
THE EXPERT’S VOICE® IN BIZTALK

Mark Beckner

A compendium of ready-to-use solutions

to speed your BizTalk 2010 development

BizTalk 2010
Recipes
A Problem-Solution Approach

www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

i

BizTalk 2010 Recipes
A Problem-Solution Approach

■ ■ ■

Mark Beckner

www.allitebooks.com

http://
http://www.allitebooks.org

ii

BizTalk 2010 Recipes: A Problem-Solution Approach

Copyright © 2010 by Mark Beckner

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the copyright
owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3264-3

ISBN-13 (electronic): 978-1-4302-3265-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names,
logos, and images only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether
or not they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Henry Li
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Heather Lang
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor
Apress shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in this work.

www.allitebooks.com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://
http://www.allitebooks.org

iii

To the coolest gal I’ve ever met—the fantastic, bright, beautiful, Sara Ann Beckner.

I wouldn’t be where I am without you!

www.allitebooks.com

http://
http://www.allitebooks.org

iv

Contents at a Glance

■Contents .. v

■Foreword .. xi

■About the Author ... xii

■About the Technical Reviewer .. xiii

■Acknowledgments .. xiv

■Chapter 1: What’s New in BizTalk 2010 .. 1

■Chapter 2: Document Schemas ... 23

■Chapter 3: Document Mapping .. 87

■Chapter 4: Messaging and Pipelines ... 187

■Chapter 5: Orchestrations ... 235

■Chapter 6: Adapters .. 335

■Chapter 7: Business Rules Framework ... 399

■Chapter 8: EDI Solutions .. 433

■Chapter 9: Deployment .. 453

■Chapter 10: Administration and Operations .. 481

■Chapter 11: Business Activity Monitoring ... 515

■Index ... 569

www.allitebooks.com

http://
http://www.allitebooks.org

v

Contents

■Contents at a Glance .. iv

■Foreword .. xi

■About the Author ... xii

■About the Technical Reviewer .. xiii

■Acknowledgments .. xiv

■Chapter 1: What’s New in BizTalk 2010 .. 1

1–1. Using the Relevance Tree View .. 1

1–2. Navigating the Mapping Surface .. 4

1–3. Correcting Errors in Functoids .. 7

1–4. Indicating Matches in Maps .. 8

1–5. Configuring Core Server Settings .. 9

1–6. Transfering Files Using SFTP .. 10

1–7. Accessing the EDI Version 5010 HIPAA Schemas ... 11

1–8. Configuring EDI Trading Partners .. 14

1–9. Zooming out on an Orchestration ... 18

1–10. Installing BizTalk Server RFID 2010 .. 19

■Chapter 2: Document Schemas ... 23

2–1. Creating Simple Document Schemas ... 24

2–2. Creating a Schema Based on an Existing XML Document 28

2–3. Creating Schema Namespaces ... 29

2–4. Promoting Properties .. 30

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

vi

2–5. Creating Property Schemas .. 35

2–6. Importing Schemas ... 40

2–7. Referencing Schemas ... 42

2–8. Creating Envelopes to Split Inbound Data ... 44

2–9. Creating Complex Types ... 51

2–10. Defining Regular Expressions ... 54

2–11. Creating Flat File Schemas ... 56

2–12. Creating Flat File Schemas via the Wizard ... 60

2–13. Creating SOAP Header Schemas ... 79

■Chapter 3: Document Mapping .. 87

3–1. Creating Simple Maps ... 88

3–2. Organizing Maps ... 96

3–3. Adding and Configuring Mapping Constants ... 98

3–4. Mapping Any Element Nodes .. 102

3–5. Using the Value Mapping Functoids .. 106

3–6. Using the Table Looping Functoid ... 110

3–7. Using the Database Lookup Functoid ... 116

3–8. Seeding Cross-Reference Tables with ID Cross-References 122

3–9. Seeding Cross-Reference Tables with Value Cross-References 126

3–10. Using the ID Cross-Reference Functoids .. 128

3–11. Using the Value Cross-Reference Functoids ... 131

3–12. Using the Looping Functoid .. 133

3–13. Using the Iteration Functoid .. 137

3–14. Creating a Custom Functoid .. 141

3–15. Using the Date and Time Functoids .. 145

3–16. Creating Functoid If-Then-Else Logic .. 149

3-17. Calling Compiled Assemblies .. 153

3

www.allitebooks.com

http://
http://www.allitebooks.org

 ■ CONTENTS

vii

3–18. Using Inline C# .. 158

3–19. Passing Orchestration Variables into Maps .. 162

3–20. Using Inline XSLT .. 168

3–21. Using XSLT Call Templates ... 171

3–22. Using XSLT Group-By .. 173

3–23. Using an External XSLT File for a Map .. 176

3–24. Testing Maps .. 178

3–25. Debugging a Map Using Visual Studio .. 184

■Chapter 4: Messaging and Pipelines ... 187

4–1. Configuring Receive Ports and Locations ... 189

4–2. Configuring Send Ports ... 191

4–3. Configuring Port Maps .. 193

4–4. Using Send Port Groups .. 195

4–5. Creating Validation Pipelines .. 198

4–6. Creating Encryption Pipelines ... 200

4–7. Creating Flat File Send and Receive Pipelines .. 207

4–8. Creating Custom Pipeline Components ... 215

4–9. Handling Pipeline Errors ... 228

4–10. Subscribing to Suspended Messages ... 231

■Chapter 5: Orchestrations ... 235

5–1. Receiving Messages ... 236

5–2. Sending Messages .. 243

5–3. Creating Multipart Messages .. 246

5–4. Binding Orchestrations ... 253

5–5. Configuring a Send Port at Runtime ... 254

5–6. Creating Branching Logic in an Orchestration .. 258

5–7. Receiving Multiple Message Formats in a Single Orchestration 262

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

viii

5–8. Calling External Assemblies .. 266

5–9. Receiving Untyped Messages ... 270

5–10. Using the Parallel Action Shape .. 272

5–11. Using the Loop Shape ... 273

5–12. Using the Transform Shape .. 275

5–13. Using the Call Orchestration and Start Orchestration Shapes 280

5–14. Configuring Basic Correlations ... 282

5–15. Maintaining Message Order .. 287

5–16. Configuring Parallel Convoys .. 293

5–17. Using XPath Queries on Messages ... 296

5–18. Using Nontransactional Orchestration Scopes ... 297

5–19. Creating Atomic Scopes .. 304

5–20. Using Long-Running Transactions .. 309

5–21. Catching Exceptions Consistently ... 311

5–22. Creating Role Links ... 318

5–23. Calling Web Services .. 323

5–24. Exposing an Orchestration as a Service ... 327

5–25. Calling Pipelines from Within an Orchestration .. 328

■Chapter 6: Adapters .. 335

6–1. Configuring File Sends .. 335

6–2. Configuring File Receives ... 339

6–3. Configuring SMTP Send Ports ... 344

6–4. Configuring MSMQ Sends ... 350

6–5. Configuring MSMQ Receives ... 356

6–6. Sending Updategrams .. 360

6–7. Calling Stored Procedures .. 367

6–8. Receiving Messages with the SQL Adapter .. 373

www.allitebooks.com

http://
http://www.allitebooks.org

 ■ CONTENTS

ix

6–9. Configuring HTTP Sends ... 383

6–10. Configuring HTTP Receives ... 387

6–11. Configuring SOAP Sends and Receives ... 393

6–12. Creating Ports Through C# Applications ... 395

■Chapter 7: Business Rules Framework ... 399

7–1. Creating a Business Policy .. 399

7–2. Creating and Testing Rules ... 401

7–3. Creating Facts ... 412

7–4. Setting Rule Priorities ... 414

7–5. Creating Custom Fact Retrievers .. 416

7–6. Calling the Business Rules Engine from .NET ... 422

7–7. Calling the Business Rules Engine from an Orchestration 426

7–8. Deploying and Undeploying Policies ... 428

■Chapter 8: EDI Solutions .. 433

8–1. Adding an EDI Schema to a Project .. 433

8–2. Creating an EDI Map ... 435

8–3. Defining Complex Mappings in External XSLT .. 436

8–4. Creating and Configuring a Trading Partner ... 438

8–5. Configuring an EDI Envelope ... 441

8–6. Configuring Automatic Acknowledgements .. 444

8–7. Configuring EDI Validation with Pipelines ... 446

8–8. Creating Custom EDI Pipelines .. 447

8–9. Subscribing to EDI Promoted Properties ... 450

■Chapter 9: Deployment .. 453

9–1. Exporting Applications .. 453

9–2. Importing Applications .. 462

9–3. Manually Deploying Updates .. 467

http://

■ CONTENTS

x

9–4. Deploying a BizTalk Solution from Visual Studio .. 470

9–5. Enlisting and Starting Send Ports ... 473

9–6. Enabling Receive Locations .. 475

9–7. Enlisting and Starting Orchestrations ... 477

■Chapter 10: Administration and Operations ... 481

10–1. Troubleshooting Suspended Services 482

10–2. Resubmitting Messages ... 489

10–3. Managing BizTalk Applications 492

10–4. Debugging Orchestrations .. 498

10–5. Tracking Messages 504

10–6. Restarting the BizTalk Host Instance(s) .. 508

10–7. Throttle Orchestration Memory Usage .. 509

10–8. Resuming Inbound Message Processing .. 510

■Chapter 11: Business Activity Monitoring .. 515

11–1. Creating BAM Activities and Views ... 516

11–2. Deploying BAM Activities and Views 532

11–3. Using the BAM Portal .. 540

11–4. Setting Up BAM Alerts .. 546

11–5. Using the BAM Interceptor . .. 551

11–6. Creating a BAM Service Request .. 555

11–7. Creating a Tracking Profile 559

■Index ... 569

http://

xi

Foreword

Happy Birthday, BizTalk!

By the time you’re reading this in a bookstore, BizTalk will have celebrated its tenth birthday. Over
the past decade, there have been seven releases of Microsoft’s enterprise integration server, and it has
become the most broadly deployed integration middleware technology in the industry, with over 10,000
customers worldwide. BizTalk as a product line has matured tremendously during this period,
expanding beyond its simple roots in Enterprise Application Integration (EAI) to add in capabilities
around business-to-business integration, business rules, business activity monitoring, legacy
integration, RFID event processing, and more.

But why does middleware like this have such staying power? You’d think that newer advances in
technology like web services, SOA, and software as a service (SaaS) would render applications much
more inherently interoperable and that the pain and complexity of systems integration would be a thing
of the past. If you believe that, I have a bridge in Brooklyn that I can sell you!

The truth is that enterprises of all sizes still experience tremendous cost and complexity when
extending and customizing their applications. Given the recent constraints of the economy, IT
departments must increasingly find new ways to do more with less, which means finding less expensive
ways to develop new capabilities that meet the needs of the business. At the same time, the demands of
business users are ever increasing; environments of great predictability and stability have given way to
business conditions that are continually changing, with shorter windows of opportunity and greater
impacts of globalization and regulation. These factors all put tremendous stress on IT departments to
find new ways to bridge the demanding needs of the users and businesses with the reality of their
packaged applications.

This leads back to the reason why middleware—certainly not sexy as technologies go—continues to
deliver tremendous value to both businesses and IT departments. As the technology’s name suggests, it sits
in the middle between the applications you use and the underlying infrastructure; this enables IT
departments to continue to innovate at the infrastructure level with shifts like many-core processing,
virtualization, and cloud computing. Instead of having to continue to continually rewrite your LOB
applications to tap into infrastructure advances, you can depend on middleware to provide a higher level of
abstraction, so you can focus your efforts on writing the business logic, not plumbing code. Using
middleware also helps future-proof your applications, so that even as you move ahead to the next-
generation development tools and platforms (including the current trends toward composite applications
and platforms as a service), you can still leverage the existing investments you’ve made over the years.

So, in the decade ahead, middleware will be more important and relevant than ever before. In this
book, you’ll learn practical tips and tricks, regardless of whether you are new to integration middleware
and want to pick up the fundamentals of BizTalk or an experienced middleware developer wanting to
stay current on the latest new features being released in BizTalk Server 2010.

If only all birthdays were as kind to us! Let’s raise a toast to BizTalk and wish it a happy birthday; and
then it’s time to get back to the business of integrating applications and connecting end-to-end business
processes.

Burley Kawasaki
Director of Product Management, Microsoft Corporation

http://

■ CONTENTS

xii

About the Author

■ Mark Beckner is a technical consultant specializing in business development and
enterprise application integration. He runs his own consulting firm, Inotek
Consulting Group, LLC, delivering innovative solutions to large corporations and
small businesses.

His projects have included engagements with numerous clients throughout the
United States and range in nature from mobile application development to complete
integration solutions. In addition to this book, he has authored BizTalk 2006 Recipes
(Apress, 2006), Pro EDI in BizTalk Server 2006 R2 (Apress, 2007), and Pro RFID in
BizTalk Server 2009 (Apress, 2009), and he has spoken at a number of venues
including Microsoft TechEd. He works across the Microsoft enterprise stack,

including SharePoint, Dynamics CRM, and custom .NET development.
Mr. Beckner, his wife, Sara, and his boy, Ciro, split their time between western Colorado and

northern New Mexico. He can be contacted at mbeckner@inotekgroup.com.

mailto:mbeckner@inotekgroup.com
http://

xiii

About the Technical Reviewer

■ Henry Li has a strong background in laser physics and optics, as well as experience
surviving tough computer science classes in a Chinese college. He is a technical
consultant specializing in enterprise application integration and distributed system
solutions. Mr. Li has many years of professional consulting experience with large-
scale enterprise organizations and small businesses. He has been engaged in the
design and implementation of large-scale middleware infrastructures, based on
Microsoft .Net and BizTalk technologies.

He has served clients across the United States, including diverse enterprise
organizations, government agencies, semiconductor manufactures, and industry
equipment facility manufactures. He strongly believes that object oriented

programming is not only a software development technology but also a philosophy that should be
applied to any business solution’s architecture, design analysis, and problem solving. Mr. Li is most
interested in the areas of service-oriented architecture (SOA), aspect-oriented programming (AOP), and
XML data-driven solutions. He is the author of the book Introduction to Windows Azure (Apress 2010)
and can be reached at yinghong@softnetsolution.net.

mailto:yinghong@softnetsolution.net
http://

■ CONTENTS

xiv

Acknowledgments

A big thank you goes to all of my friends and colleagues at Apress—what an honor and priviledge to get
to work with you and publish through you!

http://

C H A P T E R 1

■ ■ ■

1

What’s New in BizTalk 2010

BizTalk 2010 has a number of new features that will aid developers and increase the ability of the
platform to support solutions built on it. The primary updates center around the BizTalk mapper user
interface and EDI trading partner configuration and management. Additional updates include
improvements to administrative functionality and the consolidation of tools within the BizTalk Admin
Console. The recipes in this chapter are meant to introduce this new functionality.

The most obvious piece of new functionality for all BizTalk developers will be the mapper interface.
There is a new toolbar that has a number of features on it allowing for better navigation, smarter linking,
and an overall better user experience. Figure 1–1 shows this new toolbar.

Figure 1–1. The BizTalk 2010 mapper toolbar

The most innovative piece of new functionality is the EDI Trading Partner management interface.
The entire engine has been revamped, and what was impossible before is now possible. Exchanging
documents between multiple business divisions and multiple partners with different envelope and
document configurations and tracking settings are now a snap. Developers of EDI solutions will find this
functionality refreshing and much needed.

Almost as important a questions as asking “What’s new?” is considering “What’s gone?” Several core
pieces of functionality that have been removed in BizTalk 2010. The most notable are the Health and
Activity Tracking (HAT) application and the ability to do administration of ports and orchestrations
directly from Visual Studio using BizTalk Explorer. These were both central to a developer’s everyday use
of BizTalk, and in many respects, it is unfortunate that these tools are gone from Visual Studio.
Everything is now centralized in the BizTalk Administration Console, and all of the functionality of HAT
and BizTalk Explorer are available in that console.

1–1. Using the Relevance Tree View

Problem

You have complex schemas in your map, and you are having difficulty seeing what nodes are being used.

Solution

By using the relevance tree view, only the nodes that are actually being used in mapping the active tab
will be shown. Use the following steps to work with this functionality:

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

2

1. Open an existing map in Visual Studio. By default, the full tree view will be
shown. Dotted lines show that some child node is being mapped, but the
schema would have to be manually expanded to see what specific node it was.
An example of this is shown in Figure 1–2.

Figure 1–2. Default full tree view

2. Click the first button on the mapping toolbar to show the relevant links for the
source schema, or click the last button to show them for the target schema.
Clicking this button causes only the mapped nodes to be displayed, as shown in
Figure 1–3.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

3

Figure 1–3. Showing only the nodes that are being mapped

3. Click the button again to return to the full tree view.

How It Works

Showing only the nodes that are actually being mapped can save a lot of time on schemas that have
more than a few nodes. Developers of EDI maps will find these particularly helpful, since there can be
hundreds or thousands of nodes and elements in a schema. Having to manually sort through all of the
nodes can be confusing and time consuming.

There also exists the ability to show only links that are relevant. The mapping surface can become
crowded with all of the links, and it can help to turn off any that are not pertainent to the current
mapping taking place. The relevant links can be turned on and off by clicking the second button that
appears on the mapping toolbar. An example of a map with all of the links turned on is shown in Figure
1–4, while the same map with only the relevant links showing appears in Figure 1–5.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

4

Figure 1–4. Showing all links

Figure 1–5. Showing only relevant links

1–2. Navigating the Mapping Surface

Problem

You want to be able to access elements of the mapping surface as rapidly as possible and need to
understand how to use the new functionality.

Solution

There are a number of new tools that can be used to move and view the mapping surface. These include

• Panning

• Zooming

• Searching

• Grid preview

This solution walks through the use of each of them.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

5

1. Open an existing map in Visual Studio.

2. To pan a map from top to bottom or left to right, click the hand button on the
mapping toolbar, which is shown in Figure 1–6. You can now drag the mapping
surface in any direction needed.

Figure 1–6. The pan button

3. To zoom in and out on the map, use the zoom functionality on the mapper
toolbar. Zooming out can give you perspective on where your functoids are
and allow you to easily locate and modify mappings. If you zoom in and the
functoids loose focus, you will notice flashing blue arrows to guide you to where
the components are (see Figure 1–7).

Figure 1–7. Arrow indicating where functoids are after zooming in

4. To find a specific value or word in a schema or a functoid, you can use the
search functionality (see Figure 1–8). You can search on name, label,
comments, inputs, and scripts in functoids. Searching on a value will highlight
all of the results; you can use the up and down arrows to navigate through the
results (see Figure 1–9).

Figure 1–8. Searching for a value in a functoid

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

6

Figure 1–9. Search resultsare highlighted

5. To use the grid preview functionality, right-click the mapping surface, and
select Grid Preview. This will pop up a window that shows a box and all of the
functoids (see Figure 1–10). You can drag and drop the box over the area of the
map you want to scroll to, and the map will automatically move.

Figure 1–10. Using the grid preview functionality

How It Works

There are a variety of ways to move around a map now. Prior to BizTalk 2010, the mapping interface was
pretty rudimentary and didn’t provide a lot of options. Based on feedback from developers, the mapper
user interface has been greatly improved.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

7

■Note Make sure to comment your functoids so that you can use the search functionality to more easily find

them. If you’ve got more than a handful of advanced scripting functoids, for example, you will find that by adding

comments you will save a lot of time trying to figure out which ones contain the methods you are looking for.

1–3. Correcting Errors in Functoids

Problem

You have some complex mappings using various functoids, and you want to make sure you don’t have
any obvious errors.

Solution

The new mapper brings intelligence to the functoids, showing errors prior to the testing of a map. This
allows you to rapidly assess where incomplete mappings exist and eases development by indicating
possible fixes to the errors. To see how this is done, follow these steps:

1. Open an existing map in Visual Studio.

2. Drop a functoid onto the mapping surface.

3. An exclamation mark will be on top of the functoid, indicating that an error
exists. Roll your mouse cursor over the top of the functoid to see the details of
the error (as shown in Figure 1–11).

Figure 1–11. Functoid error information

How It Works

There are a number of upgrades to the coding of maps in addition to the quick overview of the error as
shown in the solution to this recipe. Another valuable update is that the functoid interface actually
forces the selection of required inputs (see Figure 1–12). For example, if there are two inputs required,
they will appear in the functoid configuration window, and the functoid will continue to show an error
until these are configured. You can scroll over the warning icons for each input to see the exception
message.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

8

Figure 1–12. Configuring the required inputs to the functoid

1–4. Indicating Matches in Maps

Problem

You want some help mapping the source schema nodes to the target schema nodes.

Solution

There is now some intelligence built into the mapper that aids in mapping source nodes to target nodes.
A developer can request all nodes in the target schema that appear to be matches be highlighted. This
can be done using the following steps:

1. Open an existing map in Visual Studio.

2. Right-click a node in the source schema, and select Indicate Matches.

3. One or more links should appear with suggested matches (see Figure 1–13).
Clicking a link will cause the link to be made permanent in the map.

■Note Not all recommendations by the mapper are accurate! There is no requirement to use this feature.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

9

 Figure 1–13. A suggested match

How It Works

The mapper tries to find a match based largely on name, though it also looks at the structure of nodes in
the source and target schemas. A related piece of new functionality allows for the auto-linking based on
name or structure of the source nodes. This functionality appears when you drag a source schema
record (not an element or attribute, but the record itself) and drop it on a target schema record. When
the link is dropped, a context menu appears (as shown in Figure 1–14).

Figure 1–14. Linking by structure or name

1–5. Configuring Core Server Settings

Problem

You want to set throttles, thresholds, tracking, polling intervals, and other systemwide settings that will
be used to optimize and control processes running within BizTalk.

Solution

Prior to BizTalk 2010, configuring core settings was done through a variety of methods, including
manually setting registry keys. Now, the BizTalk Settings Dashboard has been introduced. To access this
dashboard, take the following steps:

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

10

1. Open the BizTalk Administration Console.

2. Right-click the BizTalk Server Group, and select Settings. In the BizTalk
Settings Dashboard that opens, you will notice a variety of properties that can
be set (see Figure 1–15).

Figure 1–15. The BizTalk Settings Dashboard

How It Works

A great deal of performance tuning is available through the use of the BizTalk Settings Dashboard. It
centralizes all of the throttles, timeouts, thread handling, and other functionality that used to be
manually configured. Take a look at the different properties available prior to deployment, and become
familiar with the settings in order to better support your BizTalk environment.

1–6. Transfering Files Using SFTP

Problem

You need to use the BizTalk FTP adapter to transfer files using SFTP.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

11

Solution

In previous versions of BizTalk Server, the FTP adapter did not support SFTP transactions. Now, support
for SFTP is built into the standard adapter and can be easily configured using these steps:

1. Open the BizTalk Administration Console, and right-click the Send Ports folder
under a BizTalk application.

2. Select New Static One-way Receive Port.

3. On the General tab, select FTP for the Type property. Once selected, click the
Configure button.

4. There is a new section in the FTP Transport Properties configuration window
called SSL (see Figure 1–16), which allows for the specification of the client
certificate hash (among other things). Set the properties for the Firewall, FTP,
and SSL Sections as needed, and save the settings.

Figure 1–16. Configuring the SSL settings for SFTP

How It Works

In addition to supporting SFTP, the FTP Adapter has some additional feature updates. These include
support for the following:

• Downloading files from read-only FTP sites: In previous versions, when BizTalk
retrieved a file from an FTP site, it would automatically delete the file. This
prevented the FTP adapter from being used successfully with read-only FTP sites.

• Atomic ASCII-based file transfers: Previous versions only supported binary atomic
transactions.

1–7. Accessing the EDI Version 5010 HIPAA Schemas

Problem

You are building an EDI (Electronic Document Interchange) solution that requires the use of 5010
HIPAA compliant schemas.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

12

Solution

BizTalk ships with thousands of precreated schemas that support the various EDI documents. Shipping
with BizTalk 2010 are a number of HIPAA 5010–compliant schemas. These schemas can be accessed
using the following steps:

1. Using Windows Explorer, browse to $\Program Files\Microsoft BizTalk
Server 2010\XSD_Schema\EDI.

2. Double-click the MicrosoftEdiXSDTemplates.exe file to extract all of the
schemas (see Figure 1–17).

■Note It can take a substantial amount of time to extract all of the schemas.

Figure 1–17. Extracting the EDI schemas

3. The 5010 documents will be available in the HIPAA\00501 subfolder (see Figure
1–18).

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

13

Figure 1–18. The extracted 5010 schemas

How It Works

EDI schemas are identical to other BizTalk schemas and can be added to any Visual Studio solution.
Generally speaking, they are more complex in structure and contain many more nodes and elements
than other BizTalk schemas. An example of a 5010 HIPAA Schema in Visual Studio is shown in Figure 1–
19. There are continual updates to EDI schemas. The HIPAA 5010 schemas are primarily related to
Health Care, so given the volatility of health care laws today, it is very likely that there will soon be
another version to these (and other) schemas.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

14

Figure 1–19. The HIPAA compliant 837P 5010 schema in Visual Studio

1–8. Configuring EDI Trading Partners

Problem

You are developing an EDI solition, and you need to configure a new trading partner.

Solution

Trading partner management is the most significant new functionality presented in BizTalk Server 2010.
The new mapper has some nice features, but it doesn’t bring new functionality to the product. The

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

15

trading partner configuration, on the other hand, allows for the development of EDI solutions that could
not be done before. This solution outlines how to create a trading partner in BizTalk Server.

■Note An entire chapter in this book (Chapter 8) is dedicated to EDI solutions and the configuration of trading

partners. This recipe introduces the most basic aspect of this new functionality.

1. Open the BizTalk Administration Console, and click Parties (see Figure 1–20).

Figure 1–20. The Parties folder in BizTalk

2. Right-click any area in the Parties and Business Profiles area and select New ➤

Party.

3. In the Party Properties dialogue box, give the party an appropriate name. This
should be the name of the trading partner you will be exchanging documents
with.

4. Enable the option for the Local BizTalk processing (see Figure 1–21). This
setting is used to indicate that BizTalk Server will be used to process messages
to or from the party (rather than being the default party itself).

Figure 1–21. Configuring the base party object

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

16

5. Click the “Send ports” tab. This is where ports are associated with a party, and
it is used in instances where all outbound EDI documents on this port should
have envelope information configured as specified in the EDI properties of the
party being configured. Add any relevant send ports, and click OK.

Now that the party object has been created, a new business profile must be
created. A business profile contains all of the EDI configurations for a given
business of a trading partner. For example, a trading partner may be a single
company with multiple departments or divisions. Each department has its own
integrations with internal and external vendors, and each uses its own X12 or
EDIFACT settings. One business profile for each department must be created
in order to ensure that the envelopes on the EDI documents being exchanged
are set properly, and that all other EDI specific configurations are accurate for
that department.

6. Right-click the party that was created, and select New ➤ Business Profile (see
Figure 1–22).

Figure 1–22. Creating a business profile on a party

7. Give the business profile a name representative of the business unit or
department being set up. In many cases, a party will only have a single
business profile.

8. On the identities screen, set the trading partner ID(s) and qualifier(s) (see
Figure 1–23). These values are given to you directly by the trading partner, and
are the way trading partners are uniquely identified.

Figure 1–23. Setting the Business Profile’s identities

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

17

9. Once the business profile is fully configured, click OK.

With the business profile and core party configured, an agreement can be
made. However, to create an agreement, you must have two parties configured.
One party represents the recipient, and one is the sender. In many cases,
BizTalk is going to be one of the parties. However, in the cases where BizTalk is
acting as a value added network (VAN)—essentially, as a router of documents
between parties—there may be many parties sending and receiving documents
to many other parties. All of the configurations representing document
communication between parties are known as agreements.

10. To create an agreement, right-click the business profile, and select New ➤

Agreement.

11. Initially, there will be only a single tab to configure. You must specify the party
being interacted with and the protocol being used. To do so, set the Protocol
property to (for example) X12, and the Party and Business properties to an
available party. Once these have been set, two new tabs will appear (see Figure
1–24). These tabs are where all of the EDI specific information is configured for
the given agreement.

Figure 1–24. Setting the general properties of the Agreement

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

18

12. Click each of the tabs to set the EDI-specific values based on the trading partner
configuration specifications. An example of the Identifiers screen is shown in
Figure 1–25. Once you are finished, click OK to save the trading partner
configuration.

Figure 1–25. Setting values within the agreement

How It Works

This recipe outlined how to configure the different components that make up a trading partner, but
without the full story, understanding all of the settings is difficult. Chapter 8 of this book covers a
number of aspects of configuring EDI solutions, and the much of it deals with trading partner
configurations. Make sure to read through the appropriate sections to understand how parties, business
profiles, agreements, and other components all tie together.

1–9. Zooming out on an Orchestration

Problem

You need to be able to zoom out on an orchestration to see more of the design surface.

Solution

Right-click the design surface of an orchestration, and select the Zoom option. Different levels of
zooming are available, as shown in Figure 1–26.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

19

Figure 1–26. Zooming options on an orchestration

How It Works

It is very simple to zoom in and out on an orchestration, but the value and benefits are great. For large
orchestrations, it is invaluable to be able to get a bird’s eye view of the full flow. In previous versions of
BizTalk Server, no zooming was available, which was a hinderance to development and code reviews.

■Note You can get more granular levels of zooming by holding the Ctrl key and using the wheel on your mouse

to zoom in and out on the orchestation.

1–10. Installing BizTalk Server RFID 2010

Problem

You want to insall BizTalk Server RFID (Radio-frequency identification) on the same server as BizTalk
Server 2010.

Solution

BizTalk Server RFID 2010 must be installed with BizTalk Server 2010; it is not compatible with previous
versions of BizTalk. Take the following steps to install it:

1. BizTalk RFID can be installed from the standard setup screen of BizTalk Server
2010. Click the Install Microsoft BizTalk RFID option shown in Figure 1–27.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

20

Figure 1–27. Install link for BizTalk RFID

2. Click through the initial setup screens, indicating the database to connect to
and other basic information.

■Note During the System Configuration Check, you may get a message warning that MSMQ is not installed. This

can be remedied by enabling MSMQ on your operating system. Figure 1–28 shows this for Windows Server 2008 R2.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

21

Figure 1–28. Enabling message queuing for BizTalk RFID Install

How It Works

Many developers assume that BizTalk RFID is built into the standard BizTalk Server application, but it is
not. BizTalk Server RFID is a completely separate application from BizTalk Server 2010. It is a part of the
BizTalk family, which includes applications like Host Integration Server (HIS), the Enterprise Service Bus
(ESB) Framework, and the Adapter Pack. BizTalk RFID allows for the administration of RFID devices.
The way in which it collects data allows for easy integration with BizTalk Server 2010, but in no way is it
tied to the core product. The most common way to integrateBizTalk RFID with BizTalk Server is to use
the SQL tables representing the RFID data. This integration does not differ in any way from that of any
other external system.

■Note Pro RFID in BizTalk Server 2009 (Apress, 2009) is solely focused on BizTalk RFID. While it is based on the

previous version of BizTalk RFID, virtually all of the concepts and process apply to the 2010 version.

http://

CHAPTER 1 ■ WHAT’S NEW IN BIZTALK 2010

22

http://

C H A P T E R 2

■ ■ ■

23

Document Schemas

The BizTalk tool set enables exchanging information among computer systems. Each area of BizTalk’s
rich set of capabilities addresses the common development tasks of building an integration solution. For
example, BizTalk has tools for the common task of translating information from a structure understood
by a source computer system into a structure understood by a destination computer system. Other
BizTalk tools focus on defining integration processes or patterns of information flows.

This chapter focuses on the capabilities of the BizTalk Editor tool. The BizTalk product team
designed the Editor tool specifically for defining the structure of the information that flows through
BizTalk. BizTalk calls these definitions schemas, and the BizTalk Editor creates them.

For example, suppose a customer message flows through BizTalk. This message may contain
customer demographic information such as occupation and gender, logistical information such as
address, and information about the particular products of interest to the customer. BizTalk needs to
collect and organize this information in a structured format to fully utilize it.

Sometimes, BizTalk needs to examine messages to handle them correctly. For example, suppose
additional verification steps are needed if a customer’s purchase is very expensive and outside normal
buying patterns. A BizTalk schema can promote the purchase amount and make it available throughout
BizTalk. BizTalk can examine the purchase amount and take an additional step to send a notification
message to the customer’s representative. This property promotion process creates a property schema
defining information about the message. The BizTalk runtime engine uses property schemas extensively,
capturing information such as the location where BizTalk accepts a message or the message’s intended
destination.

XML standards form the core of BizTalk. At no time is this more evident than when defining
messages with the BizTalk Editor development tool. Use the Editor to define the structure of
information. For example, you can create a hierarchy in which a customer message contains a
demographic section, an address section, and a section for customer preferences. Each of these sections
can contain details relevant only to that section.

The XML Schema Definition (XSD) language natively defines message structure to BizTalk. Since the
Editor defines messages in XSD by default, any XSD-compliant XML editor can define BizTalk messages.
However, the BizTalk Editor supports many of the rich capabilities of XSD, such as importing common
schemas to facilitate reuse and consistency across message formats.

In addition to message structure, the BizTalk Editor can also define the data types of specific fields,
thus completing the message definition. These data type definitions can be interoperable XSD primitive
types, such as xs:string or xs:decimal, or complex data types. For example, complex types may require
values adhering to regular expressions or a list of enumerated values enforced with the schema.

Finally, while XML standards are the core for BizTalk messages and the Editor, a message structure
can extend beyond XML to apply to other formats such as a comma-delimited flat file representation.
BizTalk can efficiently parse a diverse population of message formats into XML for processing within the
core BizTalk runtime engine. XML must still define the message structure and fields, but a schema can
specify additional information defining how the XML message translates to and from the file format.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

24

2–1. Creating Simple Document Schemas

Problem

As part of your business process or messaging solution, you need to create an XML schema from scratch.
You can’t generate a schema based off of an existing XML document, as this schema represents data that
has not been modeled before.

Solution

The following steps outline how to create a simple schema and add it to your BizTalk project.

1. Open an existing project or create a new project in Visual Studio.

2. As shown in Figure 2–1, right-click the project name in the Solution Explorer
and select Add ➤ Add New Item.

Figure 2–1. Adding an item from the Solution Explorer

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2 ■ DOCUMENT SCHEMAS

25

3. The Add New Item dialog box will appear, as shown in Figure 2–2. Select
Schema as the type of item, type in a name for the item, and click OK.

Figure 2–2. Add New Item dialog box

4. To change the name of the root node, right-click the node, and select Rename.

5. To add nodes, right-click a node, and select Insert Schema Nodes. Then select
from the following options, as shown in Figure 2–3:

• Child Record, to add a new record indented one level from the selected node

• Child Field Attribute, to add a new attribute node indented one level from the selected
node

• Child Field Element, to add a new element node indented one level from the selected
node

• Sibling Record, to add a new record node at the same level of the selected node

• Sibling Field Attribute, to add a new attribute node at the same level of the selected node

• Sibling Field Element, to add a new element node at the same level of the selected node

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

26

Figure 2–3. Adding schema nodes

6. Select a node to view and modify its properties.

How It Works

XML schemas are the foundation of all scenarios and document exchanges with BizTalk Server. Once
you have created your schema, you can create your scenario. Whether it is a pure messaging solution or
involves business process automation scenarios implemented as orchestrations, the schema is available
to all other projects and solutions simply by referencing it. Additionally, once you have created your
schema, you can generate instances of the document that will adhere to the schema definition. This
feature makes it very easy to create test data.

To generate a test instance, follow these steps:

1. Open the schema Properties, shown in Figure 2–4, by right-clicking the schema
in the Solution Explorer and selecting Properties.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

27

Figure 2–4. Schema Properties

2. Type a path and file name next to Output Instance Filename, or select the
ellipsis to use the common file dialog box to browse to a file location and name
the file. Then click OK.

3. Right-click the schema, and select Generate Instance. A test instance of the
document will be created and named based on the Output Instance Filename
property specified.

Similarly, BizTalk Server provides the ability to validate that an instance of a document adheres to a
schema definition. To validate an instance, follow these steps:

1. Open the schema Properties by right-clicking the schema name in the Solution
Explorer and selecting Properties.

2. Type a path and file name next to Input Instance Filename, or select the ellipsis
to use the common file dialog box to browse to a file location and select a file.
Then click OK.

3. Right-click the schema, and select Validate Instance. The document specified in
the Input Instance Filename property will be validated against the schema.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

28

2–2. Creating a Schema Based on an Existing XML Document

Problem

You have an existing XML document that you want to create a BizTalk schema for.

Solution

In many situations, you will need to consume XML documents in BizTalk that already exist. Rather than
creating the schema by hand, you can have BizTalk automatically generate the schema for you. The
steps for doing this are as follows:

1. In a BizTalk project, right-click the project in Solution Explorer, and select Add

➤ Add Generated Items.

2. In the dialogue box that opens, select Generate Schemas.

3. The Generate Schemas window appears. Set the Document type value to “Well-
Formed XML (Not Loaded)” and set the “Input file” value to the pre-=existing
instance of the XML that you are basing the schema on. See Figure 2–5.

Figure 2–5. Specifying a well-formed XML instance

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

29

■Note You may get an error similar to that shown in Figure 2–6. If so, simply run the InstallWFX.vbs script in

the file path specified in the error message and run the schema generator tool again.

Figure 2–6. The error message that occurs the first time the schema generator is run

4. Click OK. The schema will be automatically created and added to your BizTalk
project.

How It Works

There are several other options for generated items, but this is the most helpful of the group. You would
be amazed at the number of developers who try to hand code their own schemas based on XML
documents that already exist.

2–3. Creating Schema Namespaces

Problem

You need to create two schemas that have the same name for the root node.

Solution

BizTalk Server uses a combination of namespaces and root nodes to resolve schema references.
Therefore, it is possible to have two schemas with the same root node as long as their namespace
designation is different. By default, the BizTalk Editor will set the namespace of a schema to
http://[solution].[schema], where solution refers to the name of the solution file and schema refers to
the name of the schema file. This default namespace designation may be modified as follows:

1. Open the project that contains the schema.

2. Double-click the schema to open it.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

30

3. Select the <Schema> node.

4. Right-click and select Properties.

5. Modify the Target Namespace property as desired.

When you modify the Target Namespace property, BizTalk Server will automatically modify the
Default Namespace (element name xmlns) of the schema to match the Target Namespace. Once the two
schemas with the same root node have different namespace designations, they may be used without any
conflicts.

How It Works

Namespaces are used to allow elements and attributes from different schemas to share names. For
example, two schemas may have an element named FirstName. If the schemas did not have different
namespaces, BizTalk Server would not know which FirstName you were referencing. In addition to
adopting naming standards and conventions for all BizTalk artifacts, you should adopt a standard for
namespaces in schemas. An example of a standard is as follows:

http://[Company Name].[Project].BizTalk.Schemas.[Schema].[Version]

where Company Name is your company name, Project is the name of the project, Schema is the name of the
schema, and Version is the version number of the schema.

■Note “EDI” should not be used in the namespace of any project that uses the BizTalk EDI engine. During

runtime, you may run into conflicts with this that will not allow your components to function as expected.

2–4. Promoting Properties

Problem

You have a scenario where you want to subscribe to a message differently based on the contents or
context of the message, and you need to understand how BizTalk Server exposes this metadata.

Solution

In order to promote instance-specific data fields (data that resides in the actual message instances, such
as a customer name or the ID of an order), you must create a property schema. You then promote the
specific schema elements, attributes, or records you need to subscribe to into the property schema. This
task is accomplished in Visual Studio, and can be done in one of two ways: quick promotion and regular
promotion. For more information on both of these methods, see Recipe 2–5, which describes how to
create a property schema.

In addition to instance-specific data fields, a number of system- or exchange-specific properties are
automatically promoted by BizTalk Server. A description of these exchange-specific properties, and the
fundamental difference between them and instance-specific properties, is provided in the following
“How It Works” section.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

31

All properties that have been promoted, regardless of whether they are associated with a specific
instance or the message exchange in general, are available for subscription by other BizTalk Server
objects, including send ports, send port groups, and orchestrations. Promoted properties are also
available for tracking purposes, which allow them to be used in troubleshooting and reporting.

How It Works

The importance of promoted properties in BizTalk Server’s publish/subscribe architecture cannot be
overstated. Understanding how they work is absolutely critical when designing and building an
integration solution.

From a simplistic perspective, a publish/subscribe integration architecture involves source systems
publishing or outputting messages to a centralized hub. After the hub receives these messages, it delivers
them to the destination, or subscribing, systems. Within BizTalk Server, promoted properties are the key
data that determine which messages are delivered to subscribing systems or processes. Without
promoted properties, messages would be received by BizTalk Server, but they would not be sent out,
resulting in a sort of black hole of messages. This would obviously not be a good situation, and BizTalk
Server will actually throw an error if a message is received without having a system or process that
subscribes to it. This keeps with the theory that it is not a good idea for a publish/subscribe integration
hub to accept messages for which it does not have a subscriber.

A term that is commonly used to describe a message’s promoted properties is message context. The
message context includes all the instance-specific and exchange-specific data fields and essentially is the
metadata that the messaging engine of BizTalk Server uses to process messages. As previously noted,
instance-specific properties are those that pertain to a specific message instance, and they must be
promoted explicitly during development. A common example of this type of property is an XML element
containing a unique ID, which may capture an important data field such as an order number. From a
message schema, XML elements, attributes, and records may be promoted.

■Note In order for an XML record to be promoted, its ContentType property must be set to SimpleContent. All

promoted properties, regardless of whether they are populated by XML elements, attributes, or records, have a

maximum length of 255 characters.

Along with being the key data elements allowing message subscription, promoted properties are
also commonly used in orchestrations to determine business process. Orchestrations can handle
messages dynamically by interrogating promoted properties that hold key metadata elements of a
message. For example, sales orders being delivered domestically may need to be handled differently
than those being sent overseas. By capturing the destination country of an order in the document
schema and flagging the element as a promoted property, this data element can easily be used as a
decision point in the orchestration. Domestic orders could be handled on one branch of decision logic,
and international orders handled on another. It is important to note here that as an alternative to using
promoted properties, the actual XML message could be interrogated within the orchestration to
determine the destination of a sales order. While this method could be used, leveraging promoted
properties simplifies programming and has performance benefits, as promoted properties can be
accessed directly without incurring the cost of opening the entire XML message.

For additional performance gains, distinguished fields can be used as opposed to promoted
properties within orchestrations. Distinguished fields provide functionality similar to promoted
properties (allowing access to instance- or exchange-specific metadata items on a message), with a few
key differences:

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

32

• Distinguished fields are available only within a single orchestration instance, and
they are not available to other BizTalk Server objects, such as receive locations,
send ports, send port groups, and tracking utilities.

• Distinguished fields can be of any length; promoted properties have a maximum
length of 255 characters.

• Distinguished fields have less of a performance impact than promoted properties,
as they are not persisted to the MessageBox database. Instead, they are essentially
XPath aliases, which simply point to the appropriate XML data field. Additionally,
adding the DistinguishedField attribute to a field on a .NET class allows it to be
exposed as a distinguished field.

• Distinguished fields are accessed through a reference to the name of the message,
the name of the record structure containing the distinguished field (which could
include multiple levels of child records), and the name of the distinguished field,
with each named item separated by periods:
MessageName.RecordName.ChildRecordName.DistinguishedFieldName. Promoted
properties, on the other hand, are accessed through a reference to the name of the
message, the name of the property schema, and a name of the promoted property,
via the following format:

MessageName(PropertySchemaName.PromotedPropertyName).

Certain scenarios will call for sensitive information, such as a bank account number, to be used as a
promoted property. To allow for enhanced troubleshooting and detailed reporting, promoted properties
can be viewed in tools such as the Group Hub reports in the BizTalk Admin Console and Business
Activity Monitor (BAM). Based on privacy regulations, these data fields may need to be hidden from
these tools, which can be accomplished by setting the promoted property’s Sensitive Information
property to True (this configuration is applied on the property schema).

System- or exchange-specific properties are those that are automatically promoted by BizTalk
Server and allow the successful processing of those documents by the messaging engine. The
fundamental difference between the two types of properties is that exchange-specific properties can all
be determined without looking into the actual contents, or payload, of the message. Instance-specific
properties, on the other hand, are all populated with actual values within a message instance.

Exchange-specific properties come in various types. Table 2–1 lists the default exchange-specific
property types that come with a complete installation of BizTalk Server. Additional properties may be
added as other BizTalk related items are installed, such as the MQ Series adapter.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

33

Table 2–1. Default Exchange-Specific Property Types

Type Description

BizTalk Framework (BTF2) Properties that support the BizTalk Framework. These are
very rarely used in the routing of documents.

BizTalk Server (BTS) Properties that support core BizTalk Server messaging. These
are extremely common in routing and include things like
ReceivePortName and other standard properties that are useful
to route on.

EDI (EDI) These are the base EDI properties are available when the
BizTalk EDI components have been installed. They include
envelope information, party information, and other data
related to EDI message processing.

AS2 (EdiIntAS) These properties are related to AS2 (also known as EDI over
the Internet) messages and are available on messages
processed using the AS2 protocol.

EDI Override (EDIOverride) These properties are used primarily to override the values of
EDI messages at runtime. They include envelope segments
and several other related properties.

Error Reporting (ErrorReport) Properties that support error reporting and handling. These
are used when subscribing to documents that have failed on
ports that have been enabled for routing of failed documents.

Legacy (LEGACY) Properties that support BizTalk Server 2002 properties.

Message Tracking
(MessageTracking)

Properties that support message tracking.

Orchestration (Microsoft.BizTalk.
XLANGs.BTXEngine)

Properties that support the BizTalk Server orchestration
engine.

MIME (MIME) Properties that support the processing of MIME-encoded
messages.

Various BizTalk Adapters (FILE, FTP,
HTTP, MQSeries, MSMQ, MSMQT,
POP3, SMTP, SOAP, SQL, WCF, WSS,
etc.)

Properties that support the different adapters, both standard
(such as File and FTP) and third-party adapters. These
properties are available for documents that have been
processed using the specific adapter (for example, if a
message was received on a File adapter, the file promoted
properties will be populated).

XML Document (XMLNorm) Properties that support the processing of XML documents.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

34

BizTalk Server processes promoted properties as messages are received into or sent out of the
MessageBox. Specifically, pipelines handle this task. System- or exchange-specific properties are
promoted by default, through pipelines such as XML or PassThru (both the receive and send variety).
For instance-specific properties to be promoted, a pipeline other than the PassThru must be used, as
this pipeline does not attempt to match messages to their associated schemas (and therefore property
schemas).

As properties are promoted, their XSD data types are converted to Common Language Runtime
(CLR) data types. Table 2–2 shows XSD data types and their associated CLR data types.

Table 2–2. XSD Data Types and Associated CLR Data Types

XSD CLR XSD CLR

anyURI String Name String

Boolean Boolean NCName String

byte sbyte negativeInteger Decimal

date DateTime NMTOKEN String

dateTime DateTime nonNegativeInteger Decimal

decimal Decimal nonPositiveInteger Decimal

double Double normalizedString String

ENTITY String NOTATION String

float Single positiveInteger Decimal

gDay DateTime QName String

gMonth DateTime short Int16

gMonthDay DateTime string String

ID String time DateTime

IDREF String token String

int Int32 unsignedByte Byte

integer Decimal unsignedInt Uint32

language String unsignedShort Uint16

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2 ■ DOCUMENT SCHEMAS

35

In addition to pipelines, orchestrations may also be used to explicitly set promoted properties. This
is important if your business process requires the copying or creation of messages. Since messages are
immutable (meaning once a message has been created, it cannot be modified) in BizTalk Server, a new
message must be created prior to any of its promoted properties being set. When a message is
constructed in an orchestration as a copy of another message, the message context (its promoted
properties), by default, are all copied to the new message. Once this new message is created, its
properties may be explicitly set to something different than in the original message. This must be done
in the same Message Assignment shape in the orchestration as the duplicate message.

■Note When a copy of a message is created in an orchestration, it is important to consider how the properties on

the original message are configured. If any of its properties are configured to use MessageContextPropertyBase

for the Property Schema Base (a property of the promoted field found in the property schema), they will not be

copied to the new message in the orchestration. By contrast, all those properties that are configured to use the

MessageDataPropertyBase (the default value) for the Property Schema Base will be copied to the new message.

For more information about the Property Schema Base property, see Recipe 2–5.

2–5. Creating Property Schemas

Problem

You want to subscribe to a message based on the contents of the message.

Solution

Property schemas allow you to promote properties so that they can be used when setting up filter
expressions. As long as the PassThruReceive pipeline is not used, these promoted properties are added
to the message context during pipeline processing. Once added to the message context, they can be used
as filter expressions on send ports. These properties are also available to be evaluated or modified in
orchestrations. To create a property schema and promote a property, follow these steps:

1. Open the project that contains the schema.

2. Double-click to open the schema.

3. Select the node that you wish to promote.

4. Right-click and select Promote ➤ Quick Promotion, as shown in Figure 2–7.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

36

Figure 2–7. Completing a quick promotion of a property

5. You will be asked if you wish to add the property schema to the project. Click
OK. The property schema is created with a reference to the promoted property,
as well as a default property of Property1. This may be removed from the
property schema.

■Note You may also add a property schema by highlighting the project in the Solution Explorer and selecting Add

 New Item ➤ Property Schema. Once the property schema is added to the project, you must associate it with a

schema. To do this, select the schema in the Solution Explorer, right-click a node in the schema, and select

Promote ➤ Show Promotions. In the dialog box, select the Property Fields tab, and click the Folder icon to launch

the BizTalk Type Picker dialog box. Browse to the property schema, select it, and click OK.

6. To view all promoted properties, select any node in the schema and select
Promote ➤ Show Promotions to open the Promote Properties dialog box.

7. Select the Property Fields tab to view all of the promoted properties, as shown
in Figure 2–8.

8. You may promote additional fields directly from this dialog box, or repeat steps
3 and 4 to promote other fields.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

37

Figure 2–8. Viewing the promoted properties in the Promote Properties dialog box

How It Works

Once you have deployed the solution with the promoted properties, they may be used to perform
content-based routing on the documents. Following is a simple example of content-based routing.
Assume you have the following two documents:

<Person>
 <Name>
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Name>
 <Birthdate>1979-05-31</BirthDate>
 <StateOfBirth>Washington</StateOfBirth>
</Person>

<Person>
 <Name>
 <FirstName>Sam</FirstName>
 <LastName>Evans</LastName>
 </Name>
 <Birthdate>1973-03-15</BirthDate>
 <StateOfBirth>California</StateOfBirth>
</Person>

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

38

You would like to send each of these documents to a different destination based on the
StateOfBirth field. After creating a simple schema to represent these documents, the StateOfBirth
element is promoted using the steps outlined in the “Solution” section. Once the project is built and
deployed, you are able to reference the promoted property when creating a send port filter expression.
In this example, two distinct send ports are created. Figure 2–9 shows the filter expression on the first
send port. The subscription is based on the value of the StateOfBirth field being equal to Washington.

Figure 2–9. Subscription for Washington

On the second send port, the subscription is based on the value of the StateOfBirth field being
equal to California, as shown in Figure 2–10.

Figure 2–10. Subscription for California

Although this example is simple, it is easy to see how you can leverage this feature to create content-
based routing scenarios through the use of promoted properties.

It is also possible to create message context properties that do not exist in the message itself, but
only in the message context. This may be valuable when you are not allowed to modify the schema but
would like to associate additional information with the document. This may be accomplished by adding
a node to a property schema and setting its Property Schema Base property to
MessageContextPropertyBase. This property is then available and can be set in an orchestration, and
ultimately, the document may be routed based on its value. For example, perhaps you would like to
calculate the age for each person processed in the preceding example, but you cannot add an Age

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

39

element to the schema. As opposed to adding a node to the schema, a node is added to the property
schema, as shown in Figure 2–11.

Figure 2–11. Adding a property to message context

After building and redeploying the solution, a second property, Age, is now available (see Figure 2–12)
for generating filter expressions.

Figure 2–12. The new value is available in the filter expressions

To complete the scenario, you would do the following:

• Create an orchestration that subscribes to all of the documents with no value for
Age.

• In this orchestration, calculate the Age value based on the birth date, and set the
property accordingly.

• Send the document back into the MessageBox database.

• Add a second filter expression to the existing send ports to subscribe based on the
StateOfBirth and if the Age value is present.

In summary, content-based routing is a typical scenario, and property schemas are used to extend
the message context properties that come with BizTalk Server.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

40

2–6. Importing Schemas

Problem

You would like to import an existing XML schema into another schema.

Solution

You can use the XSD Import method within the BizTalk Editor to reuse an existing common XML object
structure within another, as opposed to manually creating an entire schema. As an example, assume you
have two simple XML structures, Customer and Address:

<Customer>
 <FirstName> </FirstName>
 <LastName> </LastName>
 <MiddleInit> </MiddleInit>
 <Age></Age>
</Customer>

<Address>
 <AddrLine1> </AddrLine1>
 <AddrLine2> </AddrLine2>
 <AddrLine3> </AddrLine3>
 <Zip> </Zip>
 <State> </State>
 <Country> </Country>
</Address>

To use the XSD Import method to allow this scenario within BizTalk, follow these steps:

1. Open the project that contains the existing schema (in this case, the Customer
schema).

2. Double-click the Customer schema to open it.

3. Right-click the root node of the Customer schema, and select Properties.

4. In the Properties window, click the ellipsis next to Imports to open the Imports
dialog box, which is shown in Figure 2–13.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

41

Figure 2–13. Imports dialog box

5. Select XSD Import as the import type, and click the Add button.

6. In the BizTalk Type Picker dialog box, select the Schemas tree node, and select
the Address schema.

■Note In this example, the Address schema is within the current BizTalk project. If the schema existed outside

the BizTalk project, the schema could be imported by selecting the Reference tree node.

The preceding procedure imports the Address schema into the Customer schema. To use the Address
schema, follow these steps:

1. Click the Customer node in the Customer schema.

2. Right-click and select Insert Child Record.

3. Click the newly created child record.

4. In the Properties window, click the Data Structure Type drop-down list, and
select the Address reference.

The Customer schema is now referencing and using the Address schema via the Imports schema
method within the BizTalk tool set.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

42

How It Works

Within the BizTalk tool set, there are a variety of ways in which you can construct XML schemas. The
choices revolve around common architecture principles such as reuse, development best practices for
schema organization, and fundamental development preferences.

This example illustrated using the Imports method for referencing schema. The Imports dialog box
offers three choices for achieving the schema reference activity (step 5 of the recipe):

Include: This method physically includes a schema definition within another. The common usage

would be to create a static reference of a schema during the schema build process. This choice could

be used to leverage previously defined XSD schema (for example, publicly available schema). The

include schema must be the same target namespace of the schema you are including. Alternatively,

the target namespace of the include schema can be blank.

Import: The most commonly used import method within BizTalk, the Import option includes XSD
Imports statements within the source schema definition. By using this option, namespaces and XSD
object structures within the target schema are available for use within the source schema in read-
only fashion. The practical application for this choice revolves around common reuse, such as reuse
of an existing schema artifact or use of a publicly available XML schema.

Redefine: The least-common import method within BizTalk, the Redefine option, like the Import

option, allows namespaces and XSD object references to be used within the source definition.

However, the Redefine option allows objects and data structures to be overridden within the source

definition. Common uses could be to create an inheritance model or to reuse and customize an

existing XSD structure.

This example demonstrated referencing other schemas within the BizTalk tool set. However, while
BizTalk provides and implements standard XSD instructions to achieve this functionality, common
architecture usage and choices should not be ignored to ensure the correct schema reference method is
selected.

2–7. Referencing Schemas

Problem

You would like to reference an XML schema in your BizTalk project, because you want to reuse an
existing BizTalk artifact or prebuilt schema component.

Solution

As an example, assume you have a simple Customer XML schema (CustomerSchema.dll) stored in an
existing BizTalk project:

<Customer>
 <FirstName> </FirstName>
 <LastName> </LastName>
 <MiddleInit> </MiddleInit>
 <Age></Age>

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

43

</Customer>

To reference an existing schema, follow these steps:

1. Open your source project.

2. Within the Solution Explorer, right-click the References tree node, and select
Add Reference.

3. Select the Projects tab in the Add References dialog box if the schema you are
after is in the same project, or click the Browse tab, navigate to
CustomerSchema.dll, and then click the OK button.

You now have referenced CustomerSchema.dll and can use the inherent BizTalk artifacts in your
current project. For example, suppose that you want to use the DLL in a new map within your
current project. Follow these steps:

1. Right-click the project, and select Add ➤ New Item.

2. In the Add New Item dialog box, double-click Map. This opens a blank map
with left and right panes where you can enter the source and destination
schema, respectively.

3. Click Open Source Schema in the left pane.

4. In the BizTalk Type Picker dialog box, select the References tree node, and
select the Client Schema reference.

5. Select the Schemas node.

6. Select the Customer schema.

How It Works

Referencing schemas gives you the ability to reuse and reference existing BizTalk artifacts, as you would
normally reference other .NET artifacts. While this can be powerful, you should always keep in mind
partitioning and change scenarios. For example, if you were to reference an existing deployed artifact, to
make changes to the referenced artifact, you would need to remove the referenced artifact in the
dependent project.

■Note One of the most important things you can do is plan how to organize your BizTalk artifacts into separate

projects (and, in turn, assemblies). Intelligent namespacing is the first step, separating schemas into appropriate

projects is the next. Since schemas are referenced by maps and by orchestrations, the map and orchestration

artifacts often should be kept in their own, separate projects. Using small assemblies that have just a few artifacts

is the ideal approach, as these are far more easy to update and redeploy than other methods of organization.

This example explored how to reference a schema artifact in another project. BizTalk also gives you
the ability to reference schemas in Schema Import tasks. For information on how to import schema
references, refer to Recipe 2–6.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

44

2–8. Creating Envelopes to Split Inbound Data

Problem

You are receiving a message that contains multiple records in a batch fashion. In order to import this
information into the appropriate systems, each record must be handled individually, as opposed to
processing them all in a single batch.

Solution

Envelopes allow you to define a container schema that wraps a number of child schemas or subschemas.
By defining which child records it contains, the envelope allows BizTalk Server to access the subrecords
individually (a process commonly known as debatching) and process them as distinct messages. For this
solution, it is assumed that the schema defining the child record has already been created (see Recipe 2–
1 for how to create a schema). In this case, our child record schema is Order – the incoming document
contains one or more “Orders,” and we want to split these into individual orders using an envelope.
To create an envelope schema, follow these steps:

1. Open the project that contains the child record schema. In this case, “Order”
would be the child record.

2. Right-click the project, and select Add ➤ New Item to open the Add New Item
dialog box.

3. Select Schema Files from the BizTalk Project Items category and Schema from
the list of templates. Enter a descriptive name for your new schema and then
click Add. In this case, OrderEnvelope will be used.

4. Right-click the Root node of the new schema, and change it to the root name of
the incoming schema containing the batch of records (OrderEnvelope in this
example).

5. Click the Schema node (directly above the newly renamed root node), and
change the Envelope property of the schema to Yes (in the Properties window),
as shown in Figure 2–14.

6. Right-click the newly renamed root node, and select Insert Schema Node ➤

Child Record, Child Field Attribute, or Child Field Element, to add the
appropriate envelope elements. In this example, a child field element named
BatchID and a child record named Orders, which will contain the child records,
are added.

7. Right-click the record that will contain the child records (Orders in this
example) and select Insert Schema Node ➤ Child Record to add a container
for the child records. In this example, a child record named Order is added.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2 ■ DOCUMENT SCHEMAS

45

Figure 2–14. Configuring the schema to be an envelope

8. Right-click the container child record (Order in this example), and select Insert
Schema Node ➤ Any Element to add a placeholder for the child elements. The
resulting envelope schema has the structure shown in Figure 2–15.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

46

Figure 2–15. Envelope schema structure

9. Click the root node (OrderEnvelope in this example), and click the Body XPath
property of the schema (in the Properties window), which will open the Body
XPath dialog box.

10. Navigate through the schema structure displayed in the tree view, and select
the container record for the child records you wish to process individually (the
Orders record in this example), as shown in Figure 2–16. Then click OK.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

47

Figure 2–16. Specifying a child record

11. Build and deploy the solution.

12. The next step is to create the receive port, receive location, and send port. The
basics are as follows:

a. Create a Receive Port and an associated File Receive Location. Set the Receive pipeline
property as XMLReceive. See Figure 2–17.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

48

Figure 2–17. Configuring the Receive Port for Splitting

b. Create a File Send Port. Set the filter to subscribe to the Receive Port
(BTS.ReceivePortName) and the Send Pipeline property to XMLTransmit. See Figure 2–
18.

Figure 2–18. Configuring the Send Port for Splitting

c. Enlist the Send Port and enable the Receive Location.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

49

13. Drop an instance of the Orders XML document on the File Receive Location.
The split of the inbound Orders document will occur automatically in the
pipelines.

■Note You can create a sample instance to work from by right-clicking the OrderEnvelope schema and selecting

Generate Instance. Paste this into Notepad or some other text editor. Next, right-click the Order schema, and

select Generate Instance. Paste this into the correct node in the Orders document in the text editor. Save this

manually created document and use it as a test input document.

How It Works

Envelopes provide the means to group multiple messages into one XML document. In the preceding
example, the envelope was used to disassemble individual order documents from a single enveloped
document containing a batch of orders. Once the envelope and document schemas (OrderEnvelope and
Order in the example) have been deployed, BizTalk Server has the ability to leverage the two in message
processing. The following XML represents one possible instance of the envelope schema:

<ns0:OrderEnvelope xmlns:ns0="http://EnvelopeSolution.OrderEnvelope">
 <BatchID>BatchID_0</BatchID>
 <Orders>
 <ns0:Order xmlns:ns0="http://EnvelopeSolution.Order">
 <OrderID>1</OrderID>
 <OrderAmount>1.00</OrderAmount>
 </ns0:Order>
 <ns0:Order xmlns:ns0="http://EnvelopeSolution.Order">
 <OrderID>2</OrderID>
 <OrderAmount>2.00</OrderAmount>
 </ns0:Order>
 </Orders>
</ns0:OrderEnvelope>

When passed through an XML disassembler pipeline component in BizTalk Server, the preceding
XML message will produce the following two XML documents, which can be processed individually:

<ns0:Order xmlns:ns0="http://EnvelopeSolution.Order">
 <OrderID>1</OrderID>
 <OrderAmount>1.00</OrderAmount>
</ns0:Order>

<ns0:Order xmlns:ns0="http://EnvelopeSolution.Order">
 <OrderID>2</OrderID>
 <OrderAmount>2.00</OrderAmount>
</ns0:Order>

As these order documents are split up into separate messages within BizTalk Server, they can
undergo different forms of business logic or be delivered to a different destination, depending on their
properties (see Recipe 2–4 for more information about property-based subscriptions).

The key data element that allows envelope processing in BizTalk server is the Body XPath property.
This data element acts as a pointer to the container record that encapsulates or surrounds the child

http://EnvelopeSolution.OrderEnvelope
http://EnvelopeSolution.Order
http://EnvelopeSolution.Order
http://EnvelopeSolution.Order
http://EnvelopeSolution.Order
http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

50

records. On the OrderEnvelope root node, the Body XPath property was set to the Orders record, which
contains the individual Order records. In envelope schemas containing a single root node, the Body
XPath property must be set to that root node.

For envelope schemas with multiple root nodes, the following apply:

• If the Root Reference property is not set on the envelope schema, the Body XPath
property must be set for all root nodes.

• If the Root Reference property is set on the envelope schema, the Body XPath
property must be set for the root node configured in the Root Reference property.
The Body XPath property can be set for the other root nodes, but it is not required.

• It is not required to set the Root Reference property, but the Body XPath property
must always be set on at least one root node.

In addition to encapsulating multiple messages, envelopes can also supply header information that
applies to all the records it contains. In the example, the BatchID element is defined once at the envelope
level, but applies to all the individual order documents. This functionality of supplementing the
individual message data with header data or metadata can be seen in the common example of SOAP
envelopes (see Recipe 2–13 for more information about SOAP envelopes).

Within BizTalk Server, envelope processing for received messages occurs in the disassemble stage of
a receive pipeline. The out-of-the-box XML receive pipeline handles the removing and parsing of any
envelope data contained within the inbound document. The subschemas are dynamically determined at
runtime by the envelope’s properties (specifically, the Body XPath), and used to validate the child
documents’ structure and split each out into an individual message.

A custom receive pipeline can also be used to more precisely process inbound enveloped
documents. By leveraging the XML disassembler pipeline component, the envelope and document
(child document) schemas can be set explicitly in the properties of the component. All envelope and
document schemas explicitly set should have unique target namespaces.

■Note If envelope or document schemas are explicitly set on an XML disassembler component, only documents

matching those schemas will be processed within the pipeline. The order of envelope schemas is enforced based

on the configuration within the Envelope property on the XML disassembler component. In contrast, the order of

the document schemas is not enforced.

After the inbound enveloped document has been debatched into individual messages, the
disassembler promotes any properties of the envelope to each individual message. In the example, if the
BatchID had been configured as a promoted property, it would have been attached to each individual
message during disassembly.

Implementing envelopes for outbound messages is also possible within BizTalk Server. This process
is handled in the assembling stage of a send pipeline. By leveraging the XML assembler pipeline
component in a custom send pipeline, the envelope schemas can explicitly be set in the properties of the
component. As it passes through the custom pipeline, the message will be wrapped in the specified
envelope(s) and have the appropriate message properties demoted to the envelope(s). If a batch of
outbound messages is sent through the custom send pipeline, the batch of messages will all be
combined into a single document and wrapped in the specified envelope.

In addition to having a single envelope, a group of messages can be wrapped in a series of nested
envelopes. Using nested envelopes provides a flexible way for transferring message batches that have a
complex structure or relationship.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

51

While the preceding solution used BizTalk Server’s pipeline capabilities to handle inbound envelope
processing, there are other implementation options to consider when designing a solution. A loop can
be used within an orchestration to iterate over child records within an enveloped document, splitting
out each submessage individually using XPath queries or a node list object. An orchestration can also be
used to call out to an external assembly to handle message debatching. When determining which
method to use, it is important to consider the following:

• Does the entire batch need to be handled transactionally (for example, if one of
the messages fails to process correctly, should the entire batch be canceled)?

• • Do the individual records within the batch need to be processed in a
specific order (for example, in the same order in which they appear in the original
document)?

• Does there need to be any event or notification after all messages in the batch are
successfully processed?

• Is business logic (orchestration) implemented on each individual message after it
has been debatched?

If your business scenario would lead you to answer yes to any of these questions, using an
orchestration to handle the parsing of an enveloped document may be required. The main benefit of
using an orchestration is enhanced control over the processing of the individual messages. The order of
the messages can be maintained; scopes can be used to implement transactionality across the entire
message batch; compensating and error handling are more robust; and it is simple to implement logic
required when all messages within a batch have completed processing. The major downsides to using
orchestrations for debatching are performance and ease of modification to the solution (as changing the
orchestration requires you to redeploy the BizTalk Server solution).

If the requirements of your business scenario allow for envelope processing to be handled via
pipelines, you will realize performance gains. Additionally, the solution will be simplified by minimizing
the number of implemented artifacts.

2–9. Creating Complex Types

Problem

You want to create an address data type that can be reused, rather than creating the same set of data for
every address type.

Solution

You can use XSD complex types within the BizTalk Editor. As an example, assume that you need to
create your own complex data type for storing shipping addresses for an Order schema:

<Order>
 <CompanyName> </CompanyName>
 <OrderID> </ OrderID>
 <OrderDate> </OrderDate>
 <OrderAmount></ OrderAmount >
 <ShipTo>
 <CompanyID> </CompanyID>

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

52

 <AddressLine1> </AddressLine1>
 <AddressLine2> </AddressLine2>
 <AddressLine3> </AddressLine4>
 <Zip> </Zip>
 </ShipTo>
 <ShipFrom>
 <CompanyID> </CompanyID>
 <AddressLine1> </AddressLine1>
 <AddressLine2> </AddressLine2>
 <AddressLine3> </AddressLine4>
 <Zip> </Zip>
 </ShipFrom>
</Order>

For this example, the Order schema has been built with Order Header nodes and the <ShipTo>
record. The following steps outline how to create a complex type to be the data type for the <ShipTo> and
<ShipFrom> addresses. You will model the data type of the existing <ShipTo> record.

1. Open the project that contains the schema.

2. Double-click the schema (the Order schema in this example) to open it, as
shown in Figure 2–19.

Figure 2–19. Order schema

3. Click the existing record on which you want to base the complex type (the
<ShipTo> record in the Order schema in this example).

4. In the Properties window, click Data Structure Type, and type Address in the
box. This step will now automatically recognize the record as a complex data
type.

Now you can reuse the complex type. For example, here are the steps to create a record that uses the
sample complex type:

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

53

1. Click the Order schema node.

2. Right-click and select Insert Schema Node ➤ Child Record. Type the record
name ShipFrom.

3. In the Properties window of the newly created ShipForm child record, click Data
Structure Type, and select the complex type that is now available, Address.

This procedure creates the Address complex type element structure under the ShipFrom record. A
sequence instruction is created under both the ShipFrom and ShipTo records to implement the complex
type. Figure 2–20 shows the finished schema.

Figure 2–20. Order schema with the Address complex type

How It Works

The example demonstrated creating a complex type data type based on an existing schema
record within the schema. By XSD definition, a complex type is an element (record) that has
child elements or attributes. Complex types can be used to implement custom schema rules and
XSD data structure considerations for records, elements, and attributes. For example, you might
use complex data types for validation rules via XSD regular expressions, schema cardinality, and
order. In addition, you can make data type references to your complex types, allowing you to
reuse record structures and XSD implementations.

A complex type is derived from the base data type anyType; that is, in the purest form, a
complex type is in essence a stand-alone base type, in which you can define your own XSD
structure representation and schema rules.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

54

■Note A simple type is an element that in itself is defined and does not have children. For example, you

might have a simple type named Order ID, which has a length limit of six and must start with an A

character. In this instance, an XSD length restriction could be defined, along with a regular expression to

check that the order starts with the letter A: <OrderID> Axxxxx </ OrderID>.

2–10. Defining Regular Expressions

Problem

You have field elements or attributes in your schema for which you want to restrict the valid content
beyond data type, enumerations, length, and minimum and maximum values.

Solution

You can use the Pattern property of a field element or attribute to place a collection of regular
expressions. Regular expressions are used to do pattern matching against the inbound data for the node.
If the inbound data adheres to the pattern(s) defined for a node, then the input instance document will
pass XML validation. If the inbound data for the node does not match the pattern(s), then the input
instance document will fail XML validation. From within the BizTalk Editor, follow these steps to add a
regular expression to a field element or an attribute:

1. Select the field element or attribute node to which you wish to add restriction
patterns.

2. Right-click and select Properties.

3. Set the Derived By property to Restriction. This will enable the Restriction
properties within the Properties window.

4. Select the ellipsis next to the Pattern property to launch the Pattern Editor
dialog box, as shown in Figure 2–21.

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 2 ■ DOCUMENT SCHEMAS

55

Figure 2–21. Pattern Editor dialog box

5. Add one to many valid regular expressions, and then click OK. The BizTalk
Editor will add these restriction patterns to the schema definition.

■Note Although XSD regular expressions are similar to those in other programming languages that allow for

pattern matching, there are some differences. Refer to the W3C specification for the specifics of the regular

expression syntax for XSD.

How It Works

More restrictive validation of the input data may be of value for numerous types of data, such as phone
numbers, IP addresses, and Social Security numbers. In these cases, you can use regular expressions to
restrict the type of data that will be considered valid.

Once you have created a schema that has nodes with pattern value restrictions, you can use the
Generate Instance and Validate Instance capabilities of the BizTalk Editor to test your patterns. See
Recipe 2–1 for more information about these two features.

■Note If you have pattern restrictions for a node(s) in your schema, the Generate Instance option will not create

an instance document with valid data for those nodes. You will need to edit the instance document created.

However, the Validate Instance option will validate the schema, including restriction patterns.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

56

At runtime, neither the PassThruReceive nor the XMLReceive pipeline will complete a strict
validation of the inbound document against the schema including the pattern matching. To complete a
thorough validation of an inbound document, you must create a validation pipeline and add the
document schema to the Document Schema property of the XML validator. If the document fails schema
validation in the pipeline, the instance will terminate.

In practice, it may be more beneficial to handle the strict validation of data more gracefully than
terminating the instance when the validation fails. This is especially true if the document is coming from
an outside source or from a system that is outside your control. However, restriction patterns can be
used to safeguard downstream systems and processes from bad data.

2–11. Creating Flat File Schemas

Problem

You are consuming an inbound message in a flat file structure and must represent the data in an XML
schema. The inbound flat file contains records that are both positional and delimited.

■Note Delimited files contain characters (such as commas) that separate the data. Files that are positional in

nature contain data items that are a predefined length within the file. The physical position of the data defines

what the data represents.

Solution

The solution outlined in this recipe consumes an inbound flat file schema message that may have a
structure similar to the flat file shown in Listing 2–1. Additionally, this recipe outlines the steps required
to manually create a schema for a flat file. BizTalk 2010 also includes a Flat File Wizard for creating flat
file schemas (see Recipe 2–12)

■Note The number bar at the top of Listing 2–1 is included for reference only and is not part of the file content.

The number bar is for counting the position of the characters.

Listing 2–1. CustomerSalesOrder.txt

123456789012345678901234567890123456789012345678912345678901234567890
ORDER2004-10-24
SoldTo Shauna Marie 1223 Buttercup Lane Seattle WA 98155
ShipTo Jen Schwinn 3030 Moby Road Kent WA 98110
ITEMS,ITEM111-AA|Grape|1|2.00|Bottle of Pop,ITEM111-AB|Cola|
1|2.00|Bottle of Pop

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

57

Additionally, the outbound BizTalk schema may have a structure similar to the XML file shown in
Listing 2–2.

Listing 2–2. CustomerSalesOrder.xml

<ns0:order xmlns:ns0="http://Schema_Chapter_Project.CustomerSalesOrder">
 <date>10/24/2004</date>
 <customerHeader>
 <customerType>SoldTo</customerType>
 <fullName>Shauna Marie</fullName>
 <street>1223 Buttercup Lane</street>
 <city>Seattle</city>
 <state>WA</state>
 <postal>98155</postal>
 </customerHeader>
 <customerHeader>
 <customerType>ShipTo</customerType>
 <fullName>Jen Schwinn</fullName>
 <street>3030 Moby Road</street>
 <city>Kent</city>
 <state>WA</state>
 <postal>98110</postal>
 </customerHeader>
 <items>
 <item>
 <productId>ITEM111-AA</productId>
 <productName>Grape</productName>
 <quantity>1</quantity>
 <unityPrice>2.00</unityPrice>
 <description>Bottle of Pop</description>
 </item>
 <item>
 <productId>ITEM111-AB</productId>
 <productName>Cola</productName>
 <quantity>1</quantity>
 <unityPrice>2.00</unityPrice>
 <description>Bottle of Pop</description>
 </item>
 </items>
</ns0:order>

Follow these steps to create the flat file schema:

1. Create a new BizTalk schema, and select the Flat File Schema template.

2. Determine the structure and layout of your message schema. The structure and
layout of the message schema will largely determine how the inbound
document is parsed. In the XML sample in Listing 2–2, all data fields were
defined as string elements. The customerHeader, items, and item nodes are
defined as records.

3. Select the root node (the orders node in this example), and specify the child
delimiter to be a carriage return and a line feed (CRLF). The most
straightforward way to set the delimiter to a CRLF is by setting the child
delimiter type to be Hexadecimal.

http://Schema_Chapter_Project.CustomerSalesOrder
http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

58

4. Specify the child delimiter property to be 0x0D 0x0A.

5. Set child order to be Infix.

6. Set tag identifier to read ORDER. The tag identifier property tells the schema
where the data begins for the message. The children data for the root node of
order are delimited by commas that appear in the middle of the data.

7. Based on the fact that there are two instances of customerHeader information,
the max cardinality property for customerHeader record must be set to 2.

8. Set the structure for customerHeader to positional, since all of the child
elements that represent customer information are related in a positional format
within the flat file. Each child node that exists under customerHeader must have
the position defined for the length of the data and the offset for where that
value begins in the file. The way the value is represented starts from the left of
the data element. For the length and offset of each element, see Table 2–3.

9. Set the next node tag value to ITEMS since Items is the next heading in the flat
file.

10. Identify the delimiter as a comma, and set the child-order to prefix, since
each item will be prefixed with a comma to indicate the beginning of that item.

11. Make sure that child delimiter type is set to character. Select item, and make
sure the child delimiter is set to the pipe character (|), since the attributes for
the items are delimited by the pipe character in the flat file.

12. Set the pipe character to infix, since each line has pipe characters set in
between the delimited characteristics.

Table 2–3. Customer Header Child Elements

Element Positional Length Offset

customerType 7 0

fullName 16 0

street 20 0

city 14 0

state 3 0

postal 5 0

To test the flat file output of the schema, follow these steps:

1. Verify that Generate Instance Output Type on your schema reads Native. The
Native property allows the schema to generate the native file format, which is a
flat file, for that schema.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

59

2. Right-click the schema, and select Generate Instance. You should see the
default generated flat file.

To test the flat file schema to see the XML generated based on the provided flat file, follow these
steps:

1. Verify that Generate Instance Output Type on your schema reads XML. The XML
property allows the schema to process the inbound flat file and translate that
flat file to an XML representation.

2. Right-click the schema, and select Validate Instance. You should see the XML
version of the processed flat file.

How It Works

BizTalk is capable of processing both positional and delimited data, either in individual files or in a
single file. The child delimiter is the key concept to keep in mind when creating a flat file schema. Any
parent-level record that contains child elements or attributes must define whether the data in the flat file
for those child records is delimited or positional and how the data is delimited.

Based on the layout of the destination message schema, you should consider the following when
dealing with records versus dealing with child elements and attributes:

Records: If you use records to group child elements or attributes, consider how the child records will

be demarcated. Will the child data be delimited, or is the child data positional? In the example in

Listing 2–1, each line of data is delimited by a CRLF. Knowing that each line of data is delimited by a

CRLF aids in determining whether the output schema must support that specific delimiter. The

basic line delimiter information points to the need of specifying a delimiter of a CRLF for the parent

record of the output schema.

Tag identifiers: Records may contain tag identifiers to distinguish one type of record from another
record. A tag value also allows you to identify where data begins in the file.

Positional elements/attributes: In the XML example in Listing 2–2, the customerHeader data is stored
in positional format. For each child node, you must provide the offset (where to start reading the
data) and the length for that data item. Additionally, the parent record must specify that the child
data structure is Positional.

Delimited elements/attributes: The flat file example in Listing 2–1 shows multiple items occurring on
the same line delimited by the pipe (|) character. The attributes related to a single item are then
further delimited by the comma character. The item’s parent record must specify that the child data
structure is Delimited. Additionally, the child delimiter for the item’s parent record must specify
that each item is delimited by a pipe character.

Cardinality for records: By default, BizTalk sets the cardinality field for records and
elements/attributes to a default value of 1. The value of 1 means that you expect to receive a
maximum and minimum of one instance of that record and associated child values. If you expect an
inbound flat file to contain more than a single record instance, you must change the max occurs
value to a number equal to unbounded or the number of instances you expect to receive.

Wrap characters: If the incoming data contains characters that have been identified as delimiting
characters (for example, commas), those characters can be ignored through the use of wrap
characters. For example, if the record contained the name Shauna, Marie and you wanted to have
the comma included as part of the name, you could define a wrap character of " (double quote) and

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

60

enclose the name within the wrap character: "Shauna, Marie". BizTalk will treat any special
characters defined within a set of wrap characters as field-level data.

Escape characters: The purpose of escape characters is very similar to that of wrap characters.
Escape characters specify the character to be used to escape reserved characters, and then the
reserved characters will be treated as literal characters in a message.

If the records are delimited, you must determine how the records are delimited. For managing
CRLF type transactions, child delimiter type is set to hexadecimal, and the delimiter is set to 0x0D
0x0A. If the delimiter is a character value like a comma, set child delimiter type to character. The
other key consideration for using delimiters is defining the child-order of the delimiter:

• If the delimiter appears after the set of data, the child-order of the delimiter is
postfix.

• If the delimiter appears before the set of data, the delimiter is prefix.

• If the delimiter appears in the middle of the set of data, the delimiter is infix.

The default child-order for a record is conditional default. The conditional default value means
that if a tag value has been set for that record, then the child-order will be prefix. Otherwise, the
child-order will be infix.

If the records are positional, you must determine the spacing of the delimited data. In the example,
it was assumed that there were no spaces between the data (offsets set to 0) and the beginning of the
data fields started at the left of each data value.

Another key consideration to keep in mind is the cardinality of the data groupings. When a BizTalk
schema is created, by default, the cardinality is set to 1 (even if no cardinality value is explicitly set for a
field). In the example, keeping the cardinality of the items set to the default would have caused some
data to be lost when parsing both the customerHeader values and the item values. In the example, the
cardinality of max value was changed to 2 to account for both the shipTo and soldTo values.

2–12. Creating Flat File Schemas via the Wizard

Problem

You are receiving an order file in flat file format from one of your customers. You would like to use the
Flat File Schema Wizard to expedite the creation of an XML schema.

Solution

To demonstrate how to use the Flat File Schema Wizard, we will use the flat file sample shown in Listing
2–1 (used in Recipe 2–11). To create the flat file schema using the Flat File Schema Wizard, follow these
steps:

1. Open a new BizTalk Server project.

2. Right-click the project, and select Add ➤ New Item.

3. In the Add New Item dialog box, select the Flat File Schema Wizard template.
Click Add. Figure 2–22 demonstrates this step.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

61

Figure 2–22. Creating a new flat file schema

4. On the Welcome screen of the BizTalk Server Flat File Wizard page, click Next.

5. On the Flat File Schema Information page (shown in Figure 2–23), specify the
information that will be used as input to generate the specifics of the desired
flat file schema:

• Instance File: Use this to specify where your source instance file is located.

• Record Name: Specify the Root node of the schema you want to create. For this example,
enter CustomerSalesOrder.

• Target Namespace: Specify the namespace of the schema you’d like to create.

• Code Page: This identifies the encoding format of a file. In this instance, use the default,
which is UTF-8 (65001).

• Count Positions in Bytes: This specifies whether positions are calculated by bytes. If this
box is not checked, positions will calculated by characters.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

62

Figure 2–23. Flat File Schema Information page

6. Click Next.

7. On the Select Document Data page, specify the data contents that will be used
to generate the schema. The data contents are based on the instance file
specified on the Flat File Schema Information page. Highlight the contents of
the file that will be used to define the document data, as shown in Figure 2–24.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

63

Figure 2–24. Source Document Data page

8. Click Next.

9. Now define the record format. In this example, the record is delimited by a
carriage return and a line feed, as shown by the record identifier ORDER2004-10-
24. Select the By Delimiter Symbol radio button, as shown in Figure 2–25.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

64

Figure 2–25. Selecting the record format

10. Click Next.

11. Now, specify the properties of the record (as shown in Figure 2–26). This step
will define the makeup of the record to represent CustomerSalesOrder:

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

65

Figure 2–26. Specifying the properties of the delimited record

a. Specify the child delimiter. Given that the record is defined by delimiter, select the child
delimiter {CR}{LF}.

b. Select the Record Has a Tag Identifier box. In this example, the tag identifier will be
ORDER.

■Note ORDER is the identifier based on it being the text identifier that is specified in the source record. This text

will be searched for to identify the continuation or creation of a new record. Not all text files will have a record tag

identifier; in these cases, leave this box unchecked.

12. Click Next.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

66

13. Now, specify the properties of the child elements for the record (as shown in
Figure 2–27). This step will identify the makeup of the elements for
CustomerSalesOrder. Using the grid on the Child Elements page, define the
record’s child elements. In this example, set the values shown in Table 2–4.

Figure 2–27. Specifying the properties of the record’s child elements

Table 2–4. Child Element Properties

Element Name Element Type Data Type

date Field Element Date

customerHeader Repeating Record

Ignore

items Record

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

67

■Note Observe that the customer ShipTo information is ignored because the record is the same structure as the

customer SoldTo. Instead, the customer Header can be modeled using the Repeating Record element type.

14. Click Next.

15. On the Schema View page, the fundamental structure of the
CustomerSalesOrder schema appears. Now, you’ll define the individual
characteristics of the child records of the schema. Figure 2–28 shows the page
showing the schema structure.

Figure 2–28. Schema view of the CustomerSalesOrder schema

16. Select the customerHeader element. Click Next to continue.

17. On the Select Document Data page, select the data that will be used to define
the customerHeader record by ensuring the first line is selected, as shown in
Figure 2–29.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

68

Figure 2–29. Document data—customer header

18. Click Next.

19. Now, you will select the record format for the customer header. In this
example, select the By Relative Positions radio button, as shown in Figure 2–30.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

69

Figure 2–30. Record format—customer header

20. Click Next.

21. The wizard will give a visual representation of the record’s element positions.
Use this tool by selecting the starting position of each record element. You can
do this by clicking the mouse at each element’s starting point, as shown in
Figure 2–31.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

70

Figure 2–31. Specifying the positional record

22. Click Next.

23. Next, you will specify the properties of the child elements for the customer
header record. This step will identify the makeup of the elements for
CustomerSalesOrder/customerHeader. These XML elements are derived from the
positional representation of the record elements on the previous page. So,
using the grid on the Child Elements page, define the record’s child elements.
In this example, set the values shown in Table 2–5.

Table 2–5. Child Element Properties

Element Name Element Type Data Type

customerType Field Element string

fullName Field Element string

street Field Element string

city Field Element string

state Field Element string

postal Field Element string

24. Click Next.

25. On the Schema View page, the CustomerSalesOrder schema appears with an
updated customerHeader structure, as shown in Figure 2–32. Next, you’ll define
the characteristics of the items record, so click Next.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

71

Figure 2–32. Schema view of CustomerSalesOrder

26. On the Select Document Data page, select the data that will be used to define
the items record. Ensure the items data line is selected, as shown in Figure 2–
33.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

72

Figure 2–33. Document data—items

27. Click Next.

28. Now you will select the record format for the items data. In this example, select
the By Delimiter Symbol radio button.

29. Click Next.

30. Next, you will specify the properties of the items record (as shown in Figure 2–
34). This step will define the makeup of the record to represent
CustomerSalesOrder/items:

a. Specify the child delimiter. Given that the record is defined by a comma delimiter, select
the comma (,) child delimiter.

b. Check the Record Has a Tag Identifier box. In this example, the tag identifier will be
ITEMS.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

73

Figure 2–34. Properties of the delimited record—items

31. Click Next.

32. You will now specify the properties of the child elements for the items record
(as shown in Figure 2–35). This step will identify the makeup of the elements
for the CustomerSalesOrder/items that are derived from the delimiter specified
on the previous page. Using the grid in the Child Elements page, define the
items record’s child elements. In this example, set the values shown in Table 2–
6.

Table 2–6. Child Element Properties—Items

Element Name Element Type Data Type

item Repeating Record

Ignore

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

74

Figure 2–35. Specifying properties of the items record’s child elements

33. Click Next.

34. On the Schema View page, the structure of the CustomerSalesOrder schema is
updated. Now, you can define the individual characteristics of the items
record’s child elements. Figure 2–36 shows the page with the schema structure.

Figure 2–36. Schema view of the CustomerSalesOrder schema

35. Make sure the item element is selected. Click Next to continue.

36. On the Select Document Data page, select the data that will be used to define
the item record. Ensure the items line is selected, as shown in Figure 2–37.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

75

Figure 2–37. Document data—items data

37. Click Next.

38. Now, select the record format for the items data. This example will use
delimited, so select the By Delimiter Symbol radio button, and click Next.

39. Next, you will specify the properties of the items data elements. This step will
define the makeup of the data elements to represent
CustomerSalesOrder/items. You’ll now specify the child delimiter: given that
the record is defined by the pipe delimiter (|), select the child delimiter |, as
shown in Figure 2–38.

Figure 2–38. Properties of the delimited record—items data

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

76

40. Click Next.

41. Next, you will specify the properties of the child elements for the items record
(as shown in Figure 2–39). This step will identify the makeup of the elements
for the CustomerSalesOrder/items/item and are derived from the delimited
specification. Using the grid on the Child Elements page, define the record’s
child elements. In this example, set the values as shown in Table 2–7.

Figure 2–39. Specifying the properties of the record item’s child elements

Table 2–7. Child Element Properties

Element Name Element Type Data Type

productId Field element string

productName Field element string

quantity Field element int

unitPrice Field element float

description Field element string

42. Click Next.

43. This completes the creation of the schema, so click Finish to complete the
schema. Figure 2–40 shows the finished product.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

77

Figure 2–40. The finished schema

44. To test the schema, check that the Input Instance File in the properties is set to
a valid flat file instance. Right-click the CustomerSalesOrder.xsd file in Solution
Explorer, and select Validate. This will generate an XML version of the flat file,
which is shown in Figure 2–41.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

78

Figure 2–41. XML version of the flat file, created by validating the schema

How It Works

In this recipe, we demonstrated how to use the Flat File Schema Wizard. To recap the scenario,
you used the wizard to create a fairly complex illustration of a flat file to XML schema creation
using different positional and delimited flat file references at the record, line, and field levels.
The tool allows a developer to reverse engineer a schema based on a sample flat file instance.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

79

Not demonstrated in this example but a common consideration when working with flat files is the
usage of escape characters. You can accommodate escape characters when defining the properties at the
record, line, or field level.

The Flat File Schema Wizard makes the process of defining schemas simpler, because the user sees
the schema being modeled through the process and, in addition, is not exposed to the complexity of the
schema syntax.

As helpful as the tool might be, it is still important to understand what the requirements are for the
schema and how specifically the file will be implemented. Given this, you should spend some design
time trying to understand exactly what the schema will do and how this relates to other processes (such
as other interfaces and other trading partners).

2–13. Creating SOAP Header Schemas

Problem

You are using the publish/subscribe method in your orchestration architecture with many different
schemas, and there are a number of common fields that need to be passed with all documents delivered
to the BizTalk MessageBox (using direct binding on all ports). You want to be able to pass these fields
without adding them to all of the individual schemas.

Solution

Assume that you have three XML instances schemas as follows (XML instances are shown for
clarification):

<Person>
 <ID>ID_0</ID>
 <TraceFlag>true</TraceFlag>
 <Name>Name_1</Name>
</Person>

<Company>
 <ID>ID_0</ID>
 <TraceFlag>true</TraceFlag>
 <CompanyName>CompanyName_2</CompanyName>
</Company>

<Address>
 <ID>ID_0</ID>
 <TraceFlag>true</TraceFlag>
 <AddressLine>AddressLine_1</AddressLine>
</Address>

Two of the elements are common in all three of the schemas and represent values that are common:
ID represents a common tracking ID, and TraceFlag represents whether logging should occur in an
orchestration. The elements are not truly part of the description of a Person, Company, or Address, but
their values need to be available. Your goal is to move these common fields out of the schemas so that
they look as follows:

<Person>
 <Name>Name_1</Name>

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

80

</Person>

<Company>
 <CompanyName>CompanyName_2</CompanyName>
</Company>

<Address>
 <AddressLine>AddressLine_1</AddressLine>
</Address>

All messages in BizTalk are passed through the MessageBox wrapped in a SOAP envelope. A SOAP
envelope consists of two sections: the Header and the Body, wrapped in an envelope, as shown in Listing
2–3. The Header can be common across all schemas, while the Body contains the actual XML instance of
any given schema. Adding and accessing fields within orchestrations at the SOAP Header level is made
available in a simple and straightforward way. This is a powerful and useful tool that has multiple
applications depending on the solution architecture.

Listing 2–3. Sample SOAP Envelope Structure

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 <soap:Header>
 <MessageId>uuid:bbbb-cccc-dddd-eeee</MessageId>
 <TraceFlag>true</TraceFlag>
 </soap:Header>
 <soap:Body>
 <Person><Name>Name_1</Name></Person>
 </soap:Body>
</soap:Envelope>

In Listing 2–3, the Header contains two fields and the Body consists of an XML document that is an
instance of the Person schema. This is an actual representation of what a document looks like when
placed in the MessageBox by an orchestration when using the SOAPHeader property schema and Person
schema described in this recipe.

By default, BizTalk will strip the XML document out of the envelope’s Body and deliver it to the
appropriate subscribers. These subscribers see the XML document that was originally contained in the
Body and do not have context to the Header. However, if a SOAPHeader property schema has been
defined, the subscriber will also have access to the envelope’s Header information.

The SOAPHeader property schema shows which fields will be promoted and available at the Header
level on all schemas within a given project. The SOAPHeader property schema must reference the
namespace http://schemas.microsoft.com/BizTalk/2003/SOAPHeader and have each of the elements on
it with their Property Schema Base set to MessageContextPropertyBase. The steps for creating a
SOAPHeader property schema are as follows:

1. Add a new schema to a BizTalk project.

2. In the Properties window of the schema, set the Target Namespace to the
BizTalk SOAPHeader namespace and the Schema Type to Property, as shown in
Figure 2–42.

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope
http://schemas.microsoft.com/BizTalk/2003/SOAPHeader
http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

81

Figure 2–42. SOAP Header property values

3. Add the desired elements to the schema. There is no root node on a SOAPHeader
property schema; it has only elements. In this example, there would be two
elements added to the schema: MessageId and TraceFlag. See Figure 2–43.

Figure 2–43. Defining the elements

4. On each element created, set the Property Schema Base in the Properties
window to MessageContextPropertyBase, as shown in Figure 2–44.

Figure 2–44. Element property values

5. Build and deploy the solution.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

82

Once compiled, the elements in the SOAPHeader property schema will be available on all messages
within an orchestration and can be accessed and set in Expression shapes and Message Assignment
shapes. Listing 2–4 shows how to set these elements.

Listing 2–4. Setting Properties in a Message Assignment Shape

// populate the SOAP Header information
strMessageId = "111-222–333-444";
blnTraceFlag = true;

msgAddress(CreatingSOAPHeaders.MessageId) = strMessageId;
msgAddress(CreatingSOAPHeaders.TraceFlag) = blnTraceFlag;

msgPerson(CreatingSOAPHeaders.MessageId) = strMessageId;
msgPerson(CreatingSOAPHeaders.TraceFlag) = blnTraceFlag;

msgCompany(CreatingSOAPHeaders.MessageId) = strMessageId;
msgCompany(CreatingSOAPHeaders.TraceFlag) = blnTraceFlag;

■Note The value available in the properties of the messages will be equal to the namespace given the SOAP

Header schema. In this project, it was set to CreatingSOAPHeaders; therefore, all of the properties will be listed,

as shown in Figure 2–45.

Figure 2–45. The properties are based on the namespace given to the SOAP Header schema

How It Works

The project accompanying this recipe (CreatingSOAPHeaders) demonstrates the practical application of
the SOAP Header. The basic architecture of the solution is this:

• Primary orchestration receives an incoming document from a file receive location.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

83

• Orchestration sets the promoted SOAP Header properties in a Message
Assignment shape.

