array of content objects. The full defi nitions of these two overloads are:

public XElement(XName name, object content);
public XElement(XName name, params object[] content);

For the XName you can just use a string, which is automatically cast to an XName. The content
is defi ned as an object, so you can either have a simple value such as a string, or include other
XElements and XAttributes. The only thing you have to worry about is making sure your paren-
theses match, and this is fairly easy if you indent the code to follow the actual structure of the XML
you are aiming to create.

You don’t have to create a document from scratch, of course. You can also load it from a fi le, a
URL, an XmlReader, or a string value. To load from a fi le or URL, use the static Load() method:

XElement musicLibrary.Load(@”C:\XML\musicLibrary.xml”) ;

or

XElement musicLibrary.Load(@”http://www.wrox.com/samples/XML/musicLibrary.xml”) ;

If you want to turn a string into an XML document, use the static Parse() method (shown in the
following code snippet), which takes the string to convert to XML as its argument:

Available for
download on
Wrox.com

c12.indd 456c12.indd 456 05/06/12 5:56 PM05/06/12 5:56 PM

http://www.wrox.com/samples/XML/musicLibrary.xml
http://Wrox.com

Creating Documents ❘ 457

XElement musicLibrary = XElement.Parse(
@”<musicLibrary>
 <cd id=”1”>
 <title>Parallel Lines</title>
 <year>2001</year>
 <artist>Blondie</artist>
 <genre>New Wave</genre>
 </cd>
 <!-- more <cd> elements here -->
 </musicLibrary”) ;

The next section takes you a bit further into using LINQ to XML with an introduction to creating
documents using XDocument class.

CREATING DOCUMENTS

So far you’ve seen the XElement and the XAttribute classes. You may be wondering why you
haven’t used an XDocument class; after all, if you create an XML document using the DOM
you need to make heavy use of the DomDocument. This is where LINQ to XML and the DOM differ
most. LINQ to XML does have an XDocument class, but you don’t have to use it; most of the time
you just use the XElement class to load XML or build elements. However, in some instances the
XDocument class is invaluable.

The XDocument class is useful when you need to add some metadata to the XML document—an
XML declaration, for example—or when you want a comment or processing instruction to appear
before the document element. Say you want the standard XML declaration declaring that the
version is 1.0, the encoding is UTF-8, and that the document is standalone. Following is the output
you’re looking for:

<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>

You achieve this by fi rst using the XDocument class at the top level, and then by using the
XDeclaration class, which takes three parameters to represent the version, the encoding, and
the value for the standalone attribute. See the following example:

XDocument musicLibrary =
 new XDocument(
 new XDeclaration(“1.0”, “utf-8”, “yes”),
 new XElement(“musicLibrary”,
 new XElement(“cd”,
 new XAttribute(“id”, 1),
 new XElement(“title”, “Parallel Lines”),
 new XElement(“year”, 2001),
 new XElement(“artist”, “Blondie”),
 new XElement(“genre”, “New Wave”))));

Program.cs in project BasicXDocumentUse

Available for
download on
Wrox.com

c12.indd 457c12.indd 457 05/06/12 5:56 PM05/06/12 5:56 PM

http://Wrox.com

458 ❘ CHAPTER 12 LINQ TO XML

If you want to add a comment, use the XComment class like so:

XDocument musicLibrary =
 new XDocument(
 new XDeclaration(“1.0”, “utf-8”, “yes”),
 new XComment(“This document holds details of my music collection”),
 new XElement(“musicLibrary”,
 new XElement(“cd”,
 new XAttribute(“id”, 1),
 new XElement(“title”, “Parallel Lines”),
 new XElement(“year”, 2001),
 new XElement(“artist”, “Blondie”),
 new XElement(“genre”, “New Wave”))));

This leads to the following document:

<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>
<!-- This document holds details of my music collection -->
<musicLibrary>
 <cd id=”1”>
 <title>Parallel Lines</title>
 <year>2001</year>
 <artist>Blondie</artist>
 <genre>New Wave</genre>
 </cd>
</musicLibrary>

Finally, you can also use the XProcessingInstruction in a similar way. For example, if you want
to associate an XSL transformation with the document you’d use the following code:

XDocument musicLibrary =
 new XDocument(
 new XDeclaration(“1.0”, “utf-8”, “yes”),
 new XProcessingInstruction(“xml-stylesheet”, “href=’music.xslt’”),
 new XComment(“This document holds details of my music collection”),
 new XElement(“musicLibrary”,
 new XElement(“cd”,
 new XAttribute(“id”, 1),
 new XElement(“title”, “Parallel Lines”),
 new XElement(“year”, 2001),
 new XElement(“artist”, “Blondie”),
 new XElement(“genre”, “New Wave”))));

WARNING There is a slight problem with the previous code snippet: the

ToString() method used to display the XML ignores the declaration. To see it

you’ll have to insert a breakpoint and examine the object in the Locals window.

c12.indd 458c12.indd 458 05/06/12 5:56 PM05/06/12 5:56 PM

Creating Documents ❘ 459

This code produces the following result:

<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>
<?xml-stylesheet href=’music.xslt’?>
<!-- This document holds details of my music collection -->
<musicLibrary>
 <cd id=”1”>
 <title>Parallel Lines</title>
 <year>2001</year>
 <artist>Blondie</artist>
 <genre>New Wave</genre>
 </cd>
</musicLibrary>

So far the documents you have created have all been free of namespaces. What happens when
you need to create elements or attributes that belong to a particular namespace? The next section
addresses this situation.

Creating Documents with Namespaces

Creating elements in namespaces is always a little trickier than those without one, whatever pro-
grammatic method you are using. LINQ to XML tries to make it as easy as possible by having a
separate class, XNamespace, that can be used to declare and apply a namespace to an element or
an attribute.

To create a document with a namespace, perform the following steps:

 1. Create a new version of the music library, one where the elements are all under the
namespace http://www.wrox.com/namespaces/apps/musicLibrary.

 2. Make this the default namespace (don’t use a prefi x; all elements in the document will
automatically belong under this namespace). The document you’re aiming to create looks
like this:

<musicLibrary xmlns=”http://www.wrox.com/namespaces/apps/musicLibrary”>
 <cd id=”1”>
 <title>Parallel Lines</title>
 <year>2001</year>
 <artist>Blondie</artist>
 <genre>New Wave</genre>
 </cd>
 < !-- more cd elements -->
</musicLibrary>

 3. To accomplish this, use the XNamespace class to declare and apply the namespace as in the
following snippet:

XNamespace ns = “http://www.wrox.com/namespaces/apps/musicLibrary” ;
XElement musicLibrary =
 new XElement(ns + “musicLibrary”,
 new XElement(ns + “cd”,
 new XAttribute(“id”, 1),

Available for
download on
Wrox.com

c12.indd 459c12.indd 459 05/06/12 5:56 PM05/06/12 5:56 PM

http://www.wrox.com/namespaces/apps/musicLibrary
http://www.wrox.com/namespaces/apps/musicLibrary
http://www.wrox.com/namespaces/apps/musicLibrary
http://Wrox.com

460 ❘ CHAPTER 12 LINQ TO XML

 new XElement(ns + “title”, “Parallel Lines”),
 new XElement(ns + “year”, 2001),
 new XElement(ns + “artist”, “Blondie”),
 new XElement(ns + “genre”, “New Wave”)));

Program.cs in DocumentWithDefaultNamespace project

Notice how the XNamespace class doesn’t use a constructor; you simply set the namespace URI as
a string. When you create elements that belong in a namespace (in this example they all do), you
concatenate the namespace with the actual name. XNamespace’s class overrides the plus (+) operator
so that this action doesn’t merge the two strings, but creates a true namespaced element.

Creating Documents with Prefi xed Namespaces

The code for using a prefi xed namespace is quite similar to the code for a default namespace; the
main difference is that you need to use the XAttribute class to defi ne your namespace URI to
prefi x mapping like so:

 XNamespace ns = “http://www.wrox.com/namespaces/apps/musicLibrary”;
 XElement musicLibrary =
 new XElement(ns + “musicLibrary”,
 new XAttribute(XNamespace.Xmlns + “ns”, ns.NamespaceName),
 new XElement(ns + “cd”,
 new XAttribute(“id”, 1),
 new XElement(ns + “title”, “Parallel Lines”),
 new XElement(ns + “year”, 2001),
 new XElement(ns + “artist”, “Blondie”),
 new XElement(ns + “genre”, “New Wave”)));

The highlighted line uses the XAttribute class and a static member of the XNamespace class, Xmlns,
to create the familiar xmlns:ns=”http://www.wrox.com/namespaces/apps/musicLibrary” code
on the root element. Now that LINQ to XML knows the namespace URI is bound to the prefi x ns,
all the elements in this namespace will automatically be given this prefi x. The subsequent document
looks like this:

<ns:musicLibrary xmlns:ns=”http://www.wrox.com/namespaces/apps/musicLibrary”>
 <ns:cd id=”1”>
 <ns:title>Parallel Lines</ns:title>
 <ns:year>2001</ns:year>
 <ns:artist>Blondie</ns:artist>
 <ns:genre>New Wave</ns:genre>
 </ns:cd>
 <!-- more cd elements -->
</ns:musicLibrary>

So far you’ve seen how to create documents from scratch and how to load them from an existing
source. The next section covers how to extract data from an XML document.

Available for
download on
Wrox.com

c12.indd 460c12.indd 460 05/06/12 5:56 PM05/06/12 5:56 PM

http://www.wrox.com/namespaces/apps/musicLibrary
http://www.wrox.com/namespaces/apps/musicLibrary
http://www.wrox.com/namespaces/apps/musicLibrary
http://Wrox.com

Extracting Data from an XML Document ❘ 461

EXTRACTING DATA FROM AN XML DOCUMENT

This section looks at some common scenarios that involve loading an existing XML fi le and
 retrieving specifi c parts of it. For the following activity, you load MusicLibrary.xml and display a
list of all the CD titles. For this you’ll be making use of the Elements() method.

TRY IT OUT Extracting Data Using the Elements() Method

This Try It Out introduces the Elements() method which is used to retrieve elements and their
 contents. You start by loading an existing fi le and then see how to navigate to the specifi c content
you need, in this case the <title> elements of your CDs.

1. To start, create a new C# Console Application project in Visual Studio and name it
BasicDataExtraction. This step is shown in Figure 12-1:

FIGURE 12-1

2. Next, add the MusicLibrary.xml fi le to the project as an existing item. Do this by right-clicking
the project in the Solution Explorer and choosing Add ➪ Existing Item . . . and browsing to the fi le.
You can fi nd this fi le in the code download for the chapter (the project is also included there if you
just want to test the code).

3. After you add this fi le, right-click it in the Solution Explorer and choose Properties. In the
Properties window, fi nd the Copy to Output Directory setting and change this to Copy if Newer.
This ensures that the fi le ends up in the same directory as the executable, and means you can refer
to it in code by just its name, rather than the full path.

c12.indd 461c12.indd 461 05/06/12 5:56 PM05/06/12 5:56 PM

462 ❘ CHAPTER 12 LINQ TO XML

4. Now open program.cs. Delete all the code that it currently contains, and replace it with the
following:

using System;
using System.Xml.Linq;

namespace BasicDataExtraction
{
 class Program
 {
 static void Main(string[] args)
 {
 XElement musicLibrary = XElement.Load(@”MusicLibrary.xml”);
 ShowTitles(musicLibrary);
 Console.ReadLine();
 }

 static void ShowTitles(XElement musicLibrary)
 {
 foreach (XElement t in musicLibrary.Elements(“cd”).Elements(“title”))
 {
 Console.WriteLine(t.Value);
 }
 }
 }
}

Program.cs in BasicDataExtraction project

5. Save the fi le and press F5 to run the application. You should see a console window pop up, as
shown in Figure 12-2:

Available for
download on
Wrox.com

FIGURE 12-2

c12.indd 462c12.indd 462 05/06/12 5:56 PM05/06/12 5:56 PM

http://Wrox.com

Extracting Data from an XML Document ❘ 463

How It Works

To use LINQ to XML features, you need a reference to the System.Xml.Linq.dll assembly. This
is added automatically to the project when it is created, but you still need to add the second using
statement shown in the following snippet to be able to use the short form of the class names (that is,
XElement instead of System.Xml.Linq.XElement) and, more importantly, to be able to access the
LINQ extension methods:

using System;
using System.Xml.Linq;

The Main() method is the initial entry point for the application. You use the static Load() method of
XElement to load the music library:

 static void Main(string[] args)
 {
 XElement musicLibrary = XElement.Load(@”MusicLibrary.xml”);

After that, the XElement, musicLibrary, is passed to the ShowTitles() method:

 {
 static void Main(string[] args)
 {
 XElement musicLibrary = XElement.Load(@”MusicLibrary.xml”);
 ShowTitles(musicLibrary);

The ShowTitles() method uses the Elements() method twice. This method has two variations, one
with no parameters and the other with the name of an element. If you don’t pass it a parameter, it
returns all the children of the element; if you pass the name of an element, it returns all elements with
that name. In the following code you have specifi ed the children named cd, then used Elements()
again to extract the <title> elements:

 static void ShowTitles(XElement musicLibrary)
 {
 foreach (XElement t in musicLibrary.Elements(“cd”).Elements(“title”))
 {
 Console.WriteLine(t.Value);
 }
 }
 }

Once the <title> elements are found, you loop through all of them using a standard foreach and out-
put the value of each. This equates to the text within the element.

Because there is a Console.ReadLine() call at the end of the Main() method, you’ll need to press a
key, such as the space bar or Enter, to dismiss the console window.

c12.indd 463c12.indd 463 05/06/12 5:56 PM05/06/12 5:56 PM

464 ❘ CHAPTER 12 LINQ TO XML

The Elements() method solely navigates down the child axis. Chapter 7, which covered XPath,
also described the other axes that can be traversed, and many of these have corresponding meth-
ods in LINQ to XML. For example, instead of using the Elements() method, you could use
Descendants(), which retrieves all descendants rather than just the immediate ones. The code
from the previous activity would look like the following if you used Descendants()instead of
Elements():

 static void ShowTitles(XElement musicLibrary)
 {
 foreach (XElement t in musicLibrary.Descendants(“title”))
 {
 Console.WriteLine(t.Value);
 }
 }
 }

It’s preferable from a performance point of view to use the Elements() method rather than
Descendants() if you can, because you typically want to only search specifi cally in the child axis.
Sometimes though, you can make the search more generic by using the Descendants() method,
and for small documents the gains in performance are going to be tiny anyway. Alongside the
Descendants() method you can also fi nd DescendantNodes(). DescendantNodes() differs
from Descendants() in that it fi nds any nodes, comments, processing instructions, and so on,
whereas the Descendant() returns only elements. Note that none of the methods discussed so far
include attributes in the collections they return. If you want to examine these you’ll need either the
Attributes() method to fetch all attributes or the Attribute(attributeName) method, whereby
you can specify the name of the attribute you’re interested in.

A selection of the more commonly used methods is shown in Table 12-1.

NOTE Technically, the two uses of Elements() in the previous activity use

 diff erent methods. The fi rst use involves a built-in method of XElement. The sec-

ond is an extension method on the collection of elements returned. This method

is found in the System.Xml.Linq namespace. This extension method works

because the collection implements IEnumerable<T>, as discussed in the

“What Is LINQ?” section earlier in the chapter.

TABLE 12-1: Common Axis Traversal Methods in LINQ to XML

METHOD NAME DESCRIPTION

Ancestors* Returns all the ancestor elements.

AncestorsAndSelf* Returns all Ancestors but includes the current element.

Attributes* Returns the attributes of the current element.

c12.indd 464c12.indd 464 05/06/12 5:56 PM05/06/12 5:56 PM

Extracting Data from an XML Document ❘ 465

The methods that include Before or After are used when you need to get elements based on their
document order. For example, suppose you have a reference to the <cd> element that has an id
of 3 and you want to display the titles of all the <cd> elements before that in document order.
The following code retrieves the third <cd> element to do just that:

 static void ShowTitlesBefore(XElement musicLibrary)
 {
 XElement cd3 = (from cd in musicLibrary.Elements(“cd”)
 where cd.Attribute(“id”).Value == “3”
 select cd).FirstOrDefault();
 // code continued
 }

This example uses the built-in LINQ keywords rather than the functional style. First, you select all
the <cd> elements, then you test the id attribute to see if it equals 3.

Once you have a reference to the <cd> element you want, use the ElementsBeforeSelf()
method to retrieve the preceding <cd> elements and their <title> elements as shown in the
following snippet:

 static void ShowTitlesBefore(XElement musicLibrary)
 {
 XElement cd3 = (from cd in musicLibrary.Elements(“cd”)
 where cd.Attribute(“id”).Value == “3”

Available for
download on
Wrox.com

METHOD NAME DESCRIPTION

Descendants* Returns elements that are descendants of the current element.

DescendantsAndSelf* Returns all Descendants but includes the current element.

DescendantNodes* Returns all Descendants but includes other node types such as

 comments (but not attributes).

Elements* Returns child elements of the current element.

ElementsAfterSelf* Returns a collection of sibling elements that come after this element

in document order.

ElementsBeforeSelf* Returns a collection of sibling elements that come before this element

in document order.

Nodes Returns any child nodes of this element.

NodesAfterSelf Returns any sibling nodes that come after this element in document order.

NodesBeforeSelf Returns any sibling nodes that come before this element in document order.

* Those marked with an asterisk can also take a parameter specifying a name. Only nodes that match the
name will be included in the return value.

c12.indd 465c12.indd 465 05/06/12 5:56 PM05/06/12 5:56 PM

http://Wrox.com

466 ❘ CHAPTER 12 LINQ TO XML

 select cd).FirstOrDefault();
 foreach (XElement t in cd3.ElementsBeforeSelf(“cd”).Elements(“title”))
 {
 Console.WriteLine(t.Value);
 }
 }

Program.cs in BasicDataExtraction project

You then loop through the collection and display the Value of each <title> as before. The code
displays the titles for the <cd> element that have an id of 1 and 2.

The next example uses the functional style to show all the titles after the third <cd>. It also uses
ElementsAfterSelf() to fi nd the siblings after the third CD in the document:

static void ShowTitlesAfter(XElement musicLibrary)
{
 XElement cd3 = musicLibrary.Elements(“cd”)
 .Where(cd => cd.Attribute(“id”).Value == “3”)
 .FirstOrDefault();
 foreach (XElement t in cd3.ElementsAfterSelf(“cd”).Elements(“title”))
 {
 Console.WriteLine(t.Value);
 }
 }

Program.cs in BasicDataExtraction project

Selecting elements based on an attribute can be a bit mundane, but there are more advanced features
of LINQ, especially as they apply to XML. One of these features is grouping. A common require-
ment when processing any data is to group items based on a specifi c property. For example, you
might want to group your CDs based on their genre. You can use the standard LINQ operators to
accomplish this task, which can be broken down into two parts. First, you group the <cd> elements
based on the <genre> element as shown in the following code:

static void GroupOnGenre(XElement musicLibrary)
{
 var groupQuery = from cd in musicLibrary.Elements(“cd”)
 group cd by cd.Element(“genre”).Value into genreGroup
 orderby genreGroup.Key
 select new
 {
 Genre = genreGroup.Key,
 Titles = from title in genreGroup.Elements(“title”)
 select title.Value
 };
 // code continues
}

c12.indd 466c12.indd 466 05/06/12 5:56 PM05/06/12 5:56 PM

Extracting Data from an XML Document ❘ 467

Here you select the <cd> elements as before, but add a group operator that uses the <genre>
element’s Value as the property to group on. The results are held in genreGroup. They are
then ordered using the built-in Key property of any grouping variable created using LINQ;
in this case the Key holds the genre value. Using genreGroup you create an anonymous type that
has two members. The fi rst, Genre, is fi lled using the same Key property that was used for sorting.
The second member, Titles, uses a second LINQ query to extract all the <title> elements.

The second part of the function is used to output the results as shown in the following code
snippet:

static void GroupOnGenre(XElement musicLibrary)
{
 var groupQuery = from cd in musicLibrary.Elements(“cd”)
 group cd by cd.Element(“genre”).Value into genreGroup
 orderby genreGroup.Key
 select new
 {
 Genre = genreGroup.Key,
 Titles = from title in genreGroup.Elements(“title”)
 select title.Value
 };
 foreach (var entry in groupQuery)
 {
 Console.WriteLine(«Genre: {0}», entry.Genre);
 Console.WriteLine(«----------------»);
 foreach (var title in entry.Titles)
 {
 Console.WriteLine(«\t{0}», title);
 }
 Console.WriteLine();
 }
}

Program.cs in BasicDataExtraction project

The outer-level foreach loops through all items in the groupQuery, which contains a collection of
your anonymous types. The code then outputs the Genre property and uses a second foreach to
loop through the Titles collection to show each Title in the group.

If you add the ShowTitlesBefore(), ShowTitlesAfter() and GroupOnGenre() methods to the
original Program.cs fi le, underneath the ShowTitles() method and press F5 to run the code, you
will see the results shown in Figure 12-3.

Available for
download on
Wrox.com

c12.indd 467c12.indd 467 05/06/12 5:56 PM05/06/12 5:56 PM

http://Wrox.com

468 ❘ CHAPTER 12 LINQ TO XML

You have seen how to extract nodes and their values from a document. The next feature of LINQ to
XML to investigate is how to modify an XML document.

MODIFYING DOCUMENTS

LINQ to XML has a plethora of methods that enable you to modify an existing XML document.
This means that you can add new nodes, delete existing ones, and update values such as attributes
and text content.

Adding Content to a Document

One of the most common operations is to add a new node. You can try this by adding a new <cd>
element to your music library. To do so, perform the following steps:

 1. First, use the following code to create a reusable method that returns a new <cd> XElement
once it has passed the relevant values such as id, title, and year:

static XElement CreateCDElement(string id,
 string title,
 int year,
 string artist,
 string genre)
{
 return new XElement(“cd”,
 new XAttribute(“id”, id),
 new XElement(“title”, title),
 new XElement(“year”, year),
 new XElement(“artist”, artist),
 new XElement(“genre”, genre));

This method just mimics the code you saw earlier that had the values hard-coded.

Available for
download on
Wrox.com

FIGURE 12-3

c12.indd 468c12.indd 468 05/06/12 5:56 PM05/06/12 5:56 PM

http://Wrox.com

Modifying Documents ❘ 469

 2. Next use the XElement’s Add() method to append the new element to the existing <cd>
 elements like so:

static void AddNewCD(XElement musicLibrary)
{
 XElement cd = CreateCDElement(“6”, “Back in Black”, 2003, “AC/DC”, “Rock”);
 musicLibrary.Add(cd);
}

Program.cs in ModifyingDocuments project

The result of this code is to make the example music fi le now look like the following:

<musicLibrary>
 <cd id=”1”>
 <title>Parallel Lines</title>
 <year>2001</year>
 <artist>Blondie</artist>
 <genre>New Wave</genre>
 </cd>
 <!-- cd elements 2, 3 and 4 -->
 <cd id=”5”>
 <title>Thriller</title>
 <year>2001</year>
 <artist>Michael Jackson</artist>
 <genre>Pop</genre>
 </cd>
 <cd id=”6”>
 <title>Back in Black</title>
 <year>2003</year>
 <artist>AC/DC</artist>
 <genre>Rock</genre>
 </cd>
</musicLibrary>

The Add() method is quite fl exible. As well as specifying the node you want to add (as was done in
the previous code example), you can also pass in a functionally constructed tree. You might want to
do this if you are adding different elements and don’t want to bother constructing a function that
creates each one. The following code produces the same result as before, but doesn’t use the helper
function CreateNewCD():

static void AddNewCDDirectly(XElement musicLibrary)
{
 musicLibrary.Add(
 new XElement(“cd”,
 new XAttribute(“id”, 6),
 new XElement(“title”, “Back in Black”),
 new XElement(“year”, 2003),
 new XElement(“artist”, “AC/DC”),
 new XElement(“genre”, “Rock”)));
}

c12.indd 469c12.indd 469 05/06/12 5:56 PM05/06/12 5:56 PM

470 ❘ CHAPTER 12 LINQ TO XML

When you add an XElement to a document there is a lot going on behind the scenes. An XElement
has a Parent property. When you fi rst create the XElement, this property is set to null. When you
use the Add() method, the Parent is set to the node that the Add() method was called from. So in
all the previous examples the Parent property is set to the <musicLibrary> element.

Removing Content from a Document

Now that you’ve seen how to add content, try the opposite: removing content. The easiest way to
accomplish this is to navigate to the node you want to delete and call its Remove() method. See the
following example:

static void RemoveCD(XElement musicLibrary)
{
 XElement cd = (from entry in musicLibrary.Elements(“cd”)
 where entry.Attribute(“id”).Value == “6”
 select entry).FirstOrDefault();
 if (null != cd)
 {
 cd.Remove();
 }
}

This code fi rst targets the <cd> that has an id of 6, which is the <cd> you just added with the
AddNewCD() method. The code then calls the Remove() method, which leaves you with just fi ve
<cd> elements in your library.

The Remove() method also works on sets of elements. The following snippet removes all of the <cd>
elements from the document:

musicLibrary.Elements(“cd”).Remove();

Updating and Replacing Existing Content in a Document

The last technique is how to update an existing document. Two operations need to be carried out on
a regular basis: one is updating data within the document (either the value of an attribute or the text
content of an element); and the second is replacing an entire element or tree of elements.

You have quite a few ways to update the text content of an element. One way is to use the
ReplaceNodes() method, which replaces the nodes of the XElement it is called from. Suppose you
want to update the <year> element of the Abbey Road CD, which has an id of 3. The following
code fi nds this element and changes the year to 1986:

static void UpdateYearWithReplaceNodes(XElement musicLibrary)
{
 XElement cd = (from entry in musicLibrary.Elements(“cd”)
 where entry.Attribute(“id”).Value == “3”
 select entry).FirstOrDefault();
 cd.Element(“year”).ReplaceNodes(“1986”);
}

ReplaceNodes() also works with trees of nodes and just simple text content.

c12.indd 470c12.indd 470 05/06/12 5:56 PM05/06/12 5:56 PM

Modifying Documents ❘ 471

A second way to update the text is to use the SetElementValue() method like so:

static void UpdateYearWithSetElementValue(XElement musicLibrary)
{
 XElement cd = (from entry in musicLibrary.Elements(“cd”)
 where entry.Attribute(“id”).Value == “3”
 select entry).FirstOrDefault();
 cd.SetElementValue(“year”, “1987”);
}

Again, you single out the target element using a standard LINQ query and then use
SetElementValue() on the parent of the element you want to change. This method also has other
uses. You can remove an element completely by setting the second argument to null. You can also
create new elements. If the <year> element hadn’t existed already for the <cd> you chose, it would
have been created automatically by the code.

There is a similar technique to update, create, or remove an attribute’s value name:
SetAttributeValue(). If you want to update the id of the Abbey Road <cd> element, the
following code will accomplish that:

static void UpdateAttributeValue(XElement musicLibrary)
{
 XElement cd = (from entry in musicLibrary.Elements(“cd”)
 where entry.Attribute(“id”).Value == “3”
 select entry).FirstOrDefault();
 cd.SetAttributeValue(“id”, “7”);
}

The last method to look at is ReplaceContent(). This replaces the currently chosen node with the
specifi ed XML. For example, if you want to replace the fi rst <cd> in the collection with a different
one altogether, you’d use ReplaceContent() as follows:

static void ReplaceCD(XElement musicLibrary)
{
 XElement cd = (from entry in musicLibrary.Elements(“cd”)
 where entry.Attribute(“id”).Value == “1”
 select entry).FirstOrDefault();

 cd.ReplaceWith(new XElement(“cd”,
 new XAttribute(“id”, 1),
 new XElement(“title”, “Back in Black”),
 new XElement(“year”, 2003),
 new XElement(“artist”, “AC/DC”),
 new XElement(“genre”, “Rock”)));
}

This targets the fi rst <cd> element, then calls ReplaceContent() and passes in a new tree.

In Chapter 8 you saw how you can use XSLT to change the format of an XML document. The out-
put of a transformation might be a differently formatted XML or a text document.

c12.indd 471c12.indd 471 05/06/12 5:56 PM05/06/12 5:56 PM

472 ❘ CHAPTER 12 LINQ TO XML

TRANSFORMING DOCUMENTS

Using a combination of the techniques you’ve seen so far, it’s possible to transform an XML docu-
ment to a different format using LINQ to XML. In general, it’s not as powerful as using XSLT, but
has the advantage of being simpler for a lot of transformations and precludes the need to learn a
completely different programming paradigm.

The following Try It Out takes you through the steps of transforming your current music library to
a different format.

TRY IT OUT Transformations Using LINQ to XML

Currently musicLibrary.xml is element-centric, meaning, other than the id attribute on the <cd>
element, the data is in the form of elements. This Try It Out shows you how to use LINQ to XML to
turn the fi le into an attribute-centric one whereby each of the <cd> elements will look like this:

<newMusicLibrary>
 <cd id=”1” year=”2001” artist=”Blondie” genre=”New Wave”>Parallel Lines</cd>
 <!-- nore cd elements -->
</newMusicLibrary>

Basically, all the properties of the <cd> element, except the title, are now defi ned by attributes. The title
itself is just text content.

1. The fi rst step is to create a new console application in Visual Studio as you did earlier. Name the
project TransformingXml.

2. Once this project has been created, add the current musicLibrary.xml as before, and again fi nd
the Copy to Output Directory setting and change this to Copy if Newer.

3. Open program.cs from the Solution Explorer and replace the current using statements with the
following three:

using System;
using System.Linq;
using System.Xml.Linq;

These steps are all you need to make sure you can use both the standard LINQ keywords and the
classes from LINQ to XML, such as XElement.

4. Next, replace the Main() method with the one shown here:

 static void Main(string[] args)
 {
 XElement musicLibrary = XElement.Load(@”MusicLibrary.xml”);
 XElement newMusicLibrary = TransformToAttributes(musicLibrary);
 Console.WriteLine(newMusicLibrary);
 newMusicLibrary.Save(@”newMusicLibrary.xml”);
 Console.ReadLine();
 }

c12.indd 472c12.indd 472 05/06/12 5:56 PM05/06/12 5:56 PM

Transforming Documents ❘ 473

This code loads the music library XML and passes it to the TransformToAttributes() method.
This method returns a new XElement containing the new format that was desired. The new XML
will be written to the console and also saved to a new fi le named newMusicLibrary.xml when
the code is run.

The method that does all the actual work is as follows:

 static XElement TransformToAttributes(XElement musicLibrary)
 {
 XElement newMusicLibrary =
 new XElement(“newMusicLibrary”,
 from cd in musicLibrary.Elements(“cd”)
 select new XElement(“cd”,
 new XAttribute(“id”, cd.Attribute(“id”).Value),
 new XAttribute(“year”, cd.Element(“year”).Value),
 new XAttribute(“artist”, cd.Element(“artist”).Value),
 new XAttribute(“genre”, cd.Element(“genre”).Value),
 cd.Element(“title”).Value));
 return newMusicLibrary;
 }

5. You can now run the project by pressing F5. The console window should show the new style XML
and, if you look in the bin\debug folder underneath where program.cs is held, you should fi nd a
fi le named newMusicLibrary.xml, which is in the new format.

How It Works

TransformToAttributes() works by initially creating an XElement. The content of the new element is
created by fi rst fi nding all the current <cd> elements like so:

 from cd in musicLibrary.Elements(“cd”)

It then selects each one and forms a new style <cd> element that uses the values from the old
element—its id attribute and elements—to create a set of attributes and some plain text content like so:

 select new XElement(“cd”,
 new XAttribute(“id”, cd.Attribute(“id”).Value),
 new XAttribute(“year”, cd.Element(“year”).Value),
 new XAttribute(“artist”, cd.Element(“artist”).Value),
 new XAttribute(“genre”, cd.Element(“genre”).Value),
 cd.Element(“title”).Value));

The new XElement is then returned to the calling function where the content is both displayed and
saved to a fi le named newMusicLibrary.xml.

The full project, TransformingXml, is available in the code download for this chapter.

One of the downsides of transforming documents using LINQ to XML is that, although it is good
for changes similar to the example of modifying the music library, where the new document follows a
similar ordering to the original, it can’t cope so well where a lot of re-ordering is needed or where the
output is not an XML format. For those sorts of problems you are probably better off using XSLT.

c12.indd 473c12.indd 473 05/06/12 5:56 PM05/06/12 5:56 PM

474 ❘ CHAPTER 12 LINQ TO XML

The fi nal section of this chapter deals with two XML features that are particular to VB.NET: XML
Literals and Axis Properties syntax.

USING VB.NET XML FEATURES

VB.NET has two features that are not supported so far in either C# or any other .NET language.
These are XML Literals and Axis Properties. XML Literals includes new ways of creating XML
documents and easier ways of managing namespaces. Axis Properties mean you can navigate
through a document and retrieve elements, attributes, and their values with a succinct syntax.

Using VB.NET XML Literals

It is often the case that you need to build a new XML document based on an existing template
rather than create the whole thing from scratch. In the past you had two choices: embed the tem-
plate as a string of XML, either in the code itself or within a resource fi le; or load it as a fi le.
Neither of these two solutions is entirely satisfactory. The string representation can be tricky to
handle—often there are problems with quote marks and there is no checking of the XML for well-
formedness. Loading from a fi le means that there is an extra item, the fi le itself, to include in any
installation package, and the application needs to be able to read from the relevant area of
the disk.

Luckily, VB.NET has a third alternative: XML Literals, which enable you to embed XML directly
into your code. XML Literals also facilitate including namespace declarations, should you need
them, and putting placeholders within the XML that can be fi lled in later by code.

Start with a simple example. The music library you’ve seen so far could be declared as follows:

Dim musicLibrary As XElement =
<musicLibrary>
 <cd id=”1”>
 <title>Parallel Lines</title>
 <year>2001</year>
 <artist>Blondie</artist>
 <genre>New Wave</genre>
 </cd>
 <cd id=”2”>
 <title>Bat Out of Hell</title>
 <year>2001</year>
 <artist>Meatloaf</artist>
 <genre>Rock</genre>
 </cd>
 <cd id=”3”>
 <title>Abbey Road</title>
 <year>1987</year>
 <artist>The Beatles</artist>
 <genre>Rock</genre>
 </cd>
 <cd id=”4”>
 <title>The Dark Side of the Moon</title>

c12.indd 474c12.indd 474 05/06/12 5:56 PM05/06/12 5:56 PM

Using VB.NET XML Features ❘ 475

 <year>1994</year>
 <artist>Pink Floyd</artist>
 <genre>Rock</genre>
 </cd>
 <cd id=”5”>
 <title>Thriller</title>
 <year>2001</year>
 <artist>Michael Jackson</artist>
 <genre>Pop</genre>
 </cd>
</musicLibrary>

In the previous code the variable musicLibrary is exactly the same as if musicLibrary.xml had
been loaded using the Load() method shown earlier. In the preceding sections, the variable was
specifi cally typed as System.Xml.Linq.XElement, but you could have used an implicit declaration
instead, like so:

Dim musicLibrary =
<musicLibrary>
 <cd id=”1”>
 <title>Parallel Lines</title>
 <year>2001</year>
 <artist>Blondie</artist>
 <genre>New Wave</genre>
 </cd>
 <!-- rest of cd elements -->
</musicLibrary

If you try this code and then hover over the musicLibrary variable, you’ll see that it is still an
XElement. If you had included an XML declaration, or any form of prolog, such as in the following
code, musicLibrary would have been typed as System.Xml.Linq.XDocument:

Dim musicLibrary =
<?xml version=”1.0” encoding=”utf-8”?>
<musicLibrary>
 <cd id=”1”>
 <title>Parallel Lines</title>
 <year>2001</year>
 <artist>Blondie</artist>
 <genre>New Wave</genre>
 </cd>
 <!-- rest of cd elements -->
</musicLibrary

However, embedding a complete fi le like this is unusual. It’s more likely that you will have a basic
structure that needs to be populated with data from an external source. XML Literals gives you an
easy way to do this that is reminiscent of how classic ASP pages were coded. The following activity
walks you through using XML Literals combined with placeholders to demonstrate the ease with
which VB.NET allows you to defi ne XML documents.

c12.indd 475c12.indd 475 05/06/12 5:56 PM05/06/12 5:56 PM

476 ❘ CHAPTER 12 LINQ TO XML

TRY IT OUT XML Literals with Placeholders

In this Try It Out you create the music library using an external data source and combine it with an
XML Literal. This scenario would typically be seen when you need to present data residing in a rela-
tional database in an XML format and the database’s native XML features were unsuitable.

1. If you are using the full version of Visual Studio then create a new project using the Visual Basic
section. Otherwise create a new project using Visual Basic Express. The project will be a console
application which you should name VbXmlFeatures.

2. You need a class to represent your CD data, so open Module1.vb and add the following code
within the Module Module1/End Module keywords:

 Private Class CD
 Public Property ID As String
 Public Property Title As String
 Public Property Year As Integer
 Public Property Artist As String
 Public Property Genre As String
 End Class

The CD class, which is marked private because it’s used only within the module, simply defi nes the
fi ve properties needed for the XML of each <cd> element.

3. You now need a function that simulates retrieving the data from an external source such as a
database. For this example, you’ll simply hard-code the data as shown here:

 Private Function GetCDs() As List(Of CD)
 Dim cdList As New List(Of CD) From
 {
 New CD() With {.ID = “1”, .Title = “Parallel Lines”,
 .Year = 2001, .Artist = “Blondie”, .Genre = “New Wave”},
 New CD() With {.ID = “2”, .Title = “Bat Out of Hell”,
 .Year = 2001, .Artist = “Meatloaf”, .Genre = “Rock”},
 New CD() With {.ID = “3”, .Title = “Abbey Road”,
 .Year = 1987, .Artist = “The Beatles”, .Genre = “Rock”},
 New CD() With {.ID = “4”, .Title = “The Dark Side of the Moon”,
 .Year = 1994, .Artist = “Pink Floyd”, .Genre = “Rock”},
 New CD() With {.ID = “5”, .Title = “Thriller”,
 .Year = 2001, .Artist = “Michael Jackson”, .Genre = “Pop”}
 }
 Return cdList
 End Function

Module1.vb

4. Now for the principal function that combines the data with an XML Literal add the following
code to Module1:

 Private Function CreateMusicLibrary() As XElement
 Dim cdData = GetCDs()
 Dim musicLibrary =

Available for
download on
Wrox.com

c12.indd 476c12.indd 476 05/06/12 5:56 PM05/06/12 5:56 PM

http://Wrox.com

Using VB.NET XML Features ❘ 477

 <musicLibrary>
 <%= From item In cdData
 Select <cd id=<%= item.ID %>>
 <title><%= item.Title %></title>
 <year><%= item.Year %></year>
 <artist><%= item.Artist %></artist>
 <genre><%= item.Genre %></genre>
 </cd> %>
 </musicLibrary>
 Return musicLibrary
 End Function

5. Finally the code is initiated from the entry point to the module, Sub Main():

 Sub Main()
 Dim musicLibrary As XElement = CreateMusicLibrary()
 Console.WriteLine(musicLibrary)
 Console.ReadLine()
 End Sub

6. To run the code press F5 and see the results in the console window that appears.

How It Works

The CD class is standard; it uses the newer automatic property syntax introduced in VB.NET 10 to
defi ne the fi ve properties of a CD, ID, Title, Year, Artist and Genre. The backing variable that was
previously needed to hold each of these values is now automatically taken care of rather than having to
be defi ned explicitly.

The code that returns the CD data is also fairly straightforward. It uses VB.NET’s syntax of object and
collection initializers to create fi ve CD objects within a generic list.

The salient code is in the CreateMusicLibrary() function. This combines the technique of using an
XML Literal with using dynamic code, enclosed between the <%= %> brackets, to produce a complete
document.

You should notice two things about using these brackets. First, they can be nested. There is one pair
that begins the internal LINQ query that starts with From item In cdData, and then others pair
around each use of item. Second, you need to avoid adding quotes around attribute values (in this
example, when fi lling in the ID attribute—something I always forget) because these are appended auto-
matically when the code is executed.

Although here you have used a LINQ query within the XML Literal, you’re not limited to that tech-
nique. A traditional For Each loop or virtually any other code is allowable within the <%= %> brackets.

The result of running this code will be the familiar music library showing the fi ve <cd> elements and
their content.

The complete project, VbXmlFeatures, is available in the code download.

c12.indd 477c12.indd 477 05/06/12 5:56 PM05/06/12 5:56 PM

478 ❘ CHAPTER 12 LINQ TO XML

At the moment these literals are available only in VB.NET, but there’s nothing stopping you from
having a VB.NET project in an otherwise C# solution. You can also include both C# and VB.NET
code fi les in the same web project if you put them in different folders and make a small change to
your confi g fi le as described here: http://msdn.microsoft.com/en-us/library/t990ks23.aspx.

Next take a look at the second unique feature in VB.NET, Axis Properties.

Understanding Axis Properties in VB.NET

Axis Properties are another XML feature that are only found in VB.NET. They are intended to
make navigation through an XML document easier as well as to facilitate the retrieval of values
from the XML.

Four Axis properties in VB.NET’s XML features considerably simplify the code needed when
extracting data from an XML source. Three of these take the form of shortcuts that can be used in
place of the various Elements(), Attributes(), and Descendants() methods and the fourth is a
convenient way to retrieve an element or attribute’s value. The four properties are known as:

 ➤ The Child Axis Shortcut

 ➤ The Attribute Axis Shortcut

 ➤ The Descendants Axis Shortcut

 ➤ The Value Property Shortcut

The following sections will explain each shortcut in more detail and provide an example of how to
use each one.

Using the Child Axis Shortcut

The fi rst Axis Property shortcut is used when you want to access elements that lie on the child axis.

If you have loaded your music library into memory and want to access all the <cd> elements, you
have so far used the following code:

musicLibrary.Elements(“cd”)

Using the child axis shortcut however, you can write:

musicLibrary.<cd>

This is shorter and easier to read, but performs the same function.

WARNING One caveat is that using XML Literals is not allowed within an

ASP.NET page; the parser just isn’t able to cope with distinguishing the literal

brackets from the standard ASP.NET ones. This applies only to the actual .aspx

fi le, though; if your page has a code-behind fi le, you can use XML Literals there.

c12.indd 478c12.indd 478 05/06/12 5:56 PM05/06/12 5:56 PM

http://msdn.microsoft.com/en-us/library/t990ks23.aspx

Using VB.NET XML Features ❘ 479

Using the Attribute Axis Shortcut

The next shortcut is used to retrieve attributes. Previously, to fi nd attributes you used the
Attributes() or Attribute() methods. To show the id attribute of a <cd> element, you used the
following :

cd3.Attribute(“id”)

Using the attribute axis shortcut you can write the following instead of the preceding:

cd3.@id

This uses the familiar @ symbol used in XPath to signify you are searching the attributes collection.

Using the Descendants Axis Shortcut

Not surprisingly, Descendants Axis Shortcut is used to fi nd descendants.

Although children are limited to the level just below an element, descendants can be anywhere
underneath. In earlier code you had to write the following to fi nd all the <title> elements any-
where beneath <musicLibrary>:

musicLibrary.Descendants(“title”)

Now with the descendants axis shortcut, you can use three dots (...) as a shortcut:

musicLibrary...<title>

Using the Value Property Shortcut

The fi nal shortcut, called an Axes Shortcut by Microsoft but really just operating on values, enables
a quicker way to fi nd an item’s value.

If you retrieve a collection of elements, you normally need to either use FirstOrDefault() or an
indexer to fi nd the fi rst item and then use the Value property to get its content. For example, to get
the fi rst <title> element’s value you use:

musicLibrary...<title>(0).Value

The Value shortcut removes the need for the indexer and retrieves the value of the fi rst element or
attribute in the collection. The following code gives the same result as the preceding snippet:

musicLibrary...<title>.Value

The subroutine ShortcutsDemo() in the VbXmlFeatures project shows all these features in action.

The fi nal VB.NET XML feature discussed in this chapter is how to manage namespaces.

c12.indd 479c12.indd 479 05/06/12 5:56 PM05/06/12 5:56 PM

480 ❘ CHAPTER 12 LINQ TO XML

Managing Namespaces in VB.NET

Assigning prefi xes to namespace URIs is always a bit haphazard, and every XML technology seems
to handle it differently. VB.NET has decided to use the same strategy as XML itself, which uses the
following form:

<ns:musicLibrary xmlns:ns=”http://www.wrox.com/namespaces/apps/musicLibrary”>
 <!-- rest of document -->
</ns:musicLibrary>

The code in VB.NET to declare this namespace would be as follows:

Imports <xmlns:ns=”http://www.wrox.com/namespaces/apps/musicLibrary”>

This line needs to be at the top of the code fi le, outside the module declaration. The prefi x ns can
now be used to represent the namespace URI when searching. The following code shows how to
load a namespaced version of the music library and fi nd the second <title> element’s value:

‘At the top of the module
Imports <xmlns:ns=”http://www.wrox.com/namespaces/apps/musicLibrary”>

‘Within the module
 Private Sub NamespaceDemo()
 Dim musicLibrary = XElement.Load(«musicLibraryWithNamespaces.xml»)
 Dim secondTitle = musicLibrary...<ns:title>(1).Value
 Console.WriteLine(«Second Title: {0}», secondTitle)
 End Sub

The working code is contained in the VB.NET project for this chapter.

SUMMARY

In this chapter you learned:

 ➤ LINQ is intended to unify access and manipulation of data collections from different
sources.

 ➤ LINQ to XML is needed to make creation of XML documents simpler and to make
 navigation and data retrieval from XML a similar process to any fetching data from any
other collection.

 ➤ Functional creation of XML documents means that the XElement class can take
another XElement as part of its constructor, leading to a simpler way of defi ning an
XML document.

 ➤ Using LINQ to XML to extract data is accomplished mainly through the Elements()
and Attributes() methods.

 ➤ Using LINQ to XML to modify data is accomplished using methods such as
ReplaceNodes() and SetElementValue().

c12.indd 480c12.indd 480 05/06/12 5:56 PM05/06/12 5:56 PM

http://www.wrox.com/namespaces/apps/musicLibrary
http://www.wrox.com/namespaces/apps/musicLibrary
http://www.wrox.com/namespaces/apps/musicLibrary

Summary ❘ 481

 ➤ Transforming documents with LINQ to XML is possible but it doesn’t quite have the power
of XSLT. It is a good choice if the basic ordering of the source and target XML are similar.

 ➤ VB.NET’s extra XML features are XML literals, to declaratively defi ne XML documents
and Axis properties to simplify navigation to a target item and retrieve its value.

EXERCISES

 1. You can fi nd suggested answers to these questions in Appendix A. Use XML Literals and place-

holders to create an attribute-centric version of the music library, as shown in the section on

transformations.

c12.indd 481c12.indd 481 05/06/12 5:56 PM05/06/12 5:56 PM

482 ❘ CHAPTER 12 LINQ TO XML

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

The Purpose of LINQ To provide a consistent way to treat any collection, whether it be

objects, relational data, or arrays.

Why LINQ to XML To make manipulating XML similar to handling any other data.

The Main Classes XElement, representing an XML element and XAttribute

representing an XML attribute.

Other Classes XName to represent an item’s name and XNamespace to represent an

XML namespace.

Main Methods Elements(), to retrieve specifi ed elements and Attributes() to

retrieve attributes.

XML Literals Available only in VB.NET and enable you to specify XML documents in

declarative syntax with optional place holders for data that changes.

Axis Properties Available only in VB.Net and enable shortcuts to be used to navigate

to targeted content.

c12.indd 482c12.indd 482 05/06/12 5:56 PM05/06/12 5:56 PM

PART VI
Communication

 � CHAPTER 13: RSS, Atom, and Content Syndication

 � CHAPTER 14: Web Services

 � CHAPTER 15: SOAP and WSDL

 � CHAPTER 16: AJAX

c13.indd 483c13.indd 483 05/06/12 5:58 PM05/06/12 5:58 PM

c13.indd 484c13.indd 484 05/06/12 5:58 PM05/06/12 5:58 PM

#
RSS, Atom, and Content
Syndication

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Concepts and technologies of content syndication and meta data

 ➤ A brief look at the history of RSS, Atom, and related languages

 ➤ What the feed languages have in common and how they diff er

 ➤ How to implement a simple newsreader/aggregator using Python

 ➤ Examples of XSLT used to generate and display news feeds

One of the interesting characteristics of the web is the way that certain ideas seem to arise
spontaneously, without any centralized direction. Content syndication technologies defi nitely
fall into this category, and they have emerged as a direct consequence of the linked structure
of the web and general standardization regarding the use of XML.

This chapter focuses on a number of aspects of content syndication, including the RSS and
Atom formats and their role in such areas as blogs, news services, and the like. It’s useful to
understand them not just from an XML-format standpoint, but also in terms of how they are
helping to shape the evolving Internet.

There is a lot more to RSS, Atom, and content syndication than can be covered in a single
chapter, so the aim here is to give you a good grounding in the basic ideas, and then provide a
taste of how XML tools such as SAX and XSLT can be used in this fi eld.

SYNDICATION

Over the course of the twentieth century, newspapers evolved into different kinds of news
organizations with the advent of each new medium. Initially, most newspapers operated
independently, and coverage of anything beyond local information was usually handled by

13

c13.indd 485c13.indd 485 05/06/12 5:58 PM05/06/12 5:58 PM

486 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

dedicated reporters in major cities. However, for most newspapers, such reporters are typically very
costly to maintain. Consequently, these news organizations pool their resources together to create
syndicates, feeding certain articles (and columns) to the syndicates, who would then license them
out to other publishers. These news syndicates, or services, specialize in certain areas. Associated
Press (AP) and United Press International (UPI) handle syndication within the United States, while
Reuters evolved as a source for European news. Similarly, comic strips are usually handled by
 separate syndicates (such as King Features Syndicate).

The news services aggregate news from a wide variety of different sources and, hopefully along-
side original material, publish the result as a unifi ed whole, the newspaper. One advantage of this
approach is that it is possible to bundle related content together, regardless of the initial source.
For instance, a sports-dedicated publication may pull together all articles on baseball, football, and
 basketball, but the feed wouldn’t include fi nance articles unless they were sports-related.

A syndication feed is an online parallel to the syndicated publication of a cartoon strip or sports paper.
If a website (or any other source) has information that appears in little, topically-categorized chunks
over time, it’s probably a good idea to create a syndication feed for it. For the web publisher it offers
another kind of exposure, and for the web consumer it offers alternative ways of getting up-to-date
information. For the developer, it’s an established platform
on which useful and interesting tools can be built.

In practice, syndication feeds are published as single XML
fi les comprised of meta data elements and, in most cases,
content as well. Several distinct standard formats exist.
Each format shares a common basic model of a syndication
feed. There is the feed itself, which has characteristics such
as a title and publication date. The overall structure of a
feed can be seen in Figure 13-1. The feed carries a series
of discrete blocks of data, known as items or entries,
each of which also has a set of individual characteristics,
again such as title and date. These items are little chunks of
information, which either describe a resource on the web
(a link is provided) or are a self-contained unit, typically
carrying content along with them.

Typically, a feed contains 10–20 entries. Note that in addi-
tion to the elements described in the specifi cations, each
of the format types support extensions through various
mechanisms.

XML Syndication

The three primary XML formats for syndication are RSS
1.0, RSS 2.0, and Atom. Despite having a very similar data
model (refer to Figure 13-1), they are largely incompatible
with each other in terms of syntax. In practice they can
generally be used interchangeably, and that’s how they’re
mostly found in the wild. For the consumer of syndicated

feed

URL

URLentry

title

date

content

title

entry URL

title

date

content

FIGURE 13-1

c13.indd 486c13.indd 486 05/06/12 5:58 PM05/06/12 5:58 PM

Syndication ❘ 487

feeds, this is bad news: essentially you have to support all three species (and variants). For the
producer it could be seen as good news; each format has advantages and may be best suited to a
particular deployment. The syndication formats have a colorful history, which is worthwhile
 reviewing to see how the present state of affairs has come to be.

A Little History

Web syndication arguably began in the mid-1990s, with the development of the Meta Content
Framework (MCF) at Apple, essentially a table of contents for a website. This was a signifi cant pre-
cursor of the Resource Description Framework (RDF). Not long after, Microsoft entered the fray
with its Content Defi nition Format (CDF). This was specifi cally targeted to be a comprehensive
syndication format that would appeal to traditional broadcasters, and support for it was built into
Internet Explorer (since discontinued).

The CDF model of a feed and its items is essentially the same model in use today in all syndication
formats, and it contains features that found their way into RSS and have stayed there ever
since — channel (feed), item, title, and so on.

RSS fi rst got its initials with RDF Site Summary (RSS) 0.9 from Netscape in early 1999. However,
Netscape soon backed away from its original RDF-oriented approach to RSS, and its RSS 0.91 was
more conventional XML. Out went RDF and namespaces and in came a DTD and a new name:
Rich Site Summary. Not long after this, Netscape dropped RSS altogether. Dave Winer of the pio-
neering content-management system company Userland then adopted RSS and made it his own,
releasing a slightly different version of RSS 0.91.

However, around the same time Winer was working on the RSS 0.91 line, an informal mailing
list sprang up, RSS-DEV, with a general consensus that the RDF-based approach of RSS 0.9 (and
Netscape’s original planned future direction for RSS) was the best; and the result was the RSS 1.0
specifi cation.

This proposal clashed head-on with the RDF/namespace-free 0.91 approach followed by Winer.
Agreement wasn’t forthcoming on a way forward, and as a result, RSS forked. One thread carried
the banner of simplicity, the other of interoperability. Winer rebranded his version of RSS to Really
Simple Syndication.

Then in 2002 Winer delivered something of a marketing coup: he released an RSS 2.0 specifi cation
and declared it frozen. This followed the RSS 0.91 side of the fork, with syntax completely incom-
patible with RSS 1.0. Namespace support was reintroduced, but only for extensions. While people
continued to publish (and still do) RSS 1.0 feeds, the RSS 2.0 version gained a signifi cant amount of
new adoption, due in no small part to the evangelism of the specifi cation’s author.

The Self-Contained Feed

A lot of the development of RSS was driven by developments in web content management and pub-
lishing, notably the emergence of the blog (from “web log”). Similar to today, some early blogs were
little more than lists of links, whereas others were more like online journals or magazines. This dis-
tinction is quite important in the context of syndication formats. The original RSS model contained
a URL, title, and description, which all referred to the linked material, with its (remote) content.
But increasingly the items in a feed corresponded with entries in a blog, to the extent that the feed

c13.indd 487c13.indd 487 05/06/12 5:58 PM05/06/12 5:58 PM

488 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

became essentially another representation of the blog. The URL became the link to a (HTML) post
sharing the same title, and the description became the actual content of that post, or a condensed
version of it.

The demand for content in feeds highlighted a signifi cant problem with the RSS 2.0 specifi cation: It
says that the <description> element may contain HTML, and that’s all it says. There is no way for
applications to distinguish HTML from plaintext, so how do you tell what content is markup and
what content is just talking about markup?

This and other perceived problems with RSS 2.0 led to another open community initiative that
launched in the summer of 2003, with the aim of fi xing the problems of RSS 2.0 and unifying the
syndication world (including the RSS 1.0 developers). Accepting the roadmap for RSS presented in
the RSS 2.0 specifi cation meant the name RSS couldn’t be used, and after lengthy discussion the
new project got a name: Atom. Before moving on to descriptions of what feed XML actually looks
like, you should fi rst know its purpose.

Syndication Systems

Like most other web systems, syndication systems are generally based around the client-server
model. At one end you have a web server delivering data using the HyperText Transfer Protocol
(HTTP), and at the other end is a client application receiving it. On the web, the server uses a piece
of software such as Apache or IIS, and the client uses a browser such as Internet Explorer (IE) or
Firefox. HTML-oriented web systems tend to have a clear distinction between the roles and location
of the applications: the server is usually part of a remote system, and the client appears on the user’s
desktop. HTML data is primarily intended for immediate rendering and display for users to read on
their home computer. Data for syndication takes a slightly different approach.

The defi ning characteristic of web syndication systems is that they follow a publish-subscribe pat-
tern. This is a form of communication where senders of messages, called publishers, create the
messages without knowledge of what, if any, subscribers there may be. Subscribers express interest
in the messages of particular types or from particular sources, and receive only messages that cor-
respond to those choices.

In the case of web syndication, the publisher generates a structured document (the feed) at a given
URL. Subscribers use a dedicated tool, known as a newsreader, feed reader, or aggregator, to sub-
scribe to the URL. Typically the subscriber’s tool will periodically read (or poll) the document at the
URL. The tool does this automatically; say once an hour or once a day. Over time the publisher will
add new items to the feed (removing older ones), so that next time subscribers poll the feed, they
receive the new material.

This isn’t unlike visiting a site periodically with a browser to fi nd out what’s new. However, syndi-
cation material is designed to support automation and, hence, needs to be machine-readable. This
means there is at least one extra stage of processing before the content appears on the user’s screen.
The machine-readability means that it is possible to pass around and process the data relatively
 easily, allotting for a huge amount of versatility in systems. The net result is that applications that
produce material for syndication purposes can appear either server side or client side (desktop), as
can applications that consume this material.

c13.indd 488c13.indd 488 05/06/12 5:58 PM05/06/12 5:58 PM

Syndication ❘ 489

Key to understanding the differences between syndication and typical web pages is the aspect of
time. A syndicated resource (an item in a feed) is generally available only for a short period of time
at a given point in the network, at which stage it disappears from the feed, although an archived
version of the information is likely archived on the publisher’s site.

The different kinds of syndication software components can roughly be split into four categories:
server-producer, client-consumer, client-producer, and server-consumer. In practice, software
products may combine these different pieces of functionality, but it helps to look at these parts in
isolation.

The following sections provide an overview of each, with the more familiar systems fi rst.

Server-Producer

A server-producer, also known as a server-side system for publishing syndication material, is in
essence no different from any typical web system used to publish regular HTML web pages. At
minimum, this would be a static XML fi le in one of the syndication formats placed on a web server.
More usefully, the XML data will be produced from some kind of content management system.
The stereotypical content management systems in this context are blog tools. The main page of the
(HTML) website features a series of diary-like entries, with the most recent entry appearing fi rst.
Behind the scenes is some kind of database containing the entry material, and the system presents
this in reverse chronological order on a nicely formatted web page. In parallel with the HTML-
generating subsystems of the application are syndication feed format (RSS and/or Atom) producing
subsystems. These two subsystems are likely to be very similar, because the feed material is usually
a bare-bones version of the HTML content. Many blogging systems include a common templating
system, which may be used to produce either HTML or syndication-format XML.

Client-Consumer

Although it is possible to view certain kinds of syndicated feeds in a web browser, one of the major
benefi ts of syndication comes into play with so-called newsreaders or aggregator tools. The reader
application enables users to subscribe to a large number of different feeds, and present the mate-
rial from these feeds in an integrated fashion. There are two common styles of a feed-reader user
interface:

 ➤ Single pane styles present items from the feeds in sequence, as they might appear on a
web log.

 ➤ Multipane styles are often modeled on e-mail applications, and present a selectable list of
feeds in one panel and the content of the selected feed in another.

The techniques used to process and display this material vary considerably. Many pass the data
directly to display, whereas others incorporate searching and fi ltering, usually with data storage
behind the scenes; and occasionally, Semantic Web technologies are used to provide integration with
other kinds of data.

Some newsreaders use a small web server running on the client machine to render content in a stan-
dard browser. Wide variations also exist in the sophistication of these tools. Some provide presenta-
tion of each feed as a whole; others do it item-by-item by date, through user-defi ned categories or

c13.indd 489c13.indd 489 05/06/12 5:58 PM05/06/12 5:58 PM

490 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

any combination of these and other alternatives. You'll see the code for a very simple aggregator
later in this chapter.

There’s a useful page on Wikipedia containing lists of feed readers and comparing their characteris-
tics at http://en.wikipedia.org/wiki/Comparison_of_feed_aggregators.

Client-Producer

Now you know that the server-producer puts content on a web server and the client-consumer pro-
cesses and displays this content, but where does the content come from in the fi rst place? Again,
blogging tools are the stereotype. Suppose an author of a blog uses a tool to compose posts contain-
ing his thoughts for the day plus various cat photos. Clicking a button submits this data to a content
management system that will typically load the content into its database for subsequent display,
as in the preceding server-producer. The client-producer category covers desktop blogging clients
such as BlogEd, Ecto, and Microsoft Windows Live Writer, which run as conventional applications.
(Note that availability of tools like these is changing all the time; a web search for “desktop blog-
ging tools” should yield up-to-date information.) Several existing desktop authoring tools incorpo-
rate post-to-blog facilities (for example, you can fi nd plug-ins for MS Word and OpenOffi ce). When
the user clicks Submit (or similar), the material is sent over the web to the content management
system. However, the four categories presented here break down a little at this point, because many
blogging tools provide authoring tools from the web server as well, with users being presented a web
form in which they can enter their content.

A technical issue should be mentioned at this point. When it comes to communications, the server-
producer and client-consumer systems generally operate in exactly the same way as HTML-oriented
web servers and clients using the HTTP protocol directly. The feed material is delivered in one of
the syndication formats: RSS or Atom.

However, when it comes to posting material to a management system, other strategies are com-
monly used. In particular, developers of the Blogger blogging service designed a specifi cation for
transmitting blog material from the author’s client to the online service. Although the specifi cation
was intended only as a prototype; the “Blogger API” became the de facto standard for posting to
blogging and similar content management systems. The Blogger API defi nes a small set of XML-
RPC (remote procedure calling) elements to encode the material and pass it to the server. There were
certain limitations of this specifi cation, which led to the MetaWeblog API that extends the elements
in a way that makes it possible to send all the most common pieces of data that might be required.
There was a partial recognition in the MetaWeblog API that a degree of redundancy existed in the
specifi cations. The data that is passed from an authoring tool is essentially the same, in structure
and content, as the material passed from the server to newsreaders, so the MetaWeblog API uses
some of the vocabulary of RSS 2.0 to describe the structural elements.

Since the XML-RPC blogging APIs came out, there has been a growing realization in the developer
community that not only is there redundancy at the level of naming parts of the messages being
passed around, but also in the fundamental techniques used to pass them around. To transfer syndi-
cated material from a server to a client, the client sends an HTTP GET message to the server, and the
server responds with a bunch of RSS/Atom-formatted data. On the other hand, when transferring
material from the client to the server, the blogging APIs wrap the content in XML-RPC messages
and use an HTTP POST to send that. The question is, why use the XML-RPC format when there is

c13.indd 490c13.indd 490 05/06/12 5:58 PM05/06/12 5:58 PM

http://en.wikipedia.org/wiki/Comparison_of_feed_aggregators

Syndication ❘ 491

already a perfectly good RSS or Atom format? Recent developments have led to a gradual shift
from XML-RPC to the passing of XML (or even JSON) data directly over HTTP, and more use of
the less familiar HTTP verbs, such as PUT (to replace an XML document on the web) and DELETE
(to remove a resource). Most established in the fi eld is the Atom Publication Protocol (http://tools.
ietf.org/html/rfc5023), a specifi cation from the same group that produced the Atom format.

Server-Consumer

The notion of a server-consumer component covers several different kinds of functionality, such
as the functionality needed to receive material sent from a client-producer, blog posts, and the like.
This in itself isn’t particularly interesting; typically, it’s not much different than authoring directly
on the server except the material is posted via HTML forms.

But it’s also possible to take material from other syndication servers and either render it directly,
acting as an online equivalent of the desktop newsreader, or process the aggregated data further.
This approach is increasingly common, and online newsreaders such as Google Reader are very
popular. The fact that feed data is suitable for subsequent processing and integration means it offers
considerable potential for the future. Various online services have used syndicated data to provide
enhanced search capabilities, however two of the pioneers, PubSub and Tailrank, are no longer
in operation. It’s interesting to note how similar functionality has found its way into systems like
Twitter and Google Plus.

TechMeme (www.techmeme.com) is an example of a smarter aggregator, in that it uses heuristics
(rules of thumb) on the data found on blogs to determine the most signifi cant stories, treating an
incoming link as a sign of importance for an entry. Plenty of fairly centralized, mass-appeal services
are available, but there’s also been a lot of development in the open source world of tools that can
offer similar services for special-interest groups, organizations, or even individuals. It’s relatively
straightforward to set up your own “Planet” aggregations of topic-specifi c feeds by downloading
and installing the Planet (www.planetplanet.org) or Chumpalogica (http://www.hackdiary
.com/projects/chumpologica/) online aggregation applications. The Planet Venus aggregator
(http://intertwingly.net/code/venus/docs/), an offshoot of Planet, includes various pieces of
additional functionality, such as a personalized “meme-tracker” similar to TechMeme. An
example of how such systems can be customized is Planète Web Sémantique (http://planete
.websemantique.org/). This site uses Planet Venus to aggregate French-language posts on the topic
of the Semantic Web. Because many of the bloggers on its subscription list also regularly post on
other topics and in English, such material is fi ltered out (actually hidden by JavaScript).

Format Anatomy

Having heard how the mechanisms of syndication work, now it’s time to look at the formats them-
selves. To avoid getting lost in the markup, you may fi nd it useful to refer back to the diagram in
Figure 13-1 to keep a picture in your mind of the overall feed structure.

RSS 2.0

You can fi nd the specifi cation for RSS 2.0 at http://cyber.law.harvard.edu/rss/rss.html.
It’s a fairly readable, informal document (which unfortunately has been a recurring criticism due to
ambiguities in its language).

c13.indd 491c13.indd 491 05/06/12 5:58 PM05/06/12 5:58 PM

http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc5023
http://www.hackdiary.com/projects/chumpologica/
http://www.hackdiary.com/projects/chumpologica/
http://intertwingly.net/code/venus/docs/
http://planete.websemantique.org/
http://planete.websemantique.org/
http://cyber.law.harvard.edu/rss/rss.html
http://www.planetplanet.org
http://www.techmeme.com

492 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

The format style of RSS 2.0 is hierarchical. The syntax structure looks like this:

rss
 channel
 (elements containing meta data about the feed)
 item
 (item content and meta data)
 item
 (item content and meta data)
...

In practice, most of the elements are optional; as long as the overall structure follows the preceding
pattern, a reader should be able to make some sense of it.

The following is an extract from an RSS 2.0 feed. The original (taken from http://www
.fromoldbooks.org/rss.xml) contained 20 items, but in the interests of space here all but one
have been removed:

<?xml version=”1.0” encoding=”utf-8”?>

<rss version=”2.0”>

 <channel>

 <title>Words and Pictures From Old Books</title>

 <link>http://www.fromoldbooks.org/</link>

 <description>Recently added pictures scanned from old books</description>

 <pubDate>Tue, 14 Feb 2012 08:28:00 GMT</pubDate>

 <lastBuildDate>Tue, 14 Feb 2012 08:28:00 GMT</lastBuildDate>

 <ttl>180</ttl>

 

 <item>

 <title>Winged Mermaid from p. 199 recto, from Buch der Natur

c13.indd 492c13.indd 492 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.fromoldbooks.org/rss.xml
http://www.fromoldbooks.org/rss.xml
http://www.fromoldbooks.org/
http://www.holoweb.net/~liam/presspics/Liam10-70x100-amazon.jpg
http://www.fromoldbooks.org/

Syndication ❘ 493

[Book of Nature] (1481), added on 14th Feb 2012</title>

 <link>http://www.fromoldbooks.org/Megenberg-
BookderNatur/pages/0199r-detail-mermaid/</link>

 <description>

<p>A fifteenth-century drawing of a mermaid with wings (and breast)
 taken from fol. 199r of a
(somewhat dubious) textbook
 on natural history.</p> <p>The mermaid has the trunk and head of
a woman, the tail of a fish, and wings, or possibly large fins.</p></
description>

 <pubDate>Tue, 14 Feb 2012 08:19:00 GMT</pubDate>

 <author>liam@holoweb.net (Liam Quin)</author>

 <guid isPermaLink=”true”>http://www.fromoldbooks.org/Megenberg-
BookderNatur/pages/0199r-detail-mermaid/</guid>

 </item>

...

 </channel>

</rss>

The document begins with the XML declaration followed by the outer <rss> element. Inside this is
the <channel> element where the data begins:

<?xml version=”1.0” encoding=”utf-8”?>

<rss version=”2.0”>

 <channel>

 <title>Words and Pictures From Old Books</title>

 <link>http://www.fromoldbooks.org/</link>

 <description>Recently added pictures scanned from old books</description>

 <pubDate>Tue, 14 Feb 2012 08:28:00 GMT</pubDate>

 <lastBuildDate>Tue, 14 Feb 2012 08:28:00 GMT</lastBuildDate>

 <ttl>180</ttl>

These elements nested directly inside the <channel> element describe the feed itself. The preceding
code contains the self-explanatory <title> and <description> along with a link. Note that the

c13.indd 493c13.indd 493 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.fromoldbooks.org/Megenberg-BookderNatur/pages/0199r-detail-mermaid/
http://www.fromoldbooks.org/Megenberg-BookderNatur/pages/0199r-detail-mermaid/
http://www.fromoldbooks.org/Megenberg-BookderNatur/pages/0199r-detail-mermaid/
http://www.fromoldbooks.org/Megenberg-BookderNatur/pages/0199r-detail-mermaid/
http://www.fromoldbooks.org/

494 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

link refers to the website corresponding to the feed; this will typically be the homepage. The
offi cial publication date for the feed is expressed in the <pubDate> element using the human-read-
able format defi ned in RFC 822 (this specifi cation is actually obsolete; if in doubt it’s probably safest
to refer to the more recent RFC 5322: http://tools.ietf.org/html/rfc5322#section-3.3).

The <lastBuildDate> refers to the last time the content of the feed changed (the purpose being to
make it easy for consumers to check for changes, although best practice is to use the HTTP headers
for this purpose).

The <ttl> element refers to “time to live.” It’s effectively a hint to any clients as to how frequently the
feed changes, hence how often they should update.

The channel-level 

Next, still nested inside <channel>, the syndication items appear as content and meta data. The
order of the elements inside <item> doesn’t matter; they are rearranged a little here from the origi-
nal for clarity:

 <item>

 <description>
<p>A fifteenth-century drawing of a mermaid with wings (and breast)
taken from fol. 199r of a
(somewhat dubious) textbook on natural history.</p> <p>The mermaid has
the trunk and head of a woman, the tail of a fish, and wings, or possibly large
fins.</p></description>

The RSS 2.0 specifi cation says of the <description> element that it’s “the item synopsis.” Though
it may be a shortened version of a longer piece, publishers often include the whole piece of content
they want to syndicate. The specifi cation is silent on the format of the content, but in practice most
aggregators will assume that it is HTML and render it accordingly. But because this is XML, the
markup has to be escaped, so <p> becomes <p> and so on.

There then follows the meta data associated with this piece of content:

 <title>Winged Mermaid from p. 199 recto, from Buch der Natur

c13.indd 494c13.indd 494 05/06/12 5:58 PM05/06/12 5:58 PM

http://tools.ietf.org/html/rfc5322#section-3.3
http://www.holoweb.net/~liam/presspics/Liam10-70x100-amazon.jpg
http://www.fromoldbooks.org/

Syndication ❘ 495

[Book of Nature] (1481), added on 14th Feb 2012</title>

 <pubDate>Tue, 14 Feb 2012 08:19:00 GMT</pubDate>

 <author>liam@holoweb.net (Liam Quin)</author>

 <link>http://www.fromoldbooks.org/Megenberg-
BookderNatur/pages/0199r-detail-mermaid/</link>

 <guid isPermaLink=”true”>http://www.fromoldbooks.org/Megenberg-
BookderNatur/pages/0199r-detail-mermaid/</guid>

 </item>

The <title> and <pubDate> are those of the content, which typically is also found (as HTML) at
the URL specifi ed in the <link> element. The author is specifi ed as the e-mail address and (option-
ally) the name of the person who wrote the content.

The <guid> is specifi ed as a string that is the “globally unique identifi er” of the item. Although this
can be arbitrary, most of the time the item will appear elsewhere (as HTML) so that URL can be
used. In RSS 2.0, such a URL is indicated by using the isPermaLink attribute with the value true.

Usually there will be a series of around 10–20 items, before the channel-level and outer elements are
closed off like so:

 </channel>

</rss>

Atom

Atom was developed as an open project using the processes of the Internet Engineering Task Force
(IETF). The initial aim might have been to fi x the problems of RSS, but it was realized early on
that any sane solution would not only look at the format, but also take into account the protocols
used in authoring, editing, and publication. So the Atom Publishing Format and Protocol was
formed in June 2004. The fi rst deliverable of the group, the Atom Syndication Format (RFC 4287,
www.ietf.org/rfc/rfc4287.txt) was published in December 2005 followed by the Atom
Publishing Protocol (http://tools.ietf.org/html/rfc5023) in October 2007.

These specifi cations are written a lot more formally than that of RSS 2.0, but are still quite
approachable.

The Atom format is structurally and conceptually very much like its RSS predecessors, and its prac-
tical design lies somewhere between the RSS 1.0 and 2.0 versions. The syntax isn’t RDF/XML, but
it does have a namespace itself and includes fl exible extension mechanisms. Most of the elements are
direct descendants of those found in RSS, although considerable work has given it robust support
for inline content, using a new <content> element.

c13.indd 495c13.indd 495 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.fromoldbooks.org/Megenberg-BookderNatur/pages/0199r-detail-mermaid/
http://www.fromoldbooks.org/Megenberg-BookderNatur/pages/0199r-detail-mermaid/
http://www.fromoldbooks.org/Megenberg-BookderNatur/pages/0199r-detail-mermaid/
http://www.fromoldbooks.org/Megenberg-BookderNatur/pages/0199r-detail-mermaid/
http://tools.ietf.org/html/rfc5023
http://www.ietf.org/rfc/rfc4287.txt

496 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

Most of the elements of Atom are self-explanatory, although the naming of parts differs from RSS,
so an Atom feed corresponds to an RSS channel, an Atom entry corresponds to an RSS item, and
so on. Here’s an example:

<feed xmlns=”http://www.w3.org/2005/Atom”>
 <link rel=”self” href=”http://example.org/blog/index.atom”/>
 <id>http://example.org/blog/index.atom</id>
 <icon>../favicon.ico</icon>
 <title>An Atom Sampler</title>
 <subtitle>No Splitting</subtitle>
 <author>
 <name>Ernie Rutherford </name>
 <email>ernie@example.org</email>
 <uri>.</uri>
 </author>
 <updated>2006-10-25T03:38:08-04:00</updated>
 <link href=”.”/>
 <entry>
 <id>tag:example.org,2004:2417</id>
 <link href=”2006/10/23/moonshine”/>
 <title>Moonshine</title>
 <content type=”text”>
 Anyone who expects a source of power from the transformation of the atom
is talking moonshine.
 </content>
 <published>2006-10-23T15:33:00-04:00</published>
 <updated>2006-10-23T15:47:31-04:00</updated>
 </entry>
 <entry>
 <id>>tag:example.org,2004:2416</id>
 <link href=”2006/10/21/think”/>
 <title type=”html”>Think!</title>
 <content type=”xhtml”>
 <div xmlns=”http://www.w3.org/1999/xhtml”>
 <p>We haven’t got the money, so we’ve got to think!</p>
 </div>
 </content>
 <updated>2006-10-21T06:02:39-04:00</updated>
 </entry>
</feed>

The fi rst real enhancement is the <id> element, which roughly corresponds to the <guid> of RSS
2.0 and the rdf:about attribute found in RSS 1.0 (discussed in the net section) to identify enti-
ties. Rather than leave it to chance that this will be a unique string, the specifi cation makes this a
URI, which by defi nition is unique (to be more precise, it’s defi ned as an Internationalized Resource
Identifi er or IRI — for typical usage there’s no difference). Note the use of a tag: scheme URI in
the example; these are not retrievable like http: scheme URIs. In effect, the identifi ers (URIs) and
locators (URLs) of entities within the format have been separated. This was a slightly controversial
move, because many would argue that the two should be interchangeable. Time will tell whether or
not this is a good idea. It is acceptable to use an http: URI in the <id> element, though in practice
it’s probably better to follow the spirit of the Atom specifi cation. Whereas the <id> element identi-
fi es, the <link> element locates. The Atom <link> element is modeled on its namesake in HTML,
to provide a link and information about related resources.

c13.indd 496c13.indd 496 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.w3.org/2005/Atom
http://example.org/blog/index.atom
http://example.org/blog/index.atom
http://www.w3.org/1999/xhtml
mailto:ernie@example.org
http://example.org
http://example.org

Syndication ❘ 497

Whereas the <id> makes it considerably easier and more reliable to determine whether two entries
are the same, the <content> element offers a signifi cant enhancement in the description of the mate-
rial being published. It’s designed to allow virtually anything that can be passed over XML.
In the fi rst entry in the preceding example, the <entry> element has the attribute type=”text”.
This explicitly states that the material within the element should not be treated as markup (and
must not contain any child elements). The common case of HTML content is taken care of by
making the attribute type=”html”. Again, there should be no child elements, and any HTML in
the content should be escaped according to XML rules, so it would be <h1> (or one of the
equivalent alternatives), rather than <h1>. However, although HTML content may be common,
it’s not the most useful. Atom is an XML format, and namespaces make it possible for it to carry
data in other XML formats, which can be addressed using standard XML tools. The third kind of
 content support built into Atom is type=”xhtml”. To use XHTML in Atom, it has to be wrapped
in a (namespace-qualifi ed) <div> element. The <div> itself should be ignored by any rendering or
 processing tool that consumes the feed; it’s only there for demarcation purposes.

Additionally, it’s possible to include other kinds of content by specifying the type attribute as the
media type. For XML-based formats this is straightforward; for example, the Description of a
Project (DOAP) format (https://github.com/edumbill/doap/wiki) uses RDF/XML, which has
a media type of “application/rdf+xml”, and the DOAP vocabulary has the namespace “http://
usefulinc.com/ns/doap#”. For example, a project description payload in Atom would look some-
thing like the following:

<content type=”application/rdf+xml”>
 <doap:Project xmlns:doap=”http://usefulinc.com/ns/doap#”>
 <doap:name>My Blogging Tool</doap:name>
...
 </doap:Project>
</content>

Of course, not all data is found in XML formats. Text-based formats (that is, those with a type that
begins “text/”) can be included as content directly, as long as only legal XML characters are used
and the usual escaping is applied to reserved characters. Other data formats can be represented in
Atom using Base 64 encoding. (This is a mapping from arbitrary sequences of binary data into a
65-character subset of US-ASCII.)

RSS 1.0

You can fi nd the specifi cation for RSS 1.0 at http://web.resource.org/rss/1.0/spec. The
following code is an example of RSS 1.0 format :

<?xml version=”1.0” encoding=”UTF-8”?>

<rdf:RDF xmlns=”http://purl.org/rss/1.0/”

 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

 xmlns:dc=”http://purl.org/dc/elements/1.1/”

 xmlns:sy=”http://purl.org/rss/1.0/modules/syndication/”

c13.indd 497c13.indd 497 05/06/12 5:58 PM05/06/12 5:58 PM

https://github.com/edumbill/doap/wiki
http://usefulinc.com/ns/doap#
http://usefulinc.com/ns/doap#
http://usefulinc.com/ns/doap#
http://web.resource.org/rss/1.0/spec
http://purl.org/rss/1.0/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/modules/syndication/

498 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

 xmlns:content=”http://purl.org/rss/1.0/modules/content/”>

<channel rdf:about=”http://journal.dajobe.org/journal”>

 <title>Dave Beckett - Journalblog</title>

 <link>http://journal.dajobe.org/journal</link>

 <description>Hacking the semantic linked data web</description>

 <dc:date>2011-08-15T20:15:08Z</dc:date>

 <items>

 <rdf:Seq>

 <rdf:li
rdf:resource=”http://journal.dajobe.org/journal/posts/2010/06/28/happy-
10th-birthday-redland/”/>

 <rdf:li
rdf:resource=”http://journal.dajobe.org/journal/posts/2010/03/20/command-line-
semantic-web-with-redland/”/>

 </rdf:Seq>

 </items>

</channel>

<item rdf:about=”http://journal.dajobe.org/journal/posts/2010/06/28/happy-
10th-birthday-redland/”>

 <title>Happy 10th Birthday Redland</title>

 <link>http://journal.dajobe.org/journal/posts/2010/06/28/happy-10th-
birthday-redland/</link>

 <dc:date>2010-06-28T16:03:54Z</dc:date>

 <dc:creator>Dave Beckett</dc:creator>

 <description>Redland‘s 10th year source code commit birthday is
today 28th Jun at 9:05am PST – the first commit was Wed Jun 28 17:04:57 2000
UTC. Happy 10th Birthday! Please celebrate with tea and
cake.</description>

 <content:encoded><![CDATA[<p><a

c13.indd 498c13.indd 498 05/06/12 5:58 PM05/06/12 5:58 PM

http://purl.org/rss/1.0/modules/content/
http://journal.dajobe.org/journal
http://journal.dajobe.org/journal
http://journal.dajobe.org/journal/posts/2010/06/28/happy-10th-birthday-redland/
http://journal.dajobe.org/journal/posts/2010/06/28/happy-10th-birthday-redland/
http://journal.dajobe.org/journal/posts/2010/03/20/command-linesemantic-web-with-redland/
http://journal.dajobe.org/journal/posts/2010/03/20/command-linesemantic-web-with-redland/
http://journal.dajobe.org/journal/posts/2010/06/28/happy-\10th-birthday-redland/
http://journal.dajobe.org/journal/posts/2010/06/28/happy-\10th-birthday-redland/
http://journal.dajobe.org/journal/posts/2010/06/28/happy-10thbirthday-redland/
http://journal.dajobe.org/journal/posts/2010/06/28/happy-10thbirthday-redland/

Syndication ❘ 499

href=”http://librdf.org/”>Redland‘s 10th year source code commit birthday
is today 28th Jun at 9:05am PST – the <a
href=”http://git.librdf.org/view?p=librdf.git;a=commit;h=8df358fb2bc1f4a69de08bc3fb
4ae7d784395521”>first commit was Wed Jun 28 17:04:57 2000 UTC.</p>

<p>Happy 10th Birthday! Please celebrate with tea and cake.</p>

]]></content:encoded>

 </item>

</rdf:RDF>

To a human with a text editor, this format appears considerably more complex than RSS 2.0 or
Atom. That’s because it’s RDF/XML, a syntax notorious for its complex nature. But despite the
ugliness, it does have several advantages over RSS 2.0 and even Atom. These benefi ts all stem from
the fact that a valid RSS 1.0 document is also a valid RDF document (and, not coincidentally,
a valid XML document). Whatever a human might think, to a computer (for example, either a
namespace-aware XML parser or an RDF tool), it contains the same kind of information as
“simple” RSS but expressed in a less ambiguous and more interoperable form.

The XML has an outer <rdf:RDF> element (which incidentally is no longer a requirement of RDF/
XML in general). Following the namespace declarations is a channel block, which fi rst describes the
channel feed itself and then lists the individual items found in the feed. The channel resource is iden-
tifi ed with a URI, which makes the information portable. There’s no doubt what the title, descrip-
tion, and so on refer to. Title, link, description, and language are all defi ned in the core RSS 1.0
specifi cation. XML namespaces (with the RDF interpretation) are employed to provide properties
defi ned in the Dublin Core (dc:date) and Syndication (sy:updatePeriod, sy:updateFrequency)
modules.

Take a look at the following snippet from the RSS 1.0 code example:

 <items>

 <rdf:Seq>

 <rdf:li
rdf:resource=”http://journal.dajobe.org/journal/posts/2010/06/28/happy-10th-
birthday-redland/”/>

 <rdf:li
rdf:resource=”http://journal.dajobe.org/journal/posts/2010/03/20/command-line-
semantic-web-with-redland/”/>

 </rdf:Seq>

 </items>

c13.indd 499c13.indd 499 05/06/12 5:58 PM05/06/12 5:58 PM

http://librdf.org/
http://git.librdf.org/view?p=librdf.git;a=commit;h=8df358fb2bc1f4a69de08bc3fb4ae7d784395521
http://git.librdf.org/view?p=librdf.git;a=commit;h=8df358fb2bc1f4a69de08bc3fb4ae7d784395521
http://journal.dajobe.org/journal/posts/2010/06/28/happy-10thbirthday-redland/
http://journal.dajobe.org/journal/posts/2010/06/28/happy-10thbirthday-redland/
http://journal.dajobe.org/journal/posts/2010/03/20/command-linesemantic-web-with-redland/
http://journal.dajobe.org/journal/posts/2010/03/20/command-linesemantic-web-with-redland/

500 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

The channel here has an items property, which has the rdf:Seq type. The RSS 1.0 specifi cation
describes this as a sequence used to contain all the items, and to denote item order for rendering and
reconstruction. After this statement, the items contained in the feed are listed, each identifi ed with a
URI. Therefore, the channel block describes this feed, specifying which items it contains.

The items themselves are listed separately: each is identifi ed by a URI, and the channel block associ-
ates these resources with the channel, so there’s no need for XML element nesting to group them
together. Each item has its own set of properties, a title, and a description, as shown in the preced-
ing RSS formats, along with a link that is defi ned as the item’s URL. Usually, this is the same as the
URI specifi ed by the item’s own rdf:about attribute.

Now recall the following code from the source:

<item rdf:about=”http://journal.dajobe.org/journal/posts/2010/06/28/happy-
10th-birthday-redland/”>

 <title>Happy 10th Birthday Redland</title>

 <link>http://journal.dajobe.org/journal/posts/2010/06/28/happy-10th-
birthday-redland/</link>

Again, terms from Dublin Core are used for the subject, creator (author), and date. This makes it
much better suited for broad-scale syndication, because Dublin Core has become the de facto stan-
dard for dealing with document-descriptive content. The properties look like this:

 <dc:date>2010-06-28T16:03:54Z</dc:date>

 <dc:creator>Dave Beckett</dc:creator>

The example given here includes both a <description> and a <content:encoded> element, each
with a slightly different version of the content text (plain text and escaped-XML, respectively). This
is fairly redundant, but does improve the chances of particular feed readers being able to use the
data. There are no hard-and-fast rules for which elements should be included in an RSS 1.0 feed, as
long as they follow the general structural rules of RDF/XML. RDF generally follows a principal of
“missing isn’t broken,” and according to that you can leave out any elements for which you don’t
have suitable values. By the same token, if you have extra data that may be relevant (for example
links to the homepages of contributing authors) it may be useful to include that (see Chapter 14,
“Web Services” for more information). Although a feed reader may not understand the elements in
the RSS feed, a more generic RDF consumer may be able to use the data.

Looking again from an RDF perspective, note that the object of the statements that list the item
URIs become the subject of the statements that describe the items themselves. In most XML lan-
guages, this kind of connection is made through element nesting, and it’s clear that tree structures
can be built this way. However, using identifi ers for the points of interest (the resource URIs) in
RDF also makes it possible for any resource to be related to any other resource, allowing arbitrary
node and arc graph structures. Loops and self-references can occur. This versatility is an important
feature of RDF, and is very similar to the arbitrary hyperlinking of the web. The downside is that

c13.indd 500c13.indd 500 05/06/12 5:58 PM05/06/12 5:58 PM

http://journal.dajobe.org/journal/posts/2010/06/28/happy-10th-birthday-redland/
http://journal.dajobe.org/journal/posts/2010/06/28/happy-10th-birthday-redland/
http://journal.dajobe.org/journal/posts/2010/06/28/happy-10thbirthday-redland/
http://journal.dajobe.org/journal/posts/2010/06/28/happy-10thbirthday-redland/

Working with News Feeds ❘ 501

there isn’t any elegant way to represent graph structures in a tree-oriented syntax like XML, which
is a major reason why RDF/XML syntax can be hard on the eye.

WORKING WITH NEWS FEEDS

To get a handle on the practicalities of how syndication works, it’s worth looking at the technology
from both the perspective of the publisher and that of the consumer of feeds. The rest of the chap-
ter is devoted to practical code, so you will see in practice most of the key issues encountered when
developing in this fi eld. It is really simple to set up a syndication feed, but that phrase can be mislead-
ing. Without a little care, the result can be really bad. Because of this, fi rst you see development from
a consumer’s point of view. It’s the harder part of the equation (after all, you could simply write an
RSS feed manually and call it done), but the best way of seeing where potential problems lie.

Newsreaders

Tools are available so that anyone can set up their own personal “newspaper,” with content selected
from the millions of syndicated feeds published on the web.

These aggregators are usually known as newsreaders, applications that enable you to both add and oth-
erwise manage RSS feeds into a single “newspaper” of articles. Although public awareness of feed read-
ing probably isn’t very sophisticated, the technology is becoming ubiquitous and many web users are
almost certainly reading material that has passed through RSS/Atom syndication without realizing it.

Data Quality

Whenever you work with material on the web, keep in mind that not all data purporting to be XML
actually is XML. It’s relatively common to fi nd RSS feeds that are not well formed. One of the most
common failings is that the characters in the XML document aren’t from the declared encoding (UTF-8,
ISO-8859-1, or something similar). Another likely corruption is that characters within the textual con-
tent of the feed are incorrectly escaped. A stray < instead of a < is enough to trip up a standard
XML processor. Unfortunately, many of the popular blogging tools make it extremely easy to produce an
ill-formed feed, a factor not really taken into account by the “simple” philosophy of syndication.

There was considerable discussion by the Atom developers on this issue, and responses ranged from
the creation of an “ultra-liberal” parser that does its best to read anything, to the suggestion that
aggregation tools simply reject ill-formed feeds to discourage their production. For pragmatic
reasons, current newsreaders tend very much toward the liberal, though for applications where data
fi delity is a priority, strict XML (and the clear rules of Atom) is always an option.

NOTE There is a simple way of checking the quality of RSS and Atom

feeds — the Feed Validator at http://feedvalidator.org (or the W3C’s

installation at http://validator.w3.org/feed/). You can use it online or

download it. It’s backed by a huge array of test cases, providing reliable results

and explanations of any errors or warnings.

c13.indd 501c13.indd 501 05/06/12 5:58 PM05/06/12 5:58 PM

http://feedvalidator.org
http://validator.w3.org/feed/

502 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

A SIMPLE AGGREGATOR

This section describes how you can build a simple newsreader application in the Python language
that will aggregate news items from several channels. The program uses a confi guration fi le that
contains a list of feed addresses and, when run, presents the most recent fi ve items from those feeds.
To keep things simple, the reader has only a command-line user interface and won’t remember what
it has read from the feeds previously.

