
Sung
Pavleas
Arnez
Pace

Shelve in:
Web Development /General

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Build your own 2D Game Engine and
Create Great Web Games
Build Your Own 2D Game Engine and Create Great Web Games teaches you how to develop your own
web-based game engine step-by-step, allowing you to create a wide variety of online video games that
can be played in common web browsers. Chapters include examples and projects that gradually increase
in complexity while introducing a ground-up design framework, providing you with the foundational
concepts needed to build fun and engaging 2D games. By the end of this book you will have created a
complete prototype level for a side scrolling action platform game and will be prepared to begin designing
additional levels and games of your own.

This book isolates and presents relevant knowledge from software engineering, computer graphics,
mathematics, physics, game development, game mechanics, and level design in the context of building a
2D game engine from scratch. The book then derives and analyzes the source code needed to implement
these concepts based on HTML5, JavaScript, and WebGL.

After completing the projects you will understand the core concepts and implementation details of
a typical 2D game engine and you will be familiar with a design and prototyping methodology you can
use to create game levels and mechanics that are fun and engaging for players. You will gain insights
into the many ways software design and creative design must work together to deliver the best game
experiences, and you will have access to a versatile 2D game engine that you can expand upon or utilize
directly to build your own 2D games that can be played online from anywhere.

9 781484 209530

53999
ISBN 978-1-4842-0953-0

www.allitebooks.com

http://www.allitebooks.org

Build Your Own 2D
Game Engine and

Create Great
Web Games

Using HTML5, JavaScript, and WebGL

Kelvin Sung
Jebediah Pavleas
Fernando Arnez
Jason Pace

With

Original Dye Characters Design: Nathan Evers

Other Game Character design and game arts: Kasey Quevedo

Figures and Illustration: Clover Wai

www.allitebooks.com

http://www.allitebooks.org

Build Your Own 2D Game Engine and Create Great Web Games: Using HTML5, JavaScript, and WebGL

Copyright © 2015 by Kelvin Sung, Jebediah Pavleas, Fernando Arnez, and Jason Pace

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

All visual and audio assets included with the sample projects in this book are protected by the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 license (CC BY-NC-SA 3.0) http://creativecommons.org/licenses/
by-nc-sa/3.0/. You may adapt and share the materials and create derivative works, but you may not use the material
for commercial purposes and all derivative works must be distributed under the CC BY-NC-SA 3.0 license.

ISBN-13 (pbk): 978-1-4842-0953-0

ISBN-13 (electronic): 978-1-4842-0952-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Jason Sturges
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springer.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.allitebooks.com

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

To my wife, Clover, and our girls, Jean and Ruth, for completing my life.

—Kelvin Sung

To my nieces, Marley and Monroe, for the utter joy and inspiration they bring to those
around them.

—Jebediah Pavleas

To my parents whose support carried me so many times, and my grandmother for being
forever understanding.

—Fernando Arnez

To my husband, Craig, and my mother, Linda, for their constant patience, support, and
encouragement.

—Jason Pace

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors���xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

■■Chapter 1: Introducing 2D Game Engine Development with JavaScript����������������� 1

■■Chapter 2: Working with HTML5 and WebGL�� 15

■■Chapter 3: Drawing Objects in the World��� 47

■■Chapter 4: Implementing Common Components of Video Games������������������������ 77

■■Chapter 5: Working with Textures, Sprites, and Fonts��������������������������������������� 127

■■Chapter 6: Defining Behaviors and Detecting Collisions������������������������������������ 187

■■Chapter 7: Manipulating the Camera�� 233

■■Chapter 8: Implementing Illumination and Shadow��� 273

■■Chapter 9: Integrating Physics and Particles��� 365

■■Chapter 10: Supporting Camera Background��� 419

■■Chapter 11: Building a Sample Game: From Design to Completion�������������������� 441

Index�� 457

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors���xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

■■Chapter 1: Introducing 2D Game Engine Development with JavaScript����������������� 1

The Technologies��� 2

Setting Up Your Development Environment��� 3

Downloading and Installing JavaScript Syntax Checker��� 3

Working in the NetBeans Development Environment�� 4

Creating an HTML5 Project in NetBeans�� 5

The Relationship Between the Project Files and the File System��� 8

How to Use This Book�� 9

How Do You Make a Great Video Game?��� 9

References�� 13

Technologies�� 13

■■Chapter 2: Working with HTML5 and WebGL�� 15

Introduction��� 15

Canvas for Drawing��� 15

The HTML5 Canvas Project�� 15

Separating HTML and JavaScript�� 18

The JavaScript Source File Project�� 18

Observations�� 23

www.allitebooks.com

http://www.allitebooks.org

viii

■ Contents

Elementary Drawing with WebGL�� 23

The Draw One Square Project��� 23

Observations�� 30

Abstraction with JavaScript Objects��� 30

The JavaScript Objects Project�� 30

Observations�� 39

Separating GLSL from HTML��� 39

The Shader Source Files Project��� 39

Source Code Organization��� 43

Changing the Shader and Controlling the Color�� 43

The Parameterized Fragment Shader Project�� 43

Summary��� 45

■■Chapter 3: Drawing Objects in the World��� 47

Introduction��� 47

Encapsulating Drawing��� 48

The Renderable Objects Project�� 48

Observations�� 50

Transforming a Renderable Object ��� 51

Matrices as Transform Operators�� 51

The glMatrix Library�� 53

The Matrix Transform Project�� 54

Observations�� 58

Encapsulating the Transform Operator�� 58

The Transform Objects Project��� 58

The Transform Object�� 59

View, Projection, and Viewports�� 61

Coordinate Systems and Transformations��� 61

The View Projection and Viewport Project��� 64

www.allitebooks.com

http://www.allitebooks.org

ix

■ Contents

The Camera��� 71

The Camera Objects Project�� 71

Summary��� 76

■■Chapter 4: Implementing Common Components of Video Games������������������������ 77