• Orchestration delivers the message to the BizTalk MessageBox via direct binding
on a port.

• A secondary orchestration subscribes to the MessageBox and is instantiated when
a document matching the schema it is subscribing to arrives.

• The secondary orchestration reads the values of the SOAP Header and writes them
to the Windows event viewer.

Figure 2–46 illustrates the flow of the primary orchestration and the use of a Message Assignment
shape to set the SOAP Header properties before delivering to the MessageBox (port_2 is direct binding).

Figure 2–46. Sample solution primary orchestration

The secondary orchestration subscribes to the MessageBox and writes the values of the SOAP
Header properties to the Windows Event Log. Figure 2–47 shows the secondary orchestration.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

84

Figure 2–47. Sample solution secondary orchestration

How do you access incoming documents wrapped in SOAP envelopes? Incoming documents can be
wrapped in a SOAP envelope (by an external client to BizTalk), but by default, only those that are
delivered via a SOAP transport receive location will be automatically promoted and made available
within an orchestration.

For example, with orchestrations exposed as web services, additional properties can be set at the
SOAP Header level using the BizTalk Web Services Publishing Wizard. These properties are then
available to any client who calls the web service, accessible in the same way as all of the standard web
methods and properties. However, if the delivery of a message wrapped in a SOAP envelope via a
different transport is required (such as MSMQ or file drop), you need to use a custom pipeline
component.

Listing 2–5 demonstrates a process to promote incoming values to the SOAPHeader property schema.
This example is a complete custom pipeline intended to be placed on the decode stage of a BizTalk
custom pipeline, followed by a standard XML disassembler. It demonstrates how to do the following:

• Load the incoming message stream into an XML document, which can be
accessed via the Document Object Model (DOM).

• Load the MessageId value located at the Header level of the incoming SOAP
envelope. The incoming message matches the structure of the document shown in
Listing 2–3.

• Promote the field to the SOAP Header, and make it available once the document is
delivered to the MessageBox.

• Return the document within the Body of the SOAP envelope as a stream.

http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

85

Listing 2–5. Pipeline Property Promotion

public IBaseMessage Execute(IPipelineContext pc, IBaseMessage inmsg)
{
 try
 {
 string strMessageId = "";

 // declare XML Document
 System.Xml.XmlDocument xmlDoc = new System.Xml.XmlDocument();

 // prepare the fields to be promoted
 xmlDoc.Load(inmsg.BodyPart.Data);

 // if values are not present, default to empty string
 try
 {
 strMessageId = xmlDoc.SelectSingleNode
("//*[local-name()='Header'/*[local-name()='MessageID']").
InnerText;
 }
 catch {}

 // strip off the envelope and return just what is within the Body
 System.IO.MemoryStream ms = new
System.IO.MemoryStream(System.Text.Encoding.UTF8.GetBytes
(xmlDoc.SelectSingleNode("//*[local-name()='Body']").InnerXml));

 inmsg.BodyPart.Data = ms;

 // promote the SOAP Header fields
 inmsg.Context.Promote("MessageId",
"http://schemas.microsoft.com/BizTalk/2003/SOAPHeader"
.ToString(),strMessageId);

 }
 catch (Exception ex)
 {
 throw new Exception("Pipeline component exception - " + ex.Message);
 }
 return inmsg;

}

http://schemas.microsoft.com/BizTalk/2003/SOAPHeader
http://

CHAPTER 2 ■ DOCUMENT SCHEMAS

86

http://

C H A P T E R 3

■ ■ ■

87

Document Mapping

At the core of integration projects is the need to exchange data. When systems are required to pass data,
the data must either be in a common format or the systems must have a way in which to map the data
from one system to another. Historically, mapping was spread across multiple components and entities,
such as the database layer, the data access layer, and even the publishing and consuming systems
themselves. When additional systems were added to the integration, or requirements around the
mapping logic changed, many systems and components involved in the integration would need to be
customized. Integration applications, such as BizTalk Server, offer a centralized and organized platform
for handling mapping and provide tools to aid in the development of these mappings.

■Note There is a book focused solely on mapping, Pro Mapping in BizTalk Server 2009 (Apress, 2009). Make sure

to refer to it for more advanced mapping examples (including EDI).

Exchanging data requires that all systems have a common way in which data is interpreted or a
common way in which data can be mapped from one system to another. BizTalk provides for this
through several approaches, the most prominent of which is the BizTalk Mapper (additional approaches
include XSLT style sheets, custom .NET assemblies, message assignment within orchestrations, and
other code-driven solutions). The BizTalk Mapper is a graphical interface with which to develop
transformations of data between any number of schemas of disparate systems or entities. These maps
consist of the business logic necessary to transform the data into the format that the target systems
require.

Rather than storing the business logic for transformations across many different components and
systems, the rules should be contained in only the integration layer. All that is required of the systems
being integrated should be the ability to make available their data (either through the system publishing
its data to the integration platform or by the integration hub initiating the request for the data). There is
absolutely no need to customize any system based on the way that another system may need to receive
the data. If the system data is available, the integration layer will be able to consume and manipulate the
data into the needed format. By keeping the business logic needed for transforming data in the
integration hub (in this case, BizTalk orchestrations and maps), there is a single, common location for all
mapping, and no need to modify individual systems when the mapping requirements change.

When mapping rules change or additional systems are added to an integration solution, one of the
greatest objectives is to modify as few components as possible. With a well organized mapping solution,
the only components that will need to be modified, compiled, and redeployed are the map components
themselves (mapping assemblies, XSLT, or any other component). None of the individual systems will
be affected, none of the business workflows (orchestrations) will be influenced, and none of the schemas
will need to be changed. Additional systems should be able to be added to an integration without

http://

CHAPTER 3 ■ DOCUMENT MAPPING

88

modifying any of the existing maps for other systems. An intelligently organized mapping solution can
eliminate the need for complex modifications across an integration solution.

This chapter will describe how to use BizTalk for data transformation and mapping. As with the rest
of the BizTalk platform, there are numerous ways to solve the same problem, and mapping components
can range from any variety and combination of traditional BizTalk graphical maps, XSLT, and .NET
assemblies. The business requirements should drive the technical solution, and there is no single
approach that will suit all situations. The recipes in this chapter introduce the fundamental mapping
techniques that will aid in the development of a solid mapping design and architecture, and ultimately
in a scalable and configurable integration solution.

3–1. Creating Simple Maps

Problem

You would like to map one XML format to another using the BizTalk tool set. This may be for a variety of
reasons, such as application mapping with an internal application, format specifics (such as flat file to
database object), or an external business scenario where a business partner requires the core data for a
business process in a different format (such as an industry standard) than your schema provides.

Solution

The BizTalk Mapper enables you to perform XML message transformation. The tool is shipped with the
core BizTalk product and provides numerous capabilities to support message transformation and
translation via straight mapping and functoids, as well as unit test support.

■Note The term functoids refers to predefined functions within the BizTalk Mapper tool set. Functoids support a

number of useful translations and transformations. As a point of interest, functoid is a term coined by Microsoft and is

commonly described as “functions on steroids.”

As an example, suppose that you have the following simple customer schema (Customer):

<Customer>
 <FirstName> </FirstName>
 <LastName> </LastName>
 <MiddleInit> </MiddleInit>
 <Age></Age>
 <Address>
 <AddrLine1> </AddrLine1>
 <AddrLine2> </AddrLine2>
 <AddrLine3> </AddrLine3>
 <Zip> </Zip>
 <State> </State>
 <Country></Country>
 </Address>
 </Customer>

http://

CHAPTER 3 ■ DOCUMENT MAPPING

89

And you want to map to another customer schema (CustomerRecord) that is slightly different in
structure and format:

<CustomerRecord >
 <Name> </Name>
 <MiddleInit> </MiddleInit>
 <Address> </Address>
 <Zip> </Zip>
 <State> </State>
 <Country> </Country>
 <DateTime> </DateTime>
</CustomerRecord>

The example involves mapping values from a source to a destination schema that subsequently
demonstrates different structure and invariably, message transformation. To create the BizTalk map for
the example, follow these steps:

1. Open the project that contains the schemas.

2. Right-click the project, and select Add ➤ New Item.

3. In the Add New Item dialog box, shown in Figure 3–1, click Map and give the
file name a valid name. Once completed, click the Add button.

Figure 3–1. Adding a map

4. A blank map will now be opened, with left and right panes for the source and
destination schema, respectively, as shown in Figure 3–2. Click the Open
Source Schema link in the left pane.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

90

Figure 3–2. A new blank map

5. In the BizTalk Type Picker dialog box, select the Schemas tree node, and then
select the Customer schema (see Figure 3–3). Click OK.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

91

Figure 3–3. The BizTalk Type Picker

6. Click the Open Destination Schema link in the right pane.

7. In the BizTalk Type Picker dialog box, select the Schemas tree node, select the
CustomerRecord schema, and click OK. The source and destination schemas will
now be displayed.

8. Perform the straight-through mapping. Click the MiddleInit element in the
source schema, and drag it across to the MiddleInit element in the destination
schema. Repeat this for the Zip, State, and Country elements.

9. Perform the concatenation mapping.

■Note The term concatenation mapping within the BizTalk Mapper refers to the joining of two or more values to

form one output value.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

92

Here are the steps to follow in order to perform the concatenation.

1. In the left pane, click the Toolbox, and click the String Functoids tab.

2. Click and drag two String Concatenate functoids onto the map surface, as
shown in Figure 3–4.

Figure 3–4. String Concatenate functoids on the design surface

3. Click the FirstName element in the source schema and drag it across to the left
point on the first String Concatenate functoid. Click the right side of the String
Concatenate functoid, and drag it across to the Name element in the destination
schema.

4. Double-click the first String Concatenate functoid. Click the Plus button (this will
add a new input), and create a constant that has a space in it (see Figure 3–5).

http://

CHAPTER 3 ■ DOCUMENT MAPPING

93

Figure 3–5. String concatenate functoids on the design surface

5. Click the LastName element in the source schema, and drag it across to the left
point on the first String Concatenate functoid. This will complete the mapping
of Name.

6. Click the AddrLine1 element in the source schema, and drag it across to the left
point on the second String Concatenate functoid. Click the right side of the
String Concatenate functoid, and drag it across to the Address element in the
destination schema.

7. Repeat step 6 for AddrLine2 and AddrLine3, adding a comma between each
address field. Figure 3–6 shows the completed concatenation mapping.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

94

Figure 3–6. String concatenation mappings

To demonstrate functoid usage, you will now add a Date and Time functoid to the mapping
example. In this instance, the destination schema requires a date/time stamp to be mapped. This value
will be generated from the Date and Time functoid, not the source schema.

1. In the left pane, click the Toolbox, and then click the Date/Time Functoids tab
(See Figure 3–7).

Figure 3–7. Date/Time functoids in the Toolbox

http://

CHAPTER 3 ■ DOCUMENT MAPPING

95

2. Click and drag a Date and Time functoid onto the map surface.

3. lick the right side of the Date and Time functoid, and drag it across to the
DateTime element in the destination schema.

The map is now complete, as shown in Figure 3–8.

Figure 3–8. Completed customer map

How It Works

The BizTalk Mapper is used to map XML messages (instances of XML schema at runtime) to an alternate
format based on transformation and/or translation. It is built on XSLT and shields the user from
complex XSLT transformation logic, by providing a GUI environment to facilitate the transformation.
The tool comes with numerous functoids and mapping capabilities to support straight-through and
deterministic transformation. In addition, the tool gives the built-in ability to perform unit testing.

The maps created within the BizTalk Mapper environment can be used within other BizTalk
runtime environments. For example, they can be used with receive/send ports, for transforming a
message to and from application end points. Port mapping might be advantageous when the mapping
involves minimal process considerations or the need to apply multiple maps to a given message.
Changes to maps on ports can be completed without recompilation of currently deployed BizTalk
assemblies. Maps can also be used with transformation shapes, for message transformation within a
BizTalk orchestration. Mapping within an orchestration might be preferred when the mapping process
involves broad process considerations or process support via robust exception and error handling.

The choices for where and when to map vary depending on a number of factors. A number of these
have to do with common development principals (such as consistency and readability) and standards
enforced by the environment in which you are operating. However, a few common rules of thumb
should be noted:

http://

CHAPTER 3 ■ DOCUMENT MAPPING

96

Keep it simple: Keep maps logically organized. Across maps, ensure that the same look and feel are

applied for consistency.

■Note Just because you can create a map using the mapper and functoids doesn’t always mean you should. Make

sure that whatever maps you create are simple and maintainable. Highly complex maps with many interlocking functoids

can become unwieldy and next to impossible to support. Alternatives to mapping (most notably XSLT) are often very

intelligent alternatives.

Keep business rules in mind: Based on the deterministic ability of mapping, be careful or keep in
mind the usage of business rules within maps. If you find you are using rules within maps (for
example, If OrderTotal > $1000), keep in mind maintenance and where in your organization a
decision may be made to change this rule. In addition, always consider the right place to maintain
rules and context domain knowledge from an operation and support perspective.

Consider performance: While mapping is powerful, complex and/or large maps can affect

performance. As with all common development activities, always ensure that the logic performed is

the most efficient and tested for scale in your practical operating conditions and requirements. If

you experience performance issues, employ techniques such as revisiting design by exploring the

solution breakdown. Consider simplifying the development task at hand.

Like all good development processes, maps should be designed and tested for desired application
operation conditions.

The example in this recipe showed a baseline solution of what can be performed with the BizTalk
Mapper. Throughout this chapter, other mapping capabilities will be demonstrated, illustrating the use
of functoids and mapping techniques for structure and transformation control.

3–2. Organizing Maps

Problem

Maps can become very complex and hence difficult to read and maintain.

Solution

BizTalk Sever provides a number of features to aid in the readability and maintainability of maps. One of
these features is grid pages. BizTalk Server allows you to create, name/rename, and order grid pages.
When you create links between source and destination elements, the links will appear on only the
selected grid page. Therefore, you can segment groups of links onto different grid pages. By default, a
map file is created with one grid page named Page 1. Once you have selected source and destination
schemas, you can access the grid page menu by right-clicking the tab at the bottom of the grid page, as
shown in Figure 3–9.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

97

Figure 3–9. Click the tab at the bottom of the grid page to access the grid page menu.

From this menu, you can perform the following functions:

• Select Add Page to add a new grid page to the map.

• Select Delete Page to delete the selected grid page. (If you delete a grid page, all of
the links associated with that grid page will also be removed.)

• Select Rename Page to rename the selected grid page.

• Select Reorder Pages to launch the Reorder Pages dialog box, as shown in Figure
3–10. From this dialog box, you can change the order in which the grid pages
appear when viewing the map file.

Figure 3–10. Reorder Pages dialog box

Another feature provided by BizTalk Server for facilitating the readability and maintainability of
maps is the ability to label links. While the labels do not appear on the grid pages, they will be used to
designate the input parameters for functoids. By default, a functoid will show the XPath designation if it
is linked directly to a source field, or it will show the name of the previous functoid if it is linked from
another functoid. However, if the input links to a functoid are labeled, and the Label property of the link
will be shown. To label a link, follow these steps:

1. Open the project that contains the map.

2. Open the map file.

3. Select the grid page that contains the link to be labeled.

4. Select the link to be labeled, right-click, and select Properties.

5. Fill in the Label property.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

98

The ability to label and add comments to individual functoids is helpful in organization, especially
when there are a large number of functoids on the page. To comment a functoid, simply double click the
functoid, and click on the Label and Comments tab (as shown in Figure 3–11).

Figure 3–11. Commenting a functoid

How It Works

There are many ways to segment a map into multiple grid pages. For example, you can create a grid page
for each major node in a source schema that requires complex mapping. Regardless of how you divide
the map, the goal of using multiple grid pages should be to improve the readability and maintainability
of the map.

3–3. Adding and Configuring Mapping Constants

Problem

You would like to use constant values within a BizTalk map. This might be because of preset output map
values within a destination schema (that do not exist in the source schema) to assist in general
programming concepts when using functoids, or for other reasons.

Solution

To demonstrate how to add map constants using the BizTalk Mapper, suppose that you want to use a
constant in conjunction with a String Extraction functoid. In this example, you would like to extract a
specified number of characters (five) from the left of the source element value. In the source schema,
Customer, you have Zip elements like this:

<Zip>98103–00001</Zip>

In the destination schema, CustomerRecord, you have Zip elements like this:

<Zip>98103</Zip>

http://

CHAPTER 3 ■ DOCUMENT MAPPING

99

To map constants, follow these steps:

1. Set up the BizTalk map with the appropriate source and destination schema, as
shown in Figure 3–12.

Figure 3–12. The source and destination schema for the constant mapping example

2. In the left pane, click the Toolbox, and then click the String Functoids tab.

3. Click and drag a String Left functoid onto the map surface.

4. Click the Zip element in the source schema and drag it across to the left point of
the String Left functoid.

5. Click the String Left functoid on your map surface, and select Input Parameters
in the Properties window. The Configure Functoid Inputs dialog box is now
displayed, as shown in Figure 3–13. Notice the first input parameter is the
source schema’s Zip element. This is automatically configured as a result of
dragging the source Zip element onto the map surface.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

100

Figure 2-13. Configure Functoid Inputs dialog box

6. In the Configure Functoid Inputs dialog box, click the Index row (BizTalk will
automatically add required input variables).

7. Type in the value 4. As noted, you are extracting five characters for the zip code.
Because the functoid is zero-based, the start position will be 0 and the end
position will be 4, resulting in five characters.

Figure 3–14. With the constant configured

8. Click OK to complete the functoid configuration.

9. Click on the right side of the String Left functoid and drag it across to the Zip
element in the destination schema.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

101

10. Now, drag a String Concatenate functoid onto the mapping surface. Double-
click the functoid. A default input will be available; ignore this, and click the
Plus button. Type the value USA. Delete the unused input (you may have to
reorder using the up/down arrows). The final values should look like that
shown in Figure 3–15. Click OK.

11. Drag the output of this new String Concatenate functoid to the Country node in
the map.

Figure 3–15. Adding a new constant

How It Works

You might use constant mapping for the following:

• To support functoid configuration, as in the example in this recipe, which used
the String Left functoid.

• For values declared and assigned within a Scripting functoid. In essence, these
values can be mapped as output into destination values. Furthermore, they can be
declared once and accessed as global variables within other Scripting functoids in
the context of the working BizTalk map.

• With the String Concatenate functoid. Use the input parameter of this functoid as
the constant value required. This functoid does not require any input values from
the source schema. In this usage, a String Concatenate functoid would simply be
mapped through to the desired destination value.

The best use of constant mapping depends on the situation and requirements you are developing
against. Examine the likelihood of change within the scenario where you are looking to apply the
functoid constant. If there is a high likelihood that values and their application will change, consistency
should be the major factor to facilitate maintenance.

If constants are set via deterministic logic or complex or embedded business rules, it might be worth
thinking about whether the constant should be applied in the map or applied within a scripting
component or upstream/downstream BizTalk artifacts. The key is understanding where rules and

http://

CHAPTER 3 ■ DOCUMENT MAPPING

102

deterministic values are set to support the specific situation. Apply the appropriate design principles to
ensure the correct constant assignment technique is applied.

You might decide it would be best to map values outside the mapping environment. This could be a
result of deterministic logic or business rules being the major requirement in the constants
implementation. Furthermore, rules that derive constants may exist outside the BizTalk map. Constants
may need to change dynamically, and it may be too cumbersome to perform a recompile/deployment
for such changes within a BizTalk map.

3–4. Mapping Any Element Nodes

Problem

You need to create a mapping between two schemas containing elements and attributes that are
unknown when building the map, and you must include the unknown schema structures in your
mapping.

Solution

You can include unknown schema structures in a map by using the <Any> element.

1. Build a source message schema containing an <Any> element. This can be done
by right-clicking the record in the schema and selecting Insert Schema Node ➤

Any Element, as shown in Figure 3–16.

Figure 3–16. Creating a source message with an Any element

2. Build a destination schema containing an <Any> element, as shown in Figure 3–17.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

103

Figure 3–17. Creating a destination message

3. Add a new map to the solution. Set the source and target schemas
appropriately.

4. Click the Toolbox, and then click the Advanced Functoids tab. Drag a Mass
Copy functoid onto the map surface. Connect the Address element from the
source message to the Mass Copy functoid, and connect the Mass Copy
functoid to the Address field of the destination message.

5. Create other desired mapping links normally, as shown in Figure 3–18.

Figure 3–18. Configuring the Mass Copy functoid

http://

CHAPTER 3 ■ DOCUMENT MAPPING

104

How It Works

An <Any> element in a schema designates a specific location in the schema where new elements or
attributes can be added. When BizTalk uses the schema to process a message containing unknown
elements or attributes in the designated location, the schema will still consider the message valid. If this
source message is mapped into a different schema that also has a location designated for extensibility
with an <Any> element, then the information must be copied to that location with the Mass Copy
functoid.

■Note By default, BizTalk will examine only the namespace and root node name of a message to identify the

schema, and will not detect extra elements in the message body. To perform a deep validation of a message

format, create a receive pipeline with the XML disassembler, specify the schema to validate messages against,

and set Validate Document Structure to true. See Chapter 3 for more information about how to configure receive

pipelines.

The contents of an <Any> element cannot be mapped with most of the default BizTalk functoids.
Other functoids require establishing an explicit link from a source field, and that is not possible if the
source field is not known at design time. The Mass Copy functoid can be linked only directly to an
ancestor of the <Any> element, which may not give the granularity of control desired. Consider using an
XSLT script with the Scripting functoid to achieve finer control. For example, if you know some element
will be present at runtime but cannot predict the element name of its parent, an XSLT script can still
perform the mapping.

Note that you can override the mapping of the mass copy on a line by line basis. For instance, if the
Zip field needs to be mapped differently, simply add the appropriate functoid(s) and map it; this will
override whatever the Mass Copy functoid has created (see Figure 3–19).

Figure 3–19. Overriding AddrLine2 within a Mass Copy functoid

Sometimes, the BizTalk development environment has difficulty validating schemas containing
<Any> elements. It can incorrectly determine that elements and attributes appearing in the location
designated by the schema should not be there, causing validation for the schema to fail. This
complicates schema development because the developer must deploy the schema with a pipeline
capable of validating the document structure to check if the schema is correct according to a sample

http://

CHAPTER 3 ■ DOCUMENT MAPPING

105

source message. To avoid this deployment effort while developing the schema, wait to add <Any>
elements until the rest of the schema is developed and verify that those other elements are defined
correctly. Then, when adding the <Any> elements to the schema, there will be a baseline of what is
working correctly.

The Mass Copy functoid allows source records and containing elements and attributes to be copied
and mapped across to the destination schema. This in turn, allows large structures to be mapped quickly
in design time, without the need of performing 1:1 detailed mapping on all subsequent schema nodes.
The Mass Copy functoid performs the recursive copying by applying a wildcard (/*) XSLT template
match on source to destination XML elements. This is of particular benefit when the destination is
defined as an <xs:any> type.

When mapping from source to destination, only the structure under the destination parent XML
record will be copied. This often results in having to re-create the parent record element to allow all
subsequent children nodes to be mapped to the destination schema. For example, consider the
following two schemas, Customer and Customers:

<Customer>
 <Name> </Name>
 <AccountID> </AccountId>
 <DOB> </DOB>
</Customer>

<Customers>
 <Customer>
 <Name> </Name>
 <AccountID> </AccountId>
 <DOB> </DOB>
 </Customer>
</Customers>

In this instance, the <Customers> record cannot be mapped to the <Customer> record on the
destination schema. A containing element <Customer> will need to be defined on the destination schema
to enable the correct operation of the Mass Copy functoid mapping.

When mapping source to destination elements, always be cautious of underlying XSD schema rules,
such as cardinality, order, and data types. For example, the Mass Copy functoid will “blindly” copy all
child elements specified to the destination schema. It will not copy elements out of order or check for
required values in the destination schema.

Changes to the source and destination schema may result in the need to update your impacted
maps leveraging the Mass Copy functoid. This, in turn, will mandate a recompile and deployment of
your BizTalk solution.

Using the Mass Copy functoid within the BizTalk Mapper is one of a variety of ways to recursively
copy elements. The following are three key approaches to recursively copy XML structures:

Mass Copy functoid: Creates a wildcard XSLT template match to recursively copy elements. This

approach may provide a performance benefit, as each source and destination element does not

require a 1:1: XSLT template match. This, in turn, requires fewer XSLT code instructions to be

interpreted and executed at runtime.

Recursive mapping: This is achieved by holding down the Shift key and mapping from a source to
destination record element. This is a usability design feature that enables a developer to perform
recursive mapping via one keystroke. This approach implements 1:1 XSLT template matches on all
source and destination elements.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

106

Straight-through mapping: This approach is to manually link all source and associated destination

elements within the BizTalk Mapper tool. This method does 1:1 template matches on all source and

destination elements.

3–5. Using the Value Mapping Functoids

Problem

You need to understand how and when to use the Value Mapping and the Value Mapping (Flattening)
functoids.

Solution

BizTalk provides two Value Mapping functoids: Value Mapping and Value Mapping (Flattening). Both
will cause a new record to be created in the destination for every record in the source. The Value
Mapping (Flattening) functoid is used when the destination document has a flat structure.

Both functoids require two input parameters: a Boolean value and the node that is to be mapped. If
the Boolean value is true, the value will be mapped; otherwise, it will not be mapped.

The following steps demonstrate the use of the Value Mapping functoid in a map, using the source
document shown in Listing 3–1.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

107

Listing 3–1. Source Document for the Value Mapping Functoid Example

<ns0:NewHireList xmlns:ns0="http://UsingValueMappingFunctoids.NewHireList">
 <DateTime>DateTime_0</DateTime>
 <Person>
 <ID>1</ID>
 <Name>Jonesy</Name>
 <Role>.NET Developer</Role>
 <Age>47</Age>
 </Person>
 <Person>
 <ID>2</ID>
 <Name>Scott</Name>
 <Role>Database Developer</Role>
 <Age>40</Age>
 </Person>
 <Person>
 <ID>3</ID>
 <Name>Austin</Name>
 <Role>QA</Role>
 <Age>33</Age>
 </Person>
</ns0:NewHireList>

These steps refer to the Value Mapping functoid but are identical for the Value Mapping (Flattening)
functoid.

1. Click the Toolbox, and click the Advanced Functoids tab. Drop the Value
Mapping functoid on the map surface between the source and destination
schemas.

2. The first parameter for the Value Mapping functoid needs to be a Boolean
value. For this example, a Not Equal functoid will be used to generate the
Boolean value. In the Toolbox, click the Logical Functoids tab, and drop a Not
Equal functoid to the left of the Value Mapping functoid. The first input
parameter for the Not Equal functoid should be the value from the Role
element. The second input parameter should be a constant value. Set this value
to QA. This will ensure that only those records that are not in this role will be
mapped across. See Figure 3–20.

http://UsingValueMappingFunctoids.NewHireList
http://

CHAPTER 3 ■ DOCUMENT MAPPING

108

Figure 3–20. Configuring the Not Equal functoid

3. The second parameter for the Value Mapping functoid in this example is the
Name element from the source document. Ensure that a line exists between this
node and the functoid.

4. Drop the output line from the Value Mapping functoid on the target node in the
destination document, as shown in Figure 2-20.

Figure 3–21. Using the Value Mapping functoid

At this point, the map can be tested. Using the source document shown in Listing 3–1, output of the
map is the document shown in Listing 3–2.

■Note If the Value Mapping (Flattening) functoid does not map a value across, the node is not created on the

destination schema, whereas if the Value Mapping functoid does not map a value, an empty destination node will

be created. To change this behavior, you will need to use additional functoids or scripting.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

109

Listing 3–2. Output Document Using the Value Mapping Functoid

<ns0:Company xmlns:ns0="http://UsingValueMappingFunctoids.Company">
 <Employees>
 <Employee>
 <Name>Jonesy</Name>
 </Employee>
 <Employee>
 <Name>Scott</Name>
 </Employee>
 <Employee>
 </Employee>
 </Employees>
</ns0:Company>

If the Value Mapping functoid is replaced with the Value Mapping (Flattening) functoid (as shown
in Figure 3–22), the document in Listing 3–3 will be output.

Figure 3–22. Map with Value Mapping (Flattening) functoid

Listing 3–3. Output Document Using the Value Mapping (Flattening) Functoid

<ns0:Company xmlns:ns0="http://UsingValueMappingFunctoids.Company">
 <Employees>
 <Employee>
 <Name>Jonesy</Name>
 <Name>Scott</Name>
 </Employee>
 </Employees>
</ns0:Company>

How It Works

This example showed the default behavior of the Value Mapping functoid. However, the default output of
the Value Mapping functoids can be altered through the use of additional functoids and scripting. For
example, notice that the output in Listing 3–3 is flat instead of nested (two Person nodes within the
Employee node). By adding a Looping functoid to the Name element in the source document and attaching it
to the Employee root node in the destination document (see Figure 3–23), you can obtain nested output, as
in Listing 3–4. The output is identical to using the Value Mapping functoid as shown in Listing 3–2.

http://UsingValueMappingFunctoids.Company
http://UsingValueMappingFunctoids.Company
http://

CHAPTER 3 ■ DOCUMENT MAPPING

110

Figure 3–23. Using the Value Mapping (Flattening) and Looping functoids

Listing 3–4. Output Using Value (Mapping) Flattening and Looping Functoids

<ns0:Company xmlns:ns0="http://UsingValueMappingFunctoids.Company">
 <Employees>
 <Employee>
 <Name>Jonesy</Name>
 </Employee>
 <Employee>
 <Name>Scott</Name>
 </Employee>
 <Employee>
 </Employee>
 </Employees>
</ns0:Company>

One of the most common situations in XML document mapping is working with nonexistent
elements. By default, if an element does not exist in an incoming document but is mapped to the
destination document in a BizTalk map, the node on the destination document will be created with a
null value (<Node/>). The use of a Value Mapping (Flattening) functoid causes the node to be created in
the destination document only if the source node exists in the source document.

3–6. Using the Table Looping Functoid

Problem

You need to create a repeating structure in an output document with no equivalent repeating structure
in an input document.

Solution

BizTalk Sever provides two functoids, the Table Looping functoid and the Table Extractor functoid, for
creating a repeating node structure from a flattened input structure, from constant values, and from the
output of other functoids. The Table Looping functoid is used to create a table of information based on
inputs. The functoid will generate output for each row from this table. The Table Extractor functoid is
used to direct data from each column in the table to a node in the destination document. Following are
the basic steps for configuring these functoids.

http://UsingValueMappingFunctoids.Company
http://

CHAPTER 3 ■ DOCUMENT MAPPING

111

1. Click the Toolbox, and then click the Advanced Functoids tab. Drag the
functoid onto the map surface, and create links to the functoid.

a. Set the first input parameter, which is a link from a node structure in the input document
that defines the scope of the table. If this node repeats in the input document, the
number of occurrences of this element in the input document will be used to control the
number of times the set of Table Extractor functoids will be invoked at runtime.

b. Set the second input parameter, which is a constant that defines the number of columns
for each row in the table.

c. Set the next input parameters, which define the inputs that will be placed in the table.
These inputs can come from the input document, the output from other functoids,
constant values, and so on.

2. Configure the table based on inputs for the Table Looping functoid.

a. Select the ellipsis next to the TableFunctoidGrid property in the Properties window to
launch the Table Looping Configuration dialog box.

b. For each cell, select a value from the drop-down list. The drop-down list will contain a
reference to all of the inputs you defined in step 1c.

c. Check or uncheck the Gated check box. If checked, column 1 will be used to determine
whether a row in the table should be processed as follows: When the value in column 1 of
the row is the output from a logical functoid, if the value is True, the row is processed, and
if the value is False, the row is not processed. Similarly, if the value in column 1 of the row
is from a field, the presence of data equates to True, and the row is processed, and the
absence of data equates to False, and the row is not processed and subsequently missing
from the output structure.

d. Select OK to close the dialog box.

3. Configure the outputs for the Table Looping functoid.

a. Link the Table Looping functoid to the repeating node structure in the output document.

b. Link the Table Looping functoid to a Table Extractor functoid for each column in the
table. The Table Extractor functoid can be found in the Toolbox on the Advanced
Functoids tab.

4. Configure the input parameters for each Table Extractor functoid.

c. Set the first input parameter, which is the output link from the Table Looping functoid.

d. Set the second input parameter, which is the column number of the data to be extracted
from the table.

5. Configure the outputs for each Table Extractor functoid. Link the functoid to a
node in the destination schema that is part of a repeating structure.

■Note It is very helpful to label all of the links so that meaningful names are displayed when configuring these

functoids.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

112

How It Works

The Table Looping and Table Extractor functoids are used together. As an example, suppose that you
have the sample input document shown in Listing 3–5.

Listing 3–5. Flattened Input Structure

<AliasesFlat>
 <Names>
 <Alias1FirstName>John</Alias1FirstName>
 <Alias1LastName>Doe</Alias1LastName>
 <Alias2FirstName>Sam</Alias2FirstName>
 <Alias2LastName>Smith</Alias2LastName>
 <Alias3FirstName>James</Alias3FirstName>
 <Alias3LastName>Jones</Alias3LastName>
 </Names>
</AliasesFlat>

The goal is to use these two functoids to create an output document of the format shown in Listing
3–6.

Listing 3–6. Repeating Nested Structure

<AliasesRepeating>
 <AliasNames>
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </AliasNames>
 <AliasNames>
 <FirstName>Sam</FirstName>
 <LastName>Smith</LastName>
 </AliasNames>
 <AliasNames>
 <FirstName>James</FirstName>
 <LastName>Jones</LastName>
 </AliasNames>
</AliasesRepeating>

Figure 3–24 shows the configuration for the input parameters for the Table Looping functoid. The
first parameter is a reference to the node structure Names in the input schema. The second parameter is a
constant value of 2 indicating there will be two columns in the table. The remaining parameters are the
first and last name of each alias from the input document.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

113

Figure 3–24. Table Looping input parameters

Figure 3–25 shows the completed Table Looping Configuration dialog box for the Table Looping
functoid. It has been configured so that each row contains an alias first name in column 1 and an alias last
name in column 2. There will be three rows in the table to process, one for each alias provided as input.

Figure 3–25. Table Looping Configuration dialog box

http://

CHAPTER 3 ■ DOCUMENT MAPPING

114

The output links from the Table Looping functoid are configured as follows:

• An output link to the AliasNames repeating node structure in the destination
schema

• An output link to a Table Extractor functoid for processing first names (column 1)
from the table

• An output link to a Table Extractor functoid for processing last names (column 2)
from the table

Figure 3–26 shows the configuration for the Table Extractor functoid that will process column 1
from the table. The first parameter is a link from the Table Looping functoid, and the second parameter
is a constant value of 1, which indicates it will process the first column from each row as it is processed.

Figure 3–26. Table Extractor functoid configuration for column 1

Figure 3–27 shows the configuration for the Table Extractor functoid that will process column 2
from the table. The first parameter is a link from the Table Looping functoid, and the second parameter
is a constant value of 2, which indicates it will process the second column from each row as it is
processed.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

115

Figure 3–27. Table Extractor functoid configuration for column 2

Finally, each Table Extractor functoid must be linked to a node in the destination schema. The
complete map is shown in Figure 3–28.

Figure 3–28. Final map for the Table Looping functoid example

Here is what the data table will look like when the map is processed:

Column 1 Column 2

John Doe

Sam Smith

James Jones

Once the table is loaded, it will generate three sets of output: one set of output for each row in the
table. This, in turn, will create three repetitions of the AliasNames node structure in the destination
document: one for each row in the table. A repeating node structure has been created, even though one
did not exist in the input document.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

116

3–7. Using the Database Lookup Functoid

Problem

You need to map an incoming node to a database table column to reference a specific set of data via a
BizTalk Server map. Specifically, for an inbound author ID, you need to retrieve the person attributes
that are stored in a SQL based table. Additionally, the data that is stored in the database table is dynamic,
and coding the values within the BizTalk map is not possible.

■Note The Database Lookup functoid can communicate with any ODBC-compliant data source. For this recipe,

SQL Server is the assumed data source.

Solution

BizTalk provides the Database Lookup functoid, which can retrieve a recordset. For example, suppose
that the inbound message specifies an author’s Social Security number but no personal information.
The map must retrieve the author’s information and map the information to the outbound message. The
Database Lookup functoid can retrieve the information from a specific SQL table using the author’s
Social Security number as the value for which to search. The inbound XML message may have a format
similar to the following and a table with data as show in Figure 3–29.

<ns0:PersonSearch xmlns:ns0="http://DatabaseLookupFunctoid.PersonSearch">
 <ID>172321176</ID>
</ns0:PersonSearch>

Figure 3–29. Record data

You can use the Database Lookup functoid by taking the following steps:

1. Click the Toolbox, and then click the Database Functoids tab. On the map
surface, in between the source and destination schemas, drag and drop a
Database Lookup functoid.

2. Connect the left side of the Database Lookup functoid to the inbound
document node that will specify the value used in the search.

3. Configure the input parameters of the Database Lookup functoid, as shown in
Figure 3–30. This functoid requires four parameters to be specified either
through mapping the inbound source data to the functoid or through setting
constants in the functoid.

http://DatabaseLookupFunctoid.PersonSearch
http://

CHAPTER 3 ■ DOCUMENT MAPPING

117

a. For the first input parameter, verify that the inbound node, connected in step 2, is the
first value in the list of properties. This is a value to be used in the search criteria. It’s
basically the same as the value used in a SQL WHERE clause.

b. Set the second parameter, which is the connection string for the database. The
connection string must be a full connection string with a provider, machine name,
database, and either account/password or a flag indicating the use of Trusted Security
mode in SQL. The connection string must include a data provider attribute. A lack of data
provider attribute will generate a connection error when the map tries to connect to the
database.

■Note The easiest connection string to start with is integrated security, which has the format of

Provider=SQLOLEDB;Server=[servername];Database=[dbname];Integrated Security=SSPI;.

c. Set the third parameter, which is the name of the table used in search.

d. Set the fourth parameter, which is the name of the column in the table to be used in
search.

Figure 3–30. Database Lookup Functoid input parameters dialog box

4. Again, click the Toolbox, and click the Database Functoids tab. On the map
surface, after the Database Lookup functoid, drag and drop the Error Return
functoid.

5. Connect the right side of the Database Lookup functoid to the left side of the
Error Return functoid. Connect the right side of the Error Return functoid to the
outbound schema node that is a placeholder for error messages.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

118

6. Again, click the Toolbox, and click the Database Functoids tab. On the map
surface, above the Error Return functoid, drag and drop the Value Extractor
functoid for each extracted value from the return recordset. For example, if you
are returning five values in the recordset, you would need five Value Extractor
functoids.

7. For each Value Extractor functoid, connect the left side of the functoid to the
right side of the Database Lookup functoid.

8. Configure the properties of each Value Extractor functoid to retrieve the
appropriate value by specifying the column name of the extracted value. For
example, if the value returned resides in a column named FirstName, you would
create a constant in the Value Extractor functoid named FirstName. The Value
Extractor functoid’s Configure Functoid Inputs dialog box should look similar
to Figure 3–31.

Figure 3–31. Value Extractor functoid input parameters dialog box

9. For each Value Extractor functoid, connect the right side of the functoid to the
appropriate target schema outbound node. The completed map should look
similar to the sample map in Figure 3–32.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

119

Figure 3–32. The final mapping

How It Works

The Database Lookup functoid requires four parameters as inputs, and it outputs an ActiveX Data
Objects (ADO) recordset. Keep in mind that the recordset returns only the first row of data that matches
the specific criteria provided to the Database Lookup functoid.

In addition to the input parameters, the Database Lookup functoid requires two helper functoids for
optimal use:

• The Error Return functoid, which returns SQL-related errors or exceptions. The
Error Return functoid requires the Database Lookup functoid as the input and a
link to an output node in the target schema. To avoid runtime errors, verify that
the only inbound connection to the Error Return functoid is that of the Database
Lookup functoid and not any other database functoids. A generated error looks
like that shown in Figure 3–33.

• The Value Extractor functoid, which retrieves a specific column from the returned
recordset. The Value Extractor will retrieve the value based on the specific column
specified in the input parameters.

Figure 3–33. An error has been generated

http://

CHAPTER 3 ■ DOCUMENT MAPPING

120

Security Considerations

Whenever you use SQL authentication (SQL username and password), there is potential for a security
risk. Consider using trusted security for access to the database rather than specifying the username and
password in the connection string used by the Database Lookup functoid. For example, here is a
connection string that uses SQL security:

Provider=SQLOLEDB;Server=localhost;Database=pubs;User ID=sa;Password=password;
 Trusted_Connection=False

And here is an example of a connection string that uses Trusted Security:

Provider=SQLOLEDB;Server=localhost;Database=pubs;Integrated Security=SSPI;

Keep in mind that if you choose Trusted Security for authentication, the account under which the
BizTalk host instance is running must have appropriate access to the SQL Server, the SQL database, and
the table in which the Database Lookup functoid is looking.

Another option to enclosing connection string information within the Database Lookup functoid is
to make use of a Universal Data Link (UDL) file. A UDL is simply a text file with the file extension .udl.
The connection string is included within the UDL file, and the connection string parameter in the
Database Lookup functoid becomes a reference to that file, for example:

File Name=c:\BizTalkConfig\ConnectionString.UDL

Once the UDL file is created, it can be made available on a secure file share.

■Note UDL files are external to the BizTalk map and therefore must be parsed every time a connection to the

database is open. The parsing activity will cause some performance degradation.

Additionally consider the use of a SQL view, versus direct table access, and having the Database
Lookup functoid point to the database view. A SQL view offers the ability to manage table security
permissions or the abstraction of the physical table structure.

Architecture Considerations

The Database Lookup functoid is convenient to implement in mappings. For straightforward data
retrieval, this functoid performs adequately. However, the following items should be taken into
consideration when evaluating when to use the Database Lookup functoid:

Database availability: If you cannot guarantee that the data source being queried will be available

when BizTalk is available, using the Database Lookup functoid may not make sense.

Error management: Mapping will occur and not trap the SQL errors in the .NET exception style.
Errors should be trapped and managed when mapping. When implementing the Database Lookup
functoid, consider using the Error Return functoid. Additionally, after the mapping, it would be wise
to query the Error Return node for an error message and implement error handling if one exists.

Performance: Evaluate your performance requirements and determine if accessing a SQL database
will negatively affect your overall mapping performance. Implementing the Database Lookup

http://

CHAPTER 3 ■ DOCUMENT MAPPING

121

functoid may not impact performance greatly, but consider the effect if you must run the Database
Lookup functoid multiple times in a single map. Database Lookup functoids that are part of a
looping structure will cause a level of performance degradation. Make sure that the latest BizTalk
service packs are applied when using the Database Lookup functoid, as they include performance-
enhancing features such as caching.

Database support: Evaluate if the database that you must access will support the necessary security
requirements and also allow table (or at least view level) access.

Advanced Database Lookup Functoid Usage

The BizTalk map translates the Database Lookup functoid information into a dynamic SQL SELECT
statement. If you run a SQL Profiler trace during testing of the BizTalk map, you will see the SELECT call
with the dynamic SQL. Knowing that dynamic SQL is created by the Database Lookup functoid allows
you to use it to perform some relatively powerful database lookups. The Database Lookup functoid
allows only a single value and single column name to be referenced in the query. However, with a bit of
extra mapping, you can use this functoid to query against multiple columns. The map in Figure 3–32
generates the following SQL query code:

exec sp_executesql N'SELECT * FROM people WHERE ID= @P1', N'@P1 nvarchar(9)',
N'172321176'

This query performs a SELECT to retrieve all rows from the People table where the author ID is equal
to the value in the inbound XML document (for example, 172321176).

Keep in mind that the Database Lookup functoid returns only the first row that it encounters in the
recordset. If multiple authors had the same ID, you would potentially retrieve the incorrect author. For
example, if the author ID is the last name of the author, you may retrieve multiple authors that share the
same last name. One way to ensure uniqueness, aside from querying on a unique column, is to specify
additional columns in the query. The Database Lookup functoid accepts only four parameters, so
additional concatenation must occur before submitting the parameters to the Database Lookup
functoid.

After configuring the inbound concatenated value, the next step is to specify multiple column
names as the input parameter in the Database Lookup functoid. Figure 3–34 demonstrates a sample
Database Lookup functoid configuration with multiple columns specified. The output from the
Database Lookup functoid to the Value Extractor functoid does not change.

Figure 3–34. Database Lookup functoid with multiple columns

http://

CHAPTER 3 ■ DOCUMENT MAPPING

122

■Note A plus symbol (+) is used between the column names in the Database Lookup functoid, whereas in the

Concatenation functoid, no + is required. If a + is specified in the Concatenation functoid, you will receive incorrect

results, as the dynamic SQL statement created will be incorrect.

In this example, the inbound message specifies an author’s first name and last name instead of a
unique author ID. The map must still retrieve the author’s information and map the information to the
outbound message. The inbound XML message may have a format to the following message:

<ns0:PersonSearch xmlns:ns0="http://DatabaseLookupFunctoid.PersonSearch">
 <FirstName>Juan</FirstName>
 <LastName>Dos</LastName>
</ns0:PersonSearch>

The following is the dynamic SQL created in the map that accepts multiple columns:

exec sp_executesql N'SELECT * FROM authors WHERE FirstName+LastName= @P1', N'@P1
nvarchar(12)', N'JuanDos'

The dynamic SQL created shows the inbound author’s first name and last name parameters as a
concatenated parameter. The SQL statement also shows a combination WHERE clause with FirstName +
LastName.

There are some limitations to specifying multiple columns through the concatenation approach.
Specifically, string data types are the only data types that work reliably due to the concatenation
operation that occurs in SQL. Integer data types may also be used, but in the case of integer (or other
numeric data types), SQL will perform an additive operation versus a concatenation operation. Adding
two numbers together, as what would happen when specifying numeric data types, and comparing the
result to another set of numbers being added together may yield multiple matches and may not achieve
the desired results. The mix of varchar and numeric fields will not work with this approach, as you will
receive a data casting exception from your data provider.

3–8. Seeding Cross-Reference Tables with ID
Cross-References

Problem

You wish to dynamically cross-reference unique identifiers between two or more systems. The reference
data already exists, so you wish to load the data into the BizTalk cross-reference tables before you use
the cross-reference functoids or application programming interface (API).

Solution

Within an XML configuration file you name List_Of_App_Type.xml, insert the XML shown in Listing 3–7,
and insert an appType node for each system that will have cross-references.

http://DatabaseLookupFunctoid.PersonSearch
http://

CHAPTER 3 ■ DOCUMENT MAPPING

123

Listing 3–7. List_Of_App_Type.xml

<?xml version="1.0" encoding="UTF-8"?>
<listOfAppType>
 <appType>
 <name>Oracle</name>
 <description/>
 </appType>
 <appType>
 <name>Siebel</name>
 <description/>
 </appType>
</listOfAppType>

■Note These node values in Listings 3–7 through 3–10 have been placed in the XML as an example. You should

remove them and insert your own.

Within an XML configuration file you name List_Of_App_Instance.xml, insert the XML shown in
Listing 3–8.

Listing 3–8. List_Of_App_Instance.xml

<?xml version="1.0" encoding="UTF-8"?>
<listOfAppInstance>
 <appInstance>
 <instance>Oracle_01</instance>
 <type>Oracle</type>
 <description/>
 </appInstance>
 <appInstance>
 <instance>Siebel_01</instance>
 <type>Siebel</type>
 <description/>
 </appInstance>
 <appInstance>
 <instance>Siebel_12</instance>
 <type>Siebel</type>
 <description/>
 </appInstance>
</listOfAppInstance>

Since unique identifiers are often different for each unique instance of a system, you must create
different cross-references for each system. Therefore, you must insert an appInstance node for each
instance of an application you will cross-reference, inserting a common type value across instances that
are of the same type of system, and which correspond to the appType you created in the
List_Of_App_Type.xml configuration file. For instance, you may be running two instances of Siebel, so
you would insert two appInstance nodes with a type of Siebel, but give each a unique value in the
instance node (for example, Siebel_01 and Siebel_12).

Within an XML configuration file you name List_Of_IdXRef.xml, insert the XML shown in Listing 3–9.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

124

Listing 3–9. List_Of_IdXRef.xml

<?xml version="1.0" encoding="UTF-8"?>
<listOfIDXRef>
 <idXRef>
 <name>Customer.ID</name>
 <description/>
 </idXRef>
 <idXRef>
 <name>Order.PONumber</name>
 <description/>
 </idXRef>
</listOfIDXRef>

For each ID field you plan to cross-reference, insert an idXRef node with a unique name child node.
This value will be used to identify the ID field that you are cross-referencing. For instance, if you plan to
cross-reference a customer that is in different systems, you would insert an idXRef with a name like
Customer.ID.

Within an XML configuration file you name List_Of_IdXRef_Data.xml, insert the XML shown in
Listing 3–10.

Listing 3–10. List_Of_IdXRef_Data.xml

<?xml version="1.0" encoding="UTF-8"?>
<listOfIDXRefData>
 <idXRef name="Customer.ID">
 <appInstance name="Oracle_01">
 <appID commonID="100"> CARA345</appID>
 </appInstance>

 <appInstance name="Siebel_01">
 <appID commonID="100">99-4D976</appID>
 </appInstance>
 <appInstance name="Siebel_12">
 <appID commonID="100">44OL</appID>
 </appInstance>
 </idXRef>
</listOfIDXRefData>

For each field you create in the List_Of_IdXRef.xml file, insert an idXRef node. For each system you
create in the List_Of_App_Instance.xml file, insert an appInstance node. Insert one or more appID nodes
for each unique identifier. Insert a commonID attribute to store a common identifier, and set the
application-specific value within the node. The common ID will be repeated for each appID that is cross-
referenced.

Within an XML configuration file you name Setup-Config.xml, insert the XML shown in Listing 3–11.

Listing 3–11. Setup-Config.xml

<?xml version="1.0" encoding="UTF-8"?>
<Setup-Files>
 <App_Type_file>C:\List_Of_App_Type.xml</App_Type_file>
 <App_Instance_file>C:\List_Of_App_Instance.xml</App_Instance_file>
 <IDXRef_file>C:\List_Of_IDXRef.xml</IDXRef_file>
 <IDXRef_Data_file>C:\List_Of_IDXRef_Data.xml</IDXRef_Data_file>
</Setup-Files>

http://

CHAPTER 3 ■ DOCUMENT MAPPING

125

Each node should point to the physical location where you have created the corresponding XML
configuration files.

Seed the BizTalk cross-reference tables by opening a command-line window and running the
BizTalk cross-reference import tool, BTSXRefImport.exe (found in the BizTalk installation directory),
passing in the path to the cross-reference XML file created in Listing 3–11:

BTSXRefImport.exe -file=C:\Setup-Config.xml

How It Works

During installation of BizTalk, several cross-reference tables are created in the BizTalkMgmtDb database.
All the cross-reference tables begin with the prefix xref_, and the BTSXRefImport tool imports the data
from the XML files provided into the table structure for access at runtime. It is not necessary to use the
BTSXRefImport.exe tool to insert data into the cross-reference tables. You may insert data directly into
the following tables:

• xref_AppInstance

• xref_IdXRef

• xref_IdXRefData

After running the BTSXRefImport tool, and if the data were in a denormalized form, the data would
look like this:

AppType AppInstance IdXRef CommonID Application ID

Oracle Oracle_01 Customer.ID 100 CARA345

Siebel Siebel_01 Customer.ID 100 99-4D976

Siebel Siebel_12 Customer.ID 100 44OL

There are subtle differences between ID and value cross-referencing. Value cross-references, as the
name implies, deal with static values, while ID cross-references deal with cross-referencing unique
identifiers. Since most value cross-references are not updated at runtime, a functoid and API method are
not provided to update the references at runtime. ID cross-references, though, may be updated using
the Set Common ID functoid or API method.

■Note The Set Common ID functoid is poorly named, as it actually sets the application ID and the CommonID. If

CommonID is not provided, the method will return a new CommonID Instance.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

126

3–9. Seeding Cross-Reference Tables with Value Cross-
References

Problem

You wish to statically cross-reference state values between two or more systems. The reference data
already exists, but you must load the data into the BizTalk cross-reference tables before you may use the
cross-reference functoids or API.

Solution

Within an XML configuration file you name List_Of_App_Type.xml, insert the XML shown in Listing 3–12,
and insert an appType node for each system that will have static cross-references.

Listing 3–12. List_Of_App_Type.xml

<?xml version="1.0" encoding="UTF-8"?>
<listOfAppType>
 <appType>
 <name>Oracle</name>
 <description/>
 </appType>
 <appType>
 <name>Siebel</name>
 <description/>
 </appType>
</listOfAppType>

■Note The node values in Listings 3–12 through 3–14 have been placed in the XML as an example. You should

remove them and insert your own.

Within an XML configuration file you name List_Of_ValueXRef.xml, insert the XML shown in Listing
3–13.

Listing 3–13. List_Of_ValueXRef.xml

<?xml version="1.0" encoding="UTF-8"?>
<listOfValueXRef>
 <valueXRef>
 <name>Order.Status</name>
 <description/>
 </valueXRef>
</listOfValueXRef>

http://

CHAPTER 3 ■ DOCUMENT MAPPING

127

For each field you plan to statically cross-reference, insert a valueXRef node with a unique child
node name. This value will be used to identify the static field. For instance, if you plan to map between
order status codes, you might create a common value of Order.Status.

Within an XML configuration file you name List_Of_ValueXRef_Data.xml, insert the XML shown in
Listing 3–14.

Listing 3–14. List_Of_ValueXRef_Data.xml

<?xml version="1.0" encoding="UTF-8"?>
<listOfValueXRefData>
<valueXRef name="Order.Status">
 <appType name="Oracle">
 <appValue commonValue="Open">OP</appValue>
 <appValue commonValue="Pending">PD</appValue>
 <appValue commonValue="Closed">CD</appValue>
 </appType>
 <appType name="Siebel">
 <appValue commonValue="Open">1:Open</appValue>
 <appValue commonValue="Pending">2:Pending</appValue>
 <appValue commonValue="Closed">3:Closed</appValue>
 </appType>
</valueXRef>
</listOfValueXRefData>

For each static field you create in the List_Of_ValueXRef.xml file, insert a valueXRef node. For each
system you create in the List_Of_App_Type.xml file, insert an appType node. Insert one or more appValue
nodes for each value that is permissible for this valueXRef field. Insert a commonValue attribute to store
the common name for the value, and set the application-specific value within the node. The common
value will be repeated for each appType that is cross-referenced.

Within an XML configuration file you name Setup-Config.xml, insert the XML shown in Listing 3–15.

Listing 3–15. Setup-Config.xml

<?xml version="1.0" encoding="UTF-8"?>
<Setup-Files>
<App_Type_file>c:\List_OF_App_Type.xml</App_Type_file>
<ValueXRef_file>c:\List_Of_ValueXRef.xml</ValueXRef_file>
<ValueXRef_Data_file>c:\List_Of_ValueXRef_Data.xml</ValueXRef_Data_file>
</Setup-Files>

Each node should point to the physical location where you have created the corresponding XML
configuration files.

Seed the BizTalk cross-reference tables by opening a command-line window and running the
BizTalk cross-reference import tool, BTSXRefImport.exe (found in the BizTalk installation directory),
passing in the path to the Setup-Config.xml cross-reference file:

BTSXRefImport.exe -file=C:\Setup-Config.xml

How It Works

During installation of BizTalk, several static cross-reference tables are created in the BizTalkMgmtDb
database. All the cross-reference tables begin with the prefix xref_, and the BTSXRefImport tool imports
the data from the XML files provided to the table structure for access at runtime. It is not necessary to

http://

CHAPTER 3 ■ DOCUMENT MAPPING

128

use the BTSXRefImport.exe tool to insert data into the cross-reference tables. You may insert data directly
into the following tables:

• xref_AppType

• xref_ValueXRef

• xref_ValueXRefData

In a denormalized form, the table would look like this after running the BTSXRefImport tool:

AppType ValueXRef CommonValue AppValue AppType

Oracle Order.Status Open OP Oracle

Siebel Order.Status Open 1:Open Siebel

Oracle Order.Status Pending PD Oracle

Siebel Order.Status Pending 2:Pending Siebel

Oracle Order.Status Closed CD Oracle

Siebel Order.Status Closed 3:Closed Siebel

3–10. Using the ID Cross-Reference Functoids

Problem

Within a map, you wish to dynamically cross-reference unique identifiers between two or more systems,
and the identifier cross-references have already been loaded into the cross-reference tables. For
example, a source system publishes an Account with a unique identifier of 1234, and you want to cross-
reference and dynamically translate that identifier to the unique identifier in a destination system of
AA3CARA.

■Note If you have not already loaded the identifier cross-reference data, see Recipe 3–8 for more information.

Solution

To cross-reference the identifiers within a map, take the following steps:

1. Click the Database Functoids tab in the Toolbox.

2. Drag the Get Common ID functoid onto to the map surface.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

129

3. Open the Input Parameters dialog box for the Get Common ID functoid.

4. Add a constant parameter and set the value to the ID type you wish to cross-
reference. For instance, you may set the value to something like Customer.ID.

5. Add a second constant parameter to the Get Common ID functoid, and set the
value to the source system application instance. For instance, you may set the
value to something like Siebel_01.

6. Click OK.

7. Connect the unique source identifier node you wish to cross-reference from the
source schema to the Get Common ID functoid.

8. Drag the Get Application ID functoid from the Database Functoids tab onto the
map surface, and place it to the right of the Get Common ID functoid.

9. Open the Input Parameters dialog box for the Get Application ID functoid.

10. Add a constant parameter and set the value to the ID type you wish to receive.
For instance, you may set the value to something like Customer.ID.

11. Add a second constant parameter to the Get Common ID functoid and set the
value to the destination system application instance. For instance, you may set
the value to something like Oracle_01.

12. Click OK.

13. Connect the Get Common ID functoid to the Get Application ID functoid.

14. Connect the functoid to the unique destination identifier node.

15. Save and test the map.

How It Works

Identifier cross-referencing allows entities to be shared across systems. Although cross-referencing
functionality is often not required in small integration projects, as usually there is a single system for a
given entity type, in larger organizations, it is common to find several systems with the same entities (for
example, Account, Order, and Invoice). These entities are often assigned a unique identifier that is
internally generated and controlled by the system. In other words, from a business perspective, the
entities are the same, but from a systems perspective, they are discrete. Therefore, in order to move an
entity from one system to another, you must have a way to create and store the relationship between the
unique identifiers, and to discover the relationships at runtime.

BizTalk Server provides this functionality through cached cross-referencing tables, API, an import
tool, and functoids. Using the import tool, you can load information about systems, instances of those
systems, the entities within those systems you wish to cross-reference, and the actual cross-reference
data into a set of cross-reference tables that are installed with BizTalk in the BizTalkMgmtDb database.
Then, using the functoids or API at runtime, you access the tables to convert an identifier from one
recognized value to another. The basic steps for converting from one system to another are as follows:

http://

CHAPTER 3 ■ DOCUMENT MAPPING

130

1. Using the source identifier, source instance, and source entity type, retrieve the
common identifier by calling the Get Common ID functoid.

■Note The common identifier is commonly not stored in any system. It is an identifier used to associate one or

more identifiers.

2. Using the common identifier, destination system instance, and destination
entity type, retrieve the destination identifier by calling the Get Application ID
functoid.

This recipe has focused on accessing identifier cross-referencing functionality through BizTalk
functoids, but an API is also available. The cross-referencing class may be found in the
Microsoft.Biztalk.CrossRreferencing.dll, within the namespace
Microsoft.BizTalk.CrossReferencing. This class has several members that facilitate storing and
retrieving identifier cross referencing relationships, as listed in Table 3–1.

Table 3–1. ID Cross-Referencing API

Member Description

GetCommonID With an application instance, entity/ID type, and application identifier
value, retrieves a common identifier. If a cross-reference does not exist, a
blank will be returned. If the application instance or entity/ID type does
not exist, an exception will be thrown.

GetAppID With a common identifier, application instance, and entity/ID type,
retrieves the application identifier value. If a cross-reference does not
exist, a blank will be returned. If the application instance or entity/ID type
does not exist, an exception will be thrown.

SetCommonID* With an application instance, entity/ID type, application identifier value,
and optionally a common identifier, create a relationship in the cross-
referencing tables. If a common identifier is not passed to the method,
one will be created and returned. If the application instance or entity/ID
type does not exist, an exception will be thrown.

* The SetCommonID method does set the common identifier and will create one if not passed to the method, but more
importantly, it creates the relationship between the application-specific identifier and the common identifier. Perhaps a
better name would have been SetIDCrossReference.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

131

3–11. Using the Value Cross-Reference Functoids

Problem

Within a map, you wish to statically cross-reference state values between two or more systems, and the
value cross-references have already been loaded into the cross-reference tables. For example, a source
system publishes an Order with a status of 1:Open, and you want to cross reference and translate the
static state value to the static value in a destination system of OP.

■Note If you have not already loaded the value cross-reference data, see Recipe 3–9 for more information.

Solution

To cross-reference the static values within a map, take the following steps:

1. Click the Database Functoids tab in the Toolbox.

2. Drag the Get Common Value functoid to the map surface.

3. Open the Input Parameters dialog box for the Get Common Value functoid.

4. Add a constant parameter, and set the value to the static value type you wish to
cross-reference. For instance, you may set the value to something like
Order.Status.

5. Add a second constant parameter to the Get Common Value functoid, and set
the value to the source system application type. For instance, you may set the
value to something like Siebel.

6. Click OK.

7. Connect the state value source node you wish to cross-reference from the
source schema to the Get Common Value functoid.

8. Drag the Get Application Value functoid from the Database Functoids tab to the
map surface, and place it to the right of the Get Common Value functoid.

9. Open the Input Parameters dialog box for the Get Application Value functoid.

10. Add a constant parameter, and set the value to the static value type you wish to
cross-reference. For instance, you may set the value to something like
Order.Status.

11. Add a second constant parameter to the Get Common Value functoid, and set
the value to the destination system application type. For instance, you may set
the value to something like Oracle.

12. Click OK.

13. Connect the Get Common Value functoid to the Get Application Value
functoid.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

132

14. Connect the functoid to the unique destination state value node.

15. Save and test the map.

How It Works

Identifier and value cross-referencing are similar in concept, with the following differences:

• Value cross-referencing is commonly between enumeration fields. Identifier
cross-referencing is commonly between entity unique identifiers.

• Value cross-referencing occurs between system types. Identifier cross-referencing
occurs between instances of system types.

• Identifier cross-references may be set at runtime. Value cross-references are static
and may be loaded only through the import tool or direct table manipulation.

The basic steps for converting from one system to another are as follows:

1. Using the source application type, source application static value, and source
entity value type, retrieve the common value by calling the Get Common Value
functoid.

■Note The common value is generally not stored in any system. It is a value used to associate multiple values.

2. Using the common static value, destination system type, and destination entity
value type, retrieve the destination static value by calling the Get Application
Value functoid.

This recipe has focused on accessing value cross-referencing functionality through BizTalk
functoids, but an API is also available. The cross-referencing class may be found in the
Microsoft.Biztalk.CrossRreferencing.dll, within the namespace
Microsoft.BizTalk.CrossReferencing. This class has several members that facilitate storing and
retrieving value cross-referencing relationships, as listed in Table 3–2.

Table 3–2. Value Cross-Referencing API

Member Description

GetCommonValue With an application type, entity/node value type, and application value,
this member retrieves a common value. If a cross-reference does not exist,
a blank will be returned. If the application type or entity/node value type
does not exist, an exception will be thrown.

GetAppValue With a common value, application type, and entity/node type, this retrieves
the application value. If a cross-reference does not exist, a blank will be
returned. If the application type or entity/node value type does not exist, an
exception will be thrown

http://

CHAPTER 3 ■ DOCUMENT MAPPING

133

3–12. Using the Looping Functoid

Problem

The structure of a message from a source system you are integrating with contains multiple repeating
record types. You must map each of these record types into one record type in the destination system. In
order for the message to be imported into the destination system, a transformation must be applied to
the source document to consolidate, or standardize, the message structure.

Solution

Create a map that utilizes the BizTalk Server Looping functoid, by taking the following steps:

1. Click the Toolbox, and then click the Advanced Functoids tab. On the map
surface, between the source and destination schemas, drag and drop a Looping
functoid. This functoid accepts 1 to 100 repeating source records (or data
elements) as its input parameters. The return value is a reference to a single
repeating record or data element in the destination schema.

2. Connect the left side of the Looping functoid to the multiple repeating source
data elements that need to be consolidated.

3. Connect the right side of the Looping functoid to the repeating destination data
element that contains the standardized data structure.

How It Works

An example of a map that uses the Looping functoid is shown in Figure 3–35.

Figure 3–35. Using the Looping functoid

http://

CHAPTER 3 ■ DOCUMENT MAPPING

134

In this example, multiple types of plane flight reservations are consolidated into a single list of
records capturing passengers and their associated seats. The XML snippet in Listing 3–16 represents one
possible instance of the source schema.

Listing 3–16. Source Schema Instance for the Looping Functoid Example

<ns0:PassengerReservations xmlns:ns0="http://LoopingFunctoid.PassengerReservations">
 <FlightNumber>666</FlightNumber>
 <OnlineReservation>
 <Name>Lucifer Smith</Name>
 <Seat>13A</Seat>
 <Website>www.greatdeals.com</Website>
 <Confirmed>True</Confirmed>
 </OnlineReservation>
 <OnlineReservation>
 <Name>Beelzebub Walker, Jr.</Name>
 <Seat>13B</Seat>
 <Website>www.hellofadeal.com</Website>
 <Confirmed>False</Confirmed>
 </OnlineReservation>
 <TravelAgentReservation>
 <PassengerName>Jim Diablo</PassengerName>
 <Seat>13C</Seat>
 <AgentName>Sunny Rodriguez</AgentName>
 </TravelAgentReservation>
 <AirlineReservation>
 <Name>Imin Trouble</Name>
 <Seat>13D</Seat>
 <BookingDesk>Chicago</BookingDesk>
 </AirlineReservation>
</ns0:PassengerReservations>

Based on this source XML, the looping map displayed in Figure 3–35 will produce the XML
document shown in Listing 3–17, containing a single passenger seat assignment list.

Listing 3–17. Destination Schema Instance for the Looping Functoid Example

<ns0:Manifest FlightNumber="666" xmlns:ns0="http://LoopingFunctoid.Manifest">
 <Passenger Name="Lucifer Smith" SeatNumber="13A" />
 <Passenger Name="Beelzebub Walker, Jr." SeatNumber="13B" />
 <Passenger Name="Jim Diablo" SeatNumber="13C" />
 <Passenger Name="Imin Trouble" SeatNumber="13D" />
 </ns0:Manifest>

This example displays a simplistic but useful scenario in which the Looping functoid can be used.
Essentially, this functoid iterates over the specified repeating source records (all those with a link to the
left side of the functoid), similar to the For...Each structure in coding languages, and maps the desired
elements to a single repeating record type in the destination schema.

http://LoopingFunctoid.PassengerReservations
http://www.greatdeals.com</Website
http://www.hellofadeal.com</Website
http://LoopingFunctoid.Manifest
http://

CHAPTER 3 ■ DOCUMENT MAPPING

135

■Note The four source records in the XML instance (the two OnlineReservations records, the one

TravelAgentReservation record, and the one AirlineReservation record) produced four records in the output

XML. If the source instance had contained five records, the resulting output XML document would also contain five

records.

Based on this simple principle, you can develop much more complex mappings via the Looping
functoid. One example of a more advanced use of the Looping functoid is conditional looping. This
technique involves filtering which source records actually create destination records in the resulting
XML document. The filtering is done by adding a logical functoid to the map, which produces a true or
false Boolean value based on the logic. Common examples of filtering are based on elements that
indicate a certain type of source record, or numeric elements that posses a certain minimum or
maximum value.

The previous flight reservation example can be extended to implement conditional looping, in order
to map only those online reservations that have been confirmed. This can be accomplished via the
following steps:

1. Click the Toolbox, and click the Logical Functoids tab. On the map surface, in
between the source and destination schemas, drag and drop a logical Equal
functoid. This functoid accepts two input parameters, which are checked for
equality. The return value is a Boolean true or false.

2. Specify the second input parameter for the logical Equal functoid as a constant
with a value of True.

3. Connect the left side of the logical Equal functoid to the data element whose
value is the key input for the required decision (Confirmed in the
OnlineReservation node, in this case) logic.

4. Connect the right side of the logical Equal functoid to the element in the
destination schema containing the repeating destination data element that
contains the standardized data structure.

An example of the enhanced map is shown in Figure 3–36.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

136

Figure 3–36. Conditional looping

Based on the same source XML outlined earlier in Listing 3–16, the looping map displayed in Figure
3–36 will produce the following XML document, containing a single passenger seat assignment list with
only three passengers (Lauren Jones’s reservation, which was not confirmed, is filtered out by the
conditional looping logic):

<ns0:Manifest FlightNumber="666" xmlns:ns0="http://LoopingFunctoid.Manifest">
 <Passenger Name="Lucifer Smith" SeatNumber="13A" />
 <Passenger Name="Jim Diablo" SeatNumber="13C" />
 <Passenger Name="Imin Trouble" SeatNumber="13D" />
 </ns0:Manifest>

■Note Due to the fact that the Confirmation element is not being mapped over to the destination schema, the

output of the logical Equal functoid is tied to the Passenger record. If the logical Equal functoid were being applied

to an element that is being mapped to the destination schema, such as the Seat element, the output of the Equal

functoid could be tied directly to the SeatNumber element in the destination schema.

In this example of conditional looping, the second input parameter of the logical Equal functoid is a
hard-coded constant set to True. In real-world scenarios, it may not be ideal for this value to be hard-
coded. You may prefer to have it driven off a configurable value. Several alternatives exist:

• Implement a Scripting functoid to the map, which passes the name of a
configuration value to an external assembly. This external assembly would then
handle the lookup of the actual configuration value.

http://LoopingFunctoid.Manifest
http://

CHAPTER 3 ■ DOCUMENT MAPPING

137

• Implement a Database Lookup functoid, which as the name implies, would look
up the appropriate configuration value from a database table.

• Use a custom functoid, written in any .NET-compliant language. This option is
similar to the external assembly route, except that it is implemented specifically as
a functoid as opposed to a general .NET assembly.

When implementing a map that uses the Looping functoid, it is important to understand how
BizTalk Server inherently handles repeating records in the source schema. If a record in the source
schema has a Max Occurs property set to a value greater than 1, BizTalk Server handles the record via a
loop. No Looping functoid is required for the map to process all appropriate source records. A Looping
functoid is needed only to consolidate multiple repeating source records into a single repeating
destination record.

3–13. Using the Iteration Functoid

Problem

You need to implement a map that handles certain records within a repeating series in an intelligent
fashion. The map must be able to determine the sequential order, or index, of each repeating record, and
perform customized logic based on that index.

Solution

Develop a BizTalk Server map, and leverage the Iteration functoid by taking the following steps.

1. Click the Toolbox, and click the Advanced Functoids tab. On the map surface,
between the source and destination schemas, drag and drop an Iteration
functoid. This functoid accepts a repeating source record (or data element) as
its one input parameter. The return value is the currently processed index of a
specific instance document (for a source record which repeated five times, it
would return 1, 2, 3, 4, and 5 in succession as it looped through the repeating
records).

2. Connect the left side of the Iteration functoid to the repeating source record (or
data element) whose index is the key input for the required decision logic.

3. Connect the right side of the Iteration functoid to the additional functoids used
to implement the required business logic.

How It Works

An example of a map that uses the Iteration functoid is shown in Figure 3–37.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

138

Figure 3–37. Using the Iteration functoid

In this example, all the peak hourly energy values from the source XML are mapped over to the
destination XML. The Iteration functoid is used to determine the index of each HourlyUsage record, with
those having an index value of 3 or higher being flagged as peak hours. Additionally, the output from the
Iteration functoid is also used to create the Hour element in the destination XML, defining to which hour
the energy reading pertains. The XML snippet in Listing 3–18 represents one possible document
instance of the source schema.

Listing 3–18. Sample Source Instance for the Iteration Functoid Example

<ns0:HourlyUsage xmlns:ns0="http://IterationFunctoid.HourlyUsage">
 <Date>09/06/2010</Date>
 <Usage>
 <Hour>01</Hour>
 <EnergyUsage>2.4</EnergyUsage>
 <Adjustments>0</Adjustments>
 </Usage>
 <Usage>
 <Hour>02</Hour>
 <EnergyUsage>1.7</EnergyUsage>
 <Adjustments>1</Adjustments>
 </Usage>
 <Usage>
 <Hour>03</Hour>
 <EnergyUsage>3.9</EnergyUsage>
 <Adjustments>0</Adjustments>
 </Usage>
 <Usage>
 <Hour>04</Hour>
 <EnergyUsage>12.4</EnergyUsage>
 <Adjustments>3</Adjustments>
 </Usage>
 <Usage>
 <Hour>05</Hour>
 <EnergyUsage>15</EnergyUsage>
 <Adjustments>0</Adjustments>
 </Usage>
 <Usage>
 <Hour>06</Hour>
 <EnergyUsage>3.2</EnergyUsage>
 <Adjustments>1</Adjustments>
 </Usage>

http://IterationFunctoid.HourlyUsage
http://

CHAPTER 3 ■ DOCUMENT MAPPING

139

</ns0:HourlyUsage>

When passed through the map displayed in Figure 3–37, this XML will produce the XML document
shown in Listing 3–19, containing all the peak hourly energy usage values with their associated Hour
value.

Listing 3–19. Sample Destination Instance for the Iteration Functoid Example

<ns0:PeakHourUsage xmlns:ns0="http://IterationFunctoid.PeakHourUsage">
 <Date>09/06/2010</Date>
 <Usage>
 <Hour>4</Hour>
 <Amount>12.4</Amount>
 </Usage>
 <Usage>
 <Hour>5</Hour>
 <Amount>15</Amount>
 </Usage>
 <Usage>
 <Hour>6</Hour>
 <Amount>3.2</Amount>
 </Usage>
</ns0:PeakHourUsage>

The Iteration functoid can be a crucial tool for those business scenarios that require the current
index number of a looping structure within a map to be known. In the energy usage example, it allows a
generic list of chronological usage values to be mapped to a document containing only those values that
occur in the afternoon, along with adding an element describing to which hour that usage pertains. As
the map processes the repeating HourlyUsage records in the source XML in a sequential fashion, the
index from the Iteration functoid is passed to the logical Greater Than functoid, which compares the
index with a hard-coded value of 3. If the index value is 4 or greater, the element is created in the
destination XML, and its hour ending value is set.

This example works well for the purposes of our simple scenario, but those who have dealt with
hourly values of any kind know that days on which daylight saving time (DST) falls need to be handled
carefully. Since the time change associated with DST actually occurs early in the morning, there are 13
morning (before afternoon) hourly values in the fall occurrence of DST, and 11 morning hourly values in
the spring occurrence.

The map in Figure 3–37 can easily be enhanced to account for this by adding logic based on the
record count of hourly values in the source XML document. You can accomplish this via the following
steps:

1. Click the Toolbox, and click the Advanced Functoids tab. On the map surface,
between the source and destination schemas, drag and drop a Record Count
functoid. This functoid accepts a repeating source record (or data element) as
its one input parameter. The return value is the count of repeating source
records contained in a specific instance document.

2. Connect the left side of the Record Count functoid to the repeating source
record (or data element) whose index is the key input for the required decision
logic.

http://IterationFunctoid.PeakHourUsage
http://

CHAPTER 3 ■ DOCUMENT MAPPING

140

3. Drag and drop a Subtraction functoid from the Mathematical Functoids tab
onto the map surface, positioning it to the right of the Record Count functoid.
This functoid accepts a minimum of 2 and a maximum of 99 input parameters.
The first is a numeric value, from which all other numeric input values (the
second input parameter to the last) are subtracted. The return value is a
numeric value equaling the first input having all other inputs subtracted from
it.

4. Connect the right side of the Record Count functoid to the left side of the
Subtraction functoid.

5. Specify the second input parameter for the Subtraction functoid as a constant,
with a value of 12.

6. Connect the right side of the Subtraction functoid to the left side of the Greater
Than functoid. Ensure that this input to the Greater Than functoid is the second
input parameter.

In this modified example, the repeating source record’s count has 12 subtracted from it to adjust for
the two DST days of the year (this works since we are interested in only the afternoon energy usage
values, which are always the final 12 readings for a day). This adjusted value is then passed through the
same logical Greater Than functoid as in the previous example, and the DST issue is effectively handled.

The use of the Iteration functoid is common in a number of other scenarios. One such scenario is
when dealing with a document formatted with comma-separated values (CSV). Often, the first row in a
CSV document contains column header information, as opposed to actual record values. The following
flat file snippet shows one possible representation of energy usage values in CSV format:

EnergyUsage,Adjustments
2.4,0
2.5,0
2.8,0

In cases like these, it is likely that you do not want to map the column headers to the destination
XML document. You can use an Iteration functoid to skip the first record of a CSV document. The index
from the Iteration functoid is passed to a logical Not Equal functoid, which compares the index with a
hard-coded value of 1. If the index is anything other than 1 (the record at index 1 contains the column
header information), the values are mapped to the destination XML.

■Note You can also strip out column headers by using envelope schemas.

Another common use of the Iteration functoid is to allow the interrogation of records preceding or
following the currently processed record. This can be helpful when mapping elements in a repeating
record in the source schema that require knowledge of the next or previous record.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

141

3–14. Creating a Custom Functoid

Problem

You have a mapping need that requires the repeated use of complex functionality.

Solution

Rather than writing the same inline code (C#, XSLT, and so on) and pasting it in multiple shapes, or
using a combination of multiple existing functoids, you can develop your own custom functoid.

As an example, we’ll describe the process to develop, deploy, and use a custom functoid that
replaces the ampersand (&), greater than (>), and less than (<) symbols with their HTML/XML
equivalents. The functoid will have one input parameter and one output parameter, representing the
string on which to run the replacement. This functoid would be used primarily with XML that may be
returned from an external source, such as a .NET assembly, where the XML may not have been validated
and contains characters that must be escaped.

Use the following steps to create, deploy, and use a custom functoid. Refer to the sample solution
SampleCustomFunctoid.sln included with this book.

1. Create a new Class Library .NET project. Functoids can be coded in any .NET
language. This example is implemented in C#.

2. Add a reference to the Microsoft.BizTalk.BaseFunctoids.dll assembly located
in the %\Program Files\Microsoft BizTalk Server 2010\Developer Tools
directory.

3. Create a resource file (resx) to store the functoid configuration parameters. The
name of the file and the parameters should match what is shown in Listing 3–
20.

■Note Adding a bitmap (or any file) to a resource file may require using a third-party application. You can

download such applications freely from the Internet.

4. Code the functoid. The functoid code should match that shown in Listing 3–20.
This is a complete C# class library and will compile into a deployable functoid.

Listing 3–20. Custom Functoid Class Library

using System;
using Microsoft.BizTalk.BaseFunctoids;
using System.Reflection;

namespace SampleCustomFunctoid
{
 /// <summary>
 /// See sample solution (SampleCustomFunctoid.sln)
 /// which accompanies this recipe

http://

CHAPTER 3 ■ DOCUMENT MAPPING

142

 /// </summary>
 [Serializable]
 public class EncodeFunctoid : BaseFunctoid
 {
 public EncodeFunctoid() : base()
 {
 //Custom functoids should begin with 6000 or higher
 this.ID = 6667;

 // resource assembly reference
 SetupResourceAssembly
 ("SampleCustomFunctoid.SampleCustomFunctoidResource",
 Assembly.GetExecutingAssembly());

 //Set the properties for this functoid
 SetName("SAMPLECUSTOMFUNCTOID_NAME");
 SetTooltip("SAMPLECUSTOMFUNCTOID_TOOLTIP");
 SetDescription("SAMPLECUSTOMFUNCTOID_DESCRIPTION");
 SetBitmap("SAMPLECUSTOMFUNCTOID_BITMAP");

 // one parameter in, one parameter out
 this.SetMinParams(1);
 this.SetMaxParams(1);

 //Function code below
 SetExternalFunctionName(GetType().Assembly.FullName,
 "SampleCustomFunctoid.EncodeFunctoid", "EncodeChars");

 //Category in Toolbox where this functoid will appear
 this.Category = FunctoidCategory.String;

 //output of functoid can go to all nodes indicated
 this.OutputConnectionType = ConnectionType.All;

 // add one of the following lines of code for every input
 // parameter. All lines would be identical.
 AddInputConnectionType(ConnectionType.All);
 }

 // Actual function which does the replacement of symbols
 public string EncodeChars(String strInputValue)
 {
 strInputValue = strInputValue.Replace("&","&");
 strInputValue = strInputValue.Replace("<","<");
 strInputValue = strInputValue.Replace(">",">");

 return strInputValue;
 }
 }
}

5. Add a strong name key, and build the project.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

143

6. Place a copy of the assembly in the following directory: %\Program
Files\Microsoft BizTalk Server 2010\Developer Tools\Mapper Extensions.

7. To add the functoid to the toolbox, on the window toolbar, click Tools ➤

Choose Toolbox Items. In the Choose Toolbox dialog box, click the Mapper
Functoids tab. Click the Browse button, and select the functoid DLL from step
5, as shown in Figure 3–38. Then click OK.

8. Add the functoid to the Global Assembly Cache (GAC).

■Note Functoids can be tested in maps without deploying to the GAC.

Figure 3–38. Adding a custom functoid to the Toolbox

http://

CHAPTER 3 ■ DOCUMENT MAPPING

144

This completes the steps for creating a custom functoid. You can now add the functoid to a BizTalk
map and test it. When a map is ready for deployment, the functoid will need to be copied to the Mapper
Extensions folder (see step 6) and the GAC on the production server. Figure 3–39 shows the new functoid
with custom bitmap in the toolbox in Visual Studio.

Figure 3–39. The new functoid in the toolbox

How It Works

One of the biggest benefits to using custom functoids is that you have full access to the .NET libraries.
Inline code within maps gives only limited access to libraries, and coding is often primitive. Custom
functoids are created as .NET class libraries, and they have all of the related coding benefits.

The example shown in this recipe is very simple. Custom functoids do not have to be limited to the
two functions shown in the code. For example, assume that you need a functoid that does some sort of
interaction with a database. You may need to include an Init() function and a deconstructor to
terminate a connection, all of which can be included in the class library.

Additionally, you may need multiple input parameters for your functoid. Additional parameters can
be added very easily. See Listing 3–21 for an example of a functoid with three input parameters.

Listing 2-22. Multiple Input Parameters for a Custom Functoid

 SEE CODE FROM Listing 3–20.

 // three parameters in, one parameter out
 this.SetMinParams(3);
 this.SetMaxParams(3);

 ...

 // add one of the following lines of code for every input

http://

CHAPTER 3 ■ DOCUMENT MAPPING

145

 // parameter. All lines would be identical.
 AddInputConnectionType(ConnectionType.All); // input parameter 1
 AddInputConnectionType(ConnectionType.All); // input parameter 2
 AddInputConnectionType(ConnectionType.All); // input parameter 3

 }

 // Actual function which does the replacement of symbols
 public string EncodeChars(String strInputValue, strReplace1, strReplace2)
 {
 strInputValue = strInputValue.Replace("&",strReplace1);
 strInputValue = strInputValue.Replace("<",strReplace2);

 return strInputValue;
 }

3–15. Using the Date and Time Functoids

Problem

You are mapping a message in BizTalk Server and need to manipulate date and time fields. Specifically,
you must use the current date in order to determine a required date and time in the future, which is
added to the outbound message during mapping. Additionally, you must apply the processing time for
each document during mapping.

Solution

Within a map, use the Date and Time functoids provided with BizTalk Server. To apply the current
processing time to the outbound document within the map, take the following steps:

1. Click the toolbox, and then click the Date and Time Functoids tab. On the map
surface, in between the source and destination schemas, drag and drop a Date
and Time functoid. Since this functoid simply outputs the current date and
time, it requires no input values.

2. Connect the right side of the Date and Time functoid to the element in the
destination schema containing the date and time the message is processed.

To determine a future date based on the current date, take the following steps:

1. Drag and drop a Date functoid from the Date and Time Functoids tab of the
toolbox onto the map surface. This functoid is similar to the Date and Time
functoid but returns only the current date, as opposed to the current date and
time. It also requires no input values.

2. Drag and drop an Add Days functoid from the Date and Time Functoids tab
onto the map surface, positioning it to the right of the Date functoid. This
functoid accepts two input parameters: a date or datetime value, and a numeric
value indicating the number of days to add to the date supplied in the first
input parameter. The return value is the date with the specified amount of days
added.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

146

3. Connect the right side of the Date functoid to the Add Days functoid.

4. Specify the second input parameter for the Add Days functoid as a constant
with a value of 1.

5. Connect the right side of the Add Days functoid to the element in the
destination schema containing the future date.

How It Works

An example of a map that uses the Date and Time functoids is shown in Figure 3–40.

Figure 3–40. Using the Date and Time Functoids

This example captures the current date and time in the TransactionProcessingDateTime element,
which is supplied by the Date and Time functoid. The format of the date and time produced by the Date
and Time functoid is YYYY-MM-DDThh:mm:ss, which is ISO 8601-compliant. The time values are
notated in 24-hour format.

The future date that the deposited funds will be available is captured in the FundsAvailableDateTime
element. This value is based off the current date, supplied by the Date functoid, with a single day added
to it to provide tomorrow’s date, which is supplied by the Add Days functoid. The format of the Date
functoid’s output is YYYY-MM-DD, while the Add Days functoid accepts dates formatted as YYYY-MM-
DD or YYYY-MM-DDThh:mm:ss. The format of the Add Days functoid’s output is YYYY-MM-DD. All
date formats used by these two functoids are ISO 8601–compliant. The time values are notated in 24-
hour format.

The XML in Listing 3–22 represents one possible instance of the source schema.

Listing 3–22. Sample Source Instance for the Date/Time Functoid Example

<ns0:ATMDeposit xmlns:ns0="http:// DateTimeFunctoids.ATMDeposit">
 <ATMNumber>00111</ATMNumber>
 <AccountNumber>123456</AccountNumber>
 <Amount>100.00</Amount>
 <Currency>USD</Currency>
</ns0:ATMDeposit>

When passed to the map in Figure 3–40, this XML message will produce the outbound XML
document shown in Listing 3–23.

http://DateTimeFunctoids.ATMDeposit
http://

CHAPTER 3 ■ DOCUMENT MAPPING

147

Listing 3–23. Sample Output Instance for the Date/Time Functoid Example

<ns0:BankDeposit xmlns:ns0="http://Mapping.BankDeposit">
 <TransactionSourceNumber>00111</TransactionSourceNumber>
 <Account>123456</Account>
 <Amount>100.00</Amount>
 <Currency>USD</Currency>
 <TransactionProcessingDateTime>2010-09-06T16:32:05</TransactionProcessingDateTime>
 <FundsAvailableDateTime>2010-09-07</FundsAvailableDateTime>
</ns0:BankDeposit>

The Date and Time functoids provide a baseline set of functionality when needing to interrogate
and manipulate date and time values. In the bank account example, the Date and Time functoid
provides the current date and time, allowing a timestamp to be applied to the outbound document,
indicating the time that the message was processed. Often, messages include an element or elements
detailing the time that the message pertains to, or the time at which a message was created. The Date
and Time functoid is useful when the actual processing time (in this example, the time a deposit is
processed within a bank’s integration system) is required, which will likely be different from any time
value embedded in the source document. The difference between date and time values within a source
instance message and the actual processing time of the message can be particularly important when
dealing with batched or time-delayed processes.

This example also shows how you can use the Date and Add Days functoids in conjunction to
calculate a future date based on the day a message is processed. The current date is provided by the Date
functoid, which is used by the Add Days functoid to come up with a date that is a specified number of
days in the future. In the bank account scenario, this functionality is used to determine the day on which
deposited funds are available. Business rules like this can be common among financial institutions, as
validation procedures are often required when dealing with monetary transactions.

■Note You can also use a negative numeric value with the Add Days functoid, resulting in a date that is the

specified number of days in the past. For this example, the Date and Time functoid (substituting for the Date

functoid) could have been used as the first input parameter for the Add Days function, and the map would be

functionally equivalent. This is due to the fact that the Add Days functoid can accept either date or datetime

values, and in either case, produces only a value indicating a date (excluding a time element).

This bank account example can be extended to illustrate how the Time functoid can be used to add
a time component to the data capturing the date at which deposited funds are available. Currently, the
example simply calculates a date for this value, but it is likely that a financial institution would
additionally need to know the time at which deposited funds should be made available for use. Since the
Add Days functoid produces only date values (without a time component), you must use a Time
functoid, in addition to a String Concatenate functoid. To implement this enhancement, take the
following steps:

1. On the mapping grid, in between the source and destination schemas, drag and
drop a Time functoid. Since this functoid simply outputs the current time, it
requires no input values.

2. Drag and drop a String Concatenate functoid onto the mapping grid. This
functoid allows multiple string values to be concatenated, or added, together.

http://Mapping.BankDeposit
http://

CHAPTER 3 ■ DOCUMENT MAPPING

148

3. Delete the current connection between the Add Days functoid and the element
in the destination schema containing the future date that the deposited funds
will be available in the bank account.

4. Connect the right side of the Add Days functoid to the String Concatenate
functoid.

5. Specify the second input parameter for the String Concatenate functoid as a
constant, with a value of T. This value is required in between the date and time
portions of a datetime value for ISO 8601–compliant values.

6. Connect the right side of the Time functoid to the String Concatenate functoid.
The String Concatenate functoid should look like Figure 3–41.

Figure 3–41. The String Concatenate functoid with time values

7. Connect the right side of the String Concatenate functoid to the element in the
destination schema containing the future date that the deposited funds will be
available in the bank account.

Figure 3–42 shows an example of a map implementing these changes.

Figure 3–42. Using the Time functoid

http://

CHAPTER 3 ■ DOCUMENT MAPPING

149

Based on the same source XML used in the preceding example, the map in Figure 3–42 will produce
the XML document shown in Listing 3–24, with a time component included in the
FundsAvailableDateTime element.

Listing 3–24. Sample Output Instance for the Time Functoid Example

<ns0:BankDeposit xmlns:ns0="http://Mapping.BankDeposit">
 <TransactionSourceNumber>00111</TransactionSourceNumber>
 <Account>123456</Account>
 <Amount>100.00</Amount>
 <Currency>USD</Currency>
 <TransactionProcessingDateTime>2010-09-06T16:32:04</TransactionProcessingDateTime>
 <FundsAvailableDateTime>2010-09-07T16:32:05</FundsAvailableDateTime>
</ns0:BankDeposit>

One common challenge when dealing with datetime values is standardizing on a common format.
This issue can be seen with dates adhering to the MM-DD-YYYY (common in the United States) or DD-
MM-YYYY (common in Europe and other areas) format. Unfortunately, BizTalk Server does not have any
Date and Time functoids that do complex datetime formatting. There are a number of ways to handle
this issue. The simplest way is to use string functoids provided with BizTalk Server to manipulate and
standardize the order of year, month, and day values. Specifically, you can use String Extract functoids to
pull out values within a date (in this scenario, you would pull out the DD, MM, and YYYY values in three
separate String Extract functoids), and then a String Concatenate functoid to combine the individual
values in the correct format (in this scenario, you would append the three values in an order of YYYY-
MM-DD).

There are also more robust ways of implementing complex date/time formatting. One option is to
use the Scripting functoid, which provides access to the libraries of C#, VB .NET, and JScript .NET (either
via inline code embedded in the map, or by referencing external assemblies written in one of the .NET-
compliant languages). Additionally, you could use a custom functoid (which would leverage the
datetime functionality of a .NET language).

3–16. Creating Functoid If-Then-Else Logic

Problem

You need to map values from the source to the destination message depending on whether a logical
condition evaluates to true or false.

Solution

Define the logical condition that the mapping actions should be based on by dragging logical functoids
from the toolbox onto the map surface. Any functoid or combination of functoids that returns a Boolean
value can establish the logical condition, but these functoids can return only true or false.

In this example, the logical condition will check whether the amount of a sale is greater that 1,000,
as shown in Figure 3–43.

http://Mapping.BankDeposit
http://

CHAPTER 3 ■ DOCUMENT MAPPING

150

Figure 3–43. Creating the logical operator

Only large sales should appear under the <BigSales> element in the destination message, so the
logical condition will check if the Amount in the source message is greater than 1,000. The following steps
define the logical operation that determines mapping actions, as shown in Figure 3–44.

1. Drag a Greater Than functoid from the Logical Functoids tab of the toolbox
onto the map surface.

2. Select the Amount field of the input message. Drag the cursor over the Greater
Than functoid while pressing the mouse button to establish the first
comparison value.

3. Right-click the functoid on the map surface, and select Properties.

4. In the Properties window, click the Input Parameters field, and select the
ellipsis that appears.

5. Define the constant value in the Configure Functoid Inputs dialog box.

Figure 3–44. Defining the comparison value

http://

CHAPTER 3 ■ DOCUMENT MAPPING

151

Next, define the mapping actions that depend on the evaluation of the logical condition. In this
example, the contents of the <Sales> elements should map to different parts of the destination message,
so the map must use the Boolean outcome of the logical comparison as input to a Value Mapping
functoid.

1. Drag a Value Mapping functoid from the Advanced Functoids tab of the toolbox
to the right and below the Greater Than functoid.

2. Create a link from the Greater Than functoid to the Value Mapping functoid.

3. Create a link from the Amount field of the input message to the Value Mapping
functoid to determine the value mapped when the logical condition is true.

4. Create a link from the Value Mapping functoid to the SaleAmount field
appearing under the BigSales record to define where the large value will occur
in the destination message.

The Value Mapping functoid defines the action the map should take when the logical condition
evaluates to true. Both the amount of the big sale and the name of the sales representative must appear
in the destination message in this example, so the map must use two Value Mapping functoids, as shown
in Figure 3–45.

Figure 3–45. Defining conditional mapping actions

BizTalk must also know that it should create only the <RepSales> element in the destination
message when the amount is greater that 1,000. Establishing a link from the logical operator to the
RepSales element will ensure that BizTalk creates this parent to the actual values mapped.

When the logical condition evaluates to false, BizTalk should map the sale to the <SmallSales> part
of the destination message. The map can check this directly by placing a Not Equal functoid on the
mapping surface and comparing to the result of the logical comparison established earlier with a
constant value equal to true, as shown in Figure 3–46.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

152

Figure 3–46. Defining the else condition

Finally, define the mapping actions that BizTalk should take when the logical comparison is not
true. In this example, the Value Mapping functoids simply need to map under the <SmallSales> element
in the destination message.

1. Drag a Value Mapping functoid onto the map surface.

2. Create a link from the Not Equal functoid that represents the else case to the
Value Mapping functoid.

3. Create a link from the Amount field of the source message to the Value Mapping
functoid.

4. Create a link from the Value Mapping functoid to the SaleAmount field
appearing under the SmallSales record to define where the small value will
occur in the destination message, as shown in Figure 3–47.

