Big Data Analytics
Using Splunk

Deriving Operational Intelligence from Social Media,
Machine Data, Existing Data Warehouses, and
Other Real-Time Streaming Sources

CONVERT BIG DATA TO BUSINESS
INTELLIGENCE THROUGH SPLUNK'S
REVOLUTIONARY ANALYSIS ENGINE

Peter Zadrozny and Raghu Kodali

Apress-

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the AUtROrS.........ccssismmsris s ——————————————————— Xv
About the Technical REVIEWETccusesssssssmsssmssmmssnsssnsssnsnss Xvii
ACKNOWIEAYMENESceuuiririisisssssnnnnnnnnssssssssssnsssnsnsesssssssssssnnsnsssssssssssnnnnnnnssssssssssnnnnnnnnssssssssns Xix
Chapter 1: Big Data and SpIUNK.......ccccusseemrmmnssssnnmmssssssnmssssssssssssssssssssssssssssssssnsssssssnnnsssssnnns 1
Chapter 2: Getting Data into SPIUNKccccvieemmninisennmmmisssnmmmssssnnnnssssnessssss s sssssesssnnns 9
Chapter 3: Processing and Analyzing the Dataccccusemmmmnnsennmmmsssnmmmsssssmmssssn. 31
Chapter 4: Visualizing the ReSURS.......ccccusmmmmsmmmmssmnsmssssmssssssmsssssssssssesssssesssssesssssesssnnessnns 63
Chapter 5: Defining Alertscccuvemmnninseemmmnmssssnmmmssssmmmssssnmsssssss s ——————— 97
Chapter 6: Web Site Monitoring......ccccuseesmmmisssssmmmsssssnmmssssssssmsssssssmssssssssssssssnsnssssssnsnnsssns 109
Chapter 7: Using Log Files To Create Advanced Analytics........ccousemrmssanmmssnnssssanssssnnsasss 127
Chapter 8: The Airline On-Time Performance Project........cccccuseemmmmsssnnnsmssssnsnssssssnsnsnsans 139
Chapter 9: Getting the Flight Data into Splunk.........ccccusmmmmnsemmmmmsssnmmnsssnmmssssnm. 143
Chapter 10: Analyzing Airlines, Airports, Flights, and Delaysc..ccccrummnseennnnsssnnsnnnnans 161
Chapter 11: Analyzing a Specific Flight Over the Yearscccinmneemnmnnsssssnsnssssssnnnsnns 195
Chapter 12: Analyzing TWeetsccciusissmmmmmssssnsnmmssssnnnssssssnsnssssssnsnssssssnsnssssssnnnsssssnnnnnsssss 211
Chapter 13: Analyzing Foursquare Check-Inscccvumseemnmmssssennnmsssssssssssssssnssssssssnssssns 231
Chapter 14: Sentiment AnalySisccciuuissemmmmnsssemnmmnsssessnnnsssessnmsssssssnmssssssnessssssnesannns 255

v

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS AT A GLANCE

Chapter 15: Remote Data ColleCtion..........cccvsemrmssnnsmssansmsssnsssssnsssssnsssssssssssnsssssnnssssnnsss 283
Chapter 16: Scaling and High Availabilityc.ccusccmmnnneenmmnnsesnnmnssssmmmssssmmssssm. 295
Appendix A: The Performance of SpIunKcccuccummmsssmmnmmmsssssnmmsssssssmssssssssmsssssssssssssnnns 307
Appendix B: Useful SPIUNK APPS .uociieeermmssssnsmmmssssssnsssssssssssssssnssssssssssssssssssssssssssssnsssssnnns 323
T 345

vi

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1

Big Data and Splunk

In this introductory chapter we will discuss what big data is and different ways (including Splunk) to process big data.

What Is Big Data?

Big data is, admittedly, an overhyped buzzword used by software and hardware companies to boost their sales.
Behind the hype, however, there is a real and extremely important technology trend with impressive business
potential. Although big data is often associated with social media, we will show that it is about much more than that.
Before we venture into definitions, however, let’s have a look at some facts about big data.

Back in 2001, Doug Laney from Meta Group (an IT research company acquired by Gartner in 2005) wrote
aresearch paper in which he stated that e-commerce had exploded data management along three dimensions:
volumes, velocity, and variety. These are called the three Vs of big data and, as you would expect, a number of vendors
have added more Vs to their own definitions.

Volume is the first thought that comes with big data: the big part. Some experts consider Petabytes the starting
point of big data. As we generate more and more data, we are sure this starting point will keep growing. However,
volume in itself is not a perfect criterion of big data, as we feel that the other two Vs have a more direct impact.

Velocity refers to the speed at which the data is being generated or the frequency with which it is delivered.
Think of the stream of data coming from the sensors in the highways in the Los Angeles area, or the video cameras
in some airports that scan and process faces in a crowd. There is also the click stream data of popular e-commerce
web sites.

Variety is about all the different data and file types that are available. Just think about the music files in the iTunes
store (about 28 million songs and over 30 billion downloads), or the movies in Netflix (over 75,000), the articles in
the New York Times web site (more than 13 million starting in 1851), tweets (over 500 million every day), foursquare
check-ins with geolocation data (over five million every day), and then you have all the different log files produced by
any system that has a computer embedded. When you combine these three Vs, you will start to get a more complete
picture of what big data is all about.

Another characteristic usually associated with big data is that the data is unstructured. We are of the opinion that
there is no such thing as unstructured data. We think the confusion stems from a common belief that if data cannot
conform to a predefined format, model, or schema, then it is considered unstructured.

An e-mail message is typically used as an example of unstructured data; whereas the body of the e-mail could be
considered unstructured, it is part of a well-defined structure that follows the specifications of RFC-2822, and contains
a set of fields that include From, To, Subject, and Date. This is the same for Twitter messages, in which the body of the
message, or tweet, can be considered unstructured as well as part of a well-defined structure.

In general, free text can be considered unstructured, because, as we mentioned earlier, it does not necessarily
conform to a predefined model. Depending on what is to be done with the text, there are many techniques to process
it, most of which do not require predefined formats.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 ' BIG DATA AND SPLUNK

Relational databases impose the need for predefined data models with clearly defined fields that live in tables,
which can have relations between them. We call this Early Structure Binding, in which you have to know in advance
what questions are to be asked of the data, so that you can design the schema or structure and then work with the data
to answer them.

As big data tends to be associated with social media feeds that are seen as text-heavy, it is easy to understand
why people associate the term unstructured with big data. From our perspective, multistructured is probably a more
accurate description, as big data can contain a variety of formats (the third V of the three Vs).

It would be unfair to insist that big data is limited to so-called unstructured data. Structured data can also be
considered big data, especially the data that languishes in secondary storage hoping to make it some day to the data
warehouse to be analyzed and expose all the golden nuggets it contains. The main reason this kind of data is usually
ignored is because of its sheer volume, which typically exceeds the capacity of data warehouses based on relational
databases.

At this point, we can introduce the definition that Gartner, an Information Technology (IT) consultancy,
proposed in 2012: “Big data are high volume, high velocity, and/or high variety information assets that require new
forms of processing to enable enhanced decision making, insight discovery and processes optimization.” We like this
definition, because it focuses not only on the actual data but also on the way that big data is processed. Later in this
book, we will get into more detail on this.

We also like to categorize big data, as we feel that this enhances understanding. From our perspective, big
data can be broken down into two broad categories: human-generated digital footprints and machine data. As our
interactions on the Internet keep growing, our digital footprint keeps increasing. Even though we interact on a daily
basis with digital systems, most people do not realize how much information even trivial clicks or interactions leave
behind. We must confess that before we started to read Internet statistics, the only large numbers we were familiar
with were the McDonald’s slogan “Billions and Billions Served” and the occasional exposure to U.S. politicians talking
about budgets or deficits in the order of trillions. Just to give you an idea, we present a few Internet statistics that show
the size of our digital footprint. We are well aware that they are obsolete as we write them, but here they are anyway:

e By February 2013, Facebook had more than one billion users, of which 618 million were
active on a daily basis. They shared 2.5 billion items and “liked” other 2.7 billion every day,
generating more than 500 terabytes of new data on a daily basis.

e InMarch 2013, LinkedIn, which is a business-oriented social networking site, had more than
200 million members, growing at the rate of two new members every second, which generated
5.7 billion professionally oriented searches in 2012.

e Photos are a hot subject, as most people have a mobile phone that includes a camera. The
numbers are mind-boggling. Instagram users upload 40 million photos a day, like 8,500 of
them every second, and create about 1,000 comments per second. On Facebook, photos are
uploaded at the rate of 300 million per day, which is about seven petabytes worth of data a
month. By January 2013, Facebook was storing 240 billion photos.

e Twitter has 500 million users, growing at the rate of 150,000 every day, with over 200 million
of the users being active. In October 2012, they had 500 million tweets a day.

e Foursquare celebrated three billion check-ins in January 2013, with about five million
check-ins a day from over 25 million users that had created 30 million tips.

e On the blog front, WordPress, a popular blogging platform reported in March 2013 almost
40 million new posts and 42 million comments per month, with more than 388 million people
viewing more than 3.6 billion pages per month. Tumblr, another popular blogging platform,
also reported, in March 2013, a total of almost 100 million blogs that contain more than
44 billion posts. A typical day at Tumblr at the time had 74 million blog posts.

e Pandora, a personalized Internet radio, reported that in 2012 their users listened to 13 billion
hours of music, that is, about 13,700 years worth of music.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 BIG DATA AND SPLUNK

e Insimilar fashion, Netflix announced their users had viewed one billion hours of videos in July
2012, which translated to about 30 percent of the Internet traffic in the United States. As if that
is not enough, in March 2013, YouTube reported more than four billion hours watched per
month and 72 hours of video uploaded every minute.

e In March 2013, there were almost 145 million Internet domains, of which about 108 million
used the famous “com” top level domain. This is a very active space; on March 21, there were
167,698 new and 128,866 deleted domains, for a net growth of 38,832 new domains.

e Inthe more mundane e-mail world, Bob Al-Greene at Mashable reported in November 2012
that there are over 144 billion e-mail messages sent every day, with about 61 percent of them
from businesses. The lead e-mail provider is Gmail, with 425 million active users.

Reviewing these statistics, there is no doubt that the human-generated digital footprint is huge. You can
quickly identify the three Vs; to give you an idea of how big data can have an impact on the economy, we share the
announcement Yelp, a user-based review site, made in January 2013, when they had 100 million unique visitors
and over one million reviews: “A survey of business owners on Yelp reported that, on average, customers across all
categories surveyed spend $101.59 in their first visit. That’s everything from hiring a roofer to buying a new mattress
and even your morning cup of joe. If each of those 100 million unique visitors spent $100 at a local business in
January, Yelp would have influenced over $10 billion in local commerce.”

We will not bore you by sharing statistics based on every minute or every second of the day in the life of the
Internet. However, a couple of examples of big data in action that you might relate with can consolidate the notion;
the recommendations you get when you are visiting the Amazon web site or considering a movie in Netflix, are based
on big data analytics the same way that Walmart uses it to identify customer preferences on a regional basis and stock
their stores accordingly. By now you must have a pretty good idea of the amount of data our digital footprint creates
and the impact that it has in the economy and society in general. Social media is just one component of big data.

The second category of big data is machine data. There is a very large number of firewalls, load balancers,
routers, switches, and computers that support our digital footprint. All of these systems generate log files, ranging
from security and audit log files to web site log files that describe what a visitor has done, including the infamous
abandoned shopping carts.

It is almost impossible to find out how many servers are needed to support our digital footprint, as all companies
are extremely secretive on the subject. Many experts have tried to calculate this number for the most visible
companies, such as Google, Facebook, and Amazon, based on power usage, which (according to a Power Usage
Effectiveness indicator that some of these companies are willing to share) can provide some insight as to the number
of servers they have in their data centers. Based on this, James Hamilton in a blog post of August 2012 published
server estimates conjecturing that Facebook had 180,900 servers and Google had over one million servers. Other
experts state that Amazon had about 500 million servers in March 2012. In September 2012, the New York Times ran
a provocative article that claimed that there are tens of thousands of data centers in the United States, which consume
roughly 2 percent of all electricity used in the country, of which 90 percent or more goes to waste, as the servers are
not really being used.

We can only guess that the number of active servers around the world is in the millions. When you add to this
all the other typical data center infrastructure components, such as firewalls, load balancers, routers, switches, and
many others, which also generate log files, you can see that there is a lot of machine data generated in the form of log
files by the infrastructure that supports our digital footprint.

What is interesting is that not long ago most of these log files that contain machine data were largely ignored.
These log files are a gold mine of useful data, as they contain important insights for IT and the business because they
are a definitive record of customer activity and behavior as well as product and service usage. This gives companies
end-to-end transaction visibility, which can be used to improve customer service and ensure system security, and
also helps to meet compliance mandates. What'’s more, the log files help you find problems that have occurred and
can assist you in predicting when similar problems can happen in the future.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 ' BIG DATA AND SPLUNK

In addition to the machine data that we have described so far, there are also sensors that capture data on a
real-time basis. Most industrial equipment has built-in sensors that produce a large amount of data. For example,
a blade in a gas turbine used to generate electricity creates 520 Gigabytes a day, and there are 20 blades in one
of these turbines. An airplane on a transatlantic flight produces several Terabytes of data, which can be used to
streamline maintenance operations, improve safety, and (most important to an airline’s bottom line) decrease fuel
consumption.

Another interesting example comes from the Nissan Leaf, an all-electric car. It has a system called CARWINGS,
which not only offers the traditional telematics service and a smartphone app to control all aspects of the car but
wirelessly transmits vehicle statistics to a central server. Each Leaf owner can track their driving efficiency and
compare their energy economy with that of other Leaf drivers. We don’t know the details of the information that
Nissan is collecting from the Leaf models and what they do with it, but we can definitely see the three Vs in action in
this example.

In general, sensor-based data falls into the industrial big data category, although lately the “Internet of Things”
has become a more popular term to describe a hyperconnected world of things with sensors, where there are over
300 million connected devices that range from electrical meters to vending machines. We will not be covering
this category of big data in this book, but the methodology and techniques described here can easily be applied to
industrial big data analytics.

Alternate Data Processing Techniques

Big data is not only about the data, it is also about alternative data processing techniques that can better handle
the three Vs as they increase their values. The traditional relational database is well known for the following
characteristics:

e Transactional support for the ACID properties:
e Atomicity: Where all changes are done as if they are a single operation.
e Consistency: At the end of any transaction, the system is in a valid state.

e Isolation: The actions to create the results appear to have been done sequentially,
one at a time.

e Durability: All the changes made to the system are permanent.

e Theresponse times are usually in the subsecond range, while handling thousands of
interactive users.

e The data size is in the order of Terabytes.
e Typically uses the SQL-92 standard as the main programming language.

In general, relational databases cannot handle the three Vs well. Because of this, many different approaches have
been created to tackle the inherent problems that the three Vs present. These approaches sacrifice one or more of the
ACID properties, and sometimes all of them, in exchange for ways to handle scalability for big volumes, velocity, or
variety. Some of these alternate approaches will also forgo fast response times or the ability to handle a high number
of simultaneous users in favor of addressing one or more of the three Vs.

Some people group these alternate data processing approaches under the name NoSQL and categorize them
according to the way they store the data, such as key-value stores and document stores, where the definition of a
document varies according to the product. Depending on who you talk to, there may be more categories.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 BIG DATA AND SPLUNK

The open source Hadoop software framework is probably the one that has the biggest name recognition in the
big data world, but it is by no means alone. As a framework it includes a number of components designed to solve
the issues associated with distributed data storage, retrieval and analysis of big data. It does this by offering two basic
functionalities designed to work on a cluster of commodity servers:

e Adistributed file system called HDFS that not only stores data but also replicates it so that it is
always available.

e Adistributed processing system for parallelizable problems called MapReduce, which is a
two-step approach. In the first step or Map, a problem is broken down into many small ones
and sent to servers for processing. In the second step or Reduce, the results of the Map step are
combined to create the final results of the original problem.

Some of the other components of Hadoop, generally referred to as the Hadoop ecosystem, include Hive, which
is a higher level of abstraction of the basic functionalities offered by Hadoop. Hive is a data warehouse system in
which the user can specify instructions using the SQL-92 standard and these get converted to MapReduce tasks. Pig is
another high-level abstraction of Hadoop that has a similar functionality to Hive, but it uses a programming language
called Pig Latin, which is more oriented to data flows.

HBase is another component of the Hadoop ecosystem, which implements Google’s Bigtable data store. Bigtable
is a distributed, persistent multidimensional sorted map. Elements in the map are an uninterpreted array of bytes,
which are indexed by a row key, a column key, and a timestamp.

There are other components in the Hadoop ecosystem, but we will not delve into them. We must tell you
that in addition to the official Apache project, Hadoop solutions are offered by companies such as Cloudera and
Hortonworks, which offer open source implementations with commercial add-ons mainly focused on cluster
management. MapR is a company that offers a commercial implementation of Hadoop, for which it claims higher
performance.

Other popular products in the big data world include:

e (Cassandra, an Apache open source project, is a key-value store that offers linear scalability
and fault tolerance on commodity hardware.

e DynamoDB, an Amazon Web Services offering, is very similar to Cassandra.

e MongoDB, an open source project, is a document database that provides high performance,
fault tolerance, and easy scalability.

e CouchDB, another open source document database that is distributed and fault tolerant.

In addition to these products, there are many companies offering their own solutions that deal in different ways
with the three Vs.

What Is Splunk?

Technically speaking, Splunk is a time-series indexer, but to simplify things we will just say that it is a product that
takes care of the three Vs very well. Whereas most of the products that we described earlier had their origins in
processing human-generated digital footprints, Splunk started as a product designed to process machine data.
Because of these humble beginnings, Splunk is not always considered a player in big data. But that should not prevent
you from using it to analyze big data belonging in the digital footprint category, because, as this book shows, Splunk
does a great job of it. Splunk has three main functionalities:

e Data collection, which can be done for static data or by monitoring changes and additions
to files or complete directories on a real time basis. Data can also be collected from network
ports or directly from programs or scripts. Additionally, Splunk can connect with relational
databases to collect, insert or update data.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 ' BIG DATA AND SPLUNK

e Dataindexing, in which the collected data is broken down into events, roughly equivalent to
database records, or simply lines of data. Then the data is processed and a high performance
index is updated, which points to the stored data.

e Search and analysis. Using the Splunk Processing Language, you are able to search for data
and manipulate it to obtain the desired results, whether in the form of reports or alerts. The
results can be presented as individual events, tables, or charts.

Each one of these functionalities can scale independently; for example, the data collection component can scale
to handle hundreds of thousands of servers. The data indexing functionality can scale to a large number of servers,
which can be configured as distributed peers, and, if necessary, with a high availability option to transparently handle
fault tolerance. The search heads, as the servers dedicated to the search and analysis functionality are known, can also
scale to as many as needed. Additionally, each of these functionalities can be arranged in such a way that they can be
optimized to accommodate geographical locations, time zones, data centers, or any other requirements. Splunk is so
flexible regarding scalability that you can start with a single instance of the product running on your laptop and grow
from there.

You can interact with Splunk by using SplunkWeb, the browser-based user interface, or directly using the
command line interface (CLI). Splunk is flexible in that it can run on Windows or just about any variation of Unix.

Splunk is also a platform that can be used to develop applications to handle big data analytics. It has a powerful
set of APIs that can be used with Python, Java, JavaScript, Ruby, PHP, and C#. The development of apps on top of
Splunk is beyond the scope of this book; however, we do describe how to use some of the popular apps that are freely
available. We will leave it at that, as all the rest of the book is about Splunk.

About This Book

We have a couple of objectives with this book. The first one is to provide you with enough knowledge to become a
data wrangler so that you can extract wisdom from data. The second objective is that you learn how to use Splunk,
a simple yet extremely powerful tool that will allow you to “click for gold” in the data you analyze.

The book has been designed so that you become exposed to big data from digital footprints and machine data.
It starts by presenting simple concepts and progressively introducing slightly more difficult approaches. It is meant to
be a hands-on guide for big data analytic projects that involve machine data, social media, and mining existing data
warehouses. We do this through real projects, which review in detail how to collect data, load it into Splunk, process
and analyze it, and visualize the results so that they can be easily consumed by the intended audience. We have
broken the book into four parts:

e Splunk’s Basic Operation, in which we introduce basic data collection, processing, analysis,
and visualization of results. We use machine data in this part of the book to introduce you to
the basic commands of the Splunk Processing Language. The last chapter in this part presents
a way to create advanced analytics using log files.

e The airline on-time performance project. Once you are familiar with the basic concepts and
commands of Splunk, we take you through the motions of a typical big data analytics project.
We present you with a simple methodology, which we then apply to the project at hand, the
analysis of airline performance data over the last 26 years. The data of this project falls under
the category of mining an existing data warehouse. Using this project, we go over collecting
data that is available in CSV format, as well as picking it up directly from a relational database.
In both cases, there are some special considerations regarding the timestamp that is available
in this data set, and we go in detail on how to handle them. This interesting project allows
us to introduce some new Splunk commands and other features of commands that were
presented in the first part of the book.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 BIG DATA AND SPLUNK

e The third part of the book is dedicated to social media. We go in detail into how to collect,
process, and analyze tweets and Foursquare check-ins, as well as providing a full chapter
dedicated to sentiment analysis. These chapters provide you with the necessary knowledge
to wrangle any big data project that involves a social media stream.

e The fourth part of the book goes into detail on the architecture and topology of Splunk: how
to scale Splunk to cover your needs, and the basic concepts of distributed processing and high
availability.

e We also included a couple of appendices that cover the performance of Splunk as well as a
quick overview of the various apps that are available.

The book is not meant to describe in detail each of the commands of Splunk, as the company’s online documentation
is very good and it does not make sense to repeat it. Our focus is on hands-on big data projects through which you can
learn how to use Splunk and also become versed on handling big data projects. The book has been designed so that you
can go directly to any chapter and be able to work with it without having to refer to previous chapters. Having said that,
if you are new to Splunk, you will benefit from reading the book from the beginning. If you do read the book that way,
you might find some of the information related to collecting the data and installing apps repetitive, as we have targeted
the material to those who wish to jump directly into specific chapters.

Note The searches presented in this book have been formatted to make them more readable. SplunkWeb, the user
interface of Splunk, expects the searches as a single continuous line.

All of the data used in the book is available in the download package, either as raw data, as programs that create
it or collect it, or as links where you can download it. This way you are able to participate in the projects as you read
the book.

We have worked to make this book as practical and hands-on as possible so that you can get the most out of your
learning experience. We hope that you enjoy it and learn enough to be able to become a proficient data wrangler;
after all, there is so much data out there and so few people that can tame it.

CHAPTER 2

Getting Data into Splunk

In this chapter, you will learn how to get the data into Splunk. We will look at different sources of data and different
ways of getting them into Splunk. We will make use of a data generator to create user activity for a fictitious online
retail store MyGizmoStore.com, and we will load sample data into Splunk. You will also learn how Splunk Technology
Add-ons provide value with some specific sources of data from operating systems such as Windows and Unix. Before
wrapping up the chapter, you will get an overview of the Splunk forwarders concept to understand how to load remote
data into Splunk.

Variety of Data

A typical enterprise information technology (IT) infrastructure today consists of network and server components that
could range from mainframes to distributed servers. On top of that hardware infrastructure you will find databases
that store information about transactions related to customers, vendors, orders, shipping, supply chain, and so on.
These are captured, processed, and analyzed by several types of business applications. Traditionally, enterprises
have used all this structured data to make their business decisions. The challenge has been mainly in integrating

and making sense of all the data that comes from so many different sources. Whereas this has been the focus of the
traditional IT organizations, we are seeing the definition of data and usage of data going beyond that traditional
model. Most enterprises these days want to process and analyze data, which could fall in broad categories such as:

e Traditional structured data that is residing in databases or data warehouses
e Unstructured data or documents stored in content repositories

e Multistructured data available in different types of logs

e Clickstream data

e Network data

e Data originated by social media applications, and so on

You can see these newer categories of data such as logs, network, clickstream, and social media becoming
part of the mainstream data analysis done by enterprises to make better business decisions. These types of data are
sometimes also known as machine data or operational data. Some of the typical examples of enterprises wanting to
make use of these types of data sources include:

e Web logfiles, which are created by web servers such as Apache and IIS. These log files provide
information about the different types of activity happening on the web sites and the associated
applications.

e Clickstream data files provide information down to the detail of what visitors have done while
visiting a web site. This can be used to analyze shopping patterns and special behaviors such
as abandoned shopping carts.

http://MyGizmoStore.com

CHAPTER 2 © GETTING DATA INTO SPLUNK

e Application log data, which typically has have plenty of information about the execution of
applications, that can be used for operational purposes, such as optimizing the use of servers.

e Operating system level logs that could be used for performance and system monitoring.
e Firewall logs to better analyze security issues.

e Data from social media sources such as Twitter, Foursquare, and so on, which can be used for
a myriad of marketing and sales purposes.

Gone are the days when machine data or log data was considered to be something for system administrators,
who are sitting in dark data centers to debug and analyze why the systems went down or why the performance is not
meeting the Service Level Agreements (SLAs). Although that use case is still valid, there is a complete paradigm shift
on what data enterprises want to look at, process, and analyze for real-time, near real-time, or traditional business
intelligence and reporting. The question now is, can Splunk handle all these sources of machine data or operational
data and work with traditional data sources such as databases and data warehouses? The short answer is yes, and we
will learn how we can get the data into Splunk in the following sections of this chapter.

How Splunk deals with a variety of data

For any practical purpose, Splunk can deal with pretty much any type of data coming from a wide variety of different
sources including web logs, application logs, network feeds, system metrics, structured data from databases, social
data, and so on. Splunk needs to be configured with individual sources of data and that each source can become

a specific data input. The data coming into Splunk can be local, meaning that the data is sitting or available on

the same computer where Splunk is running, or the data can be coming from any remote device connected to the
server(s) running Splunk. You will see how remote data can be loaded into Splunk later in this chapter. Splunk broadly
categorizes the sources of data that can be loaded as:

e TFiles & Directories
e Network sources

e Windows data

e Other sources

You will look into each one of these sources in detail. Splunk provides different options to define and configure
the above sources as data inputs:

e Splunk Web—This is the standard user interface, which is the easiest way to interact with
Splunk.

e Splunk CLI—The command line interface (CLI) can also be used to interact with Splunk, but it
is used mainly by scripted programs, which could handle batch processes.

e Apps or Add-ons—These are specialized applications that sit on top of the Splunk framework
and make it easy to work with one or more types of data sources. We will discuss the
differences between Apps and Add-ons and how they can be used with an example later in
this chapter.

e Configuration files—Splunk provides various configuration files that can be edited to configure
and point to different sources of data. Irrespective of the option that is used to configure the
sources of data inputs. conf file always gets updated either by the Splunk Web, Splunk CLI,
Apps and Add-ons, or manually.

10

CHAPTER 2 © GETTING DATA INTO SPLUNK

Independently of which option you chose to work with Splunk, the definition and configuration of data inputs
is ultimately stored in the configuration files. For the examples in this book, we will be using Splunk Web, the user
interface. One of the most popular forms of machine or log data, widely analyzed by enterprises, comprises web logs,
or access logs as they are also known. We will use web logs as a starting point to explore and get familiar with what
can be done with Splunk. In order to simulate to what would happen in a real-world online web application, we have
created a fictitious ecommerce web site called MyGizmoStore.com, which sells widgets. The data for MyGizmoStore.com
is created by a generator, which is described later in this chapter. This generator simulates the log files created by
typical user activity, which includes browsing the catalog of widgets, adding to the shopping cart and potentially
making the final purchase.

Files & Directories

Splunk makes it very easy to get data from files or files stored within a directory structure. You can load data from a
static file as a one-time operation, also known as a oneshot, or you can ask Splunk to monitor a set of directories for
certain types of files. We start by loading a single file. In order to make this easy we have generated an access log for
MyGizmoStore.com that has approximately 250 log entries, which represent user activity over a period of two days in
the life of the store. The file access. log is part of the download package of the book. Once you have the download
package, copy the access.log file to the directory /opt in case of Linux, or C: \opt in case of Windows.

Splunk will give you the option of adding data based on the type or the source of the data. For this initial example,
we will work with a source, the access log file. Once you have logged into the Splunk instance, go to the Splunk home
page and click on “Add data” button in the “Do more with Splunk” section. In the Add Data to Splunk page you will
see different options are available under two categories.

e Choose a Data Type—allows to select a pre-determined type of logs such as access logs, sys
logs etc.

e Choose a Data Source—allows to bind determined type of sources such as windows registry
data or get an output from a script which will be a data input into Splunk.

Click on the “From files and directories” link under “Choose a Data Source” section. The difference between this
option and a similar option in the “Choose a Data Type” section is that we get an additional option to make use of a
forwarder to send the data to a Splunk Server in the data types category. As you have not yet been introduced to the
concept of forwarders, we will choose the simple one to get started, as seen in Figure 2-1.

11

http://MyGizmoStore.com
http://MyGizmoStore.com
http://MyGizmoStore.com

CHAPTER 2 © GETTING DATA INTO SPLUNK

Add Data to Splunk

Choose a Data Type

Afile ar directary of files Unix/lLinu logs and metrics 1S logs

Syslog File integrity maonitoring Apache logs

Windows event logs Caonfiguratian files WehSphere logs, metrics and
other data

Windows Registry
Windows performance metrics

OFSEC LEA
Cisco device logs

Any other data...

Or Choose a Data Source

@m files and directories

L] From a TCP port
=] CollectWindows performance
L] From a UDP port data from a remaote machine
(1)]

=9 CaollectWindows event logs

L1 Runand callect the autput of a
i locally

script

51 CollectWindows event logs
frorn other machines

8| Monitor an Active Directory

B8 CollectWindows Registry data schema

B8 CollectWindows performance
data

|5 wour data on another machine, besides this Splunk server? Install Splunk's % universal forwarder on that machine
and tell it to send the data to this Splunk server.

Back

Figure 2-1. Choose a data source

This will take you into the Data preview page, as seen in Figure 2-2. Because this is the first time that we are
loading the data into Splunk, it makes sense to get a preview of the data. The preview option provides an opportunity
to see how the log entries are going to get processed before they are committed into the Splunk data store, which is
called index. Next you select the “Preview data before indexing” radio button and choose the access. log file under \opt
directory if you are on Linux or C: \opt if you are in Windows environment. Then click on the Continue button.

12

CHAPTER 2 © GETTING DATA INTO SPLUNK

@ Preview data

@review data before inclexinum rore

Foint Splunk at a single file representative of the data you want to index.

Nate: Spiund will anly prevdew the first 1,97 MB of the fis.
Path to file on the server

| optlaccess .Iog| Browese server

On Windows clgpacheapache ervarlog, On Unl: Avawlonion fog

© Skip preview
Skip preview and manually configure your input.

Cancel

Figure 2-2. Preview data

The dialog box that comes up gives you options to set the source type. By default Splunk parses the data files
provided as input and determines what the source type for the file is. It then loads or indexes the file according to
the source type characteristics. In this case, because we are loading an access log file, which has been identified as a
combined access log file, we accept the default option of “Use auto-detected source type” as seen in Figure 2-3 and
click the Continue button. In Chapter 3, we will explain in detail the format of an access combined log file and what
information is stored in the log entries. In Chapter 9, we will review other options such as defining the input of custom
data files, which needs to be processed differently.

& Use auto-detected source hype:
access combined wcooki

Startw ree e (ou can make changea)

0 Start @ new source type

O Apply an existing source type

| Choose 5 source type... LI
[Z' Learn more about source types

Cancel Continue

Figure 2-3. Set source type

What are typically known as records, or just plain lines of data, are referred to in Splunk as events, and every
event has a timestamp. Throughout the book we will be using, analyzing, and manipulating timestamps as they are
a key element of Splunk and big data analysis. The next screen in the data loading process presents the way Splunk
has broken down the log entries into different events along with associated timestamps. The default behavior is

13

CHAPTER 2 © GETTING DATA INTO SPLUNK

to break an event on the timestamp, but if Splunk cannot find the timestamp it will present one single event that
contains all the lines of the file. We can then customize where to break the entries into different events, which we

will learn in Chapter 9. In this case, Splunk breaks down very nicely the entries of the access log into events as can

be seen in Figure 2-4. Here you can see that each event has the information about a user activity that happened on
MyGizmoStore.com. The preview option also shows the number of events extracted from the log file, which in this case
contains 243 events.

Data Preview Giptaccess Iog,

If your data looks correct, continue
If it looks incorrect, adjust timestamp and event break settings.

Timestamp Event ﬂ
1 <§I4.ﬂ312:3222.UUUPM >74.54.2].B.2J.9 - - [D4/Feb/2013:12:32:2Z] "GET fcart.do?

File properties

action=viewiitenl d=Hilumdek Ihsilc S LY FFOADFF4953 HTTE
1.1" zoo 3294qntp:/!wm,l{ylllzmnstﬂre,cﬂmb'l}nnglshntfz,l 0 [Pt RO]
http: /. google - Bytes 60,527
2 24A5124140000PW B8.63.778.96 - - [04/Fehs2Z013:12:41:40] "GET /rart_do?
action=addtocartiitenld=HYD-£4JSESSTIONID=SD28LEFFEADFF406S Preview pruperties
HTTP 1.1" 200 617 "hotp://www MyGizmoStore. con” "Opera/9.z0
(Windows NT 6.0; U; enj" 905 # of events extracted ®
3 ZMAS12414B000 PM 88.63.228.96 - - [04/Feb/2013:12:41:48] "GET /product.screent i M—
product [d=NC-SIN-324JSESSIONID=SDISLEFFSADFF4968 HITP 1.1" 500 Event time distribution

1632 "http:/fwww. MyGizwoStore. com/oldlink?itenId=HVD-2"

"Opera/s/?. .20 (Windows NT &.0; U; en)" 772 ED

4 24131 2:41:57.000 P B8.63.Z28.96 - - [04/Feb/2013:12:41:57] "GET fcart.do? I
action=changeanticysicenId=HYD-
174TEESSTONID=SDASLEFFEADFF4968 HTITD 1.1" 400 2064 o -..I...... I.-..l.

“http:/ fwew. MyBizuodtore. con/category. screen?
categoryld=UHITE_WIDGETS" "Opera/9. 20 (Windows NT 6.0; O; en)"
411

204013 12:00 PM 20513 5:00 AM

Event linecount distribution

5 20413125414 000 Ph 132.83.183.109 - - [04/Feb/Z013:12:-54:14] "GET
fproduct. soresn?product Id=CA-FL- inez per evert # of events
884 TSESSTONID=SDS5LZFF7ADFF4S52 HITP 1.1" 200 677 . 243 (100%)

"http: /A MyGiznoStore. con/foategory. scraen?
categoryld=RED GADGETE" "Opera/?.20 (Tindows NT 6.0; T; en)"

309 =l

Choose new file

Figure 2-4. Data preview for access.log

Note If you are familiar with relational database concepts, it may help to realize that each event broken down by
Splunk is conceptually equal to a single row in a relational database table.

Now that we have confirmed that the data looks good and has been processed correctly by Splunk, you can click
on the Continue button, which will take us to the “Add new” page, where we will customize some of the settings before
we get the data finally indexed into Splunk. Because this is a one-time file processing operation, we will select the
“Index a file once from this Splunk server” radio button under Source. Because our computer has a rather complex
name, we also chose to change the Host file value to BigDBook-Test.

In the previous step, we asked Splunk to automatically determine the sourcetype, so we will see the sourcetype
is set to automatic. By default, when data is loaded into Splunk it goes into the main index, which is the mechanism
used to store, process, and analyze data. Splunk also offers the ability to define and use other indexes, which can help
you better organize and manage your data, especially regarding data governance, such as access, protection, and
retention policies. For this example, we will use the main, but we will see how to create a new one and make use of it
in the next section. Click on the Save button. The next page shows a Success message if Splunk is able to process the
data completely.

14

http://MyGizmoStore.com

CHAPTER 2 © GETTING DATA INTO SPLUNK

Note If you are familiar with schemas in Oracle, the Splunk index is very similar to that concept. An index in Splunk
is a collection of data, and a schema has a collection of tables with the data.

Once Splunk indexes the data successfully, you can start to review it to make sure it was done correctly. To list all
the log entries that were loaded into Splunk we type host=BigDBook-Test in the search bar and hit enter. This search
gives complete listing of all events along with the default fields, which are the timestamp, the host from where the data
comes, the source type and the source of the data. Splunk will always have those fields available. In Figure 2-5, you can
see that the total count is 243 events, which is the same number of log entries we had in the file we just indexed. You
can also see the timestamp to the left side of each event and the other three default fields presented below each event.

Search @ Smart Made ~
. —

qmst=BigDBook—Test ? Alltime
e 4mching

[¥]Shovw timeline

1 243 events over al time

EE all [Export + Options « prey n 2 3 4 5 B 7 8 9 10 nexts 20 per page -

21513 6.220.209.248 - - [05/Feb/2013:@6:32:95] "GET

F:32:05.000 Ak pr‘oduc‘t screen?product Id=N18-HKG-55&1SES55T0ONID=5055L 2FF1@ADFF5772 HTTP 1.1™ 208 1585
! dvGizmoStore.com™ "Operas9.20 (Windows NT 6.8; U; en)" 591

sourcetype=access_combined_wcookie - | source=lfoptfaccesslog -

2UEM 3 45,17.136.243 - - [05/Feb/2013: 06:18:18] "POST

E1815000 46 /product . screen?product Td=0R-DEN-33&1SESSIONID=5D25L 2FF1ADFF5755 HTTP 1.1" 583 987
"http:/www. MyGizmoStore. com/oldlink it emId=HYD-29" "Mozilla/5.8 (Macintosh; U; Intel Mac
05 X 10 _6_3; en-US) Applellebkit/533.4 (KHTHML, like Gecko) Chrome/5.@.375.38 Safari/533.4"
281
host=BigDBook-Test = | sourcetype=access_combined_wcoookie - | source=foptfaccesslog -

25M 3 45.17.136.243 - - [05/Feb/2013:@6:18:05] "GET /stuff/logo.ico?]SESSIONID=SD2SL2FF1ADFF5755
EAd05000 a0 HTTP 1.1" 484 636 "http: ww. MyGizmoStore. com/category.screen?categoryId=BLUE_GIZMOS™
"Mozilla/5.@ (Macintosh; U; Intel Mac 05 X 1@ 6_3; en-US) Applellebkit/533.4 (KHTML, like
Gecko) Chrome/5.0.375.38 Safari /533.4" 925
host=BigDBook-Test - | sourcetype=access_combined_woookie - | source=foptfaccesslog -

2UEM 3 45.17.136.243 - - [05/Feb/2013:06:17:51] "GET

517:51 000 apd /cart . do?act ion=view&it emId=HYD-11&1SESSIONID=SD2SL2FF1ADFFS755 HTTP 1.1" 208 3777
"http: wiw. bing.com™ "Mozilla/5.@ (Macintosh; U; Intel Mac 05 X 18 6_3; en-US)
Applellebkit /533.4 (KHTML, like Gecko) Chrome/5.8.375.38 Safari/533.4" 813
host=HigDBook-Test = | sourcetype=access_combined_wcoookie - | source=foptiaccesslog - | action=view -

Figure 2-5. Search results

When individual sources of data in large volumes are ingested into Splunk they can be better managed with
separate indexes, which could be placed on different tiers of storage. We will go ahead and create a separate index for
the MyGizmoStore. comlog files. To create an index click on the “Manager” menu item on the upper right corner of the
user interface and in the Data section click on the “Indexes” link as shown in Figure 2-6.

15

http://MyGizmoStore.com

CHAPTER 2 © GETTING DATA INTO SPLUNK

Data

s Datainputs
Add data to Splunk from scripts, files, directories and network ports,

Forwarding and receiving
Configure this hostto send and receive data.

Indexes

Create new indexes nage index size preferences.

AL Report Acceleration Summaries
4 Manage saved search summaries

Figure 2-6. Index creation

In the Indexes page, click on the New button and name the index mygizmostoreindex. You can ignore the cold
and thawed path options of the form. They are advanced options that can be used to move older or unused data in
a Splunk index to, for example, lower cost storage. It also provides the capabilities to archive data outside of Splunk
using the concept of a frozen archive path. In our case, we will leave these options at their defaults as the simulated
data set is not going to be massive. Click on the Save button. Once the new index has been created successfully, it will
show up in the indexes page as shown in Figure 2-7.

Indexes
Showing 1-10 of 10 items Results per page | 25 LI
Index name ~ Max = Frozen = Current > Event = Earliest Latest = Home path =
size archive size (in count event event
(MB) path MB)
of
entire
index
_audit 500,000 Mone 13 120,384 Jan 12, Feb 9, fzplunkizplunkfearfibizplunkisuditidb
2013 2013
43352 B:15:32
b b
_blocksignature u] Mone 1 u] [r&, [r&, fzplunkizplunkfearlibizplunkblock Signaturedidb
_internal 500,000 Mane 222 3,875,358 Mo 12, Feh g, fzplunkfzplunkharlibizplunk’_internaldbd
2012 2013
71102 B:15:32
Pl A
_thefizhbucket 500,000 Mane 1 o i, i, fzplunkfzplunkiarlibizplunkfizhbucket fdb
hiztary 500,000 Mone 1 1] [iL, [iL, Szplunkizplunkhardibizplunkhistorydiidb
migin 500,000 Mane 4 8,538 Dec 13, Feh 5, fzplunkfzplunkiarlibizplunkidetautb fdb
2012 2013
B:39:16 B:32:05
vl vl
mygizmostoreinde:x 500,000 Mone 1 u] [r&, [r&, fzplunkizplunkfearlibizplunkimygizmostoreindesxidb
o5 500,000 Mone 44 471 978 Aug 29, Feb 9, fzplunkizplunkfearfibisplunkiosidb
2007 2013

Figure 2-7. List of indexes

16

CHAPTER 2 © GETTING DATA INTO SPLUNK

What we have seen so far is how to get data into Splunk using one-time file indexing. In real-world use cases, we
would be seeing that log files are being continuously updated with new entries, and these expanded log files need
to be processed and analyzed on a continuous basis. This is where Splunk provides the ability to monitor certain
directories where files are being continuously updated. Splunk’s directory monitoring capability lets us specify the
directory that needs to be monitored and the files in that directory will be used as data input. Before we explore the
monitoring option, let us go back to MyGizmoStore.com one more time. We have used a static log file from the online
store to see how we can get that kind of data into Splunk. In the real-world MyGizmoStore.com would probably be
running on multiple web servers on different hosts and writing out log files which need to be monitored, processed,
and analyzed on a continuous basis.

To simulate this behavior we have come up with a test data generator to generate log files for M\yGizmoStore. com.
We will review how the test data generator operates and how we can start generating the data.

Data Generator

The sample data generator is written using the Python scripting language. It is designed to run on both Microsoft
Windows and Linux operating systems. The sample data generator uses a random generator to create random IP
addresses, which point to the visitor of the web site; a predetermined set of product identification codes that look

like “CA-NY-99” and item identification codes in the form of HYD-19. The gizmos sold on the store can be categorized
as follows:

e BLUE_GIZMOS
e RED_GADGETS
e WHITE_WIDGETS
e ORANGE_WATCHMACALLITS
e PURPLE DOOHICKEYS
e BLACK _DOODADS
The visitors to the web site can perform the following actions:
e Purchase
e Add an item to the shopping cart (Addtocart)
e Remove an item from the shopping cart (Remove)
e View the catalog of gizmos (View)
¢ Change the quantity of an item in the shopping cart (Changequantity)

The HTTP protocol used by web sites includes a return code that either signifies success in the operation or
describes a problem. The code 200 indicates a successful operation, whereas codes in the 400s and 500s indicate some
sort of a problem. The data generator creates a realistic percentage of error codes. Additionally, the generator includes
arandom selection of user agents. These are a fancy name for the description of the combination of the browser and
operating system used by the visitors, which also include the version number of both.

e Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
e Opera/9.01 (Windows NT 5.1; U; en)

e Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_3; en-US) AppleWebKit/533.4 (KHTML, like
Gecko) Chrome/5.0.375.38 Safari/533.4

e Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

17

[vww allitebooks.cond

http://MyGizmoStore.com
http://MyGizmoStore.com
http://MyGizmoStore.com
http://www.allitebooks.org

CHAPTER 2 © GETTING DATA INTO SPLUNK

e Googlebot/2.1 (http://www.googlebot.com/bot.html)

e Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)

e Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.8.1.6) Gecko/20070725 Firefox/2.0.0.6
e Opera/9.20 (Windows NT 6.0; U; en)

The data generator script includes the ability to customize the percentage of user agents and HTTP error codes,
the default settings are 25 percent and 30 percent, respectively. The generator has a default value for maximum
number of events, which is 50,000 for a period of 30 days. The generator creates the sample data starting from the
current date and goes backward 30 days. For this example, we have taken the defaults as described.

To run the data generator script, you will need to have Python 2.7 or above installed on your system. You can
make use of the Python that is bundled with Splunk. You will be able to find Python installed in the $SPLUNK_HOME/
bin directory (where $SPLUNK_HOME is the directory where Splunk is installed). The data generator script has been
tested with Python 2.7 that comes with Splunk and also with Python 3.1.5. For more information on Python you can
visit http://www.python.org. The sample data generation script included in the download package of the book
is called Generate_Apache_Logs.py. We have installed that script into /datagen/BigDBook directory on our Linux
machine.

Generate Sample Data

To generate the sample data, you will execute the python script by typing command shown in Figure 2-8. The same
command applies to both Windows and Unix.

.+~ root@BigDBook:/datagen,/BigDBoo
[root@BigDBook BigDBook]

Figure 2-8. Run test data generator

On successful execution of the Python script, you will be able find the generated log files in the /opt/log
directory if it is a Unix operating system and in case of a Windows operating system the files are placed in the directory
c:\opt\log. As we mentioned earlier, a typical ecommerce web site runs on various servers, thus our data generator
simulates log entries for three different hosts that are named BigDBook-www1, BigDBook-www2, and BigDBook-www?3.
The location of generated files can be customized in the script file. For this chapter the log files were generated in the
following directories:

e /opt/log/BigDBook-wwwl/access.log
e /opt/log/BigDBook-www2/access.log
e /opt/log/BigDBook-www3/access.log

If you type the following Unix command 1s -Rla in the /opt/log directory it will list the files as seen in Figure 2-9
and we can see that the access log files were created for the three different hosts in separate directories.

18

http://www.googlebot.com/bot.html
http://www.python.org/

CHAPTER 2 © GETTING DATA INTO SPLUNK

f* root@BigDBook:/optlog =10l =l
[root@BigDBook log]l#(@s -Rla) -
total 24

drwxr-xr-x 5 root root 4096 Feb 9 08:50

druxr-xr-x. 6 root root 4096 Feh 6 04:33

drwxr-xr-x 2 root root 4096 Feh 9 08:50 BigDEEBook-—srwwl
dryxr-xr-x 2 root root 4096 Feb 9 08:H0 BigDEBook-—www2
drvxr-xr-x 2 root root 4096 Feb 9 08:53) BigDBEBook-—wnrd

. fBigDEBook—wwwl :

total 728

drwxr-xr-x 2 root root 4096 Feh 9 08:50
druxr-xr-x 5 root root 4096 Feh 9 08:50

—rWw-r—-r-— 1 root root 729187 Feb 9 08: l

. fBigDBBook—wnine2 ;
total 704
druxr-xr-x 2 root root 4096 Feh 9 08:50

drwxr-xr-x 5 root root 4096 Feh 03:50
-rw-r--r—--— 1 root root 705615 Feh 9 l]3:5

. fBigDBBook—wwnw3 :

=]

total 768

drwxr-xr-x 2 root root 4096 Feb 9 03:50

drwxr-xr-x 5 root root 4096 Feh 9 08:50 .

-rw-r—--r—-— 1 root root 772096 Feh 9 03:5
[root@BigbBook logl# | =

Figure 2-9. Generated access log files

Now that the MyGizmoStore access logs are created and ready, you can configure Splunk to monitor the directory
where these log files are being placed. To do this go to the manager screen, as was done earlier, and click on the “Data
inputs” link (as seen in Figure 2-1). In the Data inputs page, click on the “Add new” link for the Files & directories
option. Now you can select to skip the data preview, as we already did this earlier with the same data, and click on the
continue button. In the Add new page, under the source option, select the radio button for “continuously index
data from a file or directory this Splunk instance can access.” Because the sample generator is writing out logs to the
/opt/log directory (in the case of Linux), we will use that as an input for the “Full path to your data” option. Because
we created a separate index for MyGizmoStore.com, called mygizmostoreindex, we will use it to illustrate how to load
data into an index other than the main one. Select the check box for “More” settings. One of the options we have here
is to set the host name. This is very useful, as you can do specific searches based on host name. The Set host option
provides the following choices:

e You can define a constant value for the host name, which is useful when you want to have a
single host name for all the log files.

e The RegEx option, which allows you to extract the hostname from a string using a regular
expression.

e The segment option, which allows you to make use of a particular segment in the full file
pathname.

In our case for MyGizmoStore. com, we want to use multiple host names as the test generator is creating files
under /opt/log/BigDBook-www1, /opt/log/BigDBook-www2, /opt/log/BigDBook-www3. Because the hostname is
the third value in all pathnames, we will make use of the segment option and specifying a value as 3. As we have did
when we loaded the single file, we will let Splunk set the source type automatically, and in the index we will specify

19

http://MyGizmoStore.com
http://MyGizmoStore.com

CHAPTER 2 © GETTING DATA INTO SPLUNK

the newly created mygizmostoreindex index. We do this by selecting that index from drop-down box. The advanced
options include a whitelist and a blacklist, which help specifying which files in the directory should be monitored
and which should be ignored. In our case the sample data generator is only generating one log file under each
subdirectory, so we leave them blank, as there is nothing to black or white list. Figure 2-10 shows the settings that we
have configured. After all is defined, click on the Save button.

¥ More settings

Host

Tell o 10 =2t the value of the host field in your events from this source.

segment in path

Specinfineihod for oetting host field for events coming from this sowrce.

sSeament number*

3

Specify which segment of the sonrce path to set as the Host fleid
For exgmpie. 3 (sets to hastname’ for the path fvariog hostnames)

Source type

Tell Splunk what kind of data thiz iz 20 you can group #t with other data of the same type when you search, Splunk does
this automsatically, but you can specify what you weant if Splunk gets it wrong.

Setthe source type
| automsatic =]

Wher this 15 set to automatic, Spiunk classifies and assighs the soqrcelype automatically, and gives Bnkhown
souwrcelypes placehalder names.

Index

When Splunk has consumed vour data, it goes into aninde:x. By default, Splunk puts i in the 'main' index, but you can

spec L
Setthe destination index

mygizmostoreindes ;I

—

Credie 3 anager = Indexes and It will gopear in this list. Caonsider creating 2 test index when yow're putting a
hew e of data inbo Spionk.

Figure 2-10. Monitoring a directory

As with the previous example, you will be able to see the newly saved configuration in the Data inputs page, as
shown in Figure 2-11.

20

Data inputs (files)

Showing 1-12 of 12 itemns

CHAPTER 2

<)

Resutts per page | 25 x|

Full path to your data * Set = Source 3 Set the = Humber = App = Status *

host type destination of files
index

FEPLUNK_HOMEietisplunk version Conztant splunk _version _interral 1 system Enabled | [
“alue

FEPLUMK_HOME fear Aociapiunk: Constant Automatic _internal 3 ayatem Enahled | [
“alue

FEPLUMK_HOME fear izpoalfzpiunk Constant Automatic default ayatem Dizahbled |
“alue

FEPLUNK_HOMEMvar fzpoalizplunkl. stazh_new Constant stazh_new default 1 aystem Enahled | [
“alue

MikbraryLogs Constant ayslog =3 Splunk_TA_nix Dizabled |
“alie

Jet Constant ayvslog =3 162 Splunk_TA _nix Enahled | [
“alie

Shomed. S bash_history Constant bash_history =3 Splunk_TA _nix Dizabled |
“alie

Segment A tomatic 4 zearch Enahled | [

Figure 2-11. Saved configuration

GETTING DATA INTO SPLUNK

Once Splunk indexes the files successfully, you can review the data. To do this, type index=mygizmostoreindex
in the search bar and hit enter, as shown in Figure 2-12. This search lists all the events in the specified index, and as
before it includes the default fields. You can see that the host name is set correctly according to our specifications,
which were to use the third segment of the file pathname. The source type and source fields also appear to be correct.
Because the data seems to be correctly indexed based on our simplistic review, we can feel comfortable that Splunk is
monitoring those directories on a regular basis and appending the new information into the mygizmostoreindex.

Search

T Smart Mode ~

—————
‘ index="mygizmostoreindex™ 2

[¥]Shaw timeline

[4] Hicke

4 selected fields Ecit
2 action (5)

2 host (3)

2 source (3

@ sourcetype (1)

25 interesting fields
pytes (=1000)

a glientip (=100

@ eventtype (2]

2 file (14)

2 idert (1)

@ inces (1)

a temld C1R

8,688 events over all ime

E E il (3 Export 20 per pags -

 Options cpee [l 2 3 4 5 5 7 8 8 10 nexts

2090 3 219.109.144.45 - - [09/Feb/2013:08:45:44] "POST
Fas 44000 ahd Sproduct.screen?productTd=TA-IND-77&1SESSIONID=SDGSL1FF3ADFF2
HTTP 1.1" 508 461
"http: /[www. MyGizmoStore. com/oldlink?itemId=HYD-58"
"Googlebo‘t /2.1 (http://www.googlebot.com/bot.html) ™ 630
sourcetype=access_combined_woookie -
ogEhabEBook-wonew 3laccess log +

| =onire:

201913 219.109.144.45 - - [@9/Feb/2013:08:45:36] "GET
24536000 A6 /0ldlink2itenTd=HYD-2&71SESSTONID=5DGSL 1FF 3ADFF 35088 HTTP
1 - 20@ 2520 "http://www.yahoo. com“ "Googlebot /2.1 {
gooslebot. com/bot.html) ™ 461
| zourcetype=access_combined_weoookie -
EBook-weww Iaccess log -

20913 234.38.242.36 - - [@09/Feb/2013:98:31:49] "GET
31:49.000 & Sproduct.screen?productId=86753098&]5E SSTONID=5D65L 6F F 7ADFF 35¢€

Figure 2-12. Events in mygizmostoreindex

21

CHAPTER 2 © GETTING DATA INTO SPLUNK

We can now introduce the left side bar, also known as the field bar. This side bar always presents the default fields
and additional fields, which Splunk calls fields of interest. These are defined as fields that show up in 50 percent or
more of the events of that particular index. It is a very useful tool to quickly gain a better understanding of the data
you are working with. For example, we can quickly see that the host field has three values. If we want to know which
are those values you can click on the bar graph icon against the host field. As seen in Figure 2-13, this will bring up a
dialog box that shows all the values of the host field. Thus we avoid having to review a number of events to verify that
the three expected values are present. Not only that, the dialog box also presents some summary statistics about the
field, such as the total count of events that contain each value and the percentage. Additionally, it presents a bar chart
with that information, making it a very compelling and easy way to gain a good understanding of a specific field.

Hicle: 8,688 events over all time

[_ Export 20 per page -
4 selected fields Edit Options BBz = 4 5 8 7 5 8 10 reds
action
= host (categorical) LFESADEFS
EOUFCE [
Appears in 100% of results Charts
SOUFCEtyE Showe only events with this field Top values by time " &30

Top walues overall

25 interesting fields

Values # k]

bytes —
BiggDBB ook - 3 3031 3455T%]
clientip
BigDEB0ck- v zaer 3% [HTTR
everttype (
BigDBB ook - 2 2780 3211E% |]
file
icent
incex: 2913 234.38.242.36 - - [09/Feb/2013:08:31:49] "GET
Tl 3149000 A Sproduct . screen?product Id=86753092]15ESST0NID=5065L&F F 7ADFF 35¢

Figure 2-13. Events in each host

Most of the time the generated log files are very big; they get compressed using zip technology. Additionally, most
of the servers have log rotation capability, where log files are moved to another place after a certain time or size has
been reached. The Splunk directory monitoring facility is intelligent enough to address these real-world use cases,
as it can unzip the compressed files in the directory before indexing them. It can also automatically detect the log
rotation and keep track of where the last log entry that was indexed is located; this way it can start from that point. This
is useful in case of Splunk restart or when maintenance tasks are executed.