Introduction��� 77

The Game Loop��� 78

The Game Loop Project�� 79

Keyboard Input�� 86

The Keyboard Support Project��� 86

Resource Management and Asynchronous Loading��� 93

The Resource Map and Shader Loader Project��� 94

Game Level from a Scene File��� 103

The Scene File Project��� 103

Scene Object: Client Interface to the Game Engine��� 110

The Scene Objects Project��� 110

Audio��� 116

The Audio Support Project��� 117

Summary��� 125

Game Design Considerations��� 125

■■Chapter 5: Working with Textures, Sprites, and Fonts��������������������������������������� 127

Introduction��� 127

Texture Mapping and Texture Coordinates�� 128

The Texture Shaders Project�� 130

Drawing with Sprite Sheets�� 150

The Sprite Shaders Project�� 152

Sprite Animations�� 161

Overview of Animated Sprite Sheets��� 162

The Sprite Animation Project��� 163

www.allitebooks.com

http://www.allitebooks.org

x

■ Contents

Fonts and Drawing of Text��� 170

Bitmap Fonts��� 170

The Font Support Project��� 171

Summary��� 184

Game Design Considerations��� 184

■■Chapter 6: Defining Behaviors and Detecting Collisions������������������������������������ 187

Introduction��� 187

Game Objects�� 188

The Game Objects Project��� 188

Chasing of a GameObject�� 196

Vectors Review�� 196

The Front and Chase Project��� 200

Collisions Between GameObjects�� 207

Bounding Box�� 207

The Bounding Box and Collisions Project�� 208

Per-Pixel Collisions�� 213

The Per-Pixel Collisions Project��� 213

Generalized Per-Pixel Collisions�� 221

Vector Review: Components and Decomposition�� 221

The General Pixel Collisions Project�� 224

Per-Pixel Collisions for Sprites�� 227

The Sprite Pixel Collisions Project��� 228

Summary��� 231

Game Design Considerations��� 231

■■Chapter 7: Manipulating the Camera�� 233

Introduction��� 233

Camera Manipulations�� 234

The Camera Manipulations Project�� 234

Interpolation�� 240

The Camera Interpolations Project�� 241

www.allitebooks.com

http://www.allitebooks.org

xi

■ Contents

Camera Shake Effect��� 246

The Camera Shake Project�� 247

Multiple Cameras�� 253

The Multiple Cameras Project��� 254

Mouse Input Through Cameras��� 259

The Mouse Input Project�� 260

Summary��� 266

Game Design Considerations��� 267

■■Chapter 8: Implementing Illumination and Shadow��� 273

Introduction��� 273

Overview of Illumination and GLSL Implementation��� 274

Ambient Light�� 274

The Global Ambient Project��� 275

Light Source�� 281

GLSL Implementation and Integration into the Game Engine�� 282

The Simple Light Shader Project��� 283

Multiple Light Sources and Distance Attenuation��� 293

The Multiple Lights Project�� 294

Diffuse Reflection and Normal Mapping��� 302

The Normal Maps and Illumination Shaders Project��� 305

Specular Reflection and Materials�� 315

Integration of Material in the Game Engine and GLSL Shaders��� 318

The Material and Specularity Project�� 318

Light Source Types�� 327

The Directional and Spot Lights Project�� 328

Shadow Simulation��� 337

The Shadow Simulation Algorithm�� 339

The Shadow Shaders Project�� 340

Summary��� 356

Game Design Considerations��� 356

www.allitebooks.com

http://www.allitebooks.org

xii

■ Contents

■■Chapter 9: Integrating Physics and Particles��� 365

Introduction��� 365

Physics Overview�� 366

Movement�� 366

Collision Detection��� 368

Collision Resolution��� 369

Detecting Collisions��� 369

The Rigid Shape Bounds Project��� 370

Resolving Collisions�� 381

The Rigid Shape Impulse Project��� 381

Particles and Particle Systems�� 397

The Particles Project�� 397

Particle Emitters�� 408

The Particle Emitters Project��� 408

Summary��� 412

Game Design Considerations��� 413

■■Chapter 10: Supporting Camera Background��� 419

Introduction��� 419

Tiling of the Background �� 420

The Tiled Objects Project��� 421

Simulating Motion Parallax with Parallax Scrolling��� 426

The ParallaxObjects Project��� 428

Layer Management��� 432

The Layer Manager Project�� 432

Summary��� 438

Game Design Considerations��� 439

xiii

■ Contents

■■Chapter 11: Building a Sample Game: From Design to Completion�������������������� 441

Part 1: Refining the Concept�� 441

Part 2: Integrating a Setting�� 444

Contextual Images Bring the Setting to Life�� 444

Defining the Playable Space�� 445

Adding Layout to the Playable Space�� 446

Tuning the Challenge and Adding Fun��� 447

Further Tuning: Introducing Enemies��� 448

General Considerations�� 448

Part 3: Integrating Additional Design Elements��� 449

Visual Design��� 449

Game Audio��� 450

Interaction Model��� 451

Game Systems and Meta Game��� 451

User Interface (UI) Design�� 452

Game Narrative�� 453

Bonus Content: Adding a Second Stage to the Level��� 454

Summary��� 455

Index�� 457

xv

About the Authors

Kelvin Sung is a professor with the Computing and Software Systems Division and the principal investigator
of the Game-Themed Research Group at University of Washington Bothell (UWB). He received his Ph.D.
in computer science from the University of Illinois at Urbana-Champaign in 1992. His background is in
computer graphics, hardware, and machine architecture. He came to UWB from Alias|Wavefront (now part
of Autodesk) in Toronto, where he played a key role in designing and implementing the Maya renderer, an
Academy Award–winning image generation system. Before joining Alias|Wavefront, Kelvin was an assistant
professor with the School of Computing, National University of Singapore. Kelvin’s research interests are in
studying the role of technology in supporting human communication. Funded by Microsoft Research and
the National Science Foundation, Kelvin’s recent work focused on the intersection of video game mechanics,
real-world problems, and mobile technologies. Kelvin teaches both undergraduate and graduate classes in
computer graphics, game development, and mobile computing.