Figure 3–47. Completed If-Then-Else map

http://

CHAPTER 3 ■ DOCUMENT MAPPING

153

How It Works

Working with the BizTalk Mapper can be an unfamiliar process, even to experienced programmers.
Business rules defined in source code can be procedural and explicit, but the graphical depiction of a
BizTalk map can abstract the runtime behavior.

The link to the logical condition defines the information on which the map will perform the logical
operation. BizTalk will evaluate the logical condition for each occurrence of the information in the
source message, and remember the context of the logical condition when performing the output actions
dependent on it. This means that the Value Mapping functoid will automatically know the right Amount
and RepName values to map when the map executes.

The order of the Value Mapping functoid inputs is critical. The first input parameter must be either
true or false. The second input parameter specifies the value that the functoid will return when the first
parameter is true. While the order is established based on the order in which the inputs are connected to
the Value Mapping functoid, sometimes the order can get mixed up when modifying the functoid links.
There is no indication of the input parameter order on the mapping surface, but fortunately, it is easy to
check. Open the Configure Functoid Inputs window, and the Boolean value should appear first in the
list. Modify the order here by selecting one of the input parameters and clicking the up and down
arrows.

■Note In many cases, If-Then-Else logic using functoids like this can becoming complex and frustrating to

implement (and maintain!). The best approach frequently is to use an Advanced Scripting functoid with either XSLT

or C# to implement the logic.

This example establishes a logical condition and defines mutually exclusive mapping actions that
are directly determined from the evaluation of the logical conditions. Alternatively, a map can define
separate logical conditions independently. With this alternative approach, the developer must carefully
define the logical conditions to ensure that every input message will map to some outcome, and never
both. This becomes an increasingly important consideration as the logical comparison becomes more
and more complex.

When there are more than two mutually exclusive outcomes, the Not Equal functoid in this example
can be combined with additional logical comparisons by linking its result to the Logical AND functoid.
The result of the Logical AND functoid also evaluates to true or false, and the developer can define
actions to take based on this result, as with any other logical operator.

3–17. Calling Compiled Assemblies

Problem

You need to access logic contained within an external assembly while transforming a message via a
BizTalk Server map. The logic contained within the assembly cannot and should not be embedded
within the map.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

154

Solution

Create a map that uses the BizTalk Server Scripting functoid’s ability to call external assemblies. The
following steps outline the procedure:

1. Click the toolbox, and click the Advanced Functoids tab. On the map surface,
between the source and destination schemas, drag and drop a Scripting
functoid. This functoid’s input and output values are dependent on the logic
contained within the Scripting functoid.

2. Connect the left side of the Scripting functoid to the appropriate source data
elements or records. In this solution, no source data elements are used.

3. Configure the Scripting functoid.

a. While the Scripting functoid is highlighted on the mapping grid, right-click the functoid,
and select Configure Functoid Inputs.

b. In the Configure Scripting Functoid dialog box, on the Script Functoid Configuration tab,
select External Assembly for Script Type and the appropriate assembly, class, and method
for Script Assembly, Script Class, and Script Method, as shown in Figure 3–48. Then click
OK.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

155

Figure 3–48. Configuring a Scripting functoid with an external assembly

■Note You must add a reference to the external assembly to the Visual Studio project containing the map for it to

be available in the Configure Functoid Script dialog box. The external assembly must also be placed in the GAC.

c. To pass in a parameter, click the ellipsis to the right of Input Parameters in the Properties
window.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

156

d. In the Configure Functoid Inputs dialog box, on the Functoid Inputs tab, create or order
the appropriate input parameters for the method specified in step 2, as shown in Figure
3–49, and then click OK.

Figure 3–49. Configuring the Scripting functoid’s input parameters

4. Connect the right side of the Scripting functoid to the appropriate destination
data element or additional functoid (if further logic needs to be applied to the
data).

How It Works

In this example, the functoid in the map determine whether there is enough time before the event for
the tickets to be mailed to the purchaser. The XML snippet shown in Listing 3–25 represents one
possible instance of the source schema.

Listing 3–25. Sample Source Instance for the Scripting Functoid Example

<ns0:TicketRequest xmlns:ns0="http://Mapping.TicketRequest">
 <EventName>Chelsea vs. Arsenal</EventName>
 <EventDate>08/06/2010</EventDate>
 <Venue>Stamford Bridge</Venue>
 <NumberOfTickets>2</NumberOfTickets>
 <PurchasedBy>George Murphy</PurchasedBy>
 <MailTicketFlag>True</MailTicketFlag>
</ns0:TicketRequest>

Based on this source XML, the map will produce the XML document (assuming that the current date
is prior to August 4, 2010) shown in Listing 3–26, with the MailedTicketFlag appropriately set.

http://Mapping.TicketRequest
http://

CHAPTER 3 ■ DOCUMENT MAPPING

157

Listing 3–26. Sample Output Instance for the Scripting Functoid Example

<ns0:TicketOrder xmlns:ns0="http://Mapping.TicketOrder">
 <Title>Chelsea vs. Arsenal</Title>
 <Date>08/06/2010</Date>
 <Venue>Stamford Bridge</Venue>
 <NumOfTickets>2</NumOfTickets>
 <TicketHolder>George Murphy</TicketHolder>
 <MailedTicketFlag>True</MailedTicketFlag>
</ns0:TicketOrder>

This example demonstrates one of the many reasons why external assemblies may need to be called
from a BizTalk Server map. Here, the external assembly provides access to a configuration value. This
value is held in a configuration file (but alternatively could be held in a database or other data store),
which is updated over time by system administrators and business analysts. For the purposes of this
example, the following configuration value was used.

<add key="MinimumDaysAdvanceForMailedTickets" value="-2" />

The value of -2, which represents the minimum number of days required to mail tickets to a
purchaser, is added to the EventDate element (by the Add Days functoid), resulting in a date value two
days prior to the event (08/04/2006 in this example). The current date (supplied by the Date functoid) is
then compared to the calculated date value (by the Less Than logical functoid) to determine if there is
enough time to mail the purchased tickets. Finally, if there is ample time to mail the tickets, and the
source document indicates the purchaser requested tickets to be mailed, the MailedTicketFlag element
in the destination message is set to true.

The benefit of having the MinimumDaysAdvanceForMailedTickets value stored in a file external to
BizTalk, as opposed to being hard-coded within the actual map, is that a change to the value does not
require a redeployment of BizTalk Server artifacts for the modification to be applied. Additionally, by
encapsulating the custom logic in an external assembly, any changes to that logic will require only that
the external assembly is rebuilt and redeployed to the GAC. No changes to the BizTalk Server
environment (aside from a BizTalk service restart to immediately apply the changes in the redeployed
custom assembly) are required. Implementing this logic in an external assembly has the additional
benefits of allowing reuse of the logic, minimizing code maintenance, and providing access to the
debugging utilities within Visual Studio.

■Note You can step into the external assembly in debug mode by running the external assembly solution in Visual

Studio in debug mode, attaching to the process of the Visual Studio solution containing the BizTalk Server map,

and testing the map.

In addition to using a generic external assembly, a custom functoid could also have been used to
implement the configuration value retrieval logic. It is important to consider the differences between the
two options prior to selecting your design. The main benefit of using a custom functoid is that the
assembly is hosted within the BizTalk Server environment. The actual assembly file is located within the
BizTalk Server program file directory, and the functoid can be added to the Functoid Toolbox within the
development environment. Using generic external assemblies is sometimes a requirement, however,
such as when the existing logic contained within them needs to be accessed directly (without
modification to the source code or assembly location). This may be the case when using third-party or
proprietary assemblies, where you do not have access to the source code.

http://Mapping.TicketOrder
http://

CHAPTER 3 ■ DOCUMENT MAPPING

158

Other common examples of logic contained in external assemblies are complex database-retrieval
mechanisms, calculations above and beyond what is possible with the out-of-the-box mathematical
functoids, and complex date and string formatting.

■Caution Care should be taken with regard to data types for values passed into and out of external assemblies.

For example, if a source document element having a data type of xs:int is used as an input parameter for a

method contained in an external assembly, it will be passed as an integer. Likewise, if the output from an external

assembly is used to populate a destination document element having a data type of xs:int, it should be returned

as an integer.

3–18. Using Inline C#

Problem

You are mapping a message in BizTalk Server and must implement custom logic via an inline C# code
snippet. The custom logic should be embedded within the map.

Solution

Create a map that uses the BizTalk Server Scripting functoid’s ability to call inline C#. The following
steps outline the procedure:

1. Click the toolbox, and click the Advanced Functoids tab. On the map surface,
between the source and destination schemas, drag and drop a Scripting
functoid. This functoid’s input and output values are dependent on the logic
contained within the Scripting functoid.

2. Connect the left side of the Scripting functoid to the appropriate source data
elements or records. This specifies the order and location of the Scripting
functoid’s input parameters.

3. Configure the Scripting functoid.

a. While the Scripting functoid is highlighted on the mapping grid, click the ellipsis to the
right of the FunctoidScript item in the Properties window.

b. In the Configure Scripting Functoid dialog box, on the Script Functoid Configuration tab,
select Inline C# for Script Type and enter your custom C# logic in the Inline Script Buffer
text box, as shown in Figure 3–50 (the code for this is shown in Listing 3–27. Then click
OK.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

159

Figure 3–50. Configuring a Script functoid to call inline C#

■Note You can import tested C# code from a file by clicking the Import from file button.

Listing 3–27. Inline C# Code

string EUDateTimeFormat = "dd/MM/yyyy HH:mm:ss";
string EUDateFormat = "dd/MM/yyyy";

public string UStoEUDateFormatter(string USDate)
{
 return Convert.ToDateTime(USDate).ToString(EUDateFormat);
}

http://

CHAPTER 3 ■ DOCUMENT MAPPING

160

c. Drag the appropriate source field and drop it on the left-hand side of the Scripting
functoid (as the input parameter).

d. In the Configure Functoid Inputs dialog box, create or order the appropriate input
parameters for the method specified in step 2, and then click OK.

e. Connect the right side of the Scripting functoid to the appropriate destination data
element or additional functoid (if further logic needs to be applied to the data).

How It Works

An example of a map that uses the BizTalk Server Scripting functoid’s ability to call inline C# is shown in
Figure 3–51.

In this example, auction bids from the United States are transformed into European Union (EU)
bids. The Scripting functoids used in the map format the date and datetime values common in the
United States to those that are common in the EU. The XML snippet in Listing 3–28 represents one
possible instance of the source schema.

Listing 3–28. Sample Source Instance for the Inline C# Example

<ns0:AuctionBidUS xmlns:ns0="http://Mapping.AuctionBidUS">
 <BidID>12345</BidID>
 <LotID>123–456</LotID>
 <BidDate>09/25/2010</BidDate>
 <LotCloseDateTime>09/18/2010 23:59:59</LotCloseDateTime>
</ns0:AuctionBidUS>

Figure 3–51. Using the Scripting functoid to call inline C#

Based on this XML snippet, the map displayed will produce the XML document shown in Listing 3–
29. Notice that the format of the BidDate and LotClosedDateTime values have been changed from
MM/DD/YYYY and MM/DD/YYYY hh:mm:ss format to DD/MM/YYYY and DD/MM/YYYY hh:mm:ss
format, respectively.

Listing 3–29. Sample Output Instance for the Inline C# Example

<ns0:AuctionBidEU xmlns:ns0="http://Mapping.AuctionBidEU">
 <BidID>12345</BidID>
 <LotID>123–456</LotID>
 <BidDate>25/09/2010</BidDate>
 <LotCloseDateTime>18/09/2010 23:59:59</LotCloseDateTime>
</ns0:AuctionBidEU>

http://Mapping.AuctionBidUS
http://Mapping.AuctionBidEU
http://

CHAPTER 3 ■ DOCUMENT MAPPING

161

Date formatting like this is one of countless examples where custom logic could be needed within a
BizTalk Server map. In the auction bid example, date and datetime values were formatted with inline C#
to account for regional differences. Additionally, in the first Scripting functoid, two variables were
defined that specify the date and datetime format for the EU. This illustrates another helpful use of
Scripting functoids: the ability to create global variables that can be used by any other functoid within
the map. In the example, the UStoEUDateFormatter method in the second Scripting functoid referenced
the EUDateTimeFormat variable that was defined in the first Scripting functoid.

■Note All methods defined in inline Scripting functoids should have unique names. This is important to avoid

naming conflicts, as all inline script is embedded within the map inside CDATA tags.

You can format dates in a number of different ways within a BizTalk Server map. In our example, we
used inline C#, but we could have used either of the other available script languages (VB .NET or JScript
.NET), an external assembly, or a custom functoid.

■Note You can reuse methods within other Scripting functoids by calling them just like you would as if they were

being called in standard .NET. There is no need to copy and paste the methods with the exact same code and a

different name. You can simply declare them as public and then call them from other Scripting functoids.

Inline scripting is a good option when a simple implementation of custom logic is needed, and the
logic is unlikely to be leveraged outside the map. It is important to recognize a key limitation of inline
scripting: debugging utilities. Because the inline script is embedded into the map’s XSLT, stepping into
the code at runtime is not possible. One possible way to allow easier debugging of an inline script is to
first create and test it in a separate executable or harness. This will allow you to use the robust debugging
utilities of Visual Studio. Once the code has been fully tested, it can be placed into a Scripting functoid.

The fact that the inline script is saved in the XSLT of the map has another important consequence:
only those libraries available to XSLT style sheet scripts may be leveraged. The following are available
namespaces:

• System: The system class

• System.Collection: The collection classes

• System.Text: The text classes

• System.Text.RegularExpressions: The regular expression classes

• System.Xml: The XML classes

• System.Xml.Xsl: The XSLT classes

• System.Xml.Xpath: The XPath classes

• Microsoft.VisualBasic: The Visual Basic script classes

http://

CHAPTER 3 ■ DOCUMENT MAPPING

162

3–19. Passing Orchestration Variables into Maps

Problem

You need to include information from variables in an orchestration in the destination message of a
BizTalk mapping.

Solution

Begin by creating a new message schema with fields for capturing the information from the
orchestration, as shown in Figure 3–52. The information from the orchestration variables must be set in
a separate message from the input message, referred to here as a context message. In this recipe, the
mapping will transform a customer purchase message for the customer support department, and the
orchestration will define the support information with the business process. BizTalk will use the new
message schema to capture the support information.

Figure 3–52. Defining the context message schema

Follow these steps to set up the orchestration.

1. To access the fields of this message easily from within the orchestration, define
them as distinguished fields. Right-click the context message schema tree, and
select Promote ➤ Show Promotions. In the Promote Properties dialog box,
select each field in the left window, and click the Add button, as shown in
Figure 3–53. Then click OK.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

163

Figure 3–53. Designating the distinguished fields

2. Define the following orchestration properties on the Orchestration View tab
(see Figure 3–54):

• Messages

• msgInputMessage (map to the Input message schema)

• msgOutputMessage (map to the Output message schema)

• msgContext (map to the MapContext schema)

• Orchestration variables

• strSupportCode (a string)

• strSupportCodeExpires (also a string)

• xmlXmlDoc (of type System.Xml.XmlDocument)

http://

CHAPTER 3 ■ DOCUMENT MAPPING

164

Figure 3–54. The orchestration messages and variables

3. In the Orchestration Designer, drag a Message Assignment shape from the
toolbox onto the orchestration surface. In the properties of the Construct
Message shape that appears around the Message Assignment shape, specify
msgContext as the only message constructed, as shown Figure 3–55.

Figure 3–55. The Construct Message

http://

CHAPTER 3 ■ DOCUMENT MAPPING

165

4. Double-click the Message Assignment shape to open the BizTalk Expression
Editor window. Load an XML string conforming to the schema of the context
message into the xmlXmlDoc variable. Then create the msgContext message by
assigning the loaded XmlDocument variable to it. This example uses the code
shown in Listing 3–30 and in Figure 3–56.

■Note Obtain a sample XML string by right-clicking the schema in the Solution Explorer and selecting Generate

Instance. Copy and paste this into the LoadXml method.

Listing 3–30. Build the Context Message

xmlXmlDoc.LoadXml("<ns0:MapContext xmlns:ns0=
'http://PassingOrchestrationVariablesIntoMaps.MapContext'>
<SupportCode>SupportCode_0</SupportCode> <SupportExpires>SupportExpires_0</SupportExpires>
</ns0:MapContext>");

msgContext = xmlXmlDoc;

Figure 3–56. The Message Assignment

Once instantiated, the values in MapContextMsg can be set anywhere in the orchestration. For
simplicity in this example, they are created and set in the same Message Assignment shape, and the
expiration is the same day that the context message is created, as shown in Listing 2-31 and Figure 3–57.

Listing 2-31. Set the Values in the Orchestration

msgContext.SupportCode = "R-2";
msgContext.SupportExpires = System.DateTime.Now.ToString("yyyy-MM-dd");

http://PassingOrchestrationVariablesIntoMaps.MapContext
http://

CHAPTER 3 ■ DOCUMENT MAPPING

166

Figure 3–57. Setting the values of the context message

Once the context message contains the required orchestration information, the BizTalk
orchestration must create the mapping. The orchestration must create mappings that have more than
one source or destination message.

1. Drag a Transform shape onto the Orchestration Designer surface.

2. Double-click the new Transform shape to open the Transform Configuration
dialog box.

3. Specify the source messages to be the msgInputMessage and MapContextMsg
messages, as shown in Figure 3–58.

Figure 3–58. Configuring map source messages

4. Specify msgOutputMessage for the destination message, and then click OK.

BizTalk will generate a new transformation with two input messages and one output message. One
of the input messages will be the MapContextMsg message containing the values from the orchestration.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

167

The developer can choose to either drive mapping logic from these values or map them directly to the
destination message as in this example, as shown in Figure 3–59.

■Caution BizTalk may not be able to recognize the second schema if the project name begins with a number.

Figure 3–59. Defining mapping logic from the source messages

How It Works

BizTalk developers often think about translation among message types when defining integration
processes in an orchestration. They can place a Transform shape directly within an orchestration to
transform a message into different formats, so it seems that the transformation and orchestration are
integral to each other. However, the BizTalk mapper cannot directly access the contextual information
of the business process and the logic existing in the orchestration.

The BizTalk Mapper can natively access many resources outside the map with the default functoids.
For example, the Database Lookup functoid can access records in a database, and the Scripting functoid
can invoke an external assembly. However, the most direct way to access information about the context
of the business process is by creating a message specifically for capturing the state of the business
process. Add the information required in the mapping to this additional message, and then add the
context message as an additional input message to the map.

The possible reasons for passing information from an orchestration into a mapping with a second
message are as varied as the capabilities of BizTalk orchestrations. However, in all cases, the mapping
destination message must contain information that cannot or should not be added to the schema of the
input message. Here are some examples:

• A standards body such as RosettaNet sets the source message schema, and it
should not change.

• The mapping must access message context properties. A map cannot access these
values. For example, if the SMTP adapter is used, an orchestration can access the
sender with the SMTP.From property but not directly from the BizTalk Mapper. The
destination message may need this information.

• The mapping must include information about the business process that is not
known until runtime and is required in the orchestration. Rather than duplicating
the logical definitions, define each definition once within the orchestration and
pass the information to the mapping.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

168

• BizTalk must be capable of modifying the mapped values without redeploying the
BizTalk artifacts. For example, the BizTalk rules engine can be easily invoked from
within an orchestration and facilitates additional capabilities like rule versioning
and seamless deployment.

3–20. Using Inline XSLT

Problem

You need to map an incoming document with a node containing a document that matches exactly the
destination schema. All of the nodes in the source document need to be mapped in their entirety to the
destination document. Both the source and the destination schemas have target namespaces, and the
namespaces must be preserved.

Solution

By using inline XSLT within a Scripting functoid, you can create the target document with the
appropriate nodes and the correct namespace. Listing 3–32 shows a sample input document.

Listing 3–32. Sample Input Document for the Inline XSLT Example

<ns0:SampleSource xmlns:ns0="http://Sample.Source">
 <ID>ID_0</ID>
 <Payload>
 <SampleDestination>
 <Name>Name_0</Name>
 <Address>Address_0</Address>
 <Company>Company_0</Company>
 </SampleDestination>
 </Payload>
</ns0:SampleSource>

The inline XSLT is written to parse the incoming document as a whole; there is no need to have an
input to the Scripting functoid. The output of the Scripting functoid occurs under the node that the
output is tied to—in this case, the XSLT output will be directly below the SampleDestination element.
When XML documents contain namespaces, use the local-name() qualifier to reference a specific node
by name. Because of the requirement that the namespaces be preserved, it is necessary to copy each of
the nodes in the source document’s Payload node (which consists of an Any element that can contain any
XML structure) separately to the destination document.

Figure 3–60 shows the configuration for the Scripting functoid with the inline XSLT for the <Name>
element. Additional nodes (such as Address and Company) can be added using the same code pattern. See
Listing 3–33 for the XSLT code.

Listing 3–33. XSLT Code

<xsl:if test=”//*[local-name()=’SampleDestination’])/*[local-name()=’Name’]”>
 <xsl:element name=”Name”>
 <xsl:value-of select=”//*[local-name()=’SampleDestination’]/*[local-name()=’Name’]”/>
</xsl:element>
</xsl:if>

http://Sample.Source
http://

CHAPTER 3 ■ DOCUMENT MAPPING

169

Figure 3–60. Configuring the Scripting functoid to use inline XSLT

This XSLT script will produce the desired XML document on output, as shown in Listing 3–34.

Listing 3–34. Sample Output Document for the Inline XSLT Example

<ns0:SampleDestination xmlns:ns0="http://Sample.Dest">
 <Name>Name_0</Name>
 <Address>Address_0</Address>
 <Company>Company_0</Company>
</ns0:SampleDestination>

http://Sample.Dest
http://

CHAPTER 3 ■ DOCUMENT MAPPING

170

How It Works

The two expected solutions to this, the Mass Copy functoid or the <xsl:copy-of> function, both end up
requiring additional logic and code outside the map due to the presence of the namespaces. These can
be solved in orchestration mapping but not in maps outside orchestrations. An additional approach
would be to reference an external XSLT file where more complex functions are available.

The Mass Copy functoid, designed specifically to copy entire documents to a destination node, is a
graphic representation of the XSLT <xsl:copy-of> function. Both of these copy the entire source
document to the destination document. The problem is that the source document namespace will be
copied to the target document, regardless of the node level being copied. There is no simple way in XSLT
to remove the source document namespace. For instance, if in the given solution for this recipe, the
inline XSLT was changed to simply read:

<xsl:copy-of select="//*[local-name()='Payload']"/>

The following document would be created on output of the map (note that the root node contains
the namespace of the source schema):

<Payload xmlns:ns0="Sample.Source">
 <SampleDestination>
 <Name>Name_0</Name>
 <Address>Address_0</Address>
 <Company>Company_0</Company>
 </SampleDestination>
</Payload>

If a Mass Copy functoid were used on the Payload node, the following document would be produced
(note that the root node repeats itself and that it contains the namespace of the source schema):

<ns0:SampleDestination xmlns:ns0="http://Sample.Dest">
 <SampleDestination xmlns:ns0="http://Sample.Source">
 <Name>Name_0</Name>
 <Address>Address_0</Address>
 <Company>Company_0</Company>
 </SampleDestination>
</ns0:SampleDestination>

The output document for both of these approaches is not the desired outcome. However, if the
mapping is being done in an orchestration, the output document will be in a message that can now be
accessed and corrected in a Message Assignment shape, using the code in Listing 3–35.

Listing 3–35. Message Assignment

// xmlDoc is a variable of type System.Xml.XmlDocument()
// msgSampleDestination contains the output of the map

// xpath will access the contents of the SampleDestination node
xmlDoc = xpath(msgSampleDestination, "/*/*");

// populate the message
msgSampleDestination = xmlDoc;

Another option would be to move the entire solution to an external XSLT document, where more
complex functions such as templates are available, and reference it in the map directly rather than using
the mapping functions. This can be done by selecting properties on the map being developed and
indicating the path to the XSLT file in the Custom XSLT Path property.

http://Sample.Dest
http://Sample.Source
http://

CHAPTER 3 ■ DOCUMENT MAPPING

171

■Note One of the greatest skills in BizTalk mapping is becoming proficient with XSLT. Functoids are great, but

knowing how to code is even better! Do yourself a favor and learn how to apply Inline XSLT scripting to your maps.

You will be astounded at how much easier it is to write a map that is intelligent and maintainable.

In summary, a number of approaches can be taken to map an incoming document with a node
containing a document that matches exactly the destination schema. The cleanest and most viable
approach is described in this recipe’s solution. Quicker and more convoluted solutions involve using the
Mass Copy functoid and <xsl:copy-of> function. An additional approach is to move the mapping
completely out of the map into a separate XSLT document. The appropriate solution must be decided by
the developer.

3–21. Using XSLT Call Templates

Problem

You want to use the inline XSLT call template functionality within the Scripting functoid and understand
the difference between inline XSLT and an inline XSLT call template.

Solution

Use the following steps to add an Inline XSLT Call Template functoid call to a map. The steps assume the
schemas shown in the map in Figure 3–61 are being used.

Figure 3–61. Scripting/XSLT call template in a map

1. Click the toolbox, and then click the Advanced Functoids tab. Drop a Scripting
functoid onto the map surface.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

172

2. While the Scripting functoid is highlighted on the mapping grid, click the
ellipsis to the right of the FunctoidScript item in the Properties window. In the
Configure Scripting Functoid dialog box, on the Script Functoid Configuration
tab, select Inline XSLT Call Template for Script Type, place the code shown in
Listing 3–36 into the Inline Script Buffer text box, and then click OK.

Listing 3–36. Template Code

<xsl:template name="CreateCompanySchema">
<xsl:param name="ID" />
<xsl:param name="Name" />
<xsl:param name="Role" />
<xsl:param name="Age" />
<xsl:element name="Company">
 <xsl:element name="ID">Default Company ID</xsl:element>
 <xsl:element name="Name">Default Company Name</xsl:element>
 <xsl:element name="Employees">
 <xsl:element name="Employee">
 <xsl:element name="ID"><xsl:value-of select="$ID" /></xsl:element>
 <xsl:element name="Name"><xsl:value-of select="$Name" /></xsl:element>
 <xsl:element name="Role"><xsl:value-of select="$Role" /></xsl:element>
 <xsl:element name="Age"><xsl:value-of select="$Age" /></xsl:element>
 </xsl:element>
</xsl:element>
</xsl:element>
</xsl:template>

3. Create four input parameters by dropping each of the four nodes (ID, Name,
Role, and Age) in the source document onto the Scripting functoid.

4. Drop the output of the functoid onto the root node (Company) of the destination
schema.

5. Test the map. Assuming that the input document that is shown in Listing 3–37
is used as input, the document shown in Listing 3–38 will be output.

Listing 3–37. Input Document for the Call Template Example

<ns0:Person xmlns:ns0="http://UsingCallTemplate.Person">
 <ID>1</ID>
 <Name>S. Brekalo</Name>
 <Role>Acupuncturist</Role>
 <Age>33</Age>
</ns0:Person>

Listing 3–38. Output Document for the Call Template Example

<Company>
 <ID>Default Company ID</ID>
 <Name>Default Company Name</Name>
 <Employees>
 <Employee>
 <ID>1</ID>
 <Name>S. Brekalo</Name>
 <Role>Acupuncturist</Role>
 <Age>33</Age>

http://UsingCallTemplate.Person
http://

CHAPTER 3 ■ DOCUMENT MAPPING

173

 </Employee>
 </Employees>
</Company>

How It Works

Calling an XSLT template is very similar to using inline XSLT. The main difference is the way in which
values within the source document are passed and accessed. With inline XSLT, node values in the source
document are accessed through XSL methods, whereas with called XSLT templates, the values are
passed in as parameters.

In the case where code may need to be reused for multiple nodes, it may be more advantageous to
create a template that can be reused without modifying the code. Templates will also allow for more
traditional programming techniques, such as setting and updating variables dynamically within the
template (for example, the ability to update a variable to store the number of loops that have occurred
within a for-each loop).

Listing 3–39 demonstrates the use of inline XSLT rather than a called XSLT template. The output of
Listing 3–39 will produce the same output as that of the XSLT template code shown earlier in Listing 3–36.

Listing 3–39. Inline XSLT for Comparison

<xsl:element name="Company">
 <xsl:element name="ID">Default Company ID</xsl:element>
 <xsl:element name="Name">Default Company Name</xsl:element>
 <xsl:element name="Employees">
 <xsl:element name="Employee">
 <xsl:element name="ID">
 <xsl:value-of select="//*[local-name()='ID']" />
 </xsl:element>
 <xsl:element name="Name">
 <xsl:value-of select="//*[local-name()='Name']" />
 </xsl:element>
 <xsl:element name="Role">
 <xsl:value-of select="//*[local-name()='Role']" />
 </xsl:element>
 <xsl:element name="Age">
 <xsl:value-of select="//*[local-name()='Age']" /></xsl:element>
 </xsl:element>
 </xsl:element>
 </xsl:element>
</xsl:element>

3–22. Using XSLT Group-By

Problem

You need to define mapping from an input message with a flat structure to an output message grouping
elements by the values of fields in the input message.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

174

Solution

The input message must have records containing a field on which the grouping should be performed, as
well as the information that needs to be grouped together. The output message needs to define records
for each group and a field containing the aggregated information. The input message may have a
structure similar to the XML in Listing 3–40.

Listing 3–40. Sample Source Message for the XSLT Group-By Example

<ns0:Sales xmlns:ns0="http://tempURI.org">
 <Sale>
 <Amount>100.01</Amount>
 <RepName>Megan</RepName>
 </Sale>
 <Sale>
 <Amount>200.01</Amount>
 <RepName>Megan</RepName>
 </Sale>
 <Sale>
 <Amount>10.10</Amount>
 <RepName>Leah</RepName>
 </Sale>
 <Sale>
 <Amount>2000</Amount>
 <RepName>Misti</RepName>
 </Sale>
 <Sale>
 <Amount>50.10</Amount>
 <RepName>Leah</RepName>
 </Sale>
</ns0:Sales>

To create the mapping, follow these steps:

1. Click the toolbox, and click the Advanced Functoids tab. Place a Scripting
functoid on the map surface and connect it to the record that will contain each
group in the destination message.

2. While the Scripting functoid is highlighted on the map surface, click the ellipsis
to the right of the FunctoidScript item in the Properties window. In the
Configure Scripting Functoid dialog box, on the Script Functoid Configuration
tab, select Inline XSLT for Script Type.

3. Create an xsl:for-each element in the inline XSLT script, and define the groups
to create in the output message by selecting the unique values of the grouping
field. This statement will loop through each unique value appearing in the
input message.

4. Inside the xsl:for-each element, create the record that should contain the
group and the field containing the value that must be aggregated for the group.
The current() function obtains the current iteration value of the xsl:for-each
element’s select statement. Listing 3–41 shows the inline XSLT.

http://tempURI.org
http://

CHAPTER 3 ■ DOCUMENT MAPPING

175

Listing 3–41. Inline XSLT Group-By Script

<xsl:for-each select="//Sale[not(RepName=preceding-sibling::Sale/RepName)]/RepName">
 <RepSales>
 <RepTotalAmount>
 <xsl:value-of select="sum(//Sale[RepName=current()]/Amount)"/>
 </RepTotalAmount>
 <RepName>
 <xsl:value-of select="current()"/>
 </RepName>
 </RepSales>
</xsl:for-each>

This XSLT script will produce the XML message shown in Listing 3–42, containing one RepSales
element for each sales representative with the total sales and name of the representative.

Listing 3–42. Sample Destination Message for the XSLT Group-By Example

<ns0:SalesByRep xmlns:ns0="http://tempURI.org">
 <RepSales>
 <RepTotalAmount>300.02</RepTotalAmount>
 <RepName>Megan</RepName>
 </RepSales>
 <RepSales>
 <RepTotalAmount>60.2</RepTotalAmount>
 <RepName>Leah</RepName>
 </RepSales>
 <RepSales>
 <RepTotalAmount>2000</RepTotalAmount>
 <RepName>Misti</RepName>
 </RepSales>
</ns0:SalesByRep>

How It Works

The key feature of this inline XSLT example is the select statement appearing in the xsl:for-each
element. This statement will create a list of values to create a group for, containing the distinct values of
RepName in our example. Each RepName is located at //Sale/RepName in the input message. However, the
select statement should obtain only the first occurrence of each distinct group value. This inline
example achieves this by adding the filter [not(RepName=preceding-sibling::Sale/RepName)] to the
select statement. The xsl:for-each element will loop through the first occurrence of each unique
grouping value, and the value can be obtained within the xsl:for-each element with the current()
function.

When the filter expression evaluates a Sale element, the condition RepName=preceding-
sibling::Sale/RepName is true whenever there is an element appearing before it with the same RepName
value. Placing the condition inside the not() function makes it true only when there are no preceding
elements with the same RepName value, so it is only true for the first occurrence of each distinct RepName
value.

The inline XSLT script in Listing 3–41 calculates the total sales of each representative and creates
one record in the output message containing the total sales and the sales representative’s name.

In addition to grouping fields in the output message, the map may need to perform aggregations for
the groups of input message values. Perhaps BizTalk cannot determine the specific groupings that the

http://tempURI.org
http://

CHAPTER 3 ■ DOCUMENT MAPPING

176

map needs to perform until runtime, or static links may not be practical because of a large number of
possible groups.

When inline XSLT performs the grouping, BizTalk applies the filter expression to the //Sale
statement, which means BizTalk applies the filter expression to every Sale element in the input message.
For each input message, the expression checks the value of every preceding-sibling and returns true
when none of the preceding-sibling elements has the same RepName value. This algorithm is not
efficient for large messages.

There is a generally more efficient alternative XSLT approach to the group by problem. This
alternative approach is the Muenchian method. The Muenchian method is generally more efficient than
the inline solution presented here, but the default BizTalk functoids cannot implement it. The
Muenchian method declares an xsl:key element at the top level of the XSLT style sheet. The map
directly obtains a node set for each distinct RepName with an xsl:key, eliminating the computational cost
of checking every preceding sibling incurred with inline XSLT. However, since the top level of the
xsl:stylesheet element must declare the xsl:key element, inline XSLT cannot implement it. Only a
separate style sheet file can implement the Muenchian method. Place the XSLT style sheet in Listing 3–
43 in a separate file for this example.

Listing 3–43. Sample Group-By Style Sheet

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:key name="SalesByRepKey" match="Sale" use="RepName"/>
 <xsl:template match="/">
 <ns0:SalesByRep xmlns:ns0='http://tempURI.org'>
<xsl:apply-templates select="//Sale[generate-id()=
generate-id(key('SalesByRepKey', RepName)[1])]"/>
 </ns0:SalesByRep>
 </xsl:template>
 <xsl:template match="Sale">
 <RepSales>
 <RepTotalAmount>

<xsl:value-of select="sum(key('SalesByRepKey', RepName)/Amount)" />
 </RepTotalAmount>
 <RepName>
<xsl:value-of select="RepName" />
 </RepName>
 </RepSales>
 </xsl:template>
</xsl:stylesheet>

Specify the external XSLT file used by a BizTalk map (see the next recipe for steps on doing this).

3–23. Using an External XSLT File for a Map

Problem

You are fed up with the mapper and can’t stand using functoids. You have a complex map that you feel
like getting done programmatically, and you want to shell out to real XSLT.

http://www.w3.org/1999/XSL/Transform
http://tempURI.org
http://

CHAPTER 3 ■ DOCUMENT MAPPING

177

Solution

It is quite simple to shell out to an XSLT document. Take these steps:

1. Right-click the map surface, and select Properties.

2. Click the ellipsis next to the Custom XSLT Path property, and open the file
containing the custom XSLT.

3. Compile the map. The XSLT file is included in the BizTalk assembly and does
not need to be deployed separately.

How It Works

Sometimes, it is best to use XSLT directly, instead of using the BizTalk mapping functionality. This can
be for a variety of reasons but generally is useful when there is a lot of complex mapping that uses If-
Then-Else to populate fields. Because this type of logic can get complex with the use of Value Mapping
functoids, pure XSLT can be much easier to use. See Figure 3–62.

Figure 3–62. Shelling out to an external XSLT style sheet

■Note You cannot use both an external XSLT style sheet and functoids within a single map.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

178

3–24. Testing Maps

Problem

You have developed a map and are ready to test and view its output.

Solution

For the purposes of testing, there are two basic types of maps:

• Simple maps, which consist of a single source schema and single destination
schema

• Complex maps, which consist of two or more source schemas and/or two or more
destination schemas

This solution will work through both types, illustrating several techniques for creating the necessary
input documents and obtaining the test results. Figure 3–63 shows a simple map, with a Company schema
being mapped from a combination of a Person schema and hard-coded values in two String Concatenate
functoids.

Figure 3–63. A simple map

Use the following steps to test a simple map:

1. In the Solution Explorer, right-click the map to test and select Properties. The
Property Pages dialog box contains the properties listed in Table 3–3.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

179

Table 3–3. Map Properties

Property Description

Validate TestMap Input Boolean value indicating whether the source document will be
validated against the source schema. For testing, it is often easiest to
leave this to False in the early stages of development.

Validate TestMap Output Boolean value indicating whether the output document should be
validated against the destination schema. For testing, it is often easiest
to leave this to False in the early stages of development.

TestMap Input Instance Path to the file that contains an instance of the source schema. Used
when the TestMap Input property is not set to Generate Instance.

TestMap Input Indicates the origin of the source document. If set to Generate
Instance, BizTalk will generate an instance in memory that contains
values for all attributes and elements in the source schema. If set to XML
or Native, BizTalk will look for an instance of the document in the
location specified in the TestMap Input Instance property. Native
indicates a non-XML file, such as a flat file.

TestMap Output Indicates the format of the output document. The document will be
output to a file stored in a temporary directory on Windows and
accessible through Visual Studio.

■Note All test map output files are stored in the following directory: $\Documents and Settings\[current

user]\Local Settings\Temp_MapData.

2. If you’re testing with the TestMap Input property set to Generate Instance,
right-click the map, and select Test Map (see Figure 3–64). This will cause
BizTalk to write to the Output window in Visual Studio and display any errors
that may exist. If no errors exist in the map, a link to the test’s output XML file
will be made available.

http://

CHAPTER 3 ■ DOCUMENT MAPPING

180

Figure 3–64. The context menu of a map

3. If you’re testing with the TestMap Input property set to XML or Native, and no
instance currently exists, follow these steps:

a. Right-click the source schema in the Solution Explorer, and select Properties. Set the path
where an instance of the output document should be written. Click OK when the
properties have been set appropriately.

b. Right-click the source schema, and select Generate Instance.

c. Open the document created in the previous step. BizTalk will give default values to all of
the elements and attributes in the schema. Edit these with appropriate values for your
testing needs. When you’re generating instances from schemas, all Any elements and Any
attributes will be created. These will fail validation when a map is tested. Either delete
these from the generated instance or replace them with a value that would be expected.

d. Right-click the map in the Solution Explorer, and select Properties.

e. Set the TestMap Input Instance property to the path of the instance created in step 3c.
Set the Test Map Input property to the appropriate type. Click OK.

f. Right-click the map, and select Test Map. This will produce an output document that can
be validated for accuracy. Check the Output window in Visual Studio for details in case of
failure.

Testing complex maps requires several more steps to create a valid input instance. The main
difference in testing the two types of maps lies in how the input instances are generated.

When a map has multiple source schemas, they are wrapped in a hierarchy created by BizTalk. This
hierarchy must be matched if using anything other than Generate Instance for the TestMap Input. In
cases where nodes such as Any elements or Any attributes exist in the source documents, generated
instances will fail during testing. It then becomes a requirement to create by hand an instance of the
multipart input document.

A map can have two or more source documents specified through the use of a Transform shape in a
BizTalk orchestration (as shown in Figure 3–65).

http://

CHAPTER 3 ■ DOCUMENT MAPPING

181

Figure 3–65. Specifying two source schemas on a map in a Transform shape

Figure 3–66 shows a complex map with a Company schema being mapped from a combination of two
source schemas, Person and SourceCompanyInfo.

Figure 3–66. A complex map

There is never a time in which multiple native instances can be set as source, since the only place
that a map with multiple source schemas can be created is in a Transform shape within an
orchestration. Therefore, the following steps are specific to creating XML instances that match the
multipart input instance needed and can be taken to aid in producing a valid source instance:

http://

CHAPTER 3 ■ DOCUMENT MAPPING

182

4. To generate an instance of the source schema, create a temporary map that is
the inverse of what you are trying to produce. In the case of the example shown
in Figure 3–67, the map would consist of the Company schema being the single
source schema, with the Person and SourceCompanyInfo being the two
destination schemas. The intention is to have BizTalk generate an output
message that closely resembles the needed input instance. When namespaces
are involved, this is all the more important, as prefixes will be added by BizTalk
when creating the multipart message. Figure 3–67 illustrates the inverse
mapping.

Figure 3–67. Inverse complex map used to generate an input instance

5. Once a temporary map has been created, right-click the map in the Solution
Explorer, and select Properties. Check that the TestMap Input property is set to
Generate Instance.

6. Right-click the map in the Solution Explorer, and select Test Map. This will
produce an output document. The output of the map shown in Figure 2-69 is
shown in Listing 3–44.

Listing 3–44. Output of the Inverse Map

<ns0:Root xmlns:ns2="http://TestingMaps.SourceCompanyInfo"
xmlns:ns0="http://schemas.microsoft.com/BizTalk/2003/aggschema"
xmlns:ns1="http://TestingMaps.Person">
 <OutputMessagePart_0>
 <ns1:Person>
 <ID>ID_0</ID>
 <Name>Name_0</Name>
 <Role>Role_0</Role>
 <Age>Age_0</Age>
 </ns1:Person>
 </OutputMessagePart_0>
 <OutputMessagePart_1>
 <ns2:SourceCompanyInfo>
 <ID>ID_0</ID>
 <CompanyName>Name_0</CompanyName>
 </ns2:SourceCompanyInfo>
 </OutputMessagePart_1>
</ns0:Root>

http://TestingMaps.SourceCompanyInfo
http://schemas.microsoft.com/BizTalk/2003/aggschema
http://TestingMaps.Person
http://

CHAPTER 3 ■ DOCUMENT MAPPING

183

7. Copy the output document into a text editor, and manually change the names
of the OutputMessage nodes to InputMessage nodes so that the outcome is a valid
instance of the input document for the true map. In this case, you want a
document that can be used as the input for the map shown in Figure 3–66, as
shown in Listing 3–45. The bold elements in the example are the only elements
that need to be modified.

Listing 3–45. Input Instance Produced by Modifying Output from Listing 3–44

<ns0:Root xmlns:ns2=http://TestingMaps.SourceCompanyInfo
xmlns:ns0="http://schemas.microsoft.com/BizTalk/2003/aggschema"
xmlns:ns1="http://TestingMaps.Person">
<InputMessagePart_0>
<ns1:Person>
<ID>ID_0</ID>
<Name>Name_0</Name>
<Role>Role_0</Role>
<Age>Age_0</Age>
</ns1:Person>
</InputMessagePart_0>
<InputMessagePart_1>
<ns2:SourceCompanyInfo>
<ID>ID_0</ID>
<CompanyName>Name_0</CompanyName>
</ns2:SourceCompanyInfo>
</InputMessagePart_1>
</ns0:Root>

8. Once the modifications have been made to the document, save it to a file. This
document can now be used as a valid input instance for the valid map (you can
delete the temporary map at this time). Right-click the valid map in the
Solution Explorer, and select Properties. Set the TestMap Input property to XML
and TestMap Input Instance to the file that you just created.

9. Right-click the map in the Solution Explorer, and select Test Map. This will
produce an output document that can be validated for accuracy. Check the
Output window in Visual Studio for details in case of failure.

How It Works

The difficulty in testing maps lies in the creation of the source schema instances. There are a number of
ways in which these instances can be created. The objective of this solution was to provide the steps
necessary for creating documents that would allow for the testing of both simple maps and complex
maps. Additionally, the steps necessary for producing the test output were described.

http://TestingMaps.SourceCompanyInfo
http://schemas.microsoft.com/BizTalk/2003/aggschema
http://TestingMaps.Person
http://

CHAPTER 3 ■ DOCUMENT MAPPING

184

3–25. Debugging a Map Using Visual Studio

Problem

You need to step through your map code just like you would with other .NET code in order to debug.

Solution

Debugging a map can be done using the following steps:

1. Specify an input document to test the map with (right-click the map, and set it
in the properties).

2. In the Solution Explorer, right-click the map to debug, and select Debug Map
(see Figure 3–68).

Figure 3–68. Selecting Debug Map

3. Immediately, the map will open in a classic debugger. You can set breakpoints
in the XSL that is shown (see Figure 3–69).

http://

CHAPTER 3 ■ DOCUMENT MAPPING

185

Figure 3–69. Actively Debugging

How It Works

Debugging a map is very straightforward, and can be useful in many situations. With some maps, such
as Inline XSLT Call Templates, the debugger is not of much use, but for the majority of cases, it can be
very helpful. Prior to BizTalk 2010, there were some techniques to debug the map, but they were not as
readily available and easy to implement. Standard debug shortcuts apply, including

• F10 to step over the code

• F11 to step into the code (includes stepping into inline scripts, such as C#, and
functoids)

• F9 to toggle a breakpoint

F5 to continue

http://

CHAPTER 3 ■ DOCUMENT MAPPING

186

http://

C H A P T E R 4

■ ■ ■

187

Messaging and Pipelines

Messaging is the core functionality provided within BizTalk Server. On a very basic level, it is the
plumbing that moves messages from one location to another. A number of different parts or objects
make up this plumbing, taking actions at each step of a message’s path through BizTalk Server.
Generally speaking, messaging objects can be split into two categories: receive and send. Figure 4–1
outlines the stages a message goes through as it is processed.

Figure 4–1. BizTalk messaging architecture

The receive objects enable the publishing side of BizTalk Server’s publish/subscribe architecture.
They publish messages into the MessageBox database, the central repository for all messages handled by
BizTalk Server. The following objects are involved with receiving messages:

• Receive location: Handles the actual retrieval of messages from a specified
location. The following are the main objects included within receive locations:

• The receive adapter defines the location and method (file, MSMQ, SQL, and so on)
to retrieve messages.

• The receive pipeline allows decoding, decryption, disassembling, and validating
messages against a schema. Receive pipelines also enable party resolution. A
custom pipeline component can implement custom logic.

• Receive port: Groups one to many receive locations and defines any
transformation (or mapping) that occurs on messages being received by the
receive port.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

188

The send objects enable the subscribing side of BizTalk Server’s publish/subscribe architecture.
They subscribe to messages in the MessageBox database and deliver the messages onward to destination
locations. The following objects are involved with sending messages:

• Send port: Handles the actual delivery of messages to a specified location. The
following are the main objects included within send ports:

• A filter defines the subscriptions for the send port. Promoted properties define
these subscriptions and determine which messages the send port will handle. (See
Recipe 1-3 for details on promoted properties.)

• A map defines any transformation occurring on messages sent through the send
port. (See Chapter 2 for details on document mapping.)

• The send pipeline allows assembling, validating against a schema, encoding, and
encrypting messages. A customer pipeline component can also implement
custom logic.

• Send port group: Groups one to many send ports and defines the filter(s) used to
determine the messages handled by the send ports.

As the MessageBox database receives a message, BizTalk Server checks to see what active
subscriptions (send port filters, for example) there are for that message and routes the message to each
of the appropriate subscribers. This publish/subscribe architecture facilitates adding new consumers of
information, making it easy to deliver messages to additional systems if needed. Once the MessageBox
database receives a message, BizTalk can deliver it to any number of subscribing destination systems.

While the MessageBox database holds all messages that are processed by BizTalk Server, messaging
objects (receive ports, receive locations, send ports, and send port groups) are stored in the
Management database. In BizTalk Server 2010, messaging objects can be associated with an application,
which is a logical grouping of all objects related to a specific application or solution (including
messaging objects, orchestrations, schemas, and so on). The application concept facilitates the
management of a wide variety of BizTalk objects that are essentially part of one unit of work.

Messaging objects are created and managed through the BizTalk Administration Console. A number
of other tools are also available for managing messaging objects. This chapter focuses on using the tools
provided with BizTalk Server to “lay the pipes” for your integration solutions.

■Note In previous editions of BizTalk Server, some administration could be done through BizTalk Explorer in

Visual Studio. This option is no longer available in BizTalk 2010.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

189

4–1. Configuring Receive Ports and Locations

Problem

You have messages from an external application or system that you want to receive into BizTalk Server.

Solution

In BizTalk, receive ports and receive locations are configured to receive data from other applications,
systems, or processes. As an example, the following solution describes the procedure for configuring a
one-way receive port and a location to receive data from another application via a file input.

1. Open the BizTalk Administration Console.

2. Under the appropriate BizTalk application, right-click the Receive Ports folder,
and add a new one-way receive port.

3. In the Name text box, name the receive port (PubSubReceive in our example).

4. Click the Receive Locations tab, and create a new receive location.

5. In the Name text box, enter a name for this location (PubSubFileReceive in this
example).

6. Set the properties as follows (see Figure 4–2), and then click OK.

• Type: FILE

• URI (address): Click the ellipsis, and navigate to or enter the path to a location where the
sample instance will be dropped (in this example,
C:\Users\Administrator\Desktop\Drops\ReceivePubSub)

• Receive pipeline: Microsoft.BizTalk.DefaultPipelines.XMLReceive pipeline

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

190

Figure 4–2. Receive location properties

How It Works

Receive ports and receive locations are used in tandem to receive data into the BizTalk environment.
Data could be from an internal application or an external entity across the Internet, for instance. Receive
locations are tied to a receive port; however, there can be many receive locations per port. There are two
types of receive ports:

• Static one-way: A port defined to receive data into BizTalk.

• Request response port: A port that is used to receive data, but then submit a
response back to the sending entity. An example of this could be a web service or
HTTP request (request/response–based transport).

Within the receive port configuration, an XML message can be transformed via inbound maps.
Associated with a receive port are one to many receive locations. Receive locations are the physical

entry point into the BizTalk MessageBox. The following receive location options can be configured:

• General: Configure the transport type and location. The transport type includes all
BizTalk out-of-the-box adapters (FILE, MSMQ, SQL, HTTP, and so on). The
location includes the physical location, input masking, authentication, and
batching options based on the transport type.

• Receive handler: The physical BizTalk host the receive location is to run under.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

191

• Receive pipeline: Receive pipelines are BizTalk components that support various
types of message construction. In addition, pipelines can be extended via .NET
code through the BizTalk interface iComponent. Common uses of pipelines are to
enable message transformation for non-XML messages, such as a flat file format
or a recordset from a database. In addition, receive pipelines can also be specified
for well-formed XML messages.

• Service window: Service window properties enable constraints on when a receive
location is active by date and time filters. This might be useful when dealing with
cost-prohibitive communication entities or nondedicated transport.

4–2. Configuring Send Ports

Problem

You have a document that you would like to send to a downstream application, partner, or process.

Solution

You use a send port to send documents from the BizTalk Server platform to other applications, partners,
or processes. Send ports are configured using the BizTalk Administration Console and can be used in a
pure messaging scenario (no orchestration) or from an orchestration.

■Note The ability to configure BizTalk artifacts via the BizTalk Explorer in Visual Studio is no longer available in

BizTalk Server 2010.

The steps for creating and configuring a send port are as follows:

1. From the BizTalk Administration Console, right-click Send Ports, and select
New ➤ Static One-way Send Port. The details behind the types of send ports are
as follows:

• Static one-way port: Static indicates that the properties are fixed and set at design time.
One-way indicates that there will be no response back to BizTalk after the message is
sent.

• Static solicit-response port: Static indicates that the properties are fixed and set at design
time. Solicit-response indicates that there will be a response back to BizTalk after the
message is sent.

• Dynamic one-way port: Dynamic indicates that properties will be set at runtime to define
the ultimate destination of the message. One-way indicates that there will be no
response back to BizTalk after the message is sent.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

192

• Dynamic solicit-response port: Dynamic indicates that properties will be set at runtime to
define the ultimate destination of the message. Solicit-response indicates that there will be
a response back to BizTalk after the message is sent.

2. The Send Port Properties dialog box will appear. Send port configurations are
divided into these categories: General, Transport, Maps, Filters, Certificates,
and Tracking properties. Set the properties as required (see the “How It Works”
section). Then, click OK to save the configurations and create the send port.

How It Works

Send ports are one of the fundamental BizTalk artifacts and are used to send any types of messages or
data from the BizTalk platform to physical locations, systems, or processes. Determining the type of
send port to create is important when constructing a solution. You may use send ports in pure
messaging or orchestration-based solutions.

You can configure various properties for send ports. Transport properties are available only for
static port types (one-way or solicit-response). Both a primary and a secondary transport can be defined.
The secondary transport will take effect if an error is encountered sending to the primary transport and
all retries as defined by the primary transport Retry Count setting were also attempted. Table 4–1
describes the Transport properties.

Table 4–1. Send Port Transport Properties

Property Description

Transport Type The type of adapter. If you chose a solicit-response port type, only those
adapters that support solicit-response, such as HTTP and SOAP, will be
available in the drop-down list.

Address (URI) Click the Configure button to launch a window for configuring the
properties specific to the adapter chosen as the transport type.

Retry Count Represents the number of times BizTalk Server will retry sending the
message if there is a problem during transmission.

Retry Interval Represents the number of minutes between retry intervals.

Ordered Delivery When set to True, BizTalk will guarantee the ordered delivery of messages.

Enable Routing for
Failed Messages

With this checked, failed messages will have certain context properties
promoted so that they can be routed to orchestrations or send ports.

Enable the Service
Window

When set to False, BizTalk will send messages at any time of day. When set
to True, BizTalk will send messages only within the Start Time and Stop
Time settings.

Start Time Indicates when BizTalk will start sending messages if Enable the Service
Window is set to True. Time is represented as HH:MM AM/PM.

Stop Time Indicates when BizTalk will stop sending messages if Enable the Service
Window is set to True. Time is represented as HH:MM AM/PM.

k

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

193

Send properties are the general properties that apply to all send ports. Table 4–2 describes the send
properties.

Table 4–2. Send Port Send Properties

Property Description

Tracking Sets how messages will be tracked. There are a number of options
around tracking message bodies and message properties.These can be
invaluable in troubleshooting or accessing failed documents.

Certificate Name A drop-down list of all certificates installed and available for use on the
send port.

Thumbprint The certificate’s thumbprint, which will fill in automatically if a
certificate name is selected.

Send Pipeline A drop-down list of the send pipelines available. You can select a
pipeline for processing messages sent over this send port.

Receive Pipeline A drop-down list of the receive pipelines available. For solicit-response
send ports, you can select a pipeline for processing the responses
received over this port.

Filters are used to create subscriptions when orchestrations are not part of the scenario. From the
Filters dialog box, you can create one or more filter expressions, which are used to filter messages to the
send port. There is a set of BizTalk properties for use in filtering, and promoted message properties can
be used for filtering as well. If you bind a send port directly to an orchestration port, the filters do not
apply. Maps are used to transform the document being sent. You may edit one or more maps to the
collection, but there may only be one map with a given source schema. Only maps deployed in
assemblies are available for selection.

Send ports have few requirements for basic operation. For example, you must specify the transport
mechanism, the transport location (such as the HTTP URL), and the BizTalk pipeline that will process
the message outbound from BizTalk.

4–3. Configuring Port Maps

Problem

Before receiving an XML message, you would like to transform a message into a predetermined XML
format.

Solution

Within BizTalk, you can map source messages into a destination format. You can map with a receive
port, an orchestration, or send port. Here, we will outline the steps for mapping in a receive port.

1. Open a receive port that you wish to configure a map on.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

194

■Note Remember that when setting a map on a receive port, it will apply to all receive location associated with

that port.

2. Click the Inbound Maps tab.

3. In the grid that opens, select a deployed map.It will automatically fill in the
source and target schemas, based on the map.A receive port can have multiple
maps associated with it.See Figure 4–3.

Figure 4–3. Selecting maps for port mapping

How It Works

This recipe’s solution described how to configure a receive port to perform inbound mapping
transformation. Remember that when you’re using a receive port, the inbound message must be in an
XML format. If inbound mapping is configured, the message must also conform to the schema of that
specified in the inbound format of the map in question. If the message does not match, the message will
fail in the map, and the message interchange will be marked for exception processing.

Another key concept to keep in mind when configuring receive port maps is that more than one
map can be specified on a receive port. Multiple XML schemas can be accepted by the receive port; it is
not tied to one specific schema. For example, if you have three purchase order document formats
arriving from external entities, you could transform each format to a common (canonical) format via
port maps on the receive port. This process is commonly referred to as document normalization. In this
instance, you could have three maps to support each format and a single receive port to satisfy the
solution. This scenario is demonstrated in Figure 4–4.

A key consideration when applying receive port maps is how you plan to handle exceptions, such as
an XML message that does not conform to a map, invalid XML received, and data enrichment required
during or before transformation. All of these exceptions could be handled within a port map or receive
location, or with downstream BizTalk orchestration functionality.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

195

Figure 4–4. Document normalization

4–4. Using Send Port Groups

Problem

You want BizTalk Server to send the same message to multiple downstream systems for further
processing.

Solution

To demonstrate how to send a message to multiple systems, we will use the example of sending data to
an enterprise resource planning (ERP) system. Suppose that you have an orchestration that sends sales
order information to your company’s ERP system. The business requires sales order information to be
available to other departments in your company that do not have access to the ERP system. The business
would like to see the data available via the internal data warehouse. Additionally, the business requires
minimal downtime for the existing deployed solution due to the need to process orders 24 hours a day, 7
days a week.

The solution is to create a send port to the data warehouse and create a send port group that will
manage sending messages from the orchestration to the existing ERP send port as well as the new data
warehouse send port. This recipe assumes that the orchestration already exists.

1. To create the new send port group, in the BizTalk Administration Console,
right-click Send Port Groups, and select New ➤ Send Port Group.

2. In the Send Port Group Properties dialog box, add one or more existing send
ports, as shown in Figure 4–5.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

196

Figure 4–5. Adding send ports to a send port group

3. Update the send port binding of the deployed orchestration, and choose the
send port group, as shown in Figure 4–6.

Figure 4–6. Updating your orchestration binding

4. Verify the send port group and referenced send ports are enlisted and started
before testing the updated orchestration binding.

How It Works

Send port groups are collections of send ports through which BizTalk Server can publish the same
message to multiple destinations using a single configuration. Send port groups are similar to send ports
in their ability to be bound to orchestrations, as well as be implemented in pure messaging scenarios
(via filter subscriptions).

Send ports that are included in a send port group process messages in two ways:

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

197

• As a participant in a send port group

• As a direct recipient of messages routed from BizTalk

Send port groups are incredibly useful in the situations where multiple parties are subscribing to the
same message using different messaging protocols or different message formats. For example, one
subscriber could receive an XML version of a message, and a separate subscriber could receive a flat file
version of that same message, without extra coding or changes to the orchestration that produced the
message. Another good use for a send port group is to keep backup files of the transactions sent from
BizTalk to external subscribers. Without changing the existing orchestration and with little effort, you
can implement a new send port and send port group that creates a backup of the existing message.

Send ports that are included in a send port group operate differently from send ports operating
independently. Keep the following considerations in mind when using send port groups:

Filters: Filters on send port groups do not override filters on individual send ports. Filters used on
both send ports and a send port group operate in a cumulative nature. If the same filter is used on a
send port group as well as the individual send ports within the group, it is likely that duplicate
messages will be sent. Special care must be given if filters are implemented on both send ports and
send port groups.

One-way static ports: Send port groups can use only static one-way send ports. The strength of send
port groups is the ability to send the same message to multiple subscribers. However, one limitation
of send port groups is that they can include only static one-way send ports.

Operating states: The operating state between send ports and send port groups is in dependent. The
states between send ports and send port groups are identical:

• Bound: The send port or send port group has been physically linked to an
orchestration.

• Enlisted: The send port or send port group has been associated with the message
to which it will be subscribing from the MessageBox.

• Started: The send port or send port group is ready to process messages matching
the appropriate message subscription.

Enlisted ports: You must verify that both send ports and their parent send port groups have been
enlisted and started before messages will be sent. Additionally, send ports must be enlisted or
started before a send port group can be started. However, a send port group can be enlisted,
regardless of the state of the individual send ports it references. The send port group must be
stopped before all of the individual send ports can be unenlisted.
Table 4–3 shows how state affects the behavior of message processing.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

198

Table 4–3. Send Port and Send Port Group States

Message Published Send Port Group State Send Port State Description

Send port Any state Started Message processed

Send port Any state Stopped Message suspended

Send port group Started Started Message processed

Send port group Any state Stopped Message suspended

Send port group Stopped Any state Message suspended

Send port groups are powerful tools for allowing multiple subscribers to subscribe to the same
message. Individual mappings for each subscriber can be maintained and implemented without
affecting other subscribers. Additionally, send port groups allow the ability to resubmit suspended
messages, if there is a communication problem, to a single system without having to resubmit to other
systems in the send port group.

4–5. Creating Validation Pipelines

Problem

You have an inbound or outbound document that requires validation beyond checking for well-formed
XML.

Solution

You can use a send or receive pipeline to perform a strict validation of an instance of an XML document
by providing validation against an XSD schema. BizTalk Server provides an XML Validator pipeline
component for validating XML (schema) documents. If the inbound or outbound document is not XML,
it must be converted to XML prior to validation. The following steps define how to create a receive
pipeline that can be used to validate an XML document. The steps are similar to those for configuring a
send pipeline.

1. Open the project that will contain the pipeline.

2. Right-click the project, and select Add ➤ New Item.

3. In the Add New Item dialog box, select Receive Pipeline, and provide a name.
Then click Add.

4. Drag the XML Validator component from the BizTalk Pipeline Components
section of the toolbox to the Drop Here location under the Validate label, as
shown in Figure 4–7.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

199

Figure 4–7. Creating an XML validator pipeline

5. Select the ellipsis next to the Document Schemas property for the XML Validator
component (in the Properties window) to launch the Schema Collection
Property Editor dialog box, shown in Figure 4–8.

6. Use the Schema Collection Property Editor to add schemas to the collection,
and then click OK.

7. Build and deploy the project.

Now that you have created the validation pipeline, when configuring the Receive Pipeline property
of a receive location, select the pipeline from the list of available receive pipelines.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

200

Figure 4–8. Schema Collection Property Editor dialog box

How It Works

Strict validation of an XML document is achieved with the use of a validation pipeline. The XMLReceive
receive pipeline and XMLTransmit send pipeline that come with BizTalk Server will validate only that an
XML document is well formed. It will not perform strict validation of the document, including data types
and restriction values (length, enumerations, patterns, and so on).

You use the XML Validator pipeline component to validate the instance document. This component
may be placed in any pipeline stage, except the Disassemble or Assemble stages. If you do not add a
schema using the Schema Collection Property Editor dialog box for the component, the component will
attempt to locate an appropriate schema to validate against based on the namespace and root node of
the document. If no schema is found to validate against, or the document fails validation, an error will
occur, and the instance will be terminated.

4–6. Creating Encryption Pipelines

Problem

You need to guarantee that only the intended recipient of a message can understand it by encrypting the
message. The recipient needs to verify the message sender by checking a digital signature included with
the message.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

201

Solution

You can implement an encryption mechanism for outgoing messages, as well as a decryption
mechanism for the inbound messages. As an example, suppose that you need BizTalk to send this
message shown in Listing 4–1 across the Internet to move the requested amount of money between the
specified accounts. This message contains sensitive information, including bank account numbers and a
Social Security number.

Listing 4–1. Sensitive Information

<ns0:MoneyTransfer xmlns:ns0="http://Creating_EncryptionPipelines.Confidential">
 <TransferAmount>108.37</TransferAmount>
 <TransferInitDate>2005-09-30</TransferInitDate>
 <FromAccount>0987-654–321</FromAccount>
 <ToAccount>1234–567-890</ToAccount>
 <RequestedBySSN>123-45-6789</RequestedBySSN>
 <RequestedByName>StacyR</RequestedByName>
</ns0:MoneyTransfer>

BizTalk sends the message with the encryption pipeline constructed in this recipe. The message
becomes encrypted, as shown in Listing 4–2. No one but the intended recipient can understand the
message.

Listing 4–2. Encrypted Message

Content-ID: {51572541-E6CE-4DD6-913C-B7C7558D2269}
Content-Description: body
Bcc:
MIME-Version: 1.0
Content-type: application/x-pkcs7-mime; smime-type=enveloped-data; name="smime.p7m"
Content-Transfer-Encoding: base64

MIAGCSqGSIb3DQEHA6CAMIACAQAxgbwwgbkCAQAwIjAUMRIwEAYDVQQDEwlkZXZvbmx5Y2ECCmEI
BAMAAAAAAAIwDQYJKoZIhvcNAQEBBQAEgYAH+kU66z4r4lZYzq1eOKNf0Yt1HVMBaYL61W5wrTPt
...
qQ+ubHBbgHMXyJl/SPylOtSN9XeQGZgBGKb2j+MeB0NEjHlRE22aDnazailnmgu2x588820wnQAA
AAAAAAAAAAA=

The message recipient decrypts the message with the decryption pipeline constructed in this recipe,
obtaining the same message as before encryption (see Listing 4–1).

The following sections show how to enable message encryption and decryption.

Send an Encrypted Message

To implement an encryption mechanism for outgoing message, follow these steps on the BizTalk Server
responsible for encrypting the message and sending it:

1. Obtain the public key certificate from the party that will securely receive the
message, and install it in the Local Computer\Other People folder, as shown in
Figure 4–9.

http://Creating_EncryptionPipelines.Confidential
http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

202

■Note BizTalk provides native support for MIME encryption decryption using X.509 version 3 certificates.

Microsoft Certificate Services can generate the certificates used by BizTalk.

Figure 4–9. Installing the public key of the receiver

■Note The certificate store can be opened by typing mmc at a command prompt. Click File ➤ Add/Remove

Snap-in.

2. Create an empty BizTalk solution, and add a new send pipeline to the solution
(right-click the project, select Add ➤ New Item, and select Send Pipeline from
the Add New Item dialog box). Give the send pipeline an appropriate name.

3. Drag the MIME/SMIME Encoder component from the BizTalk Pipeline
Components section of the toolbox to the Encode stage of the send pipeline, as
shown in Figure 4–10.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

203

Figure 4–10. Adding the MIME/SMIME encoder

4. Right-click the encoder in the pipeline, and select Properties. Change the value
of the Enable encryption property to True, as shown in Figure 4–11.

Figure 4–11. Enabling pipeline encryption

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

204

5. Build and deploy the BizTalk project containing the send pipeline.

6. Create a send port to deliver the message to the recipient, using any transport
adapter desired.

7. In the Send section of the Send Port Properties dialog box, select the send
pipeline with the MIME/SMIME encoder component. Then select the public-
key certificate of the message receiver for the Certificate Name property.

Receive an Encrypted Message

To configure a decryption mechanism for an incoming message, follow these steps on the BizTalk Server
responsible for decrypting the message upon receipt:

1. Obtain a certificate from a certification authority (CA) containing a private key.

2. Log in to the BizTalk Server with the BizTalk service account credentials. Open
the certificate file containing the private key, and install it into the Current
User\Personal\Certificates folder of the BizTalk service account.

3. Create an empty BizTalk solution, and add a new receive pipeline to the
solution (right-click the project, select Add ➤ New Item, and select Receive
Pipeline from the Add New Item dialog box).

4. Drag the MIME/SMIME Decoder component from the BizTalk Pipeline
Components section of the toolbox to the Decode stage of the receive pipeline,
as shown in Figure 4–12.

Figure 4–12. Adding the MIME/SMIME decoder

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

205

5. Build and deploy the BizTalk project containing the receive pipeline.

6. Create a receive port and a receive location to accept the encrypted message
from the sender, using any desired transport adapter.

7. In the Receive Location Properties dialog box, specify the receive pipeline with
the MIME/SMIME decoder, as shown in Figure 4–13.

Figure 4–13. Configuring the decryption pipeline

8. Using the BizTalk Administration Console, open Platform Settings and select
Host Instances. Right click the BizTalk host that will receive the encrypted
message and select Properties.

9. Specify the decryption certificate BizTalk will use to receive messages. Secure
messages by pasting the thumbprint of the certificate containing the private key
into the Thumbprint field in the Certificates section of the Host Properties
dialog box.

How It Works

Organizations often deal with confidential information that only the message sender and recipient
should understand. For example, financial information may contain sensitive information such as Social
Security or bank account numbers. Medical information may contain private information protected by
law. Use the encryption capabilities of BizTalk to protect the confidentiality of sensitive information,
while still allowing two parties to share it easily.

BizTalk can transmit encrypted information across a network securely. This is particularly important
when transmitting messages over a public network, such as the Internet. If the two parties must keep the
message confidential, encryption can ensure only the intended recipient can understand it.

One option for ensuring the confidentiality of messages is to use a secure transport like HTTPS.
Securing the message transport can be effective, but the transport generally secures only
communication directly between two machines on a network. When a message has several network
hops before it arrives at the final destination, each hop must be secured individually, providing multiple
chances for a configuration error to expose the sensitive information. For example, HTTPS may securely

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

206

transmit a message to a trading partner, but then be transmitted without encryption over an insecure
transport within the trading partner’s internal network. To ensure a higher level of confidentiality, you
should encrypt the contents of the message, rather than depend on the communication protocol.
Message content encryption provides confidentiality over any transport, including transports or BizTalk
adapters that cannot support encryption, such as the FTP and SMTP adapters.

BizTalk’s encryption capabilities use certificates containing cryptographic key pairs of a public key and
a private key. The owner of a certificate can share the public key freely with anyone who wants to send the
owner confidential information. However, only the certificate’s owner should know its private key.

To encrypt a message, the sender obtains the public key of the message recipient and applies an
encryption algorithm to the message. The recipient uses the corresponding private key and the same
algorithm to decrypt and understand the message. Certificate owners must fiercely protect private keys
because anyone who possesses a private key can decrypt messages encrypted with the corresponding
public key. However, certificate owners must distribute public keys to anyone who wishes to send an
encrypted message.

BizTalk can securely transmit information to many recipients, using a different certificate for each
recipient. BizTalk will detect all certificates placed in the Local Computer\Other People certificate store
of the local machine. For example, if you have several trading partners that you must securely exchange
information with over the Internet, you can configure a different send port for each trading partner and
specify a different public key certificate in each send port.

The decryption certificate must be in the private store of the BizTalk service account receiving
encrypted messages. While BizTalk can use any number of public keys to send encrypted information,
each BizTalk host can have only one decryption certificate. Each certificate contains a unique identifier
called a thumbprint, which BizTalk uses to identify the correct certificate from this store to decrypt
messages. The thumbprint is calculated by applying a hashing algorithm to the certificate.

In addition to encryption, BizTalk can also add a digital signature to encrypted messages. The message
recipient can verify the signature using the sender’s public key to be guaranteed that the message
originated with the original sender and was not modified while in transit. To enable message signing, set
the Signature type property of the MIME/SMIME encoder component, as shown in Figure 4–14.

Figure 4–14. Enabling message signing

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

207

While each BizTalk host can have a unique decryption certificate, an entire BizTalk group can have
only one signing certificate. Specify the signing certificate by entering the thumbprint of the certificate
in the Group Properties dialog box for the BizTalk group, as shown in Figure 4–15. This can be accessed
by right-clicking the BizTalk Group in BizTalk Administration Console and selecting Properties.

Figure 4–15. Specifying the signing certificate

4–7. Creating Flat File Send and Receive Pipelines

Problem

You are integrating two systems that can communicate only via flat file messages and must provide the
mechanisms for receiving and sending the messages within BizTalk Server.

Solution

Create a flat file receive and send pipeline, as follows (these steps assume that a flat file schema has
already been created):

1. Open a project that contains a flat file schema.

2. Right-click the project, and select Add ➤ New Item.

3. In the Add New Item dialog box, select Receive Pipeline from the list of templates.
Give a descriptive name to your new pipeline, as shown in Figure 4–16, and then
click Add.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

208

Figure 4–16. Adding a new receive pipeline to a project

4. From the BizTalk Pipeline Components section of the toolbox, drag and drop a
Flat File Disassembler component into the Disassemble stage of the receive
pipeline.

5. With the Flat File Disassembler component highlighted, set the Document
schema property in the Properties window to the flat file schema
(CustomerSalesOrder in the example), as shown in Figure 4–17.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

209

Figure 4–17. Configuring a receive pipeline for a flat file schema

■Note Setting the Document schema property is required when using the Flat File Disassembler component. All

other properties are optional.

6. Save the receive pipeline.

7. Now create the Send Pipeline. Right-click the project, and select Add ➤ New
Item.

8. In the Add New Item dialog box, choose Send Pipeline from the list of
templates. Give a descriptive name to your new pipeline, as shown in Figure 4–
18, and then click Add.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

210

Figure 4–18. Adding a new send pipeline to a project

9. From the Pipeline Components section of the toolbox, drag and drop a Flat file
assembler component into the Assemble stage of the send pipeline.

10. With the Flat File Assembler component highlighted, set the Document schema
property in the Properties window to the flat file schema, as shown in Figure 4–19.

■Note If the Document schema property is not specified, runtime schema discovery will be attempted. During

schema discovery, BizTalk Server attempts to determine the correct flat file schema to assemble the message

with, based on the namespace and root node of the message.

Figure 4–19. Configuring a send pipeline

11. Save the send pipeline.

12. Build and deploy the solution.

Once the flat file schema and pipelines (CustomerSalesOrder, CustFlatFileReceive, and
CustFlatFileSend in this example) have been deployed, BizTalk Server can use them in message
processing.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

211

How It Works

Many systems in use today were designed and engineered prior to the advent of XML. To communicate
with these systems, it is often necessary to use flat file formats such as positional, delimited, or a
combination of the two. In our example, a simple positional flat file message is parsed into XML as
BizTalk Server receives the document. BizTalk Server then assembles the XML back into its correct flat
file format when sending the message to the appropriate subscribers.

More specifically, the custom receive pipeline created in the example (CustFlatFileReceive) is used
in a receive location that retrieves inbound flat file messages. This receive pipeline disassembles the flat
file message into an XML document by leveraging the out-of-the-box Flat File Disassembler pipeline
component. By setting the Document schema property on the Flat File Disassembler component, BizTalk
Server is instructed to apply the correct schema to inbound documents, thereby producing the
appropriate XML representation of the original flat file.

Figure 4–20 represents one possible instance of the inbound flat file document.

Figure 4–20. Example instance of the flat file

When passed through the FlatFileReceive pipeline created in the solution (which can be
implemented via a receive location), BizTalk Server disassembles the flat file into the following XML
message, based on the details defined within the CustomerSalesOrder.xsd schema (see Figure 4–21).

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

212

Figure 4–21. Example instance of the XML

Since the CustFlatFileSend pipeline (which can be implemented via a send port) is configured to
assemble instances of the CustomerSalesOrder.xsd message type back into flat file format, the original
flat file document would be output again (as shown previously in Figure 4–20).

As well as the required Document schema property, you can configure other optional properties for
the Flat File Disassembler component, as shown in Table 4–4.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

213

Table 4–4. Flat File Disassembler Optional Properties

Property Description

Header schema Defines the schema to apply to any header included in the flat file
message.

Preserve header Specifies if the flat file header should be stored in the message
context (properties). The message context contains metadata
about the message and is attached to the message throughout its
lifetime in BizTalk Server.

Recoverable interchange
processing

Specifies if the flat file disassembler should attempt to recover
from errors occurring during message processing.

Trailer schema Defines the schema to apply to any trailer included in the flat file
message.

Validate Document Structure Specifies if the configured schemas (document, header, and
trailer schemas) should be used to validate their respective
message parts (document, header, and trailer, respectively).

The custom send pipeline created is then used in a send port to deliver flat file messages to
subscribers. This send pipeline assembles the XML messages back into flat file format by using the Flat
File Assembler pipeline component provided with BizTalk Server. By setting the Document schema
property on the Flat File Assembler component, BizTalk Server is instructed to apply the correct schema
to outbound documents, thereby producing the appropriate flat file representations of the original XML
document.

Along with the required Document schema property, you can set the optional properties listed in
Table 4–5 for the Flat File Assembler component.

Table 4–5. Flat File Assembler Optional Properties

Property Description

Header schema Defines the schema to apply to the header portion of the flat file
message. If a header schema is defined on an instance message via
the XMLNORM. HeaderSpecName context property, it will override this
property setting.

Preserve byte order mark Specifies if a byte order mark (BOM) should be added to messages
passing through the pipeline.

Target charset Specifies the target character set, which is used as the outbound
message is encoded.

Trailer schema Defines the schema to apply to the trailer portion of the flat file
message.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

214

You can configure encoding of outbound messages in a number of different locations, and you
should understand the logic BizTalk Server uses to determine which to use if there are discrepancies.
Table 4–6 lists the methods that can be used to specify message encoding, ordered to reflect their
precedence. If none of the methods listed in Table 4–6 is used to configure message encoding, UTF-8 is
used.

Table 4–6. Methods for Encoding Outbound Messages

Method Description

Message– XMLNORM.TargetCharset This message context property takes precedence over all
other encoding configurations and will be used if its value is
set.

Component– Target Charset This Flat File Assembler pipeline component property will
be used if its value is set and none of the higher precedence
(XMLNORM.TargetCharset) values are set.

Schema– CodePage This schema property will be used if its value is set and
none of the higher precedence values (Target Charset or
XMLNORM.TargetCharset) are set.

Message– XMLNORM.SourceCharset This message context property will be used if its value is set
and none of the higher precedence values (CodePage, Target
Charset, or XMLNORM.TargetCharset) are set.

You can also configure flat files through their message headers. In addition to configuring the
header schema via the Flat File Disassembler or Flat File Assembler pipeline components, you can use
the XMLNORM.HeaderSpecName message context property.

One common challenge encountered when receiving flat file messages from source systems is
determining which schema to apply to different messages. This is particularly important when multiple
message types (for example, customer and order message types) are received from the same location.
Since flat file messages are not inherently self-describing, as XML messages are, it can be difficult to
determine which flat file message schema to apply to the inbound messages. In these scenarios, you can
use a solution similar to the Schema Resolver Component SDK example that comes with BizTalk Server.
This example shows how to implement a custom Flat File Disassembler pipeline component to
dynamically associate message types to inbound instances based on an identifier contained in each
instance message.

Finally, to assist in testing the assembling and disassembling of flat file messages, the FFAsm.exe and
FFDasm.exe tools are provided with BizTalk Server. These tools allow you to run the flat file assembler
and disassembler directly against instance messages. These tools can be particularly useful and time-
saving when working with large or complex flat file schemas.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

215

4–8. Creating Custom Pipeline Components

Problem

You need to create a context property to assist in the routing of the inbound message.

Solution

The BizTalk custom pipeline component can promote a context property of an inbound message. The
component does not alter the content of the original message, but rather creates a property and
promotes the property to the message context.

As an example of implementing a custom pipeline, we will use the code shown in Listing 4–3, which
is a complete C# class library that will compile into a complete custom pipeline assembly.

Listing 4–3. Sample Pipeline Assembly Class Library

//---
// File: PropertyPromotionPipelineExample.cs
//
// Summary: A sample of how to write a pipeline component that
// creates a context property.
//---

using System;
using System.IO;
using System.Collections;
using System.ComponentModel;
using System.Resources;
using System.Reflection;
// BizTalk classes
using Microsoft.BizTalk.Message.Interop;
using Microsoft.BizTalk.Component.Interop;

namespace PropertyPromotionPipelineExample
{
 /// <summary>
 /// BizTalk Server custom pipeline component that creates
 /// a custom context property for the inbound message.

 /// </summary>
 ///
 // Attribute declarations to identify this class is a pipeline component
 // and that the assembly can be used in any pipeline stage
 [ComponentCategory(CategoryTypes.CATID_PipelineComponent)]
 [ComponentCategory(CategoryTypes.CATID_Any)]
 [System.Runtime.InteropServices.Guid("63ed4b26-63cd-4d29-9661-f584c94cf858")]
 public class PropertyPromotionPipelineExample :
 Microsoft.BizTalk.Component.Interop.IBaseComponent
 , Microsoft.BizTalk.Component.Interop.IComponent

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

216

 , Microsoft.BizTalk.Component.Interop.IComponentUI
 , Microsoft.BizTalk.Component.Interop.IPersistPropertyBag
 {
 //Key for storage on property bag:
 private string m_propbagkey_customproprop
 = "SAMPLECUSTOMPROPROP";
 private string m_propbagkey_custompropropnamespace
 = "SAMPLECUSTOMPROPROPNAMESPACE";

 //Var to store design time value
 private string m_propname = "";
 private string m_propnamespace = "";

 static ResourceManager resManager = new ResourceManager("SampleCustom
PipelineComponent.SampleCustomPipelineComponent", Assembly.GetExecutingAssembly());

 public PropertyPromotionPipelineExample ()
 {
 // Default constructor logic
 }

 #region Public Properties
 // Display the following public properties for design time
 public string CustomContextPropertyName
 {
 get { return m_propname;}
 set { m_propname = value;}
 }

 // Display the following public properties for design time
 public string CustomContextPropertyNamespace
 {
 get { return m_propnamespace;}
 set { m_propnamespace = value;}
 }
 #endregion

 #region IBaseComponent members defines Description, Name, and Version
 public string Description
 {
 get
 {
 return "Sample Custom Pipeline Component";
 }
 }

 public string Name
 {
 get
 {
 return "Sample Custom Pipeline Component";
 }
 }

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

217

 public string Version
 {
 get
 {
 return "1.0";
 }
 }
 #endregion

 #region IComponent members contains the main implementation
 public IBaseMessage Execute(IPipelineContext pContext
 , IBaseMessage pInMsg)
 {
 // Create custom context property on message
 pInMsg.Context.Promote(m_propname, m_propnamespace, string.Empty);
 return pInMsg;
 }
 #endregion

 #region IComponentUI members contains design time information
 // Include a validate method used by BizTalk
 public IEnumerator Validate(object obj)
 {
 IEnumerator enumerator = null;
 // Return a null
 return enumerator;
 }
 // We do not have an icon for this custom component
 [Browsable(false)]
 public System.IntPtr Icon
 {
 get
 {
 // No icon associated with this pipeline component
 return IntPtr.Zero;
 }
 }
 #endregion

 #region IPersistPropertyBag members contains placeholders
 public void GetClassID(out Guid classid)
 {
 // Return class ID of this component for usage from unmanaged code.
 classid = new System.Guid("63ed4b26-63cd-4d29-9661-f584c94cf858");
 }

 public void InitNew()
 {
 // Initialization not implemented
 }

 public void Load(IPropertyBag propertyBag, Int32 errorlog)
 {
 // Load configuration property for component.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

218

 string val = (string)ReadPropertyBag(propertyBag,
 m_propbagkey_customproprop);

 if (val != null)
 m_propname = val;

 val = (string)ReadPropertyBag(propertyBag,
 m_propbagkey_custompropropnamespace);
 if (val != null)
 m_propnamespace = val;
 }

 public void Save(IPropertyBag propertyBag
 , Boolean clearDirty, Boolean saveAllProperties)
 {
 // Saves the current component configuration into the property bag.
 object val = (object)m_propname;
 WritePropertyBag(propertyBag,
 m_propbagkey_customproprop, val);

 val = (object)m_propnamespace;
 WritePropertyBag(propertyBag,
 m_propbagkey_custompropropnamespace, val);
 }

 private static object ReadPropertyBag(IPropertyBag propertyBag
 , string propertyName)
 {
 // Reads property value from property bag.
 object val = null;
 try
 {
 propertyBag.Read(propertyName, out val, 0);
 }
 catch(ArgumentException)
 {
 return val;
 }
 catch(Exception ex)
 {
 throw new ApplicationException(ex.Message);
 }
 return val;
 }

 private static void WritePropertyBag(IPropertyBag propertyBag
 , string propertyName, object val)
 {
 // Writes property values into a property bag.
 try
 {
 propertyBag.Write(propertyName, ref val);
 }
 catch(Exception ex)

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

219

 {
 throw new ApplicationException(ex.Message);
 }
 }
 #endregion
 }
}

Use the following steps to create, install, and implement a custom pipeline component.

1. Create a new Class Library .NET project as shown in Figure 4–22. Custom
pipeline components can be coded in any .NET language. This example is
implemented in C#.

Figure 4–22. Creating a C# Library for the custom pipeline component

2. Add a reference to the Microsoft.BizTalk.Pipeline.dll assembly located in the
%\Program Files\Microsoft BizTalk Server 2010 directory.

3. Develop the custom component code, which should match that shown in
Listing 4–3.

4. Build the component, and place a copy of the assembly in the pipeline
components folder located where BizTalk is installed (for example, C:\Program
Files\Microsoft BizTalk Server 2010\Pipeline Components).

5. To add the pipeline component to the Visual Studio toolbox, select
ToolsChoose Toolbox Items. In the dialog box, select the BizTalk Pipeline
Components tab, and then select the pipeline assembly created in step 4. The
component should appear in your toolbox, as shown in Figure 4–23.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

220

Figure 4–23. Adding a custom pipeline component to the toolbox

■Note Loading the Choose Toolbox Items dialog box may take some time.

6. To add and configure the custom component as a receive pipeline, create a new
BizTalk solution with the following items (see Figure 4–24 for the full solution
layout):

• Schema containing the message to be received.

• Property schema containing the context property implemented in the solution. For this
example, create a property schema that contains a string element named Routing.

• A receive pipeline that implements the custom pipeline component.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

221

Figure 4–24. Pipeline solution layout

How It Works

BizTalk includes out-of-the-box functionality for processing messages within receive and send pipelines.
However, situations may arise where custom processing of messages is required. For example, you may
need custom message validation, processing of flat files, or formatting of messages to HTML that BizTalk
does not natively support. Custom pipeline components offer incredible flexibility for preprocessing or
postprocessing messages via send and receive pipelines. Additionally, custom pipeline components can
coexist with native BizTalk pipeline components in the same pipeline.

In BizTalk solutions where message content or context determines routing, you may need to route
messages based on the lack of existence of a property. BizTalk does not have the ability to route on the
lack of property existence. However, you can use a custom pipeline component to create a property that
is always part of a message. Rather than check for the existence of the property, you can check whether
the property contains an empty string value. The solution that accompanies this recipe creates a custom
pipeline component that creates a context property for every message that is processed by the
component.

Creating custom pipeline components may seem like an extensive task due to the code required for
hosting the component in a BizTalk pipeline, as well as setting the design-time properties. In actuality,
there is a single method that contains the processing logic, and the remainder of the code supports the
component design-time properties.

Your first task in creating a custom pipeline component is to create a project reference to the
Microsoft.BizTalk.Pipeline.dll file contained in the main BizTalk installation folder. After you have
added the appropriate project reference, you must consider the implementation of the custom pipeline
component. There are three logical areas to a custom pipeline component to consider:

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

222

• Attributes and class declaration

• Design-time properties

• Implementation of the four pipeline interfaces: IBaseComponent, IComponentUI,
IPersistPropertyBag, and IComponent

The following sections describe each of these areas in more detail.

Attributes and Class Declaration

Consider how you plan on using the custom component, such as in a send or receive pipeline.
Additionally, consider the pipeline stage in which you plan on implementing the custom component.
The attributes and class declaration indicate to Visual Studio that the assembly is a custom pipeline
component. If you do not properly identify that you are creating a BizTalk custom pipeline component,
you will not be able to add the component to the Visual Studio toolbox or be able to add the component
to a pipeline stage. Here is the header section from the sample code shown previously in Listing 4–3:

 [ComponentCategory(CategoryTypes.CATID_PipelineComponent)]
 [ComponentCategory(CategoryTypes.CATID_Any)]
 [System.Runtime.InteropServices.Guid("63ed4b26-63cd-4d29-9661-f584c94cf858")]
 public class PropertyPromotionPipelineExample :
 Microsoft.BizTalk.Component.Interop.IBaseComponent
 , Microsoft.BizTalk.Component.Interop.IComponent
 , Microsoft.BizTalk.Component.Interop.IComponentUI
 , Microsoft.BizTalk.Component.Interop.IPersistPropertyBag

The sample custom component is identified, via the ComponentCategory attributes, as a pipeline
component for use in any pipeline stage. Additionally, the class declaration specifies that four interfaces
(IBaseComponent, IComponent, IComponentUI, and IPersistPropertyBag) will be implemented within the
class. The GUID is required for use in COM interop with unmanaged code.

Design-Time Properties

Custom component design-time properties are exposed via public declarations and appropriate get/set
methods. The following is the section of Listing 4–3 that demonstrates how two design-time properties
are exposed.

#region Public Properties
 // Display the following public properties for design time
 public string CustomContextPropertyName
 {
 get { return m_propname;}
 set { m_propname = value;}
 }

 // Display the following public properties for design time
 public string CustomContextPropertyNamespace
 {
 get { return m_propnamespace;}
 set { m_propnamespace = value;}
 }
#endregion

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

223

Implementation of the Four Pipeline Interfaces

The final logical area required in the creation of a custom pipeline component is the implementation of
four interfaces, as summarized in Table 4–7. The four interfaces provide the design-time and runtime
implementations for the custom component and serve as a guide. Not all of the interfaces must contain
code, and the IComponent interface contains the function that performs the message processing.

■Note If the custom component is to reside in either the Assemble or Disassemble pipeline stages, the

component must also implement the appropriate assemble/disassemble interface.

Table 4–7. Interface Implementation

Interface Description Implementation Notes

IBaseComponent Properties related to the basic
information about the custom
component.

Contains three properties that enable
the engine to retrieve the component
name, version, and description.

IComponentUI Defines the properties for
displaying the custom component
in the design-time user interface
as well as the validation rules for
design-time properties.

Contains two methods: one that
allows the validation of the
component’s configuration and
another that provides a pointer
reference to the icon that will be
displayed in the development tool set
for the custom component. If null is
set for the pointer, the default icon
will be used.

IPersistPropertyBag Custom pipeline properties that
are displayed at runtime when
using the custom assembly in a
pipeline.

Enables a component to store and
receive its configuration information.

IComponent Defines the method used by all
pipeline components.
Assembler/disassembler custom
components implement their own
interface.

Contains the main function that
performs the heavy lifting and
processing of the inbound/outbound
message. This method takes as
parameters the pipeline context and
incoming message.

IBaseComponent

IBaseComponent contains three read-only properties that return the description, version, and name of the
component to the design-time environment and other tools interested in basic component information.
Implementing the IBaseComponent is straightforward and requires implementing only the three read-

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

224

only properties. Here is the section of the code in Listing 4–3 that demonstrates the implementation of
the three properties.

 #region IBaseComponent members defines Description, Name, and Version
 public string Description
 {
 get
 {
 return "Sample Custom Pipeline Component";
 }
 }

 public string Name
 {
 get
 {
 return "Sample Custom Pipeline Component";
 }
 }

 public string Version
 {
 get
 {
 return "1.0";
 }
 }
 #endregion

IComponentUI

IComponentUI serves to present the component icon in the design-time tool set. The two methods
implemented in the IComponentUI are Icon and Validate. The Icon method provides a pointer to the
graphic icon displayed in the design-time user interface. If no icon is specified, Visual Studio will display
the default icon in the BizTalk Pipeline Components section of the Toolbox. The Validate method allows
processing of any design-time properties. For example, if you have a custom design-time property that
requires information, you can include validation rules within the Validate method to verify the design-
time information entered.

The following portion of Listing 4–3 shows both the Validate and Icon methods. In the solution
example included with this recipe, the default Visual Studio icon will be used, and no special validation
rules are required for the specified user data.

#region IComponentUI members contains design time information
 // Include a validate method used by BizTalk
 public IEnumerator Validate(object obj)
 {
 IEnumerator enumerator = null;
 // Return a null
 return enumerator;
 }
 // We do not have an icon for this custom component
 [Browsable(false)]
 public System.IntPtr Icon
 {

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

225

 get
 {
 // No icon associated with this pipeline component
 return IntPtr.Zero;
 }
 }
 #endregion

IPersistPropertyBag

The purpose of the IPersistPropertyBag interface is to provide access to your object to unmanaged
code. If you are familiar with .NET, then you may have used property bags in other projects.
IPersistPropertyBag also allows access to design-time configuration values. There are four public
methods that exist in the IPersistPropertyBag interface: GetClassID, initNew, Load, and Save. The
GetClassID function must return a unique ID that represents the component. The initNew function can
be used to establish structures (data, caching, and memory) used by the other IPersistPropertyBag
methods. The final functions facilitate the loading and saving of property values. In the solution example
accompanying this recipe, two additional methods were created to wrap the actual read/write functions
of the property bag; however, the read and write functions could also be called directly from the Load
and Save functions.

The following portion of the code from Listing 4–3 demonstrates the implementation of the four
IPersistPropertyBag functions as well as the two helper functions.

#region IPersistPropertyBag members contains placeholders
 public void GetClassID(out Guid classid)
 {
 // Return class ID of this component for usage from unmanaged code.
 classid = new System.Guid("63ed4b26-63cd-4d29-9661-f584c94cf858");
 }

 public void InitNew()
 {
 // Initialization not implemented
 }

 public void Load(IPropertyBag propertyBag, Int32 errorlog)
 {
 // Load configuration property for component.
 string val = (string)ReadPropertyBag(propertyBag,
 m_propbagkey_customproprop);

 if (val != null)
 m_propname = val;

 val = (string)ReadPropertyBag(propertyBag,
 m_propbagkey_custompropropnamespace);
 if (val != null)
 m_propnamespace = val;
 }

 public void Save(IPropertyBag propertyBag
 , Boolean clearDirty, Boolean saveAllProperties)
 {

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

226

 // Saves the current component configuration into the property bag.
 object val = (object)m_propname;
 WritePropertyBag(propertyBag,
 m_propbagkey_customproprop, val);

 val = (object)m_propnamespace;
 WritePropertyBag(propertyBag,
 m_propbagkey_custompropropnamespace, val);
 }

 private static object ReadPropertyBag(IPropertyBag propertyBag
 , string propertyName)
 {
 // Reads property value from property bag.
 object val = null;

 try
 {
 propertyBag.Read(propertyName, out val, 0);
 }
 catch(ArgumentException)
 {
 return val;
 }
 catch(Exception ex)
 {
 throw new ApplicationException(ex.Message);
 }
 return val;
 }

 private static void WritePropertyBag(IPropertyBag propertyBag
 , string propertyName, object val)
 {
 // Writes property values into a property bag.
 try
 {
 propertyBag.Write(propertyName, ref val);
 }
 catch(Exception ex)
 {
 throw new ApplicationException(ex.Message);
 }
 }
 #endregion

IComponent

IComponent is the most important interface in the component, as it contains the processing logic for
messages. This interface contains a single method, Execute, which takes two parameters. BizTalk calls
the Execute method to process the message, and then passes the message and the context of the
message as the two parameters. The following outlines the Execute method declaration and the two
required parameters in Listing 4–3.