Network Sources

A number of system applications and network devices such as routers switches relay events over network ports using
the TCP or UDP protocols. Some applications make use of the SNMP standard to send events over UDP. Syslog, which
is a standard for computer data logging is another set of sources where there is a wealth of information that could

be captured at a network port level. Splunk can be enabled to accept input from a TCP or UDP port. To do this, you
can use the Splunk Web user interface and configure a network input source where all you have to specify is the host,
port, and sourcetype. Once you save the configuration, Splunk will start indexing the data coming out of the specified
network port. This kind of network input can be used to capture syslog information that gets generated on remote
machines and the data does not reside locally to a Splunk instance. Splunk forwarders can also be used to gather data
on remote hosts. We will discuss forwarders in the last part of this chapter.

22

CHAPTER 2 © GETTING DATA INTO SPLUNK

Windows data

The Windows operating system churns out a number of log files that have information about Windows events,
registry, Active Directory, WMI, performance, and other data. Splunk recognizes Windows log streams as a source
type and allows adding one more of these log streams to be indexed as input for further processing and analysis.
Although Windows sources such as Active Directory or others can be individually configured, Splunk provides a
better and easy way of dealing with these Windows logs or events by using the Splunk App for Windows or the Splunk
Technology Add-on for Windows. We will explore this later in this chapter.

Other Sources

Splunk supports scripting as a mechanism to get data from other sources that are not provided with a specific default
configuration. There is no limit on types of data that scripting can touch, as long as the scripting output can be
provided as an input that Splunk can understand or can be tweaked to make it understand. Examples include a script
that could be getting data from a database or a script that could be getting data from Twitter—we will look into this
example in Chapter 12. Technology Add-ons could also be using scripting as the mechanism to get the data, but they
provide an abstraction to bring the added value of making it easy to get the data into Splunk for further processing and
analysis. This gives is a good opportunity for a quick overview of Splunk Apps and Add-ons.

Apps and Add-ons

The Splunk user interface defaults to the Search app. However, Splunk is designed as a platform that serves as an
infrastructure where third-party developers or ISVs can build specialized applications that provide extensions to
Splunk. There are two ways of building these extensions: Apps and Technology Add-ons.

Splunk Apps package the extended functionality together with standard features such as saved searches,
dashboards, and defined inputs. Additionally, they bundle their own user interface layered on top of Splunk’s user
interface. By contrast, Add-ons, or simply TAs, are smaller components as compared to Apps, which include the
additional functionality without their own user interface. We will have to use the standard Splunk Search application
against the indexed data configured through add-ons. Apps and Add-ons can be written by anybody with a decent
programming knowledge. Splunk has a vibrant community that constantly creates and shares Apps and Add-ons. It is
hosted at http://splunk-base.splunk.com/apps/. In Appendix B, you will find a list of useful Apps and Add-ons that
you can use in your enterprise.

To explore Windows sources, we will make use of the Splunk Technology Add-on for Windows. This will allow us
to get the windows data into Splunk. You can find the Add-on by going to directly to splunkbase or you can search and
find apps directly from Splunk instance. To do that click on “Find more apps ... ” under the “App” menu as shown in
Figure 2-14.

Administrator | 2pp = | Manager | = | Jobs | Logout

| Aot

Figure 2-14. Find Splunk apps

23

http://splunk-base.splunk.com/apps/

CHAPTER 2 © GETTING DATA INTO SPLUNK

In the search bar of the user interface type the word windows and hit enter. At the time of this writing the fourth
result came up as Splunk for Windows technology add-on, which is the one we want use. Click on the Install free
button, as shown in Figure 2-15. You will require a Splunk login to do this. It is free to register.

m Splunk for Windows technology add-on

The Splunk for Windows technology add-on includes predefined inputs to collect data from Windows
systerms and maps to normalize the data to the Comman Information Model... & Read mare

Author: Splunk Version: 461 Last 1110212 Downloads: 013 License: Splunk
updlated: Softveare

License
Agreement

T >

Figure 2-15. Splunk TA for Windows

You will be prompted to enter the credentials for your Splunk Web site account. Once you enter your credentials,
the add-on will be installed onto the Splunk instance. You should see a message stating that a restart is required. Click
on Restart Splunk button. On successful restart and login into the Splunk instance, you will be able to find the newly
installed Splunk TA for Windows under the “App” menu, as shown in Figure 2-16 below.

Administrator [2pp - Manager

Horme

EE

Find mare &

Figure 2-16. Splunk TA for Windows

Specific Windows event logs or files and directories can be enabled by clicking on the add-on link in the “App”
menu. Once the specific sources are enabled the add-on will automatically configure the data to be loaded into the
Splunk instance. We will enable Application, System, and Security event logs as seen in Figure 2-17 to do some basic
testing and show how the Windows TA helps to simplify the process of loading Windows sources data into Splunk.

24

CHAPTER 2 © GETTING DATA INTO SPLUNK

CWinciows Event Log Inputs,

To enable the collection of an event log in the Disabled group, simply click on the event log name. Use the fiters located above the
Enabled and Dizabled groups to help locate specific event logs. Clicking "Disakle AI" will dizsble all unfitered event lags in the Enabled
group, while clicking "Ensble A" will enable all unfitered event logs in the Disabled groug.

Enabled Filter: =
Application
Security
System

Dizakle &l Sort (desc)

File and Directory Inputs:

To enakble or dizsble the collection of Windows DHCP or Update
logs, toggle the radio buttons below to the appropriate setting.

Hame Enable Disable
FVNDIR Sy 2tem3NDHCP o [
FNDIRIincow s pdate log o [

Figure 2-17. Enabling Windows event logs

Disabled Fitter: =

Internet Explorer

Windowes PowerShell

Enable Ll Sort (desc)

Distributed Search:

To enakble or dizable optimized distributed search replication,
toggle the radio button below to the appropriate setting.

Hame Enable Disable

Optimize replication [[0

TN TN

Note Windows Technology add-on can be installed on Splunk running on Windows. If you are running Splunk on
Linux then the Windows TA can be installed on a forwarder running on a Windows machine. Forwarders are explained
later in this chapter and in Chapter 15. We also recommend reviewing the Splunk administrative manuals when installing
a combination of Apps and Add-ons to see what configuration(s) are supported.

Now that we have installed Windows TA and enabled some of the available sources, we can go to Splunk Search
App and search for indexed data to test whether the TA is able to get the data into Splunk. We can pick Application,
which is one of the sources that we have enabled, and see if events related to Windows applications are indexed into
Splunk. For this type in the search bar the following command:

sourcetype="WinEventLog:Application”

25

CHAPTER 2 © GETTING DATA INTO SPLUNK

As seen in Figure 2-18, the search came back with 12897 events from the Application events log. You can pick
other event logs that have been enabled and search for events related to those logs. As this chapter is focused on
understanding on how to get data into Splunk, we are not going to explore all of the available events that have been
indexed into Splunk. Chapter 3 will take you into details of how to process and analyze the data once it is in Splunk
and Chapter 4 will go into details of visualizing the data indexed into Splunk.

Search T Smart Mode ~

{suurcetype:"lr]inE'u'entLog:Applica@ n
+ 12,897 matching events & 80

[¥]Shaw timeline

[£]Hicle 12,897 events over all time

EE all (3 Export & e n 2 3 4 5 B 7 8 89 10 rnexts 10 per page «
3 selected fields Edlit + Options
@ host (1)
24N S a2/ 1AL2a 2. AC .G AM
@
sauree (1) Gd554 000 A ogllame=~Application
2 zourcetype (1) Sourcellame=5ceCl1
EventCode=1704
24 interesting fields EventType=4
Type=Information
Category (9) Comput erllame=D0ZER
; Category=0
@ Cat String (10) i
BRI (1) CategoryString=none
2 Computerilame [3) Recordlumber=13433

Shawe all 12 lines

2 dest (3) hinst=D0ZER -q Eourcetype=\u’\11nEverdLog:Applicaﬂ

source=winEventLog Application =

2 dyc 1)
2M3M3 @2/13/2013 @3:13:47 PH
@ dve_nt_hest (1) 1347000 P Loglame=Application
evert_jd (=100) go:;;sg:zfjfgcn
EventCode (=100 Event Type=4

Type=Information

#
EvertType (4] Comput erllame=D0ZER

2 eventtype (2] Category=0
) CategoryString=none
2 inces (1] Recordiumber=13432

Shovy &l 12 lines

#
L=ceLndili biozt=D0ZER - | sourcetype=WinEvertLog Application = | sourceswinEventlog: Application -

2 Loghame (1)

Figure 2-18. Events from Windows Application indexed into Splunk

Splunk also provides similar Technology Add-ons for Linux and Unix known as *Nix. This Add-on makes use of
both log files and scripting to get different sets of event and log data available in Linux or Unix into Splunk. You can
install *Nix technology add-on using the same process we used to install the Windows Technology Add-on:

e Goto “App” menu and click on “Find more apps ... ” as shown in Figure 2-14.

e Search for *nix and the second entry at the time of this writing comes up as “Splunk for Unix
and Linux technology add-on””

e Click on the Install free button; after a successful install you will be prompted to Restart
Splunk.

e On asuccessful restart, go to the “App” menu as seen in Figure 2-19; here you can see “Splunk
*Nix (TA)” as a new menu item.

26

CHAPTER 2 © GETTING DATA INTO SPLUNK

Administrator

Home

i

Find mor

Figure 2-19. Splunk *Nix (TA)

Click on the link for “Splunk *Nix(TA)” so that you can setup the sources of data for your flavor of Unix . This
brings up the setup screen as seen in Figure 2-20. Here you can see that the Add-on makes use of the Files & Directory
monitoring approach that we used earlier with the MyGizmoStore.com to monitor different log files in Unix. It also
makes use of scripting approach that we just discussed to load specific data inputs, such as CPU usage into Splunk.
This really shows the power of a TA, which abstracts the layer of annoying details and makes it very simple to get data
loaded into Splunk. To do a quick test, we enable the /var/log directory under the “file directory inputs” as shown in
Figure 2-20. Additionally, we enable the cpu.sh script under “scripted inputs” title as seen in Figure 2-21. Clicking on
the Save button saves the settings to the corresponding configuration file. If you go to the “Indexes” page, you will see
that all the *Nix data is being loaded into a separate index named os.

Splunk for Unix Technology Add-on: Setup

The Splunk *nix Technical Add-on provides pre-buit dats inputs to faciitate Linwe: and
Unix system manitoring using =plunk. Check out the Splunk for Uniz Technical &dd-on
page on Splunkbase for support information, the latest updates |, and more.

CFile and Directory Inputs,_

Hame Enable (#1] Disable [#1]
jetc s «
thomed.../ bash_histary [i+
iLibraryLogs [o)
iroot! bash_history [[0
Fearfadm [("

© ivariog [l gl
~iLibraryLogs [i

Figure 2-20. Configure *Nix TA

27

vww allitebooks.conl

http://MyGizmoStore.com
http://www.allitebooks.org

CHAPTER 2 © GETTING DATA INTO SPLUNK

cripted Inputs:

Hame Enable (#ll] Disable (#ll] Interval {sec)
o - &l
df =h e « 200
hardware sh e o 36000
interfaces.sh i ol il
iostat sh « o 60
lastiog sh [ol 300
Izof.sh i ol GO0
netstat.sh o« o 60
openPorts.sh [i 300
package.sh [" 2600
pratocol 2h i al il
p=sh [i a0
¥log.zh o ol 60
time zh e 0 21600
usersithLoginPrive.sh [ol 2600
wmztat =h i ol il
(Eh—_o_.sh E e 150

Figure 2-21. Scripted inputs in *Nix TA

Now that you have installed the *Nix TA and enabled some of the available sources, you can go to the Splunk
Search App and search for indexed data to test out whether the *Nix TA was able to load the data. As we mentioned
earlier, the *Nix TA loads the data into separate index called o0s, so you can go ahead and search for all the events by
entering index=0s in the search bar, and this will retrieve all the events that have been indexed into Splunk for the
enabled sources. You can see in Figure 2-22, that the search shows the events captured from top, who, and various log
file under /var/log directory.

28

CHAPTER 2 © GETTING DATA INTO SPLUNK

Search @ Smart Mode ~
{ index=o0s >

" 533,418 matching events

[¥]Shovw timeline

B 418 events over all time

EE il [Export + Options & prey n 2 03 4 5 6 7T 8 9 10 nrexts 20 per page +

21413 USERNAME LINE TIME
81502000 am root pts/@ §-155-7.lightspeed.snjsca.sbcglobal.n 2013-82-13 05:10
hn=t=03076-1-1497730 =

21413 PID USER PR [Ths VIRT RES SHR S pctCPU pctMEM cpuTIME COMMAND
G15:01.000 Sk 1671 root 20 a 136m 14m 6424 s 13.8 a.4 @: 00,07 php
5449 mysql 2a [:] 553m 24m 6368 S 9.9 a.6 28:24.67 wmysqld
28341 root 2a a 324m 79m 13m 5 3.9 2.9 25:54.97 splunkd
822 root 2@ a J4aia 13m 8376 s 2.8 a.3 @:98.27 splunkd
823 root L] a 74876 12m 8456 s 2.0 a.3 9:98.25 splunkd
1274 root 20 a 74076 12m 8452 s 2.0 a.3 9:20.15 splunkd
1667 root 2a [:] 15008 1168 864 R 2.0 a.a 9:90.81 top
1 root 28 [} 1924 1488 1216 5 2.8 a.9 @:@2.76 init
2 root 2@ a a a 2] s 2.9 a.9 @:08. 88 Kkthreadd
Show &l 142 lines
host=03078-1-1497730 - Eeourcetype=top source=top -
2114173 Feb 14 ©6:15:901 ©03878-1-1497736 CROND[1671]: (root) CMD (/usr/bin/php

S15:01.000 Ak Svar/www/html/feedory /Feedstore.php)

host=03078-1-1497730 = | sourcetype=syslog ~ @Eource=harlogicron =

21413 type=USER_START msg=audit(1360858501.122:764885): user pid=1670 uid=0 aulid=0 ses=1683
&15:01.000 &b msg="op=PAM:session_open acct="root" exe=l. et ostname=? addr=? terminal=cron res=success’

M0s1=03075-1-1497730 = | sourcetype=sysioy ~ EEOUFCE=Narlogauditaudt oy -

21413 type=LOGIN msg=audit(136@358501.121:764884): pid=167@ uid=a old auid=4294967295 new auid=0 old
G1501.000 ah 5es5=4294967295 new ses=1683
host=03078-1-1497730 ~ | sourcetype=syslog - | source=fvarlogfauditiaudit log -~

Figure 2-22. Events captured using *Nix

Forwarders

In the real world, enterprises have numerous applications and most of them will be running on a heterogeneous
infrastructure, which includes all sorts of hardware, databases, middleware, and application programs. It will not be
possible to have Splunk running locally or near to each of the applications or infrastructure, meaning the data will not
be local to Splunk. What we have seen in this chapter is how we can get data into Splunk which is local to it. The use
cases assumed that Splunk will be able to access files or directories, which could be on local or file systems that have
remote data, but they are attached to the machine where Splunk is running.

To address the use case of getting remote data into Splunk, we will explain Splunk forwarders. A Splunk forwarder
is the same as a standard Splunk instance but with only the essential components that are required to forward data to
receivers, which could be the main Splunk instance or indexer. The forwarder’s primary job is of gathering data that is
remote to Splunk, forwarding it to a main Splunk instance or indexer that will load the remote data. Splunk universal
forwarder is a downloadable component from splunk.com that can be set up to forward the required data. Technology
add-ons such as the Windows TA can work with a universal forwarder to send Windows source data to a Splunk
instance running on Unix environment. Using Splunk forwarders is the recommended deployment or best practice to
work with remote data. Forwarders provide many benefits, including:

e They automatically buffer data at remote locations, which can be useful when the main
instance of Splunk goes down for whatever reason.

e They support making use of Technology Add-ons to gather different sources of data available
remotely.

29

http://splunk.com

CHAPTER 2 © GETTING DATA INTO SPLUNK

e They can be administered remotely.
e They support securely sending the remote data, with compression and data acknowledgment.
e They provide support for load balancing, and are better suited for scalability and performance.

They can work with any available network port on the remote location, whose data need to be gathered. We will
go in more details about Splunk deployments in Chapters 14 and 15, which discuss distributed topologies and high
availability.

Summary

In this chapter, we have seen the different types of sources from which data can be loaded into Splunk. We discussed
in detail how to get data using the Files & Directories option and how to make use of Splunk’s monitoring capability to
get MyGizmoStore. com access logs. We touched on how technology add-ons like Windows and *Nix can be configured
to gather data from Windows and Linux boxes. Finally, you learned about Splunk forwarders and how they can help
get hold of data that is remote to Splunk.

30

http://MyGizmoStore.com

CHAPTER 3

Processing and Analyzing the Data -

In this chapter you will learn how to process and analyze the data using Splunk’s Search Processing Language (SPL).
We will continue with the data-loading work that we did in Chapter 2; this will help you to get a good understanding
of the combined access log format and the information that the log entries provide. You will then learn how to process
the data of MyGizmoStore.com using SPLs reporting, sorting, filtering, modifying, and grouping commands.

Getting to Know Combined Access Log Data

One of the points that we stress in this book is the need to understand the data set that you want to process and
analyze; that is, getting intimately acquainted with the data you will work with first. In this chapter we are going to
take the first step of explaining the data of the combined access log format that we used to generate the sample data
in Chapter 2.

Log files are generated by almost all kinds of applications and servers—whether they are end-user applications,
web servers, or complex middleware platforms that serve as an infrastructure to run the applications used by
consumers or business users. Operating systems and firmware also generate huge amounts of raw data into log files.
The challenge lies in understanding, analyzing, and mining the raw data in the log files and making sense out of it.

Combined access logs generated by web servers such as Apache or Microsoft IIS provide information about
activity, performance, and problems that are happening, whether intermittently or continuously. These logs contain
information about all of the requests processed by the server. Both Apache and IIS allow customization of the
combined access log format, which is commonly used and well understood by many log analysis applications that
interpret and process the entries in these log files. The log entries produced in the combined access log format look
like this:

127.0.0.1 - JohnDoe [10/0ct/2000:13:55:36 -0700] "GET /apache pb.gif HTTP/1.0" 200 2326
"http://www.google.com" "Opera/9.20 (Windows NT 6.0; U; en)"

The meaning of each individual field in this example is described in Table 3-1.

31

http://mygizmostore.com/
http://www.google.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

Table 3-1. Description of fields in combined access log

Field

Description

127.0.0.1

JohnDoe
10/Jan/2013:10:32:55 -0800

“GET /apache_pb.gif
HTTP/1.0”

200

2326

“http://www.google.com”

"Opera/9.20 (Windows NT
6.0; U; en)"

This is the IP address of the client (the machine, host, or proxy server) that was
making an HTTP request to access either a web application or an individual web
page. The value in the field could be represented as hostname

This field is used to identify the client making the HTTP request. Because the
contents of this field are highly unreliable, a hyphen is typically used, which indicates
the information is not available

This is the user id of the user who is requesting the web page or an application

The timestamp of when the server finished processing the request. The format can
be controlled using web server settings

This is the request line that is received from the client. It shows the method
information, in this example GET, the resource that the client was requesting, in this
case /apache_pb.gif, and the protocol used, in this case HTTP/1.0

This is the status code that the server sends back to the client. Status codes are
very important information as they tell whether the request from the client was
successfully fulfilled or failed, in which case some action needs to be taken. 200 in
this case indicates that the request has been successful

This number indicates the size of the data returned to the client. In this case 2326
bytes were sent back to the client. If no content was returned to the client, this value
will be a hyphen “-”

This field is known as a referrer field and shows from where the request has been
referred. You could be seeing web site URLSs like http://www.google. com,
http://www.yahoo.com, or http://www.bing.com as the values in the referrer field.
Referrer information helps web sites or online applications to see how the users are
coming in to the web site and this information could be used to determine where the
online advertisement dollars should be spent. As you may notice that referrer has
an extra “r” That is intentional and originated from the original proposal submitted
in the HTTP specification. In browsers like Chrome where users can use incognito
mode, or have referrers disabled, the values in the field will not be accurate. In
HTMLS5 the user agent that is reporting this information can be instructed not to
send the referrer information

This is the user-agent field, and it has the information that the client browser reports
about itself. You will see values like “Opera/9.20 (Windows NT 6.0; U; en)’, which
means that the request is coming from an Opera browser running on a Windows

NT (actually Windows Vista or Windows Server 2008) operating system. User-agent
information helps to optimize web sites and web applications and cater for requests
coming from smaller form factor devices such as the iPad and mobile phones

32

http://www.google.com/
http://www.google.com/
http://www.yahoo.com/
http://www.bing.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

Now let us look at some of the sample log entries that we generated in Chapter 2 for MyGizmoStore.com. Here are
sample entries from the /opt/log/BigDBBook-www1/access.log file. You can see that there are different status codes as
well as user agents or browsers.

196.65.184.6 - - [28/Dec/2012:06:54:46] "GET /product.screen?productId=CA-NY-
998JSESSIONID=SD5SL8FF8ADFF4974 HTTP 1.1" 200 992 "http://www.bing.com" "Opera/9.20 (Windows NT 6.0;
U; en)" 597

92.189.220.86 - - [29/Dec/2012:02:58:28] "GET /cart.do?action=purchaseditemId=HYD-
28JSESSIONID=SD2SL1FF4ADFF5176 HTTP 1.1" 500 1058 "http://www.MyGizmoStore.com/oldlink?itemId=HYD-2"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)" 604

189.228.151.119 - - [30/Dec/2012:18:18:50] "GET /product.screen?productId=86753098ISESSIONID=SD6S
L9FF2ADFF6808 HTTP 1.1" 404 3577 "http://www.MyGizmoStore.com/product.screen?productId=CA-NY-99"
"Opera/9.01 (Windows NT 5.1; U; en)" 916

218.123.191.148 - - [31/Dec/2012:04:28:45] "GET /category.screen?categoryId=BLUE
GIZMOS&JSESSIONID=SDOSL1FF1ADFF7226 HTTP 1.1" 500 2992 "http://www.MyGizmoStore.com/category.
screen?categoryId=BLUE GIZMOS" "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10 6 _3; en-US)
AppleWebKit/533.4 (KHTML, like Gecko) Chrome/5.0.375.38 Safari/533.4" 928

78.65.68.244 - - [31/Dec/2012:02:22:40] "GET /category.screen?categoryId=ORANGE
WATCHMACALLITS&ISESSIONID=SD1SL5FF9ADFF7146 HTTP 1.1" 200 2120 "http://www.bing.com" "Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.1; SV1)" 338

Searching and Analyzing Indexed Data

Searching and analyzing machine or log data can provide tremendously useful intelligence on how the applications,
systems, web servers, load balancers, and firewalls are working. This information can also be used for debugging, root
cause analysis, and, in general, getting a deeper understanding of external or internal customer behavior in terms of
usage or buying patterns. By analyzing machine data, enterprises can start asking questions that haven’t been thought
of before to find out what is happening with the IT infrastructure.

We will use the sample data of MyGizmoStore.com and see if we can find answers to a number of questions that
typical IT organizations would like to ask about their web sites and applications. We can start by trying a few simple
search commands to see if the field names are properly aligned with the information in Table 3-1. In the Splunk
search bar, type sourcetype=access_combined wcookie and you can see in Figure 3-1 that 8,688 matching events
are retrieved. This number will vary based on the customizations you have made to the sample data generator used
in Chapter 2.

33

http://mygizmostore.com/
http://www.bing.com/
http://www.mygizmostore.com/oldlink?itemId=HYD-2
http://www.mygizmostore.com/product.screen?productId=CA-NY-99
http://www.mygizmostore.com/category.screen?categoryId=BLUE%20GIZMOS
http://www.mygizmostore.com/category.screen?categoryId=BLUE%20GIZMOS
http://www.bing.com/
http://mygizmostore.com/

CHAPTER 3 PROCESSING AND ANALYZING THE DATA

B < E;EBB events over alltime

EE all (= Export + Options & frey 2 3 4 5 B 7 8 9 10 nexts 20 per page -

208013
S:45:44.000 A

20813
G:45:36.000 &k

208013
8:31:49.000 A

20813
§:31:05.000 &k

219.1@9.144.45 - - [09/Feb/2013:@5:45:44] "POST
Jproduct . screen?product Id=TX-IND-77&1SESSIONID=5DGSL1IFF3ADFF35038 HTTP 1.1 500 461
"http: /e, MyGizmoStore. com/oldlink?itemId=HYD-58" "Googlebot/2.1 (

http://www. googleb%
hozt=BigDBBook-wwew3 urcetype=access_combined_woodl | =ource=foptlogBigDBBook-wawSiaccess log

-

219.199.144.45 - - [@9/Feb/2013:0@8:45:36] "GET

Joldlink?itemId=HYD-28]5ESSIONID= SDESLIFFB“DFFBS@SS HTTP 1.1™ 2@@ 2528

"http:/ www.yvahoo.com™ "Go s Swew . googlebot . com/bot .html) " 461
hozt=BigDBBook-wwwi - urcetype=access _combined_woookie =3 =ource=optiogBigDBB ook -wewwew3faccess log

-

234.38.242.36 - - [@9/Feb/2013:@5:31:49] "GET

/product .screen?product Id=8675309&]5ES5T0NID=SDASLAFF7ADFF 35071 HTTP 1.1" 484 3963
"http: /S www. MyGizmoStore. com/product . screen?product Id=MI9-SIN-66" "Mozillas4.@
(compatible; MSIE 6.@; Windows NT 5.1; SV1; .MNET CLR 1.1.4322)" 720

hozt=BigDBBook-www3 = | sourcetype=access_combined_wcookie = | source=joptlogBigDBBook-wwwiisccess log

-

234.38.242.36 - - [@9/Feb/2013:08:31: 03] "POST
Joldlink?itemId=HYD-29&]1SESSIONID=5D6SL6FF7ADFF35@71 HTTP 1.1 5@@ 993

"http: /e, MyGizmoStore. com/product . screen?product Id=FL-NYC-44" "Mozilla/4.@
(compatible; MSIE 6.@; Windows HT 5.1; 5v1; .MNET CLR 1.1.4322)" 685

hozt=BigDBBook-wwwd = | sourcetype=access_combined_wocookie = | zource=sjoptlogBigDBBook-wawwiizccess log

-

Figure 3-1. Total number of events for MyGizmoStore. com

To further validate the total number of events, we can find how many events are related to each of the hosts
BigDBook-www1, BigDBook-wwwz2, and BigDBook-www?3. The total number of events for all of the hosts should
match up to the earlier result we got using the sourcetype field search. Type host=BigDBook* into the search bar and
you will see in Figure 3-2 that 8,688 events are retrieved and the value for host field is highlighted in all events. The
number of events is equal to the number that we got from the previous search.

34

http://mygizmostore.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

|’< 8,688 events over alltime

EE all [Export + Cptions & prey n 2 3 4 5 B 7 8 9 10 nexds 20 per page -

21313
4544 000 Ak

2133
14556 000 A

2133
8:31:49.000 At

219.1@9.144.45 - - [09/Feb/2013:08:45:44] "POST

Jproduct . screen?product Td=TX-IND-77&]SESSIONID=5D6SL1FF3ADFF35088 HTTP 1.1" 508 461
"http: S Swew. MyGizmoStore. com/oldlink?itenId=HYD-58" "Googlebot, /2.1 (

http: //www. googlebot.com/bot .html) ™ 630

hozt=BigDBBook-wiywwd - | sourcetype=access_combined_woookie -~ | sourcesioptlogBigDEBook-vwwwifaccess log

-

219.189,144.45 - - [09/Feb/2013:03:45:36] "GET
Jfoldlink?itemId=HYD-2&15ESSIONID=SDGSL1FF3ADFF35088 HTTP 1.1 200 2520
"http://www.yahoo.com” "Googlebot /2.1 ({ http://www.googlebot.com/bot.html) ™ 461
host=BigDEBook-vwwewed = | zourcetype=saccess_combined_woookie « | source=sfoptlogBigDBBook-wewenw 3faccess log

-

234.35.242.36 - - [09/Feb/2013:08:31:49] "GET

/product . screen?product Id=8675309&]SESSTONID=SDASLGFF7ADFF35071 HTTP 1.1™ 404 3963
"http: ./ wew. MyGlzmoStore. com/product . screen?product Id=1N9-5IN-66" "Mozilla/4.@
(compatible; MSIE 6.@; Windows NT 5.1; Sv1; .MET CLR 1.1.4322)" 720

hozt=BigDEBook-wwww3d = | sourcetype=access_combined_woookie « | sourcesfoptlogBigDBEBook-weww 3iaccess oy

Figure 3-2. Total number of events for all hosts

We can also check on individual fields to further validate the data. The sample data generator by default had the

following categories:

e BLUE_GIZMOS

e RED_GADGETS

e WHITE_WIDGETS

e ORANGE_WATCHMACALLITS

e PURPLE_DOOHICKEYS

e BLACK DOODADS

You can go the left bar in the Splunk search app as shown in Figure 3-3; this side bar always presents the default
fields and additional fields, which Splunk calls fields of interest. These are defined as fields that show up in 50 percent
or more of the events of that particular index.

35

CHAPTER 3 PROCESSING AND ANALYZING THE DATA

| <] Hicle:

wa selected fields Edit

@ host (5]
2 zoyrce (3]

2 zourcetype (1)

I"?Tntu&res‘ting fields
hytes (21001
@ clientip (=100
a eventtype (2
a filg (14
@ odert (17
2 incex (1]
2 ftemld (16]
@ JSESSIOMID (=100
linecourt (1]
@ method (2]

Figure 3-3. Side bar with selected and interesting fields

You can see if we have got a field where we can find the list of categories. Because we cannot find a categories
field in either of the fields lists, click on the “View all 44 fields” link, which is at the bottom. This will bring up a dialog
box that shows the complete list of fields. You can see categoryId listed as the third field from the top, as shown
in Figure 3-4.

36

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

Available Fields Selected Fields
Keyword Minimum % & Clear all
1
Acddd all = st
Hame - | P s saurcetype
B sction g 40.102% - SOUFCE
D hytes =100 100%,
g cteconll 33557%
0 clisntip =100 100%
B date_hour 24 100%
B date_mday & 100%
0 date_minute &0 100%,
0 date_month 2 100%,
B0 dste_second] 100%,
D date_wwday 7 100%
D date_vear 2 100%
B date_zone 1 100%
D fie 14 100% |

Cancel

Figure 3-4. List of fields

To see the list of categories, click on the small bar graph icon shown in column 2 of the categoryld field. You will
see the list of categories grouped across all the events in the popup as shown in Figure 3-5, and the list in the popup
matches the list of default categories that we used in the sample data generator. In addition, the dialog box presents
the category field values; it also shows some summary statistics about the field, such as the total count of events for
each category and the percentage. Additionally, it presents a bar chart, making this a very compelling and easy way
to gain a good understanding of a specific field.

37

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

categoryld (categorical) B
Appears in 33.657% of results Charts
Showy only events with this field top values by time

top values averall

Value # Yo
PURPLE_DOOHICKEY S 239 15.497% |
RED_GADGETS s00 17 155% |
WWHITE_WIDGETS 495 16957% |
BLACK_DOoDADS 485 1664% |
BLLUE _GIZMos 473 16232%
ORAMNGE_WATCHMACALLITS 422 14482%

Figure 3-5. Categories list

You can always add additional fields to the side bar. We can do this while we are in the “Field” dialog box; click on
the arrow sign against the field action, which is first in the list of fields, and click the Save button. You can do a quick
validation on the action field. In our sample data generator, we have used the following methods for the actions that
MyGizmoStore.com visitors can perform:

Purchase

Add an item to the shopping cart (Addtocart)
Remove an item from the shopping cart (Remove)
View the catalog of gizmos (View)

Change the quantity of an item in the shopping cart (Changequantity)

In the left bar, you can now see that the action field is listed in the selected fields list. Click on the small bar graph
icon for that field. Figure 3-6 shows the popup with the list of methods for the action field; these match with the list
we have. We can see that the view method has the highest number of events. You will analyze this as you learn how
to process the events using SPL.

action (categorical) B
Appears in 40% of results Charts
Showy only events with this field Top values by time

Tap values averall

Values # i

wiEsy 1187 13383% [
acdctocart BOE 10.349%
purchasze 802 9.263% ||
rEmOvE 33 3ES% |
changequarntity 304 3511% |

Figure 3-6. List of action methods

38

http://mygizmostore.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

The basic checks and validations that we have just performed on the sample data helped us to establish that we
got the right data; now we can proceed to work on processing and analyzing the data set in detail. The Splunk search
application provides a very useful time picker that helps us zoom into a subset of the data based on time, which can

be useful for familiarizing ourselves and validating the data. We will employ the same query we have used before,
which is:

sourcetype=access_combined_wcookie

The results are shown in Figure 3-7. The graphical time line shows the events in a bar graph across the range of
one month, in this case between Dec 28, 2012 and Jan 27, 2013. The time picker on the top right-hand side shows that
the option we have used is “All time’, which in our case maps to 30 days of sample data we have generated. You will
also see the field sourcetype is highlighted against each event listed.

Search

qsour‘cetype=“access_combined_l\cookie“ > (
[80«

mart Made

[#1Hide =, Foom out Zoom to selection Deszelect Linear scale = 1 bar =1 day
pum——
Q[Dec 26, 2012 2
— 237 events during Sunda:
200
22 2013
[<] Hidle: 8,658 events over all time
E == | [3 Export & Options « pren n 2 3 4 5 B T 8 9 10 nexts 10 per page -
3 selected fields Ecit
@ host (3 102713 208.179.157.79 - - [27/Jan/2@13:21:10:52] "GET

940:52000 PR S0ldlink?itemId=HYD-58&]1S5ESSIONID=5D2S5L9FF 1@ADFF34719 HTTP 1.1" 583 2354
"http: / www. MyGlzmoStore. com/category.screen®categoryId=RED_GADGETS™ "Mozilla/4.@
@ sourcetype (1) (compatible; MSIE 6.@; Uin TIT R 1.1.4322)" 684
host=BigDBook-wwwel = | sourcet = | =ource=ioptloghensn] faccess oy -

@ source (3)

24 interesting fields

Figure 3-7. Splunk Search App with time picker

In real-world use cases, you may be working with data sets that could be spread over several months or years;
or you could have millions of events over a very short span of time. In any case, you would need to drill down into
a specific time window and find out what is happening. This is where the Splunk time picker comes in very handy.
Clicking on the time picker shows us different time lines that can be used, as shown in Figure 3-8. The listed options
allow us to view the events in short spans, such as minutes to hours to days, or in custom time periods that can be
specified using the “Custom time. ..” option.

39

CHAPTER 3 PROCESSING AND ANALYZING THE DATA

Alltime

l Last 15 minutes
= Last 60 minutes

Last 4 hours

Last 24 hours

La=t 30 days
Real-time 3
Other 3
Al time:

0
Custom time...

Figure 3-8. Splunk time picker

Select the “Last 7 days” option in the time picker and see how the timeline bar gets updated. In Figure 3-9, we can
see the event distribution between Jan 21, 2013 and Jan 28, 2013, and you will see 1,923 events.

Search @ Smart Mode +

[sourcetype="access_combined_wcookie™

923 matching event

T @ac

Linear scale ~ 1 bar =1 hour

[<] Hide 1,923 events frorm 2:00:00 AM January 21 to 2:54:04 AM January 28, 2013

B= . GEport Fopions «prev [l 2 3 4 5 B 7 85 3 10 neds 10perpage~
3 selected fields Edlit
2 host (3) 12713 208.179.157.79 - - [27/Jan/2013:21:10:52] "GET

1052000 P Soldlink?itemId=HYD-58&]SESSIONID=SD2SL OFF 1@4DFF34719 HTTP 1.1" 503 2354

"http: //www. MyGizmoStore. com/category.screen?categoryId=RED_GADGETS™ "Mozilla/4.@
T (compatible; MSTE 6.@; Win . gul. _HET CLR 1.1.4322)" 684
host=BigDBook-waewe] - source=ioptloghaen] faccesslog -

2 source (3)

24 interesting fields

Figure 3-9. Time line bar graph for last seven days

Splunk provides time range commands that we can use in the search bar to control the behavior of time periods
in which the events have to be processed. You will learn about these time range commands in Chapters 5 and 11.

To process and analyze real-world use cases, we would need to know more than the number of events that
we saw against the fields in left bar and time line. This is where SPL comes in. It provides easy yet powerful ways
to analyze the data loaded into Splunk. In the next sections of this chapter you will learn and explore different SPL
commands in the following categories:

e Reporting

e Sorting

40

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

e Filtering
e Adding and evaluating fields
e Grouping

Reporting

Reports are essential for every IT organization and for business leaders in enterprises. They are used daily to get
information about the current state of IT systems, or how the business is functioning in terms of sales, manufacturing,
shipping, and so on. Typically, reports aggregate information to present summaries that are easily consumable for the
intended audience. We will explore reporting commands in Splunk starting with top. This command comes in very
handy to answer the following type of questions that are most commonly asked in IT organizations that have web sites
or web applications:

e Which are the top browsers?
e Which are my top five IP addresses?
e Which are the top referral web sites?

The top command can be used with one or more fields that are available in a Splunk event. It works on the given
dataset, finds the most frequently occurring field values, and returns the count and percentage for the fields specified
after the command. By default, the top command returns the top ten, but you can control the number returned using
the limit option. You may or may not need all of the columns returned by the top command in every search. Splunk
lets you eliminate some of the fields from search results using the fields command. The columns that need to be
eliminated have to be specified with a - in front.

Which Are the Top Browsers?

In Table 3-1, we showed different fields that are available in combined access logs. One of the fields is user agent,
which has the information that the client browser reports about itself. Online retail stores such as MyGizmoStore.com
would like to know which are the top user agents (browsers) that customers are using to view the products or make
purchases. Knowing which browsers are being used will help MyGizmoStore.com to optimize the online store pages
and make sure that the pages are rendered properly in the most popular browsers that the users are using to get to the
web site. The top command makes it really easy for us to get that information. Before you start using top, make sure
that you have selected the “All time” option in the time picker. The useragent field contains the browser information.
Splunk automatically mapped the fields in Table 3-1 to its own field names while indexing, making it easy for us to
find the information or field we are looking for. Type in the following into the search bar:

sourcetype=access_combined wcookie
| top useragent

When the first command is a search, you don’t have to type it, as it is assumed to be so. The first clause of the
above search is equivalent to: search sourcetype=access_combined wcookie. The pipe (|) sign in our search passes
the results from each Splunk command as inputs to the next command. Sometimes it passes a specified subset of the
data from previous search evaluations to the next set of evaluations. In this search, you will get the subset of events
based on the sourcetype field and only those events piped into the top command to find the top browsers. As you
can see in Figure 3-10, the search found 6,254 matching events and found the top browsers along with their count
and percentage. You can see that Mozilla 5.0 on Mac OS was the most popular browser, closely followed by the same
browser on Windows.

41

http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 3 PROCESSING AND ANALYZING THE DATA

800

8results during January 2013

= all [Export + Optionz 10 per page -
overlay: | Mone =
€ useragent +) coul Cpercent 3
hozillass 0 tMacintosh; U; Intel Mac OF W 10_6_3; en-US) AppleviiebkitiSss 4 (KHTWL, like Gecko) ChromedS 037538 Safarifs334 879 14055005
Mozillars.0 (Windowes; U, Windowes MT 5.1; en-GB; rvi1 8.1 6) Geckos200707 25 Firefox/2.0.06 524 13175565
Mozillard .0 (compatible; MEIE 6.0, Windows MT 5.1; 5%1; NET CLR 1.1.4322) a07 12903742
Googlebots2.1 [hittp: feenewe googlebot . comibot btml) 793 126795885
Cperadd 01 Qvindowes MT 5.1, U, en) T&5 12551967
Operaid 20 pvindows NT 6.0; U en) 77a 12.392069
Mozillard.0 (compatible; MSIE 6.0, Windows MT 511 T8 11640850
ozillard .0 (compatible; MSIE 6.0; Windows NT 5.1; SY1) B3 10601215

Figure 3-10. Top browsers

Note In SQL terms, you could compare this to using a TOP keyword along with a select statement in MySQL or using
rownum with a where clause in Oracle. Both cases produce the same result set.

Splunk allows us to save the search results so that we don’t always have to type in the search query again to see
the results. As seen in Figure 3-11, click on the “Save” link at the top right-hand side of the Splunk search application.
In the drop-down list, you will see three different options:

e Save results option—allows us to save the current results from the search

e Save search option—used to save the search that can be retrieved back using the
“Searches & Reports” link in the menu of the Splunk search application

e Save & share results option—allows us to save the search query and also share the results
with other Splunk users who have been provisioned with the right security role to access the
searches. This feature in Splunk makes it a collaborative environment in which one or more
power users can create simple to complex searches which can then be shared with a set of
business users

6254 machin e] : []a
8results during January 2013

Save results

= a1 [EEsport = Options
Save & share results..
Overlay: | Mone -|

Figure 3-11. Save search

42

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

When you click on the “Save search” option, it brings up the dialog shown in Figure 3-12. This dialog box provides
options to keep the search private or share it with other Splunk users. You can also see an option to accelerate the
searches that helps to optimize the searches so that the historical sets of events are already summarized to process
the searches faster. You will learn more about search and report acceleration in Chapter 10. For this example, we will
select the radio button for the option “Share as read-only to all users of current app” and click on the Finish button.

Save Search

(‘ Name Top hrowsers >

Share © Keep search private
& Share as read-only to all users of current_a_D

Additional permission settings availakle in

Manager » Searches and reports

Acceleration I Accelerate this search
May increase storage and processing costs % Learn more.

Cancel

Figure 3-12. Save search options

On successfully saving the search, Splunk presents a unique URL that is similar to
http://<hostname>:<port#>/en-US/app/search/%40go0?s=Top%20browsers. This URL can be shared with other
users who can then get direct access to the server where this search has been saved. As mentioned earlier, saved
searches can be easily accessed via the “Searches & Reports” link in the main menu of Splunk search app. Clicking on
that link will show you the list of accessible reports. Figure 3-13 shows the report that we have just saved.

Summary Search Status - Dashboards & Views -~ Searches & Reports -~

Summary Actions - Errars +

| Mezzages by minute last 3
*“ hours

op hrowesers

Manage Searches & Reports

All indexed data

Thiz listz all of the data you have loaded into your default indexes, 2

Figure 3-13. Saved reports

Saved searches can also be accessed using the “Manager” menu, by clicking on the “Searches and reports” link
under the Knowledge section. This will show a detailed list of searches and reports as seen in Figure 3-14. The key
difference in accessing the reports via this alternative method is that you will get access to additional actions for each of
the reports, such as Delete, Move, and Disable. The available actions are shown on the right-hand side of the table based
on the security roles that have been provisioned to the user. You will also be able to set alerts for the saved searches by
clicking on the individual search and specifying the alert options. We will explore Splunk alerts in Chapter 5.

43

http://mygizmostore.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

Searches and reports

Showing 1-7 of 7 items Results per page | 25 LI
Search = RSS =+ Scheduled * Display view ~ Owner * App * Alerts * Sharing Status ~ Actions
name feed time
Errors inthe Mone Mone Mo search n] App | Permissions Enshled | Disable Fun | Clone
last 24 onenIEr
haurs
Errors inthe More More M search n] App | Permissions Enshled | Disahble Fun | Clane
last hour CIEr
Indexing Mone Mone Mo search 0 App | Permizzions Enabled | Dizable Fun | Clone
worklogd oEr
Messages Mone report_builder_dizplay M search n] App | Permissions Enshled | Disable Fun | Clane
by minte oMenEr
last 3 hours
Zplunk Mone Mone Mo search 0 App | Permizzions Enabled | Dizable Fun | Clone
BTOrS last oEr
24 hours
Top Mone flasktimeline addtrin search u] App | Permissions Enzhbled | Disable Fun | Clone | Move | Delete
browwsers
Tap five Morne Morne i search n] App | Permissions Enahled | Disahbls Fun | Clane
=0UrCEtypes oEr

Figure 3-14. Running saved searches

Top Five IP Addresses

We will make use of the top command to find the top five IP addresses that have made requests to MyGizmoStore. com.
In this search we will also use the 1imit option along with the top command to get only the top five values in the
report. In the left side bar, we can see clientip as one of the fields; this field holds the IP address where the individual
client requests have come from:

sourcetype=access_combined_wcookie
| top limit=5 clientip

Splunk processes 8,688 events and reports the top five (this is where the 1imit option can help) IP addresses
that have been hitting MyGizmoStore. com, as shown in Figure 3-15. In Chapter 4, you will see how we can use Splunk
Technology Add-Ons or Apps to make more sense of these IP addresses either by finding the geographical location or
the domain name for the IP addresses.

44

http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

O BOCES

5 results over all time

= all [k Export + Cptions 10 per page -
Overlay: | None d|
< clientip = > count * percent =
243189.218.30 10 041510
99.143.596 g 0052081
9749297 M7 g 0052081
971896317 g 0.052031
O 8054 22257 g 0.052031

Figure 3-15. Top five users based on IP addresses

Which Are the Top Referral Web Sites?

These days, users mostly reach web sites by clicking on third-party web sites or search engines such as Google, Yahoo,
Bing, and so on. In some cases, users find online advertisements that pop up on the web sites they are looking at and
they click on them to get into a web site and take some action. For online retail stores such as MyGizmoStore.com,

it makes perfect sense to find where the users are coming from, what keywords are really working, and where to
spend online advertising dollars.

For our MyGizmoStore.com, we want to find out which are the top referrer web sites other than MyGizmoStore.com
itself. We will use the following search, in which we are going to find the events where the referrer does not have the
MyGizmo in the value. We do this by using != which means “not equal”. The pipe sends the results from the first clause
into the top command to provide a report on the sites that are referring to MyGizmoStore.com and finally eliminate the
percent field from the result set:

sourcetype=access_combined_wcookie referer != *MyGizmo*
| top referer
| fields - percent

Note that the first clause of the search implies an AND between the sourcetype and the referer. By default the
search command assumes an AND, so this clause is equivalent to:

sourcetype=access_combined wcookie
AND referer != *MyGizmo*

Figure 3-16 shows that 2,256 events matched the search condition, and Bing, Yahoo, and Google are shown as the

top three referrer sites other than MyGizmoStore. comitself. You will also notice that the percent column is eliminated
from the results.

45

http://mygizmostore.com/
http://mygizmostore.com/
http://mygizmostore.com/
http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

¢ 2&256 matching WEI@_ h

3 results over all time

= r Export Options 10 per page
Crverlay, | Mone |

referer = count >

bkt A bing.com TE3

http: My yahoo .com T4T

bt ey google.com 746

Figure 3-16. Referral sites to MyGizmoStore.com

Although it is useful to get reports on different sets of top activities or items, you also want to know what is not
working. This is where we can take advantage of the reporting command rare. This command does exactly the
opposite of what the top command does. We could just replace top with rare in all of the previous searches to find
which browsers are not common, or which referrers that we were expecting to provide more hits haven’t been doing
so, and so on.

The next reporting command we will explore is the stats command. This command is the workhorse, as it is
used to calculate aggregated statistics over a given set of data. The Stats command comes with several functions such
as count, average, min, median, mode, sum, and so on, where each of these functions takes the values from multiple
events and groups them on certain criteria to provide a single value or more meaningful data about a set of events.
This is very similar to SQL aggregation.

Online web sites such as MyGizmoStore.com could be failing to process requests coming from clients for different
reasons, and web servers such as Apache and IIS return HTTP status codes that are in the classes 4xx and 5xx.

Table 3-2 provides descriptions of some of the common 4xx and 5xx status codes.

Table 3-2. Description of HTTP status 4xx and 5xx

HTTP status code Description

400 Bad Request—The request sent by the client could not be understood by the server due to
incorrect syntax

401 Unauthorized—The request sent by the client requires user authentication

403 Forbidden—The request sent by the client is understood by the server but the server refuses or

declines to process the request. For example, most web sites prevent users from browsing the
directory structure of the site

404 Not Found—A particular resource requested by the client, such as a web page or an image,
could not be found on the server

405 Method Not Allowed—The request sent by the client has a method that is not allowed

407 Proxy Authentication Required—This is very similar to the 401 status code, but it means the
request sent by the client must first authenticate itself with the proxy server

408 Request Timeout—This means that the server has timed out waiting for the client to produce
arequest

(continued)

46

http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

Table 3-2. (continued)

HTTP status code Description

500 Internal Server Error—The server encountered a condition that prevents it from fulfilling
the request

501 Not Implemented—At present the server does not support the requested functionality

502 Bad Gateway—The server receives an invalid response for the request it has sent to an internal
server to fulfill the incoming request

503 Service Unavailable—The server is overloaded and unable to process incoming requests

504 Gateway Timeout—The server does not receive a response from another server such as LDAP

server to process the request further

505 HTTP Version Not Supported—The server does not support the HTTP protocol version that
was used in the client request

To explore the stats command, we will look at a couple of use cases that are typical of online retail stores like
MyGizmoStore.com:

¢ Finding all of the events where a client request failed producing a HTTP status code like a 404,
and finding the count of them based on different hosts or web servers

e Finding all the events that have purchase actions and the count of the products that are part of
those events

Web sites need to keep track of status codes such as 404, which means that the requested resource is not found or
available. This resource could be an HTML page, an image, or similar items. Tracking the specific status codes or class
of status codes such as 4xx messages helps web site maintainers fix the web site and make sure that users are finding
what they are looking for. We'll work on these two use cases in a step-by-step fashion, in which we will first find the
events that have 404 status.

How Many Events Have HTTP 404 Status?

The status field is the one that has information about the HTTP status code that is returned for each request coming
from the client. Splunk provides a simple way of adding conditions as criteria to a search using the fields and values
associated with it. To find all of the events that have a 404 code, we will use the following search:

sourcetype="access_combined wcookie" status=404

Figure 3-17 shows the results for the above search. You can see that there are 696 events in total that had a 404
status and that each event that met the search condition has a 404 status code.

47

[vww allitebooks.cond

http://mygizmostore.com/
http://www.allitebooks.org

CHAPTER 3 PROCESSING AND ANALYZING THE DATA

T @0d

CRBUE matching evenis -
£.696 matching events _#

[Show timeline

B 696 events over all time

EE all [Export + Options « prey 2 3 4 5 B 7 8 9 10 nexs 10 per page -

2913 234.356.242.36 - - [99/Feb/2013:03:31:49] "GET

3149000 an Sproduct.screen?product Id=86753892815ESSI0NID=5D65L6F F7ADFF 35871 HTTP 1.1“968
"http: /Swww. MyGizmoStore, com/product . screen?product Id=MN9-SIN-66" "Mozilla/ 4.0
(compatible; MSIE 6.@; Windows NT 5.1; SV1; .HET CLR 1.1.4322)" 72@
hozt=BighBBook-vwwwwd = | zourcetype=access_combined_woookie - | source=inptlog/BigDBBook-wewew 3faccess log

-

20813 200.135.188.13 - - [@9,Feb/2013:03: 08:48] "GET
Snsdsnon s Sproduct.screen?product Id=86753098]SESSIONID=5D45L 7FFGADFF 35855 HTTP 1.1“693
"http: //www.MyGizmoStore. com/cart. do?action=view&itemId=HYD-12" "Mozilla/5.@ (Macintosh;
U; Intel Mac 05 X 1@ 6_3; en-US) Applelebkit/533.4 (KHTML, like Gecko) Chrome/5.@.375.38
Safari/533.4" 1089
hozt=HigDBBoak-vwwwwwd » | sourcetype=access_combined_woookie « | source=optlogBigDBEBook-weww 3faccess log

-

20343 61.196.255.160 - - [09/Feb/2013:@6:39:17] "GET
397000 & Ssearch.do?items=vasef]SESSIONID=SDASLSFF10ADFF 34985 HTTP 1.1",332?
"http: //www.MyGizmoStore. com/cart . do?action=purchase&itemId=HYD 82" "Opera/9.2@ (WUindows

HT 6.@; U; en)™ 603
hozt=BigDhBBook-vwwww?2 » | zourcetype=access_combined_weoookie « | sources=ioptlogBigDBBook-weeew2faccess log

-

Figure 3-17. Events with HTTP status 404

We will take the search that we have just built and pipe (|) the results to a stats command that uses the count
function. The count function will aggregate the count of each host. Enter the following in the search bar:

sourcetype=access_combined wcookie status=404
| stats count by host

Figure 3-18 shows that 696 events have a 404 status code, and how they are distributed across the hosts
BigDBook-www1, BigDBook-www2, and BigDBook-www3.

T ao

" 696 matching eve -

Jresults over all time

= Al (= Export Cptions 10 per pane
Crverlay; | Mans =l

host m

BigDBBoak-wwn 222

BigDBEBook-wy w2 223

BigDBBook-wwnene3 251 :

Figure 3-18. Events with HTTP status 404 for each host

48

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

The second use case involves using the stats command with products that are available on MyGizmoStore. com.
A very useful report would be one showing which products are best-selling. Instead of finding out all of the products
that users have looked at, it would be more interesting to know the products that were involved in the purchase
process or the ones that were actually bought. What this means is that we would want to know how many times the
product has been part of the purchase process. The stats command will help to count the products using the count
function. First find the events that are part of a purchase request, and then use the action field that was added to the
selected field list earlier.

How Many Events Have Purchase Action?

Use the following search in which the value of field action as purchase is specified:
sourcetype=access_combined_wcookie action=purchase

As seen in Figure 3-19, there are 767 events that match the condition, and each event shows the URL action as
purchase.

el T= =

[¥] Shovw timeline

21 767 events aver all time

EE all [Export + Optionz £ prey n 2 3 4 5 B T & 9 10 nexts 10 per page -

2813 299.135.188.13 - - [@9/Feb/2013:08:@8:13] "POST

:05:13.000 s Scart/success. do?I1SESSIONID=5D45L 7FFGADFF 3 HTITP 1.1" 28@ 3922
"http: //www.MyGizmoStore. com/cart . do rqm, temId=HY¥D-6" "Mozilla/5.@
(Macintash; U; Intel Mac 05 X 1@ _6_3; en-0 TBplelebliit /533.4 (KHTML, like Gecko)
Chrome/5.8.375.38 Safari/533.4" 390

host=HighBBook-wwaww3 = | sourcetype=access_combined_wwcookie = | source=foptlogBigDBEBook-
e diaccess log -

2913

S:08:12.000 Aw S . g aipemId=HYD-6&1SESSIONID=5045L7FFGADFF 35055 HTTP 1.1™ 200 924
"http:// ZHostore. com/cart .do?action=addtocart&itemId=HYD-6&product Id=CA-FL -858™
"Mozilla/5.@ (Macintosh; U; Intel Mac 05 X 1@ 6_3; en-US) ApplelebKit/533.4 (KHTML,
like Gecko) Chrome/5.@.375.38 Safari/533.4" 206
host=BigDBBook-www3 = | sourcetype=access_combined_woookie - | source=foptlogBigDBBook-
W Iiaccess log -

2913 61.196.255.16@ - - [09/Feb/2013:@6:39:17] "GET

Fagq7.000 Ak Ssearch.do?items=vasef]SESSIONID=5D45L 5FF 18
"http: / www. MyGizmoStore. com/cart . dod@
(Windows NT 6.@; U; en)™ 683
host=BigDBBook-www? = | sourcetype=access_combined_wwoookie - | source=fioptiogBigDBBook-
w2 iaccess log -

#5 HTTP 1.1™ 4@4 3327
emitemId=HYD-82" "Opera/9.20

Figure 3-19. Events with purchase action

Now that we have got the events that have the purchase action, the next step would be to do a statistical
aggregation and find the count for each of the products that are involved in these events.

49

http://mygizmostore.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

List of Products That Are Part of a Purchase

We will take the query we just used and we will pipe (|) the results to a stats command with a count function.
The count function will aggregate the count the each productId. Enter the following in the search bar:

sourcetype=access_combined_wcookie action=purchase
| stats count by productId

Figure 3-20 shows how the same 767 events are used to perform the statistical analysis, and productid along
with the corresponding count is listed in a table. The sample data generated in Chapter 2 only contains the product
identifier, but you don’t have the actual description that corresponds to each product identifier. In Chapter 10 you will
see how you can make use of the lookup command in Splunk to correlate data across different sources such as getting
product description or price for product identifiers from a database or a CSV file and linking them so that the reports
become more business-friendly and easier to understand.