Jebediah Pavleas is a graduate student in the Computer Science and Software Engineering program at
the University of Washington Bothell (UWB) as well as an intern on the NExT Enable team at Microsoft
Research. He is also the coauthor of the book Learn 2D Game Development with C#. He received a bachelor’s
of science degree in 2012 and was the recipient of the Chancellor’s Medal for his class. During his time as
an undergraduate, he took great interest in both computer graphics and games. His projects included an
interactive math application that utilizes Microsoft’s Kinect sensor to teach algebra, a 2D role-playing game
designed to teach students introductory programming concepts, and a web site where students can compete
in various mini-games to control checkpoints around campus. Relating to these projects, he coauthored
publications in IEEE Computers and The Journal of Computing Sciences in Colleges (CCSC). When not
working toward his graduate degree, he enjoys designing, building, and playing games of all kinds as well as
adapting technology for improved accessibility.

Fernando Arnez is an undergraduate student in the Computing and Software Systems Division at the
University of Washington Bothell (UWB) working toward his bachelor’s degree in computer science and
software engineering. He is a member of the Game-Themed Research Group and has participated in projects
that built casual games for teaching introductory programming concepts. He coauthored an article in IEEE
Computers discussing his work and the results from those projects.

Jason Pace directs the University of Washington Bothell’s Digital Future Lab (www.bothell.washington.edu/
digitalfuture/about), an interactive media research and development studio modeling startup culture
for a diverse group of student developers, designers, artists, musicians, and producers. He started the lab
after spending 16 years at Microsoft leading user experience and product development teams on a number
of Microsoft’s key consumer products, including serving as a creative director and lead producer on the
Halo team at 343 Industries and Design Manager for the Microsoft Casual Games group. His work in the lab
focuses on exploring how radically diverse teams that seek to maximize differences among contributors can
lead to unexpected insights and new directions in design and development. The lab brings undergraduate
students together from across majors and schools to create high-performance creative teams engaged in
both commercial game development and design research.

www.bothell.washington.edu/digitalfuture/about
www.bothell.washington.edu/digitalfuture/about

xvii

About the Technical Reviewer

Jason Sturges is a cutting edge technologist focused in ubiquitous delivery of immersive user experiences.
Coming from a visualization background, he’s always pushing boundaries of computer graphics to the
widest reach cross platform while maintaining natural and intuitive usability per device. From interactivity,
motion, animations, and creative design, he has worked with numerous creative agencies on projects from
kiosks to video walls to Microsoft Kinect games. Most recently the core of his work has been mobile apps.

Committed to the open source community, he is also a frequent contributor at GitHub and Stack
Overflow as a community resource leveraging modern standards, solid design patterns, and best practices in
multiple developer tool chains for web, mobile, desktop, and beyond.

xix

Acknowledgments

This book project is a direct result of the authors learning from building games for the Game-Themed
CS1/2: Empowering the Faculty project, funded by the Transforming Undergraduate Education in Science
Technology Engineering and Mathematics (TUES) Program, National Science Foundation (NSF) (award
number DUE-1140410). We would like to thank NSF officers Suzanne Westbrook for believing in our project
and Jane Prey, Valerie Bar, and Paul Tymann for their encouragements.

The invaluable collaboration between the technical team in the Game-Themed Research Group
(https://depts.washington.edu/cmmr/GTCS/) and the design team in the Digital Future Lab
(http://www.bothell.washington.edu/digitalfuture) at the University of Washington Bothell, where
much of our learning occurred during the production of the many casual games for teaching introductory
programming concepts, formed the foundation that allowed the development of this book. Thank you to
all the participants of this research undertaking, especially to Mike Panitz, Rob Nash, Brian Hecox, Emmett
Scout, Nathan Evers, Cora Walker, and Aina Braxton for working with us throughout all these years. The
authors would also like to thank the students at the University of Washington Bothell for the games they
built from the course CSS385: Introduction to Game Development (see http://courses.washington.edu/
css385). Their interest and passion for games has provided us with the ideal deployment vehicle and are a
source of continuous inspiration. They have tested, retested, contributed to, and assisted in the formation
and organization of the contents of this book.

Jebediah Pavleas would like to thank the Computing and Software Systems Division at the University
of Washington Bothell for the generous tuition scholarships that funded his education throughout his
participation with this book project.

The hero character Dye and many of the visual and audio assets used throughout the example projects
of the book are based on the Dye Hard game, designed for teaching concepts of objects and object-oriented
hierarchy. The original Dye Hard development team members included Matthew Kipps, Rodelle Ladia,
Chuan Wang, Brian Hecox, Charles Chiou, John Louie, Emmett Scout, Daniel Ly, Elliott White, Christina
Jugovic, Rachel Harris, Nathan Evers, Kasey Quevedo, Kaylin Norman-Slack, David Madden, Kyle Kraus, Suzi
Zuber, Aina Braxton, Kelvin Sung, Jason Pace, and Rob Nash. Kyle Kraus composed the background music
used in the Audio Support project from Chapter 4, originally for the Linx game, which was designed to teach
loops. The background audio for the game in Chapter 11 was composed by David Madden and arranged by
Aina Braxton. Thanks to Clover Wai for the figures and illustrations.