7

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

227

#region IComponent members contains the main implementation
 public IBaseMessage Execute(IPipelineContext pContext
 , IBaseMessage pInMsg)
 {
 // Create custom context property on message
 pInMsg.Context.Promote(m_propname, m_propnamespace, string.Empty);
 return pInMsg;
 }
#endregion

The IPipelineContext parameter refers to the environment in which the component is running. For
example, the IPipelineContext object contains pipeline property information, including the pipeline
stage in which the component is running. The IPipelineContext object also contains a resource tracker,
which cleans up objects. The IBaseMessage object contains the inbound message. The main purpose of
the custom component is to perform some level of processing on the inbound message object.

The Execute method returns the IBaseMessage object, which represents all parts of the processed
message (such as the message content and context). You may perform any type of message or context
processing if you return the IBaseMessage object at the end of the function. When BizTalk processes
messages through pipelines, it streams the messages, rather than passing the whole messages.
Additionally, the message passed through the pipeline is a read-only data object. The solution example
accompanying this recipe demonstrates only adding a context property and does not demonstrate
updating the content of the message. You must perform the following steps if you plan to alter the
message content:

1. Create a memory stream object to hold the contents on the updated message or
a copy of the inbound message. Remember that an inbound message is read-
only, and you need a new container to perform updates to the inbound
message. The new memory stream object is a container for the updated
message.

2. Process the inbound message stream. The easiest way of processing the
inbound message is to copy the stream to a string and load the message into an
XMLDocument. However, using an XMLDocument object does not perform well and
is not recommended for a production-type solution. A better method involves
using a stream reader to manipulate the inbound stream. Consider the
following approaches for manipulating the inbound memory stream:

• Use Stream.Read() as the primary mechanism for dealing with message content.

• Use XMLReader.Read() as the secondary mechanism for dealing with message content.

• Use the XML message in the DOM as a last resort option due to the performance hit.
Specifically, if you’re dealing with large messages, do not load the entire message into
the DOM for processing.

3. Set the message body part. After processing the message, you must return the
updated message. If you used a memory stream object, you can set the return
IBaseMessage.Data object to the memory stream object. Remember to rewind
the updated memory stream object so you are passing the whole message and
not the end of the memory stream. The pipeline processor will not attempt to
rewind the stream, and you will receive a pipeline if the stream is not rewound.

4. Add the memory stream to the resource tracker. If you used a new memory
stream object, make sure to add the memory stream object to the
IPipelineContext.Resource tracker for cleanup.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

228

Pipelines are the first line of processing before a message is received by the BizTalk MessageBox or
before the message is received by a target system. Out-of-the-box functionality supports the ability to
perform straightforward processing of messages. There may be situations that require more complex
processing, data validation, or interaction with .NET objects. In those situations, implementing a custom
pipeline component offers the flexibility of adding processing logic within the BizTalk framework.

The main function required for implementing a custom pipeline component is the Execute function
in the IComponent interface. The other interfaces serve for design-time and component interactions with
the runtime engine.

Manipulation of the inbound message requires making a copy of the inbound message stream, as
the inbound message stream is read-only. Before a memory stream can be returned to the
IBaseMessage.Data object, it must be rewound, as the BizTalk pipeline engine does not perform this
function. You should also clean up memory stream objects by adding the object to the pipeline resource
tracker.

■Note There are several pipeline component creation tools available on the Internet that may be used to reduce

overall coding effort.

4–9. Handling Pipeline Errors

Problem

You need to implement custom logic within a pipeline for an integration solution you are building.
Based on the solution’s requirements, message delivery must be guaranteed, with no messages being
lost once they are received by BizTalk Server. Any errors within the custom pipeline must result in a
notification e-mail being sent to the appropriate system administrators.

Solution

BizTalk Server 2010 has some very convenient, easy-to-use error-handling functionality called error
reporting, which enables simplified handling of pipeline (and other) errors. Error reporting is specified
on receive and send ports within the BizTalk Administration Console, as shown in Figure 4–25.

By enabling this feature on a port, you instruct BizTalk Server to take a number of steps in the event
an error is encountered during message processing (which includes adapter, pipeline, mapping, and
routing processing). Specifically, a clone of the errored message is created, with all the original promoted
properties demoted. The message does, however, have the appropriate error reporting properties
promoted, such as the failure code and receive port/send port name. This message is then delivered to
the MessageBox, and can be subscribed to by an SMTP send port via the error reporting promoted
properties. This SMTP send port can be configured to deliver notification messages to a system
administrator.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

229

Figure 4–25. Configuring error reporting on a send port

■Note If error reporting is enabled, and an error occurs when BizTalk Server attempts to deliver the cloned

message to the MessageBox, the original message is placed in the suspended queue.

How It Works

Error reporting allows a variety of receive/send port errors to be trapped and managed. The details of the
error are promoted as properties on a copy of the original message, which is sent to the MessageBox
database. This allows you to handle error messages just like any other message: via subscriptions. You
can define error-handling mechanisms specific to a single integration point, an application, or an entire
BizTalk environment. Your error-handling mechanisms can be a simple notification e-mail (as shown in
this solution), or a complex set of processes implemented as orchestrations.

The Error Reporting properties are available on Filters in send ports and orchestrations (See Figure
4–26). This allows messages to be routed to the appropriate destinations.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

230

Figure 4–26. The Error Report properties available in filters

Table 4–8 shows the error-reporting properties promoted on errored messages.

Table 4–8. Error-Reporting Properties Promoted on Errored Messages

Property Description

FailureCode The code identifying the error.

FailureCategory The category of the failure.

MessageType The BizTalk message type of the failed message. This property
may be empty if BizTalk Server could not determine the type of
message.

ReceivePortName The name of the receive port where the failure occurred. This
property is populated and promoted only if the failure occurred
on a receive port.

InboundTransportLocation The URI of the receive location where the failure occurred. This
property is populated and promoted only if the failure occurred
on a receive port.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

231

Property Description

SendPortName The name of the send port where the failure occurred. This
property is populated and promoted only if the failure occurred
on a send port.

OutboundTransportLocation The URI of the send port where the failure occurred. This
property is populated and promoted only if the failure occurred
on a send port.

ErrorType The type of message that the error report contains.

RoutingFailureReportID The ID of the related routing failure report message in the
MessageBox. The routing failure report message contains the
properties (context) of the original message and can be queried
to provide additional information about the errored message.

4–10. Subscribing to Suspended Messages

Problem

A message fails at some point in your BizTalk solution (such as a receive port, map, or orchestration) and
ends up as a suspended message on the BizTalk MessageBox. You want to be able to subscribe to these
suspended messages and route them to a file drop.

Solution

This solution will introduce the method needed to subscribe to suspended messages by demonstrating
how to use a receive port/filtered send port combination. The receive port will listen for messages of a
certain type to arrive on the MessageBox. The send port will subscribe to all error messages generated by
the receive port. All messages that are picked up by the receive port will fail because of not having a
subscriber, and an error message will be written to the MessageBox. These messages will then be
immediately routed to the send port, and a file will be written out to a specified file location.

The following steps walk through the steps necessary for creating the receive port:

1. Creating a new one-way receive port in the BizTalk Administration Console.
Enter the name of this port as SampleSubscribeToSuspended.

2. On the General Tab, click the Enable Routing for Failed Messages box, as shown
in Figure 4–27.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

232

Figure 4–27. Enabling routing

3. On the Receive Locations tab, add a receive location to the port. Give a valid file
path for the address of this location (such as C:\drop).

4. Click OK. The receive port has been successfully configured and created.

5. Right-click the receive location, and enable it.

The following steps walk through the steps necessary for the send port. You can set up additional
subscribers—for instance, an orchestration—to allow for more complex processing. In this solution, the
send port will simply write the suspended message out to a file drop. For any properties not listed in the
following steps, keep the default values.

1. Create a new one-way send port in the BizTalk Administration Console. Enter
the name of this port as SampleSuspendedToFile.

2. On the General tab, set Transport Type to File, and enter a valid file path to
which to write outgoing files. Set Send Pipeline to PassThruTransmit.

3. On the Filters tab, click the Property drop-down list, and select
ErrorReport.ReceivePortName. Set the value equal to the name of the receive
port created in the earlier steps (SampleSubscribeToSuspended). Do not use
quotes.

4. Click OK. You have successfully configured and created the send port.

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

233

5. Do not enlist or start the send port at this time. At this point, the solution is
complete—aside from the enlistment of the send port. Dropping a file on the
receive location will cause the receive port to throw an exception and log to the
Event Viewer—there is no subscriber. The error message has been routed to the
MessageBox, but there is no subscriber for it either.

6. Now, enlist and start the send port. The receive location will fail to find a
subscriber. This time, however, the error will be routed to the send port, and
the message will be written out to the send port file location.

How It Works

A number of properties are available on the ErrorReport object. This solution worked with one of these,
ReceivePortName. Building a more complex solution using an orchestration will allow access to all the
remaining properties. For example, assume that instead of a send port subscribing to the ErrorReport as
shown in this solution, you have an orchestration with a receive port. The orchestration will receive the
message, and you can then access the ErrorReport properties in the send port filter, receive filter of an
orchestration, or within an Expression shape, as shown in Figure 4–28.

Figure 4–28. Accessing the ErrorReport properties

http://

CHAPTER 4 ■ MESSAGING AND PIPELINES

234

http://

C H A P T E R 5

■ ■ ■

235

Orchestrations

If publish/subscribe messaging capabilities are at the heart of BizTalk, then process orchestration
capabilities are BizTalk’s brain. A BizTalk orchestration can define a complex integration process,
coordinating the flow of information when simple data synchronization will not suffice. BizTalk provides
a graphical design tool for defining these integration processes. These orchestration capabilities build
upon the foundational publish/subscribe architecture of the BizTalk messaging runtime.

In the simplest cases, integration is strictly about receiving information from one system and
delivering it to another. Accordingly, a BizTalk orchestration receives and sends messages through
orchestration ports. However, many real-world situations require more than simple message delivery.
With an orchestration, the BizTalk developer can graphically define additional processing steps in Visual
Studio. For example, these processing steps may involve examining a message or invoking a .NET
assembly and deciding on the appropriate actions to take. An orchestration can define an integration
process with sequential processing steps or perform independent activities simultaneously. Define
higher-level integration services in an orchestration by composing the messaging capabilities of BizTalk
with additional integration processing logic. Future integration requirements can reuse the higher-level
integration services to reduce implementation effort and enable greater agility.

BizTalk orchestrations support many of the capabilities needed to compose integration activities
together, as follows:

• Atomic and long-running transactions help ensure that all systems involved in an
integration process come to a consistent result.

• Transformations convert from a format understood by a source system to a format
understood by a destination system.

• Orchestrations can invoke an external .NET assembly or use expressions defined
with custom code.

• Exceptions can be handled by defining the scope of integration activities.

• Orchestrations support transaction compensation and rollbacks.

BizTalk orchestrations also provide terrific support for interacting with services defined by
interoperable contracts. With BizTalk 2010, an orchestration can directly consume Windows
Communication Framework (WCF) services and ASMX .NET web services (WSDL), exposing the service
operations within the graphical orchestration design environment. The BizTalk developer can also
expose an orchestration as a service, which any service consumer can invoke without having to know
that BizTalk technology implements the service.

http://

CHAPTER 5 ■ ORCHESTRATIONS

236

5–1. Receiving Messages

Problem

You are building a solution that requires the implementation of a business process. You must configure
an orchestration to receive messages, which begins the business process.

Solution

BizTalk Server orchestrations receive messages either through a Receive shape or directly from another
orchestration as an orchestration input parameter. A Receive shape allows messages to be routed from
the MessageBox to the orchestration, as demonstrated in this solution.

To create an orchestration that receives messages via a Receive shape, follow these steps:

1. Open a project that contains a schema that represents the message that will be
received.

2. Right-click the project in Solution Explorer, and select Add→New Item.

3. In the Add New Item dialog box, select Orchestration Files from the Installed
Templates list, choose the BizTalk Orchestration template, and give a
descriptive name to your new orchestration, as shown in Figure 5–1. In our
example, the orchestration is named ReceiveShapeOrchestration. Then, click
Add.

http://

CHAPTER 5 ■ ORCHESTRATIONS

237

Figure 5–1. Adding a new orchestration to a project

4. In the Orchestration View window, expand the top node of the tree view (this
node will have the same name as the orchestration), so that the Messages folder
is visible. (If the Orchestration View window is not visible, select View→Other
Windows→Orchestration View.)

5. Right-click the Messages folder, and select New Message, which creates a
message called Message_1 by default.

6. Click the new message, and give it a descriptive name in the Properties window.
In our example, the message is named msgCustomerMessage.

7. Click the Message Type property in the Properties window, and select the
appropriate type to associate with the message, as shown in Figure 5–2. In our
example, we select the CustomerSchema message type.

http://

CHAPTER 5 ■ ORCHESTRATIONS

238

■Note Notice all of the types available for setting the message. A very common option is to set a message to

System.Xml.XmlDocument, which allows an XML document of any format to be received (rather than strongly

typed against a specific XSD). Of course, subscribing to the generic XMLDocument will cause all documents on the

MessageBox to be picked up, so make sure your filtering is set up!

Figure 5–2. Creating a message

http://

CHAPTER 5 ■ ORCHESTRATIONS

239

8. From the toolbox, drag a Receive shape onto the orchestration directly beneath
the green circle at the top of the design surface.

■Note In addition to dragging and dropping shapes from the toolbox, you can also add shapes to an orchestration

by right-clicking a section of the vertical process flow arrow and selecting Insert Shape.

9. With the Receive shape selected, specify the shape’s Name, Message, and
Activate properties, as shown in Figure 5–3. The Message property is set via a
drop-down list, which is populated with all the messages that are in scope for
the Receive shape. The Active property is also set via a drop-down list, with the
choices True or False. In our example, we use ReceiveCustomerMessage,
msgCustomerMessage (created in step 6), and True, respectively.

Figure 5–3. Adding a Receive shape

10. To configure a port and port type for the orchestration to use to receive a
message, right-click the Port Surface area, and select New Configured Port. This
will start the Port Configuration Wizard.

http://

CHAPTER 5 ■ ORCHESTRATIONS

240

11. Step through the Port Configuration Wizard, specifying the following items
(accept all other defaulted values):

• Port name: oprtReceiveCustomerMessagePort.

• New port type name: oprtTypeCustomerMessagePortType.

• Port binding: Select Specify Now, and configure the appropriate receive adapter to
consume inbound messages, as shown in Figure 5–4. In this example, we configure the
port to use the FILE adapter, which receives XML messages from the
C:\Users\Administrator\Desktop\Drops\ReceiveShapeOrchestration folder.

■Caution Using Specify Now as your method of port binding can make your development and deployment

process easier, but be careful when using this feature. It is not the recommended method for production code,

because you should not embed port bindings inside an orchestration. A better approach is to use a binding file.

Figure 5–4. Configuring an orchestration port for receiving messages

12. Connect the orchestration port’s request operation to the Receive shape, as
shown in Figure 5–5.

http://

CHAPTER 5 ■ ORCHESTRATIONS

241

Figure 5–5. Connecting an orchestration port to a Receive shape

13. The project can now be deployed. During the deployment process, the port will
automatically be created, along with all bindings to the orchestration (this does
not happen when a port is set up using the Specify Later option). Figure 5–6
shows the port created for this solution.

Figure 5–6. The receive port created automatically during deployment

How It Works

Understanding how messages are received into orchestrations is critical when designing and
implementing orchestrations in BizTalk Server. Receive shapes are the most common method used to
deliver messages to orchestrations. In this recipe’s solution, we showed how to add a Receive shape to
an orchestration, configure the Receive shape’s Message Type and Activate properties, and connect it to
a receive port.

If the Receive shape is the first shape in the orchestration, it must have its Activate property set to
True. If an orchestration does not have an activating Receive shape, it must be called or started
(instantiated) from another orchestration.

The data a Receive shape accepts is defined by its Message property, which relates to a message that
has been defined within the orchestration. All messages in BizTalk are bound to a specific type, which
can be an XSD schema or a .NET class. This allows orchestrations to receive instances of XSD schemas or
.NET classes as inputs. While our example used a single Receive shape, orchestrations can use many
Receive shapes to accept different types of messages at different points in the business logic.

Each Receive shape must be bound to an operation, or orchestration port. An orchestration port is
the interface through which messages pass on their way into or out of orchestration instances.
Orchestration ports define the direction messages flow (receiving into an orchestration, sending from an
orchestration, or both), and are bound to a physical port, another orchestration, or directly to the
MessageBox database. The topic of binding orchestrations is covered in more detail in Recipe 5–4, but it

http://

CHAPTER 5 ■ ORCHESTRATIONS

242

is important to understand the methods by which orchestration ports can be bound and how they affect
the way messages are received into an orchestration:

• Physical receive port: All messages that are consumed by the specified receive port
are routed to the orchestration. This setting creates subscriptions in the
MessageBox database, which deliver messages passing through the physical
receive port to the orchestration port.

• Another orchestration: Only those messages explicitly being passed from the
calling orchestration are routed to the orchestration.

• Directly to the MessageBox: All messages in the MessageBox database that validate
against the Receive shape’s message type are routed to the orchestration.

Each Receive shape has a number of properties associated with it, as listed in Table 5–1.

Table 5–1. Receive Shape Properties

Property Description

Activate Flag indicating whether the Receive shape activates the
orchestration instance.

Description Summary of the Receive shape.

Filter Expression A filter that is applied to all messages being received via the
Receive shape.

Initializing Correlation Sets A list of correlation sets that are initialized as messages pass
through the Receive shape.

Following Correlation Sets A list of correlation sets that are followed as messages pass
through the Receive shape. This property is not available on the
first Receive shape of an orchestration.

Message The message that will be created when a document is passed
through the Receive shape. A message with a message type of
XmlDocument can be used to receive a generic XML message,
without limiting documents to a specific XSD schema.

Name Name of the Receive shape.

Object Type Name of the object type (read-only, automatically set to
Receive).

Operation Specifies through which orchestration port operation the
Receive shape receives its message.

Report To Analyst Flag indicating whether the message part should be exposed via
the Visual Business Analyst Tool.

http://

CHAPTER 5 ■ ORCHESTRATIONS

243

The Filter Expression property allows you to be a bit more specific about which messages make it
into your orchestration. Clicking the ellipsis in the input box for the Filter Expression property
launches the Filter Expression dialog box. This dialog box allows you to create specific filters, which
include one to many logical expressions that must be met in order for a message to be received into the
orchestration. These logical expressions are based on a property, an operator, and a value and can be
grouped by using the And and Or keywords.

A filter expression can be set on only a Receive shape that has its Activate property set to True.
When the value portion of the filter expression is a string, you must put double quotes around the actual
value for the expression to work properly.

The Initializing Correlation Sets and Following Correlation Sets properties specify which
correlation is followed when messages are received on the Receive shape. Generally speaking,
correlation sets allow you to send and receive messages in and out of orchestrations that directly relate
to one another.

5–2. Sending Messages

Problem

You want to send messages from within a BizTalk orchestration for processing by other orchestrations.

Solution

Within a BizTalk orchestration, messages are sent using the Send shape. To use the Send shape, follow
these steps:

1. Open the BizTalk project that contains the orchestration with the messages you
want to send. For this exercise, it is assumed that the orchestration is already
configured to receive a message.

2. Drag a Send shape from the toolbox. Place the shape underneath the
orchestration Receive shape.

3. In the Orchestration View window, expand the top node of the tree view so that
the Messages folder is visible.

4. Right-click the Messages folder, and select New Message, which creates a
message.

5. Click the new message, and give it a descriptive name in the Properties window
(msgCustomer in our example).

6. Click the Message Type property in the Properties window, select the Schema
node, and select the appropriate schema. In this example, it uses the
Customer.xsd schema.

7. Select the Send shape, and in the Properties window, assign the message to
msgCustomer.

http://

CHAPTER 5 ■ ORCHESTRATIONS

244

■Note The type of port you are creating is not a physical BizTalk port. This is an orchestration port that will be

bound later to the physical port.

8. To configure a port and port type for the orchestration to use to send a
message, right-click Port Surface, and click New Port, as shown in Figure 5–7.

9. Click the exclamation mark (tool tip), and select “No port type has been
specified.” This starts the Port Configuration Wizard.

10. On the Select a Port Type page, name the port oprtSendCustomer, and click
Next.

Figure 5–7. Creating a new port

11. On the Configure Port page, enter the following details, as shown in Figure 5–8,
and then click Next:

• Select the “Create a new Port Type” radio button.

• Name the port type oprtTypeSendCustomer.

• Select the One-Way radio button under Communication Pattern.

http://

CHAPTER 5 ■ ORCHESTRATIONS

245

• Select the “Internal - limited to this project” radio button under Access Restrictions.

Figure 5–8. Configuring an orchestration port for sending messages

12. On the Port Binding page, select “I’ll always be sending messages on this port”
for the port direction of communication. For port binding, select Direct, and
select the first radio button. Routing between ports will be defined by filter
expressions on incoming messages in the MessageBox database. Click Finish
after making your selections.

■Note In this example, we are implementing a standard publish/subscribe model; that is, the message

implementation does not need to be physically specified. The BizTalk MessageBox database will be responsible for

initializing one or more downstream messaging subscriptions.

13. From the port on the Port Surface area, click the green square, and drag it to the
Send shape on the orchestration design surface, as shown in Figure 5–9.

http://

CHAPTER 5 ■ ORCHESTRATIONS

246

Figure 5–9. Send message configuration

How It Works

In this recipe’s solution, we demonstrated how to send messages out of an orchestration to BizTalk
messaging and downstream BizTalk endpoints. To review, the following are the key steps to perform to
send a message:

1. Identify a message to send. This can be a .NET class, multipart message, web
reference message, or schema.

2. Create an orchestration port. Specify the port type and access restrictions.

3. Se et the port direction and binding (dynamic or direct) to BizTalk messaging
artifacts.

When sending messages out of an orchestration, it is also important to consider the type of request
you would like to implement. Should the message not be returned (one-way), or should the
orchestration wait for a response (request/response)? In essence, the port choice should support the
type of communication being implemented.

Another important consideration is the message context. Within the orchestration, is the message
its own instance, or should it be aware of correlation implications? Within the Send shape, you have the
ability to address correlation message context by setting the Following Correlation Sets or
Initializing Correlation Sets property.

5–3. Creating Multipart Messages

Problem

You are building an integration solution and receive multiple documents that together form a single
logical message in your back-end system. You must group these documents into one message by using a
multipart message in BizTalk Server.

http://

CHAPTER 5 ■ ORCHESTRATIONS

247

Solution

Multipart messages are created in BizTalk Server orchestrations, as opposed to being created as
schemas. Multipart messages are a collection of message parts, with each part having a specific type.
Message part types can be defined by an XSD schema or a .NET class. This solution describes how to use
XSD schemas to define each of the message parts.

To create an orchestration and a multipart message, follow these steps:

1. Open the project that contains the schemas. In this sample, we will use an
order header schema and an order line item schema to demonstrate the use of
multipart messages, as shown in Figure 5–10.

Figure 5–10. The schemas being used

2. Right-click the project, and select Add→New Item.

3. In the Add New Item dialog box, select Orchestration Files from the Categories
list and BizTalk Orchestration as the template, and give a descriptive name to
your new orchestration. In our example, the orchestration is named
MultiPartMessageOrchestration. Then, click Add.

4. In the Orchestration View window, expand the Types node of the tree view so
that the Multi-part Message Types folder is visible, as shown in Figure 5–11. (If
the Orchestration View window is not visible, select View ➤ Other
Windows→Orchestration View.)

http://

CHAPTER 5 ■ ORCHESTRATIONS

248

Figure 5–11. Viewing multipart message types

5. Right-click the Multi-part Message Types folder, and select New Multi-part
Message Type, which creates a new multipart message type. A default message
part is automatically added to all newly created multipart message types.

6. Click the new multipart message type, and give it a descriptive name in the
Properties window. In our example, the multipart message is named Order.

7. Expand the new multipart message type, click the default message part, and
give it a descriptive name in the Properties window. In our example, the
message part is named Header. Note that the Message Body Part property is set
to True.

8. Click the Type property in the Properties window, and select the appropriate
schema to associate with the message part, as shown in Figure 5–12. In our
example, the schema is named OrderHeader.

http://

CHAPTER 5 ■ ORCHESTRATIONS

249

Figure 5–12. Setting the default message part’s type

9. Right-click the Order multipart message type, and select New Message Part,
which creates a new message part.

10. Click the new message part, and give it a descriptive name in the Properties
window. In our example, the message part is named LineItems. Note that the
Message Body Part property is set to False.

11. Click the Type property in the Properties window, and select the appropriate
schema to associate with the message part, as shown in Figure 5–13. In our
example, the schema is named OrderLineItems.

http://

CHAPTER 5 ■ ORCHESTRATIONS

250

Figure 5–13. Setting an additional message part’s type

12. In the Orchestration View window, expand the top node of the tree view so that
the Messages folder is visible.

13. Right-click the Messages folder, and select New Message, which creates a
message.

14. Click the new message, and give it a descriptive name in the Properties window.
In our example, the message is named MultiPartOrderMessage.

15. Click the Message Type property in the Properties window, and select the
appropriate type to associate with the message, as shown in Figure 5–14. In our
example, we select the Order multipart message type.

http://

CHAPTER 5 ■ ORCHESTRATIONS

251

Figure 5–14. Creating a multipart message

How It Works

Multipart messages allow for the grouping of multiple parts into a single message. In our solution, we
group an order header document and an order line item document into a single order message.

All messages within BizTalk Server are multipart messages, although most of them just have a single
part (the message body) and, therefore, are not created as a multipart message within orchestrations.
Messages with a single part are treated slightly differently by BizTalk Server, as the single part is not
displayed when referring to the message and the message is referred to directly.

The concept of messages having multiple parts is easier to grasp after creating a multipart message
type within an orchestration, where you must explicitly create the different parts of a message. Each
message part has a number of properties associated with it, as listed in Table 5–2.

Table 5–2. Message Part Properties

Property Part

Description Summary of message part

Identifier Name of the message part

Message Body Part Flag indicating whether the message part contains the message body
(every multipart message must have one and only one body part)

Report To Analyst Flag indicating whether the message part should be exposed via the Visual
Business Analyst Tool

Type The type defining the message part’s content

http://

CHAPTER 5 ■ ORCHESTRATIONS

252

The type of message part can be either a .NET class or an XSD schema. If a .NET class is specified,
the class must be XML-serializable or support custom serialization. If an XSD schema is used, the
schema must be included in the same BizTalk Server project as the multipart message type or in a
referenced assembly. By specifying the XmlDocument type, a message part can contain any valid XML
document. The multipart message type has the properties listed in Table 5–3 associated with it.

Table 5–3. Multipart Message Type Properties

Property Part

Identifier Name of the multipart message type

Report To Analyst Flag indicating whether the multipart message type should be
exposed via the Visual Business Analyst Tool

Type Modifier The scope of the multipart message type; choices are Private
(accessible within the orchestration), Public (accessible
everywhere), or Internal (accessible within the same project)

Once you have defined your multipart message types, you can create and access message instances
of those types within the orchestration. Figure 5–15 illustrates how you can assign the Header and
LineItems message parts of the Order message. In this example, the OrderHeaderMessage and
OrderLineItemsMessage messages are instances of the Header and LineItems schemas.

Figure 5–15. Assigning message parts

Some common uses of multipart messages in BizTalk Server are when you are consuming a service
or processing e-mail messages within orchestrations. When you add a web service reference to an
orchestration, a multipart message type is generated automatically, with one part created for each
message part defined in the web service’s WSDL file. For those scenarios where e-mail messages are

http://

CHAPTER 5 ■ ORCHESTRATIONS

253

being processed, it is common to use multipart message types to handle MIME multipart messages; the
body message part would contain the body of the e-mail, and subsequent parts could contain e-mail
document attachments.

5–4. Binding Orchestrations

Problem

You need to bind an orchestration to a physical port, to associate a process with a BizTalk messaging
port, and consequently, a downstream BizTalk process.

Solution

Binding orchestrations to physical ports is the activity that enables defined processes (orchestration) to
be associated with physical connectivity and communication, such as file, HTTPS, or web/WCF service.
BizTalk enables two methods of binding orchestrations. You can choose to specify the binding
immediately within the BizTalk Orchestration Designer (by choosing the Specify Now option during the
port binding process) or later using the BizTalk Administration Console (by choosing Specify Later).
When you choose Specify Later, this indicates that binding information will not be determined at design
time. This recipe demonstrates using the Specify Later option.

1. Deploy an orchestration, and choose the Specify Later method during the port
binding process.

2. Open the BizTalk Administration Console and under the Orchestrations tree,
locate your orchestration.

3. Right-click the orchestration, and select the Bind option. The Port Bindings
Properties dialog box will appear, as shown in Figure 5–16.

http://

CHAPTER 5 ■ ORCHESTRATIONS

254

Figure 5–16. Port Bindings Properties dialog box

4. For each orchestration port, select the desired BizTalk messaging port. The port
choices available for selection will be filtered based on the port type (send or
receive).

How It Works

Binding orchestrations enables processes to be associated with BizTalk messaging ports and
consequently, downstream BizTalk processes and artifacts.

Binding can be completed within the BizTalk Orchestration Designer (when you choose Specify
Now) or within the BizTalk Administration Console (when you choose Specify Later). The two binding
choices allow for separation between process and configuration activities for both task and environment
orientation.

Consider the separation of roles between a developer and administrator. The developer would be
responsible for development activities within BizTalk, whereas the administrator would be responsible
for deployment activities. These activities can be abstracted to allow for environment-specific
configuration, without development involvement or consideration. To illustrate this point, consider
testing and production BizTalk environments, and how the specification of port values (such as URLs,
file locations, and so on) and physical receive locations can be achieved via this abstraction.

5–5. Configuring a Send Port at Runtime

Problem

You need to send a message from BizTalk Server but will not have all of the required information to do so
until the orchestration is executing.

http://

CHAPTER 5 ■ ORCHESTRATIONS

255

Solution

To be able to configure a send port at runtime, you create a dynamic send port within the orchestration.
This recipe demonstrates how to configure the outbound dynamic send port in the Message Construct
shape. The first step is to copy the contents of the inbound message to the outbound message. Listing 5–
1 shows an example of a dynamic XML message.

Listing 5–1. Sample Dynamic XML Message

<ns0:DynamicMessage xmlns:ns0="http://DynamicSendPortProject.xsdDynamicMessage">
 <Header>
 <FTPServer>myFTPServer.com</FTPServer>
 <FTPUserName>FTPUserName</FTPUserName>
 <FTPPassword>FTPPassword</FTPPassword>
 <Retry>3</Retry>
 <RetryInterval>5</RetryInterval>
 <FileName>FileName.xml</FileName>
 </Header>
 <Body>
 <Content>This is a test message.</Content>
 </Body>
</ns0:DynamicMessage>

Next, configure the address that BizTalk will use to communicate the message. The address uses the
same format as a standard URL. In this example, we specify ftp:// to transmit the file via FTP. The FTP
transport protocol requires additional properties to be specified (such as the username and password).
Listing 5–2 shows an example of a construct message configuration.

The following steps outline the procedure:

1. Open the project containing the orchestration that will be processing the
inbound message and sending that message via a dynamic send port.

2. Create a new orchestration send port with a port binding that is dynamic
(named oprtSendDynamic in this example).

■Note You will be required to choose a send pipeline when configuring the send port. You can choose from any

deployed send pipeline, any send pipeline referenced by your project, or any send pipeline that is part of your

existing solution.

3. Verify that you have a message that contains all of the properties required for
configuring the send port and that the properties are promoted or
distinguished. Your message may look similar to the message shown earlier in
Listing 5–1.

4. Select the Message Assignment shape from the BizTalk Orchestrations section
of the toolbox, and drag it to the appropriate location within the orchestration.

5. Select the Message Assignment shape, and update the properties.

• Change the default name if desired.

http://DynamicSendPortProject.xsdDynamicMessage
ftp://to
http://

CHAPTER 5 ■ ORCHESTRATIONS

256

• Add a description if desired.

• Identify the output message(s) constructed.

• Set the Report To Analyst property. Leave the property as True if you would like the
shape to be visible to the Visual Business Analyst Tool.

6. Update the Message Assignment shape to contain the information that
constructs the outbound message as well as configures the properties on the
outbound dynamic send port. Your construct message may look similar to the
one shown earlier in Listing 5–2.

Listing 5–2. Sample Message Assignment Code

// Construct Message
msgDynamicOut = msgDynamicIn;

// Set the FTP properties based on message content.
// Reference the send port to set properties.
oprtSendDynamic(Microsoft.XLANGs.BaseTypes.Address) =
 "ftp://" + msgDynamicIn.Header.FTPServer + "/"
 + msgDynamicIn.Header.FileName;

// Set message context properties for ftp.
msgDynamicOut(FTP.UserName) = msgDynamicIn.Header.FTPUserName;
msgDynamicOut(FTP.Password) = msgDynamicIn.Header.FTPPassword;
msgDynamicOut(BTS.RetryCount) =
 System.Convert.ToInt32(msgDynamicIn.Header.Retry);
msgDynamicOut(BTS.RetryInterval) =
 System.Convert.ToInt32(msgDynamicIn.Header.RetryInterval);

7. Complete the orchestration (as shown in Figure 5–17).

http://

CHAPTER 5 ■ ORCHESTRATIONS

257

Figure 5–17. Completed dynamic send port orchestration

How It Works

Dynamic ports allow the physical location of a physical send port (one-way or solicit-response) to be
determined at runtime. The only requirement for a dynamic port is setting a pipeline at design time. The
ability to specify the transport protocol and address at runtime allows for the flexibility of routing
messages based solely on message content or on the output of message processing in an orchestration.

For example, implementing the SMTP send adapter to send an e-mail from BizTalk requires
configuration information (SMTP server, e-mail recipient, and subject). Rather than specifying the
configuration information at design time, you can use a dynamic port, which allows you to configure the
information programmatically and modify it based on the message content or processing. Additionally,
dynamic send ports can be set via content returned from the Business Rule Engine.

This recipe’s solution demonstrated setting up a dynamic send port to send a message via FTP. The
inbound message contains the message content as well as the configuration information for
transmitting the message to the FTP recipient. The properties of the message are distinguished fields
and are therefore easily referenced. Depending on the transport protocol being specified for the
dynamic port, different properties will be required and optional.

http://

CHAPTER 5 ■ ORCHESTRATIONS

258

■Caution If you attempt to set the Microsoft.XLANGs.BaseTypes.Address field with an orchestration port that

is not a dynamic port in BizTalk, you will receive a compile-time error.

Table 5–4 shows the required and optional properties for configuring the dynamic send port
communicating via FTP.

Table 5–4. Dynamic Send Port Properties

Name Description

Address A required property that contains the location and possibly the file name of the
output message to create. The Address property uses URL prefixes to indicate
how to transmit the message. To transmit a message via FTP, the address must
begin with the prefix ftp://. If the message is being sent via FTP or FILE, a file
name attribute is required as part of the address.

UserName Specifies the FTP username. If you are specifying a different protocol in
the URL, a username may not be required.

Password Specifies the FTP password. If you are specifying a different protocol in the
URL, a password may not be required.

RetryCount An optional property that specifies how many times to retry delivery of the
message, in case there is a problem transmitting the message.

RetryInterval An optional property that specifies the retry interval in minutes.

This recipe’s solution demonstrated creating a dynamic send port in the orchestration. When the
orchestration is deployed, the physical send port will be created, and specific binding of the
orchestration to a physical send port is already done.

5–6. Creating Branching Logic in an Orchestration

Problem
From within an orchestration, you would like to execute different processing based on the evaluation of
available information.

Solution

A Decide shape is the equivalent of an If...Then...Else statement in standard programming. It allows
you to direct different processing at runtime based on the evaluation of information. The following steps
outline how to add a Decide shape to an orchestration and configure it.

http://

CHAPTER 5 ■ ORCHESTRATIONS

259

1. Open the project containing the orchestration.

2. Open the orchestration.

3. Select the Decide shape from the toolbox, and drag it to the appropriate
location within the orchestration.

4. Select the Decide shape, and update its properties.

• Change the default name if desired.

• Add a description if desired.

• Set the Report To Analyst property. Leave the property as True if you would like the
shape to be visible to the Visual Business Analyst tool.

5. Select the rule branch named Rule_1, and update its properties (click it, and set
its properties in the Properties window).

• Change the default name if desired.

• Add a description if desired.

• Set the Report To Analyst property. Leave the property as True if you would like the
shape to be visible to the Visual Business Analyst Tool.

• Right-click the ellipsis next to the Expression property, and enter a valid Boolean
expression for the rule.

6. To add an additional rule, right-click the Decide shape ,and select New Rule
Branch.

■Note To delete a branch, right-click the branch, and select Delete. To delete the Decide shape, right-click the

shape, and select Delete.

How It Works

Decide shapes can be used to complete different processing based on information available at runtime.
The following is a simple example of using and configuring the Decide shape from within an
orchestration. Assume you have a document as follows:

<Employee>
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <SSN>111-22-3333</SSN>
 <State>Washington</State>
 <HireDate>1999-05–31</HireDate>
</Employee>

From within an orchestration, you would like to complete different processing under the following
scenarios:

http://

CHAPTER 5 ■ ORCHESTRATIONS

260

• The State is "Washington", and an SSN is provided.

• The State is "Washington", and no SSN is provided.

• The State is not "Washington".

To set up this different processing based on these three scenarios, you add a Decide shape to the
orchestration and configure two rule branches and the else branch. For the first rule branch, define the
expression to ensure the state is Washington and that a Social Security number was provided, as shown
in Figure 5–18.

■Note To access schema nodes from within an orchestration, you must set the nodes as distinguished fields from

within the schema editor.

Figure 5–18. First rule branch

For the second rule branch, configure the expression to ensure the state is Washington and that no
Social Security number was provided, as shown in Figure 5–19.

http://

CHAPTER 5 ■ ORCHESTRATIONS

261

Figure 5–19. Second rule branch

■Note Refer to the BizTalk help file for a complete list of valid operators in orchestration expressions. It uses

what many refer to as “.NET Lite,” which means only a subset of libraries are available for use.

The else branch will accommodate all other inbound documents where the state is not Washington.
Figure 5–20 shows a completed orchestration with a Decide shape configured as described in this
example. In this example, a document will be sent to different locations depending on whether the State
is "Washington" and whether or not the document contains an SSN. If the State is not "Washington", no
document will be sent. It is not required that the branch of a Decide shape contain any actions.

Figure 5–20. Decide shape orchestration example

http://

CHAPTER 5 ■ ORCHESTRATIONS

262

5–7. Receiving Multiple Message Formats in a Single
Orchestration

Problem

You need to execute the same orchestration logic for two or more different schemas.

Solution

Instead of creating separate orchestrations with identical logic, you can have one orchestration that uses
the Listen shape and multiple Receive shapes. The Listen shape enables an orchestration to listen for
any messages matching the schemas of any Receive shapes within the Listen shape. A Listen shape can
contain multiple Receive shapes, all listening for different messages. In this solution, we will look at how
to create an orchestration that listens for either of two messages to arrive.

The first step in the process is to define two different schemas to represent the different documents
for which the orchestration will be listening. A typical example of this would be two versions of the same
schema, where the elements defined differ enough to warrant a completely different schema. For
instance, several required nodes on version 1 may not exist on version 2. Another example would be two
different schemas representing similar data (such as customer, order, and so on) from two different
legacy systems. In both cases, you would need to have both of the documents instantiate the same
orchestration and be subject to the same rules and workflow.

For this solution, we will assume the following two documents are being used, representing
different versions of the Person schema:

<ns0:Person xmlns:ns0="http://SampleListenShape.Person.V2">
 <ID/>
 <Name/>
 <Role/>
 <Age/>
</ns0:Person>

<ns0:Person xmlns:ns0="http://SampleSolution.Person">
 <ID/>
 <FirstName/>
 <MiddleName/>
 <LastName/>
 <Role/>
 <Age/>
</ns0:Person>

1. In an empty orchestration, drop a Listen shape onto the design surface.

2. Add two Receive shapes within the Listen shape.

a. Set the Activate property on both Receive shapes to True.

b. Rename the Receive shapes to Receive_Ver_1 and Receive_Ver_2. This is for reference
purposes only.

http://SampleListenShape.Person.V2
http://SampleSolution.Person
http://

CHAPTER 5 ■ ORCHESTRATIONS

263

c. Create two message variables in the orchestration (click the Orchestration tab, right-click
Messages, and select New Message), named msgVer1 and msgVer2, pointing them to the
appropriate schema.

d. Set the message type of Receive_Ver_1 to msgVer1 and Receive_Ver_2 to msgVer2.

3. Add a new port to the Port Surface with the following properties (using the Port
Configuration Wizard).

a. Name the new port Port_Receive_Incoming.

b. Create a new port type of PortType_ReceiveIncoming.

c. Select “I’ll always receive messages on this port.”

d. Set the port binding to Specify Later, or give a file path and set it to Specify Now.

4. Create two operations on the port (there will be one created automatically).
Right-click the port, name the operation Operation_VI, and set the Message
Type to msgVer1. Repeat this to add Operation_V2 with the Message Type set to
msgVer2.

5. Add a map to transform the version 1 documents into version 2. This will allow
the orchestration to work with one message type throughout.

a. Add a construct message with a Transform shape under the Receive_Ver_1 shape.

b. Create a new map.

c. Set the source schema to msgVer1 and the destination schema to msgVer2. The
orchestration will resemble Figure 5–21.

http://

CHAPTER 5 ■ ORCHESTRATIONS

264

Figure 5–21. Orchestration with Listen shape

At this point, the orchestration can be deployed, bound to a receive port, and started. If either
version of the Person schema is dropped on the MessageBox (via a port or directly bound), the
orchestration will instantiate.

How It Works

This recipe demonstrated how to uses the Listen shape with multiple Receive shapes. There are
alternative ways to use the Listen shape. One of the most common is a combination of a Receive shape
and a Delay shape. This can be used for polling behavior in a long-running orchestration. For example,
an orchestration could be set up to listen for a document to be dropped on a file directory. If a file is not
dropped within a certain amount of time (as specified in the Delay shape), a series of steps could take
place (such as notifying an administrator). By adding a Loop shape, the orchestration could return to
listening for the document to arrive. An example of this is shown in Figure 5–22.

http://

CHAPTER 5 ■ ORCHESTRATIONS

265

Figure 5–22. Listen shape with Delay shape

http://

CHAPTER 5 ■ ORCHESTRATIONS

266

5–8. Calling External Assemblies

Problem

You need to call a method contained in a .NET class library assembly. You want to understand how to
reference this assembly within your BizTalk project and how to call it from an Expression shape.

Solution

This solution will walk you through referencing an external assembly and calling the assembly from code
within an Expression shape. Assume that the assembly is called SampleClass.dll, which contains a class
called Helper. The Helper class has a function to set a string of characters to uppercase, as shown in
Listing 5–3.

Listing 5–3. Sample C# Assembly

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SampleClass
{
 [Serializable]
 public class SampleClass
 {
 public string strToUpperCase(string input)
 {
 input = input.ToUpper();
 return input;
 }
 }
}

Once the C# assembly has been built and the DLL is available, use the following steps to reference the
assembly.

1. Open a BizTalk project in Visual Studio.

2. In the Solution Explorer, right-click References under the project header, and
select Add Reference.

3. In the Add Reference dialog box, click the Browse tab, find the SampleClass.dll
assembly, and then click OK.

4. Now that the assembly is available in the BizTalk project, create a new
orchestration variable. With an orchestration open, click the Orchestration
View window. Right-click the Variables folder, and select New Variable from
the drop-down menu.

5. In the Properties window of the variable, set the following properties (see
Figure 5–23):

http://

CHAPTER 5 ■ ORCHESTRATIONS

267

• Name the variable objSample.

• Add a description, such as Demonstration Object.

• Specify the variable’s .NET type by clicking the drop-down box for the Type property and
selecting <.NET Class>. In the Select Artifact Type dialog box, select the SampleClass
class, as shown in Figure 5–24.

Figure 5–23. Variable Properties window

http://

CHAPTER 5 ■ ORCHESTRATIONS

268

Figure 5–24. Selecting the artifact type

6. Drop an Expression shape in the orchestration, and enter the following code to
invoke the external assembly, as shown in Figure 5–25.

http://

CHAPTER 5 ■ ORCHESTRATIONS

269

Figure 5–25. Adding code to the Expression shape

How It Works

When creating a .NET class variable in BizTalk, an option exists to Use Default Constructor. This
property causes an instance of the object to be constructed when the orchestration instantiates. If this
property is set to False, the variable will need to be instantiated in an Expression shape through the new
keyword (as in step 6 of the solution).

Another property that should be noted is on the referenced assembly itself: Copy Local. This
property indicates whether the assembly referenced should be copied into the local bin directory when a
project is built. Several factors will help decide whether the assembly should be copied locally; if a
reference is to a dynamic assembly (such as another BizTalk project that is built at the same time as the
project in which it is referenced), you probably will not want to copy the assembly locally.

It is important to note that when calling a .NET assembly that is not marked as serializable, it must
be called from an atomic scope. When creating an assembly that will be used primarily by BizTalk, it is
appropriate to mark all classes as serializable. The following example demonstrates doing this in C#.

[Serializable]
public class Example { }

http://

CHAPTER 5 ■ ORCHESTRATIONS

270

5–9. Receiving Untyped Messages

Problem

You have messages that conform to several different schema types. You wish to create a single
orchestration to consume the messages and process them in a generic fashion.

Solution

BizTalk orchestrations deal with messages that are strongly typed. A strongly typed message conforms to
a selected BizTalk schema or .NET class, and the message inherits its properties from this schema or
class. An untyped message is configured to use System.Xml.XmlDocument as the message type and is not
tied to a specific schema.

For example, a large business may receive purchase orders from several different systems, and each
message must follow the same processing steps. Although the messages are similar, they differ in minor
details and are strongly typed to different schemas. In order to process the messages from these
disparate systems using the same process, you may wish to define a process with an untyped message to
receive the different purchase order schemas into the same receive port.

■Note It is important that you have a basic understanding of receiving messages prior to implementing untyped

messages.

To create an untyped message and use it within an orchestration, take the following steps:

1. In the Orchestration View window, expand the top node of the tree view (this
node will have the same type name as the orchestration) so that the Messages
folder is visible.

2. Right-click the Messages folder, and select New Message, which creates a
message.

3. Click the new message, and give it a descriptive name in the Properties window.
In this example, the message is named incomingOrder.

4. Click the Message Type property in the Properties window, and select the .NET
type System.Xml.XmlDocument.

5. From the toolbox, drag a Receive shape onto the orchestration directly beneath
the green circle at the top of the design surface.

6. With the Receive shape selected, specify the shape’s Name, Message, and
Activate properties. In our example, we use ReceiveOrder, incomingOrder
(created in step 3), and True, respectively.

http://

CHAPTER 5 ■ ORCHESTRATIONS

271

■Note All message types will be received by an untyped port. Therefore, if you directly bind your port to the

MessageBox, you will receive every message received into the MessageBox. This could create unintended

behavior down the road.

7. Right-click one of the Port Surface areas, and select New Configured Port. This
will open the Port Configuration Wizard.

8. Step through the Port Configuration Wizard, specifying the following items
(accept all other default values):

• Port name: ReceiveOrderPort

• New port type name: ReceiveOrderPortType

• Port binding: Specify Later

• Configure the Request: Connect the orchestration port’s Request operation to the
Receive shape.

How It Works

Untyped messages are a deceptively complex and powerful BizTalk feature. Untyped messages are
powerful, because they allow for abstracted processes. For instance, rather than create three processes
for three different purchase orders that your company receives from trading partners, you could create a
single process that handles the different messages in the same process. Although the single process may
increase in complexity, it reduces the amount of maintainable code.

When implementing untyped messages, pay attention to the following areas:

Direct binding: Creating an untyped message that is directly bound to the MessageBox is not
recommended. All schema-based messages within BizTalk have a base type of
System.Xml.XmlDocument. The implication of this fact is that using a message variable that is typed as
System.Xml.XmlDocument will set up a receive subscription for all messages that are received into the
MessageBox through the directly bound port. Since, in almost every case, this is not the desired
functionality, take caution when implementing this type of scenario.

Casting: Creating an untyped message will negate many of the common operations available for that
schema type. For instance, accessing common promoted properties (MessageDataBaseProperties)
and using Transform shapes are not supported with untyped messages. It is possible, though, to cast
between an untyped message and a typed message. To cast a message, create an instance of the
typed message in a Construct/Assignment shape, and assign the untyped message to the typed
message. You now have the ability to use the typed message with all associated orchestration
functionality.

Promoted properties: Although it is not possible to access common promoted properties
(MessageDataBaseProperties) for an untyped message, it is possible to create and access a type of
promoted property known as a MessageContextPropertyBase property for an untyped message. Refer
to the BizTalk help file for more information about how to create this type of context property
within your property schema. Setting the MessageContextPropertyBase property is done in the same
manner as setting other promoted properties.

http://

CHAPTER 5 ■ ORCHESTRATIONS

272

■Note MessageContextPropertyBase properties of untyped messages may be set within the orchestration, but

the context property cannot be filtered on within other services unless a correlation set containing the

MessageContextPropertyBase property is first initialized. In addition, it is not possible to map on a send port,

because the MessageType property, which is required to match a message to a map, is not promoted for untyped

messages.

By considering direct binding, casting, and promoted properties, you can safeguard your solution
from complex bugs that are difficult to identify and triage.

5–10. Using the Parallel Action Shape

Problem

From within an orchestration, you would like to complete numerous activities at the same time and
independently of one another.

Solution

A Parallel Action shape may be added to an orchestration to implement the concurrent processing of all
parallel branches when the orchestration executes. Processing beyond the parallel branches will not
occur until all branches of the Parallel Action shape have completed. The following steps outline how to
add a Parallel Action shape to your orchestration.

1. Open the project containing the orchestration.

2. Open the orchestration.

3. Select the Parallel Action shape from the toolbox, and drag it to the appropriate
location within the orchestration.

4. Select the Parallel Action shape and update its properties.

a. Change the default name if desired.

b. Add a description if desired.

5. To add an additional branch, right-click the Parallel Action shape, and select
New Parallel Branch.

■Note To delete a branch, right-click the branch, and select Delete. To delete the Parallel Action shape, right-

click the shape, and select Delete.

http://

CHAPTER 5 ■ ORCHESTRATIONS

273

How It Works

You can use the Parallel Action shape within an orchestration to create concurrent processing. Care
should be taken when accessing data from within parallel actions to avoid contention or deadlock
situations. This can also be avoided by using synchronized scopes in conjunction with parallel actions.
Additionally, if an orchestration is terminated from within a branch of a Parallel Action shape, the
process will terminate regardless of the status of the processing within the other parallel branches.

5–11. Using the Loop Shape

Problem

You need to repeat a series of steps in an orchestration until a certain condition is met.

Solution

You can use the Loop shape in a BizTalk orchestration, in a manner similar to using a loop in any
programming language, such as this looping logic:

int a = 0;
while(a < 3)
{
 System.Console.WriteLine(a);
 a = a + 1;
}

As an example, the following steps show how to implement a loop that terminates after a counter
variable has been incremented to a certain value. The orchestration will loop three times, logging its
progress to the Windows Event Viewer.

■Note The example demonstrates a complete orchestration that could be called from another orchestration using

the Call or Start Orchestration shape. To make this a stand-alone orchestration, simply add a Receive shape as the

first step and bind it to a port.

1. In an empty orchestration, create a new variable called intCount. Make it of
type Int32. This will represent the loop counter.

2. Drop an Expression shape on the design surface. Rename this shape to
Set_Count. Then double-click the shape, and type in the following code:

//initialize counter
intCount = 0;

3. Drop a Loop shape below the Set_Count shape. Double-click the Loop shape,
and enter the following code (note there is no semicolon):

//loop while count is less than 3

http://

CHAPTER 5 ■ ORCHESTRATIONS

274

intCount < 3

4. Drop another Expression shape inside the Loop shape, and rename it
Increase_Count. Enter the following code:

//increase counter
intCount = intCount + 1;
//log to the event viewer
System.Diagnostics.EventLog.WriteEntry("Count",

System.Convert.ToString(intCount));

The orchestration is shown in Figure 5–26.

Figure 5–26. Loop shape with counter

How It Works

The Loop shape has many applications, from looping through XML documents to supplementing the
Listen shape, exception handling routines, and so on. Orchestrations can mimic the behavior of long-
running Windows services with the proper placement of a Loop shape. For example, if you need to poll
for data on a timed interval, you could set up an orchestration to do this. An initial Receive shape would
instantiate the orchestration and immediately enter a loop. Once in the loop, it would never exit, looping
every [x] number of minutes to reexecute a series of steps. The orchestration would be long-running
and would never end until terminated manually. An example of this type of orchestration is shown in
Figure 5–27.

http://

CHAPTER 5 ■ ORCHESTRATIONS

275

Figure 5–27. Long-running polling orchestration

5–12. Using the Transform Shape

Problem

You would like to transform an XML message, or multiple XML messages, into the format of another
specified XML schema.

http://

CHAPTER 5 ■ ORCHESTRATIONS

276

Solution

Using the Transform shape within the BizTalk Orchestration Designer allows you to transform XML
messages into the format of another specified XML schema. As an example, assume an orchestration
message (Customer schema) requires transformation (mapping) in preparation for a publication to
another line-of-business application.

<Customer>
 <FirstName> </FirstName>
 <LastName> </LastName>
 <MiddleInit> </MiddleInit>
 <Age></Age>
 <Address>
 <AddrLine1> </AddrLine1>
 <AddrLine1> </AddrLine1>
 <AddrLine1> </AddrLine1>
 <Zip> </Zip>
 <State> </State>
 <Country></Country>
 </Address>
</Customer>

In this example, the outbound specification (CustomerRecord) has a different structure and form
than that required by the line-of-business application.

<CustomerRecord >
 <Name> </Name>
 <MiddleInit> </MiddleInit>
 <Address> </Address>
 <Zip> </Zip>
 <State> </State>
 <Country> </Country>
 <DateTime> </DateTime>
</CustomerRecord>

To use the Transform shape within the Orchestration Designer, follow these steps:

1. Open the BizTalk project that contains the orchestration.

2. Ensure that two orchestration messages have been created. The msgCustomers
message should reference the Customer schema, and the msgCustomerRecords
message should reference the CustomerRecord schema.

3. Drag a Transform shape from the BizTalk Orchestrations section of the toolbox.
Place the shape under the Receive shape on the design surface. This
automatically creates a Construct Message container and a Transform shape.

4. Click the exclamation mark (tool tip) on the Transform message shape within
the Construct Message boundary.

5. Click the missing or invalid mapping configuration value in the drop-down list.
The Transform Configuration dialog box will appear.

6. In the Enter Configuration Information Input section of the Transform
Configuration dialog box, select the Existing Map radio button. (The New Map
option allows you to configure the Construct shape by creating a new map.)

http://

CHAPTER 5 ■ ORCHESTRATIONS

277

7. For the Fully Qualified Map Name Input option, select the map desired for the
transformation. In this example, the Transform_Sample.mapCustomer map was
selected.

8. Under the Transform node, select Source. Then, click the Source_Transform
input, and select the msgCustomers orchestration message. This is the
orchestration message assigned to the orchestration and is the same schema as
that of the inbound map: Transform_Sample.mapCustomer.

9. Under the Transform node, select Destination. Then, click the
Destination_Transform input, and select the msgCustomerRecords orchestration
message. This is the orchestration message assigned to the orchestration and is
the same schema as that of the outbound map, Transform_Sample.mapCustomer.
Figure 5–28 shows the completed configuration.

Figure 5–28. Transform Configuration dialog box

10. Click OK to complete the configuration of the Transform shape. Notice that the
Construct Message shape is automatically configured with the Messages
Constructed property of CustomerRecords. This indicates that the message
constructed in the message transform is that of the destination schema
specified in the transform map.

How It Works

The Transform shape allows you to map messages from one format to another within the BizTalk
Orchestration Designer. This functionality assists in addressing common enterprise integration
challenges, where destination processes and systems require a different format to that specified by the
source process or system.

http://

CHAPTER 5 ■ ORCHESTRATIONS

278

The Transform shape allows the assignment of an existing map or the creation of a new map within
the Transform Configuration dialog box. Also, you can transform one or multiple source messages into
one or multiple destination formats. To enable this, create a new map within the Transform shape
configuration, by specifying multiple input messages and/or multiple destination messages. This will
automatically create a map with the specified source and destination messages. This capability is useful
when you need to partition message calls for the destination process or system. Figure 5–29 shows
creating a destination with three schemas (two are identical in this example), and Figure 5–30 illustrates
a BizTalk map with multiple messages.

Figure 5–29. Creating multiple messages in the destination mapping

http://

CHAPTER 5 ■ ORCHESTRATIONS

279

Figure 5–30. The map with the multi-message target

■Note Native multiple message mapping can be done only inside an orchestration.

Message transformation may be required to perform deterministic data enrichment, required by the
destination system. For example, this scenario is very common within the enterprise resource planning
(ERP) application paradigm, where target integration processes (for example purchase orders, advance
shipment notices, and invoices) require additional information to persist and update ERP process
information based on the process and source context of a message.

A further consideration of using the Transform shape is that of implementing exception handling.
By using the Transform shape in conjunction with a Scope shape, you can handle exceptions. Based on
message transformation failure, orchestration logic can be implemented to take a course of action to

http://

CHAPTER 5 ■ ORCHESTRATIONS

280

handle the exception. This approach is different from that of implementing mapping within send or
receive ports. Here, exceptions must be handled by the failure context of the port object.

Message transformation and message mapping are fundamental requirements for any enterprise
integration platform, and BizTalk enables this capability via its mapping and orchestration tool set.

5–13. Using the Call Orchestration and Start Orchestration
Shapes

Problem

Within a BizTalk orchestration, you would like to reuse common process logic across BizTalk processes.

Solution

Within a BizTalk orchestration, you can call or start other orchestrations without sending a message
outside an orchestration’s context. BizTalk orchestrations can function as traditional functions, calling one
another synchronously or asynchronously. Using the Call Orchestration shape allows a parent
orchestration to call a child orchestration with a set of parameters and receive output back (synchronous).
Using the Start Orchestration shape allows a parent orchestration to call a child orchestration with any set
of parameters and move on, independent of receiving a result back (asynchronous).

As an example, assume that you would like to synchronously call an orchestration to perform a
validation routine on a message.

1. Open the BizTalk project that contains the orchestration that you would like to
perform the Call Orchestration functionality.

2. Drag a Call Orchestration shape from the toolbox onto your design surface.

3. Click the exclamation mark (tool tip) on the shape. Select No Called Orchestration -
Click to Configure. The Call Orchestration Configuration dialog box appears.

4. In the Call Orchestration Configuration dialog box, select the orchestration you
wish to call, as shown in Figure 5–31. In this dialog box, you can also select
parameters that can be passed by an orchestration. Parameters are passed in
the form of .NET variables. Only orchestration types that have Activation set to
False—that is, only orchestrations that are invoked from another process—will
be available for selection. In this instance, this is the calling orchestration rather
than message instantiation.

Figure 5–31. Call Orchestration Configuration dialog box

http://

CHAPTER 5 ■ ORCHESTRATIONS

281

5. Click OK to complete the Call Orchestration shape configuration.

How It Works

Orchestration shapes in the BizTalk Orchestration Designer allow for the calling of other orchestrations
synchronously or asynchronously. The choice of shape depends on the scenario and design
requirements specified for the operating solution.

Calling an orchestration synchronously gives you the ability to nest functionality, similar to calling a
method synchronously in any programming language. Calling an orchestration asynchronously allows
an orchestration’s functionality to be abstracted and performed independently without creating
dependencies on the calling and invoking orchestration process.

In addition to calling an orchestration, you can optionally pass parameters to the calling
orchestration. Parameters can be used to complement or aid in message processing without the need for
custom code development to construct process-centric message context logic. To achieve this within a
BizTalk orchestration, parameters are defined in the form of .NET BizTalk type variables. For example,
messages, variables, and correlation sets are all BizTalk type variables eligible to be passed with the
calling orchestration. Figure 5–32 shows the configuration of a callable orchestration (note that there is
no Receive shape required) with a single input parameter.

Figure 5–32. Configuring a callable orchestration

http://

CHAPTER 5 ■ ORCHESTRATIONS

282

5–14. Configuring Basic Correlations

Problem

You need to send a message out of an orchestration and receive a response back into the same
orchestration instance.

Solution

You can use a correlation set to tell an orchestration to accept only messages that have the same
information as a message sent by the orchestration. As an example, suppose you have a customer
support website where customers can place support requests and expect a response to appear on the
website within two days. When a customer places a request, the website sends a support request
message containing a unique SupportID to BizTalk, which BizTalk forwards to a customer relationship
management (CRM) system. Once support personnel monitoring the CRM system respond to the
customer request, the response containing the same SupportID goes through BizTalk and posts to the
customer support website for the customer to view.

Occasionally, the support personnel cannot respond within two days, either because the request is
not clear or because it is an extraordinarily tough request. When support personnel cannot solve the
customer’s request in time, the business policy is to elevate the request to a special support team that
will work one-on-one with the customer to help with the problem. Unfortunately, the CRM system does
not have the functionality to escalate the support request after the standard time period. However,
fortunately for your customers, BizTalk can implement the business process and coordinate these two
messages easily using correlation sets.

The same orchestration instance that forwards the request to the CRM system must receive the
correlating response. In this example, BizTalk will know to receive the response with the same SupportID
as the message forwarded to the other system.

1. Create an orchestration that defines the basic flow of messages. Figure 5–33
illustrates a basic message flow where the orchestration receives a message,
forwards the message on to another system, and waits for a response. If the
orchestration does not receive a response within a specified amount of time,
the orchestration sends the original message to another location for higher
priority processing.

http://

CHAPTER 5 ■ ORCHESTRATIONS

283

Figure 5–33. Defining the message flow

2. A correlation type defines the information that BizTalk uses to decide which
orchestration instance gets the response. To create the correlation type, in the
Orchestration View window, right-click Correlation Types, and select New
Correlation Type, as shown in Figure 5–34. The Correlation Properties dialog
box appears.

http://

CHAPTER 5 ■ ORCHESTRATIONS

284

Figure 5–34. Creating the correlation type

3. In the Correlation Properties dialog box, select the promoted property that
defines the correlation information, and click the Add button. In this example,
select the ServiceID promoted property of the ServiceRequest schema, as
shown in Figure 5–35. Select OK to complete the creation of the new correlation
type, and rename it to ServiceIDType.

Figure 5–35. Defining the members of the correlation type

■Note While a correlation set type can contain any promoted property, it cannot contain distinguished fields.

http://

CHAPTER 5 ■ ORCHESTRATIONS

285

4. To create the correlation set, right-click Correlation Sets in the Orchestration
View window, and select New Correlation Set, as shown in Figure 5–36.

Figure 5–36. Creating the correlation set

5. In the Properties window, change the name of the new correlation set to
ServiceIDCorrelation, and set the correlation type to the ServiceIDType
created in steps 2 and 3, as shown in Figure 5–37.

Figure 5–37. Setting the correlation set properties

6. Right-click the Send to CRM shape in the orchestration, and select Properties.
In the Properties window, set the Initializing Correlation Sets property to
ServiceIDCorrelation, as shown in Figure 5–38.

http://

CHAPTER 5 ■ ORCHESTRATIONS

286

Figure 5–38. Initializing the correlation set

7. Right-click the Get CRM Response shape, and select Properties. In the
Properties window, set the Following Correlation Sets property to
ServiceIDCorrelation, as shown in Figure 5–39. This ensures that the
orchestration will accept only messages with the same information at runtime,
which is the specific support identifier in this example. While sending the
outbound message, BizTalk creates an instance subscription with the
properties of the correlation set to receive the correlated inbound message.

Figure 5–39. Following the initialized correlation set

http://

CHAPTER 5 ■ ORCHESTRATIONS

287

How It Works

The orchestration in Figure 5–33 defines the basic flow of messages that BizTalk needs to coordinate.
However, the time between when BizTalk sends the support message to the CRM system and receives a
response could be as long as two days. You would expect that there could be any number of outstanding
customer support requests during two days. Moreover, because many support requests are sent to the
CRM system, many BizTalk orchestrations would be waiting concurrently for a response. Further,
suppose one request has already taken over a day of research, when a new one arrives that will take only
a few minutes to handle. BizTalk creates a new orchestration instance to forward each message to the
CRM system, but how will BizTalk know which orchestration instance should receive the response
message?

By using a correlation set, you can tell an orchestration to accept only messages that have the same
information as a message sent by the orchestration. A correlation set is a container for holding
information of a particular correlation type. A correlation type defines the correlation set, telling BizTalk
the fields in a message that will create the correlation set. In this example, we have only one SupportID to
keep track of, so we create only one correlation set. When BizTalk initially sends the support request to
the CRM system, the orchestration instance initializes the correlation set containing the SupportID to
keep track of the specific SupportID in the messages. The action receiving the response from the CRM
system follows the same correlation set, meaning that the orchestration instance will accept only
messages with the same SupportID as the message sent to the CRM system.

5–15. Maintaining Message Order

Problem

You are implementing an integration point where message order must be maintained. Messages must
be delivered from your source system to your destination system in first-in/first-out (FIFO) sequence.

Solution

In scenarios where FIFO-ordered delivery is required, sequential convoys handle the race condition that
occurs as BizTalk attempts to process subscriptions for messages received at the same time. Ordered
message delivery is a common requirement that necessitates the use of sequential convoys. For
example, FIFO processing of messages is usually required for financial transactions. It is easy to see why
ordered delivery is required when looking at a simple example of a deposit and withdrawal from a bank
account. If a customer has $0.00 in her account, makes a deposit of $10.00, and then makes a withdrawal
of $5.00, it is important that these transactions are committed in the correct order. If the withdrawal
transaction occurs first, the customer will likely be informed that she has insufficient funds, even though
she has just made her deposit.

Sequential convoys are implemented by message correlation and ordered delivery flags in BizTalk
Server, as outlined in the following steps.

1. Open the project that contains the schema. (We assume that an XSD schema
used to define a financial transaction message is already created.)

2. Add a new orchestration to the project, and give it a descriptive name. In our
example, the orchestration is named SequentialConvoyOrchestration.

3. Create a new message, and specify the name and type. In our example, we
create a message named FinancialTransactionMessage, which is defined by the
FinancialTransactionSchema schema.

http://

CHAPTER 5 ■ ORCHESTRATIONS

288

4. In the Orchestration View window, expand the Types node of the tree view so
that the Correlation Types folder is visible.

5. Right-click the Correlation Types folder, and select New Correlation Type,
which creates a correlation type and launches the Correlation Properties dialog
box.

6. In the Correlation Properties dialog box, select the properties that the convoy’s
correlation set will be based on. In our example, we select the
BTS.ReceivePortName property, which indicates which receive port the message
was received through.

7. Click the new correlation type, and give it a descriptive name in the Properties
window. In our example, the correlation type is named
ReceivePortNameCorrelationType.

8. In the Orchestration View window, right-click the Correlation Set folder, select
New Correlation Set, and specify a name and correlation type. In our example,
we create a correlation set named ReceivePortNameCorrelationSet and select
ReceivePortNameCorrelationType.

9. From the toolbox, drag the following onto the design surface in top-down
order. The final orchestration is shown in Figure 5–40.

• Receive shape to receive the initial order message: Configure this shape to use the
FinancialTransactionMessage, activate the orchestration, initialize
ReceivePortNameCorrelationSet, and to use an orchestration receive port.

• Loop shape to allow the orchestration to receive multiple messages: Configure this shape
with the expression Loop == true (allowing the orchestration to run in perpetuity).

• Send shape within the Loop shape: This delivers the financial transaction message the
destination system. Configure this shape to use an orchestration send port.

• Receive shape within the Loop shape: This receives the next message (based on the order
messages were received) in the convoy. Configure this shape to use the
FinancialTransactionMessage, to follow the ReceivePortNameCorrelationSet and to use
the same orchestration receive port as the first Receive shape.

http://

CHAPTER 5 ■ ORCHESTRATIONS

289

Figure 5–40. Configuring a sequential convoy

10. Build and deploy the BizTalk project.

11. Create a receive port and receive location to receive messages from the source
system.

12. Create a send port to deliver messages to the destination system. In our
solution, we send messages to an MSMQ queue named TransactionOut. In the
Transport Advanced Options section of the Send Port Properties dialog box,
select the Ordered Delivery option, as shown in Figure 5–41.

http://

CHAPTER 5 ■ ORCHESTRATIONS

290

Figure 5–41. Configuring an ordered delivery send port

13. Bind the orchestration to the receive and send ports, configure the host for the
orchestration, and start the orchestration.

How It Works

In this solution, we show how a convoy can be used to sequentially handle messages within an
orchestration. The sequential convoy consists of the ReceivePortNameCorrelationSet and the ordered
delivery flags specified on the receive location and send port. The first Receive shape initializes the
correlation set, which is based on the receive port name by which the order was consumed. Initializing a
correlation set instructs BizTalk Server to associate the correlation type data with the orchestration
instance. This allows BizTalk to route all messages that have identical correlation type criteria (in our
case, all messages consumed by the receive port bound to the orchestration) to the same instance. The
Ordered Processing flag further instructs BizTalk Server to maintain order when determining which
message should be delivered next to the orchestration.

■Note The adapter used to receive messages into sequential convoy orchestrations must implement ordered

delivery. If an adapter supports ordered delivery, the check box will appear on the Transport Advanced Options tab.

The Send shape in the orchestration delivers the financial transaction message to a destination
system for further processing. The second Receive shape follows the correlation set, which allows the
next message consumed by the receive port to be routed to the already running orchestration instance.
Both the Send and second Receive shapes are contained within a loop, which runs in perpetuity. This
results in a single orchestration instance that processes all messages for a given correlation set, in
sequential order. This type of orchestration is sometimes referred to as a singleton orchestration.

http://

CHAPTER 5 ■ ORCHESTRATIONS

291

Working with Sequential Convoys

The term convoy set is used to describe the correlation sets used to enforce convoy message handling.
While our example used only a single correlation set, you can use multiple correlation sets to implement
a sequential convoy. Regardless of how many correlation sets are used, sequential convoy sets must be
initialized by the same Receive shape and then followed by a subsequent Receive shape.

Sequential convoys can also accept untyped messages (messages defined as being of type
XmlDocument). You can see how this is important by extending the financial transaction scenario, and
assuming that a deposit and withdrawal are actually different message types (defined by different
schemas). In this case, a message type of XmlDocument would be used on the convoy Receive shapes.

Fine-Tuning Sequential Convoys

While our example does implement a sequential convoy, you can fine-tune the solution to handle
sequential processing in a more efficient and graceful manner. As it stands now, the
SequentialConvoyOrchestration handles each message received from the source MSMQ queue in order.
This essentially single-threads the integration point, significantly decreasing throughput. Single-
threading does achieve FIFO processing, but it is a bit heavy-handed. In our example, all transactions do
not have to be delivered in order—just those for a particular customer. By modifying the convoy set to be
based on a customer ID field in the financial transaction schema (instead of the receive port name), you
can allow transactions for different customers to be handled simultaneously. This change would take
advantage of BizTalk Server’s ability to process multiple messages simultaneously, increasing the
performance of your solution.

■Note In this scenario, you must use a pipeline that promotes the customer ID property (such as the XmlReceive

pipeline) on the receive location bound to the sequential convoy orchestration. The PassThru receive pipeline

cannot be used in this scenario.

Changing the convoy set to include a customer ID field would also impact the number of
orchestrations running in perpetuity. Each new customer ID would end up creating a new orchestration,
which could result in hundreds, if not thousands, of constantly running instances. This situation is not
particularly desirable from either a performance or management perspective. To address this issue, you
can implement a timeout feature allowing the orchestration to terminate if subsequent messages are not
received within a specified period of time. Take the following steps to implement this enhancement. The
updated orchestration is shown in Figure 5–42.

1. Add a Listen shape in between the Send shape and second Receive shape.

2. Move the second Receive shape to the left-hand branch of the Listen shape.

3. Add a Delay shape to the right-hand branch of the Listen shape. Configure this
shape to delay for the appropriate timeout duration. In our example, we set the
timeout to be 10 seconds by using the following value for the Delay property:

new System.TimeSpan(0,0,0,10)

4. Add an Expression shape directly below the Delay shape. Configure this shape
to exit the convoy by using the following expression:

Loop = false;

http://

CHAPTER 5 ■ ORCHESTRATIONS

292

Figure 5–42. Configuring a terminating sequential convoy

Finally, you can enhance the solution to ensure that messages are successfully delivered to the
destination system before processing subsequent messages. In the current solution, messages are sent
out of the orchestration to the MessageBox database via the orchestration port. Once this happens, the
orchestration continues; there is no indication that the message was actually delivered to its end
destination. For example, if the destination MSMQ queue was momentarily offline, a message may be
suspended while subsequent messages may be delivered successfully. Take the following steps to
implement this enhancement. The updated orchestration portion is shown in Figure 5–43.

1. Change the orchestration send port’s Delivery Notification property to
Transmitted.

2. Add a Scope shape directly above the Send shape.

3. Move the Send shape inside the Scope shape.

4. Add an exception handler by right-clicking the Scope shape. Configure this
shape to have an Exception Object Type property of
Microsoft.XLANGs.BaseTypes.DeliveryFailureException. Enter a descriptive
name for the Exception Object Name property.

5. Add an Expression shape inside the exception handler block added in the
previous step. Configure this shape to appropriately handle delivery failure
exceptions. In our solution, we simply write the event to the trace log via the
following code:

System.Diagnostics.Trace.Write("Delivery Failure Exception Occurred - " +

deliveryFailureExc.Message);

http://

CHAPTER 5 ■ ORCHESTRATIONS

293

Figure 5–43. Capturing delivery failure exceptions

5–16. Configuring Parallel Convoys

Problem

You are implementing a data aggregation integration point, which requires data to be retrieved from
multiple systems. Each source system publishes messages, and a message from each system must be
received before further processing can take place.

Solution

A parallel convoy is a business process (orchestration) that receives multiple messages in parallel (at the
same time) that relate to each other. Parallel convoys handle the race condition that occurs as BizTalk
attempts to process subscriptions for messages received at the same time.

A common scenario requiring parallel convoys is where multiple messages for a specific event must
be received before a business process can start. As an example, suppose your company’s policy allows

http://

CHAPTER 5 ■ ORCHESTRATIONS

294

an order to be shipped only once payment has been approved and stock level has been verified.
Payment approval comes from a financial system, and stock-level information comes from an inventory
system. Once both systems publish their respective messages for a specific order, that order can be
delivered to the customer.

Parallel convoys are implemented by message correlation and Parallel Action shapes in BizTalk
Server, as shown in the following steps.

1. Open the project that contains the schemas. (We assume that XSD schemas
used to define payment approval and stock-level verification messages are
already created.)

2. Add a new orchestration to the project, and give it a descriptive name. In our
example, the orchestration is named ParallelConvoyOrchestration.

3. Create two new messages, and specify the name and type of each. In our
example, we create messages named PaymentApprovalMessage and
StockLevelConfirmationMessage, which are defined by the
PaymentApprovalSchema and StockLevelConfirmationSchema schemas,
respectively.

4. In the Orchestration View window, expand the Types node of the tree view so
that the Correlation Types folder is visible.

5. Right-click the Correlation Types folder, and select New Correlation Type,
which creates a correlation type and launches the Correlation Properties dialog
box.

6. In the Correlation Properties dialog box, select the properties that the
correlation will be based on. In our scenario, we select the OrderID property,
which has been promoted from the PaymentApprovalSchema and
StockLevelConfirmationSchema schemas.

7. Click the new correlation type, and give it a descriptive name in the Properties
window. In our example, the correlation type is named
OrderIDCorrelationType.

8. In the Orchestration View window, right-click the Correlation Set folder, select
New Correlation Set, and specify a name and correlation type. In our example,
we create a correlation set named OrderIDCorrelationSet and select
OrderIDCorrelationType.

9. From the toolbox, drag the following onto the design surface in top-down
order; the parallel convoy configuration is shown in Figure 5–44:

• Parallel Actions shape to receive the response from the financial and inventory systems.

• Receive shape to receive messages from the financial system. Place this shape on the
left-hand branch of the Parallel Actions shape. Configure this shape to use the
PaymentApprovalMessage, to initialize the OrderIDCorrelationSet, to activate the
orchestration, and to use an orchestration receive port.

• Receive shape to receive messages from the inventory system. Place this shape on the
right-hand branch of the Parallel Actions shape. Configure this shape to use the
StockLevelConfirmationMessage, to initialize the OrderIDCorrelationSet, to activate the
orchestration, and to use an orchestration receive port.

http://

CHAPTER 5 ■ ORCHESTRATIONS

295

• Expression shape to deliver the ship the order. Configure this shape to send the order to
the appropriate recipient. In our solution, we simply write a message to the trace log via
the following code:

System.Diagnostics.Trace.Write("Shipping Order with ID = " +
 PaymentApprovalMessage

 (ParallelConvoyOrchestration.PropertySchema.OrderID));

Figure 5–44. Configuring a parallel convoy

How It Works

In this solution, we show how a convoy can be used to concurrently handle messages within an
orchestration. The parallel convoy, also referred to as a concurrent convoy, consists of the
OrderIDCorrelationSet and the Parallel Actions shape. Each Receive shape in the Parallel Actions shape
initializes the correlation set, which is based on the order ID. Initializing a correlation set instructs
BizTalk Server to associate the correlation type data with the orchestration instance. This allows BizTalk
to route all messages that have identical correlation type criteria (in our case, all messages with a specific
order ID) to the same instance.

Each of the Receive shapes has its Activate property set to True and its Initializing Correlation
configured to the same correlation set. The Receive shape that receives the first message will handle the
activation of the orchestration instance and the initializing of the correlation set. The second Receive
shape will not activate a new orchestration instance (even though its Activate property is set to True)
and will actually follow the correlation set that the other Receive shape initialized.

Based on this example, messages for two order IDs would be handled in the following manner:

1. A payment approval message for order ID 1 is received, which instantiates
orchestration instance 1.

2. A stock-level confirmation message for order ID 2 is received, which
instantiates orchestration instance 2.

3. A payment approval message for order ID 2 is received, which is correlated and
delivered to orchestration 2. The orchestration continues processing, ships
order ID 2, and terminates successfully.

4. A stock-level confirmation message for order ID 1 is received, which is
correlated and delivered to orchestration 1. The orchestration continues
processing, ships order ID 1, and terminates successfully.

http://

CHAPTER 5 ■ ORCHESTRATIONS

296

While our example used only a single correlation set, multiple correlation sets can be used to
implement a parallel convoy. Parallel convoys are defined as having a convoy set that is initialized on
multiple branches of a Parallel Actions shape within an orchestration. Regardless of how many
correlation sets are used, if multiple Receive shapes initialize a convoy set in a Parallel Actions shape, the
same correlation sets must be initialized on all of the Receive shapes.

5–17. Using XPath Queries on Messages

Problem

You need to get and/or set values in a message within an orchestration. There are a number of nodes
that cannot be promoted because they are not unique, and you need to be able to access these values.

Solution

To access values in a message, you can use XPath. XPath queries are used to navigate the tree of a given
XML document and are typically used within orchestration Message Assignment and Expression shapes.
BizTalk XPath queries require two parameters: the first parameter references the XML message, and the
second is the query path.

As an example, assume that an orchestration message called msgDemo contains the XML shown in
Listing 5–4.

Listing 5–4. Sample XML Instance for XPath Query Example

<ns0:NewHireList xmlns:ns0="http://SampleSolution.NewHireList">
 <DateTime>1999-04-05T18:00:00</DateTime>
 <ns1:Person xmlns:ns1="http://SampleSolution.Person">
 <ID>1</ID>
 <Name>S. Jonesy</Name>
 <Role>Embedded Programmer</Role>
 <Age>40</Age>
 </ns1:Person>
 <ns1:Person xmlns:ns1="http://SampleSolution.Person">
 <ID>2</ID>
 <Name>D. Hurley</Name>
 <Role>Artist</Role>
 <Age>45</Age>
 </ns1:Person>
</ns0:NewHireList>

The following steps demonstrate getting values, getting a node count, getting an entire XML node,
and setting values.

1. To get the value of the <DateTime> element, use the following XPath query. The
output of this query is 1999-04-05T18:00:00.

xpath(msgDemo,"string(//*[local-name()='DateTime'])")

2. To get the value of the <Name> element that is in the same <Person> node as the
<ID> which is equal to 2, use the following XPath query. The output of this query
will be D. Hurley.

http://SampleSolution.NewHireList
http://SampleSolution.Person
http://SampleSolution.Person
http://

CHAPTER 5 ■ ORCHESTRATIONS

297

xpath(msgDemo,"string(//*[local-name()='Name' and ../*

[local-name()='ID'] = '2'])")

3. To get the count of <Person> nodes within the document, use the following
XPath query. The output of this query is 2.

xpath(msgDemo,"count(//*[local-name()='Person'])")

4. To get the entire XML node representation of the second <Person> node, use the
following XPath query. Note that this requires formatting the query using the
System.String.Format function. The result of this query will be a full XML node.

strXPathQuery = System.String.Format("//*[local-name()='Person'][{0}]",2);
xmlDoc = xpath(msgIncoming,strXPathQuery);

<ns1:Person xmlns:ns1="http://SampleSolution.Person">
 <ID>2</ID>
 <Name>D. Hurley</Name>
 <Role>Artist</Role>
 <Age>45</Age>

</ns1:Person>

5. To set the value of the <DateTime> element, use the following XPath query. Note
that this must be done in a Message Assignment shape, since the value of the
message is changing. The message used must first be constructed.

xpath(msgDemo, "//*[local-name()='DateTime']") = strDateTime;

How It Works

This recipe’s solution demonstrated several of the many uses of XPath. One question that often arises is
when to use XPath instead of using promoted properties. The ability to promote properties is limited.
Elements that repeat within a schema cannot be promoted. Only unique values can be promoted. When
you need to set the value of repeating nodes, XPath is the quickest and most versatile approach.

5–18. Using Nontransactional Orchestration Scopes

Problem

You need to define how your orchestration behaves under possible exception conditions.

Solution

Any orchestration can have Scope shapes in it. Place other orchestration shapes within the Scope shape
to define the expected behavior of the orchestration. If BizTalk encounters an exception performing the
steps inside a Scope shape, it will jump to separate actions defined in an exception handler. The solution
demonstrates how to add exception handling to an orchestration.

http://SampleSolution.Person
http://

CHAPTER 5 ■ ORCHESTRATIONS

298

■Note A scope functions exactly like a traditional try/catch block.

1. Create a new orchestration. Drag a Scope shape from the toolbox onto the
orchestration design surface.

2. Right-click the name of the Scope shape, and select Properties from the context
menu.

3. Set the Transaction Type property to None and the Name property to Controlled
Exceptions Scope.

4. Right-click the name of the new Scope shape, and select New Exception
Handler from the context menu, as shown in Figure 5–47.

Figure 5–45. Creating an exception handler

5. Right-click the name of the exception handler created in the previous step, and
select Properties Window from the context menu.

6. Set the Exception Object Type property to General Exception and the Name
property to Log Exception, as shown in Figure 5–46.

http://

CHAPTER 5 ■ ORCHESTRATIONS

299

Figure 5–46. Setting the Exception object type and name

7. From the toolbox, drag an Expression shape into the exception handler.

8. Double-click the Expression shape to open the Expression Editor, and add the
following code to record the exception.

System.Diagnostics.EventLog.WriteEntry("A Simple BizTalk Source",
 "An exception was encountered in my sample orchestration. ");

9. Build the orchestration logic inside the Scope shape. If BizTalk encounters an
exception processing the orchestration logic, it will invoke the Expression
shape.

How It Works

The BizTalk Orchestration Designer is a development tool. Just as when building a component with any
other development tool, exception conditions can occur long after the component is constructed. The
developer may misunderstand how the component should behave, or changes to the other systems
BizTalk interacts with may cause exception conditions. Regardless of the cause, the developer always
needs to plan for the unexpected.

■Note In addition to defining how an orchestration reacts to possible exception conditions, orchestration scopes

can also define atomic or long-running transactions.

http://

CHAPTER 5 ■ ORCHESTRATIONS

300

This recipe demonstrates how to respond to exception conditions by invoking an Expression shape
that writes an error message to the Windows application log. However, an exception handler can define
more rigorous error-resolution procedures. The compensation block can simply log the exception, can
invoke an exception-handling framework, or can invoke another BizTalk orchestration defining a series
of resolution actions. In addition, if an orchestration defines the procedures for resolving exceptions,
then the BizTalk Business Activity Monitor (BAM) can generate reports on exception-resolution
processes.

Error Information

This solution’s example uses the default General Exception object type, as shown earlier in Figure 5–46.
This is useful when you want to log where and when errors occur but do not need specific information
about the actual errors encountered.

An exception handler can identify more specific error information when the exception handler’s
Object Type property is set to any class inheriting from System.Exception. When the Object Type is a
.NET Exception, as shown in Figure 5–47, the exception object can retrieve additional information such
as an error message.

Modify the Expression shape as follows to include the error message in the application log entry.

System.Diagnostics.EventLog.WriteEntry("A Simple BizTalk Source",
 "An exception was encountered: " + ex.Message);

Figure 5–47. Setting the exception handler type

http://

CHAPTER 5 ■ ORCHESTRATIONS

301

Multiple Exception Handlers

A single Scope shape can also specify multiple exception handlers to define different reactions to
different exceptions encountered by the orchestration. When the Scope shape encounters an exception,
it will check each exception handler from top to bottom. The Scope shape invokes the first exception
handler matching the type of exception encountered and stops looking for a match. Therefore, more
specific exception handlers must appear above more general exception handlers, or the general
exception handler will handle all errors and the Scope shape will never invoke the specific exception
handlers. Define an additional exception handler with the following steps.

1. Define the first exception handler as presented in this recipe’s solution.

2. Right-click the name of the Scope shape, and select New Exception Handler.

3. Move the handler for the General Exception defined in the solution by selecting
the name and dragging the mouse over the lower line defining the new
exception handler. The General Exception handler should appear below the
new one.

4. Right-click the name of the new exception handler, and select Properties
Window.

5. Change the Name property to Handle Arithmetic Exception.

6. For the Exception Object Type property, select <.NET Exception...>. In the
Select Artifact Type dialog box that appears, select the Arithmetic Exception, as
shown in Figure 5–48, and then click OK.

7. Change the Exception Object Name property to ex.

8. Add shapes to the new exception handler to handle arithmetic exceptions
specifically, as shown in Figure 5–49.

Figure 5–48. Selecting the ArithmeticException

http://

CHAPTER 5 ■ ORCHESTRATIONS

302

Figure 5–49. Defining arithmetic exception-specific shapes

While a Scope shape will invoke only the first exception handler matching the type of exception
encountered, sometimes there are consistent actions the orchestration should take for different kinds of
errors. For example, what if the orchestration depicted in Figure 5–49 should call the orchestration for
resolving math errors in addition to logging the exception to the application log? The Throw shape can
propagate an exception from the Scope shape that initially catches it to an outer Scope shape defining
the consistent error actions. Figure 5–50 depicts an example of a Scope shape contained within another
Scope shape.

http://

CHAPTER 5 ■ ORCHESTRATIONS

303

■Note You can drag and drop the catch blocks from one exception block to another.

Figure 5–50. Nested scopes

http://

CHAPTER 5 ■ ORCHESTRATIONS

304

5–19. Creating Atomic Scopes

Problem

You are building an orchestration process that contains actions that must complete together as a group
or fail as a group.

Solution

BizTalk supports the notion of completing small units of work following the Atomicity, Consistency,
Isolation, and Durability (ACID) transaction model. The Atomic Scope shape implements the ACID
transaction model. Atomic scopes are the most flexible and restrictive of the transaction models in
BizTalk. The use of an atomic scope within BizTalk ensures that a group of steps either succeeds or fails
together. The following instructions outline the steps required to create and configure an atomic scope.

1. Open the project containing the orchestration that will contain the atomic scope transaction.

2. Verify the Transaction Type property of the orchestration is set to Long Running.
This is required for orchestrations containing atomic scopes.

3. Select and drag the Scope shape from the BizTalk Orchestrations section of the
toolbox to the appropriate location within the orchestration.

■Note Atomic scopes may not contain nested Atomic Scope or Long Running Scope shapes.

4. Select the Scope shape, and update the properties as follows.

• Change Transaction Type to Atomic.

• Change Compensation from Default to Custom if your scope will contain a compensation
handler.

• Change Isolation Level to the correct value.

• Change Name if desired.

• Set the Report To Analyst property. Leave the property as True if you would like the
shape to be visible to the Visual Business Analyst tool.

• Change the Retry value from True to False if you do not want the Scope shape to retry in
the event of a failure. The Retry value must be set to True if you plan on throwing an
exception to cause the atomic scope to retry. However, setting the value to true does not
mean the atomic scope will retry by default.

• Change the Synchronized value from False to True if you are using the Atomic Scope
shape within a Parallel Actions shape and manipulating the same set of data.

• Change the Timeout value if desired. Scope timeouts indicate the period of time to wait
(in seconds) before the transaction fails. Atomic scopes that contain a timeout value will
stop the transaction and be suspended if the timeout value is reached.

http://

CHAPTER 5 ■ ORCHESTRATIONS

305

• Change the Transaction Identifier if desired.

5. Add the appropriate orchestration actions to the Atomic Scope shape.

How It Works

BizTalk supports the ACID model by providing the following features:

• Atomicity: Atomic Scope shapes guarantee all actions within the Scope shape are
either performed completely or not performed at all.

• Consistency: System properties (messages and variables) are preserved through
the transaction. In the situation where an atomic scope cannot be committed and
the system properties are updated, the system properties are rolled back to their
previous state.

■Note All variables, regardless of whether they are local to the scope or global to the orchestration, will be rolled

back to their previous state when an atomic scope fails.

• Isolation: Each atomic scope allows controlled visibility to other scopes’ and
transactions’ data.

• Durability: Once an atomic scope has been committed, the only way the action
can be undone is through the use of a BizTalk compensation handler.

Atomic Scope Considerations

Atomic scopes are extremely useful, but there is an associated cost with the use of any transactional
model inside an orchestration. Consider the following when deciding whether to use an atomic scope:

• Atomic scopes cannot contain a send and a receive port that are referencing the
same two-way request/response orchestration port. For example, if you are
referencing an HTTP/SOAP port in your orchestration, you cannot have the Send
and Receive shapes in a single Atomic Scope shape. Additionally, you cannot have
Send and Receive shapes that implement the same correlation set within the same
Atomic Scope shape. The rationale for this is that as soon as context has left the
orchestration (a message is sent via a Send shape), the atomic scope action is
complete, and a response cannot be matched to the request.

• If an Atomic Scope shape contains a Send, Receive, or Start Orchestration shape,
BizTalk will wait to perform those actions until the scope has been committed.
BizTalk considers the boundary of the transaction to be the point that a message
has been committed to the BizTalk MessageBox.

http://

CHAPTER 5 ■ ORCHESTRATIONS

306

• A single atomic scope is not that expensive in the context to processing of an
entire orchestration. However, the use of multiple atomic scopes can be expensive
because BizTalk sets a checkpoint before and after an atomic scope is executed.
Consider ways to combine multiple atomic scopes into fewer atomic scopes. The
checkpoint takes place so that the orchestration can be resumed if it is suspended
due to an exception in the atomic scope.

■Note Think of a checkpoint as BizTalk serializing its current processing state to persist and prepare for a

rollback in the case of an exception in the atomic scope. The serialization and persistence of the current

processing state reduces performance incrementally. The more atomic scopes in an orchestration, the more points

of persistence that will be created and the greater the overall degradation in the performance of the orchestration.

• An object that is not serializable (does not implement the ISerializable interface
or is not marked with a serializable attribute) must be in an atomic scope. For
example, if you are using the XmlNodeList object, the variable must be declared
local to the scope and referenced within the Atomic Scope shape. The XmlDocument
data type is an exception to this rule.

• Using an Atomic Scope shape to perform multiple send operations does not
guarantee that the send operations will be rolled back in the case one send fails.
For example, if you have two Send shapes each sending a message to a SQL
database, if there is a failure in one or both SQL databases, the Atomic Scope
shape does not guarantee that the data will be backed out from either database
call. BizTalk considers the boundary of a transaction to be the point that a
message is committed to the MessageBox. True rollbacks are guaranteed only in
true Microsoft Distributed Transaction Coordinator (MSDTC) transactions.

Atomic Scope Benefits

Even though atomic scopes are the more restrictive of the two transaction models, they offer significant
benefits over the use of long-running scopes. Atomic scopes allow the specification of an Isolation
Level property, as follows:

• Specifying Serializable means that concurrent transactions will not be able to
make data modifications until the transaction is committed.

• Specifying Read Committed means that the existing transaction is prevented from
accessing data modifications until the transaction is committed.

• Specifying Repeated Read means that read locks are required until the existing
transaction is committed.

Atomic scopes also implement a retry capability that is enabled through the use of the Retry flag. An
atomic scope will retry if the Scope shape’s Retry property is set to True and at least one of the following
exceptions occurs:

http://

CHAPTER 5 ■ ORCHESTRATIONS

307

• Microsoft.XLANG.BaseTypes.RetryTransactionException is thrown or in the event
that BizTalk cannot commit the transaction. Additionally, all variables will be reset
to their state prior to entry of the scope.

• Microsoft.XLANG.BaseTypes.PersistenceException occurs due to BizTalk’s
inability to persist state.

Exception Handling

One challenge to using atomic scopes is the fact that you cannot have an exception handler on the
Atomic Scope shape itself. Atomic scopes are defined to either succeed or fail, hence there is no direct
need to have an exception handler. In the situation where an exception should be caught in an error
handler, the items that cause an exception can be enclosed in a nontransactional scope (with an error
handler) inside the atomic scope.

Consider the following scenario: you must pass a nonserializable object to a custom assembly that,
in turn, makes a database call. You want to catch any communication exceptions and force the atomic
scope to retry. One option for this scenario would be to implement an atomic scope to manipulate the
nonserializable object and within that Atomic Scope shape, include a nontransactional Scope shape
with an error handler that will throw a Microsoft.XLANG.BaseTypes.RetryTransactionException. This
scenario would allow you use a nonserializable object and force a retry in the case of a communication
problem.

■Note When throwing a RetryTransactionException to perform a retry, validate that conditions have changed

so that you do not continually throw a RetryTransactionException and create an infinite retry loop.

Compensation Handling

Atomic Scope shapes (as well as other Scope shapes) support the notion of compensation to facilitate
undoing a logical piece of work regardless of the successful commit. Suppose that the atomic scope
executes and commits successfully, but there is a business-error problem with the message data. The
atomic scope, from a technical aspect, executed and committed correctly. However, due to the business
validation failing, the transaction must be undone. Compensations allow definition of a process that
details how the previously committed atomic transaction is to be rolled back.