T67 matching events ﬂ u H cawe ol Create -

12 results over all time

= r all [Expart < Options [_ 2 nexts 10 per page -
Overlay: | Mons =l "

productld + count I

a0 r

BE75309 4

AZ-LOM-22 3

CA-FL-35 37

CA-NY-99 42

FL-MYC-d4 45

M E-ZIr-66 34

MC-SIM-35 40

MLJE-HKG-325 39

OR-DEM-33 49

P&-DEL-44 43

[_ 2 nexts

Figure 3-20. Count of products that have been part of a purchase action

The stats command has a function called distinct_count or dc that counts the distinct values for a particular
field. The sum function can be used to calculate the totals of a column. For example, we can take the search that we
built earlier to find the top referrers that don’t have MyGizmoStore.com, and extend that to find the total referrals that
are not from MyStoreGizmo. com. The updated search will look as follows:

sourcetype=access_combined wcookie referer != *MyGizmo*
| top referer
| fields - percent
| stats sum(count)

50

http://mygizmostore.com/
http://mystoregizmo.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

We can replace the sum function in this query with the avg function to find the average referrals from each source

that is not MyGizmoStore. com. The search for that would look as follows:

sourcetype=access_combined wcookie referer != *MyGizmo*
| top referer

| fields - percent

| stats avg(count)

You will want to show the report with all of the product identifiers and a total count for each one of them, but
you also will want a grand total column for the total number of products sold. This is where you can make use of the
addcoltotals command, which adds up all the aggregated values and comes up with a new event that has the total
for the field. The search for that is:

sourcetype=access_combined _wcookie action=purchase
| stats count by productId
| addcoltotals labelfield=Total label=AllProducts

Asyou can see in Figure 3-21, all of the information you had in the previous report has been retained, but now
you can add all of the products in the report. In addition to that, the addcolTotals command allows you to create a
new event that will retain the summary in an event called Total; it is labeled A11Products. Because we have more
than 13 results, we can make the Splunk search App display 20 records per page by changing the number of records
per page to 20 using the page scroller option highlighted on the right-hand side, as seen in Figure 3-21.

] 2]4

13 results over all time

= Al [Expaort o Options 20 per page »
Overlay: | Hone d|

productld ¥ count ¥ (Total = ’

GETS309 4

AT D22 31

CAFL-GG kF

CA-PY-95 42

FL-MYC-44 46

hMS-SIM-EE 34

MC-SIM-33 an

MIS-HHG-55 39

OR-DEM-33 49

Pa-DEL-44 43

THAMD-77 40

products 1

SE72309 AllProducts

Figure 3-21. Total for all the products

51

http://mygizmostore.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

So far we have looked at the SPL reporting commands top, rare, and stats, and we’ve explored typical reporting
use cases that we can solve using these commands. Other SPL reporting commands are chart and timechart. We will
explore them in Chapter 4 when we start visualizing the data.

Sorting

An important requirement for reports is being able to sort the results, as that will help to understand the information
we see in the report. Sort is the main SPL command in the sorting category. As you saw in Figure 3-21 the results

for the number of products that have been counted are not sorted in any particular order which makes it difficult

to understand the highs and lows for the products. The sort command sorts resulting events using the list of fields
specified after the command. The ascending and descending order is controlled using (+) or (-) sign before the field.
We will take the same query that we used in our previous example and pipe the results into a sort command to get the
results in descending order so that we know what the most popular products are:

sourcetype=access_combined wcookie action=purchase
| stats count by productId
| sort -count

Figure 3-22 shows the sorted products in descending order. You will see that the productid OR-DEN-33 was most
popular, with a count of 49.

‘;G? matching events ,3 |j:|:|:| ﬂ u H save ~

12 results over all time

= Al [Expart o Dptions 20 per page -
Cwerlay. | Mane |
productld = count =
< CIR-DEM-33 > (45)
FL-MYC-44 - 45 :
PA&-DEL-44 43
Ca -89 47
MC-SIM-33 40
THAMD-77 40
MJ5-HKG-55 39
Ca FL-GG EH
FAMS-ZIM-66 34
AT-LON-22 3
8675308 4
products 1

Figure 3-22. Products sorted in descending order

52

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

Filtering

The third category of SPL commands is filtering commands. Filtering commands take a set of events or results that are
piped into them and filter them into a smaller set of results. Filtering helps to speed up analysis and also helps you to
zoom into specific results where additional intelligence can be gathered.

If you want to limit the number of events that have to be processed and analyzed, Splunk provides the head
command, which allows you to process only a subset of events. Take a sample use case of finding the top products
for the first 100 qualifying events. To do this, take the previous search query where we found the products count and
sorted them; now we will make use of the head command to find which products are most popular in the last 100
qualifying events.

In the following search, pipe the events that meet the condition of having a purchase action and use the head
command to take the first 100 events and then aggregate the result set with count function to sort the final results:

sourcetype=access_combined _wcookie action=purchase
| head 100

| stats count by productId

| sort -count

Figure 3-23 shows the popular products using the first 100 events that have qualified for purchase action. You can
see the product OR-DEN-33 is the most popular one.

))] [&]|

11 results over all time

HS Al [Export + Cptions 20 per page -~

Overlay: | Mone =l
productld = ‘c_c_t_un't B

< CIR-DEM-33 > Q)

AZLOM-22 . 7 ‘
CA-FL-53 7
CA-PY-99 7
FL-MY'C-44 5
MMS-SIM-56 3
MC-SIM-33 3
MLJS-HHG-525 3
Pa-DEL-44 3
THAND-FT 3
SE7S309 1

Figure 3-23. Most popular product for the first 100 events

53

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

Splunk also provides a tail command, which takes the last n number of events and processes them for further
analysis. We can modify the last search query and replace the head command with tail, as follows:

sourcetype=access_combined _wcookie action=purchase
| tail 100

| stats count by productId

| sort -count

Figure 3-24 shows the updated results using the last 100 events instead of the first 100. The most popular product
is PA-DEL-44 instead of OR-DEN-33. Although the dataset is small, these techniques can be used to analyze the first or
last n events and identify new trends or patterns to identify which product might be getting more popular and if there
is a particular reason for it, such as seasonal change or holiday.

10 results over all time

= [_ Expart Cptions 20 per page -

Crverlay: | Mane =l
productld = count ¥
OF-DEM-33 g
CA-MY-99 E
Co-FL-85 5
FL-MYC-44]
FAMS-SIM-56 5
MJE-HHG-55 5
TEAMD-77 =
AF-LOR-22 3
MC-SIM-33 3

Figure 3-24. Most popular product based on last 100 events

Two other useful filtering commands are dedup and where. The Dedup command is used to remove redundant
data, meaning that the command keeps only the first count of results for each combination of the values of the
specified fields and discards the remainder. We will make use of the dedup command extensively in Chapter 10.

Adding and Evaluating Fields

The next category of commands is used for filtering, modifying, and adding fields. We will look at one of the most
powerful commands, which is eval. An eval command can be used to calculate an expression and store the value in
anew field. Eval can work with arbitrary expressions, including mathematical, string, and boolean operations.

As we have seen with the stats command, eval provides several functions. Among of the standard functions are case, if,
several math functions such as abs, ceiling, floor, log, round, and so on, and string functions including rtrim,
split, substr, tostring, and so on.

54

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

We will explore the eval command with an interesting real-world use case: identifying users who are window-
shopping as opposed to those who have made purchases. This use case is applicable to both brick and mortar and
online retail stores. Because MyGizmoStore.comis an online retail store, we will have customers who browse the web
site and look at the products but who don’t make any purchases. It would be interesting to find the ratio of users who
are just viewing the pages to those who are actually making purchases.

You can use the eval command to find the basic distribution of HTTP status code that ended up in 200, which
means that the requests have been successful, and see how that number compares with the total for the rest of HTTP
status codes in our sample MyGizmoStore.com data. This doesn’t get us the detail about the ratio of users purchased,
but it does allow us to get started at a broader level of success and failure across all events.

Splunk also allows you to use the wild char * to signify all. Typically, you will have different types of access to log
files and most likely you will be processing and analyzing them all. To do that, change the search so that sourcetype
is equal to access_*; this would pick all sources that start with access_. Use an eval command to evaluate a condition
that looks at whether an individual event has status code 200; if it does, it is captured into OK and all other events are
captured into FAILED. The values are then stored into a field SuccessRatio, which is aggregated. The results can be
seen in Figure 3-25. You can see that the search processed all of the 8,688 events of sample MyGizmoStore.com data
that we started with and it shows that we got more events in the FAILED category than in OK.

sourcetype=access_*

| eval SuccessRatio = if (status==200, "OK", "FAILED")
| stats count by SuccessRatio

5,588 matching events) B8 0 CESS (B33

2 results over all time

= [_ Export Optionz 20 per page -
Overlay: | Mone =]
c_ Euccesskﬂ‘tiu ¥ E count ¥
FAILED 4511
O 4177

Figure 3-25. Number of status code 200 versus rest of status codes

Now that you have a feel for the eval command, let us figure out the ratio of page views to purchases. To do that,
use the events that have method GET and pipe those events into the stats command to find out the actual page views
count. You then use the eval command within another count where we are looking if the event has an action that is

equal to purchase. You will also use the AS argument of the stats command to rename the resulting fields Page_Views
and Actual_Purchases. Type the following into the search bar:

sourcetype=access * method=GET
| stats count AS Page Views,

count(eval(action="purchase")) AS Actual Purchases

Figure 3-26 shows the results that 6,176 events have been processed that had the GET method, resulting in 6,176
page views, and only 144 are actual purchases.

55

http://mygizmostore.com/
http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

Q 6,176 matching events ?_,

1result over all time

= [— Export Options 20 per page -

Overlay: | Nane |

Actual_Purchases -

Page Views =

G176

Figure 3-26. Page views versus actual purchases

Splunk’s eval command can be used to calculate the percentage difference between the values as well. Extend
the search that you have just done and pipe the results into another eval command that calculates the percentage of
actual purchases made compared with page views. This percentage is stored in a field called PCTofPurchases.

sourcetype=access_* method=GET
| stats count AS Page Views,

count(eval(action="purchase")) AS Actual Purchases
| eval PCTofPurchases =((Actual Purchases*100)/Page Views)

Additional commands in this category of filtering, modifying, and adding fields are lookup, rex, replace, and
fields. We will make extensive use of the lookup command in Chapter 11 where you will work with the Airline
On-Time Performance project.

Grouping

The last category of commands is grouping results. The idea of grouping is to identify patterns in data that is grouped
together. Transaction is the SPL command that allows to group events into a transaction. Events are grouped together
if the definition constraints described along with the command are met. The constraints specified in the transaction
command identify the beginning and the end of the transaction. This is very similar to transaction demarcation in the
traditional database world.

We can make use of the transaction command to further analyze the use case of window-shopping versus
purchase. In many cases, there will be users who add items or products into their shopping cart and never make a
purchase, or users who spend a fair amount of time browsing, adding items to their shopping cart but never closing
the transaction.

For our example, we will look at grouping the events related to a particular session id (JSESSIONID) and coming
from the same IP address (client), where the first event contains the string addtocart and the last event contains
the string purchase. Before we start work on our search, let’s see what this would look like if you took a small set of
sample events as shown in Figure 3-27. The highlighted areas in the rectangle show that you got the same IP address
and session id and you also have addtocart and purchase actions in the related events. Splunk would find these
relationships across the events and group them as transactions. In the sample set, we got two transactions that involve
IP addresses 237.15.107.90 and 60.66.3.96. You could also group the transactions using the cookie values if they are
present in the requests coming from a client.

56

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

147.12.127.37 - - [28/Dec/2012:22:04:17] "GET /category.screen?categoryld=BLACK
DOODADS&JSESSIONID=SD9ISLEFFEADFF4960 HTTP 1.1" 200 519 "http://www.yahoo.com”
"Mozilla/5.0 (Windows; U; Windows NT5.1; en-GB; rv:1.8.1.6) Gecko/20070725 Firefox/2.0.0.6" 470

237.15.107.90 J- [03/Feb/2013:18:43:53] "POST /cart.do{action=purchaseditemld=HYD-23&SESSIONID=5D35L 3FF 5ADFF29586
HTTP 1.1" 200 3727 "http://vwwve. MyGizmoStore.com/cart.do &itemld=HYD-23&productld=NC-SIN-33"
"Mozilla/4.0 {compatible; MSIE 6.0; Windows NT 5.1)" 263

21.168.88.34 - - [30/Dec/2012:11:22:20] "GET /category.screen?categoryld=BLACK
DOODADS&ISESSIONID=5D6SL3FFSADFFE505
HTTP 1.1" 200 2541 "http://www.bing.com" "Googlebot/2.1 (http://www.googlebot.com/bat.html) " 770

237.15.107.90 -} [03/Feb/2013:18:43:54] "POST /cart/success.do?)SESSIONID=SD3SL3FF5ADFF29586
HTTP 1.1" 200 2451 "http://www. MyGizmoStare.com/cart.d : itemld=HYD-23"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" 782

[30/1an/2013:22:21:53] "POST /cart.doPaction=purchasekitemid=HYD-64J5E55ONID=5D15L3FFGADFF25679]
HTTP 1.1" 200 1542 "http://www. MyGizmoStore.com/cart.dci.iaction:addtoca:f&itemId:HYD—G&product\d:AZ—LON—22"
"Mozilla/5.0 (Macintosh; U; Intel Mac 05 X 10_6_3; en-US) AppleWebKT I (KHTML, like Gecko) Chrome/5.0.375.38
Safari/533.4" 446

©®e o

208.104.77.95- - [01/]an/2013:12:37:37] "GET /product.screen?product|d=PA-DEL-44&]SESSIONID=SD75L5FF2ADFF8535
HTTP 1.1" 200 3264 "http://www.bing.com" "Googlebot/2.1 (http://www.googlebot.com/bot.html) " 417

| [60:66.3.96 -](30/Jan/2013:22:21:55] "POST /cart/success.dpJSESSIONID=SD1SL3FF6ADFF25679
HTTP 1.1" 200 3053 "http://www. MyGizmoStore.com/cart.do itemld=HYD-6"

"Mozilla/5.0 (Macintash; U; Intel Mac OS X 10_6_3; en-US) AppleWeBKr T KHTML, like Gecka) Chrome/5.0.375.38
Safari/533.4" 675

Figure 3-27. Transaction grouping

Now enter the following in the search bar and see how Splunk would group the events into transactions:

sourcetype=access_combined_wcookie
| transaction JSESSIONID clientip startswith="addtocart" endswith="purchase"

As seen in Figure 3-28, 609 events match the grouping model you have made and you can see that each grouped
event has addtocart and purchase as the actions and the same IP address and session id.

57

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 3 PROCESSING AND ANALYZING THE DATA

1>/ €609 events over alltime

EE all [Export + Cptions % prey n 2 3 4 5 6 TF 8 8 10 nexts 20 per page -

25913 - [@9/Feb/2@13:03: 08:12] "POST

a08:12.000 An S Cartengratt1on=purchase&itemnId=HYD-& FOADFF35@55 HTTP 1.1™ 209 924
"http:/ www. MyGizmoStore. com/cart . dfi?action=addt ocart&iteild=HYD-6&product Id=C4A-FL -&8"
"Mozilla/5.@ (Macintosh; U; Intel Mac o=F il i. u:»; Lpplelleblit /533.4 (KHTML, like

Gecko) Chrome/5.@.375.38 Safari/533.4" 206
hozt=BigDBBook-wwwew3 + | sourcetype=access_combined_weoookie = | source=/optlogBigDBBack-wewew 3facces s log

-

20513 80.135.188, - [©9/Feb/2013:08: 08: @6] “POST
#08:05.000 &1 /cart.doraction=addtocart&itenId=HYD-6aproduct Id=CA-FL -88&1SESSIONID=5045L 7FF GADFF 35055

HTTP 1.1™ 2@@ 1@96 "http:// www.MyGizmoStore.com/product.screen?product Id=CA-FL-88"
"Mozilla/5.@ (Macintosh; U; Intel Mac 05 ¥ 18_6_3; en-U5) ApplellebkKit/533.4 (KHTML, like
Gecko) Chrome/5.@.375.38 Safari/533.4" 586

200.135.1838.13 - - [@9/Feb/2013:05: 08:13] "POST

Jcart /success.do?ISESSIONID=5D4SL7FFGADFF35855 HTTP 1.1™ 200 3922

"http: /S www. MyGizmoStore. com/cart . :ﬂm:p emId=HYD-6" "Mozilla/5.@
(Macintosh; U; Intel Mac 05 X 190_6_3; en-uar Aappledeblit /533.4 (KHTHML, like Gecko)
Chrome/5.@.375.38 Safari/533.4" 39a

hozt=BigDBBook-www3 = | sourcetype=access_combined_woookie = | source=/optlogBigDBBack-www 3faccess log

-

209015 188.149.113.181 - - [@9/Feb/2013:@6:13:38] "POST

Ei3zE0000 &k Scart.doraction=purchasefitemId=HYD-53815ESSI0ONID=50D1@5L 1IFF4ADFF 34979 HTTP 1.1 200 1437
"http:// wew. MyGizmoStore. com/cart . do?action=addt ocart&itemId=HYD-58&product Id=PL-DEL -44™
"Mozillas5.@ (Macintosh; U; Intel Mac 0S5 X 1@_6_3; en-US) Applelebkit/533.4 (KHTML, 1ike
Gecko) Chrome/5.9.375.38 Safari/533.4" 245
host=BigDBBook-www3 = | sourcetype=access_combined_sweoookie = | source=/optlogBigDBBack-weww 3faccess log

-

20915 188.148.113.101 - - [@9/Feb/2013:@6:13:29] "POST
E13:29000 an Scart.dofaction=addtocart&itemId=HYD-58&productId=PA-DEL -44&]1SESSIONID=5D1@5L LFF4ADFF3497!
HTTP 1.1" 289 239@ "http:/ www. MyGizmoStore. com/product .. screen?product Id=PA-DEL -44™
"Mozilla/5.@ (Macintosh; U; Intel Mac 05 X 1@ _6_3; en-US) Applellebkit/533.4 (KHTML, like
Gecko) Chrome/5.@.375.38 Safari/533.4" 270
158.149.113.101 - - [@9/Feb/2013:@6:13:33] "POST
Jcart/success. do?ISESSIONID=SD1ASL1FFAADFF 34979 HTTP 1.1" 208 1465
"http: /Swww. MyGizmoStore. com/cart.do?action=purchase&itemId=HYD-58" "Mozilla/5.@
(Macintosh; U; Intel Mac 05 X 18_6_3; en-US) Applellebkit /533.4 (KHTHML, like Gecko)
Chrome/5.@.375.38 Safari/533.4™ 846
host=BigDBBook-wwawd = | sourcetvoe=access combined wwoookie - | source=jontlooBiaDBBook-vewswe 3faccess loa -

Figure 3-28. Grouping of events with addtocart and purchase

Another use case for the transaction command is grouping the events that have purchase action from the
same clientip where each session is no longer than 10 minutes and includes no more than three events. These
kinds of combinations and event groupings can be used to identify users who are spending either the shortest time
to conclude their purchases or making long-running transactions. In the following search, we are using maxspan and
maxevents attributes along with clientip field to group the events:

sourcetype=access_combined wcookie action=purchase
| transaction clientip maxspan=10m maxevents=3

Figure 3-29 shows that 519 events matched the grouping, and you can see that all of those events have purchase
action.

58

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

I{ 519 events aver all time >

EE all [Export + Cptions « prey 2 03 4 5 B 7 8 9 10 nexs 20 per page -

2090 3 200.135.188.13 - - [89,/Feb/2013: 08: 03:12] "POST

G051 2.000 A Sk emLd=HYD-6&1SESSIONID=5D45L TFFGADFF35@55 HTTP 1.1" 200 9
"http: are.com/cart.doaction=addt ocart&itemId=HYD-6&product Id=CA-FL -8&"
"Mozilla/5.@ (”ac1ntash U; Intel Mac 05 X 1@ 6_3; en-U5) Applelebkit/533.4 (KHTML, like
Gecko) Chrome/5.@.375.38 Safari/533.4" 206
209.135.185.13 - - [09/Feb/2013:08:83:13] "POST
Jcart /success.do?ISESSIONID=5D45L 7FF6ADFF 35855 HTTP 1.1"™ 208 3922
"http: //wew. MyGLlzmoSt ore. com/cart . doget 1 on=purchas e emId=HYD-6" "Mozilla/5.@
(Macintosh; U; Intel Mac 0S5 X 1@ 6_3; en- tpplelleblkit /533.4 (KHTHML, like Gecka)
Chrome/5.@.375.38 Safari/533.4" 300
host=BigDBBook-www3i = | sourcetype=access_combined_wcookie = | source=foptlogBigDBBook-whwww ifaccess log

2091 5 61.196.255.160 - - [@9/Feb/2013:06:39:17] "GET

B39 7.000 A search do?items=vase&]SESSIONID=5D4SL5FF 1@ADFF 34985 HTTP 1.1™ 4@4 3327
“h't'tp S, MyGizmoSt ore. com/cart. do?action=purchase&itemId=HYD-82" "Opera/9.2@ (WUindows
HT 6.@; U; en)™ 603
host=BigDBBook-www?2 = | zourcetype=access_combined_wcookie = | source=foptlogBigDBBook-www 2access log

-

2091 3 188.149.113.181 - - [@9/Feb/2813:86:13:30] "POST

E3:30.000 A6 Scart.dofaction=purchase&itemId=HYD-58&1SESSIONID=5D10OSL1FFAADFF34979 HTTP 1.1™ 209 1437
“h‘t‘tp e, MyGizmoSt ore. com/cart . do?act ion=addt ocart&itemId=HYD-58&product Id=PA-DEL -44™
"Mozilla/5.@ (Macintosh; U; Intel Mac 0S5 X 18 _6_3; en-US) Applelebkit/533.4 (KHTML, like
Gecko) Chrome/5.@.375.38 Safari/533.4" 845
188.14@.113.191 - - [@9/Feb/2013:06:13:33] "POST
Jcart /success.do?ISESSIONID=5D1QSLIFF4ADFF 34979 HTTP 1.1" 208 1465
"http: //www.MyGizmo5Store. com/cart . do?action=purchasefit emId=HYD-58" "Mozilla/5.@
(Macintosh; U; Intel Mac 0S5 X 18 6_3; en-US) ApplellebKit/533.4 (KHTML, like Gecka)
Chrome/5.@.375.38 Safari/533.4" 846
host=BigDBBook-www3i = | sourcetype=access_combined_wcookie = | source=foptlogBigDBBook-whwww ifaccess log

-

Figure 3-29. Transactions within a span of 10 minutes

We will wrap up this chapter by looking at one last use case that is very useful when analyzing combined access
log data, and it also helps us to exercise some of the commands and concepts that we have looked at in this chapter.
The use case is related to how much business we are losing because of failed transactions in our online applications.
In the case of MyGizmoStore. com, this would mean that users have failed to complete the purchase process due to
errors in the application or the server.

We can make use of HTTP status codes and analyze our sample data set. In Table 3-2, HTTP status codes for the
classes of 4xx and 5xx were listed. HTTP status codes in the range 5xx are related to server errors. Any 5xx error means
that something did not go right on the server end. A couple of common examples include status code 500, which
indicates a generic internal server error, and status code 503, which means that the server is unavailable to process the
request. From the operational standpoint, error codes 5xx mean that there are issues with the server that may need
immediate attention. For an online retail store such as MyGizmoStore. com, status 5xx means that the site is unable to
perform customer transactions, so the online retail store has probably lost business as customers failed to complete
transactions. This could result in customers going to competitor stores or, at the very least, escalated customer
support calls.

Look at the 5xx status codes in the sample data or the number of events where the status code is greater than or
equal to 500. Use the status field and apply a condition where the status is greater than or equal to 500:

sourcetype=access_combined wcookie status >= 500

Figure 3-30 shows that there are a total number of 1557 events that have a status code greater than or equal to 500.

59

http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 3 PROCESSING AND ANALYZING THE DATA

I’t 5;55? events over all time o

EE il [Expott + Qptions % pIren n 2 3 4 5 6 7 8 9 10 nexts 20 per page -

a3 219.1@9.144.45 - - [@9/Feb/2013:05:45:44] "POST
Sd5dad oon ah Sproduct . screen?product Id=TA-IND-77&ISESSTIONID=5065L 1FF3ADFF 35088 HTTP l.l'ﬁl
"http: //wew. MyGizmoStore. com/oldlink?itemId=HYD-58" "Googlebot, /2.1 {
http://www.googlebot.com/bot.html) ™ &3@
hozt=BighBBook-wwww3 = | zourcetype=access combined_woookie - | source=sfoptlogBigDBBook-waweww 3faccess log

-

20913 234.38.242.36 - - [@9,/Feb/2013:@3:31: @8] "POST
731:08.000 &6 Soldlink?itemId=HYD-29&]SESSIONID=5D65L6FF 7ADFF 35871 HTTP 1.1 93
"http: /Swww. MyGizmoStore. com/product . screen?product Id=FL -HYC-44 Mozilla/4.@

(compatible; MSIE &.@; Windows NT 5.1; SWl; .MET CLR 1.1.4322)" 635
hozt=BigDBRook-wywywd = | sourcetype=access_combined_woookiz - | zource=foptlogBigDBBock-wwwwilaccess log

-

Tk 192.195.2158.4 - - [@9/Feb/2013:08:21:41] "GET
&7240:41 000 &M Sproduct . screen?product Td=CA-FL -38&SESSTONID=SD10SL 10F F BADFF 35064 HTTP 1.1"919
"http: //www. MyGizmoStore. com/cart .do?action=addtocart&itemId=HYD-82" "Googlebd L1

http: //www.googlebot.com/bot.html) ™ &37
host=RigDhBBook-wwww3 = | zourcetype=access combined_woookie - | source=sfoptlogBigDBBook-wawew 3faccess log

-

Figure 3-30. Events with status code greater than or equal to 500

You can use the Splunk statistical command stats to find exactly what the distribution of events is across the
different 5xx status codes. Pipe the previously qualified events into the stats command and use the count function
to count the different status codes. Figure 3-31 shows how the distribution of 1554 events looks between different 5xx
status codes. In this case, we only have status codes 500 and 503.

L5800

057 matching events

2 results over all time

= . Al (= Expiort + Options 20 per page -
Overlay: | Mone |

status = ®

a0 T42

03 15

Figure 3-31. Events distribution for status code in 500 range

You can also make use of the sort command to sort the status count in ascending or descending order:

sourcetype=access_combined_wcookie status >= 500
| stats count by status

60

CHAPTER 3 © PROCESSING AND ANALYZING THE DATA

Now that we have identified and determined that we have an issue with MyGizmoStore.com servers, we need to
identify which of these events where the status code was greater than or equal to 500 were also involved in events that
had a purchase action. If there are any qualifying events for that condition, that would translate into loss of business
for MyGizmoStore.com. We will take the previous search and add an additional field condition, action=purchase, and
find out the number of qualifying events:

sourcetype=access_combined wcookie status >= 500 action=purchase

Figure 3-32 shows that there are 175 events that have matched our condition of purchase action.

I8 events over all Trme=

EE all (= Expart o Optionz « prey n 2 3 4 5 B F 8 9 10 nexts 20 per page -

213 193.161.167.197 09,/Feb/2013: @4:55: @@] "GET

4:55:00,000 ap Scart . d§ =it emId=HYD-118]SESSIONID=5D2SL10FFIADFF34919 HTTP 1. 1
“http:/ www. 1zmastore. com/category.screen?category Ld=0RANGE_WATCHHMACALLITS™ la ‘5.8
(Uindows; U; lllndcms HT 5.1; en-GB; rv:1.8.1.6) Gecko/28@70725 Firefox/2.0.0.6" 2."5
host=RigDBEBook-wwwwl = | sourcetype=access_combined_woookie - | source=foptlogBigDBBook-wewwel laccess log -

20013 228.141.191 126z [09/Feb/2013: 01:43: 18] "POST

1:43:10.000 &M /cart. -W- emId=HYD-1&1SESSIONID=SD35L2F FAADFF 34808 HTTP 1.1° @ 206
"http: /WS FTTE. con/cart . doPaction=addt ocart&itemId=HYD-1&product Id= Hp-77"
"Mozilla/5.@ (Macintosh; U; Intel Mac 05 X 1@ 6_3; en-US) Applellebkit/533.4 (KHTHML, like Gecko)
Chrome/5.@.375.38 Safari/533.4"™ 996
hozt=BigDEBook-vwwww2 = | sourcetype=access_combined_woookie - | source=foptlogBigDBBock-wewwdiaccess log -

20EM T 45.228.192.144 - - [@8/Feb/2013:21:40:85] "POST
9 40:05.000 PM ,.-"car-t.d'temId HYD-2&1SESSIONID=5D&5L1FF 7ADFF 346585 HTTP 1.1" @ 13
"http: // waw® ore. com r.:ar"t doraction=addtocart&itemId=HYD-2&praoduct Id="T8*5TIl-66"

"Opera/9.81 (l]lndcms HNT 5.1; U; en)™ 551
host=BigDBBook-vwywww2 = | sourcetype=access_combined_woookie - | source=sioptlogBigDBBook-wiww 2iaccess oy -

Figure 3-32. Events having status in 500 and also purchase action

We can further analyze these 175 events and see what the product distribution is across failed transactions.
Splunk provides the rename command, which allows you to change or alias the column names to be more
business-friendly, as logs may have cryptic field names.

Take the previous search and pipe that into the stats command to aggregate the results by product. The result set
will be sorted in descending order. Finally, rename the count field “Product Units In Failed Transactions”:

sourcetype=access_combined _wcookie status >= 500 action=purchase
| stats count by productId

| sort -count

| rename count as "Product Units In Failed Transactions"

Figure 3-33 shows that the same 175 events are aggregated and the product count column is renamed
accordingly.

61

http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 3 PROCESSING AND ANALYZING THE DATA

SEEE matching events ? [:I:l:|:| n u

10 results over all time

= all [Export + Dptionz 20 per page -
Overlay: | Hone =l

productld + @uct Units In Failed Transac’tiuns}

AZLON-22 T a— —

CA-FL-GG 16

CA-MY-39 10

FL-MY'C-44 15

hAMS-SIM-GE g

MC-5IM-33 12

MLJS-HRG-55 11

OR-DEMN-33 19

Pi-DEL-24 14

TH-IND-TF 15

Figure 3-33. Number of product units in failed transactions

Summary

In this chapter, we examined the format of the combined access log to see what type of information is available in the
log entries to process and analyze. You learned basic commands such as top, rare, stats, sort, addcoltotals, eval,
rename, head, tail, and transaction, which helped you to report, sort, filter, and group events to find answers to the
questions that enterprises typically need to ask. You also gained an understanding of using time picker and fields to
validate data and process data in smaller subsets.

62

CHAPTER 4

Visualizing the Results

In this chapter we will focus on data visualization using reports and dashboards. You will learn about the default
Splunk dashboards and new SPL commands that help to chart the data, and see how we can build reports using the
Splunk report builder. We will also look at Splunk Apps to visualize data, get familiar with the default dashboards they
provide, and work on creating custom dashboards that help to visualize multiple reports.

Data Visualization

Modern enterprises are looking at newer categories of data such as logs, network, clickstream, and social media as
inputs to their mainstream data analysis to make better business decisions. What this means is that enterprises now
have to deal with processing and analysis of big data. Apart from this, as enterprises expand and collect multiple
sources of data, they are seeing huge data growth. Traditionally, this data was delivered in spreadsheets or tabular
reports, making it very challenging to find the patterns, trends, and correlations necessary to take action. Not only
that, the traditional spreadsheets or similar tools are no longer adequate to process and analyze multiple sources of
data that enterprises want to look at holistically.

This is where data visualization comes into the picture. Visualization helps to communicate complex ideas or
data patterns with clarity and precision. It helps the viewer focus on the substance of the data by presenting many
numbers in a relatively small chart, enabling users to compare different pieces of data far more quickly and easily
than by staring at page after page of raw numbers. One of the most important benefits of visualization is that it allows
access to huge amounts of data in ways that would not be possible otherwise. Finally, and perhaps most importantly,
visualizations give us access to actionable insight. Consider situations in which pricing changes over time for online
stores such as MyGizmoStore.com. With visualization, we can quickly understand whether customers are buying more
or if they have changed their buying patterns, and so on. Without that insight, we're effectively lost, and the odds of
making a good decision are considerably reduced. Whether you are in IT or on the business side, visualization lets you
quickly examine large amounts of data, expose trends and issues efficiently, exchange ideas with key players,
and influence the decisions that will ultimately lead to success.

You saw in Chapters 2 and 3 how Splunk can work with multiple sources of data and process the data using SPL.
The next question is: Does Splunk provide any tools to visualize data and make it easy to analyze big data to identify
correlations, trends, outliers, patterns, and business conditions? Yes, of course it does! You will learn how to visualize
data in Splunk in this chapter.

How Splunk Deals with Visualization

Splunk provides different ways to build reports and dashboards to visualize the search results coming from the data
indexed into it. At the basic level, you can visualize all the data as a set of events in the timeline bar graph. In Chapter 3,
you learned how to use the time picker to validate the data; it can also give us quick visual clues across events
showing peaks and troughs in the activities. In the case of MyGizmoStore.com’s sample data, the time picker lets

63

http://mygizmostore.com/
http://MyGizmoStore.com

CHAPTER 4 = VISUALIZING THE RESULTS

us visualize any obvious patterns that can be drilled down into for more details. Let’s do a quick search by entering
sourcetype=access_* in the search bar. Figure 4-1 shows the activity across MyGizmoStore.com data; we can see that
the activity is mostly constant except for some small spikes and drops in a few places. For real-world data, you will
most likely see a very different graph with huge spikes at different places on the time line.

AT a0

 ————
88 matching events

[AHide S Zoomout E, Zoomto selection Deselect Linear scale - 1 bar =1 day
350 350
Tue Jan 15 Tue Jan 22 Tue Jan 29 Tue Feb 5
2013

Figure 4-1. Visualize data using time line

Although the Splunk time picker is helpful, most of the interesting details come from statistical analysis done
across different fields. The searches that we performed in Chapter 3 gave us the data in tabular format. For example,
one of the searches we did helped us to find the top browsers for MyGizmoStore. com. If we take the same search and
enter it into the search bar, it gives us the tabular report shown in Figure 4-2.

sourcetype=access_*
| top useragent

& results over all time

= = @ (3 Export < Options 20 per page ~
Overlay: | Mone |
useragent = count * percent ¥
} intosh; U, Intel Mac OF X 10_6_3; en-US) Appletelbkit/S33.4 (KHTML, ke Gecko) Chromeds.0.375 .38 Safarifa3s4 157 13317219
hozillzsd 0 [compatible; MEIE 6.0, Windows MNT 5.1, SW1;, MET CLRE1.1.4322) 1142 13144567
Googlebots2 A [At ey googlebot.comiat. Html) 1111 12757753
Operaff 20 Mindows NT 6.0; L en) 11m 12672652
Operaf@ 0] Mindows NT 54, L en) 1093 12635122
Mozillas5.0 dAindowes; L Windowes NT 5.1; en-GB; rvi1 8.1 B) Gecko/20070725 Firefoxi2 0.0.6 1093 12.55057T1
Mozillzid 0 fcompstible; MSIE B.0; Windows NT 547 102 11.751842
Mozillzid 0 (oompstible; MSIE B.0; Windowes NT 5.9, 5410 965 11107274

Figure 4-2. Top browsers for MyGizmoStore.com in tabular format

64

http://mygizmostore.com/
http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 4 VISUALIZING THE RESULTS

Splunk provides a very easy way to visualize the tabular data. All you have to do is click on the bar icon
highlighted in Figure 4-2. Splunk will transform the tabular report that was showing the top browsers into a visual
chart, as shown in Figure 4-3. You can now see the data visually instead of reading raw numbers. We can see that
Mozilla 5.0 is the top browser, closely followed by Mozilla 4.0. The chart also shows the close proximity of the first two
browsers and the next group of four browsers.

8 results over all time
= E= m & Optionz 20 per page -
—=

@- afarij5354
—”

Mozillaf4.0 (c. LR 1.1 4322}

Googlebot/2. om/bot.html)

Cperaf3.20 . NTED; U en)
00 count
Qperafd0l L NTEI: LU en)
Mozillaf&.0 (. refoxf2 006

Mozilla/4.0 {c...dows NT 5.1

Mozilla/4.0 {c... NT 5.1; 5%1)

500 ado 700 ano 00 1,000 1,100

Figure 4-3. Top browsers for MyGizmoStore.com in a column chart format

Splunk provides different chart types to visualize the data; we will explore this later in this chapter. You can
format the chart by clicking on the “Formatting options” link. Here you can select the type of chart that will best help
to visualize the underlying data. Not all chart types are applicable for all data. For a Splunk chart to visualize data, it
has to be in a structured format. Depending on the type of data structure that you have in the tabular format, Splunk
will intelligently enable only those chart types and will gray out the rest of the options, as you can see in Figure 4-4.
We will select a bar chart for this report, and we will go ahead and change the title for the chart to “Top Browsers,”
with X-axis title “Browsers,” and Y-axis title “Browser Count.”

- Formatting options

column

General Stack mode | Mone =l
HeAMis

- amis

ement [Fiart 7] Multi-series mode | Combined |
radial gauge

fillet gauge
marker gauge 4

Figure 4-4. Formatting charts

65

http://mygizmostore.com/

CHAPTER 4 VISUALIZING THE RESULTS

The updated chart will look like Figure 4-5. Let’s click on “Save” and save the search as “Top Browsers.”

+ 8,688 matching events ﬂ E H sa

8results aver all time

Save results

= &=l options
Save & share results...
- Farmatting options

Charttype | bar x|
General » Charttitle | Top Browsers Stack mode | MNone =l
Heais

Yeais Legend placement | Right] Multi-series mode | Combined x|

Mozilla/5.0 (... Safarif533.4

Mozillaj4.0 (. LR 1.1.4322)

Googlebotf2..m/fbot.html)

pera 320 (. NTE.0; U en)
perafa.01 {.. NT5.1;U; en) 0 count
Mozilla."S.D {..refox/2.0.0.5

Mozilla/4.0 (... dows NT 5.1}

Mozillaf4.0 L. NT 5.1:5%1)

Figure 4-5. Top browsers

The approach that we have taken so far is to build searches and view the data coming from search results. As you
saw in Chapter 3, this approach requires a fair knowledge of SPL commands to build the searches. In the case of the
top browsers search, we would have to be familiar with the top command. Splunk provides another way of building
reports using reports builder. Let’s explore report builder with the top five IP addresses search that we built in
Chapter 3. With report builder, you don’t need to have a thorough understanding of SPL reporting commands such as
stats, top, rare, or the charting commands that we will explore in this chapter. You can build the reports using report
builder in two steps.

e Define report
e Formatreport

You can access the report builder by selecting the “Create” drop down list and clicking on “Report. ..
(see Figure 4-6).

66

CHAPTER 4 VISUALIZING THE RESULTS

Dazhboard panel...

Alert..

Evert type...

Scheduled search...

Figure 4-6. Report builder

In the Define report step, you can select the time range as you would in the time picker; in our case we will leave
it as default, which is “All time.” In the Report Data section, you will have to select the type of report that you would
like to create. The three available options are:

e Values over time, used for visualizing the trends in a particular field over a selected period of
time. Internally, the report builder will make use of the timechart command, which we will
introduce to you shortly.

e Top values, used for reports that show the most common field values such as top browsers, top
IP addresses, and so on. Report builder makes use of the top command, which you learned
about in Chapter 3.

e Rare values, used for reports that want to display most uncommon or least common values.
Report builder makes use of the rare command, which you learned about in Chapter 3.

For the top IP address report, we will select the “Top values” option in the report type. Based on the selection,
report builder will automatically adjust the remaining choices for report definition. In our case, you will notice that
the options for report display have now been hidden. The next option that we have to choose is the field in which we
want to find the common or top values. Because we want to find the top IP addresses, we will select the field clientip
from the “Fields” drop-down list. The Define report content page will look as shown in Figure 4-7. You will notice that
the report builder also provides access to the search command that it is building. By default, the editing for the search
is disabled, but for users who are familiar with SPL they can click on the “Define report using search language” link
and edit the query. Report builder also defaults the values returned by top command to 1000 instead of 10, as you saw
in Chapter 3. Because we only need the top five IP addresses, we will edit the search to return only five by changing
the 1imit=5. Click on the Next Step: Format Report button.

67

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 4 ' VISUALIZING THE RESULTS

1: Defing report content

Search §0efine report using search languade

index=mygizmostoreindex: | top client limit="1000

ime range

Al time

Report Data
Report type

Wl TOp values / ;I

Fields

=l

Figure 4-7. Create report definition in report builder

Report builder will show a column chart by default for the top five IP addresses. You will notice in the chart
type options that Splunk has enabled all chart types; this does not mean that the data we got from the report can be
visualized with all types of charts. For example, changing the chart type to a “radial gauge” and clicking on the “Apply”
button will show the data as seen in Figure 4-8, and you can see that it doesn’t make much sense.

ﬁoi) 5P A(I(Iresse;

243.189

Figure 4-8. Top IP addresses shown as radial gauge

68

CHAPTER 4 " VISUALIZING THE RESULTS

We strongly recommend that you experiment with different options and think about the audience to which you
are showing these reports in order to choose the right chart type. Before we save this search, let’s change the chart title
to “Top 5 IP addresses,” X-axis title “IP addresses” and Y-axis title “Count,” change the chart type back to column and
click the “Apply” button. The report should look as shown in Figure 4-9.

(Top 5 IP Addresses)

0 count

243.189.218.30 99.143.59.6 9749217217 971696517 80.84.22257

P addres

Figure 4-9. Top IP addresses shown in column chart

The key difference between using the report builder and working directly with SPL commands is that you would
not need to know the SPL commands. You have also seen that report builder offers flexibility by allowing you to switch
to search language mode if need be. You would probably still need to have some SPL knowledge to make changes to
the default search generated by the report builder, as we did with the 1imit option for the top command. Save the
report as “Top 5 IP addresses chart” You can always access the saved reports using the “Searches & Reports” menu.

You can use the stats, chart, and timechart commands to perform the same statistical calculations on your
data. The stats command returns a table of results. The chart command returns the same table of results, but you
can use the report builder to format this table as a chart. If you want to chart your results over a time range, you will be
using the timechart command. Now that you have learned about the basic forms of visualization provided by Splunk,
let’s explore two powerful charting SPL commands:

e Chart
e Timechart

As in Chapter 3, we will take different use cases that are related to our online retail store MyGizmoStore.comto
explore these commands.

69

http://mygizmostore.com/

CHAPTER 4 ' VISUALIZING THE RESULTS

Chart

The Chart command can be used to create a tabular data output that works very well for charting or visualization
purposes. You have to specify the x-axis variable or field using the over or by clause. It is designed to work with all of
the functions that are available with stats reporting command in Splunk. You can also use the eval command along
with Chart, making it a powerful command to get the aggregated data that can be visualized. Different chart types can
be created based on the structure of the data that is generated by the chart command. Chart types include:

e Column

e Bar

e Stacked column
e Stacked Bar

e Line

e Area

e Stacked line

e Stacked area

e Pie

e Scatter

e Gauges—Radial, Filler, and Marker

We will look at some of these chart types and how they work with the data that we are going to generate with
the following use cases:

e Chart the number of GET and POST for each host

e Chart the purchases and views for each product category
e Which product categories are affected by 404 errors?

e Purchasing trend for MyGizmoStore.com

e Duration of transactions

Chart the Number of GET and POST for Each Host

All of the requests coming into MyGizmoStore. com have either GET or POST. We can start exploring the chart
command to visualize the number of GET and POST requests for hosts BigDBBook-www1, BigDBook-www?2, and
BigDBook-www3. To do this, we will make use of the eval command to find out if the method is a GET or a POST.
Once that is determined, the count function is used with the chart command to count the number of GET and POST.
We are going to do it by host, which is going to be the field for the x-axis of the chart. Let’s enter the following search
into the search bar:

sourcetype=access_*

| chart count(eval(method="GET")) AS GET,
count(eval(method="P0OST")) AS POST
by host

70

http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 4 VISUALIZING THE RESULTS

Splunk shows the results in a tabular format that lists GET and POST for each of the hosts. One of the interesting
things that you can do in the tabular format report is make use of the “Overlay” feature and have Splunk create a heat
map across the values in the tabular data. Heat maps help us to visualize the high and low values easily by using different
colors. We can see the tabular report with heat map on in Figure 4-10; as GET has high numbers, we can see the cells
with high values are shown in red.

3 results over all tirme

= [Export Options 20 per page -

. host = POST =
BigDBEBook -] 535
BigDEBook -2 a4
BigDBEBook-wwwne 3 883

Figure 4-10. GET and POST requests in tabular format with heat map

To visualize the tabular data in the chart, you will click on the bar icon, highlighted in Figure 4-10. By default,
Splunk picks bar chart; because we want the x-axis to be plotted by host, we will change the chart type to column
instead of bar. You will see that the column chart works better when comparing the GET and POST with the amount
of data that we have. As mentioned earlier, you will have to explore different charting options to see which one will
be better for the generated data structure. Let’s change the chart title to “GET-POST-Chart” and the y-axis title to
“Number of Requests.” The updated chart can be seen in Figure 4-11. Save the chart as “GETPOSTRequestsChart.”

| 2,000

1,500

0 GET

1000 POST

umber of requests

500

BigDBEoa k- 1 BigDBEoak-wwnm E BigDEBoak-wwnnm S

|

Figure 4-11. Get and Post Requests in a column chart

71

CHAPTER 4 = VISUALIZING THE RESULTS

Chart the Purchases and Views for Each Product Category

We can reuse the work we did in Chapter 3, where we found the comparison between actual purchases and product
views by the users of MyGizmoStore.com. Instead of using a stats command, we will use the chart command. We will
give the resulting columns a more meaningful name. Let’s enter the following into the search bar:

sourcetype=access_* method=GET

| chart count AS views,
count(eval(action="purchase")) AS purchases
by categoryId

| rename views AS "Views",
purchases AS "Purchases",
categoryld AS "Category"

Figure 4-12 shows the default chart for the search. As you can see in this chart, the number of purchases is very
low or almost negligible compared to the number of views. What we are seeing here is a mix of very small and very
large values. This is where you could make use of unit scale setting and making it log instead of linear to improve the
clarity of the charts.

= Farmatting options

Charttype | column LI
General b oo Stack mode | None =l
A-anis

Y-ais Legend placsment [Right =] Multi-series made | Combined |

500 |
400 |

300 |

0 Views

200 | Furchasi

100 |

ELACK_DOODADS BLUE SIZMOs ORANGE_WATCHMACALLITS | FURFLE_DQOHICKEYS RED_CADGETS WHITE_WIDGETS

Category

Figure 4-12. Purchase versus views for product category

Let us go ahead and click on the y-axis and change the value of the axis scale to log. We will rename the chart
title to “Purchases to Views chart” and save the chart as “PurchasestoViewsChart.” The updated chart can be seen in
Figure 4-13. Again, depending on the audience for these reports, your choice of chart type and scale would vary. As we
can see in this particular example, the charts in Figures 4-12 and 4-13 convey a different message, while the data set is
exactly the same.

72

http://mygizmostore.com/

CHAPTER 4 VISUALIZING THE RESULTS

“Purchases to Views Chart y

1,000

0 views

Furchases

BLACK_DOODADS BLUE_GCIZMOS ORAMGE_WATCHMACALLITS FURPLE_DOOHICKEYS RED_GADCETS WHITE_WIDGETS

CCategory

Figure 4-13. Purchase versus views for product category using log scale

Which Product Categories Are Affected by HTTP 404 Errors?

The HTTP 404 error message is shown on the client browser when a web server such as Apache or Microsoft IIS
responds to a client request that the requested resource is not found or unavailable. This resource could be a HTML
page, an image, or something similar. Any online retail store or web site would want to keep track of all 404 error
messages so that they can fix the web site and make sure that users are finding what they want; otherwise, the business
might lose money by letting users drop off or even go to a competitor. In Chapter 3, we used the stats command to find
the number of events that had 404 status. In this use case, we would want to create a chart to find the number of 404s
for each of the product categories. Let’s enter the following search into the search bar:

sourcetype=access_* status=404
| chart count by categoryId

You can make use of a pie chart to show the relationship of parts of your data to the entire data set. Because we are
getting a single value for each item in the product category, we can create a pie chart to see which categories have the
highest number of 404 errors. In the chart type, select pie and name it “404 Errors Chart.” Figure 4-14 shows the resulting pie
chart. You will notice that the fields for the x-axis and y-axis formatting options are disabled, as this is obviously a pie chart.

BLACK_DOODADS
WHITE_WIDCETS
BLUE_GIZMOS
RED_GADCETS
CRANCE WATCHMACALLITS

PURPLE_DOOHICEEYS

Figure 4-14. 404 Errors Pie chart

73

CHAPTER 4 ' VISUALIZING THE RESULTS

One of the neat features that Splunk provides for these visual charts is drill-down values for each field, and this
happens when you hover the mouse on a particular part of the pie. Figure 4-15 shows us the count and percentage for
the WHITE_WIDGETS products category. We will save the report as “404 Errors Chart.”

404 Errors Chart)

WHITE _WIDGETS ’

Figure 4-15. Drill-down information for pie chart

Purchasing Trend for MyGizmoStore.com

We want to visualize how the purchasing trend looks for each of the product categories. Trends are best visualized
using sparklines. Sparklines show progression over a period of time very well, and this visualization is widely used in
the medical industry and to show patterns such as earthquake activities. Sparklines show hidden patterns such as big
spikes or big drops that IT or business users, doctors, or scientists might be looking for. Splunk provides a sparkline
function that can be used with the stats or chart commands. In the search shown here, we are finding the requests
that have purchase action using the eval command. We will count the events that match that condition and pass them
to the sparkline function, which is used with the chart command. We also change the column name to “Purchases
Trend” and computation is done for each product category. Let’s enter the following search:

sourcetype=access_*
| chart sparkline(count(eval(action="purchase")))
AS "Purchases Trend" by categoryId

On hitting enter, if you see a blank chart, that means that you are in the chart mode. You can click on the small

table icon and that should bring you to the tabular report, as shown in Figure 4-16, with sparklines shown for each of
the product categories.

74

http://mygizmostore.com/

CHAPTER 4 VISUALIZING THE RESULTS

6 results over all time

= [_ Export Optionz 20 per page -
Cwerlay: | None =l

BLACK_DOODADS MW

BLUE_GIZMOS Mo w A

ORAMNGE_WATCHMACALLITS el

PLRFLE_DOCOHICKEYS UMM

RED_GADGETS oA

WHITE_WWIDGETS A

Figure 4-16. Purchasing trend for product categories

Depending on the audience for these reports, your choice of chart type would vary. Sometimes the sparklines may
not be best suited for users in a Network Operations Center (NOC), but they could work very well for a management
report. A line chart may serve the users of NOC better, as the scale for line chart is much bigger than that for
sparklines. In this tabular report, we did not get the total number sold for each product category. We can do that by
adding an additional count function into the search and renaming it “Total.” We can also rename the categoryld field
“Category Name,” which is more business-friendly.

sourcetype=access_*

| chart sparkline(count(eval(action="purchase")))
AS "Purchases Trend"
count(eval(action="purchase"))
AS Total
by categoryId

| rename categoryId AS "Category Name"

Figure 4-17 shows the new tabular report with sparklines and “Total” column for each product category. We can
see that RED_GADGETS was the best-selling product category. We will save the report as “Purchases Trend.”

75

CHAPTER 4 ' VISUALIZING THE RESULTS

6 results over all tirme

= r all [k Export + Options 20 per page -
Overlay: | None =l
Purchases Trend =

BLACK_DOODADS MAMAL A B
BLUE_GIZMOS T, f
ORARNGE WATCHMACALLITS YUY &
PURPLE_DOOHICKEYS A MM 7
'I.F:HITE_NDGET_S Mmoo -

Figure 4-17. Purchasing trend with total for each category

Duration of Transactions

In Chapter 3, you learned how to group a set of events as a transaction. We will now make use of the transaction
command and create a chart to show the number of transactions based on their duration in minutes. In this search,
we find all of the events that have purchase action and will group the events that have the same IP address. The
transaction happens within 10 minutes. For the grouped transactions, we are using the chart command to count
them based on the duration. Let’s enter the following search:

sourcetype=access_* action=purchase
| transaction clientip maxspan=10m
| chart count by duration span=log2

We can use the default column chart and change the title to “Transaction Duration.” Figure 4-18 shows the
resulting chart. We can see that a large percentage of the transactions happened in less than a minute, followed by
transactions in the span of two to four minutes, and then during the span of one to two minutes. Let’s save the chart as
“Transaction Duration Chart.

76

CHAPTER 4 VISUALIZING THE RESULTS

Chart twpe | column ;I

General » Charttitle = Transaction Duration Stack mode | None LI
HraEkiS

Y- ais Legend placement [Rigt =] Multi-series mode | Combined v |

:i ransaction Duration).

300

200 |

count

0 count

100 |

4-8 g-16 16-32 32-64

duration

Figure 4-18. Transaction duration

Timechart

The Timechart command is similar to the chart command that we have used so far, except that the timechart creates
a chart with aggregated values against time shown in the x-axis. The time on the x-axis can be controlled using the
span option.

We will take a couple of use cases to explore the timechart command using MyGizmoStore.com sample data:

e Top purchases by product

e Pageviews and purchases

Top Purchases by Product

We would like to see what the chart looks like for purchases made for each of the products mapped against time

on the x-axis. In the search, we make use of the count function to get the count of events with purchase action for
each product and we eliminate any nulls using the usenull option. The time scales of the charts (and timeline) are
calculated based on the context of the data. For example, if you are looking at data at the minute level, the scale will
automatically set to minutes. If you are looking at hourly data but it's a lot, the scale can be daily, and so on, unless
you force it with the span argument. Let’s enter the following search:

sourcetype=access_*

| timechart count(eval(action="purchase"))
by productId
usenull=F

77

http://mygizmostore.com/

CHAPTER 4 = VISUALIZING THE RESULTS

Asyou can see in Figure 4-19, the chart shows multiple column lines for each of the x-axis time variables, making it
difficult to get the essence of the data. As we saw earlier, Splunk sometimes intelligently grays out the chart types that are
applicable to a given data structure. In this case, the only other options available for the chart types are line and area.

- Farmatting aptions

Charttype | column LI

column

General ¢ Stack mode | Mone =l
Heanis
i pie ; - Multi-series maode | Combined -
Vs | e ement [Fgnt =] =]
) radial gauge
g8 filler gauge
marker gauge
| 0 Az-LoM-22
& ChA-FL-88
B CA-MyY-0o
B FL-MviT-44
al 0 MMO-SIN-&8
0 MC-5IN-33
M MJB-HKG-55
B OR-DEN-33
z| [0 OTHER
0 PA-DEL-44
MMHHH HH\‘ UL 11 HH il s
Thu Jan 10 ThuJan 17 Thu Jan 24 Thu Jan 31 Thu Feb 7

Figure 4-19. Top purchases by product

Instead of changing the chart type, we will keep the column chart but adopt the stack mode option and select
“stacked.” This will update the chart as shown in Figure 4-20. Rename the chart “Top Product Purchase Chart,” the
x-axis title “Timeline,” and the y-axis title “Count,” and then save it all as “Top Product Purchase Chart” You can hover
on each item in the stack and the count and percentage for the individual part of the stack will be displayed.

op Product Purchase Chart

&3 -

M AZ-LON-22
CA-FL-88

W CA-NY-55
W FL-NYC-44
0 MN9-3IN-66
0 NC-5IN-33
0 MJB-HKG-55
0 OR-DEM-33
[0 OTHER

0 PA-DEL-44
B TX-IND-77

Thu Jan 10 Thu]an 17 Thu Jan 24 Thu Jan 31 Thu Feb 7

2013

Figure 4-20. Product purchases in stacked mode

78

CHAPTER 4 VISUALIZING THE RESULTS

Page Views and Purchases

We can take the same use case and make use of the timechart command to show the data against a timeline on the
x-axis. In the following search, we make use of the eval command to find if an event has a GET method or a purchase
action. We use the per_hour function in timechart to lay out the data over a timeline. Per_hour is an aggregator
function and works well to get a consistent scale for the data:

sourcetype=access_*

| timechart per hour(eval(method="GET"))
AS Views,
per_hour(eval(action="purchase"))
AS Purchases

We will change the chart type to “area” for this chart. When you compare the area chart to the default column
chart (by switching the values in the chart type drop-down box), you will notice that the area chart is much clearer for
the data structure that we got for this use case. We will make the chart title “Purchases and views area chart,” select
stacked mode, and switch the legend placement to the top. The resulting visual area chart is shown in Figure 4-21.
Let’s save the chart as “Purchases and views area chart”

Qurchases and views area chart)

15

[Thu Jan 10 [Thujan 17 [Thu Jan 24 [Thujan 31 [Thu Feb 7
2013

Timeline

Figure 4-21. Purchases and views area chart

So far, you have learned how to use the chart and timechart commands and have become familiar with different
chart types. In general, column or bar charts are better for comparing the frequency of values of fields. Most charts
require search results structured as tables with at least two columns, where the first column provides the x-axis
values and the rest of the columns provide the y-axis values. Apart from charts, Splunk also allows us to visualize the
resulting data through gauges. Gauges work best when you have a single resulting value from the search that can be
used to map against the range provided in gauge. Splunk provides radial, filler, and marker gauges. You will learn
more about the chart and timechart commands in Chapter 10.