We also want to thank Gwenan Spearing at Apress for connecting us to our editor Ben Renow-Clarke.
A heartfelt thank-you to Kevin Walter for his patient and diligent organization skills in guiding us, to Melissa
Maldonado for tolerating and working with our constantly behind schedule frenzy, and to Kim Wimpsett for
the tireless and excellent edits that make much of this book actually readable. Finally, we would like to thank
Jason Sturges for his insightful technical feedback.

All opinions, findings, conclusions, and recommendations in this work are those of the authors and do
not necessarily reflect the views of the sponsors.

https://depts.washington.edu/cmmr/GTCS/
http://www.bothell.washington.edu/digitalfuture
http://courses.washington.edu/css385
http://courses.washington.edu/css385
http://dx.doi.org/10.1007/978-1-4842-0952-3_4
http://dx.doi.org/10.1007/978-1-4842-0952-3_11

xxi

Introduction

Welcome to Build Your Own 2D Game Engine and Create Web Games. Because you have picked up this book,
you are likely interested in the details of a game engine and the creation of your own games to be played
over the Internet. This book teaches you how to build a 2D game engine by covering the involved technical
concepts, demonstrating sample implementations, and showing you how to organize the large number
of source code and asset files to support game development. This book also discusses how each covered
technical topic area relates to elements of game design so that you can build, play, analyze, and learn about
the development of 2D game engines and games. The sample implementations in this book are based on
HTML5, JavaScript, and WebGL, which are technologies that are freely available and supported by virtually
all web browsers. After reading this book, the game engine you develop and the associated games will be
playable through a web browser from anywhere on the Internet.

This book presents relevant concepts from software engineering, computer graphics, mathematics,
physics, game development, and game design—all in the context of building a 2D game engine. The
presentations are tightly integrated with the analysis and development of source code; you’ll spend
much of the book building game like concept projects that demonstrate the functionality of game engine
components. By building on source code introduced early on, the book leads you on a journey through
which you will master the basic concepts behind a 2D game engine while simultaneously gaining hands-on
experience developing simple but working 2D games. Beginning from Chapter 4, a “Design Considerations”
section is included at the end of each chapter to relate the covered technical concepts to elements of
game design. By the end of the book, you will be familiar with the concepts and technical details of 2D
game engines, feel competent in implementing functionality in a 2D game engine to support commonly
encountered 2D game requirements, and capable of considering game engine technical topics in the context
of game design elements in building fun and engaging games.

Who Should Read This Book
This book is targeted toward programmers who are familiar with basic object-oriented programming
concepts and have a basic to intermediate knowledge of an object-oriented programming language such
as Java or C#. For example, if you are a student who has taken a few introductory programming courses,
an experienced developer who is new to games and graphics programming, or a self-taught programming
enthusiast, you will be able to follow the concepts and code presented in this book with little trouble. If
you’re new to programming in general, it is suggested that you first become comfortable with the JavaScript
programming language and concepts in object-oriented programming before tackling the content provided
in this book.

http://dx.doi.org/10.1007/978-1-4842-0952-3_4

xxii

■ Introduction

Assumptions
You should be experienced with programming in an object-oriented programming language, such as Java or
C#. Knowledge and expertise in JavaScript would be a plus but are not necessary. The examples in this book
were created with the assumption that you understand data encapsulation and inheritance. In addition,
you should be familiar with basic data structures such as linked lists and dictionaries and be comfortable
working with the fundamentals of algebra and geometry, particularly linear equations and coordinate
systems.

Who Should Not Read This Book
This book is not designed to teach readers how to program, nor does it attempt to explain the intricate
details of HTML5, JavaScript, or WebGL. If you have no prior experience developing software with an
object-oriented programming language, you will probably find the examples in this book difficult to follow.

On the other hand, if you have an extensive background in game engine development based on other
platforms, the content in this book will be too basic; this is a book intended for developers without 2D game
engine development experience. However, you might still pick up a few useful tips about 2D game engine
and 2D game development for the platforms covered in this book.

Organization of This Book
This book teaches how to develop a game engine by describing the foundational infrastructure, graphics
system, game object behaviors, camera manipulations, and a sample game creation based on the engine.

This book teaches how to develop a game engine by describing the foundational infrastructure,
graphics system, game object behaviors, camera manipulations, and a sample game creation based on the
engine.

Chapters 2 to 4 construct the foundational infrastructure of the game engine. Chapter 2 establishes the
initial infrastructure by separating the source code system into folders and files that contain the following:
JavaScript-specific core engine logics, WebGL GLSL-specific shader programs, and HTML5-specific
web page contents. This organization allows ongoing engine functionality expansion while maintaining
localized source code system changes. For example, only JavaScript source code files need to be modified
when introducing enhancements to game object behaviors. Chapter 3 builds the drawing framework to
encapsulate and hide the WebGL drawing specifics from the rest of the engine. This drawing framework
allows the development of game object behaviors without being distracted by how they are drawn. Chapter 4
introduces and integrates core game engine functional components including game loop, keyboard input,
efficient resource and game level loading, and audio support.

Chapters 5 to 7 present basic functionality of a game engine: drawing system, behavior and interactions,
and camera manipulation. Chapter 5 focuses on working with texture mapping, including sprite sheets,
animation with sprite sheets, and the drawing of bitmap fonts. Chapter 6 puts forward abstractions for
game objects and their behaviors including per-pixel accurate collision detection. Chapter 7 details the
manipulation and interactions with the camera including programming with multiple cameras and
supporting mouse input.