NOTE All the code for news feed application is available in the code download

for this chapter. How to set up your Python development environment is dis-

cussed in the “Implementation” section.

Modeling Feeds

The programmer has many options for dealing with XML data, and the choice of approach often
depends on the complexity of the data structures. In many circumstances the data can be read
directly into a DOM model and processed from there, but there is a complication with syndicated
material — the source data can be in one of three completely different syntaxes: RSS 1.0, RSS 2.0
(and its predecessors), and Atom. Because the application is only a simple newsreader, the sophisti-
cation offered by the RDF model behind RSS 1.0 isn’t needed, but a simple model is implicit in news
feeds: a feed comprises a number of items, and each of those items has a set of properties (refer to
Figure 13-1).

Therefore, at the heart of the aggregator you will be building is an object-oriented version of that
model. A feed is represented by a Feed object, and items are represented by Item objects. Each Item
object has member variables to represent the various properties of that item. To keep things simple,
the feed Item has only three properties: title, date, and content. The Item itself and these three
properties can be mapped to an XML element in each of the three main syntaxes, as shown in
Table 13-1.

TABLE 13-1: Core Item Terms in the Major Feed Syntaxes

MODEL RSS 1.0 RSS X.X ATOM

Item rss:item item atom:entry

Title dc:title title atom:title

Date dc:date pubDate atom:updated

Content dc:description, content:

encoded

description, xhtml:body atom:content

c13.indd 502c13.indd 502 05/06/12 5:58 PM05/06/12 5:58 PM

A Simple Aggregator ❘ 503

The namespaces of the elements are identifi ed by their usual prefi xes as follows (note that the
“simple” RSS dialects don’t have a namespace):

 ➤ rss is RSS 1.0 (http://purl.org/rss/1.0/)

 ➤ dc is Dublin Core (http://purl.org/dc/elements/1.1/)

 ➤ xhtml is XHTML (www.w3.org/1999/xhtml)

 ➤ content is the content module for RSS 1.0 (http://purl.org/rss/1.0/modules/
content/)

 ➤ atom is, you guessed it, Atom (www.w3.org/2005/Atom)

The correspondence between the different syntaxes is only approximate. Each version has its own
defi nitions, and although they don’t coincide exactly, they are close enough in practice to be used in
a basic newsreader.

Syntax Isn’t Model

Though there’s a reasonable alignment between the different elements listed in Table 13-1, this
doesn’t hold for the overall structure of the different syndication syntaxes. In particular, both plain
XML RSS and Atom use element nesting to associate the items with the feed. If you look back at
the sample of RSS 1.0, it’s clear that something different is going on. RSS 1.0 uses the interpretation
of RDF in XML to indicate that the channel resource has a property called items, which points
to a Seq (sequence) of item instances. The item instances in the Seq are identifi ed with URIs, as
are the individual item entries themselves, which enables an RDF processor to know that the same
resources are being referred to. In short, the structural interpretation is completely different.

Two pieces of information, implicit in the XML structure of simple RSS, are made explicit in RSS
1.0. In addition to the association between the feed and its component items, there is also the order
of the items. The use of a Seq in RSS 1.0 and the document order of the XML elements in the
“simple” RSS dialects provide an ordering, though there isn’t any common agreement on what this
ordering signifi es. Atom explicitly states that the order of entries shouldn’t be considered signifi cant.

To keep the code simple in the aggregator presented here, two assumptions are made about the
material represented in the various syntaxes:

 ➤ The items in the fi le obtained from a particular location are all part of the same conceptual
feed. This may seem obvious; in fact, it has to be the case in plain XML RSS, which can
have only one root <rss> element, but in RDF/XML (on which RSS 1.0 is based), it is possi-
ble to represent practically anything in an individual fi le. In practice, though, it’s a relatively
safe assumption.

 ➤ The second assumption is that in a news-reading application, the end user won’t be inter-
ested in the order of the items in the feed (element or Seq order), but instead will want to
know the dates on which the items were published.

The fi rst assumption means there is no need to check where in the document structure individual
items appear, and the second means there is no need to interpret the Seq or remember the element
order. There is little or no cost to these assumptions in practice, yet it enables considerable code sim-
plifi cation. The only thing that needs to occur is to recognize when an element corresponding to an

c13.indd 503c13.indd 503 05/06/12 5:58 PM05/06/12 5:58 PM

http://purl.org/rss/1.0/
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/modules/content/
http://purl.org/rss/1.0/modules/content/
http://www.w3.org/1999/xhtml
http://www.w3.org/2005/Atom

504 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

item (rss:item, item, or atom:entry) occurs within a feed, and to start recording its properties. In
all the syntaxes the main properties are provided in child elements of the <item> element, so only a
very simple structure has to be managed.

In other words, although there are three different syntaxes, a part of the structure is common to all
of them despite differences in element naming. An object model can be constructed from a simple
one-to-one mapping from each set of elements. On encountering a particular element in the XML,
a corresponding action needs to be carried out on the objects. An XML programming tool is ideally
suited to this situation: SAX.

SAX to the Rescue!

SAX (the Simple API for XML) works by responding to method calls generated when various enti-
ties within the XML document are encountered. The Python language supports SAX out of the box
(in the modules xml.sax). Given that, the main tasks for feed parsing are to decide which elements
should be recognized, and what actions should be applied when encountering them.

The entities of interest for this simple application are the following:

 ➤ The elements corresponding to items

 ➤ The elements corresponding to the properties of the items and the values of those properties

Three SAX methods can provide all the information the application needs about these elements:

 ➤ startElement

 ➤ characters

 ➤ endElement

The startElement method signals which element has been encountered, providing its name and
namespace (if it has one). It’s easy enough to tell if that element corresponds to an item. Refer to
Table 13-1, and you know its name will either be item or entry. Similarly, each of the three kinds
of properties of elements can be identifi ed. The data sent to characters is the text content of the
elements, which are the values of the properties. A call to the endElement method signals that
the element’s closing tag has been encountered, so the program can deal with whatever is inside it.

Again, using Table 13-1, you can derive the following simple rules that determine the nature of the
elements encountered:

 ➤ rss:item | item | atom:entry = item

 ➤ dc:title | title | atom:title = title

 ➤ dc:date | pubDate | atom:updated = date

 ➤ dc:description | content:encoded | description | xhtml:body | atom:
content = content

If startElement has been called, any subsequent calls matching the last three elements will pass on
the values of that particular property of that element, until the endElement method is called. There
may be calls to the elements describing properties outside of an item block, and you can reasonably
assume that those properties apply to the feed as a whole. This makes it straightforward to extract
the title of the feed.

c13.indd 504c13.indd 504 05/06/12 5:58 PM05/06/12 5:58 PM

A Simple Aggregator ❘ 505

Program Flow

When your application is run, the list of feeds is picked up from the text fi le. Each of the addresses,
in turn, is passed to an XML parser. The aggregator then reads the data found on the web at that
address. In more sophisticated aggregators, you will fi nd a considerable amount of code devoted to
the reading of data over HTTP in a way that both respects the feed publisher, and makes the system
as effi cient as possible. The XML parsers in Python however, are capable of reading data directly
from a web address. Therefore, to keep things simple, a Python XML parser is shown in Figure 13-2.
Python XML is discussed in the following section.

NOTE You may notice that the element names are pretty well separated

between each meaning — there is little likelihood of the title data being pur-

posefully published in an element called <date>, for example. This makes cod-

ing these rules somewhat easier, although in general it is good practice to make

it possible to get at the namespace of elements to avoid naming clashes.

FeedReader

get URIs

for each URI:

for each Item:

console

bookmarks
list

XML
Document

URIs

Items

filter

print

ListReader

Parser

Feed

Get feed

Parse

Web

FIGURE 13-2

Implementation

Your feed reader is written in Python, a language that has reasonably sophisticated XML support.
Everything you need to run it is available in the code downloads for this chapter, or as a free down-
load from www.python.org. If you’re not familiar with Python, don’t worry — it’s a very simple
language, and the code is largely self-explanatory. All you really need to know is that it uses inden-
tation to separate functional blocks (whitespace is signifi cant), rather than braces {}. In addition,
the # character means that the rest of the line is a comment. Python is explained in greater detail
shortly in the next Try It Out, but before you begin using Python to run your feed reader, you need
to take a few preparatory steps.

c13.indd 505c13.indd 505 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.python.org

506 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

 1. Visit www.python.org and click the link to Download Python Now. Python comes in a
complete package as a free download, available for most platforms — as its enthusiasts
say, batteries are included. Installation is very straightforward; just follow the instructions
on the website (you may have to add it to your system PATH; see the documentation for
details). A Windows installer is included as part of the download. The standard package
provides the Python interpreter, which can be run interactively or from a command line
or even a web server. There’s also a basic Integrated Development Environment tool called
IDLE and plenty of documentation. Download and install Python now.

 2. You will use Python to run the code for your feed reader. This code is contained in the
following four fi les, which are all available in the code downloads for this chapter:

 ➤ feed_reader.py controls the operation.

 ➤ feed.py models the feed and items.

 ➤ feed_handler.py constructs objects from the content of the feed.

 ➤ list_reader.py reads a list of feed addresses.

Download these code fi les now, unless you want to create them yourself, because you will use them
for the rest of the examples in the chapter. Save them to a local folder; for the example
C:\FeedReader is used.

 3. You also need the addresses of the feeds you’d like to aggregate. At its simplest, you can
create a text fi le containing the URIs, as shown in Listing 13 -1:

LISTING 13-1: feeds.txt

http://www.fromoldbooks.org/rss.xml

http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss

http://journal.dajobe.org/journal/index.rdf

http://planetrdf.com/index.rdf

An aggregator should be able to deal with all the major formats. In Listing 13-1 you have a selec-
tion: the fi rst feed is in RSS 2.0 format, the second is Atom, and the third and fourth are in RSS 1.0.
A text list is the simplest format in which the URIs can be supplied. For convenience, a little string
manipulation makes it possible to use an IE, Chrome, or Firefox bookmarks fi le to supply the list of
URIs. The addresses of the syndication feeds should be added to a regular bookmark folder in the
browser. With IE, it’s possible to export a single bookmark folder to use as the URI list, but with
Chrome or Firefox, all the bookmarks are exported in one go.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

NOTE It would be very straightforward to port this feed reader application to

any other language with good XML support, such as Java or C#.

c13.indd 506c13.indd 506 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.fromoldbooks.org/rss.xml
http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss
http://journal.dajobe.org/journal/index.rdf
http://planetrdf.com/index.rdf
http://www.python.org
http://Wrox.com
http://Wrox.com

A Simple Aggregator ❘ 507

The fi rst code fi le you’ll use is shown in Listing 13-2, and is set up to only read the links in the fi rst
folder in the aforementioned bookmark fi le. This source fi le contains a single class, ListReader,
with a single method, get_uris:

LISTING 13-2: list_reader.py

import re

class ListReader:
 “”” Reads URIs from file “””

 def get_uris(self, filename):
 “”” Returns a list of the URIs contained in the named file “””
 file = open(filename, ‘r’)
 text = file.read()
 file.close()

 # get the first block of a Netscape file
 text = text.split(‘</DL>’)[0]

 # get the uris
 pattern = ‘http://\S*\w’
 return re.findall(pattern,text)

You can now begin your adventures with Python by using a simple utility class to load a list of feed
URIs into the application.

TRY IT OUT Using Python to Read a List of URIs

The purpose here is just to confi rm that your Python installation is working correctly. If you’re not
familiar with Python, this also demonstrates how useful command-line interaction with the interpreter
can be.

1. Make sure that feeds.txt from Listing 13-1 is in the C:\FeedReader folder with the other .py
fi les.

2. Open a command prompt and change directory to the folder containing these fi les.

3. Type in the command python and press Enter. You should see something like this:

$ python

Python 2.7.2+ (default, Oct 4 2011, 20:03:08)

[GCC 4.6.1] on linux2

Type “help”, “copyright”, “credits” or “license” for more information.

>>>

You are now in the Python interpreter.

c13.indd 507c13.indd 507 05/06/12 5:58 PM05/06/12 5:58 PM

508 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

4. Type in the following lines and press Enter after each line (the interpreter will display the >>>
prompt):

>>> from list_reader import ListReader
>>> reader = ListReader()
>>> print reader.get_uris(“feeds.txt”)

After the last line, the interpreter should respond with the following:

[‘http://www.fromoldbooks.org/rss.xml’,
‘http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss’,
‘http://journal.dajobe.org/journal/index.rdf’, ‘http://planetrdf.com/index.rdf’]

>>>

How It Works

The fi rst line you gave the interpreter was as follows:

from list_reader import ListReader

This makes the class ListReader in the package list_reader available to the interpreter (the package
is contained in the fi le list_reader.py). This line creates a new instance of the ListReader class and
assigns it to the variable reader:

reader = ListReader()

The next line you asked to be interpreted was as follows:

print reader.get_uris(“feeds.txt”)

This calls the get_uris method of the reader object, passing it a string, which corresponds to the fi le-
name of interest. The print method was used to display the object (on the command line) returned by
the get_uris method. The object returned was displayed as follows:

[‘http://www.fromoldbooks.org/rss.xml’,
‘http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss’,
‘http://journal.dajobe.org/journal/index.rdf’, ‘http://planetrdf.com/index.rdf’]

This is the syntax for a standard Python list, here containing three items, which are the three URIs
extracted from feeds.txt.

For an explanation of how list_reader.py worked internally, here’s the source again:

import re

class ListReader:
 “”” Reads URIs from file “””

 def get_uris(self, filename):
 “”” Returns a list of the URIs contained in the named file “””

c13.indd 508c13.indd 508 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.fromoldbooks.org/rss.xml
http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss
http://journal.dajobe.org/journal/index.rdf
http://planetrdf.com/index.rdf
http://www.fromoldbooks.org/rss.xml
http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss
http://journal.dajobe.org/journal/index.rdf
http://planetrdf.com/index.rdf

A Simple Aggregator ❘ 509

 file = open(filename, ‘r’)
 text = file.read()
 file.close()

 # get the first block of a Netscape file
 text = text.split(‘</DL>’)[0]

 # get the uris
 pattern = ‘http://\S*\w’
 return re.findall(pattern,text)

The get_uris method is called with a single parameter. This is the name of the fi le containing the list
of URIs (the self parameter is an artifact of Python’s approach to methods and functions, and refers
to the method object). The fi le opens as read-only (r), and its contents are read into a string called
text and then closed. To trim a Netscape bookmark fi le, the built-in split string method divides the
string into a list, with everything before the fi rst occurrence of the </DL> tag going into the fi rst part
of the list, which is accessed with the index [0]. The text variable will then contain this trimmed
block, or the whole of the text if there aren’t any </DL> tags in the fi le. A regular expression fi nds all
the occurrences within the string of the characters http:// followed by any number of non-whitespace
characters (signifi ed by \S*) and terminated by an alphanumeric character. It’s crude, but it works well
enough for text and bookmark fi les. The URIs are returned from this method as another list.

Application Controller: FeedReader

The list of URIs is the starting point for the main control block of the program, which is the
FeedReader class contained in feed_reader.py. If you refer to Figure 13-2, you should be able to
see how the functional parts of the application are tied together. Here are the fi rst few lines of feed_
reader.py, which acts as the overall controller of the application:

import urllib2
import xml.sax
import list_reader
import feed_handler
import feed

feedlist_filename = ‘feeds.txt’
def main():
 “”” Runs the application “””
 FeedReader().read(feedlist_filename)

feed_reader.py

The code starts with the library imports. urllib2 and xml.sax are used here only to provide error
messages if something goes wrong with HTTP reading or parsing. list_reader is the previous URI
list reader code (in list_reader.py), feed_handler contains the custom SAX handler (which you
see shortly), and feed contains the class that models the feeds.

The name of the fi le containing the URI list is given as a constant. You can either save your list
with this fi lename or change it here. Because Python is an interpreted language, any change takes
effect the next time you run the program. The main() function runs the application by creating a

Available for
download on
Wrox.com

c13.indd 509c13.indd 509 05/06/12 5:58 PM05/06/12 5:58 PM

http://Wrox.com

510 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

new instance of the FeedReader class and telling it to read the named fi le. When the new instance of
FeedReader is created, the init method is called automatically, which is used here to initialize a list
that will contain all the items obtained from the feeds:

class FeedReader:
 “”” Controls the reading of feeds “””
 def __init__(self):
 “”” Initializes the list of items “””
 self.all_items = []

The read method looks after the primary operations of the aggregator and begins by obtaining a
parser from a local helper method, create_parser, and then getting the list of URIs contained in
the supplied fi le, as shown in the following code:

def read(self, feedlist_filename):
 “”” Reads each of the feeds listed in the file “””
 parser = self.create_parser()

 feed_uris = self.get_feed_uris(feedlist_filename)

The next block of code selects each URI in turn and does what is necessary to get the items out
of that feed, which is to create a SAX handler and attach it to the parser to be called as the parser
reads through the feed’s XML. The magic of the SAX handler code will appear shortly, but read-
ing data from the web and parsing it is a risky business, so the single command that initiates these
actions, parser.parse(uri), is wrapped in a try...except block to catch any errors. Once the
reading and parsing occur, the feed_handler instance contains a feed object, which in turn con-
tains the items found in the feed (you see the source to these classes in a moment). To indicate the
success of the reading/parsing, the number of items contained in the feed is then printed. The items
are available as a list of handler.feed.items, the length of this list (len) is the number of items,
and the standard str function is used to convert this number to a string for printing to the console:

for uri in feed_uris:
 print ‘Reading ‘+uri,
 handler = feed_handler.FeedHandler()
 parser.setContentHandler(handler)
 try:
 parser.parse(uri)
 print ‘ : ‘ + str(len(handler.feed.items)) + ‘ items’
 self.all_items.extend(handler.feed.items)

 except xml.sax.SAXParseException:
 print ‘\n XML error reading feed : ‘+uri
 parser = self.create_parser()
 except urllib2.HTTPError:
 print ‘\n HTTP error reading feed : ‘+uri
 parser = self.create_parser()
 self.print_items()

If an error occurs while either reading from the web or parsing, a corresponding exception is raised,
and a simple error message is printed to the console. The parser is likely to have been trashed by the

c13.indd 510c13.indd 510 05/06/12 5:58 PM05/06/12 5:58 PM

A Simple Aggregator ❘ 511

error, so a new instance is created. Whether or not the reading/parsing was successful, the program
now loops back and starts work on the next URI on the list. Once all the URIs have been read, a
helper method, print_items (shown in an upcoming code example), is called to show the required
items on the console. The following methods in FeedReader are all helpers used by the read method
in the previous listing.

The get_feed_uris method creates an instance of the ListReader class shown earlier, and its
get_uris method returns a list of the URIs found in the fi le, like so:

def get_feed_uris(self, filename):
 “”” Use the list reader to obtain feed addresses “””
 lr = list_reader.ListReader()
 return lr.get_uris(filename)

The create_parser method makes standard calls to Python’s SAX library to create a fully
namespace-aware parser as follows:

def create_parser(self):
 “”” Creates a namespace-aware SAX parser “””
 parser = xml.sax.make_parser()
 parser.setFeature(xml.sax.handler.feature_namespaces, 1)
 return parser

The next method is used in the item sorting process, using the built-in cmp function to compare two
values — in this case, the date properties of two items. Given the two values x and y, the return
value is a number less than zero if x < y, zero if x = y, and greater than zero if x > y. The date
properties are represented as the number of seconds since a preset date (usually January 1, 1970),
so a newer item here will actually have a larger numeric date value. Here is the code that does the
comparison:

def newer_than(self, itemA, itemB):
 “”” Compares the two items “””
 return cmp(itemB.date, itemA.date)

The get_newest_items method uses the sort method built into Python lists to reorganize the con-
tents of the all_items list. The comparison used in the sort is the newer_than method from earlier,
and a Python “slice” ([:5]) is used to obtain the last fi ve items in the list. Putting this together, you
have the following:

def get_newest_items(self):
 “”” Sorts items using the newer_than comparison “””
 self.all_items.sort(self.newer_than)
 return self.all_items[:5]

NOTE The slice is a very convenient piece of Python syntax and selects a range

of items in a sequenceobject. For example, z = my_list[x:y] would copy the

contents of my_list from index x to index y into list z.

c13.indd 511c13.indd 511 05/06/12 5:58 PM05/06/12 5:58 PM

512 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

The print_items method applies the sorting and slicing previously mentioned and then prints the
resultant fi ve items to the console, as illustrated in the following code:

def print_items(self):
 “”” Prints the filtered items to console “””
 print ‘\n*** Newest 5 Items ***\n’
 for item in self.get_newest_items():
 print item

The fi nal part of feed_reader.py is a Python idiom used to call the initial main() function when
this fi le is executed:

if __name__ == ‘__main__’:
 “”” Program entry point “””
 main()

Model: Feed and Item

The preceding FeedReader class uses a SAX handler to create representations of feeds and their
items. Before looking at the handler code, following is the feed.py fi le, which contains the code
that defi nes those representations. It contains two classes: Feed and Item. The plain XML RSS
dialects generally use the older RFC 2822 date format used in e-mails, whereas RSS 1.0 and Atom
use a specifi c version of the ISO 8601 format used in many XML systems, known as W3CDTF. As
mentioned earlier, the dates are represented within the application as the number of seconds since a
specifi c date, so libraries that include methods for conversion of the e-mail and ISO 8601 formats to
this number are included in the imports. To simplify coding around the ISO 8601, a utility library
will be used (dateutil).

The signifi cance of BAD_TIME_HANDICAP is explained next, but fi rst take a look at the following
code:

import email.Utils
import dateutil.parser
import time

BAD_TIME_HANDICAP = 43200

feed.py

The Feed class in the following code is initialized with a list called items to hold individual items
found in a feed, and a string called title to hold the title of the feed (with the title initialized to an
empty string):

class Feed:
 “”” Simple model of a syndication feed data file “””
 def __init__(self):
“”” Initialize storage “””
 self.items = []
 self.title = “

Available for
download on
Wrox.com

c13.indd 512c13.indd 512 05/06/12 5:58 PM05/06/12 5:58 PM

http://Wrox.com

A Simple Aggregator ❘ 513

Although items are free-standing entities in a sense, they are initially derived from a specifi c feed,
which is refl ected in the code by having the Item instances created by the Feed class. The create_
item method creates an Item object and then passes the title of the feed to the Item object’s source
property. Once initialized in this way, the Item is added to the list of items maintained by the Feed
object like so:

def create_item(self):
 “”” Returns a new Item object “””
 item = Item()
 item.source = self.title
 self.items.append(item)
 return item

To make testing easier, the Feed object overrides the standard Python __str__ method to provide a
useful string representation of itself. All the method here does is run through each of the items in its
list and add the string representation of them to a combined string:

def __str__(self):
 “”” Custom ‘toString()’ method to pretty-print “””
 string =”
 for item in self.items:
 string.append(item.__str__())
 return string

The item class essentially wraps four properties that will be extracted from the XML: title,
content, source (the title of the feed it came from), and date. Each of these is maintained as an
instance variable, the values of the fi rst three being initialized to an empty string. It’s common to
encounter date values in feeds that aren’t well formatted, so it’s possible to initialize the date value
to the current time (given by time.time()). The only problem with this approach is that any items
with bad date values appear newer than all the others. As a little hack to prevent this without
excluding the items altogether, a handicap value is subtracted from the current time. At the start,
the constant BAD_TIME_HANDICAP was set to 43,200, represented here in seconds, which corresponds
to 12 hours, so any item with a bad date is considered 12 hours old, as shown here:

class Item:
 “”” Simple model of a single item within a syndication feed “””
 def __init__(self):
 “”” Initialize properties to defaults “””
 self.title = “
 self.content = “
 self.source = “
 self.date = time.time() - BAD_TIME_HANDICAP # seconds from the Epoch

The next two methods make up the setter for the value of the date. The fi rst, set_rfc2822_time,
uses methods from the e-mail utility library to convert a string (like Sat, 10 Apr 2004 21:13:28
PDT) to the number of seconds since 01/01/1970 (1081656808). Similarly, the set_w3cdtf_time
method converts an ISO 8601–compliant string (for example, 2004-04-10T21:13:28-00:00) into
seconds. The method call is a little convoluted, but it works! If either conversion fails, an error
message is printed, and the value of date remains at its initial (handicapped) value, as illustrated in
the following code:

c13.indd 513c13.indd 513 05/06/12 5:58 PM05/06/12 5:58 PM

514 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

def set_rfc2822_time(self, old_date):
 “”” Set email-format time “””
 try:
 temp = email.Utils.parsedate_tz(old_date)
 self.date = email.Utils.mktime_tz(temp)
 except ValueError:
 print “Bad date : \%s” \% (old_date)

 def set_w3cdtf_time(self, new_date):
 “”” Set web-format time “””
 try:
 self.date = time.mktime(dateutil.parser.parse(new_date).timetuple())

 except ValueError:
 print “Bad date : \%s” \% (new_date)

The get_formatted_date method uses the e-mail library again to convert the number of seconds
into a human-friendly form — for example, Sat, 10 Apr 2004 23:13:28 +0200 — as follows:

def get_formatted_date(self):
 “”” Returns human-readable date string “””
 return email.Utils.formatdate(self.date, True)
 # RFC 822 date, adjusted to local time

Like the Feed class, Item also has a custom — str — method to provide a nice representation of
the object. This is simply the title of the feed it came from and the title of the item itself, followed by
the content of the item and fi nally the date, as shown in the following code:

def __str__(self):
 “”” Custom ‘toString()’ method to pretty-print “””
 return (self.source + ‘ : ‘
 + self.title +’\n’
 + self.content + ‘\n’
 + self.get_formatted_date() + ‘\n’)

That’s how feeds and items are represented, and you will soon see the tastiest part of the code, the
SAX handler that builds Feed and Item objects based on what appears in the feed XML document.
This fi le (feed_handler.py) contains a single class, FeedHandler, which is a subclass of xlm.sax
.ContentHandler. An instance of this class is passed to the parser every time a feed document
is to be read; and as the parser encounters appropriate entities in the feed, three specifi c methods
are called automatically: startElementNS, characters, and endElementNS. The namespace-
enhanced versions of these methods are used because the elements in feeds can come from different
namespaces.

XML Markup Handler: FeedHandler

As a SAX parser runs through an XML document, events are triggered as different parts of the
markup are encountered. A set of methods are used to respond to (handle) these events. For your
feed reader, all the necessary methods will be contained in a single class, FeedHandler.

As discussed earlier, there isn’t much data structure in a feed to deal with — just the feed and
 contained items — but there is a complication not mentioned earlier. The <title> and <content>

c13.indd 514c13.indd 514 05/06/12 5:58 PM05/06/12 5:58 PM

A Simple Aggregator ❘ 515

elements of items may contain markup. This shouldn’t happen with RSS 1.0; the value of content:
encoded is enclosed in a CDATA section or the individual characters escaped as needed. However,
the parent RDF/XML specifi cation does describe XML Literals, and material found in the wild
often varies from the spec. In any case, the rich content model of Atom is designed to allow XML,
and the RSS 2.0 specifi cation is unclear on the issue, so markup should be expected. If the markup
is, for example, HTML 3.2 and isn’t escaped, the whole document won’t be well formed and by
defi nition won’t be XML — a different kettle of fi sh. However, if the markup is well-formed XML
(for example, XHTML), there will be a call to the SAX start and end element methods for each
element within the content.

The code in feed_handler.py will have an instance variable, state, to keep track of where the
parser is within an XML document’s structure. This variable can take the value of one of the three
constants. If its value is IN_ITEM, the parser is reading somewhere inside an element that corresponds
to an item. If its value is IN_CONTENT, the parser is somewhere inside an element that contains the
body content of the item. If neither of these is the case, the variable will have the value IN_NONE.

The code itself begins with imports from several libraries, including the SAX material you might
have expected as well as the regular expression library re and the codecs library, which contain
tools that are used for cleaning up the content data. The constant TRIM_LENGTH determines the
maximum amount of content text to include for each item. For demonstration purposes and to save
paper, this is set to a very low 100 characters. This constant is followed by the three alternative state
constants, as shown in the following code:

import xml.sax
import xml.sax.saxutils
import feed
import re
import codecs

Maximum length of item content
TRIM_LENGTH = 100

Parser state
IN_NONE = 0
IN_ITEM = 1
IN_CONTENT = 2

feed_handler.py

The content is stripped of markup, and a regular expression is provided to match any XML-like
tag (for example, <this>). However, if the content is HTML, it’s desirable to retain a little of the
original formatting, so another regular expression is used to recognize
 and <p> tags, which are
replaced with newline characters, as shown in the following code:

Regular expressions for cleaning data
TAG_PATTERN = re.compile(“<(.rt \n)+?>”)
NEWLINE_PATTERN = re.compile(“(<br.*>)rt(<p.*>)”)

The FeedHandler class itself begins by creating a new instance of the Feed class to hold whatever
data is extracted from the feed being parsed. The state variable begins with a value of IN_NONE,

Available for
download on
Wrox.com

c13.indd 515c13.indd 515 05/06/12 5:58 PM05/06/12 5:58 PM

http://Wrox.com

516 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

and an instance variable, text, is initialized to the empty string. The text variable is used to accu-
mulate text encountered between the element tags, as shown here:

Subclass from ContentHandler in order to gain default behaviors
class FeedHandler(xml.sax.ContentHandler):
 “”” Extracts data from feeds, in response to SAX events “””
def __init__(self):
 “Initialize feed object, interpreter state and content”
 self.feed = feed.Feed()
 self.state = IN_NONE
 self.text = “
 return

The next method, startElementNS, is called by the parser whenever an opening element tag is
encountered and receives values for the element name — the prefi x-qualifi ed name of the element
along with an object containing the element’s attributes. The name variable actually contains two
values (it’s a Python tuple): the namespace of the element and its local name. These values are
extracted into the separate namespace, localname strings. If the feed being read were RSS 1.0, a
<title> element would cause the method to be called with the values name = (‘http://purl
.org/rss/1.0/’, ‘title’), qname = ‘title’. (If the element uses a namespace prefi x, like
<dc:title>, the qname string includes that prefi x, such as dc:title in this case.) In this simple
application the attributes aren’t used, but SAX makes them available as an NSAttributes object.

NOTE A tuple is an ordered set of values. A pair of geographic coordinates is

one example, an RDF triple is another. In Python, a tuple can be expressed as a

comma-separated list of values, usually surrounded by parentheses — for

 example, (1, 2, 3, “go”). In general, the values within tuples don’t have to

be of the same type. It’s common to talk of n-tuples, where n is the number of

values: (1, 2, 3, “go”) contains four values so it is a 4-tuple.

The startElementNS method determines whether the parser is inside content by checking whether
the state is IN_CONTENT. If this isn’t the case, the content accumulator text is emptied by setting
it to an empty string. If the name of the element is one of those that corresponds to an item in the
simple model (item or entry), a new item is created, and the state changes to refl ect the parser’s
position within an item block. The last check here tests whether the parser is already inside an item
block, and if it is, whether the element is one that corresponds to the content. The actual string com-
parison is done by a separate method to keep the code tidy, because several alternatives exist. If the
element name matches, the state is switched into IN_CONTENT, as shown in the following code:

def startElementNS(self, name, qname, attributes):
 “Identifies nature of element in feed (called by SAX parser)”
 (namespace, localname) = name

 if self.state != IN_CONTENT:
 self.text = “ # new element, not in content

c13.indd 516c13.indd 516 05/06/12 5:58 PM05/06/12 5:58 PM

http://purl.org/rss/1.0/
http://purl.org/rss/1.0/

A Simple Aggregator ❘ 517

 if localname == ‘item’ or localname == “entry”: # RSS or Atom
 self.current_item = self.feed.create_item()
 self.state = IN_ITEM
 return

 if self.state == IN_ITEM:
 if self.is_content_element(localname):
 self.state = IN_CONTENT
 return

The characters method merely adds any text encountered within the elements to the text accumu-
lator like so:

def characters(self, text):
 “Accumulates text (called by SAX parser)”
 self.text = self.text + text

The endElementNS method is called when the parser encounters a closing tag, such as </this>. It
receives the values of the element’s name and qname, and once again the name tuple is split into its
component namespace, localname parts. What follows are a lot of statements, which are condi-
tional based on the name of the element and/or the current state (which corresponds to the parser’s
position in the XML). This essentially carries out the matching rules between the different kinds of
elements that may be encountered in RSS 1.0, 2.0, or Atom, and the Item properties in the applica-
tion’s representation. You may want to refer to the table of near equivalents shown earlier, and the
examples of feed data to see why the choices are made where they are. Here is the endElementNS
method:

def endElementNS(self, name, qname):
 “Collects element content, switches state as appropriate
 (called by SAX parser)”
 (namespace, localname) = name

Now it is time to ask some questions:

 1. First, has the parser come to the end of an item? If so, revert to the IN_NONE state (otherwise
continue in the current state):

if localname == ‘item’ or localname == ‘entry’: # end of item
 self.state = IN_NONE
 return

 2. Next, are you in content? If so, is the tag the parser just encountered one of those classed as
the end of content? If both answers are yes, the content accumulated from characters in text
is cleaned up and passed to the current item object. Because it’s the end of content, the state
also needs shifting back down to IN_ITEM. Regardless of the answer to the second question,
if the fi rst answer is yes, you’re done here, as shown in the following code:

if self.state == IN_CONTENT:
 if self.is_content_element(localname): # end of content
 self.current_item.content = self.cleanup_text(self.text)
 self.state = IN_ITEM
 return

c13.indd 517c13.indd 517 05/06/12 5:58 PM05/06/12 5:58 PM

518 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

If you aren’t in content, the fl ow continues.

Now that the content is out of the way, with its possible nested elements, the rest of the text that
makes it this far represents the simple content of an element. You can clean it up, as outlined in the
following code:

cleanup text - we probably want it
 text = self.cleanup_text(self.text)

At this point, if the parser isn’t within an item block and the element name is title, what you have
here is the title of the feed. Pass it on as follows:

if self.state != IN_ITEM: # feed title
 if localname == “title”:
 self.feed.title = self.text
 return

The parser must now be within an item block thanks to the last choice, so if there’s a title element
here, it must refer to the item. Pass that on too:

 if localname == “title”:
 self.current_item.title = text
 return

Now you get to the tricky issue of dates. If the parser fi nds an RSS 1.0 date (dc:date) or an Atom
date (atom:updated), it will be in ISO 8601 format, so you need to pass it to the item through the
appropriate converter:

 if localname == “date” or localname == “updated”:
 self.current_item.set_w3cdtf_time(text)
 return

RSS 2.0 and most of its relatives use a pubDate element in RFC 2822 e-mail format, so pass that
through the appropriate converter as shown here:

 if localname == “pubDate”:
 self.current_item.set_rfc2822_time(text)
 return

These last few snippets of code have been checking the SAX parser’s position within the feed docu-
ment structure, and depending on that position applying different processes to the content it fi nds.

Helper Methods

The rest of feed_handler.py is devoted to little utility or helper methods that wrap up blocks of
functionality, separating some of the processing from the fl ow logic found in the preceding code.
The fi rst helper method, is_content_element, which checks the alternatives to determine
whether the local name of the element corresponds to that of an item like so:

def is_content_element(self, localname):
 “Checks if element may contain item/entry content”
 return (localname == “description” or # most RSS x.x

c13.indd 518c13.indd 518 05/06/12 5:58 PM05/06/12 5:58 PM

A Simple Aggregator ❘ 519

 localname == “encoded” or # RSS 1.0 content:encoded
 localname == “body” or # RSS 2.0 xhtml:body
 localname == “content”) # Atom

feed_handler.py

The next three methods are related to tidying up text nodes (which may include escaped markup)
found within the content. Cleaning up the text begins by stripping whitespace from each end. This
is more important than it might seem, because depending on the layout of the feed data there may
be a host of newlines and tabs to make the feed look nice, but which only get in the way of the
content. These unnecessary newlines should be replaced by a single space.

Next, a utility method, unescape, in the SAX library is used to unescape characters such as
<this> to <this>. This is followed by a class to another helper method, process_tags,
to do a little more stripping. If this application used a browser to view the content, this step
wouldn’t be needed (or even desirable), but markup displayed to the console just looks bad, and
 hyperlinks <a> won’t work.

The next piece of cleaning is a little controversial. The content delivered in feeds can be Unicode,
with characters from any international character set, but most consoles are ill prepared to display
such material. The standard string encode method is used to fl atten everything down to plain old
ASCII. This is rather drastic, and there may well be characters that don’t fi t in this small character
set. The second value determines what should happen in this case — possible values are strict
(default), ignore, or replace. The replace alternative swaps the character for a question mark,
hardly improving legibility. The strict option throws an error whenever a character won’t fi t, and
it’s not really appropriate here either. The third option, ignore, simply leaves out any characters
that can’t be correctly represented in the chosen ASCII encoding. The following code shows the
sequence of method calls used to make the text more presentable:

 def cleanup_text(self, text):
 “Strips material that won’t look good in plain text”
 text = text.strip()
 text = text.replace(‘\n’, ‘ ‘)
 text = xml.sax.saxutils.unescape(text)
 text = self.process_tags(text)
 text = text.encode(‘ascii’,’ignore’)
 text = self.trim(text)
 return text

The process_tags method (called from cleanup_text) uses regular expressions to fi rst replace
any
 or <p> tags in the content with newline characters, and then to replace any remaining tags
with a single space character:

 def process_tags(self, string):
 “”” Turns
 into \n then removes all <tags> “””
 re.sub(NEWLINE_PATTERN, ‘\n’, string)
 return re.sub(TAG_PATTERN, ‘ ‘, string)

The cleaning done by the last method in the FeedHandler class is really a matter of taste. The
amount of text found in each post varies greatly between different sources. You may not want to
read whole essays through your newsreader, so the trim method cuts the string length down to a

c13.indd 519c13.indd 519 05/06/12 5:58 PM05/06/12 5:58 PM

520 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

preset size determined by the TRIM_LENGTH constant. However, just counting characters and chop-
ping when the desired length has been reached results in some words being cut in half, so this
method looks for the fi rst space character in the text after the TRIM_LENGTH index and cuts there.
If there aren’t any spaces in between that index and the end of the text, the method chops anyway.
Other strategies are possible, such as looking for paragraph breaks and cutting there. Although it’s
fairly crude, the result is quite effective. The code that does the trimming is as follows:

 def trim(self, text):
 “Trim string length neatly”
 end_space = text.find(‘ ‘, TRIM_LENGTH)
 if end_space != -1:
text = text[:end_space] + “ ...”
 else:
 text = text[:TRIM_LENGTH] # hard cut
 return text

That’s it, the whole of the aggregator application. There isn’t a lot of code, largely thanks to librar-
ies taking care of the details. Now, with your code in place you can try it out.

TRY IT OUT Running the Aggregator

To run the code, you need to have Python installed (see the steps at the beginning of the
Implementation section previously) and be connected to the Internet. There is one additional depen-
dency, the dateutil library. Download this from http://pypi.python.org/pypi/python-dateutil
and followed the installation instructions for your particular operating system. (The easiest, though
not the most elegant way of installing this, is to copy the whole dateutil directory from the download
into your code directory).

1. Open a command prompt window, and change directory to the folder containing the source fi les.

2. Type the following:

 python feed_reader.py

3. An alternative way to run the code is to use IDLE, a very simple IDE with a syntax-coloring editor
and various debugging aids. Start IDLE by double-clicking its icon and then using its File menu,
opening the feed_reader.py fi le in a new window. Pressing the F5 key when the code is in the
editor window runs the application.

4. Run the application in you preferred manner. Whichever way you choose, you should see some-
thing like this:

$ python feed_reader.py

Reading http://www.fromoldbooks.org/rss.xml : 20 items

Reading
http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss : 10 items

Reading http://journal.dajobe.org/journal/index.rdf : 10 items

Reading http://planetrdf.com/index.rdf : 27 items

c13.indd 520c13.indd 520 05/06/12 5:58 PM05/06/12 5:58 PM

http://pypi.python.org/pypi/python-dateutil
http://www.fromoldbooks.org/rss.xml
http://www.25hoursaday.com/weblog/SyndicationService.asmx/GetRss
http://journal.dajobe.org/journal/index.rdf
http://planetrdf.com/index.rdf

A Simple Aggregator ❘ 521

*** Newest 5 Items ***
Words and Pictures From Old Books : Strange and Fantastical
Creatures, from Buch der Natur [Book of Nature] (1481), added on 13th Feb 20

 I cannot read the text (it’s in medieval German), so
these descriptions are arbitrary; I’d ...

liam@holoweb.net (Liam Quin)

Mon, 13 Feb 2012 10:15:00 +0100

Dare Obasanjo aka Carnage4Life : Some Thoughts on Address Book
Privacy and Hashing as an Alternative to Gathering Raw Email Addresses

 If you hang around technology blogs and news sites, you may have seen the
recent dust up after it was ...

Sun, 12 Feb 2012 21:29:28 +0100

... plus another three items.

How It Works

You’ve already seen the details of how this works, but here are the main points:

 ➤ A list of feed addresses is loaded from a text fi le.

 ➤ Each of the addresses is visited in turn, and the data is passed to a SAX handler.

 ➤ The handler creates objects corresponding to the feed and items within the feed.

 ➤ The individual items from all feeds are combined into a single list and sorted.

 ➤ The items are printed in the command window.

Extending the Aggregator

You could do a thousand and one things to improve this application, but whatever enhancement
is made to the processing or user interface, you are still dependent on the material pumped out to
feeds. XML is defi ned by its acronym as extensible, which means that elements outside of the core
language can be included with the aid of XML namespaces. According to the underlying XML
namespaces specifi cation, producers can potentially put material from other namespaces pretty
much where they like, but this isn’t as simple as it sounds because consumers have to know what to
do with them. So far, two approaches have been taken toward extensibility in syndication:

 ➤ RSS 2.0 leaves the specifi cation of extensions entirely up to developers. This sounds desir-
able but has signifi cant drawbacks because nothing within the specifi cation indicates how
an element from an extension relates to other elements in a feed. One drawback is that each
extension appears like a completely custom application, needing all-new code at both the
producer and consumer ends. Another drawback is that without full cooperation between
developers, there’s no way of guaranteeing that the two extensions will work together.

c13.indd 521c13.indd 521 05/06/12 5:58 PM05/06/12 5:58 PM

mailto:liam@holoweb.net

522 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

 ➤ The RSS 1.0 approach is to fall back on RDF, specifi cally the structural interpretation of
RDF/XML. The structure in which elements and attributes appear within an RDF/XML
document gives an unambiguous interpretation according to the RDF model, irrespective of
the namespaces. You can tell that certain elements/attributes correspond to resources, and
that others correspond to relationships between those resources. The advantage here is that
much of the lower-level code for dealing with feed data can be reused across extensions,
because the basic interpretation will be the same. It also means that independently devel-
oped extensions for RSS 1.0 are automatically compatible with each other.

Atom takes a compromise approach to extensions, through the specifi cation of two constructs: Simple
Extension Elements and Structured Extension Elements. The Structured Extension Element provides
something similar to the extensibility of RSS 2.0, in that a block of XML that is in a foreign (that is,
not Atom) namespace relies on the defi nition of the extension for interpretation (or to be ignored).
Unlike RSS 2.0, some restrictions exist on where such a block of markup may appear in the feed, but
otherwise it’s open-ended. The Simple Extension Element provides something similar to the extensi-
bility of RSS 1.0 in that it is interpreted as a property of its enclosing element, as shown here:

<feed xmlns=”http://www.w3.org/2005/Atom”
 xmlns:im=”http://example.org/im/”>
...
 <author>
 <name>John Smith</name>
 <im:nickname>smiffy</im:nickname>
 </author>
...
</feed>

The Simple Extension Element, <im:nickname> here, must be in a foreign namespace. The
namespace (http://example.org/im/ with prefi x im:) is given in this example on the root <feed>
element, although following XML conventions it could be specifi ed in any of the ancestor elements of
the extension element, or even on the extension element itself. A Simple Extension Element can’t have
any child nodes, except for a mandatory text node that provides the value of the property, so this
example indicates that the author has a property called im:nickname with the value “smiffy”.

To give you an idea of how you might incorporate support for extensions in the tools you build, here
is a simple practical example for the demo application. As mentioned at the start of this chapter, a
growing class of tools takes material from one feed (or site) and quotes it directly in another feed (or
site). Of particular relevance here are online aggregators, such as the “Planet” sites: Planet Gnome,
Planet Debian, Planet RDF, and so on. These are blog–like sites, the posts of which come directly
from the syndication feeds of existing blogs or news sites. They each have syndication feeds of
their own. You may want to take a moment to look at Planet RDF: the human-readable site is at
http://planetrdf.com, and it has an RSS 1.0 feed at http://planetrdf.com/index.rdf. The
main page contains a list of the source feeds from which the system aggregates. The RSS is very
much like regular feeds, except the developers behind it played nice and included a reference back to
the original site from which the material came. This appears in the feed as a per-item element from
the Dublin Core vocabulary, as shown in the following:

...
<dc:source>Lost Boy by Leigh Dodds</dc:source>
...

c13.indd 522c13.indd 522 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.w3.org/2005/Atom
http://example.org/im/
http://example.org/im/
http://planetrdf.com
http://planetrdf.com/index.rdf

A Simple Aggregator ❘ 523

The text inside this element is the title of the feed from which the item was extracted. It’s pretty
easy to capture this in the aggregator described here. To include the material from this element in
the aggregated display, two things are needed: a way to extract the data from the feed and a suitable
place to put it in the display.

Like the other elements the application uses, the local name of the element is enough to recognize it.
It is certainly possible to have a naming clash on “source,” though it’s unlikely. This element is used
to describe an item, and the code already has a way to handle this kind of information. Additionally,
the code picks out the immediate source of the item (the title of the feed from whence it came) and
uses this in the title line of the displayed results. All that is needed is another conditional, inserted at
the appropriate point, and the source information can be added to the title line of the results.

In the following activity you see how such an extension can be supported by your feed reader appli-
cation with a minor addition to the code.

TRY IT OUT Extending Aggregator Element Handling

This is a very simple example, but it demonstrates how straightforward it can be to make aggregator
behavior more interesting:

1. Open the fi le feed_handler.py in a text editor.

2. At the end of the endElementNS method, insert the following code:

...
 if localname == “pubDate”:
 self.current_item.set_rfc2822_time(text)
 return

if localname == “source”:

 self.current_item.source = ‘(‘+self.current_item.source+’) ‘+text
 return
 def is_content_element(self, localname):
 “Checks if element may contain item/entry content”
...

3. Run the application again (see the previous Try It Out).

How It Works

Among the items that the aggregator shows you, you should see something like this:

 (Planet RDF) Tim Berners-Lee : Reinventing HTML
 Making standards is hard work. It’s hard because it involves listening
to other people and figuring ...
Tim Berners-Lee
Fri, 27 Oct 2006 23:14:10 +0200

The name of the aggregated feed from which the item has been extracted is in parentheses (Planet
RDF), followed by the title of the original feed from which it came.

c13.indd 523c13.indd 523 05/06/12 5:58 PM05/06/12 5:58 PM

524 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

TRANSFORMING RSS WITH XSLT

Because syndicated feeds are usually XML, you can process them using XSLT directly (turn to
Chapter 8, "XSLT" for more on XSLT). Here are three common situations in which you might want
to do this:

 ➤ Generating a feed from existing data

 ➤ Processing feed data for display

 ➤ Browser Processing

 ➤ Preprocessing feed data for other purposes

The fi rst situation assumes you have some XML available for transformation, although because this
could be XHTML from cleaned-up HTML, it isn’t a major assumption. The other two situations
are similar to each other, taking syndication feed XML as input. The difference is that the desired
output of the second is likely to be something suitable for immediate rendering, whereas the third
situation translates data into a format appropriate for subsequent processing.

Generating a Feed from Existing Data

One additional application worth mentioning is that an XSLT transformation can be used to gener-
ate other feed formats when only one is available. If your blogging software produces only RSS 1.0,
a standard transformation can provide your site with feeds for Atom and RSS 2.0. A web search will
provide you with several examples (names like rss2rdf.xsl are popular!).

Be warned that the different formats may carry different amounts of information. For example,
in RSS 2.0 most elements are optional, in Atom most elements are mandatory, virtually anything
can appear in RSS 1.0, and there isn’t one-to-one correspondence of many elements. Therefore, a
conversion from one to the other may be lossy, or may demand that you artifi cially create values
for elements. For demonstration purposes, the examples here use only RSS 2.0, a particularly unde-
manding specifi cation for the publisher.

Listing 13-3 XSLT transformation generates RSS from an XHTML document (xhtml2rss.xsl):

LISTING 13-3: xhtml2rss.xsl

<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:xhtml=”http://www.w3.org/1999/xhtml”>

<xsl:output method=”xml” indent=”yes”/>

<xsl:template match=”/xhtml:html”>
 <rss version=”2.0”>
 <channel>
 <description>This will not change</description>
 <link>http://example.org</link>
 <xsl:apply-templates />

Available for
download on
Wrox.com

c13.indd 524c13.indd 524 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/xhtml
http://example.org
http://Wrox.com

Transforming RSS with XSLT ❘ 525

 </channel>
 </rss>
</xsl:template>

<xsl:template match=”xhtml:title”>
 <title>
 <xsl:value-of select=”.” />
 </title>
</xsl:template>

<xsl:template match=”xhtml:body/xhtml:h1”>
 <item>
 <title>
 <xsl:value-of select=”.” />
 </title>
 <description>
 <xsl:value-of select=”following-sibling::xhtml:p” />
 </description>
 </item>
</xsl:template>

<xsl:template match=”text()” />

</xsl:stylesheet>

This code can now be applied to your XHTML documents, as you will now see.

TRY IT OUT Generating RSS from XHTML

Chapter 8 contains more detailed information about how to apply an XSLT transformation to an XML
document, but for convenience the main steps are as follows:

1. Open a text editor and type in Listing 13-3.

2. Save the fi le as xhtml2rss.xsl.

3. Type the following into the text editor:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>My Example Document</title>
 </head>
 <body>
 <h1>A fi rst discussion point</h1>
 <p>Something related to the fi rst point.</p>
 <h1>A second discussion point</h1>
 <p>Something related to the second point.</p>
 </body>
</html>

document.html

Available for
download on
Wrox.com

c13.indd 525c13.indd 525 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://Wrox.com

526 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

4. Save the preceding code as document.html in the same folder as xhtml2rss.xsl.

5. Use an XSLT processor to apply the transformation to the document. Refer to Chapter 8 for
details describing how to do this. A suitable processor is Saxon, available from http://saxon.
sourceforge.net/.

The command line for Saxon with saxon9he.jar and the data and XSLT fi le in the same
folder is as follows:

java -jar saxon9he.jar -s:document.html -xsl:xhtml2rss.xsl -o:document.rss

You will see a warning about “Running an XSLT 1 stylesheet with an XSLT 2 processor” — this
can be ignored.

6. Open the newly created document.rss in the text editor. You should see the following RSS 2.0
document:

<?xml version=”1.0” encoding=”UTF-8”?>
<rss version=”2.0” xmlns:xhtml=”http://www.w3.org/1999/xhtml”>
 <channel>
 <description>This will not change</description>
 <link>http://example.org</link>
 <title>My Example Document</title>
 <item>
 <title>A fi rst discussion point</title>
 <description>Something related to the fi rst point.</description>
 </item>
 <item>
 <title>A second discussion point</title>
 <description>Something related to the second point.</description>
 </item>
 </channel>
</rss>

How It Works

The root element of the style sheet declares the prefi xes for the required namespaces, xsl: and xhtml:.
The output element is set to deliver indented XML:

<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:xhtml=”http://www.w3.org/1999/xhtml”>

<xsl:output method=”xml” indent=”yes”/>

The fi rst template in the XSLT is designed to match the root html element of the XHTML document.
In that document, the XHTML namespace is declared as the default, but in the style sheet it’s neces-
sary to refer explicitly to the elements using the xhtml: prefi x to avoid confl icts with the no-namespace
RSS. The template looks like this:

<xsl:template match=”/xhtml:html”>
 <rss version=”2.0”>
 <channel>

c13.indd 526c13.indd 526 05/06/12 5:58 PM05/06/12 5:58 PM

http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://www.w3.org/1999/xhtml
http://example.org
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/xhtml

Transforming RSS with XSLT ❘ 527

 <description>This will not change</description>
 <link>http://example.org</link>
 <xsl:apply-templates />
 </channel>
 </rss>
</xsl:template>

This will output the rss and channel start tags followed by preset description and link elements,
and then it applies the rest of the templates to whatever is inside the root xhtml:html element. The
template then closes the channel and rss elements.

The next template is set up to match any xhtml:title elements like so:

<xsl:template match=”xhtml:title”>
 <title>
 <xsl:value-of select=”.” />
 </title>
</xsl:template>

There is just one matching element in the XHTML document, which contains the text My exam-
ple document. This is selected and placed in a title element. Note that the input element is in the
XHTML namespace, and the output has no namespace, to correspond to the RSS 2.0 specifi cation.

The next template is a little more complicated. The material in the source XHTML document is consid-
ered to correspond to an item of the form:

<h1>Item Title</h1>
 <p>Item Description</p>

To pick these blocks out, the style sheet matches on xhtml:h1 elements contained in an xhtml:body, as
shown here:

<xsl:template match=”xhtml:body/xhtml:h1”>
 <item>
 <title>
 <xsl:value-of select=”.” />
 </title>
 <description>
 <xsl:value-of select=”following-sibling::xhtml:p” />
 </description>
 </item>
</xsl:template>

An outer no-namespace <item> element wraps everything produced in this template. It contains a
<title> element, which is given the content of whatever’s in the context node, which is the xhtml:h1
element. Therefore, the header text is passed into the item’s title element. Next, the content for the
RSS <description> element is extracted by using the following-sibling::xhtml:p selector. This
addresses the next xhtml:p element after the xhtml:h1.

The fi nal template is needed to mop up any text not directly covered by the other elements, which
would otherwise appear in the output:

<xsl:template match=”text()” />
</xsl:stylesheet>

c13.indd 527c13.indd 527 05/06/12 5:58 PM05/06/12 5:58 PM

http://example.org

528 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

If the authoring of the original XHTML is under your control, you can take more control over
the conversion process. You can add markers to the document to indicate which parts correspond
to items, descriptions, and so on. This is the approach taken in the Atom microformat (http://
microformats.org/wiki/hatom) — for example, <div class=”hentry”>. This enables an Atom
feed to be generated from the XHTML and is likely to be convenient for CSS styling.

One fi nal point: although this general technique for generating a feed has a lot in common with
screen scraping techniques (which generally break when the page author makes a minor change to
the layout), it’s most useful when the authors of the original document are involved. The fact that
the source document is XML greatly expands the possibilities. Research is ongoing into methods of
embedding more general metadata in XHTML and other XML documents, with recent proposals
available at the following sites:

 ➤ http://microformats.org (microformats)

 ➤ www.w3.org/2004/01/rdxh/spec (Gleaning Resource Descriptions from Dialects of
Languages, or GRDDL)

Processing Feed Data for Display

What better way to follow a demonstration of XHTML-to-RSS conversion than an RSS-to-XHTML
style sheet? This isn’t quite as perverse as it may sound — it’s useful to be able to render your own
feed for browser viewing, and this conversion offers a simple way to view other people’s feeds. Though
it is relatively straightforward to display material from someone else’s syndication feed on your own
site this way, it certainly isn’t a good idea without obtaining permission fi rst. Aside from copyright
issues, every time your page is loaded it will call the remote site, adding to its bandwidth load. You
have ways around this — basically, caching the data locally — but that’s beyond the scope of this
chapter (see for example http://stackoverflow.com/questions/ 3463383/php-rss-caching).

Generating XHTML from RSS isn’t very different from the other way around, as you can see in
Listing 13-4:

LISTING 13-4: rss2xhtml.xsl

<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns=”http://www.w3.org/1999/xhtml”>

Available for
download on
Wrox.com

NOTE The style sheet presented in the preceding Try It Out assumes the source

document will be well-formed XHTML, with a heading/paragraph structure fol-

lowing that of the example. In practice, the XSLT must be modifi ed to suit the

document structure. If the original document isn’t XHTML (it’s regular HTML 4,

for example), you can use a tool such as HTML Tidy (http://tidy.source-
forge.net/) to convert it before applying the transformation.

c13.indd 528c13.indd 528 05/06/12 5:58 PM05/06/12 5:58 PM

http://microformats.org/wiki/hatom
http://microformats.org/wiki/hatom
http://microformats.org
http://stackoverflow.com/questions/3463383/php-rss-caching
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/xhtml
http://tidy.sourceforge.\net/
http://tidy.sourceforge.\net/
http://www.w3.org/2004/01/rdxh/spec
http://Wrox.com

Transforming RSS with XSLT ❘ 529

<xsl:output method=”html” indent=”yes”/>
<xsl:template match=”rss”>
 <xsl:text disable-output-escaping=”yes”>
 \<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”\>
 </xsl:text>
 <html>
 <xsl:apply-templates />
 </html>
</xsl:template>

<xsl:template match=”channel”>
 <head>
 <title>
 <xsl:value-of select=”title” />
 </title>
 </head>
 <body>
 <xsl:apply-templates />
 </body>
</xsl:template>

<xsl:template match=”item”>
 <h1><xsl:value-of select=”title” /></h1>
 <p><xsl:value-of select=”description” /></p>
</xsl:template>

<xsl:template match=”text()” />

</xsl:stylesheet>

As you will now see, the same process can be used to make XHTML out of RSS that is used for
making RSS out of XHTML.

TRY IT OUT Generating XHTML from an RSS Feed

Once again for more details of using XSLT see Chapter 8, but this activity gives you the basic steps for
creating XHTML using an RSS Feed:

1. Enter Listing 13-4 into a text editor (or download it from the book’s website).

2. Save it as rss2xhtml.xsl in the same folder as document.rss.

3. Apply the style sheet to document.rss. The command line for Saxon with saxon9he.jar and the
data and XSLT fi le in the same folder is as follows:

java -jar saxon9he.jar -s:document.rss -xsl:rss2xhtml.xsl -o:document.html

4. Open the newly created document.html in the text editor. You should see the following XHTML
document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

 <head>

c13.indd 529c13.indd 529 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

530 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

 <title>My Example Document</title>
 </head>
 <body>
<h1>A fi rst discussion point</h1>
 <p>Something related to the fi rst point.</p>
 <h1>A second discussion point</h1>
 <p>Something related to the second point.</p>
 </body>
</html>

As you can see, it closely resembles the XHTML original (document.html) used to create the
RSS data.

How It Works

As in the previous style sheet, the namespaces in use are those of XSLT and XHTML. This time, how-
ever, the output method is html. The xml output method can be used to produce equally valid data
because XHTML is XML, but the syntax is a little tidier as shown in the following example (this is
likely to vary between XSLT processors):

<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns=”http://www.w3.org/1999/xhtml”>

<xsl:output method=”html” indent=”yes”/>

The fi rst template here matches the root <rss> element of the RSS 2.0 document. The template puts
in place an appropriate DOCTYPE declaration, which is wrapped in an xsl:text element with escaping
disabled to allow the end <...> characters to appear in the output without breaking this XML’s well-
formedness. The root element of the XHTML document is put in position, and the other templates are
applied to the rest of the feed data. Here is the fi rst template:

<xsl:template match=”rss”>
 <xsl:text disable-output-escaping=”yes”>
 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
 </xsl:text>
 <html>
 <xsl:apply-templates />
 </html>
</xsl:template>

The next template matches the <channel> element. This actually corresponds to two separate sec-
tions in the desired XHTML: the head and the body. All that’s needed in the head is the content of the
title element, which appears as an immediate child of channel. The material that must appear in the
body of the XHTML document is a little more complicated, so other templates are applied to sort that
out. Here, then, is the channel template:

<xsl:template match=”channel”>
 <head>
 <title>
 <xsl:value-of select=”title” />
 </title>

c13.indd 530c13.indd 530 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd%E2%80%9D>

Transforming RSS with XSLT ❘ 531

 </head>
 <body>
 <xsl:apply-templates />
 </body>
</xsl:template>

For each item element that appears in the feed, a pair of <h1> and <p> elements are created, corre-
sponding to the RSS <title> and <description>. Here is the template, and you can see how the con-
tent is transferred from the RSS kinds of elements to their XHTML mappings:

<xsl:template match=”item”>
 <h1><xsl:value-of select=”title” /></h1>
 <p><xsl:value-of select=”description” /></p>
</xsl:template>

Once more a utility template is included to mop up any stray text, before the closing xsl:stylesheet
element closes this document:

<xsl:template match=”text()” />

</xsl:stylesheet>

Browser Processing

A bonus feature of modern web browsers, such as Mozilla and IE, is that they have XSLT engines
built in. This means it’s possible to style a feed format document in the browser. All that’s needed is
an XML Processing Instruction that points toward the style sheet. This is very straightforward, as
shown here, modifying document.rss:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”rss2xhtml.xsl”?>
<rss version=”2.0”>
 <channel>
...

If you save this modifi ed version as document.xml and open it with your browser, you’ll see a ren-
dering that’s exactly the same as what you see with the XHTML version listed earlier.

NOTE Browsers aren’t that smart at fi guring out what kind of document they’re

being presented with, so when saved and loaded locally, the fi lename extension

has to be something the browser recognizes. If you try to load a fi le document.

rss into a browser, chances are good it will ask you where you want to save it.

When it comes to displaying XML (such as RSS and Atom) in a browser, the world’s your oyster —
you can generate XHTML using a style sheet, and the resulting document can be additionally styled
using CSS. There’s no real need for anyone to see raw XML in his or her browser. This is one reason
the Atom group has created the <info> element, which can be used along with client-side styling to
present an informative message about the feed alongside a human-readable rendering of the XML.

c13.indd 531c13.indd 531 05/06/12 5:58 PM05/06/12 5:58 PM

532 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

Preprocessing Feed Data

Another reason you might want to process feed data with XSLT is to interface easily with existing
systems. For example, if you wanted to store the feed items in a database, you can set up a transfor-
mation to extract the content from a feed and format it as SQL statements, as follows:

INSERT INTO feed-table
 VALUES (item-id, “This is the title”, “This is the item description”);

One particularly useful application of XSLT is to use transformation to “normalize” the data from
the various formats into a common representation, which can then be passed on to subsequent pro-
cessing. This is, in effect, the same technique used in the aggregator application just shown, except
there the normalization is to the application’s internal representation of a feed model.

A quick web search should yield something suitable for most requirements like this, or at least some-
thing that you can modify to fi t your specifi c needs. Two examples of existing work are Morten
Frederiksen’s anything-to-RSS 1.0 converter (http://purl.org/net/syndication/subscribe/
feed-rss1.0.xsl) and Aaron Straup Cope’s Atom-to-RSS 1.0 and 2.0 style sheets (www.aaron
land.info/xsl/atom/0.3/).

Reviewing the Diff erent Formats

A feed consumer must deal with at least three different syndication formats, and you may want to
build different subsystems to deal with each individually. Even when XSLT is available this can be
desirable, because no single feed model can really do justice to all the variations. How do you tell
what format a feed is? Following are the addresses of some syndication feeds:

http://news.bbc.co.uk/rss/newsonline_world_edition/front_page/rss091.xml
http://blogs.it/0100198/rss.xml
http://purl.org/net/morten/blog/feed/rdf/
http://swordfish.rdfweb.org/people/libby/rdfweb/webwho.xrdf
http://icite.net/blog/?flavor=atom\&smm=y

You might suppose a rough rule of thumb is to examine the fi lename; however, this is pretty unreli-
able for any format on the web. A marginally more reliable approach (and one that counts as good
practice against the web specifi cations) is to examine the MIME type of the data. A convenient way
of doing this is to use the wget command-line application to download the fi les (this is a standard
UNIX utility; a Windows version is available from http://unxutils.sourceforge.net/).

In use, wget looks like this:

D:\rss-samples>wget http://blogs.it/0100198/rss.xml
–16:23:35– http://blogs.it/0100198/rss.xml
 => ‘rss.xml’
Resolving blogs.it... 213.92.76.66
Connecting to blogs.it[213.92.76.66]:80... connected.
HTTP request sent, awaiting response... 200 OK

c13.indd 532c13.indd 532 05/06/12 5:58 PM05/06/12 5:58 PM

http://purl.org/net/syndication/subscribe/feed-rss1.0.xsl
http://purl.org/net/syndication/subscribe/feed-rss1.0.xsl
http://news.bbc.co.uk/rss/newsonline_world_edition/front_page/rss091.xml
http://blogs.it/0100198/rss.xml
http://purl.org/net/morten/blog/feed/rdf/
http://swordfish.rdfweb.org/people/libby/rdfweb/webwho.xrdf
http://icite.net/blog/?flavor=atom\&smm=y
http://unxutils.sourceforge.net/
http://blogs.it/0100198/rss.xml
http://blogs.it/0100198/rss.xml
http://www.aaronland.info/xsl/atom/0.3/
http://www.aaronland.info/xsl/atom/0.3/

Transforming RSS with XSLT ❘ 533

Length: 87,810 [text/xml]

100%[====================================>] 87,810 7.51K/s ETA 00:00

16:23:48 (7.91 KB/s) - ‘rss.xml’ saved [87810/87810]

It provides a lot of useful information: the IP address of the host called, the HTTP response (200
OK), the length of the fi le in bytes (87,810), and then the part of interest, [text/xml]. If you run
wget with each of the previous addresses, you can see the MIME types are as follows:

[application/atom+xml] http://news.bbc.co.uk/rss/
 newsonline_world_edition/front_page/rss091.xml
 [text/xml] http://blogs.it/0100198/rss.xml
[application/rdf+xml] http://purl.org/net/morten/blog/feed/rdf/
[text/plain] http://swordfish.rdfweb.org/people/libby/rdfweb/webwho.xrdf
[application/atom+xml] http://icite.net/blog/?flavor=atom\&smm=y

In addition to the preceding MIME types, it’s not uncommon to see application/rss+xml used,
although that has no offi cial standing.

However, this has still not helped determine what formats these are. The only reliable way to fi nd
out is to look inside the fi les and see what it says there (and even then it can be tricky). To do this
you run wget to get the previous fi les, and have a look inside with a text editor. Snipping off the
XML prolog (and irrelevant namespaces), the data fi les begin like this (this one is from http://
news.bbc.co.uk/rss/newsonline_world_edition/front_page/rss091.xml):

<rss version=”0.91”>
 <channel>
 <title>BBC News News Front Page World Edition</title>
...

This example is clearly RSS, fl agged by the root element. It even tells you that it’s version 0.91.
Here’s another from http://blogs.it/0100198/rss.xml:

<rss version=”2.0”>
<channel>
 <title>Marc’s Voice</title>
...

Again, a helpful root tells you this is RSS 2.0. Now here’s one from http://purl.org/
net/morten/blog/feed/rdf/:

<rdf:RDF xmlns=”
http://purl.org/rss/1.0/” xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>

<channel rdf:about=”http://purl.org/net/morten/blog/rdf”>
 <title>Binary Relations</title>
...

The rdf:RDF root suggests, and the rss:channel element confi rms, that this is RSS 1.0.
However, the following from http://swordfish.rdfweb.org/people/libby/rdfweb/webwho.
xrdf is a bit vaguer:

c13.indd 533c13.indd 533 05/06/12 5:58 PM05/06/12 5:58 PM

http://news.bbc.co.uk/rss/newsonline_world_edition/front_page/rss091.xml
http://news.bbc.co.uk/rss/newsonline_world_edition/front_page/rss091.xml
http://blogs.it/0100198/rss.xml
http://purl.org/net/morten/blog/feed/rdf/
http://swordfish.rdfweb.org/people/libby/rdfweb/webwho.xrdf
http://icite.net/blog/?flavor=atom\&smm=y
http://news.bbc.co.uk/rss/newsonline_world_edition/front_page/rss091.xml
http://news.bbc.co.uk/rss/newsonline_world_edition/front_page/rss091.xml
http://blogs.it/0100198/rss.xml
http://purl.org/net/morten/blog/feed/rdf/
http://purl.org/net/morten/blog/feed/rdf/
http://purl.org/rss/1.0/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/net/morten/blog/rdf
http://swordfish.rdfweb.org/people/libby/rdfweb/webwho

534 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

<rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:foaf=”http://xmlns.com/foaf/0.1/”>
...>

<rdf:Description rdf:about=””>
 <foaf:maker>
 <foaf:Person>
 <foaf:name>Libby Miller</foaf:name>
...

The rdf:RDF root and a lot of namespaces could indicate that this is RSS 1.0 using a bunch of
extension modules. You might have to go a long way through this fi le to be sure. The interchange-
ability of RDF vocabularies means that RSS 1.0 terms can crop up almost anywhere; whether or not
you want to count any document as a whole as a syndication feed is another matter. As it happens,
there aren’t any RSS elements in this particular fi le; it’s a FOAF (Friend-of-a-Friend) Personal Profi le
Document. It’s perfectly valid data; it’s just simply not a syndication feed as such.

Now for a last example from http://icite.net/blog/?flavor=atom\&smm=y:

<feed version=”0.3”
 xmlns=”http://purl.org/atom/ns#”
 xmlns:dc=”http://purl.org/dc/elements/1.1/”
 xml:lang=”en”>

 <title>the iCite net development blog</title>
...

The <feed> gives this away from the start: this is Atom. The version is only 0.3, but chances are
good it will make it to version 1.0 without changing that root element.

These examples were chosen because they are all good examples — that is to say, they conform to
their individual specifi cations. In the wild, things might get messy, but at least the preceding checks
give you a place to start.

USEFUL RESOURCES

Here’s a selection of some additional resources for further information on the topics discussed in
this chapter. The following sites are good specifi cations resources:

 ➤ RSS 1.0: http://purl.org/rss/1.0/spec

 ➤ RSS 2.0: http://blogs.law.harvard.edu/tech/rss

 ➤ Atom: www.ietf.org/rfc/rfc4287.txt

 ➤ Atom Wiki: www.intertwingly.net/wiki/pie/FrontPage

 ➤ RDF: www.w3.org/RDF/

c13.indd 534c13.indd 534 05/06/12 5:58 PM05/06/12 5:58 PM

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://xmlns.com/foaf/0.1/
http://icite.net/blog/?flavor=atom\&smm=y
http://purl.org/atom/ns#
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/spec
http://blogs.law.harvard.edu/tech/rss
http://www.ietf.org/rfc/rfc4287.txt
http://www.intertwingly.net/wiki/pie/FrontPage
http://www.w3.org/RDF/

Summary ❘ 535

These sites offer tutorials:

 ➤ rdf:about: www.rdfabout.com

 ➤ Atom Enabled: www.atomenabled.org

 ➤ Syndication Best Practices: www.ariadne.ac.uk/issue35/miller/

 ➤ The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About
Unicode and Character Sets (No Excuses!), by Joel Spolsky: www.joelonsoftware.com/
articles/Unicode.html

Some miscellaneous resources include the following:

 ➤ http://code.google.com/p/feedparser/

 ➤ Feed Validator: http://feedvalidator.org

 ➤ RDF Validator: www.w3.org/RDF/Validator/

 ➤ Dave Beckett’s RDF Resource Guide: www.ilrt.bris
.ac.uk/discovery/rdf/resources/

 ➤ RSS-DEV Mailing List: http://groups.yahoo.com/group/rss-dev/

SUMMARY

 ➤ Current ideas of content syndication grew out of “push” technologies and early meta
data efforts, the foundations laid by CDF and MCF followed by Netscape’s RSS 0.9 and
Scripting News format.

 ➤ The components of syndication systems carry out different roles: server-producer, client-
consumer, client-producer, and server-consumer.

 ➤ RSS 1.0 is based on RDF using the RDF/XML syntax.

 ➤ RSS 2.0 is now more prevalent and uses a simpler XML model.

 ➤ Atom is the most recent XML feed format and is designed according to known best
practices on the Web.

 ➤ Building an aggregator is straightforward using a standard programming language
(Python).

 ➤ XSLT transformations can be used to convert between RSS and another format (XHTML).

c13.indd 535c13.indd 535 05/06/12 5:58 PM05/06/12 5:58 PM

http://code.google.com/p/feedparser/
http://feedvalidator.org
http://groups.yahoo.com/group/rss-dev/
http://www.rdfabout.com
http://www.atomenabled.org
http://www.ariadne.ac.uk/issue35/miller/
http://www.joelonsoftware.com/
http://www.w3.org/RDF/Validator/
http://www.ilrt.bris.ac.uk/discovery/rdf/resources/
http://www.ilrt.bris.ac.uk/discovery/rdf/resources/

536 ❘ CHAPTER 13 RSS, ATOM, AND CONTENT SYNDICATION

EXERCISES

You can fi nd suggested solutions to these questions in Appendix A.

 1. At the end of the description of the simple Python aggregator, it was demonstrated how

relatively simple it is to extend the range of the elements covered, by adding support for

dc: source. Your fi rst challenge is to extend the application so that it also displays the author

of a feed entry, if that information is available.

 2. You saw toward the end of the chapter how the most common syndication formats show them-

selves, and earlier in the chapter you saw how it is possible to run an XSLT style sheet over RSS

feeds to produce an XHTML rendering. The exercise here is to apply the second technique to

the fi rst task. Try to write an XSLT transformation that indicates the format of the feed, together

with its title.

c13.indd 536c13.indd 536 05/06/12 5:58 PM05/06/12 5:58 PM

Summary ❘ 537

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

Syndication Syndication of web feeds is similar to syndication in traditional publish-

ing where a new item is added to the publication/feed.

XML feed formats For historical reasons, three diff erent formats are in common use: RSS

1.0, RSS 2.0, and Atom. Although the philosophy, style, and syntax of

each approach is diff erent, the data they carry is essentially the same.

RSS 1.0 characteristics RSS 1.0 is based on the RDF data model, with names for the elements

coming from diff erent vocabularies. It’s extremely versatile but at the

cost of complexity in its syntax.

RSS 2.0 characteristics RSS 2.0 is the simplest feed format and probably the most widely

deployed. However, its specifi cation is rather loose and somewhat

antiquated.

Atom characteristics Atom is a straightforward XML format but it has a very solid, modern

specifi cation.

Data quality There is considerable variation in the quality of feed data on the Web.

Software built to consume feeds should take this into consideration.

Syndication systems Syndication is, like the Web on which it operates, a client-server system.

However, individual components may act as publishers or consumers of

feed data. For example, an online aggregator will operate server-side,

but consume data from remote feeds.

Aggregation A common component of feed systems is the aggregator, which polls

diff erent feeds and merges the entries it fi nds into a single display

(and/or feed). Aggregators are relatively straightforward to build using

regular programming languages.

Transformation As the common feed formats are XML, standard XML tools such as

XSLT can be put to good use. (Although RSS 1.0 uses the RDF model,

the actual XML for feeds is simple enough that this still applies).

c13.indd 537c13.indd 537 05/06/12 5:58 PM05/06/12 5:58 PM

c13.indd 538c13.indd 538 05/06/12 5:58 PM05/06/12 5:58 PM

Web Services

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ What a Remote Procedure Call (RPC) is

 ➤ Which RPC protocols exist

 ➤ Why web services provides more fl exibility than previous RPC

Protocols

 ➤ How XML-RPC works

 ➤ Why most web services implementations should use HTTP as a

transport protocol

 ➤ How HTTP works under the hood

 ➤ How the specifi cations that surround web services fi t together

So far, you’ve learned what XML is, how to create well-formed and valid XML documents,
and you’ve even seen ways of programatically interfacing with XML documents. You also
learned that XML isn’t really a language on its own; it’s a meta language, to be used when cre-
ating other languages.

This chapter takes a slightly different turn. Rather than discuss XML itself, it covers an application
of XML: web services, which enable objects on one computer to call and make use of objects on
other computers. In other words, web services are a means of performing distributed computing.

WHAT IS AN RPC?

It is often necessary to design distributed systems, whereby the code to run an application is
spread across multiple computers. For example, to create a large transaction processing sys-
tem, you might have a separate server for business logic objects, one for presentation logic
objects, a database server, and so on, all of which need to talk to each other (see Figure 14-1).

14

c14.indd 539c14.indd 539 05/06/12 6:00 PM05/06/12 6:00 PM

540 ❘ CHAPTER 14 WEB SERVICES

For a model like this to work, code on one com-
puter needs to call code on another computer.
For example, the code in the web server might
need a list of orders for display on a web page,
in which case it would call code on the business
objects server to provide that list of orders. That
code, in turn, might need to talk to the data-
base. When code on one computer calls code on
another computer, this is called a remote proce-
dure call (RPC).

To make an RPC, you need to know the answer
to the following questions:

 ➤ Where does the code you want to call
reside? If you want to execute a par-
ticular piece of code, you need to know
where that code is!

 ➤ Does the code need any parameters? If
so, what type? For example, if you want
to call a remote procedure to add two
numbers, that procedure needs to know what numbers to add.

 ➤ Will the procedure return any data? If so, in what format? For example, a procedure to add
two numbers would return a third number, which would be the result of the calculation, but
some methods have no need to return a value.

In addition, you need to deal with networking issues, packaging any data for transport from com-
puter to computer, and a number of other issues. For this reason, a number of RPC protocols have
been developed.

Business ObjectsBusiness ObjectsBusiness Objects

Web Server

Database

FIGURE 14-1

NOTE A protocol is a set of rules that enables diff erent applications, or even

diff erent computers, to communicate. For example, TCP (Transmission Control

Protocol) and IP (Internet Protocol) are protocols that enable computers on the

Internet to talk to each other, because they specify rules regarding how data

should be passed, how computers are addressed, and so on.

These protocols specify how to provide an address for the remote computer, how to package data
to be sent to the remote procedures, how to retrieve a response, how to initiate the call, how to deal
with errors, and all of the other details that need to be addressed to enable multiple computers to
communicate with each other. (Such RPC protocols often piggyback on other protocols; for exam-
ple, an RPC protocol might specify that TCP/IP must be used as its network transport.)

c14.indd 540c14.indd 540 05/06/12 6:00 PM05/06/12 6:00 PM

RPC Protocols ❘ 541

RPC PROTOCOLS

Several protocols exist for performing remote procedure calls, but the most common are Distributed
Component Object Model (DCOM), Internet Inter-ORB Protocol (IIOP) and Java RMI (you will
learn more about these in the following sections). DCOM and IIOP are themselves extensions of
earlier technologies, namely COM and CORBA respectively. Each of these protocols provides the
functionality needed to perform remote procedure calls, although each has its drawbacks. The fol-
lowing sections discuss these protocols and those drawbacks, without providing too many technical
details.

COM and DCOM

Microsoft developed a technology called the Component Object Model, or COM (see http://www
.microsoft.com/com/default.mspx), to help facilitate component-based software, which is soft-
ware that can be broken down into smaller, separate components that can then be shared across an
application, or even across multiple applications. COM provides a standard way of writing objects
so they can be discovered at run time and used by any application running on the computer. In addi-
tion, COM objects are language independent. That means you can write a COM object in virtually
any programming language — C, C++, Visual Basic, and so on — and that object can talk to any
other COM object, even if it was written in a different language.

A good example of COM in action is Microsoft Offi ce. Because much of Offi ce’s functionality is
provided through COM objects, it is easy for one Offi ce application to make use of another.
For example, because Excel’s functionality is exposed through COM objects, you might create a
Word document that contains an embedded Excel spreadsheet.

However, this functionality is not limited to Offi ce applications; you could also write your own
application that makes use of Excel’s functionality to perform complex calculations, or that uses
Word’s spell-checking component. This enables you to write your applications faster, because you
don’t have to write the functionality for a spell-checking component or a complex math compo-
nent yourself. By extension, you could also write your own shareable components for use in others’
applications.

COM is a handy technology to use when creating reusable components, but it doesn’t tackle the
problem of distributed applications. For your application to make use of a COM object, that object
must reside on the same computer as your application. For this reason, Microsoft developed a
technology called Distributed COM, or DCOM. DCOM extends the COM programming model,
enabling applications to call COM objects that reside on remote computers. To an application, call-
ing a remote object from a server using DCOM is just as easy as calling a local object on the same
PC using COM — as long as the necessary confi guration has been done ahead of time.

DCOM therefore enables you to manipulate COM objects on one machine from another. A com-
mon use of this is seen when querying data sources that reside on different computers using SQL
Server’s distributed query mechanism. If you wish to make an update on one machine (only if you
have fi rst updated data on a second machine) then DCOM enables you to wrap both operations in a
transaction which can be either rolled back if any step of the operation fails or committed if all steps
are successful.

c14.indd 541c14.indd 541 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx

542 ❘ CHAPTER 14 WEB SERVICES

Nonetheless, as handy as COM and DCOM are for writing component-based software and
distributed applications, they have one major drawback: both of these technologies are Microsoft-
specifi c. The COM objects you write, or that you want to use, will work only on computers running
Microsoft Windows; and even though you can call remote objects over DCOM, those objects also
must be running on computers using Microsoft Windows.

NOTE DCOM implementations have been written for non-Microsoft operating

systems, but they haven’t been widely accepted. In practice, when someone

wants to develop a distributed application on non-Microsoft platforms, they use

one of the other RPC protocols.

For some people, this may not be a problem. For example, if you are developing an application
for your company and you have already standardized on Microsoft Windows for your employees,
using a Microsoft-specifi c technology might be fi ne. For others, however, this limitation means that
DCOM is not an option.

CORBA and IIOP

Prior even to Microsoft’s work on COM, the Object Management Group, or OMG (see www.omg
.org), developed a technology to solve the same problems that COM and DCOM try to solve,
but in a platform-neutral way. They called this technology the Common Object Request Broker
Architecture, or CORBA (see www.corba.org). As with COM, CORBA objects can be written in
virtually any programming language, and any CORBA object can talk to any other, even if it was
written in a different language. CORBA works similarly to COM, the main difference being who
supplies the underlying architecture for the technology.

For COM objects, the underlying COM functionality is provided by the operating system (Windows),
whereas with CORBA, an Object Request Broker (ORB) provides the underlying functionality (see
Figure 14-2). In fact, the processes for instantiating COM and CORBA objects are similar.

Returns pointer to object

Requests object

Instantiates object

COM object/
CORBA object

Operating System (COM)/
ORB (CORBA) Application

FIGURE 14-2

c14.indd 542c14.indd 542 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.omg.org
http://www.omg.org
http://www.corba.org

The New RPC Protocol: Web Services ❘ 543

Although the concepts are the same, using an ORB instead of the operating system to provide the
base object services offers one important advantage: it makes the CORBA platform independent.
Any vendor that creates an ORB can create versions for Windows, UNIX, Linux, Mac, and so on.

Furthermore, the OMG created the Internet Inter-ORB Protocol (IIOP), which enables commu-
nication between different ORBs. This means that you not only have platform independence, but
you also have ORB independence. You can combine ORBs from different vendors and have remote
objects talking to each other over IIOP (as long as you avoid any vendor-specifi c extensions to IIOP).

Neither COM nor CORBA are easy to work with, which dramatically reduced their acceptance
and take-up. Although COM classes are reasonably easy to use, and were the basis of thousands of
applications including Microsoft Offi ce, they are diffi cult to design and create. CORBA suffered
similar problems, and these diffi culties, as well as such scenarios as DLL hell in COM (mismatched
incompatible versions of libraries of a machine) led to the design of other techniques.

Java RMI

Both DCOM and IIOP provide similar functionality: a language-independent way to call objects
that reside on remote computers. IIOP goes a step further than DCOM, enabling components to run
on different platforms. However, a language already exists that is specifi cally designed to enable you
to write once, run anywhere: Java. (That was the theory; in practice it wasn’t that smooth and many
people complained that it was more like write once, debug everywhere.)

Java provides the Remote Method Invocation, or RMI, system (see http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-136424.html) for distributed computing. Because
Java objects can be run from any platform, the idea behind RMI is to just write everything in Java
and then have those objects communicate with each other.

Although Java can be used to write CORBA objects that can be called over IIOP, or even to write
COM objects using certain nonstandard Java language extensions, using RMI for distributed com-
puting can provide a shorter learning curve because the programmer isn’t required to learn about
CORBA and IIOP. All of the objects involved use the same programming language, so any data
types are simply the built-in Java data types, and Java exceptions can be used for error handling.
Finally, Java RMI can do one thing DCOM and IIOP can’t: it can transfer code with every call.
That is, even when the remote computer you’re calling doesn’t have the code it needs, you can send
it and still have the remote computer perform the processing.

The obvious drawback to Java RMI is that it ties the programmer to one programming language,
Java, for all of the objects in the distributed system.

THE NEW RPC PROTOCOL: WEB SERVICES

Because the Internet has become the platform on which the majority of applications run, or at least
partially run, it’s no surprise that a truly language- and platform-independent way of creating dis-
tributed applications would become the goal of software development. This aim has made itself
known in the form of web services.

c14.indd 543c14.indd 543 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

544 ❘ CHAPTER 14 WEB SERVICES

Web services are a means for requesting information or carrying out a processing task over the
Internet, but, as stated, they often involve the encoding of both the request and the response in
XML. Along with using standard Internet protocols for transport, this encoding makes messages
universally available. That means that a Perl program running on Linux can call a .NET program
running on Windows.NET, and nobody will be the wiser.

Of course, nothing’s ever quite that simple, especially when so many vendors, operating systems,
and programming languages exist. To make these web services available, there must be standards
so that everyone knows what information can be requested, how to request it, and what form
the response will take.

XML web services have two main designs that differ in their approach to how the request is made.
The fi rst technique, known as XML-RPC, mimics how traditional function calls are made because
the name of the method and individual parameters are wrapped in an XML format. The second ver-
sion uses a document approach. This simply specifi es that the service expects an XML document as
its input, the format of which is predefi ned, usually by an XML Schema. The service then processes
the document and carries out the necessary tasks.

The following sections look at XML-RPC, a simple form of web services. The discussion is then
extended to look at the more heavy-duty protocols and how they fi t together. The next chapter takes
a closer look at two of the most commonly used protocols: SOAP and WSDL.

One topic that needs to be discussed before either method though is what’s known as the Same
Origin policy.

The Same Origin Policy

One of the problems you may face when you want to use a web service from a browser arises
because, by default, a browser will not be able to access a web service that resides on a different
domain. For example, if your web page is accessed via http://www.myServer.com/customers
.aspx, it will not be allowed to make a web call to http://www.AnotherDomain.com. Ostensibly,
this means that you won’t be able to use the vast amount of web services that others have produced,
many of which are free, from your own pages. Fortunately, you have a number of ways to work
around the Same Origin policy.

NOTE The exact defi nition of a web service is one of those never-ending discus-

sions. Some would describe even a simple request for a standard web page as

an example. In this book, a web service is a service that accepts a request and

returns data or carries out a processing task. The data returned is normally for-

matted in a machine-readable form, without a focus on the content and the pre-

sentation, as you would expect in a standard web page. Another distinction is

that made between a service and an XML web service. The latter means that at

least one aspect, the request or the response, consists of XML. This chapter

mostly covers services that utilize XML to some extent while pointing out where

alternatives, such as JSON, could be adopted.

c14.indd 544c14.indd 544 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.myServer.com/customers.aspx
http://www.myServer.com/customers.aspx
http://www.AnotherDomain.com

The New RPC Protocol: Web Services ❘ 545

Using a Server-Side Proxy

The restriction on calling services from a different domain applies only to code running in the client’s
browser. This means that you can overcome the limitation by wrapping the service you want with one of
your own that runs on the same domain as the page you want to use it. Then, when you call a method
from your browser the request is passed to the service on your domain. This is, in turn, passed to the orig-
inal service, which returns the response to your proxy, which fi nally returns the data to the web browser.
It’s even often possible to create a generic proxy that can wrap many services with minimal confi guration.

A secondary benefi t of this sort of implementation is that you can often simplify the interface
exposed by the original service. For example, to use Google’s search service directly you need to
include a secret key with each request. With a proxy, this key can be stored in the proxy’s confi g
fi le and the web browser doesn’t need to know it. Additionally, the response from the service can be
massaged to make it easier to use from a browser; some services might return a lot of extra data that
is of no use, and this can be fi ltered out by the proxy.

In general, a server-side proxy gives you the most power, but it can be overkill in some cases. There
are a few other workarounds that may be preferable in other situations.

Using Script Blocks

Another way around the Same Origin policy is to take advantage of the fact that script blocks them-
selves are allowed to be pulled from a different domain. For example, to embed Google Analytics
code in your page you need to include a JavaScript block that has its src attribute pointing to
Google’s domain. You can use this facility to call simple web services that only need a GET request,
that is, they rely on the URL carrying any additional data in the querystring. For example, follow
these steps to get a service you may want to use to return the conversion rate for two currencies:

 1. Create a request that contains the two denominations, such as:

http://www.Currency.com/converter.asmx?from=USD&to=GBP

 2. This returns the conversion factor to change U.S. dollars to British pounds. Instead of just a
number being returned, the following JavaScript snippet is sent back:

var conversionFactor = 0.638;

 3. Take advantage of this service by dynamically creating a <script> block like the following:

<script “type=text/javascript”
 src=”http://www.Currency.com/converter.asmx?from=USD&to=GBP”>
</script>

 4. The web service then effectively adds the code shown earlier so that now, in your page, is a
block like this:

<script type= “text/javascript”
 src=”http://www.Currency.com/converter.asmx?from=USD&to=GBP”>
var conversionFactor = 0.638;
</script>

c14.indd 545c14.indd 545 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.Currency.com/converter.asmx?from=USD&to=GBP
http://www.Currency.com/converter.asmx?from=USD&to=GBP
http://www.Currency.com/converter.asmx?from=USD&to=GBP

546 ❘ CHAPTER 14 WEB SERVICES

You can now use the variable conversionFactor to turn any amount of dollars into pounds.