In Chapter 2, you learned about Splunk Technology Add-ons and Splunk Apps. One of the key differences is that
Apps are used to visualize the data after it has been loaded into Splunk. Earlier in this chapter and also in Chapter 3
we looked at top IP addresses for MyGizmoStore. com, but what would be more useful and compelling from a business

79

http://mygizmostore.com/

CHAPTER 4 ' VISUALIZING THE RESULTS

standpoint would be to find out the geolocation of these IP addresses. That way, we could spot patterns such as where
most of the MyGizmoStore. com customers come from. There are two Apps available in Splunkbase to visualize the
geolocation of IP addresses, and we will explore both of them:

e Google Maps
e Globe

Visualization Using Google Maps App

We will have to install the Google Maps App on our Splunk instance. You can do this using the same technique you
learned in Chapter 2, making use of the “Find apps . . ” link under the “Apps” menu. Search for Google Maps on
Splunkbase and install it. Once the App is installed, you will be able to see Google Maps in your “App” menu, as shown
in Figure 4-22.

Administrator | 4pp - : r | A : | Jobs | Logout
*NIX 4.6
Aot
Getting =tarted

Google Maps

Search

Home

Manage apps...

Find more apps...

Figure 4-22. Google Maps App

Clicking on “Google Maps” will bring up the familiar Google maps. This App provides a geoip command, which
takes IP addresses and plots those IP addresses on the map across the globe. In our sample MyGizmoStore.com data,
we have the field clientip, which has the IP addresses. Let’s enter the following search:

sourcetype=access*
| geoip clientip

Figure 4-23 shows the resulting Google map, which is zoomed to the U.S. level. We can see that MyGizmoStore.com

has customers in 180 distinct locations; in the United States, Kansas, Kentucky, and New York are the top
three areas.

80

http://mygizmostore.com/
http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 4 VISUALIZING THE RESULTS

Figure 4-23. Visualization of MyGizmoStore.com IP addresses in United States

We can zoom out using the zoom control to see the distribution across the globe. If you select the Splunk overlay,
you will get a darker background of the map with a brighter display of numbers on top, as shown in Figure 4-24.
Asyou can see, North America is the most popular region for MyGizmoStore. com.

81

http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 4 ' VISUALIZING THE RESULTS

801 results with location information { 180 distinct locations) over all time

_ ——
= @Map | Satellite

Figure 4-24. Visualization of MyGizmoStore. com IP addresses across the globe

We can save the search using Save search under the “Actions” menu, as seen in Figure 4-25. We will save the
search as “Customer Location Map.” You can click on the “Settings” menu to edit settings such as geolocation
database as well as specify how the reverse lookup for IP addresses will work. Under the “Views” menus, you will find
a couple of demos that you can watch to familiarize yourself with the App.

82

http://mygizmostore.com/

Search - Views - Settings -~

Google Maps | Actions -

l | geolp cli <Savesearch... ,

Build report...

o 2,999 matchi
Add to daghboard...

~[Hicle SLI00 Create alert..

350 Schedule search...

250

150

Save results
Views: Get link to resultz...

Map | Geo ResU| Export results...

801 results with Frint...

Figure 4-25. Saving search with Google Maps App

The second App that we are going to look at to visualize IP addresses is Globe.

Globe

Sawve as event type...

Inzpect zearch job...

CHAPTER 4 VISUALIZING THE RESULTS

Globe is very similar to the Google Maps App except that the visualization of geolocation is on a rotating globe and the
locations are shown as shining beams coming out of the globe. The longer the beam, the more activity. You can install
the Globe App from Splunkbase; once you have installed it successfully, you will be able to find it under the “App”

menu, as shown in Figure 4-26.

83

CHAPTER 4 ' VISUALIZING THE RESULTS

Administrator || 2pp =3 Manager | Alerts | Jobs | Logout

Getting =tarted
Aot
Globe:

Google Maps

Search

Home
Manage apps...

Find more apps...

Figure 4-26. Globe App

After clicking on “Globe,” you will select “ChromeGlobe,” as shown in Figure 4-27.

splunk>

Search Dashboards - Views ~ Searches & Reports -

ChromeGlobe Actions Chromeslobe

sourcetype=access_* Google Maps

Figure 4-27. Globe view

Once the view is selected, we can make use of the same search that we used with Google Maps:

sourcetype=access*
| geoip clientip

This will bring up a rotating globe with light beams, and you can tilt the globe to see it from different directions.
Figure 4-28 shows the customer activity from the North Pole side. At the time of writing, the Globe App is experimental,
and it is not publicly available for download. We expect it to be available on Splunkbase by the time that you are
reading this chapter.

84

CHAPTER 4 VISUALIZING THE RESULTS

Figure 4-28. MyGizmoStore.com customer activity in Globe

As with Google Maps, you can save the search using the “Save Search. ..” option under the “Actions” menu as
shown in Figure 4-29.

85

http://mygizmostore.com/

CHAPTER 4 ' VISUALIZING THE RESULTS

splunk

Search Dashboards -~ Views - Searches & Reports -~

ChromeGlobe
| sour‘cet;—'pe=ac S8ve search... 9\ '

Build report...

o 2,998 matchil
Add to dashboard...

Shovw timeline Create alert...

Schedule zearch. ..

Save as event type...
Inspect =earch job...

Save resultz
Get link to rezults. ..
Export resulis...

Print...

Figure 4-29. Save Globe search

So far, we have focused on building reports that can be used to visualize the data loaded into Splunk and on
making use of Splunk Apps to help visualize the data. We will now explore how we can put these reports together
as a dashboard.

Dashboards

Dashboards are popular for measuring and tracking company performance, and they represent a useful way to
manage specific metrics that are the best success indicators. A dashboard allows sharing of key information between
different departments in a company and can be considered a one-stop place to look at the current state of affairs.

A dashboard can pinpoint strengths and challenges; users of dashboard do not have to weed through pages of
unnecessary, unmeaningful data. Instead, a dashboard can identify and display data based on advanced analysis.
Managers can make well-informed, evidence-based decisions based on the information in a dashboard.

Enterprises are looking to move beyond historical and descriptive data by using forecasting and predictive
measures for their decision making. Only a few key metrics should be introduced in a dashboard. Your audience does
not want tons of data; they want disciplined thinking and well researched information. It is important to remember
that the main objective of a dashboard is communication; you should not distract viewers with elaborate graphics,
gauges, and dials. The data in a dashboard should be clean, usable, and integrated in a way that is meaningful to
your enterprise.

86

CHAPTER 4 VISUALIZING THE RESULTS

Splunk provides several ways of creating meaningful dashboards that are built from the searches and visual
charts. The easiest way would be using the Splunk Web user interface. We have been using Splunk’s search App to
make searches; however, you may not have realized that the search App already has a basic dashboard (Figure 4-30).
This provides information about the data loaded into Splunk, the number of events indexed, different sources of data,
source types, and the hosts. It gives a holistic snapshot and lets the users take action either by doing drill-downs or by
creating searches to find specific data.

Allindexed data

This lizts &l of the dats you have loaded into your default indexes . Add more data,

Everts indexed Earliest event Latest event

2,199,247 Tue May 11 07:02:35 2010 Thu Feb 21 10:05:51 2013
source » Count = Last Update =
Wil LocalProcesses 1,245 469 Thu Feb 21 10:05:25 2013
Wl LocalPhysicalDisk 250,650 Thu Feb 21 10:05:46 2013
Wl CPUTime 239123 Thu Feb 21 10:05:50 2013
WAL hemary 179,336 Thu Feb 21 10:05:51 2013
hdl: LocalMetweork 167,100 Thu Feb 21 10:05:51 2013
WinEvertLog System 56,285 Wied Feb 20133227 2013
Wl FreeDizkSpace 23533 Thu Feb 21 10:04:46 2013
WinEventLog: Security 21,792 Thu Feb 21 09:51:19 2013
WinEvertLog: Application 12905 Wied Feb 20 18:45:35 2013
fzchangemonitor 7 Fri Fehb 8 16:08:39 2013

:Source types (2 10) >

sourcetype ¥ Count = Last Update ¥ host * Count ¥ Last Update =

Wil LocalProcesses 1245511 ThuFeb 21 10:05:25 21 DOFER 2199247 Thu Feb 21 1000551 2013
Wl LocalPhysicalDisk 250650 ThuFeb 21 10:05:46 21

WL CPUTime 239124 ThuFeh 21 1000350 21

Figure 4-30. Splunk Search App Dashboard

Splunk also provides a default collection of five status dashboards, which can be accessed by clicking on the
“Status” menu, as shown in Figure 4-31.

87

CHAPTER 4 ' VISUALIZING THE RESULTS

splunk>

Summary Search Status - Dashboards & Views - Searches & Reports -

summary | Actions @ Search activity v

(IMcles: activity 4

~.“— Server activity *
Inputs activity

All indexed data

Scheduler activity »

Thiz listz all of the data Vindexes. Add more data,

Figure 4-31. Splunk status dashboards

The Search activity dashboard provides information about search activities for the Splunk
instance. You can see the peak load times for searches, the most popular searches, and so on.

The Index activity dashboard provides several useful statistics breakdowns for indexes and
index size, utilization of resources such as CPU per indey, top five sources that have been
indexed in the last 24 hours, and so on.

The Server activity dashboard provides information about recent browser usage, Splunk
web errors, and information about how Splunk is performing. Figure 4-32 show a nice server
activity dashboard and good usage of Gauge charts to show information about errors, access
delays, and uptime. You can control the threshold and range values for the gauge charts to
make the data more meaningful.

§|—1Iunk(l activity overview >Acﬁons -

Status
Splunkd errors this hour Average splunkd access Average splunkd uptime (in
delay this hour (in s) days)
7
&
5
[I 4

w

o] o4 08 12 16 2

ra

0.491

=]

Wigwe full results
Wiennr full results “igw full results

Figure 4-32. Splunk activity overview with gauge charts

CHAPTER 4 VISUALIZING THE RESULTS

e The Inputs activity dashboard provides information related to inputs or processed and
ignored log files.

e The Scheduler activity dashboard provides information about the search scheduler, with
charts showing the started and skipped searches, average execution times, average time taken
to run scheduled searches, and so on.

Now that you have learned what Splunk provides as default dashboards, and the wealth of information that can
be used, let’s explore how to create a custom dashboard. Throughout this chapter we have created different searches
and visual charts that are related to MyGizmoStore.com sample data. We will handpick some of them to create
a dashboard that provides snapshot information about MyGizmoStore. com. We will take the following reports:

e Chart of purchases and views for each product
e 404 Errors

e Purchases trend

e Transaction duration

e Top purchases by product

To get started, click on the “Create dashboard . . . ” link under the “Dashboards & Views” menu, shown
in Figure 4-33.

Summary Search Status - Dashboards & Views - Searches & Reports ~

Summary | Actions -~ Summary

llanage Views

N)
Create dashboard...

Allindexed data
Figure 4-33. Create dashboard

This will bring up the dialog box “Create new dashboard.” We will enter MyGizmoStore as ID and
MyGizmoStore.com for Name, as shown in Figure 4-34. Click on the Create button.

Create new dashboard x|

ID {unique identifier; no spacesispecial characters)

My GizmoStore

Mame (appears in menu)

Cancel

Figure 4-34. Create MyGizmoStore dashbaord

89

http://mygizmostore.com/
http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 4 ' VISUALIZING THE RESULTS

An empty dashboard has now been created. To make it editable and add previously created reports, click “On”
for Edit, as shown in Figure 4-35.

Administrator | &pp ~ | Manager | Alertz | Jobs | Logout

@ Help | Ahout

Figure 4-35. EditMyGizmoStore.com dashboard

To start adding the reports into the dashboard, we will have to create a new panel that will hold the report. Click
on “New panel;” that will bring up a dialog box, as shown in Figure 4-36. We will start creating a panel for the Purchases
and Views chart. Enter “Purchases and Views” for the title and select the radio button for “Saved search.” The drop-down
box will show the list of saved reports. Select “Purchases and view area chart.” Click on the Save button.

New panel

Title

Purchases and Views

Search command
% Saved search T Inline search string

— .
Purchazes and views area chaa > ;l

Cancel

Figure 4-36. Purchases and views panel

This will bring up the report in tabular format. In order to visualize it as a chart, you have to click on “Edit” and
select “Edit Visualization,” as shown in Figure 4-37.

90

http://mygizmostore.com/

Purchases and Views

2 prey n 2 nexts

CHAPTER 4 VISUALIZING THE RESULTS

Ediit zearch

Eclit vizualization
Purchase:

_time * Views *

AM0M 34 2:00:00.000 Ak 5125000 0.5375000
1M 31 2:00:00.000 Ak 8.083333 1.083333
1215 12:00:00.000 Ak 5125000 1.041 667
1M 3N 31200000000 Ak 5833333 0703333
14051 2:00:00.000 Ak 7 916667 0.91 6667

AMEM T A N0-00 0 kg

0 47Ennn

Figure 4-37. Edit visualization for purchase and views

A4 ARERET

Delete

This will bring up the dialog box, where you can make changes depending on how you want to visualize the
tabular data. Let’s select the “Area” chart as shown in Figure 4-38, which we saw worked well for this data. Click on the

Save button.

Edit visualization

EH Tahle » | [*Lesrn More
General BEH Table
Events
= Bar
G Area __-} &

il Column |
L Fie

Ll Scatter j

= Line El
42 Single Walue

D Radial Gauge P j
Il Filler Gauge

HUUY Marker Gaudge

Cancel

Figure 4-38. Edit visualization

91

CHAPTER 4 ' VISUALIZING THE RESULTS

You will now be able to see the tabular data for purchases and views as an area chart, as shown in Figure 4-39.

| # et -

WViews Purchases
20
-
=
3
&
[ThuJan 10 [ThuJan 17 [Thu Jan 24 [Thu Jan 31 [ThuFeb 7
2013
Timeline

Figure 4-39. Purchases and Views

Now that you have learned in a step-by-step manner how to add a report to the dashboard, we will add the rest of
the reports to the dashboard.

For 404 errors report:

e Click on New Panel; name as 404 Errors and select “404 Errors Chart” report from the

drop-down box. Click Save.

e Edit the panel, and select “Pie as Visualization.” Click Save.

For Purchases trend report:

e C(Click on New Panel; name as Purchases Trend and select “Purchases Trend” report from the

drop-down box. Click Save.
For Transaction duration report:

e (Click on New Panel; name as Transaction Duration and select “Transaction Duration Chart”

report from the drop-down box. Click Save.

e Edit the panel, and select “Column as Visualization.” Click Save.

For Top Product purchases report:

e Click on New Panel; name as Top Product Purchases and select “Top Product Purchases

Chart” report from the drop-down box. Click Save.

e Edit the panel, select “Column as Visualization,” and select stacked as stack mode option.

Click Save.

Now that we have added all of the reports that we want to be part of the MyGizmoStore. com dashboard,
we can arrange them properly to make the dashboard easy to understand. You can drag and drop each panel in the
dashboard to rearrange them. Once the dashboard is rearranged, go to the “Dashboards & Views” menu and click
on MyGizmoStore. comlink to bring up the new dashboard, as shown in Figure 4-40.

92

http://mygizmostore.com/
http://mygizmostore.com/

CHAPTER 4 VISUALIZING THE RESULTS

Summary Search Status + = Dashboards & Views + Searches & Reports ~

MyGizmoStore.com WiyGizmoStore.com

TestDashboard

Purchases and Views Summary 1s ago 404 Errors 15 ago
Google haps lases BLACK_DOODADS
WHITE_WIDGETS
s Manage Views
Crests dashbosrd BLUE_CIZMOS.
€ 0
H
H
o
5 RED_GADGETS
gggan n ThuJan 17 ThuJan 24 Thu Jan 31 ORANCE WATEHMACALLITS
. PURPLE_DOOHICKEYS
Timeline
Wi resuts Wiew resuts
Purchases Trend 1s ago Transaction Duration <1m ago
Category Hame * Purchases Trend * Total
BLACK_DOODADS MWA_ A g
BLUE_GIZMOS 6

count

ORANGE_WATCHMACALLITS
W count
PURPLE_DOCHICKEYS

RED_GADGETS

WHITE_VWIDGETS 4-8 G-16 16-32 I 32-64

duration
Wi resuts

Wiew resutis

Figure 4-40. MyGizmoStore.com dashboard

You have already seen how Splunk Apps such as Google Maps or Globe help us to visualize the data. In Chapter 2,
you learned about and installed Splunk Technology Add-ons for Windows and *Nix to collect the data in Windows or
Unix environments. These Add-ons also have full-fledged Splunk Apps, which means that you can not only collect the
data but also visualize it through prebuilt dashboards.

Let’s see how we can make use of Splunk’s *Nix App. You can download and install the *Nix App the same way as
you have installed other Apps. If you have installed the *Nix Add-on at the same time, you will have to disable it before
you can get the *Nix App to work. To disable a particular App, use Splunk Manager and click on “Apps.” Once you have
installed *Nix App, it will be listed under the “App” menu, as shown in Figure 4-41.

Administrator | App = | Manager | Alerts | Jobs | Logout

| Aot

Find mare ap

Figure 4-41. *Nix App

93

http://mygizmostore.com/

CHAPTER 4 ' VISUALIZING THE RESULTS

On Unix, you can enable the sources of data that you want to load into Splunk. To show the *Nix dashboard
working we have enabled /var/logs as file and directory inputs and cpu, memory, top, and who in scripted inputs.

*Nix provides a comprehensive set of dashboards that let you visualize the information across CPU, memory, disk,
network, users, and different log files. You can build custom dashboards on top of it or create reports in different
charting formats using the data loaded into Splunk by *Nix.

We will wrap up this chapter by looking at sample dashboards in *Nix. Figure 4-42 shows the CPU overview
dashboard that you can access from the CPU menu, which provides visual information about CPU consumption by
user, process, and so on. You can see that the App makes use of the timechart command to create reports that are part
of the dashboard.

Splunk> *nix Administrator | App ~ | Man

Search Overview - CPU - Memory - Disk - Network - Users - Log Files ~ Configs ~ Setup

CPU Overview

CPU Overview

t of commo A0 FLn.

imption by co CPU consumption by us: 1stantaneous

Figure 4-42. *Nix CPU overview dashboard

Figure 4-43 shows the memory dashboard that visually shows the memory usage by process, usage by top 10
users, and so on.

94

CHAPTER 4 VISUALIZING THE RESULTS

\firtual Memory by

KiloBytes

Wi
u
£
&
=
¥

virtual memory consumptiolt
instantaneou KB)

w——w

Avg KiloBytes

root

Avg KiloBytes

Thu Feb
11 ¢

Figure 4-43. *Nix memory overview dashboard

Figure 4-44 shows the logging dashboard, which visually shows throughput across different log files. Splunk
App for Windows also provides a comprehensive set of dashboards similar to *Nix. You can install this in the same

way as *Nix.

95

CHAPTER 4 ' VISUALIZING THE RESULTS

Logging Throughput

an enter an 12, il hostname, ar IP &

15,000

10,000

5,000

Thu Feb 14

_time ~ index = linecount > source > sourcetype = splunk_server = _raw >

Figure 4-44. *Nix logging dashboard

Summary

In this chapter, you have learned how to visualize data indexed into Splunk. You have seen the reporting capabilities of
Splunk using report builder and SPL commands chart and timechart. You learned about different charting types and
how to use them for different types of data structures, using the MyGizmoStore.com sample data. Finally, you learned
how to build dashboards and explore Splunk Apps that help in visualization and provide prebuilt dashboards.

96

http://mygizmostore.com/

CHAPTER 5

Defining Alerts

In this chapter, you will learn about different types of alerts that Splunk provides and how to create alerts and take
action. You will make use of the searches and data from MyGizmoStore.comand *Nix and take different use cases to
trigger different types of alerts.

What Are Alerts?

Alerts are just short messages or notifications that help individuals keep informed about certain things that have happened
or potentially will happen. We are all used to alerts in our daily lives: for example, calendar notifications that alert us
about meetings we should attend. Those of us who travel by air in the United States are familiar with Homeland Security’s
advisory system, which issues alerts in a color-coded threat level. As online customers, we are used to e-mail alerts that we
get from online stores or online ticketing sites when the price of an item or a ticket or a hotel room rate drops. Enterprise
IT teams are interested in security, network, CPU, memory, and types of alerts that have huge impact on the performance
of applications, security breaches that may be happening, or if some Service Level Agreement (SLA) is not going to be met.
Even without a computer, we all are used to weather alerts on the radio, TV, mobile phones, and tablets.

Alerts have become part and parcel of our lives now whether we explicitly recognize them as alerts or not.
For enterprises, alerts about network, hardware, applications, web sites, and so on are key indicators to what is
going on with the IT infrastructure, how they are doing compared to SLAs; and from the business point of view, how
operations are performing whether from inventory, shipping, call center, customer support, or sales. So now the
question is, what does Splunk provide for alerts? We are going to explore this in the next few sections of this chapter.

How Splunk Provides Alerts

It is extremely important to know what is happening with all the data that is getting collected and how you can take
advantage of being informed about the positive and negative types of events. We saw Splunk processing, analyzing,
and visualizing different sources of data; now we need to see how, from the IT and business standpoint, users can
be alerted to abnormal events. You can use Splunk as a monitoring tool for the enterprise. Splunk provides three
different types of alerts:

e Scheduled alerts—these types of alerts are used with searches that are scheduled at a specified
interval. The searches work on a historical set of events, and an alert can be triggered if a
certain alert condition is met. For example, an online store such as MyGizmoStore.com will
have a search that counts everyday product sales; an alert can be triggered if the count falls
below a certain number. These types of alerts are designed for situations where an immediate
action is not required but users want to know if the condition for the alert is met so that they
can be informed and possibly take some action or probe further into the issue

97

http://MyGizmoStore.com
http://MyGizmoStore.com

CHAPTER 5 * DEFINING ALERTS

e Perresults alerts—these types of alerts are used when you want to know something as soon as
an alert condition is met in the search. A classic example is having a search that would check
for any HTTP status greater than or equal to 500 (i.e. server errors) and send an alert once
every hour the first time that the condition is satisfied

¢ Rolling-window alerts—these types of alerts are used to monitor events in real time within a
rolling time window, such as the previous 10 minutes. The alert gets triggered when the alert
conditions are met by events that qualify in the rolling window. A classic example is potential
fraud detection, in which someone makes more than three purchases with the same credit
card in the rolling window of 10 minutes

Now that you have learned about alerts and different types of alerts provided by Splunk, let us explore how we
can create alerts. As in previous chapters, we will take different use cases that are related to MyGizmoStore.com and
also make use of the data we have collected using *Nix. Three use cases we are going to look at are:

e Alert based on product sales
e Alerton failed logins
e Alert on critical errors in log files

Splunk Web is the easiest way to create alerts. We will start with the first use case.

Alert based on product sales

In this use case we want to find out how many products were sold yesterday, and raise an alert if that number
drops below 30.

To start with we will build a quick search so that we can make use of it with an alert. In Chapter 2 we made use
of time picker to zoom into a particular range of dates. To find the total number of products sold yesterday, we could
make use of the “Yesterday” option in the time picker. Splunk provides time modifiers that help to customize the time
range for the search. Splunk provides three time modifiers:

o earliest—specifies the earliest for the search time range
e latest—specifies the latest for the search time range
e now—is the current time

Time modifiers support specifying time units in seconds, minutes, hours, days, week, days of the week, month,
quarter, and year. In the search below, we make use of earliest and going back one day by specifying -1d, which
means minus one day from the current date. To compute the total number of purchases, we use an eval command to
find the events that have a purchase action and make use of the count function. Figure 5-1 shows that the search has
used the time modifier and shows the total number of products sold for yesterday.

sourcetype=access_*
earliest=-1d
action=purchase
| stats count(eval(action="purchase")) AS "Total Products Sold Yesterday"

98

http://MyGizmoStore.com

CHAPTER 5 * DEFINING ALERTS

Your timerange was substituted based on your search string

1 result over all time

= J BeExpot & Options
Cvarlay: | Mone |
(Total Products Sold Yesterday = }
18

Figure 5-1. Total products sold yesterday

Now that we have a search that can tell us the total number of products sold for yesterday, we can go ahead
and schedule an alert using Splunk Web, which would also save the search for the alert. Select “Create” and click on
the “Alert. . ” link, as shown in Figure 5-2. You can also add alerts to the saved searches using the Splunk Manager
interface and select a particular search in the “Searches and reports” section. All of the alert options that we will
explore in this chapter are available when you add an alert to the saved search.

Dazhboard panel...

Feport...

Ewert type...

Scheduled =earch...

Figure 5-2. Create alert

In the Create Alert dialog box that comes up, enter “Yesterday Purchases Alert” as Name. In the Schedule drop-down,
select “Run on a schedule once every” The dialog box will expand with additional options. Select “Day” for the schedule,
meaning once every day. In the Trigger if drop-down box, select “Number of results” and “is less than’, and add 30 as the
value. This alert will get triggered if the number of products sold for yesterday is less than 30. Figure 5-3 shows the selected
options. Click the Next button.

99

CHAPTER 5 * DEFINING ALERTS

Create Alert [x]

) Schedule

" Name @rday Purchase@

Schedule un on a schedule once every,_ j

& :

Sedrelwii ran aver selected schedile Interall
Trigger if € Number of results 2 |

T)

Cancel

Figure 5-3. Schedule an alert

In the Actions page of the Create Alert dialog, you will see different options for the actions that need to happen.
Three possible options for actions include sending an e-mail to a user or group of users, running a script that might
take an immediate preventive action such as provisioning additional disk space, and making use of Splunk Alert
manager to view the triggered alerts.

We will select the alerts manager option for this use case and explore the alerts manager once we have created
the alert. Each alert can be labeled with a severity level that indicates the importance of the alert. For example, you
would like to see the alerts that are related when CPUs are utilized above 90 percent or memory is being maxed out,
and so on. Figure 5-4 shows a drop-down box for severity where the options include Low, Medium, High, and Critical.
Because this is not a high priority alert, we will select “Medium”. You can make use of the severity level as a way to
filter the triggered alerts in alert manager. Alerts can be triggered on all results or for each result. Select the radio
button for “All results” We will discuss throttling in our next two use cases. Click on the Next button. Figure 5-4
shows the enabled options.

100

CHAPTER 5 * DEFINING ALERTS

Create Alert

) schedule € Actions €) sharing

Enable actions | Send email

I Run a script

VU Showe triggered alers in % Alerd manager >
Severity

/ [

Execute actions on ™ Allresults © Each result

Throttling I afer executing actions, suppress them for...

Cancel « Back

Figure 5-4. Alert actions

In the final step of the alert creation process, you can either share the alert with other users or keep it private.
This is similar to sharing searches. Select the radio button for “Share as read-only to all users of current app” This will
make multiple users view the alerts, and keep them informed about certain activity or performance indicators.
Click on the Finish button. You will see the alert saved successfully popup box. Click OK.

Create Alert

@) Schedule € Actions €) Sharing

Share © keep =earch private

Eahare as read-onky to all users of current a_pD

Additional permizsion seftings available in
Manager » Searchies and reports

Cancel % Back

Figure 5-5. Share the alert

The Alert manager displays records of all alerts, and provides options to search, filter, and view alert based on
app, owner, severity, and alert. Selected alerts can also be deleted as well. To access the Alert manager, click on the
“Alerts” menu, as shown in Figure 5-6.

101

CHAPTER 5 * DEFINING ALERTS

Administrator | App ~ | Mansger| Alerts | gobs | Logout

Figure 5-6. Alerts manager

In the Alert manager, select Yesterday Purchases Alert in the Alert drop-down box as shown in Figure 5-7. You will
see the alerts getting filtered and records related to this alert are displayed. In this case, we only have one alert.

App | Search (search) LI Ovrner | Administrator j Severity | All j &

Shovwing 1-1 of 1 result
Fired alerts =
Nesterday Purchases Alert

Figure 5-7. Yesterday purchase alert in Alert manager

Time *

v 2013-02-27 00:00:01 PST

App Type * Severity ¥ Mode # Actions
zearch Scheduled 4 Medium Digest [iew results [Edlit search Delete

You can click on the “View results” link to see the actual results for this search and find out why the alert has
happened. As you saw in Figure 5-1, the number of products sold was only 18, and as our alert condition was set to
trigger an alert when the sales were less than 30, this resulted in an alert getting triggered.

Alert on failed logins

We installed Splunk *Nix App in Chapter 4 and enabled data from different logs to be indexed into Splunk. Now we
can make use of data loaded from security logs and find out how many login failures have happened in the last 24
hours to create a different type of alert that works in real time. Go the *Nix app using the “App” menu. *Nix creates its
own index 0s, so we start the search specifying the index name. After the index name, search for any events that have
failure in them where the sourcetype is linux_secure. Make use of the stats command to find the count of failures by
remote host or rhost. Finally, sort the results.

index=0s sourcetype=linux_secure failure
| stats count by rhost
| sort by count

Figure 5-8 shows the results from the above search that we have entered in the search bar of the *Nix app.
The results would vary significantly, as the results are specific to the server that we are using at the time of writing this
chapter. You can see the IP addresses of the remote hosts or rhosts where they are trying to login and the number of
failures, sorted in descending order.

102

CHAPTER 5 * DEFINING ALERTS

Gir Crectc

" 13,949 matching events ! ' A Save

Lin le

3 selected fields Edit 80 results ov

2 hy

20 interesting fields

a an (1)

Figure 5-8. Login failures

We will create an alert for our search by selecting “Alert. . .” from the Create drop-down. In the Create Alert
dialog box, we will name the alert as Login Failure Alert and select “Trigger in real-time whenever a result matches”.
This option is the second of the alert types that we discussed earlier, known as a per-result alert. This alert would get
triggered whenever an event that comes in matches the search in real time. Figure 5-9 shows the selected options.
Click on the Next button.

Create Alert

R Locin Faive Aot |

ERENE Tricoer in real-time whenever a result matches =

Figure 5-9. Create alert for login failures

103

CHAPTER 5 * DEFINING ALERTS

In the actions page of Create Alert dialog box we will enable an action to make Splunk send an e-mail to a user
atalert@mydomain.com. You can include the results either inline or as a CSV or PDF attachment. We will make it
inline and also enable the alerts to be viewed via Alert manager as we have done before. Because this alert is related to
security, we will make the severity High. Figure 5-10 shows the selected option. Click on the Next button.

Create Alert

—®sc B ctions —— @ Sharing —

Enable

Throttling 1l s or results with th

) (o) QI

Figure 5-10. Alert actions for login failures

Once the alert has been successfully created, we can view the triggered alerts by launching the Alert manager. We
can filter the alerts using the app name, which is *Nix in our case. As the *Nix app can have many alerts, we can further
filter it down by selecting the particular alert, which in our case is a Login security alert from the alert drop-down box.
Figure 5-11 shows the set of alerts that have been triggered. We can see the type for this alert is set to be Real-time
and it is a Per Result type of alert. What you can also see is that users may be overwhelmed with the number of alerts
that can potentially get triggered. This is where Splunk’s throttling alert action capability comes in handy, and we will
explore that in our next use case.

104

http://mailto:alert@mydomain.com/

CHAPTER 5 * DEFINING ALERTS

Ap[:‘ WX 4 B (Lnix) , LI wner Admlnls‘tratnr;l SEvErity | Al LI Alen< Loggin vi , &

2 nexts Showing 1-25 of 40 resutts
Time ¥ Fired alerts = App Type = Severity * Mode = Actions
(] I013-02-27 141614 PST i A High P View resuts | [PEdt search | Delete
O 2013-02-27 1416:03 PST Login Faiure &lzrt unix Realtime & High Per Result [view results A Edit search Delete
r 2013-02-27 141552 PET Login Failure alert unix Realtime & High Per Resut [Wiew resutts [Edit zearch Delete
O 2013-02-27 141541 PST Login Faiure &lzrt unix Realtime 4 High Per Result [view results [*Edit search Delete
O 2013-02-27 141530 PST Login Faiure Alzrt unix Realtime @ High Per Result [View resutts [Edit zearch Delete
- 2013-02-27 141319 PST Login Faiure &lzrt unix ReEalimes 4, High Per Result [View resutts [*Edit search Delete
O 2013-02-27 141508 PST Login Failure Alert unix Real-time 44 High Per Result [View resutts [Edit zearch Delete
O 2013-02-27 141457 PST Login Faiure &lzrt unix ReEalktimes {4, High Per Result [View resutts [*Edit search Delete
O 2013-02-27 141446 PST Login Failure Alert unix Realtime @ High Per Result [View resutts [Edit zearch Delete
O 2013-02-27 141435 PST Login Faiure szt unix Realtime & High Per Result [iew results [Edit search Delete
r 2013-02-27 141424 PST Login Failure Alert unix Realtime & High Per Resultt [view results [Edit search Delete
O 2013-02-27 141413 PST Login Faiure &zt unix Realtime 4 High Per Result [iew results [Edit search Delete
O 2013-02-27 141402 PST Login Faiure Alert unix Realtime @ High Per Result [iew resuts [Edlit zearch Delete
- 2013-02-27 141351 PST Login Faiure &zt unix Realime A High Pet Result [View resutts [*Edit search Delete
{ AT 0T T A4 AN DST 1 arin Fail wa Alart L Raal tima i Hicsk Dar Rasoit T g rasite A Eclit caarch Dislata

Select All | Mone Selected alerts | Delete
Figure 5-11. Alert Manager

Clicking on the “View results” link against the alert will show the particular set of events that have triggered the
alert, as shown in Figure 5-12.

1 match l Create -

1 results b

rhost = count ¥

1

Figure 5-12. Event that triggered login failure alert

Alerts on critical errors in log files

In this use case, we will make use of the data from the log files in Unix, which are enabled in the *Nix app. We can set
an alert that will look for any critical errors. We can do that with a simple search in which we indicate that the index is
os and sourcetype is linux_secure and find any indexed events that have the word critical or error in them. In the
*Nix app, enter the below search and create a new alert called Critical Errors Alert, as shown in Figure 5-13. We will

105

CHAPTER 5 * DEFINING ALERTS

select “Monitor in real-time over a rolling window of” option in the Schedule drop-down. In our case, we will specify a
30-minute window and trigger the alert if the number of results is greater than 15.

index=0s sourcetype=linux_secure critical OR error

Create Alert

- '.'J'—'H_'Zﬂl'l-lufi - ...Sh;“ ing —

Schedule A R AR A g
moritorin real-time over & rolling swindow of 28

50 D | e x|

LGOI urriber of results |

[gresirtvar—=I(17)

Figure 5-13. Creating a critical errors alert

In the actions page of the alert dialog box, we will enable sending e-mail to our alert@mydomain.com user and
also enable the alerts manager option. One new option that we will select for this use case is throttling. The throttling
option suppresses the alerts after the initial alert gets fired off for a specified period of time. As you saw in the previous
use case for login failures, instead of getting repeated alerts, you can say that the alerts have to be suppressed for
a specified time either in seconds, minutes, or hours. In this case, we will specify it to be 15 minutes. You will have
to find the optimal time that would be best suited to the alert that you are creating so that the throttling does not
suppress an important alert.

Splunk allows you to run scripts when alerts get triggered. This option can be enabled by selecting the checkbox
for “Run a script” option in the Actions page of Create Alert. This feature can be used to take immediate action
through an automated process that can done using scripting. Classic examples include: disabling a user login after
three failures, blocking an IP address that is used in a DDOS attack, provisioning additional compute or storage on the
cloud when the user activity touches a predefined threshold, or sending the details of the triggered alert to another
application or system that would trigger the required action. The scripts that need to be executed have to be placed in
the $SPLUNK_HOME/bin/scripts directory, where $SPLUNK_HOME is the directory where Splunk is installed.

Once created, the alert can always be edited using the “Manager” menu by clicking on the “Searches and reports”
link in the Knowledge section. Figure 5-14 shows the specified options for the critical errors alert. Click the Next button.

106

http://alert@mydomain.com

CHAPTER 5 * DEFINING ALERTS

Create Alert

s —— @ Sharing —

Leam more

ct

Splunk Alert: Snamed

Include results EIIGE |Z|

M Fun :

Throttling Adler executing actions, s

= (<o) (IR

Figure 5-14. Select throttling for the alert

Once the alert is created, you can go to the Alert manager and filter based on the app and alert. We can select *Nix
as app and Critical Errors Alert in the Alert and that would bring the triggered alerts so far. Figure 5-15 shows the alert
records. You will notice that the Mode column is shown as Digest, meaning that the alert is related to a set of events.

107

CHAPTER 5 * DEFINING ALERTS

Ap,q: NI 4.5 (unix)) x| owner | scministrator [Severity [a1 <[Alert &

Showing 1-5 of 5 results

Time = Fired alerts = App Type * Severity = Mode = Actions
r 2013-03-01 01:44:00 PST Critical Ertors Alert unix A crtical Digest [View results [Edit search | Delste
r 201 3-02-28 21:38:43 PST Critical Ervors Alert unix Real-time ‘ Critical Digyerat [View resulis [Edit search Delete
r 2013-02-28 09:38:49 PST Critical Errars Alert unix Real-time ‘ Critical Diggest [View resufts [Edit search Delete
r 201 3-02-28 05:37:03 PST Critical Errors Alert unix Realtine Al Critical Dige=t [View resulis e Edit search Delete

Figure 5-15. Triggered alerts for critical errors

Clicking on “View results” shows the list of events that pertain to the digest of the qualified alert. Figure 5-16
shows the sample set of events for this alert.

2 events befare

d: auth):
retrieving in

d:auth):

Figure 5-16. Events related to critical errors

Summary

In this chapter, you have learned about the three different types of alerts that Splunk provides. We explored how

to create alerts using a common set of use cases, leveraging the searches from MyGizmoStore.com and *Nix along
with different actions that are available with alert. You learned how to make use of the alerts manager to view the
triggered alerts.

108

http://MyGizmoStore.com

CHAPTER 6

Web Site Monitoring

In this chapter, you will learn how to model and create a web site monitoring tool that contains reports and a
dashboard to help IT and business in enterprises measure different aspects of online retail store web sites such as
MyGizmoStore.com.

Monitoring web sites

Web site monitoring is often used by enterprises to ensure that their web sites are live and responding to user
requests. Before updates are put into production for web sites or applications, IT typically simulate the actions of
thousands of visitors to a web site and observe how the site or application responds. They also simulate visitors across
multiple geographies and servers.

The sample data we have created for MyGizmoStore. comis quite similar to that approach with a well-defined set
of patterns that are customizable. Monitoring tools send out alerts when pages or parts of a web site malfunction,
allowing IT to correct issues faster. You saw how to use Splunk alerts to get notifications in Chapter 5.

Monitoring is essential to ensure that a web site is available to users and downtimes are minimized. Users who
rely on a web site or an application for work will get frustrated or even stop using the application if it is not reliably
available. This becomes even more critical if the web site is an online business like MyGizmoStore.com, where a
nonfunctioning web site means loss of revenue as customers make their purchases from a competitor. Monitoring
can cover many things that an application or web site needs to function: network connectivity, DNS records, database
connectivity, bandwidth, and computer resources like RAM, CPU load, disk space, events, and so on. Commonly
measured metrics on the IT side include response time, availability of servers, traffic patterns; and on the business
side user demographics, time spent on web site by users, how many new users versus existing users, and so on.

In Chapters 2, 3, and 4, you learned how to process, analyze, and visualize data using different SPL commands.
In this chapter, we will make use of different SPL commands and searches that you have learned previously and
work toward creating a web site monitoring tool that would help us monitor the MyGizmoStore. comsite. This chapter
reviews some of the previous explanations and adds ideas about how to quickly put together some key reports from
the IT and business perspectives that can be monitored through a dashboard. You will be able to expand on this
monitoring tool as you work on more diverse data sets that come up in the later chapters of this book.

We will make use of the following use cases to create reports for the monitoring dashboard.

IT Operations
e Hits by host
¢ Hits by host without internal access
e Traffic with good HTTP status
e Traffic with bad HTTP status
e Top pages by bad HTTP status

109

http://MyGizmoStore.com
http://MyGizmoStore.com
http://MyGizmoStore.com
http://MyGizmoStore.com

CHAPTER 6 © WEB SITE MONITORING

Business
e User demographics by region
e Bouncerate

e Unique visitors

IT Operations
Hits by host

In this use case we would like to see the traffic coming into MyGizmoStore.com hosts for a specified period of time.
Although you can make use of the timeline to adjust the period of time, you are familiar with the time modifiers that
were used in Chapter 5; we will make use of them to specify the time range. In the search below, you are looking at
the events over last seven days and counting the number of events per host and charting them using the timechart
command. You will notice the time modifier earliest has an @ sign in the value assigned to it. Time modifiers allow
the @ sign as part of the specified value to indicate how the time should be rounded down. In our search, we round
it down to a day, but you can round the time modifier to any supported time unit such as second, minute, hour, day,
week, particular day of the week, month, quarter, and year. Let’s enter the following search into the search bar:

sourcetype=access_*
earliest=-7d@d
latest=now

| timechart count by host

Figure 6-1 shows the column type chart for this search, in which each column represents one of the
MyGizmoStore.comhosts. On most dates, two of the three hosts are serving almost equal number of requests and the
other host is less heavily loaded. IT can use this report and further analyze the data by increasing the number of days
to see if they can find some patterns on which one of the three hosts is serving fewer requests. Then they can fine-tune
the load balancer so that all user requests are serviced quickly and the hardware resources are properly optimized.
We will make use of the “Formatting options” link to make changes to the chart and x- and y-axis titles, and save this
report as “Hits by Host” (Figure 6-1).

110

http://MyGizmoStore.com
http://MyGizmoStore.com

CHAPTER 6 = WEB SITE MONITORING

Your timerange was substituted based on your search string

Sresults aver all time
= H m + Cptions 20 per page

v Farmatting options

125

100 |

‘%’)

=)

0 BigDEBook-wnaan
EigDEEook—wainw
[EigDEEQok-twanan

25 |

Thu Mar 7 Fri Mar & SatMar 9 Sun Mar 10 Maon Mar 11

2013

Figure 6-1. Hits by host

Hits by host without internal access

For online retail stores such as MyGizmoStore.com, there will be hits coming in from internal employees or users who
are either browsing or making purchases. It would be interesting to see how different the hits by host chart looks if we
remove the events that come from IP addresses that are internal to your network. To do that, we can take the search
and update it, where we will only look at the events where the clientip field is not equal to 192*. You can add more
subnets to the search if need be. Let’s enter the updated search into the search bar:

sourcetype=access_*
earliest=-7d@d
latest=now
clientip != 192*

| timechart count by host

Figure 6-2 shows the column type chart for the updated search. The sample data we have for MyGizmoStore.com
doesn’t have many internal access events, so we don’t see any difference in charts, but in the real world it would be
useful to compare these two charts to see if the internal requests are skewing the request numbers. IT could make use
of this information to divert the traffic coming in from internal IP addresses to a different host so that it doesn’t impact
external customers. We will make changes to the chart and x- and y-axis titles, and save this report as “Hits by Host
without Internal Access’”.

111

http://MyGizmoStore.com
http://MyGizmoStore.com

CHAPTER 6 WEB SITE MONITORING

Your timerange was substituted based on your search string

Sresults over all time
= H m & Optionz 20 per page -
v Formatting options

wWHits by Host without Internal Access ’5

125

00 |
75
0 EigDEEook -
| EigDEEook -2
s0 I EigDEEook-ww3

25 |

Thu Mar 7 FriMar & Sat Mar 9 Sun Mar 10 Mon Mar 11
2013
Ci imeline 9.

Figure 6-2. Hits by host without internal access

Traffic with good HTTP status

In our previous chapters we worked on searches that used HTTP status codes. From the operations standpoint, it is
essential to know the success rate for HTTP traffic; this tells us how many requests are good and how many are bad.
We will start by finding out the good traffic. We are using a 15-day window in the time modifier, but you can adjust it to
the last 24 hours by making earliest=-24h@h. Let’s enter the following search into the search bar:

sourcetype=access_*
earliest=-15d@d
latest=now
status>100 status<300

| timechart count BY status

Although we specified the search to find any events that have the status field in the range of 100 to 300 exclusive,

our sample data only has events with status 200 in that range, which is what the chart in Figure 6-3 shows. We will
make appropriate changes to the chart and x- and y-axis titles, and save this report as “Traffic with good HTTP status”.

112

CHAPTER 6 * WEB SITE MONITORING

Your timerange was substituted based on your search string

13 results over all time
= H m & Citions 20 per page -

v Formatting options

——— =
[Traffic with good HTTP status

&)

Wed Feb 27
2013

Fri Mar 1 Sun Mar 3 Tue Mar 5 Thu har 7

Figure 6-3. Traffic with good HTTP status

Traffic with bad HTTP status

Knowing about traffic with bad HTTP status is much more important than knowing about good traffic, as bad status
could result in direct loss of revenue. We can update our previous search so that it will find all the events where the
status field is greater than or equal to 300. HTTP status codes in the 3xx range can be used if the web site has moved
or to provide temporary redirects (in which case, they don’t necessarily mean bad HTTP traffic). In this particular
example we have included status codes in the 3xx range, but the search can be refined to exclude them by changing
status >=300to status >= 400. This search could also be used as a report that shows non-200 HTTP status in the
last 24 hours by changing the time modifier. Let’s enter the following search into the search bar:

sourcetype=access_*
earliest=-15d@d
latest=now
status>=300

| timechart count BY status

113

CHAPTER 6 WEB SITE MONITORING

Figure 6-4 shows the chart with bad HTTP status; unlike our previous search, which only had HTTP status
200, we can see that the events are distributed between 400, 404, 406, 408, 500, and 503 HTTP status. Although we
discussed what these codes mean in Chapter 3, it makes more sense to show the descriptions of these status codes
than the numbers. We can achieve that using the lookup tables, which you will learn about in the next few chapters. As
this chapter provides a basic framework to create a monitoring tool, by the end of this book you will be able to morph
these reports into something that would serve enterprise requirements. We will make appropriate changes to the
chart and x- and y-axis titles, and save this report as “Traffic with bad HTTP status” (Figure 6-4).

Your timerange was substituted based on your search string

13 results over all time
= = m < Options 20 per page -

+ Formatting options

ﬁr‘a’iﬁc with bad HTTP status

Wed Feb 27 Fri bar 1 Sun Mar 3 Tue Mar 5 | Thu Mar 7 Sat Mar 3

Figure 6-4. Traffic with bad HTTP status

You can always drill down into individual columns in the chart or click on different status legends on the right-hand
side. For example, clicking on 404 status will show the drill-down events list as seen in Figure 6-5. You will notice that
the search also has an additional field clause, which is status=404.

114

CHAPTER 6 = WEB SITE MONITORING

Search @ Smart Mode =

[sourcetype=access_* earliest=-15d@d latest=now status>=300 status<é status=""404™
" 299 matching events [:l B u

Your timerange was substituted based on your search string

[~]Hide E, Zoom out Zoom to gelection Deszelect Linear zcale = 1 bar =1 day

30

Fti Mar 1 Tue Mat 5 Sat Mar 9 WWed Mar 13
2013

30

th

25

[~
=1
[~
=]

o wn
o wn

wn
wn

[299 events over all time

EE Jll [Export + Cptions & prey n 2 3 4 5 B 7 8 9 10 nexts 20 per page -

EALE 199.182.11.100 - - [11/Mar/2@13:07:38:03] "GET
7-aa05.000 Ak show.do?product Id=products&1SESSIONID=SD@SL 1IFF1ADFF34586 HTTP 1.1'05
"http://www.MyGizmoStore. com/product . screen?productId=TX-IND-77" "MoZ1lla/4.@ (compatible;
MSIE 6.0; Windows NT 5.1; SV1)" 87
host=BigDBBook-wwew3 = | sourcetype=access_combined_woookie - | source=foptlogSBigDBBook-wwwifaccess log -

Figure 6-5. Drill-down chart for HTTP 404 status

Top pages by bad HTTP status

One possible next step after finding the information about bad HTTP status traffic would be to find out the top pages
that are part of the bad HTTP status. We can do that using the following search, in which we find the bad HTTP status
events, distinct IP addresses, and get a count using the uri field, which is used as pages that the user is trying to
access. Let’s enter the following search into the search bar:

sourcetype=access_*
earliest=-3d@d
latest=now
status>=300
| stats dc(clientip) as "unique ips"
count as "total count" by uri, status

Figure 6-6 shows the resulting chart. This would look very different based on the data set you have and what
values the time modifiers have. In Chapter 4, you saw that all chart types do not lend themselves very well to all
types of data. In this particular use case, we got a chart in which the values of each fields are at different scales.
What this means is that we have a mix of very small and very large values. To make the chart more meaningful, we
will change the chart type to be “line” and choose a log instead of linear unit scale setting, to improve the clarity
of the chart. To set the unit scale to log, click on “Formatting options’, click on Y-axis, and change the value of axis
scale to log. We will make appropriate changes to the chart and x- and y-axis titles, and save this report as “Top
pages by bad HTTP status”.

115

CHAPTER 6 © WEB SITE MONITORING

Your timerange was substituted based on your search string

203 results aver all time

= [— Options 20 per page -
v Faormatting options

@es by bad HTTP statu; >

1,000 |

a0

—— status
unique ips
— total count

Figure 6-6. Top pages with bad HTTP status

Business
User demographics by region

From a business standpoint, it would be interesting to know what regions or places have most users/customers. In
Chapter 4, we used the Google Maps app to visualize IP addresses. We can leverage the geoip command from the
Google Maps app to find out the top five countries where users come from. The geoip command takes IP addresses as
input and plots those IP addresses on the map across the globe. In our sample, MyGizmoStore.com data, we have the
field clientip, which has the IP addresses that we can input. Other than plotting IP addresses in Google Maps, the
geoip command also outputs the following fields:

e <field>_country_name
o <field>_country_code
o <field>_region_name

. <field>_city

o <field>_latitude

e <field>_longitude

e _geo

The field names are prefixed with the name of the field that is given as input. Because we use the clientip field
as input, geoip will produce new fields that have names clientip_country_name, clientip_country_code,
clientip_region_name, clientip_city, clientip_latitude, and clientip_longitude. The _geo field has the combined

116

http://MyGizmoStore.com

CHAPTER 6 = WEB SITE MONITORING

latitude and longitude information. We can start with a simple search to see the new fields produced by geoip. Let’s
enter the following into the search bar:

sourcetype=access_*
| geoip clientip

Figure 6-7 shows the left bar of Splunk search, and we can see the fields produced by the geoip command.

[<] Hicle: 2,999 events over all time

E == [Export 20 per pags -
3 selected fields Edit o Options & prey n 2 3 q 5 B 7] 9 10 nexts
@ host (3]
@ source (3) 313 224.130.162.250 - - [11/Mar/2013:08:40:04] "GET

540:04.000 b /oldlink?itemId=HYD-2&]SESSIONID=5D10SL4FFSADFF 34615
@ zourcetype (1) HTTP 1.1" S&a 2591
"http www. MyGizmoStore. com/oldlink?itemId=HYD-2"

32 interesting fields "Mozilla/5.@ (Windows; U; Windows NT 5.1; en-GB;
4 byt rv:l.8.1.6) Gecko,/2@@70725 Firefox/2.@.0.6" 255

hozt=HigDBBook-wwwwel = | sourcetype=access_combined_woookie -

clientip (=100 | =ource=foptlogSBigDBBook-wewee faccess log -

™ @R EY =) 113 224.130.162.250 - - [11/Mar/2013:08:39:56] "GET
93056000 &AM /cart.do?action=addtocart&itemId=HYD-33&8]SESSIONID=501¢
HTTP 1.1" S@@ 175@
“http:/ fwww. MyGizmoStore. com/product . screen?praduct Id=0
"Mozilla/5.@ (Windows; U; Windows NT 5.1; en-GB; rv:l.¥
Gecko/20070725 Firefox/2.0.0.6" 321
host=BigDBBook-wwwl - | sourcetype=access_combined_wcookie -
| source=ioptlogSBigDBBook-wanew] faccess log -

@ clientip_courtry_code (62

@ clientip_courtry_name (550

cliertip_latiude (=100
cliertip_longituce (=100
iertip_region_name

a eventtype SMAME 224.130.162.252 - - [11/Mar/2013:08:39:44] "GET

a5944 000 b S0ldlink?itemId=HYD-30&1SESSIONID=SD1OSLAFFSADFF 34618

) HTTP 1.1™ 2@@ 2329 "http://www.google.com™

a geo_infa (=100 "Mozilla/5.8 (Windows; U; I.-Jir.1dox\s HT 5.1; en-GB;
rv:l.8.1.6) Gecko/20878725 Firefox/2.0.0.6" 493

@ jcent (1) host=BigDBBook-wwwl = | sourcetype=access_combined_wcookie -

2 index (11 | source=foptiogsBigDBEBook-whawy] faccess log -

Figure 6-7. Fields produced by geoip command

Now that you are familiar with the geoip command, you can extend this simple search by adding the time
modifiers to find all of the events for the last 15 days, and piping the results from the geoip command to find the top
five countries using clientip_country name field. You can use the clientip_city field if you want to look at it by city
instead of country. Let’s enter the following search into the search bar:

sourcetype=access_*
earliest=-15d@d
latest=now
| geoip clientip
| top limit=5 clientip country name

We will make appropriate changes to the chart and x- and y-axis titles, and save this report as “User

demographics by region”. Figure 6-8 shows the column chart for the top five countries where users come from; in this
case, we can see that the United States is at the top of the list.

117

CHAPTER 6 © WEB SITE MONITORING

Your timerange was substituted based on your search string
Sresults from 12:00:00 A March 2 to 10:54:51 A March 17, 2013

= [_ Options 20 per page -~

v Formatting options

User demographics

1,250
1,000

750

500

250

United States China Japan United Kingdom Karea, Republic of

Figure 6-8. User demographics by region

Bounce rate

From a business standpoint, it would be interesting to know what the bounce rate for customer visits is on web sites
such as MyGizmoStore.com. A visit is considered to be a bounce when the visitor enters and exits on the same page
without visiting any other pages on the site. To do this, we make use of the transaction command to group the events
based on how many pages have been visited for a particular IP address. In the following search, we make use of
clientip as the common identifier for the group of events, and the maxpause option is used to specify that the pause
between the events is not greater than one hour. The transaction command produces two fields:

e duration, which is the difference between the timestamps for the first and last events
e eventcount, which is the number of events in the transaction.
We make use of the eventcount field with the eval command to categorize the transactions into:
e Bounced
e 2-5pages
e 6-10pages

To categorize the transactions into these three buckets, we use a case function that compares the value of the event
count per transaction and puts them into one of the three buckets. Let’s enter the following search into the search bar:

sourcetype=access_*
| transaction clientip maxpause=1h keepevicted=t mvlist=t
| eval user type=case(eventcount=1, "Bounced",
eventcount<=5, "2-5 pages",
eventcount<=10,"6-10 pages")

118

http://MyGizmoStore.com

CHAPTER 6 = WEB SITE MONITORING

| top limit=5000
user_type

Figure 6-9 shows the pie chart of the distribution of bounced rates and the percentage of visits that are bounces
and visits of various depths, such as 2-5 pages and 6-10 pages. We will make appropriate changes to the chart and
x- and y-axis titles, and save this report as “Bounce Rate”.

Bounce Rate y

6-10 pages

Bounced

Count

2-5 pages

Figure 6-9. Bounce rate

You can hover the mouse over the pie to find the count of users and the percentage of the bounce rate, as shown
in Figure 6-10.

Bounce Rate

Eounced

Count

Figure 6-10. Bounce rate with count and average

119

CHAPTER 6 WEB SITE MONITORING

Unique visitors

From a business standpoint, it would be interesting to know how many unique users are coming to the web site.
We can use a distinct count function with the clientip field to see how many unique visitors there are for a given
period of time. In the following search, we look for unique visitors over last 10 days, served by different hosts of
MyGizmoStore.com. Let’s enter the following search into the search bar:

sourcetype=access_*
earliest=-10d@d
latest=now
| timechart dc(clientip) AS unique visitors by host

Figure 6-11 shows the column chart for unique visitors across the hosts BigDBook-www1, BigDBook-www2, and
BigDBook-www3.

Your timerange was substituted based on your search string

8 results over all time
= E m + Options 20 per page -
v Formatting options

: Unique Visitors >

50

[EigDEEook—wann]
EigDEEook —wnwe2
I EigDEE ook -wann3

Count

Maon Mar 4 Wed Mar & Fritar & Sun Mar 10

Figure 6-11. Unique visitors

We will make appropriate changes to the chart and x- and y-axis titles, and save this report as “Unique visitors”.