The structure of a compensation handler is similar to that of an exception handler but functionally
different. BizTalk will use the default compensation handler if no custom compensation handler is
defined. The default BizTalk compensation handler calls the compensation blocks of any nested
transactions, in reverse order of completion. Compensation handlers must be called explicitly, unlike
error handlers, through the use of the Compensation shape. A common use for a compensation handler
is to create a message that indicates business data needs to be backed out of a specific system or process.

MSDTC Transactions

An Atomic Scope shape behaves like an MSDTC transaction but is not an explicit DTC transaction by
default. To clarify, if you send a message to SQL Server via the SQL adapter, the actions performed in the
SQL call will not roll back, and a compensation handler is required to back out any committed changes.
The reason a compensation handler is required is due to the SQL adapter not enrolling in an explicit
DTC transaction.

http://

CHAPTER 5 ■ ORCHESTRATIONS

308

Atomic scopes do support the use of a DTC transaction as long as the objects referenced in the
scope are serviced components (COM+ objects) derived from the
System.EnterpriseServices.ServicedComponents class. Additionally, the isolation levels must agree and
be compatible between transaction components and what is specified in the atomic scope. The atomic
scope does not require a configuration value to be set on the shape itself, as it will automatically enroll in
an MSDTC transaction if possible.

Listing 5–5 serves as an outline for what to include in your assembly for creating a serviced
component. Your assembly must reference System.EnterpriseServices and
System.Runtime.InteropServices (for the Guid attribute reference). Verify that your component is
registered in the Global Assembly Cache (GAC) (for example, using gacutil) and that you also register
the component in COM+ (for example, using regsvcs).

Listing 5–5. Serviced Component

using System;
using System.EnterpriseServices;
using System.Runtime.InteropServices;

namespace MSDTCTestLibrary
{
 /// <summary>
 /// Summary description for Class1.
 /// </summary>
 ///
 [Guid("9943FB26-F4F5–4e80-B746-160AB9A6359E")]
 [Transaction(TransactionOption.Required)]
 public class ClassMSDTCTest : ServicedComponent
 {
 public ClassMSDTCTest(){}

 public String Test()
 {
 try
 {
 // Commit the transaction
 ContextUtil.SetComplete();
 return "Test";
 }
 catch (Exception ex)
 {
 // Abort the transaction
 ContextUtil.SetAbort();
 return ex.ToString();
 }

 }

 }
}

http://

CHAPTER 5 ■ ORCHESTRATIONS

309

5–20. Using Long-Running Transactions

Problem

You have separate tasks to accomplish in an orchestration that must all succeed or fail together. These
tasks may take a long time to complete.

Solution

Long-running transactions can help ensure a single consistent outcome across multiple BizTalk tasks. As
an example, suppose you have a web site where customers can make purchases using credit. Creating a
new customer involves two steps. First, the customer needs a login to access your web site. Second, the
customer also needs credit established to make purchases. Sometimes, your web site cannot create a
login because the customer has chosen a login already assigned to another customer. Other times,
BizTalk cannot establish credit for the customer. If one of these tasks succeeds and the other fails, the
user may experience undesirable behavior on your web site.

By defining actions to reverse each of the two tasks required in this example, BizTalk can
automatically reverse the effects of one task in the event that the other fails. If BizTalk creates a login but
cannot establish credit, it will detect the failure and invoke the compensation logic to disable the login. If
credit is established but BizTalk cannot create the login, it will invoke the compensation logic to suspend
credit.

The following steps demonstrate how to set up a long-running transaction for this example.

1. Create a new BizTalk project, and add an orchestration.

2. Right-click the orchestration design surface, and select Properties Window.

3. Set the Transaction Type property to Long Running.

4. Place a Receive shape on the design surface with the Activate property set to
True. Configure BizTalk to receive a NewCustomerMsg message.

5. Place a Parallel Actions shape under the Receive shape.

6. Place a Scope shape under the left branch of the Parallel Actions shape.

7. Select the icon in the upper-right corner of the Create Login shape, and select
Long Running from the menu, as shown in Figure 5–51.

Figure 5–51. Setting the scope transaction type

http://

CHAPTER 5 ■ ORCHESTRATIONS

310

8. Place a Send shape inside the Scope shape.

9. Set the Send shape’s Message property to NewCustomerMsg.

10. Create a one-way send port named CustomerActivation.

11. Set the CustomerActivation send port’s Delivery Notification property to
Transmitted.

■Note Use delivery notification to determine if a delivery failure occurs. BizTalk will not complete the long-

running transaction until the messages with delivery notification are successfully delivered and will report an error

if any of the messages are suspended.

12. Right-click the top portion of the Scope shape, and select New Compensation
Block from the context menu, as shown in Figure 5–52.

Figure 5–52. Creating the compensation block

13. Place a Send shape inside the compensation block, and attach it to a new port.
This defines the actions to reverse the transaction if another transaction fails.

14. Repeat steps 6 to 13 to define the Create Credit Account scope.

15. Deploy the orchestration and bind the ports to file locations. To simulate
delivery failure to the CustomerActivation and CreditApplication ports, deny
the BizTalk Application Users group access to the file locations bound to the
orchestration ports.

http://

CHAPTER 5 ■ ORCHESTRATIONS

311

How It Works

The goal of a transaction is to ensure that many separate tasks will all either succeed or fail together. With
long-running transactions, BizTalk performs each task independently. If one task fails, then BizTalk must
roll back the changes of the successful tasks. Rolling back successful tasks because of another’s failure is
called compensation. A BizTalk orchestration can determine when successful transactions need to
compensate for a failed transaction, but the BizTalk developer must define the specific compensation logic.

The solution’s example consists of two tasks, each with custom compensation logic defined. If
BizTalk cannot establish credit for the customer, the Create Login transaction must compensate by
taking actions to disable the login. Similarly, BizTalk compensates the Create Credit Account transaction
by taking action to rescind credit. BizTalk will detect the error in the Create Credit Account transaction
and call the compensation logic of all the long-running transactions in the same scope that have
completed successfully. If the Create Login transaction also fails, then both transactions arrived at the
same result, and BizTalk has nothing to compensate for. BizTalk will compensate only long-running
transactions that complete successfully.

Long-running transactions are a great way to ensure a consistent outcome under circumstances
such as the following:

• Tasks take longer than a split-second to complete.

• Results can be inconsistent for a short while before the compensating logic
completes.

• BizTalk needs to send or receive messages with a transport that cannot participate
in an atomic transaction, like an ASMX web service.

In addition to long-running transactions, BizTalk scopes can also support atomic transactions. An
atomic transaction differs by locking all the resources involved until the transaction knows they can all
succeed. If they cannot all succeed, the transaction reverses all changes before releasing the resources.
Because of this locking behavior, atomic transactions should be very quick. A long-running transaction
executes each task separately and follows up with compensating logic if one task encounters an error.
This approach allows separate tasks to have different results for a short time while the compensating
logic executes but also allows greater processing flexibility.

5–21. Catching Exceptions Consistently

Problem

You want to be able to catch all exceptions in the same way and be able to handle retries automatically
with a configurable delay. You also want to be able to resubmit documents that have failed without
losing context to what step in the orchestration flow was last executed.

Solution

The ExceptionHandlerPatternDemo project shows the use of the pattern, with a single Business Flow
orchestration calling two different paths in a single Task Processing orchestration. Neither the Business
Flow orchestration (SAMPLEMainBusinessFlow.odx) nor the Task Processing orchestration
(SAMPLEExternalComponentCall.odx) are required in a true implementation. They are provided for
demonstration purposes only. All of the files in the Common Schemas project and all of the files in the
Exception Handler Buffer project are required, and need no modifications (aside from possible
namespace modifications) to be used in any other solution.

http://

CHAPTER 5 ■ ORCHESTRATIONS

312

The SAMPLEMainBusinessFlow orchestration demonstrates calling the other orchestrations with
multiple input parameters (as demonstrated in the first Task Request grouping) and with an XML
document that needs to be mapped (as demonstrated in the second Task Request grouping). Use the
following steps to deploy and test the solution.

1. Open the ExceptionHandlerPatternDemo project.

2. Deploy the project using Visual Studio. All of the files necessary for a complete
deployment are included in the solution (including the strong name key). For
ease of deployment, place the base folder, ExceptionHandlerPatternDemo, on the
C:\ drive root. If the C: drive is not available, several of the ports will need to be
modified, as they reference physical paths for file send and receive locations.

3. Once the orchestrations and schemas are deployed, bound, and started, drop
the SampleKickOff.xml file in the Input folder. This will kick off the flow.
Monitor the progress in the Windows Event Viewer (all steps are logged to the
Event Viewer).

How It Works

Based on a publish/subscribe architecture, the Exception Handler pattern can be used to buffer calls to
components that may throw exceptions from the actual business flow of a process. The Exception
Handler buffer allows for a common mechanism to catch, process, and retry exceptions (including
notification to an administrator) that can be reused across multiple solutions. Figure 5–53 shows the
high-level architecture of a request, and Figure 5–54 shows the high-level architecture of a response.

The orchestrations are built in such a way that the business workflow is separate from the actual
calls to external tasks. The only orchestration that references anything besides ports that are directly
bound to the MessageBox are the Task Processing orchestrations. So, too, these orchestrations are the
only ones that will throw exceptions that need to be handled in a common way.

Any time an exception is thrown for any reason (such as a call to an external assembly throws an
error, a web service is down, a database cannot be connected to, and so on), the Task Processing
orchestration will catch the error, wrap the error information in a message, and return the message back
to the Exception Handler orchestration. The Exception Handler orchestration will then decide whether
to retry the call to the task (for system exceptions)—for example, if a database cannot be connected to,
the orchestration will delay for a specified period of time and then retry—or simply notify an
administrator and wait for a response. The response back from an administrator could indicate that the
call to the task should be retried or that the entire process should be cancelled.

The Exception Handler pattern can be used in a variety of scenarios, with the following benefits:

• It offers configurable automatic retries of system exceptions.

• An administrator is notified (via any type of BTS adapter) for business rule
exceptions and after a maximum number of automatic retries of system
exceptions.

• It allows multiple unrelated orchestrations to publish to a single version of the
Exception Handler orchestration.

• There are no uncaught or unhandled exceptions.

• No messages end up suspended.

• It offers complete visibility into the life cycle of an orchestration.

http://

CHAPTER 5 ■ ORCHESTRATIONS

313

Figure 5–53. High-level architecture of the request

Figure 5–54. High-level architecture of the response

http://

CHAPTER 5 ■ ORCHESTRATIONS

314

The orchestrations communicate with one another through the publish/subscribe model, meaning
that the publishing orchestration drops a message on the BizTalk MessageBox to which the subscribing
orchestration is subscribing. The following sections describe these schemas and how they are used.

Exception Handler Buffer Call Request Schema

This schema is published by the Business Flow orchestration(s) and subscribed to by the Exception
Handler Buffer orchestration. It contains all of the data needed to call a task and all of the configurable
information needed by the exception handler to process and retry exceptions (such as maximum
number of retries, delay between retries, and so on). Table 5–5 shows the schema definition.

Table 5–5. Exception Handler Buffer Call Request Schema

Element Description

CorrelationID A unique identifier that is assigned in the Main Flow orchestration and travels
with each message through the entire request and full response.

OrchestrationFilter The unique identifier specifying which Task Processing orchestration should
instantiate based on the call. All Task Processing orchestration instances will
subscribe to messages that are based on the TaskProcessingLogicCall schema.
To ensure that the correct Task Processing orchestration is kicked off, the
Receive shape in the Task Processing orchestration must be filtered on this
field. Note that if only one instance of the Task Processing orchestration is
being used, there is no need to implement this filter.

TaskName The name of the task that is to be executed in the Task Processing orchestration.
The Task Processing orchestration can have multiple branches in a Decide shape.
The branch that is executed is based on the value in this parameter.

MaxRetryCount Maximum number of retries for a task that has thrown an exception. For
example, if a call is being made to a database, and the connection to the
database is unavailable, the Task Processing orchestration will return an
exception. The Exception Handler orchestration will then retry (after a delay)
the call to the task. Use this parameter to specify the maximum number of
retries before notifying an administrator.

RetryDelay Amount of time between retries. This parameter is in seconds.

InputParameter If the call to the task is a call with one single simple type parameter (such as a
string, integer, and so on), this parameter can be used. It is a distinguished
field and can be easily accessed.

InputParameter
(Node)

This is a repeating node allowing for multiple input parameters. Use this
structure when multiple input parameters are needed. Values can be
accessed using XPath queries in the Task Processing orchestration (see the
demonstration for examples).

Name: Name of the parameter.

Type: The parameter type (integer, string, and so on). This parameter is not required.

Value: The value of the parameter. The XPath query can find the Value based
on the Name.

XMLParameter This <Any> element can be populated with any type of XML document that
may need to be passed to the Task Processing orchestration. There can be
multiple XMLParameter values passed. See the demonstration for examples of
how this parameter can be populated and read.

http://

CHAPTER 5 ■ ORCHESTRATIONS

315

Exception Handler Buffer Call Response Schema

This schema is published by the Exception Handler orchestration and subscribed to by the Main
Business Flow orchestration(s). It contains the output information needed by the Main Business Flow to
determine what (if any) the result of the Task Processing orchestration call may have been. Table 5–6
shows the schema definition.

Table 5–6. Exception Handler Call Buffer Response Schema

Element Description

CorrelationID A unique identifier that is assigned in the Main Flow orchestration and travels
with each message through the entire request and full response.

SuccessFlag Boolean value indicating success or failure of call. If an administrator
canceled the process, this value would be returned as false. If the call was
made, regardless of the outcome, this value will be returned as true.

OutputParameter If the response from the task is a single simple type parameter (such as a
string, integer, and so on), this parameter can be used. It is a distinguished
field and can be easily accessed.

OutputParameter
(Node)

This is a repeating node allowing for multiple output parameters. Use this
structure when multiple output parameters are needed. Values can be set
and accessed using XPath queries in the Task Processing orchestration (see
the demonstration for examples).
Name: Name of the parameter.
Type: The parameter type (integer, string, and so on). This parameter is not
required.
Value: The value of the parameter. The XPath query can find the Value based
on the Name.

XMLParameter This <Any> element can be populated with any type of XML document that
may need to be passed back from the Task Processing orchestration. There
can be multiple XMLParameter values passed. See the demonstration for
examples of how this parameter can be populated and read.

Task Processing Logic Call Schema

This schema is published by the Exception Handler orchestration and is subscribed to by the Task
Processing orchestration(s). All Task Processing orchestration instances subscribe to this schema type.
Use a filter expression on the individual Task Processing orchestration’s initial Receive shape to indicate
which instance to kick off (based on the OrchestrationFilter parameter). Table 5–7 shows the schema
definition.

http://

CHAPTER 5 ■ ORCHESTRATIONS

316

Table 5–7. Task Processing Logic Call Schema

Element Description

CorrelationID A unique identifier that is assigned in the Main Flow orchestration and
travels with each message through the entire request and full response.

OrchestrationFilter The unique identifier specifying which Task Processing orchestration
should instantiate based on the call. All Task Processing orchestration
instances will subscribe to messages that are based on the
TaskProcessingLogicCall schema. To ensure that the correct Task
Processing orchestration is kicked off, the Receive shape in the Task
Processing orchestration must be filtered on this field. Note that if only
one instance of the Task Processing orchestration is being used, there is
no need to implement this filter.

TaskName The name of the Task that is to be executed in the Task Processing
orchestration. The Task Processing orchestration can have multiple
branches in a Decide shape. The branch that is executed is based on the
value in this parameter.

InputParameter If the call to the Task is a call with one simple type parameter (such as a
string, integer, and so on), this parameter can be used. It is a
distinguished field and can be easily accessed.

InputParameter (Node) This is a repeating node allowing for multiple input parameters. Use this
structure when multiple input parameters are needed. Values can be
accessed using XPath queries in the Task Processing orchestration (see
the demonstration for examples).

Name: Name of the parameter.

Type: The parameter type (integer, string, and so on). This parameter is
not required.

Value: The value of the parameter. The XPath query can find the Value
based on the Name.

XMLParameter This <Any> element can be populated with any type of XML document
that may need to be passed to the Task Processing orchestration. There
can be multiple XMLParameter values passed. See the demonstration for
examples of how this parameter can be populated and read.

Task Processing Logic Response Schema

This schema is published by the Task Processing Logic orchestration(s) and subscribed to by the
Exception Handler Buffer orchestration. It contains the output information needed by the Main
Business Flow to determine what (if any) the result of the Task Processing orchestration call may have
been and by the Exception Handler Buffer orchestration to determine what exceptions may be present
and if the call needs to be retried (based on the presence of exceptions). Table 5–8 shows the schema
definition.

http://

CHAPTER 5 ■ ORCHESTRATIONS

317

Table 5–8. Task Processing Logic Response Schema

Element Description

CorrelationID A unique identifier that is assigned in the Main Flow orchestration and
travels with each message through the entire request and full response.

SuccessFlag Boolean value indicating success or failure of call. This is not a
success/failure indicating the result of the call, but an actual indicator of
whether or not the call was made. If an exception was thrown, or an
administrator canceled the process, this value would be returned as
false. If the call was made, regardless of the outcome, this value will be
returned as true.

ErrorMessage The text of the exception message (if an exception was thrown).

BaseException The base exception type (if an exception was thrown).

StackTrace The full stack trace thrown (if an exception was thrown).

OutputParameter If the response from the task is a single simple type parameter (such as a
string, integer, and so on), this parameter can be used. It is a
distinguished field and can be easily accessed.

OutputParameter (Node) This is a repeating node allowing for multiple output parameters. Use
this structure when multiple output parameters are needed. Values can
be set and accessed using XPath queries in the Task Processing
orchestration (see the demonstration for examples).

Name: Name of the parameter.

Type: The parameter type (integer, string, and so on). This parameter is
not required.

Value: The value of the parameter. The XPath query can find the Value
based on the Name.

XMLParameter This <Any> element can be populated with any type of XML document
that may need to be passed back from the Task Processing
orchestration. There can be multiple XMLParameter values passed. See the
demonstration for examples of how this parameter can be populated
and read.

Error To Administrator Schema

This schema is published by the Exception Handler orchestration and is published to an administrator.
This may be as simple as writing to a file, or it could be set up to write to a database or any other protocol
desired. The Error To Administrator schema contains all of the information that an administrator would
need to understand what error was thrown. Once the administrator is ready to resubmit the document
to the process, the same schema type is resubmitted. Table 5–9 shows the schema definition.

http://

CHAPTER 5 ■ ORCHESTRATIONS

318

Table 5–9. Error To Administrator Schema

Element Description

CorrelationID A unique identifier that is assigned in the Main Flow orchestration and travels
with each message through the entire request and full response.

CancelFlag Boolean value indicating that the administrator wants to cancel the entire
process. There may be times when the exception being thrown may
require some amount of rewrite. For whatever reason, an administrator
may cancel the process by simply dropping the XML file back into the
process with this flag set to true.

OriginalMessage This node will contain the XML of the original message passed into the
Exception Handler orchestration.

ErrorMessage The text of the exception message (if an exception was thrown).

BaseException The base exception type (if an exception was thrown).

StackTrace The full stack trace thrown (if an exception was thrown).

5–22. Creating Role Links

Problem

You need to send a specific type of request based on a certain element within a document.

Solution

You can send specific request types based on certain document elements by using role links. Role links
offer the flexibility of defining functions or roles for the inbound and outbound ports of your
orchestration. Additionally, role links also offer the flexibility of abstracting the interactions between
orchestration and external parties.

The following instructions outline the steps required to create and configure role links within a
BizTalk orchestration. Before implementing role links, you must create an orchestration and role links
within the orchestration. Next, you must deploy the orchestration and create the parties that participate
in the processes.

This solution uses two sample XML files to demonstrate how role links route messages based on
message content. The first XML instance requires a manager party’s approval, and the second XML
instance requires a human resources (HR) department party’s approval.

We’ve divided the solution for this recipe into several tasks, as described in the following sections.

Create the BizTalk Solution

First, you must create a BizTalk orchestration for this example.

http://

CHAPTER 5 ■ ORCHESTRATIONS

319

1. Create a new BizTalk solution that will process new hire requests that require
approvals. The message structure should match the sample outline in Listing 5–6.

Listing 5–6. Sample New Hire XML Instance

<ns0:ApplicantApproval
 xmlns:ns0="http://Sample_Role_Link_Recipe.SampleNewHireRequest">
 <ApplicantID>1000</ApplicantID>
 <Approver>Manager</Approver>
 <Detail>

 <SSN>508-03-4433</SSN>
 <Name>Wally McFally</Name>
 <Position>Technician</Position>
 </Detail>
</ns0:ApplicantApproval>

2. Create an orchestration to process the new hire requests. The orchestration
requires the artifacts listed in Table 5–10.

Table 5–10. Role Links Recipe Artifacts

Name Type Description

ReceiveNewHireRequest Receive port The Receive port.

ReceiveRequest Receive shape The Receive shape to receive messages.

InitializeRoleLinks Expression shape The Expression shape to initialize role links
for outbound message routing.

SendRequest Send shape Send shape for the outbound message.

msgNewHire Message matching
schema defined in step 1.

The name of the message is crucial,
because it must match the name referenced
in the expression code that is entered to
initialize role links. Make sure that the
Approver element in the message is a
distinguished property, because the value
in this field is used for routing.

Create the Orchestration Role Links

Next, you need to create and initialize the role links send port for message approval. The Role Link shape
will contain a single Approval consumer role.

1. Select the Role Link shape form the BizTalk Orchestrations section of the
toolbox, and drag the shape to the orchestration.

2. The Role Link Wizard will launch (see Figure 5–55). Follow the Role Link
Wizard, and specify the following:

http://Sample_Role_Link_Recipe.SampleNewHireRequest
http://

CHAPTER 5 ■ ORCHESTRATIONS

320

• For the role link name, specify NewHireApproval.

• For the role link type, specify NewHireApprovalRoleLinkType.

• For the role link usage, specify that you are creating a Consumer role, as this
orchestration will be providing messages.

3. Click the Finish button to complete the wizard.

4. Once the wizard has completed, remove the Provider role from the newly
created role link, as the Provider role will not be used in this example.

Figure 5–55. Role Link Wizard

■Note When following the Role Link Wizard, select either the Provider role or Consumer role for your application.

The Role Link Wizard will create both roles, but you are free to remove the role that does not apply to your given

situation.

Create the Role Link Send Port Type

After creating the role link, the next task is to create a send port type implemented by the role link. A
send port type is required because it defines the type of message a send port will send.

1. Right-click the Provider section of the Role Link shape, and choose Add Port
Type.

2. In the Port Type Wizard, select Create a New Port Type, and enter SendPortType
for the name. Click the Finish button to complete the wizard.

3. Connect the orchestration send port to the newly created send port type in the
role link Consumer role. The orchestration should resemble Figure 5–56.

4. BizTalk uses the destination party for routing of the message. Add the following
code to the Expression shape in your orchestration.

//set the approver name
NewHireApproval(Microsoft.XLANGs.BaseTypes.DestinationParty) = new

Microsoft.XLANGs.BaseTypes.Party(msgNewHire.Approver, "OrganizationName");

http://

CHAPTER 5 ■ ORCHESTRATIONS

321

5. Build and deploy the solution after completing the orchestration. When you
deploy the solution, a new Consumer role is created in the Role Links folder
located in the BizTalk Administration Console.

Figure 5–56. New Hire orchestration with role links

■Note The Expression shape code performs the party resolution. The line of code uses the Approver

distinguished field to determine to which party to route the message. When you create a party, a party alias is also

created to use for party resolution. In the Expression shape, we use the default alias, OrganizationName, which is

created with each party. However, multiple aliases can be created for a party and then referenced in an Expression

shape. For example, an alias of PhoneNumber could be created during the party creation and then referenced in the

Expression shape.

Create Parties and Physical Send Ports

The final steps involve creating the BizTalk parties and physical send ports for the solution. Within the
BizTalk Administration Console, create the physical send ports and parties that will receive the approval
messages.

1. Create a file send port named HRPartySendPort. This is the send port for
messages that are routed to the HR department.

2. Create another file send port named ManagerPartySendPort. This is the send
port for messages that are routed to the manager department.

http://

CHAPTER 5 ■ ORCHESTRATIONS

322

3. Create a party named ManagerParty. Make sure that the ManagerParty refers to
the ManagerPartySendPort.

4. Create a party named HRParty. Make sure that the HRParty refers to the
HRPartySendPort.

■Note The Approver name value in the message must match the name of the party you created. If a message is

sent referencing an invalid party, BizTalk will suspend the message when trying to route the message to the party

specified.

5. Enlist the two parties within the Consumer role that was created when the
orchestration was deployed.

Test the Role Links

After completing the preceding tasks, you will be able to enlist and start your solution to test the
implemented role links. When you submit a message with Manager as the value for the Approver element,
the message will be routed to the send port associated with the Manager party. When you submit a
message with HR as the value for the Approver element, the message will be routed to the send port
associated with the HR party.

How It Works

Role links are extremely useful for loosely coupling your physical solution from the trading partner or
disparate system. Processes that implement role links benefit from the abstraction by being able to stand
independent of the implementation of the trading partner or subscribing system.

Imagine having a business process that is the same for multiple trading partners or systems. Some
of the consumers of the process need the information in a flat file format or must receive the
information using a proprietary communication protocol. You could implement this scenario through
the use of dynamic ports or a send port group, but the maintenance of subscribers becomes a challenge.
Updating a dynamic send port requires updating the process that provides the configuration
information. Implementing role links allows the subscribers to be independent and updated without
impacting other subscribers.

Implementing role links is straightforward and requires few steps in configuration. The first set of
configuration steps is performed in the solution design-time environment. The final set of steps is
performed after the process has been deployed. You must identify whether you are consuming or
providing a service, identify the parties that will be interacting with the service, and specify the role
under which the parties will operate. The Role Link Wizard in Visual Studio will create two default roles
automatically. You are not required to use the two roles, and you can create additional roles after the
wizard has executed.

The following are the required components when implementing role links:

• Parties: The specific entities interacting with your organization’s orchestration
either providing or consuming information from that orchestration. Typically,
each party represents a single organization that interacts with your organization.

http://

CHAPTER 5 ■ ORCHESTRATIONS

323

• Roles: Logical entities that define a specific business process. Roles either
consume or provide services.

• Role links: Describe the relationship or connection (link) between two roles. The
Role Link shape within Visual Studio will launch the Role Link Wizard to assist in
creating roles within your orchestration.

• Role link types: Describe how your orchestration participates in the service. Role
link types are similar to port types in that you specify whether you are consuming
a message or publishing a message.

In the sample solution accompanying this recipe, a New Hire process has been created that
contains a single Approver role. We required only a single role and removed one role from the role link
after the wizard was complete. For the role created in our role link, we specified a send port type. Each
role must implement a port type for communication to outside entities. The final step was to
programmatically determine party resolution. For illustration purposes, an Expression shape
implemented party resolution via code. BizTalk must always know which party will be receiving the
message, and the party resolution can either be performed in the orchestration or within a pipeline.

5–23. Calling Web Services

Problem

You want to call a web service from within your business process, using the standard SOAP adapter.

Solution

When calling a web service, the first item that is needed is the Web Services Description Language
(WSDL). The WSDL contains the interfaces indicating how a web service can be called. BizTalk imports
this WSDL and turns it into a schema that can be read in the same way as a standard XSD, with each web
method defining its own schema. This solution will walk through the steps required to reference a
WSDL, create a message to post to a web service (via a web method), and get the web service result
message.

1. Open a BizTalk project in Visual Studio.

2. In the Solution Explorer, right-click the References node under the project
header, and select Add Service Reference.

3. In the Add Service Reference dialog box, you can manually enter the URL of the
WSDL into the URL box at the top of the window. This can be a standard web
URL (http://) or a file path to a WSDL or SVC file (useful for developing in a
disconnected environment). Alternatively, use any of the other Browse methods
to locate the service.

4. After entering a valid URL path, all available web services will be displayed (see
Figure 5–57). Select the desired web service from this list. Make sure that the
namespace shown in the text box is appropriate (usually, you will want to
rename this to something more descriptive than the default; the name entered
here will be how the web service is referred to in the rest of the project)

http://

CHAPTER 5 ■ ORCHESTRATIONS

324

Figure 5–57. Referencing a web service

5. Click the OK button. The newly referenced web service should now appear
under the Service References folder in the Solution Explorer (see Figure 5–58).

http://

CHAPTER 5 ■ ORCHESTRATIONS

325

Figure 5–58. The referenced service in the Solution Explorer

6. In an orchestration, right-click Port Surface, and select New Configured Port.
This will start the Port Configuration Wizard. Use the following settings to
configure the new port.

• Name the port appropriately.

• For Port Type, select Existing Port Type. In the window that appears, highlight the web
port that is a post (as opposed to a response back), and then click Next.

• The final screen should be automatically configured indicating that BizTalk will always
be set to sending a request and receiving a response, with the port binding set to Specify
Now. There is no need to make any changes. Click Next, and then click Finish.

■Note Web service calls can be request/response (two-way) or simply request (one-way). Some of the

parameters in the configuration will be slightly different in the case of a one-way web service.

7. In the orchestration, add a new Send shape. This shape will require a message
to be associated with it. You will want to create a message that has the same
type as the outgoing port you configured in step 6, as follows:

a. In the Orchestration View window, right-click the Messages folder, and select New
Message.

b. Give this message an appropriate name, such as msgRequest.

c. In the Properties window of the message, click the Message Type drop-down list, expand
Web Message Types, and select the message type that corresponds to the port type you
indicated in step 6.

d. Set the Send shape Message Type property to this message.

http://

CHAPTER 5 ■ ORCHESTRATIONS

326

8. Connect the Send shape to the outgoing method on the port created in step 6.

9. Drop a Receive shape on the orchestration, immediately after the Send shape
created in step 7. You will need to create a message that has the same type as
the response back from the web service call, as follows:

a. In the Orchestration View window, right-click the Messages folder, and select New
Message.

b. Give this message an appropriate name, such as msgResponse.

c. In the Properties window of the message, click the Message Type drop-down list, expand
Web Message Types, and select the message type that corresponds to the response of the
web service web method indicated in step 6.

d. Set the Receive shape Message Type property to this message.

10. Create an instance of the message that you are sending to the web service
(msgRequest). This can be done through a map or a Message Assignment shape.
The following steps will show how to do this through a map.

a. Drop a Transform shape in the orchestration immediately before the Send shape created
in step 6. This will automatically create a Construct Message shape.

b. In the Properties window of the Construct Message shape, click the Messages
Constructed property, and select the message created in step 6 (msgRequest).

c. Double-click the Transform shape. In the Transform Configuration dialog box, the target
document should be msgRequest, and the source document can be any document (you
will need to create a message, not included in these steps, of any given schema type and
set it to the source).

d. After setting the source and target schemas, click OK. The map should open, and you can
map fields as needed.

How It Works

The complexity around calling and mapping to web services is greatly reduced by using a BizTalk
orchestration, the standard SOAP adapter, and the steps described in this solution. However, there may
be times when these steps do not provide the result needed. In cases where the called web service is too
complex a structure to consume, the web service could be called from an external .NET component,
removing the complexity of calling it from BizTalk altogether.

Calling a web service from an external assembly lets developers use the full functionality of .NET to
make the call. While complex web services with arrays or strongly typed data sets can be called from an
orchestration, moving the call to an external component may be easier.

There are important benefits to calling a web service with the BizTalk SOAP adapter and following
the steps described in this solution. The ability to turn the WSDL into a schema, the ability to have retries
automatically occur, and the simplicity of creating the message through the BizTalk Mapper are all
excellent reasons to invoke the web service from within an orchestration.

http://

CHAPTER 5 ■ ORCHESTRATIONS

327

5–24. Exposing an Orchestration as a Service

Problem

You would like to expose an orchestration process as a service to be called from an outside application.

Solution

Using BizTalk, an orchestration can be exposed as a service via the BizTalk WCF Service Publishing
Wizard. Using this tool, the effort to expose an orchestration as a service is considerably simplified. To
expose an orchestration as a service, take the following steps:

1. Open the BizTalk WCF Services Publishing Wizard by selecting
Start→Programs→BizTalk 2010 ➤

BizTalk WCF Services Publishing Wizard.

2. On the Welcome page, click the Next button.

3. On the WCF Service Type page, click the Service Endpoint radio button.

4. Set the Adapter name to WCF-BasicHttp (see Figure 5–59).

Figure 5–59. Setting the port as public

5. On the next page, you will have the option of publishing a schema or an
orchestration as a WCF service. Select the orchestration option.

6. On the BizTalk Assembly page, browse to the DLL that contains the
orchestration you are publishing.

7. On the Orchestration and Ports screen, ensure that the ports you want to
expose are selected.

8. On the WCF Service Properties page, set the namespace to a descriptive value.

9. On the WCF Service Location, browse to the web directory where this will be
published (see Figure 5–60).

http://

CHAPTER 5 ■ ORCHESTRATIONS

328

Figure 5–60. Setting the Web Directory

How It Works

Exposing orchestrations as services allows you to reuse orchestration processes by creating BizTalk
configurations to support the passing of a service call to a BizTalk orchestration. This way, you can take
advantage of core BizTalk capabilities such as error handling, document tracking, and integration into
downstream BizTalk via the publish/subscribe architecture. In addition, you can extend outside your
BizTalk environment, to enable a service-oriented approach, composite application paradigms, and so on.

The WCF Services Publishing Wizard interrogates the BizTalk orchestration and receive ports and
creates a service application to support the calling of the target BizTalk orchestration. This is achieved by
creating a service (SVC) that calls a C# .NET code behind that implements the mechanism of publishing
the message instance to the BizTalk MessageBox.

Just as BizTalk orchestrations can be exposed as services, so too can XSD schemas. XSD schema
services are also generated using the WCF Services Publishing Wizard, where one or more XSD schemas
are selected and corresponding services are generated. The service handles sending the message directly
to the BizTalk MessageBox, offering a way to implement publish/subscribe without the need to create a
BizTalk orchestration.

5–25. Calling Pipelines from Within an Orchestration

Problem

You are developing an orchestration and need to use pipeline-processing stages within the workflow.
Specifically, you need to validate a document and batch multiple messages into a single interchange.
You want the orchestration to be efficient, minimizing the interactions between the orchestration and
the MessageBox database.

Solution

BizTalk Server exposes a programmatic interface into pipelines, allowing you to call both receive and
send pipelines directly from orchestrations. Assume your orchestration has the following steps:

1. Receive an order message in an industry-standard format.

2. Transform the message to a canonical version of the order schema.

http://

CHAPTER 5 ■ ORCHESTRATIONS

329

3. Send the canonical order message to an external application for processing.

4. Receive a status message from the external application indicating the success or
failure of the message processing.

In addition to the orchestration, you have also created a receive pipeline to validate the canonical
order schema, an envelope, and a send pipeline to batch the canonical order and order response
documents into a single interchange.

Open your orchestration in Visual Studio, and perform the following steps to implement the
pipeline calls:

1. From the toolbox, drag the following shapes onto the orchestration design
surface:

a. Drag a Scope shape named Execute Receive Pipeline directly below the Construct
Canonical Order Message shape, and set the Transaction Type property to Atomic.

■Note The orchestration’s Transaction Type property must be set to Long Running in order for it to hold an

Atomic Scope shape.

b. Drag an Expression shape named Execute Receive Pipeline inside the Scope shape
added in the previous step.

c. Drag a Construct Message shape named Construct Validated Message directly below the
Execute Receive Pipeline Expression shape (also inside the Execute Receive Pipeline
Scope shape), and set the Messages Constructed property to a message defined by your
validating schema—in this solution, a message named CanonicalOrderValidatedMessage
defined by the canonical order schema.

d. Drag a Message Assignment shape named Assign Validated Message inside the construct
message shape added in the previous step.

e. Drag a Construct Message shape named Construct Batched Message directly below the
Receive Order Status receive shape, and set the Messages Constructed property to an
XML message—in this solution, a message named BatchedOrderMessage of type
System.Xml.XmlDocument.

f. Drag a Message Assignment shape named Assign Batched Message inside the construct
message shape added in the previous step.

2. Add a reference in your BizTalk project to the Microsoft.XLANGs.Pipeline.dll
(found in the root BizTalk installation folder), which holds the classes required
for calling pipelines from orchestrations.

3. Create a new variable named ValidatePipelineOutput of type
Microsoft.XLANGs.Pipeline.ReceivePipelineOutputMessages in the Execute
Receive Pipeline Scope shape. This variable will hold the validated output of
the call to the receive pipeline, containing the validated canonical order
message.

4. Add the following code to the Execute Receive Pipeline Expression shape in
order to call the appropriate receive pipeline:

http://

CHAPTER 5 ■ ORCHESTRATIONS

330

ValidatePipelineOutput = Microsoft.XLANGs
 .Pipeline.XLANGPipelineManager.ExecuteReceivePipeline
 (typeof(OrderProcessing.ValidateCanonical
 OrderSchemaReceivePipeline),

 CanonicalOrderMessage);

5. Add the following code to the Assign Validated Message shape in order to
extract the validated canonical order message:

CanonicalOrderValidatedMessage = null;
ValidatePipelineOutput.MoveNext();

ValidatePipelineOutput.GetCurrent(CanonicalOrderValidatedMessage);

■Note To handle multiple output messages from a receive pipeline (when using an envelope for message

debatching, for example), you may need to use a loop in order to iterate through the message collection and

handle each appropriately.

6. Create a new variable named BatchingPipelineInput of type
Microsoft.XLANGs.Pipeline.SendPipelineInputMessages. This variable will hold
the output of the call to the send pipeline, containing the batched order
messages.

7. Add the following code to the Assign Flat File Message shape to call the
appropriate send pipeline (BatchedOrderMessages is a BizTalk message of type
System.XML.XmlDocument and is used to hold the output of the
ExecuteSendPipeline method call):

BatchedOrderMessages = null;
BatchingPipelineInput.Add(CanonicalOrderValidatedMessage);
BatchingPipelineInput.Add(CanonicalOrderStatusMessage);
Microsoft.XLANGs.Pipeline.XLANGPipelineManager.ExecuteSendPipeline
(typeof(OrderProcessing.BatchOrderAndStatusMessagesSendPipeline),

 BatchingPipelineInput, BatchedOrderMessages);

8. Build and deploy the solution.

How It Works

This solution shows how to leverage pipeline processing directly from orchestrations. First, we discuss
the mainline process involved in the solution. Then, we discuss exception handling.

Mainline Process

The Microsoft.XLANGs.Pipeline.XLANGPipelineManager class exposes an API for calling pipelines
programmatically.

http://

CHAPTER 5 ■ ORCHESTRATIONS

331

■Note To use this class, you must add a reference in your BizTalk project to the Microsoft.XLANGs.Pipeline

assembly.

In this scenario, you needed to use both a receive pipeline and a send pipeline. The receive pipeline
allows you to validate a message that you create in the orchestration. You call the receive pipeline via the
ExecuteReceivePipeline method, which has the following signature:

• Type: The fully qualified type of the receive pipeline you need to call. You format
this parameter as typeof(FullyQualifiedNameOfReceivePipeline). You can easily
find the fully qualified type name of your receive pipeline by clicking the pipeline
file in the Solution Explorer and viewing the Fully Qualified Name property.

• XLANGMessage: The XLANG message object you need to pass into the receive
pipeline.

This method returns an instance of the
Microsoft.XLANGs.Pipeline.ReceivePipelineOutputMessages class, which contains an enumeration of
output messages from the receive pipeline. In this solution, the pipeline produces a single message, and
you are able to easily extract the message by using the MoveNext and GetCurrent methods of the class. If
multiple messages could be returned by the receive pipeline, you would need to loop through the
ReceivePipelineOutputMessages object to extract each message. You can accomplish this by using a
Loop shape configured with ValidatePipelineOutput.MoveNext() as the expression and an Assign
Message shape configured with
ValidatePipelineOutput.GetCurrent(CanonicalOrderValidatedMessage); as the expression.

■Note You must place the code (usually contained within an Expression shape) that calls the receive pipeline in

an Atomic Scope shape, because the ReceivePipelineOutputMessages class is not serializeable and cannot be

persisted to the MessageBox.

The send pipeline batches multiple messages within the orchestration into a single interchange. You
call the send pipeline via the ExecuteSendPipeline method, which has the following signature:

• Type: The fully qualified type of the send pipeline you need to call. You format this
parameter as typeof(FullyQualifiedNameOfSendPipeline).

• SendPipelineInputMessage: The collection of messages you need to pass into the
send pipeline.

• XLANGMessage: The XLANG message object you will receive as output from the send
pipeline.

http://

CHAPTER 5 ■ ORCHESTRATIONS

332

■Note You must place the code that calls the send pipeline in a Message Assignment shape, because the

ExecuteSendPipeline method constructs the XLANGMessage it passes as an output parameter.

Although calling pipelines from an orchestration generally results in the same functionality and
processing as when they are executed via BizTalk messaging objects, you need to be aware of some
differences. One of the most important discrepancies is the input and output XLANG message objects
that are passed to ExecuteReceivePipeline and ExecuteSendPipeline, respectively. Although XLANG
message objects allow you define them as being of any type (XmlDocument, String, DateTime, and so on),
the XLANG message instances you pass to the pipeline execute methods must be XML documents. This
means that the XLANG message objects should be defined by either the System.Xml.XmlDocument type or
an XML schema to ensure consistent behavior. This limitation is because the pipeline execution
methods treat their XLANG message parameters as XmlDocument objects. Although it is possible to use a
different type to define your XLANG message objects (such as System.String), it is advised you do so
with caution and careful consideration and validate that any data written to the message is in XML
format.

■Note One shortcoming of this limitation is that it is not straightforward to call a send pipeline that assembles an

XML document into flat file format, because the flat file string is returned as an XmlDocument object but likely does

not conform to XML.

Another difference to be aware of is how tracking and monitoring data is handled. When calling
pipelines from an orchestration, pipeline components leveraging the BAM Interceptor API are not
supported, and the assembler/disassembler stages do not process tracking information. Additionally,
transactional pipeline components are not supported when called from orchestrations.

Exception Handling

Any errors occurring in pipelines called from orchestrations cause an XLANGPipelineManagerException
exception object to be thrown. Messages are not suspended, as they would be if the pipeline were
executed by a messaging object (receive location or send port). This exception object can be handled via
a catch exception block, which is configured on a Scope shape within an orchestration. Once the
exception is caught, the exception’s properties can be interrogated and the event handled appropriately.

Using an invalid document (using a character in the Identifier element, which expects an integer
value) in this solution produces the following error:

http://

CHAPTER 5 ■ ORCHESTRATIONS

333

There was a failure executing pipeline "OrderProcessing.ValidateCanonicalOrderSchema
 ReceivePipeline".
Error details:
 "The 'Identifier' element has an invalid value according to its data type.".

Exception type: XLANGPipelineManagerException
Source: Microsoft.XLANGs.Pipeline
Target Site: Microsoft.XLANGs.Pipeline.ReceivePipelineOutputMessages ExecutePipeline
 (Microsoft.BizTalk.PipelineOM.ReceivePipeline, Microsoft.

 XLANGs.BaseTypes.XLANGMessage)

As you can see, the exception thrown has a type of XLANGPipelineManagerException, and the description
indicates the specific validation failure.

http://

CHAPTER 5 ■ ORCHESTRATIONS

334

http://

C H A P T E R 6

■ ■ ■

335

Adapters

The BizTalk engine uses adapters to communicate with outside systems, and adapters start and end any
process within BizTalk. Adapters come in three basic flavors: protocol adapters, database adapters, and
ERP adapters.

Hundreds of adapters are available from third-party vendors that enable the BizTalk engine to
communicate with just about any system. In addition, if an adapter is not available, the BizTalk adapter
framework facilitates custom adapter development in .NET. Commonly used adapters include the
following:

• Protocol adapters: HTTP, File, and SOAP

• Database adapters: SQL, DB2, and Oracle

• ERP adapters: SAP, PeopleSoft, and Siebel

An entire book would be necessary to cover all the adapters available and their proper use. ERP
adapters in particular require an in-depth discussion of the ERP system in question before you are able
to use the adapter for that system. This chapter will therefore focus on a few of the more basic protocol
and database adapters that are included with BizTalk out of the box.

■Note Make sure to look at the BizTalk line of business (LOB) adapters (which include PeopleSoft, JD Edwards,

TIBCO, and WebSphere) and the BizTalk Adapter Pack (which includes SAP, Siebel, and Oracle). All are available

for download from Microsoft’s site.

6–1. Configuring File Sends

Problem

You need to send a message from BizTalk with the File adapter.

Solution

The BizTalk platform offers numerous options to facilitate sending files. Within the BizTalk File adapter,
various send options are natively available for the user to configure. The following steps demonstrate
how to configure a send port:

http://

CHAPTER 6 ■ ADAPTERS

336

1. Open the BizTalk Explorer, and create a send port that uses the File adapter.

■Note In alignment with standard BizTalk functionality, only static ports are defined to use a named File adapter.

2. In the send port properties, under the General options, click the ellipses for the
Address (URI) property. The FILE Transport Properties dialog box appears.

3. Click the Destination Folder input box. Enter the value of the folder where you
would like BizTalk Server to write the file.

4. ➝Click the Copy Mode drop-down list, and ensure that the default value,
Create New, is selected, as shown in Figure 6–1.

Figure 6–1. Configuring file sends in the FILE Transport Properties dialog box

http://

CHAPTER 6 ■ ADAPTERS

337

■Note The Copy Mode drop-down list offers the Create New, Append, and Overwrite options. In this recipe, we

will use Create New.

5. Click the Authentication tab, ensure that the Use These Credentials When Host
Does Not Have Access to Network Share check box is unchecked.

■Note BizTalk gives you the ability to specify a different user account if the security permissions are different

from the running host user account.

6. Click OK.

How It Works

You can configure the File adapter either within the BizTalk Explorer (under a send port) or through
code programmatically. The File adapter send configuration options encompass naming a file, using
copy mode, implementing caching, and implementing security.

When naming files on the General tab of the FILE Transport Properties dialog box, you can
configure a file send in conjunction with numerous macros to assist in making a file name more
meaningful. For example, as shown in Figure 6–1, the File Name value is %MessageID%.xml. The macro,
%MessageID%, will be substituted with the globally unique identifier (GUID) of the message in BizTalk
Server at runtime when the file is named. This GUID comes directly from the message context property,
BTS.MessageID. Please see Table 6–1 for a list of available macros. It is important to note you can use only
these macros.

http://

CHAPTER 6 ■ ADAPTERS

338

Table 6–1. BizTalk Macros

Type Description

%datetime% Sets the name of the file to the current UTC date in the format
YYYY-MM-DD (example: 2010-07-01T103500).

%datetime_bts2000% Sets the name of the file to the current UTC date in the format
YYYYMMDDhhmmsss (example: 201007011035234).

%datetime.tz% Sets the name of the file to the current local date plus the time
zone difference from GMT in the format YYYY-MM-
DDThhmmss-TZD (example: 2010-07-01T103500+700).

%DestinationParty% The name of the file would be set to whatever value is in the
message context property for BTS.DestinationParty. This
field is only set in certain situations, therefore this macro is
rarely used.

%DestinationPartyQualifier% The name of the file would be set to whatever value is in the
message context property for
BTS.DestinationPartyQualifier. This field is only set in
certain situations, therefore this macro is rarely used.

%MessageID% The most commonly used macro. This sets the name of the
file equal to the unique identifier of the message. Using this
macro guarantees that the name of the file will always be
unique.

%SourceFileName% The file will be named after the value in the
FILE.ReceivedFileName context property. This property is
only set if received by a File adapter. If the value is not
available, the macro will name the file the actual string value
of %SourceFileName%.

%SourceParty% The name of the source party (if available) from the
BTS.SourceParty context property. This macro is rarely used.

%SourcePartyQualifier% The name of the source party (if available) from the
BTS.SourcePartyQualifier context property. This macro is
rarely used.

%time% Sets the name of the file to the current UTC time in the format
hhmmss (example: 103523).

%time.tz% Sets the name of the file to the current local time plus the
time zone difference from GMT in the format hhmmss-TZ
(example: 103523+700).

http://

CHAPTER 6 ■ ADAPTERS

339

Currently, the product does not support creating custom or user-defined macros, and it doesn’t
support using any other BizTalk context properties other than what is available via the macros. Using
these file-naming macros has been described as somewhat problematic within the BizTalk user group
community. It is worth noting that a macro will fail if the following is true:

• A corresponding system property is not set, for example, the exclusion of
SourceParty or SourcePartyID.

• The file send macro is misspelled (including case-sensitive considerations).

• The value of the macro result causes an invalid file name, for example, the usage
of the following characters:

/ \ ! . , * " |

A further consideration when using the File send adapter is to ensure the security/access
permissions are set appropriately. This encompasses standard Active Directory security considerations
for related share and folder permissions, as well as security considerations related to non-Windows
environments. By default, the File adapter write activity uses the user account of the running BizTalk
host. It is always a good idea to unit test a security scenario first to ensure a file can be written to the
desired destination before introducing the File send adapter. This way, you can isolate permission
issues, saving possible issue detection and resolution time.

6–2. Configuring File Receives

Problem

You need to receive a message in BizTalk using the File adapter.

Solution

Within the BizTalk File adapter, numerous options are available to facilitate receiving files. You can
configure all these options natively within the adapter. The following steps outline configuring the File
receive adapter:

1. Open the BizTalk Administration Console

2. In the desired BizTalk application, right-click the Receive Ports folder, and
select New→One-way Receive Port. Specify a name for the receive port. Leave
the default settings on the remainder of the General tab, as shown in Figure 6–2.

http://

CHAPTER 6 ■ ADAPTERS

340

Figure 6–2. General settings for a receive port

■Note You can add maps to a receive port; a map would be applied after a pipeline but before any subscribers

(send ports or orchestrations) have processed the message. Some solutions can have maps but no

orchestrations; the maps are added to the receive and/or send ports.

3. Click the Receive Locations tab, and click the New button. This will open a new
window for configuring the receive location. A receive port can have one or
more receive locations.

4. Give the receive location a name, and set the Type property to FILE.

http://

CHAPTER 6 ■ ADAPTERS

341

5. The Receive handler property should be set the correct host application; this
will depend on how you want to organize your environment. In many
scenarios, only a single option is available here.

6. Set the Receive pipeline property to the correct pipeline. In this case, the
PassThruReceive pipeline will be adequate; this means that any file will be
picked up, and the contents will not be validated by any code. If the file that was
being picked up was XML and you needed to ensure that it validated against a
deployed schema, the correct receive pipeline would be XMLReceive. Figure 6–3
shows the configuration of the receive location so far.

Figure 6–3. General settings for the receive location

7. Click the Configure button.

8. Enter the value of the file folder you want BizTalk Server to pull for files.

http://

CHAPTER 6 ■ ADAPTERS

342

Figure 6–4. Configuring file receives in the FILE Transport Properties dialog box

9. Click the File Mask input area. Enter the value *.*.

■Note The File Mask property allows the File adapter to consume files that match a specific file mask. In the

instance of *.*, all files will be consumed by the wildcard mask. However, it is worth noting that you cannot set up

two receive locations with the same mask, monitoring the same location.

http://

CHAPTER 6 ■ ADAPTERS

343

10. Under the Network Failure options, set the retry values. The default options are
5 and 5 for Retry Count and Retry Interval but can be set at any value. If the
retries are exceeded, the receive location will be automatically disabled. This
would most commonly occur when polling a network drive that is inaccessible
for a period of time.

■Note BizTalk gives you the ability to specify a different user account, if the security permissions are different

from the running host user account. This can be done on the Authentication tab.

11. Click OK to create the receive location.

How It Works

In this recipe, how to use the File receive adapter was demonstrated. You can configure the File adapter
either using the BizTalk Explorer (within a receive location) from Visual Studio, using code (most
commonly via an orchestration), or using the BizTalk Administration Console. The File adapter receive
configuration options encompass receive location parameters, network failure options, batching, and
authentication.

In addition to the basic configuration options, you can configure other advanced options to assist in
the process of receiving files. The General tab contains some advanced configuration options, as shown
in Table 6–2.

Table 6–2. Advanced Settings for File Transport

Option Description

Rename Files While Reading Ensures that a file is renamed while BizTalk is reading the file
during the receive process. This might assist in ensuring that an
incoming file is not overwritten if the source address has the
ability to write files with identical names.

Receive Location Polling Gives the ability to set the polling interval for BizTalk to check for
new files on a given receive location.

Removing of Files Specifies timing values that control when BizTalk deletes the
source files after a file has been read and submitted to the BizTalk
MessageBox. This might be useful when trying to avoid overwrites
in a scenario where multiple files are written to the same file
source.

The File receive adapter also allows for the configuration of file batching. Batching allows
destination files to be submitted in a collective batch, allowing for the configuration of file consumption
and file exception options on the entire batch. Within BizTalk’s batch processing model, files that are
processed successfully to the MessageBox are deleted from the source, files that are processed to the
MessageBox with exception are suspended, and messages that fail to write to the MessageBox cause the
entire batch to be rolled back. For example, a security permission issue might prevent the file from being

http://

CHAPTER 6 ■ ADAPTERS

344

open and consumed. This premise ensures that all files are preserved on the source file location. That is,
the physical file deletion process does not occur until the entire batch has been processed.

6–3. Configuring SMTP Send Ports

Problem

You need to send a message from BizTalk with the Simple Mail Transport Protocol (SMTP).

Solution

This example configures a BizTalk send port using the SMTP adapter to send a message to a single email
recipient. The following steps outline how to configure the SMTP adapter:

■Note This recipe demonstrates how to create a static SMTP port. In many cases, you will need to specify

dynamic values for an e-mail, including message content, recipients, subject line, and so on. All of this can be set

dynamically using an orchestration and a dynamic send port.

If BizTalk needs to send each message to a different email address, use a dynamic port from an
orchestration.

1. Open the BizTalk Administration Console.

2. Expand the BizTalk Server group, select the appropriate BizTalk application,
and select the Send Ports folder.

3. Right-click the Send Ports folder, and select New→Static One-Way Send Port to
open the Send Port Properties dialog box. Give the Send Port a name.

4. Within the Transport section of the General tab, select SMTP from the Type
drop-down list, as shown in Figure 6–5.

http://

CHAPTER 6 ■ ADAPTERS

345

Figure 6–5. Specifying the SMTP transport type

5. Click the Configure button to open the SMTP Transport Properties dialog box.

6. On the General tab, enter the message recipient’s e-mail address and the e-mail
message subject, as shown in Figure 6–6. Additionally, request delivery and
read receipts to get a notification e-mail when the message recipient receives or
marks the message as read.

Figure 6–6. Configuring the general options for the SMTP adapter

http://

CHAPTER 6 ■ ADAPTERS

346

7. The settings on the Compose tab provide three options for specifying the
message body. First, the message body may directly contain the sent message.
Second, you can set the message to a fixed value, as shown in Figure 6–7. Third,
BizTalk can retrieve the message from a file location. Set these options as
necessary.

Figure 6–7. Configuring the Compose tab

8. The Attachments tab allows you to configure the different ways BizTalk can
include attachments. BizTalk can include the message being sent with the
SMTP adapter as an attachment or include an external file as an attachment, as
shown in Figure 6–8. Set these options as necessary.

http://

CHAPTER 6 ■ ADAPTERS

347

Figure 6–8. Setting the SMTP attachment

9. The Handler Override tab contains SMTP configuration settings such as the
SMTP server name, the From address used when sending email messages, and
authentication settings. Instead of setting these configuration values for each
send port using the SMTP transport, all SMTP send ports can share
configuration values for the SMTP handler. Only change these values from the
default settings if you need to override the default SMTP handler configuration.

■Note This recipe demonstrates how to create a static SMTP port. In many cases, you will need to specify

dynamic values for an e-mail, including message content, recipients, subject line, and so on. All of this can be

set dynamically using an orchestration and a dynamic send port.

http://

CHAPTER 6 ■ ADAPTERS

348

How It Works

BizTalk can only send email messages with the SMTP adapter. To receive a message via e-mail, you can
use the POP3 adapter. Of course, in all cases, you can write a custom adapter or implement a third-party
adapter if available.

The security settings of some SMTP servers disallow impersonation. Under these circumstances, the
From address in an e-mail must match the account credentials provided to the SMTP server. The SMTP
server must have an e-mail account created specifically for the credentials provided by BizTalk. For
example, when specifying process account (NTLM) authentication, the identity of the BizTalk host
instance must also have a valid e-mail address. If the From address does not match the e-mail address of
the host instance identity, the e-mail will not be sent. You can configure settings on the adapter to be
used by all send ports via the adapter. Configure the SMTP handler with properties that any SMTP send
port can reuse with the following steps:

1. Connect to the BizTalk group in the BizTalk Administration Console, expand
the Platform Settings folder, and expand the Adapters folder. Select the SMTP
adapter.

2. Right-click the host appearing in the right pane of the BizTalk Administration
Console, and select Properties.

3. Click the Properties button in the SMTP Transport Properties dialog box.

4. Set the default configuration values for the SMTP adapter. See Figure 6–9.

Figure 6–9. SMTP handler configuration within Platform Settings

http://

CHAPTER 6 ■ ADAPTERS

349

You have three handler configuration options for authenticating with the SMTP server, as shown in
Table 6–3. SMTP send ports have a fourth default authentication option, which specifies to use the
handler configuration setting.

Table 6–3. SMTP Handler Authentication Options

Authentication Option Description

Basic Authentication Specifies specific credentials to authenticate with the SMTP
server. BizTalk may pass these credentials over the network in
clear text.

Do Not Authenticate BizTalk provides no authentication credentials when sending an
email message via SMTP.

Process Account (NTLM) The adapter uses the host instance identity to authenticate with
the SMTP server.

Finally, when setting SMTP values on a dynamic port from within an orchestration, use a message
assignment shape to set the properties to the variable values. For example, if you want to set the e-mail
body text to a dynamic value, the message assignment would look like that shown in Figure 6–10.

Figure 6–10. Setting the SMTP Properties from within a Message Assignment shape in an orchestration

http://

CHAPTER 6 ■ ADAPTERS

350

6–4. Configuring MSMQ Sends

Problem

You are integrating with a system that subscribes to messages from a Microsoft Message Queue (MSMQ)
queue, and you must configure BizTalk Server to send messages to MSMQ.

■Note See Recipe 6–5 for further information about how to configure the MSMQ receive adapter.

Solution

You are building a solution that processes orders from an online commerce site and must deliver those
messages to an ERP system via an MSMQ queue. To send messages to the destination queue, you must
create a BizTalk Server send port that utilizes the MSMQ adapter. To configure the send port, follow
these steps:

1. Open the BizTalk Administration Console.

2. Expand the BizTalk Server group, select an appropriate BizTalk application, and
select the Send Ports folder.

3. Right-click the Send Ports folder, and select New→Static One-way Send Port to
open the Send Port Properties dialog box.

4. Give your send port a descriptive name, select the XMLTransmit pipeline, ensure
any correct subscriptions are implemented (on the Filters tab), and select
MSMQ as the transport type.

5. Click the Configure button to the right of the Transport Type field. This
launches the MSMQ Transport Properties dialog box.

6. Set the Destination Queue property to the queue name that the ERP system
accepts messages from, as shown in Figure 6–11. In this scenario, we are using a
queue named ERPCommerceOrder.

http://

CHAPTER 6 ■ ADAPTERS

351

Figure 6–11. Configuring an MSMQ send port

7. Leave all other properties with their default values, and click OK.

8. Click OK in the Send Port Properties dialog box to save the send port.

■Note You can also create send ports in the BizTalk Editor view in Visual Studio.

9. Right-click the send port created in the previous step, and select Start.

How It Works

The BizTalk Server MSMQ adapter allows easy access to messages in MSMQ queues (MSMQ versions 2.0
and 3.0). The adapter relies on the local MSMQ service, which must be installed on the same computer
hosting the adapter.

http://

CHAPTER 6 ■ ADAPTERS

352

MSMQ Send Options

Although this example illustrates the simplest scenario for sending MSMQ messages to a specified
queue, you can make a number of configurations against the MSMQ adapter:

• Destination Queue: Specifies the queue to which to send messages. See the
following section for further information about how to format queue names.

• Ordered Delivery: Specifies whether the message order is persisted when
delivering messages to the destination queue. This property enables a solution to
implement ordered message delivery, although you must also ensure that all the
previous processing (including the receipt of the message from the source queue)
is handled serially if the order is to be maintained.

You can additionally specify whether the send port should be stopped if errors are
encountered when delivering a message to the destination queue. This setting
helps enforce a strict ordered delivery requirement, although it has the side effect
of completely disabling an interface if a single error occurs. This property is
available only via the BizTalk Administration Console, under the Transport
Advanced Options grouping of an MSMQ Send Port Properties dialog box. See
Figure 6–12.

Figure 6–12. The Ordered delivery setting for MSMQ ports

■Note You can make this setting only via the BizTalk Administration Console, under the Transport Advanced

Options grouping of an MSMQ Send Port Properties dialog box.

http://

CHAPTER 6 ■ ADAPTERS

353

• Encryption Algorithm: Specifies the algorithm used to encrypt messages as they
are written to the destination queue. The available values are RC2, RC4, and None.
This property results in the Message.UseEncryption and
Message.EncryptionAlgorithm properties being set.

• Body Type: Specifies the body type of MSMQ messages written to the destination
queue.

• Maximum Message Size (in kilobytes): Specifies the maximum size of the
message batch to be delivered to the destination queue. The MSMQ adapter will
fill the batch with messages from the MessageBox until this setting is reached.

• Message Priority: Specifies the priority for delivering messages. This setting is
relative to the other send ports within your BizTalk environment. To nullify the
functionality of this property, set the priority on all the send ports in your
environment to the same value.

• Recoverable: Specifies whether messages will be recoverable if errors are
encountered during the delivery to the destination queue. When this value is set to
True, messages are persisted to disk in between being pulled from the MessageBox
and delivered to the destination queue. If errors occur during delivery, messages
can be recovered from the disk.

• Support Segmentation: Specifies whether the adapter allows large messages (larger
than 4MB) to be segmented. This property should be set to True if you have
implemented the large message extension—if the adapter attempts to deliver a
message larger than 4MB and this property is set to False, an error is thrown and
the message is not delivered.

• Timeout: Specifies the timeout value for which messages must be delivered
(combined with the Timeout Unit property). This value applies only when the
Transaction property is set to True. The MSMQ adapter treats messages not
delivered within the specified timeout period as error scenarios.

• Timeout Unit: Specifies the timeout unit for which messages must be delivered
(combined with the Timeout property). The available values for this property are
Days, Hours, Minutes, and Seconds.

• Use Journal Queue: Specifies whether messages will be copied to the journal
queue.

■Note The journal queue is a system queue that is automatically created when MSMQ is installed and is meant to

contain copies of messages that are sent or received.

• Use Dead Letter Queue: Specifies whether error messages will be sent to the dead
letter queue.

http://

CHAPTER 6 ■ ADAPTERS

354

■Note The dead letter queue is a system queue that is automatically created when MSMQ is installed and is

meant to contain undelivered messages.

• User Name: Specifies the user for accessing a remote queue. This property applies
only when accessing remote queues. The MSMQ adapter’s host account is used to
access all local queues.

• Password: Specifies the password for accessing a remote queue. This property
applies only when accessing remote queues.

• Acknowledgement Type: Specifies the type of acknowledgment to send upon the
successful delivery of a message batch to the destination queue. The available
acknowledgment types are defined in the System.Messaging.AcknowledgeTypes
enumeration. You can select multiple acknowledgment types for this property.

• Administration Queue: Specifies the administration queue where
acknowledgment messages are sent upon the successful delivery of messages to
the destination queue.

• Use Authentication: Specifies that a certificate thumbprint will be used when
delivering messages to the destination queue.

• Certificate Thumbprint: Specifies the certificate thumbprint used to attach to the
message batch. You can use this certificate thumbprint to authenticate your
BizTalk environment as the sender of the messages, helping increase the overall
security of your integration solution. The certificate is stored in the
System.Messaging.Message.SenderCertificate property.

■Note You can find certificate thumbprints by viewing a certificate’s details in the Certificate MMC snap-in.

• Transactional: Specifies whether the send port will deliver messages
transactionally. This property must be set to True if the destination queue is
transactional and False if the destination queue is not transactional.

If the Transactional property is set to True, the MSMQ adapter transactionally
retrieves the appropriate amount of messages (as defined by the Maximum Message
Size property) into a batch from the MessageBox and attempts to deliver the
batch to the queue within the transaction. If any errors are encountered when
delivering the batch (including a timeout, as defined by the Timeout and Timeout
Unit properties), the MSMQ adapter attempts to redeliver the messages. If any
errors are encountered when redelivering the batch, MSMQ suspends the
messages, leaving them in a recoverable state in the MessageBox. Setting this
property to True automatically implements the behavior defined by the
Recoverable property. Messages within a batch are handled individually—those
messages that do not encounter errors are delivered to the destination queue,
even if other messages in the batch have errors.

http://

CHAPTER 6 ■ ADAPTERS

355

If the Transactional property is set to False, the MSMQ adapter retrieves the
appropriate number of messages (as defined by the Maximum Message Size
property) into a batch from the MessageBox and attempts to deliver the batch to
the queue. If any errors are encountered when delivering the batch (including a
timeout, as defined by the Timeout and Timeout Unit properties), the MSMQ
adapter attempts to suspend the messages. If any errors are encountered when
suspending the batch, the messages are lost.

■Note As a batch is delivered to the destination queue, errors can occur as messages. They pass through the

send pipeline configured on the send port, pass through the map configured on the receive port, or are written to

the destination queue.

MSMQ Queue Name Formats

To successfully send documents to an MSMQ queue, you must appropriately format the name of the
queue via the Destination Queue property. The appropriate name depends on the type and location of
the queue. The following list defines the way the Queue property should be entered for the commonly
implemented queues:

• Public queue: ComputerName\QueueName

• Private queue: ComputerName\Private$\QueueName

• Direct access to a queue via TCP: DIRECT=TCP:IPAddressOfComputer\QueueName

• Direct access to a queue via HTTP:
DIRECT=http://ComputerName/MSMQVirtualDirectory/QueueName, where
MSMQVirtualDirectory is the Internet Information Services (IIS) virtual directory
name of the MSMQ service

• Direct access to a queue via HTTPS:
DIRECT=https://ComputerName/MSMQVirtualDirectory/QueueName, where
MSMQVirtualDirectory is the IIS virtual directory name of the MSMQ service

• Journal queue: ComputerName\QueueName\Journal$

• Dead letter queue: ComputerName\Deadletter$

• Transaction dead letter queue: ComputerName\XactDeadletter$

By default, the MSMQ adapter prepends FORMATNAME:DIRECT=OS: to the Queue property, assuming the
queue is referenced directly via the host computer’s name.

http://ComputerName/MSMQVirtualDirectory/QueueName
https://ComputerName/MSMQVirtualDirectory/QueueName
http://

CHAPTER 6 ■ ADAPTERS

356

6–5. Configuring MSMQ Receives

Problem

You are integrating with a system that publishes messages to an MSMQ queue, and you must configure
BizTalk Server to receive messages from MSMQ.

■Note See Recipe 6–4 for further information about how to configure the MSMQ send adapter.

Solution

You are building a solution that processes orders from an online commerce site that outputs order
messages to an MSMQ queue. To receive messages from the queue, you must create a BizTalk Server
receive location that utilizes the MSMQ adapter. To configure the receive location, follow these steps:

1. Open the BizTalk Administration Console.

2. Expand the BizTalk Server group, select an appropriate BizTalk application, and
select the Receive Ports folder.

3. Right-click the Receive Ports folder, and select New→One-way Receive Port to
open the Receive Port Properties dialog box.

4. Give your new receive port a descriptive name, and click OK.

5. Right-click the receive port created in the previous step, and select
New→Receive Location. The Receive Location Properties dialog box appears.

6. Give your receive location a descriptive name, select the XMLReceive pipeline,
and select MSMQ as the transport type.

7. Click the Configure button to the right of the Transport Type field. This
launches the MSMQ Transport Properties dialog box.

8. Set the Queue property to the queue name that the online commerce site
outputs messages to, as shown in Figure 6–13. In this scenario, we are using a
queue named CommerceOrder.

9. Leave all the other properties with their default values, and click OK.

10. Click OK in the Receive Location Properties dialog box to save the receive
location.

■Note You can also create receive ports and receive locations in the BizTalk Editor view in Visual Studio.

http://

CHAPTER 6 ■ ADAPTERS

357

Figure 6–13. Configuring an MSMQ receive location

11. Select the Receive Locations folder in the BizTalk Administration Console,
right-click the receive location created earlier, and select Enable.

How It Works

The BizTalk Server MSMQ adapter allows easy access to messages in MSMQ queues (MSMQ versions 2.0
and 3.0). The adapter relies on the local MSMQ service, which must be installed on the same computer
hosting the adapter.

MSMQ Receive Options

Although this example illustrates the simplest scenario for receiving MSMQ messages from a specified
queue, you can make a number of configurations against the MSMQ adapter:

http://

CHAPTER 6 ■ ADAPTERS

358

• Queue: Specifies the queue from which to receive messages. Each queue must be
polled by only one receive location per BizTalk environment. See the following
section for further information about how to format queue names.

• Ordered Processing: Specifies whether the message order is persisted in the
MessageBox. If this property is set to True, only one message is received in each
batch (one message retrieved each time the receive location polls the queue). This
property enables a solution to implement ordered message delivery, although you
must also ensure that any subsequent processing (including the delivery of the
message to a destination system) is handled serially if order is to be maintained. A
True value for this property overrides the Batch property, essentially setting its
value to 1.

• On Failure: Specifies the action the adapter should take on the receive location if
an error occurs. These are the available values:

• Stop: The receive location will be stopped.

• Suspend (nonresumable): The receive location will remain enabled, with error messages
being suspended in a nonresumable state.

• Suspend (resumable): The receive location will remain enabled, with error messages
being suspended in a resumable state.

• Batch Size: Specifies the number of MSMQ messages to be handled in a single
batch. The default value of 0 indicates an unlimited number of messages in a
batch. The MSMQ adapter retrieves messages from a queue and submits them to
the MessageBox in batches of one to many messages.

• User Name: Specifies the user for accessing a remote queue. This property applies
only when accessing remote queues. The MSMQ adapter’s host account is used to
access all local queues.

• Password: Specifies the password for accessing a remote queue. This property
applies only when accessing remote queues.

• Transactional: Specifies whether the receive location will retrieve messages
transactionally. This property must be set to True if the source queue is
transactional and False if the source queue is not transactional.

If the Transactional property is set to True, the MSMQ adapter transactionally
retrieves the appropriate number of messages into a batch and attempts to submit
the batch to the MessageBox within the transaction. If any errors are encountered
when submitting the messages, the MSMQ adapter attempts to suspend the
messages that have errors. If any errors are encountered when suspending the
error messages, the MSMQ adapter rolls back the receive transaction (which
leaves the messages in their original location—in the MSMQ queue). Messages
within a batch are handled individually; those messages that do not encounter
errors are submitted to the MessageBox, even if other messages in the batch have
errors.

If the Transactional property is set to False, the MSMQ adapter retrieves the
appropriate number of messages in a batch and attempts to submit the batch to
the MessageBox. If any errors are encountered when submitting the batch, the
MSMQ adapter attempts to suspend the messages. If any errors are encountered
when suspending the batch, the messages are lost.

http://

CHAPTER 6 ■ ADAPTERS

359

■Note The MSMQ adapter does not support transactionally receiving messages from a remote queue. If the

queue is remote, message batches will be retrieved nontransactionally, regardless of the configuration of this

property.

 As a batch is submitted to the MessageBox, errors can occur in messages. They pass through the receive pipeline

configured on the receive location, pass through the map configured on the receive port, or are written to the

MessageBox database.

You should consider the performance impact when using the MSMQ adapter. It is important to
understand the volume and size characteristics of the messages you expect to receive via MSMQ,
because they can significantly impact your BizTalk Server resources. You should pay particular attention
to the following:

Threading: BizTalk Server attempts to allocate threads to each MSMQ receive location as it polls its

queue. Depending on how many messages are in the source queue, multiple threads may be

allocated to each receive location. By default, the number of active threads allocated to the MSMQ

adapter cannot exceed 25. If you have more than 25 messages being retrieved at any one time, it is

possible to have latency.

Memory allocation: As message batches are retrieved by MSMQ receive locations, they are stored in
memory until they are written to the MessageBox. The larger these batches are, the more memory is
allocated. To throttle the amount of memory used by the MessageBox adapter, you can use the
Batch and Serial Processing properties. You can limit the number of messages in any given batch
by setting the Batch property to a low value. You can also set the Serial Processing property to
True, which limits the MSMQ receive location to retrieving a single message in each batch. Memory
allocation is particularly important if you have implemented the large message extension for
message queuing, which allows messages larger than 4MB in size to be handled by the MSMQ
adapter. See the SDK example devoted to this topic for further information.

It is important to understand the relationship of these configurations and the impact they have on
system resources. The ideal configuration of threading, serial processing, and batch processing is
specific to each BizTalk environment. Optimization should be part of the performance-testing phase for
all solutions you deploy to your BizTalk Server environment.

MSMQ Queue Name Formats

To successfully read messages from an MSMQ queue, you must appropriately format the name of the
queue via the Queue property. The appropriate name depends on the type and location of the queue. The
following list defines the way the Queue property should be entered for the commonly implemented
queues:

• Public queue: ComputerName\QueueName

• Private queue: ComputerName\Private$\QueueName

• Direct access to a queue via TCP: DIRECT=TCP:IPAddressOfComputer\QueueName

http://

CHAPTER 6 ■ ADAPTERS

360

By default, the MSMQ adapter prepends FORMATNAME:DIRECT=OS: to the Queue property, assuming the
queue is referenced directly via the host computer’s name.

6–6. Sending Updategrams

Problem

You need to create an orchestration that inserts a record into a table in your SQL database. Specifically,
you need to create an orchestration that inserts a new customer record in your ERP system based on an
inbound customer creation message from your CRM system.

Solution

The solution reviewed as part of this recipe outlines how to use the SQL adapter within the context of an
orchestration. The following instructions outline the tasks required to create and configure the physical
SQL send port as well as the orchestration that implements the SQL adapter.

The solution has sample XML files to demonstrate how the SQL adapter inserts message content
into a SQL table. The solution also includes a sample SQL table structure.

Task 1: Create Supporting Artifacts

Your first task is to create supporting artifacts. These include a database table and a BizTalk solution.
Here are the steps to follow:

1. Create a new SQL database and table for which to insert the record. Compile
the table definition listed in Listing 6–1.

Listing 6–1. Listing Customer Table Definition

CREATE TABLE [dbo].[Customer] (
 [CustomerID][int] IDENTITY (1,1) NOT NULL,
 [CustomerName][nvarchar](30) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [Address][nvarchar](60) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [City][nvarchar](30) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [Region][nvarchar](30) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [PostalCode][nvarchar](10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
) ON [PRIMARY]

2. Create a new BizTalk solution that will contain the objects that will insert
customers into the Customer table in your SQL database. Next, create a sample
message that matches the structure detailed in Listing 6–2. The schema for this
message will be created as part of the solution as defined in the “Task 2: Create
BizTalk Solution Artifacts” section of this recipe.

Listing 6–2. Sample Customer Message

<ns0:Customer_Request xmlns:ns0="http://SQLAdapterUpdategram">
 <ns0:sync>
 <ns0:after>
 <ns0:Customer CustomerName="Alice" Address="King" City="Seattle"

http://SQLAdapterUpdategram
http://

CHAPTER 6 ■ ADAPTERS

361

Region="WA" PostalCode="98005" />
 </ns0:after>
 </ns0:sync>
</ns0:Customer_Request>

Task 2: Create BizTalk Solution Artifacts

You will be using the Add Generated Items Wizard to generate the BizTalk artifacts for this recipe. The
wizard will prompt you to specify your BizTalk environment (such as specifying the BizTalk MessageBox
database, setting the connection string to the database you will be accessing, and identifying the type of
SQL port you are creating, such as send or receive). The following steps describe this task in detail:

1. Choose Add Generated Items from the Solution Explorer tool menu. Verify that
Add Adapter Metadata is selected. Figure 6–14 displays the Add Generated
Items Wizard.

Figure 6–14. Using the Add Generated Items Wizard

2. On the Add Adapter Wizard screen that opens, select the SQL adapter, and
verify the settings to your BizTalk MessageBox database.

■Note You can leave the Port field empty unless you are specifying an already created SQL send or receive port.

This sample will create a send port that you will specify later through the BizTalk Explorer.

3. Click Next, and set the connection string for the database to which you are
connecting.

4. Next, in the SQL Transport Schema Generation Wizard, specify the target
namespace as http://SQLAdapterUpdategram, the port type property as a Send
port, the request document root element name as Customer_Request, and the
response document root element name as Customer_Response. The wizard
should look like Figure 6–15.

http://SQLAdapterUpdategram
http://

CHAPTER 6 ■ ADAPTERS

362

Figure 6–15. Using the SQL Transport Schema Generation Wizard

5. On the Statement type information page of the wizard, select Updategram as
the type of statement.

6. On the Statement Information page of the wizard, select Insert as the type of
the updategram to create. Additionally, on the same page, select the Customer
table as the table name. In the Columns to Update list, multiselect the following
columns: CustomerName, Address, City, Region and PostalCode. CustomerID
is not required because SQL Server automatically generates the ID because of
the column being an Identity column. The wizard should resemble Figure 6–16.

http://

CHAPTER 6 ■ ADAPTERS

363

Figure 6–16. Using the SQL Transport Generation Wizard’s Statement Information dialog

7. Click Finish, completing the wizard. When you complete the wizard, notice that
BizTalk creates two artifacts for you: the BizTalk orchestration and
InsertCustomerService.xsd.

■Note The BizTalk orchestration allows you to perform additional processing of an inbound message before

sending the message to the SQL database. The InsertCustomerService schema represents a multipart message

within your orchestration. The first part of the message represents the request you will be sending to the SQL

database, and the second part represents the response the database will return to you. In this recipe, we will use

only the request portion of the multipart message.

http://

CHAPTER 6 ■ ADAPTERS

364

8. Configure the BizTalk orchestration for an inbound receive and an outbound
send. Set the both the inbound and outbound ports to work with schemas of
type SQL_Adapter_Updategram.InsertCustomerService.Customer_Request. This
property is set as shown in Figure 6–17. Make sure to set the Activate property
on the receive shape of the orchestration to True.

Figure 6–17. Setting the Message Type

9. Build and deploy your BizTalk solution. Your orchestration should resemble
Figure 6–18.

Figure 6–18. Configuring the SQL updategram orchestration

http://

CHAPTER 6 ■ ADAPTERS

365

Task 3: Create Physical BizTalk Ports

To test this solution, you will need to create a physical file receive port to consume the inbound XML file
and a SQL send port to send the message to the SQL database. A simple file receive port will consume the
inbound XML document and activate the SQL updategram orchestration just created. Please see Recipe
6–2 for creating a file receive port. The following steps outline creating the SQL send port:

1. Open the BizTalk Administration Console.

2. From an appropriate BizTalk application, right-click the Send Ports folder, and
select New→Static One-way Send Port to open the Send Port Properties dialog
box. Enter Sample SQL Updategram Send Port for the new send port’s name.
Within the Transport section of the General tab, select SQL from the Type drop-
down list.

3. In the SQL Transport Properties dialog box, configure the connection string to
the appropriate database by clicking the ellipses next to the Connection String
field. Additionally, configure the document target namespace as
http://SQLAdapterUpdategram. The Response Document Root Name can be set
to any value; it is not used in this recipe. See Figure 6–19.

Figure 6–19. Configuring the SQL updategram orchestration

4. Set the Send Pipeline property to the
Microsoft.BizTalk.DefaultPipelines.XMLTransmit pipeline.

5. Bind the deployed orchestration to the newly created send and receive ports.

Task 4: Test the Solution

Follow these steps to test the solution:

1. Place the customer test file in the file folder being monitored by BizTalk Server
by the file receive port just created. BizTalk Server will consume the file, launch
the orchestration, and send the updategram to SQL Server via the SQL send
port configured.

2. Verify that the record inserted successfully into the Customer ustomer table.

http://SQLAdapterUpdategram
http://

CHAPTER 6 ■ ADAPTERS

366

How It Works

SQL updategrams are extremely useful when you need a lightweight implementation to insert, update,
or delete data from a SQL table. This recipe demonstrates how to use the Add Generated Items Wizard as
well as how to insert records into a SQL table. This recipe did not address the need to process exceptions
that may occur when inserting records into a SQL table.

The focus of this recipe was to demonstrate how to insert a record into a single table; however,
updategrams can also affect data in multiple tables. The Add Generated Items Wizard creates only a
single schema for a single table. However, if you want to modify multiple tables in the same call, you can
run the wizard multiple times and then copy the generated schemas into a single schema, or you can
manually adjust the autogenerated schema and add the nodes. Assume you have a Customer table and
an Order table. For each customer, you insert into the Customer table, you would also like to insert the
corresponding orders to the Order table. If you knew the structure of the Order table, you could add the
structure to the autogenerated schema, and BizTalk will know to insert the records into a table with the
name of the node you specified. Figure 6–20 displays the structure of the modified schema to also insert
records into the Order table. A better approach to modifying the autogenerate schema would be to
consider using a SQL stored procedure to manage the insertion of data into multiple tables.

Figure 6–20. Multiple table insert schema

SQL updategrams allow you to update records at a table level, which is convenient. However, not all
databases may allow access at a table level; they may require you to use other means to manipulate data
in the specific table. Additionally, using an updategram locks you into using a deployed table structure,
which presents a challenge from a maintenance perspective. When determining the best way to
manipulate data in a SQL table, consider the following questions:

• Will the account with which you are accessing the SQL database have permissions
at a table level?

• What is the likelihood of the table structure changing, and how does that affect the
solution you are building?

http://

CHAPTER 6 ■ ADAPTERS

367

• Is there logic at a database level that must be performed before the message from
your orchestration can be processed?

• Do you need to affect data in many tables? Even though it is technically possible to
insert data into multiple tables via an update datagram, inserting data into
multiple tables can be better managed using a SQL stored procedure.

If any of the previous questions is true, you should consider an alternative to using an updategram.
Recipe 6–7 discusses using SQL stored procedures as an alternative.

6–7. Calling Stored Procedures

Problem

You need to create an orchestration that inserts a record into a table in your SQL database via a stored
procedure. Specifically, you need to create an orchestration that inserts a new customer record based on
an inbound message.

Solution

The solution reviewed as part of this recipe outlines how to use the SQL adapter within the context of an
orchestration. The following instructions outline the tasks required to create and configure the physical
SQL send port as well as the orchestration that implements the SQL adapter.

The solution has sample XML files to demonstrate how the SQL adapter inserts message content
into a SQL table via a stored procedure. The solution also includes a sample SQL table structure.

Task 1: Create Supporting Artifacts

The steps outlined for this task create the supporting solution artifacts. You will create the table, stored
procedure, and inbound message structure for the message consumed by BizTalk. Here are the steps to
follow:

1. Create a new SQL database and table for which to insert the record. Compile
the table definition listed in Listing 6–3.

Listing 6–3. Example Customer Table Definition

CREATE TABLE [dbo].[Customer] (
 [CustomerID][int] IDENTITY (1,1) NOT NULL,
 [CustomerName][nvarchar](30) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [Address][nvarchar](60) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [City][nvarchar](30) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [Region][nvarchar](30) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [PostalCode][nvarchar](10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
) ON [PRIMARY]

2. If you do not have a stored procedure to insert individual customer records,
compile the stored procedure listed in Listing 6–4.

http://

CHAPTER 6 ■ ADAPTERS

368

Listing 6–4. Example Insert Customer Stored Procedure

if exists (select * from sysobjects where name = 'BizTalkToCustomerInsert'
and type = 'P')
 drop proc BizTalkToCustomerInsert
go
CREATE procedure BizTalkToCustomerInsert
 @CustomerName nvarchar(60)
 , @Address nvarchar(120)
 , @City nvarchar(60)
 , @Region nvarchar(60)
 , @PostalCode nvarchar(60)
AS
/*
**
** Object: BizTalkToCustomerInsert
**
** Description: Inserts records into the Customer table for the SQL adapter
** stored procedure recipe
**
**
*/
BEGIN
 Declare @intReturnCode int
 select @intReturnCode = 0

 /*Insert records that will be returned to caller*/
 Insert Customer (CustomerName, Address, City, Region, PostalCode)
 Values (@CustomerName, @Address, @City, @Region, @PostalCode)

 /* Set the outbound return code */
 select @intReturnCode = @@error

 /* return the return code */
 return @intReturnCode
END

go
grant execute on dbo.BizTalkToCustomerInsert to public
go

3. Create a new BizTalk solution that will contain the components used to insert
customers into the Customer table in your SQL database. Next, create a sample
message that matches the structure detailed in Listing 6–5. The schema for this
message will be created as part of the solution as defined in the “Task 2: Create
BizTalk Solution Artifacts” section of this recipe.

Listing 6–5. Example Customer Input Message

<ns0:Customer_Request xmlns:ns0="http://SQLAdapterStoredProcedure">
 <ns0:BizTalkToCustomerInsert Address="1241 Little Overlook" City="Grand Jct"
CustomerName="Ciro
A" PostalCode="81502" Region="CO" />
</ns0:Customer_Request>

http://SQLAdapterStoredProcedure
http://

CHAPTER 6 ■ ADAPTERS

369

Task 2: Create BizTalk Solution Artifacts

Next, you will be using the Add Generated Items Wizard to generate the BizTalk artifacts for this recipe.
The wizard will prompt you to specify your BizTalk environment (such as specifying the BizTalk
MessageBox database, setting the connection string to the database that you will be accessing, and
identifying the type of SQL port you are creating such as send or receive). Follow these steps:

1. Choose Add Generated Items from the Solution Explorer’s tool menu. Verify
that Add Adapter Metadata is selected.

2. On the Add Adapter Wizard page, select the SQL adapter, and verify the settings
to your BizTalk MessageBox database. Figure 6–21 shows the initial connection
screen.

■Note You can leave the Port field empty unless you are specifying an already created SQL send or receive

port. This sample will create a send port that you will specify later.

Figure 6–21. Using the Add Generated Items Wizard

http://

CHAPTER 6 ■ ADAPTERS

370

3. Click Next, and set the connection string for the database to which you are
connecting.

4. Click Next, and specify the target namespace as
http://SQLAdapterStoredProcedure, the port type as Send, the request
document root element name as Customer_Request, and the response
document root element name as Customer_Response. The wizard should look
like Figure 6–22.

Figure 6–22. Using the SQL Transport Schema Generation Wizard

5. On the Statement Type page of the wizard, select Stored Procedure as the type
of statement, and click Next.

6. On the Statement Information page of the wizard, select the
BizTalkToCustomerInsert stored procedure from the drop-down enumeration,
and leave all the check boxes next to the input parameters empty.

7. Finally, click the Generate button, because it results in a generated execute
script that is listed in the Generated Script field of the wizard. The wizard
should resemble Figure 6–23.

http://SQLAdapterStoredProcedure
http://

CHAPTER 6 ■ ADAPTERS

371

Figure 6–23. Using the SQL Transport Generation Wizard—the Statement Information page

■Note Because the stored procedure contains input parameters, they are displayed in the datagrid of the wizard.

If there are default values that should be specified, you can enter those parameters next to the name of the input

parameter. If the check box is selected, a null value will be submitted as the value for the input parameter.

8. Click Next and then Finish, completing the wizard. When you complete the
wizard, notice that BizTalk creates two artifacts for you: the BizTalk
orchestration and SQLService.xsd.

■Note The BizTalk orchestration allows you to perform additional processing of the inbound message, and the

SQLService schema contains the physical representation of the data returned from the stored procedure.

9. Configure the BizTalk orchestration for an inbound receive and an outbound
send. The ports should be configured to receive and to send a message of type
SQL_Adapter_Stored_Procedure.SQLService.Customer_Request. Your
orchestration should resemble Figure 6–24. Make sure to set the Activate
property on the Receive shape to True.

http://

CHAPTER 6 ■ ADAPTERS

372

Figure 6–24. Configuring the SQL stored procedure orchestration

10. Build and deploy your BizTalk solution.

Task 3: Create Physical BizTalk Ports

Your next task is to create the physical BizTalk ports you will need to test the solution. Follow the process
outlined in these steps:

1. To test this solution, you will need to create a physical file receive port to
consume the inbound XML file and a SQL send port to send the message to the
SQL database. Open the BizTalk Administration Console.

2. Find the appropriate BizTalk application, right-click the Send Ports folder, and
select New→Static One-way Send Port to open the Send Port Properties dialog
box. Name the new send port Sample SQL Stored Procedure Send Port. Within
the Transport section of the General tab, select SQL from the Type drop-down
list.

http://

CHAPTER 6 ■ ADAPTERS

373

3. In the SQL Transport properties, configure the connection string to the
appropriate database by clicking the ellipses next to the Connection String
field. Additionally, configure the document target namespace as
http://SQLAdapterStoredProcedure.

4. Set Send Pipeline to the Microsoft.BizTalk.DefaultPipelines.XMLTransmit
pipeline.

5. Bind the deployed orchestration to the newly created send and receive ports.

Task 4: Test the Solution

Your last task is to test your solution to be sure it works correctly. The procedure for testing is simple:
place your sample customer test file in the folder being monitored by the file receive port, and verify that
the record inserted successfully into the Customer table.

How It Works

Utilizing the SQL adapter to call stored procedures is a great way to insert data into a database or call a
procedure to return data from a database. The benefits of using the SQL adapter over creating a
component to make database calls include being able to use any BizTalk adapter (including guaranteed
reliable message delivery, retry capabilities, and the ability to specify alternative mechanisms for
message delivery). Additionally, a stored procedure is capable of taking an entire XML message or
individual data elements as input parameters.

This recipe demonstrates how to use the SQL adapter and stored procedure to insert customer
records in a SQL table. The stored procedure required input parameters but could have taken the entire
contents of the XML message and parsed the contents of message.

6–8. Receiving Messages with the SQL Adapter

Problem

You need to create an orchestration that retrieves messages from a SQL table via a SQL stored procedure.
Specifically, you need to create an orchestration that will receive individual customer records from your
SQL database via a SQL stored procedure.

Solution

The solution reviewed as part of this recipe outlines how to use the SQL receive adapter within the
context of an orchestration. The solution has a sample table and stored procedure to demonstrate how
the SQL receive adapter routes messages based on message content. The following instructions outline
the tasks required to create and configure the physical SQL receive port as well as the orchestration that
implements the SQL receive adapter.

Task 1: Create Supporting Artifacts

Perform the following steps to create the SQL support artifacts that are used by this recipe:

http://SQLAdapterStoredProcedure
http://

CHAPTER 6 ■ ADAPTERS

374

1. Create a new SQL database and table for which to insert the record. Compile
the following table definition, and insert the statements listed in Listing 6–6.

■Note The table definition is different from the previous recipe. Make sure to use the table definition in Listing 6–

6 or modify the previously created table definition.

Listing 6–6. Example Customer Table Definition

CREATE TABLE [dbo].[Customer] (
 [CustomerID][int] IDENTITY (1,1) NOT NULL,
 [CustomerName][nvarchar](30) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [Address][nvarchar](60) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [City][nvarchar](30) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [Region][nvarchar](30) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [PostalCode][nvarchar](10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
 [RecordStatus][tinyint] NOT NULL
) ON [PRIMARY]

Insert Customer (CustomerName, Address, City, Region, PostalCode, RecordStatus)
Values ('Shauna Marie', '9515 S Wally St', 'Bellevue', 'WA', '98004', 1)
Insert Customer (CustomerName, Address, City, Region, PostalCode, RecordStatus)
Values ('Pat Dean', '10034th 49th Ave NE', 'Redmond', 'WA', '95550', 1)
Insert Customer (CustomerName, Address, City, Region, PostalCode, RecordStatus)
Values ('Sherrie Long', '5015 48th Ave SW', 'Woodland Park', 'CO', '80863', 1)

2. If you do not have a stored procedure to retrieve individual customer records,
compile the stored procedure listed in Listing 6–7.

■Note Notice that the select statement in Listing 6–7 contains a FOR XML AUTO, XMLDATA, ELEMENTS clause.

The SQL adapter requires select statements returning records to return them in XML format. Additionally, the

XMLDATA clause is required only when running the wizard to generate the schema for the result set from the stored

procedure. When you test the solution, make sure to remove the XMLDATA clause from your stored procedure.

Listing 6–7. Example Retrieve Customer Record Stored Procedure

if exists(select * from sysobjects where name = 'CustomerToBizTalk' and type = 'P')
 drop proc CustomerToBizTalk
go
CREATE procedure CustomerToBizTalk
AS
/*
**
** Object: CustomerToBizTalk

http://

CHAPTER 6 ■ ADAPTERS

375

**
** Description: Retrieves records from the Customer table for the SQL receive
** adapter recipe
**
**
*/
BEGIN
 /*Populate temp table with records that will be returned to caller*/
 Select top 1 CustomerID
 , CustomerName
 , Address
 , City
 , Region
 , PostalCode
 , RecordStatus
 Into #TempCustomer
 From Customer
 Where RecordStatus = 1

 /*Update Status of retrieved record from the Customer table*/
 Update Customer
 Set RecordStatus = 0
 Where CustomerID = (select CustomerID from #TempCustomer)

 /*Return records to caller*/
 Select CustomerID
 , CustomerName
 , Address
 , City
 , Region
 , PostalCode
 , RecordStatus
 from #TempCustomer as Customer FOR XML AUTO, XMLData, Elements

 /*Clean up temp table*/
 drop table #TempCustomer
END

go
grant execute on dbo.CustomerToBizTalk to public
go

Task 2: Create BizTalk Solution Artifacts

Next, use the Add Generated Items Wizard to generate the BizTalk artifacts for this recipe. The wizard
will prompt you to specify your BizTalk environment (including specifying the BizTalk MessageBox
database, setting the connection string to the database you will be accessing, and identifying the type of
SQL port you are creating such as send or receive). This recipe assumes you have created an empty
BizTalk solution. Here are the steps to follow:

1. Choose Add Generated Items from the Solution Explorer’s tool menu. Select the
Add Adapter Metadata template.

http://

CHAPTER 6 ■ ADAPTERS

376

2. On the Add Adapter Wizard page, select the SQL adapter, and verify the settings
to your BizTalk MessageBox database.

■Note You can leave the Port field empty unless you are specifying an already created SQL send or receive

port.

3. Click Next, and set the connection string for the database to which you are
connecting (this is where the table and stored procedure created in the
previous task reside). Then, in the SQL Transport Schema Generation Wizard,
specify the target namespace as http://SQLReceiveAdapter and the document
root element name as Customer_Response. The wizard should resemble Figure
6–25.

Figure 6–25. Using the SQL Transport Schema Generation Wizard

4. Click Next, and on the Statement type information page of the wizard, select
Stored Procedure as the type of statement. On the Statement Information page
of the wizard, select the CustomerToBizTalk stored procedure from the drop-
down enumeration, and click the Generate button. The Generate button results
in a generated execute script that is listed in the Generated Script field of the
wizard. Figure 6–26 displays the completed wizard.