This process has been formalized and is known as JSONP. The technique is virtually identical,
except that in JSONP the results are accessed via a function rather than a variable — for example,
getConversionFactor() — and the data is in a JSON format. Helper methods are available to sim-
plify the whole process in many client-side libraries; jQuery, for instance, makes the whole process
very simple.

NOTE JSON and JSONP are outside the scope of this chapter. If you want to

learn more, there is simple introduction at the W3C’s site: http://www

.w3resource.com/JSON/JSONP.php.

Allowing Diff erent Domain Requests from the Server

You can call a service on a different domain in a few other ways that all have one thing in common:
the server must be confi gured to allow such connections. Internet Explorer, from version 8 onward,
has a native object called XDomainRequest that works in a similar manner to the more familiar
XMLHttpRequest that is available in all modern browsers. The difference is that it enables
cross-domain requests if the server that hosts the service includes a special heading, named
Access-Control-Allow-Origin, to the browser’s initial request that contains the domain name
of the request. There are various ways to confi gure this header; you can fi nd more information on
usage at http://msdn.microsoft.com/en-us/library/dd573303(v=vs.85).aspx.

Another alternative to any of these workarounds in the Same Origin policy is to use Adobe’s Flash
component to make the request. Again, this plug-in can make cross-domain requests if the server
is confi gured with a cross-domain policy fi le. The full details are available at http://www.adobe
.com/devnet/articles/crossdomain_policy_file_spec.html.

Finally, Microsoft’s IIS web server enables you to add a cross-domain policy fi le similar to Adobe’s
version, but with more options that lets you service calls from other domains. This is primarily
intended to be used from Silverlight, a browser plug-in similar to Flash. You can fi nd the details
here: http://msdn.microsoft.com/en-us/scriptjunkie/gg624360.

Now that you’ve seen some of the hurdles in calling services on other domains, the next section
returns to the XML-RPC scenario.

Understanding XML-RPC

One of the easiest ways to see web services in action is to look at the XML-RPC protocol. Designed
to be simple, it provides a means for calling a remote procedure by specifying the procedure to call
and the parameters to pass. The client sends a command, encoded as XML, to the server, which
performs the remote procedure call and returns a response, also encoded as XML.

The protocol is simple, but the process — sending an XML request over the Web and getting back
an XML response — is the foundation of web services, so understanding how it works will help you
understand more complex protocols such as SOAP.

c14.indd 546c14.indd 546 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.w3resource.com/JSON/JSONP.php
http://www.w3resource.com/JSON/JSONP.php
http://msdn.microsoft.com/en-us/library/dd573303(v=vs.85).aspx
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://msdn.microsoft.com/en-us/scriptjunkie/gg624360

The New RPC Protocol: Web Services ❘ 547

To practice eliminating the need for cross-domain workarounds, you’ll use a service hosted on the
same domain as the client in the following activity. The service is a simple math one; two numbers
can be passed in, and an arithmetic operation performed on them. The service exposes two meth-
ods, which are identifi ed as MathService.Add and MathService.Subtract.

TRY IT OUT Using a Basic RPC Service

This Try It Out won’t go into the full details of creating the service, but it’s basically a web page that
accepts the request XML and parses it to extract the name of the method called and the two operands.
It then performs the relevant operation and returns the result as an XML document.

 1. An XML-RPC call simply wraps the required parameters in a standard form. The XML the ser-
vice needs looks like the following:

<methodCall>
 <methodName>MathService.Add</methodName>
 <params>
 <param>
 <value>
 <double>17</double>
 </value>
 </param>
 <param>
 <value>
 <double>29</double>
 </value>
 </param>
 </params>
</methodCall>

XML-RPC Demo

 2. Call the MathService.Add method and pass in two operands, 17 and 29. The function looks like
this:

 double result = Add(double operand1, double operand2)

 3. Alternatively, had the service been designed that way, you could pass the request using a structure
containing the operands like so:

<methodCall>
 <methodName>MathService.Add</methodName>
 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>Operand1</name>
 <value>
 <double>17</double>
 </value>

Available for
download on
Wrox.com

c14.indd 547c14.indd 547 05/06/12 6:00 PM05/06/12 6:00 PM

http://Wrox.com

548 ❘ CHAPTER 14 WEB SERVICES

 </member>
 <member>
 <name>Operand2</name>
 <value>
 <double>29</double>
 </value>
 </member>
 </struct>
 </value>
 </param>
 </params>
</methodCall>

For this example that method would have been over-complicated, but in some cases it is easier than
having a function with a large number of arguments.

How It Works
The structure of a response in XML-RPC is similar to the request. You can return one value using
a simple <param> element or a set of values using a <structure> element. The response from the
MathService.Add method looks like this:

<methodResponse>
 <params>
 <param>
 <value>
 <double>46</double>
 </value>
 </param>
 </params>
</methodResponse>

Before you use this information to create a client that uses an XML-RPC service, take a closer look
at what happens behind the scenes when you make a request and receive the response. The fi rst
thing to consider is how do you deliver the request?

Choosing a Network Transport

Generally, web services specifi cations enable you to use any network transport to send and receive
messages. For example, you could use IBM MQSeries or Microsoft Message Queue (MSMQ)
to send XML messages asynchronously over a queue, or even use SMTP to send messages via
e-mail. However, the most common protocol used is probably HTTP. In fact, the XML-RPC
specifi cation requires it, so that is what you concentrate on in this section.

HTTP

Many readers may already be somewhat familiar with the HTTP protocol, because it is used almost
every time you request a web page in your browser. Most web services implementations use HTTP
as their underlying protocol, so take a look at how it works under the hood.

c14.indd 548c14.indd 548 05/06/12 6:00 PM05/06/12 6:00 PM

The New RPC Protocol: Web Services ❘ 549

The Hypertext Transfer Protocol (HTTP) is a request/response protocol. This means that when you
make an HTTP request, at its most basic, the following steps occur:

 1. The client (in most cases, the browser) opens a connection to the HTTP server.

 2. The client sends a request to the server.

 3. The server performs some processing.

 4. The server sends back a response.

 5. The connection is closed.

An HTTP message contains two parts: a set of headers, followed by an optional body. The head-
ers are simply text, with each header separated from the next by a newline character, whereas the
body might be text or binary information. The body is separated from the headers by two newline
characters.

For example, suppose you attempt to load an HTML page, located at http://www.wiley.com/
WileyCDA/Section/index.html (Wiley’s homepage) into your browser, which in this case is
Internet Explorer 9.0. The browser sends a request similar to the following to the www.wiley.com
server:

GET /WileyCDA/Section/index.html HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Win32)
Host: www.wiley.com

NOTE Wiley uses your IP address to ascertain which country you are browsing

from, so, depending on your region, you may get diff erent results than those

shown here. The principles of HTTP are what matter here.

The fi rst line of your request specifi es the method to be performed by the HTTP server. HTTP
defi nes a few types of requests, but this code has specifi ed GET, indicating to the server that you
want the resource specifi ed, which in this case is /WileyCDA/Section/index.html. (Another com-
mon method is POST, covered in a moment.) This line also specifi es that you’re using the HTTP/1.1
version of the protocol. Several other headers are there as well, which specify to the web server a
few pieces of information about the browser, such as what types of information it can receive. Those
are as follows:

 ➤ Accept tells the server what MIME types this browser accepts — in this case, */*, meaning
any MIME types.

 ➤ Accept-Language tells the server what language this browser is using. Servers can poten-
tially use this information to customize the content returned. In this case, the browser is
specifying that it is the United States (us) dialect of the English (en) language.

c14.indd 549c14.indd 549 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.wiley.com/WileyCDA/Section/index.html
http://www.wiley.com/WileyCDA/Section/index.html
http://www.wiley.com
http://www.wiley.com

550 ❘ CHAPTER 14 WEB SERVICES

 ➤ Accept-Encoding specifi es to the server whether the content can be encoded before being
sent to the browser. In this case, the browser has specifi ed that it can accept documents
that are encoded using gzip or deflate. These technologies are used to compress the data,
which is then decompressed on the client.

For a GET request, there is no body in the HTTP message. In response, the server sends something
similar to the following:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Fri, 09 Dec 2011 14:30:52 GMT
Content-Type: text/html
Last-Modified: Thu, 08 Dec 2011 16:19:57 GMT
Content-Length: 98

<html>
<head><title>Hello world</title></head>
<body>
<p>Hello world</p>
</body>
</html>

Again, there is a set of HTTP headers, this time followed by the body. Obviously, the real Wiley
homepage is a little more complicated than this, but in this case, some of the headers sent by the
HTTP server were as follows:

 ➤ A status code, 200, indicating that the request was successful. The HTTP specifi cation
defi nes a number of valid status codes that can be sent in an HTTP response, such as the
famous (or infamous) 404 code, which means that the resource being requested could not be
found. You can fi nd a full list of status codes at http://www.w3.org/Protocols/rfc2616/
rfc2616-sec6.html#sec6.

 ➤ A Content-Type header, indicating what type of content is contained in the body of the
message. A client application (such as a web browser) uses this header to decide what to do
with the item; for example, if the content type were a .wav fi le, the browser might load an
external sound program to play it, or give the user the option of saving it to the hard drive
instead.

 ➤ A Content-Length header, which indicates the length of the body of the message.

There are many other possible headers but these three will always be included in the response. To
make the initial request you have a choice of methods (or verbs as they are often called). These verbs
offer ways to request content, send data, and delete resources from the web server.

The GET method is the most common HTTP method used in regular everyday surfi ng. The second
most common is the POST method. When you do a POST, information is sent to the HTTP server
in the body of the message. For example, when you fi ll out a form on a web page and click the
Submit button, the web browser will usually POST that information to the web server, which pro-
cesses it before sending back the results. Suppose you create an HTML page that includes a form
like this:

c14.indd 550c14.indd 550 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6

The New RPC Protocol: Web Services ❘ 551

<html>
<head>
<title>Test form</title>
</head>
<body>
<form action=”acceptform.aspx” method=”POST”>
 Enter your first name: <input name=”txtFirstName” />

 Enter your last name: <input name=”txtLastName” />

 <input type=“submit” />
</form>
</body>
</html>

This form will POST any information to a page called acceptform.aspx, in the same location as this
HTML fi le, similar to the following:

POST /acceptform.aspx HTTP/1.1
Accept: */*
Referer: http://www.wiley.com/myform.htm
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Win32)
Host: www.wiley.com
Content-Length: 36

txtFirstName=Joe&txtLastName=Fawcett

Whereas the GET method provides for basic surfi ng the Internet, it’s the POST method that enables
things like e-commerce, because information can be passed back and forth.

NOTE As you see later in the chapter, the GET method can also send informa-

tion by appending it to the URL, but in general, POST is used wherever possible.

Why Use HTTP for Web Services?

It was mentioned earlier that most web services implementations probably use HTTP as their trans-
port. Here are a few reasons why:

 ➤ HTTP is already a widely implemented, and well understood, protocol.

 ➤ The request/response paradigm lends itself well to RPC.

 ➤ Most fi rewalls are already confi gured to work with HTTP.

 ➤ HTTP makes it easy to build in security by using Secure Sockets Layer (SSL).

c14.indd 551c14.indd 551 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.wiley.com/myform.htm
http://www.wiley.com

552 ❘ CHAPTER 14 WEB SERVICES

HTTP is Widely Implemented

One of the primary reasons for the explosive growth of the Internet was the availability of the
World Wide Web, which runs over the HTTP protocol. Millions of web servers are in existence,
serving up HTML and other content over HTTP, and many, many companies use HTTP for
e-commerce.

HTTP is a relatively easy protocol to implement, which is one of the reasons why the Web works
as smoothly as it does. If HTTP had been hard to implement, a number of implementers would
have probably gotten it wrong, meaning some web browsers wouldn’t have worked with some web
servers.

Using HTTP for web services implementations is therefore easier than other network protocols
would have been. This is especially true because web services implementations can piggyback on
existing web servers — in other words, use their HTTP implementation. This means you don’t have
to worry about the HTTP implementation at all.

Request/Response Works with RPC

Typically, when a client makes an RPC call, it needs to receive some kind of response. For example,
if you make a call to the MathService.Add method, you need to get a result back or it wouldn’t
be a very useful procedure to call. In other instances, such as submitting a new blog post, you may
not need data returned from the RPC call, but you may still need confi rmation that the procedure
executed successfully. As a common example, an order to a back-end database may not require data
to be returned, but you should know whether the submission failed or succeeded.

HTTP’s request/response paradigm lends itself easily to this type of situation. For your
MathService.Add remote procedure, you must do the following:

 1. Open a connection to the server providing the XML-RPC service.

 2. Send the information, such as the operands and the arithmetic function needed.

 3. Process the data.

 4. Get back the result, including an error code if it didn’t work, or a result identifi er if it did.

 5. Close the connection.

In some cases, such as in the SOAP specifi cation, messages are one-way instead of two-way. This
means two separate messages must be sent: one from the client to the server with, say, numbers
to add, and one from the server back to the client with the result of the calculation. In most cases,
however, when a specifi cation requires the use of two one-way messages, it also specifi es that
when a request/response protocol such as HTTP is used, these two messages can be combined in
the request/response of the protocol.

HTTP is Firewall-Ready

Most companies protect themselves from outside hackers by placing a fi rewall between their inter-
nal systems and the external Internet. Firewalls are designed to protect a network by blocking
certain types of network traffi c. Most fi rewalls allow HTTP traffi c (the type of network traffi c that
would be generated by browsing the Web) but disallow other types of traffi c.

c14.indd 552c14.indd 552 05/06/12 6:00 PM05/06/12 6:00 PM

The New RPC Protocol: Web Services ❘ 553

These fi rewalls protect the company’s data, but they make it more diffi cult to provide web-based
services to the outside world. For example, consider a company selling goods over the Web. This
web-based service would need certain information, such as which items are available in stock, which
it would have to get from the company’s internal systems. To provide this service, the company
probably needs to create an environment such as the one shown in Figure 14-3.

Web Server

The Internet

Back-End Systems

Firewall 2Firewall 1

FIGURE 14-3

This is a very common confi guration, in which the web server is placed between two fi rewalls. (This
section, between the two fi rewalls, is often called a demilitarized zone, or DMZ.) Firewall 1 protects
the company’s internal systems and must be carefully confi gured to allow the proper communication
between the web server and the internal systems, without letting any other traffi c get through. Firewall
2 is confi gured to let traffi c through between the web server and the Internet, but no other traffi c.

This arrangement protects the company’s internal systems, but because of the complexity added
by these fi rewalls — especially for the communication between the web server and the back-end
servers — it makes it a bit more diffi cult for the developers creating this web-based service. However,
because fi rewalls are confi gured to let HTTP traffi c go through, it’s much easier to provide the
necessary functionality if all of the communication between the web server and the other servers uses
this protocol.

HTTP Security

Because there is already an existing security model for HTTP, the Secure Sockets Layer (SSL), it is
very easy to make transactions over HTTP secure. SSL encrypts traffi c as it passes over the Web to
protect it from prying eyes, so it’s perfect for web transactions, such as credit card orders. In fact,
SSL is so common that hardware accelerators are available to speed up SSL transactions.

c14.indd 553c14.indd 553 05/06/12 6:00 PM05/06/12 6:00 PM

554 ❘ CHAPTER 14 WEB SERVICES

Using HTTP for XML-RPC

Using HTTP for XML-RPC messages is very easy. You need to do only two things with the client:

 ➤ For the HTTP method, use POST.

 ➤ For the body of the message, include an XML document comprising the XML-RPC request.

For example, consider the following:

POST /RPC2 HTTP/1.1
Accept: */* Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.wiley.com
Content-Length: 180

<methodCall><methodName>MathService.Add</methodName><params>
<param><value><double>17</double></value></param>
<param><value><double>29</double></value></param>
</params></methodCall>

NOTE The request is broken across lines here for readability. In a real request

the body of the post is all on one line.

The headers defi ne the request, and the XML-RPC request makes up the body. The server knows
how to retrieve that body and process it. In the next chapter, you look at processing the actual
request, but for now you just send an XML-RPC request and process the response.

The following Try It Out shows how an XML-RPC service can be called from a simple web page
using HTTP’s POST method.

TRY IT OUT Using HTTP POST to Call Your RPC

This Try It Out concentrates on creating a web page that can be used to call an XML-RPC-style ser-
vice. The actual service is included in the code download and can be run under IIS, IIS Express, or the
built-in Visual Studio web server. The simplest option is to run the site using Visual Studio’s built-in
web server, which is the default option. This example doesn’t go into much detail about the service
itself, but it parses the incoming XML, executes the required method, and returns the result in an
XML format. The code download contains all the fi les you will need for this Try It Out, or you can
create the main page yourself as detailed in steps 1 to 3.

1. Create a new web page and add the following code to give a form that can accept two numbers
and provides a button for each method that the service exposes, namely MathService.Add and
MathService.Subtract:

c14.indd 554c14.indd 554 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.wiley.com

The New RPC Protocol: Web Services ❘ 555

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
 <title>XML-RPC Client</title>
 <!-- script will go here -->
</head>
<body>
<label for=”txtOperand1”>Operand 1:</label>
<input type=”text” id=”txtOperand1” />

<label for=”txtOperand2”>Operand 2:</label>
<input type=”text” id=”txtOperand2” />

<label for=”txtResult”>Result:</label>
<input type=”text” id=”txtResult” readonly=”readonly” />

<input type=”button” value=”Add” onclick=”doAdd();” />

<input type=”button” value=”Subtract” onclick=”doSubtract();” />

</body>
</html>

XML-RPC-Client.html

 2. You’ll be using jQuery to enable simplifi ed cross-browser posting capabilities. This also means
that you won’t refresh the whole page each time, but will make the calls as a background request
and just add the response to the txtResult box. Add the following line just after the document’s
<title> element to incorporate the jQuery library:

<head>
 <title>XML-RPC Client</title>
 <script type=”text/javascript”
 src=”http://code.jquery.com/jquery-1.6.4.js”></script>
 <!-- rest of script will go here -->
</head>

XML-RPC-Client.html

 3. Add the following code just beneath the jQuery library block that is called whenever one of the
two function buttons is pressed:

 <script type=”text/javascript”>

 function doAdd()
 {
 var response = callService(“MathService.Add”);
 }

 function doSubtract()
 {
 var response = callService(“MathService.Subtract”);
 }

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c14.indd 555c14.indd 555 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://code.jquery.com/jquery-1.6.4.js
http://Wrox.com
http://Wrox.com

556 ❘ CHAPTER 14 WEB SERVICES

 function callService(methodName)
 {
 $(“#txtResult”).val(“”);
 var operand1 = $(“#txtOperand1”).val();
 var operand2 = $(“#txtOperand2”).val();
 var request = getRequest(methodName, operand1, operand2);
 //alert(request);
 $.ajax({ url: “Service.aspx”,
 type: “post”,
 data: request,
 processData: false,
 contentType: “text/xml”,
 success: handleServiceResponse });
 }

 function getRequest(methodName, operand1, operand2)
 {
 var sRequest = “<methodCall>”
 + “<methodName>” + methodName + “</methodName>”
 + “<params>”
 + “<param><value><double>”
 + operand1
 + “</double></value></param>”
 + “<param><value><double>”
 + operand2
 + “</double></value></param>”
 + “</params>”
 + “</methodCall>”;
 return sRequest;
 }

 function handleServiceResponse(data, textStatus, jqXHR)
 {
 if (textStatus == “success”)
 {
 alert(jqXHR.responseText)
 var result = $(“[nodeName=double]”, jqXHR.responseXML).text();
 $(“#txtResult”).val(result);
 }
 else
 {
 alert(“Error retrieving web service response”);
 }
 }
 </script>

XML-RPC-Client.html

 4. Add the completed page to the MathService project folder inside the XML-RPC Demo solution.
Then, using Visual Studio, use File ➪ Open ➪ Web site... and browse to the MathService folder
and click OK. Set XML-RPC-Client.html as the start page (to do this right-click the page and
choose Set as start page). Press F5 to start the site.

 5. Test the form by entering two numbers and trying the Add or Subtract functions.

c14.indd 556c14.indd 556 05/06/12 6:00 PM05/06/12 6:00 PM

The New RPC Protocol: Web Services ❘ 557

How It Works
Once one of the two function buttons, Add or Subtract, has been clicked, callService() is invoked
and passed the name of the server-side function required. The callService() method is shown in the
following snippet:

 function callService(methodName)
 {
 $(“#txtResult”).val(“”);
 var operand1 = $(“#txtOperand1”).val();
 var operand2 = $(“#txtOperand2”).val();
 var request = getRequest(methodName, operand1, operand2);
 //alert(request);
 $.ajax({ url: “Service.aspx”,
 type: “post”,
 data: request,
 processData: false,
 contentType: “text/xml”,
 success: handleServiceResponse });
 }

Within callService() the txtResult element is cleared of any previous values, and then the two
operands are retrieved from their respective textboxes. Because this is a demo, there’s no code to make
sure that the values are actually numbers rather than alphabetic, something you’d need in a production
system.

Once the operands are known, a call is made to getRequest(), shown in the following snippet, which
uses a string template to create the XML document needed for the request:

 function getRequest(methodName, operand1, operand2)
 {
 var sRequest = “<methodCall>”
 + “<methodName>” + methodName + “</methodName>”
 + “<params>”
 + “<param><value><double>”
 + operand1
 + “</double></value></param>”
 + “<param><value><double>”
 + operand2
 + “</double></value></param>”
 + “</params>”
 + “</methodCall>”;
 return sRequest;
 }

Once the XML is created, the jQuery function ajax() is used to post this XML to the web service:

 $.ajax({ url: “Service.aspx”,
 type: “post”,
 data: request,
 processData: false,
 contentType: “text/xml”,
 success: handleServiceResponse });
 }

c14.indd 557c14.indd 557 05/06/12 6:00 PM05/06/12 6:00 PM

558 ❘ CHAPTER 14 WEB SERVICES

The different parameters passed are as follows:

 ➤ url: Contains the URL of the web service being called.

 ➤ type: Contains the type of HTML request, usually GET or POST.

 ➤ data: Contains the actual XML message.

 ➤ processData: Says whether the data needs conversion from the format it is in. In this case that’s
false, otherwise the XML would be escaped using < for <, and so on.

 ➤ contentType: The content type of the data being posted.

 ➤ success: Defi nes which function to use if the web call is successful. As stated before, the possibil-
ity of an error is ignored in this simplifi ed demo.

The web call is made asynchronously, and on returning the response is passed to the
handleServiceResponse() method:

 function handleServiceResponse(data, textStatus, jqXHR)
 {
 if (textStatus == “success”)
 {
 alert(jqXHR.responseText)
 var result = $(“[nodeName=double]”, jqXHR.responseXML).text();
 $(“#txtResult”).val(result);
 }
 else
 {
 alert(“Error retrieving web service response”);
 }
 }

The textStatus is checked and, if it’s equal to success, the raw response is shown as an aid to develop-
ment (this wouldn’t be included in a live application). Then jQuery is used to extract the value of the
result, and the value is inserted into the txtResult textbox.

The full sequence is shown in Figures 14-4, 14-5, and 14-6.

FIGURE 14-4

c14.indd 558c14.indd 558 05/06/12 6:00 PM05/06/12 6:00 PM

The New RPC Protocol: Web Services ❘ 559

The next section describes a different way of using web services than XML-RPC: REST.

Understanding REST Services

REST stands for Representational State Transfer and is a framework for creating web services that
can, but do not have to, use XML. Following are two important principles of REST:

 1. Resources to be acted on are represented by a URL.

 2. The type of action to be carried out is dictated using the appropriate HTTP verb.

The fi rst principle is easy to understand. If I want to retrieve a customer’s details, I might use a URL
such as http://myServer.com/customers/123, where 123 is the customer’s unique identifi er. The

FIGURE 14-5

FIGURE 14-6

c14.indd 559c14.indd 559 05/06/12 6:00 PM05/06/12 6:00 PM

http://myServer.com/customers/123

560 ❘ CHAPTER 14 WEB SERVICES

second principle relies on the fact that the HTTP protocol defi nes a number of verbs, or commands,
indicating how a resource is treated. The most common verb is GET, which simply retrieves the
resource based entirely on the URL requested. The next most common is POST, which passes a block
of data, as seen in the preceding section, to a specifi ed URL. A number of other less well-known
verbs exist, such as PUT, which creates a resource, DELETE, which removes a resource, and HEAD,
which asks for information about a resource without actually fetching it. REST uses these verbs
along with the specifi ed URL to fetch, create, and delete online resources. For example, to create a
new customer you might POST the relevant data to a URL and the server would process the request
and create a new customer in your sales database, or you might PUT the details instead. To delete
an existing customer you might issue a DELETE request along with the URL of the customer to be
removed, such as the customer already mentioned, http://myServer.com/customers/123.

NOTE If you’re wondering what the diff erence is between using POST and PUT,

don’t worry, you’re not alone. In theory, a POST is used when you don’t know all

of the new customer’s details; perhaps the system creates a new ID for the cus-

tomer, which it passes back to you as a response. PUT is used when you already

know the ID and are simply transferring the data to the server. In practice, there

is often debate about which to use, and many web servers don’t accept PUT

requests anyway, so POST is used instead.

You can fi nd the original article on REST, written by its architect, Roy Fielding, at http://www
.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

The following Try It Out demonstrates how to call a REST style web service using Fiddler, a free
web development and debugging tool.

TRY IT OUT Calling a REST Web Service

To demonstrate how to use a REST service, in this Try It Out you use a tool, Fiddler, to create a web
request that calls the Google search engine.

1. To get started, register with Google to get hold of an API key. This key is passed with each
request so that Google can identify the originator and make sure that, among other things, they
are sticking to the pre-agreed limits for the free service. Go to https://code.google.com/apis/
console/ and, if you’re not already registered, create an account; otherwise, sign in. You don’t
have to set up a new Gmail address if you don’t want to. Once logged in, click Create Project.

2. In the list of available APIs, click the button next to Search API for Shopping and accept the terms
and conditions.

3. Use the menu on the left to navigate to API Access. There you will see your API key. Copy it for
use later in the exercise.

4. Now install the client you’re going to use to create web requests. Go to http://www.fiddler2
.com/fiddler2/ and download the latest version of Fiddler. Fiddler is mainly used as a proxy,

c14.indd 560c14.indd 560 05/06/12 6:00 PM05/06/12 6:00 PM

http://myServer.com/customers/123
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://code.google.com/apis/console/
https://code.google.com/apis/console/
http://www.fiddler2.com/fiddler2/
http://www.fiddler2.com/fiddler2/

The New RPC Protocol: Web Services ❘ 561

sitting between your browser and a web server, and enabling you to see and modify requests and
responses. In this case, however, you’ll use it to create requests and examine the response. (In this
demonstration you could probably just use the browser directly, but Fiddler is a great tool when
working with web requests on a Windows platform and should defi nitely be a part of your arse-
nal. It makes debugging so much easier.)

 5. Install Fiddler and start it up. You should see a screen similar to Figure 14-7.

FIGURE 14-7

 6. On the right-hand side of the Fiddler interface, choose the Composer tab from the upper section.

 7. Paste in the following URL, which searches U.S. websites for digital cameras for sale, after
inserting your own API key: https://www.googleapis.com/shopping/search/v1/public/
products?key=<your API key here>&country=US&q=digital+camera&alt=atom.

 8. Click the Execute button in the top right of Fiddler.

 9. You should see the call listed in the left-hand screen, hopefully with a status code of 200.

 10. You can now examine the response received by using the Inspectors tab and choosing Raw View.
On the right-hand side of the word “GET,” click the URL that you entered in step 8. The response
will be composed of a number of headers followed by the results in an XML format, a shortened
version of which is shown here:

c14.indd 561c14.indd 561 05/06/12 6:00 PM05/06/12 6:00 PM

https://www.googleapis.com/shopping/search/v1/public/products?
https://www.googleapis.com/shopping/search/v1/public/products?

562 ❘ CHAPTER 14 WEB SERVICES

<?xml version=”1.0” encoding=”UTF-8”?>
<feed gd:kind=”shopping#products”
gd:etag=”"czKOfew9E3svi7vOBQ3vsAgGZzo/9wsxV-m1LokeaXtPG67Dj-pgCUI"”
xmlns=”http://www.w3.org/2005/Atom” xmlns:gd=”http://schemas.google.com/g/2005”
xmlns:openSearch=”http://a9.com/-/spec/opensearchrss/1.0/”
xmlns:s=”http://www.google.com/shopping/api/schemas/2010”>
 <id>tag:google.com,2010:shopping/products</id>
 <updated>2011-12-12T17:02:55.909Z</updated>
 <title>Shopping Products</title>
 <generator version=”v1”
 uri=”https://www.googleapis.com/shopping/search/”>Search API for
 Shopping</generator>
 <link rel=”alternate” type=”text/html”
 href=”https://www.googleapis.com/shopping/search/”/>
 <link rel=”http://schemas.google.com/g/2005#feed”
 type=”application/atom+xml”
 href=”https://www.googleapis.com/shopping/search/v1/public/products?alt=atom”/>
 <link rel=”self” type=”application/atom+xml”
 href=”https://www.googleapis.com/shopping/search/v1/
public/products?country=US&q=digital+camera&alt=atom&
startIndex=1&maxResults=25”/>
 <link rel=”next” type=”application/atom+xml”
 href=”https://www.googleapis.com/shopping/search/v1/
public/products?country=US&q=digital+camera&alt=atom&
startIndex=26&maxResults=25”/>
 <link rel=”previous” type=”application/atom+xml”/>
 <openSearch:totalResults>745713</openSearch:totalResults>
 <openSearch:startIndex>1</openSearch:startIndex>
 <openSearch:itemsPerPage>25</openSearch:itemsPerPage>
 <entry gd:kind=”shopping#product”>
 <id>tag:google.com,2010:shopping/products/1172711/68751086469788882</id>
 <author>
 <name>B&H Photo-Video-Audio</name>
 </author>
 <published>2011-10-12T14:56:40.000Z</published>
 <updated>2011-12-12T04:48:51.000Z</updated>
 <title>Canon EOS 5D Mark II Digital Camera (Body Only)</title>
 <content type=”text”>The Canon EOS 5D Mark II (Body Only) improves upon the EOS
 5D by increasing the resolution by about 40% to 21.1 megapixels and adds a Live
 View feature that allows users to preview shots on the camera's high
resolution 3.0 LCD display. It even incorporates the ability to record full motion
HD Video with sound so you can capture the action as well as superb images </
content>
 <link rel=”alternate” type=”text/html”
href=”http://www.bhphotovideo.com/c/product/583953-REG/Canon_2764B003_EOS_5D_Mark_

II.html/BI/1239/kw/CAE5D2”/>

 <link rel=”self” type=”application/atom+xml”
href=”https://www.googleapis.com/shopping/search/v1/public/products/1172711/gid/

68751086469788882?alt=atom”/>

 <s:product>
 <s:googleId>68751086469788882</s:googleId>
 <s:author>
 <s:name>B&H Photo-Video-Audio</s:name>
 <s:accountId>1172711</s:accountId>
 </s:author>

c14.indd 562c14.indd 562 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.w3.org/2005/Atom
http://schemas.google.com/g/2005
http://a9.com/-/spec/opensearchrss/1.0/
http://www.google.com/shopping/api/schemas/2010
https://www.googleapis.com/shopping/search/
https://www.googleapis.com/shopping/search/
http://schemas.google.com/g/2005#feed
https://www.googleapis.com/shopping/search/v1/public/products?alt=atom
https://www.googleapis.com/shopping/search/v1/
https://www.googleapis.com/shopping/search/v1/
http://www.bhphotovideo.com/c/product/583953-REG/Canon_2764B003_EOS_5D_Mark_II.html/BI/1239/kw/CAE5D2
http://www.bhphotovideo.com/c/product/583953-REG/Canon_2764B003_EOS_5D_Mark_II.html/BI/1239/kw/CAE5D2
https://www.googleapis.com/shopping/search/v1/public/products/1172711/gid/68751086469788882?alt=atom
https://www.googleapis.com/shopping/search/v1/public/products/1172711/gid/68751086469788882?alt=atom
http://google.com
http://google.com

The New RPC Protocol: Web Services ❘ 563

 <s:creationTime>2011-10-12T14:56:40.000Z</s:creationTime>
 <s:modificationTime>2011-12-12T04:48:51.000Z</s:modificationTime>
 <s:country>US</s:country>
 <s:language>en</s:language>
 <s:title>Canon EOS 5D Mark II Digital Camera (Body Only)</s:title>
 <s:description>The Canon EOS 5D Mark II (Body Only) improves upon the EOS 5D by
increasing the resolution by about 40% to 21.1 megapixels and adds a Live View
feature that allows users to preview shots on the camera's high resolution
3.0 LCD display </s:description>
 <s:link>http://www.bhphotovideo.com/c/product/
583953-REG/Canon_2764B003_EOS_5D_Mark_II.html/BI/1239/kw/CAE5D2</s:link>
 <s:brand>Canon</s:brand>
 <s:condition>new</s:condition>
 <s:gtin>00013803105384</s:gtin>
 <s:gtins>
 <s:gtin>00013803105384</s:gtin>
 </s:gtins>
 <s:inventories>
 <s:inventory channel=”online” availability=”inStock”>
 <s:price shipping=”0.0” currency=”USD”>2209.95</s:price>
 </s:inventory>
 </s:inventories>
 <s:images>
 <s:image link=”http://www.bhphotovideo.com/images/nowm/583953.jpg”/>
 </s:images>
 </s:product>
 </entry>
 <entry gd:kind=”shopping#product”>
 <id>tag:google.com,2010:shopping/products/1113342/13850367466326274615</id>
 <author>
 <name>Walmart</name>
 </author>
 <published>2011-07-04T19:48:28.000Z</published>
 <updated>2011-12-10T05:11:44.000Z</updated>
 <title>Canon Powershot Sx130-is Black 12.1mp Digital Camera W/ 12x Optical</title>
 <content type=”text”>Canon PowerShot SX130-IS 12.1MP Digital Camera:12.1-
megapixel </content>
 <link rel=”alternate” type=”text/html”
href=”http://www.walmart.com/catalog/product.do?product_id=14972582&sourceid=15000000

00000003142050&ci_src=14110944&ci_sku=14972582”/>

 <link rel=”self” type=”application/atom+xml”
 href=”https://www.googleapis.com/shopping/search/v1/
public/products/1113342/gid/13850367466326274615?alt=atom”/>
 <s:product>
 <s:googleId>13850367466326274615</s:googleId>
 <s:author>
 <s:name>Walmart</s:name>
 <s:accountId>1113342</s:accountId>
 </s:author>
 <s:creationTime>2011-07-04T19:48:28.000Z</s:creationTime>
 <s:modificationTime>2011-12-10T05:11:44.000Z</s:modificationTime>
 <s:country>US</s:country>
 <s:language>en</s:language>
 <s:title>Canon Powershot Sx130-is Black
12.1mp Digital Camera W/ 12x Optical</s:title>

c14.indd 563c14.indd 563 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.bhphotovideo.com/c/product/583953-REG/Canon_2764B003_EOS_5D_Mark_II.html/BI/1239/kw/CAE5D2
http://www.bhphotovideo.com/c/product/583953-REG/Canon_2764B003_EOS_5D_Mark_II.html/BI/1239/kw/CAE5D2
http://www.bhphotovideo.com/images/nowm/583953.jpg
http://www.walmart.com/catalog/product.do?product_id=14972582&sourceid=1500000000000003142050&ci_src=14110944&ci_sku=14972582
http://www.walmart.com/catalog/product.do?product_id=14972582&sourceid=1500000000000003142050&ci_src=14110944&ci_sku=14972582
https://www.googleapis.com/shopping/search/v1/public/products/1113342/gid/13850367466326274615?alt=atom
https://www.googleapis.com/shopping/search/v1/public/products/1113342/gid/13850367466326274615?alt=atom
http://google.com

564 ❘ CHAPTER 14 WEB SERVICES

 <s:description>Canon PowerShot SX130-IS 12.1MP Digital Camera:
12.1-megapixel resolutionDelivers excellent picture </s:description>
<s:link>http://www.walmart.com/catalog/product.do?
product_id=14972582&
sourceid=1500000000000003142050&ci_src=14110944&ci_sku=14972582</s:link>
 <s:brand>Canon</s:brand>
 <s:condition>new</s:condition>
 <s:gtin>00013803127386</s:gtin>
 <s:gtins>
 <s:gtin>00013803127386</s:gtin>
 </s:gtins>
 <s:inventories>
 <s:inventory channel=”online” availability=”inStock”>
 <s:price shipping=”0.0” currency=”USD”>169.0</s:price>
 </s:inventory>
 </s:inventories>
 <s:images>
 <s:image
 link=”http://i.walmartimages.com/i/p/00/01/38/03/12/0001380312738_500X500.jpg”/>
 </s:images>
 </s:product>
 </entry>
 <s:requestId>0CIjh9NiB_awCFUcEtAod6jsAAA</s:requestId>
</feed>

How It Works
Fiddler takes the request and sends it to the web server in question, in this case Google’s API server at
www.googleapis.com. The request is executed and the results are returned in the format requested, in
this case Atom, as expressed by the alt parameter in the querystring. (If you want to see the JSON
format, replace the word atom at the end of the URL with the word json.)

Now that you’ve seen examples of both XML-RPC and REST-style services, it’s time to look at other
specifi cations related to the web services stack.

THE WEB SERVICES STACK

If you’ve been having trouble keeping track of all of the web services–related specifi cations out
there and just how they all fi t together, don’t feel bad, it’s not just you. In fact, literally dozens of
specs exist, with a considerable amount of duplication as companies jockey for position in this fi eld.
Lately it’s gotten so bad that even Don Box, one of the creators of the major web services protocol,
SOAP, commented at a conference that the proliferation in standards has led to a “cacophony” in
the fi eld and that developers should write fewer specs and more applications. It’s also led to a profu-
sion of frameworks that try to make things easier for you by hiding much of the plumbing and let-
ting you concentrate on the business logic. Many succeed, but often the frameworks themselves are
so diffi cult to learn that they only end up making the tasks harder.

Not that some standardization isn’t necessary, of course. That’s the whole purpose of the evolu-
tion of web services as an area of work — to fi nd a way to standardize communications between

c14.indd 564c14.indd 564 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.walmart.com/catalog/product.do?
http://i.walmartimages.com/i/p/00/01/38/03/12/0001380312738_500X500.jpg
http://www.googleapis.com

The Web Services Stack ❘ 565

systems. This section discusses the major standards you must know in order to implement most web
services systems, and then addresses some of the emerging standards and how they all fi t together.

SOAP

If you learn only one web services–related protocol, SOAP is probably your best bet. Originally
conceived as the Simple Object Access Protocol, SOAP has now been adapted for so many different
uses that its acronym is no longer applicable.

SOAP is an XML-based language that provides a way for two different systems to exchange infor-
mation relating to a remote procedure call or other operation. SOAP messages consist of a Header,
which contains information about the request, and a Body, which contains the request itself. Both
the Header and Body are contained within an Envelope.

SOAP calls are more robust than, say, XML-RPC calls, because you can use arbitrary XML. This
enables you to structure the call in a way that’s best for your application. For example, say your
application ultimately needs an XML node such as the following:

<totals>
 <dept id=”2332”>
 <gross>433229.03</gross>
 <net>23272.39</net>
 </dept>
 <dept id=”4001”>
 <gross>993882.98</gross>
 <net>388209.27</net>
 </dept>
</totals>

Rather than try to squeeze your data into an arbitrary format such as XML-RPC, you can create a
SOAP message such as the following:

<?xml version=”1.0” encoding=“UTF-8”?>
<SOAP:Envelope xmlns:SOAP=”http://www.w3.org/2003/05/soap-envelope”>

 <SOAP:Header></SOAP:Header>
 <SOAP:Body>
 <totals xmlns=”http://www.wiley.com/SOAP/accounting”>
 <dept id=”2332”>
 <gross>433229.03</gross>
 <net>23272.39</net>
 </dept>
 <dept id=”4001”>
 <gross>993882.98</gross>
 <net>388209.27</net>
 </dept>
 </totals>
 </SOAP:Body>
</SOAP:Envelope>

c14.indd 565c14.indd 565 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.w3.org/2003/05/soap-envelope
http://www.wiley.com/SOAP/accounting

566 ❘ CHAPTER 14 WEB SERVICES

SOAP also has the capability to take advantage of technologies such as XML-Signature for security.
You can also use attachments with SOAP, so a request could conceivably return, say, a document or
other information. In Chapter 15, “SOAP and WSDL” you create a complete SOAP server and cli-
ent, and look at the syntax of a SOAP message.

Of course, this suggests another problem: How do you know what a SOAP request should look like,
and what it will return as a result? As you’ll see next, WSDL solves that problem.

WSDL

The Web Services Description Language (WSDL) is an XML-based language that provides a
contract between a web service and the outside world. To understand this better, recall the discus-
sion of COM and CORBA. The reason why COM and CORBA objects can be so readily shared is
that they have defi ned contracts with the outside world. This contract defi nes the methods an object
provides, as well as the parameters to those methods and their return values. Interfaces for both
COM and CORBA are written in variants of the Interface Defi nition Language (IDL). Code
can then be written to look at an object’s interface to determine what functions are provided.
In practice, this dynamic investigation of an object’s interface often happens at design time, as a
programmer is writing the code that calls another object. A programmer would fi nd out what
interface an object supports and then write code that properly calls that interface.

Web services have a similar contract with the outside world, except that the contract is written in
WSDL instead of IDL. This WSDL document outlines what messages the SOAP server expects
in order to provide services, as well as what messages it returns. Again, in practice, WSDL is likely
used at design time. A programmer would use WSDL to fi gure out what procedures are available
from the SOAP server and what format of XML is expected by that procedure, and then write
the code to call it.

To take things a step further, programmers might never have to look at WSDL directly or even deal
with the underlying SOAP protocol. Already available are several SOAP toolkits that can hide the
complexities of SOAP. If you point one of these toolkits at a WSDL document, it can automatically
generate code to make the SOAP call for you! At that point, working with SOAP is as easy as call-
ing any other local object on your machine. Chapter 15 of this book looks at the syntax for a WSDL
document. After you’ve built it, how do you let others know that it’s out there? Enter UDDI.

UDDI

The Universal Discovery, Description, and Integration (UDDI) protocol enables web services to be
registered so that they can be discovered by programmers and other web services. For example, if
you’re going to create a web service that serves a particular function, such as providing up-to-the-
minute traffi c reports by GPS coordinates, you can register that service with a UDDI registry. The
global UDDI registry system consists of several different servers that all mirror each other, so by
registering your company with one, you add it to all the others.

The advantage of registering with the UDDI registry is twofold. First, your company’s contact infor-
mation is available, so when another company wants to do business with you, it can use the white
pages type of lookup to get the necessary contact information. A company’s listing not only includes
the usual name, phone number, and address type of information, but also information on the

c14.indd 566c14.indd 566 05/06/12 6:00 PM05/06/12 6:00 PM

The Web Services Stack ❘ 567

 services available. For example, it might include a link to a WSDL fi le describing the traffi c report-
ing system.

The UDDI registry system also enables companies to fi nd each other based on the types of web ser-
vices they offer. This is called a green pages type of listing. For example, you could use the green
pages to fi nd a company that uses web services to take orders for widgets. Listings would also
include information on what the widget order request should look like and the structure of the order
confi rmation, or, at the very least, a link to that information.

Many of the SOAP toolkits available, such as IBM’s Web Services Toolkit, provide tools to work
with UDDI. UDDI seems to be another of those seemed like a good idea at the time specifi cations.
Most real-world developers naturally prefer to build their applications knowing that the web ser-
vices they will consume are available, and are unwilling to risk having to discover them dynami-
cally. This is one of the reasons why UDDI has never really taken off.

Surrounding Specifi cations

So far this chapter has described a landscape in which you can use a UDDI registry to discover a
web service for which a WSDL fi le describes the SOAP messages used by the service. For all practi-
cal purposes, you could stop right there, because you have all of the pieces that are absolutely
necessary, but as you start building your applications, you will discover that other issues need to
be addressed.

For example, just because a web service is built using such specifi cations as SOAP and WSDL
doesn’t mean that your client is going to fl awlessly interact with it. Interoperability continues to
be a challenge between systems, from locating the appropriate resource to making sure types are
correctly implemented. Numerous specifi cations have emerged in an attempt to choreograph the
increasingly complex dance between web service providers and consumers. Moreover, any activity
that involves business eventually needs security.

This section looks at some of the many specifi cations that have been working their way into the
marketplace. Only time will tell which will survive and which will ultimately wither, but it helps to
understand what’s out there and how it all fi ts together.

Interoperability

At the time of this writing, the big name in interoperability is the Web Services Interoperability
Organization, or WS-I (www.ws-i.org). This industry group includes companies such as IBM,
Microsoft, and Sun Microsystems, and the purpose of the organization is to defi ne specifi c “pro-
fi les” for web services and provide testing tools so that companies can be certain that their imple-
mentations don’t contain any hidden “gotchas.” WS-I has released a Basic Profi le as well as a
number of use cases and sample implementations.

Some other interoperability-related specifi cations include the following:

 ➤ WS-Addressing (www.w3.org/Submission/ws-addressing/) provides a way to specify the
location of a web service. Remember this doesn’t necessarily refer to HTTP. WS-Addressing
defi nes an XML document that indicates how to fi nd a service, no matter how many fi re-
walls, proxies, or other devices and gateways lie between you and that service.

c14.indd 567c14.indd 567 05/06/12 6:00 PM05/06/12 6:00 PM

http://www.ws-i.org
http://www.w3.org/Submission/ws-addressing/

568 ❘ CHAPTER 14 WEB SERVICES

 ➤ WS-Eventing (www.w3.org/Submission/WS-Eventing/) describes protocols that involve a
publish/subscribe pattern, in which web services subscribe to or provide event notifi cations.

Coordination

For a while, it looked like the winner in coordination and choreography was going to be ebXML
(www.ebxml.org), a web services version of Electronic Data Interchange (EDI), in which companies
become “trading partners” and defi ne their interactions individually. ebXML consists of a number
of different modules specifying the ways in which businesses can defi ne not only what information
they’re looking for and the form it should take, but the types of messages that should be sent from
a multiple-step process. Although ebXML is very specifi c and seems to work well in the arena
for which it was designed, it doesn’t necessarily generalize well in order to cover web services
outside the EDI realm.

As such, Business Process Execution Language for Web Services (BPEL4WS) (http://msdn2
.microsoft.com/en-us/library/aa479359.aspx) has been proposed by a coalition of companies,
including Microsoft and IBM. BPEL4WS defi nes a notation for specifying a business process ulti-
mately implemented as web services. Business processes fall into two categories: executable business
processes and business protocols. Executable business processes are actual actions performed in
an interaction, whereas business protocols describe the effects (for example, orders placed) without
specifying how they’re actually accomplished. When BPEL4WS was introduced in 2002, it wasn’t
under the watchful eye of any standards body, which was a concern for many developers, so
work is currently ongoing within the Web Services Business Process Execution Language
(WS-BPEL) (www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel) group at the
OASIS standards body.

Not to be outdone, the World Wide Web Consortium has opened the WS-Choreography
(www.w3.org/2002/ws/chor/) activity, which is developing a way for companies to describe
their interactions with trading partners. In other words, they’re not actually defi ning how data
is exchanged, but rather the language to describe how data is exchanged. In fact, Choreography
Defi nition Language is one of the group’s deliverables. However, the group hasn’t produced much
since it started and the last main publication was 2004.

In the meantime, Microsoft, IBM, and BEA are also proposing WS-Coordination (http://www
.ibm.com/developerworks/library/specification/ws-tx/), which is also intended to provide
a way to describe these interactions. This specifi cation involves the WS-AtomicTransaction specifi -
cation for describing individual components of a transaction.

Security

Given its importance, perhaps it should come as no surprise that security is currently another hotly
contested area. In addition to the basic specifi cations set out by the World Wide Web Consortium,
such as XML Encryption (www.w3.org/Encryption/2001/) and XML Signature (www.w3.org/
Signature/), the industry is currently working on standards for identity recognition, reliable
messaging, and overall security policies.

c14.indd 568c14.indd 568 05/06/12 6:00 PM05/06/12 6:00 PM

http://msdn2.microsoft.com/en-us/library/aa479359.aspx
http://msdn2.microsoft.com/en-us/library/aa479359.aspx
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.w3.org/Submission/WS-Eventing/
http://www.ebxml.org
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.w3.org/2002/ws/chor/
http://www.w3.org/Encryption/2001/
http://www.w3.org/Signature/
http://www.w3.org/Signature/

Summary ❘ 569

All the major players such as IBM and Microsoft are working to simplify and standardize identity
management for such tasks as provisioning users and authentication. A number of non-commercial
organizations such as Kantara (http://kantarainitiative.org/) are also looking at the problem.

Perhaps the most confusing competition is between WS Reliable Messaging (www.oasis-open
.org/committees/tc_home.php?wg_abbrev=wsrm) and WS-ReliableMessaging (http://www.ibm
.com/developerworks/library/specification/ws-rm/). In essence, both specifi cations are try-
ing to describe a protocol for reliably delivering messages between distributed applications within a
particular tolerance, or Quality of Service. These specifi cations deal with message order, retransmis-
sion, and ensuring that both parties to a transaction are aware of whether a message has been suc-
cessfully received.

Two other specifi cations to consider are WS-Security and WS-Policy:

 ➤ WS-Security (http://www.ibm.com/developerworks/library/specification/
ws-secpol/) is designed to provide enhancements to SOAP that make it easier to control
issues such as message integrity, message confi dentiality, and authentication, no matter what
security model or encryption method you use.

 ➤ WS-Policy (http://www.ibm.com/developerworks/library/specification/ws-
polfram/) is a specifi cation meant to help people writing other specifi cations, and it pro-
vides a way to specify the “requirements, preferences, and capabilities” of a web service.

SUMMARY

 ➤ Web services arose from a need for a cross-platform way for one machine to be able to
invoke processes on a separate machine.

 ➤ The Same Origin policy means that under normal circumstances only pages residing in the
same domain as the web service, can use that service.

 ➤ XML remote procedure calls were the original web services; they enable methods to be
called across a network by wrapping parameters and returned values in a standard XML
format.

 ➤ With REST services, when the URL of the service defi nes a specifi c resource, the HTTP
verb used defi nes the action required, and the body of the request can contain any supple-
mentary data.

 ➤ It is relatively simple to utilize web services, especially from a web page. There are many
libraries, such as jQuery, that hide the underlying protocols and formats and just let you
specify the service and any parameters.

c14.indd 569c14.indd 569 05/06/12 6:00 PM05/06/12 6:00 PM

http://kantarainitiative.org/
http://www.ibm.com/developerworks/library/specification/ws-rm/
http://www.ibm.com/developerworks/library/specification/ws-rm/
http://www.ibm.com/developerworks/library/specification/ws-secpol/
http://www.ibm.com/developerworks/library/specification/ws-secpol/
http://www.ibm.com/developerworks/library/specification/wspolfram/
http://www.ibm.com/developerworks/library/specification/wspolfram/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm

570 ❘ CHAPTER 14 WEB SERVICES

EXERCISES

You can fi nd suggested solutions to these questions in the Appendix A.

 1. Imagine you are trying to contact an XML-RPC-based web service to submit a classifi ed ad for a

lost dog. The required information includes your name, phone number, and the body of the ad.

What might the XML request look like?

 2. You are trying to call a REST-based web service to check on the status of a service order. The

service needs the following information:

cust_id: 3263827
order_id: THX1138

What might the request look like?

c14.indd 570c14.indd 570 05/06/12 6:00 PM05/06/12 6:00 PM

Summary ❘ 571

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

Before web services Many technologies such as DCOM and IIOP existed to enable cross-

 network method requests. However, they were not cross-platform.

Same origin policy This policy means that a web service can only be consumed by a page in

the same domain. There are ways to get around this restriction such as

server-side proxies and client-access policies.

XML-RPC XML remote procedure calls were an early attempt to solve the cross-

platform issue. They wrap method calls and return values in a standard

XML format.

REST services REST services use a web URL as a resource identifi er and the HTTP verb

to specify what sort of action is required. They are generally the easiest

type of service to use.

Consuming services With the many libraries around, both script and code, it’s relatively easy

to create clients that can utilize remote services.

c14.indd 571c14.indd 571 05/06/12 6:00 PM05/06/12 6:00 PM

c14.indd 572c14.indd 572 05/06/12 6:00 PM05/06/12 6:00 PM

SOAP and WSDL

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Why SOAP can provide more fl exibility than previous RPC protocols

 ➤ How to format SOAP messages

 ➤ When to use GET versus POST in an HTTP request

 ➤ What SOAP intermediaries are

 ➤ How to describe a service using WSDL

 ➤ The diff erence between SOAP styles

In Chapter 14 you learned about web services and how they work toward enabling disparate
systems to communicate. You can now see that if everyone just chose their own formats in
which to send messages back and forth, interoperability would be quite diffi cult, so a standard
format is a must. XML-RPC is good for remote procedure calls, but otherwise limited. SOAP
overcomes that problem by enabling rich XML documents to be transferred easily between
systems, even allowing for the possibility of attachments. Of course, this fl exibility means that
you need a way to describe your SOAP messages, and that’s where Web Services Description
Language (WSDL) comes in. WSDL provides a standard way to describe where and how to
make requests to a SOAP-based service.

In this chapter you take your knowledge of web services a step further by creating a simple
web service using a method called REST (covered in the previous chapter). You’ll expand your
horizons by creating a SOAP service and accessing it via SOAP messages, describing it using
WSDL so that other developers can make use of it if desired.

15

c15.indd 573c15.indd 573 05/06/12 6:02 PM05/06/12 6:02 PM

574 ❘ CHAPTER 1 5 SOAP AND WSDL

LAYING THE GROUNDWORK

Any web services project requires planning, so before you jump into installing software and
creating fi les, take a moment to look at what you’re trying to accomplish. Ultimately, you want
to send and receive SOAP messages, and describe them using WSDL. To do that, you need the
following in place:

 ➤ The client: In the previous chapter, you created an XML-RPC client in Internet Explorer.
This chapter uses a lot of the same techniques to create a SOAP client.

 ➤ The server: You create two kinds of SOAP services in this chapter, and they both use
ASP.NET. Both use standard .aspx pages, rather than .NET’s specialized .asmx page or
the more modern Windows Communication Foundation (WCF). There are two reasons for
not using the built-in web services tools. First, coding by hand ensures that you see how it
works, and more importantly, you learn how to diagnose problems in real-life situations.
Second, if you want to use these techniques in other languages, it’s easier to port the code
when it’s not hidden by .NET’s web service abstraction layer.

The examples in this chapter are all developed with Visual Studio. If you don’t have the full
version you can use Visual Studio Express Web Edition, which you can download free from
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-web-

developer-express. See the Introduction of this book for more details on downloading
Visual Studio.

RUNNING THE EXAMPLE IN WINDOWS

Many of the examples in this chapter require a basic web server. The link in the
preceding section, in addition to being used to download Visual Studio Express,
actually leads to the Web Platform Installer, which you can also use to install a
wide variety of software concerned with web development. One item is IIS Express,
a slimmed-down version of Microsoft’s Internet Information Server, which inte-
grates nicely with Visual Studio. If you are not running a web server from your
machine already, the easiest way to run the examples is to download this as well
and, when you create a web service, right-click the project and choose the Use IIS
Express option.

THE NEW RPC PROTOCOL: SOAP

According to the W3C SOAP specifi cation at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/,
SOAP is “a lightweight protocol for exchange of information in a decentralized, distributed
environment.” Although many would argue about the lightweight part of that statement, SOAP
is a standard way to send information from one computer to another using XML to represent the
information.

SOAP originally stood for Simple Object Access Protocol, but because most people found it
anything but simple, and it’s not limited to object access, it is now offi cially a name rather than an

c15.indd 574c15.indd 574 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-webdeveloper-express
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-webdeveloper-express
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

The New RPC Protocol: SOAP ❘ 575

acronym, so it doesn’t stand for anything. You can fi nd information on the current version of SOAP
(SOAP 1.2 at the time of this writing) at www.w3.org/2000/xp/Group/.

In a nutshell, the SOAP recommendation defi nes a protocol whereby all information sent from
computer to computer is marked up in XML, with the information transmitted, in most cases, via
HTTP or HTTPS.

NOTE Technically, SOAP messages don’t have to be sent via HTTP. Any net-

working protocol, such as SMTP or FTP, could be used, but for the reasons dis-

cussed in the previous chapter, in practice HTTP(S) has remained the only way

that SOAP messages are transmitted in practical applications.

Following is a list of advantages that SOAP has over other protocols such as DCOM or Java RMI:

NOTE DCOM and Java RMI are forerunners of SOAP and were both designed

to solve the same problem: how to call methods of a class that resides on a

remote machine and make the results available to the local machine. You can

fi nd a good tutorial about these techniques at http://my.execpc.com/

~gopalan/misc/compare.html.

 ➤ It’s platform-, language-, and vendor-neutral: Because SOAP is implemented using XML
and (usually) HTTP, it is easy to process and send SOAP requests in any language, on any
platform, without having to depend on tools from a particular vendor.

 ➤ It’s easy to implement: SOAP was designed to be less complex than the other protocols.
Even if it has moved away from simplicity in recent years, a SOAP server can still be imple-
mented using nothing more than a web server and an ASP page or a CGI script.

 ➤ It’s fi rewall-safe: Assuming that you use HTTP as your network protocol, you can pass
SOAP messages across a fi rewall without having to perform extensive confi guration.

SOAP also has a few disadvantages that have led people to search for other methods. The three
main disadvantages are as follows:

 ➤ SOAP and traditional web services have become more and more complicated as time has
progressed.

 ➤ The size of the messages is quite large in many cases compared to the actual payload.

 ➤ Although it is supposed to be a standard, you will still fi nd interoperability issues between
SOAP-based services implemented in, for example, Java and those written in .NET.

It’s these sorts of problems that have led to the adoption of such techniques as JSON, which are
discussed in Chapters 16 and 17.

Even though SOAP is not without its faults, it is still has the advantages of working across platforms
and can be used from a large number of clients. It also has the fl exibility to represent complex
messages, and can cope with situations where the processing of these messages requires them to pass

c15.indd 575c15.indd 575 05/06/12 6:02 PM05/06/12 6:02 PM

http://my.execpc.com/~gopalan/misc/compare.html
http://my.execpc.com/~gopalan/misc/compare.html
http://www.w3.org/2000/xp/Group/

576 ❘ CHAPTER 1 5 SOAP AND WSDL

along a chain of computers, rather than just a simple client to server journey. None of the other
services that are in common use, such as REST or JSON, can compete on all these features. For this
reason, SOAP is likely to be around for quite some time and is defi nitely a technology worth learn-
ing if you want to develop distributed systems.

Before you start creating SOAP messages though, you need to look at the process of creating an
RPC server that receives a request and sends back a response. The following example begins with a
fairly simple procedure to write: one that takes a unit price and quantity and returns the appropriate
discount along with the total price.

TRY IT OUT Creating an RPC Server with ASP.NET

To begin, you create a simple ASP.NET page that accepts two numbers, evaluates them, and returns the
results in XML. It won’t be a fully-fl edged SOAP service for reasons discussed later, but it contains a
similar architecture. Later, you convert it to a full SOAP XML service.

1. Open Visual Studio and choose File ➢ New ➢ Website. Choose an ASP.NET Empty Website from
the C# section and open the BasicOrderService folder. The empty website uses a fi le-based site
to begin with, which you can convert to use IIS Express later if desired.

2. Right-click the project and choose Add New Item. Add a new Web Form named GetTotal.aspx
and make sure the Place Code In A Separate File checkbox is checked. If the new page doesn’t
open automatically, open it in the editor.

3. Remove all the content from the page except the declaration at the top and add a new attribute,
ContentType, with a value of text/xml. The page should now look like the following, although
the code will all be on one line:

<%@ Page Language=”C#” AutoEventWireup=”true”
 CodeFile=”GetTotal.aspx.cs” Inherits=”GetTotal” ContentType=”text/xml” %>

4. Save the page, right-click it in the Solution Explorer, and choose Set as Start Page.

5. Right-click in the body of the page and choose View Code. Replace the code you see with the code
in Listing 15-1.

LISTING 15-1: GetTotal.aspx.cs

using System;
using System.Xml.Linq;

public partial class GetTotal : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 string clientXml = string.Empty;
 try
 {
 double unitPrice = Convert.ToDouble(Request.QueryString[“unitPrice”]);
 int quantity = Convert.ToInt16(Request.QueryString[“quantity”]);
 double discount = GetQuantityDiscount(quantity);

Available for
download on
Wrox.com

c15.indd 576c15.indd 576 05/06/12 6:02 PM05/06/12 6:02 PM

http://Wrox.com

The New RPC Protocol: SOAP ❘ 577

 double basicTotal = GetBasicTotal(unitPrice, quantity);
 double finalTotal = basicTotal * (1 - discount);
 clientXml = GetSuccessXml(finalTotal, discount * 100);
 }
 catch (Exception ex)
 {
 clientXml = GetErrorXml(ex);
 }
 XElement doc = XElement.Parse(clientXml);
 doc.Save(Response.OutputStream);
 }

 private double GetBasicTotal(double unitPrice, int quantity)
 {
 return unitPrice * quantity;
 }

 private double GetQuantityDiscount(int quantity)
 {
 if (quantity < 6) return 0;
 if (quantity < 11) return 0.05;
 if (quantity < 51) return 0.1;
 return 0.2;
 }

 private string GetSuccessXml(double totalPrice, double discount)
 {
 string clientXml = “<GetTotalResponse><Discount>{0}</Discount>”
 + “<TotalPrice>{1}</TotalPrice></GetTotalResponse>”;
 return string.Format(clientXml, Convert.ToString(discount),
 Convert.ToString(totalPrice));
 }

 private string GetErrorXml(Exception ex)
 {
 string clientXml = “<Error><Reason>{0}</Reason></Error>”;
 return string.Format(clientXml, ex.Message);
 }

}

The page is called with two values in the query string: unitPrice and quantity. The total price is
calculated by multiplying the two values, and then a discount is applied. The discount depends on the
quantity, and applies when the user requests more than fi ve items. The results are returned in XML.

6. Test the page by right-clicking the project in the Solution Explorer and choosing View in Browser.
When your browser appears, it should show a listing of the project fi les. Click on the link for
GetTotal.aspx and then modify the URL in the browser address bar so it is: GetTotal
.aspx?unitprice=20&quantity=6 and press Enter. You should see XML similar to that shown
in Figure 15-1. If invalid values are entered, such as a quantity of q, you should see the result
shown in Figure 15-2.

c15.indd 577c15.indd 577 05/06/12 6:02 PM05/06/12 6:02 PM

578 ❘ CHAPTER 1 5 SOAP AND WSDL

FIGURE 15-1

FIGURE 15-2

How It Works

This page pulls two values from the query string, converts them to numbers, and performs two actions.
First, it requests a quantity discount using GetQuantityDiscount(), and then the page multiplies the
two original numbers using GetBasicTotal(). Next, it returns the results as XML by loading a string
of XML into an XmlDocument and saving to the Response.OutputStream. If either of the two values
isn’t numeric, meaning they can’t be multiplied together, a different XML document is returned to the
client, indicating a problem. This method of saving to the output stream is better than alternatives such
as using Response.Write, because it preserves the character encoding that may be used in the docu-
ment, whereas Response.Write always treats the content as UTF-16.

Note that this ASP.NET page isn’t limited to being called from a browser. For example, you could load
the XML directly and then retrieve the numbers from it, as in this VB.NET example:

Sub Main()
 Dim doc = new XDocument.Load
 (“http://localhost/BasicOrderService/gettotal.aspx?unitprice=20&quantity=6”)

 If doc.Root.Name = “Error” Then
 MsgBox (“Unable to perform calculation”)
 Else
 MsgBox(XDocument...<TotalPrice>.Value)
 End If
End Sub

You pass a URL, including the query string, to the Load() method, and then check the results. If the
root element is named Error, you know something went wrong. Otherwise, you can get the results
using an LINQ to XML expression. (See the last section in Chapter 12 for more on how these work.)

c15.indd 578c15.indd 578 05/06/12 6:02 PM05/06/12 6:02 PM

http://localhost/BasicOrderService/gettotal.aspx?unitprice=20&quantity=6

The New RPC Protocol: SOAP ❘ 579

Comparing SOAP to REST

Technically speaking, what you just did in the preceding activity isn’t actually a SOAP transaction,
but maybe not for the reasons you might think. The issue isn’t that you sent a URL rather than a
SOAP message to make the request; SOAP actually defi nes just such a transaction. The problem is
that the response wasn’t actually a SOAP message.

Take a look at the output:

<GetTotalResponse>
 <Discount>0.95</Discount>
 <TotalPrice>44.46</TotalPrice>
</GetTotalResponse>

This doesn’t conform to the structure of a SOAP message (as you’ll see in the following section), but
it is still a well-formed XML message and a perfectly valid way of creating a web service.

One of the main objections to SOAP is its complexity, and because of this many have looked for alterna-
tives. One of the main contenders is known as REST which stands for REpresentational State Transfer.
REST is based on the idea that any piece of information on the World Wide Web should be addressable
via a URL. In this case, that URL included a query string with parameter information. REST also dic-
tates that operations other than straightforward retrieval of information (deleting an item, for example)
should ideally be instigated via the corresponding HTTP verb. So to delete a resource you send an HTTP
DELETE request and pass the relevant URL rather than the use the normal HTTP GET.

REST is growing in popularity as people discover that it is, in many ways, much easier to use than
SOAP. After all, you don’t have to create an outgoing XML message, and you don’t have to fi gure
out how to POST it, as demonstrated in the previous chapter.

All of this begs the question: If REST is so much easier, why use SOAP at all? Aside from the fact that in
some cases the request data is diffi cult or impossible to provide as a URL, the answer lies in the fundamental
architecture of the Web. You submitted this request as a GET, which means that any parameters were part of
the URL and not the body of the message. If you were to remain true to the way the Web is supposed to be
constructed, GET requests are only for actions that have no side effects, such as making changes to a database.
That means you could use this method for getting information, but you couldn’t use it for, say, placing an
order, because the act of making that request changes something on the server.

When SOAP was still growing in popularity, some developers insisted that REST was better because
it was simpler. SOAP 1.2 ends the controversy by adopting a somewhat RESTful stance, making it
possible to use an HTTP GET request to send information and parameters and in turn receive a
SOAP response. You’ll see this combination in action later, but fi rst you should look at how SOAP
itself works.

Basic SOAP Messages

As mentioned before, SOAP messages are basically XML documents, usually sent across HTTP.
Following are the specifi cations that SOAP requires:

 ➤ Rules regarding how the message should be sent: Although the SOAP specifi cation says that
any network protocol can be used, specifi c rules are included in the specifi cation for HTTP
because that’s the protocol most people use.

c15.indd 579c15.indd 579 05/06/12 6:02 PM05/06/12 6:02 PM

580 ❘ CHAPTER 1 5 SOAP AND WSDL

 ➤ The overall structure of the XML that is sent: This is called the envelope. Any information
to be sent back and forth over SOAP is contained within this envelope, and is known as the
payload.

 ➤ Rules regarding how data is represented in this XML: These are called the encoding rules.

When you send data to a SOAP server, the data must be represented in a particular way so that the
server can understand it. The SOAP 1.2 specifi cation outlines a simple XML document type, which
is used for all SOAP messages. The basic structure of that document is as follows:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
 <soap:Header>
 <head-ns:someHeaderElem xmlns:head-ns=”some URI”
 env:mustUnderstand=”true OR false”
 env:relay=”true OR false”
 env:role=”some URI”/>
 </soap:Header>
 <soap:Body encodingStyle=”http://www.w3.org/2003/05/soap-encoding”>
 <some-ns:someElem xmlns:some-ns=”some URI”/>
 <!-- OR -->
 <soap:Fault>
 <soap:Code>
 <soap:Value>Specified values</soap:Value>
 <soap:Subcode>
 <soap:Value>Specified values</soap:Value>
 </soap:Subcode>
 </soap:Code>
 <soap:Reason>
 <soap:Text xml:lang=”en-US”>English text</soap:Text>
 <v:Text xml:lang=”fr”>Texte francais</soap:Text>
 </soap:Reason>
 <soap:Detail>
 <!-- Application specific information -->
 </soap:Detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

Only three main elements are involved in a SOAP message itself (unless something goes wrong):
<Envelope>, <Header>, and <Body>, and starting in version 1.2 of SOAP, a number of error-related
elements. Of these elements, only <Envelope> and <Body> are mandatory; <Header> is optional,
and <Fault> and its child elements are required only when an error occurs. In addition, all of the
attributes (encodingStyle, mustUnderstand, and so on) are optional. The following sections take a
closer look at these elements and the various attributes.

<Envelope>

Other than the fact that it resides in SOAP’s envelope namespace (http://www.w3.org/2003/05/
soap-envelope), the <Envelope> element doesn’t really need any explanation. It simply
provides the root element for the XML document and is usually used to include any namespace
declarations.

c15.indd 580c15.indd 580 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-encoding
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-envelope

The New RPC Protocol: SOAP ❘ 581

<Body>

The <Body> element contains the main body of the SOAP message. The actual RPC calls are made
using direct children of the <Body> element (which are called body blocks). For example, consider
the following:

<soap:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”>
 <soap:Body>
 <o:AddToCart xmlns:o=”http://www.wiley.com/soap/ordersystem”>
 <o:CartId>THX1138</o:CartId>
 <o:Item>ZIBKA</o:Item>
 <o:Quantity>3</o:Quantity>
 <o:TotalPrice>34.97</o:TotalPrice>
 </o:AddToCart>
 </soap:Body>
</soap:Envelope>

In this case, you’re making one RPC call, to a procedure called AddToCart, in the http://www
.wiley.com/soap/ordersystem namespace. (You can add multiple calls to a single message, if
necessary.) The AddToCart procedure takes four parameters: CartId, Item, Quantity, and TotalPrice.
Direct child elements of the <soap:Body> element must reside in a namespace other than the SOAP
namespace. This namespace is what the SOAP server uses to uniquely identify this procedure so that it
knows what code to run. When the procedure is done running, the server uses the HTTP response to send
back a SOAP message. The <soap:Body> of that message might look similar to this:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
 <soap:Body>
 <o:AddToCartResponse xmlns:o=”http://www.wiley.com/soap/ordersystem”>
 <o:CartId>THX1138</o:CartId>
 <o:Status>OK</o:Status>
 <o:Quantity>3</o:Quantity>
 <o:ItemId>ZIBKA</o:ItemId>
 </so:AddToCartResponse>
 </soap:Body>
</soap:Envelope>

The response is just another SOAP message, using an XML structure similar to the request, in that
it has a Body in an Envelope, with the relevant information included as the payload.

Encoding Style

Usually, in the realm of XML, when you talk about encoding, you’re talking about esoteric aspects
of passing text around, but in the SOAP world, encoding is pretty straightforward. It simply refers
to the way in which you represent the data. These examples use SOAP-style encoding, which means
you’re using plain-old elements and text, with maybe an attribute or two thrown in. You can let
an application know that’s what you’re doing by adding the optional encodingStyle attribute, as
shown here:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
 <soap:Body soap:encodingStyle=”http://www.w3.org/2003/05/soap-encoding”>
 <o:AddToCartResponse xmlns:o=”http://www.wiley.com/soap/ordersystem”>
 <o:CartId>THX1138</o:CartId>
 <o:Status>OK</o:Status>

c15.indd 581c15.indd 581 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope
http://www.wiley.com/soap/ordersystem
http://www.wiley.com/soap/ordersystem
http://www.wiley.com/soap/ordersystem
http://www.w3.org/2003/05/soap-envelope
http://www.wiley.com/soap/ordersystem
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-encoding
http://www.wiley.com/soap/ordersystem

582 ❘ CHAPTER 1 5 SOAP AND WSDL

 <o:Quantity>3</o:Quantity>
 <o:ItemId>ZIBKA</o:ItemId>
 </o:AddToCartResponse>
 </soap:Body>
</soap:Envelope>

This distinguishes it from other encodings, such as RDF, shown in the following code:

NOTE RDF stands for Resource Description Framework, a protocol used to rep-

resent information on the Web. It is a W3C Recommendation, and the full details

are available at www.w3.org/RDF/.

<soap:Envelope xmlns: soap=”http://www.w3.org/2003/05/soap-envelope”>
 <soap:Body>
 <rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:o=”http://www.wiley.com/soap/ordersystem”
 env:encodingStyle=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>
 <o:AddToCartResponse
 rdf:About=
 “http://www.wiley.com/soap/ordersystem/addtocart.asp?cartid
 =THX1138”>
 <o:CartId>THX1138</o:CartId>
 <o:Status>OK</o:Status>
 <o:qQuantity>3</o:Quantity>
 <o:ItemId>ZIBKA</o:ItemId>
 </o:AddToCartResponse>
 </rdf:RDF>
 </soap:Body>
</soap:Envelope>

The information is the same, but it’s represented, or encoded, differently. You can also create your
own encoding, but of course if your goal is interoperability, you need to use a standard encoding
style. In the preceding example env:encodingStyle is an attribute of the <rdf:RDF> element,
but it could equally well have appeared on the <soap:Body>. In general, the attribute can appear
anywhere and applies to all descendants of the element on which it appears, as well as the element
itself. This means that different parts of the same SOAP message can use different encodings if
needed.

You’ve now seen the core components of SOAP and how they fi t together. It’s now time to put this
into practice and see how a SOAP web service uses the elements, such as <soap:Envelope> and
<soap:Body>, to wrap the request and response messages. This turns a web service into a SOAP
web service.

The previous Try It Out presented almost all of the benefi ts of SOAP. It works easily with a fi rewall,
and all the information is passed over HTTP in XML, meaning you could implement your remote
procedure using any language, on any platform, and you can call it from any language, on any
platform. However, the solution is still a little proprietary. To make the procedure more universal,
you need to go one step further and use a SOAP envelope for your XML.

c15.indd 582c15.indd 582 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.wiley.com/soap/ordersystem
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.wiley.com/soap/ordersystem/addtocart.asp?cartid=THX1138
http://www.wiley.com/soap/ordersystem/addtocart.asp?cartid=THX1138
http://www.w3.org/RDF/

The New RPC Protocol: SOAP ❘ 583

TRY IT OUT GETting a SOAP Message

This example still uses a GET request, but rather than return the raw XML, it is enclosed in a SOAP
envelope, like so:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
 <soap:Body>
 <GetTotalResponse xmlns=”http://www.wiley.com/soap/ordersystem”>
 <Discount>10</Discount>
 <TotalPrice>243</TotalPrice>
 </GetTotalResponse>
 </soap:Body>
</soap:Envelope>

In this case, you’ll also send the request and receive the response through an HTML form:

1. Create an HTML fi le in the text editor and save it as soaptester.html in a virtual folder. If you
tried the previous example, just store the fi le in the same directory, BasicOrderService.

2. Add the HTML in Listing 15-2 to SoapTester.html.

LISTING 15-2: SoapTester.html

<html>
<head>
 <title>SOAP Tester</title>
 <!-- script will go here -->
</head>
<body onload=”init();”>
 <h3>
 Soap Pricing Tool</h3>
 <form name=”orderForm”>
 <select name=”lstItems” id=”lstItems” style=”width: 350px”
 onchange=”setPriceAndQuantity();”>
 <option value=”10.50” id=”item1” selected>
 Cool Britannia, by The Bonzo Dog Doo-Dah Band</option>
 <option value=”12.95” id=”item2”>
 Zibka Smiles, by The Polka Dot Zither Band</option>
 <option value=”20.00” id=”item3”>
 Dr Frankenstein’s Disco Party, by Jonny Wakelin</option>
 </select>
 <p>
 Unit price:<input type=”text”
 name=”txtUnitPrice” id=”txtUnitPrice”
 size=”6” readonly>

 Quantity:
 <input type=”text”
 name=”txtQuantity” id=”txtQuantity”
 size=”2”>
 </p>

Available for
download on
Wrox.com

c15.indd 583c15.indd 583 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope
http://www.wiley.com/soap/ordersystem
http://Wrox.com

584 ❘ CHAPTER 1 5 SOAP AND WSDL

 <input type=”button” value=”Get Price” onclick=”doGet()”>

 Discount (%):<input type=”text” id=”txtDiscount”
 name=”txtDiscount” size=”4” readonly>

 Total price:<input type=”text” id=”txtTotalPrice”
 name=”txtTotalPrice” size=”6” readonly>
 </form>
</body>
</html>

The form has a drop-down box to pick an item; this sets the price in the fi rst textbox. The user then
chooses the quantity and clicks the button. You have two read-only textboxes for the output:
txtDiscount and txtTotalPrice (see Figure 15-3).

FIGURE 15-3

3. Add the script that’s going to make the call to the SOAP server to the SoapTester.html fi le:

<head>
 <title>SOAP Tester</title>
 <script type=”text/javascript”
 src=”http://code.jquery.com/jquery-1.6.4.js”></script>
 <script type=”text/javascript”>
 function doGet()
 {
 var dUnitPrice = $(“#txtUnitPrice”).val();
 var iQuantity = $(“#txtQuantity”).val();
 var sBaseUrl = “GetTotal2.aspx”;
 var sQuery = “?unitprice=” + dUnitPrice + “&quantity=” + iQuantity;
 var sRequest = sBaseUrl + sQuery;
 $.get(sRequest, null, handleGetTotalResponse, “xml”);
 }

 function handleGetTotalResponse(data, textStatus, jqXHR)
 {
 if (textStatus == “success”)
 {
 alert(jqXHR.responseText);
 var oBody = $(“[nodeName=soap\\:Body]”, jqXHR.responseXML);
 var dDiscount = oBody.find(“[nodeName=Discount]”).text();
 var dTotalPrice = oBody.find(“[nodeName=TotalPrice]”).text();

Available for
download on
Wrox.com

c15.indd 584c15.indd 584 05/06/12 6:02 PM05/06/12 6:02 PM

http://code.jquery.com/jquery-1.6.4.js
http://Wrox.com

The New RPC Protocol: SOAP ❘ 585

 if (!dDiscount)
 {
 var oError = $(“[nodeName=Error]”, jqXHR.responseXML);
 if (oError)
 {
 var sErrorMessage = oError.find(“[nodeName=Reason]”).text();
 alert(sErrorMessage);
 }
 else
 {
 alert(“Unreadable error message.”);
 }
 }
 showResults(dDiscount, dTotalPrice);
 }
 else
 alert(“Error accessing web service.”);
 }

 function showResults(discount, totalPrice)
 {
 $(“#txtDiscount”).val(discount);
 $(“#txtTotalPrice”).val(totalPrice);
 }

 function setPriceAndQuantity()
 {
 $(“#txtUnitPrice”).val($(“#lstItems”).val());
 $(“#txtQuantity”).val(1);
 }

 function init()
 {
 setPriceAndQuantity();
 }

 </script>
</head>

SoapTester.html

The fi rst script is the jQuery library that is used to make getting the values of elements easier,
and to make a background request to the web service to retrieve the discounted price. This code
is in the doGet() function. The handleGetTotalResponse() function uses jQuery’s XML
parsing features to load the received request and look for a <soap:Body> element, and from there,
the <Discount> and <TotalPrice> elements. If it can’t fi nd these, it treats the response as an
error and shows the value of the <Reason> element. The script contains two other functions.
setPriceAndQuantity() populates txtUnitPrice with the price of the selected item and resets
the quantity to 1. init() sets the initial values of these boxes when the page loads.

The jQuery fi le is being hosted on jQuery’s own content delivery network (CDN). If you’d rather
have a local copy, download it and alter the src attribute accordingly. In a production environ-
ment you’d probably use the minifi ed (compact) version, but here you use the full one because it’s
easier to debug if things go wrong.

c15.indd 585c15.indd 585 05/06/12 6:02 PM05/06/12 6:02 PM

586 ❘ CHAPTER 1 5 SOAP AND WSDL

4. Create the aspx page to serve the content. Save a copy of GetTotal.aspx and call it
GetTotal2.aspx. Modify the content so that the CodeFile attribute points to GetTotal2.aspx.cs
like so:

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”GetTotal2.aspx.cs”
 Inherits=”GetTotal” ContentType=”text/xml” %>

GetTotal2.aspx

5. Copy the code fi le, GetTotal.aspx.cs, and name the new version GetTotal2.aspx.cs. Modify
the GetSuccessXml to produce a SOAP-style message like so:

private string GetSuccessXml(double totalPrice, double discount)
{
 string clientXml = “<soap:Envelope xmlns:soap=\
“http://www.w3.org/2003/05/soap-envelope\”><soap:Body>”
 + “<GetTotalResponse”
 + “ xmlns=\”http://www.wiley.com/soap/ordersystem\”><Discount>{0}</Discount>”
 + “<TotalPrice>{1}</TotalPrice>”
 + “</GetTotalResponse></soap:Body></soap:Envelope>”;
 return string.Format(clientXml,
 Convert.ToString(discount),
 Convert.ToString(totalPrice));
}

GetTotal2.aspx

6. Reload the soaptester.html page in the browser, change the quantity, and click the Get Price but-
ton. The raw XML returned by the service is displayed in an alert box, as shown in Figure 15-4.
The results are then extracted from this message and displayed in the bottom two textboxes. If you
try an invalid quantity, you’ll get an alert of the error message, as shown previously.

FIGURE 15-4

c15.indd 586c15.indd 586 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope\
http://www.wiley.com/soap/ordersystem\

The New RPC Protocol: SOAP ❘ 587

How It Works

This Try It Out illustrates a practical (if a bit contrived) example of working with a SOAP server.
Using the browser, you created a simple SOAP client that retrieved information from the user interface
(the quantity and unit price), sent a request to a SOAP server (the GET request), and displayed the
results (the discount and extended price).

Because you created a client using the browser, you had to use a MIME type that the browser
understands: text/xml. Under other circumstances, you’d want to use the actual SOAP MIME type,
application/soap+xml. In other words, the ASP page would begin with the following:

Response.ContentType = “application/soap+xml”

This way, administrators can confi gure their fi rewalls to allow packets with this MIME type to pass
through, even if they are blocking other types of content. Unfortunately, far too few clients understand
this version, so the less accurate text/xml is still more common.

There’s one fi nal step before this service is fully SOAP compliant, and that’s the error handling. At the
moment, it still returns the error message in a proprietary format. You’ll return to this after you’ve cov-
ered SOAP errors in more detail.

So far you’ve only scratched the surface of what SOAP can do. The following section looks at some
more detailed uses.

More Complex SOAP Interactions

Now that you know the basics of how SOAP works, it’s time to delve a little more deeply. SOAP
messages can consist of not just a Body, which contains the payload or data to be processed, but also
a Header element that contains information about the payload. The Header also gives you a good
deal of control over how its information is processed.

Additionally SOAP messages also use <Fault> elements to return fault code errors, and can substi-
tute the use of the GET operation with the POST operation in some circumstances. The following
sections explain these more complex elements of SOAP.

<Header>

The <Header> element comes into play when you need to add additional information to your SOAP
message. For example, suppose you created a system whereby orders can be placed into your data-
base using SOAP messages, and you have defi ned a standard SOAP message format that anyone
communicating with your system must use. You might use a SOAP header for authentication infor-
mation, so that only authorized persons or systems can use your system. These elements, called
header blocks, are specifi cally designed for meta information, or information about the information
contained in the body.

When a <Header> element is used, it must be the fi rst element child of the <Envelope> element.
Functionally, the <Header> element works very much like the <Body> element; it is simply a
placeholder for other elements in namespaces other than the SOAP envelope namespace. The
<Header> element contains instructions, such as routing information; or meta data, such as user

c15.indd 587c15.indd 587 05/06/12 6:02 PM05/06/12 6:02 PM

588 ❘ CHAPTER 1 5 SOAP AND WSDL

 credentials, which need to be taken into account when processing the main SOAP message in the
<Body>. In general, however, the <Header> doesn’t contain information to be processed.

The SOAP 1.2 Recommendation also defi nes three optional attributes you can include on those
header entries: mustUnderstand, role, and relay.

The mustUnderstand Attribute

The mustUnderstand attribute specifi es whether it is absolutely necessary for the SOAP server to
process a particular header block. A value of true indicates that the header entry is mandatory, and
the server must either process it or indicate an error. For example, consider the following:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
 <soap:Header xmlns:some-ns=”http://www.wiley.com/soap/headers/”>

 <some-ns:authentication mustUnderstand=”true”>
 <UserID>User ID goes here...</UserID>
 <Password>Password goes here...</Password>
 </some-ns:authentication>

 <some-ns:log mustUnderstand=”false”>
 <additional-info>Info goes here...</additional-info>
 </some-ns:log>
 <some-ns:log>
 <additional-info>Info goes here...</additional-info>
 </some-ns:log>
 </soap:Header>
 <soap:Body xmlns:body-ns=”http://www.wiley.com/soap/rpc”>
 <body-ns:mainRPC>
 <additional-info/>
 </body-ns:mainRPC>
 </soap:Body>
</soap:Envelope>

This SOAP message contains three header entries: one for authentication and two for logging purposes.

For the <authentication> header entry, a value of true was specifi ed for mustUnderstand.
(In SOAP 1.1, you would have specifi ed it as 1.) This means that the SOAP server must process the
header block. If the SOAP server doesn’t understand this header entry, it rejects the entire SOAP
message — the server is not allowed to process the entries in the SOAP body. This forces the server
to use proper authentication.

The second header entry specifi ed a value of false for mustUnderstand, which makes this header
entry optional. This means that when the SOAP server doesn’t understand this particular header entry,
it can still go ahead and process the SOAP body anyway.

Finally, in the third header entry the mustUnderstand attribute was omitted. In this case, the header
entry is optional, just as if you had specifi ed the mustUnderstand attribute with a value of false.

The role Attribute

In some cases a SOAP message may pass through a number of applications on a number of comput-
ers before it arrives at its fi nal destination. You might send a SOAP message to computer A, which
might then send that message on to computer B. Computer A would be called a SOAP intermediary.

c15.indd 588c15.indd 588 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope
http://www.wiley.com/soap/headers/
http://www.wiley.com/soap/rpc

The New RPC Protocol: SOAP ❘ 589

In these cases, you can use the role attribute to specify that some SOAP headers must be processed
by a specifi c intermediary. The value of the attribute is a URI, which uniquely identifi es each inter-
mediary. The SOAP specifi cation also defi nes the following three roles:

 ➤ http://www.w3.org/2003/05/soap-envelope/role/next applies to the next intermedi-
ary in line, wherever it is.

 ➤ http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver applies only to
the very last stop.

 ➤ http://www.w3.org/2003/05/soap-envelope/role/none effectively “turns off” the
header block so that it is ignored at this stage of the process.

When an intermediary processes a header entry, it must remove that header from the message before
passing it on. Conversely, the SOAP specifi cation also says that a similar header entry can be inserted
in its place, so you can process the SOAP header entry and then add another identical header block.

The relay Attribute

The SOAP specifi cation also requires a SOAP intermediary to remove any headers it doesn’t process,
which presents a problem. What if you want to add a new feature and target it at any intermediary
that might understand it? The solution to this is the relay attribute. By setting the relay attribute
to true, you can instruct any intermediary that encounters it to either process it or leave it alone.
(If the intermediary does process the header, the intermediary still must remove it.) The default
value for the relay attribute is false.

<Fault>

Whenever computers are involved, things can go wrong, and there may be times when a SOAP server
is unable to process a SOAP message, for whatever reason. Perhaps a resource needed to perform the
operation isn’t available, invalid parameters were passed, or the server doesn’t understand the SOAP
request in the fi rst place. In these cases, the server returns fault codes to the client to indicate errors.

Fault codes are sent using the same format as other SOAP messages. However, in this case, the
<Body> element has only one child, a <Fault> element. Children of the <Fault> element contain
details of the error. A SOAP message indicating a fault might look similar to this:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
 xmlns:rpc=”http://www.w3.org/2003/05/soap-rpc”>
 <soap:Body>
 <soap:Fault>
 <soap:Code>
 <soap:Value>soap:Sender</soap:Value>
 <soap:Subcode>
 <soap:Value>rpc:BadArguments</soap:Value>
 </soap:Subcode>
 </soap:Code>
 <soap:Reason>
 <soap:Text xml:lang=”en-US”>Processing error</soap:Text>
 <soap:Text xml:lang="fr">Erreur de traitement</soap:Text>
 </soap:Reason>
 <soap:Detail>
 <o:orderFaultInfo xmlns:o=”http://www.wiley.com/soap/ordersystem”>
 <o:errorCode>WA872</o:errorCode>
 <o:message>Cart doesn’t exist</o:message>

c15.indd 589c15.indd 589 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope/role/next
http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver
http://www.w3.org/2003/05/soap-envelope/role/none
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-rpc
http://www.wiley.com/soap/ordersystem

590 ❘ CHAPTER 1 5 SOAP AND WSDL

 </o:OrderFaultInfo>
 </soap:Detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

The <Code> element contains a <Value> consisting of a unique identifi er that identifi es this particu-
lar type of error. The SOAP specifi cation defi nes fi ve such identifi ers, described in the Table 15-1:

FAULT CODE DESCRIPTION

VersionMismatch A SOAP message was received that specifi ed a version of the SOAP proto-

col that this server doesn’t understand. (This would happen, for example, if

you sent a SOAP 1.2 message to a SOAP 1.1 server.)

MustUnderstand The SOAP message contained a mandatory header that the SOAP server

doesn’t understand.

Sender The message was not properly formatted. That is, the client made a mis-

take when creating the SOAP message. This identifi er also applies if the

message itself is well formed, but doesn’t contain the correct information.

For example, if authentication information were missing, this identifi er

would apply.

Receiver The server had problems processing the message, even though the con-

tents of the message were formatted properly. For example, perhaps a data-

base was down.

DataEncodingUnknown The data in the SOAP message is organized, or encoded, in a way the

server doesn’t understand.

TABLE 15-1: Fault Code Values in SOAP

NOTE Keep in mind that the identifi er is actually namespace-qualifi ed, using

the http://www.w3.org/2003/05/soap-envelope namespace.