In Chapter 4, we worked on a few reports that were added to the MyGizmoStore.com dashboard. Some of those
reports are good candidates for the web site monitoring tool as well. The reports that we added in Chapter 4 that are
worth going back and looking at include:

e Chart of purchases and views for each product
e Purchases trend

e Transaction duration

e Top purchases by product

e Getversus post

120

http://MyGizmoStore.com
http://MyGizmoStore.com

CHAPTER 6 = WEB SITE MONITORING

Now you can create a dashboard called “Web Site Monitoring” Although you learned how to create a new
dashboard in Chapter 4, we will do a quick recap on how to add a report to the dashboard. Click on the “Create
dashboard ..” link under the “Dashboards & Views menu’; as shown in Figure 6-12.

Summary Search Status - Dashboards & Views -~ Searches & Reports ~

Summary Actions - SLIMmary

Manage Yiews

=
Create dazhboard. .
All indexed data

Figure 6-12. Create a dashboard

This will bring up the dialog box “Create new dashboard” Enter WSM as ID and Web Site Monitoring for Name, as
shown in Figure 6-13. Click on the Create button.

Create new dashboard [

IO funigque identifier; no spacesispecial characters)

WS

MHame (appears in menu)

Wieh Site Mu:un'rtu:uring|

Cancel

Figure 6-13. Create web site monitoring dashboard

You will see that an empty dashboard has been created. To make it editable and add previously created reports,
click “On” for Edit, as shown in Figure 6-14.

Administrator | App ~

Figure 6-14. Edit web site monitoring dashboard

121

CHAPTER 6 © WEB SITE MONITORING

To start adding the reports into the dashboard, you have to create a new panel that will hold the report. Click on
the “New panel” button; that will bring up a dialog box as shown in Figure 6-15. Start creating a panel for the Hits by
Host report. Enter Hits by Host as Title and select the radio button for “Saved search”; the drop-down box will show
the list of saved reports. Select Hits by Host report and click on the Save button.

Title

Hit= by Host

Search command
& Saved search © Inline search string

Hits by Host |

Zancel

Figure 6-15. Hits by Host panel

This will bring up the report in a tabular format. In order to visualize it as a chart, you have to click on “Edit” and
select “Edit Visualization’, as shown in Figure 6-16.

Hits by Host # Edit ~

Edit zaarch

_time > BigDBBook-www1 ~ BigDBBook-www2 ~ Big ——
- Edlit vizualization
3M0M312:00:00.000 Ak 120 Gd 1
Delete
AMA M2 ATO0-00 Onn akd 21 a7 =N

Figure 6-16. Edit visualization for Hits by Host

This will bring up the dialog box, where you can make changes depending on how you want to visualize the
tabular data. Select the “Column” chart as shown in Figure 6-17, and click on the Save button.

122

CHAPTER 6 = WEB SITE MONITORING

Edit visualization

Visualizations _al Column » p*learn hore
General B Tale
3 s Everts
Y Auis = Bar
| 4
Legend wall Area |
‘;.Il Column > I !n !n |
& Fie)
! Mo |
Lo Soatter /
=% Line

42 Single Walue
{T} Fadial Gaugs
& Filler Gauge

HHME Marker Gauge

Cancel

Figure 6-17. Edit visualization

You will now be able to see the tabular data for Hits by Host as a column chart, as shown in Figure 6-18.

150 |
100
[EigDEBo ok w1
EigDEEook —wamn?
50 I EigDEECok w3

Tue Mar 5 fed Mar & Thu Mar 7 Fribdar & Sat Mar 9 Sun bar 10 Mon Mar 11
2013

_time

Figure 6-18. Hits by Host

For each of the remaining reports that we have created in this chapter, you can create a new panel in the “Web
Site Monitoring” dashboard and edit the visualization for the panel to make it render the appropriate chart. Once
all of the panels are added to the dashboard, you can move the panels around so that the monitoring information is
grouped appropriately.

Once the “Web Site Monitoring” dashboard is created, it can be accessed from the “Dashboards & Views” menu,
as seen in Figure 6-19.

123

CHAPTER 6 WEB SITE MONITORING

splunk

Summary Search Status ~

sSummary | Actions -

Wy Gizmostore . com

Dashboarde & Views -~

Searches & Reports -

<Weh Site Monitaring >

-

All indexed data

Summary

Google Maps

Thiz liztz all of the data you have loac Manage Views

Everts indexed

8,716

Create dashbosrd ...

Figure 6-19. Launch web site monitoring dashboard

more data.

Latest evert

2013 Mon Mar 11

Figures 6-20 and 6-21 show the dashboard panels for all of the reports that you have created in this chapter.
The charts will look significantly different, as they will be based on the sample data that you have. In addition to the
reports created in this chapter, you can add the reports from previous chapters to the Web Site Monitoring dashboard.

@eb Site Monitoring)

150
)
=
Sun Mar 3 Tue Mar 5 Thu Mar 7 Sat Mar 9
2013
Timeline

View results

faffic with guud HTTP status

mn ||‘|||||||‘|‘|‘||‘ -

Thu Feh 21 Fri Mar 1

200

Count
Count

Thu Feb 21
2012

Figure 6-20. Web site monitoring dashboard

124

J BigDBBook-www1
8igDBBook-www2
B BigDEBook-www3

5m ago Traffic with bad HTTP Status

5mago | €CHMS Dy Host without internal access

Hits

S LT

& Print [Schedule PDF Delivery [Generate PDF

Edit:

L on NER

5m ago

150

I BigDaBook-wwwl
BigDEBook-www2

I 0 BigDBEBook-www3

Sun Mar 3 Tue Mar 5 Thu Mar 7 Sat Mar 9
2013
Timeline
View results
5m ago Pages hy had HTTP Status 5m ago
400
404 E
B 406 2 B staws
408 Y B unig..ress
M 500 Total Count
503

FriMar 1

Timeline

Pages

CHAPTER 6 = WEB SITE MONITORING

@Em with good HTTP status ; 12m ago

e —— b bad TIPSt
affic with bad HTTP Status, 12m ago Bages by bad HTTP Statuga 12m ago
— — SR B
200 | 200 1,000
| B 400
€ E 100
é | E i = 404 ;
100 100 406 2 W starus
v 8 200 w
M 408 Yoo Unig..ress
B 500 10 Total Count
I s03
| Thu Feb 21 FriMar 1 | Thu Feb 21 FriMar 1 1 i i f
2013 2013 I
Timeline Timeline Pages
View results View results View results
e prom————
l! 12m ago 12mago | €Bounce Rate) 12m ago
1,000
6-10 pages —
= g 40 Bounced
3 2 =
5 500 8 :;g ﬁl
count ~
20 W EigD.. w3
2-5 pages
Fri Mar 8 Sun Mar 10
1= 2013
Region Timeline
Visw results View results View results

Figure 6-21. Web site monitoring dashboard

Summary

In this chapter, we created a web site monitoring tool that shows information about hits by host, good and bad HTTP
traffic, user demographics, unique visitors, bounce rate, and other criteria.

125

CHAPTER 7

Using Log Files To Create
Advanced Analytics

In this chapter we present a new paradigm, that of using log files to create advanced analytics, bypassing the
route taken by traditional analytics. In doing this, we review the best way to create the analytics with a set of
recommendations we call Semantic Logging. We'll go over an example that illustrates how easy it is.

Traditional Analytics

Traditional analytics cover a number of functions, which are typically known by various names such as business
intelligence, data mining, online analytical processing (OLAP), or just plain analytics. In general, companies use
analytics to get a better sense of their operations, cut costs, improve decision making, and identify inefficient
processes, which can lead to identify new business opportunities and reengineering their processes.

The challenges with developing analytics are that most of the raw information lives in data stores that are usually
decoupled or spread across distributed systems. This makes it very difficult to consolidate. Probably the most difficult
challenge is that the information needed to perform analytics has to be made available for this purpose intentionally,
and such an effort involves going through the typical software development life cycle, which takes time. It also
becomes another task of the Information Technology (IT) department that will go in the queue of things to do, and
usually it will have a lower priority.

At the heart of the issue is the fact that the development cycle of traditional analytics is based on what is called
Early Structure Binding, where you need to know beforehand what questions are going to be asked of the data. The
typical development steps can be summarized as follows:

e Decide what questions to ask

e Design the data schema

¢ Normalize the data

e Write database insertion code

e Create the queries

e Feed the results into an analytics tool

This is a process that can take days, weeks, or even months, depending on the complexity of the procedures to
obtain the necessary data. More often than not, the data required for performing the analytics will be placed in a data
warehouse or data mart, which will then be accessed by the various analytical tools. This architecture, along with the
typical cases for data collection, can be seen in Figure 7-1.

127

CHAPTER 7 © USING LOG FILES TO CREATE ADVANCED ANALYTICS

Applications

Data
Warehouse Analytics
T Tool

Direct Insert

Database

Connector

Figure 7-1. Typical analytics tool architecture

As can be seen in Figure 7-1, the data can be collected by including code in the systems to directly insert the
desired data into the data warehouse, or can be extracted from an existing database, which in many cases requires
some sort of transformation using an Extract-Transform-Load (ETL) program. Finally, many data warehouse systems
include connectors that allow for an easier collection of data from applications. As mentioned earlier, no matter how
the data is collected, this is an additional step that has to be done specifically for this purpose.

A Paradigm Change

We propose that by using log files in combination with Splunk you can obtain all of the information typically required
for performing traditional analytics. Better still, the process is faster and simpler. First of all, pretty much any program
or computer-based device produces at least one log file; granted, in some cases, for example, in Windows, the typical
information associated with log files is stored in an event management system. The fact that the log files are generally
ignored does not make them any less important.

Asyou have seen in the previous chapters, log files contain a gold mine of information, with a wide range of data
that can be used to ensure the system security and to meet compliance mandates. They are a definitive record of
activity and behavior in your systems. Because of this, they can provide insight for the IT department and the business
in general, presenting customer behavior, product and service usage, and, ultimately, end-to-end transaction visibility.

As can be seen in Figure 7-2, when you collect machine data from your systems infrastructure, such Windows
servers, Linux/Unix servers, virtualization and cloud servers, and networks along with the log files of your applications
and databases, you can obtain a complete picture of all of your systems.

Log Files

e 2 Application
Database
- —8

Unix Unix @ splunk> @

based 0S based 0S %

Figure 7-2. Typical log files of a corporate system
128

Y

Y

CHAPTER 7 © USING LOG FILES TO CREATE ADVANCED ANALYTICS

Using a tool like Splunk makes it easy to collect all of these log files, even though they are not considered
structured, as there is no upfront schema for the data, there are no custom connectors, and in general you don’t have
to use a relational database. The marketing literature on Splunk refers to the information collected and processed as
operational intelligence. The primary capabilities of Splunk to provide operational intelligence include:

e Searching, which allows drilling down into the data to troubleshoot issues and incidents that
facilitate the root cause analysis

e Real-time visibility, by which you can monitor and alert your system as a whole, allowing
tracking of Service Level Agreements (SLAs) and performance issues

e Historical analysis, by which you can find trends and historical patterns, behavior baselines
and thresholds, and produce compliance reports

The key to why it is easier and faster to perform analytics using log files with Splunk is that it uses an alternate
development cycle to Early Structure Binding. With Splunk you use what is called Late Structure Binding, which has
these simple steps:

e Write data (or events) to log files
e Collect thelog files
e Create searches, graphs, and reports using Splunk

This process takes minutes or hours instead of days, weeks, or even months, as compared to the traditional
development life cycle. What makes this proposition more attractive is that you are not changing any behavior of the
developers, as they already log key information. Although this is done mainly for debugging and auditing reasons,
most of the code out there has a healthy amount of logging instructions scattered throughout.

In general, it can be said that from the perspective of the IT organization, collecting a bunch of log files is less
complicated than having to deal with an ever-growing data warehouse, as most operating systems have decent log file
management allowing for rotation based on size or time.

Semantic Logging

We define semantic logging as data or events that are written to log files explicitly for the purpose of gathering
analytics. As mentioned earlier, most existing code already has logging statements. With semantic logging, we
formalize the process by adding or modifying logging instructions throughout the code. In general, it is something
very easy; for example, this high-level snippet of pseudocode that is called every time a commercial transaction

is to be processed:

void submitPurchase(transactionID)
log.info("action=submitPurchaseStart, transactionID=%d", transactionID,\
" productId=%d", productld,\
" listPrice=%d\n", listPrice);
// Each of the following calls throw an exception on error, which is also logged
submitCreditCard(...);
generateInvoice(...);

fulfillOrder(...);

log.info("action=submitPurchaseComplete, transactionID=%d\n", transactionID);

129

CHAPTER 7 © USING LOG FILES TO CREATE ADVANCED ANALYTICS

The logging statements, emphasized in boldface in the previous pseudocode, call a method that logs the
corresponding information and also includes a timestamp. By just adding those two logging statements, all at once
we have enough information to answer the following questions:

e What is the hourly, daily or monthly purchase volume?

e Howlong are the purchases taking during different times of the day and different days
of the week?

e Arethe purchases taking any longer than they did last month?

e Are the underlying systems getting slower over time, or are they stable?
e How many purchases are failing? Graph these failures over time

e Which specific purchases are failing?

A couple of years ago, we generated some fake data that would have been created by the code sample presented
earlier. The file contains 5 weeks’ worth of transactions starting on Monday, August 29, 2011, until Sunday,
October 2, 2011, with almost 4 million events. You can find this file in the download package of the book under
the name c7sampledata.log.gz.

Before we load the data into Splunk, we create a new index called c7 following the steps we presented in
Chapter 2. It is in this index that we will load the sample data following these steps:

e From any screen in the Splunk user interface, click on the Manager link, which is located on
the top right corner
e Select the “Data inputs” option on the manager screen

e To theright of the “Files & directories” option, under the “Actions” column, click on “Add new’

e Selectthe c7sampledata.log.gz file by clicking on the “Browser server” box under the “Preview
data before indexing” option and select the “Continue” button on the bottom right corner

e As Splunkis not familiar with this data source, it presents a pop-up window giving you the
option to start a new source type or use an existing one. Chose to start a new source type

e Atthis point, Splunk presents a preview of the data, where it highlights the timestamp within
the event and it shows the timestamp it interprets as can be seen in Figure 7-3

Data Preview /root/c7sampledata.log.gz

If your data looks correct, continue
If it looks incorrect, adjust timestamp and event break settings.

Timestamp Event m

1 8/28/M11 2:00:02. 355 PM Mon Bug 29 2011 00:00:02.355 EDT action=submitPurchaseStart transactionID=1000000
productId="Blue Gizmo" listPrice=100

2 B/28/11 9:00:02.508 PM Mon Rug 29 2011 00:00:02.508 EDT action=submitPurchaseStart transactionID=1000001
productId="Blue Gizmo" listPrice=100

3 B/28/11 9:00:02.764 PM Mon Rug 29 2011 00:00:02.764 EDT action=submitPurchaseComplete
transactionID=1000000

4 8/28/M11 2:00:02972 PM Mon Aug 29 2011 00:00:02.972 EDT action=submitPurchaseComplete
transactionID=1000001

5 8/28/11 9:00:05.839 PM Mon RAug 29 2011 00:00:05.939 EDT action=submitPurchaseStart transactionID=1000002
producktId="Black Doodad" listPrice=90

Figure 7-3. Data preview
130

CHAPTER 7 © USING LOG FILES TO CREATE ADVANCED ANALYTICS

In Figure 7-3, you can see that the timestamp assigned by Splunk is different than the timestamp that is
highlighted in the actual event. The difference is because the event has the timestamp based on the Eastern Daylight
Saving time zone, but the Splunk user has defined the Pacific time zone so it presents the timestamp accordingly.

Caution Even though Splunk stores the correct timestamp, it displays it according to the time zone defined in the
user profile. This also affects the time periods selected in searches.

Note As an aside, to see or change the time zone of the user profile you are working with, you can go to the Manager
and select the “Your account” option. You can see in Figure 7-4 that the screen presented allows managing a number of
items in the user profile, including the time zone.

admin

Full name

Administrator

Email address

changeme@example.com

Time zone
(GMT-=08:00) Pacific Time (U5 & Canada) :[

Set a time zone for this user.

Default app
launcher =|

Set a defaulf app for this user. This will override any default app inhented from this user's roles.

™ Restart backgrounded jobs
Showld backgrounded jobs be restarfed when Splunk is restarted.

Set password

Password

Confirm password

Figure 7-4. User profile

131

CHAPTER 7 * USING LOG FILES TO CREATE ADVANCED ANALYTICS

Back to loading the sample data. Now that you understand the reason for the difference in the timestamps, and
all the rest of the data looks correct, we click on the “continue” link above the data preview. This action presents a
popup window asking to name the new source type. We choose to call it c7example and click on the “Save source
type” button on the bottom right corner. You will get another popup window stating that c7example was successfully
created, and then you click on the “Create input” button.

You are now presented with the screen shown in Figure 7-5, where you select “Index a file once from this Splunk
server”. Not visible in Figure 7-5, but under the “More settings” section, select the index where Splunk will store this
data from the corresponding pull-down menu, which for this example is c7.

Add new

You can tell Splunk to continuougly collect data from a file or directory (keep indexing data as it co

Source
Tell Splunk where to get your data and what to do with it.

Specify the source
O Continuously index data from a file or directory this Splunk instance can access
O Upload and index a file
® Index a file once from this Splunk server

Full path to your data *
frootfc7sampledata.log.gz

This can be any file or directory accessible from this Splunk installation.
On Windows: c\apache\apache.errorlog or Whostname\apache\apache.error.log.
On Unix: Aarflog or /mntfwwwO1Avardog. Make sure Splunk has the correct permissions fo access

More settings

Host
Tell Splunk how to set the value of the host field in your events from this source.

Set host
constant value |

Specify method for getfing host field for events coming from this source.
Host field value

BigDBoock

Figure 7-5. Loading a new file

132

CHAPTER 7 © USING LOG FILES TO CREATE ADVANCED ANALYTICS

Once you save the new file definition, Splunk goes ahead and starts loading it. For this example, it takes a couple
of minutes to upload. To know when loading has completed, you can go to the Search window in the user interface
and select “Index activity” from the Status pull-down menu, and then choose “Index activity overview”. This will show
the information presented in Figure 7-6, where you can see that the c¢7 index has 3,815,666 events, which coincides

with the number of events the original file has.

Summary Search Status ~ Dashboards & Views ~
Index activity overvii search acivity 5
Index activity
Welcome to Splunl Siirvr Aty :

This dashboard show:

Inputs activi
determine the health P ;.

Scheduler activit J
Note: You can also se ¥ -

Total events indexed and Index sizes

[-'— 2 next»

Index > count > server >

twsitter 16780870 03078-1-1306886
cf 3815665 03078-1-1306886
main 1430087 03078-1-1306B8B86
test 345681 03078-1-1306B8B86
rss B 03078-1-13068B86
fd 1 03078-1-13066886
ejb 0 03078-1-13066886

Wiew full resulis

Figure 7-6. Index activity overview

T i e T A wE

Searches & Reporis ~

Index activity overview

Index health

BS indexed

Indexing volume

et GG/ BPPS/S

4m ago

size_bytes =
32912292981
357216445
105909508
33894915
102607
45261

113

The next step is to verify that the data was loaded correctly. Before we look at the search, you must remember
to select the correct time range for the data, as it is from the year 2011. To do this, select “Custom time” from the
pull-down menu of the time picker. This presents a popup window that is shown in Figure 7-7. In it, you can see that
we chose the earliest date to start and October 3 as the latest time. Even though the sample data finishes a few seconds
before midnight of October 2, by choosing October 3 you don’t have to type 23:59:59.999 in the latest time field.

If you don’t do this, the results of the search will be empty.

133

CHAPTER 7 © USING LOG FILES TO CREATE ADVANCED ANALYTICS

Custom Time Range

Range Type

® pate O Relatve O Reakime O Advanced search language

Earliest time Latest time
() specific Date @ Earliest Date ® specific Date) MNow
0314/2013 00:00:00.000 10/3/2011 00:00:00.000

Figure 7-7. Setting a custom time range

Now you can type the following search to verify the data: index=c7 | head. This displays the 10 most recent
events, which you use to verify that the fields in the events are recognized and show up in the left side bar. You also
look for the values of the default fields created by Splunk for each event: these are the host, the source type, and the
source file. In Figure 7-8, you can see that the action, transactionID, productId and listPrice fields are present in
the left side bar, and that the default fields of each event show the correct information.

[<] Hide 10 events before 12:00:00 AM October 3, 2011
["_: | [3Expert Options 50 per page -
3 selected fields Edit
host 10/2/11 Sun Oct 2 2811 23:59:48.583 EDT action=submitPurchaseComplete transactionID=2987834
ey 8:50:48.503 PM =BigDBook - cfexample ~ =/root/c7sampledata.log.gz ~
sourcetype 1002114 Sun Oct 2 2811 23:59:48.862 EDT action=submitPurchaseStart transactionID=2967834
8:50:48.062 PM productId="Blue Gizmo" listPrice=18@
10 interesting fields BigDBook ~ cTexample ~ : IrooticTsampledata.log.gz =
action
R 10/2/11 Sun Oct 2 2911 23:59:41.648 EDT action=submitPurchaseComplete transactionID=2987833
8:59:41.648 PM BigDBook ~ cTexample - Irootfc7sampledata.log.gz ~
linecount
listPrice 107211 Sun Oct 2 2811 23:59:41.484 EDT action=submitPurchaseComplete transactionID=2987832
8:50:41.484 PM BigDBook - cTexample ~ Iroot/c7sampledata.log.gz ~
productlid
punct ﬁ 100211 Sun Oct 2 2811 23:59:41.222 EDT action=submitPurchaseStart transactionID=2987833
kink 8:59:41.222 PM productId="Blue Gizmo" listPrice=16@
IR sann: =BigDBook - =cTexample - e=[root/c7sampledata.log.gz -~
timeendpos
timestartpos 100211 Sun Dc‘tl 2\2911}3:59.'46.988 EDT action=submitPurchaseStart transactionID=2987832 productId="Red
8:59:40.988 PM Gadget” listPrice=158
transactioniD =BigDBook + c7example ~ e=/rootic7sampledata log.gz -

Figure 7-8. Verifying the loaded data

As the verification is complete, you can write the searches that will answer the questions we posed earlier.
However, simply calculating the metrics by using the submitPurchaseStart event is not correct, because if any of
the functions before the submitPurchaseComplete event fails, the metrics will be flawed. Given that a complete
transaction is made up by both events, you will have to use the Splunk transaction command, which we already
reviewed in Chapter 3, to correctly calculate the desired metrics.

The transaction command is pretty expensive because it keeps track of all of the ends of a transaction until it
can match them to a beginning, assuming that they are paired, which might not always happen. Depending on the
amount of events and the time between the first and last, this can consume a lot of memory. The tracking is done in
reverse order because Splunk sees events in reverse time order, going from the most recent to the oldest.

We start by finding out which is the maximum time between the beginning and end of the transactions in our
sample data. This can be done by typing the following command:

index=c7
| transaction transactionID maxspan=1im
| stats max(duration)

134

CHAPTER 7 © USING LOG FILES TO CREATE ADVANCED ANALYTICS

In this search, you specify that the transaction is delimited by the field transactionID, that is, only events with
the same value in that field will be grouped. You also specify that the maximum time between the first and last events
in a transaction cannot be greater than one minute. We do this because otherwise some transactions will not be
counted, as they are evicted to make space for others. By specifying a relatively big amount of time, we can be sure
that all the transactions are included in the count.

As you saw in Chapter 6, the transaction command produces two fields, duration and eventcount. The result
of this search is 0.6 seconds, so from now on you can specify that the maximum amount of time for a transaction is
1 second to make it more efficient. Next, you will find out which transactions are incomplete, that is, the purchase
failed. One search to obtain this information is:

index=c7
| transaction transactionID maxspan=1s
| search NOT *submitPurchaseComplete

This search is rather interesting, because we use the search command twice. The first time it is used to bring all
the events from the c7 index. Then we use it again to find the new events created by the transaction command that
do not have a string with the regular expression *submitPurchaseComplete. Note that the first line does not include
the word “search), as it is always implicit that the first command is a search. The second time the command has to
be stated as search. It is worth indicating that the results of this search will include any transactions that take longer
than 1 second, which we now is not the case. For the sample data, the result of this search produces four transactions,
which are shown in Figure 7-9. This answers the question regarding failed purchases and specifically which of them
are failing.

ﬁ 8/23M11 Fri Sep 23 2811 13:81:23.193 EDT action=submitPurchaseStart transactionID=2438466
10:01:23.193 AM productId="Purple Dochickey” listPrice=138
‘BigDBook - | =cTexample - ==froot/cTsampledata.log.gz -
ﬁ a/14M11 Wed S5ep 14 2811 88:86:15.893 EDT action=submitPurchaseStart transactionID=1967988
5:06:15.893 AM productId="Blue Gizmo" listPrice=188
=BigDBook - L =c7example ~ | =frooticTsampledata.log.gz -
ﬁ o/BM1 Fri Sep 9 2811 @1:27:86.501 EDT action=submitPurchaseStart transactionID=1662685
10:27:06.501 PM productId="Blue Gizmo" listPrice=108
‘BigDBook -~ | =c7example -~ =froot/c?sampledata.log.gz -
ﬁ 8/31M1 Thu Sep 1 2811 ©@:080:80.348 EDT action=submitPurchaseStart transactionID=1289883
9:00:00.340 PM productId="Purple Doohickey” listPrice=13@
si=BigDBook - -c7example - =froot’c7sampledata.log.gz -

Figure 7-9. Incomplete transactions

You can now find out the average transaction times, which should help to answer a few of the questions in our
list. We start with how long the purchases are taking. In order to get a good resolution on the column chart that we use
to present the results, we chose to calculate the hourly average of the duration of the transaction, for a period of one
week, any longer period of time will produce an illegible chart. Remember to change the time period for this search.

index=c7
| transaction transactionID maxspan=1s
| timechart avg(duration) span=1h

The results of this search can be found in Figure 7-10, which presents a column chart with a minimum value
for the y-axis of 0.3. We did this to have a better resolution on the chart. As we hovered over one of the columns,
Splunk presents detailed information of that particular column. From this, we can deduce that the longer times of the
transactions are between 4:00pm and 7:00pm, pretty much every day.

135

CHAPTER 7 © USING LOG FILES TO CREATE ADVANCED ANALYTICS

0.55
time: Aug 29, 2011 7:00 PM
0.5
0.5
0.45

0.4

avg(duration)

0.35

Mon Aug 29 Wed Aug 31 FriSep 2 Sun Sep 4
2011

Figure 7-10. Hourly average transaction times

To find out if the underlying systems are getting slower, or if the purchases are taking any longer than they did
the previous month, you can do a search similar to the previous one, but this time you calculate the average on a daily
basis, thus we change the span argument of the timechart command to span=1d. This will reflect much better any
issues over a longer time span, and we use a line chart, which will clearly show any trend there might be. After changing
the time range to include all the 5 weeks’ worth of data in the time picker, the results can be see in Figure 7-11.

0.5

0.45 /

0.4

avg(duration)

0.35

Sun Aug 28 Sun Sep 4 Sun Sep 11 Sun Sep 18 Sun Sep 25
2011

Figure 7-11. Daily average transaction times

As can be seen in Figure 7-11, except for the skew presented on the first day of the data, the transaction times
seem pretty stable over the whole period covered by the sample data. If there had been any issues with the underlying
systems, they would have shown up by presenting an increasing trend over time on this line. Very likely, the number
of transactions is the same over the sample period. You can see this and partially answer the first question of the list
by creating a graph that shows the daily purchases of all the products with the following search and the results, in the
form of a stacked column chart, can be seen in Figure 7-12. In it you can see that the product sales seem to be very
stable over time, and this is probably the reason why we don’t see any degradation of the transaction time.

75,000

50,000

Sun Aug 28 SunSen4 SunSep 11 SunSep 18 SunSen 25
2011

_time

0 Black Doodad Blue Gizmo W Orange Whatchamacallit B Purple Doohickey ©9 Red Cadget I White Widget

Figure 7-12. Daily sales by product
136

CHAPTER 7 © USING LOG FILES TO CREATE ADVANCED ANALYTICS

index=c7
| transaction transactionID maxspan=1s
| timechart count by productId span=1day

The skew on the daily average times observed in Figure 7-11 can be explained by reviewing the number of sales
for Sunday August 28, 2011, the first day of the data in Figure 7-12. As there were so few sales that day, the transaction
time was on average 0.1 seconds shorter than on the other days.

Admittedly, this is a simplistic example, but it clearly illustrates how easy it is to produce advanced analytics
from log files, without having to mess up with data schemas and writing special code to insert data in a data
warehouse or database.

Logging Best Practices

To take full advantage of semantic logging in Splunk, we have a few tips or best practices. The first one, which
encompasses a few items, is to create human readable logs: specifically, to log in plain text. Although logging in
binary might sound better because it is compressed, it requires decoding and does not lend itself to segmenting into
partitions. You should also make it easy for humans, so do not use complex encoding for certain elements in the log
entry that require lookup tables to decipher.

Another recommendation is to use categories for log entries. Most log systems, such as Log4], offer a predefined
set of categories that fit most needs; make use of them, as it will be a lot easier to control the amount of data that gets
logged. Finally, as you will see in the social media part of this book, Splunk makes it very easy to use JSON, or XML for
that matter, but do not use them unless you really require multidepth nesting.

The timestamp is another item to consider, and is probably the most important of all. Do not use time offsets, as
that will unnecessarily lead you to all sorts of problems when doing comparisons and dealing with time zones. Use
standard timestamps that are readable by humans and favor the beginning of the line. This is not only valid for log
files, but as you will see in parts two and three of this book, for pretty much any data that makes use of a date and, or
time. The bottom line: clearly timestamp every event.

Use clear key-value pairs. It might appear to take a lot more space by repeating so much information, but
remember that Splunk stores the raw data in compressed format, and key-value pairs have a very high ratio of
compression. The following example is very much the traditional statement most developers use to create a log entry:

log.debug("Error 1454 - %s %d\n", userID, transID)

The issue with this customary way of logging is that searching for the word “Error” is too vague. Although Splunk
will find it very quickly, the operations required to make sense of the accompanying information afterward might be
rather complicated. Usually, this kind of log entry will need regular expressions to be parsed, whereas a key-value
pair can be processed using a single consistent rule. The following logging statement would be the recommended
equivalent for the previous one:

log.debug("orderstatus=error, errorcode=1454, user=%s, transactionid=%d\n", userID, transID)

If you don’t have the ability to create key-value pairs, but you do have a header line with the names of the
columns or keys, that will also work well with Splunk. Unix commands such as ps and vmstat produce valuable
information, but the column names are provided only as a header line. Splunk knows how to take these column
names and use them as the key to the corresponding values. This will be reviewed in detail in the project in
Part Two of this book.

It is somewhat popular to log fields with multiple values as a single line, as there is the perception that it is the
easiest for the developer. We strongly suggest that multivalue information be broken down into separate entries
in a log file. Have a look at this example:

Mar 10 2013 04:12:02 phonenumber=669-555-1212, app=angrybirds,facebook

137

CHAPTER 7 © USING LOG FILES TO CREATE ADVANCED ANALYTICS

It is more difficult to parse the app values in Splunk than using straight key-value pairs. Additionally, there are
limitations regarding adding data to each multiple value. If you break each multivalue into separate lines in the log
file it will be a lot easier to parse and handle additional data. From the developer’s standpoint, this recommendation
should not add complexity to the logging statement or set of statements. The previous example would be a lot better
iflogged as follows:

Mar 10 2013 04:12:02 phonenumber=669-555-1212, app=angrybirds, installdate=Jan-02-2012
Mar 10 2013 04:12:02 phonenumber=669-555-1212, app=facebook, installdate=Jun-29-2012

Another best practice is to log unique identifiers at every opportunity. With this you will be able to effectively
span over multiple log files from different components in your system and it allows you to track transactions in
detail. You can use the transaction command of Splunk to tie different log entries and convert them into a single
transaction. This is also known as Transitive Closure, so that if you have some log entries as the ones in the following
example, you will be able to link them all together:

transID=135889976
transID=135889976, otherUniqueID=qwas543
otherUniqueID=qwas543

The information that you are logging right now can be revealing and present more information than you expect.
The effort of refactoring code to take advantage of this new paradigm can seem daunting at first, but start gradually
and grow organically. In many cases, all it involves is modifying the existing logging statements so that they follow the
best practices already described. Develop future applications with this new paradigm in mind and you will see that
the return on investment will be priceless.

On the operations front, remember to use log file rotation policies, where you either destroy or backup the logs.
You are probably better off destroying them, as all the information will now be indexed in Splunk. We also suggest that
you log locally, in the server where the log files are being created. More details on this can be learned in Chapter 15,
in which we review the use of Splunk forwarders.

To sum up, log what is evidently required, that is, log anything that can add value to the analytics, especially when
aggregated and visualized, so log more than just debugging events.

Summary

In this chapter, you learned about a new paradigm to obtain advanced analytics from log files instead of the traditional
method using a data warehouse. We went over an example that illustrated how simple this is and reviewed the best
practices for semantic logging.

138

CHAPTER 8

The Airline On-Time Performance
Project

This chapter presents a project to get you used to using Splunk outside the context of machine data, using CSV files,
and interacting with relational databases. It discusses an embryonic methodology that we shall use for the project,
and explains what will be done in the next three chapters.

The Airline On-Time Performance project is based on publicly available data, which keeps track of all the
domestic flights within the Unites States of America, including Puerto Rico and the Pacific Territories and Possessions.
This data set is particularly well suited for explaining how to use Splunk as an analytical tool for the following reasons:

¢ The amount of data is small enough that you do not need a large hardware configuration
to work with it. Actually, it can be done on a typical laptop if you wanted to.

e Almost all of us have travelled on a commercial flight, so we have some experience with
the domain from where the data is coming; that is, we do not need any special training to
understand the majority of the data we are going to handle.

e Itis based onreal data, which makes the results of the searches we formulate all the more
interesting. Whereas we detail various searches to explain multiple Splunk commands, there
are still plenty of appealing questions left for your enjoyment.

e The source of the data is different than the traditional machine data we have been working so
far in this book. We will be introducing how to import data using a CSV file and from relational
databases.

The flight data, as we will refer to it, contains one record or event for every single scheduled flight leg. Sometimes
the airlines assign the same number to a flight that stops in more than one airport. Each stop is considered a flight leg,
so every event in the flight data only refers to a flight between two airports, sometimes referred as city pairs, which
represent an origin and a destination. Note that the flight data is based on scheduled flights, not on the actual flights.
If a flight was cancelled, diverted, or delayed, the event will reflect this in the corresponding fields. For example, if you
count the number of flights for September 11, 2001, you will see the results show about 17,000 scheduled flights.
As we know, most of those flights were cancelled, and there is a field that reflects this.

Each event has 109 fields. Not all of them are populated, either because they did not have the information
available or the field was an addition sometime after the original release. An important part of any project that has
to do with analyzing data sets is exploring the fields to gain a good understanding of the information they contain.
The flight data is ideal for this, as there are some fields that contain similar information with subtle variations.
Understanding the contents of a field and choosing the right one is quite important, as the quality or expectations
of the results will change depending on the selected field.

139

CHAPTER 8 ' THE AIRLINE ON-TIME PERFORMANCE PROJECT

With so many fields available containing such a variety of information for each single flight in the United States,
there are lots of interesting and compelling questions that can be answered with Splunk searches that go from the very
simple to the complex. You will often find that the greatest complexity lies not in the search itself, but in formulating
the search. This is demonstrated in some of the searches we do.

The flight data we use has over 147 million events, which start on October 1987 and go up to September 2012.
This abundance of data also provides a nice context to present various ways of optimizing searches and reporting.
Even though there are tens of millions of events, the size is pretty manageable at approximately 65GB, and because
the flight data is distributed by its provider as monthly files, you can download just the time periods you want.

This project also allows us to present a rather informal set of steps to follow when tackling a typical data
analytics project like this one. More than anything else they are common sense; therefore, we do not dare to call it a
methodology just yet. Every time we work on a new project we perfect it a little more and there is still plenty of room
left for improvements. On a high level, these are the steps we follow:

e Obtain the data. This is rather obvious, but there are some issues that have caused us a lot of
headaches. So we want to stress the importance of getting your data, and chiefly the reliability
of the data source. This can be measured in three areas:

e The accuracy of the data. Needless to say, the quality of data drives the quality of your
search results. We have found that not all data sources are as accurate as we would like.
Minor errors can be expected, but consistently unreliable information is not good. Even
with the flight data used in this example, we found on a quick check that a huge amount
of tail numbers or registrations of airplanes are invalid for American Airlines, and this
goes back to April 1999. It does not affect us directly, so we decided to ignore it. But it is
an example of why you need to carefully verify the accuracy of the data with which you
work, especially the data that is critical to your business process.

e The reliability of the servers. We have found that many providers of public data do not
have the best infrastructure and downloading the data becomes a painful process fraught
with multiple crashes, which require many efforts to download a single unit of data.

e The regularity of the data. Not all providers of publicly available data make it available in
a consistent fashion, so data that should be updated on a regular basis is spotty at best.
Lags due to data collection and preparation are understandable, but beware of irregular
updates as they will affect your business process.

e Load the data. Another obvious step, but it can be quite challenging the first time you do it,
especially when you have to deal with data elements that define timestamps. Of course you
can always choose to ignore timestamps, but that will limit the powerful features of Splunk.

e Verify the loaded data. Assuming that the data you loaded is correctly indexed in Splunk will
lead you very quickly into trouble. Doing it only the first time and taking for granted that it will
work fine after that is begging for problems.

e Build the searches step by step. The Splunk Search Language is unique. Whereas having SQL
experience will help you a lot in formulating searches, we strongly suggest that you build your
searches step by step and verify that the partial results you obtain match your expectations.

Do this with small sets of data. Either restrict the time periods or use the head or tail commands
to limit the number of events you use whilst building the search, so it is easy to verify the results.

e Verify the results. Use alternate search commands or external tools, such as databases or
spreadsheets to verify the results of your searches. The more important the results are in your
business process, the more critical it is that you feel comfortable and certify them.

Following this rather incipient methodology we have broken down the project into three chapters that will take
you through the whole process of a typical analytics project, which also helps us to give you a tour of some of the most

140

CHAPTER 8 ' THE AIRLINE ON-TIME PERFORMANCE PROJECT

used Splunk features and commands, as well as some that are not as popular but very useful. This methodology is also
used in the social media chapters of the book.

Chapter 9 is focused on obtaining the data. It explores the data and its fields at the necessary level to make sure
that you have all what is necessary for successfully indexing the data into Splunk. In particular, it goes at length into
the issues that relate to the timestamp. The flight data has the components of a useful timestamp spread over two
different fields, which are not next to each other. Two different strategies on handling this issue are presented and
used. This chapter also goes in detail on how to load data from CSV files and directly from a relational database.

To summarize, this chapter focuses on the steps to successfully load the data and verify it is correctly loaded.

In addition to being the fun part of the project, Chapter 10 is the core of it. Here we go in detail into the actual
analysis of the data set. It starts by exploring the fields of interest and understanding their contents. Using as an
excuse the analysis of airport traffic, flights, delays, and reasons for the delays an interesting variety of searches are
formulated, and a set of Splunk commands are introduced. These are:

e join, which allows you to do SQL style joins with some limitations.
e delete, as an option to get rid of events that have inaccurate information.

e Macros, which are parametrized chunks of searches that can be reused and can take
arguments, if needed.

e Report acceleration. Most reports are summaries that handle all involved events and tend to
be expensive. We explain how to accelerate these kinds of reports.

e Accelerating statistics. Using the TSIDX feature of Splunk and the associated tscollect and
tstats commands to dramatically accelerate the searches. And by dramatic we mean from
hours to seconds.

e Additionally, we delve into new attributes of some known commands, such as:
e The limit attribute of the timechart command, and
e Theearliest and latest attributes of the search command

We also discuss how to visualize the results obtained from the various searches we create in this chapter.
Although this is not a book dedicated to visualization, it is an important component of any analytics project, probably
the most important one right after the accuracy of results. As such, we discuss visualization options available in
Splunk throughout the searches we create and use.

In Chapter 11 we go in detail into lookup tables. Just as with relational databases, we have the ability in Splunk
to use lookup tables, either based on CSV files or relational databases. We start by creating a lookup table based on
a CSV file and then we automate it, to make the lookup transparent, a very handy feature of Splunk. We also create a
new lookup table based on the results of a search, showing that not only you can use external lookup tables but also
produce them. Asking for the airplane model used on a specific flight number over the years forces us to deal with
another set of files provided by a different source, the Federal Aviation Administration (FAA), and create a search that
does a double lookup. For this example, we use lookup tables that exist in a relational database. We finally venture
outside the realm of Splunk to attempt to visualize the results of this search.

In Chapters 10 and 11 we extensively use commands that have been explained in previous chapters, such as
stats, dedup, chart, timechart, top, eval, sort, fields, and head. The truth of the matter is that Splunk makes it so
easy to handle analytics that you do not need much more than the basic search commands.

Summary

In this chapter we review the basics of a typical analytics project and propose a set of steps to follow when working on
such a project: a methodology of sorts. We describe how the project is broken down and explain what will be done in
each of the next three chapters.

141

CHAPTER 9

Getting the Flight Data into Splunk -

This chapter discusses in detail the data used by the Airline On-Time Performance project. It introduces two ways to
get structured data into Splunk: Using comma-separated value CSV files and directly from a relational database. This
chapter also covers various ways to handle complex timestamps based on data spread over multiple columns.

Working with GSV Files

CSV files are probably the most popular and easiest way to import and export data to and from a relational database
or other systems and applications. In this section we are going to use a public data set that contains information about
all the scheduled commercial domestic flights in the United States. This data set will be the basis of our examples in
Part II of this book.

The Flight Data

The Bureau of Transportation Statistics has a web site dedicated to TranStats, which is the Intermodal Transportation
Database. This database contains information that is regularly updated on aviation, maritime, highway, rail, and other
modes of transportation. As described earlier, we will focus only on the Airline On-Time Performance data, which is
made available as a simple table that contains departure and arrival data for all the scheduled nonstop flights that
occur exclusively within the United States of America. The data is reported on a monthly basis by U.S. certified carriers
that account for at least one percent of the domestic scheduled passenger revenues. The flight data and a description
are available at the following URL:

http://www.transtats.bts.gov/DL_SelectFields.asp?Table ID=236&DB_Short Name=On-Time

Alternatively, begin by going to www.transtats.bts.gov. Then click on the Aviation link, which can be found on
the left side bar under Data Finder, By Mode. This selection is indicated in Figure 9-1.

143

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

About RITA | Press Room | Offices | Jobs | Pholos & Video | Contact Us
‘ Research and Innovative Technology Administration
Bureau of Transportation Statistics |
RITA > BTS
Chrscunes
m Carrier Snapshots Flight Delays more.
i Ailine Fuel Cost and Consumption Holiday Fight Delays
(ea) Percest of US. Flights On Time
| ArF Sui inter- t Distances 2011-2012
Advanced Search PR .
- | Employment Tarmac Times: =
Resources
el Alrfine Activity : National Summary (U.S. Flights)
Database Directory 2011 2012 Change
Upcoming Releases Departures (000) 9,121 8,947 -1.9%
Data Release History Freight,/Mail (million Ibs) 19,748 19,707 0.2% ug Okt
Jan l‘nr u.:\r Jul Sep Now
Load Factor (%) 8.7 8313 05
foeelinge P ports
Airlines with scheduled service 102 100 2.0%

BALHOSE Cick & bar for details. Mouseover it for percentage.
Svietior * 12 months ending September of each year Average Alr Fares rmore...
Maritime
Highway Average Domessic Airfine Fases

Figure 9-1. The TranStats web site

Selecting the Aviation link will take you to a page that presents a list of aviation related databases. On this list,
select the Airline On-Time Performance Data by clicking on the name of the database. This will take you to the next
page, which shows more detailed information about the database we are interested in. Here you will click on the
download link as shown in Figure 9-2.

Database Name: Airline On-Time Performance Data

TranStats dmane ™ P il

Search this site: Al Rows S
(DA Table Name Description

Advanced Search

Mote: Over time both the code and the name of a camier may change and the same code or name may be assurmed
Resources by a different airline. To ensure that you are analyzing data from the same airfine, TranStats provides four airline-
specific variables that identify one and only one carrier or its entity: Airfine ID (AirfinelD), Unigue Carrier Code
{UniqueCarrier), Unigue Carmier Name (UniqueCarmeriame), and Unique Entity (UniqCarrierEntity). A unique airine

Database Directory {carrier) is defined as one holding and reporting under the same DOT certificate regardless of its Code, Name, or
Glossary holding company/corporation,
Upcoming F onTh . " "
-Time Performance This table contains on-time arrival data for non-stop domestic Mights by major air carriers, and
Data Release History provides such additional items as departure and arrival delays, origin and destination airports,
flight numbers, led and actual and arrival times, cancelled or diverted flights,
taxd-out and taxi-in times, air time, and non-stop distance.
Data Finder
Table Profile Carrier Release s
By Mode

Figure 9-2. The Airline On-Time Performance page

Downloading the Data

The download page presented in Figure 9-1 offers a comprehensive set of options for download. You can filter the data
by state, year, and month, making one month the standard unit of data for this example. The data is available starting
with October 1987 and the web page clearly indicates which is the latest month available.

144

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

On-Time : On-Time Performance

Databases Data Tables Table Contents
Download Instructons Filter Geography Filter Year Filter Period
Latest Available Data: November 2012 (Al ™ i 2012 .;i January ™ }
[JPrezipped File [] % Missing [_|Documentation []Terms (‘Download)
Fleld Name Description Support Table
Time Pericd
] Year Year
[Quarter Quarter (1-4) Get Lookup Table
] Month Month Get Lookup Table
] DayofMonth Day of Month
] DayOfesk Day of Week Get Lookup Table
] FlightDate Flight Date (yyyymmdd})
Airline
[UnigueCarrier Unique Carrier Code. When the same Get Lookup Table
code has been used by multiple
carriers, a numeric suffix is used for
earlier users, for example, PA, PA(1),
PA(2). Use this field for analysis
across & range of years,
] AifinelD An identification number assigned by Get Lookup Table
US DOT to identify & unigue airline
(carrier). A unigue aidine (carrier) is
defined as one holding and reporting

Figure 9-3. On-Time Performance download web page

Below the filter choices you will find four additional options related to the types of information. For our purposes,
select the Prezipped File option. This option provides us with a zipped archive that contains a CSV file with all the
available fields and an HTML file with a description of the fields. If you are interested in just selecting specific fields,
you can choose them in this page as well. However, you should take the entire file, with all the fields, so that you can
more easily follow along with our example in this book.

For starters, we will just download one month to get familiar with the data. However, in the next chapter we will
be using all the data available. Downloading one or two month’s worth of data is rather simple, but when you have to
download all the data since 1987 month by month it becomes very cumbersome. You can automate the download by
using either wget or curl. As of this writing the applicable URL to download the data with these programs is:

http://www.transtats.bts.gov/Download/On_Time_On_Time Performance YYYY_M.zip

In this URL format, YYYY is the year and M is the numeric month going from 1 (not 01) to 12. In the download
package of this book, we include a script called download_all_flight data.sh that automates the download of all the
data. As an example, to download the month of October, 1987 using the wget command:

wget "http://www.transtats.bts.gov/Download/On_Time Performance 1987 10.zip"

Getting to Know the Flight Data

One of the most important things to do when analyzing data is getting familiar with it. This statement applies for

all types of data, be it big data, structured data, unstructured data, and so on. In general, data is a live entity that
continually evolves. The contents are always changing as well as its format. This is the case for both real time and
historic data. No matter the case, make sure you get really familiar with the data you are going to analyze. Particular
care has to be placed on thoroughly understanding the meaning of the fields that are available. It has been our
experience that many difficult problems arise by issues that can be traced directly to misunderstandings of the data.

145

http://www.transtats.bts.gov/Download/On_Time_On_Time_Performance_YYYY_M.zip
http://www.transtats.bts.gov/Download/On_Time_Performance_1987_10.zip

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

Taking advantage of the fact that the download page presents all the fields available with a brief explanation,
organized in groups, to gain familiarity with the data. The groups are as follows:

e Time Period. This group consists mostly of expected fields: year, quarter, month, day of the
month, day of the week, and the actual flight date. This last field is one of the most important
ones for defining the timestamp in Splunk.

e Airline. This is group that has to be studied carefully, as some issues can arise if the
differences between these fields are not clearly understood. The differences between
the UniqueCarrier, AirlineID, and Carrier fields are subtle, but they can have a big impact
in the results of our analysis. We will discuss these fields in more detail in the next chapter.
The other two fields in the airline group are the tail number of the airplane, which is the
registration (the equivalent of the license plate for a car), and the flight number.

Note Notice to the right of the Carrier field that there is a link to get a lookup table. Clicking on it downloads a table
with the names of the airlines by unique code. You can see that many fields throughout the download page have such a link.

e Origin Points. Here we also find four fields that can be confusing: OriginAirportID,
OriginAirportSeqID, OriginCityMarketID, and Origin. We will not go into the details of each
field until the next chapter, but we want to reinforce the fact that you need to be acquainted
with the data that you are analyzing.

e Destination points. These are similar to the origin point fields but indicate the corresponding
destination.

e Departure Performance. These fields are mostly self-explanatory, except that we need
to clarify the acronym CRS, which stands for Computer Reservation System. The field
CRSDepTime is the official scheduled departure time of a flight. This field along with the
flight date will be used to create the timestamp in Splunk, which will be explained later in this
chapter.

e Arrival Performance. These fields are similar to those of departure performance but relate to
the arrival performance.

e Cancellations and Diversions. Present if a flight was cancelled or diverted and gives the
reason for cancellation.

¢ Flight Summaries. Information here includes things such as elapsed times and distances.

¢ Causes for Delays. Describes reasons for a flight’s being delayed. This and the next two
groups are interesting, because they illustrate how data can change in format over time. This
group was added in June 2003.

e Gate Return Information. Contains information regarding the amount of time since the
aircraft left the gate and returned. This is a newer group of fields added in October 2008.

e Diverted Airport Information. Describes detailed information for as many as five flight
diversions. This group was also added in October 2008.

The fact that the number of fields increases over time is cause for concern. The issue at hand is that we potentially
have to deal with three different types of CSV files: one with 56 fields, another one with 61, and a final one with 109
fields. We must examine carefully the CSV files we download.

146

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

We start by reviewing the first month available, October 1987. The easiest way to do this is to use a spreadsheet.
We first look at the title line and notice that it has all the field names for the 109 fields. This is good because it means
that we might not have to worry about dealing with three different CSV files. Now we look at the first line where we can
see that there is no data starting in column 57 (CarrierDelay) to column 109 (Div5TailNum). A quick glance at all the
data lines shows that pattern.

Although using a spreadsheet is the easiest way of examining a CSV file, it is not the most thorough. By definition,
a CSV file contains Comma Separated Values. Even though the spreadsheet shows that there is no content in fields
57 through 109 in the data lines, we need to make sure that those fields are in the file and contain nothing. Each line
should have a total of 108 commas, as the last field does not need one. Starting with field 57 there should only be
commas with nothing between them or a pair of double quotes, one after another (“”), which represents an
empty string.

Although this is not exactly a fun endeavor, we counted the commas and found that the couple of random lines
we chose have all the commas necessary to delimit 109 fields. This is really good news, because now we know that the
October 1987 file has all 109 fields, even thought many of them are not populated. This means that there is only one
type of CSV file to deal with, instead of three.

The next step is to make sure that the format is consistent throughout all the flight data. For this we choose to
examine the months of June 2003 and October 2008, which are the ones where new fields are added. We reviewed
these files and found the layout to be consistent. Now we are sure that all the files that contain the flight data have the
same layout or format containing 109 fields, and we will not have to do any special processing for this reason.

When using a spreadsheet to examine the data, you also have to be aware that the spreadsheet will use default
representations for data fields. For example, the FlightDate field is formatted as yyyy-mm-dd in the CSV file; however,
the spreadsheet presents it as mm/dd/yyyy. Another example is the CRSDepTime field, which in the CSV file is a
string with the following format: “hhmm”. The string “0900” is presented in the spreadsheet as 900. You have to be
aware of how data is presented in the spreadsheet as in many cases it will vary from the actual data.

Be thorough when you are getting familiar with the data you are going to analyze. Using a spreadsheet is a quick
way to verify certain things, but it is not the best solution. You will always have to examine the raw data using a text
editor.

Timestamp Considerations

Splunk is a time series indexer. This fact makes the timestamp of paramount importance in Splunk. All events are
automatically timestamped. The search app user interface has a time range picker based on the timestamp that
impacts the searches. The timeline column chart is based on the timestamp. By default, search results are sorted by
the timestamp. There are also some commands like timechart that are based on the timestamp. In Splunk, data must
have a timestamp, which is assigned based on the following precedence rules:

1. Splunklooks for a time or date in the event itself using an explicit TIME_FORMAT that you
configure in the props.conf file.

2. I TIME_FORMAT was not defined, Splunk attempts to identify a time or date based on the
event source type.

3. Ifit cannot identify a time or date, Splunk will use the timestamp from the most recent
previous event of the same source.

4. Ifno events in a source have a date, Splunk will try to find one in the file name, which
requires the events have a time.

5. Forfile sources, if no date or time can be identified in the file name, Splunk uses the file
modification time.

6. Ifnone of the above works, Splunk sets the timestamp to the current system time when
indexing each event.

147

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

When we index the flight data into Splunk, it will automatically try to recognize a timestamp within all the fields
of the CSV files. As a timestamp is not really obvious in the flight data, Splunk will follow the precedence rules and
default to use the last modified date and time of the CSV file that contains the events.

This is not the ideal situation, as we will not be taking advantage of all the timestamp based features offered by
Splunk and it could render incorrect search results. Admittedly we can still analyze the flight data using dates and
times, as there are clearly defined fields that contain that kind of information, such as FlightDate, CRSDepTIme,
and even CRSArrTime, if we want to analyze scheduled arrival times. But it will benefit us immensely to be able to
combine some fields to create a Splunk timestamp.

Timestamps are usually represented in two ways: as an integer that contains the number of seconds since
January 1, 1970, known as Unix time; or a string that contains a date and a time, which can be in various different
formats. For example, December 21, 2012 9:15 AM is represented in Unix time as 1356081300.

As mentioned earlier, there are two fields in the flight data that, when combined, can provide us with a string that
contains date and time. We will use the flight date and the CRS departure time, as almost everybody handles flights by
the departure time.

Now we have a timestamp for our data, but we have an additional issue. There is no explicit definition of a time
zone. All the times in the data are local. The time zone is implicitly defined because we know the city of origin of the
flight. In this case, we have a couple of options. We can engineer a way to create a new field that contains the time
zone or we can discuss the need of a time zone field. When you think about it, departure times of flights are rarely
given associated with a time zone as everybody assumes the time is local to the departure city. Based on this we chose
not to create a time zone for this data.

Mapping Fields to a Timestamp

We want to map columns 6 (FlightDate) and column 30 (CRSDepTime) to become the timestamp for the flight data.
There are a couple of ways of handling this:

e Preprocessing the CSV files by moving those columns so that they become the new columns 1
and 2. Once this is done, we can specify in Splunk that these columns provide the timestamp.

e Modifying Splunk’s timestamp processor to assemble the timestamp directly from the
columns in their current positions.

As with everything, both options have their pros and cons. Telling Splunk to build a timestamp from contiguous
columns is very easy, but it implies the extra step of preprocessing the CSV files to move the columns around.
Modifying Splunk’s timestamp processor requires defining a regular expression that handles the mapping. This
regular expression can be expensive for the computer to process while Splunk indexes the data and can be a
scalability concern, but there are no extra steps to be done. Because these options allow us to illustrate different
features of Splunk, we will explain both.

Preprocessing the Flight Data

One of the advantages of working with structured data is that you always know its format; thus, moving the columns
around is relatively easy to do. We have chosen to write an AWK program to do this. The program is based on counting
commas, which is the field separator. All we have to do is read a line and write it with the columns rearranged.