Chapters 8 to 10 elevate the introduced functionality to more advanced levels. Chapter 8 covers the
simulation of 3D illumination effects in 2D game scenes. Chapter 9 discusses physically based behavior
simulations and particle systems that are suitable for modeling explosions. Chapter 10 examines more
advanced camera functionality including infinite scrolling through tiling and parallax.

Chapter 11 summarizes the book by leading you through the design of a complete game based on the
game engine you have developed.

http://dx.doi.org/10.1007/978-1-4842-0952-3_2
http://dx.doi.org/10.1007/978-1-4842-0952-3_4
http://dx.doi.org/10.1007/978-1-4842-0952-3_2
http://dx.doi.org/10.1007/978-1-4842-0952-3_3
http://dx.doi.org/10.1007/978-1-4842-0952-3_4
http://dx.doi.org/10.1007/978-1-4842-0952-3_5
http://dx.doi.org/10.1007/978-1-4842-0952-3_7
http://dx.doi.org/10.1007/978-1-4842-0952-3_5
http://dx.doi.org/10.1007/978-1-4842-0952-3_6
http://dx.doi.org/10.1007/978-1-4842-0952-3_7
http://dx.doi.org/10.1007/978-1-4842-0952-3_8
http://dx.doi.org/10.1007/978-1-4842-0952-3_10
http://dx.doi.org/10.1007/978-1-4842-0952-3_8
http://dx.doi.org/10.1007/978-1-4842-0952-3_9
http://dx.doi.org/10.1007/978-1-4842-0952-3_10
http://dx.doi.org/10.1007/978-1-4842-0952-3_11

xxiii

■ Introduction

Code Samples
Every chapter in this book includes examples that let you interactively experiment with and learn the new
materials. You can download the source code for all the projects, including the associated assets (images,
audio clips, or fonts), from the following page: www.apress.com/9781484209530.

Follow the instructions to download the 9781484209530.zip file. To install the code samples, unzip the
9781484209530.zip file. You should see a folder structure that is organized by chapter numbers. Within each
folder are subfolders containing NetBeans projects that correspond to sections of this book.

www.apress.com/9781484209530

1

Chapter 1

Introducing 2D Game Engine
Development with JavaScript

Video games are complex, interactive, multimedia software systems. These systems must, in real time,
process player input, simulate the interactions of semi-autonomous objects, and generate high-fidelity
graphics and audio outputs, all while trying to engage the players. Attempts at building video games can
quickly be overwhelmed by the need to be well versed in software development as well as in how to create
appealing player experiences. The first challenge can be alleviated with a software library, or game engine,
that contains a coherent collection of utilities and objects designed specifically for developing video
games. The player engagement goal is typically achieved through careful gameplay design and fine-tuning
throughout the video game development process. This book is about the design and development of a
game engine; it will focus on implementing and hiding the mundane operations and supporting complex
simulations. Through the projects in this book, you will build a practical game engine for developing video
games that are accessible across the Internet.

A game engine relieves the game developers from simple routine tasks such as decoding specific key
presses on the keyboard, designing complex algorithms for common operations such as mimicking shadows
in a 2D world, and understanding nuances in implementations such as enforcing accuracy tolerance of
a physics simulation. Commercial and well-established game engines such as Unity, Unreal Engine, and
Panda3D present their systems through a graphical user interface (GUI). Not only does the friendly GUI
simplify some of the tedious processes of game design such as creating and placing objects in a level, but
more importantly, it ensures that these game engines are accessible to creative designers with diverse
backgrounds who may find software development specifics distracting.

This book focuses on the core functionality of a game engine independent from a GUI. While a
comprehensive GUI system can improve the end-user experience, the implementation requirements
can also distract and complicate the fundamentals of a game engine. For example, issues concerning
the enforcement of compatible data types in the user interface system, such as restricting objects from a
specific class to be assigned as shadows receivers, are important to GUI design but are irrelevant to the core
functionality of a game engine.

This book approaches game engine development from two important aspects: programmability and
maintainability. As a software library, the interface of the game engine should facilitate programmability
by game developers with well-abstracted utility methods and objects that hide simple routine tasks and
support complex common operations. As a software system, the code base of the game engine should
support maintainability with a well-designed infrastructure and well-organized source code systems that
enable code reuse, ongoing system upkeep, improvement, and expansion.

This chapter describes the implementation technology and organization of the book. The discussion
then leads you through the steps of downloading, installing, and setting up the development environment;
guides you to build your first HTML5 application; and uses this first application development experience to
explain the best approach to reading and learning from this book.

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

2

The Technologies
The goal of building a game engine that allows games to be accessible across the World Wide Web is enabled
by freely available technologies.

JavaScript is supported by virtually all web browsers because an interpreter is installed on almost every
personal computer in the world. As a programming language, JavaScript is dynamically typed, supports
inheritance and functions as first-class objects, and is easy to learn with well-established user and developer
communities. With the strategic choice of this technology, video games developed based on JavaScript can
be accessible by anyone over the Internet through appropriate web browsers. Therefore, JavaScript is one of
the best programming languages for developing video games for the masses.

While JavaScript serves as an excellent tool for implementing the game logic and algorithms, additional
technologies in the form of software libraries, or application programming interfaces (APIs), are necessary to
support the user input and media output requirements. With the goal of building games that are accessible
across the Internet through web browsers, HTML5 and WebGL provide the ideal complementary input and
output APIs.