You also have the option to add information in different languages, as shown in the previous exam-
ple’s <Text> elements, as well as application-specifi c information as part of the <Detail> element.
Note that application-specifi c information in the <Detail> element must have its own namespace.

The previous two Try It Outs were devoted to simply getting information from the SOAP server.
Because you weren’t actually changing anything on the server, you could use the GET method and
simply pass all of the information as part of the URL. (Remember that you’re supposed to use
GET only when there are no side effects from calling the URL.)

Now you examine a situation where that isn’t the case. In this Try It Out, you look at a SOAP
procedure that adds an item to a hypothetical shopping cart. Because this is not an “idempotent”
process—it causes side effects, in that it adds an item to the order—you have to submit the informa-
tion via the POST method, which means creating a SOAP message within the client.

c15.indd 590c15.indd 590 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope

The New RPC Protocol: SOAP ❘ 591

TRY IT OUT POSTing a SOAP Message

In this activity you will call the AddToCart procedure using the following SOAP message (placeholders
are shown in italics):

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
<soap:Body>
 <o:AddToCart xmlns:o=”http://www.wiley.com/soap/ordersystem”>
 <o:CartId>CARTID</o:CartId>
 <o:Item itemId=”ITEMID”>
 <o:Quantity>QUANTITY</o:Quantity>
 <o:TotalPrice>PRICE</o:TotalPrice>
 </o:Item>
 </o:AddToCart>
</soap:Body>
</soap:Envelope>

For the response, send the following XML back to the client:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”>
 <soap:Body>
 <o:AddToCartResponse xmlns:o=”http://www.wiley.com/soap/ordersystem”>
 <o:CartId>CARTID</o:CartId>
 <o:Status>STATUS</o:Status>
 <o:Quantity>QUANTITY</o:Quantity>
 <o:ItemId>ITEMID</o:ItemId>
 </o:AddToCartResponse>
 </soap:Body>
</soap:Envelope>

You also need to handle the errors using a SOAP envelope. Use the following format for errors:

<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
 xmlns:rpc=”http://www.w3.org/2003/05/soap-rpc”>
 <soap:Body>
 <soap:Fault>
 <soap:Code>
 <soap:Value>soap:FAULTCODE</soap:Value>
 <soap:Subcode>
 <soap:Value>SUBVALUE</soap:Value>
 </soap:Subcode>
 </soap:Code>
 <soap:Reason>
 <soap:Text>ERROR DESCRIPTION</soap:Text>
 </soap:Reason>
 <soap:Detail>
 <o:OrderFaultInfo xmlns:o=”http://www.wiley.com/soap/ordersystem”>
 <o:ErrorCode>APPLICATION-SPECIFIC ERROR CODE</o:ErrorCode>
 <o:Message>APPLICATION-SPECIFIC ERROR MESSAGE</o:Message>
 </o:OrderFaultInfo>
 </soap:Detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

This Try It Out will build on the Visual Studio project used in the previous one. You’ll add the func-
tionality of adding a product to your shopping basket, and all the messages passed between the client
and the service will be in a SOAP format.

c15.indd 591c15.indd 591 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope
http://www.wiley.com/soap/ordersystem
http://www.w3.org/2003/05/soap-envelope
http://www.wiley.com/soap/ordersystem
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-rpc
http://www.wiley.com/soap/ordersystem

592 ❘ CHAPTER 1 5 SOAP AND WSDL

1. Add a new web form to the example project named AddToCart.aspx. Similar to the previous
aspx pages, it indicates that the returned content is XML. It also has a ValidateRequest attri-
bute set to false; otherwise, the aspx handler rejects the request as malformed.

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="AddToCart.aspx.cs"
 Inherits="AddToCart" ContentType="text/xml" ValidateRequest="false" %>

AddToCart.aspx

2. Go to AddToCart.aspx.cs to create the basic page that retrieves the submitted SOAP message and
extracts the appropriate information. The fi rst part of the page (as shown in the following code)
declares the namespaces of the libraries used in the service. These are the familiar System.Web as
well as two namespaces for parsing and producing XML, System.Linq and System.Xml.Linq:

using System;
using System.Linq;
using System.Xml.Linq;

public partial class AddToCart : System.Web.UI.Page
{

 private readonly XNamespace cartNS = “http://www.wiley.com/soap/ordersystem”;
 private readonly XNamespace soapNS = “http://www.w3.org/2003/05/soap-envelope”;

 protected void Page_Load(object sender, EventArgs e)
 {
 try
 {
 XElement message = XElement.Load(Request.InputStream);
 // More code here to read incoming message
 }
 catch (Exception ex)
 {
 SendSoapFault(“soap:Sender”,
 “rpc:BadArguments”,
 ex.Message,
 “1”,
 ex.Message);
 }
 }

AddToCart.aspx.cs

3. Declare two XNamespaces to hold the two namespace URIs you’ll need to read and create the SOAP
messages, then load the incoming stream into an XElement named message. You do this in a
try/catch block. If the Load() method fails because the input is invalid, the catch block returns a
SOAP fault to the client using the SendSoapFault() method which is discussed later in this activity.

4. The relevant parts of the incoming XML are read using the techniques described in Chapter 12,
“LINQ to XML”:

 try
 {
 XElement message = XElement.Load(Request.InputStream);
 string cartId = message.Descendants(cartNS + "CartId").First().Value;
 string itemId =

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 592c15.indd 592 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.wiley.com/soap/ordersystem
http://www.w3.org/2003/05/soap-envelope
http://Wrox.com
http://Wrox.com
http://Wrox.com

The New RPC Protocol: SOAP ❘ 593

 message.Descendants(cartNS + "Item").First().Attribute("itemId").Value;
 string quantity =
 message.Descendants(cartNS + "Quantity").First().Value;
 string totalPrice =
 message.Descendants(cartNS + "TotalPrice").First().Value;
 string status = ProcessData(cartId, itemId, quantity, totalPrice);
 SendSoapResponse(status, cartId, itemId, quantity);
 }
 catch (Exception ex)

AddToCart.aspx.cs

5. Once the four values are extracted, they are passed to the ProcessData() method like so:

 private string ProcessData(string cartId,
 string itemid,
 string quantity,
 string totalPrice)
 {
 // do something with data
 return “OK”;
 }

AddToCart.aspx.cs

In a full application this method would validate the values and use SendSoapFault() if there was
a problem such as a missing or illegal entry. If everything was okay, the data would be added to
some sort of store, such as a database or the user’s session. Here, you just return a status message
of OK. (In a production system you wouldn’t trust the totalPrice to be valid either, because it
came from the client. You’d check the discount against the web service created earlier.)

6. Finally, a SOAP response is generated and saved to the Response.OutputStream. This method
uses a template of the outgoing message and then fi lls it in using LINQ to XML. This is one area
where VB.NET’s XML Literals, discussed in Chapter 12, would make things much easier:

 private void SendSoapResponse(string status,
 string cartId,
 string itemid,
 string quantity)
 {
 string template =
 “<soap:Envelope xmlns:soap=\”http://www.w3.org/2003/05/soap-envelope\”>”
 + “<soap:Body>”
 + “<o:AddToCartResponse”
 + “xmlns:o=\”http://www.wiley.com/soap/ordersystem\”>”
 + “<o:CartId></o:CartId>”
 + “<o:Status></o:Status>”
 + “<o:Quantity></o:Quantity>”
 + “<o:ItemId></o:ItemId>”
 + “</o:AddToCartResponse>”
 + “</soap:Body>”
 + “</soap:Envelope>”;
 XElement soapResponse = XElement.Parse(template);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c15.indd 593c15.indd 593 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope\
http://www.wiley.com/soap/ordersystem\
http://Wrox.com
http://Wrox.com

594 ❘ CHAPTER 1 5 SOAP AND WSDL

 XElement addToCartResponse =
 soapResponse.Descendants(cartNS + “AddToCartResponse”).First();
 addToCartResponse.SetElementValue(cartNS + “CartId”, cartId);
 addToCartResponse.SetElementValue(cartNS + “Status”, status);
 addToCartResponse.SetElementValue(cartNS + “Quantity”, quantity);
 addToCartResponse.SetElementValue(cartNS + “ItemId”, cartId);
 soapResponse.Save(Response.OutputStream);
 }

AddToCart.aspx.cs

7. The method that creates a SOAP fault is similar; it uses a template and passes back the offi cial
SOAP fault details along with a user-friendly message derived from the Exception that was
thrown:

 private void SendSoapFault(string faultCode,
 string subvalue,
 string description,
 string appCode,
 string appMessage)
 {
 string template =
 “<soap:Envelope xmlns:soap=\”http://www.w3.org/2003/05/soap-envelope\””
 + “ xmlns:rpc=\”http://www.w3.org/2003/05/soap-rpc\”>”
 + “<soap:Body>”
 + “<soap:Fault>”
 + “<soap:Code>”
 + “<soap:Value></soap:Value>”
 + “<soap:Subcode>”
 + “<soap:Value></soap:Value>”
 + “</soap:Subcode>”
 + “</soap:Code>”
 + “<soap:Reason>”
 + “<soap:Text></soap:Text>”
 + “</soap:Reason>”
 + “<soap:Detail>”
 + “<o:OrderFaultInfo”
 + “ xmlns:o=\”http://www.wiley.com/soap/ordersystem\”>”
 + “<o:ErrorCode></o:ErrorCode>”
 + “<o:Message></o:Message>”
 + “</o:OrderFaultInfo>”
 + “</soap:Detail>”
 + “</soap:Fault>”
 + “</soap:Body>”
 + “</soap:Envelope>”;
 XElement soapResponse = XElement.Parse(template);
 XElement soapFault = soapResponse.Descendants(soapNS + “Fault”).First();
 soapFault.Element(soapNS + “Code”).
 SetElementValue(soapNS + “Value”, faultCode);
 soapFault.Element(soapNS + “Code”).
 Element(soapNS + “Subcode”).SetElementValue(soapNS + “Value”, subvalue);
 soapFault.Element(soapNS + “Reason”).
 SetElementValue(soapNS + “Text”, description);
 XElement orderFaultInfo =

Available for
download on
Wrox.com

c15.indd 594c15.indd 594 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope\
http://www.w3.org/2003/05/soap-rpc\
http://www.wiley.com/soap/ordersystem\
http://Wrox.com

The New RPC Protocol: SOAP ❘ 595

 soapResponse.Descendants(cartNS + “OrderFaultInfo”).First();
 orderFaultInfo.SetElementValue(cartNS + “ErrorCode”, appCode);
 orderFaultInfo.SetElementValue(cartNS + “Message”, appMessage);
 soapResponse.Save(Response.OutputStream);
 }
}

AddToCart.aspx.cs

8. Now the client needs to be amended. Once the total price has been retrieved, the user can add the
items to the cart. You must make two changes to the HTML. First, you need to store the item’s ID
with each select option so it can be sent with the SOAP request:

 <select name=”lstItems” id=”lstItems” style=”width: 350px”
 onchange=”setPriceAndQuantity();”>
 <option value=”10.50” id=”item1”
 selected>Cool Britannia, by The Bonzo Dog Doo-Dah Band</option>
 <option value=”12.95”
 id=”item2”>Zibka Smiles, by The Polka Dot Zither Band</option>
 <option value=”20.00”
 id=”item3”>Dr Frankenstein’s Disco Party, by Jonny Wakelin</option>
 </select>

9. Now add a new function to create the request, doPost(), and one to handle the return,
handleAddToCartResponse(). Both work similarly to the previous Try It Out, but create a POST
request instead of a GET. The full listing of SoapTester-Post.html is shown in Listing 15-3,
and Figure 15-5 shows it in action.

LISTING 15-3: SoapTester-Post.html

<html>
<head>
 <title>SOAP Tester</title>
 <script type=”text/javascript”
 src=”http://code.jquery.com/jquery-1.6.4.js”></script>
 <script type=”text/javascript”>
 function doGet()
 {
 var dUnitPrice = $(“#txtUnitPrice”).val();
 var iQuantity = $(“#txtQuantity”).val();
 var sBaseUrl = “GetTotal2.aspx”;
 var sQuery = “?unitprice=” + dUnitPrice + “&quantity=” + iQuantity;
 var sRequest = sBaseUrl + sQuery;
 $.get(sRequest, null, handleGetTotalResponse, “xml”);
 }

 function handleGetTotalResponse(data, textStatus, jqXHR)
 {
 if (textStatus == “success”)
 {
 alert(jqXHR.responseText);

Available for
download on
Wrox.com

c15.indd 595c15.indd 595 05/06/12 6:02 PM05/06/12 6:02 PM

http://code.jquery.com/jquery-1.6.4.js
http://Wrox.com

596 ❘ CHAPTER 1 5 SOAP AND WSDL

 var oBody = $(“[nodeName=soap\\:Body]”, jqXHR.responseXML);
 var dDiscount = oBody.find(“[nodeName=Discount]”).text();
 var dTotalPrice = oBody.find(“[nodeName=TotalPrice]”).text();
 if (!dDiscount)
 {
 var oError = $(“[nodeName=Error]”, jqXHR.responseXML);
 if (oError)
 {
 var sErrorMessage = oError.find(“[nodeName=Reason]”).text();
 alert(sErrorMessage);
 }
 else
 {
 alert(“Unreadable error message.”);
 }
 }
 showResults(dDiscount, dTotalPrice);
 }
 else
 alert(“Error accessing web service.”);
 }

 function showResults(discount, totalPrice)
 {
 $(“#txtDiscount”).val(discount);
 $(“#txtTotalPrice”).val(totalPrice);
 }

 function setPriceAndQuantity()
 {
 $(“#txtUnitPrice”).val($(“#lstItems”).val());
 $(“#txtQuantity”).val(1);
 }

 function doPost()
 {
 var oLst = document.getElementById(“lstItems”);
 var sItemId = oLst.options[oLst.selectedIndex].id;
 var sCartId = $(“#hdCartId”).val();
 var iQuantity = $(“#txtQuantity”).val();
 var dTotalPrice = $(“#txtTotalPrice”).val();
 var sSoapRequest =
 “<soap:Envelope xmlns:soap=\”http://www.w3.org/2003/05/soap-envelope\”>”
 + “<soap:Body>”
 + “<o:AddToCart xmlns:o=\”http://www.wiley.com/soap/ordersystem\”>”
 + “<o:CartId>” + sCartId + “</o:CartId>”
 + “<o:Item itemId=\”” + sItemId + “\”>”
 + “<o:Quantity>” + iQuantity + “</o:Quantity>”
 + “<o:TotalPrice>” + dTotalPrice + “</o:TotalPrice>”
 + “</o:Item>”

c15.indd 596c15.indd 596 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope\
http://www.wiley.com/soap/ordersystem\

The New RPC Protocol: SOAP ❘ 597

 + “</o:AddToCart>”
 + “</soap:Body>”
 + “</soap:Envelope>”;
 alert(sSoapRequest);
 $.ajax({ url: “AddToCart.aspx”,
 type: “post”,
 data: sSoapRequest,
 processData: false,
 contentType: “text/xml”,
 success: handleAddToCartResponse});
 }

 function handleAddToCartResponse(data, textStatus, jqXHR)
 {
 if (textStatus == “success”)
 {
 alert(jqXHR.responseText);
 var oBody = $(“[nodeName=soap\\:Body]”, jqXHR.responseXML);
 var sStatus = oBody.find(“[nodeName=o\\:Status]”).text();
 if (!sStatus)
 {
 var sMessage = oBody.find(“[nodeName=o\\:Message]”).text();
 alert(“Unable to add item to cart.\n” + sMessage);
 }
 else
 {
 if (sStatus == “OK”)
 {
 alert(“Item added to cart”);
 }
 else
 {
 alert(“Unable to add item to cart.”);
 }
 }
 }
 else
 {
 alert(“Unable to add item to cart.”);
 }
 }

 function init()
 {
 setPriceAndQuantity();
 }

 </script>
</head>
<body onload=”init();”>

c15.indd 597c15.indd 597 05/06/12 6:02 PM05/06/12 6:02 PM

598 ❘ CHAPTER 1 5 SOAP AND WSDL

 <h3>
 Soap Pricing Tool</h3>
 <form name=”orderForm”>
 <select name=”lstItems”
 id=”lstItems” style=”width: 350px” onchange=”setPriceAndQuantity();”>
 <option value=”10.50”
 id=”item1” selected>Cool Britannia, by The Bonzo Dog Doo-Dah Band</option>
 <option value=”12.95”
 id=”item2”>Zibka Smiles, by The Polka Dot Zither Band</option>
 <option value=”20.00”
 id=”item3”>Dr Frankenstein’s Disco Party, by Jonny Wakelin</option>
 </select>
 <p>
 Unit price:<input type=”text” name=”txtUnitPrice”
 id=”txtUnitPrice” size=”6” readonly>

 Quantity:
 <input type=”text” name=”txtQuantity” id=”txtQuantity” size=”2”>
 </p>
 <input type=”button” value=”Get Price” onclick=”doGet()”>

 Discount (%):
 <input type=”text” id=”txtDiscount” name=”txtDiscount” size=”4” readonly>

 Total price:
 <input type=”text” id=”txtTotalPrice”
 name=”txtTotalPrice” size=”6” readonly>

 <input type=”hidden” readonly name=”hdCartId”
 id=”hdCartId” value=”cart123”>

 <input type=”button” value=”Add to Cart” onclick=”doPost();”>

 </form>
</body>
</html>

FIGURE 15-5

Figure 15-6 shows the raw XML response received after the Add to Cart button is clicked. If an
error occurs (and you can test this by modifying the SOAP template by changing the AddToCart
start tag to AddToCar), a SOAP fault is returned, as shown in Figure 15-7.

c15.indd 598c15.indd 598 05/06/12 6:02 PM05/06/12 6:02 PM

The New RPC Protocol: SOAP ❘ 599

FIGURE 15-6

FIGURE 15-7

How It Works

Here you used the same techniques you used for raw XML messages to put together valid SOAP mes-
sages on both the incoming and the outgoing streams. You used data entered by the user on a form to
create a SOAP message that was sent to a server. The server extracted information from that SOAP
message using typical XML tactics, evaluated the data, and then determined whether to send a success

c15.indd 599c15.indd 599 05/06/12 6:02 PM05/06/12 6:02 PM

600 ❘ CHAPTER 1 5 SOAP AND WSDL

or failure message. The success message is another SOAP message that simply includes a payload, which
was then interpreted by the browser and displayed on the page. The failure message, or fault, was also
analyzed by the browser. A SOAP 1.2 fault can include a wealth of information, related to both SOAP
and the application itself.

NOTE Some of the client-side script used in this example was deliberately

glossed over, particularly the AJAX calls, because this topic is dealt with more

fully in the next chapter.

This may seem like a lot of work for a very simple operation, but realize that you have created, from
scratch, all of the plumbing necessary to create an entire SOAP service. Implementing a more
diffi cult SOAP service, such as some type of order-processing system, would require the same level
of plumbing, even though the functionality being provided would be much more diffi cult.

In addition, several SOAP toolkits are available, meaning you won’t necessarily have to generate the
SOAP messages by hand like this every time you want to use SOAP to send messages from one
computer to another. In any case, when you use those toolkits now, you’ll understand what’s going
on under the hood. Until vendors get their respective acts together, that will come in handy when
the inevitable inconsistencies and incompatibilities appear.

DEFINING WEB SERVICES: WSDL

You’ve built a web service. Now you hope that other people and organizations start using the ser-
vice you’ve built. To do that, however, they need to know two things:

 ➤ How to call the service

 ➤ What to expect as a response from the service

Fortunately, there’s a relatively easy way to provide answers to both questions: Web Services
Description Language (WSDL). WSDL provides a standardized way to describe a web service. That
means you can create a WSDL fi le describing your service, make the fi le available, and then sit back
as people use it.

Of course, a WSDL fi le isn’t just for people. Recall the toolkits that take most of the work out of
creating SOAP messages. They’re built on the principle that they can automatically generate a client
for your web service just by analyzing the WSDL fi le. In this way, WSDL helps to make web services
truly platform- and language-independent.

How’s that, you ask? It’s simple. A WSDL fi le is written in XML, describing the data to be passed
and the method for passing it, but it doesn’t lean toward any particular language. That means a
web-services client generator can use the WSDL information to generate a client in any language.
For example, a code generator for Java could create a client to access your ASP-based service, and the
best part is that the client is pure Java. A developer writing an application around it doesn’t have to
know the details of the service, just the methods of the proxy class that actually accesses the service.
The proxy sits between the client and the actual service, translating messages back and forth.

c15.indd 600c15.indd 600 05/06/12 6:02 PM05/06/12 6:02 PM

Defi ning Web Services: WSDL ❘ 601

NOTE The latest version of WSDL, version 2.0, reached Candidate

Recommendation in March 2006, but still seems to have had little impact so far.

Most services still use the earlier version. The major diff erences between the

two versions are highlighted when the various parts of the WSDL schema are

discussed later in this chapter. You can read the specifi cation for WSDL 1.1, the

most common version, at www.w3.org/TR/wsdl.

This chapter uses WSDL to describe a service that sends SOAP messages over HTTP, but in
actuality WSDL is designed to be much more general. First, you defi ne the data that will be sent,
and then you defi ne the way it will be sent. In this way, a single WSDL fi le can describe a service
that’s implemented as SOAP over HTTP as well as, say, SOAP over e-mail or even a completely
different means. This chapter sticks with SOAP over HTTP because that’s by far the most common
usage right now.

The following sections discuss the various XML elements and attributes that make up a WSDL fi le
and how they are mapped to a SOAP message.

<defi nitions>

A WSDL fi le starts with a <definitions> element like so:

<?xml version=”1.0”?>
<definitions name=”temperature”
 targetNamespace=”http://www.example.com/temperature”
 xmlns:typens=”http://www.example.com/temperature”
 xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns=”http://schemas.xmlsoap.org/wsdl/”>
</definitions>

The fi rst task in a WSDL fi le is to defi ne the information that will be sent to and from the service. A
WSDL fi le builds up the service in levels. First, it defi nes the data to be sent and received, and then it
uses that data to defi ne messages.

<types>

Remember that there’s no way to know for sure that the web service being described will use
SOAP, or even that the information passed in the request will be XML, but WSDL enables you to
defi ne the information set—in other words, the information itself, regardless of how it’s ultimately
represented—using XML Schemas (discussed in Chapter 5). For example, consider a simple service
that takes a postal code and date and returns an average temperature. The service would have two
types of data to deal with, as shown in the following code:

<types>
 <xsd:schema xmlns=””
 xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
 targetNamespace=”http://www.example.com/temperature”>
 <xsd:complexType name=”temperatureRequestType”>
 <xsd:sequence>

c15.indd 601c15.indd 601 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.example.com/temperature
http://www.example.com/temperature
http://www.w3.org/2000/10/XMLSchema
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/
http://www.w3.org/2000/10/XMLSchema
http://www.example.com/temperature
http://www.w3.org/TR/wsdl

602 ❘ CHAPTER 1 5 SOAP AND WSDL

 <xsd:element name=”where” type=”xsd:string” />
 <xsd:element name=”when” type=”xsd:date”/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=”temperatureResponseType”>
 <xsd:sequence>
 <xsd:element name=”temperature” type=”xsd:integer”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
</types>

Just as in a normal schema document, you defi ne two types: temperatureRequestType and
 temperatureResponseType. You can use them to defi ne messages.

<messages>

When you defi ne a message in a WSDL fi le, you’re defi ning the content, rather than the representa-
tion. Sure, when you send SOAP messages, you are sending XML in a SOAP envelope, but that
doesn’t matter when you defi ne the messages in the WSDL fi le. All you care about is what the
message is, what it’s called, and what kind of data it holds. Take the following example:

<message name=”TemperatureRequestMsg”>
 <part name=”getTemperature” type=”typens:temperatureRequestType”/>
</message>
<message name=”TemperatureResponseMsg”>
 <part name=”temperatureResponse” type=”typens:temperatureResponseType”/>
</message>

The preceding code defi nes a message that consists of an element called getTemperature of the type
temperatureRequestType. This translates into the following SOAP message:

<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”>
 <env:Body>
 <getTemperature>
 <where>POSTAL CODE</where>
 <when>DATE</when>
 </getTemperature>
 </env:Body>
</env:Envelope>

Notice that the namespace for the payload is still missing. You take care of that later in the WSDL
fi le. In WSDL 2.0, messages are described within the types element and rely on XML Schemas.

<portTypes>

The <portTypes> element contains a number of <portType> elements that describe the individual
operation provided by the service. These operations come in two varieties, input and output, and are
made up of the messages you defi ned earlier. Consider the following example:

<portType name=”TemperatureServicePortType”>
 <operation name=”GetTemperature”>
 <input message=”typens:TemperatureRequestMsg”/>

c15.indd 602c15.indd 602 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope

Defi ning Web Services: WSDL ❘ 603

 <output message=”typens:TemperatureResponseMsg”/>
 </operation>
</portType>

This portType shows that you’re dealing with a request-response pattern; the user sends an input
message, the structure of which is defi ned as a TemperatureRequestMsg, and the service returns an
output message in the form of a TemperatureResponseMsg.

One of the major improvements coming in WSDL 2.0 is the change of the <portTypes> element
to the <interfaces> element. Although portType seems to make sense from a structural point of
view — later, you reference it when you defi ne an actual port — it really is more of an interface,
because it defi nes the various operations you can carry out with the service. The <interfaces>
element can also be extended using the extends attribute, which allows inheritance and greater
reuse of already successful code.

Next, you have to defi ne how those messages are sent.

<binding>

Up until now, this section actually hasn’t described anything related to SOAP. You’ve defi ned
messages and put them together into operations, but you haven’t learned anything about the
protocol you use to send them. The <binding> element sets up the fi rst part of this process. In this
case, you bind the operations to SOAP as follows:

<binding name=”TemperatureBinding” type=”typens:TemperatureServicePortType”>
 <soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http”/>
 <operation name=”GetTemperature”>
 <soap:operation />
 <input>
 <soap:body use=”encoded”
 encodingStyle=”http://www.w3.org/2003/05/soap-encoding”
 namespace=”http://www.example.com/temperature” />
 </input>
 <output>
 <soap:body use=”encoded”
 encodingStyle=”http://www.w3.org/2003/05/soap-encoding”
 namespace=”http://www.example.com/temperature” />
 </output>
 </operation>
</binding>

Notice that the soap: namespace fi nally comes into play at this point. There are two elements in
this namespace: <soap:binding> and <soap:operation>. The following sections describe each
one in detail.

<soap:binding>

The <soap:binding> element specifi es that you are, in fact, dealing with a SOAP message, but it
does more than that. The transport attribute is easy; it simply specifi es that you’re sending the
message via HTTP. The style attribute is a little more complex (but just a little).

Both this chapter and the previous one concentrate on using web services as another means of
performing remote procedure calls, but that’s not their only use. In fact, in many cases information

c15.indd 603c15.indd 603 05/06/12 6:02 PM05/06/12 6:02 PM

http://schemas.xmlsoap.org/soap/
http://www.w3.org/2003/05/soap-encoding
http://www.example.com/temperature
http://www.w3.org/2003/05/soap-encoding
http://www.example.com/temperature

604 ❘ CHAPTER 1 5 SOAP AND WSDL

is simply passed to the service, which acts upon the data, rather than the data determining what
should be done.

The style attribute has two possible values: rpc and document. The rpc value is a message in
which you simply have a method name and parameters. For example, in this message, the payload
represents a call to the getTemperature method with the parameters 34652 and 2004-5-23, as
shown in the following code:

<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope">
 <env:Body>
 <getTemperature>
 <where>34652</where>
 <when>2004-05-23</when>
 </getTemperature>
 </env:Body>
</env:Envelope>

The data is contained in an outer element (getTemperature), which is itself contained within the
<env:Body> element.

When you use the document style, however, the situation is slightly different. In that case, the entire
contents of the <env:Body> element are considered to be the data in question. For example, you
might have created a SOAP message of the following:

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Body>
 <where>34652</where>
 <when>2004-05-23</when>
 </env:Body>
</env:Envelope>

The document style also enables you to send more complex documents that might not fi t into the
RPC mold. Note that neither of these examples shows the namespaces for the payload. That is set in
the soap:body element, which you learn about shortly.

<soap:operation>

The <soap:operation> element is part of the <binding> section. If the <soap:operation>
element looks out of place just sitting there with no attributes; that’s because in many ways it is
out of place. The SOAP 1.1 specifi cation required all services to use a SOAPAction header defi ning
the application that was supposed to execute it. This was an HTTP header, so you’d see
something like this:

POST /soap.asp HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: www.example.com
Content-Length: 242
SOAPAction: “http://www.example.org/soap/TemperatureService.asp”

<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”>
 <env:Body>
 <getTemperature>

c15.indd 604c15.indd 604 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-envelope
http://www.example.org/soap/TemperatureService.asp
http://www.w3.org/2003/05/soap-envelope
http://www.example.com

Defi ning Web Services: WSDL ❘ 605

 <where>34652</where>
 <when>2004-05-23</when>
 </getTemperature>
 </env:Body>
</env:Envelope>

The SOAP 1.2 specifi cation did away with the SOAPAction header, but it’s still necessary to specify
that this is a SOAP message — hence, the soap:operation element.

<soap:body>

The binding element references an operation, which in this case, is already defi ned as having an
input and an output message. Within the binding element, you defi ne how those messages are to be
presented using the soap:body element. For example, you specify the following:

<soap:body use=”encoded”
 encodingStyle=”http://www.w3.org/2003/05/soap-encoding”
 namespace=”http://www.example.com/temperature” />

For the input message, you’re specifying that it’s a SOAP message. Like the style attribute, the
use attribute has two possible values: literal and encoded. When the use attribute is specifi ed as
literal, it means that the server is not to assume any particular meaning in the XML, but to
take it as a whole. Normally, you use literal with the document style. If you specify the use attri-
bute as encoded, you have to specify the encodingStyle. In this case, you specify the SOAP style,
but you could use other encodings, such as RDF or even an entirely new encoding style. Finally, you
specify the namespace of the payload, so you wind up with a complete message as follows:

<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”>
 <env:Body>
 <t:getTemperature xmlns:t=”http://www.example.com/temperature”>
 <t:where>34652</t:where>
 <t:when>2004-05-23</t:when>
 </t:getTemperature>
 </env:Body>
</env:Envelope>

Now you just need to know where to send it.

<service>

The fi nal step in creating a WSDL fi le is to specify the service that you’re creating by putting all of
these pieces together, as shown in the following code:

<service name=”TemperatureService”>
 <port name=”TemperaturePort” binding=”typens:TemperatureBinding”>
 <soap:address location=”http://www.example.com/temp/getTemp.asp”/>
 </port>
</service>

When you create a service, you’re specifying where and how to send the information. In fact, the
<port> element shown here will likely be renamed to endpoint in WSDL 2.0 because that’s what it
is: the endpoint for the connection between the server and a client. First, you reference the binding
you just created, and then you send it as a SOAP message to the address specifi ed by the location
attribute. That’s it. Now let’s try this out in the following activity.

c15.indd 605c15.indd 605 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2003/05/soap-encoding
http://www.example.com/temperature
http://www.w3.org/2003/05/soap-envelope
http://www.example.com/temperature
http://www.example.com/temp/getTemp.asp

606 ❘ CHAPTER 1 5 SOAP AND WSDL

TRY IT OUT Specifying the Order Service via WSDL

In this Try It Out you create a WSDL fi le that describes the service you created earlier in the chapter:

1. Open a new text fi le and name it WileyShopping.wsdl.

2. Start by creating the overall structure for the fi le:

<?xml version=”1.0”?>
<definitions name=”WileyShopping”
 targetNamespace=”http://www.wiley.com/soap/ordersystem”
 xmlns:typens=”http://www.wiley.com/soap/ordersystem”
 xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
 xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
 xmlns=”http://schemas.xmlsoap.org/wsdl/”>
 <!-- more WSDL will go here -->
</definitions>

3. Add types for the XML in the messages to be passed as children of the definitions element:

<types>
 <xsd:schema xmlns=””
 xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
 targetNamespace=”http://www.wiley.com/soap/ordersystem”>
 <xsd:complexType name=”AddToCartType”>
 <xsd:sequence>
 <xsd:element name=”CartId” type=”xsd:string” />
 <xsd:element name=”Item”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”Quantity”
 type=”xsd:string”/>
 <xsd:element name=”TotalPrice”
 type=”xsd:string”/>
 </xsd:sequence>
 <xsd:attribute name=”ItemId”
 type=”xsd:string” />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=”AddToCartResponseType”>
 <xsd:sequence>
 <xsd:element name=”CartId” type=”xsd:string”/>
 <xsd:element name=”Status” type=”xsd:string”/>
 <xsd:element name=”Quantity” type=”xsd:string”/>
 <xsd:element name=”ItemId” type=”xsd:string”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
</types>

c15.indd 606c15.indd 606 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.wiley.com/soap/ordersystem
http://www.wiley.com/soap/ordersystem
http://www.w3.org/2000/10/XMLSchema
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/
http://www.w3.org/2000/10/XMLSchema
http://www.wiley.com/soap/ordersystem

Defi ning Web Services: WSDL ❘ 607

4. Defi ne the messages to be sent to and from the service:

<message name=”AddToCartRequestMsg”>
 <part name=”AddToCart” type=”typens:AddToCartType”/>
</message>
<message name=”AddToCartResponseMsg”>
 <part name=”AddToCartResponse” type=”typens:AddToCartResponseType”/>
</message>

5. Now defi ne the portType, or interface, that will use the messages:

<portType name=”WileyPort”>
 <operation name=”AddToCart”>
 <input message=”typens:AddToCartRequestMsg”/>
 <output message=”typens:AddToCartResponseMsg”/>
 </operation>
</portType>

6. Bind the portType to a particular protocol, in this case, SOAP:

<binding name=”WileyBinding”
 type=”typens:WileyPort”>
 <soap:binding style=”rpc”
 transport=”http://schemas.xmlsoap.org/soap/http”/>
 <operation name=”AddToCart”>
 <soap:operation />
 <input>
 <soap:body use=”encoded”
 namespace=”http://www.wiley.com/soap/ordersystem”
 encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>
 </input>
 <output>
 <soap:body use=”encoded”
 namespace=”http://www.wiley.com/soap/ordersystem”
 encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>
 </output>
 </operation>
</binding>

7. Finally, defi ne the actual service by associating the binding with an endpoint. This results in the
following fi nal fi le, Listing 15-4.

LISTING 15-4: WileyShopping.wsdl

<?xml version=”1.0”?>
<definitions name=”WileyShopping”
 targetNamespace=”http://www.wiley.com/soap/ordersystem”
 xmlns:typens=”http://www.wiley.com/soap/ordersystem”
 xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
 xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
 xmlns=”http://schemas.xmlsoap.org/wsdl/”>

 <types>

c15.indd 607c15.indd 607 05/06/12 6:02 PM05/06/12 6:02 PM

http://schemas.xmlsoap.org/soap/
http://www.wiley.com/soap/ordersystem
http://schemas.xmlsoap.org/soap/encoding/
http://www.wiley.com/soap/ordersystem
http://schemas.xmlsoap.org/soap/encoding/
http://www.wiley.com/soap/ordersystem
http://www.wiley.com/soap/ordersystem
http://www.w3.org/2000/10/XMLSchema
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/

608 ❘ CHAPTER 1 5 SOAP AND WSDL

 <xsd:schema xmlns=””
 xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
 targetNamespace=”http://www.wiley.com/soap/ordersystem”>
 <xsd:complexType name=”AddToCartType”>
 <xsd:sequence>
 <xsd:element name=”CartId” type=”xsd:string” />
 <xsd:element name=”item”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”Quantity”
 type=”xsd:string”/>
 <xsd:element name=”TotalPrice”
 type=”xsd:string”/>
 </xsd:sequence>
 <xsd:attribute name=”ItemId”
 type=”xsd:string” />
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=”addToCartResponseType”>
 <xsd:sequence>
 <xsd:element name=”CartId” type=”xsd:string”/>
 <xsd:element name=”Status” type=”xsd:string”/>
 <xsd:element name=”Quantity” type=”xsd:string”/>
 <xsd:element name=”ItemId” type=”xsd:string”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </types>

 <message name=”AddToCartRequestMsg”>
 <part name=”AddToCart” type=”typens:AddToCartType”/>
 </message>
 <message name=”AddToCartResponseMsg”>
 <part name=”AddToCartResponse” type=”typens:AddToCartResponseType”/>
 </message>

 <portType name=”WileyPort”>
 <operation name=”AddToCart”>
 <input message=”typens:AddToCartRequestMsg”/>
 <output message=”typens:AddToCartResponseMsg”/>
 </operation>
 </portType>
 <binding name=”WileyBinding”
 type=”typens:WileyPort”>
 <soap:binding style=”rpc”
 transport=”http://schemas.xmlsoap.org/soap/http”/>
 <operation name=”AddToCart”>
 <soap:operation/>
 <input>
 <soap:body use=”encoded”
 namespace=”http://www.wiley.com/soap/ordersystem”
 encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>

c15.indd 608c15.indd 608 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.w3.org/2000/10/XMLSchema
http://www.wiley.com/soap/ordersystem
http://schemas.xmlsoap.org/soap/
http://www.wiley.com/soap/ordersystem
http://schemas.xmlsoap.org/soap/encoding/

Defi ning Web Services: WSDL ❘ 609

 </input>
 <output>
 <soap:body use=”encoded”
 namespace=”http://www.wiley.com/soap/ordersystem”
 encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>
 </output>
 </operation>
 </binding>
 <service name=”WileyService”>
 <port name=”WileyPort” binding=”typens:WileyBinding”>
 <soap:address
 location=”http://localhost/BasicOrderService/AddToCart.aspx”/>
 </port>
 </service>
</definitions>

How It Works

Here you created a simple WSDL fi le describing the SOAP messages sent to and from the hypothetical
Wiley Shopping Service. First, you created the data types for the messages to be sent. Next, you
combined them into messages, created operations out of the messages, and fi nally, bound them to a
protocol and a service.

Other Bindings

It’s important to understand that WSDL doesn’t necessarily describe a SOAP service. Earlier in this
chapter, you looked at a situation in which messages were passed by HTTP without the benefi t of a
SOAP wrapper. These REST messages can also be defi ned via WSDL by adding the HTTP binding.

The basic process is the same as it was for SOAP:

 1. Defi ne the data types

 2. Group them into messages

 3. Create operations from the messages and portTypes from the operations

 4. Create a binding that ties them all in to a particular protocol, as shown in Listing 15-5,
WileyShopping-Rest.wsdl.

LISTING 15-5: WileyShopping-Rest.wsdl

<?xml version=”1.0”?>
<definitions name=”WileyShopping”
 targetNamespace=”http://www.wiley.com/soap/ordersystem”
 xmlns:typens=”http://www.wiley.com/soap/ordersystem”
 xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”

Available for
download on
Wrox.com

c15.indd 609c15.indd 609 05/06/12 6:02 PM05/06/12 6:02 PM

http://www.wiley.com/soap/ordersystem
http://schemas.xmlsoap.org/soap/encoding/
http://localhost/BasicOrderService/AddToCart.aspx
http://www.wiley.com/soap/ordersystem
http://www.wiley.com/soap/ordersystem
http://www.w3.org/2000/10/XMLSchema
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/soap/encoding/
http://Wrox.com

610 ❘ CHAPTER 1 5 SOAP AND WSDL

 xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”

 xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”
 xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”
 xmlns=”http://schemas.xmlsoap.org/wsdl/”>

 <types>
 <xsd:schema xmlns=””
 xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
 targetNamespace=”http://www.wiley.com/soap/ordersystem”>
 <xsd:complexType name=”AddToCartType”>
 <xsd:sequence>
 <xsd:element name=”CartId” type=”xsd:string” />
 <xsd:element name=”ItemId” type=”xsd:string”/>
 <xsd:element name=”Quantity” type=”xsd:string”/>
 <xsd:element name=”TotalPrice” type=”xsd:string”/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=”AddToCartResponseType”>
 <xsd:sequence>
 <xsd:element name=”CartId” type=”xsd:string”/>
 <xsd:element name=”Status” type=”xsd:string”/>
 <xsd:element name=”Quantity” type=”xsd:string”/>
 <xsd:element name=”ItemId” type=”xsd:string”/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name=”GetTotalResponseType”>
 <xsd:sequence>
 <xsd:element name=”Discount” type=”xsd:string” />
 <xsd:element name=”TotalPrice”
 type=”xsd:string”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </types>
 <message name=”AddToCartRequestMsg”>
 <part name=”AddToCart” type=”typens:AddToCartType”/>
 </message>
 <message name=”AddToCartResponseMsg”>
 <part name=”AddToCartResponse” type=”typens:AddToCartResponseType”/>
 </message>

 <message name=”UpdateTotalsRequestMsg”>
 <part name=”Quantity” type=”xsd:number”/>
 <part name=”UnitPrice” type=”xsd:number”/>
 </message>
 <message name=”GetTotalResponseMsg”>
 <part name=”GetTotalResponse” type=”typens:
 GetTotalResponseType”/>
 </message>
 <portType name=”WileyPort”>
 <operation name=”AddToCart”>
 <input message=”typens:AddToCartRequestMsg”/>
 <output message=”typens:AddToCartResponseMsg”/>
 </operation>

c15.indd 610c15.indd 610 05/06/12 6:02 PM05/06/12 6:02 PM

http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/mime/
http://schemas.xmlsoap.org/wsdl/
http://www.w3.org/2000/10/XMLSchema
http://www.wiley.com/soap/ordersystem

Defi ning Web Services: WSDL ❘ 611

 </portType>
 <portType name=”WileyRESTPort”>

 <operation name=”GetTotal2.aspx”>
 <input message=”typens:UpdateTotalsRequestMsg”/>
 <output message=”typens:UpdateTotalsResponseMsg”/>
 </operation>
 </portType>

 <binding name=”WileyBinding”
 type=”typens:WileyPort”>
 <soap:binding style=”rpc”
 transport=”http://schemas.xmlsoap.org/soap/http”/>
 <operation name=”AddToCart”>
 <soap:operation/>
 <input>
 <soap:body use=”encoded”
 namespace=”http://www.wiley.com/soap/ordersystem”
 encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>
 </input>
 <output>
 <soap:body use=”encoded”
 namespace=”http://www.wiley.com/soap/ordersystem”
 encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”/>
 </output>
 </operation>
 </binding>
 <binding name=”WileyRESTBinding”
 type=”typens:WileyRESTPort”>
 <http:binding verb=”GET”/>
 <operation name=”GetTotal2.aspx”>
 <http:operation location=”GetTotal.aspx”/>
 <input>
 <http:urlEncoded/>
 </input>
 <output>
 <mime:content type=”text/xml”/>
 </output>
 </operation>
 </binding>
 <service name=”WileyService”>
 <port name=”WileyPort” binding=”typens:WileyBinding”>
 <soap:address
 location=”http://localhost/BasicOrderService/GetTotal.aspx”/>
 </port>

 <port name=”WileyRESTPort” binding=”typens:WileyRESTBinding”>
 <http:address location=”http://localhost/BasicOrderService/”/>
 </port>

 </service>
</definitions>

In this way, you can defi ne a service that uses any protocol using WSDL.

c15.indd 611c15.indd 611 05/06/12 6:02 PM05/06/12 6:02 PM

http://schemas.xmlsoap.org/soap/
http://www.wiley.com/soap/ordersystem
http://schemas.xmlsoap.org/soap/encoding/
http://www.wiley.com/soap/ordersystem
http://schemas.xmlsoap.org/soap/encoding/
http://localhost/BasicOrderService/GetTotal.aspx
http://localhost/BasicOrderService/

612 ❘ CHAPTER 1 5 SOAP AND WSDL

NOTE In real life, WSDL is created by the SOAP tool you use. Occasionally, a tweak

or two might be needed — for example, the port or binding sections may need to be

amended when you switch from development to live. In ASP.NET, for instance, if you

build a service using asmx pages, the WSDL is created automatically.

SUMMARY

This chapter covered the following areas:

 ➤ The advantages of SOAP include interoperability for web services; there is no tie-in between
the client platform and the server one.

 ➤ SOAP is backed by many top name companies including Microsoft, Sun, IBM, and Google
so the familiar proprietary wrangles are less prevalent.

 ➤ SOAP is fl exible: You can choose to follow the XML-RPC style of message or just use the
<soap:Body> to contain a system specifi c message that is processed on the server. You can
also add any number of extra items to the <soap:Header> to implement security, message
chaining, and any other instructions you may need.

 ➤ SOAP is not the only choice when it comes to web services. REST is a very popular stan-
dard that makes use of the underlying HTTP protocol to implement remote procedure
calls. Although it lacks some of the lesser-used features of SOAP, REST is a good choice
for simple services especially when they need to be made public and security is not a major
consideration.

 ➤ WSDL is an XML format used to describe web services.

 ➤ With just a WSDL fi le you can create a web services client that produces messages in the
correct format, can understand the responses and knows where the service is based.

In the next chapter you look at AJAX and how it uses XML.

EXERCISES

You can fi nd suggested solutions to these questions in Appendix A.

 1. Create a SOAP message that fulfi lls the following requirements:

 ➤ It corresponds to an RPC called GetStockPrice().

 ➤ It takes one parameter, a string holding the recognized stock exchange code of the

company whose stock price you require. For example Microsoft’s code is MSFT.

 ➤ The server responds with a decimal that is the latest stock price for the requested
company.

 2. Create a WSDL fi le that describes the document in Question 1.

c15.indd 612c15.indd 612 05/06/12 6:02 PM05/06/12 6:02 PM

Summary ❘ 613

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

SOAP basics A way to implement web services that is fl exible yet standards

based and platform independent.

Message format Messages can be simple RPC style or just an abstraction of the

data you need to send and receive.

SOAP header The header contains any meta data and instructions that the

 service needs. These can include such things as credentials and

routing information.

Other web service options REST is another popular choice of web service implementation.

It lacks the more sophisticated features of SOAP but is simpler to

implement and client design is easier.

WSDL WSDL is the web service description language. It is an XML format

that provides a complete description of a service’s location, mes-

sage structure and available methods.

WSDL uses All major software frameworks, such as Java and .NET, enable you

to automatically construct a web services client by passing the

WSDL to an appropriate application.

c15.indd 613c15.indd 613 05/06/12 6:02 PM05/06/12 6:02 PM

c15.indd 614c15.indd 614 05/06/12 6:02 PM05/06/12 6:02 PM

AJAX

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ What AJAX is used for

 ➤ How to use AJAX

 ➤ When to use JSON, HTML, or XML with AJAX

 ➤ How to generate JSON on the web server

 ➤ Web architecture, REST, and best practices

AJAX stands for Asynchronous JavaScript And XML, but the term refers to a way of writing
web-based applications that are responsive and give a fast, positive user experience by leveraging
the fact that the web server can be working at the same time as the client computer running the
web browser. The trick that AJAX enables is to update parts of the current web page without
having to reload the entire page. The extra interactivity this allows, combined with big shiny
buttons and a particularly fashionable sort of color scheme, is known as Web 2.0. The biggest
challenge, as you’ll learn, is to create web applications that are accessible to people regardless
of their needs and abilities, and that fi t in with the web architecture of links and bookmarks.
In this chapter you’ll learn how AJAX works (including the JavaScript part) and you’ll make a
working AJAX-based web page so you can see how AJAX and XML fi t together.

AJAX OVERVIEW

The AJAX pattern has several uses. This section fi rst describes the situations in which you
use AJAX, and then goes into detail about what it really is and how it works. The short
description is that AJAX is a way for a web page to use the JavaScript language to fetch data
quietly in the background without any need for the web page to reload in the browser.

16

c16.indd 615c16.indd 615 05/06/12 6:05 PM05/06/12 6:05 PM

616 ❘ CHAPTER 16 AJAX

The “X” in AJAX stands for XML, although as you learn in this chapter, AJAX is more commonly
used with other data formats.

AJAX Provides Feedback

Consider a search page on a website, such as
that shown in Figure 16-1. You enter a person’s
name, click Submit, and a second or two later
you get a message saying that the person wasn’t
found, or, in a more favorable circumstance,
you get a page giving information about the
person.

A Web 2.0 version of the same screen might
look more like Figure 16-2. It’s got more style,
but that’s not really the interesting part for this
chapter. Instead, notice that now when you
start typing a name, you get instant feedback
of possible search terms. And when you click
Submit, the resulting list of matches appears
right under the Search box, without any fl icker.

Loading Incomplete Data
With AJAX

The complete XML fi le for the biographical
dictionary from Chapter 9, “XQuery” is more
than 50 megabytes in size. It’s too large to
load into a web browser and still have good
network performance. If you want to be able to
search the text of the dictionary, the traditional
approach is the one shown in Figure 16-1: you
have a search engine on the server and you click
Search and wait for the results.

With AJAX, you can start typing your search, and even before you click Search, you can start to see
results. This is possible only because the JavaScript code has updated the contents of the web page
with the search box without disrupting the search box.

One difference between this pattern and the feedback pattern is that the search can indeed fall back
to a remote server and still work, but feedback is not possible after you click a Submit button: the
enter web page goes away and is replaced with the results. Another difference is data set size. The
list of possible search terms in the feedback example could have been loaded along with the page
(although it’s large enough in this example that it also falls into the incomplete data pattern). Very
often such completion lists are indeed loaded as part of the web page. But you couldn’t load the
entire 32-volume dictionary for a full text search.

FIGURE 16-1

FIGURE 16-2

c16.indd 616c16.indd 616 05/06/12 6:05 PM05/06/12 6:05 PM

Introduction to JavaScript ❘ 617

AJAX Performs Asynchronous Operations

A web page might display a news feed, or recently added photographs on a popular site, and might
update the display in real time without disrupting the reader by refreshing the page. The JavaScript
updating the page again runs in the background using AJAX as opposed to relying on the user to
refresh the page, or using the older style HTTP refresh which reloads the entire page every few
seconds, annoyingly losing the user’s scroll position along with any data entered into text boxes.

The obvious thing the AJAX use cases all have in common is that the Web page is fetching stuff
quietly in the background, without stopping to wait for it. That’s the meaning of the “A” in AJAX:
asynchronous. As opposed to synchronous, asynchronous in computing means something that
happens without the main programming stopping to wait for it. The “J” means JavaScript, the
programming language for web applications. The next section introduces a little JavaScript, and
then looks at a real code example.

INTRODUCTION TO JAVASCRIPT

In this section, you learn only enough JavaScript to make it through the examples and decide if you
want to learn more. This is, after all, an XML book and not a JavaScript book. A good thin book
on JavaScript is Douglas Crockford’s JavaScript: The Good Parts.

NOTE If you are already familiar with JavaScript (or ECMAScript, its offi cial

name), you can safely skip this section and go to the section “The

XMLHttpRequest Function.”

NOTE If you’re not at all familiar with HTML and CSS, you may want to skip

ahead to Chapter 17 and then come back to this chapter. This chapter and the

next one depend on each other rather heavily because JavaScript is most often

used from inside HTML web pages.

JavaScript is a programming language used primarily in conjunction with web browsers. There is
also at least one web server (node.js) that uses JavaScript as its main extension language, and the
open source GNOME desktop uses JavaScript extensively; but for the purpose of this chapter you
just need to know enough JavaScript to make sense of the AJAX examples, and perhaps to write
some code yourself.

JavaScript should not be confused with Java: both languages were heavily infl uenced by the C
programming language, but only in syntax.

c16.indd 617c16.indd 617 05/06/12 6:05 PM05/06/12 6:05 PM

618 ❘ CHAPTER 16 AJAX

The Web Browser Console

Before you try to learn any JavaScript, you should fi nd a web browser with a console that lets you
type simple expressions and shows their values. In Firefox, you can press Ctrl+Shift+K at the same
time to bring up a console (see Figure 16-3), or you can use the Tools ➪ Web Developer ➪ Web
Console menu item. In the Chrome (see Figure 16-4) browser, Midori, Epiphany, Safari, and other
Webkit browsers, there’s a picture of a spanner or wrench to the right of the location bar, and if you
click that, you can choose JavaScript Console from the Tools submenu. Alternatively, you can right-
click in the document window and choose Inspect Element.

There is also a JavaScript console in Internet Explorer, but the exact method to get to it may depend
greatly on the version of Internet Explorer you are using; in IE 7 you have to go to Internet Options
and uncheck the Browsing option Disable Script Debugging; after that, if your web page contains an
error, Internet Explorer may ask you if you want to run the Microsoft Script Debugger. You could
add a line like this to get an error:

var j = 1/0;

Inside the Microsoft Script Debugger, if you click Break, you can choose Window from the Debug
menu, and enable the Immediate Window, which is Microsoft’s name for the JavaScript Console.

All of these instructions to get to the JavaScript console change fairly often as the web browsers are
updated, but the principle is always that, in the end, you get a window that lets you type JavaScript
expressions and see the results, and, more importantly, displays error messages, syntax errors, and
warnings. Without this, you are programming blind, and a faintly unpleasant but ultimately highly
rewarding experience becomes a nightmare.

Figure 16-3 shows a JavaScript console in the Mozilla Firefox web browser, where it is connected to
a web page, and Figure 16-4 shows the Google Chrome version, where it is a separate window. Both
consoles have some example expressions: 3 + 3, which turned out to equal 6 in both browsers,
and document, which gave a slightly different representation of the HTML document in the
corresponding document window in each browser.

FIGURE 16-3

c16.indd 618c16.indd 618 05/06/12 6:05 PM05/06/12 6:05 PM

Introduction to JavaScript ❘ 619

Values, Expressions, and Variables

It’s time to dive in to JavaScript, if not at the deep end, at least in the paddling pool, so take off your
shoes and socks and get started. In JavaScript, the result of evaluating an expression is a value, and
(as in many other languages) you can store values in variables. Since almost everything in JavaScript
boils down to values and expressions, that’s where you’ll start.

Simple Values

The simplest values are numbers, like 3, 0.5, and scientifi c, or exponential notation, 2.3e4, meaning
2.3 × 104, or 23000.

Next come strings, like “Henry’s argyle socks” or ‘don\’t look back’. You can use the usual
C-like escapes in strings: \n for newline, \t for tab, \” and \’ for quotes, \\ for \ itself, and, as an
addition, \uDDDD, where DDDD is exactly four hexadecimal digits, and represents the corresponding
16-bit Unicode codepoint. JavaScript can’t handle Unicode characters above 65535 easily; it uses a
mechanism called surrogate pairs for others.

JavaScript also has booleans, which can be true or false; these are even simpler than numbers, but
the rules to decide equality are confusing. Take the following example:

“1” == true

This is true, because true is fi rst converted to a number, and the string is converted to a number. However,
the object identity test, ===, does not perform conversions. Therefore, the following example is false:

“1” === true

FIGURE 16-4

c16.indd 619c16.indd 619 05/06/12 6:05 PM05/06/12 6:05 PM

620 ❘ CHAPTER 16 AJAX

Always use === to test whether two values are the same, and !== to test if two values are not
the same.

Expressions

An expression is a combination of values and operators; anywhere you can put a value, you can put an
expression that computes a value. You can use simple arithmetical expressions, like 2 + 2, and of course
more complex ones with various operators. The most important operators are listed in Table 16-1.

TABLE 16-1: The Most Important JavaScript Operators

OPERATOR MEANING EXAMPLE

. property access document.all

[] array subscript lines[3]

() grouping 3 * (2 + 6)

++, -- increment, decrement ++i

! logical not !false is true

*, /, % multiply, divide, modulo (remainder)

+, - normal addition and subtraction; +

also joins strings

var str = “hello” + “ “ +

“world”

<, < less than, less than or equal to

>, > greater than, greater than or equal to

=== equality, identity (three = signs in a row) if (a === b) {...}

!== not identical to (! and two = signs) if (a !== b) {...}

&& logical and if (a && (b > 6)) { … }

|| logical or if (a == 0 || a > 42) { … }

Now that you have seen values and operators, you can put them together in expressions like the
following:

3 + 3
5 * 7
7 * (3 + 5)

Figure 16-5 shows the result of evaluating these expressions in the JavaScript console. You can put
multiple expressions on a line if you separate them with a semicolon.

c16.indd 620c16.indd 620 05/06/12 6:05 PM05/06/12 6:05 PM

Introduction to JavaScript ❘ 621

Variables

A variable is a named value; you can modify variables in JavaScript, unlike in
XQuery or XSLT. Declare variables before you use them: the value can be any
expression. Here are some examples of variables:

var pi = 3; // some people say it should be 4
var c = pi * r; // problem, r undeclared
var j = ++pi; // now pi is indeed 4, and j is also 4

Control Flow Statements

Normally the computer executes the statements in your program from
beginning to end, one at a time, in order. You can use control fl ow statements
to change this — to make the computer execute some statements repeatedly in a loop, or to make it
skip some statements, or to make it choose to execute one group or statements or another.

JavaScript has quite a few control fl ow statements. For the examples in this chapter, and for using
jQuery, it’s enough to know if, while, and for. The following example shows a JavaScript if
expression that will make the computer interpret either one set of statements (called a block) or
another set depending on the value of an expression:

if (expression) {
 block used when the expression is true;
} else {
 block used when the expression is false;
}

The while loop tests its condition and, if it is true, executes the block just like an if, but then, after
running through once, starts over, testing the condition again. The code in the block had better
affect the condition, like so:

var sunshine = 6;
while (sunshine--) {
 make_hay();
 make_hay();
 rest();
}

The for statement is actually just the same as a while loop with a couple of extra parts. For
example:

for (firstpart; test; secondpart) {
 block;
}

is the same as:

firstpart;
while (test) {

FIGURE 16-5

c16.indd 621c16.indd 621 05/06/12 6:05 PM05/06/12 6:05 PM

622 ❘ CHAPTER 16 AJAX

 block;
 secondpart;
}

You often see for used to loop over an array or a fi xed number of values like so:

for (var i = 0; i < array.length; i++) {
 process(array[i];
}

A variant of for iterates over all items in an array, or all properties of an object as shown here:

for (person in peopleList) {
 process(person)
}

A number of other control structures exist, including try/catch/throw and switch. Additionally,
the break statement jumps out of the nearest enclosing loop, and there is a return statement that is
discussed in the “Functions” section in a moment.

Properties, Objects, Functions and Classes

JavaScript is a very dynamic language, and has a much stronger relationship between objects, object
properties, functions, and classes than most other languages. The following sections explain this in
a little more detail.

Objects and Properties

An object in JavaScript is a set of name/value pairs called properties:

var socks = {
 “size” : 44,
 “pattern” : “argyle”,
 “are clean” : true,
};

You get at the properties with the dot operator. In this example, socks.pattern has the value
argyle. You can’t use the dot operator to fi nd out if your sock is clean, though, because of the space
in the name, so you have to use socks[“are clean”] instead. The two notations are equivalent
when the property names are simple words.

The values can actually be objects, or arrays, as well as simple expressions.

Functions

Another kind of object is a function. Functions are declared like this:

var triangle = function(width, height) {
 return width * height / 2;
}

c16.indd 622c16.indd 622 05/06/12 6:05 PM05/06/12 6:05 PM

The XMLHttpRequest Function ❘ 623

This example makes a new function that is shorthand for calculating an expression, similar to the
named templates and functions you saw in Chapter 8, “XSLT,” and Chapter 9, “XQuery.” This
particular function works out the area of a right-angled triangle given the lengths of the two
shorter sides.

Now you can use your new function to fi nd the area of a particular triangle:

var area = triangle(12, 7);

When an object has a function as the value of one of its properties, the property is said to be a
method:

socks.wash = function() {
 this[“are clean”] = 1;
}

The variable called this is the object, socks in this case. And now you can wash your socks:

socks.wash();

Calling the wash() method on an object — here, socks.wash() — will set its “are clean”
member to true.

Classes

A class is a way to represent common properties and methods of a whole family of objects.
For example, all String objects share a length() method. Defi ning your own classes is much more
JavaScript that you need to know for this book, but you should know that, behind the scenes, there
is a class mechanism in JavaScript, because documentation for libraries such as jQuery may mention
it.

THE XMLHTTPREQUEST FUNCTION

The central part of AJAX is a single JavaScript function called XMLHttpRequest. It was originally
introduced by Microsoft in Internet Explorer, was copied by other web browsers, and was later
adopted by W3C.

The idea of XMLHttpRequest is that, when you build your web page, you arrange for this function
to be called with a URL and a JavaScript function. The web browser will automatically call that
JavaScript function when the resource at the requested URL has been downloaded by the Browser.

The call might look like this:

 var client = new XMLHttpRequest();
 client.onreadystatechange = handler;
 client.open(“GET”, theURL);
 client.send();

c16.indd 623c16.indd 623 05/06/12 6:05 PM05/06/12 6:05 PM

624 ❘ CHAPTER 16 AJAX

In this example, you create a new JavaScript object of class XHTMLHttpRequest and save a reference
to it in the variable client so you can use it later. Then you set its onreadystatechange property
to the name of a function you will defi ne, handler in this example. You then tell the object that you
are going to use the HTTP GET method to fetch the resource located at theURL. Finally, after setting
everything up, client.send() sends the actual HTTP request off into space.

At some time later, the HTTP GET request will connect, and, if all goes well, will result in a
document being loaded into memory. Once that has happened, your handler function will
automatically be called. The function will also be called if there was an error when trying to fetch
the document.

The handler looks like this:

function handler() {
 if (this.readyState == this.DONE) {
 if (this.status == 200 && this.responseXML != null) {
 for (var i = 0; i < this.responseXML.childNodes.length; i++) {
 document.getElementById(“replaceme”).appendChild(
 this.responseXML.childNodes[i]
);
 }
 } else {
 alert(“something went wrong”);
 }
 }
}

NOTE In a real application you’d call another function rather than having the

for loop and the document manipulation right there in the handler. It’s also not

really a good idea to use an alert() to pop up a dialog box on errors: users

hate them, and even for development they can be a nuisance, especially if one

ends up inside a loop! But it’s done this way in the example so that you will get

an error if you make a mistake copying the program.

The fi rst thing your handler function does is to see if the HTTP transaction is fi nished. The DONE
constant is defi ned by the browser just to make the code more readable; older web browsers need
a number there, and DONE was always equal to four, so in older code you will see a test to see if
readyState === 4. The handler will be called whenever the readyState property changes; it can be
any of the values shown in Table 16-2.

c16.indd 624c16.indd 624 05/06/12 6:05 PM05/06/12 6:05 PM

The XMLHttpRequest Function ❘ 625

Now that you have seen just enough JavaScript and have read about XMLHttpRequest, you should
try it out for yourself and see how easy it is. In the upcoming activity you’ll make an HTML page to
contain the AJAX example, and you should start to see how all the parts fi t together.

TRY IT OUT Simple AJAX Example

In this exercise you’ll make a simple web page and experience AJAX in action. However, because of
browser security restrictions, you will need to upload the fi les to a web server, or be running a web
server such as Apache or Abyss on your computer. The example will not work in most web browsers if
you just try directly opening a local fi le.

 1. First, create the HTML fi le; call it ajax.html.

<!DOCTYPE html
 PUBLIC “-//W3C//DTD XHTML 1.1//EN”
 “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
 <head>
 <title>ajax example</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
 <script type=”text/javascript”><!--
 function handler() {
 if (this.readyState == this.DONE) {
 if (this.status == 200 && this.responseXML != null) {

TABLE 16-2: readyState Values, Constants, and Meanings

VALUES CONSTANTS MEANINGS

0 UNSENT The object has been constructed (this one is not

normally very useful).

1 OPENED This happens after you’ve called open() on the object

and before you have called send(), so that you can set

HTTP headers.

2 HEADERS_RECEIVED The HTTP response has started to arrive: all redirects

have been followed, the browser is connected to the

HTTP server at the fi nal address, and the server has

sent the HTTP headers to you.

3 LOADING The data is coming in!

4 DONE The data has all arrived, or there was a problem. You

can check the object’s error fl ag to see if there was an

error.

c16.indd 625c16.indd 625 05/06/12 6:05 PM05/06/12 6:05 PM

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

626 ❘ CHAPTER 16 AJAX

 for (var i = 0; i < this.responseXML.childNodes.length; i++) {
 document.getElementById(“replaceme”).appendChild(
 this.responseXML.childNodes[i]
);
 }
 } else {
 alert(“something went wrong”);
 }
 }
 }

 function getXML() {
 var client = new XMLHttpRequest();
 client.onreadystatechange = handler;
 client.open(“GET”, “hello.xml”);
 client.send();
 alert(“getXML done.”);
 }
 //-->
 </script>
 </head>
 <body>
 <form onsubmit=”return false;” action=””>
 <p><input type=”button” onclick=”getXML();” value=”Get XML”/></p>
 </form>
 <div id=”replaceme”></div>
 </body>
</html>

 2. Next, create the XML fi le. Call it hello.xml and place it in the same directory as the HTML fi le
you just made:

<ajax>

 <p id=”p”>hello world</p>

</ajax>

 3. Upload the two fi les to a web server; if you don’t have a web server, you might want to consider
installing one on your computer such as Aprelium’s Abyss Web Server (www.aprelium.com),
Apache (www.apache.org) or Microsoft Personal Web Server, so that you can test HTML and
JavaScript.

 4. Open ajax.html in your web browser and click the Get XML button. You should see a pop-up
box when the call to send() has returned; then, when the data has been fetched, you will see
“hello world” in the browser. If you are using a personal web server such as Abyss, which runs on
port 8000 by default (with an administration interface on port 9999), you’ll need to copy the fi les
into the Abyss htdocs folder and then use a URL like http://127.0.0.1:8000/ajax
.html to get to them.

 5. If you are running the Google Chrome browser, Safari, or any other “Webkit” browser, right-
click the words “hello world” and choose Inspect Element to see the developer window. In
Firefox, you can use an extension, “add-on” called Web Developer to see a DOM tree window;
another Firefox add-on called Firebug has a similar feature.

c16.indd 626c16.indd 626 05/06/12 6:05 PM05/06/12 6:05 PM

http://127.0.0.1:8000/ajax
http://www.aprelium.com
http://www.apache.org

The XMLHttpRequest Function ❘ 627

Whichever browser you use, if there are problems you should open the JavaScript Error Console
window; in Chrome or Safari, click the Console icon at the top of the element inspector window. In
Firefox, press Control+Shift+K to bring up a console, or in some versions, to bring up a menu item.
Reloading the page with the console open will usually show any error messages.

Figure 16-6 shows the Google Chromium browser’s element inspector on the working page, after click-
ing on the button to invoke the AJAX JavaScript code.

FIGURE 16-6

How It Works

When the web page loads into the browser, the JavaScript defi nes some functions. The HTML arranges
that when you click the Get XML button, the getXML() function is called, by setting the onclick attri-
bute on the input element (line 35, near the end of the fi le).

When you click the button, the browser calls GetXML(), and this in turn creates an XMLHttpRequest
object, sets it to call handler() whenever the object’s readystate property changes, sets its desti-
nation to hello.xml, and launches the request into space. GetXML() does not wait for the rocket to
come back to earth; it draws a dialog box (alert) and then returns. While the dialog box is showing,
though, the browser is busy loading hello.xml. During this process the handler function is called sev-
eral times; eventually, it gets called with readystate set to 4, meaning done, or fi nished.

c16.indd 627c16.indd 627 05/06/12 6:05 PM05/06/12 6:05 PM

628 ❘ CHAPTER 16 AJAX

When the handler() function gets called, it is called as a method of the XMLHttpRequest object, so
its this member is available as the object itself. The handler checks that the readystate is done, oth-
erwise it just returns silently. If the HTTP status was 200 (OK) and there is an XML document avail-
able, its children get inserted using JavaScript DOM methods as new children underneath the <div
id=”replaceme”> element in the HTML document.

If you click the button on the web page again, the document will again be loaded and the children
appended, so that you will see “hello world hello world.”

If it didn’t work, check your web server’s error logs carefully to make sure that the hello.xml fi le was
loaded. Check the web browser console for error messages. Make sure you are loading the HTML doc-
ument from a web server and not just double-clicking on it or opening it locally: the browser’s location
bar should show a web address.

USING HTTP METHODS WITH AJAX

The asynchronous part of the AJAX design pattern is the idea that the JavaScript code in your web
page uses HTTP to ask your web server for some data and, sometime later, receives a response.
AJAX-based applications can use any of the methods defi ned by the HTTP specifi cation. You may
have noticed the HTTP GET method used for the previous Try It Out exercise. It’s also possible
to use HTTP POST or HEAD methods. Other HTTP methods exist, but they are not so widely
supported. How do you know when to use which method?

For the Try it Out example, no changes on the server were made. The client (the web browser) is
affected, but not the server. No fi les are written, no database fi elds are updated, and no purchases
are made. Therefore, the appropriate HTTP method to use in that case is GET.

For the other methods, the short answer is this: use POST when you are changing state on the remote
server, use GET when you are fetching something without changing anything. Use other methods
only if you know exactly what you are doing.

One of the results of loading a web page with POST is that when you refresh, the web browser may
warn you that, for example, if you just bought a yacht, refreshing the page might buy a second
yacht. When you use HTTP POST with XMLHttpRequest there’s no way for the browser to warn the
user, so you need to be careful when you write AJAX-based applications.

When you write the back-end part of an AJAX implementation, then, make sure your program does
not require the use of POST if there is no state change. For example, logging in to a site is a state
change, because you get back something different from pages before and after you log in, and the
set of actions available to the user will probably change.

On the other hand, fetching a railway timetable would not change the railway company’s server,
and you’d expect to use HTTP GET for that; similarly, the fi rst steps in reserving a train ticket can
probably be repeated without problems and would use HTTP GET, even if moments later you used
HTTP POST to buy a ticket.

Note also that users can only bookmark GET pages, not POST ones. It wouldn’t make sense to
bookmark the page to pay for a train ticket on a particular date, because you can generally do it

c16.indd 628c16.indd 628 05/06/12 6:05 PM05/06/12 6:05 PM

Accessibility Considerations ❘ 629

only once. A well-designed application would include a transaction number to make sure that, if you
did somehow reload the page, you didn’t buy an extra set of tickets by mistake.

This begs the question, for an AJAX application, how do you represent state when parts of the page
have been loaded separately? In older-style Web 1.0 applications, the URL changes whenever the
user does anything, so it’s easy to bookmark a state or to know where you are. With AJAX, any
part of the page can change at any time!

One convention that is gaining traction is to change the displayed URL of the current web page
when state changes. However, you can’t actually change the URL itself from JavaScript, for obvious
security reasons, but only the fragment identifi er, the part starting with a #, for example, in
http://www.example.org/telephones.html#rotary. It’s important not to overdo this: when it
makes sense, don’t be afraid to move the user to a new web page.

For example, one of the authors of this book (Liam Quin) uses this # technique on his own website.
The URL http://www.fromoldbooks.org/Tymms-Illuminating/pages/43-letterR/is a picture
of a pretty medieval letter “R” in red; controls on the page let the user change the colors in the
picture, and this is encoded in the URL like this: http://www.fromoldbooks
.org/Tymms-Illuminating/pages/43-letterR/#fg=%235f00bf_bg=%23ffff56.

Here the fg and bg codes after the # encode the colors — this example is a purple “R” on a yellow
background. This way people can share the link, bookmark it, and even experiment with editing the
hexadecimal color codes. It’s not perfect, however. If you change the color codes in the location bar
of the web browser, the colors are not updated. Note also that the fragment identifi er (the part after
the fi rst #) is not sent by the web browser to the web server, so the interaction must all be written
using JavaScript.

The JavaScript to manage this has three parts:

 1. When the page is loaded, check for a fragment identifi er, and, if present, set the page state
appropriately (in this case, color the image).

 2. When the user chooses new colors, update the fragment identifi er.

 3. The code to color the image should be kept separate, of course, from the code that displays
the state.

The code on that page actually avoids using XMLHttpRequest; instead, the JavaScript changes
the URL in the HTML element that shows the image. XMLHttpRequest is, however, used
elsewhere on the same page for the list of similar images. In that case, HTTP GET is used with
XMLHTTPRequest to fetch a list of images.

A rule of thumb is that if you are writing data back to the server, or changing state, you will use
HTTP PUT, and if fetching the same page over HTTP multiple times will give the same result,
use HTTP GET.

ACCESSIBILITY CONSIDERATIONS

It is easy to use JavaScript to make web pages that sing, dance, and move about. But you can also
easily make web pages that are inaccessible by large numbers of people, or that are needlessly
unpleasant or diffi cult to use.

c16.indd 629c16.indd 629 05/06/12 6:05 PM05/06/12 6:05 PM

http://www.example.org/telephones.html#rotary
http://www.fromoldbooks.org/Tymms-Illuminating/pages/43-letterR/
http://www.fromoldbooks.org/Tymms-Illuminating/pages/43-letterR/#fg=%235f00bf_bg=%23ffff56
http://www.fromoldbooks.org/Tymms-Illuminating/pages/43-letterR/#fg=%235f00bf_bg=%23ffff56

630 ❘ CHAPTER 16 AJAX

It’s sometimes tempting to ignore the needs of other people and to say your web page doesn’t have
to be accessible. However, there’s generally no upper limit to civil liability for accessibility issues,
and in increasing numbers of areas there’s legislation requiring that pages be accessible. Even where
there is no specifi c legislation about accessibility, there may be laws against discriminating against
minorities.

If these reasons are not compelling enough (and they should be), remember that “Google is
Blind” — the search engines tend to rank accessible pages more highly, leading to large
increases in traffi c — and also that a web page that is pleasant to use leaves a much more
positive impression than one that is diffi cult.

Following is a list of pointers that address common accessibility issues:

 ➤ When you are manipulating the contents of the page, use createElement() with
appendChild(), removeChild(), insertBefore(), and replaceChild(), and avoid
innerHTML, innerText, and document.write().

 ➤ Avoid using small text sizes, particularly in user interface controls.

 ➤ Remember that a signifi cant proportion of the population may see colors differently than
you do (color blindness).

 ➤ Inserting or removing controls dynamically can affect the tab order of the page; do not
use the tabindex property on new controls, and remember that some people are using
keyboards to interact with your page, not mice or fi ngers.

 ➤ Do not make things blink or fl ash.

 ➤ Do not put a time limit on completing an interaction. It’s very frustrating if you are using
a keyboard in which you have to wait for the right letter to be highlighted and then press
a pedal, for example, if you are only given fi ve or ten minutes to complete a transaction!
Because users can wander off from the computer at any time, there is no amount of time
that will provide complete security against a person leaving and another person wandering
in and making fi nancial transactions. Instead of “your session timed out,” ask the user to
re-enter a password and then continue the session without loss of data.

 ➤ Some users will have JavaScript disabled. You may want to provide an alternative web page
in that case, but at the very least test for it. For example, if you rely on JavaScript to show
information that starts out hidden, some users will never see it.

 ➤ Try to keep it obvious when something is happening, and what you expect from the user.
A common convention is to use text with a yellow background saying “loading” when
your JavaScript code sends off an AJAX request to fetch something that will be displayed
to the user.

You learn more about accessibility in Chapter 17.

THE JQUERY LIBRARY

Although it’s possible to use JavaScript directly, most modern web pages use a framework or library
together with JavaScript. There are three main reasons for this:

c16.indd 630c16.indd 630 05/06/12 6:05 PM05/06/12 6:05 PM

The jQuery Library ❘ 631

 ➤ The libraries can hide differences between browsers, making programming more reliable,
less error-prone, and more portable.

 ➤ The libraries are high level, with one line of jQuery (for example) often replacing dozens of
lines of JavaScript manipulating the DOM directly.

 ➤ The libraries are popular, so lots of widgets and plug-ins are written for them, further
speeding up development.

In this section you learn a little about jQuery, one of the more popular JavaScript libraries and (not
by coincidence) one of the easiest to learn and use. You can get more information at http://www
.jquery.com/, where you can also fi nd hundreds of plug-ins, most freely available.

Learning jQuery

The jQuery JavaScript library introduces some top-level (global) objects and functions, and also
introduces a new way of using JavaScript.

If you are not familiar with cascading style sheets (CSS) or HTML, see Chapter 17, “XHTML
and HTML 5.”

If you are not familiar with the idea of the document object model (DOM), you should review
Chapter 7, “Extracting Data from XML,” which contains a brief introduction; because jQuery
shields you from using the DOM API, in most cases you only need the basic ideas to start.

The Domain-Specifi c Language (DSL) Approach

As you might have guessed, jQuery uses CSS selectors to locate and process nodes in the web
browser’s HTML DOM tree. The following jQuery JavaScript code turns all elements in the
document that have a class attribute of born a bright yellow color:

$(“span.born”).css(“background-color”, “yellow”);

Notice how the oddly named $() function in jQuery actually returns an object with a css method;
that css method is in turn a jQuery function that returns another jQuery object, which of course
also has a css method, so you can chain the calls like so:

$(“span.born”).css(“background-color”, “yellow”).css(“color”, “blue”);

This approach lets the programmer think more in terms of the actual problem she’s trying to solve
and less in terms of the mechanics of how to solve it. It’s higher level. This style, with function
names that correspond to the problem domain and with chained calls, is sometimes called a
domain-specifi c language.

You can use pretty much any CSS selectors with jQuery, and you don’t have to worry about whether
the particular selector works in any given web browser: jQuery emulates them where they are not
available natively.

There is, of course, a lot more to jQuery than this, but you have probably now seen enough to know
whether you want to know more, and to make some sense of the example that follows in the next
Try It Out exercise.

c16.indd 631c16.indd 631 05/06/12 6:05 PM05/06/12 6:05 PM

http://www.jquery.com/
http://www.jquery.com/

632 ❘ CHAPTER 16 AJAX

jQuery Plug-ins and Add-On Libraries

Much of the power and popularity of jQuery comes from its clean and simple design, but there is
also a huge array of add-ons. These come in two forms: plug-ins and libraries.

jQuery Plug-ins

Plug-ins usually provide a single feature. A widely used example is FancyBox, which produces a
border around an HTML element to make it behave almost like a pop-up dialog box. An example
of this is shown in Figure 16-7: the white pop-up box has a cross in a circle at its upper right to close
it, and triangular arrows to move forward to the next image.

You can fi nd literally hundreds of plug-ins, each with documentation and demos and examples; most are
in the master index on www.jquery.com, which has both categories and a rudimentary search function.
There is even an XPath plug-in, although it implements only a subset of XPath 1, unfortunately.

You’ll see how to use a sample plug-in shortly.

FIGURE 16-7

c16.indd 632c16.indd 632 05/06/12 6:05 PM05/06/12 6:05 PM

http://www.jquery.com

The jQuery Library ❘ 633

Add-on Libraries

Add-on libraries typically extend jQuery in multiple ways, rather than just providing a single
feature, as a plug-in might. The most common add-on library is called jQueryUI and adds a lot of
user-interface features such as notebook tabs and widgets; because those aren’t needed for learning
AJAX, this chapter won’t cover jQueryUI, but if you start using jQuery yourself, you will want to
read about it on the Web.

JQuery and AJAX

The jQuery library includes support for a lot of things that are often done on web pages, and it
should be no surprise that it has direct support for AJAX using XMLHttpRequest. In the following
activity you’ll learn how to use jQuery to make a web page that is updated asynchronously (in the
background) without being reloaded.

TRY IT OUT AJAX in jQuery

In this exercise you take the earlier Try It Out and load the same XML document with jQuery
instead of raw JavaScript. You’ll see jQuery in action, learn how to load the library, and compare the
size of the code.

 1. Make a new HTML document called jqajax.html. As in the previous activity, for security
reasons you will need to upload it to a web server, or have a web server running on your own
computer and access the document through that web server.

<!DOCTYPE html
 PUBLIC “-//W3C//DTD XHTML 1.1//EN”
 “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
 <head>
 <title>jQuery ajax example</title>
 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
 <script type=”text/javascript”
 src=”https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js”></script>
 </head>
 <body>
 <form onsubmit=”return false;” action=””>
 <p><input type=”button” onclick=”getXML();” value=”Get XML”/></p>
 </form>
 <div id=”replaceme”></div>
 <script type=”text/javascript”>
 function handler(theData, theStatus, jqXHR) {
 $(“div”).append(theData.firstChild);
 }

 function getXML() {
 $.ajax({
 type: “GET”,
 url: “hello.xml”,
 dataType: “xml”,
 success: handler
 });

c16.indd 633c16.indd 633 05/06/12 6:05 PM05/06/12 6:05 PM

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml
https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js

634 ❘ CHAPTER 16 AJAX

 }
 </script>
 </body>
</html>

 2. Make the XML fi le using the same XML fi le as before, hello.xml, like this:

<ajax>
 <p id=”p”>hello world</p>
</ajax>

 3. Upload the two fi les to a web server (or put them where the web server on your computer can fi nd
them) and open the HTML fi le in a web browser.

 4. Click the Get XML button as before to see the message. There’s no alert() in this version, so
“hello world” should just appear under the button.

How It Works

Line 12 sets the button’s onclick attribute to call the getXML() function as in the previous example:

<p><input type=”button” onclick=”getXML();” value=”Get XML”/></p>

Most of the HTML in the example is the same as before, but there are a couple of new parts. First, line
8 (shown in the following code) loads the jQuery library from the Google Content Delivery Network.
Google provides this service because if lots of websites use the same library there’s no point having it
copied everywhere. It helps Google’s web crawlers to know everyone is using the same library, too.

<script type=”text/javascript”
 src=”https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js”></script>

The second new part, of course, is the <script> element at the end of the document.

In the script, a function called handler is defi ned; this function adds the XML <ajax> element after
the last child (if any) of every <div> element in the document. To add the content only to a particular
element, you would use a more specifi c selector, such as div#replaceme in this case. (See the next
chapter for more information on the CSS selectors used by XPath.)

Just defi ning a function called handler doesn’t make it get called. When the user clicks the Get
XML button, it’s the getXML function that gets called. This is the meat, and it’s both smaller and
much easier to understand than in the previous Try It Out. The $.ajax() function in jQuery handles
XMLHttpRequest for you. You tell it that you are going to use the HTTP GET method to fetch hello.
xml, that you want XML back, and that when it has all arrived you want your function,
handler, to be called.

Wow. To put the differences between the previous activity and this activity in perspective, it took
an hour or so to get the fi rst example to work on multiple web browsers, and fi ve minutes to get the
jQuery version to work.

c16.indd 634c16.indd 634 05/06/12 6:05 PM05/06/12 6:05 PM

https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js

JSON and AJAX ❘ 635

JSON AND AJAX

Although the “X” in AJAX stands for XML (itself, in turn, not an exact acronym, of course!),
people these days are more likely to use other formats with XMLHttpRequest. The main reason for
this is that the XML DOM is too unpleasant to use, and now that you’ve seen some jQuery you
can see why people think that way. Of course, XQuery is just as easy as using jQuery, but it’s not
supported in today’s browsers.

The most common format for interchange of JavaScript objects between a web browser and a
server was designed by Douglas Crockford, and is called JSON. In fact, a JSON stream is itself a
JavaScript expression that, when evaluated, constructs the objects it represents.

WARNING Because a JSON stream is an expression, in theory you could load

it using eval(), a JavaScript function that takes a string and interprets it as

JavaScript. This is a really, really bad thing to do, because you are trusting the

data coming over the network. A person-in-the-middle could insert arbitrary

JavaScript into your application! It could also mean someone compromising your

server could use your application as a vector for a cross-site scripting attack

(XSS) against another site. Use a library to parse JSON, or test the stream with

the regular expression given in the JSON specifi cation.

JSON Example

The JSON format is defi ned by IETF RFC 4627, available at http://www.ietf
.org/rfc/rfc4627.

A JSON text represents either a single JavaScript object or a single array. This object or array can,
in turn, contain other arrays and objects. Arrays (with square brackets) contain simple values, and
objects (with curly braces) contain member-lists. Here is a simple example:

{
 “students” : [
 {
 “name” : “Caitlin”,
 “id” : 6
 },
 {
 “name” : “David”,
 “eyes” : “blue”,
 “age” : 26
 },
 {
 “id” : 12,
 “name” : “Leslie”,
 “car” : {
 “make” : “Jeep”,

c16.indd 635c16.indd 635 05/06/12 6:05 PM05/06/12 6:05 PM

http://www.ietf.org/rfc/rfc4627
http://www.ietf.org/rfc/rfc4627

636 ❘ CHAPTER 16 AJAX

 “color” : “green”
 }
 }
]
}

If you use this example in a JavaScript console, perhaps with:

var a = { “students” : [... } ;
a.students[2]name;

you will get “Leslie” printed back at you. That is the beauty of JSON: not only is it simple, but you
can use it immediately. You can fi nd JSON libraries for most programming languages, but it really
shines with JavaScript on the web.

JSON Syntax

More formally, the syntax rules that defi ne JSON are as follows:

 ➤ A JSON text is a single object or a single array.

 ➤ An object is a list of members (a member-list) enclosed in curly braces:

{ member-list }

 ➤ An array is a list of simple values enclosed in square brackets:

[value-list]

 ➤ A member-list is a list, possibly empty, of pairs:

“string” : value

 ➤ A value-list is just a list, again possibly empty, of values separated by commas.

 ➤ A value is a string, a number, an object, an array, true, false, or null. Strings must use
double quotes, but you can use \” inside a string, as for JavaScript strings. You can also use
the other JavaScript \- escapes described earlier in this chapter in the section on JavaScript
strings.

JSON and jQuery

If you have a JSON text as a string you can use the following to turn the string into a
JavaScript object:

var myJson = jQuery.parseJSON(theString);

You can use $.getJSON as a wrapper around $.ajax(), or you can use $.ajax() directly as in the
following example, but with dataType set to JSON:

c16.indd 636c16.indd 636 05/06/12 6:05 PM05/06/12 6:05 PM

The Web Sever Back End ❘ 637

$.ajax({
 url: url,
 dataType: ‘json’,
 data: data,
 success: callback
});

Note that if your JSON stream has a syntax error in it, the call to $.ajax() will generally just
fail silently.

JSONP and CORS

In most modern web browsers the XMLHttpRequest function implements a Same Origin policy,
or Same Origin restriction. This means that you can only fetch data from the same domain as the
caller; that is, the server that served the HTML document or the JavaScript code doing the fetching.

Sometimes you need to fetch data from another web server. JSONP and CORS are two mechanisms
for doing this. Of these, JSONP (JSON with Padding) is supported by jQuery directly, but is very
insecure because it is evaluated directly as raw JavaScript, and it is not recommended by experts.
CORS is a newer, mechanism that lets you use XMLHttpRequest to fetch data from other sites as
long as the remote web server is confi gured correctly. At the time of writing, CORS is not widely
deployed, and the best way to fetch data from another server is often to write a proxy on your own
server and fetch the data through that, rather than risk the insecure nature of JSONP.

THE WEB SEVER BACK END

Web architects sometimes speak of web applications as being divided into a front end, the web
browser part that the user sees, and a back end, the part that’s running on a server somewhere.
Sometimes everything is running on the same machine, but the web server and the application code
behind it still form the back end. This section takes a closer look at this back end.

So far in the examples, when the web browser sent an AJAX request to the server, it was to fetch
a fi le. In real applications it’s more often a request to a database server or some other application,
and the glue that connects the web server to the database or application is part of the back end. The
most common languages used to write the back end of a small web application are fi rst PHP, then
Microsoft C# or Visual Basic with Active Server Pages (ASP), and fi nally Java (not JavaScript so
often) with a “servlet” API. But you also see XSLT and XQuery used.

Chapter 19, “Case Study: XML in Publishing” revisits the use of XQuery and XSLT, and later in this
chapter you use the PHP language to generate data for an AJAX script. You could as easily use XSLT
or XQuery, of course, as long as you arrange for those to be called appropriately on the server.

Just as you can use different languages on the back end, on the web server, you can send different
formats to communicate with the browser, not just JSON. Although JSON is probably the format
most often used with XMLHttpRequest, plaintext and HTML are the next most often used. The
jQuery plug-in you’ll see shortly uses plaintext in a simple line-based format the plug-in author
devised. HTML is often used when you are sending HTML content back to the client to insert into
the document, such as search results.

c16.indd 637c16.indd 637 05/06/12 6:05 PM05/06/12 6:05 PM

638 ❘ CHAPTER 16 AJAX

Sending Images and Other Non-Textual Data

Because the web browser is expecting XML or JSON, your back end should not try to send binary
data. Instead, send an HTML or XHTML fragment with a link to the image or other data, and
insert the link into the document, perhaps with appendChild().

Performance

If your back end is too slow, things can go wrong silently. You can supply the jQuery $.ajax()
function with a timeout parameter to counteract this; if you don’t, there is generally a browser-
specifi c default. Some programs and servers also buffer up the data until there’s a certain amount
of it, and you can often turn that off (for example, setting $| to 0 in Perl; see the perldoc perlvar
command in a console or terminal, if you have Perl documentation available) so that the web
browser will see the start of the data sooner.

If you know the data will take a long time to arrive, your JavaScript client can arrange for a
function to be called each time data is available, instead of only at the end. An alternative is to send

BACK END SECURITY

The important things to remember when writing the code on the server that
responds to an AJAX request are similar to those for any web application,
and for any API including Servlets, CGI, PHP, content management
systems, and more. The summary is very simple: Never trust the network.

Remember that people can always view the source of your application.
Because the web browser has to be able to run it, there’s not much you can
do about that. People can also watch the network traffi c and see exactly
what parameters you are sending back. They can then write their own pro-
gram that sends the same parameters, perhaps slightly modifi ed.

One reason why people would forge requests is to fool your application into
showing their data mixed in with yours. Suppose you write an application
that lets people add comments to other people’s articles on your site. You use
JavaScript to make sure they enter only plaintext, and not HTML tags. But
someone fi gures out how to submit data to your site without going through
the JavaScript, and manages to get HTML elements onto your website. At
that point she could include an HTML <script> element that browsers
would trust (because it came from your site), or she could add links to other
sites, perhaps sites selling illegally imported hosiery!

Therefore, in the back end, you can never assume the request is actually
coming from your trusted application. Even if you use a secure socket
(https) or encryption, because someone else could read the source code to
your program, they could probably break the encryption.

c16.indd 638c16.indd 638 05/06/12 6:05 PM05/06/12 6:05 PM

A Larger Example ❘ 639

a short message saying “working...” every so often and have the client make a new request for the
next part, but you have to make sure that if the user gets bored and wanders off, your server isn’t
still working hard!