In AWK, the essence of the program looks like this:

BEGIN {
FS =",
OFS = ","
}

print $6, $30, $1, $2, $3, ..., $109

148

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

The field separator is defined as a comma with the FS variable for the input and OFS for the output. AWK will take
each incoming line, separate fields and make them available as variables called $N, where N is the number of the field
or column. Note that there is no need for a read instruction in AWK. By writing column 6 and 30 first, then the rest
of the columns, we achieve our objective. The program, which we called column_mover.awk, is executed in Unix as
follows:

column_mover.awk < original data_file > modified data_file

One of the issues that we bumped into using AWK is that it counts all commas, even those within a string, that is,
within a pair of double quotes. In higher level languages, commas within a string are considered part of the string. This
is relevant because two fields before column 30 are strings that always contain a comma. Column 16—OriginCityName
and column 25— DestCityName always contain the city name and the state abbreviation separated by a comma, for
example, “New York, NY” We solve this problem by accounting for those two extra commas. Now OriginCityName
is made up of columns 16 and 17, shifting all the columns by one, and DestCityName now starts at column 26 and is
composed of columns 26 and 27, further shifting all the following columns by one for a total of two columns from this
point on. The new AWK command looks like this:

print $6, $32, $1, $2, $3, ..., $109, $110, $111

For this script to work correctly we need to verify that there are no other fields after column 30 that are strings that
include a comma. After reviewing the data description, this is confirmed. This exercise of reviewing the data structure
and its contents is a reminder of the fact that we need to be intimately familiar with the data we are going to analyze.
After executing this program over the selected flight data, we are ready to load it into Splunk. We have included the
AWK program in the download package of the book under the name column_mover.awk.

To define the desired timestamp combination, we will need to create a new source type. For this example we will
be interacting with the user interface, but this can also be done by directly modifying the props.conf configuration file.
Following the dialog for defining a new data input file, we select to preview the data before indexing and choose the
file we want to load, as can be seen in Figure 9-4. As we are testing something new we will just use one month’s worth
of data. Once we are sure that all we do works properly, we can use all the data available. In this case, we will use the
most recent data, which at the time of this writing is September 2012.

€) Preview data

® Preview data before indexing ¢ Learn more
Point Splunk at a single file representative of the data you want to index.
Note: Splunk will only preview the first 1.91 MB of the file.
Path to file on the server
Jopt/FlightData/FD_2012_9.csv Browse senver

On Windows: co\apache\apache.emoriog, On Unix: /varfogffoo.log

O Skip preview
Skip preview and manually configure your input.

Figure 9-4. Data preview dialog

149

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

Once we click on Continue, the next dialog box gives us three options related to setting the source type. We
choose to define a new source type, because we are going to have a special treatment of the fields. The next screen,
presented in Figure 9-5, shows the first interpretation that Splunk has of the data. As you can see, it shows all the flight
records as a single event. The default is to break the lines on the timestamp, but because Splunk cannot find it, it
presents one single event that contains all the lines of the CSV file.

Data Preview /optiFlightData/FD_2012_9.csv

If your data looks correct, continue
If it looks incorrect, adjust timestamp and event break settings.

Timestamp Event

11 12/11/12 5:35:38.000 AM "FlightDate", "CRSDepTime","Year", "Quarter","Month", "DayofMonth", "Day0fWesk",
2012-09-01,"1415",2012,3,9,1,6,"AA", 19805, "AR", "HSECAA" ,"129",13303,1330303,
2012-09-02,"1415",2012,3,9,2,7,"RA", 19805, "AR", "H5DFAA", " 129" ,13303,1330303,
2012-09-03,"1415"%,2012,3,9,3,1,"AA", 19805, "AR", "NSFDRA", " 129" ,13303,1330303,
2012-09-04,"1415",2012,3,9,4,2,"BR", 19805, "AR" ,"129",13303,1330303,
2012-05-05,"1415",2012,3,9 CURA", 19805, "AR" ,"129",13303,1330303,
2012-09-06, "1415",2012,3,9 ,UBAY 19805, "AR" “129%,13303,1330303,
2012-09-07,"1415",2012,3,9 CURAY, 19805, "AR", "NSDFRA" ,"129",13303,1330303,
2012-05-08,"1415",2012,3,9 CURA", 19805, "AR", "NSDERA" ,"129",13303,1330303,

2 v
9 1

2012-09-09,"1415",2012,3, “mA", 19805, "AA", "NSDERA","129",13303,1330303,
2012-09-10_"1415" 2012 3. CMARMO1GRNG VAR CUNGEFRARM "129" 13303.1130303

Figure 9-5. Initial flight data view

As the data looks incorrect, we click on “adjust timestamp and event break settings.” This takes us to the next screen,
where we have various options to define the event breaks. We select “Every line is one event” and click on the “Apply”
button. After a little while processing the events, it displays them with the correct event breaks, as can be seen in Figure 9-6.

Data Preview foptiFlightData/FD_2012_9.cav

Event Breaks Advanced mode (props.conf)

Location

O Auto (break on timestamp)
8 Ewvery line is one event ex: access logs
O Specify a pattermn or regex to break before ex: \d+foold2 4], Sfart OF Event, *1"\"*

71! Regex reference

Reset Apply
Timestamp Event
148 12M11/12 5:35:38.000 AM "FlightDate","CRSDepTime","Y¥ear", "Quarter"”,"Month", "DayofMonth","DayOfWesk",
2 4 12/11/12 5:35:38.000 AM 2012-09-01,"1415",2012,3,9,1,6,"Aa" 19805, "AR", "NSECAA","129",13303,1330303,
i A 12/11/12 5:35:38.000 AM 2012-09-02,"1415",2012,3,9,2,7, "AR", 19805, "AR" , "NSDFAA","129",13303,1330303,
4 1 12/11/12 5:35:38.000 AM 2012-09-03,"1415",2012,3,9,3,1,"AA" 19805, "AR", "NSFDAA" ,"12%",13303,1330303,
5 1 12/11/12 5:35:38.000 AM 2012-09-04,"1415",2012,3,9,4,2,"AA", 19805, "AA" , "NSEBAA","129",13303,1330303,
6 A 12/11/12 5:35:38.000 AM 2012-09-05,"1415",2012,3,9,5,3,"Aa" 19805, "AR", "NSECAA","129",13303,1330303,

Figure 9-6. Flight data with correct event breaks

150

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

As can be seen in Figure 9-6, there is a warning triangle at the beginning of the line. When you hover the mouse
over it, it states that it failed to parse a timestamp. In this case, following the rules of precedence, the timestamp it
presents is the last modification timestamp of the CSV file.

The next step is to work with the timestamps. For this we select the corresponding tab. As you can see in Figure 9-7,
there are three options under the Location title. Because the timestamp is located at the beginning of the event we do
not have to specify a pattern that precedes it. This option is very useful if your timestamp is further into the event and
has something like a string before it, for example:

Printed on 04/17/2012 Page 01

You would define the pattern as “Printed on” You can also use regular expressions to define the pattern. Because
this is not our case, we select the last option where we define the maximum amount of characters into the event where
the timestamp processor can find the timestamp. This number is 0 as the fields that are used to define the timestamp
are always at the beginning of the event. The closer the timestamp fields are to the beginning of the event, the better
for Splunk and the faster it will process the timestamp when it indexes the data.

Event Breaks Timestamps Advanced mode (props.conf)

Location
@) Automatically locate timestamp (default) Format
() Timestamp is always prefaced by a pattern ax: \d+abc123\d[2, 4] ™ Specify timestamp format (strptime) esx: %Y-%m-%d
[Z' Regex reference SoY-%m-%ed, "W HILM" [F' Learn more about strp

[Specify timezone
] Timestamp never extends more than =~ 150 | chars past the pattern L Specify

® Timestamp never extends more than = 0 chars into the event
Reset Apply
Timestamp Event @

1 M4, 1211/12535:38.000 AM "FlightDate","CRSDepTime","Year","Quarter","Month","DayofMonth", "DayOfWeek", "L
2 8/1/12 2:15:00.000 PM 2012-09-01,"1415",2012,3,9,1,6,"AA", 19805, AR", "NGECAR", "129",13303,1330303, 3z
3 8/2/12 2:15:00.000 PM 2012-09-02,"1415",2012,3,9,2,7,"AR", 19805, "AA", "NSDFAA", 129" ,13303,1330303, 3;
4 9/3/12 2:15:00.000 PM 2012-09-03,"1415",2012,3,9,3,1,"AA", 19805, "AA", "NSFDAA", "129",13303,1330303, 32
5 12 2:15:00.000 PM 2012-09-04,"1415",2012,3,9,4,2,"AR", 19805, "AA", "NSFBAR", 129" ,13303,1330303, 3}
6 9/5/12 2:15:00.000 PM 2012-09-05,"1415",2012,3,9,5,3,"AAR", 19805, "AA", "NSFCAR", "129",13303,1330303, 32

Figure 9-7. Timestamp definition

Under the Format title we can specify the timestamp format and the time zone. We already decided we will not
be using the latter, so we can move on to define the former. This is done using strptime() expressions, which are really
simple and well documented for multiple programming languages. In our case the expression is %Y-%m-%d,%H%M,’
which means the year using four digits, a dash sign, the month as a two-digit number, a dash sign, the day of the
month, a comma, a double quote, the hour using a 24-hour clock (00 to 23), and the minutes as a two-digit number.

Note Splunk does not currently recognize non-English month names (%B, %b) or weekday names (%A, %a). An
alternative is to use numeric months (%m) and weekdays (%u).

Once we apply these definitions the data preview screen in Figure 9-7 presents us with a list of the events with
the desired timestamp and it also highlights the section that matches the expression used for the timestamp. The only
other thing to notice is that the header line still presents a warning related to the fact that it was not able to parse a
timestamp, thus it is using the last modification time of the CSV file. In our case, this is not an issue as the title line of
the CSV file does not have any flight information.

151

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

The next dialog box asks for the name of the new source type. We called it FD_Sourcel and saved it. From there it
takes you to index data, where it automatically starts indexing once you have done your final selections on that screen.
At this point you can move to the summary page of the search app and see how the count of indexed events increases
until it stops. In our case September 2012 contains 490,200 events. Note that this count includes the title line.

Now we can verify if the new source type works correctly. We start this process by reviewing a few lines by typing
the following search command in the search screen of the user interface * | head. As we have not specified any
sorting, by default Splunk will sort using the timestamp in decreasing order, that is, from most recent to oldest. As
expected, the header line is the first event to show up, followed by events with a timestamp of September 30, 2012
11:59:00.000 PM and continues with decreasing timestamps. The events contain the information we were expecting.
We can also see that each of them correctly displays the name of the host, the source type and the source file.

Reviewing the left bar we notice that under Interesting Fields none of the field names of the header line are
showing up. This is not good, as we will not be able to use the field names on the searches when we analyze the data.
The problem is that we had incorrectly assumed that Splunk would automatically associate the field names in the
header line with the data fields. This would normally happen if we use CSV as the source type, but in our case we
defined a new source type. The solution is to set the CHECK_FOR_HEADER attribute to true in the FD_Sourcel stanza
of the props.conf file.

Unfortunately, the CHECK_FOR_HEADER attribute works only at index time, so we will have to remove the
data we have indexed and reindex it. After adding the CHECK_FOR_HEADER attribute in the props.conffile we stop
Splunk. All changes to configuration files require a restart to be activated. The reason we stopped Splunk is that the
command we will use to remove the events we already indexed only works when Splunk is not running.

The clean command, which is issued from the Command Line Interface (CLI) at the Unix prompt, deletes
the data in one or all the indexes depending on whether you provide an index name as an argument. Because our
instance of Splunk only contains the flight data on the main index, we will remove all the data by issuing the following
command:

splunk clean eventdata

After we have deleted the data in the indexes we start Splunk again and we can proceed to reindex the data. We
do it pretty much the same way we did before; we preview the data, but this time we select to use an existing source
type and choose FD_Sourcel from the pull down menu. Splunk presents us with the data, which looks correct, and we
proceed to index it.

Once the indexing is ready, we verify once again if the source type is working correctly. As we search for the first
10 events, we can see that the field names are on the left bar. Things are looking good. However, we also notice that
the source type on each event is now FD_Sourcel-2. As suspicious as it looks, this turns out to be a side effect when
CHECK_FOR_HEADER is true, as it causes the indexed source type to have an appended numeral.

Caution When CHECK_FOR_HEADER is set to true, the field names are stored in the server where the source type
was defined. Because of this, this feature will not work in most environments where the data is forwarded.

Now we can try a few search commands to see if the field names are properly lined up with the contents. The first
quick check is searching for the top 10 origin airports by number of scheduled flights by typing the following search
command in the search screen of the user interface:

* | top Origin
This search goes over all the indexed events, which is one of the things we want as part of these quick

verifications. The Origin field contains the code of the airport. The result shows the top 10 airports and contains the
usual suspects: Atlanta, Chicago O’Hare, Dallas/Ft. Worth, Denver, and so on.

152

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

In the next check we will try to verify that if an event has the last field Div5TailNum, then it also contains an actual
tail number. The search we use is:

* | where isnotnull(Div5TailNum)

The result of this search only includes the header line, so there are no flights with five diversions in this month.
We try the search with Div4TailNum and Div3TailNum unsuccessfully, until we get a result with Div2TailNum. This
shows only one event for Alaska Airlines on September 1 at 7:40 AM. We go to the left bar and click over Div2TailNum.
Figure 9-8 presents us with a popup window that contains statistical information and a breakdown of the values of the
field. There are two values here, Div2TailNum, which comes from the header line, and N768AS, which is a proper tail
number and happens to be the same as the one contained in the TailNum field.

Div1WheelsOf

DiviWheelsCn
Div2Airport DivZTallMum (categorical)
A Appears In 100% of results Charts
1 DivZAirportSeglD Show only events with this field Top values by time
Select and show in results Top values overall
DivZLongestGTime
: : Values # %
Div2TailMum
Div2TailNum 1 50%]
Div2TotalGTime
NTEBAS 1 50% R

Div2WheelsOff (2

View all 117 fields

Figure 9-8. Field pop-up with statistical information

We do one last check with a field in the middle of the event. The chosen field is Cancelled. A value of 1 means the
flight was cancelled, whereas a value of 0 means it was not. Execute the following search command:

* | chart count by Cancelled

This command goes over all the events and the field popup presents three values, 0, 1 and Cancelled. The last
value comes from the header line as expected. Because there are no other values and the percentages of noncancelled
flights (99.193%) and cancelled flights (0.807%) seem reasonable, this result and the ones of the previous searches
make us feel comfortable that the data was correctly indexed into Splunk.

Modifying the Timestamp Processor

The second option for mapping the desired fields of the flight data into a timestamp is modifying Splunk’s timestamp
processor. Splunk automatically recognizes and extracts most of the obvious timestamps. It does this with a set of
predefined regular expressions that can be found in a file called datetime.xml in Splunk’s efc directory.

Using this option we will have to write a new regular expression that allows us to map columns 6 and 30 as the
new timestamp. There are many different regular expressions that can be used to do this mapping. In this case we will
do it in a similar fashion as we did with the AWK script that moved the columns around: we will count commas. As
before we will have to consider that column 6 (OriginCityName) and column 25 (DestCityName) always contain the
city name and the state abbreviation separated by a comma.

153

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

The idea is to skip the first five columns, capture the date, then skip the next 26 columns and capture the time.
The regular expression we used is:

(2:[% 1%){53(\d+) - (\d+) - (\d+) (2: [, 1%,) {26} " (\d\d) (\d\d)"

Without making this a regular expression tutorial we will explain what this strange combination of characters
means. You can find various regular expression tutorials in the Internet by doing a search with your favorite search
engine. In the first part, (?:[7,]*,), the enclosing parentheses mean that we are grouping this part of the regular
expression. Groups are remembered for future reference, but this is quite expensive in processing costs. Because we
are only using groups in this part of the regexp to skip fields, we use the ?: characters, which are a special directive
telling the regular expression processor not to remember this group, which will speed up the processing.

Square brackets ([]) are used to define character sets, which tell the regular expression engine to match only one
out of all the characters within that set. When a caret symbol (1) is used as the first character within a set, it means that
the set is negated. In this case [#,] matches any character except for a comma. Please note that in all other contexts
the caret symbol means the beginning of the line. The star (*) that follows it is a repetition directive that means zero
or more times. Finally, the comma is a literal comma, which has to be matched. Thus (?:[*,]*,) means that this group
matches any characters except for a comma, zero or more times, followed by a comma and do not remember this
group for future reference. Groups can be repeated by enclosing the number of times with curly brackets ({}). In this
case we repeat this first group five times.

In the next part, (\d+)-(\d+)-(\d+) we capture the date by defining these three groups. \d is a shorthand for the
[0-9] character set, which describes all the digits. The plus sign (+) is a repetition directive that means one or more
times. The dashes between groups have to be matched. Notice that these groups do not include the ?: directive; thus,
they will be remembered so we can reference them later to extract the date.

The fourth part of the regexp skips the next 26 fields and then we capture the date as two distinct groups, hour
and minutes, enclosed by double quotes ().

Using this regular expression, we create a new timestamp processor:

<datetime>
<define name="flightdata csv_timestamp" extract="year, month, day, hour, minute">
<text><![CDATAL (2: [, 1%,) {53 (\d+)-(\d+) (\d+) (2: [, 1*,){26}" (\d\d) (\d\d) "]]></text>
</define>
<timePatterns>
<use name="flightdata_csv_timestamp"/>
</timePatterns>
<datePatterns>
<use name="flightdata_csv_timestamp"/>
</datePatterns>
</datetime>

Here we define a timestamp processor called flightdata_csv_timestamp, which extracts the year, month, day,
hour, and minutes from those regexp groups we specified it should remember, in that specific order. The next
statements tell that this processor will be used to process time and date patterns. Following best practices, instead of
adding this XML code to the datetime.xml file, we create a separate file we call datetime_flightdata.xml, which can be
found in the download package of the book.

Now that we have defined a new timestamp processor the next step is to associate it with a source type. This
time, instead of using the user interface, we will directly work with the configuration file. In Splunk’s etc/system/local
directory we modify the existing props.conffile, and add the following stanza for a source type called FD_Source2:

[FD_Source2]

DATETIME_CONFIG = /etc/datetime_flightdata.xml
MAX_TIMESTAMP_LOOKAHEAD = 220

SHOULD LINEMERGE = false

CHECK_FOR_HEADER = true

154

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

The first attribute specifies the file that contains the timestamp processor. Note that the filename is relative to the
directory where Splunk is installed. The second attribute specifies how many characters into an event Splunk should
look for the timestamp: in our case, how far away column 30 is going to be into the event. After reviewing the flight
data we estimated that 150 characters would cover all the cases, but we decided to increase the limit to 220 just to be
sure. Please note that if you do not get this number right, you can miss the timestamp altogether.

The line merge attribute is related to the way Splunk breaks the lines. As mentioned earlier, the default is to break
at the timestamp. If there is no timestamp, it will create a single event that contains all the events, or flight records in
our case. By setting this attribute to false, the behavior is that Splunk will create one event for every single line, that is,
it will break an event where there is a line break. The final attribute specifies that Splunk should get the field names
from the header line of the CSV files.

Now that we have defined the source type that uses the new timestamp processor, we can test it out. First, we
delete all the events we indexed before using the CLI clean command. Then, with the user interface we add a new file
using the preview option. Here we specify to use our new source type FD_Source2, which presents a preview of the
events with the correct timestamp except for the header line.

After indexing the data we run the same set of quick tests we did for the preprocessing option and verified that
this method works correctly.

Indexing All the Flight Data

Using the download_all_flight data.sh script included in the download package of this book, we downloaded all the
flight data into a directory called /mnt/flight_data. Now we have to choose which option we want to use to index the
data into Splunk. Because we are kind of lazy, we use the modified timestamp processor to avoid the extra step of
preprocessing the data by moving the timestamp related columns around.

Before we go ahead and start indexing all the flight data, we have to add one attribute into the props.conffile
where we defined the FD_Source2 source type. As it turns out, by default Splunk only handles timestamps 2,000 days
into the past from the current date. That is about five and a half years. Our data goes all the way back to October
1987. By setting the MAX_DAYS_AGO attribute, we define how many days into the past the timestamp is valid. The
maximum value is 10,951 days, which is about 30 years, and a good number to cover our data.

For those events with a timestamp that goes beyond the limit defined by the MAX_DAY_AGO attribute the Splunk
timestamp will show as the oldest valid timestamp. Thus, you will not be able to effectively use Splunk’s timestamp,
because it will show the wrong value. The alternative is to use a specific field or fields in your data that contain the
date and time.

Note If the dates of your data are older than January 1, 1970 (the Unix Epoch), you will not be able to use Unix Time
as an alternative timestamp.

As mentioned in previous chapters, one way to index a file one time into Splunk is using the CLI command add
with the oneshot option. Given the large number of individual CSV files we need to upload into Splunk, the best way
to index these files is using the following command:

splunk add oneshot /mnt/flight_data/On_Time_On_Time_ Performance YYYY_M.csv \
-sourcetype FD_Source2

However, as the oneshot option does not take more than one file, we created a quick script that specifies all 300

CSV files in the /mnt/flight_data directory. You can find this script in the download package of this book under the
name fd_index.sh.

155

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

As usual, we want to verify that all our data has been indexed correctly, so we run the following search command
for September 11, 2001, a date for which we expect a high rate of cancellations, by first setting the date in the time
picker of the search page in the user interface and then typing:

* | stats count by Cancelled

The results present 14,900 cancelled flights out of 17,430 scheduled flights. That is, only 14.5% of the scheduled
flights were not cancelled. The next quick search is to verify that the data was indexed all the way back to October
1987, so we set the time appropriate time range in the time picker and execute the following search:

* | top Dest

As this search command will go through all the events for that month, we first verify that the number of events
is the same as the number of flights. The numbers are off by one, which is correct. The header line in Splunk has a
timestamp that is not in the month of October 1987. The actual results of the top destination airports are again the
usual suspects: Chicago O'Hare, Atlanta, Dallas/Ft. Worth, Los Angeles, and Denver. Although not an exhaustive
verification process, we feel comfortable that all the flight data is correctly indexed into Splunk.

Indexing Data from a Relational Database

One of the main reasons for using CSV files is that you do not have direct access to the database. But if you happen to
have direct access to the relational database that contains the data you want to analyze, you can avoid that extra step
of having to export that data in CSV format, even if the access is read-only. Using the DB Connect app from Splunk,
you can create and manage connections to external relational databases, which can then be defined as data inputs in
the same way you would any other file, raw TCP/UDDP, or scripted input.

The main component of the DB Connect app is the Java Server Bridge (JSB). This bridge receives instructions
from Splunk, which are then converted into SQL requests that are sent to one or more relational databases via a JDBC
driver. When you install this app on Splunk you gain the ability to create and manage connections to external SQL
based relational databases.

In this section, we will only explain the use of the DB Connect app to extract data from a relational database so
that it can be indexed by Splunk. Using DB Connect to access lookup tables is explained in Chapter 11. To illustrate
the process of indexing data directly from a database, we have created an instance of MySQL, which has a table
that contains the flight data with exactly the same fields as the CSV file. There are two steps that have to be done to
accomplish this objective:

1. Define a database connection

2. Fetch the data from the database

Defining a New Database Connection

Once you have installed the DB Connect app, you navigate to the Manager screen of Splunk. There, under the Data
group, you will see a new choice called External Databases. When you select this option it takes you to a new screen,
where you define the necessary information to connect with your database, as can be seen in Figure 9-9.

156

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

Name *
FO_DB
A unigue name for the database.
Database Type
MySaL |
Host *
BigDBook
You can enfer either the hostname or the IP address. (eq. dbhost.mydomain.local or 10.47.11.5)
Port
3306
Leave emptly to use the default port for the given database type
Database/SID *
FlightData

The database name or the Oracle SID.

Fetch database names

Thizs allows you select a database name from the list of available databases.
Username

root

Password

Read only

Validate Database Connection

By enabling this checkbox, the database connection will be tested when you click on the Save button.
Figure 9-9. Defining a database connection

As with any resource in Splunk, you have to give a name to this database connection. We called it FD_DB. From
this point on, the information required is pretty much the same that is needed for any application to connect to a
relational database. You must provide the hostname, port number, database name (or Oracle SID), username, and
password, and (optionally) if you want this connection to be read-only. You can also validate the connection before
saving it, which is quite useful to make sure that the connection is working correctly.

We did stumble on one problem when we tested the connection. It failed because the JDBC driver for MySQL
was not present. As it turns out, DB Connect includes various JDBC drivers, but because of licensing issues it does
not include one for MySQL. All you have to do is download the JDBC driver from the provider and place the jar file in
$SPLUNK_HOME/etc/apps/dbx/bin/lib and then restart Splunk. The Java classpath is built dynamically when Splunk
starts, and includes all the jar files in the lib directory just mentioned. That way the Java Bridge of DB Connect was
able to use our new JDBC driver.

157

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

Database Monitoring

The DB Connect app mechanism for fetching data from a relational database is called database monitoring. There are
two types of monitoring:

Dump, which executes the same SQL query every time it runs. If you do not specify an
interval in the schedule, Dump will run only once. This is the most basic mechanism, and is
equivalent to a oneshot load using the CLI for normal files.

Tail, which works in a similar fashion to the Tail monitor that Splunk provides for file
monitoring. This monitor type will determine which are the new records in the specified table
and only output those. The query result must include a column that has a value that will
always be greater than the value of any older record. You can use auto-incrementing values
or timestamps for this purpose.

Asyou are importing data from a relational database, you also get to choose the format in which it will be fetched.
You have the standard options of CSV, CSV with header, and you can also define a template. Additionally, you can also
define a key-value based format, or a multiline key-value format.

Independently of the output format, you can chose to have a timestamp value included, in which case the event
will be prefixed with the timestamp value. You can also specify a column that contains the timestamp. If no timestamp
is defined, the current time is used.

Another item that can be defined is the execution interval. You have the choice of defining a static value, which
will be the amount of time that the monitor should wait in between executions, or a cron expression. For a fixed delay
just specify a fixed number like 1h, for 1 hour, or 3000 for 3000 milliseconds (3 seconds). The cron expression uses the
same syntax as the Unix crontab file.

Back to our example, we will use the dump option, as all we want to do is bring all the data from the database one
time. (Unfortunately the flight data does not lend itself as a good example for using the tail monitoring mechanism,
but this option is reviewed in Chapter 14.) Before we do that, we have to make a couple of decisions related to the
format in which we bring the data and how to handle the timestamp.

We are really attracted to use the key-value format for a number of reasons. First of all, Splunk likes key-value
pairs very much. Key-value is the default format and also the highest performing way to index data. Second, the key-
value format maintains the richness and expressiveness of the data. As compared with the CSV format, with all its
inconveniences such as those we have had to work with like counting commas, and having the header lines indexed
as an event, the key-value format seems to be a lot easier and more powerful. We still have the issue of having the
timestamp components in two different fields, but that can easily be solved by creating a view in MySQL that defines a
new field with the timestamp, with all the other fields following:

CREATE VIEW ontime ts AS
SELECT STR_TO_DATE(CONCAT(FlightDate, ' ', DepTime), '%Y-%m-%d %H%i")
AS FlightDateTime, ontime.* FROM ontime;

This approach of putting the timestamp first is similar to our earlier approach when working with CSV files. But
because the new field has a timestamp that is easily recognizable by Splunk, we don’t have to worry about defining
anything related to the timestamp. Again, having the timestamp as one of the first fields in the event makes the
indexing even faster.

The next step is to define the data input. We do that from the screen shown in Figure 9-10, which can be found
under Database monitors, of the Data inputs screen of the Manager of the user interface.

158

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

A Database monitor will fetch data from a SQL database.
Name *
SQL_FlightData

Monitor Type
Dump (Always dump the full table/query) ;|

Database
FD_DB =l

™ Specify SQL query

SQL Query *
SELECT * ontime_ts;

You can specify the SQL query that is executed against the database yourself. For
SELECT # FROM my table {{WHERE frising column§ > ?}}

Sourcetype

Index

fd_kw

Host Field value

BigDBook

Output

Qutput Format
Key-Value format |

Specify how the event text content is generated.

Figure 9-10. Defining a database monitor

Defining the input is extremely simple. We name this database monitor SQL_FlightData, define it as a type Dump
from the pull down menu, and specify that we use using the FD-DB database connection. If you do not specify a query
to fetch the data, the input will default to selecting all the records of a table you define. In our case we want to use
the view we just defined, so our query is as simple as selecting all the records, but using that view, as can be seen in
Figure 9-10. Alternatively, we could have dispensed with creating a view in the database and written a SQL query in
Splunk that is essentially the same as the definition of the view:

SELECT STR_TO_DATE(CONCAT(FlightDate, ' ', DepTime), '%Y-%m-%d %H%i'
AS FlightDateTime, ontime.* from ontime;

Either way works and will achieve the same results, and we have no preference. As we are testing to make
sure our input works correctly, we specify fd_kv as the index into which the data will be loaded. We click on the
Save button, and the query starts executing, and Splunk starts indexing the data as it comes through the database
connection. Once it is done, we proceed to verify that data has been indexed correctly. We do this by checking the
output of the following search that can be found in Figure 9-11.

index=fd_kv | head

159

CHAPTER 9 * GETTING THE FLIGHT DATA INTO SPLUNK

3 selected fields Edit

host 930112 FlightDateTime=1349674740.080 Year=1325424808.002 Quarter=3 Month=9 DayofMonth=3@ DayOfWeek=7
11:59:00.000 PM FlightDate=1348988486.800 UniqueCarrier=WN AirlineID=19393 Carrier=WN TailNum=N422WN

S gue FlightNum=1659 OriginAirportID=18821 OriginAirportSeqID=1882183 OriginCityMarketID=38852

sourcetype Origin=BWI OriginCityName="Baltimore, MD" OriginState=MD OriginStateFips=24
OriginStateName=Maryland OriginWac=35 DestAirportID=11866 DestAirportSeqID=1186682
50 interesting fields DestCityMarketID=31866 Dest=CMH DestCityName="Columbus, OH" DestState=OH DestStateFips=39
a Airine DestStateName=Ohio DestWac=44 CRSDepTime=2855 DepTime=2359 DepDelay=184 DepDelayMinutes=184

DepDell5=1 DepartureDelayGroups=12 DepTimeBlk=2888-2859 TaxiOut=18 WheelsOff=9 WheelsOn=184
ezl TaxiIn=7 CRSArrTime=2215 ArrTime=111 ArrDelay=176 ArrDelayMinutes=176 ArrDeli5=1
ArrivalDelayGroups=11 ArrTimeBlk=2208-2259 Cancelled=e CancellationCode= Diverted=8

ArDel5
CRSElapsedTime=8@ ActualElapsedTime=72 AirTime=55 Flights=1 Distance=337 DistanceGroup=2
ArDelay CarrierDelay=11 WeatherDelay=0 MASDelay=@ SecurityDelay=0 LateAircraftDelay=165 FirstDepTime=
ArDelayMinuies TotalAddGTime= LongestAddGTime= DivAirportLandings=8 DivReachedDest= DivActualElapsedTime=
DivArrDelay= DivDistance= DiviAirport= DiviAirportID=@ Div1AirportSeqID=8 DiviWheelsOn=
ArrivalDelayGroups DiviTotalGTime= DivllongestGTime= DivlWheelsOff= DiviTailNum= Div2Airport= Div2AirportID=
ArrTime (10 Div2AirportSeqID=8 Div2WheelsOn= Div2TotalGTime= Div2longestGTime= Div2WheelsOff= Div2TailNum=
Div3Airport= Div3AirportID=8 Div3AirportSeqID=8 Div3WheelsOn= Div3TotalGTime=
ArTimeBlk Div3LongestGTime= Div3WheelsOff= Div3TailNum= Div4Airport= Div4AirportID=8 Div4AirportSeqID=8
Cancalled Div4WheelsOn= Div4TotalGTime= Div4longestGTime= Div4WheelsOff= Div4TailNum= DivSAirport=
. DivSAirportID=8 DivSAirportSeqID=@ DivSWheelsOn= DivSTotalGTime= DivSlongestGTime=
Ehile DivswheelsOff= DivsTailNum=
CRSARTIME =BigDBook + | ~dbmanky ~ | =dbman-dump:/FD_DB/SQL_FlightData ~

Figure 9-11. Imported events from MySQL table

In Figure 9-11 you can see that the events are now in key-value format, the timestamp is correct, and the fields
on the left sidebar are populated correctly. On closer examination of the first event we notice that the FlightDateTime,
Year, and FlightDate fields are in Unix time. This is because the latter two fields were defined as type year and date in
the ontime table, and those types of fields are stored internally by MySQL as Unix time. The first field that we created
with the view is automatically typed as date; thus, it also shows up as Unix time. As you can see, this is not a problem,
as the Splunk timestamp was created correctly. However, having the other two fields as Unix time might be an issue, as
any searches that use these fields would require us to convert them to something that is more human-friendly. Once
again we have a couple of ways to handle this. We could convert the types at the import query, or we could use the
Splunk convert command with the ctime function that converts from Unix time to a human-readable format:

... convert ctime(Year) ctime(FlightDate) ...

Before we decide on which approach we should use, we take a step back and think about how often we will use
these fields. As it turns out, the fields in question are only needed to create the Splunk timestamp; therefore, it is a
non-issue and we don’t have to worry about it.

One more thing to note on the events is the assigned source type and source. As we did not fill these fields when
defining the database monitor, it took default values that are quite illustrative. The source type is dbmon:kv, from
which we can quickly infer a key-value format from a database monitor. The source itself is dbmon-dump://FD_DB/
SQL_FlightData, from which we can also quickly deduce that it comes from a database monitor, specifically from a
database called FD_DB and the monitor is called SQL_FlightData.

As you can see, connecting to a relational database using the DB Connect app is extremely simple. Even though
we did not go through the other options such as tail and scheduling, using them remains as simple as what we have
done here.

Summary

In this chapter we went through the process of importing data into Splunk using CSV files and direct connections to
relational databases. We also dealt with timestamps and the various ways that they can be handled in order to create
an effective Splunk timestamp and take advantage of it. We did all this using the airline on-time performance data,
which is now fully indexed in our Splunk instance. In the next chapter, we will be analyzing this data and learning how
to accelerate reports and searches.

160

CHAPTER 10

Analyzing Airlines, Airports, Flights,
and Delays

In this chapter we analyze the flight data as related to the actual flights, delays, their reasons, and the performance of
the airports. The analysis is done using Splunk search commands that were introduced in previous chapters as well
as with new commands and features, such as analysis and reporting acceleration. We also discuss ways to visualize
results from the searches we build, which otherwise produce results that can be very busy and difficult to understand.

Analyzing Airlines

One of the points we made in the previous chapter was that you should be intimately acquainted with the data that
you are going to analyze. In this chapter we are going to take that knowledge of the flight data one step further. We
start with some very basic searches to get an idea of the aggregated data. We ask simple questions, querying for such
things as the number of airlines in the flight data. The airline business is very dynamic with airlines merging, going
bankrupt, and every now and then a new one coming to market. Because of this we cannot just count the number of
airlines in the most recent months, as we know that the number will vary over the 26 years of flight data.

The first thing we need to figure out is which field we should look at when counting the number of airlines. As
you might remember, there are three fields that provide that information, each one in a different way. UniqueCarrier
is a letter based code that can usually be understood by frequent travellers. When the same code has been used by
various carriers over the years a numeric suffix is added to earlier carriers. For example, VX is today assigned to Virgin
America, but before that it was used by Aces Airlines in Colombia, which ceased operations in 2003; thus, the code for
Aces is VX(1).

The second field is AirlineID, which is a five-digit code based on the U.S. Department of Transportation
certificate. The code is unique to each airline over time. If we would be doing a detailed analysis of airlines over time
this would be the field to use, but it is not very useful at this stage of the analysis, as we would have to memorize a set
of five-digit numbers until we implement a lookup for the airline name in the next chapter. A lookup table is used to
display information from one table based on the value of another one. In this case we will display the actual name of
the airline based on the code contained in one of these fields. The last field is Carrier, which almost always contains
the same mnemonic as UniqueCarrier, but it does not add a numeric suffix for repeat uses; thus, the code is not
always unique. Another issue appears when examining the corresponding lookup table, which can be downloaded
from the TranStats web site; the field that contains the name of the airline includes the years in which the airline used
that code. Additionally, the order of repeated codes in the lookup table is not consistent, as can be seen in a sample
in Table 10-1.

161

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Table 10-1. Selected sample of the carrier field lookup table

Code Description

FL Frontier Airlines Inc. (1960-1986)

FL AirTran Airways Corporation (1994-)

PA Pan American World Airways (1998-1999)
PA Pan American World Airways (1997-1998)
PA Pan American World Airways (1960-1991)
PA Florida Coastal Airlines (2003-2005)

VX Virgin America (2007-)

VX Aces Airlines (1992-2003)

Because we will be using a lookup table to obtain the names of the airlines in the next chapter, the Carrier field
has too many issues to be considered. The fact that the repeated codes are not always in order would force us to
process the dates to find out the most recent one. Later we would need to strip those dates from the airline name field.
It is just too much unnecessary work. We are better off using the UniqueCarrier field because its lookup table lends
itself much better for our purposes. There is only one code for the airline and the description only contains the name
of the airline.

Note For the kind of casual analysis we are doing in this book, we will not need a strict historic account of the names
of the airlines over the years, so we feel comfortable using the UniqueCarrier field to represent the airlines with which we
will be working.

The strategy we use for elaborating the searches is that we start by running them on a small sample of data, say
the most recent month, just to make sure they work correctly. If the search uses arguments that span over various
months, we test with just a couple of the most recent ones to verify that it handles the month boundaries correctly.
The same applies to days, weeks, and years. The general idea is that you create the searches step by step and on a
small sample of data so that you can quickly verify that they are producing the correct results.

Counting Airlines

We start by counting the number of airlines. As can be seen in Figure 10-1, we do this with the following command
applied to just the month of September 2012, which we define using the time range picker in the user interface:

162

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Search

* | stats distinct_count({UniqueCarrier)

o 490,199 matching events

1 result during September 2012
H= [_ Export Options

Overlay: | Mone =l

distinct_count{UniqueCarrier) =

15

Figure 10-1. Counting airlines

The result is 15 airlines. There are various ways of verifying if the results are correct. We could load the particular
month of flight data into a spreadsheet and perform various calculations over the 490,199 flight records, or we could
take the easier road by formulating an alternate Splunk search command that should produce the same result.
Because all we want to know is the number of carriers with scheduled flights in the month, we can use brute force and
deduplicate all the events based on the UniqueCarrier field. That should produce only one event per airline. The way
that Splunk works, going backward from the most recent date to the oldest, it should present the most recent event
or flight record for each airline and then ignore the rest because they are duplicates of the first one. As we are not
interested in the actual events but a count, we can use the following command, which also produces a count of 15:

* | dedup UniqueCarrier
| stats count

Now that we have verified that the search works correctly we can extend it. Because we have about 26 years worth
of flight data the easiest way to review these results is on a yearly basis. If for any reason we want to drill down into a
monthly level we can do that for the period of time of interest. Once again, keeping with our strategy of building the
search step by step and with a small sample of data, we will modify the search so that it summarizes per year. Because
of this we modify the time range to start at January 1, 2011, up to September 30, 2012. Note that dc is an abbreviation
of distinct_count. The search and the results can be seen in Figure 10-2.

163

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Search
* | stats dc(UniqueCarrier) by Year

+" 10,684,565 matching events

2 results from January 1, 2011 through September 30, 2012

= Al [= Export + Options

Owverlay: Mone R
Year = de{UniqueCarrier) =
2011 16
2012 15

Figure 10-2. Airline count for 2011 and 2012

After scanning through 10,684,656 events the results show 16 airlines for 2011 and the already known count of
15 for 2012. This sounds about right as United Airlines merged with Continental Airlines in 2011; thus, the carrier count
decreased by one. The next step is to run this search for all the flight data. The search took almost three hours on our
cloud server. Later in this chapter we will discuss how to accelerate searches. In the meantime, we can review the
results in the form of a line chart in Figure 10-3, which can convey the information much faster than a table of year
and count.

22

dc{UniqueCarrier)

1987 1988 | 1980 | 1990 | 1991 1992 | 1093 1994 1095 1996 1907 1998 1999 2000 | 2001 2001 2003 | 2004 2005 | 2006 2007 2008 2009 2010 2011 | 2012
Year

Figure 10-3. Airline count by year

164

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Visualizing Results

Asyou can see in the chart in Figure 10-3, there is a drop from 15 airlines to 10 between 1988 and 1992 and then

the number remains stable for almost a decade until there is a slight increase to 12. The effects of the attacks of
September 11, 2001, can be seen as two carriers drop out of the picture. The industry rapidly grows again starting on 2003
to a peak of 21 airlines on 2006 from which it slowly drops to 15. We are interested in understanding what happened
right after September 11, so we modify the search to count by month instead of year and we change the time period in
the time picker to go from September 2001 to June 2002. The results show that one airline ceases to operate in October
2001 and another one in December 2001. It would be interesting to know which airlines ceased to operate. The first
search that comes to mind is:

* | stats values(UniqueCarrier) by Month

The stats function values returns a list of all the distinct values of the UniqueCarrier field as a multivalue entry
sorted in lexicographical order. The problem with this search is that even though the output contains the results we
want, it is difficult to process. You can see a part of the total output in Figure 10-4.

= ro Expornt < Options

Overlay: None hd

Manth = values(UnigueCarrier) =

1 A
AS

Figure 10-4. List of airlines by month

The better way is using a graphic chart that will be easier to interpret. By clicking on the chart button, as indicated
in Figure 10-4, we see that the results of the search produce only empty charts for any of the available chart types. Let
us try with another search that will produce something that is more prone to be charted. Also, as we have pinpointed
the demise of the two airlines before January 2002, we reduce the time period to five months, selecting from
September 2001 to January 2002 in the time picker. We will use the chart command combined with sparklines:

* | chart sparkline(count,iw) by UniqueCarrier

165

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

By default, sparklines will be presented by the closest time unit of the data being processed. Because we are
handling five months’ worth of data in the search, sparklines defaults to monthly, but that is too small to be a useful
visualization. Using 1w as an argument expands the resolution from monthly to weekly. The output of this search can
be seen in Figure 10-5.

UnigueCarrier = sparkline{count,1w) =
Ad R A
AS "\,
co e
oL N
HP Trme——
KH Ty,

MQ TN,
NW Ty
™w T
uA e
us T,
WHN SV Vit

Figure 10-5. Airlines out of business after September 11 using sparklines

The output of the chart command is rather spartan. We can see that KH (Aloha) and TW (TWA) drop to zero at
different points in time, so we have answers to our question. However, even though the sparklines provide a basic idea
of what is happening it does not feel quite complete. Surely there has to be way to provide a more comprehensive and
compelling visualization. To explore a better visualization we try using the timechart command:

* | timechart count by UniqueCarrier limit=0

In this search we count all the events (flight records) and group them by airline. It is a simple way of finding out
which are all the airlines and also get a count of scheduled flights for each one of them. Because the span is over five
months, the timechart command will present the results broken down by months, which is what we want.

The reason we use the limit argument is that by default the maximum number of items or data series to display
is 10. There are 12 airlines in the time period we are analyzing, so we can set the limit to 12, or we can be lazy and set
it to zero. By doing the latter we state that timechart should accommodate all the distinct items of the UniqueCarrier
field, no matter how many there are. You have to be careful using an argument of zero as a large number of items will
probably produce a rather chaotic and illegible chart. Had we not specified the limit argument, Splunk would have
presented only nine items and grouped the additional ones under a category called Other. Which items fall in the
Other category depends on the function used with the timechart command. In this example, it would have been those
with the lower counts. The useother argument, which controls if the Other grouping exists, is turned on by default, but
only has effect if limit has a value different than zero.

Communicating results in such a way that they are easily consumable by the intended audience is challenging.
Charts with colors tend to be the favored method for this. The issue is finding the appropriate chart type. In this
particular example, we will see that two different chart types clearly communicate two different pieces of information.
The chart type options that Splunk offers for the results of this search are column, line and area. The column chart
shown in Figure 10-6 clearly presents the airlines that went out of business during this period by the simple fact that
the corresponding airline column is not there anymore. In this case the column for Aloha is no longer present starting
the month of November and TWA is not there in January.

166

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

TWA
2002

Figure 10-7 presents the same results but using a line chart. As you can see the chart is pretty busy and does not
convey the demise of the airlines as clearly as the column chart. However, in between December and January we can
see a piece of information that was not obvious in the column chart. Whereas the traffic of TWA goes down to zero,
the number of flights for American increases by about the same amount. What really happened was that American
acquired TWA, thus a corresponding increase in flights. A completely different piece of information emerges by just
changing the chart type.

Aloha

L

September October Novembr
200!

time

MAA WA ECcoOMOL IHP Bk B MQ BN BB TW B0 UA I8 Us I WN

Figure 10-6. Airlines out of business after September 11 (Column chart)

American

~— M~ AS = C0 =— DL — HP — KH — MQ — NW — TW — UA — US — WN

Figure 10-7. Airlines out of business after September 11 (line chart)

167

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

For completeness, we present in Figure 10-8 the area chart generated with the same results as the previous two
charts. You can barely distinguish five items and nothing can really be deduced from reviewing it. Although this chart
type is useless for the current type of results, it can be useful for results generated by other searches.

85,000
80,000
75,000
70,000
65,000
60,000
55,000
50,000

45,000

September October November December]anuary
2001 2002

_time

W WaAsECOBOLEH BKHEM BNw BTV EUABUS BWN

Figure 10-8. Airlines out of business after September 11 (area chart)

Now we have a pretty good idea about the airlines over the period of available flight data. The next step is to gain
an understanding of the airports.

Analyzing Airports

The first question we have is similar to that when we analyzed airlines, how many airports are there? For this there

are multiple fields that can be used, but before we get into that we have to note that the airports in the flight data are
always paired by origin of a flight and the destination. The normal expectations are that there should be as many
origin airports as destination airports. Let’s start by checking this out for the month of September 2012. As can be seen
in Figure 10-9, we use a similar search as that to count the airlines on the most recent month:

168

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

* | stats dc(Origin)|, dc(Dest) Sep 1, 2012 - Sep 30, 2012 - q
yre—— [i]e

1 result during September 2012

= il [=+ Export = Options 50 per page -
Owverlay: MNone R |

dc{Origin) ¥ de(Dest) =

280 280

Figure 10-9. Counting airports for September 2012

The results show that there are exactly the same number of origin and destination airports, that is, 290 airports.
We chose to use the Origin and Dest fields, as they contain a mnemonic of the airport name, which is quite familiar
to frequent travelers. The other airport related fields contain codes that only make sense to specialists in the area. We
should not use the OriginCityName field, as there are some cities that have more than one commercial airport. We can
quickly find which these cities are with the following search:

* | stats dc(Origin) as city by OriginCityName | where city > 1 Sep 1, 2012 - Sep 30, 2012 - Q
— ooEnan

4 results during September 2012

= all [=+ Export < Options 50 per page -~
Overlay: None =

QOriginCityName city =

Chicago, IL 2

Houston, TX 2

New York, NY 2

Washington, DC 2

Figure 10-10. Cities with more than one airport

Let us continue with the research on airports. We must check the number of airports over the 26 years of flight
data. As airlines expand and contract, given the economic conditions, they will add or cancel service to airports
throughout the United States. Just as we did with the airlines, let us try a search over the most recent couple of years:

* | stats dc(Origin), dc(Dest) by Year

169

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Interestingly enough, for the year 2012 there are 301 origin airports and 302 destination airports, whereas
for 2011 there are 299 origin and 301 destination airports. This is unexpected. We can only think this is caused by
inconsistency in the data or an anomaly when crossing over years. Just to make sure the search is producing correct
results we quickly run another search based on the dedup command as we did on the airline analysis, which generates
the same results. In Figure 10-11 you will find the line chart that presents the number of airports, both for origin and
destination. Once again, we reviewed the results using different chart types and decided to use the line chart as it
was the one to present more clearly the results. However, to make the slight numeric differences between origin and
destination airports more noticeable, we present only from 2000 to 2009 and change the minimum value of the y-axis
of the line.

3z0

300

280

260

240

220

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Year

dc(Origin) de(Dest)

Figure 10-11. Number of origin and destination airports

We will bypass finding the most and least used airports as those searches are extremely simple. Instead, we will
have a look at another visualization challenge. The search is rather simple; find the top five airports by airline. To
make it easy we will just be using the origin airports:

* | top limit=5 Origin by UniqueCarrier

This search produces the output shown in Figure 10-12. This is a simple table ordered by airline code, but it
spreads over eight pages; not exactly the best way to get a quick idea of the top five airports by airline.

170

CHAPTER 10 ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

UnigqueCarrier = Origin = count = percent =
AS, DFW 12358 20.546922
As, CRD 4045 9.671249
LTS LA 3464 8.282128
AR, LA 2450 5.857T41
LTS LGA 1287 3.077107
AS SEA 3704 30.902720
AS ANC 1162 9.694544
AS PDX 800 6.674454
AS LA 506 4.221592
AS LAS 373 3.111964

Figure 10-12. Top 5 airports by airline (table)

Clicking on the chart button only offers column, bar and pie as options. The first two only display information for
the first four airlines, but do not state the airports, showing only the individual count for the top five of each airline.
The pie chart option does not display anything. As is the case when trying to visualize multiseries (or multiple items
as we have been calling them in this chapter), there is no easy answer. A valid option is to break down the results into
manageable units to make the results easier to digest. Using this principle, we consider breaking down the results by
airline, ideally in a pie chart, as they are very easy to understand. The issue is that we cannot really generate as many
pie charts as we want from a single Splunk command. The solution we come up with is to create a dashboard with
each panel dedicated to display the top five airports for a specific airline. Needless to say, the searches for each panel
are extremely simple:

UniqueCarrier=UA
| top limit=5 Origin

The easiest way is to save the searches to be used on each panel and create the dashboard. We have done this
for the most recent month of flight data and with three randomly selected airlines, Southwest, Delta, and United. The
resulting dashboard can be seen in Figure 10-13. This is an elegant and logical way of handling a set of results that is
cumbersome to read when presented as a table and almost impossible to display as a single chart.

Southwest <1m ago Delta <1m ago United 1s ago
LGA
J EWR
DEN MDW SLC I1AH
. oW \ DEN
s ' ATL
LAS MSP ORD
BWI SFO
View results View results View results

Figure 10-13. Dashboard sample of top five airports by airlines

171

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Before we move on to analyze the flights we have to bring to your attention something that can create confusion.
If you look at Figure 10-12, you will notice that the percentages do not quite add up. When you compare line 1,
American Airlines at the Dallas/Fort Worth airport with 29.54% and a count of 12,358 and Alaska Airlines at the
Seattle airport with 3,704 flights and 30.90%, things don’t really make sense. How is it possible that Alaska with about
a third fewer flights than American has a slightly higher percentage for their top airports? The answer is that those
percentages are per airline for all the airports, as the search was done by UniqueCarrier. Thus, Dallas/Fort Worth
represents 29.54% of the origin of flights for American, and Seattle represents 30.90% of the origin flights for Alaska.

Analyzing Flights
As all the searches we have done so far are simple, in this section we will start increasing the level of complexity. We
start with a simple search, average flight time by airline and as usual so far we test the searches over the most recent

month. The search, shown in Figure 10-14, is based on the CRSElapsedTime field, which contains the scheduled flight
time in minutes, not the actual flight time:

* | stats avg(CRSElapsedTime} by UniqueCarrier \-liBiihrincllielibiih b Q
v s (D0 B O CEBEETD

15 results during September 2012

= ol (S Export + Options 50 per page ~
Owverlay: | Mone =l

UniqueCarrier = avg(CRSElapsedTime) +

Ay 166.625583

AS 176.033623

BG 171.008321

DL 149.403518

EV 55.8680673

Fg 142.076935

FL 121.672351

Figure 10-14. Average flight time by airline

The output of this search is a table that is ordered by airline and the average flight times, calculated as the
arithmetic mean, have six decimal places. Before we determine the best way to present these results we want to polish
the output a bit by rounding the averages and sorting them. We do this as follows:

* | stats avg(CRSElapsedTime) as AverageFlightTime
by UniqueCarrier

| eval AverageFlightTime=round(AverageFlightTime)

| sort -AverageFlightTime

172

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Every time we manipulate data to obtain partial results and pass them on to the next section of a search using
pipes we like to define new fields, even if new fields are not explicitly necessary. In this case we create a new field
that contains the averages in the second clause of the search. The output is rounded in the third clause of the search,
which makes it more readable, and finally it is sorted in decreasing order. The round function defaults to an integer.
If you want decimals, just specify the desired precision after the field separated by a comma.

Determining the best representation for a given data set can be difficult. The tabular form presented in Figure 10-15
provides a quick way to process the information if we are interested in the actual number of minutes, whereas a bar
chart as seen in Figure 10-16 provides it without the exact numbers.

UnigueCarrier AverageFlightTime =
W 232
LA, 195
AS 176
BE 171
Aby 167
oL 149
us 146
Fa 142
FL 122
W "7
] a7
EW 86
oo 4
HaA 93
bkl 80

Figure 10-15. Average flight time in tabular form

173

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

UnigueCarrier
3

3118|218 18»

0 20 0 60 80 1100 120 140 160 180 200 220
AverageFlightTime

Figure 10-16. Average flight (time—bar chart)

It is interesting to note that all the regional airlines average around one hour and a half, confirming their regional
status. Oddly, Hawaiian Airlines shows up in this group, but this can be attributed to the fact that the majority of their
flights are short hops within the Hawaiian Islands, which skew the averages to the lower end as their flights to the
continent are comparatively not as many.

The next search is looking for the longest flights, but that in itself would be very easy. We want to know which
are the longest flights by airline and also from where to where. Presenting the origin and destination increases the
complexity of formulating the search, which does not necessarily mean that the resulting search is more complex.

We cannot think of a way to do this search with only one command, so we will have to break it down in clauses
using pipes. The first thought is to use the stats command to find the maximum scheduled flight time. As expected
this will produce the longest flight by time for each airline. The next step is to understand what happens if we add the
origin and destination to that particular search, as seen in Figure 10-17.

[* | stats max{CRSElapsedTime} by UniqueCarrier, Origin, Dest B-Tl Bkl ot il i q
B — SR8 3]2] oo -] oo

6,096 results during September 2012

EE..|| [3 Export « prev 2 3 4 5 6 7 B 9 10 nexts 50 per page -
[+ Options
Overlay: None =l
UnigqueCarrier = Origin = Dast = max(CRSElapsedTime) =
AR ABQ DFW 105.00
2 AA ANC DFW 375.00
oA ATL DFW 155.00
4 AA ATL MIA 125.00
5 oaA AUS DFW 70.00

Figure 10-17. Longest flight time by city pairs by airline

174

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

The output of this search is a table with the maximum flight time for every origin-destination pair for each airline.
This table contains 6,096 entries for the month of September 2012, which implies that there are as many unique city
pairs for all the airlines. Just out of curiosity, we review the first table entry, American Airlines from Albuquerque to
Dallas/Fort Worth, by doing a search to count all those entries, which totals 214 matching events.

UniqueCarrier=AA Origin=ABQ Dest=DFW

Clicking on the CRSElapsedTime field on the left side bar shows that there are two values, 100 and 105 minutes, as
can be seen in Figure 10-18. This means that the airline itself has two different scheduled flight times. When clicking
on the departure time field there are eight values and the scheduled arrival time has nine. Obviously, there is a wide
assortment of choices for this city pair.

CRSArrTIme
Min: 100 Max: 105 Mean: 101.425 Stdev: 2.262
CRSDepTime
Values # %
CRSElapsedTime
100.00 153 71.495% e
OayofMonth 105.00 B1 28.505%
DayOfWesk : : S

Figure 10-18. Scheduled elapsed times for American flights between Albuquerque and Dallas/Ft. Worth

Now that we have a table with all the city pairs, we can try to sort them by the maximum flight time:

* | stats max(CRSElapsedTime) as MaxFlightTime
by UniqueCarrier, Origin, Dest
| sort -MaxFlightTime

Because we are passing partial results to the next clause using a pipe, we created a new field, MaxFlightTime.
The output of this search gives us a list of the longest flights independently of the airline, which is not exactly what we
want. We want the longest flight for each individual airline. So let us try putting UniqueCarrier as an additional field of
the sort command. This does not change the results because the only effect it has is to sort by airline for those entries
that have the same flight time. The next logical step is to deduplicate the entries by airline. As the table has all the city
pairs ordered from longest to shortest by airline the result should be what we want:

* | stats max(CRSElapsedTime) as MaxFlightTime
by UniqueCarrier, Origin, Dest

| sort -MaxFlightTime

| dedup UniqueCarrier

As we verify that this search produces the results we want, which can be seen in Figure 10-19, we notice that it can
be optimized from four to three clauses, as the dedup command has a sort option:

* | stats max(CRSElapsedTime) as MaxFlightTime
by UniqueCarrier, Origin, Dest
| dedup UniqueCarrier
sortby -MaxFlightTime

175

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

UnigueCarrier = Crigin = Dest = MaxFlightTime =
HA JFK HMNL 660.00
LA EWR HML 640.00
DL ATL HMNL 580.00
Ady DFW HML 485.00
us PHX LIH 404.00

Figure 10-19. Longest flight by airline by city pair

So far we have worked with the maximum scheduled flight time, but we all know the reality is quite different, so
let us throw in the actual flight time. We can do this by just adding it as part of the stats command and it should carry
on throughout the rest of the sections:

* | stats max(CRSElapsedTime) as MaxSchedTime
max (ActualElapsedTime) as MaxActualTime
by UniqueCarrier, Origin, Dest
| dedup UniqueCarrier
sortby -MaxActualTime

Note that we changed the names of the new fields to be more representative of their contents and that we sorted
based on the maximum actual flight time. One of the issues of working with results that contain multiple fields is that
they do not lend themselves to being presented as colorful charts. We tried the various chart types offered by Splunk,
but whereas both flight times showed very nicely the names of the city pairs were not to be found. Figure 10-20
contains the results of this search in tabular form, which we feel is the best choice to present these results.