■Note If the stored procedure contained any input parameters, those parameters would display in the datagrid of

the wizard. The wizard also depends on the select statement in the stored procedure to contain the XMLDATA

clause in the FOR XML statement. The XMLDATA clause returns the schema layout for the structure returned by the

select statement.

http://SQLReceiveAdapter
http://

CHAPTER 6 ■ ADAPTERS

377

Figure 6–26. Completed wizard

5. Click Finish, completing the wizard. When you complete the wizard, notice that
BizTalk creates two artifacts for you: the BizTalk orchestration and
SQLService.xsd.

■Note The BizTalk orchestration allows you to perform additional processing of the inbound message, and the

SQLService schema contains the physical representation of the data returned from the stored procedure.

6. Modify the BizTalk orchestration, configuring it based on the artifacts listed in
Table 6–4. Configure the BizTalk orchestration for an inbound receive and an
outbound send. See Figure 6–27.

7. Once your orchestration is complete, build and deploy your solution.

http://

CHAPTER 6 ■ ADAPTERS

378

Table 6–4. SQL Receive Orchestration

ID Name Discussion

1 Receive Customer Receive shape. Set the Activate property to True.

2 oprtReceiveCustomerSQL Receive port

3 oprtReceiveCustomerSQLType Receive port type

4 msgSQLCustomer Orchestration message pointed to the schema
generated from the Add Generated Items Wizard

5 Send Customer Send shape

6 oprtSendCustomer Send port

7 oprtSendCustomerType Send port type

Figure 6–27. Viewing the complete orchestration

Task 3: Create Physical BizTalk Ports

Execute the following steps to create the SQL receive port that will call the stored procedure and route
the message received to the deployed BizTalk solution:

1. To test this solution, you will need to create a physical SQL receive port to
consume the inbound XML file and a physical file send port to send the
message to a file share for examination.

http://

CHAPTER 6 ■ ADAPTERS

379

2. From the BizTalk Administration Console, right-click the Receive Ports folder,
and select Add Receive Port ➤ One-way Port to open the One-Way Receive Port
Properties dialog box. Name the new receive port Sample SQL Receive Port.
Leave the rest of the settings with default values.

3. Right-click the Receive Locations folder, and select Add Receive Location.
Select the receive port that was created in the previous step, and click OK. In
the Receive Location Properties dialog box, configure the transport type,
address, receive handler, and receive pipeline. Configure the dialog box settings
specified in Table 6–5.

Table 6–5. SQL Receive Location Configuration Settings

Configuration Parameter Value

Transport Type SQL

Address (URI) Location of your SQL server (See step 5 for more information.)

Receive Handler BizTalk host instance (for example, BizTalkServerApplication)

Receive Pipeline Microsoft.BizTalk.DefaultPipelines.XMLReceive

4. When configuring the Address (URI) property in the Receive Port dialog box,
leave the Receive Configuration settings to the default values:

a. Set Document Root Element Name to Customer_Response.

b. Set Document Target Namespace to http://SQLReceiveAdapter.

c. On the SQL Command page, navigate to the deployed BizTalk project and schema to set
the SQL command properly (as shown in Figure 6–28). The completed SQL Transport
Properties dialog box should resemble Figure 6–29.

Figure 6–28. Selecting the Schema from the Deployed Project

http://SQLReceiveAdapter
http://

CHAPTER 6 ■ ADAPTERS

380

■Note BizTalk uses the root element name and the namespace to route the inbound XML file. If the root element

name and the namespace do not match the root element name and namespace of the SQLService.xsd file you

created in the BizTalk solution, you will receive document routing errors and suspended messages when BizTalk

tries to route the message from the SQL receive adapter.

5. Bind the deployed orchestration to the newly created send and receive ports.

Figure 6–29. Viewing the completed SQL Transport Properties dialog box

Task 4: Test the Solution

Your final task is to test your solution. Here are the steps to follow:

1. Modify and recompile the CustomerToBizTalk stored procedure. Remove the
XMLDATA clause in the FOR XML AUTO statement and recompile it. The resulting
stored procedure should resemble Listing 6–8.

Listing 6–8. Revised Select Statement

/*Return records to caller*/
 Select CustomerID
 , CustomerName
 , Address
 , City
 , Region
 , PostalCode
 , RecordStatus
 from #TempCustomer as Customer FOR XML AUTO, Elements

2. Start your orchestration and SQL receive port, and validate that a single XML
file is created for each customer in your Customer table with the RecordStatus
of 1. Also verify that the records in the Customer table have had their status set
to 0 indicating that BizTalk has consumed the record. The resulting XML file
should resemble Listing 6–9.

http://

CHAPTER 6 ■ ADAPTERS

381

Listing 6–9. Customer Sample XML

<?xml version="1.0" encoding="utf-16" ?>
<Customer_Response xmlns="http://SQLReceiveAdapter">
 <Customer>
 <CustomerID>1</CustomerID>
 <CustomerName>Shauna Marie</CustomerName>
 <Address>9515 S Wally St</Address>
 <City>Bellevue</City>
 <Region>WA</Region>
 <PostalCode>98004</PostalCode>
 <RecordStatus>1</RecordStatus>
 </Customer>
 </Customer_Response>

How It Works

Retrieving records via the SQL receive adapter is extremely useful and powerful when coupled with the
use of stored procedures. Implementing the SQL receive adapter requires configuring and managing
how records are retrieved from SQL. This recipe outlined how to use a stored procedure that selects
records in a temporary table, updates the status of the individual record in the SQL table, and then
returns the records to the SQL adapter. Additionally, this sample demonstrated how to use the FOR XML
AUTO clause within a stored procedure.

Stored Procedure Configuration

The SQL receive adapter operates on the polling principle of retrieving records. The adapter will call the
stored procedure on a configurable interval to retrieve records. However, the adapter does not maintain
the state of which records it has consumed. Therefore, any stored procedure that the SQL receive
adapter executes must maintain a level of state identifying the processed records. If you examine the
stored procedure listed previously, you will notice that there is a RecordStatus column that is updated to
0 when the records are polled. You have many options for determining unprocessed records. For
example, you can use the status flag, physically remove the record from the database, use the date range,
and so on. If the stored procedure does not maintain state, BizTalk will continue consuming the same
data.

In addition to maintaining state within the stored procedure, if you are returning a result via a select
statement, then you must specify the FOR XML AUTO, XMLDATA clause for generating the SQLService.xsd
schema. As explained, the XML AUTO clause instructs SQL Server to return the result set as XML, and the
XMLDATA clause instructs SQL Server to return the schema layout for the returned result set. The SQL
service adapter officially supports using the FOR XML AUTO clause.

You can also use the FOR XML Explicit clause, but it is not officially supported and should be used
with care. Using FOR XML Explicit eliminates using the Add Generated Items Wizard to automatically
generate the SQLService schema. However, you can create the SQLService schema manually. One benefit
to using FOR XML Explicit over FOR XML AUTO is the greater level of control in the resulting XML structure
that is returned to BizTalk. If you have a complicated XML message structure that is comprised of data
from multiple tables, you can format the result set in the correct XML structure via the FOR XML Explicit
clause. The select statement in Listing 6–10 demonstrates how to use the FOR XML Explicit clause.

http://SQLReceiveAdapter
http://

CHAPTER 6 ■ ADAPTERS

382

Listing 6–10. Return Result Set Using the FOR XML Explicit Clause

select 1 as Tag, NULL as Parent
 , NULL as [Customer!1!element]
 , CustomerID as [Customer!1!CustomerID!element]
 , CustomerName as [Customer!1!CustomerName!element]
 , Address as [Customer!1!Address!element]
 , City as [Customer!1!City!element]
 , Region as [Customer!1!Region!element]
 , PostalCode as [Customer!1!PostalCode!element]
 , RecordStatus as [Customer!1!RecordStatus!element]
from Customer
FOR XML EXPLICIT

Adapter Configuration

The SQL receive adapter contains many items for configuration. Table 6–6 lists the items worth noting.
The SQL adapter receive location differs from other BizTalk receive locations in that each SQL receive
location identifies a specific message type that is received from a database. If you expect to receive
multiple types of messages, you must construct a SQL receive port for each unique message type. The
SQL adapter is configured for each unique message type through the Document Root Element Name node
and the Document Target Namespace node. Additionally, each SQL receive location is configured to
execute a specific SQL stored procedure or command.

Table 6–6. SQL Receive Adapter Configuration

ID Configuration Parameter Description

1 Poll While Data Found Indicates whether to continue polling for new records in
additional batches or whether to submit a single query
result for the entire polling window.

2 Polling Interval Identifies how often to poll for records.

3 Polling Unit of Measure Identifies the unit of measure for polling.

4 Connection String Identifies the connection string for the database
containing data to be polled.

5 Document Root Element Name Identifies the Root node that BizTalk will assign the
inbound message.

6 Document Target Namespace Identifies the namespace that BizTalk will assign the
inbound message.

7 SQL Command Identifies the SQL command the SQL adapter will execute.

8 URI Identifies a unique identifier for the receive location. This
value is autogenerated.

http://

CHAPTER 6 ■ ADAPTERS

383

In addition to the configuration items identified previously, you must verify that MSDTC is
configured correctly on the target system that is hosting the SQL database because BizTalk enrolls every
call from the SQL adapter into an MSDTC-styled transaction.

6–9. Configuring HTTP Sends

Problem

You want to programmatically configure an HTTP send port from an orchestration using a Message
Assignment shape.

Solution

This solution will describe how to post a document using a send port configured with authentication to
post via a secure HTTPS site. The following solution assumes you have a BizTalk project open in Visual
Studio with a BizTalk orchestration and a schema that can be used to create an orchestration message.
Here are the steps to follow:

1. Create a new orchestration message by right-clicking the Messages folder in the
Orchestration View window and selecting New Message. Enter msgSend for the
message name, and give it a message type (this should be the schema of the
document that will be sent via HTTP).

2. Setting HTTP properties requires constructing the message that will be sent.
Drop a Message Assignment shape in the orchestration. This will create a
Construct Message shape that should be configured such that the Message
Constructed property is set to the message created in step 1.

3. Double-click the Message Assignment shape, and enter the property settings as
shown in Listing 6–11. Figure 6–30 shows the properties available in the
Message Assignment Editor. Click OK when complete.

Listing 6–11. Message Assignment Code

// Set HTTP send port properties; the username and password can be
// configurable by using the config file or BizTalk rules engine
// rather than hard-coded values
msgSend(HTTP.AuthenticationScheme) = "Basic";
msgSend(HTTP.Username) = "User"; // can be loaded from config file, also
msgSend(HTTP.Password) = "Password"; // can be loaded from config file
// configure additional parameters as appropriate

http://

CHAPTER 6 ■ ADAPTERS

384

Figure 6–30. Viewing the HTTP parameters in the Message Assignment Editor

■Note When selecting properties from the drop-down list in the Message Assignment shape, you’ll see all the

properties you can set. Specific to HTTP, both the Send and Receive properties are listed. A complete list of Send

properties appears in Table 6–7.

4. Drop a Send shape on the orchestration surface. Set the Message property to the
message created in step 1.

5. Right-click the port surface, and select New Configured Port. On the Port
Binding page, set the parameters as indicated in the following substeps and
shown in Figure 6–31:

a. Set “Port direction of communication” to “I'll always be sending messages on this port.”

b. Set “Port binding” to “Specify now”.

http://

CHAPTER 6 ■ ADAPTERS

385

c. Set Transport to HTTP.

d. Set URI to the URL being posted to (https://Sample).

e. Set the pipeline to the default XMLTransmit pipeline.

Figure 6–31. Using the Port Configuration Wizard

Table 6–7 describes the details of each of the port properties you can set for the HTTP port via code
in an Expression shape of an orchestration. These are the same parameters you set when configuring an
HTTP send port in the BizTalk Explorer.

Table 6–7. HTTP Port Parameters

Property Type

AffiliateApplicationName When using SSO, you can specify an affiliate application. You enter the
name of the application as a string. When using this property, the
UseSSO property must be set to True.

AuthenticationScheme You can set four types of authentication: Anonymous, Basic, Digest, and
Kerberos. When using Basic and Digest, you should set the Password and
Username properties.

Certificate If you are using a certificate (for HTTPS), you should enter the thumbprint
of the certificate as a string here. Thumbprints are typically found in the
properties of the certificate and are 40-digit hexadecimal values.

ContentType The default value is Text/XML. This is a string.

EnableChunkedEncoding Boolean value that indicates whether to send the document in
chunked packets of information.

https://Sample
http://

CHAPTER 6 ■ ADAPTERS

386

Property Type

HttpCookie Properties available if using cookies.

InboundHttpHeaders The HTTP headers may be available on inbound HTTP messages.

MaxRedirects The HTTP adapter can be set to allow for 0 to 10 redirects.

Password Password used when posting to a secure site. AuthenticationScheme
should be set to Basic or Digest.

ProxyName If a proxy server is used, enter the name of the server as a string.

ProxyPassword Password for proxy server. The UseProxy property should be set to True,
and UseHandlerProxySettings should be set to False.

ProxyPort Port for proxy server. An example would be 80.

ProxyUsername Username for proxy server. The UseProxy property should be set to True,
and UseHandlerProxySettings should be set to False.

RequestTimeout By default, the timeout will be managed based on the size of the
document. This can be overridden with a specific timeout value
entered as a numeric entry (in seconds).

ResponseStatusCode Properties available regarding the status code of the response.

SubmissionHandle Submission handle, if available.

UseHandlerProxySettings If set to True, other proxy properties that may be set are overridden,
and the send port will use the proxy handler configuration.

UseProxy Boolean value. Use other proxy properties in conjunction with this
value.

UserHttpHeaders HTTP headers, if available.

Username Username used when posting to a secure site. AuthenticationScheme
should be set to Basic or Digest.

UseSSO A Boolean value indicating whether to use the SSO server. Use the
AffiliateApplicationName property in conjunction with this.

http://

CHAPTER 6 ■ ADAPTERS

387

How It Works

When sending documents via a send port, exceptions can occur—perhaps the HTTP server is
unavailable or the URL is incorrect. In such cases, it is often useful to be able to catch the exception
immediately in the orchestration, especially when specific error handling routines need to occur.

By default, send ports are set up to automatically retry in case of failure. This means an
orchestration will call the send port and then continue processing asynchronously while the adapter
manages the transmission of the document. If an exception is thrown, it is handled by the adapter and is
never bubbled up to the orchestration. With the adapter operating asynchronously from the
orchestration, exceptions that are thrown can result in lost messages and unexpected error messages.

To force the adapter to execute synchronously with the orchestration moving on to the next steps
only when a message has been posted successfully by the adapter, you should set the Delivery
Notification property on the send port to Transmitted, as shown in Figure 6–32.

Figure 6–32. Setting the Delivery Notification property

6–10. Configuring HTTP Receives

Problem

You want to configure an HTTP receive location to allow posts from a client machine to BizTalk Server.
Additionally, you want to understand how to configure IIS and create a virtual directory to allow the
receive location to operate correctly.

Solution

This solution will describe how to configure an HTTP receive location to allow documents to be posted
to BizTalk. The first task is to configure IIS to allow for the redirection of documents to BizTalk. The
second task is to create a virtual directory to handle specific requests, and the third step is to configure
the HTTP receive. The majority of servers will have IIS 7.0 installed, and this solution describes the steps
necessary for 7.0 (IIS 5.0 and 6.0 have different configuration steps—refer to the BizTalk documentation
for details). After IIS has been configured, you will work through the steps needed to create a virtual
directory and configure an HTTP receive port.

To configure IIS 7.0, follow these steps:

http://

CHAPTER 6 ■ ADAPTERS

388

1. Open Internet Information Services Manager by selecting Control
Panel→Administrative Tools.

2. Click the name of the server, and open the Handler Mappings in the IIS options
(see Figure 6–33).

Figure 6–33. Handler Mappings in IIS 7.0

3. Under the Actions section, click Add Script Map, and set the properties as
follows:

a. Set the Request path property to BTSHTTPReceive.dll.

b. Set the Executable property to the location of BTSHTTPReceive.dll (browse to
BTSHTTPReceive.dll located in $\Program Files\Microsoft BizTalk Server
2010\HttpReceive).

c. Set the Name property to BTSHTTPReceive.

■Note If an error occurs indicating that the file is already required by another process, you don’t need to continue,

because the HTTP receive adapter has already been created and configured appropriately. Cancel out, and move

to step 3.

d. Click the Request Restrictions button. Set the value of POST on the Verbs tab, and the value
of Script on the Access tab, as show in Figures 6–34 and 6–35.

http://

CHAPTER 6 ■ ADAPTERS

389

Figure 6–34. The Verbs tab in Request Restrictions of IIS 7.0

Figure 6–35. The Access tab in Request Restrictions of IIS 7.0

e. Click OK, and save to exit Add Script Map settings.

f. On the Add Script Map dialogue box that opens, click Yes (shown in Figure 6–36).

http://

CHAPTER 6 ■ ADAPTERS

390

Figure 6–36. Add Script Map dialogue box

Once IIS is configured, the next order of business is to create a virtual directory. Each solution that
requires an HTTP receive to be set up will require a separate virtual directory. BizTalk listens to this URL
and, through the use of BTSHTTPReceive.dll and the HTTP receive adapter, passes the information to the
BizTalk MessageBox.

The following steps demonstrate how to create a virtual directory. This directory is where clients will
post HTTP requests to BizTalk.

1. In Internet Information Services Manager, expand the Sites folder, right-click
the Default Web Site folder, and select Add Virtual Directory.

2. Set the following properties:

a. The Alias of the virtual directory should be what you want exposed to clients. For
example, SampleHTTPReceive would be exposed to the client as
http://[server]/SampleHTTPReceive.

b. Set the Physical path property to the location of the BTSHTTPReceive.dll file, generally
located in $\Program Files\Microsoft BizTalk Server 2010\HttpReceive.

c. For the Connect As properties, specify the appropriate credentials. The default is
Application user.

d. Validate the setting by clicking Test Connection, and click OK when the test is complete
to save the settings.

At this point, IIS and the virtual directory are set up to route requests to BizTalk Server. The next
steps are to create a receive port and configure a receive location for HTTP. These will be specific to each
solution, so you will need to set up separate instances for different BizTalk solutions.

1. Using the BizTalk Administration Console, right-click the Receive Ports folder,
and select New→Request Response Receive Port. Give the receive port a name,
and click OK to create the port.

2. Right-click the Receive Locations folder, and select New→Request Response
Receive Location. Select the port you created in the previous step as the
container port.

http://

CHAPTER 6 ■ ADAPTERS

391

3. In the Receive Location Properties dialog box that opens, use the following
settings:

a. Set Transport Type to HTTP. This will automatically set the receive handler to
BizTalkServerIsolatedHost.

b. Set Receive Pipeline to Microsoft.BizTalk.DefaultPipelines.XMLReceive.

c. Set Send Pipeline to Microsoft.BizTalk.DefaultPipelines.XMLTransmit.

4. Click the Address (URI) ellipsis button, and use the following settings:

a. Set the Virtual Directory plus ISAPI extension property to the virtual directory created
during the IIS configuration earlier in this solution. The entry should follow this format:
/SampleHTTPReceive/BTSHTTPReceive.dll.

b. The Public address property is not used by BizTalk; instead, it is used for reference
purposes only. The intention is for it to be configured such that it contains the full
external address that clients would use to post to the receive location. The intended
format for this reference field would be http://[servername]/SampleHTTPReceive.

c. The Return Content-Type property is generally set to text/xml but can be modified
depending on the format of the response expected.

d. The Loopback flag is set when the request document is intended to be the response back.
Generally, this flag is set for test purposes only. For this solution, it should be unchecked.

e. The Return correlation handle on success property is for one-way ports only. It is
intended to allow the creation of a unique identifier to be able to correlate the request to
the document sent. Regardless of the setting, it will be ignored in this solution, because
you are creating a request-response port.

f. The Use Single Sign On property is to be used in conjunction with SSO. Leave this
property unchecked.

g. If checked, the Suspend Failed Requests property will, on error, suspend the document
in the BizTalk MessageBox and will send an accepted notification to the client that posted
the request (meaning the client will have successfully posted the document, but the
document will be in a suspended state and will require administrative attention). If
unchecked, any errors receiving the document will result in an immediate response back
to the client indicating failure. For this solution, keep this property unchecked.

Figure 6–37 shows the final configuration.

http://

CHAPTER 6 ■ ADAPTERS

392

Figure 6–37. Viewing the final HTTP transport properties

How It Works

You can set several configurations at the HTTP receive adapter level that will affect the way the adapter
functions. You can set certain properties in the Registry that will provide for more control and
optimization over large implementations that use the HTTP adapter. In many cases, however, the server
and solution infrastructure may require that this default be reduced or increased. You can set this
property using the following steps:

1. In the Registry Editor, locate the following path:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\BTSSvc.3.0.

2. Right-click this path, and select New→Key. Enter HttpReceive for the key’s
name.

3. Right-click the HTTPReceive key, and select New→DWORD. Name the key
RequestQueueSize. Give this a decimal value from 10 to 2048.

You can take the previous steps for the keys listed in Table 6–7.

http://

CHAPTER 6 ■ ADAPTERS

393

Table 6–7. HTTP Receive Adapter Registry Entries

Property Description

DisableChunkEncoding DWORD whose default is 0. Any nonzero number turns off this
setting. Indicates whether communications back to the client
will be sent using chunked encoding.

HTTPReceiveThreadsPerCPU DWORD whose default is 2. Can be set to any value from 1 to
10. Indicates the number of threads per CPU that are allocated
to the HTTP receive adapter.

RequestQueueSize DWORD whose default value is 256. Can be set anywhere from
10 to 2048. The value indicates the total number of concurrent
requests that BizTalk will process simultaneously.

6–11. Configuring SOAP Sends and Receives

Problem

You want to understand how to configure a static request/response SOAP send port using BizTalk
Explorer to allow client machines posting to orchestrations that have been deployed as web services.

Solution

SOAP ports are generally two-way (solicit-response) ports, because consuming web services generally
result in a response to the calling party. The following steps guide you through the process of configuring
a two-way SOAP port:

1. In BizTalk Administration Console, right-click the Send Ports folder, and select
New→Static Solicit-Response Send Port.

2. On the Property Pages dialog box that opens, select a transport type of SOAP.

3. Click the ellipsis for the Address (URI) property entry box. The Transport
Properties dialog box will open with the General tab active.

4. Configure the General tab according to the requirements of the web service,
with the following guidelines. See Figure 6–38.

a. The value of the Web Service URL property should be entered in the format
http://webservice.asmx.

b. The four authentication types are Anonymous, Basic, Digest, and NTLM. The value selected
for this property will depend on the requirements of the web service being consumed.
Often, it will take some experimentation to determine the proper authentication settings,
especially when additional security measures, such as certificates, are required.

http://webservice.asmx
http://

CHAPTER 6 ■ ADAPTERS

394

c. If a web service requires an SSL certificate, enter a reference to it in the Certificate
Thumbprint property. You can access the thumbprint through the certificate properties
and copy and paste it into this property.

Figure 6–38. Configuring the General tab

5. Configure the proxy settings on the Proxy tab according to any proxies that may
be necessary to call the web service.

6. Configure the Web Service tab using the following guidelines:

a. Generally, all calls to web services should be handled through the orchestration web port;
this provides the robust capabilities for posting over the supported protocols inherent to
SOAP.

b. Occasionally, it may be necessary to specify a proxy class for a call to a web service. In
such cases, a proxy class must be created. You can create a class using the command-line
utility WSDL.exe. This tool will create an assembly that can be referenced using the
Assembly Name property. Once referenced, the type and methods available on the original
web service will be made available in the two remaining property fields.

7. Click OK to save the settings entered in the Transport Properties dialog box, and
configure the remaining properties on the SOAP send adapter:

http://

CHAPTER 6 ■ ADAPTERS

395

a. Set the Send and Receive Pipelines settings according to the needs of the solution
(generally XMLTransmit and XMLReceive).

b. If a certificate is required for outbound encryption, set the Certificate Name property to
the appropriate certificate. Only those certificates that have been installed on the
machine will be available in the drop-down list.

c. Set any inbound or outbound maps, and configure any filters that may be necessary.

8. Click OK to complete the configuration of the SOAP port.

How It Works

When calling a web service from an orchestration, it is often useful to be able to specify a dynamic URL.
For instance, in a development environment, the URL being posted to will be a test URL, and the URL
will need to change once the orchestration has been deployed to a production setting. You have several
approaches to solving the need for supporting a dynamic URL, one of which is to set the address
programmatically in an orchestration Expression shape.

One way to have a dynamic URL is to store the URL can be stored in a configuration file. Assuming
that the BTSNTSvc.exe.config file is used to store a custom property, you can take the following steps:

1. In the BTNTSvc.exe.config file, add a new key as follows (add this to the
<appSettings> node):

[<appSettings>]
 <add key="WSURL" value="http://sample.asmx"/>

[</appSettings>]

2. Drop an Expression shape on the orchestration. You can enter the following
code in the orchestration to read the configuration file and to set the address on
the web port created in the previous steps:

strURL = System.Configuration.ConfigurationSettings.AppSettings.Get("WSURL");
Port_1(Microsoft.XLANGs.BaseTypes.Address) = strURL;

6–12. Creating Ports Through C# Applications

Problem

You want to create an external .NET application that can be used by administrators to create and modify
ports on BizTalk Server.

Solution

You can create and modify a variety of components programmatically using the BizTalk Explorer object
model. This solution will walk you through creating a basic C# Windows Form application that calls the
object model.

http://sample.asmx
http://

CHAPTER 6 ■ ADAPTERS

396

■Note The Microsoft.BizTalk.ExplorerOM.dll assembly can only be used from 32-bit systems. You can

reference it in Visual Studio on a 64-bit system, but it will not work once the code is compiled.

Here are the steps to follow:

1. In Visual Studio, create a new project of type Windows Forms Application (as
shown in Figure 6–39).

Figure 6–39. Creating a Windows Forms Application

2. Add a reference to the assembly called Microsoft.BizTalk.ExplorerOM.dll. This
assembly is located in $\Program Files\Microsoft BizTalk Server
2010\Developer Tools.

3. Create a new button on the form. The code will be implemented in the code
behind this button for this demonstration solution.

4. Double-click the button to access the code behind, and enter the information
listed in Listing 6–12.

Listing 6–12. Creating Ports in C#

private void button1_Click(object sender, EventArgs e)
{
 // instantiate new instance of Explorer OM
 BtsCatalogExplorer btsExp = new BtsCatalogExplorer();

 // connection string to the BizTalk management database where the ports will be created
 btsExp.ConnectionString = "Server='SR';Database='BizTalkMgmtDb';Integrated Security=true";

 // new BizTalk application
 Microsoft.BizTalk.ExplorerOM.Application app = btsExp.AddNewApplication();
 app.Name = "AppCreatedInCode";
 btsExp.SaveChanges();

 // new BizTalk File Send Port
 SendPort send = app.AddNewSendPort(false, false);
 send.Name = "SendCreatedInCode";

http://

CHAPTER 6 ■ ADAPTERS

397

 send.PrimaryTransport.TransportType = btsExp.ProtocolTypes["File"];
 send.PrimaryTransport.Address = "C:\\Drops";
 send.SendPipeline = btsExp.Pipelines["Microsoft.BizTalk.DefaultPipelines.PassThruTransmit"];

 // new BizTalk WCF-BasicHttp Receive Port
 ReceivePort receive = app.AddNewReceivePort(false);
 receive.Name = "ReceiveCreatedInCode";
 receive.PrimaryReceiveLocation.TransportType = btsExp.ProtocolTypes["WCF-BasicHttp"];
 receive.PrimaryReceiveLocation.Address = "http://demo/demofolder";
 receive.PrimaryReceiveLocation.ReceivePipeline =
 btsExp.Pipelines["Microsoft.BizTalk.DefaultPipelines.XmlReceive"];

 // save all of the changes
 btsExp.SaveChanges();
}

How It Works

You can access a wide variety of functionality through the BizTalk ExplorerOM assembly, including
ports, applications, orchestrations, bindings, and party information. When using the BizTalk
Administration Console is not the ideal option, the Explorer Object Model opens up a number of
programmatic options.

http://demo/demofolder
http://

CHAPTER 6 ■ ADAPTERS

398

http://

C H A P T E R 7

■ ■ ■

399

Business Rules Framework

Business processes are changing at an unprecedented speed, and the IT systems that power business
processes are being asked to keep up. In today’s environment, to maintain a market advantage,
organizations must react quickly to new markets, shifting consumer demand, shifting cost structures,
and shifting business differentiators. The IT changes required to support dynamic business policies are
taxing IT departments in terms of cycle time and hard costs.

At the root of this taxation are the complexities involved in designing and deploying traditional
technical solutions. Current software development life cycle (SDLC) methodologies are time-consuming
and expensive, and they often fail to deliver the set of features required by businesses within their time
frames and budget targets. Although technologies such as .NET and BizTalk have shortened the cycle
time to develop, test, and deploy solutions, often these technologies still don’t meet the demanding
cycle time requirements demanded by an agile business. For instance, consider a bank’s business policy
for granting credit to a customer. If you implement this logic within a BizTalk orchestration, the steps
required to change the logic, compile the program, and redeploy are too numerous to enumerate here.
In addition, this change requires that the system be taken offline while you enact the changes. Also, if the
bank has a strong development methodology, it may require additional time to follow the process and
obtain the necessary approvals. All this adds up to a sluggish, expensive process for changing the
business policy.

The business rules framework is BizTalk’s answer to reducing the business agility problem faced by
traditional technologies. The business rules framework is a rules execution engine that allows you to
create business policies that you can develop, deploy, and dynamically execute quickly without bringing
your BizTalk process down. The framework comprises policies, facts, vocabularies, and rules. In
conjunction, these artifacts combine to create a powerful tool for quickly changing business rules in
near real time.

7–1. Creating a Business Policy

Problem

You want to understand the process for creating business rule policies. These policies are core
components to all business rule development.

Solution

The business rules framework consists of policies, rules, vocabularies, and facts. A business policy is the
container in which business rules are defined, versioned, tested, deployed, and executed. From within
the business policy editing window, the first step before creating rules is to create a policy. The policy
then may contain one or more rules for deployment. To create a policy, take the following steps:

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

400

1. Open the Business Rule Composer by selecting Start ➤ Programs ➤ Microsoft
BizTalk Server 2010 ➤ Business Rule Composer.

2. If the Open Rule Store dialogue box opens, enter the correct connection
information (see Figure 7–1).

Figure 7–1. Initial Rule Store connection manager

3. Within the Policy Explorer, right-click the Policies node, and click Add New
Policy and give the policy a name.

4. By default, version 1.0 of the policy is created. You may change the version
number if you want by selecting the version, navigating to the Properties
window, and setting the Version property.

5. Right-click the version, and choose Save. See Figure 7–2.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

401

Figure 7–2. The Policy Explorer frame within the Business Rules Composer

How It Works

Creating a business rules policy is a relatively simplistic exercise but is the foundation to the business
rules framework. Once you have created the policy, you can add rules and facts to the policy for testing
and deployment. When calling the policy from BizTalk, the latest version will be selected for execution,
unless you specify a specific version. The rules engine detects and deploys new versions of a policy,
allowing changes to be made to the business policy in a live, deployed process. This creates a powerful
environment to apply a dynamic business policy to deployed solutions with minimal work. The recipes
in this chapter will guide you through adding rules, facts, and vocabularies to your business rules policy.

7–2. Creating and Testing Rules

Problem

You need to create and test a simple business rule that a business process can use. The business process
needs to validate a document and receive the result.

Solution

You need to perform a number of basic steps to create a rule. These include the following:

1. Define the rule logic.

2. Define the input schema and XML instance.

3. Define the output schema and XML instance.

4. Define the facts that the rule uses, such as constants, functions, and predicates
(vocabularies).

The first step to creating a rule is determining the logic of the rule. This example will use the logic in
Listing 7–1 to construct the rule.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

402

Listing 7–1. Rule Logic

If Age < Minimum Age Then Deny Application
If Age > or = Minimum Age Then Accept Application

We will show how to execute the rule in Listing 7–1 against an XML document containing the data
that will be validated. For this example, we will use the NewHire schema (Figure 7–3) with the schema and
XML instance (Listing 7–2).

Figure 7–3. NewHire schema

Listing 7–2. NewHire XML Instance

<ns0:NewHireList xmlns:ns0="http://CreatingAndTestingRules.NewHire">
 <DateTime>2010-08-04T18:00:00</DateTime>
 <Person>
 <ID>1</ID>
 <Name>Mary</Name>
 <Role>Office Manager</Role>
 <Age>31</Age>
 </Person>
 <Person>
 <ID>2</ID>
 <Name>Windy</Name>
 <Role>Organist</Role>
 <Age>38</Age>
 </Person>
</ns0:NewHireList>

■Note The schema must define the <Age> element as an integer for the comparison to work in the business rule,

which you will create in this solution. The rules engine will not implicitly convert a String to an Int.

The next step in this solution is to output a document. The document that is sent to the rules engine
will be modified and returned to the calling entity. If the applicant’s age is not a valid age, the document
will be modified to display the text “INVALID APPLICANT” in the <Role> element (this element must
exist in order for it to be set).

http://CreatingAndTestingRules.NewHire
http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

403

The following steps describe how to create the vocabulary using the Business Rule Composer:

1. Open the Business Rule Composer from the Start menu. If the Open Rule Store
dialog box appears, select the appropriate SQL Server instance and
authentication to log on (this should be the instance against which you want to
develop).

2. Add a new vocabulary, which will contain the definition for the Minimum Age
constant and the Age node in the input XML document. To do this using the
Facts Explorer, right-click the Vocabularies folder, and create a new vocabulary
named AgeValidation. See Figure 7–4.

Figure 7–4. Creating a new vocabulary

3. To add the Minimum Age constant, right-click the Version subfolder created in
the previous step, and select Add New Definition. The Vocabulary Definition
Wizard appears. Once the wizard is open, do the following:

a. Add a new constant by selecting the Constant Value option. Enter MinimumAge for the
Definition Name field. Give a description of the minimum age of the applicant. Click
Next. See Figure 7–5.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

404

Figure 7–5. Creating a new vocabulary

b. On the final page of the wizard, set Type to System.Int32, and set Value to 18. Set Display
Name to an appropriate value. Click Finish.

4. o add the reference to the Age node in the NewHire XML document, right-click
the subfolder of the version that was created in step 2, and select Add New
Definition. The wizard appears, and you should then perform the following
steps:

a. Select the XML Document Element or Attribute option, and click Next. See Figure 7–6.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

405

Figure 7–6. New vocabulary based on an XML document element

b. Enter ApplicantAge for the Definition Name field. Give a description of the actual age of
the applicant.

c. Click the Browse button, and find the NewHire XSD schema. Once you have selected the
schema, a new dialog box appears where you can select the Age node. Select this node,
and click OK (See Figure 7–7).

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

406

Figure 7–7. New vocabulary based on an XML Document Element Age

d. In the Select Operation section, select the Perform “Get” Operation radio button.

5. Add a reference to the Role node in the NewHire XML document. Following the
same procedure as defined in step 4, use these substeps:

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

407

a. Select the XML Document Element or Attribute option, and click Next.

b. Enter ApplicantRole for the Definition Name field. Give a description of the role of the
applicant, which will be set to INVALID APPLICANT.

c. Click the Browse button, and find the NewHire XSD schema. Once you have selected the
schema, a new dialog box appears where you can select the Role node. Select this node,
and click OK.

d. In the Select Operation section, select the Perform “Set” Operation radio button. See
Figure 7–8.

Figure 7–8. New vocabulary based on an XML Document Element Role

e. Click Next. On the final screen of the wizard, two steps are shown. For the first step, click
the Edit button and set INVALID APPLICANT as the constant value. For the second step,
keep the default values. Click Finish when this is complete. See Figure 7–9.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

408

Figure 7–9. Setting the values on the final page of the wizard

6. Now, publish the vocabulary by right-clicking the newly created AgeValidation
folder and selecting Publish. This allows the vocabulary to be used by a policy,
which is where you define an actual business rule.

The steps up to this point have been putting into place the components needed to create a business
rule. A rule (or set of rules) is defined within a policy and references preexisting functions, predicates,
and any custom-defined constants (such as what you defined in the previous steps). The following steps
show how to create the actual business rule and policy and use the vocabulary created previously:

1. In the Policy Explorer, right-click the Policies folder, and select Add New
Policy. Enter SamplePolicy for the policy name.

2. A version appears. Right-click this version, and select Add New Rule. Enter
SampleRule for the rule name.

3. Select the rule you created in the previous step. You will see an empty condition
in the right pane. Take the following steps to create the rule (see Figure 7–10 for
a full picture of the completed steps).

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

409

a. In the Facts Explorer, expand the Predicates folder, and select the Less Than predicate.
Drag and drop this on the rule condition.

b. On the argument1 entry in the IF section of the rule composition window, drag and drop
the custom vocabulary parameter ApplicantAge you created in an earlier step.

c. On the argument2 entry in the IF section, drag and drop the custom vocabulary parameter
MinimumAge you created earlier.

d. In the THEN section of the rule composition window, drop the ApplicantRole parameter
(created earlier).

Figure 7–10. Creating the rule

The rule is complete at this point. Save the rule (right-click Version, and select Save). You can now
test the rule (and policy). Use these steps to validate and test the rule:

1. Right-click the Version folder of the rule you just created, and select Test Policy.

2. In the Select Facts dialog box that appears, click the schema name. The option
to add an instance of the NewHireList XML will be available. You saw an
example of this earlier in this recipe (refer to Listing 7–2). Click Add Instance,
and browse to an instance of this XML document.

3. Once you have declared an instance, click the Test button. This causes the XML
instance to be passed to the rule. A full trace appears in an Output window
where you can verify whether the rule executed as expected (the value of the
XML node should change).

4. Right-click the policy version, and select Publish.

5. Right-click the policy version, and select Deploy.

You can now call the rule and policy from an orchestration. To call the rule and policy from an
orchestration, perform the following steps:

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

410

1. In an orchestration, create a message of the type that is to be passed into the
rule and a message of the type that is expected back (in this case, the messages
will both be the same NewHireList XSD type).

2. Drop a Call Rules shape in an Atomic Scope (or in an orchestration that has a
transaction type of Atomic).

3. Right-click the Call Rules shape, and select the policy you created. There will be
no input parameters.

■Note The document type must match the namespace of the schema that will call it for the rule to be callable

from an orchestration.

The XML instance shown in Figure 7–11 represents the generated output from testing the business
rule created in this solution.

Figure 7–11. Final XML

How It Works

There are additional uses of the rules engine, including the ability to store parameters that can be
accessed from orchestrations. Similar in nature to a configuration file that stores parameters that may
need to change (such as connection strings) once a solution is in production, these constants allow for
runtime modifications. Benefits to using the rules engine to store configurable parameters include ease

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

411

of access, simple user interface, and enhanced read/write permissions (compared with a text file
containing configurable parameters).

To add parameters that can be accessed from an orchestration, there are two basic steps: create the
parameters, and access the constants through the rules engine API.

The first step is to create the parameters in a vocabulary in the rules engine and save them. You
don’t need to publish them unless versioning would be helpful. If they are not published, it is easier to
modify them at runtime, because all that is required is to right-click the value that needs to be changed
and select Modify. Once you have saved the vocabulary, running instances of orchestrations that
reference these parameters will pick up the new values.

The second step is to add .NET code to a BizTalk Helper class to access the vocabulary through the
rules engine API. The code shown in Listing 7–3 can be placed into a .NET assembly and should be
referenced by a BizTalk project. The method can then be called from an Expression shape within an
orchestration. This code also allows for a specific version to be called, if desired.

Listing 7–3. Accessing Constants Through the Rules Engine API

public bool blnGetVocabularyConstantValue(string strVocabularyName,
 string strConstantName,
 string strVersion,
 ref string strConstantValue,
 ref string strConstantType) {

 RuleStore rlsRuleStore;
 VocabularyInfoCollection vicVocabInfo;
 Vocabulary vocVocab;
 RuleSetDeploymentDriver rsdDriver = new RuleSetDeploymentDriver();
 Hashtable hshTable;
 LiteralDefinition litDef;
 Boolean blnConstantFound = false;

 rlsRuleStore = rsdDriver.GetRuleStore();

 if((strVersion == null) || (strVersion == "")) {
 vicVocabInfo = rlsRuleStore.GetVocabularies(strVocabularyName,
 RuleStore.Filter.Latest);
 }
 else {
 vicVocabInfo = rlsRuleStore.GetVocabularies(strVocabularyName,
 RuleStore.Filter.All);
 }

 // check to see that the vocabulary searched on has returned data
 if(vicVocabInfo.Count > 0) {
 for(int x=0;x<vicVocabInfo.Count;x++) {

 vocVocab = rlsRuleStore.GetVocabulary(vicVocabInfo[x]);

 // Check to see that the version equals the version being searched for
 // or that the version passed in was a wildcard (Null)
 if((strVersion == null) || (strVersion == "") ||
 ((vocVocab.CurrentVersion.MajorRevision + "." +
 vocVocab.CurrentVersion.MinorRevision) == strVersion)) {

 // Initialize the hashtable to the number of definitions on the vocabulary

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

412

 hshTable = new Hashtable(vocVocab.Definitions.Count);
 hshTable = (Hashtable)vocVocab.Definitions.SyncRoot;

 // check that the constant being searched for exists in the vocabulary
 if(hshTable.ContainsKey(strConstantName)) {
 litDef = (LiteralDefinition)hshTable[strConstantName];

 strConstantType = litDef.Value.GetType().ToString();
 strConstantValue = litDef.Value.ToString();

 blnConstantFound = true;

 // exit loop
 break;
 }
 }
 }
 }
 return blnConstantFound;
}

You can use the code in Listing 7–4 to invoke the previous class from an orchestration Expression
shape. This allows for an alternate method of access to the rules engine without needing the standard
call using the Call Rules shape and is useful when getting the value of a constant or other scalar value.

Listing 7–4. Calling the Object from the Orchestration Expression Shape

// the following string is the name of the vocabulary
strVocabularyName = "Project.BizTalk.Constants";
objVocab.GetVocabularyConstantValue(strVocabularyName, "ConstantName", "",
 "10", ref strValue,ref strType);

7–3. Creating Facts

Problem

You need to understand how to use the Facts Explorer to create a vocabulary that will be used within a
business rule fact. You want to be able to store constants, predicates, and so on, that can be changed
easily without redeploying code.

Solution

This solution will demonstrate how to create a vocabulary using a node in an imported XML schema.
Facts are those items that are used to create rules. The Facts Explorer has four tabs, as follows:

• Vocabularies: These consist of all defined values that you can use when creating a
rule, including constants, predicates, XML nodes, and so on.

• XML Schemas: You can use all schemas imported onto this tab when creating
vocabularies or predicates (actions). You can drag and drop nodes on the XML
Schemas tab in the Vocabulary window.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

413

• Databases: You can add references to databases that will be used for creating facts
on this tab. You can drag and drop tables onto the Vocabulary window.

• NET Assemblies: Assemblies, like databases and XML schemas, can be references
in the Facts Explorer and used to create vocabularies.

Use the following steps to import an XML schema and create a new vocabulary:

1. In the BizTalk Business Rule Composer, click the XML Schemas tab in the Facts
Explorer.

2. Right-click the Schemas folder, and select Browse. Locate a schema to import,
and click Open. This imports the full schema into the window.

3. Create a new vocabulary by clicking the Vocabulary tab. Right-click the
Vocabularies folder, and select Add New Vocabulary. Give the vocabulary a
name.

4. Now, drag a node from the XML schema that was imported, and drop it on the
vocabulary you created in the previous step. By holding down the mouse
button as you drag the node, you can navigate between tabs.

5. The Vocabulary Definition Wizard immediately opens, with the XML Document
or Attribute option automatically selected. Navigate through the wizard to
finish creating the vocabulary. The fields will already be filled in for you.

How It Works

You can add the Database and .NET Assembly facts to the Vocabulary tab in a similar manner as
described in this solution. Additionally, you can drop all facts in the condition or action (IF...THEN) of a
rule. Once you have added a fact to a rule, right-clicking the condition or action allows you to browse to
the original fact, as shown in Figure 7–12. Complex rules will have many facts referenced in them, and
this allows you to keep track of all the disparate definitions.

Figure 7–12. Action with fact

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

414

7–4. Setting Rule Priorities

Problem

You need to control the order in which the BizTalk rules engine executes rules. The order BizTalk
executes rules in determines which rules take precedence, with the results of the last rule executing and
potentially overwriting the results of the previous rules.

Solution

In many real-world scenarios, multiple business rules must execute in a predetermined order. In these
situations, the second rule may overwrite the result of the first rule. Control the order in which the
BizTalk rules engine executes rules by assigning a priority to each rule.

■Note This example assumes that the business rules already exist. For more information about creating business

rules, please see the earlier recipes in this chapter.

The following steps demonstrate how to set the priority of a business rule:

1. Open the Business Rules Composer.

2. Navigate to the policy containing the rules.

3. Select the Use Preferred Shipper rule in the Policy Explorer, and change the
Priority property to the value 1, as shown in Figure 7–13.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

415

Figure 7–13. Setting the Priority property

■Note The BizTalk rules engine executes higher-priority rules first. Since the promotional shipping rate rule

should override the preferred shipper rule, it must execute after the preferred shipper rule and must have a lower

priority.

How It Works

The BizTalk rules engine executes high-priority rules first. Consequently, lower-priority rules execute
after higher-priority ones and potentially can override the results of higher-priority rules. The BizTalk
rules engine may execute rules with the same priority in any order. Remember that the priority of rules
will affect the order BizTalk executes them in and has no direct effect on the importance of the rule’s
actions.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

416

7–5. Creating Custom Fact Retrievers

Problem

You need to define business rules using facts that an orchestration cannot provide. The facts may not be
available in the orchestration, or you may need to reuse a fact across many instances of the
orchestration.

Solution

A business rule performs actions when conditions defined in the Business Rule Composer are true. For
example, an action may modify a value in a message. The BizTalk developer creates a condition from
facts, which are pieces of information the rules engine can examine. Most often, the rules engine will
examine facts from the messages BizTalk directly processes. The orchestration invoking the rules engine
directly provides these facts. However, sometimes a rule needs to be based on facts that are not available
in the orchestration. The rules engine can retrieve these external facts with a custom fact retriever.

In this example, a business rule will schedule a customer’s service request only if the customer’s
address is in the Northwind database. The customer’s address may be different each time the
orchestration invokes the rules engine. The customer’s address is called a short-term fact because the
orchestration provides the fact every time it invokes the rules engine. However, instead of opening a new
connection to the database each time the orchestration invokes the rules engine, this example reuses the
same connection to the Northwind database over and over again. Reusing the database connection
makes it a long-term fact. The BizTalk developer must provide long-term facts to the rules engine with
the IFactRetriever interface. The custom fact retriever created in this recipe provides the connection to
the Northwind database to the rules engine.

■Note The Northwind database is a sample database that can be downloaded from Microsoft’s site.

Use the following steps to create the custom fact retriever:

1. Open Visual Studio, and create a new class library project.

2. Add a reference to the Microsoft.RuleEngine.dll assembly. This assembly is
located in the root of the BizTalk installation directory. This may be in either
$\Program Files\Common Files\Microsoft BizTalk or $\Program
Files\Microsoft BizTalk Server 2010\.

3. Implement the Microsoft.RuleEngine.IFactRetriever interface. This interface
defines one method called UpdateFacts.

4. Within the UpdateFacts method, add code to check whether the factsHandleIn
parameter is null. If the factsHandleIn parameter is null, create and return an
instance of the Microsoft.RuleEngine.DataConnection class. If the
factsHandleIn parameter is not null, simply return it from the method. When
completed, the code should appear as in Listing 7–6.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

417

Listing 7–6. Completed Custom Fact Retriever

using System.Data.SqlClient;
using Microsoft.RuleEngine;

namespace CustomFactRetriever
{
 public class AssertDBConnection : IFactRetriever
 {
 public object UpdateFacts(RuleSetInfo ruleSetInfo,
 RuleEngine engine, object factsHandleIn)
 {
 object factsHandleOut;
 if (factsHandleIn == null)
 {
 SqlConnection SQLConn = new SqlConnection("
 Initial Catalog=Northwind;
 Data Source=(local);
 Integrated Security=SSPI;");
 DataConnection RulesConn = new DataConnection("Northwind",
 "Customers", SQLConn);
 engine.Assert(RulesConn);
 factsHandleOut = RulesConn;
 }
 else
 factsHandleOut = factsHandleIn;

 return factsHandleOut;
 }
 }
}

5. Compile the class library assembly, and deploy it to the Global Assembly Cache
(GAC). This can be done via a command prompt using the gacutil /if
command. After creating the custom fact retriever, define a vocabulary and
business rules. This example will schedule a service appointment only if the
customer’s address is in the database.

6. Open the Business Rule Composer, and create a new policy with one rule.
Define a vocabulary for accessing facts defined by an XML message. An
orchestration must provide the message when the policy executes. This
example gets the address a customer requested service at and decides whether
to approve the service request.

7. Right-click the new vocabulary’s version, and select Add New Definition. Select
the option to create a new database table or column definition in the
vocabulary, and click Next, as shown in Figure 7–14.

8. Give the definition an appropriate name, and leave the Binding Type set to
Data Connection.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

418

Figure 7–14. Creating a new database column definition

9. Within the Database Information section of the window, click the Browse
button. After selecting a SQL Server instance with the Northwind database,
browse to the Customers table. Select the Address column of the Customers
table, as shown in Figure 7–15, and click OK.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

419

Figure 7–15. Setting the location of the customer’s registered address

10. Within the Select Operation section of the window, select the Perform “Get”
Operation radio button. Set an appropriate display name for display in the
Business Rules Composer. When complete, the Database Table or Database
Table Column Definition window appears, as shown in Figure 7–16.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

420

Figure 7–16. Completing the definition

11. Click the Finish button to complete the vocabulary definition.

12. Select the policy version in the Policy Explorer section of the Business Rule
Composer. The properties should appear in the lower-left region of the
Business Rule Composer.

13. Select the Fact Retriever property of the policy version, and click the ellipsis
that appears.

14. In the Select Configuration component, click the Browse button. In the list of
assemblies that appears, select the custom fact retriever created previously in
this example (shown in Figure 7–17).

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

421

Figure 7–17. Selecting the .NET assembly

■Note If you cannot locate the custom fact retriever assembly, verify that it is deployed to the GAC.

15. Select the class to complete configuring the custom fact retriever.

16. After creating the custom fact retriever to retrieve the DataConnection and
configuring the policy to use the custom fact retriever, it is time to define the
rules. So, define the business rule to compare the requested service address
with the customer addresses already in the Northwind database. If there is a
match, the service request will be scheduled.

17. Deploy the rules and invoke them from an orchestration, specifying the XML
messages that the policy expects. The rules engine will invoke the UpdateFacts
method of the custom fact retriever. The method will add a DataConnection fact
to the Northwind database to the rules engine facts.

How It Works

The rules engine examines facts provided either directly from an orchestration or from a custom fact
retriever. The facts provided directly from an orchestration are called short-term facts, and the

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

422

orchestration supplies them each time BizTalk invokes the rules engine. The facts provided from a
custom fact retriever are called long-term facts, and they can be reused each time BizTalk invokes the
rules engine.

A BizTalk orchestration can also treat the DataConnection in this example as a short-term fact.
Accomplish this by creating a DataConnection in an Expression shape and including it as a parameter to
the Call Rules shape. However, each orchestration instance would create its own DataConnection. You
can improve the scalability and performance of the application by treating the DataConnection as a long-
term fact and sharing it each time BizTalk invokes the rules engine.

In general, treating a fact as long-term is preferable under the following conditions:

• The fact value can be shared each time BizTalk invokes the rules engine.

• Retrieving the fact incurs a significant performance penalty.

• Caching the fact value will still allow the rules to execute correctly.

• The fact is not directly available in the orchestration that invokes the rules.

The rules engine invokes the custom fact retriever’s UpdateFacts method each time the policy
executes. This method decides when to update the facts. In this example, the UpdateFacts method
examines the factsHandleIn parameter to check whether the DataConnection was already created. If the
factsHandleIn parameter is null, the method creates the DataConnection, inserts it into the rules engine,
and completes by returning the DataConnection object. The next time the rules engine invokes the
method, the rules engine includes the object returned by the method in the factsHandleIn parameter. If
the factsHandleIn parameter is not null, the method knows that it has already inserted the
DataConnection into the rules engine, and it simply returns the same object.

Although this solution example uses a simple algorithm to decide when the long-term fact needs
updating, the developer can implement a more sophisticated approach. For example, the developer
could refresh the facts every hour by returning a DateTime object when the facts are refreshed and decide
to update facts by comparing the last refresh time to the current time.

7–6. Calling the Business Rules Engine from .NET

Problem

You are building a solution that must execute business rules based on dynamic information. These
business rules are likely to change over time, and you want to minimize the impact on the solution when
modifications are needed. To do this, you want to be able to call the rules engine from a .NET assembly.

■Note The problem within this recipe is the same as in Recipe 7–7. The solutions in the two recipes differ in how

the business rules are executed.

Solution

This solution describes the steps necessary to call the business rules engine from a C# assembly. The
steps detail how to build a .NET Windows application to process job applications and dynamically

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

423

determine whether applicants meet a minimum age requirement. If the applicant is younger than a
certain age, that person cannot be considered for employment. The minimum age is likely to change
over time and needs to be easily configurable. The business rules engine that comes with BizTalk Server
captures the business rule determining the minimum working age. Other recipes within this chapter
detail the steps for creating rules.

■Note This recipe is based on the policy and vocabulary defined in Recipe 7–2.

This solution assumes that a rule exists in the business rules engine to determine whether an
applicant meets the minimum age requirements. To call this rule from a .NET application, follow these
steps:

1. Open the project containing the .NET application.

2. Add a project reference to the Microsoft.RuleEngine.dll assembly, which
contains the classes required to call the business rules engine. This may be in
either $\Program Files\Common Files\Microsoft BizTalk or $\Program
Files\Microsoft BizTalk Server 2010\.

3. Create the necessary policy and fact objects, and execute the business rule
policy, as shown in Listing 7–7.

Listing 7–7. Calling a Business Rule from .NET

public void callSamplePolicy(ref System.Xml.XmlDocument newHireListDoc)
{
 // create the SamplePolicy policy object
 // specify policy name and version
 Microsoft.RuleEngine.Policy policy =
 new Microsoft.RuleEngine.Policy("SamplePolicy", 1, 0);

 // create the facts object array to hold the input parameters for the policy
 object[] facts = new object[1];

 // create the input parameter for the SamplePolicy policy
 // based on a typed BizTalk schema (fully qualified .NET type)
 Microsoft.RuleEngine.TypedXmlDocument typedXmlDoc =
 new Microsoft.RuleEngine.TypedXmlDocument("SampleSolution.NewHireList",
 newHireListDoc);

 // add the input parameter to the facts object array
 facts[0] = typedXmlDoc;

 // execute the policy against the facts
 policy.Execute(facts);
 policy.Dispose();

 // set the parameter object
 newHireListDoc.LoadXml(typedXmlDoc.Document.OuterXml);
}

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

424

How It Works

Although the business rules engine comes as part of BizTalk Server, this solution shows that .NET
assemblies outside the BizTalk environment can call into it. This allows external applications to use the
same rule framework that the integration hub does, enabling companies to consolidate their business
rules functionality onto one platform.

■Note You can extend this solution by using a web/WCF service method to access the business rules engine,

allowing code on any platform to call into a common rule framework.

Executing a Policy

For a .NET project to call into the business rules engine, it must reference the Microsoft.RuleEngine.dll
assembly. This assembly contains the classes used to access the rules framework, including those to
execute policies. In this solution, you first create an instance of the policy object, with the appropriate
name and version. The name must exactly match the name of the policy you want to execute. This
solution specifies SamplePolicy as the policy name, which maps to the highlighted name in Figure 7–18.

Figure 7–18. The name of the policy must match the .NET code exactly

Following the policy name, you specify the major and minor versions of the policy you want to
execute. You specify 1.0, which is the only version of the policy currently deployed. Alternatively, you
could specify the name only when creating the policy object (no version parameters supplied to the
policy’s constructor method), which executes the most recently deployed version of the policy.

Next, you create a collection (array) of fact objects. This array holds all the objects necessary to
execute the policy. These objects map to the different types of facts that the Business Rule Composer can
create, including XML documents, .NET classes or class members, and database connections. The
SamplePolicy policy uses only a single XML document fact, which you create next.

You use the Microsoft.RuleEngine.TypedXmlDocument class to create an XML document fact,
specifying the document type (the fully qualified .NET type name) and XML document instance. Add
this TypedXmlDocument to the fact collection.

Finally, you execute the policy against the facts collection. The facts collection is passed as a
reference parameter, meaning any changes to the facts will be committed to the original instances. In
this solution, the XML document fact will have the appropriate minimum age requirement logic applied.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

425

It is also possible to execute a policy directly from an Expression shape within an orchestration.
Listing 7–8 illustrates how you would execute the same policy as described in the “Solution” section of
this recipe but from an Expression shape.

Listing 7–8. Calling Policy from Expression Shape

// create the SamplePolicy policy object
// policy variable has type of Microsoft.RuleEngine.Policy. Create this in Orchestration View
Variables
policy = new Microsoft.RuleEngine.Policy("SamplePolicy", 1, 0);

// create the input parameter for the OrderShipping policy
// typedXmlDoc variable has type of Microsoft.RuleEngine.TypedXmlDocument
// NewHireListMessage has type of SampleSolution.NewHireList
typedXmlDoc =
 new Microsoft.RuleEngine.TypedXmlDocument("SampleSolution.NewHireList",
 NewHireListMessage);

// execute the policy against the facts
policy.Execute(typedXmlDoc);
policy.Dispose();

Although the policy executed in this recipe requires only a single XML document fact, facts can also
be .NET classes or class members and data connections. By default, BizTalk Server requires you to
provide an object instance for each fact used in a policy.

Passing Data Connection Facts

To pass a data connection fact to a policy, initialize a Microsoft.RuleEngine.DataConnection instance
and pass it to the policy in the facts collection. If an update is being executed against the underlying
database, you must also provide a transaction to the DataConnection object, as shown in Listing 7–9. If
data is being retrieved only, no transaction is required.

Listing 7–9. Providing a Transaction

// create SQL connection object
sqlConnection = new System.Data.SqlClient.SqlConnection("ConnectionString");

// create SQL transaction object
sqlTransaction = sqlConnection.BeginTransaction();

// create Data Connection object
dataConnection = new Microsoft.RuleEngine.DataConnection(
 "SqlDataSetName",
 "SqlTableName",
 sqlConnection,
 sqlTransaction);

The .NET assembly can add this DataConnection object instance to a fact collection and pass it to the
policy for execution.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

426

7–7. Calling the Business Rules Engine from an Orchestration

Problem

You are building a workflow that must execute business rules based on dynamic information. These
business rules are likely to change over time, and you want to minimize the impact on the solution when
modifications are needed.

■Note The problem within this recipe is the same as in Recipe 7–6. The solutions in the two recipes differ in how

the business rules are executed.

Solution

This solution will demonstrate how to call the business rules engine from an orchestration, without
using a .NET assembly. The basic problem is similar to the previous recipe. The key points of the
problem are as follows:

• Job applications must be processed, and it must be determined whether
applicants meet the minimum age requirement.

• If the applicant is younger than a certain age, then that person cannot be
considered for employment.

• The minimum age is likely to change over time and needs to be easily
configurable.

■Note This recipe is based on the policy and vocabulary defined in Recipe 7–2.

This solution assumes that a rule exists in the business rules engine to determine whether an
applicant meets the minimum age requirements. To call this rule from an orchestration, follow these
steps:

1. Open the project containing the orchestration.

2. In the orchestration’s Properties window, configure it to act as a long-running
transaction by setting the Transaction Type property.

3. Create a new message, and specify the name and type. In this scenario, create a
message named NewHireListMessage defined by the NewHireList schema.

4. From the toolbox, drag the following onto the design surface in top-down
order:

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

427

a. Receive shape to receive the initial order message—configure this shape to use the
NewHireListMessage message to activate the orchestration instance and to use an
orchestration receive port. Make sure to set the Activate property to True.

b. Send the shape to deliver the NewHireListMessage message to an external port—configure
this shape to use an orchestration send port.

5. From the toolbox, drag a Scope shape onto the design surface, in between the
Receive and Send shapes configured in the previous step—configure this shape
to act as an Atomic transaction.

6. From the toolbox, drag a Call Rules shape onto the design surface, inside the
Scope shape configured in the previous step. Configure this shape by double-
clicking it, which launches the Call Rules Policy Configuration dialog box. Select
the appropriate business policy to call and the parameters to pass into the
policy (SamplePolicy in this scenario).

■Note The Parameter Type list populates with all the data types expected as input parameters to the selected

business policy. The Parameter Name list populates with all the orchestration variables and messages matching

the parameter types.

How It Works

Calling the business rules engine from an orchestration is a straightforward task. It allows you to
separate the business procedure and process flow from the business rules. This is particularly useful
when the rules are used across many process flows, change frequently, or need audit logging and
versioning capabilities.

This recipe’s solution uses a message instance conforming to the NewHireList schema as an input
parameter to the SamplePolicy business rule policy. This policy sets the <Role> element of the message
to INVALID APPLICANT if the <Age> element is less than a certain age. You could then enhance the rule
to apply different minimum age requirements for different roles or to retrieve real-time minimum age
requirements from a government-run data source.

You could easily extend this solution to illustrate how the output from a business rule can facilitate
business procedures and process flow within an orchestration. Business rule policies could define a
complex set of rules to determine whether an applicant is valid for a role. As opposed to setting the
<Role> element to INVALID APPLICANT, you could configure the policy to return a Boolean value
indicating whether the applicant meets the minimum age requirements. The orchestration could then
use this Boolean value in a Decide shape, allowing separate process flows to determine whether an
applicant is valid for a role based on previous work experience, personal references, and salary
requirements.

For an orchestration to successfully call a policy, you must make a few settings:

• The Call Rules shape must be within an Atomic Scope shape (this necessitates that
the orchestration’s Transaction property is set to Long Running).

• The policy must be published and deployed within the business rules engine.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

428

■Note The Call Rules shape will always access the most recently deployed version of a policy.

• An initialized instance of all variables referenced in the policy must be in the same
scope as the Call Rules shape.

Although this solution uses only an XML message instance as input to the rules policy, policies can
accept other types of input parameters as well. The Vocabulary Definition Wizard allows a .NET class or
class member or a data table or column to be used as a business term. As previously stated, an initialized
instance of all variables referenced in a policy must be in scope at the Call Rules shape in the
orchestration. This means that if a .NET class and a data table or column are used in a policy, there must
be an initialized instance of the .NET class and rules engine Microsoft.RuleEngine.DataConnection
object available in the orchestration to pass into the policy as input parameters.

■Note If there is no instance matching an input used in a policy’s rules, that input parameter will not appear in

the Call Rules Policy Configuration dialog box’s Parameter list. This will prevent the policy from being successfully

called from the orchestration.

The policy used in this scenario references vocabulary definitions based on two XML elements in
the NewHireList schema: <Age> and <Role>. Take care when creating these vocabulary definitions, or the
rule policy won’t be able to appropriately handle the orchestration message. Specifically, set the
Document Type property of the business term to be the fully qualified type name. If the fully qualified
.NET type name is not used to define the BizTalk schema, BizTalk Server will not have enough
information to uniquely identify the data field.

A finer point regarding the Call Rules shape is that it treats input parameters as reference
parameters, which means rules may modify the objects passed and return them to the orchestration.
Given that messages are immutable (once they are created, they cannot be modified) in BizTalk, how
does this work? The answer is that, behind the scenes, the policy creates a modified copy of the original
message. Although this saves the developer’s time when creating their orchestration, it also has an
important side effect: all promoted properties on the original message are removed from the message
context. If properties on the message need to be maintained, make a copy of the message to allow the
message context to be reset after the business rules engine is called.

7–8. Deploying and Undeploying Policies

Problem

You want to know the components that make up a rules engine policy and perform the steps necessary
to deploy and undeploy a policy to make the rule sets available to business processes.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

429

Solution

Deploying a policy requires that several components be in place prior to the deployment. The
deployment is quite straightforward, and you can deploy in several ways. This solution describes the
prerequisites to the policy deployment and walks through the deployment steps using the Business Rule
Composer.

A policy consists of one or more rules. A rule comprises a set of facts. In this solution, we describe
the process to deploy and undeploy all the components that make up a policy. Your first task is to define
any facts that may need to be used in any rules that are part of the policy:

1. Define all the custom facts. Using the Business Rule Composer, open the Facts
Explorer. Define any vocabulary, schemas, databases, or .NET assemblies that
may be needed for any rule.

2. Once your custom facts are completed, save and publish any vocabularies that
may have been defined. Right-click the vocabulary version, which will be used
by a rule, and click Save. Right-click the version again, and select Publish. Once
you have published a vocabulary version, you cannot modify it directly.
Instead, it must be versioned—you can do this by copying the most recent
version and then pasting a new version. The new version can be modified.

3. Your next task is to create a new policy and add all the rules that are part of the
policy. In the Policy Explorer, create a new policy, and add one or more rules.
As you create each rule, reference the appropriate version of the vocabularies,
which have been published.

4. Save, publish, and test the policy by right-clicking the policy version and
selecting the appropriate menu item.

5. The final task is to actually deploy the policy. Once the policy has been
deployed, it cannot be deleted unless it is first undeployed. In the same manner
as the vocabularies, it cannot be modified unless a new version is first created.
Deploy the policy as follows: right-click the policy version that is to be
deployed, and select Deploy. You can undeploy policies by selecting Undeploy,
as shown in Figure 7–19.

Figure 7–19. Undeploying via the Business Rule Composer

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

430

How It Works

You have two basic approaches for deploying and undeploying policies. The first is to use the Business
Rule Composer. Using the Business Rule Composer, you can define facts and policies that can be
modified, published, and deployed. The second is to use the Rules Engine Deployment Wizard (see
Figure 7–20). The wizard allows policy files to be exported and imported onto machines where they may
not have been created.

Figure 7–20. The Rules Engine Deployment Wizard

Use the following basic steps to deploy a policy in a distributed environment (See Figure 7–21 for all
options):

1. Export the policy file. Open the BizTalk Rules Engine Deployment Wizard on
the machine where the policy was created. Select Export Policy/Vocabulary file
from database. Walk through the options, selecting the policy you want to
deploy on a target machine. This process will create an XML file (or multiple
files if exporting multiple vocabularies and policies) that can be copied to
another machine.

2. Copy the XML file(s) created in the first step to the target machine. Open the
wizard on the target machine, and select the Import and publish
Policy/Vocabulary to database from file option. Walk through the options to
publish the data to the target machine’s rules engine (the vocabularies must
first be deployed, and all referenced .NET assemblies must be placed in the
GAC).

3. Run the wizard again on the target machine. This time, select the Deploy Policy
option. All policies and vocabularies that have not been deployed will be
available in the drop-down list. Select the object(s) you want to deploy, and
walk through the rest of the wizard. The vocabularies and policies can now be
referenced on the target machine by orchestrations or other components.

4. To undeploy, follow step 3, selecting Undeploy Policy rather than Deploy Policy
from the first option list. Only those vocabularies and policies that have been
deployed successfully will be available for undeployment.

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

431

Figure 7–21. Using the Rules Engine Deployment Wizard

http://

CHAPTER 7 ■ BUSINESS RULES FRAMEWORK

432

http://

C H A P T E R 8

■ ■ ■

433

EDI Solutions

BizTalk has been moving into the EDI (Electronic Document Interchange) space for a number of years.
In early versions of BizTalk, EDI was accomplished with third-party adapters and a lot of development
and configuration performed outside of the platform. With the release of BizTalk Server 2006 R2, EDI
became a prominent part of the platform. With the advent of BizTalk Server 2010, all aspects of the EDI
life cycle, including schemas, mapping, workflow processing, and trading partner management are fully
developed and available.

The most compelling new functionality in the 2010 version of the product is how trading partners
are managed. While managing partners was possible in previous editions, the new user interface and
underlying data modeling allows users and administrators to easily create complex partner relationships
and allows for multiple document types to be sent over numerous protocols to any combination of
partner locations.

This chapter will introduce the core components of implementing EDI solutions in BizTalk Server.
Some of the most complex solutions to implement are EDI, due primarily to the intricate nature of some
of the maps. The X12 837 healthcare claim, for example, is a massive schema with hundreds of nodes
and elements, many of which are virtually identical. Versioning adds to the complexity, with some
solution requiring both the 4010 and the new fully compliant HIPAA 5010 versions.

This chapter introduces all of the key features of working with EDI solutions. If you know BizTalk
Server, jumping into EDI won’t be too much of a stretch. However, don’t underestimate the complexity
of your first BizTalk EDI solution. There is a lot to work through (much of it outside of BizTalk), and you
should approach it methodically and with a well-thought-out development approach. Maps, schemas,
and orchestrations will all be familiar, but considerably more complex (as they would be on any
platform, not just with BizTalk) and trading partner configuration and management will prove to be an
area of BizTalk that you will not have used for other types of solutions.

8–1. Adding an EDI Schema to a Project

Problem

You are developing an EDI solution that will use the HIPAA–compliant X12 00401 837 Professional and
Institutional schemas. You need to add these schemas to your project so that documents conforming to
the 837 schema can be routed and mapped in BizTalk.

Solution

To add the BizTalk 837 schema to a Visual Studio project, take the following steps:

http://

CHAPTER 8 ■ EDI SOLUTIONS

434

1. Right-click the project in Visual Studio, and select Add→Existing Item.

2. Browse to the $\Program Files\Microsoft BizTalk Server
2010\XSD_Schema\EDI\HIPAA\00401A1 folder. You will see folders for the various
health care claims. Select the X12_00401_837_P.xsd file, and click the Add
button. Repeat this for the X12_00401_837_I.xsd file.

 ■Note You will need to extract the schemas using the MicrosoftEdiXSDTemplates.exe file, located in the root

of the XSD_Schema\EDI folder.

Once added, the schemas can be referenced and used like any other schema. Figure 8–1 shows the
837 Professional schema in Visual Studio.

Figure 8–1. The 837 Professional schema

How It Works

There is no difference between an EDI schema and a standard BizTalk schema, except that the EDI
schemas ship with BizTalk and are fully defined and ready to use. There are literally thousands of EDI
related schemas available to choose from. EDI schemas generally are more complex than other types of
schemas and come with a large amount of field restriction and validation on them.

For example, several of the elements in BHT_BeginningOfHierarchicalTransaction_TS837Q1 have
specific enumerations that are allowed. Figure 8–2 shows one of these enumerations. Data being
processed through the EDI pipelines would fail validation if a value were in a field that didn’t match one
of the options in the enumeration.

http://

CHAPTER 8 ■ EDI SOLUTIONS

435

Figure 8–2. An enumeration

■Note There is generally no need to modify the EDI schemas. On the off chance that one does need to be

modified, it is sometimes easiest to modify in a text editor. The BizTalk schema editor can become slow with some

of the larger EDI schemas (many are multiple megabytes in size).

8–2. Creating an EDI Map

Problem

You need to map an 837 EDI document to a document structure that matches an internal system.

Solution

You simply need to add a map to your Visual Studio project that contains the source and target schemas.
Take the following steps to add a new map to your project:

1. Right-click the project in Visual Studio, and select Add→New Item.

2. Select the Map template, give it a descriptive name, and click Add.

3. Set the source and target schemas.

4. Use functoids and other mapping techniques to implement the logic needed.

■Note There is a great book that covers EDI mapping in BizTalk Server, titled Pro Mapping in BizTalk Server 2009

by Jim Dawson and John Wainwright (Apress 2009). All of the concepts related to EDI apply to the BizTalk Server

2010 platform.

http://

CHAPTER 8 ■ EDI SOLUTIONS

436

How It Works

EDI maps are often notoriously complex. Some document types that are quite simple and don’t require
much in the way of mapping, but many EDI schemas are extremely complex and require careful
planning, thoughtful development, many hours (or days or weeks!) of development, and a great deal of
patience for administration and maintenance. An example of a complex EDI map is shown in Figure 8–3.
Such a map is not an uncommon sight when you’re walking into an existing EDI solution.

Figure 8–3. A complex map

■Note When developing EDI maps, always think of the next person who is going to have to work with your map. If

you can’t remember where a functoid is or how a set of mappings works, you can’t expect someone six months

from now to understand what you have done. If a map becomes too complex, you can always work in a custom

XSLT document, a .NET component, or other alternative mapping interface.

8–3. Defining Complex Mappings in External XSLT

Problem

Your map is getting out of control, and you want to move away from using the mapper.

http://

CHAPTER 8 ■ EDI SOLUTIONS

437

Solution

In this solution, we will move all processing in the map to an external XSLT style sheet. Take these steps
to accomplish this:

1. Create a new map, and specify the source and target schemas. This is the end of
the traditional mapper; it is used simply to define the source and target
schemas and house the external XSLT code

2. Create an XSLT document, and implement your mapping. An example of the
header of an external XSLT document is shown in Figure 8–4.

Figure 8–4. An external XSLT

3. To reference this file, click anywhere on the map surface, and look at the
properties of the map. In the Custom XSLT Path property, set the path to your
XSLT file (see Figure 8–5).

Figure 8–5. Setting the Custom XSLT property of the map

http://

CHAPTER 8 ■ EDI SOLUTIONS

438

How It Works

When working with EDI maps, you will invariably encounter challenges that are difficult (or impossible)
to solve with functoids. You will need to learn (or brush up on) your XSLT skills and approach mapping
issues creatively. Using external XSLT is great for many activities, but for not all. Database lookups,
callouts to .NET assemblies, and other similar processes are not possible. In many cases, more than a
single map may be needed to successfully map a complex EDI document.

Testing maps with external XSLT documents is quite simple. Use the standard mapper functionality
to test a map by defining the input document and other properties (see Figure 8–6). Note that it is very
useful to not validate the inbound and outbound documents during development—make sure and set
the Validate TestMap Input and Validate TestMap Output properties to False. Once you’re ready, right-
click the map file in Visual Studio, and select the Test Map option.

Figure 8–6. Properties used for testing the map

8–4. Creating and Configuring a Trading Partner

Problem

You are ready to begin trading EDI documents with an external trading partner. You need to configure
this party's information in BizTalk in order to route documents properly.

Solution

Setting up and configuring a trading partner consists of several key elements: a BizTalk party, one or
more business profiles on that party, and one or more agreements associated with that business profile.
To make sense of this, think of the party as an organization, such as a supermarket chain. This
supermarket chain may consist of one or more divisions, for example, North American and South
American headquarters. These divisions are business profiles. Each division has individual agreements
with vendors and suppliers, and trades EDI documents with each, which are configured as agreements
on each business profile.

■Note In many cases, you may have a single business profile with a single agreement for each party you

configure.

http://

CHAPTER 8 ■ EDI SOLUTIONS

439

To configure each of these components, take the following steps:

1. Create a new BizTalk party that represents the sender by clicking the Parties
folder in the BizTalk Administration console. Right-click the white area in Parties
and Business Profiles window, and select New ➤ Party (see Figure 8–7). Give the
party a logical name.

Figure 8–7. Creating a new party

2. To create a Business Profile, right-click the party you just created, and select
New ➤ Business Profile. Give the business profile a descriptive name, and then
click the Identities tab. Configure the identities based on the information you
have for this trading partner (see Figure 8–8).

Figure 8–8. Setting a business profile’s identities

3. Once the business profile has been created, you can set up an agreement,
which is where the real heart of EDI configuration sits. Right-click the business
profile you just created, and select Agreement. The Agreement Properties
window will open (see Figure 8–9).

http://

CHAPTER 8 ■ EDI SOLUTIONS

440

Figure 8–9. The Agreement Properties window

4. Give the agreement a descriptive name, and then set the key properties
identifying what this agreement represents; also supply the Protocol and the
Second Party settings. Protocol can be set to X12. The Second Party settings
need to be set to a second BizTalk party (if you haven’t created one, go ahead
and create one now—just give it a name, and you are finished).

5. Once Party and Business have been set in the Second Party settings, you will
notice two additional tabs appear within the Agreement Properties window (see
Figure 8–10). These tabs represent the configurations for data flow between the
parties.

Figure 8–10. Two new tabs appear once the Second Party properties are defined

http://

CHAPTER 8 ■ EDI SOLUTIONS

441

How It Works

The organization of parties, business profiles, and agreements allows for the configuration of any kind of
document interchange between trading partners. Previous versions of BizTalk did not allow for the kind
of flexibility and functionality that BizTalk 2010 provides. The entire trading partner management user
interface is entirely new and is packed with features that ease setup, configuration, and maintenance.

■Note There is no direct migration path of EDI trading partners between BizTalk 2010 and previous versions of

BizTalk. The hierarchy and architecture is completely different, so a manual migration will be necessary.

8–5. Configuring an EDI Envelope

Problem

You need to configure BizTalk to populate the header and footer segments in outbound documents.

Solution

Sending an EDI document from BizTalk requires more configuration than a standard XML or flat file
document. In addition to the standard adapter and port setup, and mapping, you also have to configure
a BizTalk party and set up an agreement and related artifacts. Before we look at the steps involved in
configuring an EDI envelope, let’s look at what the envelope is. Listing 8–1 shows the document
envelope of an 837 Professional file.

Listing 8–1. 837 Professional Envelope

ISA*00* *00* *ZZ*PROF123 *ZZ*Merc123USA
*091028*1300*U*00401*000000701*0*P*<~

GS*HC* PROF123* Merc123USA *20091028*1300*701*X*004010X098A1~
ST*837*0001

[BODY CONTENT]

SE*32*0001~
GE*1*701~
IEA*1*000000701~

The envelope identifies a number of things about the document, most importantly, who the receiver
and sender are. These values are stored in the sixth and eight positions of the ISA segment (ISA06 and
ISA08). In the instance shown in Listing 8–1, these values are PROF123 (the sender identifier) and
Merc123USA (the receiver identifier).

To set this up, take the following steps. This solution assumes that parties, a business profile, and an
agreement have already been configured.

http://

CHAPTER 8 ■ EDI SOLUTIONS

442

1. Open an agreement, and click one of the two tabs allowing for configuration of
interchange information.

2. Click the Identifiers tab, and set the ISA properties as required (see Figure 8–11).

Figure 8–11. Setting ISA properties on an Agreement

3. Click the Envelopes tab, and set the identifiers, version, and usage ISA
properties (ISA11, ISA12, and ISA15), as shown in Figure 8–12.

Figure 8–12. The ISA12, ISA13, and ISA15 properties

http://

CHAPTER 8 ■ EDI SOLUTIONS

443

4. Click the Character set and separators tab. The character sets and separators
define how an envelope (and the entire body of the document) is laid out. For
example, setting the “Data element” field to an asterisk (*) ensures that each
element of a segment is separated with this character (see Figure 8–13).

5. Once all of the properties have been configured as desired, click the OK button.
Properties can be changed at any time and will immediately take effect.

Figure 8–13. Setting the properties that define the document structure

How It Works

A large number of properties can be set on an agreement. Often, these properties will be common to all
trading partners that you will do business with. Once you have worked through the configuration of a
few agreements, you may decide that you don’t want to set these up from scratch each time. If you have
a configuration that is common, and you want to use as a starting point for other trading partners,
simply export the settings as a template by clicking the Save As Template button at the bottom of the
Agreement Properties window (see Figure 8–14). This template can be loaded and used when
configuring future agreements.

Figure 8–14. Saving settings as a reusable template

http://

CHAPTER 8 ■ EDI SOLUTIONS

444

8–6. Configuring Automatic Acknowledgements

Problem

You want to automatically send a 997 acknowledgement when an inbound EDI document has been
received by BizTalk.

Solution

Configuring acknowledgements to trigger automatically is very straightforward. There are a number of
options available on an agreement. Simply open an agreement, and click the Acknowledgements tab in
the Interchange settings. Figure 8–15 shows a sample configuration.

Figure 8–15. Configuring acknowledgements

How It Works

When BizTalk creates the acknowledgement, it drops it as a message on the

MessageBox and treats it exactly like any other message. The only difference between

an acknowledgement and other document types is that it is automatically generated by

BizTalk. To configure the routing of a 997 to a file drop, take the following steps:

1. Create a new Send Port.

2. Set the Transport Type to FILE, and configure it to write to an appropriate
folder.

3. Set the “Send pipelin”e field to EdiSend, as shown in Figure 8–16.

http://

CHAPTER 8 ■ EDI SOLUTIONS

445

Figure 8–16. Base configuration of Send Port

4. Now, click the Filters tab. This is where the Send port will be configured to
subscribe to all 997s on the MessageBox for a specific trading partner.
Configure the filter as shown in Figure 8–17, where EDI.ISA06 is set to the ID of
the trading partner that the 997 will be routed to.

Figure 8–17. Configuring the filter to subscribe to 997s for a specific party

http://

CHAPTER 8 ■ EDI SOLUTIONS

446

■Note You will need to configure one send port for each trading partner that will be receiving a 997 (for

request/response ports, such as AS2 over HTTP, the 997 would be configured on the outbound response).

8–7. Configuring EDI Validation with Pipelines

Problem

You need to send and receive documents using the EDI pipelines to ensure that EDI validation takes
place and that the envelopes of the documents are created correctly.

Solution

There are two primary steps in using the EDI pipelines. The first is to select the appropriate pipeline on
the port that is being used. When you are sending documents, the port should be configured with the
EdiSend pipeline. When you’re receiving documents, it should have the EdiReceive pipeline. These
pipelines have a number of configuration settings on them. Figure 8–18 shows the configurable
properties of the EdiSend pipeline.

Figure 8–18. Configuring the EdiSend pipeline

http://

CHAPTER 8 ■ EDI SOLUTIONS

447

■Note There is a property on EDI pipelines named EdiDataValidation. While setting this to False would seem

to cause EDI validation to be turned off, it doesn’t always work that way. Make sure to test this functionality before

you decide to use it. You schema and configuration may impact whether this setting has any effect or not.

How It Works

The pipelines perform validation, party resolution, envelope interpretation and creation and cause
acknowledgements to be automatically created. The flow of the pipelines is as follows:

1. EDIReceive pipeline

a. Examine the document type. This step interrogates the document to determine if X12 or
EDIFACT and what the character set is. Properties are promoted on the document at this
point (for routing purposes).

b. Resolve parties. This step determines which party in BizTalk the document is intended
for.

c. Resolve and validate schemas. The document is validated against the schemas that have
been deployed.

d. Create an acknowledgement (if doing so is configured in the agreement).

2. EDISend pipeline

a. Resolve parties, and match the context. When a document is sent, the envelope is
attached in the pipeline. All of the settings for the envelope are determined at this stage.

b. Resolve and validate schemas. The document is validated against the schema. If the
document fails validation, it will be suspended.

8–8. Creating Custom EDI Pipelines

Problem

You want to add decryption as a stage in your processing of inbound EDI documents. The standard
EdiReceive pipeline does not support this, and you need to create a custom pipeline.

Solution

This solution does not provide the code for the decryption custom pipeline component, but it does show
how to reference a custom pipeline component and the EDI pipeline components to create a custom
pipeline.

1. In your Visual Studio project, add a new pipeline by right-clicking the project,
and selecting Add ➤ New Item. Select the Receive Pipeline template, and give it
an appropriate name.

http://

CHAPTER 8 ■ EDI SOLUTIONS

448

2. The Decode stage is where you will want to do the decryption. An inbound file
must be decrypted before it can be run through the EDI components. Drag the
decryption custom pipeline component from the Visual Studio toolbox to the
Decode stage of the pipeline. Figure 8–19 shows the Decode stage with both a
decryption and an archiving component.

Figure 8–19. The Decode stage of a custom pipeline

3. Next, drag and drop the EDI disassembler component onto the Disassemble
stage of the pipeline, as shown in Figure 8–20.

Figure 8–20. The Disassemble stage

4. Set the EDI disassembler properties to the default values that you want. Note
that these can all be overridden once the pipeline has been deployed, so these
are just being set for the defaults. This can be done by right-clicking the EDI
disassembler and selecting Properties. The properties are shown in Figure 8–21.

http://

CHAPTER 8 ■ EDI SOLUTIONS

449

Figure 8–21. The EDI disassembler properties

How It Works

Creating custom pipelines is fairly easy; creating custom pipeline components is not. In this case, you
want to create both a custom pipeline component (for decryption) and a custom pipeline (to house this
custom component and to execute the standard EDI disassembly that occurs). Once the pipeline is fully
configured and built, it can be deployed just like any other BizTalk artifact. The easiest thing to do is to
right-click the BizTalk application where you want to deploy it and select Add ➤ BizTalk Assemblies (as
shown in Figure 8–22).

http://

CHAPTER 8 ■ EDI SOLUTIONS

450

Figure 8–22. Deploying the pipeline

8–9. Subscribing to EDI Promoted Properties

Problem

You are receiving a large number of EDI documents from many different trading partners. You have an
orchestration that you want to configure to subscribe to only EDI documents from a specific trading
partner.

Solution

To filter what values are picked up by the orchestration, take these steps:

1. Right-click the initial Receive shape of the orchestration, and select Edit Filter
Expression (shown in Figure 8–23). This receive shape should be subscribing to
an EDI schema type. If it is not, no EDI properties will be promoted.

http://

CHAPTER 8 ■ EDI SOLUTIONS

451

Figure 8–23. Editing the filter on the Receive shape

2. In the filter that opens, select the EDI.ISA06 property from the drop-down
menu, and configure it to subscribe to the trading partner ID desired (see
Figure 8–24).

Figure 8–24. Configuring the filter on the orchestration

How it Works

A large number of EDI properties are promoted on a document. Among these are properties that pertain
to the envelope. In this case, the orchestration needs to subscribe to the ISA06 property, which indicates
the trading partner ID that is sending the document. There are many other fields available, some of
which are shown in Figure 8–25.

http://

CHAPTER 8 ■ EDI SOLUTIONS

452

Figure 8–25. Some additional EDI properties

This solution showed how to configure an orchestration, but a send port can also be configured to
subscribe to promoted EDI properties. To do this, open the send port, and click on the Filters tab, as
shown in Figure 8–26.

Figure 8–26. Configuring the filter on a send port

http://

C H A P T E R 9

■ ■ ■

453

Deployment

At the core of every BizTalk project is the necessity to deploy an integration project to the BizTalk
execution environment. Given the complexity of the product, and the rich features it provides, this task
has often been difficult and time-consuming. Every experienced BizTalk developer understands the time
requirements to deploy, enlist, and start BizTalk artifacts, keeping in mind dependencies and ordering
the steps accordingly. BizTalk has great functionality for this, so that a minimum of time is spent
deploying solutions, and more time is available to develop new return-on-investment-producing
solutions.

This chapter provides recipes for exporting and importing applications. It also covers how to start
an application and begin processing within the BizTalk execution environment.

9–1. Exporting Applications

Problem

You have completed the build phase of a BizTalk project and need to migrate your work from the
development environment to the test environment.

Solution

You must export the BizTalk application you have been building for use in the new environment. The
BizTalk Administration Console provides the capability to export and import artifacts. Combined with
the use of BizTalk applications, this allows for a simplified method of packaging your solutions and
deploying them to new environments. The following steps outline the process for exporting a BizTalk
application.

1. Open the BizTalk Administration Console.

2. In the left pane, navigate through BizTalk Server Administration to your BizTalk
group, and expand the Applications folder.

3. Right-click the application you wish to export and select Export→MSI File, as
shown in Figure 9–1. This launches the Export MSI File Wizard.

4. Click Next on the Welcome page of the wizard.

http://

CHAPTER 9 ■ DEPLOYMENT

454

Figure 9–1. Choosing to export an application

5. On the Select Resources page, verify that the resources you need to include in
the exported MSI package are selected. In the example shown in Figure 9–2, the
resources consist of a number of BizTalk assemblies and their bindings and a
referenced .NET assembly. Click Next to proceed.

http://

CHAPTER 9 ■ DEPLOYMENT

455

Figure 9–2. The Select Resources page of the Export MSI Wizard

■Note Including bindings within your MSI package will automatically overwrite any existing bindings in the target

application upon import. Exclude the bindings during the export process if you do not want to overwrite the

bindings in your target application.

6. On the Specify IIS Hosts page, select the virtual directories you need to include
in the exported MSI package. Click Next.

http://

CHAPTER 9 ■ DEPLOYMENT

456

■Note You must specify IIS hosts for all web directory resources that have not already been added to the BizTalk

Management database. In our example, the Order application has a SOAP receive location, which is configured to

receive messages from the

/addRequestWebService_Proxy/addRequestWebService_addRequestSPMLWebService_addRequest.asmx web

service. Since the receive locations do not include the host, it must be specified during the export process.

7. On the Dependencies page, review the BizTalk applications your exported MSI
package depends on, as shown in Figure 9–3. Prior to importing your
application into the test environment, you must ensure that all applications
listed on this page are present in the test environment. In our example, the
application depends on the BizTalk.System and BizTalk EDI applications. Click
Next to proceed.

Figure 9–3. The Dependencies page of the Export MSI Wizard

http://

CHAPTER 9 ■ DEPLOYMENT

457

8. On the Destination page, specify the destination application name (which
indicates what the application will be named in the test environment after you
have imported it) and the MSI package output location and file name, as shown
in Figure 9–4. In our example, the application will be named the same as it was
in the development environment (Demo.BizTalk) and the MSI package will be
written out to a folder on the C drive.

Figure 9–4. The Destination page of the Export MSI Wizard

9. Click Export to generate the MSI package.

10. The wizard displays the progress of the export operation and then shows a
progress and summary screen when it has completed, as shown in Figures 9–5
and 9–6. The summary includes a list of steps necessary to import the
application into a new environment, along with a link to the log file of the
export operation. Click Finish to close the wizard.

http://

CHAPTER 9 ■ DEPLOYMENT

458

Figure 9–5. Deployment Progress

Figure 9–6. The Summary page of the Export MSI Wizard

http://

CHAPTER 9 ■ DEPLOYMENT

459

How It Works

While exporting applications is an easy way to migrate solution artifacts between environments, it is
important to note what is not included in exported MSI packages. Configuration values you have made
in the BTSNTSvc.exe.config file are not exported. If one of your artifacts relies on a custom configuration
value existing in this file, you must use another mechanism (manual or otherwise) to add that same
configuration value to the target environment.

■Note In general, only those artifacts that are specific to an application are exported. This means that BizTalk

group configurations (performance values or adapter settings, for example) and Business Activity Monitor (BAM)

artifacts are not included in the exported MSI package.

You should be careful with regard to security when exporting applications. Depending on your
solution, your MSI package may contain sensitive information (such as passwords) and should be
appropriately secured. One consideration is the use of passwords in port bindings. Passwords are
removed from all bindings that you export directly from an application (as we did in our example). If you
want to persist passwords in a binding file, you must create a binding file with the passwords in it and
then add the binding file to the application as a file resource.

You should also pay attention to access rights on resources added to your application. All
permissions on files and folders are removed during the export process. For web directory resources, the
security settings in place at the time of export are written to the MSI package.

In addition to using the Export MSI File Wizard, you can access the same functionality via the
BTSTask ExportApp command-line utility. This utility accepts the following parameters, which mimic the
steps taken in the wizard:

• ApplicationName: The name of the BizTalk application to export

• Package: Path and file name of the MSI package to export

• ResourceSpec: Path and file name of the resource specification XML file

• Server: SQL Server hosting the BizTalk Management database housing the
application to export

• Database: Name of the BizTalk Management database

In our recipe’s example, the exported application includes relatively few artifacts—just several
BizTalk assemblies, their bindings, and a required .NET assembly. Using the Export MSI File Wizard is
simple and straightforward. It produces a single file that can be used to import the application into the
test environment. On a larger project, it is likely that your application will have many more artifacts,
including BizTalk assemblies, bindings, policies, and folder structures such as virtual directories and
input/output folder hierarchies. Additionally, you might need to migrate only a subset of an application
to a new environment. Using the BizTalk Administration Console, you can export application subsets,
bindings, and policies.

Exporting Application Subsets

Exporting applications allows for all artifacts (or a subset of artifacts) associated with an application to
be exported into an MSI package. All of the artifacts you select during the export process will be

http://

CHAPTER 9 ■ DEPLOYMENT

460

packaged into a single MSI file, which you can use to install your application to a different BizTalk
environment.

In addition to exporting an entire application, you can use the Select Resources page to specify a
subset of artifacts to export. Let’s extend the solution one step further in the project life cycle to see how
this functionality might be useful. Suppose that after testing the Order application in the test
environment, you find and fix an error in the Troubleshooting assembly. To apply your fix to the test
environment, you need to export only the modified artifacts. Step through the Export MSI File Wizard a
second time, and select only the Troubleshooting assembly on the Select Resources page. This produces
an MSI package that includes only the selected assembly, which can be used to reimport the modified
artifact in the test environment.

■Note Make sure that the assembly keeps the same strong name key and namespace on redeployment;

otherwise, the .NET environment will consider the assembly a new component.

Exporting Bindings

Exporting bindings allows for bindings associated with an application to be exported into an XML file.
Bindings are the links between your physical environment (for example, a specific MSMQ queue or web
service URI) and your logical environment (for example, an orchestration receive port). You can export
bindings for an entire BizTalk group or a specific BizTalk application or assembly.

You can use either the Export Bindings Wizard (right-click the appropriate application in the
BizTalk Administration Console and select Export Bindings) or the BTSTask ExportBindings command-
line utility to export bindings.

Exporting Policies

Exporting policies allows for Business Rule Engine policies associated with a BizTalk group (all policies
in your BizTalk environment’s Business Rule Engine database) or application to be exported into an
XML file. Take the following steps to export policies for your BizTalk application:

1. Right-click the appropriate application in the BizTalk Administration Console
and select Export→Policies. This launches the Export Policies Wizard.

2. Select the policies and vocabularies you need to export, and specify a path and
file name for the exported policy XML file, as shown in Figure 9–7.

http://

CHAPTER 9 ■ DEPLOYMENT

461

Figure 9–7. Export Policies Wizard

3. Click OK to export the policies.

It is recommended that you include all vocabularies contained in the policies you export. This
prevents any missing vocabulary issues that can arise when one vocabulary references another.

In addition to using the Export Policies Wizard, you can export bindings using the BTSTask ListApp
and ExportApp command-line utilities in combination, as follows:

1. Run the ListApp utility to create an XML file containing all artifacts for the
BizTalk group or application for which you need to export policies. An example
of using the List App utility is as follows:

BTSTask ListApp /ApplicationName:SampleApp /ResourceSpec:C:\SampleOutput.xml

2. Delete all artifacts from the XML file except the policies.

3. Run the ExportApp utility, specifying the updated XML file for the ResourceSpec
parameter.

http://

CHAPTER 9 ■ DEPLOYMENT

462

9–2. Importing Applications

Problem

You have completed the build phase of a BizTalk project and need to import your work from the
development environment to another environment. You must import the BizTalk application you have
been building.