The Server Logs Are Your Friend

One of the most useful things to do when you’re writing the back end server part of web
applications is to watch the error messages, and these usually go into fi les called server error logs.

Make sure you know where the web server’s error logs are (/var/log/httpd/error_log or /
var/log/apache/error_log are common locations); some Web hosting companies give you a log
directory under your account somewhere instead.

You can also have a window running tail -f /var/log/httpd/access_log or some similar
command to see each HTTP request logged as it completes. This will show you whether your Web
browser sent out the AJAX request.

A LARGER EXAMPLE

It’s time for an example to glue all the parts together. The example uses a jQuery plug-in that can
handle the autocompletion suggestions, as you saw for the search page at the start of this chapter.

You may already have an extract from the biographical dictionary that was mentioned in Chapter
9; now you will make a web search form that takes the user to a chosen entry. Because the complete
list of entries for the 32-volume dictionary is more than 350 kilobytes of text, it makes sense to
design the interaction to do the searching on the server, even though the extract for this book is
smaller. You can fi nd the complete XML fi le at http://words.fromoldbooks.org/xml if you want
to experiment with it.

NOTE When you are working with a web server, URLs and fi les are generally

case sensitive: it must be people.php, and not PEOPLE.PHP or people.PHP, or it

won’t work.

TRY IT OUT AJAX and jQuery Autocompletion Example

For this Try It Out you need to download the autocomplete plug-in; or you can look for it at
http://www.pengoworks.com/workshop/jquery/autocomplete.htm.

The goal of the exercise is for you to see how easy it is to use a jQuery plug-in, and also to make a
form with search suggestions.

Like most of the examples in this chapter, you need a web server: the examples will not run directly off
the hard drive, because of the security restrictions built in to modern web browsers and JavaScript.

Available for
download on
Wrox.com

c16.indd 639c16.indd 639 05/06/12 6:05 PM05/06/12 6:05 PM

http://words.fromoldbooks.org/xml
http://www.pengoworks.com/workshop/jquery/autocomplete.htm
http://Wrox.com

640 ❘ CHAPTER 16 AJAX

 1. First make an HTML fi le called people.html, as shown here:

<!DOCTYPE html

 PUBLIC “-//W3C//DTD XHTML 1.1//EN”

 “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

 <head>

 <title>People Finder</title>

 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

 <script type=”text/javascript” src=”js/jquery.js”></script>

 <script type=”text/javascript” src=”js/jquery.autocomplete.js”></script>

 <link rel=”stylesheet” href=”css/jquery.autocomplete.css” type=”text/css” />

 </head>

 <body>

 <form method=”GET” action=”go.php”>

 <p>People Finder: try <i>ala</i> for a start</p>

 <p>

 <input type=”text” tabindex=”10” style=”width: 400px;” value=””

 id=”Person” class=”ac_input”/>

 <input type=”submit” tabindex=”20” id=”gobutton” value=”Go”/>

 </p>

 </form>

 <script type=”text/javascript”>//<![CDATA

 function findhref(row) {

 return row.extra[0];

 }

 function selectItem(row) {

 // set the form to go to the page on a select

 $(“form”).get(0).setAttribute(‘action’, findhref(row));

 }

 $(“#Person”).autocomplete(“people.php”, {

 delay: 40, // in milliseconds

 minChars: 2,

 matchContains: 1,

 cacheLength: 10, // for better performance, see docs

 onItemSelect: selectItem,

 onFindValue: findhref,

 autoFill: true // put the value in the text box

 }

);

 //]]></script>

 </body>

</html>

people.html

 2. Next you will need a way to search the list of biography entries on the server and return the
matches. You only need to search the titles, and those are in a fi le called entries.txt, which
makes it easier. Make a fi le called people.php like this:

Available for
download on
Wrox.com

c16.indd 640c16.indd 640 05/06/12 6:05 PM05/06/12 6:05 PM

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml
http://Wrox.com

A Larger Example ❘ 641

<?php

$q = strtolower($_GET[“q”]);

if (!$q) $q = “ama”; # silly default for testing more easily

$items = file(“entries.txt”, FILE_IGNORE_NEW_LINES);

if (!$items) return; # file not found

if (!$items[0]) return; # file was empty

$maxitems = 30; # too many completions...

$n_found = 0; # number found so far

look for titles starting with $q

foreach ($items as $key => $value) {

 $where = strpos(strtolower($value), $q);

 if ($where !== false && $where == 0) {

 echo “$value\n”;

 if (++$n_found > $maxitems) {

 return;

 }

 }

}

?>

people.php

 3. Unpack the plug-in you downloaded, rename the javascript directory to js, and put people.
html and people.php in the same directory as autocomplete.php, css, and js.

 4. The entries.txt fi le that is searched by people.php is included with the fi les for this chapter,
or, if you have the XML for the biographical dictionary (or the excerpt) you can make it with the
following XQuery:

xfn:string-join(

 for $e in doc(“chalmers-biography-extract.xml”)//entry

 return

 concat(

 normalize-space(data($e/title)),

 “|”,

 substring($e/@id, 1, 1), “/”, $e/@id,

 “.html
”

)

 ,

 “”

)

 5. Run this with Saxon as:

saxon -query make-entries.xq \!method=text > entries.txt

(The \ is needed for bash on Linux or you will get a strange-sounding error about history; on
MS-DOS you can use ! instead of \!.)

c16.indd 641c16.indd 641 05/06/12 6:05 PM05/06/12 6:05 PM

642 ❘ CHAPTER 16 AJAX

If you prefer, you can make up your own data fi le. The format (dictated by the plug-in you are
using) is

title|id

so that the fi rst dozen lines look like this:

Aa, Christian Charles Henry Vander|a/aa-christian-charles-henry-vander.html

Aagard, Christian|a/aagard-christian.html

Aarsens, Francis|a/aarsens-francis.html

Abeille, Gaspar|a/abeille-gaspar.html

Abeille, Louis Paul|a/abeille-louis-paul.html

Abel, Gaspar|a/abel-gaspar.html

Abel, Frederick Gottfried|a/abel-frederick-gottfried.html

Abelli, Louis|a/abelli-louis.html

Aben-Ezra|a/aben-ezra.html

Abercromby, Patrick|a/abercromby-patrick.html

Abraham, Nicholas|a/abraham-nicholas.html

Abu-Nowas|a/abu-nowas.html

The idea is that the biography entry for Gaspar Abeille would be found in a/abeille-gaspar
.html, with the “a” folder being alongside the people.html fi le.

 6. With everything in place, open the people.html fi le in a web browser, either using a web
server on your computer or by uploading everything (preserving the directory structure) onto a
computer somewhere else running a web server.

 7. Type a few letters into the search box: an “a” followed by an “l” gives the result shown in
Figure 16-8. If you click one of the highlighted suggestions you can then click the Go button to be
taken to an error message saying the biography entry isn’t there. But that’s OK, it means the part
you just did is working properly!

FIGURE 16-8

c16.indd 642c16.indd 642 05/06/12 6:05 PM05/06/12 6:05 PM

A Larger Example ❘ 643

How It Works

There are quite a few pieces to this puzzle.

The HTML File

In the HTML fi le, you load the a copy of the jQuery library from the js folder; it would be better to
load it from Google’s Content Delivery Network, as you did for the previous example in this chapter,
but this way you can include a version of jQuery and the plug-in on the website for this book and be
confi dent that they work together.

After loading the jQuery library, you loaded the plug-in, again from the js directory.

There is also a cascading style sheet, css/jquery.autocomplete.css, which controls the appearance
of the autocompletion list. Without the CSS, the autocomplete suggestions appear as a rather unex-
pected bulleted list, although everything else will still work. You learn more about CSS in Chapter 17.

After the JavaScript and style sheets the HTML fi le contains a <form> element and a <script> ele-
ment. The form has a 400-pixel-wide input fi eld for people to enter the name of a person to fi nd, and a
Submit button to make the browser go there.

The JavaScript in the <script> element defi nes two small functions and then does some plumbing.

To understand the JavaScript you need to recall that the data fi le, entries.txt, has one entry per line,
and each line contains two items, a title and a URL, separated by a vertical bar character. When the
jQuery autocomplete plug-in processes this data, it splits the lines into arrays, each of two fi elds.

The findhref() function then, is called with a “row” object that is really an HTML DOM ele-
ment node, with an extra property that holds any additional fi elds after the fi rst one. Item zero is the
second (and last) fi eld on the data line, the URL. This is a rather complicated way of doing things, and
an XML element or a JSON structure would be a better fi t, but it’s a good example of an ad hoc data
format in real life. The findhref function, as you might guess, returns the URI for the biography entry
in question.

The selectItem() function is called when the user clicks one of the suggestions. It sets the action
attribute of the <form> element so that if you click the Go button, you go to the URI from the second
fi eld in the data entry.

Note that if users have disabled JavaScript, they won’t get any suggestions, but they can enter a name
into the box, click the Go button, and go to the original place, go.php, which could be a page that
did a search.

The “plumbing” part is the call to a jQuery function:

$(“#Person”).autocomplete(“people.php”, { … });

The fi rst part selects an element with an ID of “Person” — that’s the textbox inside the form.

Then the autocomplete method from your jQuery plug-in is called on the object found, on the textbox.

That autocomplete method is given two arguments: the base URL to fetch (people.php) and a list of
options enclosed in braces. Notice how the option syntax is very similar to JSON; if you put the names
on the left in quotes it would still work, and would also be valid JSON.

c16.indd 643c16.indd 643 05/06/12 6:05 PM05/06/12 6:05 PM

644 ❘ CHAPTER 16 AJAX

The options are documented in the autocomplete_docs.txt fi le included with the plug-in; the impor-
tant ones here are onItemSelect and onFindValue, which arrange for the plug-in to call your two
handler functions when needed.

Now that you can see what the HTML document is doing, you should look at the PHP back end a
little.

The PHP Back-End Script

The PHP script named people.php is not really central to this example, and you could actually just
have the jQuery fetch entries.txt instead of going to the search script, but of course that would
always return the same autocompletions.

The script checks its q parameter, which is the user’s search term from the textbox, sent to you by
jQuery. Then it tries to read the entries.txt fi le. If the script fails to fi nd entries.txt, it returns
silently; a better approach might have been to have had it do this instead:

echo “Entries.txt not found|oops\n”; return;

That way the error would pop up on the screen. If your code does not work, you might want to try that
change.

After loading the fi le into the $items array, the script sets a $maxitems variable to limit the number of
results returned to 30, and $n_found to the number found so far (zero at the start, of course).

Then there’s a loop over each line in the fi le, looking to see if the given prefi x ($q) is at the start of one
of the lines, and, if so, to print (echo) the line. If $maxitems items have been printed, the script fi nishes.

Making the Data File

The XQuery script is given as an example; if you have read Chapter 7 it should be reasonably clear.
The only tricky part is that it calls string-join() on a sequence of strings generated by the inner
for...return expression. The reason for this is that otherwise the XQuery engine separates the strings
with a space between them when it prints the results, and that messes up the format.

SUMMARY

 ➤ AJAX is an acronym for Asynchronous JavaScript And XML, and is the name of a common
design pattern in web development.

 ➤ AJAX is used in HTML or XHTML web pages to fetch data from a remote web server
without having to wait for a network connection and response.

 ➤ The data fetched in the AJAX pattern does not need to be in XML; plain text, structured
text, HTML, JSON, and XML are all widely used.

c16.indd 644c16.indd 644 05/06/12 6:05 PM05/06/12 6:05 PM

Summary ❘ 645

 ➤ JSON is an acronym for JavaScript Object Notation and is a useful text-based format for
exchanging objects; it is not so useful for document fragments, since it does not handle
XML’s mixed content.

 ➤ You can easily generate XML or JSON on your web server using XQuery, XSLT, or almost
any programming or scripting language.

 ➤ Use the AJAX pattern to make web pages that seem fast and responsive, updating without
the user having to wait for a new page to load.

 ➤ Use the REST (Representational State Transfer) HTTP design pattern, making sure the user
can bookmark a page in its current state whenever that makes sense.

EXERCISES

You can fi nd solutions to these exercises in Appendix A.

 1. Modify the PHP script to fi nd strings at the start of words and in the middle of the names; return

all the strings at the start before strings at the middle, because they are more likely to be wanted.

 2. Modify the PHP script to fi nd strings anywhere in the words.

 3. Combine the XML Query fragment with the PHP script, to call XQuery on the fl y; you could use

the BaseX or Zorba XQuery implementations.

c16.indd 645c16.indd 645 05/06/12 6:05 PM05/06/12 6:05 PM

646 ❘ CHAPTER 16 AJAX

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

What is AJAX AJAX is an asynchronous programming technique used in web

browsers.

AJAX is often used with XML, JSON, HTML, or ad hoc text formats.

To make the most out of AJAX, you need server-side programs as well

as client-side JavaScript.

What is JSON JSON is a text format for transmitting JavaScript data objects.

JavaScript syntax JavaScript is a C-like interpreted language.

It is not directly related to Java.

Use the web browser console to help debug JavaScript programs.

c16.indd 646c16.indd 646 05/06/12 6:05 PM05/06/12 6:05 PM

PART VII
Display

 � CHAPTER 17: XHTML and HTML 5

 � CHAPTER 18: Scalable Vector Graphics (SVG)

c17.indd 647c17.indd 647 05/06/12 6:07 PM05/06/12 6:07 PM

c17.indd 648c17.indd 648 05/06/12 6:07 PM05/06/12 6:07 PM

XHTML and HTML 5

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The relationships between XML, HTML, XHTML, and XHTML 5

 ➤ The structure of XHTML documents

 ➤ Creating XHTML with XSLT and XQuery

 ➤ Styling XHTML and XML with CSS

 ➤ The HTML 5 Open Web Platform

 ➤ Diff erences between HTML 5 and XHTML

 ➤ When to use which sort of HTML

The HyperText Markup Language (HTML) was introduced in 1989 as the way to create
documents on the World Wide Web (WWW). The World Wide Web (Web for short)
combined several ideas at the same time: it is decentralized, meaning that anyone can put
up a web server without needing permission from a central authority. This decentralization
allowed the Web to scale. The Web scales because it is unreliable: you can encounter broken
links. Previous attempts at large-scale HyperText systems had required a single, central link
database. Despite being unreliable and decentralized, the Web also gives every reachable
resource a name. These names, Uniform Resource Identifi ers, are commonly known as URIs,
URLs, or web addresses. Any web client, such as a browser, can fetch any resource given
its URI. The resources are usually fetched using the HyperText Transfer Protocol (HTTP);
HTTP takes a list of formats and languages, and returns the requested resource in the best
format available in the requested language. Most often, that format is HTML.

There was actually nothing special about any of the ideas in the World Wide Web, but the
combination of ideas was new. For many early users, also new was the ability to mix links
and text in the same document. Competing systems, such as Gopher, could not do this. Other

17

c17.indd 649c17.indd 649 05/06/12 6:07 PM05/06/12 6:07 PM

650 ❘ CHAPTER 17 XHTML AND HTML 5

systems could do this, but they were not freely available, or were not decentralized, or tried to be
reliable and as a result did not scale.

In this chapter you learn how HTML works, how to style HTML with CSS, how to link JavaScript
to HTML, and about the various dialects of HTML, including HTML 5. The short historical
perspective in this introduction and the start of this chapter will help you to understand the
relationship between the various parts.

BACKGROUND OF SGML

HTML and XML were both derived from an older international standard, ISO 8879, the Standard
Generalized Markup Language (SGML). Like XML, SGML is a system for specifying your
own markup languages. HTML was one such language. Up until HTML 4 there was an SGML
document type defi nition (DTD) published for HTML.

NOTE HTML, then, as you already know from earlier chapters in this book,

supports hyperlinks in the middle of text. It’s worth emphasizing this because

most other formats used on the Web, including JSON and RDF, cannot easily

do this.

HTML and SGML

The most obvious feature of SGML that HTML used, and that is not available in XML, is called
minimization. This feature lets you omit tags that the parser can imply. The following two HTML
fragments are equivalent:

<P>This is a paragraph
<P>And this is another one.

and:

<P>This is a paragraph</P>
<P>And this is another one.</P>

The HTML parser knows you can’t have one <P> element inside another, so it closes the current one
automatically. This led some people to imagine that <P> was some sort of command to start a new
line and that paragraphs did not contain content — a misconception one still encounters!

SGML also allows quotes to be left off attribute values in some cases; in others you can omit the
attribute name and just put a value.

Elements declared as EMPTY in XML, as you know, use the self-closing tag,
, or a close tag
immediately after the open tag,
</br>. But SGML uses the form
, and the SGML parser,

c17.indd 650c17.indd 650 05/06/12 6:07 PM05/06/12 6:07 PM

The Open Web Platform ❘ 651

after reading the DTD for HTML, would know that
 was declared EMPTY, and would not even
allow an end tag for it, but would just want
 by itself.

HTML elements are also case insensitive, so you can close <p> with </P> if you like, or use
.

XML and SGML

The syntactic fl exibility of SGML also makes it complicated, and the truth is that most people
writing web pages just guessed the syntax, saw what worked in their web browser, and used that.
Because the early web browsers were often buggy, it was common for web pages to work in only one
web browser. Soon, web browsers had to start copying each other’s bugs.

By 1995, web development was already diffi cult because of browser differences. At the same time,
a number of people and organizations who had been using SGML heavily wanted the web browsers
to display their markup languages, and not only HTML.

They lost that battle, but the next best thing was to have browser plug-ins that displayed SGML
directly. The plug-ins, though, did not support the full range of SGML minimization that HTML uses.

Work at the World Wide Web Consortium (W3C) on standardizing this subset of SGML without
minimization led, as you know, to XML. Meanwhile, HTML and Web browsers continued to
develop, and today’s Web browsers provide a rich environment that mixes both XML and HTML.

THE OPEN WEB PLATFORM

Today’s web has evolved into a powerful and thriving ecosystem in which the central parts are all
defi ned by open, freely available, and freely implementable standards. The World Wide Web is not
just a collection of documents; websites can be entire applications: word processors, spreadsheets,
mapping tools, banking, music, painting, and much more. And the Web no longer needs an
expensive workstation; most mobile phones can browse and interact with the Web. Tablets,
multi-touch surfaces, spectacles, and even shoes are all connected as well.

The Web has become an operating environment, one step up from an operating system: it is the Web
Platform. It is also called the Open Web Platform because the APIs, the formats, and the protocols
are all freely available.

NOTE The Web can also be scripted, or programmed, using the JavaScript

language. You will have already seen some JavaScript if you have worked

through Chapter 16, “AJAX.” Web pages can be styled using cascading style

sheets (CSS), and you learn more about CSS later in this chapter.

This new fl exibility and power demanded that Web browsers all behave the same, so that
applications could be reliable. To do this, a new version of HTML (HTML 5) was produced
that specifi es exactly how browsers are to handle syntax errors, as well as introducing some new
features.

c17.indd 651c17.indd 651 05/06/12 6:07 PM05/06/12 6:07 PM

652 ❘ CHAPTER 17 XHTML AND HTML 5

Figure 17-1 is a screenshot of a modern web browser displaying http://platform.html5.org/
with a list of some of the technologies that are part of the Open Web Platform. Many of those
technologies are large enough and complex enough (or important enough, or at least self-important
enough) to have had entire books written about them. This chapter focuses on HTML 5 and on
two fl avors of XHTML — 1.x and its successor, XHTML 5 — plus a few other technologies are
mentioned as they arise.

FIGURE 17-1

INTRODUCTION TO XHTML

The original creators of XML had no intention of replacing HTML; they just wanted to be able to
use their SGML documents on the web so as not to have to worry about HTML.

However, there was such immediate popularity of XML (many would say over-popularity) that the
idea arose to try to redefi ne HTML in terms of XML.

The result of this endeavor was XHTML, which has its benefi ts: XHTML documents can be
processed by regular XML tools, edited in XML-aware software, and can also contain little islands
of “non-HTML,” including XML vocabularies such as MathML or Scalable Vector Graphics
(SVG). However, XHTML does not attempt to replace HTML. It sits alongside HTML. It is

c17.indd 652c17.indd 652 05/06/12 6:07 PM05/06/12 6:07 PM

http://platform.html5.org/

Introduction to XHTML ❘ 653

compatible: if you are careful how you create it (explained later), you can feed XHTML to a regular
HTML web browser and have everything work.

In this section you see the structure of an XHTML document, and also learn the main differences
between XHTML and regular XML.

The section fi rst describes XHTML 1.1, and then covers the differences between that and HTML 5,
together with its XML representation that is sometimes called XHTML 5.

WARNING Because XHTML is really XML, element names are case sensitive,

and must be in lowercase instead of capital letters. Use <div> and not <DIV>,

for example.

The XHTML <html> Element

An XHTML 1.x document always begins with a reference to the XHTML DTD like so:

<!DOCTYPE html

 PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”

>

You can actually use several different XHTML DTDs including strict, transitional, loose, and
frameset (for documents using the Netscape <frame> element; the frameset DTD is now relatively
rarely used).

See http://www.w3.org/QA/2002/04/valid-dtd-list.html for the full list. In general, you
should use the strict versions if you are generating XHTML documents, but you may need to use
the transitional DTDs if you have external content, such as advertising that’s included on your
server, or for a few compatibility features.

WARNING Many XML programs will try to download these DTD fi les from

www.w3.org; they will fail, because W3C does not allow this. Unfortunately,

W3C’s web servers get tens of millions of requests for these fi les a day

(sometimes in a single hour), and so W3C now slows down (throttles) requests

for the fi les.

The solution is that you should set up an XML Catalog fi le to point to local copies

of these fi les. The same is true of XML Schema fi les. Consult the documentation

for the XML software you are using to see how to set up an XML Catalog.

c17.indd 653c17.indd 653 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/QA/2002/04/valid-dtd-list.html
http://www.w3.org

654 ❘ CHAPTER 17 XHTML AND HTML 5

After the XML declaration and the DOCTYPE declaration you get to the start of the XHTML
document, which looks like this:

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>

It is unfortunate that the designers of XHTML chose to use an XML namespace, but they did.
You must get it exactly right. Worse, to match XHTML elements in XPath, whether from XQuery,
XSLT, or some other environment, you will generally need to bind a namespace prefi x to that URI
(h perhaps) and use XPath expressions like this:

/h:html/h:body/h:div//h:span[contains(concat(“ “, @class, “ “), “ date “)]

It’s all too easy to forget the prefi x and fail to get a match! Refer to Chapter 7, “Extracting Data
from XML,” for more detail. If you call XPath from JavaScript, or use the jQuery XPath plug-in,
you may fi nd you do not need to worry about namespaces in XPath expressions.

The lang and xml:lang elements in the <html> tag repeat the same value, and should indicate the
primary language of the document.

If your document is using SVG, MathML, or other vocabularies that use a namespace, you should
normally declare them on the <html> element. It’s not uncommon to see XHTML documents start
with a dozen or more namespace declarations.

The <html> element normally has exactly two children: <head> and <body>. These are discussed
in the following sections. The exception is for documents using frames, which have a <frameset>
element instead of <body>.

The XHTML <head> Element

The <head> element in all versions of HTML is a place to store information about the document:
it’s not generally rendered, although it does contain the document title, which is used on many
platforms for bookmarks and window titles. Any unknown element ends the <head> regardless of
your tagging structure.

The following sections describe the elements that are most commonly used inside the document’s
head. After reading about the head, you get to the body and try some examples.

Information about the Document: The <meta> Element

You use the <meta> element to describe the document. Some of this information is used by web
servers, proxies, and clients (browsers); some is used by search engines such as Google; and
some may be used by other applications, or for your own purposes. This section examines some
examples. Following is the fi rst:

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

This example, using http-equiv, is used by some web servers and by web browsers to override
the default character encoding for HTTP, which is Latin 1 (ISO 8859-1). The http-equiv attribute
contains the name of the HTTP header, and the content attribute contains the requested value.

c17.indd 654c17.indd 654 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org/1999/xhtml

Introduction to XHTML ❘ 655

Early web servers supported using http-equiv to override any of the HTTP headers that would be
sent back before the document; today most servers (including Apache) ignore this, and you have to
use external confi guration to have a document served in UTF-8. Even so, including this header tells
a web browser that the encoding is UTF-8 even when the fi le is read from a local disk, and this is a
good idea. To send HTML documents as UTF-8 with Apache, add the following to an .htaccess
fi le in the same directory as the fi les:

<Files ~ “*\.html”>

ForceType ‘text/html; charset=UTF-8’

</Files>

Notice the trailing space inside the empty element tag, just before the />. This is needed so that web
browsers can read the document as HTML, which does not use the XML empty-element syntax.

If you generate XHTML with XSLT, use the xhtml output method and the XSLT processor will
add the space automatically. This isn’t needed with XSLT inside the web browser, because the
elements are never actually written out in that case. Web browser XSLT processors do a direct tree
transform. But it is needed if you generate web pages on the server to be sent over the network, or if
the fi les are to be opened directly.

Now take a look at some informational examples. The fi rst, generator, is really a sort of vanity
header; some programs add it so that you can tell which application was used to create or edit
the fi le:

<meta name=”generator” content=”/usr/bin/vi” />

The next two headers, description and keywords, are used by search engines. The description
should be a short sentence or two describing the purpose of the web page, and the keywords are a
list of up to ten words or phrases relevant to the content.

<meta name=”keywords” content=”isaac newton,gravity,biography,biographies,people” />

<meta name=”description”

 content=”An account of the life and works of Sir Isaac Newton, written in 1814” />

The description is sometimes shown alongside search results or in directories.

The idea of keywords is that when someone searches for one of the words or phrases you give, they
will fi nd your web page, even if the keywords do not appear elsewhere in the document.

Unfortunately, these two headers are widely abused. Therefore, if you use more than ten keywords,
your page will probably be downgraded in search results on the grounds that it’s likely to be a fake
web page with ads on it. However, there’s some evidence that current search engines do take note of
the description and keywords headers.

Finally, here’s an example of a proprietary header: Pinterest is a website that enables people to
upload pictures that are of interest to them. Because of copyright and terms-of-use concerns, web
publishers can opt out of Pinterest using the following header on every page:

<meta name=”pinterest” content=”nopin” />

c17.indd 655c17.indd 655 05/06/12 6:07 PM05/06/12 6:07 PM

656 ❘ CHAPTER 17 XHTML AND HTML 5

If you use Google AdSense or Yahoo ads, you will be asked to add a meta header to your homepage
to show the page is yours. If you look at the source of homepages of large commercial websites, you
will probably see quite a lot more examples of meta headers.

The Document Title: The <title> Element

The document title is used in bookmarks, browser history, window title bars or tab labels, and
other places where a web page has to be named. It is a plain string: it cannot contain any elements,
which limits its usefulness for mathematical documents (no formulas!) and for Japanese or Chinese
(no ruby annotations).

Although the items in the document head can appear in any order, the character set and the
title should normally be the fi rst two, and in that order so that the title can be interpreted correctly,
like so:

<title>Isaac Newton - his life and works (1814)</title>

The title is often truncated in user interfaces — for example, if a browser tab is too narrow — so it’s
a good idea to put the most important information at the beginning. If you want to identify your
website in the title, do so at the end, because otherwise all the web pages from your website will
have the same prefi x, which may be all that the user sees!

Every XHTML document should have a title, even if the document does not contain any headings
or is an intermediate page.

Linking to External Resources: The <link> Element

Use the XHTML <link> element to connect your web page to other fi les and documents. This is
not a hyperlink: users don’t get to see any of the document head directly, and that includes link
elements, so they won’t be clicking these links. Instead, these are links to style sheets, scripts, icons,
and other supporting resources that make up the web page.

Using JavaScript and CSS: The <script> and <style> Elements

See Chapter 16 for details of JavaScript; you learn more about the <style> element later in this
chapter.

The XHTML <body> Element

The <body> element contains the actual text of the document. This section looks at some
of the most important elements you can use in an XHTML document, and then shows you how to
control the appearance of the document using cascading style sheets (CSS). After you’ve tried it
out, you go through more of the elements with some of the more commonly used techniques for
styling them.

c17.indd 656c17.indd 656 05/06/12 6:07 PM05/06/12 6:07 PM

Introduction to XHTML ❘ 657

Listing 17-1 shows a complete, if not very interesting, XHTML 1.1 document.

LISTING 17-1: Isaac Newton in XHTML.html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en-UK” xml:lang=”en-UK”>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

 <title>Newton, Isaac: Life and Works</title>

 </head>

 <body>

 <h1>Sir Isaac Newton</h1>

 <p>Isaac Newton was born at a very young age,

 had a brief but unsuccessful career as an apple picker,

 and later died.</p>

 </body>

</html>

Figure 17-2 shows the result of loading this XHTML fi le in three different web browsers: Google
Chrome (Chromium), Dillo (a very simple and fast web browser), and Lynx (a text-only web
browser running in a terminal emulator). In the two graphical browsers (rear left and right) the
contents of the HTML <title> element was used for the window title, along with the browser
name. Lynx (lower front left) does not use windows directly, and did not attempt to set the
terminal’s window title. Similarly, the fonts and text sizes differ between the browsers. However,
the document is recognizably the same in all three cases.

Available for
download on
Wrox.com

WARNING The HTML specifi cation is several hundred pages long; CSS is also

very large. The goal of this chapter is to show you how XML, XHTML, and HTML

fi t together, and to you teach enough to get started and be able to learn from

other resources. A complete description of HTML, CSS, JavaScript, and how to

use them requires an entire bookshelf! Most people learn just enough HTML,

CSS, and JavaScript to do what they need and search the web when they need

more, perhaps keeping some reference books by their side. But after working

through this chapter, you’ll have started the journey!

NOTE If you download any of the HTML fi les in this chapter, you may need to

use your web browser’s View Source feature (it’s usually in the File or View

menu), or open the fi le in a text editor, to see the actual HTML markup.

c17.indd 657c17.indd 657 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://Wrox.com

658 ❘ CHAPTER 17 XHTML AND HTML 5

Your goal in making web pages should not be to get the page to look identical in every browser, but
rather to make a page that will convey the right information.

In the following sections you learn about the things you can put inside the HTML <body> element
(such as the <h1> and <p> elements shown in Listing 17-1), but fi rst, you need to validate your XML
document against its DTD, and to do that you need an XML Catalog fi le.

Using an XML Catalog File for Local Validation

One of the fi rst problems you’ll run into if you try to work with XHTML documents using XML
tools is that you can’t validate your documents against the DTD fi les from the W3C website,
http://www.w3.org, W3C restricts DTD traffi c because so many programs try to download
the fi les.

The solution to this is to make a local copy of the DTD fi les and to use an XML Catalog to tell
XML software to use your local copies instead of going to www.w3.org for them.

Listing 17-2 shows a complete XML Catalog fi le for this purpose; it assumes that the DTD fi les
are in a subfolder called dtds. Note that the forward slash (/) is used in the fi lenames, even on
Windows, because they are really URLs. You can use any name you like for the fi le, but
catalog.xml or xhtml-catalog.xml might be good choices.

FIGURE 17-2

c17.indd 658c17.indd 658 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org
http://www.w3.org

Introduction to XHTML ❘ 659

LISTING 17-2: samplexmlcatalog.xml

<catalog prefer=”public” xmlns=”urn:oasis:names:tc:entity:xmlns:xml:catalog”>

 <system systemId=”http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd “

 uri=”dtds/xhtml1-strict.dtd”/>

 <public publicId=”-//W3C//DTD XHTML 1.0 Strict//EN”

 uri=”dtds/xhtml1-strict.dtd”/>

 <public publicId=”-//W3C//DTD XHTML 1.0 Transitional//EN”

 uri=”dtds/xhtml1-transitional.dtd”/>

 <public publicId=”-//W3C//DTD XHTML 1.0 Frameset//EN”

 uri=”dtds/xhtml1-frameset.dtd”/>

 <public publicId=”-//W3C//ENTITIES Latin 1 for XHTML//EN”

 uri=”dtds/xhtml-lat1.ent”/>

 <public publicId=”-//W3C//ENTITIES Symbols for XHTML//EN”

 uri=”dtds/xhtml-symbol.ent”/>

 <public publicId=”-//W3C//ENTITIES Special for XHTML//EN”

 uri=”dtds/xhtml-special.ent”/>

</catalog>

You can use an XML Catalog with most XML tools; here is an example of using the catalog with
the xmllint program in a Linux shell:

$ export SGML_CATALOG_FILES=$HOME/lib/xmlcatalog/catalog.xml

$ xmllint --noout --valid --loaddtd --catalogs listing-17-1.html

$

The fi rst line sets the shell variable $GML_CATALOG_FILES to the name of the XML Catalog fi le; you
will have to use the actual fi lename you created, of course.

The second line runs the xmllint program with no output (except error messages, if any exist),
telling it to check validity, to load the DTD fi les, and to use the XML Catalog fi le named by the
$SGML_CATALOG_FILES variable.

NOTE The xmllint command is very useful because most web servers run the

GNU/Linux operating system, Solaris, FreeBSD, or another Unix or Unix-like

operating system on which the xmllint program is likely to be preinstalled. You

can also confi gure Saxon, oXygen, and other programs to use catalogs.

You can also check your HTML fi le online at http://validator.w3.org/, but

you will still want the XML Catalog for use with XSLT or other XML tools.

Available for
download on
Wrox.com

c17.indd 659c17.indd 659 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://validator.w3.org/
http://Wrox.com

660 ❘ CHAPTER 17 XHTML AND HTML 5

Paragraphs, Block Quotes, and Headings

Paragraphs, block quotes, and headings are all block-level elements: they are rendered by web
browsers starting on a new line and with blank space above and below them.

The <p> element is used to contain a logical paragraph; a browser might display the fi rst line
indented, or put a blank line between paragraphs.

The <blockquote> element is intended to contain a long quotation, and is normally rendered indented,
with a left margin; it contains block-level elements such as paragraphs, lists, and even block quotes.

Do not use paragraphs or block quotes just for formatting: if you want an indented block of text
(that’s not really a logical paragraph), use a <div> element as described later in this chapter. If you
want a paragraph that’s formatted slightly differently from other paragraphs, give it a class attribute
and use CSS, as described in the “Cascading Style Sheets (CSS)” section later in this chapter.

Paragraphs can only contain phrase-level markup and text; block quotes can contain block-level
elements.

For headings you use <h1> for the most important heading in the document. This is often the same
as the <title> element but doesn’t need to be; <h1> can contain phrase-level markup, whereas
<title> is a plain string. There’s usually only one <h1> element in an HTML document.

For the next most important heading you use <h2>, and there can be any number of these. Then
there’s <h3>, <h4>, and so on. If you fi nd yourself wanting anything over <h5> or <h6>, you should
ask yourself how the reader will keep track, and maybe split the document into multiple web pages,
the body of each starting with an <h1> element.

If you’re used to more traditional XML vocabularies such as DocBook or the Text Encoding
Initiative, you may be wondering whether there’s a container around each section. No container is
required. HTML 5 supplies a <section> element for this purpose, but older versions of HTML and
XHTML do not have such a thing. The headings are interspersed between paragraphs and it’s a fl at
structure. You can have an <h3> directly followed by an <h6> if you like.

If this sounds too chaotic, you can use <div> elements as if they were sections as shown in the
following snippet. The <div> element is explained in more detail in the “Generic <div> and
Elements” section later in this chapter.

<div class=”section”>

 <h2>His Life As An Apple Picker</h2>

 <p>After leaving school, young Isaac was very poor,

 and had no mobile ’phone or shoes, so he picked apples.</p>

</div>

Using <div> elements in this way can make processing your XHTML documents with XQuery or
XHTML much easier, and can also help with styling, as you learn in the section “Cascading Style Sheets.”

Lists

A list is a sequence of related items, perhaps numbered, or perhaps with a bullet at the start of each
item. You can use CSS to turn numbering on or off, or to change the shape of the bullet. You can
also turn off list-like rendering with CSS; this is most commonly used when you’re making a drop-
down menu effect. You mark up the data as a list so that a non-CSS-aware browser will still show

c17.indd 660c17.indd 660 05/06/12 6:07 PM05/06/12 6:07 PM

Introduction to XHTML ❘ 661

something reasonable, but then you use CSS to turn off the list bullets and indents, and to add
borders, making something that looks like a user-interface component.

Use for an ordered (that is, numbered) list, and for an unordered bulleted list. Of course,
the web browser always presents the list items in the order they were found in the document;
ordered/unordered is just an obscure way to say whether the items are numbered. Lists of either sort
contain zero or more list items, marked up with elements.

You can also have defi nition lists — showing the origin of HTML as a language for computer
documentation! A defi nition list uses <dl> as the container, <dt> for terms to be defi ned, and
<dd> for the defi nitions.

List items can only contain block-level elements such as <p>, <blockquote>, and , and not text
or elements. The only exception is that you can have elements inside an or
that’s inside an element.

If you wanted to format the preceding paragraphs in this section as a bulleted list, you would mark
it up like this:

 <p>A <i>list</i> is . . . </p>

 <p>Use for . . .</p>

 . . .

NOTE To help you remember, notice that ol stands for ordered list, ul stands

for unordered list, and dl stands for defi nition list.

Hypertext Links

The best-known HTML element is probably the <a> element; “a” is short for anchor, a term in
HyperText meaning one end or another of a link. In its simplest form a link is just an <a> element
around some text like so:

my web site

The href attribute contains a URI reference; that is, a web address. A web browser will follow this
link when you click (or activate) the link.

The URI reference part means you can put a fragment identifi er after the URL, separated from it by
a hash (#), and the browser will search for an element in the target document having that identifi er
(without the #), and scroll to that location. See the following code snippet:

More about Daniel

c17.indd 661c17.indd 661 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.fromoldbooks.org/
http://www.example.org/staff.html#daniel

662 ❘ CHAPTER 17 XHTML AND HTML 5

When you click this link, your browser will load the staff.html document and search for a
name=”daniel” or id=”daniel” attribute; if it fi nds one, it will scroll the view to make that visible.

NOTE Most web browsers will highlight links, usually by coloring them blue and

underlining them (because that is what an early web browser from NCSA called

“Mosaic” used to do). Browsers show links diff erently if you have visited the

destination recently and also sometimes when the link is active, meaning, for

example, you clicked it but the browser hasn’t yet gone there.

An <a> element with a name attribute is a potential target for a link. An example is shown here as it
might appear in the staff.html fi le mentioned in the previous example:

Daniel is the grand vizier of Shemyaza.

WARNING Although XHTML uses the id attribute name on various elements,

and browsers will indeed fi nd them, many users will put values in them that are

not, in fact, legal XML (or SGML) ID values. An SGML or XML ID value must start

with a (Unicode) letter and then contain only name characters: letters, digits,

hyphens, dots, and underscores. If you are generating XHTML for use with XML

tools, you should make sure that your ID attribute values are legal.

Here’s a slightly longer example:

About Liam

The content of the title attribute here will usually be used to make a tooltip when a mouse pointer
hovers over the link; this is a poor design because you can’t put element markup inside attribute
values, but this is the way it is.

You can also indicate the relationship between the web page containing the link and the link
destination, using the rel attribute; this is not often done in practice, but some specialist
applications use it.

One common use of the rel attribute is to add rel=”nofollow” to your links. This is a proprietary
value for the rel attribute introduced by Google, and it indicates that you do not endorse the target
page. What does that mean? When Google’s search engine displays search results, it tends to favor
web pages that have a lot of links pointing to them. This is called Google’s pagerank algorithm,
and although these days it is only one of more than 200 factors Google takes into account when
generating search results, the advantage of being linked to is still high enough that people are
willing to pay for links to their websites selling somewhat dubious services (the sleazy side of the
Web). If Google fi nds that you link to such a site, it will downgrade your web page, or even remove
you from its search results altogether. Adding rel=”nofollow” to a link indicates that you don’t
want it to affect search result placement, perhaps because the link came from user-supplied content
such as a forum posting on your website.

c17.indd 662c17.indd 662 05/06/12 6:07 PM05/06/12 6:07 PM

Introduction to XHTML ❘ 663

Additionally, you can include any mixture of text and phrase-level markup inside an <a> element.
Phrase-level markup, unlike block-level markup, does not begin and end on a new line, but just
affects part of a sentence or paragraph. Some examples of phrase-level markup include emphasis,
inline images, formatting, and of course the <a> element, as in the following example:

<p>All about Liam and his nice clean socks.

The href value here, liam.html, is a relative URI reference: it does not begin with a URI scheme
such as http: or file: and does not start with a /. The web browser will look for the resource in
the same place it got the resource containing the link, and will use the same method (for example,
HTTP, FTP) to fetch it. This lets you move whole trees of documents around without changing
them, or publish a website from your own computer to a server, perhaps using a remote fi le copy
program such as ftp or (more securely) rsync or scp over the secure shell, ssh.

Images

The ability to mix text, images, and links in one document is one of the things that helped the
World Wide Web succeed in its early days. Soon after, images of a particularly intimate nature
were, for a while, the driving force of Web commerce. We are past that today: the Web has matured
considerably, but images are still very important.

An image can be the subject of a web page or an image can be part of the page background, perhaps
providing texture like old paper or a canvas, so that the contents of the page overwrite the image.
Images are also used for page components such as borders, buttons, and decoration. Finally, images
can be used as part of corporate branding or marketing, including organizational logos.

You have three main ways to include images in your web pages:

 ➤ Using the HTML element. This is described shortly.

 ➤ Using cascading style sheets (CSS); see the section on CSS later in this chapter.

 ➤ Using SVG markup in the document; see Chapter 18, “Scalable Vector Graphics (SVG).”

To include an image in your web page using the HTML element you write something like this:

<p>Daniel’s socks: <img src=”argyle.jpg” alt=”picture of blue and yellow argyle
socks” />.

The src attribute (pronounced source) indicates where the image comes from; as with the <a>
element, it can be a relative URI, although the fragment identifi er is not currently used.

The alt attribute contains a short textual description of the image.

WARNING When you are including images you must remember that not

everyone can see them in the same way. Some people will have diffi culty seeing

fi ne details in images; others will see colors diff erently than you, and some won’t

be able to see at all. Laws exist about making web pages accessible, and about

not discriminating against people based on their abilities, so even if it were not a

moral imperative to be as inclusive as possible, it can become a legal imperative.

c17.indd 663c17.indd 663 05/06/12 6:07 PM05/06/12 6:07 PM

664 ❘ CHAPTER 17 XHTML AND HTML 5

When an image is an important part of a web page, you must include a short piece of text to be used
as an alternative to the image. If necessary you can also link to a longer description, either using a
longdesc attribute containing a URI, or, more commonly, with a letter D linked to the description,
and perhaps hidden by default using CSS.

NOTE The element is empty: it does not have any content. In XML the tag

needs to end with />, but this is a syntax error in HTML. To get around this, put a

space before the /> — it’s still technically an error, but it works in all browsers.

Loading Images More Quickly

Images will appear to load much faster if you include width and height attributes on your
elements; the result is also less disruptive to the user. This is because the browser will leave space for
the image. In the following example the picture is presumably a JPEG image 700 pixels wide and 900
pixels high:

<img src=”argyle.jpg” alt=”picture of blue and yellow argyle socks” width=”700”
height=”900” />

WARNING Make sure you use the actual pixel width and height for images. If

you give a diff erent size the browser will scale the image to fi t, but this can look

very bad. If you try to make a thumbnail-sized picture of a large image this way,

users still have to wait for the whole image to download before they can see the

thumbnail. Image sizes mentioned in height and width attributes must always

be measured in pixels, not in other units such as inches.

Because XSLT and XQuery do not give access to image sizes, XML-based content management
systems have to provide some way to communicate the information. Some systems do this with calls to
external functions; some simply encode the image size in the fi lename (argyle-socks-700x900.jpg);
and others store image meta data in a separate database.

You can fi nd out the size of the image using the identify command (part of the ImageMagick
package) on many systems, including most Linux servers.

If your images fi les are particularly large and slow to download, you can include an alternate image
by putting its URI in the lowsrc attribute; some browsers will load this fi rst and display it while the
larger image is loading.

Images and Links

The obvious way to make an image link to another web page is this:

<p>
 Read more:
 <img src=”isaac-newton-300x310.jpg”
 alt=”Sir Isaac Newton” width=”300” height=”310” />

</p>

c17.indd 664c17.indd 664 05/06/12 6:07 PM05/06/12 6:07 PM

Introduction to XHTML ❘ 665

Although this is technically correct, the result of adding this to the Isaac Newton biography from
Listing 17-1 is shown in in Figure 17-3. Notice the underlined space after the “Read more:” — that
comes from the spaces between the text and the tag. With some older browsers you’ll also
see an irritating blue border around the image. You can get rid of this border in HTML using the
border=”0” attribute, but the approved way is to use CSS; you learn about that later in this chapter,
but for now you could add a CSS style attribute to the element to get rid of the blue border.
That still leaves the underlined space; you could get rid of that by changing the markup so that the
space isn’t inside an <a> element like so:

<p>
 Read more:
 <img src=”isaac-newton-300x310.jpg”
 style=”border: 0;”
 alt=”Sir Isaac Newton” width=”300” height=”310” />
</p>

FIGURE 17-3

c17.indd 665c17.indd 665 05/06/12 6:07 PM05/06/12 6:07 PM

666 ❘ CHAPTER 17 XHTML AND HTML 5

Image Formats

The most common image formats used on the Web are shown in Table 17-1.

TABLE 17-1: Common Image Formats Supported by Web Browsers

FORMAT DESCRIPTION

GIF (8-bit) Can be animated, but as implemented generally supports only a limited

“web-safe” palette of 256 colors, one of which can be used for transparency. For

most uses of GIF today, except animation, PNG is preferred.

PNG Open format defi ned by the IETF and W3C; has lossless compression and supports

256 levels of transparency. Internet Explorer 6 needs an add-on such as CSS3 PIE to

handle transparent PNG images properly, but despite this PNG is very commonly used.

JPEG This format is lossy: if you convert an image from PNG to JPEG, you will lose some

detail, and the colors may change slightly. If you convert back to PNG the lost detail is

not restored. Excessive levels of JPEG compression tend to introduce visible fringes

so you need to check image fi les carefully, and always keep a copy of your images

in some other format. If you start with a JPEG image, for example from a digital

camera, save your work in PNG as well as in JPEG at the end, because there is a loss

in quality every time you open a JPEG fi le and save it again.

People use JPEG images more on the Web because they are typically much smaller in fi le size than
PNG for a given image size in pixels, and this means they get downloaded more quickly.
See Chapter 18 for more on SVG.

You may encounter some other image formats, including TIFF (mostly on the Mac) or BMP (mostly
on Windows), as well as proprietary or application-specifi c formats such as Adobe Photoshop fi les
(PSD) or The GIMP’s save fi les (XCF), but most web browsers can only be relied upon to display
JPEG, PNG, and GIF.

Inline Emphasis and Formatting Elements

So far all of the text you have seen has been pretty plain; links were underlined, but that’s as far as
it went.

HTML supports a number of inline elements, also called phrase-level elements, both to add
meaning and for stylistic purposes. You’ve already read about some of these in this chapter. You
should use the semantic elements where they are available rather than the formatting elements: for
example, it’s better to use for emphasis rather than <i> for italics, because then a text reader
can use different infl ection in its auto-generated voice. However, you should not use if the

NOTE Notice that the bottom of the image in Figure 17-3 is lined up with the

baseline of the text saying “Read more.” You will see how to change this using

CSS in the section on cascading style sheets later in this chapter.

c17.indd 666c17.indd 666 05/06/12 6:07 PM05/06/12 6:07 PM

Introduction to XHTML ❘ 667

italics are for some purpose other than emphasis. The word other in the previous sentence is an
example of emphasis; the italics used for inline elements and phrase-level elements at the start of
this paragraph signify a keyword, and are not emphasis. For those you might use this:
<i class=”keyword”>inline elements</i>.

NOTE If you are transcribing a document you didn’t write, and the author is not

available to answer questions, you should not normally try to add semantics; if you

don’t know why a particular word is in italics, just use <i> rather than guessing.

Table 17-2 shows most of the more common phrase-level elements in HTML that are used for
formatting. Note that not all elements are available in all versions of the HTML DTDs.

TABLE 17-2: Some Inline HTML Elements Associated with Formatting

ELEMENT DESCRIPTION EXAMPLE

abbr An abbreviation; also used for

acronyms

<abbr title=”adjective”>adj.</abbr>

b Bold (other than strong emphasis or

headings)

Vol 3 No. 6.

big Bigger text I want to say <big>I love you</big>

dfn A single word or phrase being

defi ned

A <dfn>sock</dfn> is a covering for

the foot, often made of milk custard.

em Emphasis, usually italicized He was very nervous

i Italics, other than emphasis She was an <i lang=”la”>ex post

facto</i> standard!

q A quote; use CSS to add quote marks She said <q>Take off your boots</q>

small Smaller text; use CSS instead <small>By reading this text you

agree...</small>

strike, s Strikethrough, crossed-out text This is <s>wrong</s>.

strong Strong emphasis, shouting, often

displayed in bold

The sock was extremely</

strong> dangerous.

sub Subscript <i>x</i>_j (x
j
)

sup Superscript e = mc² (e = mc2)

tt Typewriter text <tt>dear archie, I am typing this

letter...</tt>

u Underline, but not a link See <u>The Journal Of Ankle

Coverings</u> for July 1895

c17.indd 667c17.indd 667 05/06/12 6:07 PM05/06/12 6:07 PM

668 ❘ CHAPTER 17 XHTML AND HTML 5

Generic <div> and Elements

When you need to produce a particular formatting effect with HTML, but it’s not about semantics, or if
there is no built-in semantics close to what you want, you can use the <div> and elements. The
<div> element can contain any mix of text, phrase-level elements, and block-level elements, including
more <div> elements. The element is a phrase-level element and can contain text and other
phrase-level elements (including, of course, more elements).

You can use the class attribute to attempt to impart meaning to your HTML source code; this will
generally be of more use to you in maintaining the markup than to anyone else, but as you see soon,
the class attributes are also used by CSS. If you have read Chapter 16, “AJAX” already you’ll also
recall that jQuery uses class attributes in constructs like this:

$(“div.sock-weaving-pattern”).css(“background-color: grey;”);

to match:

<div class=”sock-weaving-pattern”>. . .</div>

The <div> and elements are used extensively in almost every modern web page, partly
because they are free from the baggage of history and are not weighed down with existing style
rules that might vary from browser to browser, and partly because they’re the closest HTML ever
got to user-defi ned elements.

More Advanced HTML Topics

Because this book is really about XML and not HTML, it’s time to move on a little faster. The
following sections provide you with just enough of an idea about some other HTML tools to pique
your interest so that you can learn more.

HTML Forms

Use the HTML <form> element along with its children to generate buttons, controls, and areas
where users can enter text or upload fi les. See Chapter 16 for a simple example of an HTML form.

HTML and JavaScript

Refer back to Chapter 16 for an introduction to the JavaScript language, jQuery, and AJAX.

HTML and Accessibility

If you become involved with professional web development you will need to dive into accessibility
feet fi rst, perhaps with one of the many books on the topic.

The high-level view is that anyone, regardless of physical abilities, must be able to use your web
pages. If you design your pages using the semantic elements like <h1>, <p>, , and ,
there’s a good chance they will be easy to make very accessible indeed. Visit http://www.w3.org/WAI/
for lots of helpful articles, resources, tutorials, and testing tools for web accessibility.

c17.indd 668c17.indd 668 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org/WAI/

XHTML and HTML: Problems and Workarounds ❘ 669

Of course, the devil is in the details. Make sure your elements have alt attributes (if the
image is decorative, give it alt=”” rather than leave off the alt attribute: this reassures readers that
they aren’t missing something). Don’t use HTML tables for layout when you could use CSS. Try to
use fl exible layouts, not fi xed-width layouts, and make sure people can do everything on your web
page from the keyboard.

XHTML AND HTML: PROBLEMS AND WORKAROUNDS

Most HTML on the web is not even close to being syntactically correct, so there was never any hope
of replacing HTML with XML or XHTML, as some people thought was the intent.

One diffi culty is that the XML specifi cation forbids applications from claiming that a data stream
was a well-formed XML document if it contains errors. The web browser makers interpret this as
meaning the web browser should not display the document at all if it contained errors. In fact, a
fi x-up is perfectly fi ne in this situation and allowed as long as you let the user know. An error
message in the browser’s developer console would be enough. In practice, this situation means that
XHTML, unlike HTML, is very unforgiving of errors.

Another diffi culty is that if you serve XHTML documents with the correct Internet media type
(MIME Content Type) of application/html+xml, older versions of Internet Explorer will not
display the document but instead will prompt the user to save it to a fi le! As a result, it’s best to
serve XHTML documents as text/html.

Some people use “browser sniffi ng” to serve different documents to IE users; others use a simple
trick with client-side XSLT in the browser to fi x the problem, but this turns out to have other
diffi culties, not least of which is that it makes the resulting web pages hard to debug.

Because the syntax of HTML and of XML is slightly different, you have to do some
special tricks to get the XHTML to work properly. You can fi nd more details on these at
http://www.w3.org/TR/xhtml1/#guidelines on the W3C website, but a few of the most
important ones are listed here:

 ➤ Avoid using the XML declaration or processing instructions; this means you must use
UTF-8 or UTF-16 for your fi les and make sure they are served correctly.

 ➤ Put a space at the end of empty element tags:
 rather than
.

 ➤ Do not use close tags for empty elements, even though XML allows this;

 in
HTML does not do what you might expect.

 ➤ Avoid inline style sheets or JavaScript; refer to external fi les instead.

 ➤ Do not rely on being able to include newlines in attribute values.

 ➤ Use both xml:lang and lang attributes to specify language.

 ➤ The ' XML entity does not work reliably in HTML; use ' instead.

If you are using XSLT or XQuery to generate XHTML, you will need to make sure you enable the
appropriate serialization options to make this work. You may need to check the documentation of
the XQuery or XSLT system you use in order to learn how to set the serialization options.

c17.indd 669c17.indd 669 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org/TR/xhtml1/#guidelines

670 ❘ CHAPTER 17 XHTML AND HTML 5

The XHTML Working Group at W3C went on to defi ne a much more sophisticated version of
XHTML, XHTML 2, but it did not get the necessary support in web browsers.

As a result, work on XHTML at W3C ended, and the XML representation of HTML 5 took over.
XHTML 1 is still widely useful in its own right, and, as you see later in this chapter, HTML 5
keeps most of the same ideas. First, though, you need to look at cascading style sheets, and also at
Unobtrusive JavaScript, so that you have more of the background you’ll need.

CASCADING STYLE SHEETS (CSS)

Cascading style sheets are a mechanism to associate formatting with HTML or XML markup.
A style sheet is simply a name for a set of rules for formatting a document; the cascading part is
that several such style sheets get combined to format an HTML document, and the cascading rules
determine how the styles are merged. Most modern web browsers let authors have their own style
sheet, which is merged with that of the document author.

As you read in the fi rst part of this chapter, most HTML elements already have styles associated
with them. The element is usually rendered in italics, and <h1> headings usually appear in
larger text, possibly a different font, and in bold. Unfortunately, the default styles were created by
computer programmers with no experience in graphic design or typography, and, as a result, they
are not very appropriate. Luckily, you can override them with CSS.

CSS Levels and Versions

CSS has four “levels”: CSS 1, CSS 2.1, CSS 3, and CSS 4. CSS Level 2 second edition is the odd ball
that is (confusingly) called CSS 2.1, but it has the best support. CSS 3 introduces many new features
but is less widely supported. CSS 4 is new and not yet defi ned, and because CSS 3 is not yet fi nished,
CSS 4 won’t be available for a while, but now at least if someone mentions it you can guess what
they’re talking about. You can fi nd out more about the different levels at http://www.w3.org/
Style/. This chapter mostly talks about CSS 2.1, with occasional mention of CSS 3 features.

Individual web browsers also support features of their own, and sometimes support features that
have been proposed for CSS but that are not yet standardized. Such features are given a vendor
prefi x so you know you’ve left the safety of the boardwalk, and are well into walking-on-broken-
glass territory. Mozilla Firefox uses -mozilla- as a prefi x, Apple Safari and Google Chrome (both
based on a browser toolkit called WebKit) use -webkit-, Opera uses -o-, and Internet Explorer
tends to stick to standards.

WARNING CSS is evolving rapidly, and support for some of the more advanced

features of CSS is not available in all web browsers. Internet Explorer Version 6

is the best-known browser that has incomplete support for CSS 2.1 selectors; for

CSS 3 you have to be using IE 9 or later, and Opera doesn’t work in all cases

(as of June 2012). See http://www.quirksmode.org/css/contents.html or

http://www.caniuse.com for more information.

c17.indd 670c17.indd 670 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org/Style/
http://www.w3.org/Style/
http://www.quirksmode.org/css/contents.html
http://www.caniuse.com

Cascading Style Sheets (CSS) ❘ 671

CSS at a Glance

Cascading style sheets are collections of rules, and each rule is made of a selector and a declaration.
Here is a rule with a CSS selector to match any <h1> element in the document; it sets the color of
text inside the heading to blue and also adds a margin at the top of the heading:

h1 {
 color: blue;
 margin-top: 300px;
}

The selector in the example is h1 and the declaration is inside the curly braces. Inside the declaration
are two properties, color and margin-top, together with values for them. The semicolon separates
the individual property-value pairs, but it turns out to be easier to remember and edit if you always
put a semicolon after every value.

You can put the style rules into the document or into a separate fi le. If you put them in the
document some very old browsers will display the styles rather than using them, so it’s usually best
just to put them in a separate fi le. If you have more than one web page using the same CSS fi le, your
site will work faster if the CSS is in a separate fi le, too.

In the following activity you use some basic CSS to work through an example.

TRY IT OUT Some Simple CSS

In this exercise you expand on the example from Listing 17-1 earlier in this chapter, edit it very slightly,
and add some styles in a separate fi le. Remember to keep the web browser’s console window open as
you work so that you can see if you make mistakes; see Chapter 16 for more information about the
browser console.

 1. Make a new text fi le called NewtonWithCSS.html containing the following HTML markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en-UK” xml:lang=”en-UK”>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />

 <title>Newton, Isaac: Life and Works</title>

 <link rel=”stylesheet” type=”text/css” href=”newton.css” />

 </head>

 <body>

 <h1>Sir Isaac Newton</h1>

 <p class=”intro”><img src=”isaac-newton-150x155.jpg”

 alt=”Sir Isaac Newton” width=”150” height=”155”

 style=”float: left;” />Newton, Sir Isaac, the most splendid genius that has

 yet adorned human nature, and by universal consent placed at the head of

 mathematics and of science, was born on Christmas-day, O. S. 1642, at

 Woolsthorpe, in the parish of Colsterworth, in the county of Lincoln. When

 born he was so little that his mother used to say he might have been put

 into a quart mug, and so unlikely to live that two women who were sent to

 lady Pakenham’s, at North Witham, for something for him, did not expect to

 find him alive at their return.</p>

Available for
download on
Wrox.com

c17.indd 671c17.indd 671 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://Wrox.com

672 ❘ CHAPTER 17 XHTML AND HTML 5

 <p>He was born near three months after the death of his father,

 who was descended from the eldest branch of the family of sir

 John Newton, bart. and was lord of the manor of Woolsthorpe. The

 family came originally from Newton, in the county of Lancaster, from which,

 probably, they took their name. His mother was Hannah Ayscough, of an

 ancient and honourable family in the county of Lincoln. She was married a

 second time to the rev. Barnabas Smith, rector of North Witham, a rich old

 bachelor, and had by him a son and two daughters.</p>

 </body>

</html>

NewtonWithCSS.html

Be careful to note the added line that links to newton.css for the styles.

 2. Type the following fi le, and call it newton.css (you can use a different name as long as you
change the HTML fi le accordingly). Make sure you save it as a plaintext (UTF-8) fi le.

body {

 background: #fff;

 color: #000;

 margin-left: 1em;

}

h1 {

 font-family: “Origins”, “Palatino”, “Book Antiqua”,serif;

 font-weight: normal;

 font-size: 64pt;

 margin-top: 24pt;

 line-height: 120%;

 margin-bottom: -24pt;

}

p.intro {

 color: #666;

}

p.intro:first-line {

 font-variant: small-caps;

}

p {

 max-width: 25em;

 margin-left: 100px;

 margin-right: auto;

}

p img {

 display: block;

 float: left;

 margin-left: -73px;

 margin-right: 3px;

}

newton.css

c17.indd 672c17.indd 672 05/06/12 6:07 PM05/06/12 6:07 PM

Cascading Style Sheets (CSS) ❘ 673

(Be careful to use a space in p img, and to have a
dot in p.intro, and to use American spelling for
color.)

 3. Navigate to the HTML fi le and load it; unlike
the examples in Chapter 16 you can load this fi le
directly from your computer’s hard drive. The
result should look more or less like Figure 17-4.
You probably won’t have the same font for the
heading, but you should see the other formatting.

How It Works

The fi rst CSS rule is for the HTML <body> element.
It sets the background color to #fff. CSS color values
refer to red, green, and blue levels, respectively. They
usually have either three hexadecimal digits (as here)
or six. #abc is the same as #aabbcc in CSS, so #fff is
the same as #ffffff, and means that red, green, and
blue all have the maximum value of ff in hexadecimal
(255 in decimal notation). When red, green, and blue
are all the same, you get a grey. When they are all zero
you get black, and when they are all ff you get white,
so #fff or #ffffff sets the background to white. If you prefer you could type white or maybe
yellow instead, like this:

background: yellow;

After setting the background, the rule for <body> sets the text color to #000, which of course is
#000000 or black. Although this is a common default users can change it, and so if you set either the
text or background color you need to set both colors, to avoid users with (say) a black default browser
background from seeing black text on a black background. Remember to choose colors that contrast
well so that older people (or people with less-then-perfect vision) can still read your page.

The fi nal part of the <body> style sets a left margin of one em: that is, one unit equal to the font size in
effect, which here will be the browser’s default.

The remaining rules are explained in the rest of this chapter, but for now you should notice how a rela-
tively sophisticated style can be achieved fairly easily.

CSS Selectors

You’ve seen some examples of CSS selectors in the previous section and in the Try It Out. Selectors
are patterns that identify one or more elements in a document. They are like a quirky and less
powerful version of XPath, and were developed independently, but they do have a lot in common.

Recall that CSS rules have a selector and then a set of property-value pairs in braces; the properties
are set to the values you give on every element that matches the selector.

FIGURE 17-4

c17.indd 673c17.indd 673 05/06/12 6:07 PM05/06/12 6:07 PM

674 ❘ CHAPTER 17 XHTML AND HTML 5

Table 17-3 shows the different CSS selectors you can use.

TABLE 17-3: CSS Selectors

CSS SELECTOR DESCRIPTION EXAMPLES

element type The name of an HTML element p

* Any single element *

B > A Any A element that is a direct

child if a B element (like the XPath

expression B/A)

p > span > a

B + A Any A elements when immediately

preceded by a B element

blockquote + p matches a

<p> element immediately after

a <blockquote> element

[attr] Matches on attribute presence a[name]

A[attr=”value”] Matches any A elements having an

attribute called attr whose value is

exactly equal to value

img[alt=”argyle socks”]

A[attr~=”value”] Matches any A elements whose

attr attribute contains a word

equal to value, where words are

separated by spaces

div[class~=”navigation”]

A[lang|=”lang”] Language-specifi c matching div[lang|=”en”]

A.word Matches any A element whose

class attribute contains the

given word

div.navigation would match

<div class=”navigation

redbg”>...

A#id Matches the fi rst A element (or all A

elements) having the given id value

div#topbar to match <div

id=”topbar”>...

NOTE HTML element names are not case sensitive, so you can use either

uppercase or lowercase for them in selectors; H1 { color: blue; } and

h1 { color: blue; } do the same thing. You should leave the property names

in lowercase, however.

XML names are case sensitive, so the selector must match the document. For

XHTML the element names must be in lowercase, so it’s best to use lowercase

element names in CSS too.

c17.indd 674c17.indd 674 05/06/12 6:07 PM05/06/12 6:07 PM

Cascading Style Sheets (CSS) ❘ 675

CSS SELECTOR DESCRIPTION EXAMPLES

A:first-child Any A elements that are the fi rst

child (not counting whitespace) of

their parents

li:first-child

A:link, A:visited,

A:active, A:hover,

A:focus

Matches an unvisited link, a visited

one, an active link, an element

when the mouse pointer is over it,

and an element ready to accept

keyboard input

a:visited { color: purple;

}

img:hover

A:lang(lang) Any A elements in language lang a:lang(en)

A:first-line A pseudo-element matching the

fi rst formatted line of content

p:first-line

A:first-letter A pseudo-element matching the

fi rst letter of content, if it is at

the very start of the element

p:first-letter

A:before, A:after Pseudo-elements considered to

occur immediately before, or after,

the A element’s content

div.caption:before

A, B, C Matches any of A, B, or C elements

(a shorthand)

h1, h2, h3, h4 {

 font-weight: bold;

}

ns|A Matches A with the namespace

URI bound to prefi x “ns” using

@namespace (see CSS and XML)

svg|text

CSS 3 adds more selectors, including :nth-child(), :nth-of-type(), :nth-last-of-type(), and
more bizarre variations, but these are not all available today. If you fi nd yourself needing them, for
example with jQuery, ask yourself if the XPath jQuery plug-in wouldn’t be a little saner.

CSS Properties

Once you’ve identifi ed your HTML elements with CSS selectors, you can assign values to their
formatting properties. Again, since this is an XML book, only a few are listed in this section; you
can go to http://www.w3.org/TR/CSS21/ for a longer list, and also see www.quirksmode.org for
information on which properties are actually supported by browsers.

Figure 17-5 shows the WebKit Developer Tools (found in Epiphany, Midori, Safari, Chrome, and
other WebKit-based browsers); for Firefox there is the Web Developer extension and also FireBug
with roughly similar functionality. You can see the Computed Style and Matched CSS Rules
windows for the selected element (a <div> element with class=”footer” in this case). If you

c17.indd 675c17.indd 675 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org/TR/CSS21/
http://www.quirksmode.org

676 ❘ CHAPTER 17 XHTML AND HTML 5

double-click the CSS property values, you can change them and see the results right away. If you
click the Console icon in the list of icons on the top of the window, you can see any syntax errors
in the CSS, which is obviously also important. See Chapter 16, “AJAX” for instructions on how to
fi nd the Console in various different Web browsers.

You look at some of the more important CSS properties later, but fi rst you need to understand the
CSS Box Model.

FIGURE 17-5

The CSS Box Model

In the CSS Box Model every block element, like a paragraph, has an invisible margin all round it,
and then a border, and then padding, and then the actual content. The vertical margin between

c17.indd 676c17.indd 676 05/06/12 6:07 PM05/06/12 6:07 PM

Cascading Style Sheets (CSS) ❘ 677

two blocks is actually the larger of the margins of the two boxes, not the result of adding up the
margins. This process of using the larger value is called collapsing. Horizontal margins do not
collapse.

NOTE For vertical text, such as is common with Japanese or Chinese writing,

browsers presumably would collapse the horizontal margins instead; CSS 2.1

appears not to account for this case though.

You can refer to the individual margin, border, and padding properties as padding-top, padding-
right, padding-bottom, padding-left (the values go clockwise), margin-top, border-top, and
so on.

You can also use shorthand properties to set top, right, bottom, and left all in one go. For example:

p img.button {
 padding: 0.5em 12px 0.5em 12px;
}

is the same as:

p img.button {
 padding-top: 0.5em;
 padding-right: 012px;
 padding-bottom: 0.5em;
 padding-left: 12px;
}

You control the box size with the width and height properties. If you set the size too small, you will
get overfl ow and you can use the overflow property to tell the browser whether to “clip” (throw
away whatever does not fi t) or add a scroll bar. The default width and height are 100% (relative to
the available space in the containing element) and auto, respectively. You can also constrain the box
size with min-width, max-width, min-height, and max-height.

You can draw the border and give it thickness with the border property; this is shorthand for setting
border-width, border-style, and border-color individually. You can also have rounded corners;
the following example makes a bright-red dotted (rather than solid) border 4 pixels (actually 4/96ths
of an inch) wide with rounded corners having a corner radius of 12 pixels. You would have to use
CSS3 PIE or some other add-on to get border radius working in Internet Explorer 6, however, and
vendor prefi xes for other browsers.

p {
 border: 4px dotted red;
 border-radius: 12px;
}

If you set the border radius you normally need to make sure that your element’s padding is at least
as large as the radius, to stop text from getting chopped off at the corners.

c17.indd 677c17.indd 677 05/06/12 6:07 PM05/06/12 6:07 PM

678 ❘ CHAPTER 17 XHTML AND HTML 5

You can set the individual border widths with border-top, border-right, border-bottom,
and border-left, and these are, in turn, shorthand properties for border-top-width,
border-top-style, border-top-color, and so on.

NOTE CSS 3 also proposes image borders, using repeated images to make

borders.

You can use the display property of any inline element to make it into a block. One reason to do
that is so that you can position it: display can be set to inline or block. You can use other values
of display for special-purpose formatting, including list-item, inline-block, inline-table,
and more. In CSS 2 each element is either entirely inline or a block; CSS 3 adds a display value of
run-in for elements that cause a break at one end and not the other.

If you need to have a border around more than one element, you must put a wrapper element there;
most people use <div> elements for this purpose.

CSS Units

CSS property values can be given units of em (the current font size), px (there are offi cially 96 CSS
pixels per inch), pt (there are offi cially 72 CSS points per inch), pc (picas, equal to 12 points), and
you can also try for in, mm, and cm (inches, millimeters, and centimeters), although that depends
on the user having set the screen resolution correctly, an event with vanishingly small probability.
There is also ex, for the “x-height” of the font, a unit both obscure and unreliable. You can also use
percentages or the keyword inherit in most cases; a percentage is usually relative to the value of
the same property in the parent element. However, CSS is irregular: for example, a percentage value
for the line-height property is taken as a percentage of the font-size property.

Some More CSS Properties

Following are some of the more widely used CSS properties:

 ➤ font-family: Fonts matching the given family names will be searched in order for
characters. Note that depending on the characters in the fonts and the text in your
document you could end up with an E from Palatino and an É from Palatino Linotype even
in the same word. See the following code for an example of a font-family property:

 body {
 font-family: “Palatino”, “Palatino Linotype”, “Book Antiqua”, “Sistina”, serif;
 }

 ➤ font-weight: Values are bold or normal; you can also use bolder, lighter, or a multiple
of 100 between 100 and 900 inclusive, where 900 is very dark and 100 is very light.

 ➤ font-variant: You can use this to turn on FAKE SMALL CAPS. Uppercase letters in the input
remain uppercase and lowercase letters become small caps. A professional typographer
would want to do this only if the font had real small caps, and to do that you have to use

c17.indd 678c17.indd 678 05/06/12 6:07 PM05/06/12 6:07 PM

Cascading Style Sheets (CSS) ❘ 679

the OpenType font property access that’s been proposed for CSS 3; it’s still an early draft,
though, so not included in this book, unfortunately.

 ➤ font-size: This sets the size for text. Remember that most people have confi gured their
browsers to make the default font size be readable comfortably for them, so you should not
normally make it smaller. There was a fashion for a while to start with font-size: 80% to
make a more professional look, but for most people all this does is cause irritation and a
reach for the zoom button, which in turn will make the images on your site look bad.

 ➤ line-height: When you set the text size you should also set the distance apart for lines
of text. A good value is 120 percent for headings and 130 percent for text, to give space
between the lines. The percentage is relative to the font size.

 ➤ background: This is a shorthand for setting background-color, background-image,
background-repeat, background-attachment, and background-position; see
http://www.w3.org/TR/CSS21/colors.html#propdef-background for the full details.
If you set the background color you also need to set colors for the foreground (that is, the
text) for links in all states (default/unvisited, visited, active, and hover) so that users don’t
end up getting (for example) white text on a white background. Do not assume that users
have the same browser defaults as you: browsers have been “theme-able” for more than a
decade, and some people have light-colored text on a dark background for accessibility or
aesthetic reasons. The newton1.css example does not set link colors because the sample
HTML document contains no links.

If you use a background image, for example a texture of paper or canvas, it’s a good idea
to set the background color to be the same as the predominant color of the image so that if
the image loads slowly, or doesn’t load at all, the page still more or less works. You could
change the style for the <body> element in the newton1.css fi le to be like this and reload
the HTML document:

body {
 background: url(‘000-paper-tile-256x256.jpg’) #faf1de repeat scroll;
 margin-left: 1em;
}

The color in this example, #faf1de, was chosen using the color picker in an image editor
with the 000-paper-tile image open. The values repeat (for background-repeat) and
scroll (for background-attachment) are likely defaults; repeat means the background is
tiled, and scroll means that as you scroll the document the background moves along with
the text.

NOTE Some image editing programs include a fi lter that will make any image

tile without obvious joins; in The GIMP this is under Filters ➪ Map Make

Seamless, for example. You can also fi nd lots of tutorials for how to do this with

The GIMP and other programs.

c17.indd 679c17.indd 679 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org/TR/CSS21/colors.html#propdef-background

680 ❘ CHAPTER 17 XHTML AND HTML 5

 ➤ color: This property sets the color of text, borders (unless overridden), and text decorations
like strikethrough and underline.

 ➤ float: Normally, the renderer in the web browser shows the block-level elements in the
document one after the other when they’re loaded. You can use the float property to make
the text wrap around an object such as a <div> element or an image. This property was
used on the image in NewtonWithCSS.html to put the image on the left and have the text of
the document fl ow around it, with the result shown in Figure 17-4. Usually, you’d also set a
margin on the fl oated element to keep it from bumping into the text. You also need to give
a width for the object so that the browser knows where to put the text that fl ows around it.
Values for float are left, right, inherit or none. The fl oat property is also commonly
used to make a multi-column web page design, by fl oating an entire column to one side of
the page. The fl oated column must appear in the HTML before anything you want to fl oat
around it.

 ➤ clear: Sometimes you want to make sure an element appears after any fl oated content.
If you use clear: left; on an element, and the element started part-way down a fl oated
object to its left, the element is moved down beneath the fl oated object, leaving a gap.
Values are left, right, both, none, and inherit.

CSS Special Rules

CSS defi nes a number of rules starting with an at sign (@); these rules affect the behavior of the style
sheet in some way. The most important of these are defi ned in the following list and include @charset,
@font-face, @import, @media, and @page. @font-face is defi ned in a separate specifi cation.

 ➤ @charset: Use this if your CSS fi le is not in Unicode UTF-8. In practice you should always
use UTF-8 these days.

 ➤ @import: You can use this to include other style sheets; it can also be conditional on media
type like so:

#import url(“print.css”) print;

 ➤ @media: You can use this for rules that are specifi c to a particular context in which the
style sheet is used. Media can be any of all, braille, embossed (a variant of braille),
handheld, print, projection, screen, speech, tty (fi xed-width printers), and tv. In the
following example, footnotes are shown in print but not on the screen:

@media print {
 body {
 font-size: 11pt;
 line-height: 12pt;
 }
 div.footnote {
 font-size: 9pt;
 line-height: 11pt;
 }
}

c17.indd 680c17.indd 680 05/06/12 6:07 PM05/06/12 6:07 PM

Cascading Style Sheets (CSS) ❘ 681

@screen {
 div.footnote {
 visibility: hidden
 }
}

 ➤ @font-face: It’s impossible to know what fonts users will have available on their computer
when they view a web page; with @font-face you can arrange for a web browser to
download fonts on the fl y. Fonts are often fairly large fi les, so doing this can cause a delay,
or can cause the page to be redrawn once the font is available, but if your users typically
visit several pages on your site that all use the same font, they will experience the delay only
the fi rst time they encounter each font.

Support for downloaded fonts is changing rapidly, but the following example works well at the
time of writing. It assumes you have a font called biography in the subdirectory f in multiple
font formats: EOT for Microsoft Explorer 3.5 and later, WOFF (a W3C format) for most recent
browsers, raw TrueType for a couple of older browsers, and SVG as a fallback.

 @font-face {
 font-family: ‘biography’;
 src: url(‘f/biography.eot?#iefix’) format(‘embedded-optntype’),
 url(‘f/biography.woff’) format(‘woff’),
 url(‘f/biography.ttf’) format(‘truetype’),
 url(‘f/biography.svg#svgFontName’) format(‘svg’);
 style: normal;
 weight: 400;
 }

You would then use this example with font-family: biography; elsewhere in the same CSS fi le.
You can get both free and paid fonts at Typekit, Google Fonts, MyFonts.com, OpenFontLibrary.org,
Adobe, Linotype, Scriptorium, and elsewhere. Check the end-user license agreement (EULA, often in a
fi le called README) to make certain that web use is permitted.

CSS and XML

You can use CSS with arbitrary XML documents, although it can be tricky. In September 2011,
more than a decade after the release of XML, the CSS namespaces module became a W3C
Recommendation. You declare a namespace and use it like this:

@namespace svg “http://www.w3.org/2000/svg”;

svg|text {

 color: red;

}

Now, you may be wondering what good this is when XML doesn’t defi ne a <style> element or a
<link> element to point to your CSS fi le. It means that to refer to the fi le you must use a processing
instruction like so:

<?xml-stylesheet type=”text/css” href=”mydoc.css” title=”My Nice Styles”?>

c17.indd 681c17.indd 681 05/06/12 6:07 PM05/06/12 6:07 PM

http://www.w3.org/2000/svg
http://MyFonts.com
http://OpenFontLibrary.org

682 ❘ CHAPTER 17 XHTML AND HTML 5

This must appear after the XML declaration and before any content. The style rules must be in an
external fi le, and cannot appear inline in the XML document.

WARNING Web browsers do not load external DTDs, and generally do not

process entity declarations in the internal subset, so it’s best to avoid a DOCTYPE

declaration.

In addition to web browsers, a number of commercial XML editors, including XMetaL, Oxygen
XML, and Serna, support styling documents with CSS in this way.

Web search engines however, such as Bing, Yahoo, and Google, won’t know how to display result
fragments from your XML documents, and may not be able to index them very well. CSS is
primarily useful for the author, not for web publication of arbitrary XML documents.

Separating Style and Markup: Unobtrusive CSS

In XHTML and HTML any element can have a style attribute containing CSS property/value
pairs. For a while this was widely used, then widely misused. It is now better in most cases to use
HTML class attributes and to use CSS selectors to associate those elements with styles. The class
attribute takes a space-separated list of words, so you can write the following:

Isaac Newton

and have a CSS rule for the separate classes like so:

span.blue { color: blue; }
span.person:before {
 content: “[person] “;
 color: #AAA;
}

This example colors Isaac Newton blue and puts the text [person] just before his name. You see
the linktobio word in use in the next section.

UNOBTRUSIVE JAVASCRIPT

Taking the JavaScript out of the document and into a separate fi le is called Unobtrusive JavaScript.
As with CSS, the class attribute is used to decouple the markup from the behavior, and to make web
pages that degrade gracefully in the face of errors or if JavaScript is not available. You can refer
to Chapter 16 to see examples using jQuery with CSS selectors like span.linktobio to make the
span clickable like so:

$(“span.linktobio”).click(function(){
 // go to the biography
 document.location = this.innerText + “.html”;
});

c17.indd 682c17.indd 682 05/06/12 6:07 PM05/06/12 6:07 PM

HTML 5 ❘ 683

See also http://en.wikipedia.org/wiki/Unobtrusive_JavaScript for more information on
good practice and Unobtrusive JavaScript.

HTML 5

As you recall, HTML 5 is the latest version of HTML, after HTML 4. It came about when a group
of browser implementers were unhappy with slow progress since HTML 4 and didn’t want to move
to XHTML. HTML 5 has lots of new elements and ideas that are discussed here. Many of these
new features are benefi cial, but they also have their caveats. This section explains both the pros and
cons of HTML 5 so you can make an informed decision of when to use it for yourself.

Benefi ts of HTML 5

The HTML 5 specifi cation introduces several new ideas to HTML. The fi rst is that it specifi es exactly
how web browsers and other programs are to read HTML documents. This is intended to mean that
documents will be handled the same way in all browsers even if they contain syntax errors.

HTML 5 and the renewed interest in web browser features is driving renewed interest in CSS; HTML
and CSS are being used for electronic books, and publishers are also demanding more sophisticated
styling. XML-based workfl ows are very widespread in book publishing, so XML’s promise of “write
once, publish many” is being fulfi lled.

This is also the fi rst HTML specifi cation that includes both the older SGML-infl uenced HTML
syntax and an XML syntax. People often refer to the XML syntax for HTML 5 as XHTML 5, but,
unlike the HTML syntax, the XML syntax must not contain syntax errors.

SVG and MathML are included in HTML 5 and are scriptable. You return to SVG in the next
chapter, and look very briefl y at MathML in Chapter 19, “Case Study: XML in Publishing.”

Internationalization is also greatly improved with the downloadable fonts you saw earlier in this
chapter, and with better OpenType support. At the time of writing, support for Graphite fonts from
the Summer Institute of Linguistics (SIL) is also being considered, which will improve support for
some more complex scripts, including the Devanagari writing system used for the Hindi language.

But above all, HTML 5 is the foundation for the Open Web Platform, and today is as much about
writing sophisticated web applications with a rich “user experience” as it is about marking up
documents. Earlier in this chapter Figure 17-1 showed you http://platform.html5.org/, a page
listing the specifi cations that are part of the Open Web Platform. HTML 5 and the Open Web
Platform is becoming the universal operating system of the future.

Caveats of HTML 5

New technology always comes with a mixture of benefi ts and drawbacks, and the hype and
enthusiasm must be tempered with cautions; this is as true for HTML 5 as it was for XML in the
early days. HTML 5 is not yet mature, and people are still learning how best to use it, but already it
has brought huge changes to the Web.

c17.indd 683c17.indd 683 05/06/12 6:07 PM05/06/12 6:07 PM

http://en.wikipedia.org/wiki/Unobtrusive_JavaScript
http://platform.html5.org/

684 ❘ CHAPTER 17 XHTML AND HTML 5

The fi rst two features that got people excited about HTML 5 were the ability to do dynamic,
scripted graphics with <canvas> and the precise parsing algorithm that made browsers behave the
same way in the face of errors in markup. But the caveats with these two features are that it can be
diffi cult or impossible to create fully accessible applications using <canvas>, and that saying what
the browser should do in the face of errors appears to legitimize invalid markup. HTML 5 is also
still evolving, and if you’re going to dive in to HTML 5 Web development you need to keep an active
eye out for changes.

HTML 5 also plays fast and loose with namespaces, and the XML syntax, if deployed as the HTML
5 specifi cation mandates, won’t work in Internet Explorer 6, 7, or 8. It is planned that XSLT 3 and
Query 3 processors will be able to read and write HTML 5 documents, but these specifi cations are
not yet fi nal at the time of writing this book.

So the HTML 5 Open Web Platform is not necessarily mature, but it’s growing up fast.

New Elements in HTML 5

HTML 5 introduces more than two dozen new elements. The descriptions here are taken from
http://www.w3.org/TR/html5-diff/, which is a useful document to read. There are other
changes besides new elements too. For example the HTML DOCTYPE declaration has changed to:

<!DOCTYPE html>

This declaration has no SYSTEM or PUBILC identifi ers: HTML 5 is no longer an SGML application.
Other changes include new attributes, new input controls for forms, but, above all, entirely new
elements; Table 17-4 lists the new elements.

TABLE 17-4: New Elements in HTML 5

ELEMENT DESCRIPTION

article Represents an independent piece of content of a document, such as a blog entry

or newspaper article.

aside Represents a piece of content that is only slightly related to the rest of the page.

audio (see entry for “video”)

bdi Represents a span of text that is to be isolated from its surroundings for the

purposes of bidirectional text formatting.

canvas Used for rendering dynamic bitmap graphics on the fl y, such as graphs or games.

command Represents a command the user can invoke.

datalist Together with a new list attribute for input can be used to make combo boxes.

details Represents additional information or controls that the user can obtain on

demand. The summary element provides its summary, legend, or caption.

embed Used for plug-in content.

c17.indd 684c17.indd 684 05/06/12 6:07 PM05/06/12 6:07 PM

http://platform.html5.org/

HTML 5 ❘ 685

figcaption Can be used as a caption in a fi gure.

figure Represents a piece of self-contained fl ow content, typically referenced as a

single unit from the main fl ow of the document.

footer Represents a footer for a section and can contain information about the author,

copyright information, and so on.

header Represents a group of introductory or navigational aids.

hgroup Represents the header of a section.

keygen Represents control for key pair generation.

mark Represents a run of text in one document marked or highlighted for reference

purposes, due to its relevance in another context.

meter Represents a measurement, such as disk usage.

nav Represents a section of the document intended for navigation.

output Represents some type of output, such as from a calculation done through

scripting.

progress Represents a completion of a task, such as downloading or when performing a

series of expensive operations.

ruby, rt and rp allow for marking up ruby annotations, for example for Japanese or

Chinese text.

section Represents a generic document or application section. It can be used together

with the h1, h2, h3, h4, h5, and h6 elements to indicate the document structure.

time Represents a date and/or time.

track Provides timed tracks for the video element, such as subtitles or captions.

video (Added along with “audio” for multimedia content.) Both provide an API so

application authors can script their own user interface, but there is also a way to

trigger a user interface provided by the user agent. <source> elements are used

together with these elements if multiple streams of diff erent types are available.

wbr Represents a line break opportunity.

New types of HTML form input are also available. A number of elements and attributes are
changed, and the HTML Working Group has removed some elements from the specifi cation that
were in previous versions of HTML. Browsers will still have to support these older elements,
because otherwise users would complain that web pages had stopped working, so the desirability of
removing them from the specifi cation is questionable.

c17.indd 685c17.indd 685 05/06/12 6:07 PM05/06/12 6:07 PM

686 ❘ CHAPTER 17 XHTML AND HTML 5

The new elements and the overall changes are incremental, and yet at the same time are part of
a stunning revival in interest in web browser features. The main people to benefi t are not the
implementers of web browsers, but web developers and, ultimately, web users.

SUMMARY

In this chapter you learned:

 ➤ HTML is a very simple markup language, which is why it’s so widely used.

 ➤ The Cascading Style Sheets (CSS) specifi cation adds more sophisticated formatting.

 ➤ MathML and SVG are both included directly in HTML 5 and are supported by today’s web
browsers.

 ➤ HTML 5 introduces other new features and greatly increases the scriptability of the
browser using JavaScript.

 ➤ The most important innovation of HTML 5 is that it is parsed in the same way by all web
browsers, so that you can develop to a standard instead of working around differences
between browsers.

 ➤ When you generate HTML using XQuery or XSLT, you must use the appropriate html or
xhtml serialization option.

 ➤ As the Open Web Platform matures it is commoditizing the user interface, so that many
applications that used to be standalone desktop programs are becoming web applications.

EXERCISES

You can fi nd suggested solutions to these questions in Appendix A.

 1. How would you change the newton.css fi le from the Try it Out activity so that the picture fi ts

entirely in the left margin?

 2. XHTML is defi ned with an XML DTD; in what language was the original DTD for HTML written?

 3. Explain the diff erences between CSS margins and padding.

 4. Why do all HTML 5 web browsers behave the same even on faulty input?

 5. Use CSS to style the examples in this chapter and in Chapter 16. This is an open-ended exercise.

c17.indd 686c17.indd 686 05/06/12 6:07 PM05/06/12 6:07 PM

Summary ❘ 687

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

SGML, XML, and HTML HTML was originally defi ned using ISO 8879 SGML, the

Standard Generalized Markup Language.

XML, the Extensible Markup Language, was designed so

people could put documents on the World Wide Web that were

defi ned in their own SGML markup languages, not just HTML.

XHTML and HTML XHTML is a version of HTML that uses XML syntax. It is useful

for authors because of its stricter syntax.

Cascading Style Sheets (CSS) CSS is a property-value system for specifying how HTML

documents are to be formatted. CSS can also be used

with XML.

HTML 5 HTML 5 was the fi rst major new version of HTML in over a

decade. It is no longer based on SGML, although it does have

an alternative syntax defi ned in XML.

HTML 5 defi nes behavior, so that web pages work the same

across diff erent browsers.

HTML 5 introduces new elements and attributes.

HTML 5 includes SVG and MathML as part of the language.

The Open Web Platform HTML 5, JavaScript APIs and recent versions of CSS are

collectively called the Open Web Platform.

The Open Web Platform is used for building cross-platform

Web apps, both for mobile and for desktop systems.

c17.indd 687c17.indd 687 05/06/12 6:07 PM05/06/12 6:07 PM

c17.indd 688c17.indd 688 05/06/12 6:07 PM05/06/12 6:07 PM

Scalable Vector Graphics (SVG)

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The diff erences between bitmap and scalable graphics

 ➤ Where and why to use SVG

 ➤ How SVG works

 ➤ Basic SVG drawing: shapes, lines, colors

 ➤ Using text in SVG

 ➤ Using splines, gradients, and fi lters

 ➤ Generating SVG from XSLT or XQuery

 ➤ A high-level view of web apps, SVG animation and scripting, and

SVG in the web browser

W3C Scalable Vector Graphics (SVG) is widely used to defi ne pictures and animations and to
represent them using XML. SVG pictures can be scaled — that is, you can enlarge them or
reduce them to any size without losing quality. The text inside SVG pictures remains editable,
so that images made with SVG can be accessible to people with special needs and can be
translated to other languages. SVG is also now part of the Open Web Platform introduced
with HTML 5, and can be displayed and animated in a web browser. It’s easy to generate
SVG with XML tools and easy to manipulate it with JavaScript libraries. SVG is just a bundle
of awesome win!

SCALABLE VECTOR GRAPHICS AND BITMAPS

Computer graphics come in two main formats: bitmap graphics and vector graphics. Each of
these two formats can work in a way that is either procedural or declarative.

18

c18.indd 689c18.indd 689 05/06/12 6:11 PM05/06/12 6:11 PM

690 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

Procedural Graphics

The oldest way to make a computer show a picture is to write a computer program that, when run,
produces the desired result. This method is called procedural graphics, because you tell the computer
what to do: fi rst this then that, like a “procedure.” You might write code like the following snippet:

1. Pick up the red pen.
2. Move the drawing arm to the middle of the page.
3. Lower the pen until it touches the paper.
4. Move the drawing arm right one inch.
5. Move the drawing arm up one inch.
6. Move the drawing arm left one inch.
7. Move the drawing arm down one inch.
8. Lift the drawing arm.
9. Put down the red pen.