UnigqueCarrier = Origin = Dest = MaxSchedTime = MaxActualTime =

Hay JFK HML 660,00 670.00
Ua EWR HHML 640.00 658.00
DL ATL HML 580.00 557.00
Ay DFW 0GG 485.00 537.00
VX JFK SFO 380.00 515.00

Figure 10-20. Actual longest flights by airline

Interestingly enough, the longest flight by both scheduled and actual time for September 2012 is from New York
to Honolulu with Hawaiian Airlines. This is the flight at the top of the output. It confirms what we saw in the previous
search, that even though Hawaiian Airlines has the longest flight, the majority of the flights are short, thus skewing the
average flight time. One thing we need to bring to your attention with this search is that if any of the actual flight times
would have been the same or less than the scheduled time the order of the results would have changed and this could
affect the way the audience perceives the results.

So that we cover all the cases, we will also look at the shortest flights, both by scheduled and actual flight time.
Some readers might think that the easiest and fastest way of doing this is by reversing the sort of the longest flight
search we just did, but this will not work as you will obtain the shortest of the longest flights because you are sorting

176

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

by the maximum actual time, not the maximum scheduled time. If you reverse the sort by eliminating the dash (‘-‘)
and changing the field name to MaxSchedTime it will work correctly; however, it will have the wrong column titles on
the table, as they should be Minimum Scheduled Time and Minimum Actual Time. The modified search follows along
with a partial output in Figure 10-21.

* | stats max(CRSElapsedTime) as MaxSchedTime
max (ActualElapsedTime) as MaxActualTime
by UniqueCarrier, Origin, Dest
| dedup UniqueCarrier
sortby MaxSchedTime

UnigqueCarrier = Origin ¥ Dest ¥ MaxSchedTime = MaxActualTime =

oo SJC MRY 18.00

AS WRG PSG 27.00 47.00
YV LIH HML 29.00 47.00
HA KOA OGG 31.00 38.00
EV DEN Cos 39.00 58.00

Figure 10-21. Shortest flights by airline

The shortest scheduled flight is from San Jose to Monterey in California with 18 minutes, but it was scheduled
only once during September 2012 and it was cancelled, so the actual time is null. As all the other flights do have actual
flight times in the results we wonder about the effect of cancelled flights on the results. Reviewing other of the flights
in the shortest group we find out that both minimum and maximum of either scheduled or actual flight times always
result in a value. The San Jose to Monterey flight is a very special case, as there is no actual flight time and because
there is only one flight the result of minimum or maximum actual flight time is null.

Analyzing Delays

There are plenty of fields in the flight data related to delays and we must state that we do not have much of an
understanding of them. For details related to how delays and cancellations are reported you can visit
http://www.bts.gov/help/aviation/html/understanding.html. Having said that, delays offer an opportunity to
explore more complex searches and gain a better understanding of some of the search commands and their arguments.

Delay information is categorized by departure and arrival, and the specific causes are available since 2003. The
flight data also includes reason for cancellation and diversion. Additionally, there is detailed information related to
flights that return to the gate, which is collected since 2008.

Delays by Airline

We will start by finding out the delays by airline. Because delays are broken down by departure and arrival, we will
focus on arrival delays as they are the ones that most affect the passengers. One of the fields in the flight data indicates
if a flight has been delayed by 15 minutes or more; thus, we use ArrDell5 as the base for our search. When there is a
delay the value of this field is set to 1. The output of this search can be seen in Figure 10-22.

177

http://www.bts.gov/help/aviation/html/understanding.html

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

* | stats count(ArrDelis) as Total,
count(eval(ArrDel15=0)) as OnTime,
count(eval(ArrDeli15=1)) as Delayed
by UniqueCarrier

UnigueCarrier = Total > OnTime Delayed
Ay 40409 24252 16157

AS 118689 10745 1124

BE 18083 15025 3068

oL 50843 54754 G089

EV 59543 48965 10577

Figure 10-22. Delays of 15 minutes or more by airline

The results of this search present the total number of flights by airline, as well as the number of flights that are on
time and those that are delayed, all this sorted by the unique carrier code. Although in principle this produces what we
wanted, it is kind of unfair. Comparing Southwest with almost 90,000 flights in September 2012 against Virgin America
with around 4,600 flights, based on the resulting table is not a level comparison. The column chart of this search is a
tad clearer as the proportions convey a better picture, but it is still not enough. The fairer way is to present the delays
as a percentage of the total flights, which can be done by adding the percentage calculations to the previous search:

* | stats count(ArrDeli5) as Total,
count(eval(ArrDel15=0)) as OnTime,
count(eval(ArrDel15=1)) as Delayed
by UniqueCarrier

| eval PCTOnTime=round(OnTime/Total*100,2)

| eval PCTDelayed=round(Delayed/Total*100,2)

| sort - PCTDelayed

In addition to calculating the percentage we are rounding the result to two decimal points and by sorting the
results on the delay percentage we have a better idea how the airlines did during September 2012. As can be seen in
Figure 10-23, American Airlines had a bad month, with almost 40% of their flights delayed by 15 minutes or more on
arrival. The next one with the highest number of delayed flights is Southwest with over 11,600, but given their high
number of flights that only represents 13% of their total flights. We considered using a column chart for these results,
but it’s the same as the one produced with the previous search. The problem is that the scales of the values to be
charted are very different, the totals in the thousands and the percentages in the tens. The chart still provides a good
idea of proportion but the percentages are absent.

UnigueCarrier + Total + OnTime 5 Delayed = PCTDelayed = PCTOnTime 3

A 40409 24252 16157 39.98 60.02
EV 59543 4B9G66 10577 17.76 62.24
LA, 42456 35100 7356 17.33 B2.67
BG 18083 15025 3068 16.96 83.04
818) 49518 41854 7624 15.40 B4.60

Figure 10-23. Arrival delays by airline

178

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Causes of Delays by Airport

The next search is the cause of delays by airport. There are five causes for delays, each with its own field, which
contains the number of minutes of the delay:

e Carrier—CarrierDelay

e Weather—WeatherDelay

e National air system delay—NASDelay
e Security—SecurityDelay

e Late aircraft—LateAircraftDelay

Details on how these fields are reported can be found in the URL presented at the beginning of this section. As
with the previous search, the results only make sense if they are presented as percentages. This means that we will
have to calculate percentages for each of the causes of a delay:

* | stats count(ArrDeli5) as Total,
count(eval(ArrDel15=1)) as Delayed,
count(eval(CarrierDelay>=15)) as CarrierDel,
count(eval(WeatherDelay>=15)) as WeatherDel,
count(eval(NASDelay>=15)) as NASDel,
count(eval(SecurityDelay>=15)) as SecurityDel,
count(eval(LateAircraftDelay>=15)) as LateAircraftDel
by Dest

| eval PCTDelayed=round(Delayed/Total*100,2)

| eval PCTCarrierDelay=round(CarrierDel/Delayed*100,2)

| eval PCTWeatherDelay=round(WeatherDel/Delayed*100,2)

| eval PCTNASDelay=round(NASDel/Delayed*100,2)

| eval PCTSecurityDelay=round(SecurityDel/Delayed*100,2)

| eval PCTLateAircraftDelay=round(LateAircraftDel/Delayed*100,2)

| sort - Total

| fields - Total, Delayed, CarrierDel, WeatherDel, NASDel, SecurityDel, LateAircraftDel

| head 5

As we are using the ArrDell15 field as the base of this analysis, we must count the cause of delays that have
15 or more minutes. The results of these counts are then used to calculate the corresponding percentages. We sort
the results based on the total number of flights by airport, as we are interested in knowing the delays on the busiest
airports. Sorting by the percentage of delays, that is using sort -PCTDelayed, will list a number of small airports in the
pacific coast with a few flights a day and prone to fog, as can be seen in Figure 10-24.

Dest + PCTCarrierDelay * PCTDelayed + PCTLateAircraftDelay + PCTNASDelay > PCTSecurityDelay * PCTWeatherDelay

CEC 11.36 65,87 &1.82 .08 0.00 227
MOD 20.00 64.71 89.09 1.82 0.00 0.00
RDD 21.57 58.82 7255 7.84 0.00 0.00
EGE 7222 56.25 44.44 5.56 0.00 0.00
CIC 15.79 46,34 2211 5.26 0.00 0.00

Figure 10-24. Airports with highest percentage of delays

179

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

We go back to our original search, where we sort by the total number of flights. As we are only interested in the
percentages, we eliminate the fields we used to calculate them. Finally, we just present the top 10 airports by using
the head command. The table produced by this search can be seen in Figure 10-25. As we try to verify the results, we
notice that the column that contains the PCTDelayed field is located in an odd place. Because this field presents the
percentage of all delayed flights per airport we would like for it to be either the second column, right after the airport
mnemonic code, or the last one.

Dest = PCTCarrierDelay + PCTDelayed ¥ PCTLateAircraftDelay = PCTNASDelay + PCTSecurityDelay + PCTWeatherDelay =

ATL 25.82 12,01 41.14 32.35 0.13 1.77
ORD 25.04 1847 4345 34,65 0.09 1.60
DFW 2695 2276 48.03 26.65 0.20 1.97
DEN 2870 1224 40.18 26.87 n.22 1.70
LA 27.21 18.07 41.00 73 0.12 1.80

Figure 10-25. Cause of arrival delays by airport (tabular form)

After exhaustive testing we found that fields created using the eval command are presented in tables and
charts following ASCII order. ASCII is one way to represent characters internally in computers and the order can
be described as some symbols, the numbers, some other symbols, upper case letters in alphabetical order, other
symbols, lower case letters in alphabetical order and a final set of symbols. Fields created using the stats command
are presented in the order they were created. This order can be clearly seen in Figure 10-23 where you see that
PCTOnTime was calculated before PCTDelayed, but ends up in the last column of the table. To arrange the order of
the columns in the results presented in Figure 10-25 as we want, we can add a character that comes before “P” in
the ASCII table to the PCTDelayed field. This way, it will be placed right before the column of the PCTCarrierDelay
field. Note that it will not be placed before the first column as that one is assigned to the field (or fields) used in the by
argument, in this case the destination airport. As part of our experiments we found that we can use special characters
to name the fields created using the eval command. The only down side is that when the fields have special characters
they cannot be used for further calculations. With this knowledge, we rename the PCTDelayed field as %Delayed and
now it shows up as the second column in the results table of this search as can be seen in Figure 10-26.

Dest * %Delayed * PCTCarrierDelay + PCTLateAircraftDelay * PCTNASDelay ¥ PCTSecurityDelay * PCTWeatherDelay ~

ATL 201 2582 41.14 32.35 0.13 1.77
ORD 1847 25.04 4345 3465 0.09 1.60
DFW 2276 26.95 48.03 26.65 0.20 1.97
DEN 1224 28.70 40,19 26.87 022 1.70
LAX 18.07 2721 41.00 N73 012 1.80

Figure 10-26. Cause of arrival delays by airport (reordered columns)

Now that we have the table columns in the order that we want, we can continue with the verification of the
results. As the calculations we did are relatively simple, we are not so concerned about those individual results.
However, it is of our interest to see if the addition of all the percentages for the airports equals 100. Las Vegas adds
to 99.99, which is close enough to 100 to say the difference can be attributed to rounding errors. But Chicago O'Hare
adds up to 104.83, which is more than can be excused by rounding errors. After researching the issue for this we
concluded that the reason is that the fields used for causes of delays reflect delays on both origin and destination. The
documentation at the TranStats web site does not go to this level of detail, so we cannot confirm our suspicion that if
a flight had a delay on the departure and a delay on the arrival, the cause fields will add the minutes for both, resulting
in the discrepancy we are observing.

180

CHAPTER 10 ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

We have mentioned before that when we have multiple columns of information in the results of searches, it is
difficult to use charts to convey the results. However, in this search using a bar or column chart with the 100% stacked
mode option makes for a great visualization as it presents the percentages of the causes for delays for each of the top
10 airports. We have to make one change to the search so that the results are accurate when using this type of chart;
we need to eliminate the total percentage of delayed flights (PCTDelayed) so the easiest way is not calculating it
anymore. The search ends up being:

* | stats count(ArrDelis) as Total,
count(eval(ArrDel15=1)) as Delayed,
count(eval(CarrierDelay>=15)) as CarrierDel,
count(eval(WeatherDelay>=15)) as WeatherDel,
count(eval(NASDelay>=15)) as NASDel,
count(eval(SecurityDelay>=15)) as SecurityDel,
count(eval(LateAircraftDelay>=15)) as LateAircraftDel
by Dest

| eval PCTCarrierDelay=round(CarrierDel/Delayed*100,2)

| eval PCTWeatherDelay=round(WeatherDel/Delayed*100,2)

| eval PCTNASDelay=round(NASDel/Delayed*100,2)

| eval PCTSecurityDelay=round(SecurityDel/Delayed*100,2)

| eval PCTLateAircraftDelay=round(LateAircraftDel/Delayed*100,2)

| sort - Total

| fields - Total, Delayed, CarrierDel, WeatherDel, NASDel, SecurityDel, LateAircraftDel

| head

The stacked bar chart can be seen in Figure 10-27. Interestingly enough, the stacks are sorted in reverse order to
the legend.

]

ORD

n
a
]

| I =
g |

orv | |
oo [O]
5« I I
5w I L 0 |
<o |]
o 0 S —
vs | I
.]

70 &0 90

o
o
[
o
w
o
-
o
w
o

60

I PCTCarrierDelay PCTLateAircraftDelay Bl PCTNASDelay Bl PCTSecurityDelay B PCTWeatherDelay

Figure 10-27. Cause of arrival delays by airport (bar chart)

Winter versus Summer Delays

Next, we want to compare the delays between January and July of 2012 for the top 10 airports, as we want to see if
winter has any affect on the delays. We will do this by having two identical searches over two different periods of time
and then joining the results. To run two or more searches Splunk offers a subsearch mechanism. Subsearches are
contained within square brackets ([]) and are evaluated before the main search, this way the results of a subsearch
can be used in the main search. Subsearches are limited to actions related to searches and not data transformation.
In general, we only see subsearches used with the join and append commands.

181

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Let us start with the search to calculate the delays. So far we have been using the time picker of the user interface,
but that will not work as we have to select two different time periods. For this, we can specify the time ranges using the
earliest and latest attributes of the search command. With this our main search is:

earliest=1/1/2012:0:0:0 latest=2/1/2012:0:0:0

| stats count(ArrDeli5) as Total Jan,
count(eval(ArrDel15=1)) as Delayed Jan
by Dest

| eval PCTDelJan=round(Delayed Jan/Total Jan*100,2)

Now instead of using the * that indicates all the events, we restrict the choice of events to the time period between
the date and time defined in earliest and latest. The “0:0:0” sequence after the date indicates the time as hour, minutes
and seconds. Note that we defined the latest date and time to be February 1 at midnight because the latest argument
is exclusive, meaning that it does not include the date and time specified. The date and time specified in earliest is
inclusive.

Note Specifying a time range in a search or subsearch will override the time range selected in the time picker of the
user interface.

The subsearch is the same as the main search, but we change the time period and the names of the calculated
fields. To combine the results of both searches we use the join command, which is very similar to a SQL join used
on relational databases. In the Splunk join command you can specify the exact fields to use for the join. If you do
not specify any, it defaults to use all the fields that are common to both result sets. As our result sets are the same
regarding their structure, we will not specify any fields. You can also specify the type of join to perform. There are two
types of join, inner and outer (or left). Inner join is the default and only includes events that are matched on both
result sets. An outer join combines all the events of both result sets, even if there are no matches, think of it as a merge.
Once again, because our result sets are the same, we will use the inner join. The final version of the search is:

earliest=1/1/2012:0:0:0 latest=2/1/2012:0:0:0
| stats count(ArrDeli5) as Total Jan,
count(eval(ArrDel15=1)) as Delayed Jan
by Dest
| eval PCTDelJan=round(Delayed Jan/Total_Jan*100,2)
| join
[
search earliest=7/1/2012:0:0:0 latest=8/1/2012:0:0:0
| stats count(ArrDeli5) as ATotal Jul,
count(eval(ArrDel15=1)) as Delayed Jul
by Dest
| eval PCTDelJul=round(Delayed Jan/ATotal Jul*100,2)
]
| sort - Totallan
| fields - Delayed Jan, Delayed Jul
| head

We have indented the search to make it more readable as Splunk does not have the concept of indentation for
search commands. The search command is the core of the search app in Splunk. As such, you do not even have to type
it when used in the first clause; that is why we have only been typing the star (*) at the beginning of all our searches.
However, after the first pipe you need to type it, as can be seen in the subsearch, otherwise you would get an error

182

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

message stating that earliest is not a valid command. One thing to note is that we used a similar trick as on a previous
search to order the table columns as we want to make it easier to analyze the results. As can be seen in Figure 10-28,
we present the total number of flights and the delays as a percentage for both months. We added an A to the name of
the Total_jul field name to place it as the third column. It is kind of clumsy, but it gets the job done.

[subsearch]: Your timerange was substituted based on your search string

Your timerange was substituted based on your search string

10 results during September 2012

= [_ Export Options 10 per page -
Overlay: None j

Dest = Total_Jan = ATotal_Jul = PCTDelJan = PCTDelJul =

ATL 31031 34357 14.95 21.73

ORD 23849 26723 16.34 2567

DFW 20714 23030 12.11 18.94

DEN 18797 21923 13.67 21.28

LAx 17600 20142 13.20 20.21

PHX 15213 15897 23.18 15.18

1AH 134586 16134 14.68 31.49

SFO 12981 15302 24.49 31.87

LAS 11197 12358 11.38 17.66

CLT 10944 11123 12.00 1947

Figure 10-28. Comparison of delays—January versus July 2012

We left the month of September 2012 as the time range in the time picker of the user interface on purpose so
that you can see the messages where the subsearch and the main search are overriding the time range. Interestingly
enough, Splunk still states that there are “10 results during September 2012.”

For this search, we chose to use the tabular form to display the results as we need the total number of flights
in addition to the delays as a percentage of the total flights to do a proper analysis. Admittedly, a chart presenting
only the percentages of delays would be enough to get a quick answer to our original question, if winter affects the
delays, but when we looked at the results we noticed an anomaly. All airports have more delays during July except for
Phoenix. Our first question is if the amount of flights was higher in January; thus, we need to gain access to the total
number of flights. Of course, if we would not have found this anomaly, there would not have been the need to review
the results in tabular form.

Creating and Using Macros

In the “Cause of Arrival Delays by Airport” search we repeated five times the same two calculations, counting the
occurrences of the causes of delays that are more or equal than 15 minutes and calculating the percentages for each
cause of delay. Splunk offers the ability to define macros that can be used in the search app. These macros are pieces
of a search that can be reused in multiple places in a search and do not have to be a complete command. Optionally,
macros can have arguments.

183

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

We can create two macros to handle those calculations, which should simplify a bit our lives and make the
maintenance of the searches easier. For example, if we want to analyze delays of more than 60 minutes, we just have to
change the macro once instead of the calculation five times.

We will call the first macro countd, which will have one argument: the field we want to count if it has a value of
15 or more minutes. The argument is surrounded by the dollar sign ($), which will be replaced with the value we call it:

count(eval($cause$>=15))

The second macro, calcp, calculates the percentage of a field and places the result in another one:
eval $result$=round($input_field$/Delayed*100,2)

Now the search using the macros looks like this:

* | stats count(ArrDelis) as Total,
count(eval(ArrDel15=1)) as Delayed,
“countd(CarrierDelay)™ as CarrierDel,
“countd(WeatherDelay)™ as WeatherDel,
“countd(NASDelay)™ as NASDel,
“countd(SecurityDelay)” as SecurityDel,
“countd(LateAircraftDelay)™ as LateAircraftDel
by Dest

| ~calcp(PCTCarrierDelay,CarrierDel)”

| ~calcp(PCTWeatherDelay,WeatherDel)"

| ~calcp(PCTNASDelay,NASDel)"

| “calcp(PCTSecurityDelay,SecurityDel)”

| “calcp(PCTLateAircraftDelay,LateAircraftDel)”

| sort - Total

| fields - Total, Delayed, CarrierDel, WeatherDel, NASDel, SecurityDel, LateAircraftDel

| head

You can see that to call a macro you just enclose the name and possible arguments between backticks ().
Defining the macro in Splunk is done in the Advanced Search screen of the Manager in the user interface. Figure 10-29
has a partial screenshot of the definition for the calcp macro.

184

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Destination app
search j

Name *
Enter the name of the macro. If the search macro takes an argument, indic

calcp(2)

Definition *
Enter the string the search macro expands to when it is referenced in anott
eval S$result$=round($input field$/Delayed*100,2)

[l Use eval-based definition?

Arguments
Enter a comma-delimited string of argument names. Argument names may

result, input_field|

Figure 10-29. Defining a macro in Splunk

In the screenshot you can see that we define the name of the macro but append it with “(2)” This means that
the macro has two arguments, which are defined later in the screen. The definition contains the actual macro. Next
you have the option to specify if the macro uses an eval-based definition, that is, if the macro is based on the eval
command. Both our macros are straightforward expansions, text replacements; therefore, we do not check this
item. Finally, you have the ability to define a validation expression for the arguments, which is a string that is an eval
expression that either evaluates to a Boolean or a string. If the Boolean expression returns false or is null, the macro
will return the string defined in the Validation Error message. If the validation expression is not a Boolean expression,
itis expected to return a string or null. The string is used as the error string otherwise, when null, it is considered
successful.

Report Acceleration

As we have been discussing in this chapter, most of the reports aggregate information to present summaries that are
easily consumable for the intended audience. The amount of time that it takes to create a report is directly proportional
to the amount of data to be processed. Calculating the average value of a specific field or something as simple as
counting the number of events implies reading every single event, which in a large data set can take a long time. When
you have reports that summarize large data sets on a regular basis this can be inefficient, especially if different users
are running similar reports, thus incrementing the load on the system, which can quickly become a big problem.

The core of the problem is that every time you run a report it goes through every one of the required events every
single time. One way to solve this repetitive problem is creating summaries of the data for that particular report on
aregular basis. That way, when you run a report, it uses the summarized data, significantly reducing the processing
time. For that chunk of data that has not been summarized yet, the normal processing applies, but because it is a
substantially smaller amount of data, the processing time is usually a lot faster.

185

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Splunk offers two methods to create data summaries for reports, report acceleration and summary indexing.
Most of the reports that you have can probably be handled with the report acceleration feature, which is also the
easiest of both methods. All you have to do is click on a checkbox and specify a time range when defining the search
and Splunk will automagically take care of the rest. Not only that, but any search that is similar to the one you defined
for your report will also benefit from the summary.

To show how report acceleration works we will use the Longest Flight by Airline search we defined earlier. When
we were building this search we limited the time period to the most recent month of data, September 2012. To make an
interesting example, we will state that this search will run on a monthly basis presenting the previous 12 months, that is, a
rolling report of the last 12 months. Because TranStats takes a couple of months to upload the most recent month, we also
define that the search starts 2 months before the current date and goes back 12 months from that point, that is, 14 months.
In this case, earliest is defined as -14mon and latest as -2mon. Remember that when using months as a time modifier you
have to use mon, month, or months instead of m, which stands for minutes. This seems to be a common mistake.

Without accelerating this report it takes about four minutes to go over almost five million events. In a world
where waiting more than five seconds is unacceptable, four minutes is an eternity, so let us go through the necessary
steps to accelerate this report. There are a couple of ways for doing this, when saving a report or by editing an
existing report. We will show the latter, for which we go to the “Searches and reports” page of the Manager in the user
interface. There we click on the name of our search, Longest Flight by Airline. In Figure 10-30 you can see that the
dialog box contains all the information we have provided in the past. When we click on “Accelerate this search,” a pull
down menu shows up, presenting various choices for the summary range. We choose one year, as our report covers
approximately the last 12 months. After that, all we do is click on the save button.

Longest Flight by Airline

Search

* | stats max(CRSElapsedTime) as MaxSchedTime
max(ActualElapsedTime) as MaxhActualTime by
UnigueCarrier, Origin, Dest | dedup
UnigueCarrier sortby -MaxActualTime

Description

Longest flight by airline for both, scheduled and actual flight times

Time range
Start time Finish time
-14mon -2mon

Time specifiers: y, mon, d, h, m, 8
%! Learn more

Acceleration

Accelerate this search

Summary range

1 Year =

Figure 10-30. Accelerating a report

From this point on Splunk will take care of updating the summary on a regular basis in the background so that we
will not even notice. The first time the summary is created immediately, but it can take a while to complete. To know if

186

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

the summary is done you can go to the “Report Accelerations Summaries” page of the Manager in the user interface.
In Figure 10-19 you will see under the title “Summary Status” that the summary for our report is complete. If it were in
the process of updating the summary with the most recent information it would specify the amount of processing it
has completed as a percentage. The “Summarization Load” is an important metric as it reflects the effort that Splunk
has put into updating the summary. The bigger this number is, the more processing was involved. However, be aware
that the calculation is based on the amount of time it takes to update the summary and how often it happens. For a
report as ours, which will be updated every month the number will be very low. As a matter of fact, in Figure 10-31 you
can see that the number is 0.00004 as it has not been updated for the last few weeks.

Report Acceleration Summaries

Showing 1-1 of 1 item Results perpage 25 x|
Summary ID # Reports Using Summary Summarization Load * @& Access Count = Summary Status *
Oec1aeBad188eal0 Longest Flight by Airline. 0.0004 10 Last Access: < 1 min ago Pending Updated: 34d 7h 8m ago

Figure 10-31. Report Acceleration Summary

The other important metric is the “Access Count,” which also shows the last time the report was run. If you have
areport with a high load and it is seldomly used or it has not been used in a long time, you should seriously consider
deleting this summary. In addition to Complete, the summarization status can also be Pending, Suspended and Not
enough data to summarize. Pending means that it is close to review if an update is needed, whereas suspended means
that Splunk has determined that the search is not worth summarizing because the summary is too large. This usually
happens with searches that have a high data cardinality, that is, they produce a lot of events, almost as many as there
are in the original data set.

If you are interested in more details of the summary, you can click on the strange number under the “Summary
ID” column. Figure 10-32 shows the detailed information of a summary.

Summary: 0ec1ae%ad188eal10

Summary Status Actions

Complete Updated: 34d Th 11m ago Verify Update Rebuild Delete
Reports Using This Summary

Search name Owner App

Longest Flight by Airline. admin search

Details [Learn more.

Summarization Load 0.0004

Access Count 10 Last Access: 3m ago
Size on Disk 44 75MB

Summary Range 366 days

Timespans 1d, 1mon

Buckets 5

Chunks 358

Figure 10-32. Summary status

187

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Within the details, it is worth mentioning the size on disk. This feature is so powerful that it is easy to forget that it
has a cost, that of regularly running the search and that the summary uses additional space on disk. Considering that
the flight data occupies about 17GBs, 45MBs for this summary is almost negligible. Of course, this will grow over time
and we should be mindful of the impact it can have on the longer term.

In Figure 10-32, you can also see that there are various actions available. Because data, fields, and the way that we
manipulate them tend to change, sometimes without our knowledge, we can use the verify action to make sure that
the summary is still producing correct results and that the data is still consistent. The other actions, update, rebuild,
and delete, are standard maintenance issue.

The question now is, how fast is the search that we accelerated? Really fast, clocking at about three seconds.

That is a couple of orders of magnitude faster, which in this case is well worth it. Again, remember that you cannot
defy the laws of physics; you have to pay the price somewhere. In this case, we increase disk usage and distribute the
processing over time in the background. In the summarization load and usage we have two good metrics that let us
know if this powerful and very simple feature is worth it for every report.

Of course, not all searches qualify for report acceleration as there are a few limitations. The first one being that
the searches must use reporting commands, such as chart, timechart, stats, top, rare, and others. Additionally, the
commands feeding the reporting commands must be streaming commands, such as search, eval, fields, regex, lookup,
multiky, and others. The second limitation is that the data to be summarized has to have at least 100,000 recent events.

The way the summarization works is that Splunk will regularly run the search in the background and store the
summary information so that it is available the next time it is needed. Splunk will figure out the frequency it needs to
run the background search, but we can say that it is dependent on the time range you define.

All of the searches we have done in this chapter qualify for report acceleration. You might have thought that the
searches for the longest and shortest flights would not qualify because they use the dedup command, which is not
a streaming command, but it is used after the reporting commands, not before; thus, it meets the first requirement.
Regarding the recent event count, we know that every monthly update brings well over 400,000 events, so that is not
an issue.

The second method for creating data summaries is summary indexing. It works basically the same as report
acceleration, but internally Splunk handles things differently. Setting it up and using it is a more involved process.

As most of the reports can be done with report acceleration, summary indexing is relegated for those cases where the
search includes nonstreamable commands before a reporting command. We will not be covering summary indexing
in this book. If for any reason you may need to use it, please refer to the Splunk documentation.

Accelerating Statistics

As we saw at the beginning of this chapter, running a simple search over all the flight data set can take as much three
hours. So far we have used the strategy of testing our searches on the most recent month of flight data. If the search
spanned over a month we tested with a couple of months and if the search spanned over years we tested with a couple
years. Inevitably, the moment will come that your searches are ready to be used in prime time and some of them will
cover all of the data; in our example, that is about 26 years of flight data. Having to wait three hours to get the results
of a single search might be bearable, but when you have a dozen of searches and you have to run them on a regular
basis, this is totally unacceptable.

Whereas report acceleration focuses on creating data summaries for specific searches or reports, Splunk has a
mechanism referred to as tsidx that allows for the creation and use of general summaries of indexed data. Using tsidx
is a two-step process. The first one is creating a general summary of the data using the tscollect command. Then you
can use the fstats command to perform the statistical queries of your interest with an incredibly fast performance.

The tscollect command is very simple; you just have to define the name of the summary file where Splunk will
store the general summary:

* | tscollect namespace=summary fd

188

CHAPTER 10 " ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

As easy as it is, creating the general summary for all the 147 million events of the flight data ran for over 8 hours
and it created a file about half the size of the flight data. Be aware that you cannot use the #scollect command to replace
information within a summary file; however, you can append information to it. For example, once we get the flight
data for October 2012 loaded into the main index, we can append it to summary_ fd like this:

earliest=10/1/2012:0:0:0 latest=11/1/2012:0:0:0
| tscollect namespace=summary fd

The tstats command has a different syntax than the stats command. Let us illustrate how it works with an example
using one of the searches we defined earlier in this chapter, the average flight time per airline, which using the stats
command is:

* | stats avg(CRSElapsedTime) as AverageFlightTime
by UniqueCarrier

| eval AverageFlightTime=round(AverageFlightTime)

| sort -AverageFlightTime

We will now replace the stats command with the equivalent tstats command:

| tstats avg(CRSElapsedTime) as AverageFlightTime
from summary fd
groupby UniqueCarrier

Asyou can see, we can still do calculations on fields using functions and create a new field to contain the results.
Next we have to specify the name of the file that contains the general summary and finally the by argument is now
groupby. Notice that we no longer have a star (*) at the beginning of the search. This is because you are not doing a
search and passing the events on to the #stats command. We still have the pipe before the command because we have
to tell Splunk that this is an actual command and not an attribute of the search command. The rest of the search, the
eval and sort, remains the same.

How fast is it? When we run this search on the month of September 2012 using good old stats it takes about
15 seconds. Using tstats over all the 26 years of flight data, it takes about 30 seconds. It seems that investing more than
eight hours in creating the general summary and using the additional 8.6GB of disk space are well worth it.

One of the down sides of tstats is that not all statistical functions are available. At the moment of this writing the
functions are limited to count, sum, sumsq, distinct, avg, and stdev. However, Splunk offers a way to bridge the tstats
command with the stats command to gain access to those functions that are not available. It is a bit quirky, but it
works. Let us use the search we did to count the airlines by year:

* | stats dc(UniqueCarrier) by Year
The equivalent search using tstats is the following:

| tstats prestats=t
dc(UniqueCarrier)
from summary fd
groupby Year
| stats dc(UniqueCarrier)
by Year

Just to avoid any confusion, the distinct function available in #stats lists the distinct or unique values of a field just
like the values function, which is different than the distinct_count, or dc function that calculates a count of the distinct
values of a field. The prestats argument set to t (for true) indicates that the following function is not supported by
tstats and it should create a bridge to the stats command that follows immediately and has the same function. As we

189

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

said, it’s a bit bizarre, but at least we do have a mechanism to overcome these limitations of tstats. The performance
improvement for this search is mind-blowing; the original search over the 147,122,177 events using stats took close to
three hours. With #stats it took 15 seconds!

The groupby clause in fstats can handle multiple fields. We will simplify a search we used earlier to find the
longest flights by airline to illustrate this. The original search was:

* | stats max(CRSElapsedTime) as MaxSchedTime
max (ActualElapsedTime) as MaxActualTime
by UniqueCarrier, Origin, Dest
| dedup UniqueCarrier
sortby -MaxActualTime

Changing it to use #stats is pretty straightforward, very much like the other examples:

| tstats prestats=t
max(CRSElapsedTime),
max(ActualElapsedTime)
from summary_ fd
groupby UniqueCarrier, Origin, Dest
| stats max(CRSElapsedTime) as MaxSchedTime,
max (ActualElapsedTime) as MaxActualTime
by UniqueCarrier, Origin, Dest
| dedup UniqueCarrier
sortby -MaxSchedTime

Because the max function is not a supported by #stats, we bridge it over to stats by setting the prestats argument
to true. As stats is the command that will actually be calculating the maximum flight times it’s there where we assign
the results to a new field. We could have typed it in the fstats command, but it would not have any effect. For didactical
purposes, we have changed the sort field to the maximum scheduled flight time. Running the normal search on the
flight data of September 2012 takes about three seconds. The accelerated search over all the 26 years takes a little over
two minutes. In Figure 10-33 you can see results of the search with the modified sort.

UniqueCarrier = Origin = Dest = MaxSchedTime = MaxActualTime =

UA GUM HNL 1865 477
AA DFW HNL 1613 727
Co HANL GUM 1565 693
EA ATL LAS 1560 346
TW DTW MKE 1485 181
B6 JFK TUs 1484 521
NVY CMH MEM 1440 284
W DET MDWY 1440 1440
MQ ORD GRB 1435 260
00 BZN DEN 1375 287

Figure 10-33. Longest flights by airline, all years

190

CHAPTER 10 ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

The reason we did this is to show you the strange numbers we get on almost all the rows under the maximum
scheduled time column. These are obviously wrong as 1,865 minutes—about 31 hours—is totally unrealistic for a
commercial flight. This is confirmed by the fact that the maximum actual flight time for that same flight over the
last 26 years is 477 minutes, or about 8 hours, which is much more realistic number for a flight between Guam and
Honolulu. We need to find more information about this. First we want to know if this is a regular error or it only
happens once. For that we do the following simple search, which produces the output found in Figure 10-34.

UniqueCarrier=UA CRSElapsedTime=1865

1 event before 12:00:00 AM October 1, 2012

[— Export Options 50 per page =
1/25/12 2012,1,1,25,3,2012-81-25, "UA" 19977, "UA",""," 280" ,12016,12816082, 32016, "GUM" , "Guam, TT
6:35:00.000 AM HI","HI","15","Hawaii",2,"@&35","",,,,, "0608-8659", " "", "",,"1740" ," "",,,,,"1780-1759","

=BigDBook - =FD_Source2-2 « | =/mntflight_data/On_Time_On_Time_Performance_2
———— —3 alr

Figure 10-34. All United flights with scheduled flight time of 1,865 minutes

This search returns only one event, but we still do not know if it is an isolated error. For this we search for any
flight in that route that has a scheduled time bigger than the biggest actual flight time over the 26 years:

UniqueCarrier=UA Origin=GUM Dest=HNL
| where CRSElapsedTime>477

This search only returns the same event as the previous one, so this is an isolated incident. We suspect there
was some data entry problem for United Flight 200 on January 25, 2012. This last search allows us to explain some
performance tips in searches. Splunk is quite slow when it has to read a large amount of events from raw data,
therefore the reason for tsidx to exist. However, Splunk is extremely fast finding specific items in events, even more so
when they are key value pairs. The above search took about one second for all the 147 million events. The first section
of the search zooms in directly into the required events by looking directly into the index table Splunk keeps internally
instead of reading every event. The second clause applies the conditional, which tends to be a more expensive
operation but only on those events that resulted from the first search. Alternatively, we could have formulated the
search as:

* | where UniqueCarrier=UA AND Origin=GUM AND Dest=HNL AND CRSElapsedTime>477

This would have evaluated the conditional for every single raw event and it probably would have taken longer
than three hours. The difference is matching 336 events that contain United, Guam and Honolulu, and then evaluate
if the scheduled time is greater than 477 minutes against evaluating if the airline is United and the origin Guam and
the destination Honolulu and the scheduled time greater than 477 for every single one of the 147+ million events.

For completeness, we did a quick check with the anomaly for American Airlines and found two events that have
1,613 and 1,517 minutes for scheduled flight time, one in 1993 and another one in 1991. Obviously, these are isolated
incidents, but they could potentially affect our analysis by incorrectly skewing results.

One way to solve this problem is by erasing those events using the delete command. This command does not
actually delete events; it just marks them so that they are not used in searches. Of course, this will not affect a tsidx
summary that was created before the events were deleted. An example of one way that you could delete specific
events presenting the anomalous scheduled flight times is:

UniqueCarrier=UA CRSElapsedTime=1865 | delete

191

CHAPTER 10 * ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

You must be extremely careful using this command, as far as we know there is no way to undelete events. Splunk
is quite sensitive about this command and by default no user, not even the admin has the capability to delete events.
They suggest you create a special user for when you will delete events.

The final example we have shows how to deal with multiple functions within a single stats command that assigns
the results to new fields, and how to handle conditionals. For this, we will use the Arrival Delays by Airline search we
built earlier in this chapter:

* | stats count(ArrDelis) as Total,
count(eval(ArrDel15=0)) as OnTime,
count(eval(ArrDel15=1)) as Delayed
by UniqueCarrier

| eval PCTOnTime=round(OnTime/Total*100,2)

| eval PCTDelayed=round(Delayed/Total*100,2)

| sort - PCTDelayed

The first issue that we see in this search is that it uses the eval function within the count function. Whereas count
is supported by the tstats command, eval is not. The way around this is using the where clause of the fstats command,
but the problem here is that there can be only one clause, so the logic in the stats command will have to be broken
down in many parts to make it work with zstats. We start by obtaining the count of delayed flights:

| tstats count as Delayed
from summary fd
where ArrDel15=1
groupby UniqueCarrier

The where argument is used in an equivalent manner to the way the eval function and the above search ends
up counting all the delayed flights by airline. Be aware that you must follow the order of the from, where and groupby
clauses for the tstats command. You will get very misleading messages when you do not do so and will spent a lot of
time trying to understand what is happening. Next we need another search to find either the total number of flights by
airline or the on-time flights:

| tstats count as Total
from summary_fd
groupby UniqueCarrier

This search is quite simple and all we have left is joining both tstat commands, calculate the percentages and sort
appropriately. The final search looks like this:

| tstats count as Delayed
from summary fd
where ArrDeli5=1
groupby UniqueCarrier
| join
[
| tstats count as Total
from summary_fd
groupby UniqueCarrier
]
| eval PCTDelayed=round(Delayed/Total*100,2)
| eval PCTOnTime=round((Total-Delayed)/Total*100,2)
| sort - PCTDelayed
| fields - Delayed, Total

192

CHAPTER 10 © ANALYZING AIRLINES, AIRPORTS, FLIGHTS, AND DELAYS

Essentially we have completely reformulated the search to work around the limitations of the tstats command
and achieved the same results. Whereas in the original search we counted in one single command the total, on-time
and delayed flights, in the new search we broke the counts of the total and delayed flights in two separate tstats
commands, which were then combined using the join command, as we did in the Comparison of Delays search
earlier in this chapter. The on-time percentage is based on the subtraction of the total and delayed flights counts. The
only functional difference with the original search is that we eliminated the count results using the fields command
and left only the percentages. Using a 100% stacked bar chart provides a good visualization of the aggregated arrival
delays over the last 26 years, which can be seen in Figure 10-35.

MQ
AS
FL
DL

] co
Eo™
v
L)
£ m
>
PA (1)

c I
[

H :§§ 8 39;

30 40 50 70

[PCTDelayed " PCTOnTime

Figure 10-35. Arrival delays by airline, all years

As expected with the tsidx mechanism, the performance difference is huge. The original search using only the
month of September 2012 ran in 10 seconds, whereas using the reformulated search it took 15 seconds to go over the
147+ million events.

Summary

In this chapter, we have gone through a typical data analysis session using the Airline On-Timer Performance

data, during which we learned how to use some of the commands available in Splunk. We also discussed various
visualization options, which are dependent on the results of the searches and the information that is being conveyed
to the consumers of the analysis. Finally, we went over some performance tips on searches and reports, which can
make amazingly big differences by dramatically cutting the response times of searches.

193

CHAPTER 11

Analyzing a Specific Flight Over
the Years

Using the analysis of a specific flight over the years as an example, we continue to explore Splunk commands.

This time we focus on lookup tables, both static CSV based and using a database. It can be argued that field lookup
tables are inherited from relational databases and their constant need to normalize data. As such, much of the
data that we deal with on a daily basis is coded and those codes are explained in separate tables, which are called
lookup tables. In Splunk you can create and upload lookup tables that can be later used in searches to expand the
aforementioned codes.

Airline Names

In Chapter 10 we mentioned that we would be using lookup tables to present the name of the airlines instead of
those acronyms we have been using so far, which are all we have available in the three fields that provide us airline
information: UniqueCarrier, AirlineID, and Carrier. We will start by creating a simple lookup table in Splunk to replace
these codes with the actual airline names.

When you go to the download page on the TranStats web site you will see that some of the fields described have
a link to the right for the corresponding lookup table. This can be seen in Figure 11-1. When you click on any of those
links it will download a CSV file that contains the detailed information associated with that particular field. For this
example we downloaded the lookup table for the UniqueCarrier field, which is the one we have been using for the
searches in Chapter 10.

195

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

On-Time : On-Time Performance

Databases Data Tables Table Contents
Download Instructions Filter Geography Filter Year Filter Period
Latest Available Data: November 2012 (A :I 2012 ,;.I January :.]
[]Prezipped File [] % Missing [| Documentation [Terms [Download)
Fleld Name Description Support Table
Time Period
] Year Year
] Quarter Quarter (1-4) Get Lookup Tabie
™ Month Month Get Lookup Table
] DayofMonth Day of Month
] DayOfweek Day of Week Get Lookup Table
"] FlightDate Rlight Date (yyyymmdd}
Airline
[} UniqueCarrier Unique Carrier Code. When the same Get Lookup Table
code has been used by multiple
carriers, a numeric suffix is used for
earlier users, for example, PA, PA(1),
PA(2). Use this field for analysis
across a range of years,
[AirlinelD An identification number assigned by Get Lookup Table
US DOT to identify & unigque airline
(carrier). A unique aifline (carrier) is
defined as one holding and reporting

Figure 11-1. On-Time performance download page

The first thing that we notice when we download the lookup table is that the file name has a strange character at
the end of the csv extension, a double quote () in MacOS and a dash (-) in Windows. Removing this extra character
makes it usable with a spreadsheet application. When we open it up, it comes as a surprise that there are a lot more
than the 30 airlines we have been handling and many of the names are ones that we have not heard of before. As a
matter of fact, in the file we downloaded at this writing, there are 1,543 airlines. After a quick review we notice that
most of them are foreign airlines or airlines that no longer exist. In Table 11-1 we show the first five lines of this file.

Table 11-1. Sample of the UniqueCarrier field lookup file

Code Description

02Q Titan Airways

04Q Tradewind Aviation

05Q Comlux Aviation, AG

06Q Master Top Linhas Aereas Ltd.
07Q Flair Airlines Ltd.

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

To make a lookup table available for searches within Splunk there are a couple of steps that have to be taken.
The first one is to upload the file that contains the lookup table. This can be done from the user interface by selecting
“Add new” in the “Lookup table files” option of the “Lookups” menu in the Manager. Figure 11-2 contains a screen
shot with the dialog to upload a lookup file.

Add new

Destination app
search ~|

Upload a lookup file
|ds/L_UNIQUE_CARRIERS.csv(Browse...)
—

Select either a plaintext CSV file or a gzipped CSYV file.
The maximum file size that can be uploaded through the browser is 500MB.

Destination filename *
L_UNIQUE_CARRIERS.csv

Enter the name this lookup table file will have on the Splunk server. If you are |
recommend a filename ending in ".csv”.

Figure 11-2. Uploading a lookup file

For this example, in the upload dialog leave the “Destination app” as search, just be aware that not defining
correctly where the lookup table will be used, that is, in which app, can cause many headaches when debugging
related issues. Splunk will take plain text CSV files or compressed CSV files (using gzip only). There is a limit to the size
of the file to be uploaded via the user interface of 500 MB. Bigger files can be uploaded using the configuration files
directly. As the file will be stored within the Splunk area, we need to provide a destination filename. Best practices call
for using the same name as the original file, including the extension. After you click on the “Save” button, the file is
uploaded into Splunk.

The second step is to define the field lookup. This is done under the same “Lookups” menu with the “Lookup
definitions” option. The dialog screen can be seen in Figure 11-3. We need to give the field lookup a name so we can
refer to it in the search; we typically use the field name preceded by “L_" There are two types of lookups: file based,
such as the one we are defining, and external, which can use a Python program to match the fields. We will not cover
external lookups in this book, as that is an advanced topic.

197

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

Add new

Destination app
search =|

MName *

L_UnigqueCarrier

Type

File-based =|
Lookup file

L_UNMIQUE_CARRIERS.csv j

Create and manage lookup table fles.
[Configure time-based lookup

Advanced options

Minimum matches

1
The minimum number of matches for each input lookup value. Default is 0.
Maximum matches

1
The maximum number of matches for each input lookup value. If ime-based, ¢
Default matches

Unknown

If fewer than the minimum number of matches are present for any given input,

Figure 11-3. Defining a field lookup

The next pull down menu has the names of the lookup files that have been uploaded so far. Just select the
appropriate one. Leave unchecked the “Configure time-based lookup”; this option allows the use of lookups based
on timestamps, which will not be reviewed in this book. Check “Advanced options,” which we will use to specify the
minimum and maximum number of matches when using the lookup table. We want the maximum to be 1, so that we
get only one value. Technically speaking this is not needed with this table because there is supposed to be only one
value for each code, but we have already seen a few errors in the flight data. In the case there are no matches, we want
the string “Unknown” to be used; therefore, we specify a minimum of one match, as the default is zero.

198

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

Now that we have the lookup completely defined, we can start using it. The following is the most basic form of
this command:

lookup <lookup-definition> lookup-field

You must be aware that the lookup field name must match the name of the desired column on the header line of
the lookup table. Let’s use an example to illustrate this by counting the number of flights by airline during the most
recent month:

* | stats count by UniqueCarrier
| lookup L UniqueCarrier UniqueCarrier

This will not work because there is no field name in the header line of the lookup table called UniqueCarrier.
Asyou can see in Table 11-1 the field names are Code and Description. We have two options; on one we change the
header line in the lookup table, whereas on the other one we rename the UniqueCarrier field. The first option is high
maintenance, as we would have to edit the file every time we get a new version. The second option is easier:

* | stats count by UniqueCarrier as Code
| lookup L UniqueCarrier Code

This one will not work either because it is the count that we are naming as Code; we are not renaming the field.
The correct way to do it is:

* | stats count by UniqueCarrier
| lookup L UniqueCarrier Code as UniqueCarrier

Once we verify that this search works correctly we can apply it to all the flight data using the fstats command to
save us time:

| tstats count from summary fd groupby UniqueCarrier
| lookup L UniqueCarrier Code as UniqueCarrier

Partial results from this search can be seen in Figure 11-4. Without the lookup command the results would have
only two columns, the unique carrier code and the count. With the lookup we add the description column. Should
the lookup table have more columns, all of them would have shown up in the results. You can specify the fields that
should show up with the output argument of the lookup command and list right after the fields you want to appear.

199

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

UniqueCarrier = count = Description =

9E 1045396 Pinnacle Alrlines Inc.

AA 17010769 American Airlines Inc

AS 3407700 Alaska Airlines Inc.

B6 1594795 JetBlue Airways

co 8888536 Continental Air Lines Inc,
DH 693047 Independence Air

DL 18986659 Delta Air Lines Inc.

EA 919785 Eastern Air Lines Inc.

EV 3199446 Atlantic Southeast Airlines
F9 651342 Frontier Airlines Inc.

FL 2182817 AlrTran Airways Corporation
HA 537423 Hawailan Airlines Inc.

HP 3636682 America West Airlines Inc. (Merged with US Airways 9/05. Stopped reporting 10/07.)
KH 154381 Aloha Air Cargo

ML (1) 70622 Midway Alrines Inc. (1)

MQ 5634687 American Eagle Airlines Inc.
NW 10585760 Northwest Airlines Inc.

OH 1765828 Comair Inc.

00 5289490 SkyWest Airlines Inc.

PA (1) 316167 Pan American World Airways (1)

Figure 11-4. Flight count by airline using the lookup table

The report has a couple of annoying items, such as the merger information for America West Airlines and US
Airways, and the “(1)” after the names of Midway Airlines and Pan American World Airways. As you might remember
the “(1)” appended after the unique carrier code signifies that another airline is currently using that code. We fell that
we should clean up this report by eliminating the merger information, and since we are at it we could do it also for
the “(1)" As we are in cleaning mode we should use comma separators for 1,000s on the final count of flights, use the
proper titles and eliminate the code column. The final search for our report is:

| tstats count from summary fd groupby UniqueCarrier

| lookup L UniqueCarrier Code as UniqueCarrier

| eval Airline=replace(Description, "~(.+)\(.+\)", "\1")
| eval Flights=tostring(count, "commas"

| fields - Code, count, Description

| sort Airline

The replace function of the eval command applies the regular expression described on the second argument to
the field in the first argument. The regular expression has two parts; on the first one it takes one or more characters
from the beginning to the first right parenthesis and keeps that match for future use, as indicated by enclosing that
part of the expression in between parenthesis. The second part matches one or more characters surrounded by
parenthesis as indicated by prefixing the parenthesis with a backslash (\). If a string in the Description field matches
this regular expression, then it is replaced by the regular expression on the third argument, which in this case states it
should use the first part of the match, which was kept for future use.

200

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

Adding commas to the count field is done using the tostring function of the eval command. You have to be aware
that a sort based on the Flights field will not be numeric any more as now it is a string. If needed, the sort command
has a function that allows us to treat a string field as a number. A partial output of the results from this search can be
seen in Figure 11-5, where the merger notice of America West Airlines no longer shows up.

Alirline = Flights =
ATA Airlines d/b/a ATA 208,420
AirTran Airways Corporation 2,182,817
Alaska Airlines Inc. 3,407,700
Aloha Air Cargo 154,381
America West Airlines Inc. 3,636,682
American Airlines Inc. 17,010,769
American Eagle Airlines Inc. 5,634,687
Atlantic Southeast Airlines 3,199,446
Comair Inc. 1,765,828
Continental Air Lines Inc. 8,888,536
Delta Air Lines Inc. 18,986,659
Eastern Air Lines Inc. 919,785

Figure 11-5. Improved report of flight count by airline

A final word regarding the use of the lookup command. Be aware that a search will be done on the lookup table
for each event or partial result of search, so there is a huge difference between:

* | lookup L UniqueCarrier Code as UniqueCarrier
| stats by Airline

and this search, which will produce the same results:

* | stats by UniqueCarrier
| lookup L UniqueCarrier Code as UniqueCarrier

The first search will go to the lookup table for each and every one of the events, whereas the second one will only
go as many times as unique carriers result from the search, which in the flight data is 30 airlines against 147 million
total events in the first search.

One optimization that Splunk does on itself with lookup table files is that if they are larger than 10 MB, it
automatically indexes them so that the lookup searches are faster. This size is the default and can be modified in the
configuration files.

201

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

Automating Field Lookups

In some cases we would like for the lookup to happen automatically, without us having to specify the lookup
command. Splunk offers the ability to define automatic field lookups, which is really simple as can be seen in
Figure 11-6 by going to the “Automatic lookups” option of the “Lookups” menu in the Manager screen in the

user interface.

Add new

Destination app

search

Name *

AL_UniqueCarrier

Lookup table

L_UniqueCarrier

Apply to named *
host hd BigDBook

Lookup input fields

Code = UniqueCarrier
Add another field
Lookup output fields

Description = Airline
Add another field

(] Overwrite field values

Figure 11-6. Defining an automatic lookup

Delete

Delete

As a naming convention, we like to preface the names of automatic lookups with “AL_’, so this one is called

AL_UniqueCarrier, based on the L_UniqueCarrier lookup definition. The only thing with automatic lookups is that
you have to tie them to events based on either a source, a source type or a host. For this example we will use the use
host, as all the flight data was indexed on a single host called BigDBook. The next section is defining the lookup input
fields, that is, the fields that will be used to find a match in the lookup table. Our example is based on one field, Code
in the table and UniqueCarrier in the flight data. Note that you have to place the CSV field name on the left and the
field you want to match on the right, otherwise the lookup will fail very quietly. The same goes for the fields you want
to add to the events returned from the lookup table. Finally, leave the “Overwrite field values” unchecked, as this is
used only when you want to overwrite any fields in your events with the corresponding values you matched in the

202

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

lookup table. In this particular case we are just adding Description as a new field to the events and rename it Airline
in the definition. From now on we can use the Airline field directly in any search without having to specify a lookup
command. For example:

* | stats count by Airline
will produce the same results as:

* | stats count by UniqueCarrier

| lookup L UniqueCarrier Code as UniqueCarrier
| rename Description as Airline

| fields - Code, UniqueCarrier

Interestingly enough, by creating an automatic lookup, we can do reverse searches. By this we mean you can use
aresulting field of a lookup table to do a search. For example:

Airline="Virgin America"
| stats count

The Airline field is available as a result of the automatic lookup. Note that because we specified that the Description
field is automatically mapped to Airline, it is no longer available. Any search that uses Description will fail as well as
those that use the Code field because in the automatic lookup definition we mapped Code to UniqueCarrier. The
UniqueCarrier field is still available as it is part of the original events.

Creating Lookup Tables from Searches

So far we have been using CSV files to upload data into Splunk or to use as lookup tables. Splunk offers the ability to
create CSV based lookup table files. We will optimize the L_UniqueCarrier.csv lookup table we used earlier in this
chapter to illustrate how to create a new lookup table file and reuse it as a new in our searches.

The lookup table for the UniqueCarrier field we originally downloaded from the TranStats web site has 1,543
airlines. We know that we refer to only 30 of them throughout all the flight data. Additionally, there are a couple of
items that we changed in the name of the airlines when we cleaned it up, such as the merger notes for two of the
airlines. We will redo this cleanup and eliminate all the airlines not used in the 26 years worth of flight data with
this search:

| tstats count from summary fd groupby UniqueCarrier

| lookup L UniqueCarrier Code as UniqueCarrier

| eval Airline=replace(Description, "~(.+)\(.+\)", "\1")
| fields - count Description

| outputlookup L UniqueCarrier short.csv

The first four clauses of this search are already known. The new command is outputiookup, which creates a CSV
file and also creates a lookup table file definition using the name that was given as part of the command. Note that
you can also specify a .csv.gz extension, which will automatically compress the CSV file. The outputlookup command
has a number of arguments, of which the only one we will mention is append. This argument can be used to append
data to an existing lookup table file, as long as it is not a compressed file. Only fields that exist on the header line of the
file will be used.

203

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

United Flight 871

Now that we know how to create and use lookup tables, we will complicate things a little by trying to answer a query.
In the process of doing so we will be using database lookup tables. The query we have is to present the history of
United Airlines flight 871, by showing the segments or city pairs (origin and destination) this flight number has had
over the years as well as which model of aircraft was used for those segments.