Solution

You can use the BizTalk Administration Console to import a BizTalk application (via an MSI file). The
following steps outline the procedure:

1. Open the BizTalk Administration Console.

2. In the left pane, navigate through BizTalk Server Administration to your BizTalk
group. Right-click the Applications folder, and select Import→MSI File. This
launches the Import Wizard.

3. On the Welcome page, navigate to and select the MSI file that is to be used to
perform the import. In this example, we are importing the BizTalk Demo.BizTalk
application (exported in the previous Recipe), as shown in Figure 9–8. Click
Next.

http://

CHAPTER 9 ■ DEPLOYMENT

463

Figure 9–8. Starting the Import Wizard

4. On the Application Settings page, verify the settings for your application,
references, and resources, as shown in Figure 9–9. In the list of applications
available for reference, specify any references your target application has to
existing BizTalk application assemblies and artifacts. You can also specify a new
application (labeled during the export) or associate with an existing application
within your BizTalk Management database. Click Next to continue.

http://

CHAPTER 9 ■ DEPLOYMENT

464

Figure 9–9. The Application Settings page of the Import Wizard

5. On the Application Target Environment Settings page, in the Target Staging
Environment drop-down list, select the environment to which the application is
to be deployed. This option allows for environment specific considerations. You
can partition applications that have been imported with binding specific
settings. By specifying an environment value at this stage, the Import Wizard
will apply only to the environment specific configuration identified during the
import process. If you leave the value set to <Default>, the configuration will be
applied to all environments.

6. On the Import Summary page, verify the application import information
presented, as shown in Figure 9–10. Click Import when you’re ready to
complete the import process.

7. The wizard displays the progress of the import operation and then shows a
Results page. Verify that the import was successful by checking for errors. You
can also view more details of the import by clicking the link to the import
operation log. Click Finish to close the wizard.

http://

CHAPTER 9 ■ DEPLOYMENT

465

Figure 9–10. The Import Summary page of the Import Wizard

Figure 9–11 shows the Demo.BizTalk application imported in the example added to the Applications
node in the BizTalk Administration Console. Once an application has been imported, starting the
application will complete the necessary deployment steps.

Figure 9–11. Demo.BizTalk application after import

http://

CHAPTER 9 ■ DEPLOYMENT

466

How It Works

The import process controls the sequence of shutting down services and provides the administrator with
input to control and consider application references and dependencies. In addition, it controls the
registering of BizTalk and .NET application artifacts into the Global Assembly Cache (GAC). This
eliminates the need for IT users to know the sequence of specific BizTalk deployment steps and perform
them manually, leading to faster and easier application deployment cycles.

In this recipe’s example, we imported an MSI file, which contains application artifacts. You can also
import policies (business rules artifacts) and bindings. Binding information examples could include an
address (such as a file or queue location) port information, or specific properties that specify retries,
security options, and so on. You could import bindings when the BizTalk solution artifacts already exist
and the target requires only binding input/updates for deployment.

■Note Importing an MSI file can include both bindings and policies. If these artifacts are specified in the

application export process, they will be imported as part of the MSI file import process.

In addition to using the Import MSI File Wizard, you can access the same functionality via the
BTSTask ImportApp command-line utility. This option could be useful when performing regular
environment promotion activities, fully automated deployments, and so on.

■Note BTSTask commands should not be used in a preprocessing or postprocessing script run during an

application import. If this is done, any changes made during the import will not be visible to the scripts; therefore,

the success of the deployment cannot be guaranteed.

The command has the following form:

BTSTask ImportApp /Package:value [/Environment:value] [/ApplicationName:value]
[/Overwrite] [/Server:value] [/Database:value]

■Note There are options on BTSTask that allow for the deployment of the assembly to the GAC.

When importing BizTalk applications, consider the following:

• Overwrites: Determine whether the import process should support overwrites. On
the Application Settings page of the Import Wizard, you can set generic overwrites
of BizTalk artifacts. If this check box is selected, existing artifacts will be
overwritten on the target import. If this box isn’t selected and a duplicate is found,
the Import Wizard will raise an error.

http://

CHAPTER 9 ■ DEPLOYMENT

467

• Downstream components: Keep in mind downstream components, such as URIs,
files, queues, and HTTP URLs. For example, if your solution uses send port URIs,
make sure that the URIs exist before running your BizTalk operation. If a location
doesn’t exist (for example, a receive location), BizTalk may detect this, raise an
error to the Windows Event Viewer, and show the application status as partially
started. Whenever an application is in the status of partially started, it’s a good
idea to check the application Windows Event Viewer for failures and information.

• Runtime/operational considerations: When deploying to an existing environment,
keep in mind runtime considerations. Make sure that users have been notified and
usages of running BizTalk processes are known.

• Security: By default, BizTalk does not store passwords for binding information
unless they are explicitly referenced within the binding file build process. As a
matter of caution, always verify your deployment, and update passwords and
access rights appropriately within your BizTalk artifacts.

9–3. Manually Deploying Updates

Problem

You have a complex solution deployed with many orchestrations and other components. You want to
deploy an update to one orchestration.

Solution

Deploying BizTalk solutions using an MSI file is great for the initial deployment but is of limited value
once a solution is running in production and an update needs to be deployed. Manual deployment give
the administrator 100% control over what is being deployed where, and chances for errors from
incorrectly created MSIs are reduced to zero.

Manual deployment can best be summed up as follows:

1. Unenlist any orchestrations that will be redeployed. This can be done from the
BizTalk Administration Console. If any orchestrations have running instances
in memory, two options are available: 1) wait until these instances have
completed before doing the update, or 2) terminate these instances
(terminating instances can be done from the BizTalk Group Hub reports and
administrative functionality).

2. Removed any maps and schemas that will be re-deployed. This can be done
from the BizTalk Administration Console by right-clicking the maps/schemas
(see Figure 9–12).

http://

CHAPTER 9 ■ DEPLOYMENT

468

Figure 9–12. Removing maps manually

3. Once all objects that will be redeployed have been removed, right-click the
BizTalk application you are applying the updates to, and select Add→BizTalk
Assemblies.

4. In the Add Resources dialogue box that opens, add the assemblies that you wish
to redeploy, as shown in Figure 9–13.

http://

CHAPTER 9 ■ DEPLOYMENT

469

Figure 9–13. Deploying BizTalk assemblies manually

5. Click the “Overwrite all” check box to ensure that this overwrites the previous
version of the assemblies. This will have to be done for every assembly in the
list, so make sure to click each of them separately and click this “Overwrite all”
option.

http://

CHAPTER 9 ■ DEPLOYMENT

470

6. Make sure that the assemblies are added to the global assembly cache. This
generally means clicking the first and third check boxes in the “Options” area of
the dialogue box.

7. Click OK to deploy the BizTalk assemblies.

How It Works

Doing manual deployments will become one of the most common techniques you use once a solution
has been successfully deployed to production. In fact, using the MSI deployment may not even be
something you want to use at any point; manual deployments can be so much easier and less stressful,
since you have complete control over everything.

When you are developing a project, make sure you think through the initial deployment and how
updates will be deployed. Having an intelligent path to updating your solution prior to actual
deployment is a great habit to have and one that will ease your development and deployment tasks.

9–4. Deploying a BizTalk Solution from Visual Studio

Problem

You have developed a BizTalk solution and wish to deploy the solution for testing in your development
environment directly from Visual Studio, rather than using other deployment methods.

Solution

Since BizTalk projects compile into .NET assemblies, the deployment process in Visual Studio is similar
to deploying other .NET projects. You must first sign the BizTalk assembly before you can add the
assembly to the GAC. Then, set up the BizTalk project properties, and finally, deploy the project. The
following steps outline the procedure.

1. There are several ways to sign a BizTalk assembly. The easiest is to right-click
the project in Visual Studio and click the Signing tab. Click the “Sign the
assembly” option, and create a new strong name key (see Figure 9–14).

http://

CHAPTER 9 ■ DEPLOYMENT

471

Figure 9–14. Adding a strong name key to a project

2. Next, click the Deployment tab.

3. Enter an application name for the project (this usually matches a BizTalk
application that has already been created). Set other properties as desired (see
Table 9–1). Figure 9–15 shows a project configured for deployment. Click OK to
close the dialog box.

■Note The application name is not required, but it is a best practice to give all projects an application name to

facilitate management of the project. If none is specified, the default BizTalk application will be deployed to.

http://

CHAPTER 9 ■ DEPLOYMENT

472

Figure 9–15. Setting deployment properties

4. Right-click the project or solution, and select Deploy.

5. Bind and start the artifacts.

Once you have bound an orchestration, the binding will be remembered the next time you deploy
your project. In addition, if you have multiple projects within the solution, deploying from the solution
will deploy all the projects within the solution.

How It Works

Deploying directly from Visual Studio is an alternative to exporting and importing BizTalk applications
through the BizTalk Administration Console.

Within Visual Studio, several deployment properties are available, as described in Table 9–1.

http://

CHAPTER 9 ■ DEPLOYMENT

473

Table 9–1. Visual Studio Deployment Properties

Property Description

Server Defines the BizTalk deployment server. The local server name is the
default setting for this property. If the project is shared across
multiple development machines, set this value to localhost.

Configuration Database Defines the name of the BizTalk configuration database. By
default, and unless it was changed, the configuration database
name will be BizTalkMgmtDb.

Application Name Defines the application that will house this BizTalk project.
Although leaving this property blank will cause the solution to
deploy to the default application, it is a best practice to provide a
value for this property.

Redeploy Defines whether the deployment process will automatically
delete the old deployed assembly before deploying the current
assembly. This option is very useful, but should be used only
within a development environment.

Install to Global Assembly Cache Controls whether the assembly will be deployed to the GAC as
part of the deployment process.

Restart Host Instances Controls whether to restart the in-process host instance. By
default, this property is False. Due to artifact caching during
development, it is a best practice to change this setting to True to
force the removal of artifacts from the cache. If this property is
False, you may notice inconsistent behavior in your solutions,
particularly during repeated deployments.

9–5. Enlisting and Starting Send Ports

Problem

You have deployed a solution and need to validate that your send ports are enlisted and started.

Solution

An important step in the deployment of a BizTalk solution is to enlist and start send port messaging
artifacts. You can do this from the BizTalk Administration Console, either in isolation or as part of a
larger application deployment.

http://

CHAPTER 9 ■ DEPLOYMENT

474

■Note An important prerequisite to enlisting and starting a send port involves configuring the send port to

subscribe to BizTalk messages, either via setting a filter on a send port or by binding a send port to a BizTalk

orchestration artifact. In both of these instances, a send port has subscription criteria identifying which messages

it will consume from BizTalk.

The following steps outline the procedure for starting and enlisting send ports using the BizTalk
Administration Console.

1. Open the BizTalk Administration Console.

2. In the left pane, navigate through BizTalk Server Administration to your BizTalk
group, expand the Applications folder where your send port resides, and select
the Send Ports node.

3. Right-click your send port(s), and select Enlist, as shown in Figure 9–16. The
send port(s) will move from the unenlisted to the stopped state.

Figure 9–16. Enlisting send ports

4. Right-click your send port(s) again, and select Start. Your send port(s) should
now be started and enlisted.

http://

CHAPTER 9 ■ DEPLOYMENT

475

How It Works

In this recipe’s solution, we demonstrated how to enlist and start send ports via the BizTalk
Administration Console. Enlisting and starting are two mutually exclusive states on a send port.
Enlistment sets up the port and ensures that it is recognized and properly bound. Starting the port has it
begin listening for the trigger that will cause it to execute. These are two logical mandatory steps to
enable a BizTalk solution to be deployed.

■Note In this example, we demonstrated the explicit steps of enlisting and starting for demonstration purposes

only. A send port can also be explicitly started from an unenlisted state.

Enlisting a port enables a subscription in the BizTalk MessageBox. If a send port is not enlisted, a
message published to the MessageBox will not be subscribed to by the send port. If a subscriber is not
found (the message had only the send port as the intended subscriber), a BizTalk error would be thrown,
indicating that a matching subscription could not be found, and the message instance would be
suspended but resumable in the MessageBox. (In previous versions of the product, this would have
caused the message instance to be suspended but not resumable.)

If a message is published to the BizTalk MessageBox and a send port is not started, the message
instance will sit in the MessageBox, waiting for the subscribing send port to be started. This situation is
often hard to troubleshoot, as no error is thrown during the message submission process (an
administrator would need to proactively look at what processes have been suspended using the Group
Hub page).

In addition to administering send ports via the product tool set, BizTalk also has an object model
available to allow programmatic administration via Windows Management Instrumentation (WMI).
Send port administration is accessible via the base class Microsoft.BizTalk.ExplorerOM.SendPort.
Within this class, a send port has a variety of methods available (for example, ChangeSendPortStatus()).
Refer to the BizTalk product documentation for an inclusive list.

9–6. Enabling Receive Locations

Problem

You have deployed a solution and want to validate that your receive locations are enabled.

Solution

A receive location is the entry point into a receive port for pipeline processing and submission into the
BizTalk MessageBox for subscribers and downstream processing. Receive ports can have multiple
receive locations belonging to them. To allow messages to be received and consumed, you should
enable a receive location.

http://

CHAPTER 9 ■ DEPLOYMENT

476

■Note For a receive location to be enabled, make sure that the receive location has been associated with a

receive handler and pipeline. The receive handler determines the security context (file access permissions) under

which a receive location operates.

To enable a receive location, follow these steps:

1. Open the BizTalk Administration Console.

2. In the left pane, navigate through BizTalk Server Administration to your BizTalk
group, expand the Applications folder where your receive location resides, and
select the Receive Locations node.

3. Right-click your receive location, and select Enable, as shown in Figure 9–17.

■Note Multiple receive locations can be enabled by holding down the Shift key as you select the target receive

locations. Then right-click and select Enable from the context menu.

Figure 9–17. Enabling a receive location

http://

CHAPTER 9 ■ DEPLOYMENT

477

How It Works

Enabling a receive location is an important deployment activity. If a receive location is not enabled, a
message will reside in the physical adapter’s transport receive location, and it will not be consumed by
BizTalk. For example, the message could be a file in a folder for the file adapter or a message in an
MSMQ queue for the MSMQ adapter.

A common problem when initially deploying and verifying receive locations is often security access
and file permissions. When enabling a receive location, it is a good idea to check the Windows Event
Viewer to ensure no errors are raised by BizTalk. Common errors with receive locations are often
security related. Always check to ensure your receive location has been granted permission to the
security credentials associated with the receive port’s receive handler or the receive port itself.

■Note Once a receive location has been enabled, intermittent transport problems (for example, security or

network access) will not disable the receive location. However, note that once a receive location is explicitly

disabled, it must also be explicitly enabled to allow the receive location to function correctly.

9–7. Enlisting and Starting Orchestrations

Problem

You need to validate that your orchestrations are enlisted and started.

Solution

Enlisting and starting BizTalk orchestrations allows orchestration artifacts to participate in a BizTalk
solution. You can do this from the BizTalk Administration Console, as follows:

1. Open the BizTalk Administration Console.

2. In the left pane, navigate through BizTalk Server Administration to your BizTalk
group, and expand the Applications folder where your orchestration resides.

3. Right-click the orchestration, and select Enlist, as shown in Figure 9–18. You
can enlist multiple orchestrations by first holding down the Shift key as you
select the target orchestration before choosing Enlist from the context menu.
The orchestration will move from the unenlisted to the stopped state.

4. Right-click your orchestration again, and select Start. Your orchestration should
now be enlisted, started, and ready for use.

http://

CHAPTER 9 ■ DEPLOYMENT

478

Figure 9–18. Enlisting an orchestration

How It Works

Enlisting and starting BizTalk orchestrations allows orchestrations to participate in BizTalk messaging
and processing solutions. You can enlist and start orchestrations from either the BizTalk Administration
Console or the Visual Studio environment. In this recipe’s solution, we demonstrated using the BizTalk
Administration Console.

Enlisting an orchestration is similar to enlisting a send port artifact. Enlisting an orchestration
allows it to set up subscriptions with the MessageBox so it can receive messages published to it. In
essence, enlisting holistically in the BizTalk product gives BizTalk artifacts (send ports and
orchestrations) the ability to subscribe to the MessageBox for desired message contexts. Starting an
orchestration allows an orchestration to physically consume and process a message.

Two important prerequisites to allow an orchestration to be started and enlisted are orchestration
binding and host binding. Only orchestrations that have been bound can be enlisted; that is, an
orchestration’s port must be bound to a solution’s physical send/receive port before enlisting. Unless an
orchestration is a child orchestration or is directly bound to the message box, all ports must be bound to
a physical host (see Figure 9–19 for a partially bound orchestration). If you attempt to enlist or start an
orchestration when a host has not been bound, an error will occur, indicating that the enlisting has
failed, as shown in Figure 9–20. In addition, an orchestration’s configuration cannot be unbound when
in an enlisted or started state.

http://

CHAPTER 9 ■ DEPLOYMENT

479

Figure 9–19. An unbound host

Figure 9–20. Error trying to enlist an unbound orchestration

http://

CHAPTER 9 ■ DEPLOYMENT

480

It’s also worth noting that entire BizTalk applications can be started and stopped. This activity
ensures that all BizTalk artifacts under an application are enlisted, started, enabled, and ready
(depending on the artifact), without any knowledge required by the user. Figure 9–21 shows starting a
BizTalk application.

Figure 9–21. Starting an entire BizTalk application

http://

C H A P T E R 10

■ ■ ■

481

Administration and Operations

Integration solutions play a key role in many organizations’ technology offerings. While much time and
effort are typically spent on the actual implementation of these solutions, administration and
maintenance tasks are often treated as second-class citizens. This reality can have costly consequences,
as downtime of integration points can have large financial impacts on businesses.

To help make administration and operation more efficient, a number of enhancements have been
built into BizTalk Server 2010. The BizTalk Administration Console includes two pieces of key
functionality: the Group Hub page and application views. The Group Hub page exposes information for
a single BizTalk Server, providing a view into the health of the server and allowing for troubleshooting
and triage of issues. Specifically, the Group Hub page provides the following:

• Queries for work in progress and suspended items (service instances and
messages)

• The ability to perform bulk operations (terminate, suspend, or resume) on service
instances

• The ability to build and save custom queries to return information on service
instances and messages

• Enables troubleshooting of service instances and messages

• Allows for debugging of orchestrations

The application views expose information for a single BizTalk Server application. An application is a
logical grouping of BizTalk artifacts. By grouping artifacts, applications allow them to be managed as a
single unit as opposed to individual items. Applications can be started and stopped, which starts and
stops all the underlying artifacts, such as orchestrations, receive locations, and send ports. When an
application is started or stopped, the individual artifacts are started or stopped in the correct order,
accounting for all interdependencies. Applications also facilitate a number of deployment related tasks,
such as importing and exporting.

If you’ve used previous versions of BizTalk Server, you will notice that Health and Activity Tracking
(HAT) is no longer available as a stand-alone tool. Portions of it continue to be used from within the
BizTalk Administration Console (such as the orchestration debugger), and BTSHatApp.exe is in the root of
the BizTalk folder—however, trying to run it results in an error. All of the HAT functionality has been
moved to the Administration Console.

This chapter focuses on the use of the administration tools within BizTalk Administration Console
and how to ensure a well-managed BizTalk environment and a streamlined troubleshooting process.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

482

10–1. Troubleshooting Suspended Services

Problem

Your integration solution has encountered an error, and you must determine what caused the fault.

Solution

A variety of tools can be used for troubleshooting suspended instances. The BizTalk Administrator
Console is the first place to look in helping to identify why errors occur in an integration solution and to
determine the best way to fix them. Other tools include the Windows event log, SQL Server, and other
external applications.

Often, the event log gives the first indication an error has occurred in BizTalk, especially during the
development stages of an integration project. BizTalk Server writes errors to the application event log
each time it suspends a service instance. The error event contains helpful information on when, why,
and where the fault happened. You can view errors posted to the event log by BizTalk Server through the
BizTalk Administrator Console, which includes the Event Viewer MMC snap-in.

Frequently, the event log will have enough information to determine what action needs to be taken
to fix the error (server name not specified on the SMTP adapter, for example), but often, further
troubleshooting is necessary. To obtain more detailed information about the fault, you can use the
BizTalk Administrator Console’s Group Hub page, which provides a number of ways to search for
suspended service instances.

The following steps outline a procedure for troubleshooting a suspended service.

1. Open the BizTalk Administration Console.

2. Expand the Event Viewer folder in the left pane, click Windows Logs, and select
Application. You should see an error event relating to the service instance that
was suspended. This event is flagged with a BizTalk related source, such as
BizTalk Server or XLANG/s. See Figure 10–1.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

483

Figure 10–1. The Application event log

3. To obtain more detailed information about the event, expand the BizTalk
Server Administration folder in the left pane, and select your BizTalk group.
This opens the Group Hub page.

4. Click the Suspended service instances link in the Suspended Items section.
Clicking this link launches a query window, as shown in Figure 10–2.

■Note The Group Hub page also provides filtered views of suspended service instances, including resumable

service instances; nonresumable service instances; suspended MSMQT messages; and suspended service

instances grouped by application, error code, service name, and URI. All queries are customizable.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

484

Figure 10–2. Suspended service instances query

5. Order the query results on the Creation Time column by clicking the column
header. You can compare the creation date with the timestamp of the error
event log entry to determine if they relate to one another.

6. Once you have found the appropriate suspended service instance in the query
results list, double-click the row to launch the Service Details dialog box, as
shown in Figure 10–3. The General tab of this dialog box includes high-level
information regarding the suspended instance, including the BizTalk
component that encountered the error, the service’s status, and the instance
ID. Knowing the particular component that encountered the error is a valuable
and significant piece to the troubleshooting puzzle, as it assists in narrowing
down where the fault occurred.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

485

Figure 10–3. General tab of the Service Details dialog box

7. Click the Error Information tab. As shown in Figure 10–4, this tab displays the
text of the exception that the suspended service instance encountered, which is
the same as what is written to the application event log. The error text usually
includes key stack information, indicating at what level the fault occurred and
how it was bubbled up through BizTalk. In our example, the instance was
suspended because the send port was stopped.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

486

Figure 10–4. Error Information tab of the Service Details dialog box

8. Click the Messages tab. As shown in Figure 10–5, the Messages tab displays a list
of all messages related to the suspended service instance. From this tab, you
can save the suspended message to a file for further inspection, turn on
tracking for the message, or view additional details of the message (right-click
the message for these capabilities).

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

487

Figure 10–5. Messages tab of the Service Details dialog box

9. Double-click one of the messages, and select the Context section, as shown in
Figure 10–6. This view displays the context of the suspended message, which
can be especially helpful when troubleshooting. Particularly, it alerts you to
what properties the message had when it was suspended and which were
promoted.

Figure 10–6. Context section of Message Details

How It Works

When errors occur in your integration solutions, BizTalk typically suspends the service instance
encountering the error. Service is a generic term used to describe an area of BizTalk processing, such as
orchestration, messaging, or adapter. Service instance refers to a specific instance of the orchestration,
messaging, or adapter component. The troubleshooting tools of BizTalk are primarily used by

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

488

system/solution administrators and are not typically used (in a production environment) by developers
or testers.

Finding the particular suspended service instance you are troubleshooting is the first step in solving
the issue. In this recipe’s solution, we compared the timing of event log errors and suspended services to
find a specific instance. This technique of timestamp comparison would not work well if you were
troubleshooting a long-running service instance (in which case, the creation time of the instance and the
time of the error may be significantly different). While our solution used a simple way of locating the
suspended instance, more-advanced methods can be useful, especially in production, heavy-load, or
long-running environments.

You can search for instances based on all sorts of information. To add additional filter criteria to the
report, in the BizTalk Administration Console, take the following steps:

1. Click a new row in the Query Expression pane, under the Field Name column.

2. Add the desired column, as shown in Figure 10–7.

Figure 10–7. Adding a column to the query results

The BizTalk Administration Console also allows you to create your own queries to find suspended
service instances. Click the New Query tab (shown in Figure 10–8) available in the BizTalk Group Hub
Overview area. You can save and retrieve custom queries for future troubleshooting needs (a query can
be saved by using the Save As button and storing the file for later retrieval).

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

489

Figure 10–8. BizTalk Administration Console Query Builder

Once you have found your suspended service instance, the details that BizTalk Server tracks against
the suspended instance provide a solid starting point for determining the best way to fix the issue. In
general, you should use generic problem-solving skills when troubleshooting BizTalk errors: break down
the problem into its component parts, and use the tools at your disposal to evaluate the fault using a
bottom-up approach. Using the BizTalk Administrative Console allows you to break down complex
solutions into manageable parts and troubleshoot the specific component encountering the error.

10–2. Resubmitting Messages

Problem

Your integration solution has encountered an error, and you need to resubmit the messages that have
been affected by the fault.

Solution

The BizTalk Administrator Console allows you to resume service instances and resubmit their associated
messages. You can locate the suspended service instance (which will contain the suspended message)
that you need to resume and then choose to resume it, as follows:

1. Open the BizTalk Administration Console.

2. Expand the BizTalk Server Administration folder in the left pane, and select
your BizTalk group. This opens the Group Hub page.

3. Click the Resumable link in the Suspended Items section. This launches a query
window displaying all suspended service instances in your BizTalk
environment that can be resumed.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

490

4. If you are unsure if a particular suspended service instance contains the
message you need to resubmit, right-click the instance record in the results
pane, and select Show Messages. This displays a list of messages referenced by
the service instance, allowing you to drill down further into the message details
and interrogate the actual message, its context, and the flow the message took
prior to suspension.

5. When you have located the service instance you need to resume, right-click the
record in the results pane, and select Resume Instance, as shown in Figure 10–
9. In addition to resuming single suspended service instances, you can also
resume multiple instances by holding down the Ctrl key and selecting multiple
rows in the results pane. To resume all instances, right-click the header record
in the results pane, and select Resume Instances.

Figure 10–9. Resuming a single suspended instance

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

491

How It Works

BizTalk errors can be caused by a number of faults, including hardware or network failure or errors
during pipeline or adapter processing. When errors occur in your integration solutions, BizTalk typically
suspends the service instance that encountered the error. Services are areas of BizTalk processing—such
as orchestration, messaging, or adapter—and service instances are specific instances of the
orchestration, messaging, or adapter component. A service instance may contain one or more
suspended messages. BizTalk differentiates between two basic types of suspension events: resumable
(the service instance can be restarted) and nonresumable (the instance cannot be restarted).

Finding the service instance that contains the message you want to resubmit is critical. A number of
methods for searching for suspended instances are provided by BizTalk. If you know that you must
resubmit a message that was suspended in a specific orchestration, a quick way to search for service
instances is to click on the Grouped by Service Name link on the Group Hub page, as shown in Figure
10–10.

Figure 10–10. Viewing service instances

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

492

In addition to resuming services instances normally, you can also resume service instances in debug
mode. Resuming in debug mode will restart the service instance at the last successful persistence point
prior to the error.

BizTalk also provides Windows Management Instrumentation (WMI) methods for resubmitting
suspended service instances, such as MSBTS_ServiceInstance.Resume and
MSBTS_HostQueue.ResumeServiceInstancesByID.

Finally, messages can be manually resubmitted. This process involves finding a particular service
instance or message via the BizTalk Administrator Console, saving the message data, and using a
resubmit mechanism (such as ports or administrative tools) to resend the message through BizTalk. To
save a message, right-click the record (in the BizTalk Administrator Console), and select the option for
saving the tracked message(s). While this method is generally more time consuming and task intensive,
it can be particularly helpful when the error is such that it would be significantly difficult to successfully
resume a suspended service instance. You should consider the following when manually resubmitting
messages:

• Security, with regards to encryption and authentication

• Data privacy and protection for sensitive information

• User error if data is manipulated

10–3. Managing BizTalk Applications

Problem

You have BizTalk solution artifacts that should be grouped together for ease of management and
maintenance. Specifically, you would like to group BizTalk Solution components so that you can easily
deploy those components to another environment as well as start and stop the components together as
a whole.

Solution

You can use a BizTalk application to group and manage BizTalk solution artifacts. As outlined in the
following steps, the process involves creating the new application, configuring it, and then adding
components. After creating the BizTalk application, you can import BizTalk MSI files and bindings and
add previously created BizTalk assembly DLLs, scripts, and resources. The instructions in this solution
describe the process for adding a BizTalk assembly DLL that contains multiple schemas.

1. Open the BizTalk Administration Console.

2. In the left pane, right-click the Applications folder, and choose New➤

Application. This launches the Application Properties dialog box, as shown in
Figure 10–11.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

493

Figure 10–11. Application Properties dialog box

3. In the Application Properties dialog box, make the following settings, and then
click the OK button to create the new BizTalk application.

• Enter the name of the application that you are creating.

• Specify if this application is the default application. Identifying your application as the
default application is significant when deploying new BizTalk artifacts from Visual
Studio. Unless you specify an application in Visual Studio, your BizTalk artifact deploys
to the default BizTalk application. A BizTalk artifact that does not specify a deployment
application name will be grouped in your newly created default application.

• Identify any application references. Identifying application references allows you to
share resources across applications. For example, if you have a common set of shared
schemas, maps, or pipelines, you can specify them as part of an application reference
and not need to make multiple copies of those components for each BizTalk application.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

494

4. After the application is created, verify that the artifacts have been bound
appropriately. Right-click the application and choose Start.

■Note When you start a BizTalk application, you have the choice of enlisting and starting all orchestrations, send

ports, send port groups, receive locations, host instances, and resuming suspended instances.

5. To configure your application, from the BizTalk Administration Console, right-
click it, and choose Configure. You will be presented with a Configure
Application dialog box, shown in Figure 10–12. Here, you can configure
binding, host, role links, and messaging/port settings for your application. Click
OK after completing your configuration.

Figure 10–12. Configure Application dialog box

6. From the newly created application, right-click and choose Add➤ BizTalk
Assemblies. This launches the Add Resources dialog box, shown in Figure 10–13.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

495

Figure 10–13. Add Resources dialog box

7. Click the Add button to identify the assemblies to add to the BizTalk
application. You can add assemblies (BizTalk or custom), scripts, bindings,
COM objects, and other objects to your BizTalk application. This dialog box
includes the following settings:

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

496

• Overwrite all: This flag indicates whether to overwrite an existing resource in the
Management database with the resource specified in the application. If you do not
specify this flag and you have a resource that contains the same name, the process will
fail when trying to add the object.

• Options: Depending on the type of resource being added, you have different options. For
example, if you are adding an assembly to your project, you also have the option to add
the assembly to the Global Assembly Cache (GAC), make the resource visible to COM,
and register the component as a serviced component. Remember any assembly you
wish to add to the GAC must be signed with a strong name key (this can most easily be
done through the project properties in Visual Studio).

• Dependencies: You will receive a list of dependencies if you choose to add an assembly
(BizTalk or custom) to your BizTalk application.

• Destination location: This is the location or path where the resource file will be copied
when the application is installed. You may specify an absolute, relative, or UNC path.
The default path copies the resource file to the application installation folder.

8. When you have selected the resources to add to you BizTalk application, click
the OK button. Figure 10–14 shows an example of a BizTalk application with a
schema resource added. Notice that BizTalk automatically manages the
placement of the resource into the correct folder location within the BizTalk
application.

Figure 10–14. Schema resource added to an application

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

497

How It Works

BizTalk applications represent a powerful concept in organizing BizTalk artifacts into logical groupings.
You can group like or related artifacts together in a BizTalk application. Once BizTalk artifacts are
grouped logically, it is possible to export the application to another BizTalk environment. The concept of
applications simplifies management, troubleshooting, and deployment of BizTalk artifacts.

The monitoring tools that are included in the BizTalk Administration Console take advantage of the
BizTalk application concept. Multiple BizTalk solutions can be managed through logical application
groupings.

BizTalk is set up with a default application container under which all BizTalk artifacts are deployed
to by default. When you upgrade a previously created BizTalk solution, the artifacts will initially be
placed in the default application. Additionally, in the following situations, BizTalk artifacts will be placed
in the default application:

• When you deploy BizTalk artifacts from Visual Studio without specifying an
application

• When you use BTSDeploy to deploy BizTalk artifacts (because this tool was created
for a previous version of BizTalk)

• When you use BTSTask without specifying an application name

■Note If you perform automated deployment, make sure to use the BTSTask tool instead of the deprecated

BTSDeploy tool. With BTSTask, you can specify the application under which your BizTalk artifacts are deployed. If

you continue to use the BTSDeploy tool, your BizTalk artifacts will be deployed to the default BizTalk application.

Consider using a separate BizTalk application in the following situations:

• When sharing BizTalk assemblies across multiple applications: In this situation,
group BizTalk assemblies in a separate application.

• When sharing a deployed web site: The best approach here is to implement the
shared web site in a separate application. When uninstalling a BizTalk application
that contains a web site, the virtual directory of that web site will be removed even
if it is currently being used. Any other application sharing that web site will
encounter exceptions if that web site is removed.

• When sharing a policy across multiple applications: In this situation, create a
separate application for that policy. When you stop a BizTalk application that
includes a policy, the policy is undeployed. If another application is referring to
the undeployed policy, you will encounter exceptions.

You can move artifacts between BizTalk applications in the same BizTalk group by selecting an
application resource, right-clicking, and choosing Move To Application from the context menu. This will
launch the Move to Application dialog box (see Figure 10–15), where you can choose a new BizTalk
application. If you need to move artifacts to another BizTalk application in a different BizTalk group, you
must export the artifact and then import it into the other BizTalk group’s application.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

498

Figure 10–15. Moving a send port to another application

10–4. Debugging Orchestrations

Problem

You need to debug a BizTalk orchestration.

Solution

You can use BizTalk’s Orchestration Debugger, which allows you to set breakpoints on any shape in an
orchestration. Once an instance of an orchestration executes and encounters one of these breakpoints, it
will go into a wait state in the BizTalk MessageBox, allowing a developer or administrator to manually
step through the orchestration.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

499

■Note A dehydrated orchestration is an orchestration that has been removed from memory and persisted to SQL

Server while it waits for its next action to occur, such as receiving a document. Upon this next action, the

orchestration is returned to memory in the exact state prior to dehydration, and processing continues. This ability

to dehydrate/rehydrate allows BizTalk Server to better utilize server resources.

The following steps demonstrate setting how to debug an orchestration.

1. Open the BizTalk Administration Console, and navigate to the BizTalk Group
Hub page.

2. Find an instance of a currently running orchestration that you wish to debug, or
find a completed instance of an orchestration that you wish to debug future
instances of. For this example, click on the Completed Instances link on the
Group Hub page, which will show a list of all instances (orchestrations and
otherwise) that have completed.

3. Right-click the instance of the orchestration to debug, and select Orchestration
Debugger, as shown in Figure 10–16. The Orchestration Debugger window will
open. The full orchestration will appear with a pane on the left showing a list of
tracked events, as shown in Figure 10–17.

Figure 10–16. Accessing the Orchestration Debugger

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

500

■Note Large orchestrations can take longer to load. Occasionally, with smaller development machines and larger

orchestrations, you may need to wait for a while before the Orchestration Debugger window actually opens.

Figure 10–17. Orchestration Debugger window

4. To set a breakpoint, right-click any shape, and select Set Breakpoint on Class.

5. Step through the orchestration by clicking tracked events in the left pane.

6. At any time, select Debug➤ Attach. A new pane will open and display the values
of all variables at the given stage of the orchestration. This allows for a full view
into the state of the process. You’ll notice a number of debugging actions are
available on the Debug menu.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

501

■Note You can attach only to orchestrations that have not completed. If this is the first time that the orchestration

has executed, it will likely have already completed. You may need to start a new instance before the orchestration

will pause on a breakpoint that has been set.

7. Click through the tracked events in the left pane to see which steps have
executed by highlighting the corresponding orchestration shapes in the right
pane. The color green indicates input to a shape, and blue indicates an exit
from a shape. This will aid in determining which paths have been followed (in
the case of Decide and Parallel Action shapes), how many times they may have
executed (for instance, how many times a loop has executed), and which step in
the process may be causing an error.

8. If desired, step into a child orchestration by clicking the event in the Tracked
Events pane, which corresponds to the Call Orchestration shape. Right-click the
event, and select the option to step into the child orchestration.

9. Once all debugging has been completed on an orchestration, make sure to clear
all breakpoints. Open the Orchestration Debugger on an instance of the same
orchestration (any instance will do), and select Debug➤ Clear All Breakpoints
on Class (this can be done only when not attached to an instance).

How It Works

While the Orchestration Debugger can be a helpful tool, especially in cases where an orchestration is
deployed in a production environment and is encountering errors, developers often need a much more
rapid and controllable method for debugging. It is helpful to have logging in development and in
production, and the ability to turn it on and off for any given process at any given time should be
available. Several techniques enable this type of debugging.

For example, using two standard .NET lines of code will allow a view into what is happening in an
orchestration without opening the Orchestration Debugger:

System.Diagnostics.EventLog.WriteEntry("Demo","Value: " + strValue);
System.Diagnostics.Trace.WriteLine("Value: " + strValue, "Demo");

The System.Diagnostic.EventLog.WriteEntry method will log entries to the Windows Event Viewer.
To view this logged event, open the Control Panel, select Administrative Tools, and double-click Event
Viewer. Events will be logged to the application log, and you’ll need to refresh the display to see results
as they are written.

■Note The user that runs the orchestration (whatever the host user has been configured to be) must have rights

to write to the Event Viewer to use the System.Diagnostic.EventLog.WriteEntry method.

The System.Diagnostics.Trace.WriteLine method will allow all of the trace outputs to be read by
attaching to the main BizTalk executable and monitoring in Visual Studio. Use the following steps to do
that monitoring:

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

502

1. In Visual Studio, select Debug➤ Attach to Process.

2. In the window that opens, find BTNTSvc.exe, and highlight it. Click the Attach
button.

3. Run an instance of the orchestration. Trace information will be made available
in the Output window in Visual Studio.

One way to use the System.Diagnostic methods for debugging/tracing in orchestrations is to wrap
the logging code in an If statement and create a TraceFlag that can be set in a configuration file, such as
the BTSNTSvc.exe.config file in the root BizTalk Program Files folder. Here is an entry you could add to
the BTNTSvc.exe.config file:

<add key=" TraceFlag" value="true"/>

Listing 10–1 demonstrates how to retrieve the TraceFlag and, based on its value, log information.

Listing 10–1. Configurable Trace Flag

// set the trace flag based on a value stored in the BizTalk Config File
// note that blnTraceFlag must be defined in the orchestration variables

blnTraceFlag = System.Convert.ToBoolean(System.Configuration.
ConfigurationSettings.AppSettings.Get("TraceFlag"));

// set the source to something unique for this orchestration
strSource = "DebugDemoOrchestration";

// Trace
if(blnTraceFlag == true){
strValue = System.Convert.ToString(intValue);
System.Diagnostics.EventLog.WriteEntry(strSource,"Value: " + strValue);
System.Diagnostics.Trace.WriteLine("Value: " + strValue, strSource);
}

When using this approach, keep tracing information separate in the orchestration from other
functionality, and label it appropriately. You can do this by dedicating an Expression shape to a single
trace event and naming it Trace (for example), as shown in Figure 10–18.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

503

Figure 10–18. Expression shape for tracing

One of the most helpful ways to debug is to see the actual XML of a message, especially before and
after mapping. This can be done by setting a variable of type System.Xml.XmlDocument equal to an
orchestration message and then tracing the value of this variable, as shown in Listing 10–2.

Listing 10–2. Tracing XML

// set the xmlDoc variable equal to the message to be traced.
// msgOrch is an orchestration message
xmlDoc = new System.Xml.XmlDocument();
xmlDoc = msgOrch;
System.Diagnostics.EventLog.WriteEntry(strSource,"Value: " + xmlDoc.OuterXml);
System.Diagnostics.Trace.WriteLine("Value: " + xmlDoc.OuterXml, strSource);

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

504

■Note The maximum size of a string that can be written to the Windows Event Viewer is 32KB. Often, XML

messages will exceed this size. If a string longer than 32KB is written, an exception will be thrown, and the

orchestration will terminate (unless appropriate exception handling is implemented). You can truncate the length

using .NET code. There is no limitation to the size when using the Trace.WriteLine method.

10–5. Tracking Messages

Problem

You want to be able to view the contents of messages that have arrived in a given BizTalk solution to
monitor messages and actions that have been processed through ports and orchestrations.

Solution

The ability to monitor orchestration activity and access message contents and flow is known as tracking
messages. BizTalk allows tracking to be set at a number of different levels. This solution describes how to
configure tracking so that messages can be saved in their entirety and viewed in any text editor. You can
configure tracking using the BizTalk Administration Console.

Configure Tracking

The following steps outline the procedure to configure tracking on receive ports, send ports, and on any
orchestrations where messages need to be tracked.

1. Open the BizTalk Administration Console.

2. Expand the tree in the left pane until the BizTalk application that contains the
solution on which you want to configure tracking is visible, and then click the
Receive Ports folder.

3. In the right pane, right-click the receive port that is to be configured for
tracking, and select Tracking, which is shown in Figure 10–19.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

505

Figure 10–19. Configuring tracking within the BizTalk Administration Console

4. In the Tracking Options dialog box, set the desired options for tracking. The
settings are generic across one-way and two-way ports.

• Request Message Before Port Processing: Request messages exist in one-way and two-way
ports. Checking this value will track the message prior to being processed by the port
(processing includes any pipelines or maps that may be on the port).

■Note A message is a request if the message is initiated by the port/orchestration. A message is a response if the

port/orchestration is receiving it from an external source.

• Request Message After Port Processing: Checking this value will track the message after it
is processed by the port (processing includes any pipelines or maps that may be on the
port).

• Response Message Before Port Processing: Response messages exist on two-way ports
only. Checking this value will track the message prior to being processed by the port
(processing includes any pipelines or maps that may be on the port).

• Response Message After Port Processing: Checking this value will track the message after
being processed by the port (processing includes any pipelines or maps that may be on
the port).

5. If desired, configure tracking for send ports. Right-click the send port, select
Tracking, and choose options in the Tracking Options dialog box.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

506

6. Configure tracking on the appropriate orchestrations. In the left pane of the
BizTalk Administration Console, click the Orchestrations folder. In the right
pane, right-click the orchestration, and select Tracking. In the Orchestration
Tracking Options dialog box, you can configure tracking on events and on
messages within the orchestration, as shown in Figure 10–20.

Figure 10–20. Orchestration Tracking Options dialog box

Access Tracked Messages

After you have configured tracking through the BizTalk Administration Console, access the tracked
messages as follows:

1. Drop a message on the appropriate receive location to instantiate the
orchestration.

2. Open the Group Hub page, and run a query that will return message instances.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

507

3. Right click the message, and select Save to File to select a folder to save to, as
shown in Figure 10–21.

Figure 10–21. Saving tracked messages

Depending on the complexity of the orchestration, the number of send and receive ports, and the
level of tracking configured, there may be a few or a large number of messages written out to the
directory specified. A combination of system messages and XML messages will have been tracked.

How It Works

There is a direct relation between the level of tracking configured for a given solution and the size of the
underlying BizTalk databases. For solutions with high levels of tracking and a high volume of message
transactions, databases can grow quickly. An intelligent approach to traditional SQL database
management is required, especially as it pertains to table truncation and data backups.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

508

10–6. Restarting the BizTalk Host Instance(s)

Problem

You have a number of new configurations in your BizTalk applications. You want to refresh everything
and make sure all configurations are acknowledged by BizTalk Server.

Solution

Refreshing BizTalk Server is quite simple—restarting the BizTalk Host instance(s) essentially refreshes all
of the configurations and running instances in the MessageBox. To perform the restart, take the
following steps:

1. Open BizTalk Administration Console.

2. Expand the BizTalk Group, expand the Platform Settings folder, and click Host
Instances.

3. Right-click the Host Instance that you want to restart, and select Restart (shown
in Figure 10–22).

Figure 10–22. Restarting the host instance

How It Works

Occasionally, especially during development, you will need to restart the BizTalk host instances. When
deploying new configurations, new referenced .NET assemblies, and new shared maps and schemas, it is

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

509

important to restart the host to ensure all of the new artifacts are referenced properly (and that old
references are forgotten). It is also helpful to stop the whole BizTalk host instance when you want to
turn off all processing to ensure that nothing is received or sent, regardless of the status of the send and
receive ports.

10–7. Throttle Orchestration Memory Usage

Problem

You need to optimize the memory use of orchestrations running on one of your BizTalk Server groups.

Solution

The new BizTalk Settings Dashboard allows for the configuration of a variety of core settings that control
memory usage and performance. To access the tool, take these steps:

1. Open BizTalk Administration Console.

2. Right-click the BizTalk Server Group, and select Settings. The BizTalk Settings
Dashboard will open.

3. Click the Host Instances tab.

4. Select the Orchestration Memory Throttling tab (see Figure 10–23).

5. Change the memory usage to the desired percentages.

Figure 10–23. Configuring memory in the BizTalk Settings Dashboard

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

510

How It Works

The new BizTalk Settings Dashboard is hidden within BizTalk, but it is an extremely powerful tool.
Orchestration performance is one of the features, but there are a wide variety of additional features that
will prove to be useful. Take a look at the tool and see what properties will help improve the
performance of your deployment. The default settings are usually fine to keep, but for advanced
solutions, it may be necessary to make alterations.

10–8. Resuming Inbound Message Processing

Problem

BizTalk has encountered an error and suspended the processing of an inbound message. You need to fix
the error and resume message processing to receive it successfully.

Solution

This example demonstrates the resumable inbound message-processing capabilities of BizTalk. BizTalk
initially receives a message that has no recipients. In the publish/subscribe architecture of the
MessageBox, the error message will indicate that BizTalk cannot find a subscriber to the message. After
creating the appropriate subscription, this example resumes processing and successfully delivers the
message.

Begin by creating the receive port and receive location that will accept the message:

1. Open the BizTalk Server Administration Console.

2. Right-click the Receive Ports folder under an application, and select New ➤

One-Way Receive Port from the context menu.

3. Enter SuspendedMessagesExampleIn for the name of the new receive port.

4. Add a receive location to the receive port, using the default PassThroughReceive
pipeline.

5. Using the File transport type, specify C:\SuspendedMessagesExample\In as the
receive folder. Create the folder if necessary.

6. Grant the BizTalk Application Users group full control to the
C:\SuspendedMessagesExample folder.

7. Enable the receive location.

BizTalk can now receive messages, but the administrator has not specified where BizTalk should
deliver the messages. BizTalk will raise an error to the event log and suspend messages received through
the SuspendedMessagesExampleIn receive port. Follow these steps:

1. Place an XML file in the C:\SuspendedMessagesExample\In folder.

2. In the left tree view of the BizTalk Server Administration Console, click the
BizTalk Group to show the Group Hub page. Press the F5 key to refresh the
Group Overview page. Note that you will be able to see the count of suspended
messages, as shown in Figure 10–24.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

511

Figure 10–24. Suspended message counts in the Group Hub page

3. Click the Suspended Service Instances link to open the Suspended tab. The
Suspended tab will display all resumable suspended service instances, as
shown in Figure 10–25.

Figure 10–25. Resumable service instance

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

512

Now that there is a suspended message in BizTalk, create a send port to deliver the message and
resume message processing:

1. Create a new static one-way send port in the same BizTalk application as the
receive port was created in.

2. Enter SuspendedMessagesExampleOut for the name of the send port, and
configure the File adapter to deliver messages to the
C:\SuspendedMessagesExample\Out folder. Create the folder if necessary. Use the
default PassThruTransmit send pipeline.

3. In the left pane of the SuspendedMessagesExampleOut – Send Port Properties
dialog box, select Filters.

4. Define a filter where BTS.ReceivePortName equals SuspendedMessagesExampleIn,
as shown in Figure 10–26. This will create a subscription for all messages
received through the SuspendedMessagesExampleIn receive port.

Figure 10–26. Defining a message subscription

5. Enlist and start the SuspendedMessagesExampleOut send port.

6. On the Group Hub page, return to the Suspended tab.

7. Select the Suspended (Resumable) query results to display the suspended
SuspendedMessagesExampleIn service instance.

8. Right-click the suspended service instance, and select Resume Instance from
the context menu. Click Yes when prompted to confirm. If the Resume Instance
option is not available, verify that the selected service instance’s status is
Suspended (Resumable) under the query results.

9. Verify that BizTalk successfully delivered the XML message to the
C:\SuspendedMessagesExample\Out folder.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

513

How It Works

BizTalk supports resumable inbound interchange processing. It suspends the message while receiving it,
and the administrator can resume the message after fixing the configuration error. The BizTalk
administrator can perform extensive troubleshooting to identify the cause of a suspended message.
Double-clicking the Suspended (resumable) service instance shown in Figure 10–25 opens a Service
Details dialog box containing detailed information about the suspended message. The Error Information
tab, shown in Figure 10–27, displays detailed error information indicating that the message was
suspended because BizTalk could not identify a subscriber.

Figure 10–27. Viewing error information

The Messages tab displays all the messages in the suspended service instance. Double-clicking a
message opens the Message Details dialog box. Select Context in the left pane of the Message Details
dialog box to display the message’s context properties, as shown in Figure 10–28. BizTalk can use the
Promoted context properties to identify the subscriber of a message.

http://

CHAPTER 10 ■ ADMINISTRATION AND OPERATIONS

514

Figure 10–28. Message context properties

Back on the Suspended tab of the Group Hub page, the BizTalk administrator can right-click a
suspended message and navigate the Troubleshoot Routing Failure submenu to identify the cause of a
routing failure.

Although most suspended messages in BizTalk are resumable, in some situations, BizTalk cannot
resume message processing. One example is when BizTalk uses order delivery messages in the same
order BizTalk receives them. In this situation, resuming a message would also deliver it out of order, so
BizTalk prevents resuming the message.

http://

C H A P T E R 11

■ ■ ■

515

Business Activity Monitoring

BizTalk implementations can be generally defined as business processes, and business processes
generally create metrics and data, which are needed for reporting purposes. The ability to rapidly
generate and access such metrics and reports about business processes is essential to many parties,
including managers, developers, and integration partners. One of the core components of BizTalk Server
2010 is the Business Activity Monitor (BAM) framework, which allows you to create, deploy, and view
information about running or previously run processes. BAM implementations publish the metrics and
reports and make them available to users through custom interfaces, which are updated in near real
time as data progresses through the system. This chapter will introduce the steps necessary to build,
deploy, and access BAM implementations.

A business process within BizTalk consists of the combination of all the pipelines, ports,
orchestrations, maps, and other components needed for the successful completion of a specific task or
set of tasks. You can trace the full life cycle—from the moment a document arrives through all the steps
of processing to the ultimate delivery of any documents—using the tools available through the BAM
framework. Business analysts and developers must work together to define which steps in the business
process are important to track and how these steps will be reported to users.

BAM is tied directly to the central BizTalk engine (that is, processes and databases) through OLAP
cubes. These cubes are created automatically when a developer deploys a BAM report and profile,
typically by using a combination of Microsoft Excel pivot tables and the BizTalk Tracking Profile Editor.
Once all the BizTalk components are deployed and a running instance of an orchestration is executing,
all defined steps of the flow will be subscribed to via the OLAP cubes and published via BAM
components to the user. Users can access the published data via the Web, SharePoint, Excel
spreadsheets, or applications that have been customized to display the information.

The recipes in this chapter include detailed information about working with standard BAM
development and deployments, working with the BAM API, and viewing information available via the
BAM engine.

■Note There is a book focused solely on BAM, Pro BAM in BizTalk Server 2009 by George Dunphy, Harold

Campos, Stephen Kaufman, Peter Kelcey, Sergei Moukhnitski, and David Peterson (Apress, 2009). Make sure to

refer to it for a great in-depth study of the technology and how to apply it to various business scenarios.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

516

11–1. Creating BAM Activities and Views

Problem

You have business users requesting metrics, visibility, and business data from the execution of a
deployed BizTalk solution and the associated artifacts. The business users are interested when any of the
BizTalk processes execute the following steps: process begins, process ends, or process encounters
exceptions. The business users are also interested in the following attributes of the messages consumed
by the BizTalk processes: the transaction ID and transaction type.

Solution

This recipe outlines how to use Excel to create a BAM workbook that tracks milestones and business data
for reporting. This recipe addresses the four categories of steps required in creating a BAM solution.
Each category of steps plays an integral role in developing a useful, rich, and powerful BAM solution:

• Creating the BAM activity workbook

• Outlining the BAM view

• Identifying aggregations, dimensions, and measures

• Constructing the pivot table

■Note This recipe does not address how to use the Orchestration Designer for business analysts or the Tracking

Profile Editor. These are covered in later recipes in this chapter.

Create the BAM Activity Workbook

BAM activities identify the milestones and tracking data an individual is interested in tracking.
Milestones are the steps in an activity that are measured in time, and tracking data is the key data points
in a process you are interested in tracking (such as a customer ID or name).

This category of steps outlines how to create a BAM activity in Excel. The activity defined in this
recipe includes milestones that indicate when a process begins, ends, and encounters an exception.
Additionally, the following steps outline how to create tracking data that captures the transaction ID and
transaction type.

■Note All references in this recipe to Excel refer to Excel 2010. Previous versions of Excel will have slight

variations to the steps outlined (the most obvious is that BAM is available on the main toolbar as opposed to

showing under the Add-ins tab). Note that with the early version of BizTalk 2010, some errors could occur when

using Excel 2010. If errors occur for you (such as the inability to save a workbook), roll back to using an earlier

version of Excel. Later recipes in this chapter refer to Excel 2007.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

517

1. Create a new Excel workbook, select the BAM menu item, and choose BAM
Activity. Choosing the BAM activity will launch the Business Activity
Monitoring Activity Definition Wizard.

■Note If the BAM menu item is an Excel add-in, the easiest way to get the BAM functionality is to start with a

copy of the file named BAM.xla located in the ExcelDir of the root BizTalk Server 2010 directory.

2. In the Business Activity Monitoring Activity Definition Wizard, click the New
Activity button to create a new activity. Name the new activity Process Activity.

3. Create the items listed in Table 11–1 for your activity, and click the OK button to
complete the Business Activity Monitoring Activity Definition Wizard. The
completed activity should resemble Figure 11–1.

Table 11–1. Activity Milestones and Key Tracking Data Items

ID Item Name Item Type Data Type Description

1 Begin Business Milestones Date Time Identifies the date/time a
process begins

2 EndSuccess Business Milestones Date Time Identifies the date/time a
process successfully ends

3 Exception Business Milestones Date Time Identifies the date/time a
process exception occurs

4 Transaction Id Business Data – Text Text (50) Identifies the ID of the
transaction being processed

5 Transaction Type Business Data – Text Text (50) Identifies the type of the
transaction being processed

p

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

518

Figure 11–1. New Activity dialog box

4. Click the OK button twice to complete the wizard and create a BAM view.

Outline the BAM View

A BAM view is a representation of the milestones and business data tracked in one or more activities. A
view may comprise multiple activities or multiple milestones from a single activity and can contain
tracked data or milestones as well as provide aggregations or summaries of the tracked milestones and
business data. Creating a BAM view is a necessary step because it defines which tracked milestones and
business data to report. Typically, different views are created to show multiple audiences different
aspects of the same tracked data.

This category of steps demonstrates how to outline your view and display tracked data items and
milestones. The view created in this recipe summarizes how many processes execute successfully versus
how many processes encounter an exception.

1. When the Business Activity Monitoring View Creation Wizard begins, click the
Next button to advance the wizard and create a new view.

■Note If the wizard does not start, launch it by selecting BAM View from the BAM menu in the Add-ins section of

Excel.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

519

2. Name the view Process View, and select the Select All Activities box. The
Business Activity Monitoring View Creation Wizard will resemble Figure 11–2.
Click the Next button to advance the wizard.

Figure 11–2. Business Activity Monitoring View Creation Wizard

3. On the New BAM View: View Items page of the Business Activity Monitoring
View Creation Wizard, select the Select All Items box to add all the milestones
and business data to the new view. Click the Next button to advance the wizard.

4. Click the New Group button to create a Group item, and select the box next to
the milestones listed in Table 11–2. Figure 11–3 demonstrates the milestones to
select.

■Note The Group milestone allows related milestones to be treated as a single milestone. In this example,

grouping the EndSuccess and Exception milestones is useful to indicate the completion of the process regardless

of whether it completed successfully or failed.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

520

Table 11–2. Business Milestone Group

Business Milestone Alias Name Activity

End EndSuccess ProcessActivity

 Exception ProcessActivity

Figure 11–3. New business milestone group

5. Create a New Duration item with the parameters listed in Table 11–3 to record
the total process execution time. Figure 11–4 demonstrates the New Duration
creation dialog box.

■Note A duration calculates the time between two business milestones and is useful when reporting the time

elapsed between two milestones is important. In this sample, the duration will display the time elapsed for the

process execution from the beginning of the process to the End milestone group created earlier.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

521

Table 11–3. Duration Properties

Duration Name Start Milestone End Milestone Time Resolution

ProcessDuration Begin (Process
Activity)

End (Process
Activity)

Day

Figure 11–4. New Duration dialog box

6. The completed Business Activity Monitoring View Creation Wizard should
resemble Figure 11–5. Click the Next button to advance the wizard and create
aggregations, dimensions, and measures.

■Note All names used for aliases, durations, groups, dimensions, and measures must be unique for a single view.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

522

Figure 11–5. Completing the Business Activity Monitoring View Creation Wizard

Identify Aggregations, Dimensions, and Measures

Aggregations, dimensions, and measures in your BAM solution provide rich functionality for deriving
computations and information based on the tracked data and milestones. This category of steps is not
required; however, it adds richness to a BAM solution. After completing this category of steps, you must
also complete the steps outlined in the “Construct the Pivot Table” section to organize the derived
results.

1. Click the New Dimension button and create a new progress dimension. Name it
ActivityProgress.

■Note A progress dimension defines milestones and stages for a process. A progress dimension allows you to

display how many processes are at an existing status at a given time. In this example, a progress dimension will

display how many processes are in the middle of execution, how many encountered an exception, or how many

processed without an exception. Table 11–4 lists the milestones and stages created in this example.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

523

Table 11–4. Progress Dimension Items

Milestone/Stage Name Description

Started The process begins as soon as a message is received.
Started is a milestone, and each progress dimension must
contain a milestone.

Processing Processing is a transient stage and indicates a transition
from when the process started to when it completes.

Completed Completed is a milestone indicating the process has
successfully completed.

Failed Failed is a milestone indicating the process has failed to
complete because of an exception.

■Note When defining a progress dimension, you must define the steps in your process and the transitions

between the steps. Milestones define the steps, and stages define the transitions between milestones. Each

progress dimension must begin with a milestone.

2. The following instructions detail how to create the items listed Table 11–4:

a. Click the New Milestone button to launch the New Progress Milestone dialog box. Create
a new milestone, name it Started, and make it refer to the business milestone called
Begin (Process Activity).

b. Click the New Stage button to launch the New Progress Stage dialog box. Create a new
stage named Processing. You will not be able to select the business milestone, because
the wizard automatically selects the milestone.

c. Click the New Milestone button to launch the New Progress Milestone dialog box. Create
a new Milestone named Completed, and make it refer to the business milestone called
EndSuccess (Process Activity).

d. Click the New Milestone button to launch the New Progress Milestone dialog box. Create
a new Milestone named Failed, and make it refer to the business milestone called
Exception (Process Activity).

e. Figure 11–6 demonstrates the completed progress dimension. Click the OK button to
complete the New Dimension dialog box.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

524

Figure 11–6. Finishing the progress dimension

3. Create a new measure with the properties listed in Table 11–5. A new measure
will provide a count of processes currently executing. Click OK to complete the
New Measure dialog box. Figure 11–7 demonstrates the New Measure dialog
box.

Table 11–5. Measure Properties

Measure Name Base Data Item Aggregation Type

Count Process Activity Count

■Note You must select Count as an aggregation type before you can select Process Activity as the base date

item.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

525

Figure 11–7. Creating a new measure

4. Click the Next button to complete the New BAM View: Aggregation Dimension
and Measures page of the wizard.

5. Review the contents of the New BAM View: Summary page of the Business
Activity Monitoring View Creation Wizard. Click the Next button, and finally,
click the Finish button to complete the wizard.

■Note At this point, you have successfully created a BAM activity and view (including aggregations, measures,

and dimensions). The next step is to complete the pivot table layout for the BAM view.

Construct the Pivot Table

This final category of steps demonstrates how to lay out the computed items created in the earlier
category of steps. If you did not complete the previous category of steps, you will not be presented with
the option of creating a pivot table. The pivot table created in this recipe appears in the BAM portal and
is the representation of the data for the user. An Excel pivot table allows you to lay out worksheet data in
a grid to analyze trends over data as well as perform data aggregations. In this scenario, the progress

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

526

dimension previously created is organized in the pivot table alongside the count measure also previously
created.

After completing the Business Activity Monitoring View Creation Wizard, you will have a workbook
with an empty pivot table that resembles Figure 11–8. The image displays the empty Pivot Table report
and the Pivot Table Field List window. Data items from the Pivot Table Field List window are organized
in the Pivot Table report.

Figure 11–8. Viewing the pivot table

1. In Excel, drag the ActivityProgress dimension from the Pivot Table Field List
window onto the Drop Row Fields Here section of the pivot table.

2. From the Pivot Table Field List window, drag the Count item to the Drop Value
Fields Here section of the pivot table. The pivot table should resemble Figure
11–9.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

527

Figure 11–9. Viewing the pivot table’s data items

3. This step demonstrates how to expand the progress dimension to see all the
defined stages and milestones. Double-click the Started milestone to expand
and see the stages and milestones within the progress dimension. The
completed pivot table will resemble Figure 11–10.

■Note If you receive an error message, verify that you clicked inside the Started milestone cell first before

double-clicking the started milestone.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

528

Figure 11–10. Completed pivot table

4. Mark the pivot table as a real-time aggregation by clicking the Real-Time
Aggregation button in BAM add-ins area of the Excel toolbar ribbon. Figure 11–
11 shows where the Real-Time Aggregation button is located.

Figure 11–11. The Real-Time Aggregation button is shown as the only button in the Toolbar Commands

box

5. Save the workbook when you are finished.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

529

How It Works

BAM is a flexible framework to expose key metrics about business processes modeled within BizTalk.
Creating a BAM solution using the BizTalk tool set is a straightforward process requiring little custom
development. As outlined earlier, creating and deploying a BAM solution requires four basic categories
of steps.

Create the BAM Activity Workbook

The first category of steps in creating a BAM solution is defining the structure for recording data about a
BizTalk process. The structure for recording process data is created in an Excel workbook via the BAM
add-in tool. The workbook captures key performance indicators or milestones as defined by the user as
well as defines how a user views the milestones. Keep in mind that the Excel workbook is independent
from any of the BizTalk solution artifacts and serves only as a container for recording information and
computing aggregations.

Using the BAM Excel workbook removes the need for the user to have familiarity with the physical
BizTalk solution artifacts. In actuality, the user may be more interested in a logical process implemented
through multiple BizTalk artifacts versus the specifics for a single artifact. Consider when you tell
someone about a trip you have taken. Do you relay the highlights of the trip or all the travel details (such
as flight number, gas station fill-ups, and so on)? The BAM workbook allows the user to specify the
BizTalk process highlights to monitor.

■Note As previously mentioned, the BAM workbook is an integrated add-in tool within Excel. If you have the BAM

add-in tool enabled, you will be able to work on only a single Excel workbook at a time. If you try to open multiple

workbooks, you will receive an Excel alert stating you cannot have multiple workbooks for the single Excel

instance at the same time. However, you can open a new instance of Excel if you need multiple workbooks opened

at the same time. Figure 11–12 shows the Excel exception alert.

Figure 11–12. Workbook alert message

After creating the BAM workbook, the next step is to identify the key data items, milestones, or key
performance indicators implemented through data aggregations. Again, keep in mind that the

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

530

milestones are logical markers and are not tied directly to physical BizTalk artifacts. For example, a
milestone could signify the start or completion of a process. After creating the milestone and deploying
the workbook, you map the multiple BizTalk artifacts to that milestone or data item. A BAM activity is a
reference to a group or collection of milestones or data items and can span multiple BizTalk artifacts.
Table 11–6 describes the four types of items that can be created in a BAM activity. Please review the
“Considerations” section of this recipe for additional information about relating multiple activities and
grouping of activity items.

Table 11–6. BAM Activity Items

Milestone Name Description

1 Business Data – Milestone Placeholder for a date/time marker. Use this type of
milestone when interested when an event occurred.

2 Business Data – Text Placeholder for a text type of data item. Use this type
of milestone when reporting a specific textual value
piece of data (such as a promoted property) that is a
textual value.

3 Business Data – Integer Placeholder for an integer type of data item. Use this
type of milestone when reporting a specific number
piece of data (such as a transaction ID).

4 Business Data – Decimal Placeholder for a decimal type of data item. Use this
type of milestone when reporting a specific piece of
data requiring decimal precision (such as a dollar
amount).

Outline the BAM View

After defining the BAM activity structure and necessary milestones, the next step is creating the view that
will represent the tracked data items and milestones. The BAM view is a representation of the milestones
and business data defined in a single activity or multiple activities. Views can contain both data and
computed aggregations based on the data.

The BAM view also facilitates the creation of data aggregations. If you have distinct audiences
interested in different data aggregations or representations of activity milestones, then using a BAM view
to represent those views is advantageous. Additionally, you can restrict BAM views to specific audiences
to limit the viewing of sensitive data or milestones. You can create a BAM view in one of two ways: using
the Business Activity Monitoring View Creation Wizard or from the BAM add-in menu.

An optional task in creating a BAM view involves creating the necessary alias, duration, and group
view items. These items are not required but offer extended desirable functionality to a BAM view.
Consider view items as computed milestones that show the grouping of items or time durations between
two milestones. Table 11–7 describes each view item.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

531

Table 11–7. BAM Computation Milestones

ID Name Description

1 Alias Allows the referencing of a previously created milestone.

2 Duration Allows the monitoring of a span of time between two date/time
milestones. For example, if you have a milestone for when a process
begins and a milestone for when a process completes, you can create a
duration milestone to report the time difference between the two
milestones. The duration milestone will report on the following time
scale (day, hour, minute, or second).

3 Group Creates a new milestone for grouping of milestones into a single point
in time. For example, if you have a milestone indicating when a
process completes successfully or when a process fails, you could
create a group milestone that indicates a process finished and group
the process completes and process fails milestones. The composite or
grouped milestone would identify when a process completed
regardless of whether it completed or failed. Another common use is in
the situation that you have a process that could fail at multiple points
and you want to group all failures into a single process failed
milestone.

Identify Aggregations, Dimensions, and Measures

Also optional when creating a BAM view is the inclusion of aggregations, dimensions, and measures
based on the milestones and data items tracked. In this example, you created a measure to track the
count of processes. Additionally, you created a progress dimension to show the progress of the process
as it executes. These items are not required but offer additional flexibility to a BAM view.

Construct the Pivot Table

The final category of steps involves laying out the items of your view into a pivot table for reporting. In
this recipe, you created a pivot table that displays the progress of your solution and aggregations of that
process through a progress dimension, aggregations, and measures.

Activity Grouping and Multiple Processes

If you have an interest in categorizing multiple milestones into a single group, you should look at using
activity grouping. Considering the milestones to be included in an activity and considering the scope of
the activity can be challenging. A single activity can reference multiple activities; however, it may also
make sense (depending on the level of detail) to create a single activity with the necessary milestones.
Again, imagine a trip with multiple legs and side trips containing many details. If the user is interested in
many details about the overall trip as well as the individual legs of the trip, it may make sense to create
multiple activities to represent the trip as a whole as well as the individual trip legs. Alternatively, if the
user is interested only in the trip highlights, it may make sense to create a single activity with those
highlights for the entire trip (including trip legs).

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

532

In the recipe sample, milestones indicate when a process begins, ends, encounters an exception,
and defines data characteristics about the processed transaction. Typically, these milestones include
enough information for a user interested in a high-level view about the health of a business process.

Also think about the number of processes. In this example, you created a single activity to report on
the behavior of a business process. If you create a solution that has multiple related processes, you may
need to create and relate multiple activities. Creating related activities is also necessary in situations
where you have a process that involves a looping structure (such as an orchestration with a loop). In the
situation where you have a loop structure in an orchestration, you would create one activity for the
orchestration and an additional activity for the events occurring within the loop. The physical act of
relating activities occurs in the Tracking Profile Editor (or via code).

■Note When creating related activities, verify that the activities are included in the same BAM view. Additionally,

verify that a shared attribute (for example, MessageID) relates the two activities.

Summary

BAM is a powerful extensible architecture that facilitates the sharing of key metrics and process
milestones. This recipe outlined the basics of creating a BizTalk activity and view and demonstrated how
to create relationships between activities and employ computed milestones via view items.

11–2. Deploying BAM Activities and Views

Problem

You have created a BAM activity and view within a BAM Excel workbook and must deploy the BAM
artifacts within your environment.

■Note This recipe uses the BAM workbook created in Recipe 11–1 as the basis for the scenario.

Solution

Successfully deploying a BAM activity and view involves a number of steps, typically performed by a few
different users. After a business analyst creates the BAM activity and view within the BAM Excel
workbook, an administrator deploys the artifacts to the BizTalk environment. The first set of steps to use
the BAM Management Utility to deploy the activity and view defined in the BAM Excel workbook is as
follows:

1. Open a command prompt by navigating to Start→Run, typing CMD, and
clicking OK.

2. Navigate to the folder containing the BAM Management Utility by typing the
path similar to the following line at the command prompt, and pressing Enter:

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

533

cd "C:\Program Files\Microsoft BizTalk Server 2010\Tracking\"

3. Use the deploy-all command to deploy the BAM activity and view defined in
your BAM Excel workbook. For this solution, type the following line at the
prompt, and press Enter:

bm deploy-all -DefinitionFile:"C:\BAMWorkbook\BAMWorkbook.xls"

4. The status of the deploy operation appears in the console, as shown in Figure
11–13.

■Note If you get an error at this stage stating that the BAM Star Schema database has not been configured, this

means that the Analysis Services has not been installed on SQL Server. To enable tracking and use of the BAM

Portal, Analysis Services must be installed.

Figure 11–13. Deploying the BAM Excel workbook

5. The next set of steps is for either a developer or an administrator to use the
Tracking Profile Editor to define and deploy the mappings between the
activities defined in the BAM Excel workbook and actual BizTalk artifacts, such
as orchestrations and schemas. (BizTalk Server 2010 also allows pure messaging
solutions to feed BAM.)

6. Open the Tracking Profile Editor by navigating to StartPrograms ➤ Microsoft
BizTalk Server 2010 ➤ Tracking Profile Editor.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

534

7. Import your BAM Excel workbook by clicking the Click Here to Import a BAM
Activity Definition link. This link launches the Import BAM Activity Definition
dialog box. Select the appropriate activity definition from the list. In this
solution, select the activity definition named Process Activity, as shown in
Figure 11–14.

Figure 11–14. Import BAM Activity Definition dialog box

8. Select the BizTalk artifacts you need to map the activity definitions to by
clicking the Click Here to Select an Event Source link. This link launches the
Select Event Source Parent Assembly dialog box. Select the appropriate BizTalk
assembly containing the artifacts you will map to the activity definitions; in this
solution, select the assembly named BAMProject, as shown in Figure 11–15.
Click Next to proceed.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

535

Figure 11–15. Selecting the BizTalk assembly

■Note The list of assemblies contains all those BizTalk assemblies that have been deployed within your BizTalk

environment.

9. In the Select Orchestration dialog box displayed next, select the orchestration
containing the workflow and the links to the schemas that define the activity
definitions. In this solution, select the orchestration named
BAMProject.Process, as shown in Figure 11–16. Click OK.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

536

Figure 11–16. Selecting the BizTalk orchestration

10. Now, map the orchestration steps in the right pane to the activity definition
milestones in the left pane. Drag and drop the orchestration shapes to the
activity definition milestones, as outlined in Table 11–8. Figure 11–17 shows
how the Tracking Profile Editor looks after the orchestration steps have been
mapped to the activity definition milestones.

Table 11–8. Activity Definition Milestone Mapping

Activity Definition Milestone Orchestration Step (Shape)

Begin Begin Process (Receive Shape)

EndSuccess End Process (Send Shape)

Exception Failure (Expression Shape)

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

537

Figure 11–17. Activity definition milestone mapping

11. Next, map the appropriate schema fields to the activity definition business
data. Since the message containing the schema data fields you need to map is
received by the Begin Process shape in the orchestration, right-click this shape,
and select Message Payload Schema, as shown in Figure 11–18.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

538

Figure 11–18. Selecting the Message Payload Schema option

12. Map the appropriate schema fields in the right pane to the activity definition
business data fields in the left pane. Drag and drop the schema fields to the
activity definition business data fields as outlined in Table 11–9. Figure 11–19
shows how the Tracking Profile Editor looks after the orchestration steps and
business data have been mapped to the activity definition milestones.

Table 11–9. Activity Definition Business Data Mapping

Activity Definition Business Data Schema Field

Transaction ID ID

Transaction Type Type

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

539

Figure 11–19. Activity definition business data mapping

13. Save the tracking profile by selecting File ➤ Save. Save the file as
C:\BAMWorkbook\BAMTrackingProfile.btt.

14. Deploy the tracking profile by selecting Tools ➤ Apply Tracking Profile. Click
OK to confirm the successful deployment of the tracking profile.

How It Works

Deploying BAM activities and views involves two BizTalk tools: the BAM Management Utility and the
Tracking Profile Editor. The BAM Management Utility is a command-line tool used for managing your
BAM environment. It includes a number of commands, but the one we’ll focus on is deploy-all. The
deploy-all command takes the following parameters:

• DefinitionFile: Path and file name of the BAM Excel workbook (or the exported
XML file that can be generated from the BAM Excel workbook) containing the
activities to deploy.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

540

• Server: Name of the server to which to deploy the activities. If this parameter is
not specified, the local server is used.

• Database: Name of the database to which to deploy the activities. If this parameter
is not specified, the BAMPrimaryImport database is used.

This command reads the BAM Excel workbook specified in the DefinitionFile parameter and
creates SQL Server database artifacts based on the activities and view defined in the spreadsheet.
Specifically, this command creates the following:

• Tables within the BAM primary import database for capturing activity data in the
live BizTalk environment.

• SQL Server Integration Services packages for transferring data between the live
BizTalk databases and the SQL Server Analysis Services cubes.

• SQL Server Analysis Services OLAP cubes.

• A live data copy of the Excel workbook in the same folder as the original
spreadsheet. Use the live data workbook to view up-to-date data within BizTalk
Server after completing the deployment steps (including those involving the
Tracking Profile Editor).

■Note The BAM Management Utility has no update capabilities for BAM artifacts. You must first remove the old

artifacts and then deploy the updated ones.

Use the Tracking Profile Editor to map the activities defined by the business analyst in the BAM
Excel workbook to actual BizTalk artifacts, such as orchestration shapes and schema data fields. This
task is absolutely critical in ensuring that the deployed BAM artifacts communicate the appropriate
information. Although it is common to have a developer or administrator perform this task, this user
should have a strong understanding of the business process. Applying the tracking profile places the
hooks into the BizTalk Server environment used to record the necessary milestones and data fields,
which map to the activities defined by the business analyst. The Tracking Profile Editor in BizTalk Server
2010 also provides functionality to feed BAM via pure-messaging scenarios (those that do not use
orchestrations). To access schemas directly, click the Select Event Source drop-down list, and click
Select Messaging Payload. This launches the Select Event Source Parent Assembly dialog box. Select the
appropriate BizTalk assembly and then the appropriate schema.

Once the deployment steps have executed, you can see the activity data either through the live data
copy of the BAM Excel workbook or through the BAM portal.

11–3. Using the BAM Portal

Problem

You need to create a solution that will track your company’s business processes, compile the data into
key performance indicators (KPIs), and develop a portal to display the information to executives. You

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

541

have already created and deployed activities and views from a BAM worksheet to define and track the
key performance indicators, and you would now like to consume that data from a portal.

Solution

Once you have developed and deployed BAM activities to track your KPIs, you may now consume the
data from an ASP.NET portal without writing any code. You can accomplish this by utilizing out-of-the-
box BizTalk reporting capabilities through the BAM portal. The BAM portal is a web-based portal built
from ASP.NET that allows you to view and query cubed data created within the BAM framework. This
recipe will cover three primary activities within the BAM portal:

• Accessing the BAM portal

• Performing an activity search

• Viewing aggregations

■Note Installing the BAM Portal on 64-bit machines requires that IIS allow for 32-bit applications. This can be

easily accomplished by running the following command line script: cscript

%SYSTEMDRIVE%\inetpub\adminscripts\adsutil.vbs SET W3SVC/AppPools/Enable32bitAppOnWin64 0.

Accessing the BAM Portal

Take the following steps to access the BAM portal:

1. Deploy BAM activities and views.

■Note Please see the preceding BAM recipes in this chapter for further information about how to accomplish this

task. If you do not have any activities and views deployed, you will not be able to view information in the portal.

2. Open the portal by navigating to Start ➤ All Programs ➤ Microsoft BizTalk
Server 2010 ➤ BAM Portal Web Site.

3. Once you have opened the portal, you will notice three primary panes: the
header frame at the top, the view frame to the left, and the content frame to the
right. If you have deployed activities and views, they will be available under the
MyViews tree.

Performing an Activity Search

BAM activities capture business processes milestones and business data at a specific point in time. An
activity search allows you to define, save, open, and execute queries to retrieve that transactional
business data. The activity search page has three main sections, as shown in Table 11–10.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

542

Table 11–10. Sections of Activity Search Page

Page Section Description

Query This section of the page allows you to define, save, and open queries.
Queries let you constrain which activities to return in the results
window.

Column Chooser This section of the page defines which columns to return in the result
set.

Results The section of the page displays the result set retuned by executing the
query against the BAM activity data.

To perform an activity search, take the following actions:

1. Under the My Views tree, expand the view that correlates to the view name you
have deployed.

2. Expand the Activity Search node, and click a deployed activity. This action will
open a query window like the window displayed in Figure 11–20.

Figure 11–20. Activity search query window

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

543

3. Within the Query pane, build a query by configuring one or more constraints.
To configure a constraint, follow these steps:

a. Choose a field from the Business Data drop-down list.

b. Choose an operator from the Operator drop-down list.

c. Enter a value in the Value text box.

d. Click the Add button to insert additional constraints.

■Note You cannot create complex constraint logic, such as nested constraints. The portal will allow you to add

constraints only with simple and/or relationships. By adding more than one constraint, an additional drop-down list

will appear that will allow you to define the constraint relationship.

4. Within the Column Chooser pane, choose one or more columns to display in
the Results pane.

5. Click Execute Query. The Results pane will display the query results.

Viewing Aggregations

Activity searches provide transactional business data from a specific point in time, and aggregations
provide aggregated business data about a group of processes at a specific point in time. This aggregated
data is processed and stored in OLAP cubes and accessed through pivot tables. The Aggregations page
has two main sections, shown in Table 11–11.

Table 11–11. Sections of the Aggregations Page

Page Section Description

Pivot Table View Pivot tables provide for a way to summarize and work with data
separate from the core spreadsheet. This section contains a standard
pivot table. The table automatically points to the BAM framework and
specifically the activities and views you have deployed.

Chart View This section contains the chart view that displays, in chart form, the
data filtering configured in the pivot table. It is also possible to change
the chart view to any chart available through the office framework.

To view an aggregation, take the following actions in the BAM portal:

1. Under the My Views tree, expand the view that correlates to the deployed view
name.

2. Expand the Aggregations node, and click a deployed pivot table. This action will
open a window like the one displayed in Figure 11–21.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

544

Figure 11–21. Aggregations page

■Note If the BAM portal displays the “Safety settings on this machine prohibit accessing a data source on another

domain” error in the pivot table, you need to change your security settings for Internet Explorer. Open the security

settings by selecting the Tools ➤ Internet Options menu in Internet Explorer. Select the Security tab, and then click

the Custom button. Once you are prompted with the Security Settings dialog box, locate the Miscellaneous

heading, and select the Enable option for the Access Data Sources Across Domains choice. Finally, you will receive

an error if no data exists in the cube.

3. From the pivot table View toolbar, click the Field Chooser icon. This will display
a list of fields available with your BAM view.

4. Drag one or more total or detail fields to the center of the pivot table.

5. Next, drag one or more column fields to the column section of the pivot table.

6. Close the Pivot Table Field List control. Figure 11–22 shows what the pivot table
with data should look like.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

545

Figure 11–22. Aggregations view

■Note The pivot table is a powerful tool, and this recipe does not go into the many features it provides. You

should spend some time researching what this tool can provide and how to use it to its full potential.

How It Works

The BAM portal is a feature in BizTalk 2010 that facilitates the rapid consumption of business
transactional and aggregated data, without writing any code. The portal is self-configuring, fairly easy to
set up, and provides rich data retrieval capabilities. This recipe has provided a high-level understanding
of what you can do with the portal, but it has an additional powerful feature, BAM alerts. BAM alerts
allow you to configure and receive alerts related to specific changes in business data.

The BAM portal provides several areas of configuration: the look and feel of the main or dashboard
page, the web.config file, a network load balancing (NLB) clustering. By default, the main dashboard, or
Getting Started page, displays navigation instructions to the user. The content for the main dashboard
page is located in the MainPageContent.htm file, which is located in the root of the BAM portal web site
folder and can be altered.

 Another area of configuration is web.config. This configuration file is similar to standard web.config
files and allows you to configure security as well as environment settings for the BAM portal. The
web.config setting highlights include referencing the BAM web services that may be hosted on different

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

546

machines in a distributed environment, referencing a different main dashboard page file, culture
support, and service timeout configuration. Additionally, the types of alert notifications are
customizable in web.config.

Finally, BAM fully supports high availability through clustering and can be scaled like other web
applications through NLB. Please refer to the help file for specific instructions about how to change
these settings.

11–4. Setting Up BAM Alerts

Problem

You have to set up BAM to capture data analysis on your BizTalk processes. You need to monitor these
processes and set up alerts based on business process conditions.

Solution

BizTalk’s BAM tool enables alerts to be set up based on business data and associated query conditions. In
this sample, you will be setting a BAM alert on a condition where the sales price of a good is less than $1.

■Note BAM alerts rely on the creation of a BAM view deployment.

The following steps show how to create a BAM alert:

1. Open the BAM portal by navigating to Start ➤ All Programs ➤ BizTalk Server
2010 ➤ BAM Portal Website.

2. On the portal home page, select the BAM view in the left pane.

■Note The portal will display all the deployed BAM views. Alerts are set up per BAM view.

3. Click the Activity Search link; Figure 11–23 shows the Activity Search page.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

547

Figure 11–23. Activity search

4. Select your search criteria for the activity, and click Set Alert.

■Note It might be a good idea to execute the query first to provide a sanity check on the query results. You can

set up an alert before or after query execution.

5. The Alert Details screen will now display. At this screen, enter the details for
your alert:

• Name: Enter the name of the alert.

• Message: Describe the message that should be displayed when the alert is fired.

• Priority: Assign relative priority. This would be used as a priority identifier within your
solution.

• Alert Security: Allow this alert to be seen and used by other users.

6. Click Save Alert to save the alert details, as shown in Figure 11–24.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

548

Figure 11–24. Alert details

7. Next, you must set up a subscriber to identify who should be notified and when
the alert is fired, so click the Add Subscriber button. The Add Subscriber dialog
box appears, as shown in Figure 11–25.

Figure 11–25. Add Subscriber dialog box

8. In the Add Subscriber dialog box, select the transport option for the alert. In
BAM alerting, you can set up subscribers for either an email address or a file
location.

9. Click the Save button to complete the subscriber setup.

10. This completes the subscriber setup. Now, to review your newly created alert
and subscription, click the Alert Management node under your view. On this
page, you can view a list of alerts and associated alert and subscription detail, as
shown in Figure 11–26.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

549

Figure 11–26. Completed alert

11. Finally, review that your subscription works. In this sample, you set up a
subscription for a file location. Run your business process with data that will
cause the alert to fire. When this occurs, an alert should be found in the alert
location, as shown in Figure 11–27.

Figure 11–27. BAM alert

■Note The alert location is a static location, set up during BizTalk installation. This location should be shared and

assigned with appropriate Active Directory permissions/security. In this sample, the share location was

\\localhost\alerts.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

550

How It Works

BAM is a powerful tool in BizTalk that allows a solution that you can configure to monitor data passed
through BizTalk without performing large amounts of custom development. BAM is based on SQL Server
Reporting Services, and events are fundamentally triggered via SQL Server Notification Services. You
must consider these prerequisites to successfully enable a BAM deployment:

• Infrastructure: Ensure your SQL Server environment and Windows server security
configuration are all in working order. This can be problematic and a necessary
step in ensuring a secure environment.

• BAM workbook: A BAM workbook with associated activities must be deployed in
order to access BAM activity searches, aggregations, and associated alerts in the
BAM portal.

• Tracking Profile Editor: You must deploy a Tracking Profile Editor to see queries
and alerts within the BAM portal.

• BAM alerts location: You must specify a location to drop file alerts during
installation/setup.

You can configure BAM alerts for aggregate or individual data conditions. You can create an alert
initially or modify one after creation. An alert can be fired based on a condition of a row of data or as a
condition of a summary of data (aggregate). To enable this, you have to set up individual data conditions
by setting the alert in the activity search page (demonstrated in this sample) and set up aggregate alerts
via acting on the pivot table on the Aggregations tab. Figure 11–28 shows this step.

Figure 11–28. BAM alert

You can set subscribers for BAM alerts via two transport mechanisms:

• Email: Any valid email address or group alias, such as someone@apress.com. A link
to the alert detail will be provided in the e-mail body.

• File: Alerts will be dropped to the file location specified during product install.

mailto:someone@apress.com
http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

551

A receive location can be set up to allow consumption back into the BizTalk process for further
examination and process action. In addition, aggregate alerts can have threshold limits set to ensure that
subscribers are not saturated with repeated messages.

When deploying alerts, it is important to remember the testing aspects and notification success. If a
file alert cannot be published as a result of incorrect setup, the alert can be lost. An error will be
indicated in the application event log. However, the alert instance itself cannot be salvaged.

11–5. Using the BAM Interceptor

Problem

You want to send custom events to BAM and be able to track these events as if they were published by a
core BizTalk component (such as an orchestration).

Solution

The BAM Interceptor is part of the API that is available to interact with BAM from a .NET code base
(BizTalk or otherwise). The Interceptor is used primarily by the core BizTalk components, such as
orchestrations and pipelines, but can be tied to custom code by a developer. By calling the Interceptor
and the associated API methods, you have full control over when and what is sent to deployed and
tracked BAM instances.

When orchestrations execute, they constantly send events to the BAM Interceptor. Events that are
being subscribed to (tracked events, set in the BAM Tracking Profile Editor) will be saved, and all others
will be ignored. When external components to the orchestration are called (such as referenced
assemblies), however, they do not log to BAM, and events that occur can be inferred only by the
surrounding events sent from the orchestration.

This solution will walk through the sample that is included in the BizTalk SDK. You can find the SDK
project files at Microsoft BizTalk Server 2010\SDK\ Samples\BAM\BamApiSample.

You must go through several key steps to interface with the BAM Interceptor:

1. Create and deploy a BAM definition, and import it into the Tracking Profile
Editor.

2. Create an Interceptor instance, which can be used to interface with the BAM
Interceptor. This contains the configuration needed to associate the data in the
custom event being fired with the event in the BAM definition.

3. Implement the code to call the BAM Interceptor.

The first thing to do is to import the BAM definition and understand how it corresponds to the rest
of the files in the SDK:

1. Run the Setup.bat file. This will install the components.

2. Open the BizTalk Tracking Profile Editor. Click File, and then select Import
BAM Activity Definition. Assuming the BAM definition has been deployed
successfully, the option to select BAMApiPo will be available, as shown in
Figure 11–29.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

552

Figure 11–29. Tracking Profile Editor

During the setup process, two console applications are compiled. One of them
is the InterceptorConfig.exe file, which takes a series of inputs to determine
how to map data logged to the Interceptor to the BAM definition. The second is
the BAMApiSample.exe file, which references the output of the
InterceptorConfig.exe file to determine how to push data to the BAM
Interceptor.

3. Open the BAMApiSample.sln file.

4. First, examine the InterceptorConfig.cs file to observe how it creates the
binary file, which will be referenced by BAMApiSample. It creates an Interceptor
instance, which is a binary file containing the information needed to map the
values to the definition. The XPaths are in reference to the document, which is
statically created within BAMApiSample.

An example of the mapping between the definition and BAMApiSample is as
follows:

locNewInvoice [in BAMApiSample] = Received
 Event [in Tracking Editor]
@PoID [inBAMApiSample] = xpath in xml
 document to InvoiceID [in Tracking Editor]

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

553

5. Open the PurchaseOrder_config.xml document to see all the mappings as
configured by InterceptorConfig.exe. You can change these values; however,
you also have to change the document in BAMApiSample to match the new
values.

6. Assume for a moment that the only fields in the Tracking Profile Editor are Start
and End. By simplifying the definition and the creation of the binary reference
file, the solution becomes more manageable. Use the following steps to create
an Interceptor instance based on the simplified definition.

7. In Visual Studio, create a new Visual C# Console Application project. This will
allow code to be written that will produce the Interceptor instance.

8. Add a reference to the Microsoft.BizTalk.Bam.EventObservation.dll assembly.
This is located in the Tracking directory of the main BizTalk installation path.

9. The code in Main will look as shown in Listing 11–1.

Listing 11–1. Main Function to Create Binary File

using System;
using System.IO;
using System.Runtime.Serialization.Formatters.Binary;
using Microsoft.BizTalk.Bam.EventObservation;
// etc.
static void Main(string[] args)
{
 // the following creates a new instance based on the definition that
 // has been deployed to Tracking. If BAMApiPo does not exist as a valid
 // deployed definition, this code will fail.
 ActivityInterceptorConfiguration interceptorConfig = new �
 ActivityInterceptorConfiguration("BAMApiPo");
 // registrations map the name of the tracked event to the
 // name that is in the binary file/Interceptor code.
 interceptorConfig.RegisterDataExtraction("Start","StartSample","");
 interceptorConfig.RegisterDataExtraction("End","EndSample","");
 // this is the indicator for when the Interceptor is to start and stop
 // listening for events. @ID is an XPath to where to locate the ID
 // in the document passed in (see code for calling Interceptor, below)
 interceptorConfig.RegisterStartNew("StartSample", "@ID");
 interceptorConfig.RegisterEnd("EndSample");
 // Create the Interceptor bin file
 BAMInterceptor interceptor = new BAMInterceptor();
 interceptorConfig.UpdateInterceptor(interceptor);
 // write the file out
 BinaryFormatter format = new BinaryFormatter();
 Stream file = File.Create("BAMApiSample.bin");
 format.Serialize(file, interceptor);
 file.Close();
}

10. Build the solution. Run the executable. This will write out a binary file, which
can now be referenced by the code to call the interceptor.

11. Additionally, an XML document could be generated, which would look like the
following (this is not a required step):

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

554

<TraceInterceptorConfiguration xmlns:xsd="http://www.w3.org/2001/XMLSchema"�
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <TrackPoint Type="Start">
 <Location xsi:type="xsd:string">StartSample</Location>
 <ExtractionInfo xsi:type="xsd:string">@ID</ExtractionInfo>
 </TrackPoint>
 <TrackPoint Type="End">
 <Location xsi:type="xsd:string">EndSample</Location>
 </TrackPoint>

</TraceInterceptorConfiguration>

12. Now, open the BAMApiSample.cs file to observe how it is structured. The key
items to look at follow:

• The class MainApp: This class contains the main function that constructs the XML
document and event stream that will be used to call the BAM Interceptor.

• The class DataExtractor: This class contains the extractor that returns the data
within a given node of the XML document based on the XPath passed as a
parameter. The XPath comes directly from the binary configuration file created by
the InterceptorConfig.exe file.

• The #If Interceptor statements: All statements within these directives call the BAM
Interceptor.

The following code is directly from one of the SDK’s #If Interceptor directives. It shows how the
binary file is loaded and how the OnStep method in the BAM Interceptor is called. In this case, the
dataExtractor contains information about how to extract the data from a given node (with the XPath
from the binary file), and locNewPo maps to the Received Activity in the Tracking Profile Editor.

BAMInterceptor interceptor=Global.LoadInterceptor("BAMApiPo_interceptor.bin");
interceptor.OnStep(Global.dataExtractor,"locNewPo",xePO,Global.es);

How It Works

The previous solution explored how to use the Interceptor API and introduced the concept of interaction
with the BAM Interceptor. The functionality of this SDK sample is limited in use with true BizTalk
implementations. The most likely use of calling the BAM Interceptor directly would be in the case of a
custom assembly, which is called from an orchestration. Modifying the console application
(BAMApiSample) to a .NET class is fairly straightforward.

Listing 11–2 shows a simplified approach to the application as a class that can be called directly
from an Expression shape.

Listing 11–2. Interceptor in a .NET Class

class Sample
{
 // the EventStream and DataExtractor tie into Interceptor events
 public static EventStream es=null;
 public static DataExtractor dataExtractor=new DataExtractor();

 public void PassDocument(System.Xml.XmlDocument xmlDoc)
 {
 // instantiate the interceptor by referencing the binary file
 Stream file=File.Open("C:\BAMApiSample.bin", FileMode.Open, FileAccess.Read,

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

555

 FileShare.Read);
 BinaryFormatter format=new BinaryFormatter();
 BAMInterceptor interceptor=(BAMInterceptor)format.Deserialize(file);
 file.Close();

 // send an event that will start the tracking
 // xmlDoc is the instance of the document passed in
 interceptor.OnStep(Sample.dataExtractor,"StartSample",xmlDoc,Sample.es);

 // end the tracking
 interceptor.OnStep(Sample.dataExtractor,"EndSample",xmlDoc,Sample.es);
 }

 // add functions for constructing the EventStream and the DataExtractor
}

11–6. Creating a BAM Service Request

Problem

You have a deployed BizTalk solution and associated BAM artifacts. You have users viewing the BAM
views and associated activities. The user would like additional information about one of the activity line
items. Specifically, the user notices the process has terminated with an exception and would like the
technical support team to investigate the exception. For this recipe, the sample BizTalk solution and
BAM artifacts demonstrated are from the BAMEndToEnd sample project included in the SDK\BAM\Samples
folder created with the BizTalk software installation.

Solution

This solution outlines how to use the BAM portal to view an activity line item and issue a technical
assistance request for that activity line item. The following instructions assume you have deployed a
BizTalk solution and the associated BAM artifacts and that the BizTalk solution has processed
transactions. This solution outlines the steps required for creating a technical assistance service request
from the BAM portal:

1. From the Start menu, select All Program Files ➤ Microsoft BizTalk Server 2010
➤ BAM Portal Web Site.

2. Locate the view, and perform the activity search on the activity in which you
would like to request technical assistance. Figure 11–30 displays a sample
activity search.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

556

Figure 11–30. Activity search example

3. Click the activity line item in which you would like to request technical
assistance. The Activity Status screen will display and detail information about
the chosen line item as well as the Assistance button. You should see a screen
similar to Figure 11–31.