Programs that run code like this are often in FORTRAN and can be very hard to read. If you wanted
to take such a program and make it draw a three-inch square you’d need to change lines 4, 5, 6 and
7, and maybe also line 2. It’s hard to see that it draws a square. Worse, by the time you’ve written a
program like this in FORTRAN and initialized the device library, it will drive only a single printer
(actually a pen-plotter) on a single computer operating system, which is not very portable.

Procedural graphics are still used today for plotting graphs, drawing visualizations of large data
sets, and even for computer-generated art such as the popular Mandelbrot set pictures. On the Web,
procedural graphics can be used by web browser plugins, or can be written in JavaScript.

When you send someone an image made in a procedural graphics format, you are sending them a
computer program. Exchanging programs over an untrusted network provides a potential security
risk of viruses, and that, combined with the diffi culty of maintaining them, has made procedural
graphics less common than they once were.

Declarative Graphics

Procedural graphics can be contrasted with declarative graphics. Where procedural graphics say
how to draw something without ever having to say what is being drawn, declarative graphics say
what to draw and leave the computer to work out how to draw it. In a declarative format you might
make a picture with a square in it with something like this:

let s be a square 1 inch × 1 inch at position (1,1)

This is a much shorter description and is easier to understand. It would be easy in this format to
write a program to fi nd all the images that contain squares, although still diffi cult to fi nd all the
pictures of houses that were drawn using squares and triangles.

SVG, like most things in the XML world, is a declarative graphics format. As you’ll learn in the
“SVG Defi nitions and Metadata” section later in this chapter, it also has a way to say “this is a
picture of a house” using RDF.

Why talk about procedural graphics at all then? Partly to show how much better SVG is, of
course, but also so that you can see how this approach can be combined with SVG’s declarative
approach. Procedural graphics are also used with the HTML 5 <canvas> element, as mentioned in

c18.indd 690c18.indd 690 05/06/12 6:11 PM05/06/12 6:11 PM

Scalable Vector Graphics and Bitmaps ❘ 691

Chapter 17, “XHTML and HTML 5.” Let’s put procedural graphics aside for a moment and look at
the second way that computers work with pictures.

Bitmap Graphics

Bitmap graphics, also called raster images, are made up of an array of “picture elements,” or pixels.
Each pixel is actually just a color value at a particular location, and the whole image is a huge grid of
values. Figure 18-1 shows a bitmap graphic that’s a picture of a castle, along with an enlargement of
part of the castle spire, and a further enlargement showing how the image is made up of rectangles.

WARNING Showing examples of images in a book such as this is complicated

slightly by the way books are made. A printed copy of this book will usually have

black ink on whitish paper; a pattern of dots is used to simulate gray ink. This is

called a “dot screen” and is not the same as the pixels in the image. The printer

might use hundreds of dots for each pixel in the image; if you take a magnifying

glass to the printed page, or have strong vision, you will be able to see them. The

dot screen process (properly called halftoning) is used to simulate colors or grays

of diff ering degrees of darkness, regardless of how the image is being produced.

An electronic book will usually not have halftone dot screens in it because most

book reader displays can show the diff erent tonal values directly.

FIGURE 18-1

c18.indd 691c18.indd 691 05/06/12 6:11 PM05/06/12 6:11 PM

692 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

When a bitmap image is enlarged, it becomes pixelated, meaning that you can see the individual
pixels. This is because the computer can’t invent more detail to fi ll in the gaps between the centers of
the pixels, and as the pixels are moved wider apart to make the image larger, that space eventually
becomes large enough to be visible.

The computer can do much better than the example in Figure 18-1: it can guess values between the
pixels of the original image, a process known as interpolation. However, even this process doesn’t
really add detail. You could include the additional detail in the image, but then the image fi les
quickly get large; a modern digital camera makes bitmap images that are 30 to 100 megabytes in
size, and images from a fl atbed scanner can easily be more than a gigabyte.

The advantages of bitmap images are the photographic image quality and detail possible at
the intended size, the simple data format that is not normally a host to viruses, near-universal
portability for the most common bitmap image formats, and widespread availability of tools to
process the images.

The obvious disadvantages of bitmap images are the size of the fi les and the fact you can’t enlarge
them very well. A less obvious disadvantage is that bitmap image formats usually do not allow the
image to contain text, but only pictures of text. If you photograph a road sign, you capture the
words on the sign, but extracting those words involves using optical character recognition, which is
an unreliable process. Worse, someone blind obviously cannot see the image, and therefore
cannot read the text. In the next section you’ll fi nd out how vector-based images can help with
that problem too.

Vector Images

The third of the most common ways to represent images in a computer is using vectors. A vector is
a mathematical name for a straight line, but modern vector images are made up not only of straight
lines but also of curves and text. Vector images can be scaled to any size. A diagonal line will be
drawn as a diagonal line however you look at it. Although the image still doesn’t invent more detail
as you zoom in, the quality of what’s there doesn’t degrade. File sizes are also usually very small.

Vector images are best suited for diagrams, logos, buttons, and other user-interface controls, and
any other application where the overall effect is designed rather than photographed. Bitmaps
are still better for photographs or other highly detailed and irregular images such as scans of oil
paintings.

Most modern font formats, including OpenType, TrueType, PostScript Type 1, and Graphite, are
also vector-based, which is why you can change font sizes in a word processor and still have good-
looking text.

Text in most vector-image formats generally remains as text, and can be extracted and even
replaced. This also means that a text reader being used by someone blind could read out the text
contained in the image, something not possible with a bitmap image.

SVG Images

With W3C’s SVG format you can have the best of all three worlds. SVG is a vector-based scalable
format, as the name “Scalable Vector Graphics” implies; SVG images can also include bitmap

c18.indd 692c18.indd 692 05/06/12 6:11 PM05/06/12 6:11 PM

Scalable Vector Graphics and Bitmaps ❘ 693

images. You can create SVG easily, either in XML or using the document object model (the DOM)
that you read about in Chapter 7, “Extracting Data from XML,” and you learn more about that
in this chapter. SVG is a declarative, not procedural, image format: instead of saying “next draw a
circle” you say “there’s a circle here.” This makes it possible to process SVG images with XSLT, for
example to replace text or to move objects around.

In the following activity you fi rst look at a simple SVG image and then move on to learn about how
SVG works in more detail.

TRY IT OUT A Simple SVG Image

In this exercise you create a very simple SVG fi le and see the resulting image in a web browser. You will
need a web browser that supports SVG such as Mozilla Firefox, Google Chrome (Chromium), Apple
Safari, Gnome Epiphany, or Internet Explorer 9 or later. If you don’t have that, see the next Try It Out
in this chapter for instructions on how to download Inkscape, an SVG editor and viewer.

 1. Type the following simple SVG document into a fi le called simple.svg; make sure to save it as
plaintext. You can use an XML editor such as oXygen XML or a text editor. Make sure you save
the fi le in UTF-8, not UTF-16 (or change the fi rst line appropriately).

<?xml version=”1.0” encoding=”UTF-8” ?>

<svg version=”1.0” xmlns=”http://www.w3.org/2000/svg”>

 <circle cx=”100” cy=”100” r=”75”

 fill=”#b0b0b0” stroke=”#FF0000” stroke-width=”1pt” />

</svg>

simple.svg

 2. Open the SVG fi le in a web browser. You can
open it directly from your computer with no
need for a web server. Figure 18-2 shows the
expected result: a gray (#b0b0b0) circle with
a red (#FF0000) outline.

How It Works

Line 1 of the SVG fi le is just the familiar XML
 declaration. It reminds you that SVG fi les are
indeed XML.

Line 2 opens the <svg> element, indicates that the
document conforms to SVG version 1, and also
declares the SVG namespace. Often you’ll also see
the namespace associated with an svg prefi x, in
which case elements in the document will be
<svg:svg>, <svg:circle>, and so on, instead of
just <svg> or <circle>.

Available for
download on
Wrox.com

FIGURE 18-2

c18.indd 693c18.indd 693 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/svg
http://Wrox.com

694 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

Line 3 has a <circle> element inside the <svg> element; the circle will be centered 100 units from
the left and 100 units down from the top of the drawing, and will have a radius of 75 units. The circle
element also has some styling attributes: b0b0b0 sets the fi ll color of the circle to gray, #FF0000 sets
the border to red, and stroke-width=”1pt” sets the width of the line that draws the circle to 1 point
(recall from Chapter 17 that 72 points equals an inch).

If the example didn’t work for you, check the syntax of your SVG fi le carefully: make sure you have
put straight quotes, not “typewriter quotes,” around the attributes, and that you closed the empty
elements with /> and not just >. If you are using Windows Notepad or WordPad, make sure you saved
the fi le as plaintext in the UTF-8 encoding.

If you have installed the xmllint command you can check the syntax of your SVG with the following
command:

xmllint --noout yourfile.svg

(If there is no output, your fi le is OK.)

You can install xmllint from www.libxml.org if you are on Windows; on OS X and Linux xmllint is
either already installed or available as a system package. You could also use the oXygen XML editor to
edit the SVG fi le, since it is XML.

If that’s not the problem, and you got all of the numbers right, try a different web browser, or down-
load Inkscape as described in the next exercise. You need a suffi ciently recent browser such as
(April 2012) Internet Explorer 9, Firefox 9, Chrome 17, Safari 5, or Opera 11.6.

THE SVG GRAPHICS MODEL

SVG graphics are said to be painted onto a canvas. The “paint,” like the “canvas,” is usually
opaque, but can also be partially or entirely transparent. However, there’s no way to remove
things that have been drawn. You can draw over things and hide them, but you can’t scratch a hole
through something you have drawn and see what was underneath.

An apparent exception is that you can use SVG animation to change the opacity of objects after
they’ve been drawn, making them transparent, and the drawing changes as if those objects were
always transparent. Figure 18-3 shows a double-path spiral with a gray rectangle painted on top
of it and then a white circle added; the spiral had already been painted over and cannot be seen
through the white circle. If you paint a hole in a wall it can look good but you can’t crawl through
it! If you use scripting, such as JavaScript within a web browser, you can also set <clipPath> on
an object to cause only parts of it to be visible, and whatever was painted underneath the newly-
invisible parts of the object will then be shown. But if you are using scripting you could also change
the object’s shape, and build a wall with an arched gateway in it.

c18.indd 694c18.indd 694 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.libxml.org

The SVG Graphics Model ❘ 695

FIGURE 18-3

If you did want to see the spiral through a hole in the rectangle you’d need to plan for it, for
example by making a single combined shape of a rectangle with a circular hole in it; Figure 18-4
shows the result.

FIGURE 18-4

c18.indd 695c18.indd 695 05/06/12 6:11 PM05/06/12 6:11 PM

696 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

You could also go back and change the opacity of the rectangle; Figure 18-5 shows what this might
look like, even if the change was made after the rectangle had already been painted as opaque. You
might just make this change in an editor, or you might be using JavaScript in a web browser.

FIGURE 18-5

The SVG model is very close to the older Adobe PostScript graphics model, except that PostScript
did not have opacity and was procedural.

You can already see that making complex drawings with SVG can require careful thought. If that’s
not your style, don’t panic: after reviewing the way SVG works with CSS, you learn about some
tools that handle a lot of the SVG for you automatically and reduce the need for careful planning.

SVG AND CSS

If you worked your way through Chapter 17 you have already seen cascading style sheets (CSS). If
you don’t know about CSS you should review that chapter now.

SVG uses CSS properties to style objects. In the example in the previous Try It Out, you saw the
following <circle> element:

 <circle cx=”100” cy=”100” r=”75”
 fill=”#b0b0b0” stroke=”#FF0000” stroke-width=”1pt” />

The fill, stroke, and stroke-width attributes are names of CSS-like properties defi ned by SVG.
You can also use them with a style attribute like so:

c18.indd 696c18.indd 696 05/06/12 6:11 PM05/06/12 6:11 PM

SVG and CSS ❘ 697

 <circle cx=”100” cy=”100” r=”75”
 style=”fill: #b0b0b0; stroke: #FF0000; stroke-width: 1pt;” />

The two forms are interchangeable except when it comes to animation. It is not a good idea to
use both the CSS style attribute and individual XML attributes for the same property. The SVG
renderer might know what to do with it, since the CSS properties always take precedence over the
attributes, but it’s all too easy to change one and not the other.

You can use the class attribute in SVG just as you can in HTML, and even style your SVG with an
external style sheet.

Table 18-1 lists some of the CSS properties that apply to most SVG objects. You can use many other
CSS properties with SVG; they are defi ned both in the SVG specifi cation (http://www.w3.org/TR/
SVG11/) and the CSS specifi cation (http://www.w3.org/TR/CSS21/).

TABLE 18-1: Some CSS Properties Commonly used with SVG Objects

PROPERTY DESCRIPTION

color SVG interprets this CSS property to apply to fi ll, stroke, and other properties if

you don’t override it.

fill The value of this property determines the color of the inside of an object. Use

none if you don’t want the object fi lled at all.

fill-opacity Determines whether the fi ll color is solid or transparent. Use 1 for opaque, 0 for

transparent, 0.5 for halfway, or any number between.

font A shortcut property for font-style, font-variant, font-weight, font-

size, line-height, font-family, for example: font=”italic small-caps

bold 16pt/18pt Caslon”. See the section “SVG Text and Fonts” later in this

chapter.

kerning A value of auto enables pair kerning, and a length disables pair kerning and

enables letter spacing. To get both you can use kerning and letter-spacing

together. The kerning property is a CSS3 feature.

letter-

spacing

Takes a length, such as 1px, 0.04em, or 1cm, and adds that much space

between letters; if pair kerning is enabled the actual space is also aff ected by the

font’s built-in kern pairs.

opacity A value of zero means totally transparent and a value of one means that the

object is opaque and completely covers up whatever was previously drawn. Use

fill-opacity and stroke-opacity to specify them separately.

stroke Specifi es the color used to draw along a given path, such as the outline of a

circle or rectangle; overrides the color property.

continues

c18.indd 697c18.indd 697 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/CSS21/

698 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

PROPERTY DESCRIPTION

stroke-

dasharray

Contains a space-separated list of numbers for making dashed lines. The fi rst

number is the length of a dash, the next the length of a gap, then the length of

the next dash, and so on. Always supply an even number of values. The SVG

renderer starts again at the beginning of the array if it runs out of values.

stroke-

opacity

Like fill-opacity except for the outline of the shape or path rather than the

inside.

stroke-width The width of the line when a path is drawn (stroked); a value of zero turns off the

stroking of the outline.

transform See the section “SVG Transforms and Groups” later in this chapter.

word-spacing Can be normal or a length to be added to the default; a negative value reduces

the space between words.

SVG TOOLS

SVG is widely used today. Web browsers display SVG natively, and SVG is now part of HTML 5.
Many desktop and mobile environments, and even camera menu user interfaces, are defi ned using
SVG. Displaying SVG documents is easy, but you still need to know how to make them and edit
them. In this section you look at one of the most widely used SVG editors, Inkscape. Later in this
chapter you'll see various ways to create SVG graphics using programs and scripts.

Some widely used commercial vector graphics editors support import and export of SVG, including
Adobe Illustrator and Corel Draw. This activity looks at Inkscape, an open source editor and
viewer whose primary format is SVG-based. Even if you use other programs for most of your work,
knowledge of Inkscape can help you to test for portability and can help with development; it’s also
cross-platform.

TRY IT OUT The Inkscape SVG Editor

In this exercise you install Inkscape and use it to open a sample fi le and to create a sample image.

 1. Install Inkscape. If you are using the GNU/Linux operating environment, or a BSD or Solaris system,
you should install Inkscape using the regular packaging system to get any system-specifi c patches.

If you are using Microsoft Windows or Apple Macintosh OS X environments, you can download
binary packages for Inkscape (directly or indirectly) from the http://inkscape.org/ download
page.

 2. Start Inkscape; it comes up with a blank document. Click the “create circles, ellipses and arcs”
icon on the toolbar; the mouse pointer (in most environments) will change to an ellipse with a
plus sign.

TABLE 18-1 (continued)

c18.indd 698c18.indd 698 05/06/12 6:11 PM05/06/12 6:11 PM

http://inkscape.org/

SVG Tools ❘ 699

 3. Click the canvas inside the box representing the page, and drag out a shape. If you hold the Ctrl
key down, Inkscape will constrain the aspect ratio to keep the shape close to a circle; drag out a
circle and let go.

 4. Choose Fill and Stroke from the Object menu. Depending on the version of Inkscape you have,
this may open a dialog box or a “dock” inside the main Inkscape window.

The status bar at the foot of the Inkscape window should say something like “Ellipse in layer 1”
and the circle should have double arrows around it; if not, use the Inkscape “select and transform
tool” (top left on the default toolbar) and click the circle once to select it.

 5. Click the Fill tab in the Fill and Stroke window and you can play with Hue, Saturation, Lightness,
and Alpha (H, S, L and A); notice the “RGBA” hexadecimal value change as you do so. Choose a
gray or brown for the fi ll.

 6. Click the Stroke tab in the Fill and Stroke window and choose a bright red for the border. In older
versions of Inkscape you may need to click an OK or Apply button to see the changes.

How It Works

The Inkscape program is free software that runs on your computer; it’s a graphical editor in which
you can manipulate objects, such as squares and circles, directly with a mouse pointer or a tablet.
People use Inkscape for professional technical illustration as well as for art and drawing. What makes
Inkscape special is that it is entirely based on SVG graphics.

You could use other image editors, such as Adobe Illustrator or Corel Draw, but these do not use
SVG as a native format, so there is always conversion. There are also some web-based SVG editors
such as svg-edit available at http://code.google.com/p/svg-edit/ but you need network access to
run them.

In this Activity, then, you downloaded and installed a useful program and created a simple SVG
diagram. You can also try editing the XML directly in Inkscape by choosing XML Editor from the
Edit menu, or save the fi le and edit it in oXygen XML or another text or XML editor to see what
happens.

If you have problems creating the sample fi le, see Listing 18-1 at the start of the next section in this
chapter. The SVG created by Inkscape looks somewhat different, and you learn about some of these
differences in the rest of this chapter.

Figure 18-6 shows Inkscape with the sample fi le after adding three more circles and some straight
lines. (It’s a cubist fl ower in a pot.) Notice that you can move objects to the back or front with the
page up/page down keys on the keyboard, or using the Layer menu, so that the ends of the lines are
hidden behind the circles.

c18.indd 699c18.indd 699 05/06/12 6:11 PM05/06/12 6:11 PM

http://code.google.com/p/svg-edit/

700 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

FIGURE 18-6

SVG BASIC BUILT-IN SHAPES

SVG defi nes a number of basic shapes and then provides a more general path facility so you can
make shapes of your own.

The different predefi ned shapes are described in the following sections, along with the more general
construction, SVG paths, and Listing 18-1 shows you some examples:

LISTING 18-1: shapes.svg

<?xml version=”1.0” encoding=”UTF-8” ?>
<svg version=”1.0” width=”745” height=”1053”
 xmlns=”http://www.w3.org/2000/svg”>
 <path d=”m 250,500 -75,-175”
 stroke=”green” stroke-width=”1pt” />

Available for
download on
Wrox.com

c18.indd 700c18.indd 700 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/svg
http://Wrox.com

SVG Basic Built-in Shapes ❘ 701

 <path d=”m 250,500 75,-175”
 stroke=”green” stroke-width=”1pt” />
 <path d=”m 250,500 0,-200”
 stroke=”green” stroke-width=”1pt” />
 <!--* the plant pot *-->
 <circle cx=”250” cy=”500” r=”75”
 fill=”#b0b0b0” stroke=”#FF0000” stroke-width=”1pt” />
 <circle cx=”175” cy=”325” r=”15”
 fill=”yellow” stroke=”#CCCCCC” stroke-width=”1pt” />
 <circle cx=”250” cy=”300” r=”15”
 fill=”yellow” stroke=”#CCCCCC” stroke-width=”1pt” />
 <circle cx=”325” cy=”325” r=”15”
 fill=”yellow” stroke=”#CCCCCC” stroke-width=”1pt” />
</svg>

NOTE Inkscape, like Microsoft Visio and many other vector editors, comes

with other predefi ned shapes not listed in this chapter, such as spirals and

stars. When you create these shapes, the resulting SVG just contains an

SVG path, possibly with an extension attribute in a program-specifi c

namespace so that if you load the fi le again the program remembers it

was a built-in shape.

Rectangles

The SVG <rect> element defi nes a rectangle; the specifi c attributes are:

 ➤ x, y: Defi nes the top-left corner of the rectangle.

 ➤ width, height: Defi nes the size of the rectangle.

 ➤ rx, ry: Radius of corners (default is zero, giving sharp corners).

NOTE Although the element is called rect, you can make a square if width and

height are the same and, if you use a transformation to rotate the square, you

can have a diamond.

The standard attributes such as stroke-width, stroke, and fill all apply, of course, both to
the <rect> element and to all the other shapes. Listing 18-2 shows some example of rectangles,
including one that has been rotated. The result is shown in Figure 18-7.

c18.indd 701c18.indd 701 05/06/12 6:11 PM05/06/12 6:11 PM

702 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

LISTING 18-2: shapes-rect.svg

<?xml version=”1.0” encoding=”UTF-8” ?>
<svg version=”1.0” width=”745” height=”1053”
 xmlns=”http://www.w3.org/2000/svg”>

 <rect x=”10” y=”10” width=”30” height=”100”
 fill=”#BBBBFF” stroke=”#CC0000” stroke-width=”1pt” />
 <rect x=”60” y=”10” width=”100” height=”100”
 fill=”#9999CC” stroke=”#CC0000” stroke-width=”1pt” />

 <rect x=”167” y=”-155” width=”73” height=”73”
 transform=”rotate(45)”
 fill=”#666699” stroke=”#CC0000” stroke-width=”1pt”
 stroke-dasharray=”5 3” />
</svg>

FIGURE 18-7

Circles

The <circle> element uses a center and a radius; if you want to make a circle that touches a line
you’ll need to use trigonometry, or use a visual program like Inkscape and zoom in a lot! The
attributes for circles are:

 ➤ cx, c: Defi nes the center of the circle.

 ➤ r: The radius of the circle (the distance from the middle to the outside).

Ellipses

Ellipses are squashed circles. You can use the <ellipse> element to make both ellipses and circles, but
<circle> is more convenient for circles and also gets across the higher-level idea that you want a circle.

Ellipses get the following extra attributes:

 ➤ cx, cy: Defi nes the center of the ellipse.

 ➤ rx, ry: The x-axis and y-axis radius of the ellipse; an ellipse here is modeled as having a
center rather than having two focal points.

c18.indd 702c18.indd 702 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/svg

SVG Basic Built-in Shapes ❘ 703

Listing 18-3 shows some circles and ellipses, and Figure 18-8 shows the result.

LISTING 18-3: shapes-circles.svg

<?xml version=”1.0” encoding=”UTF-8” ?>
<svg version=”1.0” width=”745” height=”1053”
 xmlns=”http://www.w3.org/2000/svg”>

 <circle cx=”60” cy=”60” r=”50”
 fill=”#BBBBFF” stroke=”#CC0000” stroke-width=”1pt” />

 <ellipse cx=”145” cy=”60” rx=”15” ry=”50”
 fill=”#9999CC” stroke=”#CC0000” stroke-width=”1pt” />

 <ellipse cx=”215” cy=”-55” rx=”20” ry=”55”
 transform=”rotate(30)”
 fill=”#666699”
 stroke=”#CC0000” stroke-width=”1pt”
 stroke-dasharray=”5 3” />

 <circle cx=”900” cy=”60” r=”50”
 fill=”#333366” stroke=”#CC0000” stroke-width=”1pt”
 transform=”scale(0.3, 1)”
 />
</svg>

FIGURE 18-8

Straight Lines

Use the <line> element to draw a single straight line in any direction. Its attributes are:

 ➤ x1, y1: The fi rst end of the line.

 ➤ x2, y2: The second end of the line.

c18.indd 703c18.indd 703 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/svg

704 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

Lines don’t have an inside, so you can’t fi ll them. You can’t make fi lled shapes with <line>
either — use <polygon> instead.

Polylines and Polygons

Use the SVG <polyline> and <polygon> elements to make shapes out of straight lines; the only
difference between the two is that the <polygon> element quietly adds an extra line segment joining
the fi rst and last point you give it.

These two elements take the extra attribute points, which is a list of x, y pairs making up the
points on the line. The pairs are separated by spaces: points=”100,100 100,200 200,200
200,100” draws three lines with <polyline> and a complete square with <polygon>, because the
polygon has an extra line from the start point to the end point.

A <polyline> with two points is the same as a <line>. Listing 18-4 shows a polyline, a fi lled
polygon and a straight line that’s dashed and wide, and Figure 18-9 shows the result. Notice how it’s
much harder to work out that the polygon is a pink triangle than it was to understand the shape of
a rect or circle element. It’s almost always easier to use the specifi c elements for shapes when they
are available.

LISTING 18-4: shapes-polylines.svg

<?xml version=”1.0” encoding=”UTF-8” ?>
<svg version=”1.0” width=”1925” height=”70”
 xmlns=”http://www.w3.org/2000/svg”>

 <polyline points=”10,10 30,50 50,50 15,45 60,30”
 fill=”none” stroke=”#000000” stroke-width=”1pt” />

 <polygon points=”70,10 90,50 110,10”
 stroke=”#000000” stroke-width=”1pt” fill=”#FFCCCC” />

 <line x1=”120” y1=”17” x2=”170” y2=”43”
 stroke=”#666666” stroke-width=”20”
 stroke-dasharray=”7 3” />
</svg>

Available for
download on
Wrox.com

FIGURE 18-9

c18.indd 704c18.indd 704 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/svg
http://Wrox.com

SVG Basic Built-in Shapes ❘ 705

SVG Paths

A path in SVG (as in the older PostScript language) is the most general shape: you can make all the
other shapes from paths, and all the other shapes are defi ned in terms of paths. A path is a sequence
of nodes with connecting lines between them. The connecting lines can be curved or straight.

At the beginning of this chapter you read about procedural graphics using a pen-plotter as an
example; SVG paths are a bit like using a pen-plotter with a simple set of commands. In the case
of SVG paths the commands are each one character long, and are shown in Table 18-2, along with
longer names to help you remember the letters. In the table only the uppercase version of each
command is given; the corresponding lowercase letter gives a “relative” version of the command.
For example, if the current point is (30, 30), L 45 20 is the same as l 15 -10. In most cases you
can supply additional points; for moveto or lineto the extra points draw straight line segments,
and for Bézier curves the extra points add more curves.

TABLE 18-2: SVG Path Commands

LETTER MNEMONIC DESCRIPTION EXAMPLE

M moveto Moves the pen to the given coordinates. M 23 117

L lineto Draws a line from the current point

to the given location.

L 300 312

H horizontal

lineto

Draws a horizontal line to the given x

coordinate.

H 312

V vertical lineto Draws a vertical line to the given y

coordinate.

Y 23

Z closepath Draws a straight line to the start of the

current path and ends the current path.

Z

C curveto Draws a cubic Bézier curve; takes

two control points and an end

point (see next section).

C 20 -17 30 -8

40 40

S smooth

curveto

An advanced version of C with only

one explicit control point.

S 30 -8 40 40

Q quadratic Draws a quadratic Bézier curve

(a spline) using a control point and

an end point (see next section).

Q 20 -17 40 40

T smooth spline An advanced version of Q. T 30 45

A arcto Draws an elliptical arc to the given

location. Takes x radius, y radius,

rotation, two fl ags, x and y. The fl ags

are large-arc-fl ag and sweep-fl ag.

A 150,150 0 1 1

40 40

c18.indd 705c18.indd 705 05/06/12 6:11 PM05/06/12 6:11 PM

706 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

The SVG <path> element has a d attribute that takes a space-separated list of the one-letter
drawing commands listed in Table 18-2. This terse syntax was used for effi ciency. Listing
18-5 shows two examples, one unclosed (open) and one closed (with a z to close the path).
The rectangle in the listing is there so that you can see the single path is actually made up of two
subpaths, making a hole in the middle so the fi lled rectangle shows through. If you look carefully
you can fi nd the z that ends the fi rst path followed by the m that starts the next one. The command
letters have been highlighted to make them easier to fi nd in the listing. The result is shown in
Figure 18-10.

LISTING 18-5: shapes-curves.svg

<?xml version=”1.0” encoding=”UTF-8”?>

<svg xmlns=”http://www.w3.org/2000/svg” version=”1.0” width=”165” height=”75”>

 <rect width=”154” height=”62” x=”5” y=”5” fill=”#6588b1” />

 <path

 d=”M 10,10 C 10,27 48,60 58,60 68,60 70,44 45.5,27 45,10 87,10 87,10”

 style=”fill:none;stroke:#000000;stroke-width:1pt” />

 <path

 d=”m 129.5,9.2

 c -3.4,0.1 -5.1,0.9 -6.2,6.1 -1.3,5.8 3.9,17.0 3.9,17.0 0,0 -6.2,0.6 -9.5,0

 C 114.3,31.8 114.3,31.5 114.3,31.5 l 1.9,5.2 -2.2,3.2 c 0,0 5.9,-0.6

 6.8,-0.6 0.9,0 3.5,0.0 6.3,0.1 0,5.4 -1.7,22.1 -1.7,22.1 0,0 2.8,-2.4

 5.5,-2.4 2.7,0 5.5,2.4 5.5,2.4 0,0 -1.7,-16.7 -1.7,-22.1 2.7,-0.1 5.3,-0.1

 6.3,-0.1 0.9,0 6.8,0.6 6.8,0.6 l -2.2,-3.2 1.9,-5.2 c 0,0 -0.0,0.3 -3.2,0.9

 -3.2,0.6 -9.5,0 -9.5,0 0,0 5.2,-11.1 3.9,-17.0 -1.3,-5.8 -3.2,-6.1

 -7.8,-6.1 -0.5,0 -1.0,-0.0 -1.5,0 z m 1.5,2.8 c 1.4,0.0 2.4,0.3 3.8,1.3

 2.1,4.7 0.5,9.4 -1.9,13.5 -0.6,0.9 -1.2,1.8 -1.9,2.7 -0.6,-0.9 -1.3,-1.8

 -1.9,-2.7 -2.4,-4.0 -4.0,-8.7 -1.9,-13.5 0.6,-0.7 2.8,-1.3 3.8,-1.3

 z”

 fill=”#b5b5b5” stroke=”#000000” stroke-width=”1” />

</svg>

Available for
download on
Wrox.com

FIGURE 18-10

c18.indd 706c18.indd 706 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/svg
http://Wrox.com

SVG Basic Built-in Shapes ❘ 707

Path Segments: Splines

Splines are smooth curves that go through nodes and have control points. The control points
determine the shape of the curve. An example is shown in Figure 18-11. The nodes are the dots
on the curve; the thinner straight lines join up the nodes with the control points so you can see
where the control points are.

You could think of splines as a way to control a racing car; the car must drive through each of the
nodes, and its speed and direction when it enters or leaves each node is determined by the direction
and length of the “handles” drawn from the nodes to the two control points.

SVG uses Bézier curves for its splines. An important property of Bézier curves is that the curve
always goes through the end points (the nodes) on the curve, which makes them easy to work with.

FIGURE 18-11

Path Segments: Arcs

The SVG path’s A (arcto) command takes a bewildering number of parameters. The arc starts at
the current point in the path and ends at the x, y coordinates you supply. Because it’s actually an
arc of an ellipse, not just of a circle, it takes two numbers for radius (rx and ry). The ellipse from
which the arc is taken could be horizontal or it could be rotated, so there’s an angle parameter,

c18.indd 707c18.indd 707 05/06/12 6:11 PM05/06/12 6:11 PM

708 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

x-axis-rotation. It then has two “fl ags” that can each have the value 0 or 1 for false and true,
respectively. Figure 18-12, taken from the SVG specifi cation at http://www.w3.org/TR/, shows the
effect of the two fl ags, given the following path:

<path d=”M 125,75 a100,50 0 ?,? 100,50”
 style=”fill:none; stroke:red; stroke-width:6”/>

Here the ?,? is replaced by 0,0, 0,1, 1,0, and 1,1 in
turn, to generate the four possible cases.

As you can see, SVG provides a number of built-in
shapes, including lines, circles, ellipses, squares and
rectangles, polygons and polylines; these are defi ned
in terms of SVG paths. It’s usually easier for programs
to work with paths everywhere, but it’s easier for us
humans to use the higher-level shapes.

SVG TRANSFORMS AND GROUPS

Transforms provide a way to take a shape or path and move it, squeeze it, rotate it, change its size,
or even fl ip it over. Under the hood, transforms use a piece of mathematics called a transformation
matrix to do this.

Groups are a way of combining several smaller objects into one larger one; you can then apply a
transformation to a whole group and affect all the objects inside it at once.

Transforms

In SVG (as in PostScript and PDF) every object is affected by at least one transformation matrix.
If your mathematics skills never reached the dizzying heights of matrix multiplication and the very
mention of a matrix makes you think of a movie, don’t panic — it’s actually very easy once you
get past the jargon and the weird notation. Every number, such as a width or a point on a line, is
multiplied by the transformation matrix to get a new number that’s actually used.

Because computer graphics like SVG are often both generated and manipulated by computer
programs, the people who created SVG wanted the language to be as regular as possible.
Transformations apply to any object or (as you’ll soon see) any group of objects in exactly the
same way. More precisely, it’s not the object itself that’s transformed but the whole coordinate
system. It’s as if the object were drawn on a separate sheet of paper, and that entire sheet of paper
were fi rst moved, then pinned to the drawing at one corner and rotated, stretched, and maybe
skewed.

Figure 18-7 earlier in this chapter included an example of a diamond shape made by rotating a
rectangle:

 <rect x=”167” y=”-155” width=”73” height=”73” transform=”rotate(45)” />

Most SVG elements have a transform attribute. You can put any of the following transform
functions into the attribute; if you want to use more than one, separate them with a space, like this:

FIGURE 18-12

c18.indd 708c18.indd 708 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/TR/

SVG Defi nitions and Metadata ❘ 709

<rect x=”167” y=”-155” width=”73” height=”73” transform=”rotate(45) scale(0.5, 0.5)” />

➤ translate(tx [ty]): Move the whole sheet of paper.

 ➤ scale(sx sy): Make the paper (and everything drawn on it) larger or smaller.

➤ rotate(angle [cx cy]): Turn (rotate) the paper using its top-left corner as the center.

 ➤ skewX(angle), skewY(angle): You can’t actually do this one to paper; every analogy has
its limits! Skewing is when you push just the top of a rectangle to one side to make it into a
lozenge shape.

➤ matrix(a b c d e f): Set the transformation matrix. See http://www.w3.org/TR/2011/
REC-SVG11-20110816/coords.html#TransformAttribute.

WARNING When you rotate objects, you should imagine that the object is

printed on a sheet of paper whose top-left corner is at the origin, the point

where x = 0 and y = 0. If your object is then in the middle of the piece of paper

and you rotate it, it will move. A common mistake is to forget this and then

wonder where the object went! Either take it into account or give an explicit

center for rotation.

Groups

Very often you want to transform several objects together; to do this you group them in
a <g> element. This element takes transform and style attributes. Groups can contain any
mixture of <g> elements and SVG shapes and paths.

Groups are also used with an id attribute so that you can animate them or make an entire group
visible or invisible.

SVG DEFINITIONS AND METADATA

So far the SVG examples in this chapter have been very minimal, but in practice you’ll very quickly
need to know more about how SVG fi les work, especially if you look at images that other people
have made, or at fi les that Inkscape or other programs create. In this section you learn about the
structure of an SVG document, including the various XML elements beyond the shapes you have
already seen, and you’ll also learn a little about the way that defi nitions and metadata interact.

The SVG <title> and <desc> Elements

SVG documents, like the HTML documents that you saw in Chapter 17, usually use <title> and
<desc> elements. There is also a <metadata> element that conventionally contains RDF information
about the document, the document’s author, and/or whatever might be depicted.

c18.indd 709c18.indd 709 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/TR/2011/REC-SVG11-20110816/coords.html#TransformAttribute
http://www.w3.org/TR/2011/REC-SVG11-20110816/coords.html#TransformAttribute

710 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

The <title> element can go at the start of the document as well as inside any “container” element such
as <circle>. It must always be the fi rst child of its parent, though. A user agent such as a web browser
may well show tooltip messages when the mouse pointer hovers over elements containing a <title>,
just as HTML browsers do for a title attribute. The use of an element rather than an attribute is
appropriate for new vocabularies: the designers of HTML were forced to use attributes because of
HTML’s poor extensibility design, but the SVG designers built the <title> element in early on.

Because <title> is an element, it can have an xml:lang attribute to indicate the natural language
of its content. However, although this may imply that you could have multiple <title> elements
with different languages, the SVG specifi cation mandates that user agents use only the fi rst <title>
element. The outermost <title> element should describe the whole document, and should stand
alone, rather like the <title> element of an HTML document. Titles within the SVG document
obviously can assume the reader has more context, and can be terser.

The <desc> element is similar to <title> in that you would use it to give a description of the
document or any subelement, but <desc> is meant for longer descriptions and is not usually
rendered. It might be used to provide a description of an image to someone who can’t see a screen,
or by a web search engine. Listing 18-6 has a title for the overall drawing and also a title and
<desc> element for the “roundabout.” Hovering the mouse pointer over the circle makes
(for example) the Chrome Web browser display a tooltip saying “This is where Dougal was seen.”

LISTING 18-6: dougal.svg

<?xml version=”1.0” encoding=”UTF-8” ?>
<svg version=”1.0” xmlns=”http://www.w3.org/2000/svg”>
 <title xml:lang=”en”>Diagram of the M25 roundabout at St Alban’s</title>
 <circle cx=”100” cy=”100” r=”75” fill=”#b0b0b0” stroke=”#FF0000”
 stroke-width=”1pt”>
 <title>This is where Dougal was seen.</title>
 <desc>The roundabout is just shown as a circle.
 Mr. McHenry said he saw Dougal here with the missing sugar,
 but the picture just shows a grey circle with a red border.
 </desc>
 </circle>
</svg>

The SVG <metadata> Element

You use the <metadata> element to give extra information about a drawing. Unlike the
human-readable content of the <title> and <desc> elements, however, <metadata> is intended for
machine-readable information. It is often used with RDF to try to indicate the subject matter of the
image, and also to identify the author using Dublin Core meta data. Listing 18-7 helps you relate this
to what you learned in that chapter:

LISTING 18-7: rdf-inside.svg

<?xml version=”1.0” encoding=”UTF-8” ?>

<svg version=”1.1” xmlns=”http://www.w3.org/2000/svg”

 xmlns:rdf = “http://www.w3.org/1999/02/22-rdf-syntax-ns#”

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c18.indd 710c18.indd 710 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/svg
http://www.w3.org/2000/svg
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://Wrox.com
http://Wrox.com

SVG Defi nitions and Metadata ❘ 711

 xmlns:rdfs = “http://www.w3.org/2000/01/rdf-schema#”

 xmlns:dc = “http://purl.org/dc/elements/1.1/” >

 >

 <title xml:lang=”en”>Diagram of the M25 roundabout at St Alban’s</title>

 <metadata>

 <rdf:RDF>

 <rdf:Description about=”http://example.org/dougal.svg”

 dc:title=”Diagram of the M25 roundabout at St Alban’s”

 dc:date=”2014-04-11”

 dc:description=”Evidence for a criminal investigation of Dougal”

 dc:publisher=”Hoy Books Ltd.”

 dc:format=”image/svg+xml”

 dc:language=”en” >

 <dc:creator>

 <rdf:Bag>

 <rdf:li>Liam Quin</rdf:li>

 <rdf:li>Dougal</rdf:li>

 </rdf:Bag>

 </dc:creator>

 </rdf:Description>

 </rdf:RDF>

 </metadata>

 <circle cx=”100” cy=”100” r=”75” fill=”#b0b0b0” stroke=”#FF0000” stroke-width=”1pt”>

 <title>This is where Dougal was seen.</title>

 </circle>

</svg>

WARNING Be careful that if you make an SVG version of a painting of (say)

Isaac Newton, the creator of the SVG, the painter, and the subject (Newton) are

all diff erent people; Isaac Newton is not the same as the painted representation,

and should not have the same URI. This is a common error people make when

creating RDF about images.

The SVG <defs> Element and Reusable Content

SVG documents can contain a <defs> element near the start, right after the optional <title>,
<desc>, and <metadata> elements. Things you put inside the <defs> element won’t be rendered,
but you can refer to them as many times you like with a <use> element in the body of your SVG
document, and then of course they do get shown. The <defs> element is also the way that you use
SVG fonts and gradients. Listing 18-8 shows an example. The <circle> element is defi ned in the
defi nitions section (the <defs> element) and is later used by a <use> element. Notice how the <use>
element also defi nes the stroke width and adds a title. You can’t override attributes using <use>, so
if the <circle> already had a stroke-width attribute, that would take precedence.

You can also put a <defs> element inside a group (the <g> element), again after any <title> and
<desc> elements.

c18.indd 711c18.indd 711 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/01/rdf-schema#
http://purl.org/dc/elements/1.1/
http://example.org/dougal.svg

712 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

LISTING 18-8: defs-and-use.svg

<?xml version=”1.0” encoding=”UTF-8” ?>
<svg version=”1.0” xmlns=”http://www.w3.org/2000/svg”
 width=”200” height=”200”
 xmlns:xlink=”http://www.w3.org/1999/xlink”>
 <title xml:lang=”en”>Diagram of the M25 roundabout at St Alban’s</title>
 <defs>
 <circle id=”magic” cx=”100” cy=”100” r=”75” fill=”#b0b0b0” stroke=”#FF0000” />
 </defs>
 <use xlink:href=”#magic” stroke-width=”12pt”>
 <title>This is where Dougal was seen.</title>
 </use>
</svg>

VIEWPORTS AND COORDINATES

SVG graphics are rendered onto a virtual piece of paper called a canvas. Although the size of this
canvas has no fi xed limits, there is also a rectangular viewing area called the viewport. You can use
width and height attributes on the <svg> element to defi ne the size of the initial viewport; these
are CSS values so you can use units like in for inches or px for pixels.

Because you give x and y locations for SVG objects like rectangles, there has to be a defi nition
for where (0, 0) lies; it’s at the top-left corner of the viewport, unless you have transformed the
coordinate system to move it. The bottom-right corner of the viewport corresponds to the position
defi ned by the width and height attributes on the SVG element, or on the viewport. The SVG
renderer might well scale the image to fi t inside a user’s window, or on a sheet of physical paper, so
a rectangle with a width of 3in in the SVG will end up sized proportionally. If you said your image
was six inches wide, the rectangle would be half as wide as the viewport, even if the viewport was
only fi ve inches wide on a user’s screen, or was ten meters wide on a billboard. This goes back to the
scalable part of Scalable Vector Graphics!

You can establish a new coordinate system, relative to the one in effect at the time, using
a <g> element with a transform attribute. Then all the objects inside the <g> element are drawn
relative to that new coordinate system. For example, the following code generates the image shown
in Figure 18-13:

<?xml version=”1.0” encoding=”UTF-8” ?>
<svg version=”1.0” xmlns=”http://www.w3.org/2000/svg”
 xmlns:xlink=”http://www.w3.org/1999/xlink”
 width=”200px” height=”300px”>
 <title>Demonstration of SVG coordinates</title>
 <rect x=”10” y=”10” width=”100” height=”50”
 stroke=”#000000” stroke-width=”2pt” fill=”none” />
 <g transform=”scale(2.5)”>
 <rect x=”10” y=”10” width=”100” height=”50”
 stroke=”#000000” stroke-width=”2pt” fill=”none” />
 </g>
</svg>

Available for
download on
Wrox.com

c18.indd 712c18.indd 712 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink
http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink
http://Wrox.com

SVG Colors and Gradients ❘ 713

Notice how the larger rectangle is not all visible
because it goes outside the viewport. Notice also
how the same rectangle defi nition is rendered
larger inside the <g> element because of the
transformation.

It doesn’t really matter whether you think in
terms of coordinate systems and transformations
or whether you look at groups as being able to
transform what’s inside them, but it’s useful to
understand both ways of looking at it so you can
work with other descriptions of SVG and with tools
that might favor one approach over the other.

The <svg>, <symbol>, 
 <!--* the red nose: *-->
 <circle cx=”190px” cy=”140px” r=”10px”
 stroke=”#000000” stroke-width=”2px” fill=”#FF6666” />
</svg>

NOTE When images have transparent regions, supported in formats such as

PNG and GIF, the transparency is also imported into SVG.

NOTE If you want text to fl ow and maybe be hyphenated, like an HTML

paragraph, and if your SVG is being used in HTML 5 (as described later in this

chapter), you can use a foreignObject element and put HTML inside it instead

of using the SVG text element.

You can add a preserveAspectRatio attribute to the 
 <g transform=”translate(2, 2)”>
 <use xlink:href=”#thetext” fill=”#FFFF99”/>
 </g>
 <use xlink:href=”#thetext” fill=”#003300”/>
</svg>

You can see how each line of text has to be a separate <text> element in SVG. This quickly gets tedious
for humans editing SVG by hand, and it makes it diffi cult to create images that can refl ow or change the
text as they are resized, but you could use scripted animation for that, as described in the next section.

SVG ANIMATION FOUR WAYS

There are several ways to introduce interactivity and motion into SVG images. In this section you
read a little about the four main ways to do so and when to use each of them. These four methods
are Synchronized Multimedia Integration Language (SMIL, pronounced smile), scripted animation,
CSS animation, and external libraries.

Available for
download on
Wrox.com

c18.indd 717c18.indd 717 05/06/12 6:11 PM05/06/12 6:11 PM

http://iginomarini.com/fell/
http://www.w3.org/2000/svg.
http://www.w3.org/1999/xlink
http://Wrox.com

718 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

Synchronized Multimedia Integration Language (SMIL)

W3C SMIL is a specifi cation for animating XML languages, and SVG incorporates a number of
SMIL features. Native implementations of SMIL are also available, such as RealPlayer.

In most cases, SMIL is the best way to animate SVG images. SVG includes the <animate>, <set>,
<animateMotion>, <animateColor>, and <animateTransform> elements. You can use these to
make an SVG graphic element change over time or in response to user events, such as hovering over
an object with the mouse pointer or touching a circle with a fi ngertip.

The restriction on these SMIL-based elements is that you can only use them to change SVG
attributes or CSS properties. Additionally, although the SVG Recommendation says you can have,
for example, a rectangle change size when the mouse hovers over a circle, that doesn’t work in
web browsers, and in practice you can only have SMIL animation elements affect the object that
includes them.

Within these limitations SMIL animation is still very powerful, and because it is declarative, it is
usually easier to write, debug, and maintain than the other animation methods. It is also the most
widely supported. Listing 18-12 shows an SVG document that describes a circle and an ellipse. If
you hover the mouse pointer over the circle, the <animate> element inside the circle fi lls it with red.
When the mouse pointer leaves the circle, its original gray fi ll is restored. Similarly, if you hover the
mouse over the ellipse, it moves to the right and gets thinner.

LISTING 18-12: SMIL-animation.svg

<?xml version=”1.0” encoding=”UTF-8” ?>
<svg version=”1.0” xmlns=”http://www.w3.org/2000/svg”>
 <g>
 <circle cx=”60” cy=”60” r=”50”
 fill=”#BBBBFF” stroke=”#CC0000” stroke-width=”1pt”>
 <set attributeType=”XML” attributeName=”fill”
 from=”#9999CC” to=”#CC0000”
 begin=”mouseover” end=”mouseout”
 />
 </circle>
 </g>

 <ellipse id=”wink” cx=”145” cy=”60” rx=”15” ry=”50”
 fill=”#9999CC” stroke=”#CC0000” stroke-width=”1pt”>
 <animate attributeName=”cx” attributeType=”XML”
 from=”145” to=”300”
 begin=”mouseover” dur=”2s”
 />

Available for
download on
Wrox.com

WARNING As of April 2012, Internet Explorer’s support for SVG was far

behind that of the other browsers when it comes to animation. However,

JavaScript libraries are available to make SMIL-based animation work in

Internet Explorer.

c18.indd 718c18.indd 718 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/svg
http://Wrox.com

SVG Animation Four Ways ❘ 719

 <animate attributeName=”rx” attributeType=”XML”
 from=”10” to=”0”
 begin=”mouseover” dur=”2s”
 />
 </ellipse>
</svg>

Scripted Animation

If your SVG images are intended for use in a web browser, or some other environment with
JavaScript and DOM-based scripting, you can use DOM events in SVG for animation. The DOM
was described briefl y in Chapter 7, “Extracting Data from XML,” and the JavaScript language was
introduced in Chapter 16, “AJAX.”

To use this method you should be familiar with JavaScript, the JavaScript error console, DOM
events, and cross-browser portability. However, because native support for SVG in web browsers
(other than Firefox and Opera) didn’t really happen until 2011, support for older browsers isn’t an
issue: the issue becomes one of fallback instead, of providing an alternative. Even if you are familiar
with JavaScript, it may still be simpler to use an External Library.

Listing 18-13 shows some simple JavaScript animation used to show or hide the ellipse when you
hover the mouse over the circle by adding the onmouseover and onmouseout attributes. Note that
making the ellipse move smoothly is much harder with this approach.

LISTING 18-13: js-animation.svg

<?xml version=”1.0” encoding=”UTF-8” ?>

<svg version=”1.0” xmlns=”http://www.w3.org/2000/svg”>

 <circle cx=”60” cy=”60” r=”50”

 fill=”#BBBBFF” stroke=”#CC0000” stroke-width=”1pt”

 onmouseover=”document.getElementById(‘wink’).style.visibility = ‘visible’;”

 onmouseout=”document.getElementById(‘wink’).style.visibility = ‘hidden’;”

 >

 </circle>

 <ellipse id=”wink” cx=”145” cy=”60” rx=”15” ry=”50” visibility=”hidden”

 fill=”#9999CC” stroke=”#CC0000” stroke-width=”1pt”/>

</svg>

A new JavaScript technique called Web Animation was proposed in May 2012; it is not available yet
(as of this writing) but may be in the future.

CSS Animation

This technique is new at the time of writing (Spring 2012) and not yet standardized. It is
mentioned here partly because by the time you read this book it might be more popular. At least
one company (Microsoft) has suggested that it plans to support CSS animation rather than SMIL
animation in its web browser, although the market may well have voted for a mixture of
SMIL and JavaScript already.

Available for
download on
Wrox.com

c18.indd 719c18.indd 719 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/svg
http://Wrox.com

720 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

External Libraries

Sometimes the easiest approach is to let others do the hard work. In Chapters 16 and 17 you read
about the jQuery library; jQuery plug-ins are available to show SVG documents that can fall back to
other methods in versions of Internet Explorer without SVG support. Libraries are also available for
doing visualizations of data in SVG, for charts and graphs that move, and much more.

Rather than learn about a single library in this book you should think about your needs, your
environment, and the skills of people who will have to maintain what you write, and then look
at drawing libraries. Most programming languages contain libraries for creating SVG, as well as
frameworks for handling animation.

The question then becomes one of choosing a project. Most of the best libraries for web-based work
are open source and free, and, most important of all, you can get the full source code, so that if
necessary, you could fi x bugs (or pay someone to fi x bugs). Make sure the project is widely used and
active and you can be pretty sure that it will still be maintained for years to come.

See the “Resources” section later in this chapter for some popular libraries.

SVG AND HTML 5

HTML 5 includes SVG and MathML as if they were part of HTML. It doesn’t even need the SVG
namespace to be declared. This has a number of implications for people working with XML. One
is that you’ll start to see HTML documents containing SVG fragments with syntax errors in them.
Fortunately, standalone SVG documents are still parsed as XML, so authors have to fi x the errors
to make them work. Another implication is that SVG has gone mainstream, so there will be better
tool support. And another is that you can mix SVG with HTML, including HTML fragments inside
a foreignObject element. Listing 18-14 (isaac-again.html) shows an example, and Figure 18-15
shows what it looks like in the Firefox web browser.

LISTING 18-14: isaac-again.html

<!DOCTYPE html>
<html>
 <head>
 <title>HTML 5 and SVG</title>
 </head>
 <body>
 <h1>Isaac Again</h1>
 <svg version=”1.0” xmlns=”http://www.w3.org/2000/svg”
 xmlns:xlink=”http://www.w3.org/1999/xlink” width=”300” height=”310”>
 <title xml:lang=”en”>Isaac Newton Picture With text</title>
 <defs>
 <g id=”thetext”>
 <foreignObject x=”10” y=”15” width=”290” height=”300”>
 <body xmlns=”http://www.w3.org/1999/xhtml”>
 <div style=”font-size: 32pt; line-height:36pt;”>Sir Isaac Newton
 <i>was the</i> <big>inventor</big> of

Available for
download on
Wrox.com

c18.indd 720c18.indd 720 05/06/12 6:11 PM05/06/12 6:11 PM

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink
http://www.w3.org/1999/xhtml
http://Wrox.com

SVG and Web Apps ❘ 721

 <big>gravity</big>.</div></body></foreignObject></g>
 </defs>
 <image x=”10” y=”10” width=”300px” height=”310px”
 xlink:href=”isaac-newton-300x310.jpg”>
 <title>Sir Isaac Newton</title>
 </image>
 <g transform=”translate(2, 2)”>
 <use xlink:href=”#thetext” color=”#ffffff” />
 </g>
 <use xlink:href=”#thetext” color=”#666666” />
 </svg>
 </body>

FIGURE 18-15

SVG AND WEB APPS

In Chapter 17, you read about the Open Web Platform and HTML 5. There’s a whole host of APIs
and languages you can use to make web applications, and one of several driving forces in creating
these has been the increased use of mobile computing devices with Internet and web access. The
idea of a web application, or app, is that it’s a self-contained web page that interacts with a server as
little as possible, keeping you on the same page using AJAX (see Chapter 16 for an introduction to
AJAX). But a web application is really just any application you access through a web browser.

c18.indd 721c18.indd 721 05/06/12 6:11 PM05/06/12 6:11 PM

722 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

Web apps tend to draw themselves as if they have dialog boxes and controls just like a desktop
application, and they generally use a mixture of SVG and CSS to do this, usually via a library such
as jQuery.

In many cases with web app development the SVG will actually be hidden from the developer by the
library, but, because SVG is XML-based, you can generate it with XQuery and XSLT on your web
server, or even using the XSLT engine that’s built in to many web browsers. This turns XSLT and
XQuery into potential user-interface generation systems, and you look at that next.

MAKING SVG WITH XQUERY OR XSLT

It’s easy to create SVG graphics using XQuery queries or XSLT stylesheets. SVG is an XML-based
format and XQuery and XSLT are excellent languages for creating XML documents. There are only
a few things to watch out for when doing this and they are described in this section.

The fi rst consideration is that you need to set your serialization options to XML. With XQuery 3
and XSLT 3 you’ll also be able to use HTML 5 as an output method if you are creating HTML with
embedded SVG.

The next area of concern is that if you are creating CSS, you must decide whether to style SVG or
HTML or even XML. You will want to put the CSS in a separate fi le with the output method set
to text. The same applies to JavaScript. If you include inline CSS in the fi les that you generate with
XQuery you’ll go insane because of all the curly braces. JavaScript is even harder because of the
dollar signs and curly braces. It’s also hard to get the serialization options right to include CSS in
XHTML: you have to use <xsl:comment> to contain the inline CSS. But if you keep the JavaScript
and CSS in separate, external fi les rather than creating them with XQuery or with XSLT, you won’t
have any problems.

Having said all that, there are lots of uses for SVG in the web browser, and the idea of combining
SVG with AJAX can make for exciting effects. You can also generate SVG and use jQuery to
surround an HTML element with an SVG border, for example, by “reparenting” the HTML element.

XQuery in the browser (see http://xqib.org) and Saxonica’s Client Edition of Saxon for XSLT 3
in the browser are also exciting developments at blurring the distinction between client and server.

With many of the world’s book publishers using XML, XQuery, XHTML, and XSL-FO (see next
chapter), having SVG in electronic books will for sure be the next exciting development in this area.
It’s also fabulously easy to make charts and business graphics in SVG from XQuery. In Chapter 19,
Case Study: XML in Publishing, you’ll get a chance to try it out!

RESOURCES

It would be easy to expand this chapter into a whole book because there’s so much that can be
said about SVG. You have seen enough to know if you’re interested; if you are, some of the extra
resources in this section will help you.

 ➤ Introduction to SVG: The W3C homepage for SVG at http://www.w3.org/Graphics/SVG/.

 ➤ Learning SVG: http://www.learnsvg.com/ and http://svgelves.com/.

c18.indd 722c18.indd 722 05/06/12 6:11 PM05/06/12 6:11 PM

http://xqib.org
http://www.w3.org/Graphics/SVG/
http://www.learnsvg.com/
http://svgelves.com/

Summary ❘ 723

 ➤ Popular Visualization Libraries: http://mbostock.github.com/d3/ and http://
raphaeljs.com/

SUMMARY

 ➤ Scalable Vector Graphics (SVG) is an XML-based format for declarative vector graphics.

 ➤ SVG is widely supported, with desktop icons, camera menus, photocopier controls, and web
browsers all using it.

 ➤ SVG includes XML elements for describing simple shapes such as rectangles. More complex
shapes are described using SVG paths.

 ➤ The Inkscape program is an open source graphics editor you can use to create and edit SVG
graphics.

 ➤ HTML 5 includes SVG, so you can put SVG graphics directly into web pages.

EXERCISES

You can fi nd possible solutions to these exercises in Appendix A.

 1. What is the diff erence between an <ellipse> and a <circle> element in SVG?

 2. Name two diff erent methods of animating an SVG image so that a shape changes when the user

clicks on it.

 3. Why is it important to provide text descriptions of the diff erent parts of a diagram using <desc>?

 4. What is the diff erence between uppercase and lowercase commands in SVG path data?

c18.indd 723c18.indd 723 05/06/12 6:11 PM05/06/12 6:11 PM

http://mbostock.github.com/d3/
http://raphaeljs.com/
http://raphaeljs.com/

724 ❘ CHAPTER 18 SCALABLE VECTOR GRAPHICS (SVG)

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

The diff erent kinds of images Image drawing can be procedural or declarative; SVG is

declarative, and tells you what, not how.

Images can be bitmap or vector; SVG images are vector-based,

but can also contain bitmap (raster) images.

Basic shapes in SVG Circles, ellipses, rectangles, lines, polylines, and polygons are all

defi ned in terms of SVG paths.

SVG is XML SVG is an XML-based format. SVG images can be generated by

and manipulated with XML tools.

SVG is also part of HTML 5 You can include SVG diagrams directly in HTML documents.

SVG and fonts SVG supports web fonts, CSS font descriptions, platform-native

fonts, as well as its own format, SVG fonts.

Viewports and coordinates SVG images are seen through scalable, stretchy viewports;

subelements like <g> can establish new viewports and also new

coordinate systems for their contents.

c18.indd 724c18.indd 724 05/06/12 6:11 PM05/06/12 6:11 PM

PART VIII
Case Study

 � CHAPTER 19: Case Study: XML in Publishing

c19.indd 725c19.indd 725 05/06/12 6:13 PM05/06/12 6:13 PM

c19.indd 726c19.indd 726 05/06/12 6:13 PM05/06/12 6:13 PM

Case Study: XML in Publishing

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How XML fi ts into a publisher’s workfl ow

 ➤ How XSLT, XQuery, SVG, HTML and XML might be used together in

practice

 ➤ How to generate SVG images with XSLT

 ➤ The purpose of XProc, XSL-FO and MathML

 ➤ How to generate PDF from XML with XSL-FO and XSLT

 ➤ How XML technologies are used together

This chapter is about a fi ctional publishing company making a move to an XML-based work-
fl ow. Although the company is fi ctional, the scenario is typical of an actual XML project and
shows you how the various topics that you have studied in this book can be used together. You
also encounter some new XML vocabularies and projects, such as the Text Encoding Initiative
(TEI), MathML, the Darwin Information Typing Architecture (DITA), and DocBook, and
learn a little about their strengths and how to discover more vocabularies yourself. This is the
last chapter in this book, but it could also be the fi rst chapter of a book about using XML in
practice.

BACKGROUND

Hoy Books is a (fi ctional) reference book publisher operating out of the city of Lyness in
Orkney, UK. It has recently purchased another publishing company, Halfdan Books, based in
North Ronaldsay. The two companies have combined into a single offi ce in nearby Kirkwall,
and are in the process of trying to sort out who does what and what happened to the tea bags
that were by the water cooler.

19

c19.indd 727c19.indd 727 05/06/12 6:13 PM05/06/12 6:13 PM

728 ❘ CHAPTER 19 CASE STUDY: XML IN PUBLISHING

Halfdan Books has published a popular series of books on heraldry. Hoy Books, the larger com-
pany, publishes a series of Who’s Who reference books and a larger biographical dictionary,
Hoy’s Who.

The chief technology offi cer of the amalgamated company has decided that the biographical books
should incorporate heraldic information where available, and the business development offi cer has
determined that, to keep the biographies more current and to reduce costs, a new production system
should be installed.

The new system must enable remote writers on the various islands of Orkney to update articles, and
must support creation of electronic books as well as the existing print publications.

PROJECT INTRODUCTION: CURRENT WORKFLOW

In the distant past, the editorial team in Lyness would determine the list of people, both living and
historical, to include in a new edition of Hoy’s Who, and would send out letters to biographers. The
biographers would research histories — sometimes transcribing old manuscripts or books and some-
times writing articles, all on neatly typed pages — and then send back what they had written to
Lyness. The pages would be edited in-house and then typeset and printed as “galley proofs,” which
would be sent back to the authors for corrections.

Currently, the authors send fi les using Microsoft Word and a template with named styles, but the
process is essentially the same. The in-house editors at Hoy Books have to make sure that the styles
have been used correctly, as well as making the same editorial corrections and suggestions that they
did in the paper-based system.

Once the Word fi les are fi nal they are imported to a page layout program (Adobe InDesign) and
assembled into fi les, each representing 64 complete pages. These are then printed as PDF fi les,
checked one last time, and sent to the company that does the printing. The printer must have even
multiples of 64 pages to make “signatures” for the folding and binding machines.

Each time all the fi les are ready for a new edition to be made, the staff focus all their time on the
editing, on sorting out conversion problems, and on getting everything ready; they are unable to
accept new articles during this time, and the authors have had to learn that there’s a month in
which there’s no new work for them. This situation proved to be less than ideal, therefore a New
System Task Force (NSTF) was created at Hoy Books and tasked with fi nding and implementing a
solution.

INTRODUCING A NEW XML-BASED WORKFLOW

To remain competitive, Hoy Books needed a more streamlined workfl ow. They had to reduce the
time it took to make a new edition of their book, and also produce electronic books
(e-books) and a searchable website.

To publish faster, the editorial staff needed to be able to edit incoming articles all the time without
having to drop everything to become production managers; this would also help them to retain the

c19.indd 728c19.indd 728 05/06/12 6:13 PM05/06/12 6:13 PM

Introducing a New XML-Based Workfl ow ❘ 729

external writers they hired. The new workfl ow also needed to incorporate the Halfden Books her-
aldry database publishing business.

The best technology for gluing together all of these components is XML, and because of this, Hoy
Books decided to attempt a move to an XML-based workfl ow. In doing so, they chose to equip their
external authors with a customized XML editor so that they would no longer need to convert the
articles from the word processing format, as that process was error-prone and expensive.

The following sections describe some of the process that Hoy Books went through along their jour-
ney to an XML-based workfl ow. Similar processes are followed by many organizations when they
adopt XML: identifying the people who would be affected, consulting with them to learn their
needs and also to make them feel part of the project, building prototypes and testing, training staff
as needed, documenting the work, and gradually adding functionality as the system grows.

Consultations

At Hoy Books a previous attempt to move to an expensive content management system failed
because it relied on the authors having a fast Internet connection, something not always possible on
the islands. The island-dwelling authors weren’t consulted in this matter before the new system was
implemented, and as a result it was unsuccessful.

The single most important aspect to the success of a major new project is to get buy-in from
 everyone who will be affected. Because it’s often impossible to determine exactly who will be
affected, it’s also essential to communicate clearly. Therefore, meetings to determine who should be
involved, and why, must always be part of any XML project.

This time the New System Task Force (NSTF) consulted the authors as well as the printers, external
editors, and all of the staff.

People were consulted at every stage, representatives were interviewed, and careful notes were taken.

Documenting the Project

A traditional way of approaching a new project is to make a Requirements document and a
Specifi cation document, then implement the specifi cations and check that the requirements were
met. In practice, as soon as people start to see the new system, the requirements will change. The
Hoy Books team learned about a newer methodology called agile development, in which the
requirements and design evolve continuously as the people on the project start to understand what
they really need. The team thought this was a good idea, and kept both a Requirements document
for tracking the needs they knew they had to meet, and a Current Issues document for tracking
issues they needed to resolve.

Prototyping

Having sessions in which people who will use a new system walk through a mock-up, even if it’s just
based on sketches on paper, can serve several goals. It can turn the new users into enthusiastic evan-
gelists, telling their co-workers how good the new system will be, and it can lead to immediate and
essential feedback for the designers. It’s important not to oversell a system at this stage, because the

c19.indd 729c19.indd 729 05/06/12 6:13 PM05/06/12 6:13 PM

730 ❘ CHAPTER 19 CASE STUDY: XML IN PUBLISHING

most ardent evangelist, when disappointed, can quickly become the most hardened opponent. The
Hoy Books task force explained to employees and clients that they really valued the users’ opinions
and experience, and that it was a learning experience for everyone, so no one should be worried if
there were problems at early stages.

After the design mock-ups, the team built some web-based prototypes. However, at this point they
had a major setback: the new chief technology offi cer had heard that XML was slow and unreliable
and dropped by to insist that everyone use HTML 5. The task force spokeswoman explained that
they had ruled out that approach for cost reasons, and she explained why they needed to use custom
schema-based validation for the articles from the authors. She showed the chief technology offi cer
the prototype and the workfl ow diagrams the task force had prepared, and he grudgingly admitted
they had some good ideas. However, he then bet twelve bottles of 25-year-old Highland Park single
malt that they would not have a working system within a year!

CREATING A NEW PROCESS

Once the Hoy Books New System Task Force introduced their plan to their employees, created the
necessary documents to facilitate the transformation, and started getting employees to test out
the new concepts in simulated environments, it was time to start creating the real thing. The NSTF
started by deciding what they wanted their XML system to look like and how they wanted the new
work fl ow system to function. They considered the available technologies, preferring a standards-
based approach where possible, performed a cost-benefi t analysis and estimated the amount of
work needed, built and tested small-scale prototypes, and fi nally deployed the system. This model
is a great one to follow if you too are introducing and creating a new XML-based system in your
company.

Challenging Criteria

The NSTF identifi ed several diffi cult criteria the new system would have to include:

 ➤ The new system had to be easy for the authors. It had been diffi cult to get the authors to use
styles in Microsoft Word, and a constant problem was articles arriving with ad-hoc styles
in them, or with unusual formatting such as a poem in the middle of a place name. Such
articles would sometimes be sent off to pieceworkers to be fi xed by hand rather than trying
to deal with the authors, so they wanted to keep using Microsoft Word, or use something
that sounded as easy but that had stricter control over formatting.

 ➤ With more than 20,000 articles, each of which could be in any of a number of production
states, the system had to provide tracking and summaries.

 ➤ Being able to check consistency between articles, especially for things like the spelling of
proper names in cross references and titles, would not only improve quality but also save
work and money. At least one duplicate article was written every year because of a differ-
ence in spelling.

 ➤ The system needed a full-text search that was aware of the different sorts of information in
the articles, especially place names, people, and dates.

c19.indd 730c19.indd 730 05/06/12 6:13 PM05/06/12 6:13 PM

Creating a New Process ❘ 731

 ➤ The new system needed to be able to include diagrams and some simple mathematics.

 ➤ The new system would need to expand its production from print books to e-books in a vari-
ety of formats.

 ➤ A subscription-based website, something that had been too diffi cult for them to do with
their older workfl ow, would be another great improvement to the system.

 ➤ The new amalgamation also meant incorporating heraldic information into the biographies,
connecting different publications together.

The development team wrote this up in a document that they circulated not only to their management,
but also to everyone who had been involved in the consultation process. They included a short sum-
mary as well as notes about how the interviews with outside writers and selected customers were
taken into account, so that no-one would feel left out and become a potential barrier in the future.
Based on all their needs and on the information they had discovered so far, the team proposed a
new workfl ow, described next.

The New Workfl ow

The team selected an XML-based content management system this time round, so that they could
get the benefi ts of validated markup, which include the following:

 ➤ Better quality control on the input

 ➤ Semantic markup that supports the searches and integrity checks they need

 ➤ Multiple output formats

 ➤ A website that could support a search function

 ➤ Formatting for print based on the validated markup, so there would be no need to develop
unneeded styles

 ➤ Standard and open scripting and programming languages such as XSLT, XQuery,
JavaScript, and PHP

 ➤ Editorial comment system based on W3C XForms

 ➤ Reports generated by XQuery and using SVG for charts

They even found an open source program to format heraldic crests as SVG so that they could be
included in web pages and for e-books! Their experts in heraldry were also able to contribute graph-
ics to the open source program for some of the more obscure items.

Document Conversion and Technologies

After the initial checklists were made and workfl ow determined, at Hoy Books, the next question
was, “What should the XML look like?”

The team looked at existing standards and at inventing their own markup. In the end they decided
on a hybrid: they would use markup from the Text Encoding Initiative (TEI) for the articles, because
it already had the features they needed for transcriptions of old manuscripts for the more scholarly

c19.indd 731c19.indd 731 05/06/12 6:13 PM05/06/12 6:13 PM

732 ❘ CHAPTER 19 CASE STUDY: XML IN PUBLISHING

articles. They looked at DocBook, an industry standard maintained by the Oasis standards body,
for the technical documentation. They also considered Oasis DITA, a more complex standard for
documentation that comes with an information architecture methodology. In the end they settled on
a subset of DocBook called Mallard, partly for simplicity and partly because it was used by the
content-management system they chose.

After deciding what the XML should look like, Hoy Books needed to fi gure out how to deal with
the twenty thousand main articles and many additional smaller articles, including how to categorize
them, what format they needed to be in, and how to convert them into the desired format. When
your core business asset is information, keeping your documents current sounds like a pretty impor-
tant thing to do, but it’s often seen as an unwanted expense. You fi nd publishers using decades-old
word processors running on emulators of old operating systems to avoid training and conversion
costs. Sometimes it’s because the profi t margin is too low and sometimes it seems to be fear of the
unknown! Hoy didn’t want to make this mistake with their articles.

The team did end up inventing their own RDF ontology to describe the various states of articles:
requested from author, in process, received draft and awaiting edit, being copyedited, and so forth.
Because their content management system used XQuery, they used an RDF XQuery module to pro-
duce editorial reports at fi rst, but later moved to using SPARQL implemented in XQuery. The team
was also able to use SPARQL to search the heraldry database that Hoy Books had bought, and to
associate heraldic coats of arms and family crests with people in the Hoy’s Who books.

Once they had chosen the formats, the team was able to send data to a company in India that owned
technology to convert Word fi les to XML. Because the Word fi les followed a rigid use of styles, the
conversion ended up with very few problems and was inexpensive. An alternative suggested, made
by a visiting consultant from Dublin they had, was to run XSLT on the Microsoft Word Offi ce
Open XML fi les, but most of the documents were in the proprietary binary format from older Word
versions. It turned out that a few fi les would no longer open in recent versions of Word, but the
conversion people in India had libraries that could recover the text and most of the styles.

The mathematics in the articles was another matter, and had to be re-keyed, but, luckily, that cost
could be spread over several years, as and when the relatively few articles containing equations were
needed.

Costs and Benefi ts Analysis

Most modern publishers need to produce electronic books in order to survive, and the market is
no longer willing to accept just PDF images of printed pages: the pages must fi t the width of the
book reader. So the right question for the publisher (Hoy or any) is not “What’s the cheapest way
to continue what we have been doing?” but rather, “How do we adapt to new technology without
 losing our reputation in the marketplace?”

With this view, the XML-based system is a sound investment. It supports the new technologies and
is also adaptable to future technologies. In addition, publishing is a core strength of XML. The
capability to pick data out of mixed content, such as fetching titles and dates of books that the biog-
raphy subjects had written, and linking them to online copies of the books, is something that would
likely have been considerably more expensive in a relational database system.

c19.indd 732c19.indd 732 05/06/12 6:13 PM05/06/12 6:13 PM

Some Technical Aspects ❘ 733

Deployment

When the NSTF was completely ready, they started implementing the new system with their entire
company and the external authors. Most of the authors happily switched to using an XML editor; it
was actually easier for them to concentrate on the content rather than the formatting. The team had
expected one older writer in his late eighties, to whom they had given the nickname “the Old Man
of Hoy,” to have problems, but, in fact, he loved the new system. They did lose one writer who took
an early retirement rather than learn something new.

The formatter that Hoy Books chose was able to handle both SVG and MathML, and could pro-
duce high-quality PDF from XML input using W3C’s eXtensible Stylesheet Language Formatting
Objects (XSL-FO) standard. Hoy Books hired a consultant for three months to set up the format-
ting, and although it was expensive because she came all the way from Dublin, the company actu-
ally saved more money than expected. The new system could produce PDF not only for print, but
also for some of the older e-books.

The team spent a happy week in Oxford learning XSLT, and came back ready for the website chal-
lenge. They worked with their web design fi rm and soon had HTML 5 web pages. They used XQuery
to generate XML summaries from their database, which were then formatted using XSLT for the Web.

The content management system used XProc, the XML Pipelining Language, to specify how the
content for any given web page should be generated from the database, for example using XQuery
to do a search or make an article summary, followed by running an XSLT transformation on the
result of the query to turn it into HTML using the Hoy Books web template.

With the new production in place, Hoy Books could accept articles from the authors all the time,
and because their new content-management system would keep track of the status of the articles for
them, and because they didn’t have to convert the articles to the page layout program format any
more, the staff had time to check the articles and keep the external authors paid. The new website
had all of the articles available, and an unexpected benefi t was that they were able to offer custom
e-books to their users.

The end result was that time between an external author fi nishing an article and the article being
available to the customers went from several weeks down to a few days, and, being much more
responsive, the company was able to make better use of its assets to increase revenue. Therefore, the
project was a success.

This project was fi ctional, of course, but it is based on real projects. Many of the world’s largest
publishers (and some of the smallest) do use XML in the ways described in this chapter. Similar
projects can also be found all over the world in documentation and engineering departments of
large companies. In the next section of this chapter you read in more detail about some of the tech-
nologies that were mentioned here but that have not been covered in depth elsewhere in this book.

SOME TECHNICAL ASPECTS

The fi rst part of this chapter mentioned a lot of technologies that were used in the example project
at Hoy Books. The next part of this chapter is devoted to introducing you to some of those technol-
ogies in more detail, so that you can decide whether you need to learn more about them. Examples

c19.indd 733c19.indd 733 05/06/12 6:13 PM05/06/12 6:13 PM

734 ❘ CHAPTER 19 CASE STUDY: XML IN PUBLISHING

are included for some of the technologies but not for others — the decision on which to include was
based on how much explanation you’d need for an example to make sense, not on the importance or
usefulness of the technology. The tools that work in your situation are the most important for you,
of course, and tens of thousands of XML vocabularies and tools are available! In some cases the
technologies have been covered in more detail in earlier chapters, and are presented here to put them
into a larger context of how they might be used.

XQuery and Modules

You learned about XQuery modules in Chapter 9. The team at Hoy Books used XQuery modules to
make their own API; a set of XQuery functions for accessing both meta data and documents from
the database. This enabled them to be fl exible when they changed their RDF ontologies and XML
Schemas from time to time, and kept the details hidden.

XInclude

XInclude is the W3C “XML Inclusions” specifi cation. The Hoy Books XQuery module for reports
generates XML elements with reference to some external XML documents that are included using
an XInclude element like so:

<xi:include xmlns:xi=”http://www.w3.org/2001/XInclude”
 href=”management-structure.html” />

An XInclude processor will replace the xi:include element with the document to which it refers.
Of course, the URI could use the HTTP protocol, perhaps referring to a document generated by the
database on the fl y.

Equations and MathML

MathML is W3C’s XML vocabulary for representing equations. It has two subtypes: content and
presentational. The content form uses markup that describes the meaning, whereas the presenta-
tional form describes the intended appearance. Because mathematics is open ended, and research
mathematicians invent new symbols and notations constantly, you always have to use at least a little
presentational markup. However, the content markup would suffi ce for school text books up to
undergraduate level in most cases, and in some cases beyond that.

For Hoy Books, simple equations were usually enough: plenty of books and papers on science-
related subjects have fragments of equations in their titles, and for historical notations the team
at Hoy Books used a mixture of SVG and scanned images. Using MathML meant that they could
generate e-books as well as print from the same source, and could also search on text included in the
equations. Discovering that there was web browser support for MathML was the fi nal piece in the
puzzle that led them to move away from proprietary word-processing formats.

Although MathML is now incorporated into HTML 5, browser support has been slow to follow.
Mozilla Firefox was fi rst, and supports both content and presentational markup. You can use
a JavaScript library from www.mathjax.org to support MathML on browsers such as Internet
Explorer or Google Chrome, and XSLT style sheets are also available; see http://www.w3.org/
Math/ for more details.

c19.indd 734c19.indd 734 05/06/12 6:13 PM05/06/12 6:13 PM

http://www.w3.org/2001/XInclude
http://www.w3.org/Math/
http://www.w3.org/Math/
http://www.mathjax.org

Some Technical Aspects ❘ 735

MathML also introduces literally hundreds of named symbols that can be used in HTML or XML
documents via entity references. You can defi ne additional symbols using SVG (see Chapter 18,
“Scalable Vector Graphics (SVG)”), or you could use downloadable web fonts as described in
Chapter 17, “XHTML and HTML 5.”

Listing 19-1 shows an example of an equation marked up in MathML, and Figure 19-1 shows the
result in Firefox. The fi le shown in the browser also contains three additional equations whose
markup is not included in the book, but the fi le on the accompanying website does include all four
examples. The CSS in the example puts a dotted box around the equation.

LISTING 19-1: mathml-in-html5.html

<!DOCTYPE html>
<html>
 <head>
 <title>MathML Examples</title>
 <style type=”text/css”>
 body {
 color: #000;
 background-color: #fff;
 }
 div.m {
 float: left;
 padding: 3em;
 border: 1px dotted;
 margin: 1em;
 }
 h2 {
 text-size: 100%;
 clear: both;
 }
 </style>
 </head>
 <body>
 <h1>MathML Examples</h1>
 <h2>Quadratic and Integral</h2>
 <div class=”m”>
 <math display=”block”>
 <mrow>
 <mi>x</mi>
 <mo>=</mo>
 <mfrac>
 <mrow>
 <mo form=”prefix”>−</mo>
 <mi>b</mi>
 <mo>±</mo>
 <msqrt>
 <msup>
 <mi>b</mi>
 <mn>2</mn>
 </msup>
 <mo>−</mo>

Available for
download on
Wrox.com

continues

c19.indd 735c19.indd 735 05/06/12 6:13 PM05/06/12 6:13 PM

http://Wrox.com

736 ❘ CHAPTER 19 CASE STUDY: XML IN PUBLISHING

LISTING 19-1 (continued)

 <mn>4</mn>

 <mo>⁢</mo>

 <mi>a</mi>

 <mo>⁢</mo>

 <mi>c</mi>

 </msqrt>

 </mrow>

 <mrow>

 <mn>2</mn>

 <mo>⁢</mo>

 <mi>a</mi>

 </mrow>

 </mfrac>

 </mrow>

 </math>

 </div>

 [. . .]

 </body>

</html>

FIGURE 19-1

c19.indd 736c19.indd 736 05/06/12 6:13 PM05/06/12 6:13 PM

Some Technical Aspects ❘ 737

XProc: An XML Pipelining Language

The team at Hoy Books used a native XML database with XQuery to power their content-
 management system. To generate reports, they fi rst extracted information from the database with
XQuery and then ran XSLT to make a mixture of SVG and XHTML; in some cases this involved
running more than one XSLT transformation. Remembering the steps for each report would be
tedious. Utilities like ant or make could be used, or shell scripts or batch fi les, to automate the
 process, but XProc provides a clearer framework not tied to any one technology, and, being
XML-based, was stored in the database, so it was a good fi t for Hoy Books.

Listing 19-2 shows a sample pipeline that fi rst extracts some data — perhaps a list of articles that
are overdue from the authors, who of course are always late!

LISTING 19-2: xproc.xml

<p:pipeline xmlns:p=”http://www.w3.org/ns/xproc” version=”1.0”>

 <!--* First run Query to get the data *-->

 <p:xquery>

 <p:input port=”query”>

 <p:data href=”reports/editorial-status.xq” />

 </p:input>

 </p:xquery>

 <!--* The Query generates XML that can include some

 * boilerplate text, so run XInclude next:

 *-->

 <p:xinclude/>

 <!--* Validate the result to make sure that we didn’t

 * make a mistake:

 *-->

 <p:validate-with-xml-schema>

 <p:input port=”schema”>

 <p:document href=”reports/editorial-status.xsd”/>

 </p:input>

 </p:validate-with-xml-schema>

 <!--* Generate SVG graphs of the data *-->

 <p:xslt>

 <p:input port=”stylesheet”>

 <p:document href=”reports/editorial-status-svg.xslt” />

 </p:input>

 </p:xslt>

 <!--* Generate a report that can be viewed in a Web browser: *-->

 <p:xslt>

 <p:input port=”stylesheet”>

 <p:document href=”reports/editorial-html.xslt” />

 </p:input>

 </p:xslt>

</p:pipeline>

Available for
download on
Wrox.com

c19.indd 737c19.indd 737 05/06/12 6:13 PM05/06/12 6:13 PM

http://www.w3.org/ns/xproc
http://Wrox.com

738 ❘ CHAPTER 19 CASE STUDY: XML IN PUBLISHING

The XQuery (not shown) generates an XML document with the data, and also with XInclude ele-
ments that refer to some boilerplate documents for the reports. The pipeline explicitly includes an
XProc xinclude step to handle this.

After the boilerplate text (the list of staff and their positions, in fact) is included, the resulting XML
document is validated against a W3C XML Schema. This helps the developers know that everything
worked as expected. The next step runs XSLT to turn the numeric data into SVG graphics, and
then, fi nally, the XML document is turned into an HTML web page for viewing.

This modular approach can also be used for the printed books and for the website, of course, as
well as for producing e-books.

See www.w3.org/TR/xproc/ for the latest XProc specifi cation.

XForms, REST, and XQuery

The W3C XForms language provides a way for users to interact with a web page. It separates data
using the model-view-controller system, avoiding unnecessary round trips to the server and reducing
the need for scripting.

Hoy Books used XForms embedded within XHTML for an editorial comment interface; the form
sends XML back to the content management system, which, being based on a native XML database
powered by XQuery, can use it directly. You can learn more about Xforms at www.w3.org/
MarkUp/Forms/.

REST, or REpresentational State Transfer, is a term coined by Roy Fielding to describe a way of
using the World Wide Web. It describes how to write web applications, and although a detailed
explanation is outside the scope of this book, you are strongly encouraged to read more about REST
and “XRX” if you write applications that use XForms and XQuery. REST is the “R” that connects
XForms and XQuery.

Formatting to PDF with XSL-FO

The W3C eXtensible Stylesheet Language Formatting Objects specifi cation is a vocabulary for document
formatting. It uses the idea of pouring a stream of content, called the fl ow, into a sequence of page tem-
plates. The elements in the fl ow are styled with CSS (and with some additional properties more suited to
print work than CSS 2), and are positioned within the page templates by the formatting engine.

The XSL-FO specifi cation assumes that you’re generating the input XML (in the FO vocabulary)
using XSLT: you transform elements in your XML documents into formatting objects like <fo:
block> and <fo:inline> with CSS style properties, and then run a formatter to make PDF or other
output formats.

Listing 19-3 shows an XSLT style sheet that will convert either the tiny armstrong.xml fi le or the
larger chalmers-biography-extract.xml fi le that you fi rst saw in Chapter 9 into XSL-FO; you
could then run a formatter such as the open source xmlroff or Apache FOP programs to make PDF.
Hoy Books used a commercial XSL-FO formatter that also included MathML support. Figure 19-2
shows one page of a PDF document made by fi rst running the XSLT stylesheet in Listing 19-3 on the
chalmers-biography-extract.xml fi le and then taking the result of that and running it through
the Apache FOP program.

c19.indd 738c19.indd 738 05/06/12 6:13 PM05/06/12 6:13 PM

http://www.w3.org/TR/xproc/
http://www.w3.org/MarkUp/Forms/
http://www.w3.org/MarkUp/Forms/

Some Technical Aspects ❘ 739

LISTING 19-3: make-xsl-fo.xsl

<?xml version=”1.0” encoding=”utf-8” ?>

<xsl:stylesheet version=”1.0”

 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

 xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

 <xsl:strip-space elements=”dictionary entry body” />

 <xsl:template match=”/”>

 <fo:root font-family=”Times”

 font-size=”10pt” line-height=”12pt”>

 <fo:layout-master-set>

 <fo:simple-page-master master-name=”dictpage”

 page-width=”8.5in” page-height=”11in”

 margin-top=”0.5in” margin-bottom=”0in”

 margin-left=”1in” margin-right=”0.75in”>

 <fo:region-body margin-bottom=”0.75in”

 column-count=”2” column-gap=”0.5in” />

 <fo:region-after extent=”0.5in” />

 </fo:simple-page-master>

 </fo:layout-master-set>

 <fo:page-sequence master-reference=”dictpage”>

 <fo:static-content flow-name=”xsl-region-after”>

 <fo:block text-align=”center”>Page <fo:page-number /></fo:block>

 </fo:static-content>

 <fo:flow flow-name=”xsl-region-body”>

 <!--* generate the content here *-->

 <xsl:apply-templates/>

 </fo:flow>

 </fo:page-sequence>

 </fo:root>

 </xsl:template>

 <xsl:template match=”dictionary”><xsl:apply-templates/></xsl:template>

 <xsl:template match=”entry”>

 <fo:block text-indent=”-2em” margin-bottom=”12pt”>

 <xsl:apply-templates/>

 </fo:block>

 </xsl:template>

 <xsl:template match=”entry/title”>

 <fo:inline font-style=”italic”>

 <xsl:apply-templates/>

 </fo:inline>

 </xsl:template>

 <xsl:template match=”entry/body”><xsl:apply-templates/></xsl:template>

 <xsl:template match=”p”>

 <fo:block keep-together=”auto” text-indent=”1.5em”>

 <xsl:apply-templates/>

 </fo:block>

 </xsl:template>

Available for
download on
Wrox.com

continues

c19.indd 739c19.indd 739 05/06/12 6:13 PM05/06/12 6:13 PM

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Format
http://Wrox.com

740 ❘ CHAPTER 19 CASE STUDY: XML IN PUBLISHING

LISTING 19-3 (continued)

 <xsl:template match=”body/p[1]”>

 <fo:inline><xsl:apply-templates/></fo:inline>

 </xsl:template>

 <!--* note: the Apache Fop renderer does not support small caps *-->

 <xsl:template match=”entry/title/csc”>

 <fo:inline font-variant=”small-caps”>

 <xsl:apply-templates/>

 </fo:inline>

 </xsl:template>

 <xsl:template match=”i”>

 <fo:inline font-style=”italic”>

 <xsl:apply-templates/>

 </fo:inline>

 </xsl:template>

</xsl:stylesheet>

FIGURE 19-2

c19.indd 740c19.indd 740 05/06/12 6:13 PM05/06/12 6:13 PM

The Hoy Books Website ❘ 741

XML Markup for Documentation

An undocumented project often becomes a problem when key people leave the company or change
roles. The Hoy Books team knew this and documented not only the fi nal system but also the deci-
sion process, so that people changing the system would understand not only how it worked but why.

They used Oasis DocBook as an XML format for their documentation, and some open source XSLT
style sheets that converted DocBook documents into XHTML and PDF.

They could have used the same markup that was used for the dictionary entries, and although that
was tempting, the needs were different. The biographical dictionary does not contain code listings
or sequences of instructions, for example, but the documentation probably does.

Another format widely used for documentation is the Darwin Information Typing Architecture
(DITA), also produced by Oasis. DITA is a framework for topic-based authoring, and is best suited
for use when the end product is documentation. At the (fi ctional) Hoy Books company the end prod-
uct is, of course, world-class biographical dictionaries, and the team felt that DITA was too much
for them to take on to document their system.

Markup for the Humanities: TEI

The Text Encoding Initiative is a consortium that produces guidelines for markup of scholarly texts
in XML. The Hoy Books team chose the TEI P5 guidelines because it met their needs for transcrip-
tions of manuscripts, books, and articles, because work had already been done on biographical
dictionaries, and because there was already support for the markup in existing tools and editors.
The oXygen XML Editor you used in earlier chapters, for example, includes TEI support (as well as
support for DocBook and DITA). The Text Encoding Initiative Guidelines (both P4 and P5) are by
far the most widely used XML vocabularies in humanities computing.

You should choose markup that suits your own projects, so rather than read an example in this
book you are referred to www.tei-c.org to learn more.

THE HOY BOOKS WEBSITE

For their website, the Hoy Books team used a copy of their XML database rather than the original,
partly fearing that production might be affected in an attack, and partly so that the server could be
located in nearby Scotland, where the Internet connections were stronger.

They used XSL-FO on the server so that users could download PDF versions of articles, and they
used XQuery Full Text to provide searching. Their content management system could run XSLT
using XProc, so the Hoy Books staff made some pipelines that added interactive SVG content to the
dictionary entries.