This query will require that we use a couple of lookup tables because the information in the flight data events
only includes the registration number of the airplane (the TailNum field). To obtain the model of the airplane we will
have to refer to the aircraft registry database available at the Federal Aviation Administration (FAA) web site at:
http://www.faa.gov/licenses certificates/aircraft_certification/aircraft_registry/releasable
aircraft_download/. On this web site we learn that this database is updated on a weekly basis, its compressed size
at the time of this writing is 45MB, and it is composed of various files.

After downloading and expanding the file we quickly review the ARData.pdf file, where we notice that the aircraft
registration master file does not contain the model name of the airplane but rather a code, which consists of three parts,
a manufacturer code, the model code and a series code all grouped up into a single field called MFR_MDL_CODE.
Further exploration takes us to find that the aircraft reference file is the one that has the relationship between the
manufacturer, model, code field of the master file and the manufacturer name and model name, which is what
we want.

The master file contains over 352,000 aircraft and is about 207MB when not compressed, whereas the reference
file has over 76,000 records and is 6.7MB in size. As explained earlier in this chapter, uploading the master file as a
lookup table in Splunk has to be done by using the configuration files as it exceeds the maximum size of 100MB of the
user interface. Additionally, the lookup file would be automatically indexed by Splunk as it exceeds the 10MB default
size. However, for didactical purposes we will upload both tables to a MySQL database and use it by defining database
lookup tables using the Splunk DB Connect app.

Within the existing MySQL instance we used in Chapter 9, we created a different database called
AircraftRegistration, which contains both tables, master and reference. Having done that we create in Splunk a new
“External Database” in the same fashion as we did in Chapter 9 to create the FD_DB database, but we will call this one
AR_DB. Now that we have defined the new external database, we can proceed to create the two database lookups we
need. This can be done by selecting the “Database lookups” option in the “Lookups” menu. The dialog to create the
database lookup for the master table can be seen in Figure 11-7.

204

http://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/releasable_aircraft_download/
http://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/releasable_aircraft_download/
http://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/releasable_aircraft_download/

CHAPTER 11

Add new

Database lookups allow you to fetch data from an external SQL database but still leverz

Lookup Name *
L_Master
A unique name for the database lookup. A corresponding lookup definition will be autor

Database
AR_DB ~

Database Table
master

Enter the database table name (double click for suggestions).

Fill all columns |

Fill all columns for the given table

Lookup Fields
Please specify the fields/columns that are supported by this lookup
N_NUMBER Delete
MFR_MDL_CODE Delete
Add another field

(] Configure advanced Database lookup settings
Advanced settings allow you to specify a SQL query that is executed.

Figure 11-7. Create a database lookup

ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

Slightly modifying our naming convention for lookup tables, we call this lookup table L_Master. After specifying
the database and table for the lookup, we define which fields that are going to be used. The master table has 34 fields,
but we are only interested in N_NUMBER, which maps to TailNum from the flight data, and MFR_MDL_CODE, which
provides the relationship with the manufacturer and model names in the reference table. In a similar fashion we
define the L_Reference lookup table, with only three of the 11 fields: CODE, which maps to the MFR_MDL_CODE field
of the master table, MFR, the name of the manufacturer and MODEL, which is the name of the model of the airplane.

Now that we have the lookup tables up and running we can start formulating the search we need to answer the
query. The first step of our exploration is understanding how many United flight 871 are over time. The search is pretty

simple and the output can be seen on Figure 11-8.

UniqueCarrier=UA FlightNum=871
| stats count by Year

205

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

200

197 iSBE 1989 1990 1991 1992 1990 1994 1995 1996 1997 1998 1999 2000 2001 2002 ROM 200% 2006 JOO7 2008 2009 2000 2011 2002

Figure 11-8. Count of United 871 over time

Asyou can see in Figure 11-8, the use of that flight number has not been very constant over the years. Another
important piece of information found in the results of the previous search is that over all the 26 years there have been
5,402 flights from United with that number. By hovering over the 2012 column we learn that there have been 116
flights. Rather than test our searches with the most recent month, we will use only the 10 most recent flights. We do
this because if there are any issues with our searches it will be a lot easier to figure out the problem with only 10 events
than 116. Building the search step by step, the next logical thing to do is the first lookup:

UniqueCarrier=UA FlightNum=871
| head 10
| lookup L Master N_NUMBER as TailNum

However, when looking in the left side bar that shows the fields, the MFR_MDL_CODE does not show up. We do
notice the Airline field there, so the automatic lookup we defined earier is working correctly. To make sure that we are
not matching the tail number in the lookup table we modify the search as follows:

UniqueCarrier=UA FlightNum=871

| head 10

| lookup L Master N _NUMBER as TailNum
| stats count(MFR_MDL CODE)

The result for the count is zero: there are no matches. We look at the first event that is returned by the query, with
a tail number of N441UA, and proceed to look for it in the lookup table using a spreadsheet. We quickly find it, and
also the reason the lookup was not working. As it turns out, whereas the tail number of the flight data includes the
N at the beginning of the registration, the master file does not, so the solution is to trim the N before we do the
lookup. We do this using the ltrim function of the eval command, which trims the specified string from the left side
of the field:

UniqueCarrier=UA FlightNum=871

| head 10

| eval N_NUMBER=1trim(TailNum, "N")
| lookup L Master N _NUMBER

As we are modifying this search, we also take advantage and use the eval command to assign the trimmed tail
number to the N_NUMBER field so it can be directly used by the lookup, thus we can drop the as TailNum from the
lookup command. In Figure 11-9, you can see that the MFR_MDL_CODE field now exists in the left side bar and when
we click on it, the popup window shows it has two values.

206

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

MFR_MDL_CODE MFR_MDL_CODE (numeric)
Maonth
Appears in 100% of results Charts
N_NUMBER Show only events with this field Average over time
Origin Select and show in results Maximum value over time
Minimum value over time
OriginAirportiD Top values by time

. Top values overall
OriginAirportSeqlD

L Min: 1,384,956 Max: 3,930,326 Mean: 2,657,641 Stdew: 1,341,527.781
OriginCityMarketlD

8y
OriginCityName Values ¥ %
- 1384956 5 50% .
OriginState
3930326

5 50% [
View all 75 fields

Figure 11-9. Fields side bar and the MFR_MDL_CODE field detail

We now verify that those values exist in the second lookup table. 1384956 corresponds to a Boeing 757 and
3930326 to an Airbus A320, both of which make sense for a commercial airline like United. Additionally, we
manually verify that those 10 events actually match the count shown in Figure 11-9. Another reason we chose to
just use 10 events instead of the most recent month is that it is a lot easier to verify 10 events and all the associated
relations in lookup tables. Now that we have the values we can add the second lookup to obtain the model name as
well as the manufacturer’s name.

UniqueCarrier=UA FlightNum=871

| head 10

| eval N_NUMBER=1trim(TailNum, "N")

| lookup L Master N _NUMBER

| lookup L Reference CODE as MFR_MDL_CODE

Once again, we verify that the expected new fields resulting from the second lookup show in the left side bar,
and both MFR and MODEL do so presenting the expected values we had already discerned, so things are working
correctly. Now we have all the information we need so let’s go ahead and try to answer the query:

UniqueCarrier=UA FlightNum=871

| head 10

| eval N_NUMBER=1trim(TailNum, "N")

| lookup L Master N_NUMBER

| lookup L_Reference CODE as MFR_MDL_CODE

| stats values(DestCityName) as Destination by Year OriginCityName MFR MODEL

Using the output of this search, which can be found in Figure 11-10 we verify that the most recent 10 events
actually match the origins and destinations. As everything matches, we are ready to drop the | head 10 section of
the search and run it for all the flight data. When we do this and examine the results we find that in 2004 the airplane
used for the Chicago, IL, to Des Moines, IA, segment is a P2004 Bravo, which is a single engine airplane with 2 seats
made by a company called Costruzioni Aeronautiche Tecna. This obviously is a mistake in the records and we decide
to ignore it. The other strange thing we found in these results is that they start on 1995, as can be seen in Figure 11-11.
We know that there are United flights with this number since 1987, the beginning of the flight data, which we learned
when we started exploring the flight data for this query and can be seen in Figure 11-8. After some research we found
that the events before 1994 do not contain the tail number of the aircraft used on those flights.

207

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

Year =
2012
2012
2012

2012

OriginCityName = MFR =

Chicago, IL
Houston, TX
Philadelphia, PA

Portland, OR

AIRBUS INDUSTRIE
BOEING
BOEING

AIRBUS INDUSTRIE

Figure 11-10. United 871 city pairs with airplane information

MODEL =+
A320-232
757-222
757-222

A320-232

Destination =
Portland, OR
Portland, OR
Chicago, IL

San Francisco, CA

The database lookup tables do not offer an option like the CSV file based lookup tables, where you can define a
string to return in the case the minimum match has not been reached (see Figure 11-3).

Unfortunately, visualizing these results is a real challenge. Other than the table that we show in Figure 11-10, we
cannot come up with anything decent, not even if we break down the table into sub-groups of columns and try using
charts as we did in Chapter 10 (Figure 10-9) with the dashboard sample for the top five airports by airline. The core
of the challenge is finding a way to represent the segments or city pairs (origin and destination). The ideal way would
be to use a map and draw a line between the city pairs, but we were not able to readily find an application that would
provide us with this functionality. However, as we were looking for it, we stumbled on a Network Graph, which is part
of Google Fusion Tables at http://tables.googlelabs.com. Here you can upload a CSV file with you data and create
a number of visualizations, most of them already available in Splunk.

To export the results of a search in Splunk is extremely simple. Just look for the Export link, which is next to the
output mode selection. This can be seen in Figure 11-11 circled in red. When you click on this link, a dialog box will
ask you to name the output file and select the format. The choices are CSV, XML and JSON.

Search

UnigqueCarrier=UA FlightNum=871

L ;aend A1 KMIUIMBEDS T4+ mimd Todilhlm _ "hi"Y

+" 5,402 matching events

149 results before 12:00:00 AM October 1, 2012

EEEJ « Options

Owverlay: None

Year = OriginCityName =

1995

Los Angeles, CA

5
MFR *
BOEING

Figure 11-11. Location of the export results link

We created a CSV file with the results of the United 871 search covering all the flight data, and uploaded it to
Google Fusion Tables. We chose to create the Network Graph using the OriginCityName and Destination columns.
The interesting graphic can be seen in Figure 11-12.

208

http://tables.googlelabs.com/

CHAPTER 11 © ANALYZING A SPECIFIC FLIGHT OVER THE YEARS

O
Denver, COgan Francis.
&ma. TN

Denver, CO Portiand, OR Pnilad

’ Atlanta, GA @
Santa Ana, CA

9 mium&ls. K
San Francisco, CA Q @
Washington, DC ch

icago, IL Harrls&rg. PA

9 Houg, ™ New Osans. LA Hamo,d. CT
New YOrk, NY

Dallas/Fortwortn, TX

aﬁ O o, Ne
HonoltlL, Les A s, CA

Seattle, WA Des Msnes. 1A

Orlarso. FL

[)
Denver, CO Pmegx'

New Oneans’ LA San Fr... ;
San Diégo, CA

® Oaklaga. CA
wa%, nJ @Kansas City, l&)

s vogas O@M.o' F: Sfdkane, WA

Omarnm?cuy. OK

Figure 11-12. Network graph of city pairs for United 871

Summary

In this chapter you learned how to create and define lookup tables. We did this for both static files and database
tables. We did a couple of searches that used a simple and a rather complex lookup to illustrate its usage. We also
discussed how to create lookup tables based on the results of a search, as well as how to export the results of a search
as a CSV, XML, or JSON format file.

209

CHAPTER 12

Analyzing Tweets

In this chapter we will review how to process and analyze tweets. We will go over the Twitter object format and the
fields it contains. You will also learn about JSON, the data interchange format used by Twitter to share tweets and
other information, as well as how to load data with this format into Splunk, including timestamp considerations. New
commands will be used to create a number of searches for handling tweets in a historic way and on a real-time basis.

Twitter is a microblogging service where users can post or read text-based messages that can have a maximum
of 140 characters. Each one of these messages is known as a tweet. Twitter is extremely successful and many people
and companies use it. Statistics from various sources on the Internet show that for the year 2012 there were about
175 million tweets a day from over 465 million registered accounts, with 1 million accounts being added every day.
The top three countries using Twitter are the United States, Brazil, and Japan. The busiest moments of Twitter have
seen as many as 25,000 tweets per second.

Users may subscribe to read tweets of other users. This is known as following, and subscribers are called
followers. By the end of 2012 the three most popular Twitter users by number of followers were:

e Lady Gaga with 32,987,239
e Justin Bieber with 32,874,390
e Katy Perry with 31,134,772

Tweets are public by default, that is, anybody can see them, but users have the option to send tweets to their
followers only and approve who follows them. There is also the ability to send direct messages, which are private
messages from one Twitter user to another. These are restricted in the sense that a user can only send a private
message to a follower.

There are a few additional concepts around tweets, such as the @reply. When a tweet begins with @username,
it means that it is a reply to a specific tweet of the user that sent it. @replies are treated as normal tweets, and as
such they are sent to the followers of the user. Because of the 140-character limitation on a tweet, a special lingo has
developed over the years. Although we will not delve into this lingo, we should point out that some things such as the
@username not only are used anywhere in a tweet but also are becoming quite popular outside of Twitter.

In the lingo you will find hashtags, which also grew as a rather informal way of organizing or categorizing tweets.
Users place a # in front of a word they consider represents a category or subject of the content of the tweet. Although
this is an interesting way of categorizing content, because of its casual nature it is not always exact. For example,
during the presidential elections of 2012 in the United States there were many variations of the same intended
category: #Elections, #elections, #Elections2012, elections2012, #Elections12, in addition to some variations with
misspellings of the word election.

When you send a tweet from somebody else, it is called retweeting. When you use the Twitter retweet feature,
it will automatically add the letters RT and the user name of the author at the beginning of the tweet. Sometimes
people will add themselves RT, MT, or MRT to a tweet to indicate they are retweeting or have modified a tweet before
retweeting it, but this is not an official Twitter feature and those tweets are missing additional information that Twitter
includes on retweets.

211

CHAPTER 12 © ANALYZING TWEETS

When a hashtag increasingly shows up in tweets it is said to be trending, or becoming popular. Trends tend to
be short-lived and there are many web sites that offer their views of trending items based on their own algorithms.
Twitter itself offers personalized trends, which match the topics in which you have expressed interest. Their algorithm
focuses on items of immediate popularity instead of those that have been popular for a while or on a daily basis. Later
in this chapter we will offer our own rather simple version of trends.

When a URL is included as part of the content of a tweet, Twitter will automatically check it against a list of
potentially dangerous web sites. Whether or not the URL is pointing to a suspicious web site, Twitter will also convert
it to a new URL using what they call the t. co service, which is a URL shortener. This way any URL will always be
20 characters long, even if the link is shorter than that. Some Apps will adjust the character count of the message to
reflect this, whereas others will not.

Each user has a profile, and they can define their location, time zone, name and screen name, and also provide
a picture of themselves, along with a number of other attributes. Each public tweet published by a user is sent to their
followers and automatically posted on their profile page, making it searchable in the Twitter web site as well.

In addition to the web site, Twitter offers Apps for various mobile phones and tablets. There are also a large
number of third-party Apps or clients that allow you to interact with Twitter. These interactions or integrations are done
using the Twitter APIs, which provide simple interfaces to most of the functionality. Additionally, Twitter offers a set
of APIs dedicated to the streams that contain the tweets. From all of these APIs we will be using the one that allows us
to access the stream called the 1 percent sample, which is a real-time random sample of about 1 percent of the total
tweets. The stream containing all the tweets, which is not publicly available, is known as the Twitter firehose.

Tapping the Sample Stream

Using a program we call get1pct.py we collected 24 hours worth of tweets, which we will use later in this chapter to
do some basic analysis before we move on to use a Splunk App that allows us to analyze the stream on a real-time
basis. You can find the program in this book’s download package. To use the program, just call it as follows and it will
capture tweets into a file called SampleTweets.out until you stop it:

getipct.py -n twitter username -p password

The Twitter streams use JSON as the standard format. JSON stands for JavaScript Object Notation, and is a
text-based standard for data interchange. It provides for defining a multilevel structure by using curly brackets “{}” and
multiple values for a field by using square brackets “[]” Ultimately, a tweet using JSON is a list of key values organized
in multiple levels. You can see a typical tweet in JSON format in Figure 12-1, which is (inevitably) quite unreadable.

{"contributors":null,"truncated":false,"text":"#Jozan TERBAEK!","in_reply_to_status_id":null,"id":287211786338447361,"so
urce":"Twitter for BlackBerry\u@Bae",k"retweeted":false,"c
ocordinates":null,"entities": {"user_mentions":[],"hashtags": [{"indices":[@,6],"text":"Jozan"}],"urls": [1},"in_reply_to_sc
reen_name":null,"id_str":"2B7211786338447361","retweet_count":@,"in_reply_to_user_id":null,"favorited":false,"__time":"F
ri Jan 94 15:00:90 +8000 2013","user":{"follow_request_sent":null,"profile_use_background_image":true,"default_profile_i
mage":false,"id":388260118, " "verified":false,"profile_image_url_https":"https://si@.twimg.com/profile_images/3032686002/e
455b46d716f feB53e208283856d@31a_normal. jpeg","profile_sidebar_fill_color":"FFFFFF","profile_text_color":"080000","follow
ers_count":494,"profile_sidebar_border_color":"FFFFFF","id_str":"3B88260118","profile_background_color":"FFFFFF"," listed_
count":2,"profile_background_image_url_https":"https://si0.twimg.com/profile_background_images/725499241/1751417e0808339
5¢3967235238164089. jpeg”,"utc_offset":-32400,"statuses_count":27938,"description”:"Dear @justinbieber, thanks for being m
y inspiration,my idol. I will never stop supporting you and loving you. You will always still in my heart forever \u2661
16/7 \u2665","friends_count":163," location":"ALl Around The World","profile_link_color":"0800008","profile_image_url":"h
ttp://a®.twimg.com/profile_images/3@32686002/e455b46d716ffe853e208283856d831a_normal. jpeg”,"following":null,"geo_enabled
“:false,"profile_banner_url":"https://si@.twimg.com/profile_banners/388260118/13566996089","profile_background_image_url"
:"http://al.twimg.com/profile_background_images/725499241/f751417e080883395c396723523816409. jpeg","name" :"Justin Bieber \
u2661","lang":"en","profile_background_tile":true,"favourites_count":7296,"screen_name":"Aqilaaaah”,"notifications":null
JMurl":null,"created_at":"Mon Oct 18 13:16:27 +008@ 2011","contributors_enabled":false,"time_zone":"Alaska","protected":
false,"default_profile":false,"is_translator":false},"geo" :null,"in_reply_to_user_id_str":null,"lang":"nl","created_at":
“Fri Jan 84 15:80:00 +0800 2013","in_reply_to_status_id_str":null,"place":null}

Figure 12-1. A tweet in JSON format

212

CHAPTER 12 © ANALYZING TWEETS

To explain the basic fields we can expect in a typical tweet we will be formatting them by placing one field (key
value pair) per line and indenting the various levels. You need to be aware that the fields do not necessarily come
in the same order for every tweet and not all fields appear in all tweets. In other words, if a field does not appear it
can be considered to have a null value or to be an empty set. The good news is that Splunk handles these conditions
transparently when indexing the data. After formatting the tweet it becomes more legible:

{
"contributors":null,
"truncated":false,
"text":"Searchtemplate on a form for a dashboard and eval http://t.co/Cc4gIIDe",
"in reply to_status_id":null,
"id":287365037834788865,
"source":"IFTTT",
"retweeted":false,
"coordinates":null,
"entities":{[+}},
"in_reply to_screen_name":null,
"id_str":"287365037834788865",
"retweet_count":0,
"in_reply to_user_id":null,
"favorited":false,
" _time":"Sat Jan 05 01:08:58 +0000 2013",
"user":{[+]},
"geo":null,
"in_reply to user_id_str":null,
"possibly sensitive":false,
"lang":"en",
"created at":"Sat Jan 05 01:08:58 +0000 2013",
"in_reply to_status_id str":null,
"place":null

Following the order of the fields in this example, we will comment on those that we consider of interest at this
point; a few others will be discussed later in this chapter. If you want a detailed description of each field you can find
it on the Twitter web site at http://dev.twitter.com/docs/platform-objects/tweets. The first field of interest
is text, which contains the actual tweet. Next is the source field; this one tells us which App or client was used to
create the tweet. For the entities field we use the Splunk notation {[+]}, which is not a JSON standard, to signify that
this field has additional subfields we will examine later. The __ time field does not exist in the tweet; it was created
by the Python program and will be discussed in detail when we get to the section that goes over loading the data
and timestamp issues. The following field, user, is the one that contains all the information regarding the user that
published the tweet in the form of subfields; again we use the {[+]} notation to indicate this. After this, we have the
lang field, which contains a two-letter code for the language following the ISO-639-1 standard. Although this field is
not explained in the Twitter documentation at the time of this writing, we suspect that it indicates a best guess to the
actual language of the tweet and will look at this in detail later in this chapter. The final field of interest on this first
passis created_at, which states the time the tweet was created. All times in this field are based on the UTC/GMT time
zone, which is noted by the +0000 string.

Expanding the user field, the typical subfields look like this after being formatted:

"user":
"follow request sent":null,
"profile_use_background image":true,
"default_profile image":false,

213

http://t.co/Cc4gIIDe
http://ifttt.com%5c
http://dev.twitter.com/docs/platform-objects/tweets

CHAPTER 12 © ANALYZING TWEETS

"id":121214676,

"verified":false,

"profile_image url https":

"https://si0.twimg.com/profile images/825701927/answers-avatar_normal.png",
"profile_sidebar_ fill color":"DDEEF6",

"profile_text_color":"333333",

"followers_count":656,

"profile_sidebar border color":"CODEED",

"id str":"121214676",

"profile_background_color":"CODEED",

"listed_count":28,
"profile_background_image url https":"https://si0.twimg.com/images/themes/theme1/bg.png",
"utc_offset":-28800,

"statuses_count":12923,

"description”:null,

"friends_count":9,

"location":"San Francisco, CA",

"profile_link_color":"0084B4",

"profile_image url":
"http://a0.twimg.com/profile_images/825701927/answers-avatar_normal.png",
"following":null,

"geo_enabled":true,

"profile_background_image url":"http://a0.twimg.com/images/themes/theme1/bg.png",

"name":"Splunk Answers",

"lang":"en",

"profile_background tile":false,
"favourites_count":o0,
"screen_name":"splunkanswers",
"notifications":null,
"url":"http://answers.splunk.com/",
"created_at":"Mon Mar 08 20:09:54 +0000 2010",
"contributors_enabled":false,
"time_zone":"Pacific Time (US & Canada)",
"protected":false,
"default_profile":true,
"is_translator":false

1

Again, following the order of this example, we explain the most relevant fields for our purpose. The first one is
followers_count, the number of Twitter users that are subscribed to receive tweets from this user. The next field is
utc_offset, the difference between the UTC/GMT time zone and the user’s declared time zone in number of seconds,
which is useful for mathematical operations based on the Unix time. Then comes statuses_count, the number of
tweets the user has published since the start of the account. The next one is friends_count, the number of users that
this particular user is following. Immediately after we find location, the declared geographical location of the user.

The next two fields of interest are the name and the screen name, where the latter is unique and is used by Twitter
as the username. The former is not necessarily the real name. In between these two fields you will find 1ang, which is
the code for the declared language of the user. This does not mean that the tweets are in this language. (See the note
later in this section.) The created_at field contains the timestamp when the user profile was created or last updated.
Do not confuse this field with the one on the higher level with the same name, as that one contains the timestamp of
the creation of the tweet. The final field contains the name of the declared time zone of the user.

214

https://si0.twimg.com/profile_images/825701927/answers-avatar_normal.png
https://si0.twimg.com/images/themes/theme1/bg.png
http://a0.twimg.com/profile_images/825701927/answers-avatar_normal.png
http://a0.twimg.com/images/themes/theme1/bg.png
http://answers.splunk.com/

CHAPTER 12 © ANALYZING TWEETS

Caution It is very important to note some fields are declared by the user in their App or client and are not always
correct. The contents of location and lang, and to a lesser degree time_zone, and utc_offset, may or may not have
anything to do with the content of their tweets. Our experience has shown that the contents of these fields tend to be
unreliable. Keep this in mind when you are doing your analysis.

When a tweet is a retweet using Twitter’s native functionality, the tweet will contain a high-level field called
retweeted_status. This field has subfields with all the associated information of the original user, including the
original tweet. When dealing with the text of retweets it is better to use the original tweet when it is close to the
140-character limit. This is because the retweet will chop off the end of the original tweet in favor of the adding the
screen name and the letters RT at the beginning of the text of the retweet. Please note that the high-level retweeted
field does not necessarily indicate that the current tweet was retweeted.

In the sample stream we also find some events that are not tweets but instructions to delete tweets. Twitter does
not allow users to modify tweets that have already been published; but it does allow them to delete tweets or retweets
they posted. Although we have no use for these records, as they might refer to tweets that are not included in the 1 percent
sample, we decided to leave them as is in the file we will index into Splunk. These delete events look like this once
formatted:

"delete":{
"status":{
"user_id str":"400166241",
"user_id":400166241,
"id":139980458426499072,
"id_str":"139980458426499072"

Loading the Tweets into Splunk

We modified the file generated by the getipct.py program to have exactly 24 hours worth of data. Our sample
data goes from Friday, January 4th, at 15:00:00 to Saturday, January 5th, until 14:59:59. The file contains 4,815,166
events and is about 12 GB in size. Because of restrictions in Twitter’s Terms of Service, the actual tweets cannot
be distributed. We suggest that you run the Python program and collect a sample with a size to fit the indexing
restrictions of your Splunk license.

The first challenge we have to deal with is defining the correct field for the Splunk timestamp. The issue is that
in Splunk we can only use regular expressions to define the field or fields that contain the timestamp. There are two
fields named created_at, one at a high level, for the actual tweet, which is the timestamp we want, and another one
within the user object. Whereas the fields are clearly different for a human or a JSON interpreter, they are the same for
aregular expression, as there are no guarantees on the order of the fields and that all the fields are present. We cannot
use the same approach that we used in Chapter 9, where the timestamp was spread over two fields, but we knew
exactly which fields we wanted based on counting commas. This is the reason why the Python program creates a new
field called __time based on the high-level created_at field. Please note that this new field has two underscores
before its name, so it is not confused with the internal Splunk field _time, with only one underscore. With this new
field it becomes really easy to define the timestamp in Splunk.

215

CHAPTER 12 © ANALYZING TWEETS

Out of abundant caution we decide to create a small test file with just the first 100 tweets of the sample data. With
this we follow the same steps we used in Chapter 9 under the “Pre-Processing the Flight Data” heading to define a new
source type, which specifies a timestamp location for the tweets:

e Define a new input file and preview the data before indexing
e Define a new source type

e Select “adjust timestamp and event break settings”

e Select “Every line is one event” and click on Apply

e Select the Timestamps tab

e Under Location select “Timestamp is always prefaced by a pattern” and type the following:

“« ».on

__time”:” (remember, there are 2 underscore characters before the word time)

e Under Format select Specify timestamp format and type the following: %a %b %d %T %Z %Y,
where:

® %ais the name of the day of the week, either abbreviated or full name
e %b is the name of the month, either abbreviated or full name

e %d is the day of the month; leading zeroes permitted, but not required
e %Tisthe time as %H:%M:%S

e %Zisthe time zone or name or abbreviation

e %Y is the year including the century

e Select “Specify time zone” and choose from the pull down menu “(UTC) Coordinated
Universal Time,” as we know that all of the timestamps are in this time zone.

e Click on Apply. Now you should see the timestamp highlighted on each event or tweet and
the correct timestamp on the second column. You will also see warnings for the delete events
because they do not have a timestamp. Splunk will use the timestamp of the previous event for
these ones.

e Click on “Continue” and specify the name of the new source type. We saved it as “twitter”
e You can now start indexing the test data

Once we have these 100 events indexed into Splunk we can do a quick verification and confirm the loading
operation worked correctly. In Figure 12-2 you can see a partial screen shot of the output when listing all the events.
There are a number of things to note in this figure. In the first place, even though you cannot see it, at the top of
the results it states that there are 100 events over all time, therefore confirming it has indexed all of the events we
provided. The second item to notice is that the left-side bar presents a number of fields, which are similar to those we
just reviewed, thus Splunk is understanding the JSON format. Note that the way Splunk represents a multilevel field
is in the form of a path using a dot (.) to separate the level. For example, the created_at subfield for the user field is
referenced as user.created_at and this is the way that we will be referring to fields when we create searches using
data that comes in JSON format.

216

CHAPTER 12 © ANALYZING TWEETS

Placs 11413 -1

T 7:00:01.000 AM __time : "Fri Jan 04 15:00:01 +6000 2013",
contributors : null,

retweat_count coordinates : null,

retweeted created_at : "Fri Jan 84 15:0@:01 +@0ee 2013",
entities : {[+]},

splunk_server favorited : false,

text geo : null,

id : 28721179@562111499,
D id_str : "287211790562111490",
timestaripos in_reply_to_screen_name : null,

in_reply_to_status_id : null,
in_reply_to_status_id_str : null,
user.contributors_enabled in_reply_to_user_id : null,
in_reply_to_user_id_str : null,
lang @ "vi",
user.default_profile place : null,
retweet_count : @,
retweeted : false,
source : "Tweetbot for
user.description ios</ax",

text @ "#SweetFootballers

truncated

user.created_at

user.default...profile_image

user.favourites_count

user.follow_request_sent Rolo Toure",
truncated : false,

user.followers_count .
user : {[+]}

user.following }
user.friends_count Show as rw fext

: 5 =BigDBook = =twitter ~ | =Irootitwitter/Test = =<a href="http:/tapbots.com
user.geo_enabled Itweetbot” rel="nofollow">Tweetbot for [OS +

Figure 12-2. JSON events listed in the user interface

The event itself presents the fields in alphabetical order with the correct Splunk timestamp, which matches the
__ time field. Additionally, the first event is the last one in our test file. As you may remember, Splunk presents the
events starting from the most recent to the oldest, so this is correct as our test file goes from earliest to most recent.
You will also notice that the events start with {[-]. If you click on the minus sign, Splunk will collapse the information
presented at that level, the opposite effect to when you click on the plus sign in {[+]}, which expands to present all the
subfields of the chosen field. Notice that the entities, retweeted_status, and user fields offer the option to expand
to view their subfields. At the bottom of the listed events there is a link to show the event as raw text. When you click
on this link, it will present the event in the same way as shown in Figure 12-1.

Another thing to notice is that fields in the left-side bar such as id and user.created_at have a count of 88. This is
because of the 100 events, 88 are tweets and 12 are delete events. Finally, the source field on the side bar is presenting
a count of 31, which looks wrong as there is only one source file. When you look at the end of the listed events you will
notice that there are two “source” items, one that correctly presents the name of the file that contains the test events
we just indexed and another one with the contents of the source field from the tweet. Admittedly this is confusing, as
Splunk is dealing with two fields that have the same name but is able to distinguish some level of difference between
them. We will review this issue in detail when we introduce the spath command later in this chapter.

Other than the confusing situation with the source field, the indexing of the test file with the tweets seems to have
been successful and all is in order. With this we move to delete the 100 events we just loaded and index the full file
with the almost five million tweets.

A Day in Twitter

Using the file with the almost five million events we just indexed we will do a historic analysis of the tweets. To get
familiar with the field notation for JSON let’s start by counting the number of delete events within the file we collected:

* | stats count(delete.status.id)

217

CHAPTER 12 © ANALYZING TWEETS

It is tempting to just search for the word “delete’, but if the word is part of any field of a tweet we would get an
incorrect count. That is why we chose to count a field that is unique within the delete structure. Any field will do;
we chose the id subfield, so that when the field exists in the event we are certain it is a delete event. The total count is
0f 493,382, which is a little over 10 percent of the stream; that is a lot of people changing their minds.

Next we would like to know the number of tweets by hour of the day. Independently of the format of the data,
this search is very simple because all we have to do is count events:

* | stats count by date hour

The date_hour field is a default field available in Splunk as part of a group of fields called date time, which provide
a better granularity to event timestamps. These also include date_minute, date_month, date_second, date_wday,
date_year and date_zone. The output of this command in the form of a chart can be seen in Figure 12-3. Note that the
y-axis starts at 140,000 and not at 0.

250,000 date_hour: 15

count: 241,995

225,000 |

200,000

count

175,000

150,000

date_hour

Figure 12-3. Number of tweets by hour of the day

You must remember that Twitter is a worldwide phenomenon, so when we count tweets they are happening all
around the world. As mentioned earlier, the timestamp is based on the UTC time zone. The hour block with the most
tweets is 3 PM with 241,995. To put that in context, it is 3 PM in London, 10 am in New York, 7 AM in San Francisco, and
midnight in Tokyo, just starting the next day. Remember also that our sample data starts at 15:00 of Friday, January 4th,
so the chart should really start at 15 and not at 0 to provide a realistic view. Unfortunately, the charting options of
Splunk do not offer the ability to decide on which value to start an axis.

On a slightly different search, we look at the number of tweets by time zone using both fields available, time_zone
and utc_offset. The fields are part of the user object and, as mentioned earlier, they are user defined, or use the
default value of the App they are using. If correct, it usually refers to the main geographical location of the user. We
have found that many people get confused when dealing with both of these fields. A time zone can have many names—
after all, they extend all the way from the North Pole to the South Pole—so a top five of the time_zone field is about the
top names, whereas the utc_offset is about the actual time zone. Table 12-1 shows the top five tweets by either field.

218

CHAPTER 12 © ANALYZING TWEETS

Table 12-1. Tweets per time zone

Position time_zone Percentage utc_offset Percentage
1 Null 27.64% Null 27.64%
2 Central (US & Canada) 6.48% -5 hours 9.21%
3 Pacific (US & Canada) 6.38% -6 hours 7.31%
4 Eastern (US & Canada) 5.20% +9 hours 7.30%
5 Tokyo 4.76% -3 hours 6.45%

Surprisingly the most popular time zone for both fields is null with over 27 percent. The time zone name with the
most tweets is the central United States; however, the actual time zone with the most tweets is -5 hours from UTC,
which corresponds to the following names: Eastern Time (US and Canada), Indiana (Eastern), Bogota, Lima, and
Quito. To obtain a list of the time zone names by UTC offset, just use this search:

* | stats values(user.time_zone) by user.utc_offset

You will find that some time zones have a large number of names associated with them; for example, +1 hour has
20 names, basically the names of the capitals of the European countries. Please note that even though most offsets
are based on whole hours, there are a few that are offset by 30 or 45 minutes, most notably India with 5 hours and
30 minutes from UTC and four time zone names: Chennai, Kolkota, Mumbai, and New Delhi.

Now let us have a look at the language of the tweets. The situation is rather unclear, as we are dealing with two
fields, one at the high level that is not documented by Twitter at this writing (but we suspect is a best guess at the
language of the tweet), and another language field that is part of the user structure. The latter is the declared language
of the App the user has, or it can also be the default of that App. We ran a search for the first 20 events where these two
fields have different contents and there are eight events that fit this profile. If we count that there are two delete events
in these 20, the ratio is almost 50 percent. Looking carefully at the language of the actual tweet (the text field) of these
eight events, five had the right language, two were wrong, and one did not have enough text to guess a language at all,
as all it contained was “@username (Y).”

Using the following search to find how many events have a different language on the text as compared to the one
defined in the user profile we get 1, 271, 427 events distributed over 801 different combinations of languages. That is
almost 30 percent of the total tweets. Interestingly enough, about 21 percent of these tweets have English defined as
the user language, but the tweet language is flagged as Indonesian.

* | rename user.lang as tweet_user_lang
| where tweet_user lang != lang
| stats count by tweet user lang, lang

Caution Be careful when using the eval and where commands when working with JSON-based events. They will
interpret the dot (.) as the concatenation operator. To avoid this, you can either enclose the JSON field path in single
quotes (‘) or rename the field. We consider renaming the field a best practice.

We also noticed that from these results there are about 81,000 events that have the code “und” for the tweet language,
which we assume means undetermined. Trying to guess the language of some text, especially when it is as short as a
tweet, is a difficult proposition, especially nowadays when mixing languages is becoming more common. Combinations
of languages with interesting names such as Spanglish (Spanish and English), Portufiol (Portuguese and Spanish),

219

CHAPTER 12 © ANALYZING TWEETS

Frarabic (French and Arabic), Hinglish (Hindi and English), and others make it even more challenging. At this point all
we can say is that you should handle the analysis of tweet languages with extreme care.

Another field with questionable content is location. This field is provided by the user and we have seen it go
from the name of a city to “in the heart of @username” and anything in between and beyond. Location is not really
a field that can be used for any serious analytics. Some of the Apps for Twitter offer the ability to geotag their tweets,
that is, attach the location of the tweet in the form of latitude and longitude. The field for this is coordinates. There is
another field called place, which allows for an address and a bounding box (a polygon of geocoordinates). At this time
these fields are not widely used. We did a quick search and found that about 1.5 percent of all the tweets in our sample
had geolocation information. We cover how to work with geolocations in Chapter 13.

There are three fields that provide interesting information and are rather straightforward: followers_count,
friends_count, and statuses_count. These are part of the user object and are calculated by Twitter for each tweet.
Searches for the user with the most followers, or following the most users, or the one with most tweets are extremely
simple. The only thing you need to be very aware of is that these metrics are extremely dynamic, so you must use the
most recent tweet to obtain the most accurate results. As usual, we suggest that you be very careful when formulating
the searches. There is a big difference between the user with the most tweets in the period of time that is being
analyzed and the user with the most tweets over time. In the first case, you can use the following search:

* | top user.screen_name
In the second case, you could use a search like:

* | stats max(user.statuses count) as max_count by user.screen name
| sort - max_count

In the first search, we just count the events by user for the data we have. In the second one, we look for the biggest
count of tweets for each user, as this number changes with each tweet. For the first search we get favstar_bot, a robot,
as the user with the most tweets at 31, whereas for the second search we get Yougakudan_00, another robot in Japan,
with well over 36 million tweets.

Searches to count the number of followers and friends are similarly simple. When we do the search by the
number of followers, none of the top three users we mentioned at the beginning of the chapter show up in the results.
If a user has not tweeted during the period of our sample, that user will not show in the results, and none of those top
three tweeted during that period. The top user we obtain is Kim Kardashian, with 17,084,687 followers.

Most Popular Words

For our next search we want to find the most popular words in a tweet. We will use a couple of new commands to achieve
this. The main idea is to break down the text field into a multivalue field, where each value is an individual word. We
consider a word to be anything enclosed by two spaces. Once we have done this we can go ahead and count the words. The
first command, makemv, takes a field and converts it into a multivalue field using a space as the default delimiter. As Splunk
sees everything as events, we will use the mvexpand to convert each value of the multi-value field into separate events. We
tested the search first with only one tweet, so that it would be easy for us to count the words and make sure that it is working
correctly. The next step was to do the search with the first 200 events to get an idea of what the results look like:

* | head 200

| makemv text

| mvexpand text
| top text

The output of this search can be seen in Figure 12-4. Not surprisingly, the most popular word for these first

200 tweets is RT, with over double the count of the word “to’, which came in the second place. You can also see
that most of the words are prepositions, nouns, or pronouns in both English and Spanish, which can generally be

220

CHAPTER 12 © ANALYZING TWEETS

considered noninformational. We are looking for some more substance than that. One way to do this is by creating
a list of words to exclude from the results. This is typically called a stop word list, and many can be found on the
Internet. One thing that we have to consider is the language of the stop word list. We created a rather simple stop list
with only 44 English words and will focus only on tweets in English.

text ~ count + percent =
RT 41 2.321631
to 18 1.019253
a 12 0.679502
10 0.566251
the 9 0.509626
is 9 0.509626
of 8 0.453001
de 8 0.453001
I 8 0.453001
que 7 0.396376

Figure 12-4. Most popular words in the first 200 tweets

To illustrate how to formulate a search that excludes words from a stop list, we will use a lookup table. You already
saw how to use lookup tables in Chapter 11, but this time we will use them slightly differently. The first step is to create
a simple file that has one word per line and remember to include a header line. For this example, we will use “Word”
as the name of the field in the header line. The next step is to define a lookup table, which we call StopWords.csv.

This can be found in the download package of this book. Note that we use the csv extension even though the file
technically does not contain comma-separated values, only one column. There is no need to create a lookup definition
as the inputlookup command will take either a filename or a tablename as an argument. This command loads the
contents of the lookup table as search results. Putting it all together the search look like this:

lang=en

| makemv text

| mvexpand text

| search text NOT
[

| inputlookup StopWords.csv | rename Word as text

]

| top text

Asyou can see, the search is based on a subsearch, which loads all the stop words and renames the field to
text. The stop words are then used in a search with the words we found in the previous search and combined with
a Boolean “not’; meaning that we do not want to count words with the top command that show up in both. Please
note that the “not” has to be uppercase for Splunk to understand it as a Boolean operator. Another thing we have to
mention is that you cannot rename the text field in the first part of the search because the new field by itself will not
be available to the second search command.

221

CHAPTER 12 © ANALYZING TWEETS

As we are playing with words, we will play a little with the visualization of the results. We used IBM’s Many Eyes
web site, where you can load your data and experiment with many visualization types. After playing around with the
results of the previous search we especially liked two different visualizations: a bubble chart, which we present in
Figure 12-5, and a word cloud, seen in Figure 12-6. This fun web site can be found at the rather strange URL
http://www-958. ibm.com. Just be aware that whatever data you upload will be made public.

&

42,189

2 dde Jfaes
wvia o=
news *225 F Eeyen g% %°-2§ é
someone ™ 2 'think-l-b g = §0:9 acC

1 people one %
Y e e

Figure 12-6. Word cloud of the top 50 words in English tweets

222

http://www-958.ibm.com/

CHAPTER 12 © ANALYZING TWEETS

Obviously the stop word list we used can be further improved as the top 10 words list still includes many
noninformational words. The bubble chart works fine for the top 10 values, but it produces a rather skimpy word cloud,
so we decided to use the top 50, which makes for a more complete word cloud. With this we conclude the section where
we examine the Twitter information from a historic perspective. Next we move on to analyze real-time trends.

Real-Time Twitter Trends

In Splunkbase, Splunk’s App library, you will find an App that provides a scripted input for Splunk that automatically
extracts tweets from Twitter’s 1 percent sample stream and has a flashy dashboard:

http://splunk-base.splunk.com/apps/56296/twitter-for-splunk

The App was originally written by David Foster of Splunk. It is available for free and is covered by the Apache 2
license. You must have a valid Twitter username to be able to use this App; also, as we saw earlier, the sample Twitter
stream generates about 12 GB worth of data a day, so make sure your Splunk license allows to index that amount of
data. To install the App from within Splunk follow these steps:

¢ Go to the Manager, choose Apps, and then click on “Find more apps online”

e Search for the Twitter App; the search box is on the upper right part of the screen,
just type “twitter”

e Locate “Twitter for Splunk” and click on “Install free”

e The App will be downloaded and it will ask you to set it up. All you have to do is provide your
Twitter account name and password. If they are correct, the App will start running and after
collecting data for a couple of minutes it will present a dashboard with six panels like the one
shown in Figure 12-7:

e Top Hashtags—Last 15 minutes

e Top Mentions—Last 15 minutes

e Tweet Time Zones—Last 15 minutes

e Top User Agents—Last 24 hours

e Tweet Stream (All Users)—Real time, last 30 seconds

e Tweet Stream (First Time Users)—Real time, last minute

223

http://splunk-base.splunk.com/apps/56296/twitter-for-splunk

CHAPTER 12 © ANALYZING TWEETS

Top Hashtags - Last 15 minutes 1m ago Top Mentions - Last 15 minutes 1m ago
TeamFollowBack Q3 _LORD_G8
TeenG... Special adeioviver
RETWEET sophiaabrahao
w Follow2Gain n nafakM
o £
] ERTELGN § mnaufal_{
B Y B count E Justinbleber M count
= =2E YouTube
AEE WTFTheReallojo
A E 50 NashuhaNiran
winners LittlecBeadles
1] 1 2 3 0 i 2 3 4
View resulis View results
Tweet Time Zones - Last 15 minutes 1im age Top User Agents - Last 24 hours 1im ago
75 other (1)

Tweet Button

weetCaster for Android

TweetDeck

50 Twitter for iPad
Mohbile Web (M2)
Twitter for BlackBerry®

Twitter for iPhone

count

0 count
25
Twitter for Android
-11-10-9| -8 -7|-6|-5|-4(-3|-2/0 (1|2 |3 (4 |7 |8 9|10 web
Time Zone (GMT Offset)
View results View results
Tweet Stream (All Users) - Last 30 seconds real-time Tweet Stream (First Time Users) - Last minute real-time
rev il 2 3 4 5 6 7 B8 9 10 next
b . - screenname ¥ text v

text ¥ UnaAerdna A la migrda todo solo quiero estar sola.

RT @EmWatson: Who here actually thinks | would do 50 Shades of Grey as a movie? L Gorybut we up in me that are all getis

Yo sepurane RT @MelaniDO tangan mu seh nyanyil @fitriinds Ampun taRT @Nuruddir fedyluhywema awesome weather is today ke it was never before

Figure 12-7. The Twitter App dashboard

We will review the searches that make up each one of these panels, but first a quick comment on the way the
data is collected. The App includes a Python program that collects the data directly from the Twitter 1 percent sample
stream and indexes it into Splunk in an index called “twitter”. This is called a scripted input, where instead of having
Splunk index a file (one shot) or monitor a directory or a TCP/UDP port, it obtains the data from a program. If you are
interested in reviewing this program, you can find its location by going to Manager » Data Inputs » Script. There are
two versions of the program, one for Unix and another for Windows. We will not review either program as that is out
of the scope of this book. On a related note, the program we used to collect the 24 hours’ worth of data for use at the
beginning of this chapter, getipct.py, is a modified version of the program provided by this App.

The first panel in the dashboard presents the top hashtags in the last 15 minutes. Based on the search we built for
the most popular words earlier in this chapter, we can formulate this search as:

index=twitter

| makemv text

| mvexpand text

| eval hashtags = mvfilter(match(text, "#+"))
| top hashtags

In this case we use the eval command to extract the hashtags. The match function compares the word with the

regular expression “#+’, which stands for “starts with a # and has one or more characters.” The mvfilter function
filters a multivalued field, such as text, based on a Boolean expression like the one we used with the match function.

224

CHAPTER 12 © ANALYZING TWEETS

When you put it all together, the eval command matches the words that start with a “#”. This is pretty simple, but
Twitter has an entities object associated with each tweet that makes it even simpler. This object contains metadata
extracted from the tweet itself (the text field) such as:

e Hashtags, which have been parsed out of the tweet text.

e Media, which is a comprehensive object that represents media elements uploaded in the
tweet, such a photos.

e URLs, which contain the original URLs in the tweet and the corresponding URL converted to
the t.com form.

e Mentions, which are the screen names of other users mentioned in the tweet, that is, names
starting with a “@” and are actual Twitter users.

Each of these elements includes the location within the tweet represented as the beginning and the end of the
element. There are different ways of counting and presenting the element depending on which one it is. Details can
be found in the Twitter documentation. The following is an example of an entities object with a couple of hashtags,
a URL, and a mention:

"entities":{

"user_mentions”:[
"name":"Twitter API",
"indices":[4,15],
"screen_name":"twitterapi",
"id":6253282,

"id str":"6253282"}

1,

"hashtags":[
{"indices":[62,66],
"text":"lol"}

{"indices":[79,85],
"text":"rotfl"}

1,
"urls":[

{"indices":[32,52],

"url":" http:\/\/t.co\/IOwBrTZR",

"display url":" youtube.com\/watch?v=oHg55J\u2026",

"expanded_url":"http:\/\/www.youtube.com\/watch?v=oHg551\u2026"}
]

}

Using the Twitter entities object, the search to find the top hashtags changes from the previous one to:

index=twitter

| rename entities.hashtags{}.text as hashtags
| fields hashtags

| mvexpand hashtags

| top hashtags

As mentioned earlier, we suggest as a best practice that multilevel JSON fields be renamed to avoid problems with
the eval and where commands, even when they are not used in the search. Then there is the convenience of typing
a shorter field name, which can also be used as a label for the y-axis of the chart. Using entities.hashtags{}.text
is a Splunk wildcard specification for a JSON format field to get the text of all the hashtags as opposed to specifying

225

https://t.com
https:\/\/t.co\/IOwBrTZR
https://youtube.com\/watch?v=oHg5SJ\u2026
https:\/\/www.youtube.com\/watch?v=oHg5SJ\u2026

CHAPTER 12 © ANALYZING TWEETS

individually entities.hashtags{0}.text, entities.hashtags{1}.text, and so on. The fields command is used
to optimize the search. As there are so many fields in a tweet, we are excluding all of them but the hashtags, which is
all we care about in this search. The mvexpand command expands the values of a multivalue field into separate events
so that the top command can count them. If you wanted to create a panel that monitors a hashtag of your interest for,
say the last minute, a possible search could be:

index=twitter

| rename entities.hashtags{}.text as hashtags
| fields hashtags

| mvexpand hashtags

| where like(hashtags, "your hashtag")

| stats count

You can change the visualization from a chart to a radial gauge, because you are only presenting a single number,
and you specify the time range to be “from -1m@m to now.” An example of the resulting panel can be seen in Figure 12-8.

<1m age

View results

Figure 12-8. Counting a specific hashtag

The panel that presents the top mentions uses the same search as the top hashtags, except that it changes the

field names to be entities.user mentions{}.screen_name as mentions. The time zones panel uses the following
search:

index=twitter

| rename user.utc_offset as z
| search z=* z!=null

| eval z=round(z/3600)

| stats count by z

| sort +z

As you saw earlier in this chapter, a high percentage of tweets have null time zones, so to avoid a problem in the
calculation the search command is used to weed out all those tweets. Remember the implicit AND Boolean in the
search command. The calculation breaks down the time zones by full hours. As discussed earlier, there are a few
time zones that are offset by 30 and 45 minutes. Dividing by 3,600 will have the count of the odd time zones roll into

226

CHAPTER 12 © ANALYZING TWEETS

the next full hour. We tried visualizing the results with the eval command removed, but there were so many time
zones that the different types of charts we tried were illegible, so we can call this one the pragmatic time zone chart.

The next panel, which shows the top user agents, will allow us to introduce a couple of new commands. A user
agent is an App or client that is used to create a tweet. This information is quite valuable for marketing-oriented
companies, as it not only presents the actual App but it usually includes the platform it runs on. The field that contains
this information is source. As you might remember, we were having some conflicts between this field and the Splunk
default field source when we were verifying the loaded data after indexing. We will clarify these conflicts as we explain
the search. The content of the Twitter source field is slightly different to the other fields, as in most cases it will contain
the URL where you can download the App. The only exception is when the Twitter web site is used, in which case the
value is simply “web”. This is a typical example:

"Twitter for Android"

The contents of the source field for other Apps have the same structure, the link destination for the download
and the name of the App. All we are interested in is the name of the App, as in this example “Twitter for Android’,
so we have to come up with a regular expression that extracts it, but we have to consider the exception case:
"source":"web". We can break the contents of field in three parts: the first one goes from the beginning up to the
actual name of the App, the second one is the name of the App, and then the rest. Based on this, the regular expression

can be:
(<[">T*F)2([*<]%)

Some of the regular expression concepts were covered in “Modifying the Timestamp Processor” in Chapter 9.

“_n

The first group of the regular expression, which is enclosed in between parenthesis, indicates that it starts with a “<

followed by any character except for a “>” zero or more times, and this group can happen zero times or once. The
“w_n

second group captures the name of the App by simply stating that it takes any character, except for a “<” zero or more
times. We don’t have to worry about the rest. Now we can have a look at the search:

index=twitter

| spath source

| fields source

| rex field=source "(<[">]*>)?(?<source>[*<]*)"
| top source

The spath command allows you to extract fields from structured events based on JSON or XML. We have not
needed to use this command in this chapter because the Twitter events are fully structured JSON; therefore, Splunk
made all the fields automatically available. This command is mainly used when events include some parts that are
structured as JSON or XML (there are some log files that combine plain text with XML structures in the same event).
In this particular case, we are using spath to disambiguate the source field in the event from the Splunk default field
source. By using the spath command, we force Splunk to use the source field we want. Once again, we use the fields
command to improve performance by limiting the rest of the search to this field only.

The rex command is used to extract fields based on a regular expression. Note that we have modified the regular
expression by adding ?<source> at the beginning of the second group. In the rex command this means that the match
of that group will be placed in the field called source. In normal regular expression parsers the matches of each group
would be available as $1, $2, and so on. In the Splunk rex command the matches of a group can be placed in a field
that is defined at the beginning of the group using the ?<field_name> syntax. This is a pretty handy Splunkism.

The pie chart that displays the results of this search can be seen in Figure 12-7. It shows that the majority of the
clients are the web, with over 26 percent, followed closely by the Apps for the iPhone and Android, each with about
23 percent, and then the BlackBerry App with about 16 percent. With the rise of Android and iOS devices, we decide
that to better understand this phenomenon we will analyze the geographic location of the BlackBerry devices based
on the time zone names. For this, we formulate a search to run it on the 24-hour file that we processed earlier in this

227

http://twitter.com/download/android%5c

CHAPTER 12 © ANALYZING TWEETS

chapter as we have more tweets than we have collected using the real-time App. Excluding the tweets without a time
zone, which we saw earlier account for over 27 percent, we look at the time zone names with 15,000 or more tweets.
These are the top six, as shown in Table 12-2. Our original expectations were that the majority of the BlackBerry
phones would be concentrated in some foreign region, but as you can see three of the top six are in the United States,
and over half of the top six are in the United States.

Table 12-2. Top 6 BlackBerry time zones

Time Zone Count

Pacific Time (US & Canada) 74,607
Bangkok 47,761
Jakarta 34,064
Central Time (US & Canada) 20,636
Amsterdam 17,743
Hawaii 17,231

The fifth panel of the dashboard presents the text of the tweets for the last 30 seconds on a real-time basis. This is
done by specifying the time range as “from rt-30s to rt”” The search is extremely simple:

index=twitter text=*
| table text
| sort - time

By specifying text=* we ensure that the tweet text field contains something, whereas the table command
presents the selected fields as a table. This is finally sorted in decreasing order using the Splunk internal field
_time (with one underscore), which contains the timestamp and has nothing to do with the __time field (with two
underscores) that was created by the Python program that taps into the Twitter sample stream. We use _time because
itis more efficient than using any other available field. Please note that fields that start with a single underscore
symbol (_) are usually meant for Splunk internal use, but are available to the user. The search for the panel that
presents the first tweets is also very simple:

index=twitter user.statuses_count=1

| rename user.screen name as screenname
| table screenname text

| sort - time

Suppose that as well as keeping track of the count of a specific hashtag, which we showed earlier in this chapter,
you also want to display the tweets that contain it. The search would be a slight variation of the one used to count the
hashtag:

index=twitter

| rename entities.hashtags{}.text as hashtags
| rename user.screen_name as account

| fields account,hashtags,text

| mvexpand hashtags

| where like(hashtags, "your hashtag")

| table account, text

| sort - time

228

CHAPTER 12 © ANALYZING TWEETS

We rename the user screen name as part of the best practices and restrict the fields to only those we use to
improve the performance. Once we find a tweet that contains the hashtag we are looking for, we display the tweet next
to the name of the user.

Summary

In this chapter we reviewed the data structure of the Twitter 1 percent sample stream, how to collect it, and how to
process it either on a real-time basis or from a historic perspective. We went over the timestamp issues for indexing
tweets and discussed some key fields and their contents. We did a number of interesting searches that allowed us to
introduce a few new commands, including some that are specialized in handling multivalue fields. We also used an
external tool to create visualizations that are more appropriate for dealing with words and tags.

229

CHAPTER 13

Analyzing Foursquare Check-Ins

Location-based services—especially on mobile phones—are growing dramatically. With an ever increasing number
of GPS-enabled smartphones in use, location data is adding a whole new dimension of applications, including
advertising, recommendations of nearby businesses, and weather. In this chapter, we will focus on some of the basic
concepts related to geographical (geo) location. We also discuss the intricacies of handling multiple time zones. For
this, we will use the Foursquare service as the base of our examples.

Foursquare can be described as a location-centric social networking game. It allows you not only to check in at
locations you want to share with friends but also to earn rewards, most of them virtual. Every check-in will give you
points. With points you earn badges, which can be described as formal bragging rights. The badges can go from the
simple, a newbie badge for checking in for the first time at a venue, to an explorer badge for checking in to 25 different
venues. You have some more complicated badges, such as the JetSetter, which is attained after checking into five
different