HTML5 is designed to structure and present content across the Internet. It includes detailed processing
models and the associated APIs to handle user input and multimedia outputs. These APIs are native to
JavaScript and are perfect for implementing browser-based video games. While HTML5 offers a basic
Scalable Vector Graphics (SVG) API, it does not support the sophistication demanded by video games for
effects such as real-time lighting, explosions, or shadows. The Web Graphics Library (WebGL) is a JavaScript
API designed specifically for the generation of 2D and 3D computer graphics through web browsers. With its
support for OpenGL Shading Language (GLSL) and the ability to access the graphics processing unit (GPU)
on client machines, WebGL has the capability of producing highly complex graphical effects in real time and
is perfect as the graphics API for browser-based video games.

This book is about the concepts and development of a game engine where JavaScript, HTML5,
and WebGL are simply tools for the implementation. The discussion in this book focuses on applying
the technologies to realize the required implementations and does not try to cover the details of the
technologies. For example, in the game engine, inheritance is implemented with the JavaScript object
prototype chain; however, the merits of prototype-based scripting languages are not discussed. The engine
audio cue and background music functionalities are based on the HTML5 AudioContext interface, and yet
its range of capabilities is not described. The game engine objects are drawn based on WebGL texture maps,
while the features of the WebGL texture subsystem are not presented. The specifics of the technologies
would distract from the game engine discussion. The key learning outcomes of the book are the concepts
and implementation strategies for a game engine and not the details of any of the technologies. In this
way, after reading this book, you will be able to build a similar game engine based on any comparable
set of technologies such as C# and MonoGame, Java and JOGL, C++ and Direct3D, and so on. If you want
to learn more about or brush up on JavaScript, HTML5, or WebGL, please refer to the references in the
“Technologies” section at the end of this chapter.

■■ Note  JavaScript supports inheritance via the language prototype chain mechanism. Technically, there
is no class hierarchy to speak of. However, for clarity and simplicity, this book uses standard object-oriented
terminology such as superclass and subclass to refer to parent-child inheritance relationships.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

3

Setting Up Your Development Environment
The game engine you are going to build will be accessible through web browsers that could be running on any
operating system (OS). The development environment you are about to set up is also OS agnostic. For simplicity,
the following instructions are based on a Windows 7 or Windows 8 OS. You should be able to reproduce a similar
environment with minor modifications in a Unix-based environment like the Apple OS X or Ubuntu.

Your development environment includes an integrated development environment (IDE) and a runtime
web browser that is capable of hosting the running game engine. The most convenient systems we have found
are the NetBeans IDE with the Google Chrome web browser as runtime environment. Here are the details:

•	 IDE: All projects in this book are based on the NetBeans IDE. You can download and
install the bundle for HTML5 and PHP from https://netbeans.org/downloads.

•	 Runtime environment: You will execute your video game projects in the Google
Chrome web browser. You can download and install this browser from https://www.
google.com/chrome/browser/. Notice that Microsoft Internet Explorer 11 does not
support HTML5 AudioContext and thus will not execute any projects after Chapter 4;
in addition, Mozilla Firefox (version 39.0) does not support some of the GLSL
shaders in Chapter 9.

•	 Connector Google Chrome plug-in: This is a Google Chrome extension that connects
the web browser to the NetBeans IDE to support HTML5 development. You can
download and install this extension from https://chrome.google.com/webstore/
detail/netbeans-connector/hafdlehgocfcodbgjnpecfajgkeejnaa. The download
will automatically install the plug-in to Google Chrome. You may have to restart your
computer to complete the installation.

•	 glMatrix math library: This is a library that implements the foundational mathematic
operations. You can download this library from http://glMatrix.net. You will integrate
this library into your game engine in Chapter 3, so more details will be provided there.

Notice that there are no specific system requirements to support the JavaScript programming language,
HTML5, or WebGL. All these technologies are embedded in the web browser runtime environment.

■■ Note  As mentioned, we chose NetBeans-based development environment because we found it to be the
most convenient. There are many other alternatives that are also free, including and not limited to IntelliJ IDEA,
Eclipse, and Sublime.

Downloading and Installing JavaScript Syntax Checker
We have found JSLint to be an effective tool in detecting potential JavaScript source code errors. You can
download and install JSLint as a plug-in to the NetBeans IDE with the following steps:

•	 Download it from http://plugins.netbeans.org/plugin/40893/jslint. Make
sure to take note of the location of the downloaded file.

•	 Start NetBeans, select Tools ➤ Plugins, and go to the Downloaded tab.

•	 Click the Add Plugins button and search for the downloaded file from step 1.
Double-click this file to install the plug-in.

https://netbeans.org/downloads
https://www.google.com/chrome/browser/
https://www.google.com/chrome/browser/
http://dx.doi.org/10.1007/978-1-4842-0952-3_4
http://dx.doi.org/10.1007/978-1-4842-0952-3_9
https://chrome.google.com/webstore/detail/netbeans-connector/hafdlehgocfcodbgjnpecfajgkeejnaa
https://chrome.google.com/webstore/detail/netbeans-connector/hafdlehgocfcodbgjnpecfajgkeejnaa
http://glmatrix.net/
http://dx.doi.org/10.1007/978-1-4842-0952-3_3
http://plugins.netbeans.org/plugin/40893/jslint

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

4

The following are some useful references for working with JSLint:

•	 For instructions on how to work with JSLint, see http://www.jslint.com/help.html.

•	 For details on how JSLint works, see http://plugins.netbeans.org/plugin/40893/jslint.

Working in the NetBeans Development Environment
The NetBeans IDE is easy to work with, and the projects in this book require only the editor and debugger.
To open a project, select File ➤ Open Projects. Once a project is open, you need to become familiarize with
three basic windows, as illustrated in Figure 1-1.

•	 Projects window: This window displays the source code files of the project.