They included heraldic shields using the open source “drawshield” program, SVG time lines show-
ing when people in the articles were born and died, and marking other events such as publications
of their woks. They also made a visualization showing clusters of people’s colleagues and likely
acquaintances.

c19.indd 741c19.indd 741 05/06/12 6:13 PM05/06/12 6:13 PM

http://www.tei-c.org

742 ❘ CHAPTER 19 CASE STUDY: XML IN PUBLISHING

There was an RSS feed so people could see new or updated articles as they were published; this was
made using XQuery to generate RDF on the fl y, and the fl exibility this gave them meant they could
easily generate customized RSS feeds based on users’ searches.

Connections between the RDF meta data in the biography articles and the RDF for the heraldry
information in the Halfdan Books database enabled automatic links from biographies to genealogies
and to entries for family members, which was an unexpected benefi t.

Most of the concepts here have already been illustrated in this book. To understand them in context,
the following activity demonstrates generating an SVG visualization from documents in the data-
base using both XQuery and XSLT.

TRY IT OUT Making SVG Using XQuery and XSLT

This activity has three main parts. First, you use XQuery to generate a summary XML document
containing just the data of interest. Second, you use XSLT to generate an SVG graphic based on that
data. Third, you use an SVG viewer or web browser to see the result. The fi les are all included with this
book, so you can compare them with the ones you generate yourself.

 1. Type the query from Listing 19-4 into a fi le called timelines.xq and run Saxon in query mode:

java -cp saxon9he.jar net.sf.saxon.Query timelines.xq > timelines.xml

If you prefer, you can use the command-line query processor included in the BaseX database
package you downloaded in Chapter 9:

basex/7.1/bin/basex -w timelines.xq > timelines.xml

The -w option to basex tells it to preserve whitespace; this is needed because the input document
in the database has mixed content, which is a mixture of text and elements, in the article titles
that the query extracts.

(See Chapter 9 for more details on XQuery.)

LISTING 19-4: timelines.xq

xquery version “1.0”;

(: read dict. of biog. and extract timelines. :)

<timelines>{

 for $e in doc(“chalmers-biography-extract.xml”)//entry

 where $e[xs:integer(@born) gt 1250] and $e[@died]

 return

 <entry born=”{$e/@born}” died=”{$e/@died}” id=”{$e/@id}”>

 { normalize-space(string-join($e/title//text(), “”) }

 </entry>

}</timelines>

Available for
download on
Wrox.com

c19.indd 742c19.indd 742 05/06/12 6:13 PM05/06/12 6:13 PM

http://Wrox.com

The Hoy Books Website ❘ 743

The result of running the query is shown in part in the following code snippet; the actual fi le gen-
erates a lot more entries, but this activity will still work if you use the shorter version shown in
the listing.

<timelines>
 <entry born=”1616” died=”1664” id=”aagard-christian”>Aagard, Christian</entry>
 <entry born=”1572” died=”1641” id=”aarsens-francis”>Aarsens, Francis</entry>
 <entry born=”1648” died=”1718” id=”abeille-gaspar”>Abeille, Gaspar</entry>
 <entry born=”1676” died=”1763” id=”abel-gaspar”>Abel, Gaspar</entry>
 <entry born=”1603” died=”1691” id=”abelli-louis”>Abelli, Louis</entry>
 <entry born=”1589” died=”1655” id=”abraham-nicholas”>Abraham, Nicholas</entry>
 <entry born=”1428” died=”1478” id=”acciaioli-donato”>Acciaioli, Donato</entry>
 <entry born=”1418” died=”1483” id=”accolti-francis”>Accolti, Francis</entry>
 <entry born=”1455” died=”1532” id=”accolti-peter”>Accolti, Peter</entry>
 <entry born=”1696” died=”1772” id=”achard-anthony”>Achard, Anthony</entry>
 <entry born=”1556” died=”1621” id=”achen-john-van”>Achen, John Van</entry>
</timelines>

timelines-short.xml

 2. Now that you’ve made a compact fi le with just the data you need, it’s easy to see how to process it
with XSLT. Because XSLT processors traverse the entire input, they are much easier to work with
if you have one small fi le rather than 100,000 separate articles. XQuery processors with a data-
base, by contrast, are often excellent at fetching a small amount of data from many documents.

The XSLT fi le for this stage is shown in Listing 19-5. Type it into a fi le called timelines.xsl (or
use the version included with the book).

LISTING 19-5: timelines.xsl

<xsl:stylesheet version=”2.0”

 xmlns:svg=”http://www.w3.org/2000/svg”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:variable name=”itemwidth” select=”10” as=”xs:integer” />

 <xsl:variable name=”height” select=”600” as=”xs:integer” />

 <xsl:variable name=”labeloffset” select=”200” as=”xs:integer” />

 <xsl:variable name=”lineoffset” select=”230” as=”xs:integer” />

 <xsl:variable name=”earliest”

 select=”min(for $y in //entry/@born return xs:integer($y))” />

 <xsl:variable name=”latest”

 select=”max(for $y in //entry/@died return xs:integer($y))” />

 <xsl:variable name=”yscale”

 select=”($height - 200) div ($latest - $earliest)” />

 <xsl:template match=”timelines”>

 <svg xmlns=”http://www.w3.org/2000/svg”

 style=”font-size:10pt;background-color:white;color:black;”>

 <xsl:apply-templates />

 </svg>

continues

Available for
download on
Wrox.com

c19.indd 743c19.indd 743 05/06/12 6:13 PM05/06/12 6:13 PM

http://www.w3.org/2000/svg
http://www.w3.org/2001/XMLSchema
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2000/svg
http://Wrox.com

744 ❘ CHAPTER 19 CASE STUDY: XML IN PUBLISHING

LISTING 19-5 (continued)

 </xsl:template>

 <xsl:template match=”entry”>

 <xsl:variable name=”x” select=”$itemwidth * position()” />

 <xsl:variable name=”y1”

 select=”$lineoffset + (@born - $earliest) * $yscale” />

 <xsl:variable name=”y2”

 select=”$lineoffset + (@died - $earliest) * $yscale” />

 <xsl:if test=”position() mod 5 eq 0”>

 <svg:line x1=”{$x - $itemwidth div 2}” y1=”{$lineoffset}”

 x2=”{$x - $itemwidth div 2}” y2=”{$height + 60}”

 style=”stroke-width:1px;stroke:#CCCCCC;stroke-dasharray=2,2”/>

 </xsl:if>

 <svg:text x=”0” y=”0”

 transform=”translate({$x}, {$labeloffset}) rotate(-60)”>

 <xsl:apply-templates />

 </svg:text>

 <svg:line x1=”{$x}” y1=”{$y1}” x2=”{$x}” y2=”{$y2}”

 style=”stroke-width:4pt;stroke:#CCCCCC” />

 <svg:circle cx=”{$x}” cy=”{$y1}” r=”{$itemwidth idiv 3}”

 style=”fill:#CCCCCC;stroke-width:1pt;stroke:#000”

 title=”born {@born}” />

 <svg:circle cx=”{$x}” cy=”{$y2}”

 r=”{$itemwidth idiv 3}”

 style=”fill:#CCCCCC;stroke-width:1pt;stroke:#000”

 title=”died {@died}” />

 </xsl:template>

</xsl:stylesheet>

 3. Run the XSLT transformation on the timelines.xml fi le you created with XQuery to make an
SVG fi le, timelines.svg, like this:

saxon timelines.xml timelines.xsl > timelines.svg

The resulting SVG should look like Listing 19-6, except that long lines were broken for
the book.

LISTING 19-6: timelines.svg

<?xml version=”1.0” encoding=”UTF-8”?>

<svg xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns:svg=”http://www.w3.org/2000/svg” xmlns=”http://www.w3.org/2000/svg”

 style=”font-size:10pt;background-color:white;color:black;”>

 <svg:text x=”0” y=”0” transform=”translate(20, 200) rotate(-60)”>

 Aagard, Christian</svg:text>

 <svg:line x1=”20” y1=”453.728813559322” x2=”20” y2=”507.96610169491527”

Available for
download on
Wrox.com

c19.indd 744c19.indd 744 05/06/12 6:13 PM05/06/12 6:13 PM

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2000/svg
http://www.w3.org/2000/svg
http://Wrox.com

The Hoy Books Website ❘ 745

 style=”stroke-width:4pt;stroke:#CCCCCC”/>

 <svg:circle cx=”20” cy=”453.728813559322” r=”3”

 style=”fill:#CCCCCC;stroke-width:1pt;stroke:#000” title=”born 1616”/>

 <svg:circle cx=”20” cy=”507.96610169491527” r=”3”

 style=”fill:#CCCCCC;stroke-width:1pt;stroke:#000” title=”died 1664”/>

 <svg:text x=”0” y=”0” transform=”translate(40, 200) rotate(-60)”> Aarsens,

 Francis</svg:text> <svg:line x1=”40” y1=”404.01129943502826” x2=”40”

 y2=”481.9774011299435” style=”stroke-width:4pt;stroke:#CCCCCC”/>

 <svg:circle cx=”40” cy=”404.01129943502826” r=”3”

 style=”fill:#CCCCCC;stroke-width:1pt;stroke:#000” title=”born 1572”/>

 <svg:circle cx=”40” cy=”481.9774011299435” r=”3”

 style=”fill:#CCCCCC;stroke-width:1pt;stroke:#000” title=”died 1641”/>

 <svg:text x=”0” y=”0” transform=”translate(60, 200) rotate(-60)”> Abeille,

 Gaspar</svg:text> <svg:line x1=”60” y1=”489.88700564971754” x2=”60”

 y2=”568.9830508474577” style=”stroke-width:4pt;stroke:#CCCCCC”/>

 <svg:circle cx=”60” cy=”489.88700564971754” r=”3”

 style=”fill:#CCCCCC;stroke-width:1pt;stroke:#000” title=”born 1648”/>

 <svg:circle cx=”60” cy=”568.9830508474577” r=”3”

 style=”fill:#CCCCCC;stroke-width:1pt;stroke:#000” title=”died 1718”/>

</svg>

 4. Finally, look at the result in an SVG viewer such as Inkview (included with Inkscape) or with a
web browser. The result is shown in Figure 19-3.

FIGURE 19-3

c19.indd 745c19.indd 745 05/06/12 6:13 PM05/06/12 6:13 PM

746 ❘ CHAPTER 19 CASE STUDY: XML IN PUBLISHING

How It Works

First, the XQuery fragment searches chalmers-biography-extract.xml for all <entry> elements that
have a born attribute whose integer value is larger than 1250 and that also has a died attribute.

For each such element $e, the query constructs an entirely new <entry> element having born, died,
and id attributes taken from $e. The new element contains the value of an { expression }, made from
building a sequence of all text nodes in the title, assembling them into one string with string-join(),
and then converting newlines into spaces and squishing multiple blanks. (Because the XML fi le uses
indenting, copying multiple blank lines to the output made the fi le take up lots of space in the book.)

Next, the XSLT style sheet has a template (starting on line 26, match=”entry”) to match the freshly
made <entry> elements. The template draws a vertical line and some text for the entry, so fi rst it com-
putes the horizontal position (x), then the start and end vertical positions of the line (y1 and y2).

Every fi fth entry (position() mod 5 eq 0) gets a thin, dashed vertical line to make the chart easier to
read.

Then, the template makes a <text> element with the content of the <entry> element; this content is the
name of the person the article is about.

The text is positioned at (0, 0) so that it can be rotated easily; the actual positioning is done with the
transform on line 40.

After the text, the vertical line is drawn, followed by two circles. The line is drawn fi rst so that the cir-
cles sit on top of it; if you move the <svg:line> element down in the style sheet after the circles, you’ll
see that the result looks very messy.

SUMMARY

 ➤ An organization can use XML technologies to reduce costs, have a faster turnaround, do its
own typesetting in-house, produce e-books and a website from the same content, and gener-
ally became immersed in XML!

 ➤ A number of XML vocabularies and standards not covered in chapters of their own exist,
including XSL-FO, XProc, and MathML.

 ➤ You can generate SVG by combining XQuery and XSLT.

Hoy Books has entered the Modern Era, and if some of its staff still keep sheep or sail out in fi shing
boats from time to time, it is a reminder that technology alone cannot replace people’s interests and
needs. It’s time for you to go build, make and, on the way, enjoy XML.

c19.indd 746c19.indd 746 05/06/12 6:13 PM05/06/12 6:13 PM

Summary ❘ 747

EXERCISES

You can fi nd possible solutions to these exercises in Appendix A.

 1. The SVG fi le generated in the Try It Out included a defi nition for the XML Schema namespace

and bound it to the prefi x xs. Why was it included? How would you remove it?

 2. The generated SVG did not use the id attribute in timesheet.xml; if you laboriously typed it in,

you’re probably cursing. Let’s not waste it: change the XSLT to generate links from the article

titles to the articles, using the id attributes.

 3. The team at Hoy Books could have used a relational database and stuck with a proprietary word

processor. What advantages did they get from an XML database?

 4. You may have noticed that the XSLT style sheet in Listing 19-3 does not handle all of the ele-

ments in the longer dictionary sample. Add XSLT templates for the missing elements.

c19.indd 747c19.indd 747 05/06/12 6:13 PM05/06/12 6:13 PM

748 ❘ CHAPTER 19 CASE STUDY: XML IN PUBLISHING

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY POINTS

XML content

management

XML-native databases can off er a cost-eff ective solution.

XQuery, XSLT, XForms, and XHTML make a powerful combination.

XQuery and XSLT Use XQuery to extract data from collections.

Use XSLT when entire documents will be processed.

Markup vocabularies DocBook is primarily for technical documentation of systems, or for

technical books.

DITA is especially suitable when the documents are the primary product

of a department or organization.

The Text Encoding Initiative Guidelines are designed primarily for

humanities computing, including transcriptions and critical editions.

XSL-FO XSL-FO is a W3C XML vocabulary for formatting; it uses (and extends)

CSS for print.

c19.indd 748c19.indd 748 05/06/12 6:13 PM05/06/12 6:13 PM

Answers to Exercises

CHAPTER 1 ANSWERS TO EXERCISES

Exercise 1 Solution

A sample document, now element-centric, is shown here:

<applicationUsers>
 <user>
 <firstName>Joe</firstName>
 <middleName>John</middleName>
 <lastName>Fawcett</lastName>
 </user>
 <user>
 <firstName>Danny</firstName>
 <middleName>John</middleName>
 <lastName>Ayers</lastName>
 </user>
 <user>
 <firstName>Catherine</firstName>
 <middleName>Elizabeth</middleName>
 <lastName>Middleton</lastName>
 </user>
</applicationUsers>

Exercise 2 Solution

The main disadvantage is that the size of the fi le is greatly increased. In general, each
additional user needs an extra 72 bytes, compared to the original version. For a small number
of users this probably won’t matter, but with a large number, or if you are transmitting
many of these fi les, this could mean much more network traffi c, leading to higher costs and
reduced effi ciency. This is one reason that, when designing an XML format for your data,
it is recommended to choose attributes unless you have good reason not to.

A

bapp01.indd 749bapp01.indd 749 05/06/12 4:55 PM05/06/12 4:55 PM

750 ❘ APPENDIX A ANSWERS TO EXERCISES

CHAPTER 2 ANSWERS TO EXERCISES

Exercise 1 Solution

There are four errors altogether:

 ➤ <xmlLibrary> is wrong as element names cannot begin with the letters XML whether
uppercase or lowercase.

 ➤ publicationYear=1898 is incorrect as all attribute values must be quoted, whether or not
they contain spaces.

 ➤ <title> Arms & The Man</title> is using a forbidden character, &, which needs be
replaced with a entity reference, &.

 ➤ <play description> is illegal as it contains a space in the element name.

A corrected version of the fi le could look like this:

<library>
 <play publicationYear=”1898”>
 <title>Arms & The Man</title>
 <author>George Bernard Shaw</author>
 <playDescription>Comedy dealing with the futility of war
 and the hypocrisy of human nature.</playDescription>
 <play>
 <play publicationYear=”1950”>
 <title>The Mousetrap</title>
 <author>Agatha Christie</author>
 <playDescription>A traditional whodunnit
 with an extraordinary twist.</playDescription>
 <play>
</library>

Exercise 2 Solution

An example of declaring an entity reference for an e-mail address is shown in the following snippet
which fi rst declares the reference in a document type defi nition and then uses it by surrounding the
name of it, email, with an ampersand (&) and a semi-colon (;):

<!DOCTYPE data [
 <!ENTITY email “notMyRealEmail@example.com”>
]>
<data>Entity reference example to insert my email: &email;</data>

bapp01.indd 750bapp01.indd 750 05/06/12 4:55 PM05/06/12 4:55 PM

mailto:notMyRealEmail@example.com

Chapter 4 Answers to Exercises ❘ 751

CHAPTER 3 ANSWERS TO EXERCISES

Exercise 1 Solution

The three mistakes are:

 ➤ The xmlData prefi x is used on the <document> element before it is declared.

 ➤ Prefi xes beginning with xml are not allowed.

 ➤ The ns prefi x is used on the <details> element without being declared.

The corrected document is shown in the following snippet:

<data:document xmlns:ns=”http://www.wrox.com/chapter3/exercise1/ns”
 xmlns:data=”http://www.wrox.com/chapter3/exercise1/data”>
 <data:item>
 <ns:details>There’s nothing wrong with this document?</ns:details>
 </data:item>
</data:document>

Exercise1-answer.xml

Exercise 2 Solution

The three errors are:

 ➤ You presumably don’t control the wrox.com domain; instead you should choose a domain
you do control or have permission to use, for example the company that you work for.

 ➤ It is not good practice to have spaces in a namespace URI.

 ➤ Problems can arise when using escaped characters, in this instance %7e. This corresponds
to the ~ character but namespaces are compared on the literal string. This means that often,
due to the vagaries of software support for escaped characters, you’ll see two namespace
URIs which appear identical but aren’t. Assuming you work for example.com a better URI
would be:

http://www.example.com/namespaces/HRapplication/~config

CHAPTER 4 ANSWERS TO EXERCISES

Exercise 1 Solution

Your solution should look very much like the examples already in the document, in following
the form:

 <contact person=”Your Name” tags=”whatever tags you chose”>
 ...
 </contact>

Available for
download on
Wrox.com

bapp01.indd 751bapp01.indd 751 05/06/12 4:55 PM05/06/12 4:55 PM

http://www.wrox.com/chapter3/exercise1/ns
http://www.wrox.com/chapter3/exercise1/data
http://www.example.com/namespaces/HRapplication/~config
http://wrox.com
http://example.com
http://Wrox.com

752 ❘ APPENDIX A ANSWERS TO EXERCISES

Exercise 2 Solution

In any document valid to your DTD, the contact element will now contain the extra gender
attribute, like this:

 <contact person=”Joe_Fawcett” tags=”author xml poetry” gender=”male”>
...
</contact>

To support this, your DTD will now include the following new line:

<!ATTLIST contact gender (male | female) #REQUIRED>

Exercise 3 Solution

To specify that each contact has zero or more phone numbers, you need to provide a cardinality
indicator. In Table 4-1 you can see that the * character is used for “zero or more.” The phone
numbers are given in the XML documents using the <phone> element, but the cardinality is
specifi ed in that element’s parent, leading to the result:

<!ELEMENT contact (name, location, phone*, knows, description)>

Extending the DTD to include website and email elements is a matter of fi rst of adding these to the
declaration of their parent element, <contact>, like so:

<!ELEMENT contact (name, location, phone*, knows, description, website, email)>

Then you should have described what kind of content these elements should support.

<!ELEMENT website (#PCDATA)>
<!ELEMENT email (#PCDATA)>

These elements are probably good candidates for using cardinality constraints, so for example if
you wanted to specify that each contact should have one or more e-mail addresses, but zero or more
websites, the declaration for the <contact> element would now look like this:

<!ELEMENT contact (name, location, phone*, knows, description, website*, email+)>

CHAPTER 5 ANSWERS TO EXERCISES

Exercise 1 Solution

One possible approach to adding the gender attribute is to defi ne the type separately in the
document. After the line:

<attribute name=”person” type=”ID”/>

bapp01.indd 752bapp01.indd 752 05/06/12 4:55 PM05/06/12 4:55 PM

Chapter 6 Answers to Exercises ❘ 753

you can add:

<attribute name=”gender” type=”GenderType” use=”required”/>

Note the use attribute, ensuring a value is provided. Then for the defi nition itself:

 <simpleType name=”GenderType”>
 <restriction base=”string”>
 <enumeration value=”male”/>
 <enumeration value=”female”/>
 </restriction>
 </simpleType>

Exercise 2 Solution

To support one or more phone numbers, it’s enough to add appropriate cardinality attributes to the
phone element:

<element name=”phone” type=”contacts:PhoneType” minOccurs=”0”
maxOccurs=”unbounded”/>

Exercise 3 Solution

The solution to this problem follows the requirements fairly literally, leading to this:

 <complexType>

 <sequence maxOccurs=”unbounded”>

 <any processContents=”lax”
 namespace=”http://www.w3.org/1999/xhtml” />

 </sequence>

 </complexType>

Remember that <any> cannot be placed directly inside an <complexType>. You need a container
like a sequence or choice.

CHAPTER 6 ANSWERS TO EXERCISES

Exercise 1 Solution

If you want to use the XML based syntax then you fi rst need to add a reference to the XML Schema
data type library on the <element> element like so:

<element xmlns=”http://relaxng.org/ns/structure/1.0” name=”library”
 datatypeLibrary=”http://www.w3.org/2001/XMLSchema-datatypes”>

bapp01.indd 753bapp01.indd 753 05/06/12 4:55 PM05/06/12 4:55 PM

http://www.w3.org/1999/xhtml
http://relaxng.org/ns/structure/1.0
http://www.w3.org/2001/XMLSchema-datatypes

754 ❘ APPENDIX A ANSWERS TO EXERCISES

You can then add the actual attribute with its data type, and wrap it in an <optional> element
as follows:

<element xmlns=”http://relaxng.org/ns/structure/1.0” name=”library”
 datatypeLibrary=”http://www.w3.org/2001/XMLSchema-datatypes”>
 <oneOrMore>
 <element name=”book”>
 <attribute name=”id”/>
 <attribute name=”publishedDate”/>
 <attribute name=”genre”/>
 <optional>
 <attribute name=”url”>
 <data type=”anyURI” />
 </attribute>
 </optional>
 <element name=”title”>
 <text/>
 </element>

If you choose to use the compact syntax then you don’t need to declare the data type library because
XML Schema types are already bound to the xsd prefi x. You just need to declare the attribute with
its data type, and follow it with a question mark to make it optional, as shown here:

element library {
 element book {
 attribute id { text},
 attribute publishedDate { text },
 attribute genre { text },
 attribute url { xsd:anyURI }?,
 element title { text },
 element authors {
 attribute count { text },
 element author {
 attribute id { text },
 text
 }+
 },
 element characters {
 element character {
 attribute id { text },
 element name { text },
 element description { text }
 }*
 },
 element description { text }?
 }+
}

Exercise 2 Solution

Add an <xs:annotation> element containing an <xs:appinfo> element to hold the Schematron
rule. The rule’s context is set to character and then you can use XPath’s string-length() func-
tion to compare the two values:

bapp01.indd 754bapp01.indd 754 05/06/12 4:55 PM05/06/12 4:55 PM

http://relaxng.org/ns/structure/1.0
http://www.w3.org/2001/XMLSchema-datatypes

Chapter 8 Answers to Exercises ❘ 755

<xs:element name=”characterDescriptionLength”>
 <xs:annotation>
 <xs:appinfo>
 <sch:pattern id=”character”>
 <sch:rule context=”character”>
 <sch:assert test=”string-length(description) >
 string-length(name)”>The character’s description must be
 longer than their name.</sch:assert>
 </sch:rule>
 </sch:pattern>
 </xs:appinfo>

 </xs:annotation>

CHAPTER 7 ANSWERS TO EXERCISES

Exercise 1 Solution

//entry[.//born]

Recall that // is short for descendant (in effect), so that .//born evaluates to a list of all <born>
elements anywhere under the current node and at the start of the expression // means the
root element or any child or descendent of the root element.

Exercise 2 Solution

It returns all <div> elements that are the fi rst child of their parent, anywhere inside the <body>
element that’s the child of the outermost element, <html> in this case.

It may return more than one node. An incorrect answer might be that it returns the fi rst
<div> element in the document; it doesn’t do that.

Exercise 3 Solution
//div[not(@id)]

CHAPTER 8 ANSWERS TO EXERCISES

Exercise 1 Solution

Choose three from the following:

 ➤ generate-id(): Generates a unique ID for a node.

 ➤ last(): Gives the size of the context.

 ➤ position(): Gives a nodes position in the context.

 ➤ system-property(): Used to discover various system properties. For example:
system-property(“xsl:version”) gives the version of XSLT the processor supports
such as 2.0.

bapp01.indd 755bapp01.indd 755 05/06/12 4:55 PM05/06/12 4:55 PM

756 ❘ APPENDIX A ANSWERS TO EXERCISES

 ➤ key(): Returns a node based on a predefi ned key declared with the <xsl:key> element.

 ➤ function-available(): Tests whether a function, whose name is passed in as a string,
is available to be used.

There are plenty more; see the XSLT specifi cations at www.w3.org/TR/xslt20 for full details.

Exercise 2 Solution

First you’ll need an external document to represent the currency rates; this should be created via
a web service but for this example it’s just a hard-coded list of values like so:

 <conversions>
 <conversion from=”USD” to=”GBP” rate=”0.625195374”/>
 <conversion from=”GBP” to=”USD” rate=”1.5995” />
 <conversion from=”USD” to=”EUR” rate=”0.75001875” />
 <conversion from=”EUR” to=”USD” rate=”1.3333” />
 <conversion from=”GBP” to=”EUR” rate=”1.19965499” />
 <conversion from=”EUR” to=”GBP” rate=”0.833572992” />
 </conversions>

ConversionRates.xml

The actual stylesheet has three <xsl:param> elements to represent the currency that you are
converting from, the currency you are converting to, and the amount to convert. These all have
defaults specifi ed as shown here.

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet version=”2.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 exclude-result-prefixes=”xs”>

 <xsl:output indent=”yes” />

 <xsl:param name=”currencyFrom” select=”’USD’” as=”xs:string” />
 <xsl:param name=”currencyTo” select=”’GBP’” as=”xs:string” />
 <xsl:param name=”amountToConvert” select=”1” as=”xs:decimal”/>
 <xsl:variable name=”conversionRates”
 select=”document(‘conversionrates.xml’)/*” />

 <xsl:template name=”main”>
 <xsl:variable name=”rate” select=
“$conversionRates/conversion
[@from = $currencyFrom and @to = $currencyTo]/@rate” />
 <conversion>
 <from><xsl:value-of select=”$currencyFrom” /></from>
 <to><xsl:value-of select=”$currencyTo” /></to>
 <amountToConvert>
 <xsl:value-of select=”$amountToConvert” /></amountToConvert>
 <rate><xsl:value-of select=”$rate” /></rate>
 <convertedAmount>
 <xsl:value-of select=”$amountToConvert * $rate” /></convertedAmount>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

bapp01.indd 756bapp01.indd 756 05/06/12 4:55 PM05/06/12 4:55 PM

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/xslt20
http://Wrox.com
http://Wrox.com

Chapter 9 Answers to Exercises ❘ 757

 </conversion>
 </xsl:template>
</xsl:stylesheet>

CurrencyConvertor.xslt

The document() function is used to access the conversion rates and then the individual
<conversion> element is chosen by matching its from and to attributes. Finally the full details
are output, including the converted amount that is found by multiplying the input amount by
newly acquired $rate.

You can test this code by using one of the following command lines:

java net.sf.saxon.Transform -s:CurrencyConvertor.xslt -it:main
 currencyFrom=GBP currencyTo=EUR amountToConvert=100

or

Transform -s:CurrencyConvertor.xslt -it:main
 currencyFrom=GBP currencyTo=EUR amountToConvert=100

You should see the following output:

<?xml version=”1.0” encoding=”UTF-8”?>
<conversion>
 <from>GBP</from>
 <to>EUR</to>
 <amountToConvert>100</amountToConvert>
 <rate>1.19965499</rate>
 <convertedAmount>119.965499</convertedAmount>
</conversion>

CHAPTER 9 ANSWERS TO EXERCISES

Exercise 1 Solution

You can either list the input numbers (1, 2, 3...) or use (1 to 100) as here:

for $i in (1 to 100)
return $i * $i

Exercise 2 Solution

Here’s one way to do it. You can use normalize-space() because some of the titles in the
 dictionary have newlines inside them, making the output hard to read.

for $e in //entry[@born and @died]
let $age := xs:integer($e/@died) - xs:integer($e/@born)
where $age gt 88
order by $age descending
return concat(normalize-space($e/title), “ “, $age, “
”)

bapp01.indd 757bapp01.indd 757 05/06/12 4:55 PM05/06/12 4:55 PM

758 ❘ APPENDIX A ANSWERS TO EXERCISES

Exercise 3 Solution

Please contact the authors directly with the solution ☺.

Exercise 4 Solution

There is actually only one matching entry, for John Alexander. Find it like this:

for $e in //entry[count(.//p) ge 5]
return concat(normalize-space($e/title),”
”)

CHAPTER 10 ANSWERS TO EXERCISES

Exercise 1 Solution

The main reasons to choose a relational database with XML features over a pure XML database
include the following:

 ➤ Unless all your data is XML, you’ll need a traditional relational database for your
tabular data, meaning one that uses two systems.

 ➤ It is easier to have these two forms of data stored in one system rather than two, as it makes
writing queries that need elements from both formats simpler.

 ➤ Relational databases are well-established and highly effi cient; XML databases are still
somewhat rare and understood less.

 ➤ There are few features that XML databases have that can’t be implemented in a relational
one but there are many relational features that an XML database just won’t have.

Exercise 2 Solution

The fi ve methods of the xml data type are:

 ➤ query(): Use XQuery or XPath to retrieve and create XML.

 ➤ value(): Use XPath to extract an atomic value as a SQL Server data type.

 ➤ exist(): Check if a particular node exists in an XML document.

 ➤ modify(): Used to replace, delete, or insert nodes in an existing document.

 ➤ nodes(): Used to turn XML into a tabular format so it can be treated a traditional
SQL table.

Exercise 3 Solution

There are many candidates to be included in future updates of MySQL’s XML capabilities. Some
suggestions include:

bapp01.indd 758bapp01.indd 758 05/06/12 4:55 PM05/06/12 4:55 PM

Chapter 11 Answers to Exercises ❘ 759

 ➤ A proper way to store XML rather than just as text.

 ➤ The ability to return XML fragments defi ned by XPath rather than just text.

 ➤ Proper namespace handling rather than just having to use the same prefi x as defi ned
in the XML.

 ➤ Full XQuery support to be able to create new documents based on ones held
in the database.

 ➤ A way to treat XML data as relational similar to SQL Server’s nodes() method.

CHAPTER 11 ANSWERS TO EXERCISES

Exercise 1 Solution

There are four changes to Listing 11-5, SaxParser5.java, which need to be made to receive
comment notifi cations.

 1. Add a reference to the org.xml.sax.ext package so that you can use the newer
DefaultHandler2 interface. This reference is included with those at the beginning
of the fi le:

 import org.xml.sax.*;
 import org.xml.sax.helpers.*;
 import org.xml.sax.ext.*;
 import java.io.*;

 2. Change the class to inherit from DefaultHandler2:

 public class SaxParser6 extends DefaultHandler2 {

 3. Use the setProperty() method to specify the handler that will deal with comments;
this needs to be set to the SaxParser6 class itself:

 SaxParser6 parser = new SaxParser6();
 reader.setContentHandler(parser);
 reader.setErrorHandler(parser);
 reader.setProperty(“http://xml.org/sax/properties/lexical-handler”, parser);

 4. Add a comment() method to receive the event, this looks very similar to the characters()
method:

 public void comment(char[] ch,
 int start,
 int length)
 throws SAXException{
 System.out.print(“SAX Event: COMMENT[“);
 StringBuffer commentBuffer = new StringBuffer();
 try {

bapp01.indd 759bapp01.indd 759 05/06/12 4:55 PM05/06/12 4:55 PM

http://xml.org/sax/properties/lexical-handler

760 ❘ APPENDIX A ANSWERS TO EXERCISES

 commentBuffer.append(ch, start, length);
 System.out.println(commentBuffer.toString());
 } catch (Exception e) {
 e.printStackTrace();
 }
 System.out.println(“]”);
 }

The full code is shown in Listing A-1:

LISTING A-1: SaxParser6.java

import org.xml.sax.*;
import org.xml.sax.helpers.*;
import org.xml.sax.ext.*;
import java.io.*;

public class SaxParser6 extends DefaultHandler2 {

 private Locator docLocator = null;
 private StringBuffer charactersBuffer = new StringBuffer();

 public void setDocumentLocator(Locator locator)
 {
 docLocator = locator;
 }

 public void startDocument() throws SAXException {
 System.out.println(“SAX Event: START DOCUMENT”);
 }

 public void endDocument() throws SAXException {
 System.out.println(“SAX Event: END DOCUMENT”);
 }

 public void startElement(String namespaceURI,
 String localName,
 String qName,
 Attributes attr) throws SAXException {
 int lineNumber = 0;
 if (docLocator != null)
 {
 lineNumber = docLocator.getLineNumber();
 }
 System.out.println(“SAX Event: START ELEMENT[“ + localName + “]”);
 if (lineNumber != 0)
 {
 System.out.println(“\t(Found at line number: “ + lineNumber + “.)”);
 }
 for (int i = 0; i < attr.getLength(); i++){
 System.out.println(“ ATTRIBUTE: “ + attr.getLocalName(i) +
 “ VALUE: “ + attr.getValue(i));
 }

Available for
download on
Wrox.com

bapp01.indd 760bapp01.indd 760 05/06/12 4:55 PM05/06/12 4:55 PM

http://Wrox.com

Chapter 11 Answers to Exercises ❘ 761

 charactersBuffer.setLength(0);
 }

 public void endElement(String namespaceURI,
 String localName,
 String qName) throws SAXException {
 System.out.print(“SAX Event: CHARACTERS[“);
 System.out.println(charactersBuffer.toString());
 System.out.println(“]”);
 System.out.println(“SAX Event: END ELEMENT[“ + localName + “]”);
 }

 public void characters(char[] ch,
 int start,
 int length) throws SAXException {
 try {
 charactersBuffer.append(ch, start, length);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public void warning (SAXParseException exception)
 throws SAXException {
 System.err.println(“[Warning] “ +
 exception.getMessage() + “ at line “ +
 exception.getLineNumber() + “, column “ +
 exception.getColumnNumber());
 }

 public void error (SAXParseException exception)
 throws SAXException {
 System.err.println(“[Error] “ +
 exception.getMessage() + “ at line “ +
 exception.getLineNumber() + “, column “ +
 exception.getColumnNumber());
 }

 public void fatalError (SAXParseException exception)
 throws SAXException {
 System.err.println(“[Fatal Error] “ +
 exception.getMessage() + “ at line “ +
 exception.getLineNumber() + “, column “ +
 exception.getColumnNumber());
 throw exception;
 }

 public void comment(char[] ch,
 int start,
 int length)
 throws SAXException{
 System.out.print(“SAX Event: COMMENT[“);
 StringBuffer commentBuffer = new StringBuffer();
 try {

continues

bapp01.indd 761bapp01.indd 761 05/06/12 4:55 PM05/06/12 4:55 PM

762 ❘ APPENDIX A ANSWERS TO EXERCISES

LISTING A-1 (continued)

 commentBuffer.append(ch, start, length);
 System.out.println(commentBuffer.toString());
 } catch (Exception e) {
 e.printStackTrace();
 }
 System.out.println(“]”);
 }

 public static void main(String[] argv){
 String inputFile = argv[0];
 System.out.println(“Processing ‘” + inputFile + “’.”);
 System.out.println(“SAX Events:”);
 try {
 XMLReader reader = XMLReaderFactory.createXMLReader();
 SaxParser6 parser = new SaxParser6();
 reader.setContentHandler(parser);
 reader.setErrorHandler(parser);
 reader.setProperty
 (“http://xml.org/sax/properties/lexical-handler”, parser);
 try
 {
 reader.setFeature(“http://xml.org/sax/features/validation”, true);
 } catch (SAXException e) {
 System.err.println(“Cannot activate validation”);
 }

 reader.parse(new InputSource(
 new FileReader(inputFile)));
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
}

When this class is run against the PeopleWithComment.xml sample it reports two comments as
expected.

Exercise 2 Solution

The way to restrict external fi le access to be limited to those residing locally, is very similar to the
example in “Controlling External Resources” section of the chapter that let fi les only be
retrieved from specifi c servers. In this case though you use a FileIOPermission rather than
a WebPermission as shown in the following snippet:

var localFilesPermission = new FileIOPermission(PermissionState.None);
localFilesPermission.AllLocalFiles = FileIOPermissionAccess.Read;
var permissionSet = new PermissionSet(PermissionState.None);
permissionSet.AddPermission(localFilesPermission);
var reader = XmlReader.Create(@”myXmlFile.xml”);
reader.XmlResolver = new XmlSecureResolver(new XmlUrlResolver(), permissionSet);

bapp01.indd 762bapp01.indd 762 05/06/12 4:55 PM05/06/12 4:55 PM

http://xml.org/sax/properties/lexical-handler
http://xml.org/sax/features/validation

Chapter 13 Answers to Exercises ❘ 763

A FileIOPermision is created and its AllLocalFiles property set to true. This
permission is then added to a new PermissionSet which is, in turn, used to construct
an XmlSecureResolver.

CHAPTER 12: ANSWERS TO EXERCISES

Answer to Exercise 1

The code is similar to the element-centric version, the only changes being in the
CreateMusicLibrary() function:

 Private Function CreateMusicLibrary() As XElement
 Dim cdData = GetCDs()
 Dim musicLibrary =
 <musicLibrary>
 <%= From item In cdData
 Select <cd id=<%= item.ID %> year=<%= item.Year %> artist=<%= item.Artist
%> genre=<%= item.Genre %>>
 <title><%= item.Title %></title>
 </cd> %>
 </musicLibrary>
 Return musicLibrary
 End Function

The only difference is that the literals used to create the elements, other than that of <title> which
remains, have been replaced with those to use attributes.

Module1.vb in AttributeCentricLibrary project

CHAPTER 13 ANSWERS TO EXERCISES

Exercise 1 Solution

You should check the specs and some real-world feeds yourself, but the elements used for identifying
the author of an item are usually one of the following: author, dc:creator, atom:name, or foaf:
name. The author element appears in the “simple” RSS versions (0.9x, 2.0) and has no namespace.
However, note a slight complication: there is also an element in RSS 2.0 called name, which is used
for the name of the text object in a text input area (the text input area elements are rarely
encountered in practice, but it does make for a more interesting exercise).

The solution will involve adding a little more checking of element names towards the end of the
endElementNS method, with code that looks something like this:

...
if localname == “author”:

bapp01.indd 763bapp01.indd 763 05/06/12 4:55 PM05/06/12 4:55 PM

764 ❘ APPENDIX A ANSWERS TO EXERCISES

 self.current_item.author = text
 return

Exercise 2 Solution

To determine the format of a feed the obvious approach is to test the root element for its qualifi ed
name, with the following possible values:

 ➤ rdf:RDF — RSS 1.0

 ➤ rss — RSS 2.0 (or one of the other “simple” RSS variants)

 ➤ atom:feed — Atom

The title of the feed is in a different part of the document in each case, so here it is:

 ➤ rdf:RDF/rss1:channel/rss1:title — RSS 1.0

 ➤ rss/channel/title — RSS 2.0 (and variants)

 ➤ atom:feed/atom:title — Atom

There are many different ways of examining/accessing the parts of an XML document with XSLT.
Here is a sample solution that demonstrates two approaches:

<xsl:stylesheet version=”1.0”
 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
 xmlns:xhtml=”http://www.w3.org/1999/xhtml”
 xmlns:atom=”http://www.w3.org/2005/Atom”
 xmlns:rss1=”http://purl.org/rss/1.0/”
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<xsl:output method=”html” indent=”yes”/>

<xsl:template match=”/”>
 <xsl:text disable-output-escaping=”yes”>
 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
 </xsl:text>
 <html>
 <head>
 <title>Feed Info</title>
 </head>
 <body>
<dl>
 <dt>Format : </dt>
 <dd>
<xsl:if test=”/rdf:RDF”>RSS 1.0</xsl:if>
<xsl:if test=”/rss”>RSS 2.0</xsl:if>
<xsl:if test=”/atom:feed”>Atom</xsl:if>
</dd>
 <dt>Title : </dt>
 <dd><xsl:apply-templates /></dd>
</dl>

bapp01.indd 764bapp01.indd 764 05/06/12 4:55 PM05/06/12 4:55 PM

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/xhtml
http://www.w3.org/2005/Atom
http://purl.org/rss/1.0/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd%E2%80%9D>

Chapter 14 Answers to Exercises ❘ 765

 </body>
 </html>
</xsl:template>

<xsl:template match=”rdf:RDF”>
 <xsl:value-of select=”rss1:channel/rss1:title” />
</xsl:template>

<xsl:template match=”rss”>
 <xsl:value-of select=”channel/title” />
</xsl:template>

<xsl:template match=”atom:feed”>
 <xsl:value-of select=”atom:title” />
</xsl:template>

<xsl:template match=”text()” />

</xsl:stylesheet>

Checking the root element to detect the format (and supplying a suitable display value) is achieved
through a series of simple xsl:if expressions, e.g:

<xsl:if test=”/rdf:RDF”>RSS 1.0</xsl:if>

So here if the root element of the document has the name RDF and is in the appropriate namespace
(declared as http://www.w3.org/1999/02/22-rdf-syntax-ns#), the value “RSS 1.0” will be
passed to the output from the XSLT.

The titles are extracted using templates, for example:

<xsl:template match=”atom:feed”>
 <xsl:value-of select=”atom:title” />
</xsl:template>

Here, if there’s a match in the document to Atom’s root element, this template will pull out the text
content of the corresponding title element for the feed.

CHAPTER 14 ANSWERS TO EXERCISES

Exercise 1 Solution

There are three pieces of information to send so you have two choices: either send three parameters
or wrap the three pieces of data in a structure and send the structure. The fi rst of these options
would look like the following:

<methodCall>
 <methodName>AdSevice.Add</methodName>
 <params>
 <param>

bapp01.indd 765bapp01.indd 765 05/06/12 4:55 PM05/06/12 4:55 PM

http://www.w3.org/1999/02/22-rdf-syntax-ns#

766 ❘ APPENDIX A ANSWERS TO EXERCISES

 <value>
 <string>Joe Fawcett</string>
 </value>
 </param>
 <param>
 <value>
 <string>555-1234</string>
 </value>
 </param>
 <param>
 <value>
 <string><![CDATA[My dog, Fido, has gone missing
 from my home near...]]></string>
 </value>
 </param>
 </params>
</methodCall>

The second option, using a structure would look like the following:

<methodCall>
 <methodName>AdService.Add</methodName>
 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>Name</name>
 <value>
 <string>Joe Fawcett</string>
 </value>
 </member>
 <member>
 <name>PhoneNumber</name>
 <value>
 <string>555-1234</string>
 </value>
 </member>
 <member>
 <name>AdText</name>
 <value>
 <string><![CDATA[My dog, Fido, has gone missing
 from my home near...]]></string>
 </value>
 </member>
 </struct>
 </value>
 </param>
 </params>
</methodCall>

bapp01.indd 766bapp01.indd 766 05/06/12 4:55 PM05/06/12 4:55 PM

Chapter 15 Answers to Exercises ❘ 767

Exercise 2 Solution

In theory REST style requests don’t have to have any bearing on what they are trying to achieve
but in practice most people like to make them guessable, that is if you have seen one you can guess
the format needed for similar ones. In addition to the request having an easy to understand format,
most REST services shy away from using the querystring to pass data and prefer instead to use the
different components of the URL. Bearing these two practices in mind, a typical request would look
like one of the following:

 http://services.wrox.com/customer/3263827/order/THX1138

 http://services.wrox.com/orderinquiry/3263828/THX1138

CHAPTER 15 ANSWERS TO EXERCISES

Exercise 1 Solution

The SOAP document will look similar to the following:

<soap:Envelope
 xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
 soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
 <soap:Body>
 <q:StockPriceRequest xmlns:q=”http://wrox.com/beginningXml/stockprice”>
 <StockSymbol>MSFT</StockSymbol>
 </q:StockPriceRequest>
 </soap:Body>
</soap:Envelope>

StockPriceRequest.xml

Your answer may differ in the choice of namespace bound to the q prefi x and, of course, you may
have chosen a different prefi x altogether.

Exercise 2 Solution

There can be quite a variety in how the WSDL looks but a sample is shown here:

<?xml version=”1.0”?>
<definitions name=”StockPrice”
 targetNamespace=
“http://wrox.com/beginningXml/stockprice”
 xmlns:tns=”http://wrox.com/beginningXml/stockprice”
 xmlns:q=”http://wrox.com/beginningXml/stockprice/”
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns=”http://schemas.xmlsoap.org/wsdl/”>

Available for
download on
Wrox.com

Available for
download on
Wrox.com

bapp01.indd 767bapp01.indd 767 05/06/12 4:55 PM05/06/12 4:55 PM

http://services.wrox.com/customer/3263827/order/THX1138
http://services.wrox.com/orderinquiry/3263828/THX1138
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/encoding/
http://wrox.com/beginningXml/stockprice
http://wrox.com/beginningXml/stockprice
http://wrox.com/beginningXml/stockprice
http://wrox.com/beginningXml/stockprice/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/
http://Wrox.com
http://Wrox.com

768 ❘ APPENDIX A ANSWERS TO EXERCISES

 <types>
 <schema targetNamespace=”http://wrox.com/beginningXml/stockprice”
 xmlns=”http://www.w3.org/2000/10/XMLSchema”>
 <element name=”StockPriceRequest”>
 <complexType>
 <all>
 <element name=”StockSymbol” type=”string”/>
 </all>
 </complexType>
 </element>
 <element name=”StockPriceResponse”>
 <complexType>
 <all>
 <element name=”price” type=”decimal”/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <message name=”GetStockPriceRequest”>
 <part name=”body” element=”q:StockPriceRequest”/>
 </message>

 <message name=”GetStockPriceResponse”>
 <part name=”body” element=”q:StockPriceResponse”/>
 </message>

 <portType name=”StockPricePortType”>
 <operation name=”GetStockPrice”>
 <input message=”tns:GetStockPriceRequest”/>
 <output message=”tns:GetStockPriceResponse”/>
 </operation>
 </portType>

 <binding name=”StockPriceSoapBinding”
 type=”tns:StockPricePortType”>
 <soap:binding style=”document”
 transport=”http://schemas.xmlsoap.org/soap/http”/>
 <operation name=”GetStockPrice”>
 <soap:operation soapAction=
 “http://wrox.com/beginningXml/GetStockPrice”/>
 <input>
 <soap:body use=”literal”/>
 </input>
 <output>
 <soap:body use=”literal”/>
 </output>
 </operation>
 </binding>

 <service name=”StockPriceService”>
 <documentation>Example stock price service</documentation>
 <port name=”StockPricePort”
 binding=”tns:StockPriceSoapBinding”>

bapp01.indd 768bapp01.indd 768 05/06/12 4:55 PM05/06/12 4:55 PM

http://wrox.com/beginningXml/stockprice
http://www.w3.org/2000/10/XMLSchema
http://schemas.xmlsoap.org/soap/
http://wrox.com/beginningXml/GetStockPrice

Chapter 16 Answers to Exercises ❘ 769

 <soap:address
 location=”http://wrox.com/beginningXml/services/stock”/>
 </port>
 </service>

</definitions>

StockPrice.wsdl

The main point is that the namespace chosen in Exercise 1 is the same as the targetNamespace
attribute on the <schema> element and that the element name specifi ed in the <message> section
and the names specifi ed by <element> elements in the <schema> section also match.

CHAPTER 16 ANSWERS TO EXERCISES

Exercise 1 Solution

You could add a second loop, perhaps like this:

match on start of an interior word
$wordstart = ‘ ‘ . $q;
foreach ($items as $key => $value) {
 $where = strpos(strtolower($value), $wordstart);
 if ($where !== false) {
 echo “$value\n”;
 if (++$n_found > $maxitems) {
 return;
 }
 }
}

Exercise 2 Solution

Here’s one way to do it. The regular expression handling in PHP is less central than in Perl, but is
still very useful. You could use strpos() again instead, though, if you were careful not to match
strings already returned.

next, anywhere in the word *except* at the start
of a word
$pattern = ‘/[^ \#]$q.*#/i’;
foreach ($items as $key => $value) {
 $where = preg_match($pattern, $value);
 if ($where !== false && $where != 0) {
 echo “$value\n”;
 if (++$n_found > $maxitems) {
 echo “\n”;
 return;
 }
 }
}

bapp01.indd 769bapp01.indd 769 05/06/12 4:55 PM05/06/12 4:55 PM

http://wrox.com/beginningXml/services/stock

770 ❘ APPENDIX A ANSWERS TO EXERCISES

Exercise 3 Solution

This question could be a project for an undergraduate class, or could be done in a day or two by
someone fairly determined. The result is a very powerful architecture that is explored a little more
in Chapter 19, “Case Study: XML in Publishing.”

CHAPTER 17 ANSWERS TO EXERCISES

Exercise 1 Solution

Change the margin-left property of the p rule to be at least 150px, and change the margin-left of
the img rule from –73 pixels to 150 pixels or more.

Exercise 2 Solution

HML was defi ned as an SGML application; the SGML is ISO 8879, the Standard Generalized
Markup Language.

Exercise 3 Solution

CSS margins are outside the border, and padding is inside the border, between the border and
the content. CSS top and bottom margins collapse when blocks are adjacent; padding never
collapses. CSS margins are always transparent, whereas padding takes on the element’s background.

Exercise 4 Solution

The HTML 5 specifi cation defi nes the algorithm to be used to parse the input regardless of whether
it conforms. All browsers use the same algorithm.

CHAPTER 18 ANSWERS TO EXERCISES

Exercise 1 Solution

A <circle> element has a single radius attribute, r; an <ellipse> element has two, rx and ry.

Exercise 2 Solution

Any two of SMIL animations, scripted animations, CSS animations, or using a library (which will
in turn probably use one or more of the other three methods).

Exercise 3 Solution

It is important to provide text descriptions so that a web search engine crawler can index the text,
making the diagram fi ndable using a web search. It is also important to make web pages accessible

bapp01.indd 770bapp01.indd 770 05/06/12 4:55 PM05/06/12 4:55 PM

Chapter 19 Answers to Exercises ❘ 771

to people who are blind, and the <desc> element enables those people to understand the diagram
or picture based on textual descriptions of the various components.

Exercise 4 Solution

In the lowercase versions of the commands, the coordinates are relative to the starting point of
the subpath, and in the uppercase version they are absolute.

CHAPTER 19 ANSWERS TO EXERCISES

Exercise 1 Solution

The XSD namespace was used in the style sheet; the XSLT processor has no way of knowing it’s not
needed, because you might be using QNames in content, for example <type>xs:integer</type>.
To remove it, along with the XSLT namespace, add the following to the <xsl:stylesheet>
 element’s start tag:

exclude-result-prefixes=”xs xsl”

Exercise 2 Solution

Use something like this:

<xlink:a href=”{@id}.html”><xsl:apply-templates/></xlink:a>

You’ll have to declare the xlink namespace prefi x properly of course; see Chapter 18 for examples.

Exercise 3 Solution

The team at Hoy Books used XQuery to extract information from inside documents. With a
relational database they would have needed to extract the information on import (perhaps using
a Visual Basic program) and store it in separate tables, risking integrity problems. They would
also have had a greater mixture of technologies with their respective limitations and necessary
skills, because they need to generate XHTML for e-book publishing. Perhaps you can come up with
other advantages.

Exercise 4 Solution

[open-ended]

bapp01.indd 771bapp01.indd 771 05/06/12 4:55 PM05/06/12 4:55 PM

bapp01.indd 772bapp01.indd 772 05/06/12 4:55 PM05/06/12 4:55 PM

XPath Functions

This appendix includes a complete list (as of when this book was written) of functions that
can be called by XPath expressions (including those from XQuery and XSLT) to process and
manipulate values. The functions are marked as to the XPath version in which they were
introduced: XPath 1 in 1999, XPath 2 in 2006, or XPath 3, still a draft for this edition of
Beginning XML but considered close to fi nal. The list does not include extensions to XPath by
other languages such as Java or PHP or SQL, and does not include the XPath 1.1 draft since
that was obsoleted by XPath 2.

B

NOTE See www.expath.org for some extra functions that are fairly widely

implemented, and also for some implementations of XSLT 2 and XPath 2 func-

tions that work in XSLT 1.

NOTE If you are using an XPath 1 engine, such as those found in web browsers,

PHP, Python, Perl, and many other languages, keep to the functions marked for 1.0.

The tables in this appendix give an alphabetical list of functions roughly sorted into the
following categories:

 ➤ Boolean functions

 ➤ Time and Data

 ➤ Files and the Environment

bapp02.indd 773bapp02.indd 773 05/06/12 5:02 PM05/06/12 5:02 PM

http://www.expath.org

774 ❘ APPENDIX B XPATH FUNCTIONS

 ➤ Functions that Operate on Functions

 ➤ Functions that Operate on Items

 ➤ Numeric Functions

 ➤ Functions that Operate on Nodes

 ➤ Functions that Operate on QNames

 ➤ Functions that Operate on Sequences

 ➤ Functions that Operate on Strings and URIs

 ➤ Functions to Construct Objects by XSD Type

Each table gives three items for each function:

 1. The function name, with its signature

 2. The XPath version in which the function fi rst appeared, in a table column headed V to save
space

 3. A short description

The functions are shown in the Functions and Operators namespace, which in XQuery is bound by
default to the prefi x fn. Because this is the default namespace, you can actually omit the fn: in most
cases. In XSLT the prefi x is not bound by default, and you should either bind it yourself or just omit
the prefi x entirely, because, again, it’s the default. If you need to bind them, use the following URIs:

 ➤ err: http://www.w3.org/2005/xqt-errors (used for error codes)

 ➤ fn: http://www.w3.org/2005/xpath-functions

 ➤ math: http://www.w3.org/2005/xpath-functions/math

 ➤ xs: http://www.w3.org/2001/XMLSchema

The information about Schema types makes sense only for XPath 2 and later. XSLT 2 and XQuery
1.0 used XPath 2.0, but in XPath 1 everything was a string or numeric or simply untyped, and there
were no XML Schema type names. For example, the fi rst function in the fi rst table, fn:boolean(),
is declared as taking a single argument, $arg. The $arg argument must have a type that matches
a sequence of zero or more (because of the *) things, each of which match item(). You’d call the
function, for example, boolean(/book/@isPaperback) and it would return xs:boolean.

A full explanation of the XPath type notation is beyond the scope of a Beginning book, but if you
need it you can refer the References section at the end of the XPath specifi cation (http://www
.w3.org/TR/), which is more readable than you might expect!

Some of the functions appear more than once in this appendix, with different numbers of
arguments. This is sometimes called function overloading; the XPath engine decides which version
of the function to call based on the number of arguments you give it. Often there is a zero-argument
version that will default to using the context item, so you can use it in a predicate. For example, the
following code fi nds all chapter titles that are more than 100 characters long.

/book/chapter/title[string-length() > 100]

bapp02.indd 774bapp02.indd 774 05/06/12 5:02 PM05/06/12 5:02 PM

http://www.w3.org/2005/xqt-errors
http://www.w3.org/2005/xpath-functions
http://www.w3.org/2005/xpath-functions/math
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/
http://www.w3.org/TR/

XPath Functions ❘ 775

A few functions were originally defi ned in XSLT, and were not available for use in XPath or
XQuery. Later most of them were moved into the Functions and Operators document so that they
could also be part of both XPath and XQuery as well as XSLT. They have been marked as such so
you know whether you can use them in specifi c environments such as XPath 1.

Boolean Functions

Boolean functions operate on the values true and false, represented in XPath as true() and false().

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:boolean($arg as item()*) as xs:

boolean

1.0 Computes the eff ective boolean value of

the sequence $arg.

fn:not($arg as item()*) as xs:boolean 1.0 Returns true if the eff ective boolean

value of $arg is false, or false if it is true.

fn:true() as xs:boolean 1.0 Returns the xs:boolean value true.

Time and Date Functions

Time and Date functions operate on values defi ned by XML Schema to represent times, dates, and
durations.

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:adjust-dateTime-to-timezone

($arg as xs:dateTime?) as xs:dateTime

2.0 Adjusts an xs:dateTime value to a

specifi c time zone, or to no time zone

at all.

fn:adjust-dateTime-to-timezone

($arg as xs:dateTime?, $timezone as xs:

dayTimeDuration?) as xs:dateTime

2.0

fn:adjust-date-to-timezone

($arg as xs:date?) as xs:date?

2.0 Adjusts an xs:date value to a specifi c

time zone, or to no time zone at all; the

result is the date in the target time zone

that contains the starting instant of the

supplied date.

fn:adjust-date-to-timezone

($arg as xs:date?, $timezone as xs:

dayTimeDuration?) as xs:date?

2.0

continues

bapp02.indd 775bapp02.indd 775 05/06/12 5:02 PM05/06/12 5:02 PM

776 ❘ APPENDIX B XPATH FUNCTIONS

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:adjust-time-to-timezone

($arg as xs:time?) as xs:time?

2.0 Adjusts an xs:time value to a specifi c

time zone, or to no time zone at all.

fn:adjust-time-to-timezone

($arg as xs:time?, $timezone as xs:

dayTimeDuration?) as xs:time?

2.0

fn:current-date() as xs:date 2.0 Returns the current date; subsequent

calls within the same program will usually

return the same value.

fn:current-dateTime() as xs:

dateTimeStamp

2.0 Returns the current date and time

(with time zone); subsequent calls within

the same program will usually return the

same value.

fn:current-time() as xs:time 2.0 Returns the current time; subsequent

calls within the same program will usually

return the same value.

fn:dateTime($arg1 as xs:date?, $arg2

as xs:time?) as xs:dateTime?

2.0 Returns an xs:dateTime value created

by combining an xs:date and

an xs:time.

fn:day-from-date($arg as xs:date?)

as xs:integer?

2.0 Returns the day component of

an xs:date.

fn:day-from-dateTime($arg as xs:

dateTime?) as xs:integer?

2.0 Returns the day component of

an xs:dateTime.

fn:days-from-duration($arg as xs:

duration?) as xs:integer?

2.0 Returns the number of days in a duration.

fn:format-dateTime($value as xs:

dateTime?, $picture as xs:string)

as xs:string?

3.0 Returns a string containing

an xs:dateTime value formatted for

display (formerly in XSLT only).

fn:format-dateTime($value as xs:

dateTime?, $picture as xs:string,

$language as xs:string?, $calendar as

xs:string?, $place as xs:string?)

as xs:string?

3.0

fn:format-date($value as xs:date?,

$picture as xs:string) as xs:string?

3.0 Returns a string containing an xs:date

value formatted for display (formerly in

XSLT only).

(continued)

bapp02.indd 776bapp02.indd 776 05/06/12 5:02 PM05/06/12 5:02 PM

XPath Functions ❘ 777

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:format-date($value as xs:date?,

$picture as xs:string, $language as xs:

string?, $calendar as xs:string?, $place

as xs:string?) as xs:string?

3.0

fn:format-time($value as xs:time?,

$picture as xs:string) as xs:string?

3.0 Returns a string containing an

xs:time value formatted for display

(formerly in XSLT only).

fn:format-time($value as xs:time?,

$picture as xs:string, $language as

xs:string?, $calendar as xs:string?,

$place as xs:string?) as xs:string?

3.0

fn:hours-from-dateTime

($arg as xs:dateTime?) as xs:integer?

2.0 Returns the hours component of

an xs:dateTime.

fn:hours-from-duration

($arg as xs:duration?) as xs:integer?

2.0 Returns the number of hours in a

duration.

fn:hours-from-time($arg as xs:time?)

as xs:integer?

2.0 Returns the hours component of

an xs:time.

fn:implicit-timezone() as xs:

dayTimeDuration

2.0 Returns the value of the implicit time

zone property from the dynamic context.

fn:minutes-from-dateTime

($arg as xs:dateTime?) as xs:integer?

2.0 Returns the minutes component of

an xs:dateTime.

fn:minutes-from-duration

($arg as xs:duration?) as xs:integer?

2.0 Returns the number of minutes in a

duration.

fn:minutes-from-time($arg as xs:time?)

as xs:integer?

2.0 Returns the minutes component of

an xs:time.

fn:month-from-date($arg as xs:date?)

as xs:integer?

2.0 Returns the month component of

an xs:date.

fn:month-from-dateTime

($arg as xs:dateTime?) as xs:integer?

2.0 Returns the month component of

an xs:dateTime.

fn:months-from-duration

($arg as xs:duration?) as xs:integer?

2.0 Returns the number of months in a

duration.

fn:seconds-from-dateTime

($arg as xs:dateTime?) as xs:decimal?

2.0 Returns the seconds component of

an xs:dateTime.

fn:seconds-from-duration

($arg as xs:duration?) as xs:decimal?

2.0 Returns the number of seconds in

a duration.

continues

bapp02.indd 777bapp02.indd 777 05/06/12 5:02 PM05/06/12 5:02 PM

778 ❘ APPENDIX B XPATH FUNCTIONS

Files and the Environment

These functions interact with the system beyond the XPath engine itself, such as reading or creating
fi les. Note that XQuery and XSLT do not allow you to read from a fi le in the same query or
stylesheet in which you created the fi le.

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:seconds-from-time($arg as xs:time?)

as xs:decimal?

2.0 Returns the seconds component of

an xs:time.

fn:timezone-from-date($arg as xs:date?)

as xs:dayTimeDuration?

2.0 Returns the time zone component of

an xs:date.

fn:timezone-from-dateTime($arg as xs:

dateTime?) as xs:dayTimeDuration?

2.0 Returns the time zone component of

an xs:dateTime.

fn:timezone-from-time($arg as xs:time?)

as xs:dayTimeDuration?

2.0 Returns the time zone component of

an xs:time.

fn:year-from-date($arg as xs:date?)

as xs:integer?

2.0 Returns the year component of

an xs:date.

fn:year-from-dateTime

($arg as xs:dateTime?) as xs:integer?

2.0 Returns the year component of

an xs:dateTime.

fn:years-from-duration

($arg as xs:duration?) as xs:integer?

2.0 Returns the number of years in

a duration.

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:available-environment-variables()

as xs:string*

2.0 Returns a list of environment variable

names that are suitable for passing

to fn:environment-variable, as a

(possibly empty) sequence of strings.

fn:collection($arg as xs:string?)

as node()*

2.0 Returns a sequence of nodes

representing a collection of documents

identifi ed by a collection URI; or a default

collection if no URI is supplied.

fn:collection() as node()* 2.0

fn:default-collation() as xs:string 2.0 Returns the value of the default collation

property from the static context.

(continued)

bapp02.indd 778bapp02.indd 778 05/06/12 5:02 PM05/06/12 5:02 PM

XPath Functions ❘ 779

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:doc-available($uri as xs:string?)

as xs:boolean

2.0 The function returns true if and only if the

function call fn:doc($uri) would return

a document node. This is useful because

it’s generally an error if fn:doc() fails to

load a fi le.

fn:doc($uri as xs:string?)

as document-node()?

2.0 Retrieves a document using a URI

supplied as an xs:string, and returns

the corresponding document node.

fn:environment-variable

($name as xs:string) as xs:string?

2.0 Returns the value of a system

environment variable, if it exists.

fn:error() as none 2.0 Calling the fn:error function raises an

application-defi ned error.

fn:error($code as xs:QName) as none 2.0

fn:error($code as xs:QName?,

$description as xs:string) as none

2.0

fn:error($code as xs:QName?,

$description as xs:string,

$error-object as item()*) as none

2.0

fn:parse-xml($arg as xs:string?)

as document-node(element

(*, xs:untyped))

3.0 This function takes as input an XML

document represented as a string, and

returns the document node at the root

of an XDM tree representing the parsed

document. It was experimental at the

time of writing.

fn:parse-xml-fragment

($arg as xs:string?) as

document-node(element(*, xs:untyped))

3.0 This function takes as input an XML

fragment such as an external XML entity,

represented as a string, and returns the

document node at the root of an XDM

tree representing the parsed document.

It was experimental at the time of writing.

fn:serialize($arg as item()*)

as xs:string

3.0 This function serializes the supplied

input sequence $arg as described in

“XSLT and XQuery Serialization 3.0,”

returning a string.

fn:serialize($arg as item()*, $params

as element(output:serialization-

parameters)?) as xs:string

2.0

continues

bapp02.indd 779bapp02.indd 779 05/06/12 5:02 PM05/06/12 5:02 PM

780 ❘ APPENDIX B XPATH FUNCTIONS

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:trace($value as item()*, $label

as xs:string) as item()*

2.0 Provides an execution trace intended to

be used in debugging queries.

fn:unparsed-text-available

($href as xs:string?) as xs:boolean

3.0 Determines whether a call with

particular arguments would succeed.

Provided because errors in evaluating

the fn:unparsed-text function are

non-recoverable (formerly XSLT only).

fn:unparsed-text-available

($href as xs:string?, $encoding

as xs:string) as xs:boolean

3.0

fn:unparsed-text($href as xs:string?)

as xs:string?

3.0 Reads an external resource (for example,

a fi le) and returns its contents as a string

(formerly in XSLT only).

fn:unparsed-text($href as xs:string?,

$encoding as xs:string) as xs:string?

3.0

fn:unparsed-text-lines

($href as xs:string?) as xs:string*

3.0 Reads an external resource (for example,

a fi le) and returns its contents as a

sequence of strings, one for each line

of text in the fi le (formerly only in

XSLT 2.1).

fn:unparsed-text-lines

($href as xs:string?, $encoding

as xs:string) as xs:string*

3.0

fn:uri-collection($arg as xs:string?)

as xs:anyURI*

3.0 Returns a sequence of xs:anyURI values

representing the document URIs of the

documents in a collection.

fn:uri-collection() as xs:anyURI* 3.0

(continued)

bapp02.indd 780bapp02.indd 780 05/06/12 5:02 PM05/06/12 5:02 PM

XPath Functions ❘ 781

Functions that Operate on Functions

XPath 3, XSLT 3, and XQuery 3 all introduce higher order functions: functions that operate on
other functions.

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:filter($f as function(item())

as xs:boolean, $seq as item()*) as

item()*

3.0 Returns those items from the sequence

$seq for which the supplied function

$f returns true.

fn:fold-left($f as function(item()*,

item()) as item()*, $zero as item()*,

$seq as item()*) as item()*

3.0 Processes the supplied sequence from

left to right, applying the supplied function

repeatedly to each item in turn, together

with an accumulated result value.

fn:fold-right($f as function(item(),

item()*) as item()*, $zero as item()*,

$seq as item()*) as item()*

3.0 Processes the supplied sequence from

right to left, applying the supplied function

repeatedly to each item in turn, together

with an accumulated result value.

fn:function-arity($func as

function(*)) as xs:integer

3.0 Returns the arity of the function identifi ed

by a function item. The arity is the number

of arguments a function takes.

fn:function-name($func as function(*))

as xs:QName?

3.0 Returns the name of the function

identifi ed by a function item.

fn:map($f as function(item()) as

item()*, $seq as item()*) as item()*

3.0 Applies the function item $f to every item

from the sequence $seq in turn, returning

the concatenation of the resulting

sequences in order.

Functions that Operate on Items

These functions take one or more XDM values (items) as arguments.

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:deep-equal($parameter1 as item()*,

$parameter2 as item()*) as xs:boolean

2.0 Returns true if two sequences, treated as

trees, have the same structure and values.

fn:deep-equal($parameter1 as item()*,

$parameter2 as item()*, $collation as

xs:string) as xs:boolean

2.0

fn:element-with-id($arg as xs:string*)

as element()*

2.0 Returns the sequence of element nodes

that have an ID value matching the value

of one or more of the IDREF values

supplied in $arg.

continues

bapp02.indd 781bapp02.indd 781 05/06/12 5:02 PM05/06/12 5:02 PM

782 ❘ APPENDIX B XPATH FUNCTIONS

Numeric Functions

These functions work with numbers; XPath 1 implementations had to convert numbers to and from
strings when they were used, but in XPath 2, and especially XQuery and XSLT, you can declare
variables and functions to have numeric types and often achieve improvements both in performance
and in error reporting.

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:element-with-id($arg as xs:string*,

$node as node()) as element()*

2.0

fn:empty($arg as item()*) as xs:boolean 2.0 Returns true if the argument is the empty

sequence.

fn:exactly-one($arg as item()*)

as item()

2.0 Returns $arg if it contains exactly one

item. Otherwise, raises an error.

fn:exists($arg as item()*) as

xs:boolean

2.0 Returns true if the argument is a non-

empty sequence.

fn:index-of($seq as xs:anyAtomicType*,

$search as xs:anyAtomicType) as xs:

integer*

2.0 Returns a sequence of positive integers

giving the positions within the sequence

$seq of items that are equal to $search.

fn:index-of($seq as xs:anyAtomicType*,

$search as xs:anyAtomicType, $collation

as xs:string) as xs:integer*

2.0

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:abs($arg as numeric?) as numeric? 2.0 Returns the absolute value of $arg.

fn:avg($arg as xs:anyAtomicType*)

as xs:anyAtomicType?

2.0 Returns the average of the values in

the input sequence $arg, that is, the

sum of the values divided by the number

of values.

fn:ceiling($arg as numeric?)

as numeric?

1.0 Rounds $arg up to a whole number.

fn:floor($arg as numeric?) as numeric? 1.0 Rounds $arg down to a whole number.

fn:max($arg as xs:anyAtomicType*)

as xs:anyAtomicType?

2.0 Returns a value that is equal to the highest

value appearing in the input sequence.

(continued)

bapp02.indd 782bapp02.indd 782 05/06/12 5:02 PM05/06/12 5:02 PM

XPath Functions ❘ 783

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:max($arg as xs:anyAtomicType*,

$collation as xs:string)

as xs:anyAtomicType?

2.0

fn:min($arg as xs:anyAtomicType*)

as xs:anyAtomicType?

2.0 Returns a value that is equal to the lowest

value appearing in the input sequence.

fn:min($arg as xs:anyAtomicType*,

$collation as xs:string)

as xs:anyAtomicType?

2.0

fn:number($arg as xs:anyAtomicType?)

as xs:double

1.0 Returns the value indicated by $arg or,

if $arg is not specifi ed, the context

item after atomization, converted to

an xs:double.

fn:number() as xs:double 1.0

fn:round($arg as numeric?) as numeric? 1.0 Rounds a value to a specifi ed number of

decimal places, rounding up if two such

values are equally near.

fn:round($arg as numeric?, $precision

as xs:integer) as numeric?

3.0

fn:round-half-to-even

($arg as numeric?) as numeric?

2.0 Rounds a value to a specifi ed number

of decimal places, rounding to make

the last digit even if two such values are

equally near.

fn:round-half-to-even($arg as

numeric?, $precision as xs:integer)

as numeric?

2.0

fn:sum($arg as xs:anyAtomicType*)

as xs:anyAtomicType

1.0 Returns a value obtained by adding

together the values in $arg.

fn:sum($arg as xs:anyAtomicType*,

$zero as xs:anyAtomicType?) as xs:

anyAtomicType?

2.0

math:acos($arg as xs:double?)

as xs:double?

3.0 Returns the arc cosine of the argument,

the result being in the range zero to +π

radians.

math:asin($arg as xs:double?)

as xs:double?

3.0 Returns the arc sine of the argument,

the result being in the range -π/2 to +π/2

radians.

continues

bapp02.indd 783bapp02.indd 783 05/06/12 5:02 PM05/06/12 5:02 PM

784 ❘ APPENDIX B XPATH FUNCTIONS

Functions that Operate on Nodes

These functions operate on the various XDM node types such as elements, text nodes, and
processing instructions, but not on atomic values such as a string or a number.

FUNCTION NAME AND SIGNATURE V DESCRIPTION

math:atan2($y as xs:double, $x as xs:

double) as xs:double

3.0 Returns the angle in radians subtended

at the origin between a line drawn to the

point on a plane with coordinates (x, y)

and the positive x-axis, the result being in

the range -π to +π.

math:atan($arg as xs:double?)

as xs:double?

3.0 Returns the arc tangent of the argument,

the result being in the range -π/2 to +π/2

radians.

math:cos($θ as xs:double?)

as xs:double?

3.0 Returns the cosine of the argument,

expressed in radians.

math:exp10($arg as xs:double?)

as xs:double?

3.0 Returns the value of 10 to the power of x.

math:exp($arg as xs:double?)

as xs:double?

3.0 Returns the value of e to the power of x.

math:log10($arg as xs:double?)

as xs:double?

3.0 Returns the base-ten logarithm of

the argument.

math:log($arg as xs:double?)

as xs:double?

3.0 Returns the natural logarithm (base e)

of the argument.

math:pi() as xs:double 3.0 Returns an approximation to the

mathematical constant π.

math:pow($x as xs:double?, $y as

numeric) as xs:double?

3.0 Returns the result of raising the fi rst

argument to the power of the second.

math:sin($θ as xs:double?)

as xs:double?

3.0 Returns the sine of the argument,

expressed in radians.

math:sqrt($arg as xs:double?)

as xs:double?

3.0 Returns the square root of the argument.

math:tan($θ as xs:double?)

as xs:double?

3.0 Returns the tangent of the argument,

expressed in radians.

(continued)

bapp02.indd 784bapp02.indd 784 05/06/12 5:02 PM05/06/12 5:02 PM

XPath Functions ❘ 785

FUNCTION NAME AND SIGNATURE V DESCRIPTION

document() 1.0 This was replaced by fn:doc() in

XPath 2.0.

fn:base-uri($arg as node()?)

as xs:anyURI?

2.0 Returns the base URI used for resolving

relative URI references; usually this will be

the same for every node in a document,

but can be diff erent if external XML entities

were used.

fn:base-uri() as xs:anyURI? 3.0

fn:data($arg as item()*) as xs:

anyAtomicType*

2.0 Takes a sequence of items and returns a

sequence of atomic values. The items can

be any mix of atomic values and nodes.

fn:data() as xs:anyAtomicType* 3.0

fn:document-uri($arg as node()?)

as xs:anyURI?

2.0 Returns the URI of the document

containing the given node, if it has one

and is known.

fn:document-uri() as xs:anyURI? 3.0

fn:generate-id($arg as node()?)

as xs:string

2.0 This function returns a string that uniquely

identifi es a given node, suitable for use

as an XML or HTML ID value (originally in

XSLT 1.0 and 2.0 only, not XPath

or XQuery).

fn:generate-id() as xs:string 3.0

fn:has-children($node as node()?)

as xs:boolean

2.0 True if the supplied node has one or more

child nodes (of any kind).

fn:id($arg as xs:string*)

as element()*

1.0 Returns the sequence of element nodes

that have an ID value matching the value

of one or more of the IDREF values

supplied in $arg.

fn:id($arg as xs:string*, $node as

node()) as element()*

1.0

fn:idref($arg as xs:string*) as node()* 2.0 Returns the sequence of element or

attribute nodes with an IDREF value

matching the value of one or more of the

ID values supplied in $arg.

continues

bapp02.indd 785bapp02.indd 785 05/06/12 5:02 PM05/06/12 5:02 PM

786 ❘ APPENDIX B XPATH FUNCTIONS

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:idref($arg as xs:string*,

$node as node()) as node()*

2.0

fn:innermost($nodes as node()*)

as node()*

2.0 Returns every node within the input

sequence that is not an ancestor of

another member of the input sequence.

fn:in-scope-prefixes($element as

element()) as xs:string*

2.0 Returns the prefi xes of the in-scope

namespaces for an element node.

fn:lang($testlang as xs:string?)

as xs:boolean

2.0 Tests whether the language of $node,

as specifi ed by xml:lang attributes, is

the same as, or is a sublanguage of, the

language specifi ed by $testlang.

fn:lang($testlang as xs:string?, $node

as node()) as xs:boolean

1.0

fn:local-name($arg as node()?)

as xs:string

1.0 Returns the local part of the name of

$arg as an xs:string that is either the

zero-length string, or has the lexical form

of an xs:NCName.

fn:local-name() as xs:string 1.0

fn:local-name-from-QName($arg as xs:

QName?) as xs:NCName?

2.0 Returns the local part of the supplied

QName.

fn:name($arg as node()?) as xs:string 1.0 Returns the name of a node, as an

xs:string that is either the zero-length

string, or has the lexical form of an

xs:QName.

fn:name() as xs:string 1.0

fn:namespace-uri($arg as node()?)

as xs:anyURI

1.0 Returns the namespace URI part of the

name of $arg, as an xs:anyURI value.

fn:namespace-uri() as xs:anyURI 1.0

fn:namespace-uri-for-prefix

($prefix as xs:string?, $element as

element()) as xs:anyURI?

2.0 Returns the namespace URI of one of

the in-scope namespaces for $element,

identifi ed by its namespace prefi x.

fn:namespace-uri-from-QName($arg as

xs:QName?) as xs:anyURI?

2.0 Returns the namespace URI part of the

supplied QName.

(continued)

bapp02.indd 786bapp02.indd 786 05/06/12 5:02 PM05/06/12 5:02 PM

XPath Functions ❘ 787

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:nilled($arg as node()?)

as xs:boolean?

2.0 Returns true for an element that is

nilled; that is, for an element with

xsi:nilled=”true”.

fn:node-name($arg as node()?)

as xs:QName?

2.0 Returns the name of a node, as

an xs:QName.

fn:node-name() as xs:QName? 3.0

fn:outermost($nodes as node()*)

as node()*

2.0 Returns every node within the input

sequence that has no ancestor that is

itself a member of the input sequence.

fn:path($arg as node()?) as xs:string? 3.0 Returns a path expression that can be

used to select the supplied node relative

to the root of its containing document.

fn:path() as xs:string? 3.0

fn:root($arg as node()?) as node()? 2.0 Returns the root of the tree to which

$arg belongs. This will usually, but not

necessarily, be a document node.

fn:root() as node() 2.0

fn:static-base-uri() as xs:anyURI? 2.0 Returns the value of the Base URI

property from the static context.

Functions that Operate on QNames

A QName is a qualifi ed name: a name that has an optional prefi x associated with an XML namespace.

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:prefix-from-QName($arg as xs:

QName?) as xs:NCName?

2.0 Returns the prefi x component of the

supplied QName.

fn:QName($paramURI as xs:string?,

$paramQName as xs:string) as xs:QName

2.0 Constructs an xs:QName value given a

namespace URI and a lexical QName.

fn:resolve-QName($qname as xs:

string?, $element as element())

as xs:QName?

2.0 Returns an xs:QName value (that is,

an expanded-QName) by taking an

xs:string that has the lexical form of

an xs:QName (a string in the form

“prefi x:local-name” or “local-name”),

and resolving it using the in-scope

namespaces for a given element.

bapp02.indd 787bapp02.indd 787 05/06/12 5:02 PM05/06/12 5:02 PM

788 ❘ APPENDIX B XPATH FUNCTIONS

Functions on Sequences

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:count($arg as item()*)

as xs:integer

1.0 Returns the number of items in a

sequence.

fn:distinct-values($arg as xs:

anyAtomicType*) as xs:anyAtomicType*

2.0 Returns the values that appear in a

sequence, with duplicates eliminated.

Also available in some XPath 1.0

implementations.

fn:distinct-values($arg as xs:

anyAtomicType*, $collation

as xs:string) as xs:anyAtomicType*

2.0

fn:head($arg as item()*) as item()? 3.0 Returns the fi rst item in a sequence.

fn:insert-before($target as item()*,

$position as xs:integer, $inserts as

item()*) as item()*

2.0 Returns a new sequence made by inserting

an item or a sequence of items at a given

position within an existing sequence.

fn:last() as xs:integer 1.0 Returns the context size from the

dynamic context.

fn:map-pairs($f as function(item(),

item()) as item()*, $seq1 as item()*,

$seq2 as item()*) as item()*

3.0 Applies the function item $f to

successive pairs of items taken one from

$seq1 and one from $seq2, returning the

concatenation of the resulting sequences

in order.

fn:one-or-more($arg as item()*)

as item()+

2.0 Returns $arg if it contains one or more

items. Otherwise, raises an error.

fn:position() as xs:integer 1.0 Returns the context position from the

dynamic context.

fn:remove($target as item()*,

$position as xs:integer) as item()*

2.0 Returns a new sequence containing all

the items of $target, except the item at

position $position.

fn:reverse($arg as item()*) as item()* 2.0 Returns a new sequence with the items

in the reverse order.

fn:subsequence($sourceSeq as item()*,

$startingLoc as xs:double) as item()*

2.0 Returns the contiguous sequence

of items in the value of $sourceSeq

beginning at the position indicated by the

value of $startingLoc, and continuing

for the number of items indicated by the

value of $length.

bapp02.indd 788bapp02.indd 788 05/06/12 5:02 PM05/06/12 5:02 PM

XPath Functions ❘ 789

Functions that Operate on Strings and URIs

A string is just a sequence of zero or more characters. A URI, or Uniform Resource Identifi er, is
the more general name for URLs or web addresses. URIs and their more modern international
counterparts, IRIs, are a separate type from strings, although you can convert between them.

Most string operations can also take a URI identifying a collation. A collation is a system-specifi c
object that says how to sort characters: whether upper and lower case characters are considered
different; whether accented characters like é or ø sort before, together with, or after their
unaccented counterparts; and where letters like æ and œ fi t into the alphabet, as all these details
vary from culture to culture and in some cases depending on purpose.

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:subsequence($sourceSeq as item()*,

$startingLoc as xs:double, $length

as xs:double) as item()*

2.0

fn:tail($arg as item()*) as item()* 3.0 Returns all but the fi rst item in a

sequence.

fn:unordered($sourceSeq as item()*)

as item()*

2.0 Returns the items of $sourceSeq in an

implementation-dependent order.

fn:zero-or-one($arg as item()*)

as item()?

2.0 Returns $arg if it contains zero or one

items. Otherwise, raises an error.

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:analyze-string($input as xs:

string?, $pattern as xs:string) as

element(fn:analyze-string-result)

3.0 Analyzes a string using a regular

expression, returning an XML structure

that identifi es which parts of the input

string matched or failed to match the

regular expression. In the case of matched

substrings, determines which substrings

matched each capturing group in the

regular expression.

fn:analyze-string($input as xs:

string?, $pattern as xs:string,

$flags as xs:string) as element

(fn:analyze-string-result)

3.0

fn:codepoint-equal($comparand1

as xs:string?, $comparand2 as xs:

string?) as xs:boolean?

2.0 Returns true if two strings are equal,

considered codepoint-by-codepoint.

continues

bapp02.indd 789bapp02.indd 789 05/06/12 5:02 PM05/06/12 5:02 PM

790 ❘ APPENDIX B XPATH FUNCTIONS

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:codepoints-to-string

($arg as xs:integer*) as xs:string

2.0 Creates an xs:string from a sequence

of codepoints expressed as integers.

fn:compare($comparand1 as xs:string?,

$comparand2 as xs:string?)

as xs:integer?

2.0 Returns -1, 0, or 1, depending on whether

$comparand1 collates before, equal to, or

after $comparand2 according to the rules

of a selected collation.

fn:compare($comparand1 as xs:string?,

$comparand2 as xs:string?, $collation

as xs:string) as xs:integer?

2.0

fn:concat($arg1 as xs:anyAtomicType?,

$arg2 as xs:anyAtomicType?, ...)

as xs:string

1.0 Returns a new string made by joining

together all the strings given as

arguments. See also string-join().

fn:contains($arg1 as xs:string?,

$arg2 as xs:string?) as xs:boolean

1.0 Returns true if the string $arg1 contains

$arg2 as a substring, taking collations

into account.

fn:contains($arg1 as xs:string?,

$arg2 as xs:string?, $collation

as xs:string) as xs:boolean

1.0

fn:encode-for-uri($uri-part as xs:

string?) as xs:string

2.0 Encodes reserved characters in a string

that is intended to be used in the path

segment of a URI.

fn:ends-with($arg1 as xs:string?,

$arg2 as xs:string?) as xs:boolean

2.0 Returns true if the string $arg1 contains

$arg2 as a trailing substring, taking

collations into account.

fn:ends-with($arg1 as xs:string?,

$arg2 as xs:string?, $collation

as xs:string) as xs:boolean

2.0

fn:escape-html-uri($uri as xs:string?)

as xs:string

2.0 Escapes a URI in the same way that

HTML user agents handle attribute values

expected to contain URIs.

fn:format-integer($value as xs:

integer?, $picture as xs:string)

as xs:string

3.0 Converts an integer to a string

representation according to a given

picture string (that is, a format), using the

conventions of a given natural language

if specifi ed.

(continued)

bapp02.indd 790bapp02.indd 790 05/06/12 5:02 PM05/06/12 5:02 PM

XPath Functions ❘ 791

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:format-integer($value as xs:

integer?, $picture as xs:string,

$language as xs:string) as xs:string

3.0

fn:format-number($value as numeric?,

$picture as xs:string) as xs:string

2.0 Converts a number to a string

representation according to a given

picture string (that is, a format), using the

conventions of a given natural language if

specifi ed (originally only in XSLT).

fn:format-number($value as numeric?,

$picture as xs:string, $decimal-

format-name as xs:string) as xs:string

3.0

fn:iri-to-uri($iri as xs:string?)

as xs:string

2.0 Converts a string containing an IRI

into a URI according to the rules of

IETF RFC 3987, the specifi cation for

Internationalized Resource Identifi ers

(IRIs). See http://www.ietf.org/rfc/

rfc3987.txt

fn:lower-case($arg as xs:string?)

as xs:string

2.0 Converts a string to lowercase.

fn:matches($input as xs:string?,

$pattern as xs:string) as xs:boolean

2.0 True if the supplied string matches a

given regular expression.

fn:matches($input as xs:string?,

$pattern as xs:string, $flags as xs:

string) as xs:boolean

2.0

fn:normalize-space($arg as xs:string?)

as xs:string

1.0 Returns the value of $arg with leading

and trailing whitespace removed, and

sequences of internal whitespace

reduced to a single space character.

fn:normalize-space() as xs:string 1.0

fn:normalize-unicode($arg as xs:

string?) as xs:string

2.0 Returns the value of $arg after applying

Unicode normalization.

fn:normalize-unicode($arg as xs:

string?, $normalizationForm

as xs:string) as xs:string

2.0

continues

bapp02.indd 791bapp02.indd 791 05/06/12 5:02 PM05/06/12 5:02 PM

http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt

792 ❘ APPENDIX B XPATH FUNCTIONS

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:replace($input as xs:string?,

$pattern as xs:string, $replacement

as xs:string) as xs:string

2.0 Returns a string produced from the input

string by replacing any substrings that

match a given regular expression with a

supplied replacement string.

fn:replace($input as xs:string?,

$pattern as xs:string, $replacement as

xs:string, $flags as xs:string)

as xs:string

2.0

fn:resolve-uri($relative as xs:

string?) as xs:anyURI?

2.0 Resolves a relative IRI reference

against an absolute IRI. An IRI is an

Internationalized version of a URI; the

function name has “uri” in it because it

predates the IRI specifi cation.

fn:resolve-uri($relative as xs:

string?, $base as xs:string) as xs:

anyURI?

2.0

fn:starts-with($arg1 as xs:string?,

$arg2 as xs:string?) as xs:boolean

1.0 Returns true if the string $arg1 contains

$arg2 as a leading substring, taking

collations into account.

fn:starts-with($arg1 as xs:string?,

$arg2 as xs:string?, $collation

as xs:string) as xs:boolean

1.0

fn:string($arg as item()?) as xs:string 1.0 Constructs a new string.

fn:string() as xs:string 1.0

fn:string-join($arg1 as xs:string*,

$arg2 as xs:string) as xs:string

2.0 Returns a single new string made by

joining the given strings together, but

putting $arg2 (if given) between

the strings.

fn:string-join($arg1 as xs:string*)

as xs:string

3.0

fn:string-length($arg as xs:string?)

as xs:integer

1.0 Returns the number of characters in a

given string.

fn:string-length() as xs:integer 1.0

fn:string-to-codepoints($arg as xs:

string?) as xs:integer*

2.0 Returns the sequence of integer

codepoints corresponding to each

character in turn in the given string.

(continued)

bapp02.indd 792bapp02.indd 792 05/06/12 5:02 PM05/06/12 5:02 PM

XPath Functions ❘ 793

FUNCTION NAME AND SIGNATURE V DESCRIPTION

fn:substring-after($arg1 as

xs:string?, $arg2 as xs:string?)

as xs:string

1.0 Returns the part of $arg1 that follows

the fi rst occurrence of $arg2, taking

collations into account.

fn:substring-after($arg1 as xs:

string?, $arg2 as xs:string?,

$collation as xs:string) as xs:string

2.0

fn:substring-before($arg1 as xs:

string?, $arg2 as xs:string?)

as xs:string

1.0 Returns the part of $arg1 that precedes

the fi rst occurrence of $arg2, taking

collations into account.

fn:substring-before($arg1 as xs:

string?, $arg2 as xs:string?,

$collation as xs:string) as xs:string

2.0

fn:substring($sourceString as xs:

string?, $start as xs:double)

as xs:string

1.0 Returns the portion of the value of

$sourceString, beginning at the

position indicated by the value of

$start and continuing for the number

of characters indicated by the value of

$length. The fi rst character is numbered

one, not zero.

fn:substring($sourceString as xs:

string?, $start as xs:double, $length

as xs:double) as xs:string

1.0

fn:tokenize($input as xs:string?,

$pattern as xs:string) as xs:string*

2.0 Returns a sequence of strings

constructed by splitting the input

wherever a separator is found; the

separator is any substring that matches a

given regular expression.

fn:tokenize($input as xs:string?,

$pattern as xs:string, $flags

as xs:string) as xs:string*

2.0

fn:translate($arg as xs:string?,

$mapString as xs:string, $transString

as xs:string) as xs:string

1.0 Returns the value of $arg modifi ed by

replacing every character in $mapString

with the corresponding character

in $transString, or deleting the

character if $mapString is longer than

$transString.

fn:upper-case($arg as xs:string?)

as xs:string

2.0 Converts a string to uppercase.

bapp02.indd 793bapp02.indd 793 05/06/12 5:02 PM05/06/12 5:02 PM

794 ❘ APPENDIX B XPATH FUNCTIONS

Functions to Construct Objects by XSD Type

These functions construct objects of the named types. You may need to bind the xs namespace
prefi x to the URI http://www.w3.org/2001/XMLSchema (this is already done for you in XQuery).