Figure 11–31. Activity status example

4. Click the Assistance button to open the Request Technical Assistance – Web
Page Dialog dialog box, as shown in Figure 11–32. Enter the appropriate
information for the technical request, and click the Send Report button.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

557

Figure 11–32. Request Technical Assistance – Web Page Dialog dialog box

5. Open the Event Viewer to verify that an event log entry has been created for the
submitted request. Figure 11–33 demonstrates the generated event log entry for
the submitted technical assistance request. The entry will be displayed in the
Event Viewer as a success audit.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

558

Figure 11–33. Event Viewer entry

How It Works

The Request Technical Assistance functionality included with the BAM portal allows the user to request
additional information about a specific activity instance without having context to the business artifacts
or the team supporting the solution. To take the greatest advantage of the Request Technical Assistance
functionality, the support team should implement an automated solution to monitor Event Viewer
entries or exceptions (such as the Microsoft Operations Manager). Via an automated tool, the support
team could receive an e-mail or perform some automated action once receiving the technical assistance
request.

By default, the Request Technical Assistance functionality creates an entry only in the Event Viewer
of the BizTalk Server. For more advanced functionality, investigate how to use a tool that monitors the
Event Viewer for new events and performs action based on those events.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

559

11–7. Creating a Tracking Profile

Problem

You have deployed a BAM workbook and the associated BizTalk artifacts. You need to map the BizTalk
artifacts to the deployed BAM workbook milestones, data items, and key performance indicators.
Additionally, you need to save the mapped profile for deployment to other environments.

■Note Recipe 11–2 introduced how to use the Tracking Profile Editor; this recipe takes a more in-depth look at

how to use it.

Solution

The example reviewed as part of this recipe outlines how to use BizTalk’s Tracking Profile Editor to map
BizTalk artifacts to an Excel BAM workbook. The following sections outline the category of steps
required for creating a tracking profile, mapping BizTalk artifacts to the deployed workbook activities
within the Tracking Profile Editor, and finally applying the tracking profile to the deployed BizTalk
artifacts. The three main categories of steps are as follows:

• Select the activity and artifacts.

• Map events and data items.

• Save and apply the tracking profile.

Select the Activity and Artifacts

To select the activity and artifacts, follow these specific steps:

1. From the Start menu, open the Tracking Profile Editor by selecting Start ➤ All
Programs ➤ Microsoft BizTalk Server 2010 ➤ Tracking Profile Editor. You will
see an application screen that looks similar to Figure 11–34.

■Note This solution assumes you have deployed a BAM workbook and BizTalk artifacts.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

560

Figure 11–34. Tracking Profile Editor

2. Click the Click Here to Import BAM Activity Definition link to load the deployed
BAM workbook and associated activity:

a. The BAM Import Activity dialog box will ask you to choose the activity to use in the
Tracking Profile Editor. If you have deployed the BAM workbook created in Recipe 11–1,
choose the Process Activity BAM activity.

b. Leave the Retrieve the Current Tracking Settings for This Activity Definition box
unchecked, and click the OK button to select the activity.

■Note If you have already applied a tracking profile to the selected activity, you can retrieve the results by

selecting the Retrieve the Current Tracking Settings for This Activity Definition box.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

561

3. Click the Click Here to Select an Event Source to load the BizTalk artifacts that
will be used during the mapping activity. Identify the assembly that contains
the orchestration to map, and identify the specific orchestration that contains
data for mapping.

■Note In this example, a basic orchestration has been created that performs a message receive and send and

that implements a catch block for any exceptions. In this example, the name of the assembly is BizTalk Server

BAM Test, and the name of the orchestration is BizTalk_Orchestration_BAM.

a. On the Select Event Source Parent Assembly page, locate the assembly that contains the
orchestration you would like to map to the activity. Click the Next button to continue and
to select the orchestration to map.

b. On the Select Orchestration page, select the name of the orchestration you would like to
map to the activity. Click the OK button to complete the Event Source Wizard. Figure 11–
35 displays the example with a sample orchestration.

Figure 11–35. Completed Event Source Wizard

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

562

Map Events and Data Items

To map events and data items, follow these steps:

1. Drag the orchestration shapes to the Activity nodes listed in Table 11–12.

Table 11–12. Sample Orchestration Step Mapping

Activity Node Orchestration Step Description

Begin Drag the Receive_Msg shape
to the Begin activity node.

Captures the successful receipt of a
message, which indicates that the process
began successfully

EndSuccess Drag the Send_Msg shape to
the End activity node.

Captures the successful sending of a
message, which indicates that the process
completed successfully

EndException Drag the LogException shape
to the EndException activity
node.

Logs an exception occurred in the process

2. Right-click the Receive_Msg shape, and choose Message Payload Schema.

a. Expand the <Schema> folder icon, and navigate to the data items that are to be reported in
BAM.

b. Drag each reportable data item to the correct Activity node. Table 11–13 outlines the
mapping of sample orchestrations to the deployed BAM activities.

Table 11–13. Sample Orchestration Data Item Mapping

Activity Node Orchestration Step Description

Transaction ID Drag the Customer.MessageID node to
the Transaction ID node.

MessageID is the unique identifier
for the message received.

Transaction Type Drag the Customer.TransactionType
node to the TransactionType activity
node.

TransactionType is the
transaction identifier indicating
the type of message received.

Figure 11–36 demonstrates the completed mapping between the sample orchestration and activity.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

563

Figure 11–36. Completed mapped activity

Save and Apply the Tracking Profile

To save and apply the tracking profile, follow these steps:

1. From the Tools menu, select Apply Tracking Profile. Applying the tracking
profile immediately sets the mapping to start recording data the next time the
orchestration or process executes.

2. If you plan on deploying the tracking profile in other environments or would
like to save a copy of the profile, then choose File ➤ Save As.

How It Works

As mentioned earlier in this chapter, BAM is a powerful tool and architecture for monitoring
predetermined milestones and business data. Implementing BAM requires identifying the milestones
and business data to report and then mapping those data points to the physical BizTalk solution

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

564

artifacts. You can map milestones and business data to physical solution artifacts via the Tracking Profile
Editor or via the BAM APIs and custom code.

This recipe outlined how to use the BizTalk Tracking Profile Editor to map between a deployed BAM
workbook and physical BizTalk solution artifacts. This example outlined a simple scenario involving the
mapping of a deployed activity to a single orchestration and data points contained within the message
processed by the single orchestration. However, the Tracking Profile Editor can map multiple BizTalk
artifacts to a single BizTalk activity or multiple activities. When using the Tracking Profile Editor, keep in
mind the three categories of steps that were completed in this recipe, as outlined in the following sections.

Select the Activity and Artifacts

Before mapping an activity to a BizTalk solution artifact, you must choose the activity and the BizTalk
artifact(s) that will be mapped. When you open the Tracking Profile Editor, you first select the activity
from the list of deployed activities that will be receiving data. Once the activity loads, it will display each
of the defined milestones and data items that were previously defined in the activity. The list of the
milestones and data items is referred to as the activity tree. An activity tree lists the stages and business
data items tracked in the deployed activity. When you load an activity in the Tracking Profile Editor, the
stages identified in the activity and the business data items appear in the tree.

The basic premise of the Tracking Profile Editor is the ability to map from the deployed activity
(which is a conceptual view of a business process) to the physical BizTalk solution. When loading an
activity, in the Tracking Profile Editor the activity tree will list all the items created in the deployed
activity.

■Note In addition to the list of activity items displayed in the activity tree, you can create four additional items.

Please review the “Considerations” section of this recipe for more information about the additional items you can

create.

After selecting the activity, the next step is to select the BizTalk artifacts that will be contributing
data to the items listed in the activity tree.

Map Events and Data Items

The next category of steps involves the physical mapping between the BizTalk artifacts and the activity
items listed in the activity tree. You map between a BizTalk artifact and an activity item by dragging the
BizTalk artifact to the activity item. After dragging the BizTalk artifact to the activity item tree, the artifact
will be listed in the activity tree.

Save and Apply the Tracking Profile

The final category of steps applies the tracking profile to the deployed BizTalk artifacts and allows you to
save the tracking profile for deploying in other environments or making adjustments later.

Activity Tree Items

The activity tree typically lists the milestones and data items defined in an activity. However, you can
also create four other types of items in the activity tree to further enrich your BAM solution. Table 11–14

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

565

outlines the items that are included as part of the deployed activity as well as the additional possible
items available in the Tracking Profile Editor to help you map activity items to the solution artifacts.

Table 11–14. Activity Tree Items

Tracking Profile Description NotesEditor Item Icon

Stage Automatically created in the activity
tree when defining a milestone within
an activity. The stages are listed when
an activity is loaded.

Orchestration steps are mapped to this
shape. Some orchestration steps cannot
be mapped to this shape including
Termination shapes and any steps
included within a Loop shape.

Data Item Automatically created in the activity
tree when defining a data item within
an activity. The data items are listed
when an activity is loaded

You can specify data items from
messages in orchestrations or pipelines.
Additionally, you can specify context
property information for those messages.

Activity ID Uniquely identifies the instance of an
activity that has executed and is
automatically included within the
activity tree.

This value can be user generated and
identified from a message. However, the
field must be unique, because it is a key in
a SQL Server table. If no value is mapped
in the Tracking Profile Editor, BAM will
automatically generate this value.

Continuation Inserts a new continuation folder
within the activity tree.

Used in conjunction with
ContinuationID to allow multiple
components to populate the same
activity. For example, if Orchestration A
depends on Orchestration B and both
contribute data to the same activity,
then a continuation folder would be
created and mapped to a data item in
Orchestration A that is carried over to
Orchestration B.

ContinuationID Inserts a new continuation ID folder
within the activity tree.

ContinuationID is mapped to the data
item in Orchestration B that was passed
from Orchestration A.

Relationship Relationship folders are used to imply
a relationship between one or more
activities.

Relationships are especially useful in
relating two activities for a single
orchestration. For example, if you have
an orchestration with a Loop shape, the
orchestration and the Loop shape must
be represented by separate activities. Via
the relationship folder, you can create a
relationship between the two activities.

Document
Reference URL

Allows the linking of a document
related to this instance of the activity.

The file name can be mapped from
either a schema value or a context
property on the message.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

566

Activity Continuation

Activity continuation is the process of taking multiple BizTalk physical artifacts and combining data
from those artifacts into a single activity. Combining data is a useful option when a business process
spans multiple BizTalk solution artifacts. Think of the process of creating an activity as defining a
database table structure with multiple columns representing the containers for the business data and
milestones. When a process executes, it creates a new row in the activity database table recording the
data as mapped in the Tracking Profile Editor. Multiple BizTalk artifacts reporting data to the same
activity results in multiple rows created in the activity database table. For those artifacts to contribute to
a single row in the activity, you need a continuation between the artifacts indicating their relationship.

A common business scenario where activity continuation is useful is the scenario of a life cycle of a
purchase order. One company sends a purchase order to another company to purchase goods. The
entity shipping the goods will typically send a shipment notice after receiving the purchase order.
Additionally, the entity shipping the goods will usually send an invoice for payment of the shipped
goods. Managing the sending a purchase order and the receipt of a shipment notice and invoice typically
involves many BizTalk artifacts. However, it may be useful to have an end-to-end view of the purchase
order life cycle (once issued to the receipt of an invoice) versus each artifact reporting independently.
With activity continuation, all the artifacts involved in the life cycle of a purchase order can report
information to a single activity, allowing for an end-to-end view of the purchase order life cycle.

Consider the following example: Orchestration A processes a message and transmits that message
to Orchestration B for processing. When Orchestration B is finished, it sends a response message back to
Orchestration A. When Orchestration A receives the response from Orchestration B, it completes
processing. Figure 11–37 demonstrates the sample relationship between Orchestration A and B.

Figure 11–37. Continuation sample

Both Orchestration A and Orchestration B can be mapped to the sample activity. However, when
the orchestrations execute, two data rows will be created in the activity table to record the information

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

567

from the orchestrations (one for Orchestration A and one for Orchestration B). If both orchestrations
need to contribute data to the same row in the activity, you must create a continuation in the activity
tree to indicate the continuation of activity between Orchestration A and Orchestration B.

The following items are required to create an activity continuation between two orchestrations:

• A data item that relates the two orchestrations (or other BizTalk artifacts) and that
can be an attribute in a message shared between the two orchestrations

• A continuation folder that specifies the data item in a parent orchestration that
relates the two orchestrations

• A continuation ID folder identifies the data item in the child orchestration that
relates the two orchestrations

■Note The name of continuation folder and the name of continuation ID folder must be identical in the activity

tree. For example, if you create a continuation folder with the name of Continuation, you must create a

continuation ID folder with the name of Continuation. You will receive an exception message if the continuation

folder and continuation ID folder do not share the same name.

In the Orchestration A and Orchestration B example, the message ID in Orchestration A from the
Send shape is mapped to the continuation folder. The same message ID in the Orchestration B Receive
shape is mapped to the continuation ID folder. The message ID is the data item that links the two
orchestrations and is also the data item in the continuation and continuation ID folders. The BAM end-
to-end SDK sample included with the standard BizTalk installation provides a sample implementation
of a continuation.

Activity Relationships

Activity relationships are different from activity continuations in that they allow implicit linking between
multiple activities. Consider the Orchestration A and Orchestration B example. If both orchestrations
represented different business processes, then it may not make sense to have them report to the same
activity. If they report to different activities, it may be useful to represent that the activities have a
relationship but are disparate. A real-world example of an activity relationship may be how a single
purchase order represents multiple shipments. Each activity (purchase order and shipment) is a
different activity but is related to the others.

Activity relationships are also necessary when needing to report on BizTalk orchestrations that
contain the Loop shape. You can define the parent orchestration as one activity and the looping activity
as a separate activity and still accurately report on the activity of the entire process.

When creating activity relationships, you must adhere to the following guidelines:

• Related activities should belong to the same BAM view.

• A relationship item must be created in each activity in the Tracking Profile Editor
and must be given the appropriate name of the related activity.

Consider that Activity A reports on the activity in Orchestration A and Activity B reports on the
activity in Orchestration B; you would create the relationships activity items listed in Table 11–15.

http://

CHAPTER 11 ■ BUSINESS ACTIVITY MONITORING

568

Table 11–15. Example Relationship

Orchestration Name Activity Name Relationship Item Name

Orchestration A Activity A Activity B

Orchestration B Activity B Activity A

After specifying the activity items in each activity, the data item that represents the relationship
between the activities must be mapped to each activity item. After creating the relationship item in
Activity A, a data item (for example, the message ID) that is shared between the activities would need to
be mapped to Activity A. The same data item (that is, the message ID) is then mapped to the ActivityID
item of Activity B. Mapping the data item to the ActivityID creates the relationship between the first and
second activity.

http://

Index

■ ■ ■

569

■ Symbols
#If statement, 554
$Documents and Settings[current user]Local

SettingsTemp_MapData directory, 179
$Program FilesCommon FilesMicrosoft BizTalk

directory, 416, 423
$Program FilesMicrosoft BizTalk Server 2010

directory, 416, 423
$Program FilesMicrosoft BizTalk Server

2010Developer Tools directory, 396
$Program FilesMicrosoft BizTalk Server

2010HttpReceive directory, 388, 390
$Program FilesMicrosoft BizTalk Server

2010XSD_SchemaEDI directory, 12
$Program FilesMicrosoft BizTalk Server

2010XSD_SchemaEDIHIPAA00401A1
folder, 434

%datetime% macro, 338
%datetime_bts2000% macro, 338
%datetime.tz% macro, 338
%DestinationParty% macro, 338
%DestinationPartyQualifier% macro, 338
%MessageID% macro, 338
%Program FilesMicrosoft BizTalk Server 2010

directory, 219
%Program FilesMicrosoft BizTalk Server

2010Developer Tools directory, 141
%Program FilesMicrosoft BizTalk Server

2010Developer ToolsMapper Extensions
directory, 143

%SourceFileName% macro, 338
%SourceParty% macro, 338
%SourcePartyQualifier% macro, 338

%time% macro, 338
%time.tz% macro, 338

■ A
Access Data Sources Across Domains field,

Security Settings dialog box, 546
Access Restrictions area, 245
Access tab, 388, 392
ACID (Atomicity, Consistency, Isolation, and

Durability), 304
Acknowledgement Type property, 354
acknowledgements, automatic, 444–446
Activate property, 239, 241–243, 262, 295, 309,

364, 371, 427
ActiveX Data Objects (ADO), 119
activities

continuations, 566–567
creating, 516–532

activity grouping and multiple
processes, 531–532

aggregations, dimensions, and
measures, 522–525, 531

constructing pivot tables, 525–528, 531
creating activity workbooks, 516–518,

529–530
outline view, 518–522, 530–531

deploying, 532–540
performing searches of, 541–543
relationships, 567–568
selecting, 559–561
tree items, 564–565

Activity ID item, 565
Activity node, 562

http://

■ INDEX

570

Activity Search link, 546
Activity Search node, 542
Activity Search page, 546, 550
Activity Status screen, 556
adapters, 335–397

calling stored procedures, 367–373
creating ports through C# applications,

395–397
File adapter

receiving files with, 339–344
sending files with, 335–339

HTTP
receiving with, 387–392
sending with, 383–387

MSMQ, 355–359
queue name formats, 355–359
receive options for, 357–359
send options for, 352–355

SMTP ports, 344–350
SOAP, 393–395
SQL adapter

receiving messages with, 373–383
sending updategrams, 360–367

Adapters folder, 348
Add Adapter Metadata option, 361, 369
Add Adapter Metadata template, 375
Add Adapter Wizard page, 361, 369, 376
Add Days functoid, 145–148
Add Generated Items option, 28, 361, 369, 375
Add Generated Items Wizard, 361, 366–367,

369, 381
Add New Definition option, 403–404, 417
Add New Item dialog box, 25, 43, 60, 89, 198,

204, 207, 209, 236, 247
Add New Policy option, 400, 408
Add New Rule option, 408
Add New Vocabulary option, 413
Add Page option, 97
Add Port Type option, 320
Add Receive Location option, 379
Add Reference dialog box, 266
Add Reference option, 43, 266
Add/Remove Snap-in option, 202
Add Resources dialog box, 468, 494–495
Add Script Map dialog box, 389–390
Add Script Map option, 388
Add Service Reference option, 323
Add Subscriber button, 548

Add Subscriber dialog box, 548
Add Virtual Directory option, 390
/addRequestWebService_Proxy/addRequestWe

bService_addRequestSPMLWebService_a
ddRequest.asmx web service, 456

Address column, 362, 418
Address complex type element, 53
Address element, 93, 103
Address field, 103
Address node, 168
Address property, 258
Address schema, 41
Address (URI) ellipsis button, 391
Address (URI) parameter, 379
Address (URI) property, 192, 336, 379, 393
AddrLine1 element, 93
AddrLine2 element, 93, 104
AddrLine3 element, 93
administration, 481–514

debugging orchestrations, 498–504
managing BizTalk applications, 492–498
restarting BizTalk host instances, 508–509
resubmitting messages, 489–492
resuming inbound message processing,

510–514
throttle orchestration memory usage,

509–510
tracking messages, 504–507

accessing tracked messages, 506–507
configuring tracking, 504–506

troubleshooting suspended services,
482–489

Administration folder, 483, 489
Administration Queue property, 354
Administrative Tools option, 388
ADO (ActiveX Data Objects), 119
Advanced Functoids tab, 103, 107, 111, 133,

137, 151, 154, 158, 171, 174
Advanced Scripting functoid, 153
AffiliateApplicationName property, 385–386
Age element, 38, 402, 427–428
Age node, 403–405
AgeValidation folder, 408
Aggregation Dimension and Measures page,

Business Activity Monitoring View
Creation Wizard, 525

aggregations, 522–531, 543–545
Aggregations node, 543
Aggregations page, 543–544

http://

■ INDEX

571

Aggregations tab, 550
Aggregations view, 545
Agreement option, 439
Agreement Properties window, 439–441, 443
AirlineReservation record, 135
Alert Details screen, 547
Alert Management node, 548
alerts, setting up, 546–551
Alias milestone, 531
Alias property, 390
AliasNames node, 114–115
Amount field, 150–152
Analysis Services, 533
AND functoid, 156
And keyword, 243
Any attribute, 180
Any element, 102, 104–105, 168, 180, 185,

314–317
Any Element option, 45, 102
anyType data type, 53
anyURI data type, XSD, 34
API (application programming interface), 122
Append option, Copy Mode drop-down list, 337
appID node, 124
appInstance node, 123, 126
ApplicantAge parameter, 409
ApplicantRole parameter, 409
Application event log, 483
Application Name property, 473
application programming interface (API), 122
Application Properties dialog box, 492–493
Application Settings page, Import Wizard,

463–464, 466
Application Target Environment Settings page,

Import Wizard, 464
ApplicationName parameter, 459
applications

BizTalk
overview, 492–498
restarting host instances, 508–509

exporting, 453–461
application subsets, 459–460
bindings, 460
policies, 460–461

importing, 462–467
Applications folder, 453, 462, 474, 476–477, 492
Applications node, 465
Apply Tracking Profile option, 539, 563

Approver distinguished field, 321
Approver element, 319, 322
appType node, 122, 126–127
appValue node, 127
architecture considerations, for Database

Lookup functoid, 120–121
artifacts, selecting, 559–561
Assembly Name property, 394
Assistance button, 556
atomic scopes, in orchestrations, 304–308

benefits of, 306
compensation handling, 307
considerations for, 305–306
exception handling, 307
MSDTC transactions, 307–308

Atomic type, 410
Atomicity, Consistency, Isolation, and

Durability (ACID), 304
Attach button, 502
Attach to Process option, 502
Attachments tab, 346
attributes, for custom pipelines, 222
Authentication tab, 337, 343
AuthenticationScheme property, 385–386
automatic acknowledgements, 444–446

■ B
BAM (Business Activity Monitor), 515–568

creating activities and views, 516–532
activity grouping and multiple

processes, 531–532
aggregations, dimensions, and

measures, 522–531
constructing pivot tables, 525–531
creating activity workbooks, 516–518,

529–530
outline view, 518–522, 530–531

creating service requests, 555–558
creating tracking profiles, 559–568

map events and data items, 562–564
saving and applying, 563–564, 568
selecting activities and artifacts,

559–564
deploying activities and views, 532–540
setting up alerts, 546–551
using Interceptor, 551–554
using portals, 540–546

accessing, 541

http://

■ INDEX

572

performing activity searches, 541–543
viewing aggregations, 543–545

BAM Import Activity dialog box, 560
BAM Interceptor API, 332
BAM Management Utility, 532, 540–541
BAM Portal Web Site option, 541, 555
BAM Star Schema database, 533
BAM View option, 518
BAMApiPo option, 551
BAMApiSample.cs file, 554
BAMApiSample.exe file, 552
BAMApiSample.sln file, 552
BAMPrimaryImport database, 540
BAMProject assembly, 534
BAM.xla file, 517
BaseException element, 317–318
Basic Authentication option, 349
Batch property, 359
Batch Size property, 358
BatchedOrderMessage message, 329
BatchID element, 50
BatchingPipelineInput variable, 330
Begin milestone, 536
Begin node, 562
Begin (Process Activity) milestone, 521, 523
benefits, of atomic scopes in orchestrations,

306
<BigSales> element, 150
BigSales record, 151
bin directory, 269
Bind option, 253
binding orchestrations, 253–254
bindings, exporting, 460
BizTalk Administration Console, 11, 195, 231,

348, 357, 390, 474, 481, 504, 509
BizTalk Administrator Console, 482, 492
BizTalk Application Users group, 510
BizTalk applications

overview, 492–498
restarting host instances, 508–509

BizTalk Assemblies option, 449, 468, 494
BizTalk Assembly page, BizTalk WCF Services

Publishing Wizard, 327
BizTalk EDI application, 456
BizTalk Editor view, 351, 356
BizTalk ExplorerOM assembly, 397
BizTalk Framework (BTF2), 33
BizTalk Group, 207

BizTalk Group Hub Overview area, 488
BizTalk Mapper tool, 106
BizTalk Orchestration Designer, 253–254, 276,

299
BizTalk Orchestrations section, 304, 319
BizTalk Pipeline Components section, 198, 204,

208
BizTalk Server Administration Console, 510
BizTalk Server (BTS), 33
BizTalk Server Flat File Wizard page, 61
BizTalk Server Group, 10
BizTalk Server RFID (Radio-frequency

identification) 2010, 19–21
BizTalk Settings Dashboard, 9–10, 509–510, 513
BizTalk solution, deploying from Visual Studio,

470–473
BizTalk Type Picker dialog box, 36, 41, 43, 90–91
BizTalk WCF Service Publishing Wizard, 84, 327
BizTalkMgmtDb database, 125, 127, 129
BizTalk.System application, 456
BizTalkToCustomerInsert procedure, 370
Body Type property, 353
Body XPath dialog box, 46
Body XPath property, 46, 49–50
BOM (byte order mark), 213
Boolean data type, 34
Browse button, 405, 407, 418, 420
BTF2 (BizTalk Framework), 33
BTNTSvc.exe tool, 502
BTNTSvc.exe.config file, 395
BTS (BizTalk Server), 33
BTSDeploy utility, 497
BTS.DestinationParty property, 338
BTS.DestinationPartyQualifier property, 338
BTSHatApp.exe tool, 481
BTSHTTPReceive.dll file, 388, 390
BTS.MessageID property, 337
BTSNTSvc.exe.config file, 395, 459, 502
BTS.ReceivePortName property, 288
BTS.SourceParty property, 338
BTS.SourcePartyQualifier property, 338
BTSTask commands, 466
BTSTask ExportApp utility, 459
BTSTask ExportBindings utility, 460
BTSTask ImportApp utility, 466
BTSTask ListApp utility, 461
BTSTask utility, 466, 497
BTSXRefImport tool, 125, 127–128
BTSXRefImport.exe tool, 125, 127–128

http://

■ INDEX

573

Business Activity Monitor. See BAM
Business Activity Monitoring Activity Definition

Wizard, 517
Business Activity Monitoring View Creation

Wizard, 518–519, 521–522, 525–526, 530
Business Data - Decimal item, 530
Business Data drop-down list, 543
Business Data - Integer item, 531
Business Data - Milestone item, 530
Business Data - Text item type, 517, 530
Business Milestones item type, 517
Business Profile option, 439
Business property, 17
Business Rule Composer, 400, 402–403, 413,

416–417, 420, 425, 429–430
Business Rules Composer, 414, 419
business rules framework, 399–431

calling engines from .NET, 422–425
executing policies, 424–425
passing data connection facts, 425

calling engines from orchestrations,
426–428

creating and testing rules, 401–412
creating business policies, 399–401
creating custom fact retrievers, 416–422
creating facts, 412–413
deploying and undeploying policies,

428–431
setting rule priorities, 414–415

By Delimiter Symbol radio button, 72, 75
By Relative Positions radio button, 68
Byte data type, 34
byte order mark (BOM), 213

■ C
C:/BAMWorkbookBAMTrackingProfile.btt file,

539
C# snippets, using inline, 158–161
C:/SuspendedMessagesExampleIn folder, 510
C:/SuspendedMessagesExampleOut folder, 512
C:/UsersAdministratorDesktopDropsReceiveSh

apeOrchestration folder, 240
CA (certification authority), 204
Call Orchestration Configuration dialog box,

280
Call Orchestration shape, for orchestrations,

280–281
Campos, Harold, 515
CancelFlag element, 318

CanonicalOrderValidatedMessage message,
329

carriage return and line feed (CRLF), 57
Categories list, 247
CDATA tag, 161
Certificate Name property, 193, 204, 395
Certificate property, 385
Certificate Thumbprint property, 354, 394
Certificates section, Host Properties dialog box,

205
certification authority (CA), 204
ChangeSendPortStatus() method, 475
Character set and separators tab, 443
Chart View pane, 543
child delimiter property, 58
Child Elements page, 76
Child Field Attribute option, 25, 44
Child Field Element option, 25, 44
Child Record option, 25, 44, 53
Choose Toolbox dialog box, 143
Choose Toolbox Items dialog box, 220
Choose Toolbox Items option, 143
City column, 362
city element, 58, 70
class declaration, for custom pipelines, 222
Clear All Breakpoints on Class option, 501
Click Here to Import a BAM Activity Definition

link, 534
Click Here to Select an Event Source link, 534
CLR (Common Language Runtime), 34
CMD command, 532
CodePage method, 214
Column Chooser pane, 542–543
comma-separated values (CSV), 140
common file dialog box, 27
Common Language Runtime (CLR), 34
Common Schemas project, 311
commonID attribute, 124
commonValue attribute, 128
Communication Pattern area, 244
Company node, 168, 172
Company schema, 178, 181–182
compensation handling, for atomic scopes in

orchestrations, 307
Compensation property, 304
compiled assemblies, calling, 153–158
Completed milestone, 523
complex types, for document schemas, 51–53
Component- Target Charset method, 214

e

http://

■ INDEX

574

ComponentCategory attribute, 222
Compose tab, 346
Concatenation functoid, 122
concatenation mapping, 91
concurrent convoy, 295
Configuration Database property, 473
Configure Application dialog box, 494
Configure button, 11, 341, 350, 356
Configure Functoid Inputs dialog box, 99–100,

118, 150, 158, 160
Configure Functoid Inputs option, 154
Configure Functoid Inputs window, 153
Configure Functoid Script dialog box, 155
Configure Port page, 244
Configure Scripting Functoid dialog box, 154,

158, 174–175
Confirmation element, 136
Connect As property, 390
Connection String field, 365, 373
Connection String parameter, 382
considerations, for atomic scopes in

orchestrations, 305–306
Constant Value option, 403
constants, for maps, 98–102
ContentType property, 31, 385
context message, 162
Continuation folder, 567
Continuation ID folder, 567
Continuation item, 565
ContinuationID item, 565
continuations, activity, 566–567
Copy Local property, 269
Copy Mode drop-down list, 336–337
correcting errors, in functoids, 7
Correlation Properties dialog box, 283, 288, 294
Correlation Set folder, 288, 294
Correlation Types folder, 288, 294
CorrelationID element, 315–318
correlations, for orchestrations, 282–287
Count aggregation type, 524
Count measure, 524
Country element, 91
Country node, 101
Create a new Port Type radio button, 244, 320
Create New option, Copy Mode drop-down list,

337
CreatingSOAPHeaders project, 82
Creation Time column, 484
CRLF (carriage return and line feed), 57

CRM (customer relationship management), 282
cross-referencing, for data mapping

dynamically with ID, 122–125
with Get Common ID functoid, 128–130
with Get Common Value functoid, 131–132
statically with value, 126–128

CSV (comma-separated values), 140
current() function, 174–175
Current UserPersonalCertificates folder, 204
CustFlatFileSend pipeline, 212
Custom button, Internet Explorer, 546
custom functoids, creating, 141–145
Custom XSLT Path property, 170, 177, 437
Custom XSLT property, 437
Customer node, Customer schema, 41
<Customer> record, 105
customer relationship management (CRM), 282
Customer schema, 40–43, 88, 90, 98, 105, 276
Customer table, 362, 365, 367, 373
Customer XML schema, 42
customerHeader element, 66–67
customerHeader record, 58, 67
customerHeader structure, 70
Customer.MessageID node, 562
CustomerName column, 362
CustomerRecord schema, 89, 91, 98, 276
Customer_Request element, 361, 370
Customer_Response element, 361, 370, 376
<Customers> record, 105
Customers schema, 105
Customers table, 418
CustomerSalesOrder schema, 67, 70–71, 74
CustomerSalesOrder.txt file, 56
CustomerSalesOrder.xsd file, 77
CustomerSalesOrder.xsd schema, 211–212
CustomerSchema.dll file, 42–43
CustomerToBizTalk procedure, 376, 380
Customer.TransactionType node, 562
customerType element, 58, 70
Customer.xsd schema, 243

■ D
data connection facts, passing, 425
Data element field, 443
Data Item item, 565
data items, 562–564
Data Structure Type drop-down list, 41, 52–53
Database Functoids tab, 116–118, 129, 131

http://

■ INDEX

575

Database Information section, 418
Database Lookup functoid, 116–122

advanced usage of, 121–122
architecture considerations for, 120–121
security considerations for, 120

Database Lookup Functoid input parameters
dialog box, 117

Database parameter, 459, 540
Database Table Column Definition window,

419
Database Table window, 419
Databases tab, Facts Explorer, 413
DataConnection fact, 422
dataExtractor class, 554
DataExtractor class, 554
Date and Time functoid, 94–95
Date and Time Functoids tab, 145
Date data type, 66
date element, 66
Date functoid, 145–149
Date Time data type, 517
Date/Time Functoids tab, 94
DateTime data type, 34
DateTime element, 95, 296–297
Dawson, Jim, 435
daylight saving time (DST), 139
Debug Map option, 184
debugging

maps, using Visual Studio, 184–185
orchestrations, 498–504

Decimal data type, 34
Decode stage, 448
Default Namespace property, 30
Default Web Site folder, 390
Definition Name field, 403, 405, 407
DefinitionFile parameter, 539–540
Delay property, 291
Delete Page option, 97
Delivery Notification property, 292, 310, 387
Demo.BizTalk application, 462, 465
Dependencies page, Export MSI File Wizard,

456
deploy-all command, 533, 539
Deploy option, 409, 472
Deploy Policy option, 430
deployment, 453–480

of BizTalk solution from Visual Studio,
470–473

enabling receive locations, 475–477

enlisting and starting orchestrations,
477–480

enlisting and starting send ports, 473–475
exporting applications, 453–461

application subsets, 459–460
bindings, 460
policies, 460–461

importing applications, 462–467
manually deploying updates, 467–470
of policies, 428–431

Deployment tab, 471
Derived By property, 54
description element, 76
Description property, 242, 251
design-time properties, for custom pipelines,

222
Destination Folder input box, 336
Destination page, Export MSI File Wizard, 457
Destination Queue property, 350, 352, 355
dimensions, 522–525, 531
DisableChunkEncoding property, 393
Disassemble stage, 448
Display Name field, 404
distinguished fields, 31
DistinguishedField attribute, 32
Do Not Authenticate option, 349
document normalization, 194
Document Object Model (DOM), 84
Document Reference URL item, 565
Document Root Element Name node, 382
Document Root Element Name parameter, 382
Document Root Element Name property, 379
Document Schema property, 56, 199, 208–213
document schemas, 23–85

complex types for, creating, 51–53
creating

based on XML document, 28–29
schema namespaces, 29–30
simple document schemas, 24–27
SOAP Header schemas, 79–85

defining regular expressions in, 54–56
envelopes for, splitting inbound data with,

44–51
and flat files, 56–60, 79
importing, 40–42
property schemas

creating, 35–39
promoting, 30–35

http://

■ INDEX

576

referencing, 42–43
Document Target Namespace node, 382
Document Target Namespace parameter, 382
Document Target Namespace property, 379
Document Type property, 428
DOM (Document Object Model), 84
Double data type, 34
Drop Row Fields Here section, 526
Drop Value Fields Here section, 526
DST (daylight saving time), 139
Dunphy, George, 515
Duration milestone, 531
DWORD option, 392

■ E
EDI (Electronic Document Interchange),

433–452
adding schema to projects, 433–435
configuring automatic acknowledgements,

444–446
configuring envelopes, 441–443
configuring trading partners, 14–18
configuring validation with pipelines,

446–447
creating and configuring trading partners,

438–441
creating custom pipelines, 447–450
creating maps, 435–436
defining complex mappings in external

XSLT, 436–438
HIPAA 5010-compliant schemas for, 11–14
subscribing to promoted properties,

450–452
EdiDataValidation property, 447
EdiIntAS type, 33
EDI.ISA06 property, 451
EDIOverride type, 33
EdiReceive pipeline, 446–447
EdiSend pipeline, 446–447
Edit Filter Expression option, 450
Electronic Document Interchange. See EDI
ELEMENTS clause, 374
Employee node, 109
Employee root node, 109
Enable encryption property, 203
Enable option, 357, 476
Enable Routing for Failed Messages check box,

231

Enable Routing for Failed Messages property,
192

Enable the Service Window property, 192
EnableChunkedEncoding property, 385
Encryption Algorithm property, 353
encryption pipelines, 200–207

receiving encrypted message, 204–205
sending encrypted message, 201–204

End (Process Activity) milestone, 521
EndException node, 562
EndSuccess milestone, 519–520, 536
EndSuccess node, 562
EndSuccess (Process Activity) milestone, 523
engines

calling from .NET, 422–425
executing policies, 424–425
passing data connection facts, 425

calling from orchestrations, 426–428
Enlist option, 474, 477
enlisted state, 478
enlisting

orchestrations, 477–480
send ports, 473–475

Enter Configuration Information Input section,
Transform Configuration dialog box, 276

enterprise resource planning (ERP), 195, 279
Enterprise Service Bus (ESB), 21
ENTITY data type, XSD, 34
Envelope property, 44, 51
envelopes

for document schemas, splitting inbound
data with, 44–51

EDI, configuring, 441–443
Envelopes tab, 442
Equal functoid, 135–136
ERP (enterprise resource planning), 195, 279
Error Information tab, Service Details dialog

box, 485–486, 513
error reporting, 228
Error Return functoid, 117, 119–120
Error Return node, 120
Error To Administrator schema, exception

handling in orchestrations, 317
ErrorMessage element, 317–318
ErrorReport type, 33
ErrorReport.ReceivePortName option, 232
ErrorType property, 231
ESB (Enterprise Service Bus), 21
EU (European Union), 160

http://

■ INDEX

577

EUDateTimeFormat variable, 161
European Union (EU), 160
Event Source Wizard, 561, 563
Event Viewer folder, 482
EventDate element, 157
Exception Handler Buffer Call Request schema,

314
Exception Handler Buffer Call Response

schema, 315
exception handling, in orchestrations, 311–317

for atomic scopes, 307
Error To Administrator schema, 317
Exception Handler Buffer Call Request

schema, 314
Exception Handler Buffer Call Response

schema, 315
Task Processing Logic Call schema,

315–316
Task Processing Logic Response schema,

316–317
Exception milestone, 519–520, 536
Exception Object Name property, 292, 301
Exception Object Type property, 292, 298, 301
Exception (Process Activity) milestone, 523
ExceptionHandlerPatternDemo project,

311–312
Executable property, 388
Execute method, 226–227
Execute Query option, 543
ExecuteReceivePipeline method, 331–332
ExecuteSendPipeline method, 330–332
executing policies, 424–425
Existing Item option, 434
Existing Map radio button, 280
Existing Port Type option, 325
Explorer Object Model, 397
Export MSI File Wizard, 453, 455, 459
Export Policies Wizard, 460–461
Export Policy/Vocabulary file option, 430
ExportApp utility, 461–462
exporting applications, 453–461

application subsets, 459–460
bindings, 460
policies, 460–461

Expression Editor, 299
Expression property, 259
Extensible Stylesheet Language

Transformations. See XSLT
external assemblies, in orchestrations, 266–269

external XSLT, defining complex mappings in,
436–438

■ F
Fact Retriever property, 420
facts

creating, 412–413
creating custom retrievers of, 416–422
data connection, passing, 425

Facts Explorer, 409, 412
factsHandleIn parameter, 416, 422
Failed milestone, 523
FailureCategory property, 230
FailureCode property, 230
FFAsm.exe tool, 214
FFDasm.exe tool, 214
Field Chooser icon, 544
Field Name column, 488
FIFO (first-in/first-out), 287
File adapter

receiving files with, 339–344
sending files with, 335–339

File Mask input area, 342
File Mask property, 342
FILE Transport Properties dialog box, 336, 342
FILE type, 33
FILE.ReceivedFileName property, 338
Filter Expression dialog box, 243
Filter Expression property, 242–243
Filters tab, 232, 445, 452
FinancialTransactionMessage message, 287
FinancialTransactionSchema schema, 287
Firewall section, FTP Transport Properties

configuration window, 11
first-in/first-out (FIFO), 287
FirstName column, 118
FirstName constant, 118
FirstName element, 30, 92
Flat File Assembler component, 210, 213
Flat File Assembler pipeline component, 214
Flat File Disassembler component, 208–209,

212
Flat File Disassembler pipeline component,

211, 214
Flat File Schema Information page, 61–62
Flat File Schema template option, 57
Flat File Schema Wizard, 60, 78–79

http://

■ INDEX

578

flat files
and document schemas, 56–60, 79
pipelines for, 207–214

FlatFileReceive pipeline, 211
Flattening (Value Mapping) functoid, 106–110
float data type, 34, 76
Folder icon, 36
Following Correlation Sets property, 242–243,

246, 290
for-each loop, 173
FOR XML AUTO clause, 374, 381
FOR XML AUTO statement, 380
FOR XML Explicit clause, 381–382
FOR XML statement, 376
For.Each structure, 134
FTP Transport Properties configuration

window, 11
FTP type, 33
fullName element, 58, 70
Fully Qualified Map Name Input option, 280
Fully Qualified Name property, 331
functoid class library, 141
Functoid Inputs tab, 158
functoids

correcting errors in, 7
custom, creating, 141–145
Database Lookup functoid, 116–122

advanced usage of, 121–122
architecture considerations for, 120–121
security considerations for, 120

Date functoid, 145–149
Get Common ID functoid, 128–130
Get Common Value functoid, 131–132
if-then-else logic with, 149–153
Iteration functoid, 137–140
Looping functoid, 133–137
Table Looping functoid, 110–115
Time functoid, 145–149
Value Mapping functoid, 106–110

FunctoidScript item, 158, 172, 174
FundsAvailableDateTime element, 146, 149

■ G
GAC (Global Assembly Cache), 143, 308, 417,

466, 496
gacutil /if command, 417
Gated check box, 111
gDay data type, XSD, 34

General tab, 11, 231, 339, 343–345, 372,
393–394, 485

Generate button, 370, 376
Generate Instance option, 27, 49, 180
Generate Schemas option, 28
Generate Schemas window, 28
Generated Script field, 370, 376
Get Application ID functoid, 129–130
Get Application Value functoid, 131–132
Get Common ID functoid, 128–130
Get Common Value functoid, 131–133
get method, 222
GetAppID method, 130
GetAppValue method, 132
GetClassID method, 225
GetCommonID method, 130
GetCommonValue method, 132
GetCurrent method, 331
Global Assembly Cache (GAC), 143, 308, 417,

466, 496
globally unique identifier (GUID), 337
gMonth data type, XSD, 34
gMonthDay data type, XSD, 34
Greater Than functoid, 140, 150–151
grid page, 96
Grid Preview option, 6
Group Hub page, 475, 482–483, 489, 499,

510–512, 514
Group milestone, 531
Group Overview page, 510
Group Properties dialog box, 207
Grouped by Service Name link, 491
Guid attribute, 308
GUID (globally unique identifier), 337

■ H
hand button, mapping toolbar, 5
HAT (Health and Activity Tracking), 1, 481
Header schema property, 213, 252
Health and Activity Tracking (HAT), 1, 481
Helper class, 266, 411
HIPAA 5010-compliant schemas, for EDI, 11–14
HIPAA00501 folder, 13
HIS (Host Integration Server), 21
host instances, BizTalk, 508–509
Host Instances option, 205
Host Instances tab, BizTalk Settings

Dashboard, 509

http://

■ INDEX

579

Host Integration Server (HIS), 21
Host Properties dialog box, 205
Hour element, 138
HourlyUsage record, 138–139
HR (human resources), 318
HTTP, adapters for

receiving with, 387–392
sending with, 383–387

HTTP type, 33
HttpCookie property, 386
HTTPReceive key, 392
HTTPReceiveThreadsPerCPU property, 393
human resources (HR), 318

■ I
IBaseComponent interface, 222–224
IComponent interface, 191, 222–223, 226–228
IComponentUI interface, 222–224
Icon method, 224
ID data type, XSD, 35
ID field, 124, 538
ID property, 291
Identifier element, 332
Identifier property, 251, 253
Identifiers tab, 442
Identities tab, 439
Identity column, 362
IDREF data type, XSD, 34
idXRef node, 124
IF section, 409
if-then-else logic, with functoids, 149–153
IFactRetriever interface, 416
If.Then.Else statement, 258
Import and publish Policy/Vocabulary to

database from file option, 430
Import BAM Activity Definition dialog box, 534
Import BAM Activity Definition option, 551
Import from file button, 159
Import option, 42
Import Summary page, Import Wizard, 464, 466
Import Wizard, 462–466
importing

applications, 462–467
document schemas, 40–42

Imports dialog box, 40–42
Imports method, 41–42
Inbound Maps tab, 194

inbound message processing, resuming,
510–514

InboundHttpHeaders property, 386
InboundTransportLocation property, 230
Include option, 42
incomingOrder message, 270
Indicate Matches option, 8
Init() function, 144
Initializing Correlation Sets property, 242–243,

246, 285
initNew method, 225
Inline Script Buffer text box, 158, 175
Input folder, 312
Input Instance Filename property, 27
Input Parameters dialog box, 129, 131
Input Parameters field, 150
InputMessage node, 183
InputParameter element, 314, 316
InputParameter (Node) element, 314, 316
Insert Child Record option, 41
Insert Schema Nodes option, 25
InsertCustomerService schema, 364
InsertCustomerService.xsd file, 363
Install Microsoft BizTalk RFID option, 19
Install to Global Assembly Cache property, 473
installing BizTalk Server RFID 2010, 19–21
InstallWFX.vbs script, 29
int data type, 34, 76
Int16 data type, 34
Int32 data type, 34
intCount variable, 273
integer data type, XSD, 34
Interceptor, 551–554
InterceptorConfig.cs file, 552
InterceptorConfig.exe file, 552, 554
Internal - limited to this project radio button,

245
Internet Information Services Manager, 388
Internet Options menu, Internet Explorer, 544
IPersistPropertyBag interface, 222–223, 225–226
IPipelineContext parameter, 227
IPipelineContext.Resource tracker, 227
ISA properties, 442
ISA06 property, 451
ISA12 property, 442
ISA13 property, 442
ISA15 property, 442
ISerializable interface, 306

http://

■ INDEX

580

Isolation Level property, 304, 306
item element, 73–74
item record, 74
items element, 66
items record, 70–72, 76
Iteration functoid, 137–140

■ J
Jones, Lauren, 136

■ K
Kaufman, Stephen, 515
Kelcey, Peter, 515
Key option, 392
KPIs (key performance indicators), 540

■ L
Label and Comments tab, 98
Label property, 97
language data type, XSD, 34
LastName element, 93
LEGACY type, 33
Less Than predicate, 409
line of business (LOB), 335
LineItems schema, 252
ListApp utility, 461
List_Of_App_Instance.xml file, 123, 126
List_Of_App_Type.xml file, 122–123, 126–127
List_Of_IdXRef_Data.xml file, 124
List_Of_IdXRef.xml file, 123–124
List_Of_ValueXRef_Data.xml file, 127
List_Of_ValueXRef.xml file, 126–127
Load method, 225
LoadXml method, 165
LOB (line of business), 335
Local ComputerOther People certificate store,

206
Local ComputerOther People folder, 201
local-name() qualifier, 168
Logical Functoids tab, 107, 135, 150
long-running transactions, in orchestrations,

309–311
long-term fact, 416
Loop shape, for orchestrations, 273–274
Loopback flag, 391
Looping functoid, 109–110, 133–137

■ M
MailedTicketFlag element, 157
Main function, 553
MainApp class, 554
MainPageContent.htm file, 545
Management database, 456, 463
manually deploying updates, 467–470
map events, 562–564
Map option, 43, 89
Map template, 435
MapContextMsg message, 166
Mapper Extensions folder, 144
Mapper Functoids tab, 143
mapper toolbar, 5
mapping data

calling compiled assemblies, 153–158
constants for maps, 98–102
cross-referencing

dynamically with ID, 122–125
with Get Common ID functoid, 128–130
with Get Common Value functoid,

131–132
statically with value, 126–128

custom functoids, creating, 141–145
Database Lookup functoid, 116–122

advanced usage of, 121–122
architecture considerations for, 120–121
security considerations for, 120

Date functoid, 145–149
debugging maps using Visual Studio,

184–185
if-then-else logic with functoids, 149–153
inline C# snippets, 158–161
Iteration functoid, 137–140
Looping functoid, 133–137
organizing maps, 96–98
passing orchestration variables into maps,

162–168
simple maps, 88–96
Table Looping functoid, 110–115
testing maps, 178–183
Time functoid, 145–149
for unknown schema structures, 102–106
Value Mapping functoids, 106–110
XSLT

external file for, 176–177
group-by, 173–176
inline, 168–171

http://

■ INDEX

581

inline call templates, 171–173
mapping messages, 193–194
mapping surface, navigating, 4–6
mapping toolbar, 5
mappings, defining in external XSLT, 436–438
maps

EDI, creating, 435–436
indicating matches in, 8–9

Mass Copy functoid, 103–105, 170–171
matches, indicating in maps, 8–9
Mathematical Functoids tab, 140
max cardinality property, 58
Max Occurs property, 137
Maximum Message Size property, 353–355
MaxRedirects property, 386
MaxRetryCount element, 314
measures, 522–525, 531
memory usage, throttle orchestration, 509–510
Message Assignment Editor, 383–384
Message Body Part property, 248–249, 251
Message Constructed property, 383
Message Details dialog box, 513
Message Payload Schema option, 537–538, 562
Message Priority property, 353
Message property, 239, 241, 243, 270, 310, 384
Message Type drop-down list, 325–326
Message Type property, 237, 241, 243, 250, 270,

325–326
Message- XMLNORM.SourceCharset method,

214
Message- XMLNORM.TargetCharset method,

214
MessageBox database, 229, 241–242, 245, 296,

328, 360–361, 369, 376
MessageContextPropertyBase property,

271–272
Message.EncryptionAlgorithm property, 353
MessageId element, 81
messages

from different schema types, in
orchestrations, 270–272

inbound, resuming processing, 510–514
maintaining order of, 287–292
multipart, and orchestrations, 246–253
multiple formats, 262–265
receiving, 236–243
resubmitting, 489–492
sending, 243–246
tracking, 504–507

access tracked messages, 506–507
configure tracking, 504–506

Messages Constructed property, 277, 326, 329
Messages folder, 237, 243, 250–251, 270,

325–326, 383
Messages tab, Service Details dialog box,

486–487, 513
MessageTracking type, 33
MessageType property, 230, 272
Message.UseEncryption property, 353
messaging

mapping of, 193–194
receive ports for, 189–191
send port groups for, 195–198
send ports for, 191–193
subscribing to suspended, 231–233

Microsoft Message Queue, adapters for.
See MSMQ, adapters for

Microsoft.BizTalk. XLANGs.BTXEngine type, 33
Microsoft.BizTalk.Bam.EventObservation.dll

assembly, 553
Microsoft.BizTalk.BaseFunctoids.dll assembly,

141
Microsoft.BizTalk.CrossReferencing

namespace, 130, 132
Microsoft.Biztalk.CrossRreferencing.dll file,

130, 132
Microsoft.BizTalk.DefaultPipelines.XMLTrans

mit pipeline, 365, 373
Microsoft.BizTalk.ExplorerOM.dll assembly,

396
Microsoft.BizTalk.ExplorerOM.SendPort class,

475
Microsoft.BizTalk.Pipeline.dll assembly, 219,

221
MicrosoftEdiXSDTemplates.exe file, 12, 434
Microsoft.RuleEngine.DataConnection class,

416
Microsoft.RuleEngine.dll assembly, 416,

423–424
Microsoft.RuleEngine.IFactRetriever interface,

416
Microsoft.RuleEngine.TypedXmlDocument

class, 426
Microsoft.XLANG.BaseTypes.PersistenceExcept

ion, 307
Microsoft.XLANG.BaseTypes.RetryTransaction

Exception, 307, 311
Microsoft.XLANGs.BaseTypes.Address field,

258

http://

■ INDEX

582

Microsoft.XLANGs.Pipeline assembly, 331
Microsoft.XLANGs.Pipeline.dll file, 329
Microsoft.XLANGs.Pipeline.ReceivePipelineOut

putMessages class, 329, 331
Microsoft.XLANGs.Pipeline.SendPipelineInput

Messages type, 330
Microsoft.XLANGs.Pipeline.XLANGPipelineMa

nager class, 330
MiddleInit element, 91
MIME/SMIME Decoder component, 204–205
MIME/SMIME Encoder component, 202, 204,

206
MIME type, 33
Minimum Age constant, 403
MinimumAge parameter, 409
Moukhnitski, Sergei, 515
Move to Application dialog box, 497
MoveNext method, 331
MQSeries type, 33
MSDTC transactions, for atomic scopes in

orchestrations, 307–308
msgContext message, 163, 165
msgCustomer message, 243
msgCustomerMessage message, 237
msgCustomerRecords message, 276–277
msgCustomers message, 276–277
msgDemo message, 296
msgInputMessage message, 163, 166
msgNewHire message, 319
msgOutputMessage message, 163, 166
msgVer1 schema, 263
msgVer2 schema, 263
MSI File option, 453, 462
MSMQ (Microsoft Message Queue), adapters

for, 355–359
queue name formats, 355–359
receive options for, 357–359
send options for, 352–355

MSMQ Send Port Properties dialog box, 352
MSMQ Transport Properties dialog box, 350,

356
MSMQ type, 33
MSMQT type, 33
Muenchian method, 176
Multi-part Message Types folder, 247–248
MultiPartOrderMessage message, 250
My Views tree, 542–543
MyViews tree, 541

■ N
Name data type, XSD, 34
Name element, 92, 108–109, 168, 296
Name property, 239, 242, 270, 298, 304–305, 388
Native property, 58
navigating mapping surface, 4–6
NCName data type, XSD, 34
negativeInteger data type, XSD, 34
NET Assemblies tab, Facts Explorer, 413
.NET, calling engines from, 422–425

executing policies, 424–425
passing data connection facts, 425

<.NET Class> option, 267
Network Failure options, 343
network load balancing (NLB), 545
New Activity button, 517
New Activity dialog box, 518
New BAM View, 519
New Compensation Block option, 310
New Configured Port option, 239, 271, 325, 386
New Correlation Set option, 285, 288
New Correlation Type option, 283, 288, 294
New Dimension button, 522
New Dimension dialog box, 523
New Duration creation dialog box, 520
New Duration dialog box, 521
New Exception Handler option, 298, 301
New Group button, 519
New Hire process, 323
New Item dialog box, 25
New Item option, 435, 447
new keyword, 269
New Map option, 280
New Measure dialog box, 524
New Message option, 250, 263, 270, 325–326,

383
New Message Part option, 249
New Milestone button, 523
New Multi-part Message Type option, 248
New Parallel Branch option, 274
New Progress Milestone dialog box, 523
New Progress Stage dialog box, 523
New Query tab, 488
New Rule Branch option, 259
New Stage button, 523
New Static One-way Receive Port option, 11
NewCustomerMsg message, 309
NewHire schema, 402, 405, 407

http://

■ INDEX

583

NewHireList schema, 426–428
NewHireList XSD type, 410
NewHireListMessage message, 426–428
NLB (network load balancing), 545
NMTOKEN data type, XSD, 34
No Called Orchestration - Click to Configure

option, 280
nonNegativeInteger data type, XSD, 34
nonPositiveInteger data type, XSD, 34
nontransactional scopes, in orchestrations,

297–303
error information, 300
multiple exception handlers, 301–303

normalizedString data type, XSD, 34
Northwind database, 416, 418, 421
Not Equal functoid, 107–108, 140, 151–153
not() function, 175
NOTATION data type, XSD, 34

■ O
Object Type property, 242
objSample variable, 267
OLAP cubes, 515
On Failure property, 358
One-way Port option, 379
One-Way radio button, 244
One-Way Receive Port option, 339, 356, 510
One-Way Receive Port Properties dialog box,

379
OnlineReservation node, 135
OnlineReservations record, 137
OnStep method, 554
Open Destination Schema link, 91
Open Rule Store dialog box, 400, 403
Open Source Schema link, 89
Open Source Schema option, 43
Operation property, 242
operations, 481–514

debugging orchestrations, 498–504
managing BizTalk applications, 492–498
restarting BizTalk host instances, 508–509
resubmitting messages, 489–492
resuming inbound message processing,

510–514
throttle orchestration memory usage,

509–510
tracking messages, 504–507

accessing tracked messages, 506–507

configuring tracking, 504–506
troubleshooting suspended services,

482–489
Operator drop-down list, 543
Options area, 470
Or keyword, 243
Orchestration and Ports screen, BizTalk WCF

Services Publishing Wizard, 327
Orchestration Debugger option, 499
Orchestration Debugger window, 499–500
Orchestration Designer, 516
Orchestration Files option, 247
Orchestration Memory Throttling tab, BizTalk

Settings Dashboard, 509
Orchestration tab, 263
Orchestration Tracking Options dialog box, 506
orchestration variables, passing onto maps,

162–168
Orchestration View option, 237, 247
Orchestration View tab, 163
Orchestration View window, 237, 243, 250, 270,

283, 285, 294, 325–326, 383
orchestration, zooming out on, 18–19
OrchestrationFilter element, 314, 321
OrchestrationFilter parameter, 315
orchestrations, 235–333

atomic scopes in, 304–308
benefits of, 306
compensation handling, 307
considerations for, 305–306
exception handling, 307
MSDTC transactions, 307–308

binding, 253–254
branching logic in, 258–261
Call Orchestration shape for, 280–281
calling engines from, 426–428
calling external assemblies in, 266–269
calling pipelines from, 328–333

exception handling, 332
mainline process, 330–332

calling web services in, 323–326
correlations for, 282–287
debugging, 498–504
enlisting and starting, 477–480
exception handling in, 311–317

Error To Administrator schema, 317
Exception Handler Buffer Call Request

schema, 314

http://

■ INDEX

584

Exception Handler Buffer Call Response
schema, 315

Task Processing Logic Call schema,
315–316

Task Processing Logic Response
schema, 316–317

exposing as service, 327–328
long-running transactions in, 309–311
Loop shape for, 273–274
maintaining message order, 287–292
multipart messages, 246–253
multiple message formats in, 262–265
nontransactional scopes in, 297–303

error information, 300
multiple exception handlers, 301–303

Parallel Action shape for, 272–273
parallel convoys for, 293–296
receiving messages, 236–243
receiving messages from different schema

types, 270–272
role links for, 318–323

creating, 319–320
creating parties and physical send ports,

321–322
creating send port type, 320–321
testing, 322

send ports, configuring at runtime, 254–258
sending messages, 243–246
Start Orchestration shape for, 280–281
throttle memory usage, 509–510
Transform shape for, 275–280
XPath queries in, 296–297

Orchestrations folder, 506
Orchestrations tree, 253
Order application, 456, 460
Order Header node, 52
Order multipart message type, 249–250
Order schema, 49, 52–53
Order table, 366
Ordered Delivery option, 289
Ordered Delivery property, 192, 352
Ordered Processing flag, 290
Ordered Processing property, 358
OrderEnvelope root node, 50
OrderEnvelope schema, 49
OrderHeader schema, 248
OrderHeaderMessage message, 252
OrderID property, 294
OrderLineItems schema, 249

OrderLineItemsMessage message, 252
organizing maps, 96–98
OriginalMessage element, 318
OutboundTransportLocation property, 231
outline view, 518–522, 530–531
Output Instance Filename property, 27
OutputMessage node, 183
OutputParameter element, 315, 317
OutputParameter (Node) element, 315, 317
Overwrite all check box, 469
Overwrite option, Copy Mode drop-down list,

337

■ P
Package parameter, 459
pan button, 5
Parallel Action shape, for orchestrations,

272–273
parallel convoys, 293–296
Parameter Type list, 427
Parties and Business Profiles window, 15, 439
Parties folder, 15, 439
parties, role links for orchestrations, 321–322
Party option, 439
Party Properties dialogue box, 15
Party property, 17
Passenger record, 136
passing data connection facts, 425
PassThroughReceive pipeline, 510
PassThruReceive pipeline, 35, 56, 291, 341
PassThruTransmit send pipeline, 512
Password property, 259, 354, 358, 385–386
Pattern Editor dialog box, 54–55
Pattern property, 54
Payload node, 168, 170
PaymentApprovalMessage message, 294
PaymentApprovalSchema schema, 294
People table, 121
Perform, 406–407, 419
person attribute, 116
Person node, 109, 296–297
Person schema, 80, 178, 181–182, 262, 264
Peterson, David, 515
Physical path property, 390
physical send ports, role links for

orchestrations, 321–322
Pipeline Components section, 210

http://

■ INDEX

585

pipelines
calling from within orchestrations, 328–333

exception handling, 332
mainline process, 330–332

configuring validation with, 446–447
custom, 215–228

attributes and class declaration for, 222
creating, 447–450
design-time properties for, 222
IBaseComponent interface, 223–224
IComponent interface, 226–228
IComponentUI interface, 224
IPersistPropertyBag interface, 225–226

encryption pipelines, 200–207
receiving encrypted message, 204–205
sending encrypted message, 201–204

for flat files, 207–214
handling errors for, 228–231
validation pipelines, 198–200

Pivot Table Field List control, 544
Pivot Table Field List window, 526
Pivot Table report, 526
Pivot Table View pane, 543
pivot tables, constructing, 525–531
Platform Settings folder, 348, 508
Plus button, 92, 101
policies

business, 399–401
deploying and undeploying, 428–431
executing, 424–425
exporting, 460–461

Policies folder, 408
Policies node, 400
Policies option, 460
Policy Explorer, 414, 420, 429
Poll While Data Found parameter, 382
Polling Interval parameter, 382
Polling Unit of Measure parameter, 382
POP3 type, 33
Port Binding page, 245, 384
Port Bindings Properties dialog box, 253, 255
Port Configuration Wizard, 239–240, 244, 263,

271, 273, 325, 385
Port field, 369, 376
Port Surface area, 245
Port Type Wizard, 320
Portal Website option, 546
portals, 540–546

accessing, 541
performing activity searches, 541–543
viewing aggregations, 543–545

ports, send, 473–475
positiveInteger data type, XSD, 34
postal element, 58, 70
PostalCode column, 362
preceding-sibling element, 176
Predicates folder, 409
Preserve byte order mark property, 213
Preserve header property, 213
Priority property, 414–415
Process Account (NTLM) option, 349
Process Activity activity, 560
Process Activity item, 524
ProcessActivity activity, 520
ProcessDuration duration, 521
Processing stage, 523
productId element, 76
productName element, 76
Program Files folder, 502
projects, adding schema to, 433–435
Promote Properties dialog box, 36–37, 162
promoted properties, subscribing to, 450–452
promoting property schemas, 30–35
Properties button, 348
Properties option, 26–27, 54, 97, 180, 183, 203,

207, 285, 298
properties, promoted, 450–452
Properties window, 41, 54, 81, 111, 172, 243,

259, 286, 326, 400
Properties Window option, 298, 305, 309
Property drop-down list, 232
Property Fields tab, 36
Property Pages dialog box, 178
Property Schema Base property, 35, 38
Property Schema option, 36
property schemas

creating, 35–39
promoting, 30–35

Property1 property, 36
Protocol property, 17, 440
ProxyName property, 386
ProxyPassword property, 386
ProxyPort property, 386
ProxyUsername property, 386
Public address property, 391
Publish option, 408–409, 429

http://

■ INDEX

586

PurchaseOrder_config.xml file, 553

■ Q
QName data type, XSD, 34
quantity element, 76
Query Expression pane, 488
Query pane, 542–543
Queue property, 355–356, 358–359
Quick Promotion option, 35

■ R
race condition, 297
Radio-frequency identification (RFID), 19
Real-Time Aggregation button, 528
Receive Handler parameter, 379
Receive handler property, 341
Receive Location option, 356
Receive Location Polling option, 343
Receive Location Properties dialog box, 205,

356, 379, 390
receive locations, enabling, 475–477
Receive Locations folder, 357, 379, 390
Receive Locations node, 476
Receive Locations tab, 189, 232, 340
Receive Pipeline option, 198, 204
Receive Pipeline parameter, 379
Receive Pipeline property, 47, 189, 193, 199,

341, 391
Receive Pipeline template, 447
Receive Port dialog box, 379
Receive Port Properties dialog box, 356
Receive Ports folder, 189, 339, 356, 379, 390,

504, 510
receive ports, for messages, 189–191
Receive property, 384
ReceivePipelineOutputMessages class, 331
ReceivePortName property, 230
receiving files, with File adapter, 339–344
Record Count functoid, 139–140
record element, 69
Record Has a Tag Identifier check box, 65, 72
RecordStatus column, 381
Recoverable interchange processing property,

213
Recoverable property, 353, 356
Redefine option, 42
Redeploy property, 473
References node, 41, 43, 323

referencing document schemas, 42–43
Region column, 362
Registry Editor, 392
regular expressions, defining in document

schemas, 54–56
Relationship item, 565
relationships, activity, 567–568
relevance tree view, 1–3
Removing of Files option, 343
Rename Files While Reading option, 343
Rename option, 25
Rename Page option, 97
Reorder Pages dialog box, 97
Reorder Pages option, 97
Repeating Record type, 67
Report To Analyst property, 242, 251–252, 256,

259, 304
RepSales element, 151, 175
Request path property, 388
Request Response Receive Location option, 390
Request Response Receive Port option, 390
Request Restrictions button, 388
Request Technical Assistance - Web Page

Dialog dialog box, 556–557
RequestQueueSize property, 393
RequestTimeout property, 386
ResourceSpec parameter, 459, 461
ResponseStatusCode property, 386
Restart Host Instances property, 473
Restart option, 508
restarting BizTalk host instances, 508–509
resubmitting messages, 489–492
Results pane, 542–543
Resumable link, Suspended Items section, 489
Resume Instance option, 490, 512
resuming inbound message processing,

510–514
Retrieve the Current Tracking Settings for This

Activity Definition check box, 560, 563
Retry Count property, 192, 343
Retry Interval property, 192, 343
Retry property, 306
RetryCount property, 258
RetryDelay element, 314
RetryInterval property, 258
RetryTransactionException, 307
Return Content-Type property, 391
Return correlation handle on success property,

391

http://

■ INDEX

587

RFID (Radio-frequency identification), 19
Role element, 107, 402, 427–428
Role Link Wizard, 319–320, 322
Role Links folder, 321
role links, for orchestrations, 318–323

creating, 319–320
creating parties and physical send ports,

321–322
creating send port type, 320–321
testing, 322

Role node, 406–407
Root node, 44, 61
Root Reference property, 50
Routing element, 220
RoutingFailureReportID property, 231
rules

creating and testing, 401–412
setting priorities of, 414–415

Rules Engine Deployment Wizard, 430–431

■ S
Sale element, 151, 175
SaleAmount field, 151–152
SampleClass class, 267
SampleClass.dll assembly, 266
SampleCustomFunctoid.sln file, 141
SampleDestination element, 168
SAMPLEExternalComponentCall.odx file, 311
SampleKickOff.xml file, 312
SAMPLEMainBusinessFlow.odx file, 311
SamplePolicy policy, 424, 427
Save Alert option, 547
Save As Template button, Agreement Properties

window, 444
Save method, 225
saving tracking profiles, 564–568

activity continuations, 566–567
activity relationships, 567–568
activity tree items, 564–565

sbyte data type, 34
schema, adding to projects, 433–435
Schema- CodePage method, 214
Schema Collection Property Editor dialog box,

199–200
<Schema> folder, 562
schema namespaces, 29–30
Schema node, 30, 44, 243
Schema View page, 70, 74

Schemas folder, 413
Schemas node, 41, 43, 90–91
Script Assembly field, 154
Script Class field, 154
Script functoid, 159
Script Functoid Configuration tab, 154, 158,

172, 174
Script Method field, 154
Script Type field, 154, 158, 174
Scripting functoid, 101, 149, 156–158, 160, 167,

171–172, 174
SDKBAMSamples folder, 555
SeatNumber element, 136
Second Party settings, 440
security considerations, for Database Lookup

functoid, 120
Security Settings dialog box, 544
Security tab, Internet Explorer, 546
Select a Port Type page, 244
Select All Activities check box, 519
Select All Items check box, 519
Select Artifact Type dialog box, 267, 301
Select Configuration component, 420
Select Document Data page, 62, 67, 71, 74
Select Event Source drop-down list, 540
Select Event Source Parent Assembly dialog

box, 534, 540
Select Event Source Parent Assembly page, 561
Select Facts dialog box, 409
Select Messaging Payload, 540
Select Operation section, 406–407, 419
Select Orchestration dialog box, 535
Select Orchestration page, 561
Select Resources page, 454–455, 460
SELECT statement, 121
select statement, 175, 376, 380
selecting activities and artifacts, 564
Send pipeline field, 444
Send Pipeline option, 202
Send Pipeline property, 48, 193, 232, 365, 373,

391
Send port group message, 198
Send Port Group option, 195
Send Port Group Properties dialog box, 195
send port groups, for messages, 195–198
Send port message, 198
Send Port Properties dialog box, 192, 289,

350–351, 365, 372

http://

■ INDEX

588

send port type, role links for orchestrations,
320–321

send ports
enlisting and starting, 473–475
for messages, 191–193
for orchestrations, configuring at runtime,

254–258
Send Ports folder, 11, 344, 350, 365, 372
Send Ports node, 474
Send ports tab, 16
Send property, 384
Send Report button, 556
Send section, 204
sending files, with File adapter, 335–339
SendPortName property, 231
Sensitive Information property, 32
sequential convoys, for orchestrations, 291–292
Serial Processing property, 359
serializable attribute, 311
Server parameter, 459, 540
Server property, 473
Service Details dialog box, 484–487
Service Endpoint radio button, BizTalk WCF

Services Publishing Wizard, 327
Service References folder, 330
service requests, creating, 555–558
ServiceID property, 284
ServiceRequest schema, 284
Set Alert option, 547
Set Breakpoint on Class option, 500
Set Common ID functoid, 125
set method, 222
SetCommonID method, 130
settings, core server, 9–10
Settings option, 10
Setup-Config.xml file, 124, 126–128
Setup.bat file, 551
SFTP (SSH file transfer protocol), 10–11
ShipFrom record, 52–53
ShipTo record, 53
short data type, XSD, 34
short-term fact, 416
Show Promotions option, 36, 162
Sibling Field Attribute option, 25
Sibling Field Element option, 26
Sibling Record option, 25
Sign the assembly option, 470
Signature type property, 206

Signing tab, 470
Simple Mail Transport Protocol (SMTP), 344,

350
simple maps, creating, 88–96
Single data type, 34
Sites folder, 390
<SmallSales> element, 152
SmallSales record, 152
SMTP (Simple Mail Transport Protocol),

344–350
SMTP Transport Properties dialog box, 345, 348
SMTP type, 33
SMTP.From property, 171
SOAP, adapters for, 393–395
SOAP Header schemas, 79–85
SOAPHeader namespace, 80
SOAPHeader property schema, 80–82, 84
Solution Explorer tool menu, 361, 369, 375
Source Document Data page, 63
SourceCompanyInfo schema, 181–182
Specify Later method, 254
Specify Later option, 241, 253–254, 263
Specify Now option, 254, 263, 325, 387
SQL adapter, 360–367, 373–383
SQL Command page, 379
SQL Command parameter, 382
SQL Transport Generation Wizard, 363, 371
SQL Transport Properties dialog box, 365,

379–380
SQL Transport Schema Generation Wizard, 362,

370, 376
SQL_Adapter_Stored_Procedure.SQLService.Cu

stomer_Request type, 371
SQL_Adapter_Updategram.InsertCustomerServ

ice.Customer_Request type, 364
SQLService schema, 371, 377, 381
SQLService.xsd file, 371, 377, 380
SQLService.xsd schema, 381
SSH file transfer protocol (SFTP), 10–11
SSL section, FTP Transport Properties

configuration window, 11
StackTrace element, 317–318
Stage item, 565
Start option, 477
Start Orchestration shape, for orchestrations,

280–281
Start Time property, 192
Started milestone, 523, 527
Started state, 198, 478

http://

■ INDEX

589

state element, 58, 70, 91
Statement Information dialog, 363
Statement Information page, 362, 370–371
Statement type information page, 362, 376
Statement Type page, 370
StateOfBirth field, 38
Static One-way Send Port option, 191, 344, 350,

365, 372
StockLevelConfirmationMessage message, 294
StockLevelConfirmationSchema schema, 294
Stop property, 358
Stop Time property, 192
Stopped state, 198, 474, 477
Stored Procedure type, 370, 377
stored procedures, calling from adapters,

367–373
Stream.Read() method, 227
street element, 58, 70
String Concatenate functoid, 92–93, 101,

147–149, 178
String data type, 34, 70, 76
String Extract functoid, 149
String Extraction functoid, 98
String Functoids tab, 92, 99
String Left functoid, 99–101
strSupportCode variable, 163
strSupportCodeExpires variable, 163
SubmissionHandle property, 386
subscribing to promoted properties, 450–452
subsets, exporting, 459–460
Subtraction functoid, 140
SuccessFlag element, 315, 317
Summary page

Business Activity Monitoring View Creation
Wizard, 525

Export MSI File Wizard, 458
Support Segmentation property, 353
Suspend Failed Requests property, 391
Suspend (nonresumable) property, 358
Suspend (resumable) property, 358
Suspended Items section, 483, 489
Suspended Service Instances link, 483, 511
suspended services, troubleshooting, 482–489
Suspended tab, 511–512, 514
SuspendedMessagesExampleIn receive port,

512
SuspendedMessagesExampleOut send port,

512

SuspendedMessagesExampleOut - Send Port
Properties dialog box, 512

System.Diagnostic methods, 502
System.Diagnostic.EventLog.WriteEntry

method, 501
System.Diagnostics.Trace.WriteLine method,

501
System.EnterpriseServices class, 308
System.EnterpriseServices.ServicedComponents

class, 308
System.Exception class, 300
System.Int32 type, 404
System.Messaging.AcknowledgeTypes

enumeration, 354
System.Messaging.Message.SenderCertificate

property, 354
System.Runtime.InteropServices class, 308
System.String.Format function, 297
System.Xml.XmlDocument type, 270–271,

329–330, 332, 503

■ T
Table Extractor functoid, 110–112, 114–116
Table Looping Configuration dialog box, 111,

113
Table Looping functoid, 110–115
TableFunctoidGrid property, 111
tag identifier property, 58
Target Charset method, 214
Target charset property, 213
Target Namespace property, 30
Target Staging Environment drop-down list,

Import Wizard, 464
Task Processing Logic Call schema, 315–316
Task Processing Logic Response schema,

316–317
TaskName element, 314, 316
TaskProcessingLogicCall schema, 314, 316
Test button, 409
Test Map Input property, 180
Test Map option, 183–184
Test Policy option, 409
testing

maps, 178–183
rules, 401–412

TestMap Input Instance property, 179–180, 183
TestMap Input property, 179–180, 182–183
TestMap Output property, 179
Text (50) data type, 517

http://

■ INDEX

590

THEN section, 409
Thumbprint field, Host Properties dialog box,

205
Thumbprint property, 193
time data type, XSD, 35
Time functoid, 145–149
Timeout property, 353–355
Timeout Unit property, 353–355
token data type, XSD, 34
Toolbar Commands box, 528
ToolsChoose Toolbox Items option, 219
TraceFlag element, 81
Trace.WriteLine method, 504
Tracked Events pane, 501
tracking

configuring, 504–506
messages, 504–507

accessing tracked messages, 506–507
configuring tracking, 504–506

profiles, 559–568
activity continuations, 566–567
activity relationships, 567–568
activity tree items, 564–565
map events and data items, 562–564
saving and applying, 563–568
selecting activities and artifacts,

559–561, 564
Tracking directory, 553
Tracking Options dialog box, 508–509
Tracking Profile Editor, 516, 532, 536, 539,

551–552, 554, 559, 564, 566
Tracking property, 193
trading partners

configuring for EDI, 14–18
creating and configuring, 438–441

Trailer schema property, 213
Transaction ID node, 562
Transaction Identifier property, 305
Transaction property, 427
Transaction Type node, 562
Transaction Type property, 298, 304, 309, 329,

426
Transactional property, 354–355, 358
TransactionProcessingDateTime element, 146
transfering files, using SFTP, 10–11
Transform Configuration dialog box, 166,

276–278, 326
Transform node, 277
Transform shape, for orchestrations, 275–280

Transport Advanced Options grouping, 352
Transport Advanced Options section, Send Port

Properties dialog box, 289–290
Transport Properties dialog box, 393–394
Transport section, 344, 365, 372
Transport Type field, 232, 350, 356, 444
Transport Type parameter, 379
Transport Type property, 192, 391
TravelAgentReservation record, 135
tree items, activity, 564–565
Troubleshooting assembly, 460
troubleshooting suspended services, 482–489
try/catch block, 298
Type drop-down list, 365, 372
Type field, 538
Type Modifier property, 252
Type property, 11, 189, 248–249, 251, 269, 340,

404
typeof(FullyQualifiedNameOfReceivePipeline)

parameter, 331
typeof(FullyQualifiedNameOfSendPipeline)

paarameter, 331
Types node, 247, 288, 294

■ U
UDL (Universal Data Link), 120
Uint16 data type, 34
Uint32 data type, 34
Undeploy option, 429
Undeploy Policy option, 430
undeploying policies, 428–431
unenlisted state, 474, 477
unitPrice element, 76
Universal Data Link (UDL), 120
unsignedByte data type, XSD, 34
unsignedInt data type, XSD, 34
unsignedShort data type, XSD, 34
UpdateFacts method, 416, 421–422
Updategram type, 362
updates, manually deploying, 467–470
URI (address) property, 189
URI parameter, 382
Use Authentication property, 354
Use Dead Letter Queue property, 353
Use Default Constructor option, 269
Use Journal Queue property, 353
Use Preferred Shipper rule, 414
Use Single Sign On property, 391

http://

■ INDEX

591

Use These Credentials When Host Does Not
Have Access to Network Share check box,
337

UseHandlerProxySettings property, 386
UseProxy property, 386
User Name property, 354, 358
UserHttpHeaders property, 386
UserName property, 258, 385–386
UseSSO property, 385–386
UStoEUDateFormatter method, 161

■ V
Validate Document Structure property, 213
Validate Instance option, 27, 59
Validate label, 198
Validate method, 224
Validate option, 77
Validate TestMap Input property, 179, 438
Validate TestMap Output property, 179, 438
ValidatePipelineOutput variable, 329
ValidatePipelineOutput.GetCurrent(Canonical

OrderValidatedMessage) method, 331
ValidatePipelineOutput.MoveNext() method, 331
validation

configuring with pipelines, 446–447
pipelines, 198–200

value added network (VAN), 17
Value Extractor functoid, 118–119, 121
Value Extractor functoid input parameters

dialog box, 118
Value Mapping (Flattening) functoid, 106–110
Value Mapping functoid, 106–110, 151–153, 177
Value text box, 543
valueXRef field, 127
valueXRef node, 127
VAN (value added network), 17
Variable Properties window, 267
Variables folder, 266
Verbs tab, 388–389
Version folder, 403, 409
Version property, 400
View Items page, Business Activity Monitoring

View Creation Wizard, 519
views

creating, 516–532
activity grouping and multiple

processes, 531–532

aggregations, dimensions, and
measures, 522–531

constructing pivot tables, 525–528, 531
creating activity workbooks, 516–518,

529–530
outline view, 518–522, 530–531

deploying, 532–540
Virtual Directory plus ISAPI property, 391
Visual Business Analyst tool, 256, 259, 304
Visual C# Console Application project, Visual

Studio, 553
Visual Studio

debugging maps using, 184–185
deploying BizTalk solution from, 470–473

Vocabularies folder, 403, 413
Vocabularies tab, Facts Explorer, 412
Vocabulary Definition Wizard, 403, 413, 428
Vocabulary tab, Facts Explorer, 413

■ W
Wainwright, John, 435
WCF Service Location page, BizTalk WCF

Services Publishing Wizard, 327
WCF Service Properties page, BizTalk WCF

Services Publishing Wizard, 327
WCF Service Type page, BizTalk WCF Services

Publishing Wizard, 327
WCF Services Publishing Wizard, 328
WCF (Windows Communication Framework),

33, 235
Web Service tab, Transport Properties dialog

box, 394
Web Service URL property, 393
web services, calling in orchestrations, 323–326
Web Services Description Language (WSDL),

323
web.config file, 545–546
Welcome page

BizTalk WCF Services Publishing Wizard,
327

Export MSI File Wizard, 453
Import Wizard, 462

WHERE clause, 117, 122
Windows Communication Framework (WCF),

33, 235
Windows Event Log, 83
Windows Event Viewer, 83, 273, 312, 467, 501,

504
Windows Forms Application type, 396

http://

■ INDEX

592

Windows Logs option, 482
WMI (Windows Management

Instrumentation), 475, 492
workbooks

activity, 529–530
creating, 516–518

WSDL (Web Services Description Language),
323

WSDL.exe utility, 394
WSS type, 33

■ X, Y
X12_00401_837_I.xsd file, 434
X12_00401_837_P.xsd file, 434
XLANGPipelineManagerException, 332–333
XML AUTO clause, 381
XML document, creating document schemas

based on, 28–29
XML Document Element or Attribute option,

404, 407
XML Document or Attribute option, 413
XML property, 59
XML Schema Definition (XSD), 23
XML Schemas tab, Facts Explorer, 412–413
XML Validator component, 198, 200
XMLDATA clause, 374, 376, 380–381
XmlDocument type, 253, 291, 306
XmlDocument variable, 165
XMLNorm type, 33
XMLNORM.HeaderSpecName property,

213–214
XMLNORM.TargetCharset method, 214
xmlns element, 30

XMLParameter element, 314–317
XMLReader.Read() method, 227
XMLReceive pipeline, 56, 291, 341, 356
XMLTransmit pipeline, 350, 385
xmlXmlDoc variable, 163, 165
XPath queries, in orchestrations, 296–297
<xs:any> type, 105
XSD Import method, 40
XSD Import type, 41
XSD (XML Schema Definition), 23
XSD_Schema\EDI folder, 434
xs:int data type, 158
<xsl:copy-of> function, 170–171
xsl:for-each element, 174–175
xsl:key element, 176
xsl:stylesheet element, 176
XSLT (Extensible Stylesheet Language

Transformations)
for data mapping

external file for, 176–177
group-by, 173–176
inline, 168–171
inline call templates, 171–173

external, defining complex mappings in,
436–438

■ Z
Zip element, 91, 98–100
Zip field, 104
Zoom option, 18–19
zooming out, on orchestration, 18–19

http://

■ INDEX

593

http://

■ INDEX

594

http://

	Prelim
	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	What’s New in BizTalk 2010
	1–1. Using the Relevance Tree View
	Problem
	Solution
	How It Works

	1–2. Navigating the Mapping Surface
	Problem
	Solution
	How It Works

	1–3. Correcting Errors in Functoids
	Problem
	Solution
	How It Works

	1–4. Indicating Matches in Maps
	Problem
	Solution
	How It Works

	1–5. Configuring Core Server Settings
	Problem
	Solution
	How It Works

	1–6. Transfering Files Using SFTP
	Problem
	Solution
	How It Works

	1–7. Accessing the EDI Version 5010 HIPAA Schemas
	Problem
	Solution
	How It Works

	1–8. Configuring EDI Trading Partners
	Problem
	Solution
	How It Works

	1–9. Zooming out on an Orchestration
	Problem
	Solution
	How It Works

	1–10. Installing BizTalk Server RFID 2010
	Problem
	Solution
	How It Works

	Document Schemas
	2–1. Creating Simple Document Schemas
	Problem
	Solution
	How It Works

	2–2. Creating a Schema Based on an Existing XML Document
	Problem
	Solution
	How It Works

	2–3. Creating Schema Namespaces
	Problem
	Solution
	How It Works

	2–4. Promoting Properties
	Problem
	Solution
	How It Works

	2–5. Creating Property Schemas
	Problem
	Solution
	How It Works

	2–6. Importing Schemas
	Problem
	Solution
	How It Works

	2–7. Referencing Schemas
	Problem
	Solution
	How It Works

	2–8. Creating Envelopes to Split Inbound Data
	Problem
	Solution
	How It Works

	2–9. Creating Complex Types
	Problem
	Solution
	How It Works

	2–10. Defining Regular Expressions
	Problem
	Solution
	How It Works

	2–11. Creating Flat File Schemas
	Problem
	Solution
	How It Works

	2–12. Creating Flat File Schemas via the Wizard
	Problem
	Solution
	How It Works

	2–13. Creating SOAP Header Schemas
	Problem
	Solution
	How It Works

	Document Mapping
	3–1. Creating Simple Maps
	Problem
	Solution
	How It Works

	3–2. Organizing Maps
	Problem
	Solution
	How It Works

	3–3. Adding and Configuring Mapping Constants
	Problem
	Solution
	How It Works

	3–4. Mapping Any Element Nodes
	Problem
	Solution
	How It Works

	3–5. Using the Value Mapping Functoids
	Problem
	Solution
	How It Works

	3–6. Using the Table Looping Functoid
	Problem
	Solution
	How It Works

	3–7. Using the Database Lookup Functoid
	Problem
	Solution
	How It Works
	Security Considerations
	Architecture Considerations
	Advanced Database Lookup Functoid Usage

	3–8. Seeding Cross-Reference Tables with ID Cross-References
	Problem
	Solution
	How It Works

	3–9. Seeding Cross-Reference Tables with Value CrossReferences
	Problem
	Solution
	How It Works

	3–10. Using the ID Cross-Reference Functoids
	Problem
	Solution
	How It Works

	3–11. Using the Value Cross-Reference Functoids
	Problem
	Solution
	How It Works

	3–12. Using the Looping Functoid
	Problem
	Solution
	How It Works

	3–13. Using the Iteration Functoid
	Problem
	Solution
	How It Works

	3–14. Creating a Custom Functoid
	Problem
	Solution
	How It Works

	3–15. Using the Date and Time Functoids
	Problem
	Solution
	How It Works

	3–16. Creating Functoid If-Then-Else Logic
	Problem
	Solution
	How It Works

	3–17. Calling Compiled Assemblies
	Problem
	Solution
	How It Works

	3–18. Using Inline C#
	Problem
	Solution
	How It Works

	3–19. Passing Orchestration Variables into Maps
	Problem
	Solution
	How It Works

	3–20. Using Inline XSLT
	Problem
	Solution
	How It Works

	3–21. Using XSLT Call Templates
	Problem
	Solution
	How It Works

	3–22. Using XSLT Group-By
	Problem
	Solution
	How It Works

	3–23. Using an External XSLT File for a Map
	Problem
	Solution
	How It Works

	3–24. Testing Maps
	Problem
	Solution
	How It Works

	3–25. Debugging a Map Using Visual Studio
	Problem
	Solution
	How It Works

	Messaging and Pipelines
	4–1. Configuring Receive Ports and Locations
	Problem
	Solution
	How It Works

	4–2. Configuring Send Ports
	Problem
	Solution
	How It Works

	4–3. Configuring Port Maps
	Problem
	Solution
	How It Works

	4–4. Using Send Port Groups
	Problem
	Solution
	How It Works

	4–5. Creating Validation Pipelines
	Problem
	Solution
	How It Works

	4–6. Creating Encryption Pipelines
	Problem
	Solution
	Send an Encrypted Message
	Receive an Encrypted Message
	How It Works

	4–7. Creating Flat File Send and Receive Pipelines
	Problem
	Solution
	How It Works

	4–8. Creating Custom Pipeline Components
	Problem
	Solution
	How It Works
	Attributes and Class Declaration
	Design-Time Properties
	Implementation of the Four Pipeline Interfaces

	4–9. Handling Pipeline Errors
	Problem
	Solution
	How It Works

	4–10. Subscribing to Suspended Messages
	Problem
	Solution
	How It Works

	Orchestrations
	5–1. Receiving Messages
	Problem
	Solution
	How It Works

	5–2. Sending Messages
	Problem
	Solution
	How It Works

	5–3. Creating Multipart Messages
	Problem
	Solution
	How It Works

	5–4. Binding Orchestrations
	Problem
	Solution
	How It Works

	5–5. Configuring a Send Port at Runtime
	Problem
	Solution
	How It Works

	5–6. Creating Branching Logic in an Orchestration
	Problem
	Solution
	How It Works

	5–7. Receiving Multiple Message Formats in a Single Orchestration
	Problem
	Solution
	How It Works

	5–8. Calling External Assemblies
	Problem
	Solution
	How It Works

	5–9. Receiving Untyped Messages
	Problem
	Solution
	How It Works

	5–10. Using the Parallel Action Shape
	Problem
	Solution
	How It Works

	5–11. Using the Loop Shape
	Problem
	Solution
	How It Works

	5–12. Using the Transform Shape
	Problem
	Solution
	How It Works

	5–13. Using the Call Orchestration and Start Orchestration Shapes
	Problem
	Solution
	How It Works

	5–14. Configuring Basic Correlations
	Problem
	Solution
	How It Works

	5–15. Maintaining Message Order
	Problem
	Solution
	How It Works

	5–16. Configuring Parallel Convoys
	Problem
	Solution
	How It Works

	5–17. Using XPath Queries on Messages
	Problem
	Solution
	How It Works

	5–18. Using Nontransactional Orchestration Scopes
	Problem
	Solution
	How It Works

	5–19. Creating Atomic Scopes
	Problem
	Solution
	How It Works

	5–20. Using Long-Running Transactions
	Problem
	Solution
	How It Works

	5–21. Catching Exceptions Consistently
	Problem
	Solution
	How It Works

	5–22. Creating Role Links
	Problem
	Solution
	How It Works

	5–23. Calling Web Services
	Problem
	Solution
	How It Works

	5–24. Exposing an Orchestration as a Service
	Problem
	Solution
	How It Works

	5–25. Calling Pipelines from Within an Orchestration
	Problem
	Solution
	How It Works

	Adapters
	6–1. Configuring File Sends
	Problem
	Solution
	How It Works

	6–2. Configuring File Receives
	Problem
	Solution
	How It Works

	6–3. Configuring SMTP Send Ports
	Problem
	Solution
	How It Works

	6–4. Configuring MSMQ Sends
	Problem
	Solution
	How It Works
	MSMQ Send Options
	MSMQ Queue Name Formats

	6–5. Configuring MSMQ Receives
	Problem
	Solution
	How It Works
	MSMQ Receive Options
	MSMQ Queue Name Formats

	6–6. Sending Updategrams
	Problem
	Solution
	Task 1: Create Supporting Artifacts
	Task 2: Create BizTalk Solution Artifacts
	Task 3: Create Physical BizTalk Ports
	Task 4: Test the Solution
	How It Works

	6–7. Calling Stored Procedures
	Problem
	Solution
	Task 1: Create Supporting Artifacts
	Task 2: Create BizTalk Solution Artifacts
	Task 3: Create Physical BizTalk Ports
	Task 4: Test the Solution
	How It Works

	6–8. Receiving Messages with the SQL Adapter
	Problem
	Solution
	Task 1: Create Supporting Artifacts
	Task 2: Create BizTalk Solution Artifacts
	Task 3: Create Physical BizTalk Ports
	Task 4: Test the Solution
	How It Works
	Stored Procedure Configuration
	Adapter Configuration

	6–9. Configuring HTTP Sends
	Problem
	Solution
	How It Works

	6–10. Configuring HTTP Receives
	Problem
	Solution
	How It Works

	6–11. Configuring SOAP Sends and Receives
	Problem
	Solution
	How It Works

	6–12. Creating Ports Through C# Applications
	Problem
	Solution
	How It Works

	Business Rules Framework
	7–1. Creating a Business Policy
	Problem
	Solution
	How It Works

	7–2. Creating and Testing Rules
	Problem
	Solution
	How It Works

	7–3. Creating Facts
	Problem
	Solution
	How It Works

	7–4. Setting Rule Priorities
	Problem
	Solution
	How It Works

	7–5. Creating Custom Fact Retrievers
	Problem
	Solution
	How It Works

	7–6. Calling the Business Rules Engine from .NET
	Problem
	Solution
	How It Works
	Executing a Policy
	Passing Data Connection Facts

	7–7. Calling the Business Rules Engine from an Orchestration
	Problem
	Solution
	How It Works

	7–8. Deploying and Undeploying Policies
	Problem
	Solution
	How It Works

	EDI Solutions
	8–1. Adding an EDI Schema to a Project
	Problem
	Solution
	How It Works

	8–2. Creating an EDI Map
	Problem
	Solution
	How It Works

	8–3. Defining Complex Mappings in External XSLT
	Problem
	Solution
	How It Works

	8–4. Creating and Configuring a Trading Partner
	Problem
	Solution
	How It Works

	8–5. Configuring an EDI Envelope
	Problem
	Solution
	How It Works

	8–6. Configuring Automatic Acknowledgements
	Problem
	Solution
	How It Works

	8–7. Configuring EDI Validation with Pipelines
	Problem
	Solution
	How It Works

	8–8. Creating Custom EDI Pipelines
	Problem
	Solution
	How It Works

	8–9. Subscribing to EDI Promoted Properties
	Problem
	Solution
	How it Works

	Deployment
	9–1. Exporting Applications
	Problem
	Solution
	How It Works

	9–2. Importing Applications
	Problem
	Solution
	How It Works

	9–3. Manually Deploying Updates
	Problem
	Solution
	How It Works

	9–4. Deploying a BizTalk Solution from Visual Studio
	Problem
	Solution
	How It Works

	9–5. Enlisting and Starting Send Ports
	Problem
	Solution
	How It Works

	9–6. Enabling Receive Locations
	Problem
	Solution
	How It Works

	9–7. Enlisting and Starting Orchestrations
	Problem
	Solution
	How It Works

	Administration and Operations
	10–1. Troubleshooting Suspended Services
	Problem
	Solution
	How It Works

	10–2. Resubmitting Messages
	Problem
	Solution
	How It Works

	10–3. Managing BizTalk Applications
	Problem
	Solution
	How It Works

	10–4. Debugging Orchestrations
	Problem
	Solution
	How It Works

	10–5. Tracking Messages
	Problem
	Solution
	How It Works

	10–6. Restarting the BizTalk Host Instance(s)
	Problem
	Solution
	How It Works

	10–7. Throttle Orchestration Memory Usage
	Problem
	Solution
	How It Works

	10–8. Resuming Inbound Message Processing
	Problem
	Solution
	How It Works

	Business Activity Monitoring
	11–1. Creating BAM Activities and Views
	Problem
	Solution
	How It Works

	11–2. Deploying BAM Activities and Views
	Problem
	Solution
	How It Works

	11–3. Using the BAM Portal
	Problem
	Solution
	How It Works

	11–4. Setting Up BAM Alerts
	Problem
	Solution
	How It Works

	11–5. Using the BAM Interceptor
	Problem
	Solution
	How It Works

	11–6. Creating a BAM Service Request
	Problem
	Solution
	How It Works

	11–7. Creating a Tracking Profile
	Problem
	Solution
	How It Works

	Index
	¦ ¦ ¦
	¦ Symbols
	¦ A
	¦ B
	¦ C
	¦ D
	¦ E
	¦ F
	H
	¦
	¦ G
	¦ I
	¦ M
	J
	¦
	¦ K
	¦ L
	¦ N
	¦ O
	¦ P
	¦ Q
	¦ R
	¦ S
	¦ T
	¦ U
	¦ V
	¦ W
	¦ X, Y
	¦ Z