•	 Editor window:  This window displays and allows you to edit the source code of
your project. You can select the source code file to work with by double-clicking the
corresponding file name in the Projects window.

•	 Action Items window:  This window displays the error message output from the
JSLint checker.

Figure 1-1.  The NetBeans IDE

http://www.jslint.com/help.html
http://plugins.netbeans.org/plugin/40893/jslint

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

5

■■ Note  If you cannot see a window in the IDE, you can click the Window menu and select the name of the
missing window to cause it to appear. For example, if you cannot see the Projects window in the IDE, you can
select Window ➤ Projects to open it.

Creating an HTML5 Project in NetBeans
You are now ready to create your first HTML5 project.

•	 Start NetBeans. Select File ➤ New Project (or press Ctrl+Shift+N), as shown in
Figure 1-2. A New Project window will appear.

Figure 1-2.  Creating a new project

•	 In the New Project window, select HTML5 in the Categories section, and select
HTML5 Application from the Projects section, as shown in Figure 1-3. Click the Next
button to bring up the project configuration window.

Figure 1-3.  Selecting the HTML5 project

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

6

•	 As shown in Figure 1-4, enter the name and location of the project, and click the
Finish button to create your first HTML5 project.

Figure 1-4.  Naming the project

NetBeans will generate the template of a simple and complete HTML5 application project for you. Your
IDE should look similar to Figure 1-5.

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

7

Figure 1-5.  The HTML5 application project

By selecting and double-clicking the index.html file in the Projects window, you can open it in the
Editor window and observe the content of the file. The contents are as follows:

<!DOCTYPE html>
<!--
To change this license header, choose License Headers in Project Properties.
To change this template file, choose Tools | Templates
and open the template in the editor.
-->
<html>
 <head>
 <title>TODO supply a title</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 </head>
 <body>
 <div>TODO write content</div>
 </body>
</html>

The first line declares the file to be an HTML file. The block that follows within the <!-- and --> tags
is a comment block. The complementary <html></html> tags contain all the HTML code. In this case, the
template defines the head and body sections. The head sets the title of the web page, and the body is where all
the content for the web page will be located.

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

8

You can run this project by selecting Run ➤ Run Project or by pressing the F6 key. Figure 1-6 shows an
example of what the default project looks like when you run it.

Table 1-1.  Folders and Files in a NetBeans HTML5 Project

NetBeans HTML5 project: folder/file Purpose

nbProject/ This folder contains the IDE configuration files. You will not modify
any of the files in this folder.

public_html/ This is the root folder of your project. Source code and assets from
your project will be created in this folder.

public_html/index.html This is the default entry point for your web site. This file will be
modified to load JavaScript source code files.

test/ This is the default folder for unit testing source code files. This folder
is not used in this book and has been removed from all the projects.

■■ Note  As will be explained in the next chapter, you cannot double-click the index.html file to run the
project. You must either select Run ➤ Run Project, press on the F6 key, or click the green triangle button.

To stop the program, either close the web page or click the Cancel button in the browser to stop
NetBeans from tracking the web page. You have successfully run your first HTML5 project. You can use this
project to understand the IDE environment.

The Relationship Between the Project Files and the File System
Navigate to the HTML5Application project location on your file system, for example with the Explorer OS
utility in Windows 7. You can observe that in the project folder NetBeans has generated the nbProject,
public_html, and test folders. Table 1-1 summarizes the purpose of these folders and the index.html file.

Figure 1-6.  Running the simple HTML5 project

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

9

How to Use This Book
This book guides you through the development of a game engine by building projects similar to the one
you have just experienced. Each chapter covers an essential component of a typical game engine, and the
sections in each chapter describe the important concepts and implementation projects that construct the
corresponding component. Throughout the text, the project from each section builds upon the results from
the projects that precede it. While this makes it a little challenging to skip around in the book, it will give
you practical experience and a solid understanding of how the different concepts relate. In addition, rather
than always working with new and minimalistic projects, you gain experience with building larger and more
interesting projects while integrating new functionality into your expanding game engine.

The projects start with demonstrating simple concepts, such as drawing a simple square, but evolve
quickly into presenting more complex concepts, such as working with user-defined coordinate systems
and implementing pixel-accurate collision detection. Initially, as you have experienced in building the
first HTML5 application, you will be guided with detailed steps and complete source code listings. As
you become familiar with the development environment and the technologies, the guides and source
code listings accompanying each project will shift to highlight on the important implementation details.
Eventually, as the complexity of the projects increases, the discussion will focus only on the vital and
relevant issues, while straightforward source code changes will not be mentioned.

The final code base, which you will have developed incrementally over the course of the book, is a
complete and practical game engine; it’s a great platform on which you can begin building your own 2D
games. This is exactly what the last chapter of the book does, leading you from the conceptualization to
design to implementation of a casual 2D game.

There are several ways for you to follow along with this book. The most obvious is to enter the code into
your project as you follow each step in the book. From a learning perspective, this is the most effective way to
absorb the information presented; however, we understand that it may not be the most realistic because of
the amount of code or debugging this approach may require. Alternatively, we recommend that you run and
examine the source code of the completed project when you begin a new section. Doing so lets you preview
the current section’s project, gives you a clear idea of the end goal, and lets you see what the project is trying
to achieve. You may also find the completed project code useful when you have problems while building
the code yourself, because you can compare your code with the completed project’s code during difficult
debugging situations.

■■ Note  We have found the WinMerge program (http://winmerge.org/) to be an excellent tool for
comparing source code files and folders. Mac users can check out the FileMerge utility for a similar purpose.