FUNCTION NAME AND SIGNATURE V DESCRIPTION

xs:anyURI($arg as xs:anyAtomicType?)

as xs:anyURI?

2.0 Constructs a new object of XML Schema

type xs:anyURI.

xs:base64Binary($arg as xs:

anyAtomicType?) as xs:base64Binary?

2.0 Constructs a new object of XML Schema

type xs:base64Binary.

xs:boolean($arg as xs:anyAtomicType?)

as xs:boolean?

2.0 Constructs a new object of XML Schema

type xs:boolean.

xs:byte($arg as xs:anyAtomicType?)

as xs:byte?

2.0 Constructs a new object of XML Schema

type xs:byte.

xs:date($arg as xs:anyAtomicType?)

as xs:date?

2.0 Constructs a new object of XML Schema

type xs:date.

xs:dateTime($arg as xs:anyAtomicType?)

as xs:dateTime?

2.0 Constructs a new object of XML Schema

type xs:dateTime.

xs:dateTimeStamp($arg as xs:

anyAtomicType?) as xs:dateTimeStamp?

3.0 Constructs a new object of XML Schema

type xs:dateTimeStamp.

xs:dayTimeDuration($arg as xs:

anyAtomicType?) as xs:dayTimeDuration?

2.0 Constructs a new object of XML Schema

type xs:dayTimeDuration.

xs:decimal($arg as xs:anyAtomicType?)

as xs:decimal?

2.0 Constructs a new object of XML Schema

type xs:decimal.

xs:double($arg as xs:anyAtomicType?)

as xs:double?

2.0 Constructs a new object of XML Schema

type xs:double.

xs:duration($arg as xs:anyAtomicType?)

as xs:duration?

2.0 Constructs a new object of XML Schema

type xs:duration.

xs:ENTITY($arg as xs:anyAtomicType?)

as xs:ENTITY?

2.0 Constructs a new object of XML Schema

type xs:ENTITY.

xs:float($arg as xs:anyAtomicType?)

as xs:float?

2.0 Constructs a new object of XML Schema

type xs:float.

xs:gDay($arg as xs:anyAtomicType?)

as xs:gDay?

2.0 Constructs a new object of XML Schema

type xs:gDay.

xs:gMonth($arg as xs:anyAtomicType?)

as xs:gMonth?

2.0 Constructs a new object of XML Schema

type xs:gMonth.

bapp02.indd 794bapp02.indd 794 05/06/12 5:02 PM05/06/12 5:02 PM

http://www.w3.org/2001/XMLSchema

XPath Functions ❘ 795

FUNCTION NAME AND SIGNATURE V DESCRIPTION

xs:gMonthDay($arg as xs:anyAtomicType?)

as xs:gMonthDay?

2.0 Constructs a new object of XML Schema

type xs:gMonthDay.

xs:gYear($arg as xs:anyAtomicType?)

as xs:gYear?

2.0 Constructs a new object of XML Schema

type xs:gYear.

xs:gYearMonth($arg as xs:

anyAtomicType?) as xs:gYearMonth?

2.0 Constructs a new object of XML Schema

type xs:gYearMonth.

xs:hexBinary($arg as xs:anyAtomicType?)

as xs:hexBinary?

2.0 Constructs a new object of XML Schema

type xs:hexBinary.

xs:ID($arg as xs:anyAtomicType?)

as xs:ID?

2.0 Constructs a new object of XML Schema

type xs:ID.

xs:IDREF($arg as xs:anyAtomicType?)

as xs:IDREF?

2.0 Constructs a new object of XML Schema

type xs:IDREF.

xs:int($arg as xs:anyAtomicType?)

as xs:int?

2.0 Constructs a new object of XML Schema

type xs:int.

xs:integer($arg as xs:anyAtomicType?)

as xs:integer?

2.0 Constructs a new object of XML Schema

type xs:integer.

xs:language($arg as xs:anyAtomicType?)

as xs:language?

2.0 Constructs a new object of XML Schema

type xs:language.

xs:long($arg as xs:anyAtomicType?)

as xs:long?

2.0 Constructs a new object of XML Schema

type xs:long.

xs:Name($arg as xs:anyAtomicType?)

as xs:Name?

2.0 Constructs a new object of XML Schema

type xs:Name.

xs:NCName($arg as xs:anyAtomicType?)

as xs:NCName?

2.0 Constructs a new object of XML Schema

type xs:NCName.

xs:negativeInteger($arg as xs:

anyAtomicType?) as xs:negativeInteger?

2.0 Constructs a new object of XML Schema

type xs:negativeInteger.

xs:NMTOKEN($arg as xs:anyAtomicType?)

as xs:NMTOKEN?

2.0 Constructs a new object of XML Schema

type xs:NMTOKEN.

xs:nonNegativeInteger

($arg as xs:anyAtomicType?)

as xs:nonNegativeInteger?

2.0 Constructs a new object of XML Schema

type xs:nonNegativeInteger.

xs:nonPositiveInteger

($arg as xs:anyAtomicType?)

as xs:nonPositiveInteger?

2.0 Constructs a new object of XML Schema

type xs:nonPositiveInteger.

continues

bapp02.indd 795bapp02.indd 795 05/06/12 5:02 PM05/06/12 5:02 PM

796 ❘ APPENDIX B XPATH FUNCTIONS

FUNCTION NAME AND SIGNATURE V DESCRIPTION

xs:normalizedString($arg as xs:

anyAtomicType?) as xs:normalizedString?

2.0 Constructs a new object of XML Schema

type xs:normalizedString.

xs:positiveInteger($arg as xs:

anyAtomicType?) as xs:positiveInteger?

2.0 Constructs a new object of XML Schema

type xs:positiveInteger.

xs:QName($arg as xs:anyAtomicType)

as xs:QName?

2.0 Constructs a new object of XML Schema

type xs:QName.

xs:short($arg as xs:anyAtomicType?)

as xs:short?

2.0 Constructs a new object of XML Schema

type xs:short.

xs:string($arg as xs:anyAtomicType?)

as xs:string?

2.0 Constructs a new object of XML Schema

type xs:string.

xs:time($arg as xs:anyAtomicType?)

as xs:time?

2.0 Constructs a new object of XML Schema

type xs:time.

xs:token($arg as xs:anyAtomicType?)

as xs:token?

2.0 Constructs a new object of XML Schema

type xs:token.

xs:unsignedByte($arg as xs:

anyAtomicType?) as xs:unsignedByte?

2.0 Constructs a new object of XML Schema

type xs:unsignedByte.

xs:unsignedInt($arg as xs:

anyAtomicType?) as xs:unsignedInt?

2.0 Constructs a new object of XML Schema

type xs:unsignedInt.

xs:unsignedLong($arg as xs:

anyAtomicType?) as xs:unsignedLong?

2.0 Constructs a new object of XML Schema

type xs:unsignedLong.

xs:unsignedShort($arg as xs:

anyAtomicType?) as xs:unsignedShort?

2.0 Constructs a new object of XML Schema

type xs:unsignedShort.

xs:untypedAtomic($arg as xs:

anyAtomicType?) as xs:untypedAtomic?

2.0 Constructs a new object of XML Schema

type xs:untypedAtomic.

xs:yearMonthDuration($arg

as xs:anyAtomicType?) as xs:

yearMonthDuration?

2.0 Constructs a new object of XML Schema

type xs:yearMonthDuration.

(continued)

bapp02.indd 796bapp02.indd 796 05/06/12 5:02 PM05/06/12 5:02 PM

XML Schema Data Types

This appendix shows the data types available for use in W3C XML Schemas, which were
covered in Chapter 5.

THE TREE OF TYPES

The types in XML Schema follow the traditional pattern of a tree found in many other
software libraries. For example, in Java the basic type is Object from which all other classes
ultimately derive. The inheritance tree for the XML Schema types is shown in Figure C-1.

As you can see, all W3C Schema types are based on anyType. From here come all the
built-in types, or you can create a complex type using restriction and extension, as detailed in
Chapter 5.

These types are all grouped under the namespace http://www.w3.org/2001/XMLSchema.
It is common to use a prefi x of xs or xsd to represent this namespace URI but, because
all the types discussed in this appendix fall under this namespace, no prefi x is used when
 specifying them.

Most of the types shown can be constrained, that is they can be limited to hold a narrower
range of data than originally intended. This is because the types have a number of facets. Each
facet allows you to specify a property of the type. For example, the double type has a facet
called minInclusive. This means you can specify the minimum value that can be held by this
type. If you specifi ed 0 for this property, your type would not be able to contain any negative
values. Another common facet is pattern. This allows you to specify a regular expression
that the lexical representation (that is, how it’s written) must follow. So you could start
with a string type and specify a pattern of [A-Z] to restrict it to uppercase letters from the
traditional Latin alphabet.

C

bapp03.indd 797bapp03.indd 797 05/06/12 5:05 PM05/06/12 5:05 PM

http://www.w3.org/2001/XMLSchema

798 ❘ APPENDIX C XML SCHEMA DATA TYPES

STYLES OF TYPES

The built-in types can have three different styles. They can be atomic meaning they cannot be
broken down into a simpler type, for example, double. They can also be lists, in which there are
many values of one type. For instance, NMTOKENS is a list of NMTOKEN. Lastly, they can be unions,
in which a single item can be of one or more of the simple types. For an example of a union type,
take the maxOccurs attribute on the <xs:element> element in XML Schema. This is used to specify
how many times the element may appear at most. It can be either a positive integer, such as 3, or the
string unbounded. As such it is a union of two types, positive integer and string.

anyTypeBuilt–in Datatype Hierarchy

anySimpleTypeall complex types

duration

boolean

string

normalizedString

token

base64Binary hexBinary float

decimal

long

int unsignedLong

integer

double anyURI QName NOTATION

nonPositiveInteger

language Name

NC Name

ID

NMTOKEN

IDREF ENTITY

IDREFS ENTITIES

NMTOKENS unsignedInt

unsignedShort

unsignedByte

nonNegativeInteger

positiveIntegernegativeInteger

short

byte

dateTime time date gYearMonth gYear gMonthDay gDay gMonth

ur types

built–in primitive types

built–in derived types

complex types

derived by restriction

derived by list

derived by extension or restriction

FIGURE C-1

bapp03.indd 798bapp03.indd 798 05/06/12 5:05 PM05/06/12 5:05 PM

THE BUILT-IN TYPES

Table C-1 gives a summary of most of the built-in types along with any facets that they might have
and an example usage.

TABLE C-1: The Primitive Built-In XML Schema Types

TYPE NAME DESCRIPTION EXAMPLES FACETS

string A sequence of Unicode

characters. In XML 1.1 only

the null character (0x0)

is forbidden.

abcdefghijk

αβγδεζηθικ
LengthminLength

maxLength

pattern

enumeration

whiteSpace

boolean Used to represent

two-valued logic.

true

false

pattern

whiteSpace

decimal A base-10 fi xed-point

number. There must be at

least one digit before the

decimal point and it can

be positive or negative.

-1.23

555

879.657

totalDigits

fractionDigits

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

float A 32-bit fl oating-point

decimal number.

-1e3

1234.56789E7

-INF

NaN

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

double A 64-bit fl oating-point

decimal number.

-1E5

1234.56789E11

1.1e-3

INF (representing infi nity)

-INF (representing

negative infi nity)

NaN (representing Not a

Number)

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

continues

The Built-In Types ❘ 799

bapp03.indd 799bapp03.indd 799 05/06/12 5:05 PM05/06/12 5:05 PM

800 ❘ APPENDIX C XML SCHEMA DATA TYPES

TYPE NAME DESCRIPTION EXAMPLES FACETS

duration A duration of time. It can

start with a - if negative.

Then the letter P. Years,

months, and days are

specifi ed by Y, M, and

D, respectively, and

follow the actual number.

Similarly, if present, hours,

minutes, and seconds are

shown with Y, M, and S

always preceded by a T.

P100Y3M4D represents

100 years, 3 months and

4 days

-P2D represents a

negative duration of 2

days

P1Y2M3DT4H20M5S

represents 1 year, 2

months, 3 days, 4 hours,

20 minutes

and 5 seconds

P1Y1D represents

1 year and 1 day

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

dateTime Represents a specifi c

instance of time with an

optional time zone.

1642-12-25T14:30:20

1642-12-25T14:30:20.143

1642-12-25T14:30:20+14:00

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

time An instant of time. The

format is hh:mm:ss.sss

with an optional time

zone.

13:42:55

13:42:55.001

13:42:55.001-05:00

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

date Represents a specifi c

date with an optional

time zone.

1642-12-25

1642-12-25+13:00

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

gYearMonth Represents a Gregorian

year and month. Shown

by YYYY-MM plus an

optional time zone.

1962-11 represents

November 1962.

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

TABLE C-1 (continued)

bapp03.indd 800bapp03.indd 800 05/06/12 5:05 PM05/06/12 5:05 PM

TYPE NAME DESCRIPTION EXAMPLES FACETS

gYear Represents a Gregorian

year. Shown by YYYY plus

an optional time zone.

1643 pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

gMonthDay A Gregorian month and

day. Shown by--MM-DD

plus an optional time

zone.

--07-04 represents

the 4th of July.

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

gDay A day of the month

in the Gregorian

calendar, such as the

fi fth of the month.

Shown by--DD where

DD is the actual day.

A time zone can be

added.

--25

--25+12:00

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

gMonth A month of a Gregorian

year. Shown by--MM

where MM is the actual

month. A time zone can

be added.

--11 represents

November

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

hexBinary Hexadecimal encoded

binary data where each

byte needs two characters

taken from 0–9 and A–F.

0FB8 represents the

base ten integer 4024

length

minLength

maxLength

pattern

enumeration

whiteSpace

continues

The Built-In Types ❘ 801

bapp03.indd 801bapp03.indd 801 05/06/12 5:05 PM05/06/12 5:05 PM

802 ❘ APPENDIX C XML SCHEMA DATA TYPES

TYPE NAME DESCRIPTION EXAMPLES FACETS

base64Binary A sequence of bytes

encoded as detailed in

RFC 2045 (http://www

.ietf.org/rfc/rfc2045

.txt). This is often used

to represent the contents

of a binary fi le within

a document, because

otherwise a null character

would not be allowed.

VGhpcyBpcyBhIGdy

ZWF0IGJvb2sh==

length

minLength

maxLength

pattern

enumeration

whiteSpace

anyURI Must conform to the URI

standard as given in RFC

2396 (http://www.ietf

.org/rfc/rfc2396.txt).

http://www.wrox
.com/

length

minLength

maxLength

pattern

enumeration

whiteSpace

QName Represents a fully

qualifi ed XML name

consisting of a namespace

URI and a local name.

QNames cannot be directly

expressed; you need to

use a namespace URI to

prefi x mapping fi rst and

then use the prefi x:local

name representation.

<root xmlns:myNS=

”http://wrox.com/

ns/example”>

<myNS:myElement />

</root>

length

minLength

maxLength

pattern

enumeration

whiteSpace

NOTATION NOTATIONs cannot be

used in XML Schema

directly, only their derived

types. NOTATIONs need

to be declared in a DTD

and can be used only

on attributes. Should be

used only in schemas

with no target namespace.

They are represented

as QNames. For more

information, see Chapter 4.

length

minLength

maxLength

pattern

enumeration

whiteSpace

TABLE C-1 (continued)

bapp03.indd 802bapp03.indd 802 05/06/12 5:05 PM05/06/12 5:05 PM

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.wrox.com/
http://www.wrox.com/
http://wrox.com/ns/example
http://wrox.com/ns/example

Table C-2 shows the built-in data types that are derived from the primitive types in Table C-1.

TABLE C-2: The Derived Built-In XML Schema Types

TYPE NAME DESCRIPTION EXAMPLES FACETS

normalized

String

Derived from string. A

normalizedString’s

whitespace will only be the

space character (0x20).

Hello, World! length

minLength

maxLength

pattern

enumeration

whiteSpace

token Derived from

normalizedString. As well

as the only whitespace being

the space characters, multiple

spaces are truncated into a

single space and leading and

trailing spaces are removed.

Hello, World! length

minLength

maxLength

pattern

enumeration

whiteSpace

language Derived from token. A natural

language identifi er as specifi ed

by RFC 3066 (http://www

.ietf.org/rfc/rfc3066.txt).

length

minLength

maxLength

pattern

enumeration

whiteSpace

NMTOKEN Derived from token. Used to

represent a name and generally

only found on attributes. Unlike

the names used in elements and

attributes, the NMTOKEN can start

with a digit.

1Name length

minLength

maxLength

pattern

enumeration

whiteSpace

NMTOKENS A list type containing a

space-separated list of

NMTOKENs.

1Name 2Name length

minLength

maxLength

pattern

enumeration

whiteSpace

Name Derived from token. Represents

a name in XML. A name can

begin with a letter, underscore,

or colon and then can contain

letters, digits, and characters.

Name1

_Name2

:Name3

length

minLength

maxLength

pattern

enumeration

whiteSpace

continues

The Built-In Types ❘ 803

bapp03.indd 803bapp03.indd 803 05/06/12 5:05 PM05/06/12 5:05 PM

http://www.ietf.org/rfc/rfc3066.txt
http://www.ietf.org/rfc/rfc3066.txt

804 ❘ APPENDIX C XML SCHEMA DATA TYPES

TYPE NAME DESCRIPTION EXAMPLES FACETS

NCName Derived from Name and short

for non-colon name; a name not

containing a colon.

Name1

_Name2

length

minLength

maxLength

pattern

enumeration

whiteSpace

ID Derived from NCName. An ID has

the same format as an NCName

but they are used only on

attributes and must be unique

within the XML document.

ID1

_ID2

length

minLength

maxLength

pattern

enumeration

whiteSpace

IDREF Derived from NCName. Takes the

same form as ID but refers to an

ID within a document so it can

appear more than once. Used

only on attributes.

ID1

_ID2

length

minLength

maxLength

pattern

enumeration

whiteSpace

IDREFS A list type derived from NCName.

IDREFS is a space-separated list

of IDREF.

ID1 _ID2 length

minLength

maxLength

pattern

enumeration

whiteSpace

ENTITY Derived from NCName.

Represents an unparsed entity

declared in a DTD. Used only on

attributes.

nbsp length

minLength

maxLength

pattern

enumeration

whiteSpace

ENTITIES A list type derived from NCName.

A space-separated list of

ENTITY.

nbsp eacute length

minLength

maxLength

pattern

enumeration

whiteSpace

TABLE C-2 (continued)

bapp03.indd 804bapp03.indd 804 05/06/12 5:05 PM05/06/12 5:05 PM

TYPE NAME DESCRIPTION EXAMPLES FACETS

integer Derived from decimal but with a

fractionDigits equal to zero.

123456789 totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

nonPositive

Integer

Derived from integer. An

integer that is negative or zero.

0

–1

totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

negative

Integer

Derived from

nonPostiveInteger. An integer

that is less than zero.

–1 totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

long Derived from integer.

An integer between

9223372036854775807 and

–9223372036854775808.

-92233720368

54775808

totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

continues

The Built-In Types ❘ 805

bapp03.indd 805bapp03.indd 805 05/06/12 5:05 PM05/06/12 5:05 PM

806 ❘ APPENDIX C XML SCHEMA DATA TYPES

TYPE NAME DESCRIPTION EXAMPLES FACETS

int Derived from long. An integer

between 2147483647 and

–2147483648.

2147483647 totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

short Derived from int. An integer

between 32767 and –32768.

Cannot have a preceding plus

sign or leading zeros.

325 totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

byte A signed 8-bit integer between

–128 and 127. Cannot have a

preceding plus sign or leading

zeros.

–16

23

totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

nonNegative

Integer

Derived from integer. An

integer greater or equal to zero.

0

123456789

totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

TABLE C-2 (continued)

bapp03.indd 806bapp03.indd 806 05/06/12 5:05 PM05/06/12 5:05 PM

TYPE NAME DESCRIPTION EXAMPLES FACETS

unsignedLong Derived from

nonNegativeInteger.

An integer between 0 and

18446744073709551615

inclusive.

0

184467440737

09551615

totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

unsignedInt Derived from unsignedLong.

An integer between 0 and

4294967295 inclusive.

0

4294967295

totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

unsignedShort Derived from unsigned int. An

integer between 0 and 65535

inclusive. Leading zeros are

prohibited.

0

65535

totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

unsignedByte Derived from unsignedShort.

An integer between 0 and 255

inclusive. Leading zeros are

prohibited.

0

255

totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

continues

The Built-In Types ❘ 807

bapp03.indd 807bapp03.indd 807 05/06/12 5:05 PM05/06/12 5:05 PM

808 ❘ APPENDIX C XML SCHEMA DATA TYPES

FACETS

Table C-3 describes how each facet can be used to constrain a type.

TYPE NAME DESCRIPTION EXAMPLES FACETS

positive

Integer

Derived from

nonNegativeInteger. An

integer greater than zero.

1

+1000

001000

totalDigits

fractionDigits

pattern

whiteSpace

enumeration

maxInclusive

maxExclusive

minInclusive

minExclusive

TABLE C-2 (continued)

TABLE C-3: XML Schema Type Facets

FACET NAME DESCRIPTION EXAMPLE

length The exact number of characters,

bytes, or items in a list.

<restriction

base=”string”><length value=”6”

/></restriction> means a string of

exactly six characters.

minLength The minimum number of

characters, bytes, or items

in a list.

<restriction

base=”anyURI”><minLength

value=”20” /></restriction>

means http://www.wrox.com would

fail but http://www.wrox.com/

would pass.

maxLength The maximum number of

characters, bytes, or items

in a list.

<restriction

base=”anyURI”><maxLength

value=”19” /></restriction>

means http://www.wrox.com/ would

fail but http://www.wrox

.com would pass.

bapp03.indd 808bapp03.indd 808 05/06/12 5:05 PM05/06/12 5:05 PM

http://www.wrox.com
http://www.wrox.com/
http://www.wrox.com/
http://www.wrox.com
http://www.wrox.com

FACET NAME DESCRIPTION EXAMPLE

pattern A regular expression that limits

what the value can hold.

<restiction

base=”string”><pattern

value=”[0-9]{5}(-[0-9]{4})?”

/></restriction> limits a string to

a representation of a U.S. postal code

(ZIP). The expression means fi ve digits

followed by an optional group that

starts with a hyphen and is followed

by four digits.

enumeration Restricts the value by specifying

a limited number of specifi c

values.

<restriction base=”gMonthDay”>

<enumeration value=”--07—

04”/><enumeration value=”--12-

25”/></restriction> limits a

gMonthDay to one of July 4th or

December 25th.

whiteSpace How whitespace is treated. This

can take one of three values.

preserve: whitespace is left

alone.

replace: All instances of

whitespace such as tab (#x9),

linefeed (#xA), and carriage

return (#xD) are replaced with a

space (#x20).

collapse: Like replace but

then multiple contiguous spaces

are replaced by a single space

and any leading and trailing

spaces are removed.

preserve

replace

collapse

maxExclusive The exclusive upper bound of a

numeric data type.

<restriction base=”integer”>

<maxExclusive value=”101” />

</restriction> restricts an integer

to 100 or less.

maxInclusive The inclusive upper bound of a

numeric data type.

<restriction base=”integer”>

<maxInclusive value=”100” />

</restriction> restricts an integer

to 100 or less.

continues

Facets ❘ 809

bapp03.indd 809bapp03.indd 809 05/06/12 5:05 PM05/06/12 5:05 PM

810 ❘ APPENDIX C XML SCHEMA DATA TYPES

FACET NAME DESCRIPTION EXAMPLE

minExclusive The exclusive lower bound of a

numeric data type.

<restriction base=”integer”>

<minExclusive value=”0” />

</restriction> restricts an integer

to 1 or more.

minInclusive The inclusive lower bound of a

numeric data type.

<restriction base=”integer”>

<minInclusive value=”1” />

</restriction> restricts an integer

to 1 or more.

totalDigits A positive integer specifying the

maximum number of total digits

used to represent a data type

derived from decimal.

<restriction base=”integer”>

<totalDigits value=”6” />

</restriction> restricts an integer

to between –999999 and 999999.

fractionDigits A positive integer specifying the

maximum number of digits that

can appear after the decimal

point in a type derived from

decimal.

<restriction base=”decimal”>

<fractionDigits value=”2” />

</restriction> means that 1.23 is

allowed but not 1.234.

For the original specifi cations on XML Schema data types, which contain more information and
where the defi nitions are more rigorous, see http://www.w3.org/TR/xmlschema-1/ and http://
www.w3.org/TR/xmlschema-2/.

TABLE C-3 (continued)

bapp03.indd 810bapp03.indd 810 05/06/12 5:05 PM05/06/12 5:05 PM

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

811

INDEX

Symbols

= operator, 223–224
<oXygen/> editor, 176–177

A

accessibility
HTML, 668–669
JavaScript and, 629–630

aggregators. See newsreaders
AJAX (Asynchronous JavaScript and

XML)
asynchronous operations, 617
example, 625–628
feedback, 616
getXML() function, 627
HTTP methods, 628–629
incomplete data, 616
jQuery and, 633–634

autocompletion example,
639–644

JSON and, 635–636
overview, 615–616
XMLHttpRequest function,

623–627
<all> declaration, 127–128
animation

CSS, 717
libraries, 717
scripted, 717
SVG, 717

CSS, 719
external libraries, 720
SMIL, 718–719

<annotation> element, 169
annotations, 168
<any> declaration, 136–138
ANY keyword, 97–98

anyURI data type, 150
APP (Atom Publishing Protocol),

398
appUsers.xslt, 19–21
arcs, 707–708
ASP.NET, RPC servers, 576–578
<assert> element, 171

rules testing, 195
Atom

Atom Publishing Format and
Protocol, 495

Atom Publishing Protocol, 495
Atom Syndication Format, 495
<content> element, 497
<id> element, 497
<link> element, 496

Atom namespace, 77
ATTLIST declarations, 103

attribute names, 103–104
attribute types, 104–105
multiple attributes, 106–107
value declarations, 105–106

ATTLIST keyword, 103
Attr node (DOM), 214
attribute declarations, 103

attribute values, 105–106
data types, 104–105
multiple, 106–107
names, 103–104

<attribute> declarations,
141

attributeFormDefault
attribute, 126

attributes, 7–8, 33–34
attribute information items, 48
attributeForm

Default, 126
element comparison,

36–37

elementForm

Default, 126
namespace declarations

and, 59
SAX, 412–413
schemaLocation, 124
values, 105–106
when to use, 37–38
XmlReader and,

438–441
<xsl:template> mode

attribute, 280–282
axes (XPath), 220–221

ancestor::, 221
ancestor-or-self::,

221
attribute::, 221
child::, 221
descendant::, 221
descendent-or-

self::, 221
following::, 221
following-sibling::,

221
namespace::, 221
parent::, 221
preceding::, 221
preceding-sibling

::, 221
self::, 221

Axis Properties (VB.NET
XML), 478

Attribute Axis shortcut,
479

Child Axis shortcut, 478
Descendants Axis

shortcut, 479
Value Property

shortcut, 479

bindex.indd 811bindex.indd 811 05/06/12 5:14 PM05/06/12 5:14 PM

812

back end security – contacts element

B

back end security, 638
Base URI, 48
base64Binary data type,

149
BaseX

installation, 310–312
queries, 310–312

binary data, sending, 638
binary fi les, 4–5
<binding> element, 603

<soap:binding>, 603–604
<soap:body>, 605
<soap:operation>,

604–605
bitmap graphics, 689

raster images, 691–692
SVG and, 715–716

<blockquote> element, 660
<Body> element, 581
body of query

element constructors,
326–327

typeswitch expressions,
325–326

<body> XHTML element,
656–659
<blockquote> element, 660
<div> element, 660
<h1> element, 660
<h2> element, 660
hypertext links, 661–663
inline elements, 666–667
lists, 660–661
<p> element, 660
<section> element, 660

BOM (byte order mark), 27–28
boolean data type, 149
Boolean functions, 775
Boolean type, 226
Boolean values, effective boolean

value, 220
browser

error fi nding, 45–47
fi les, opening, 8–10
news feeds, 531
stylesheets and, 9
XSLT, 19–21

built-in rules, 282–284
built-in templates, 282–284

built-in types, 799–808
business interoperability,

15–16
byte data type, 149

C

callService() method,
557–558

cardinality of elements, 101,
134–135

case study
background, 727–728
Hoy Books website, 741–742
MathML, 734–736
new process, 730–733
REST, 738
SVG with XQuery and XSLT,

742–746
TEI (Text Encoding

Initiative), 741
workfl ow

current, 728
XML-based, 728–729

XForms, 738
XInclude, 734
XML markup for

documentation, 741
XProc, 737–738
XQuery, 734, 738
XSL-FO, 738–740

CDATA data type, 104
CDATA sections, 39–40
CDATASection node (DOM),

214
CDF (Content Defi nition Format),

487
<channel> element, 493
character data. See CDATA

sections
character entities, 110
character information item, 49
character references, 34–35
characters, forbidden, 26–27
characters SAX event, 406,

414–416
choices, 95
<circle> element, 702
circles, SVG, 702
Clark notation for namespaces,

59

classes
DefaultHandler, 411, 428
Feed, 512–514
FeedHandler, 514–518
FeedReader, 509–512
Item, 512–514
XAttribute, 457
XDocument, 457
XmlReaderSettings,

441–442
XmlResolver, 447
XmlSecureResolver,

447–448
CLASSPATH environment

varible, Saxon for Java and,
244

clauses, JavaScript, 623
client-consumer web syndication

system, 489–490
client-producer web syndication

system, 490–491
<Code> element, 590
code point (Unicode), 28
code reuse

RELAX NG, 189–193
XSLT, 276–282

collection() function,
291–292

color, SVG, 713–715
COM (Component Object Model),

541–542
command-line utilities, mysql,

354–355
comment information item, 49
Comment node (DOM), 214
comments, 29
component-based software, 541
computed element constructors,

query body, 327
conditional logic, XSLT, 266–270
confi guration fi les, 14
constraints

RELAX NG, 186–189
Schematron

co-constraints, 202–203
values, 200–202

constructors, element constructors,
query body, 326–327

contacts, XML Schemas,
141–148

contacts element, 143–144

bindex.indd 812bindex.indd 812 05/06/12 5:14 PM05/06/12 5:14 PM

813

content – direct element constructors, query body

content, 15
models, XML Schema, 119,

127–130
reusable, 711–712

<content> element, 497
context

XPath, 216–217
predicates, 219–220

XQuery expressions, 317
XSLT, 248–249

coordinates, SVG, 712–713
CORBA (Common Object

Request Broker Architecture),
542–543

correlated subqueries, 368
CORS, 637
count clause

XQuery, 330–331
XQuery 3.0, 335

CreateMusicLibrary()
function, 477

CSS (cascading style sheets), 670
animation, 717, 719
CSS Box Model, 676–678
example, 671–673
levels, 670
properties, 675–680
selectors, 673–675
special rules, 680–681
SVG and, 696–698
units, 678
unobtrusive, 682
versions, 670
WebKit Developer Tools,

675–676
XML and, 681–382

CSV (comma-separated values)
fi les, 240

current-group() function,
293–295

current-grouping-key()
function, 293–295

D

data, databases, retrieving from
documents, 343–344

<data> element, 188
data extraction, 211

Elements() method,
461–464

data types
attributes, 104–105
derived types, 155–157
RELAX NG, 187
xml, 371–372
XML Schema built-in,

799–808
anyURI, 150
base64Binary, 149
boolean, 149
byte, 149
date, 150
dateTime, 149
decimal, 149
double, 149
duration, 149
float, 149
gDay, 150
gMonth, 150
gMonthDay, 150
gYear, 150
gYearMonth, 150
hexBinary, 149
int, 149
integer, 149
language, 150
long, 149
name, 150
NCName, 150
negativeInteger, 149
nonNegativeInteger,

149
nonPositiveInteger,

149
normalizedString, 148
positiveInteger, 149
QName, 150
short, 149
string, 148
time, 149
token, 148
unsignedByte, 149
unsignedInt, 149
unsignedLong, 149
unsignedShort, 149

XML Schemas, 119, 797–798
facets, 808–810
user-defi ned, 155

XSLT 2.0, 285
database systems, 15
databases

data, retrieving from
documents, 343–344

document retrieval, 343
documents, XML, updating,

344
MySQL

creating, 346–348
populating, 346–348

RDBMS, 345
relational data, displaying as

XML, 344
samples, 356
SQL, 342
XML and, 341–343

date data type, 150
dateTime data type, 149
DCOM (Distributed Component

Object Model), 541–542
decimal data type, 149
declarations, 27

ATTLIST, 103
ELEMENT, 93–94
elements, 88
namespaces, 58–62

attributes and, 59
changing declaration,

64–67
multiple, 62–64
prolog, 319

RELAX NG, 183–184
variables, prolog, 321–322
XML Schema, importing,

161–165
declarative graphics, 690–691
declarative language, 226

XSLT as, 240–242
DeclHandler interface, 432–434
deep-equal() function, 225
default values, 135–136
DefaultHandler class, 411, 428
<define> element, name attribute,

190
<definitions> element, 601
<defs> element, SVG, 711–712
derived types, 155–157
<desc> element, SVG, 710
<description> element, 494
<diagnostic> element, error

messages, 198–200
direct element constructors, query

body, 326–327

bindex.indd 813bindex.indd 813 05/06/12 5:14 PM05/06/12 5:14 PM

814

DisplayPeopleWithDates()
method, 439

distributed systems, 539–540
<div> element, 660
DML (Document Modifi cation

Language)
deleting document parts,

375–377
inserting document parts,

377–378
updating documents, 379

doc() function, 232–233
Docbook namespace, 78
DOCTYPE (document type

declaration), 87–88
external subset declarations,

89
internal subset declarations,

89
public identifi ers, 90–91
system identifi ers, 89–90
SYSTEM keyword, 90
whitespace, 89

document() function, 232–233
document() XSLT function,

260–266
document information item, 48
document models, 211–212

DOM, 212
tree sample, 212–213

PSVI, 212
XDM, 212

document node (DOM), 214
document type declaration. See

DOCTYPE (document type
declaration)

document type declaration
information item, 49

documentation, 167–169
annotations, 168

<documentation> element, 169
DocumentFragment node

(DOM), 214
documents, 13–14

attribute information
items, 48

Base URI, 48
character information

item, 49
comment information

item, 49

databases
data retrieval from,

343–344
document retrieval, 343
updating, 344

declarations, 27
standalone documents,

28
deleting parts, XML DML,

375–377
document type declaration

information item, 49
element information items,

48
elements

naming specifi cations,
30–31

naming styles, 30
self-closing, 30

entity reference information
items, 49

fragments, 32
functional construction, 454
inserting parts, XML DML,

377–378
LINK to XML, namespaces,

459–460
prefi xed, 459–460

management, 15
modifying, LINQ to XML,

468–471
multiple, XML Schema

from, 161–167
namespace information item,

49
notation information item,

49–50
processing instruction

information items, 48
prolog, 27

comments, 29
encoding, 27–29
processing instructions,

29
root element, 29
Schematron, creating,

196–197
standalone, 28
transforming (LINQ to

XML), 472–474
updating, DML and, 379

XML in SQL Server,
372–374

XML Schemas, instance
documents, 120

XmlReader

attribute data, 438–441
element data, 438–441
loading, 435–438
validation, 443–447

XSLT 2.0, multiple output,
290–291

DocumentType node (DOM), 214
DOM (Document Object Model),

16, 17, 212
Attr node, 214
CDATASection node, 214
Comment node, 214
Document node, 214
DocumentFragment node,

214
DocumentType node, 214
element node, 214
Entity node, 214
limitations, 215
Notation node, 214
text node, 214
tree

node lists, 214–215
node properties, 214
nodes, 213–214
sample, 212–213

double data type, 149
DROP XMLSCHEMA statement, 385
DSL (domain-specifi c language),

631
DTD Compatibility Library, 188
DTDHandler interface, 427–428
DTDs (document type

defi nitions), 17–18
description, 83–84
DOCTYPE and, 87–88
ELEMENT declaration, 93–94

ANY keyword, 97–98
element content, 94–96
empty content, 97
mixed content, 96–97

elements, cardinality, 101
external, 84, 91–92
internal, 84
jEdit, 84–87
limitations, 114

DisplayPeopleWithDates() method– DTDs (document type defi nitions)

bindex.indd 814bindex.indd 814 05/06/12 5:14 PM05/06/12 5:14 PM

815

duration data type – endElement SAX event

modular, 111–112
sharing, 92–93
XHTML documenets, 18
XHTML DTD, 653

duration data type, 149

E

Eclipse, 85
effective boolean value, 220
ELEMENT declaration, 93–94

ANY keyword, 97–98
choices, 95
content, 94–96
empty content, 97
mixed content, 96–97
sequences, 95

combined with choices,
95–96

<element> declarations, XML
Schema content models,
128–129

<element> element, pattern
matching and, 179

element information items, 48
ELEMENT keyword, 93
element node (DOM), 214
elementFormDefault attribute,

126
elements, 7–8

<annotation>, 169
<any> declarations, 136–138
attribute comparison, 36–37
<binding>, 603

<soap:binding>,
603–604

<soap:body>, 605
<soap:operation>,

604–605
<Body>, 581
cardinality, 101, 134–135
<channel>, 493
<circle>, 702
<Code>, 590
constructors, query body,

326–327
contacts, 143–144
<content>, 497
<data>, 188
declaration elements, 88

<define>, 190
<definitions>, 601
<description>, 494
<documentation>, 169
<ellipse>, 702–703
<Envelope>, 580
<Fault>, 589–590
formatting, 31
<guid>, 495
<Header>, 587–589
<id>, 497
illegal, 31
<image>, 494
<lastBuildDate>, 494
legal, 31
<line>, 703–704
<link>, 496
<messages>, 602
naming specifi cations, 30–31
naming styles, 30
nesting, 32–33
<path>, 706–707
<polygon>, 704
<polyline>, 704
<portTypes>, 602–603
<pubDate>, 495
<rdf:RDF>, 499
<rect>, 701–702
root element, 29, 32
<rss>, 493
<rule>, Schematron,

196–197
<schema>, 122
self-closing, 30
<sequence>, 123
<service>, 605
SVG

<defs>, 711–712
<desc> element, 710
<metadata>, 710–711
<title> element,

709–710
<svg>, 693–694
<svg:circle>, 693–694
<svg:svg>, 693–694
<title>, 495
<ttl>, 494
<types>, 601–602
when to use, 37–38
wildcards, 136–138
XHTML

<body>, 656–668
<head>, 654–656

XmlReader and, 438–441
<xs:analyze-string>,

299
<xs:annotation>, 204
<xsl:apply-templates>,

300
<xsl:call-template>,

259–260
<xsl:choose>, 267
<xsl:copy>, 273–276
<xsl:copy-of>, 273–276
<xsl:for-each-group>,

294
<xsl:if>, 266
<xsl:import>, 279–280
<xsl:include>, 276–279
<xsl:otherwise>, 268
<xsl:output>, 274
<xsl:param>, 257,

270–271
<xsl:result-document>,

290–291
<xsl:sort>, 271–272
XSLT

<xsl:apply-

templates>, 245, 251
<xsl:for-each>, 245,

253–254
<xsl:stylesheet>,

245, 246–247
<xsl:template>, 245,

247–251
<xsl:value-of>, 245,

251–253
<xsl:template>, 259
<xsl:variable>, 257, 267
<xsl:when>, 268
<xsl:with-param>, 259

Elements() method, 461–464
ELEMENTS directive, 358
<ellipse> element, 702–703
ellipses, SVG, 702–703
embedding rules, Schematron in

XML Schema, 203–207
empty content models, 139
encoding, 5

Unicode, 27–29
endDocument SAX event, 406
endElement SAX event, 406

bindex.indd 815bindex.indd 815 05/06/12 5:14 PM05/06/12 5:14 PM

816

endElementNS method – FPIs (Formal Public Identifi ers)

endElementNS method, 517
entities

declarations, 109–110
character entities, 110
general entities, 110–111
internal, 110
parameter entities,

111–112
references, 34–35, 109–110

character entities, 110
general entities, 110–111
parameter entities,

111–112
ENTITIES data type, 104
ENTITY data type, 104
Entity node (DOM), 214
entity reference information

items, 49
EntityResolver interfaces,

428–429
enumerated lists, 104
enumeration facet, 156
<Envelope> element, 580
environment, functions, 778–780
eq operator, 224
error event, 422
error handling, 44–47
error messages, Schematron

<diagnostic> element,
198–200

<name> element, 197–198
ErrorHandler interface,

422–427
errors

browser, fi nding with, 45–47
fatal errors, 44

event-driven programming, 403
events, SAX

characters, 406, 414–416
endDocument, 406
endElement, 406
ignorableWhitespace,

407, 416
processingInstruction,

407, 417
setDocumentLocator, 407,

418–422
skippedEntity, 407,

416–417
startDocument, 406
startElement, 406

eXist, 386
APP (Atom Publishing

Protocol), 398
client, 392–393
downloading, 387–389
installation, 387–389
REST interface, 394–397
SOAP, 398
web interface, 389–392
WebDAV, 393
XML IDEs, 393–394
XML:DB API, 398
XML-RPC, 398

exist() method, XQuery, 383
expressions

FLWOR (XQuery), 327–328
for clause, 328–329
count clause, 330–331
group by clause, 330
keywords, 327–328
let clause, 329
order by clause, 330
where clause, 329–330
window clause, 329

JavaScript, 620–621
typeswitch, 325–326
XPath, 216, 222, 228–229

equality checks, 223–225
operators, 223–225
select attribute,

254–255
variables, 226–227

XPath 2
for, 227–228
cast, 230–231
castable, 231
every, 229–230
if, 229
instance of, 230
let, 229
some, 229
treat as, 231

XQuery, 302
default context, 317

extension methods, 453
external DTDs, 84, 91–92
external functions, prolog, 324
external resources, 447–448
external subset declarations, 89
ExtractValue function,

349–352

F

facets, 156, 808–810
fatal errors, 44
fatalError event, 422
<Fault> elements, 589–590
Feed class, 512–514
FeedHandler class, 514–518
FeedReader class, 509–512
fi le processing, sequential

processing, 404
SAX, 404–434

fi les
binary, 4–5
confi guration, 14
encoding, 5
functions, 778–780
opening, in browser, 8–10
reading with SAX, 407–412
size, 8
text, 5–6
validation, 10–11

fi rewalls, HTTP and, 552–553
fi xed values, 105–106, 135–136
Float, double type, 226
float data type, 149
FLWOR (XQuery), 313–317

expressions, 327–328
for clause, 328–329
count clause, 330–331
group by clause, 330
keywords, 327–328
let clause, 329
order by clause, 330
where clause, 329–330
window clause, 329

fonts, SVG, 716–717
for clause, XQuery, 328–329
for expression, XPath 2,

227–228
for loop, 621
FOR XML AUTO, 362–366
FOR XML EXPLICIT, 366
FOR XML PATH, 366–371
FOR XML RAW, 356–362
forbidden characters, 26–27
formatting, elements, 31
forms, HTML, 668
FORTRAN, 690
FPIs (Formal Public Identifi ers),

90–91

bindex.indd 816bindex.indd 816 05/06/12 5:14 PM05/06/12 5:14 PM

817

fractionDigits facet – images

fractionDigits facet, 156
fragments, 32
function items, XQuery 3.0,

337–338
functional construction, 454
functional language, XSLT as,

240, 242
functions

Boolean, 775
CreateMusicLibrary(),

477
deep-equal(), 225
environment, 778–780
ExtractValue, 349–352
fi les, 778–780
higher order, 780–781

XQuery 3.0, 337–338
JavaScript, 622–623

getXML(), 627
XMLHttpRequest,

623–627
numeric, 782–784
object construction by XSD

type, 794–796
operations on items,

781–782
operations on nodes,

784–787
operations on QNames, 787
prolog, 322–323

external, 324
recursive, 323–324

sequences, 788–789
setEntityResolver, 428
setFeature, 429–431
starts-with, 352
strings, 789–793
Time and Date, 775–778
UpdateXML, 353
URIs, 789–793
XDM values, 781–782
XPath

arguments, 231
defi ning, 233–234
doc(), 232–233
document(), 232–233
numeric, 233
parameters, 231
string-handling, 233

XQuery, 313–317
XSLT

document(), 260–266
translate(), 271–272

XSLT 2.0
collection(),

291–292
current-group(),

293–295
current-grouping-

key(), 293–295
unparsed-text(),

295–296
user-defi ned, 285–290

G

gDay data type, 150
general entities, 110–111
GET request, SOAP message,

583–587
GetBasicTotal() method, 578
getLineNumber() method, 420
GetQuantityDiscount()

method, 578
global types, 129–134
gMonth data type, 150
gMonthDay data type, 150
gradients, SVG, 713–715
graphics

bitmap, 689, 691–692
declarative, 690–691
interpolation, 692
opacity, 694–696
pixelated, 692
procedural, 690
raster images, 691–692
vector, 689, 692

group by clause, XQuery, 330
<group> declarations, 139–140
groups

SVG, 709
XQuery 3.0, 334–335
XSLT 2.0, 292–295

<guid> element, 495
gYear data type, 150
gYearMonth data type, 150

H

<h1> element, 660
<h2> element, 660

handlers, startHandler, 411
<head> XHTML element

<link> element, 656
<meta> element, 654–656
<title> element, 656

<Header> element, 587–589
hexBinary data type, 149
hierarchies, 11–12
higher order functions, 780–781

XQuery 3.0, 337–338
HTML (Hypertext Markup

Language)
accessibility and, 668–669
forms, 668
history, 649
JavaScript and, 668
SGML and, 7, 650–651
troubleshooting, 669–670

HTML 5, 683–686
SVG and, 720–721

HTTP (HyperText Transfer
Protocol), 548

body, 549
GET requests, 550
headers, 549
HTML and, 649
methods in AJAX, 628–629
security and, 553
XML-RPC, 554–559

hypertext links, <body> element,
661–663

I

IANA (Internet Assigned
Numbers Authority), 57

ID data type, 104
<id> element, 497
IDEs (Integrated Development

Environments), 85
eXist and, 393–394

IDREF data type, 104
IDREFS data type, 104
if expression, 621
ignorableWhitespace SAX

event, 407, 416
IIOP (Internet Inter-ORB

Protocol), 541, 542–543
<image> element, 494
images, 15

bindex.indd 817bindex.indd 817 05/06/12 5:14 PM05/06/12 5:14 PM

818

implicit dispatch – LINQ to XML

implicit dispatch, 215
#IMPLIED keyword, 103
implied values, 106
<import> declarations, 161–165
importing

modules to XQuery, 321
schemas, 320

<include> declarations,
165–167

indexes, xml data type and,
374–375

information binding, 215
Inkscape SVG editor, 698–700
inline elements, <body> XHTML

element, 666–667
insignifi cant whitespace, 42–43
instance documents, 120
int data type, 149
integer data type, 149
Integer type, 226
interfaces

DeclHandler, 432–434
DTDHandler, 427–428
EntityResolver, 428–429
ErrorHandler, 422–427
LexicalHandler, 432–434

internal DTDs, 84
internal entity declarations, 110
internal subset declarations, 89
interoperability, 12–13

business, 15–16
invalid content, SAX, 417–427
is operator, 224
Item class, 512–514

J

Java
built-in parser, 17
Saxon for Java, setup,

244–245
Java RMI, 541, 543
JavaScript, 617–618

accessibility, 629–630
clauses, 623
control fl ow statements,

621–622
expressions, 620–621
functions, 622–623

getXML(), 627

XMLHttpRequest,
623–627

HTML and, 668
if expression, 621
jQuery library, 630–631
for loop, 621
objects, 622
operators, 620
properties, 622
unobtrusive, 682–686
values, 619–620
variables, 621
web browser and,

618–619
while loop, 621

JDK (Java Developer’s Kit),
installation, 405–406

jEdit, 84–87
jQuery

AJAX and, 633–634
autocompletion example,

639–644
DSL (domain-specifi c

language), 631
JSON and, 636–637
library, 630–631

add-ons, 633
query plug-ins, 632

JSON, 338
example, 635–636
jQuery and, 636–637
syntax, 636

JSONP, 637
JVM (Java Virtual Machine),

Saxon for Java, 244

K

keywords
ANY, 97–98
ATTLIST, 103
ELEMENT, 93
FLWOR (XQuery),

327–328
#IMPLIED, 103
#PCDATA, 96
PUBLIC, 90–91
replace value of, 379
stable, 330
SYSTEM, 90

L

language data type, 150
<lastBuildDate> element, 494
length facet, 156
let cause, XQuery, 329
LexicalHandler interface,

432–434
libraries

animation, 717
jQuery, 630–631

add-ons, 633
SVG, animation, 720

<line> element, 703–704
<link> element, 496, 656
LINQ (Language Integrated

Query), 451–453
extension methods, 453
XAttributes, 456
XElements, 456

LINQ to Entities, 453
LINQ to SQL, 453
LINQ to XML, 454–457

axis traversal methods,
464–465

data extraction, Elements
() method, 461–464

document creation,
namespaces, 459–460
prefi xed, 460

document modifi cation
adding content, 468–470
removing content, 470
replacing content,

470–471
updating content,

470–471
document transformation,

472–474
Remove() method, 470
ReplaceContent()

method, 471
ReplaceNodes() method,

470–471
SetElementValue()

method, 471
ShowTitles() method,

464
TransformToAttributes

() method, 473–474
XAttribute class, 457

bindex.indd 818bindex.indd 818 05/06/12 5:14 PM05/06/12 5:14 PM

819

<list> declarations – news feeds

XDocument class, 457
XProcessingInstruction,

458
<list> declarations, 158–159
lists

enumerated lists, 104
XHTML element, 660–661

literal values, XPath, 225–226
local types, 129–132
logic, conditional, XSLT, 266–270
long data type, 149

M

machine-readability of web
syndication, 488

markup, history, 6
MathML, case study, 734–736
MathML namespace, 77–78
MathService.Add method,

547–548
maxExclusive facet, 156
maxInclusive facet, 156
maxLength facet, 156
MCF (Meta Content Framework),

487
<messages> element, 602
<meta> element, 654–656
<metadata> element, SVG, 710–711
methods

callService(), 557–558
DisplayPeople

WithDates(), 439
Elements(), 461–464
endElementNS, 517
GetBasicTotal(), 578
getLineNumber(), 420
GetQuantityDiscount(),

578
HTTP in AJAX, 628–629
MathService.Add, 547–548
MoveToNextAttribute(),

440
Read(), 439
ReadContentAs...(), 440
ReadElementContent

AsString(), 440
Remove(), 470
ReplaceContent(), 471
ReplaceNodes(), 470–471

SendSoapFault(), 592–593
SetElementValue(), 471
ShowTitles(), 464
startElement, 412
startElementNS, 516–517
TransformToAttributes(

), 473–474
ValidationCallback, 446

minExclusive facet, 156
minInclusive facet, 156
minLength facet, 156
mixed content models, 138–139
modeling news feeds, 502–505
modify() method, XQuery, 375,

380–381
modular DTDs, 111–112
modules

prolog, 324–325
XML Schema, 166–167
XQuery, 313–317

importing, 321
writing, 321

MoveToNextAttribute()
method, 440

MSXML (Microsoft Core XML
Services), 16

multiple documents, XML Schema
from, 161–167

MySQL
adding information, 345–346
databases

creating, 346–348
populating, 346–348

functions
ExtractValue, 349–352
UpdateXML, 353

installation, 345
queries, 348–349
XML support, client-side,

354–355
XML updates, 353
XML usability, 353–354

mysql command-line utility,
354–355

N

name data type, 150
<name> element, error messages,

197–198

named templates, 256–259
names, attributes, 103–104
namespace information item, 49
namespaces, 18

Atom, 77
Clark notation, 59
creating, 57–58
declaring, 58–62

attributes and, 59
changing declaration,

64–67
multiple, 62–64
prolog, 319

defi nition, 54
Docbook, 78
identifi ers, 57
LINK to XML, 459–460
MathML, 77–78
multiple, 68–72
<schema> element,

targetNamespace, 125
scope, 62
selecting, 56
SOAP, 77
specifi c strings, 57
SQL Server, 385–386
uses, 54–56
values, 137
VB.NET, 479
versioning and, 74–75
when not to use, 73–74
when to use, 72–73
WSDL, 77
XML Namespace, 75–76
XML Schema and, 68, 118
XML Schema namespace, 76
xmlns, 76
XPath, 234–236
XSLT, 76

naming specifi cations, 30–31
naming styles, elements, 30
NCName data type, 150
negativeInteger data type, 149
nested elements, 32–33
.NET, Saxon for .NET, setup,

243–244
NetBeans, 85
news feeds

browser processing, 531
data display, 528–531
data quality, 501

bindex.indd 819bindex.indd 819 05/06/12 5:14 PM05/06/12 5:14 PM

820

news feeds – pull processing

news feeds (continued)
formats, 532–534
newsreaders, 501

Feed class, 512–514
FeedHandler class,

514–518
FeedReader class,

509–512
implementation, 505–521
Item class, 512–514
modeling feeds, 502–505
program fl ow, 505
running, 520–521
SAX, 504–505
syntax, 503–504

newsreaders, 501
element handling, 523
Feed class, 512–514
FeedHandler class,

514–518
FeedReader class,

509–512
implementation, 505–507
Item class, 512–514
modeling feeds, 502–505
program fl ow, 505
running, 520–521
SAX, 504–505
syntax, 503–504

NMTOKEN data type, 104
NMTOKENS data type, 104
nodes

DOM trees
lists, 214–215
properties, 214
types, 213–214

functions, 784–787
XPath, lists, 216

nodes() method, 383–384
nonNegativeInteger data

type, 149
nonPositiveInteger data

type, 149
normalizedString data

type, 148
notation information item,

49–50
Notation node (DOM), 214
<ns> element, 200–201
numeric functions, 782–784

XPath, 233

O

opacity of graphics, 694–696
Open Web Platform, 651–652
operators

expresssions, XPath,
223–225

JavaScript expressions, 620
order by clause, XQuery, 330
output, templates, 249–251

P

<p> element, 660
parameter entities, 111–112
parsers

Java built-in, 17
MSXML (Microsoft Core

XML Services), 16
Saxon, 17
System.Xml.Xml

Document, 16
Xerces, 17

parsing, 40–41
error handling, 44–47
whitespace handling, 42–44
XML equivalence, 41–42

<path> element, 706–707
paths, SVG, 705–707

arcs, 707–708
splines, 707

pattern facet, 156
pattern matching

<element> element, 179
RELAX NG and, 177

#PCDATA keyword, 96
pipelines, 23
pixelated graphics, 692
<polygon> element, 704
polygons, SVG, 704
<polyline> element, 704
polylines, SVG, 704
populating databases, MySQL,

346–348
<portTypes> element, 602–603
positiveInteger data type,

149
predicates (XPath)

context, 219–220
effective boolean value, 220
positional, 219

procedural graphics, 690
processing fi les, sequential

processing, 404
SAX, 404–434

processing instruction
information items, 48

processing instructions, 29,
38–39

processingInstruction SAX
event, 407, 417

programming. See also event-
driven programming

prolog, 27
comments, 29
encoding, 27–29
external functions, 324
functions, 322–323
modules

importing, 321, 324–325
writing, 321

namespaces, declarations,
319

optional features, 325
processing instructions, 29
recursive functions, 323–324
schemas, importing, 320
variables, declarations,

321–322
properties

CSS, 675–680
DOM tree nodes, 214
JavaScript, 622
SAX, 432

protocols, 540
HTTP, 548–553
RPC, 541

COM, 541
CORBA, 542–543
DCOM, 541
IIOP, 541, 542–543
Java RMI, 541, 543
SOAP (See SOAP)

PSVI (Post Schema Validation
Infoset), 49–50, 212

XML Schemas, 120
<pubDate> element, 495
public identifi ers, 90–91
PUBLIC keyword, 90–91
publish-subscribe pattern for web

syndication, 488
pull processing, 253–254

bindex.indd 820bindex.indd 820 05/06/12 5:14 PM05/06/12 5:14 PM

821

push processing – SAX (Simple API for XML)

push processing, 253–254
Python, 505–509

Q

QName data type, 150
QNames, functions, 787
queries. See also LINQ (Language

Integrated
Query); XQuery

correlated subqueries, 368
ELEMENTS directive, 358
jQuery plug-ins, 632
MySQL, 348–349
XQuery

body, 318, 325–331
prolog, 318, 319–325
results format, 315–317
version declaration,

318–319
query() method, XQuery,

381–382

R

raster images, 691–692
RDBMS (Relational Database

Management
Systems), 345

RDF (Resource Description
Framework), 487

<rdf:RDF> element, 499
Read() method, 439
ReadContentAs...() method,

440
ReadElementContentAs

String() method, 440
<rect> element, 701–702
rectangles, SVG, 701–702
recursive functions, 323–324
references

character references,
34–35

entity references, 34–35
regular expressions, constraints

and, 188–189
relational data

displaying as XML, 344
presenting XML as,

344–345

SQL Server, XML
presentation, 356–362

RELAX NG, 176
book collection fi le, 178–179
code reuse, 189–193
constraints, 186–189
conversion, 185–186
data types, 187
origins, 177
pattern matching, 177
representations, 178
syntax, 183–185

Remove() method, 470
replace value of keyword,

379
ReplaceContent() method,

471
replacement text, 110
ReplaceNodes() method,

470–471
required values, 106
resources, external, 447–448
REST (REpresentational State

Transfer)
case study, 738
services, 559–564
SOAP comparison, 579

REST interface, 394–397
<restruction> declaration,

156–158
reusable content, 711–712
reusable global types, 131–132
reusing code

RELAX NG, 189–193
XSLT, 276–282

root element, 29, 32
RPCs (Remote Procedure Calls),

539–540. See also XML-RPC
protocols, 541

COM, 541–542
CORBA, 542–543
DCOM, 541–542
IIOP, 541, 542–543
Java RMI, 541, 543
SOAP (See SOAP)

servers, ASP.NET and,
576–578

web services, 547–548
RSS (RDF Site Summary), 487
RSS (Really Simple Syndication),

487. See also news feeds

self-contained feed, 487–488
XHTML and, 525–528

generating from RSS
feed, 529–531

XSLT and, 524–534
RSS 1.0, 497–501
RSS 2.0, 491–495

<channel> element, 493
<description> element,

494
<guid> element, 495
<image> element, 494
<lastBuildDate> element,

494
<pubDate> element, 495
<rss> element, 493
<title> element, 495
<ttl> element, 494

<rss> element, 493
<rule> element, Schematron,

196–197
rules, 10–11

built-in, 282–284
Schematron, 194–195

embedding in XML
Schema, 203–207

testing, 195
writing, 195–196

S

Same Origin Policy, 544
script blocks, 545–546
server domain requests,

546
server-side proxy, 545

SAX (Simple API for XML),
404–405

attributes, reading, 412–413
events

characters, 406,
414–416

endDocument, 406
endElement, 406
ignorable

Whitespace, 407, 416
processing

Instruction, 407,
417

setDocumentLocator,
407, 418–422

bindex.indd 821bindex.indd 821 05/06/12 5:14 PM05/06/12 5:14 PM

822

SAX (Simple API for XML) – SQL Server

SAX (Simple API for XML)
(continued)

skippedEntity, 407,
416–417

startDocument, 406
startElement, 406

features, 429–431
interfaces

DeclHandler, 432–434
DTDHandler, 427–428
EntityResolver,

428–429
ErrorHandler,

422–427
LexicalHandler,

432–434
invalid content, 417–427
JDK, installation, 405–406
newsreaders, 504–505
properties, 432
XML fi les, reading, 407–412

SAXException, 418
Saxon, 17

Saxon for Java, 244–245
Saxon for .NET, 243–244

<schema> element, 122
attributes, qualifi cation,

125–126
declarations, namespaces, 124
namespaces, targetName

space, 125
qualifi cation, 125–126

schemaLocation attribute, 124
schemas, importing, 320
Schematron

constraints
co-constraints, 202–203
values, 200–202

documents, creating, 196–197
elements, <rule>, 196–197
error messages

<diagnostic> element,
198–200

<name> element,
197–198

rules, 194–195
embedding in XML

Schema, 203–207
testing, 195
writing, 195–196

versions, 194

XPath, 193–194
scope, namespaces, 62
screen scraping, 528
scripted animation, 717
scripting

blocks, Same Origin policy,
545–546

XQuery extension, 333
<section> element, 660
security

back end, 638
HTTP and, 553
web services, 568–569

select attribute, XPath
expression, 254–255

self-closing elements, 30
self-documenting XML Schema,

168–169
SendSoapFault() method,

592–593
<sequence> element, 123
sequences, 95

functions, 788–789
sequential processing, 404
server-consumer web syndication

system, 491
server-producer web syndication

system, 489
servers, RPC, ASP.NET and,

576–578
server-side proxy, Same Origin

Policy, 545
<service> element, 605
setDocumentLocator SAX

event, 407, 418–422
SetElementValue()

method, 471
setEntityResolver function,

428
setFeature function, 429–431
SGML (Standard Generalized

Markup Language), 6
background, 650
HTML and, 7, 650–651
XML and, 651
XML origins and, 6–8

shapes (SVG)
circles, 702
ellipses, 702–703
polygons, 704
polylines, 704

rectangles, 701–702
straight lines, 703–704

sharing DTDs, 92–93
short data type, 149
ShowTitles() method, 464
signifi cant whitespace, 42–43
Simple Extension Element, 522
<simpleType> declarations,

155–160
skippedEntity SAX event, 407,

416–417
SMIL (Synchronized Multimedia

Integration Language), 717,
718–719

SOAP (Simple Object Access
Protocol), 565–566

advantages/disadvantages,
575

<Body> element, 581
<Code> element, 590
encoding

rules, 580
style, 581–582

envelope, 580
<Envelope> element, 580
<Fault> elements, 589–590
<Header> element, 587–589
messages

GET request, 583–587
posting, 591–600
specifi cations, 579–580

REST comparison, 579
SendSoapFault() method,

592–593
SOAP interface, 398
SOAP namespace, 77
<soap:binding> element,

603–604
<soap:body> element, 605
<soap:operation> element,

604–605
splines, 707
SQL (Structured Query

Language), 342
queries, correlated

subqueries, 368
FOR XML AUTO, 362–366
FOR XML EXPLICIT, 366
FOR XML PATH, 366–371
XQuery and, 309

SQL Server

bindex.indd 822bindex.indd 822 05/06/12 5:14 PM05/06/12 5:14 PM

823

SSMS (SQL Server Management Studio) – typeswitch expressions

data types, xml, 371–372
DROP XMLSCHEMA statement,

385
installation, 355–356
namespaced documents,

385–386
relational data, XML

presentation, 356–362
W3C XML Schema in,

384–385
XML, document creation,

372–374
FOR XML RAW, 356–362

SSMS (SQL Server Management
Studio), 372–374

stable keyword, 330
standalone documents, 28
startDocument SAX event, 406
startElement method, 412
startElement SAX event, 406
startElementNS method,

516–517
startHandler handler, 411
starts-with function, 352
straight lines, SVG, 703–704
string data type, 148
String data type, RELAX NG,

187
string type, 226
string-handling functions, XPath,

233
strings

functions, 789–793
quoting, XPath, 226

Structured Extension Element,
522

stylesheets, browsers and, 9
SVG (Scalable Vector Graphics),

69–72, 689–690
animation, 717

CSS, 719
external libraries, 720
SMIL, 718–719

bitmap images, 715–716
colors, 713–715
coordinates, 712–713
CSS and, 696–698
defi nitions, 709–712
<defs> element, 711–712
<desc> element, 710
fonts, 716–717

gradients, 713–715
groups, 709
HTML 5 and, 720–721
images, 692–694
Inkscape, 698–700
<metadata> element,

710–711
model, 694–696
opacity, 694–696
paths, 705–707

arcs, 707–708
splines, 707

reusable content, 711–712
shapes, 700–701

circles, 702
ellipses, 702–703
polygons, 704
polylines, 704
rectangles, 701–702
straight lines, 703–704

text, 716–717
<title> element, 709–710
tools, 698–700
transforms, 708–709
viewports, 712–713
web apps and, 721–722
XQuery, 722
XSLT, 722

<svg> element, 693–694
<svg:circle> element, 693–694
<svg:svg> element, 693–694
switch expressions, XQuery 3.0,

336–337
syndication, 485–486

news feeds
data quality, 501
newsreaders, 501–523

RSS 2.0, 491–495
web syndication, 487

client-consumer system,
489–490

client-producer system,
490–491

machine-readability,
488

publish-subscribe
pattern, 488

server-consumer system,
491

server-producer system,
489

syndication feed, 486
syntax, 118

JSON, 636
newsreaders, 503–504
RELAX NG, 183–185

system identifi ers, 89–90
SYSTEM keyword, 90
System.Xml.XmlDocument, 16

T

targetNamespace, 125
TechMeme, 491
TEI (Text Encoding Initiative),

741
templates

built-in, 282–284
named, 256–259
output, 249–251

testing Schematron rules, 195
text

fi les, 5–6
reusable, 110
SVG, 716–717

text editors
forbidden characters,

26–27
<oXygen/>, 176–177
XSLT and, 245

text node (DOM), 214
Time and Date functions,

775–778
time data type, 149
<title> element, 495, 656

SVG, 709–710
Token data type, 187
token data type, 148
totalDigits facet, 156
transforms (SVG), 708–709
TransformToAttributes()

method, 473–474
translate() function,

271–272
try/catch expression, XQuery

3.0, 335–336
<ttl> element, 494
tuples, 313–314
<types> element, 601–602
typeswitch expressions,

325–326

bindex.indd 823bindex.indd 823 05/06/12 5:14 PM05/06/12 5:14 PM

824

UDDI – WSDL

U

UDDI (Universal Discovery,
Description, Integration),
566–567

Unicode, 27–29
<union> declarations, 159–160
unparsed-text() function,

295–296
unsignedByte data type, 149
unsignedInt data type, 149
unsignedLong data type, 149
unsignedShort data type, 149
UpdateXML function, 353
URIs (Uniform Resource

Identifi ers), 57
functions, 789–793

URLs (Uniform Resource
Locators), 56

URNs (Uniform Resource
Names), 57

user-defi ned functions, XSLT 2.0,
285–290

UTF (UCS Transformation
Format), 28

V

validation, 10–11. See also
RELAX NG

DTDs, 83
global types, 134
need for, 176
XML Schema, validators,

120
XmlReader and, 443–447

ValidationCallback method,
446

value() method, XQuery,
382–383

values
attributes, 105–106
constraining, Schematron,

200–202
default, 135–136
fi xed values, 105–106,

135–136
implied, 106
JavaScript, 619–620
namespaces, 137

required, 106
variables

{ } (braces), 270
declarations, prolog,

321–322
expressions, XPath,

226–227
JavaScript, 621

VB.NET XML
Axis Properties, 478

Attribute Axis shortcut,
479

Child Axis shortcut, 478
Descendants Axis

shortcut, 479
Value Property shortcut,

479
literals, 474–475

placeholders and,
476–477

namespace management,
479

vector graphics, 689, 692
version declaration, XQuery,

318–319
versioning, namespaces and,

74–75
viewports, SVG, 712–713

W

W3C (World Wide Web
Consortium), 7

W3C XML Schema, SQL Server
and, 384–385

warning event, 422
web apps, SVG and, 721–722
web browsers, JavaScript and,

618–619
web servers, back end, 637–639
web services, 14, 539, 543–544,

564–565
coordination, 568
HTTP and, 548–553
REST, 559–564
RPCs, 547–548
security, 568–569
SOAP, 565–566
UDDI, 566–567
WSDL, 566, 600–601

<binding> element,
603–605

<definitions> element,
601

<messages> element,
602

<portTypes> element,
602–603

<service> element, 605
<types> element,

601–602
Web Services Interoperability,

567–568
web syndication, 487

client-consumer system,
489–490

client-producer system,
490–491

machine-readability, 488
publish-subscribe pattern,

488
server-consumer system, 491
server-producer system, 489

WebDAV, 393
WebKit Developer Tools,

675–676
well-formed XML, meaning, 26
where clause, XQuery, 329–330
while loop, 621
whitespace

DOCTYPE, 89
handling, 42–44

whiteSpace facet, 156
wildcards in elements, 136–138
window clause, XQuery, 329
windowing, XQuery 3.0,

334–335
WSDL (Web Services Description

Language), 14, 566, 600–601
<binding> element

<soap:operation>,
604–605

<binding> element, 603
<soap:binding>,

603–604
<soap:body>, 605

<definitions> element,
601

<messages> element, 602
<portTypes> element,

602–603

bindex.indd 824bindex.indd 824 05/06/12 5:14 PM05/06/12 5:14 PM

825

WSDL namespace – xmlns namespace

<service> element, 605
WSDL namespace, 77

X-Z

XAttribute class, 457
XAttributes, 456
XDM, 212

nodes, 213–214
XDM values, functions, 781–782
XDocument class, 457
XElements, 456
Xerces, 17
XForms, 738
XHTML, 652–653

<body> element, 656–659
<blockquote> element,

660
<div> element, 660
<h1> element, 660
<h2> element, 660
hypertext links, 661–663
images, 663–666
inline elements, 666–667
lists, 660–661
<p> element, 660
<section> element, 660

DTD references, 18
<head> element

<link> element, 656
<meta> element,

654–656
<title> element, 656

from RSS feed, 529–531
RSS generation, 525–528
troubleshooting, 669–670
XHTML DTD, 653

XML (eXtensible Markup
Language)

applications for, 4
attributes, 7–8
client-side support, MySQL

and, 354–355
elements, 7–8
fi les, opening in browser,

8–10
origins, 3
presenting as relational data,

344
server, XQuery as, 310

SGML and, 6–8
syntax, 118
updates, MySQL, 343

xml data type, 371–372
index creation, 374–375

modify() method,
375

XML DML
deleting document parts,

375–377
inserting document parts,

377–378
updating documents, 379

XML equivalence, 41–42
XML Infoset, 47

attribute information items,
48

character information item,
49

comment information item,
49

document information item,
48

document type declaration
information item, 49

element information items,
48

entity reference information
items, 49

namespace information item,
49

notation information item,
49–50

processing instruction
information items, 48

XML Namespace, 75–76
XML Recommendation,

declaration elements, 88
XML Schema 1.1

<assert>, 171
relaxed rules, 170

XML Schemas, 17–18
<all> declaration, 127–128
benefi ts, 118–120
contacts, 141–148
content models, 119, 127

<attribute>
declarations, 141

default values, 135–136
element cardinality,

134–135

<element> declarations,
128–129

empty, 139
fi xed values, 135–136
global declarations,

129–131
<group> declarations,

139–140
local declarations,

129–131
mixed content, 138–139

data types, 119, 797–798
built-in, 148–155,

799–808
derived types, 155–157
facets, 808–810
user-defi ned, 155

declarations, importing,
161–165

documentation, 167–169
documents, instance

documents, 120
early specifi cations, 117
modules, 166–167
multiple documents,

161–167
name vocabulary, 121–123
namespaces and, 68, 118
PSVI (Post Schema

Validation Infoset), 120
<schema> element

attribute qualifi cation,
125–126

namespaces, 124
qualifi cation, 125–126
targetNamespace,

125
schema validators, 120
Schematron, rules

embedding, 203–207
<simpleType> declarations,

155–160
specifi cations, 119–120
XML syntax, 118

XML:DB API, 398
XMLHttpRequest function,

623–627
xmllint, 311
xmllint command, 659
XmlNodeType enumeration, 441
xmlns namespace, 76

bindex.indd 825bindex.indd 825 05/06/12 5:14 PM05/06/12 5:14 PM

826

XmlReader – XSL-FO

XmlReader, 434
documents

attribute data, 438–441
element data, 438–441
loading, 435–438
validation, 443–447

XmlReaderSettings class,
441–442

XmlResolver class, 447
XML-RPC, 398, 544, 546–547,

547–548
HTTP and, 554–559

XmlSecureResolver class,
447–448

XPath, 18–19
axes, 220–221

ancestor::, 221
ancestor-or-self::,

221
attribute::, 221
child::, 221
descendant::, 221
descendent-

or-self::, 221
following::, 221
following-sibling::,

221
namespace::, 221
parent::, 221
preceding::, 221
preceding-sibling::,

221
self::, 221

context, 216–217
expressions, 216, 222, 223,

228–229
equality checks, 223–225
operators, 223–225
select attribute, 254–

255
variables, 226–227

functions
arguments, 231
defi ning, 233–234
doc(), 232–233
document(), 232–233
numeric, 233
parameters, 231
string-handling, 233

literal values, 225–226

namespaces and, 234–236
node lists, 216
node tests

@attr, 218
attribute(), 218
comment(), 217
element(), 218
name(), 217
node(), 217
prefix:name(), 217
processing-

instruction(), 217
text(), 217

predicates, 218–219
context, 219–220
effective boolean value,

220
positional, 219

Schematron, 193–194
set-like operations, 234
string quoting, 226
and XQuery, 308–309
XQuery and, 332–333
XSLT and, 254–256

XPath 2, expressions
for, 227–228
cast, 230–231
castable, 231
every, 229–230
if, 229
instance of, 230
let, 229
some, 229
treat as, 231

XPath 3.0, 302
XProc, 737–738
XQuery, 21–23, 738

BaseX and, 309
installation, 310–312
queries, 310–312

exist() method, 383
expressions, 302

default context, 317
FLWOR expressions,

313–317
functions, 313–317
Java and, 309
modify() method, 375,

380–381
modules, 313–317

nodes() method, 383–384
Qizx and, 309
queries

body, 318, 325–331
prolog, 318, 319–325
results format, 315–317
version declaration,

318–319
query() method, 381–382
Saxon and, 309
scripting extension, 333
SQL and, 309
standalone applications, 309
SVG and, 722
Update Facility, 333
value() method, 382–383
as XML server, 310
and XPath, 308–309
XPath full text and,

332–333
and XSLT, 308

XQuery 3.0, 333
count clause, 335
function items, 337
grouping, 334–335
higher order functions,

337–338
switch expressions,

336–337
try/catch expression,

335–336
windowing, 334–335

<xs:analyze-string>
elements, 299

<xs:annotation> element, 204
xs:anyURI type, 226
xs:dateTime type, 226
XSL pattern, 248
<xsl:apply-templates>

element, 300
<xsl:apply-templates> XSLT

element, 245, 251
<xsl:call-template> element,

259–260
named templates, 258

<xsl:choose> element, 267
<xsl:copy> element, 273–276
<xsl:copy-of> element,

273–276
XSL-FO, 240, 738–740

bindex.indd 826bindex.indd 826 05/06/12 5:14 PM05/06/12 5:14 PM

827

<xsl:for-each> XSLT element – <xsl:with-param> element

<xsl:for-each> XSLT element,
245, 253–254

<xsl:for-each-group>
elements, 294

<xsl:if> element, 266
<xsl:import> element, 279–280
<xsl:include> element, 276–279
<xsl:otherwise> element, 268
<xsl:output> elements, 274
<xsl:param> element, 270–271
<xsl:param> elements, named

templates and, 257
<xsl:result-document>

element, 290–291
<xsl:sort> element, 271–272
<xsl:stylesheet> XSLT element,

245–247
XSLT (Extensible Stylesheet

Language Transformations),
19

browser and, 19–21
code reuse, 276–282
conditional logic, 266–270
context, 248–249
as declarative language,

240–242
development environment,

setup, 242–245

editor, 245
elements

<xsl:apply-

templates>, 245,
251

<xsl:for-each>, 245,
253–254

<xsl:stylesheet>,
245–247

<xsl:template>, 245,
247–251

<xsl:value-of>, 245,
251–253

as functional language, 240,
242

functions
document(), 260–266
translate(),

271–272
introduction, 239–240
SVG and, 722
templates, named, 256–259
uses, 240
version support, 246
XPath in, 254–256
and XQuery, 308

XSLT 2.0
data types, 285

documents, multiple output,
290–291

functions
collection(),

291–292
current-group(),

293–295
current-grouping-

key(), 293–295
unparsed-text(),

295–296
user-defi ned, 285–290

grouping, 292–295
new features, 284–285
non-XML input, 295–302

XSLT 3.0, 302
XSLT namespace, 76
<xsl:template> mode attribute,

280–282
<xsl:template> XSLT element,

245, 247–251
<xsl:value-of> XSLT element,

245, 251–253
<xsl:variable> element, 267

named templates and, 257
<xsl:when> element, 268
<xsl:with-param> element,

259

bindex.indd 827bindex.indd 827 05/06/12 5:14 PM05/06/12 5:14 PM

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox51 to get started.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read this book for free online—along with thousands of others—
with this 15-day trial offer.

*Available to new subscribers only. Discount applies to the

Safari Library and is valid for fi rst 12 consecutive monthly

billing cycles. Safari Library is not available in all countries.

badvert.indd 828badvert.indd 828 05/06/12 5:00 PM05/06/12 5:00 PM

http://www.safaribooksonline.com/wrox51

	Beginning XML
	About the Authors
	About the Technical Editor
	Credits
	Acknowledgments
	Contents
	Introduction
	Who this Book is for
	What this Book Covers
	How this Book is Structured
	What You Need to Use this Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: Introducing XML
	Chapter 1: What is XML?
	Steps Leading up to XML: Data Representation and Markups
	Binary Files
	Text Files
	A Brief History of Markup

	The Birth of XML
	More Advantages of XML
	XML Rules
	Hierarchical Data Representation
	Interoperability

	XML in Practice
	Data Versus Document
	XML Scenarios
	XML Technologies

	Summary

	Chapter 2: Well-Formed XML
	What Does Well-Formed Mean?
	Creating XML in a Text Editor
	Forbidden Characters
	XML Prolog
	Creating Elements
	Attributes
	Element and Attribute Content
	Processing Instructions
	CDATA Sections

	Advanced XML Parsing
	XML Equivalence
	Whitespace Handling
	Error Handling

	The XML Infoset
	The Document Information Item
	Element Information Items
	Attribute Information Items
	Processing Instruction Information Items
	Character Information Item
	Comment Information Item
	Namespace Information Item
	The Document Type Declaration Information Item
	Unexpanded Entity Reference Information Item
	Unparsed Entity Information Item
	Notation Information Item

	Summary

	Chapter 3: XML Namespaces
	Defining Namespaces
	Why Do You Need Namespaces?
	How Do You Choose a Namespace?
	URLs, URIs, and URNs
	Creating Your First Namespace

	How to Declare a Namespace
	How Exactly Does Scope Work?
	Declaring More Than One Namespace
	Changing a Namespace Declaration

	Namespace Usage in the Real World
	XML Schema
	Documents with Multiple Namespaces

	When to Use and Not Use Namespaces
	When Namespaces are Needed
	When Namespaces Are Not Needed
	Versioning and Namespaces

	Common Namespaces
	The XML Namespace
	The XMLNS Namespace
	The XML Schema Namespace
	The XSLT Namespace
	The SOAP Namespaces
	The WSDL Namespace
	The Atom Namespace
	The MathML Namespace
	The Docbook Namespace

	Summary

	Part II: Validation
	Chapter 4: Document Type Definitions
	What Are Document Type Definitions?
	Working with DTDs
	Using jEdit
	The Document Type Declaration in Detail
	Sharing DTDs

	Anatomy of a DTD
	Element Declarations
	Attribute Declarations
	Entity Declarations

	DTD Limitations
	Summary

	Chapter 5: XML Schemas
	Benefits of XML Schemas
	XML Schemas Use XML Syntax
	XML Schema Namespace Support
	XML Schema Data Types
	XML Schema Content Models
	XML Schema Specifications

	XML Schemas in Practice
	Defining XML Schemas
	<schema> Declarations
	<element> Declarations
	Mixed Content
	<group> Declarations
	<attribute> Declarations
	An XML Schema for Contacts
	Data Types
	<simpleType> Declarations

	Creating a Schema from Multiple Documents
	<import> Declarations
	<include> Declarations

	Documenting XML Schemas
	XML Schema 1.1
	Relaxed Rules
	<assert>

	Summary

	Chapter 6: RELAX NG and Schematron
	Why Do You Need More Ways of Validating XML?
	Setting Up Your Environment
	Using RELAX NG
	Understanding the Basics of RELAX NG
	Understanding RELAX NG's Compact Syntax
	Converting Between the Two RELAX NG Formats
	Constraining Content
	Reusing Code in RELAX NG Schema

	Using Schematron
	Understanding the Basics of Schematron
	Choosing a Version of Schematron
	Understanding the Basic Process
	Writing Basic Rules in Schematron
	Creating a Schematron Document
	Adding More Information to Messages
	Constraining Values in Schematron
	Handling Co-Constraints in Schematron
	Using Schematron from Within XML Schema

	Summary

	Part III: Processing
	Chapter 7: Extracting Data From XML
	Document Models: Representing XML in Memory
	Meet the Models: DOM, XDM, and PSVI
	A Sample DOM Tree
	DOM Node Types
	DOM Node Lists
	The Limitations of DOM

	The XPath Language
	XPath Basics
	XPath Predicates: The Full Story
	XPath Steps and Axes
	XPath Expressions
	Variables in XPath Expressions
	New Expressions in XPath 2
	XPath Functions
	XPath Set Operations
	XPath and Namespaces

	Summary

	Chapter 8: XSLT
	What XSLT Is Used For
	XSLT as a Declarative Language
	How Is XSLT a Functional Language?

	Setting Up Your XSLT Development Environment
	Setting Up Saxon for .NET
	Setting Up Saxon for Java

	Foundational XSLT Elements
	The <xsl:stylesheet> Element
	The <xsl:template> Element
	The <xsl:apply-templates> Element
	The <xsl:value-of> Element
	The <xsl:for-each> Element
	Push-Processing versus Pull-Processing
	The Role of XPath in XSLT
	Using Named Templates
	The <xsl:call-template> Element
	The document() Function in XSLT
	Conditional Logic
	The <xsl:param> element
	The <xsl:sort> Element
	<xsl:copy> and <xsl:copy-of> Elements

	Reusing Code in XSLT
	The <xsl:include> Element
	The <xsl:import> Element
	The <xsl:template> Mode Attribute

	Understanding Built-In Templates and Built-In Rules
	Using XSLT 2.0
	Understanding Data Types in XSLT 2.0
	Creating User-Defined Functions
	Creating Multiple Output Documents
	Using the collection() Function
	Grouping in XSLT 2.0
	Handling Non-XML Input with XSLT 2.0

	XSLT and XPath 3.0: What's Coming Next?
	Summary

	Part IV: Databases
	Chapter 9: XQuery
	XQuery, XPath, and XSLT
	XQuery and XSLT
	XQuery and XPath

	XQuery in Practice
	Standalone XQuery Applications
	Part of SQL
	Callable from Java or Other Languages
	A Native-XML Server
	XQuery Anywhere

	Building Blocks of XQuery
	FLWOR Expressions, Modules, and Functions
	XQuery Expressions Do Not Have a Default Context

	The Anatomy of a Query Expression
	The Version Declaration
	The Query Prolog
	The Query Body

	Some Optional XQuery Features
	XQuery and XPath Full Text
	The XQuery Update Facility
	XQuery Scripting Extension

	Coming in XQuery 3.0
	Grouping and Windowing
	The count Clause
	Try and Catch
	switch Expressions
	Function Items and Higher Order Functions
	JSON Features
	XQuery, Linked Data, and the Semantic Web

	Summary

	Chapter 10: XML and Databases
	Understanding Why Databases Need to Handle XML
	Analyzing which XML Features are Needed in a Database
	Retrieving Documents
	Retrieving Data from Documents
	Updating XML Documents
	Displaying Relational Data as XML
	Presenting XML as Relational Data

	Using MySQL with XML
	Installing MySQL
	Adding Information in MySQL
	Querying MySQL
	Updating XML in MySQL
	Usability of XML in MySQL
	Client-Side XML Support

	Using SQL Server with XML
	Installing SQL Server
	Presenting Relational Data as XML
	Understanding the xml Data Type
	Creating Indexes with the xml Data Type
	W3C XML Schema in SQL Server
	Dealing with Namespaced Documents

	Using eXist with XML
	Downloading and Installing eXist
	Interacting with eXist

	Summary

	Part V: Programming
	Chapter 11: Event-Driven Programming
	Understanding Sequential Processing
	Using SAX in Sequential Processing
	Preparing to Run the Examples
	Receiving SAX Events
	Handling Invalid Content
	Using the DTDHandler Interface
	EntityResolver Interface
	Understanding Features and Properties

	Using XmlReader
	Using XmlReaderSettings
	Controlling External Resources

	Summary

	Chapter 12: LINQ to XML
	What Is LINQ?
	Why You Need LINQ to XML
	Using LINQ to XML

	Creating Documents
	Creating Documents with Namespaces
	Creating Documents with Prefixed Namespaces

	Extracting Data from an XML Document
	Modifying Documents
	Adding Content to a Document
	Removing Content from a Document
	Updating and Replacing Existing Content in a Document

	Transforming Documents
	Using VB.NET XML Features
	Using VB.NET XML Literals
	Understanding Axis Properties in VB.NET
	Managing Namespaces in VB.NET

	Summary

	Part VI: Communication
	Chapter 13: RSS, ATOM, and Content Syndication
	Syndication
	XML Syndication
	Syndication Systems
	Format Anatomy

	Working with News Feeds
	Newsreaders
	Data Quality

	A Simple Aggregator
	Modeling Feeds
	Program Flow
	Implementation
	Extending the Aggregator

	Transforming RSS with XSLT
	Generating a Feed from Existing Data
	Processing Feed Data for Display
	Browser Processing
	Preprocessing Feed Data
	Reviewing the Different Formats

	Useful Resources
	Summary

	Chapter 14: Web Services
	What Is an RPC?
	RPC Protocols
	COM and DCOM
	COBRA and IIOP
	Java RMI

	The New RPC Protocol: Web Services
	The Same Origin Policy
	Understanding XML-RPC
	Choosing a Network Transport
	Understanding REST Services

	The Web Services Stack
	SOAP
	WSDL
	UDDI
	Surrounding Specifications

	Summary

	Chapter 15: SOAP and WSDL
	Laying the Groundwork
	The New RPC Protocol: SOAP
	Comparing SOAP to REST
	Basic SOAP Messages
	More Complex SOAP Interactions

	Defining Web Services: WSDL
	<definitions>
	<types>
	<messages>
	<portTypes>
	<binding>
	<service>
	Other Bindings

	Summary

	Chapter 16: AJAX
	AJAX Overview
	AJAX Provides Feedback
	Loading Incomplete Data With AJAX
	AJAX Performs Asynchronous Operations

	Introduction to JavaScript
	The Web Browser Console
	Values, Expressions, and Variables
	Control Flow Statements
	Properties, Objects, Functions and Classes

	The XMLHttpRequest Function
	Using HTTP Methods with AJAX
	Accessibility Considerations
	The jQuery Library
	Learning jQuery
	The Domain-Specific Language (DSL) Approach
	jQuery Plug-ins and Add-On Libraries

	JSON and AJAX
	JSON Example
	JSON Syntax
	JSON and jQuery
	JSONP and CORS

	The Web Sever Back End
	Sending Images and Other Non-Textual Data
	Performance
	The Server Logs Are Your Friend

	A Larger Example
	Summary

	Part VII: Display
	Chapter 17: XHTML and HTML 5
	Background of SGML
	HTML and SGML
	XML and SGML

	The Open Web Platform
	Introduction to XHTML
	The XHTML <html> Element
	The XHTML <head> Element
	The XHTML <body> Element
	More Advanced HTML Topics

	XHTML and HTML: Problems and Workarounds
	Cascading Style Sheets (CSS)
	CSS Levels and Versions
	CSS at a Glance
	CSS Selectors
	CSS Properties
	CSS Special Rules
	CSS and XML
	Separating Style and Markup: Unobtrusive CSS

	Unobtrusive JavaScript
	HTML 5
	Benefits of HTML 5
	Caveats of HTML 5
	New Elements in HTML 5

	Summary

	Chapter 18: Scalable Vector Graphics (SVG)
	Scalable Vector Graphics and Bitmaps
	Procedural Graphics
	Declarative Graphics
	Bitmap Graphics
	Vector Images
	SVG Images

	The SVG Graphics Model
	SVG and CSS
	SVG Tools
	SVG Basic Built-in Shapes
	Rectangles
	Circles
	Ellipses
	Straight Lines
	Polylines and Polygons
	SVG Paths

	SVG Transforms and Groups
	Transforms
	Groups

	SVG Definitions and Metadata
	The SVG <title> and <desc> Elements
	The SVG <metadata> Element
	The SVG <defs> Element and Reusable Content

	Viewports and Coordinates
	SVG Colors and Gradients
	Including Bitmap Images in SVG
	SVG Text and Fonts
	SVG Animation Four Ways
	Synchronized Multimedia Integration Language (SMIL)
	Scripted Animation
	CSS Animation
	External Libraries

	SVG and HTML 5
	SVG and Web Apps
	Making SVG with XQuery or XSLT
	Resources
	Summary

	Part VIII: Case Study
	Chapter 19: Case Study: XML in publishing
	Background
	Project Introduction: Current Workflow
	Introducing a New XML-Based Workflow
	Consultations
	Documenting the Project
	Prototyping

	Creating a New Process
	Challenging Criteria
	The New Workflow
	Document Conversion and Technologies
	Costs and Benefits Analysis
	Deployment

	Some Technical Aspects
	XQuery and Modules
	XInclude
	Equations and MathML
	XProc: An XML Pipelining Language
	XForms, REST, and XQuery
	Formatting to PDF with XSL-FO
	XML Markup for Documentation
	Markup for the Humanities: TEI

	The Hoy Books Website
	Summary

	Appendix A: Answers to Exercises
	Appendix B: XPath Functions
	Appendix C: XML Schema Data Types
	Index
	Advertisement