Finally, after completing a project, we recommend that you compare the behavior of your
implementation with the completed implementation provided. By doing so, you can observe whether your
code is behaving as expected.

How Do You Make a Great Video Game?
While the focus of this book is on the design and implementation of a game engine, it is important to
appreciate how different components can contribute to the creation of a fun and engaging video game.
Beginning in Chapter 4, a “Game Design Consideration” section is included at the end of each chapter to
relate the functionality of the engine component to elements of game designs. This section presents the
framework for these discussions.

http://winmerge.org/
http://dx.doi.org/10.1007/978-1-4842-0952-3_4

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

10

It’s a complex question, and there’s no exact formula for making a video game that people will love
to play, just as there’s no exact formula for making a movie that people will love to watch. We’ve all seen
big-budget movies that look great and feature top acting, writing, and directing talent but that bomb at the
box office, and we’ve all seen big-budget games from major studios that fail to capture the imaginations of
players. By the same token, movies by unknown directors can grab the world’s attention, and games from
small, unknown studios can take the market by storm.

While no explicit instructions exist for making a great game, a number of elements work together in
harmony to create a final experience greater than the sum of its parts, and all game designers must successfully
address each of them in order to produce something worth playing. The elements include the following:

•	 Technical design: This includes all game code and the game platform and is generally
not directly exposed to players; rather, it forms the foundation and scaffolding for
all aspects of the game experience. This book is primarily focused on issues related
to the technical design of games, including specific tasks such as the lines of code
required to draw elements on the screen and more architectural considerations such
as determining the strategy for how and when to load assets into memory. Technical
design issues impact the player experience in many ways (for example, the number
of times a player experiences “loading” delays during play or how many frames per
second the game displays), but the technical design is typically invisible to players
because it runs under what’s referred to as the presentation layer, or all of the
audiovisual and/or haptic feedback the player encounters during play.

•	 Game mechanic(s): The game mechanic is an abstract description of what can be
referred to as the foundation of play for a given game experience. Types of game
mechanics include puzzles, dexterity challenges such as jumping or aiming, timed
events, combat encounters, and the like. The game mechanic is a framework;
specific puzzles, encounters, and game interactions are implementations of the
framework. A real-time strategy (RTS) game might include a resource-gathering
mechanic, for example, where the mechanic might be described as “Players are
required to gather specific types of resources and combine them to build units
which they can use in combat.” The specific implementation of that mechanic (how
players locate and extract the resources in the game, how they transport them from
one place to another, and the rules for combining resources to produce units) is an
aspect of system design, level design, and the interaction model (described later in
this section).

•	 Systems design: The internal rules and logical relationships that provide structured
challenge to the core game mechanic are referred to as the game’s systems design.
Using the previous RTS example, a game might require players to gather a certain
amount of metal ore and combine it with a certain amount of wood to make a game
object; the specific rules for how many of each resource is required to make the objects
and the unique process for creating the objects (for example, objects can be produced
only in certain structures on the player’s base and take x number of minutes to appear
after the player starts the process) are aspects of systems design. Casual games may
have basic systems designs. The unexpected global phenomenon Flappy Bird from
.GEARS Studio, for example, is a game with few systems and low complexity, while
major genres like RTS games may have deeply complex and interrelated systems
designs created and balanced by entire teams of designers. Game systems designs are
often where the most hidden complexity of game design exists; as designers go through
the exercise of defining all variables that contribute to an implementation of a game

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

11

mechanic, it’s easy to become lost in a sea of complexity and balance dependencies.
Systems that appear fairly simple to players may require many components working
together and balanced perfectly against each other, and underestimating systems
complexity is perhaps one of the biggest pitfalls encountered by new (and veteran!)
game designers. Until you know what you’re getting into, always assume the systems
you create will prove to be considerably more complex than you anticipate.

•	 Level design: A game’s level design reflects the specific ways each of the other eight
elements combine within the context of individual “chunks” of gameplay, where players
must complete a certain chunk of objectives before continuing to the next section (some
games may have only one level, while others will have dozens). Level designs within a
single game can all be variations of the same core mechanic and systems design (games
like Tetris and Bejeweled are examples of games with many levels all focusing on the same
mechanic), while other games will mix and match mechanics and systems designs for
variety among levels. Most games feature one primary mechanic and a game-spanning
approach to systems design and will add minor variations between levels to keep things
feeling fresh (changing environments, changing difficulty, adding time limits, increasing
complexity, and the like), although occasionally games will introduce new levels that rely
on completely separate mechanics and systems to surprise players and hold their interest.
Great level design in games is a balance between creating “chunks” of play that showcase
the mechanic and systems design and changing enough between these chunks to keep
things interesting for players as they progress through the game (but not changing so
much between chunks that the gameplay feels disjointed and disconnected).

•	 Interaction model: The interaction model is the combination of keys, buttons,
controller sticks, touch gestures, and so on, used to interact with the game to
accomplish tasks and the graphical user interfaces that support those interactions
within the game world. Some game theorists break the game’s user interface (UI)
design into a separate category (game UI includes things such as menu designs,
item inventories, heads-up displays [HUDs]), but the interaction model is deeply
connected to UI design, and it’s good practice to think of these two elements as
inseparable. In the case of the RTS game referenced earlier, the interaction model
includes the actions required to select objects in the game, to move those objects,
to open menus and manage inventories, to save progress, to initiate combat, and to
queue build tasks. The interaction model is completely independent of the mechanic
and systems design and is concerned only with the physical actions the player must
take to initiate behaviors (for example, click mouse button, press key, move stick,
scroll wheel); the UI is the audiovisual or haptic feedback connected to those actions
(onscreen buttons, menus, statuses, audio cues, vibrations, and the like).

•	 Game setting: Are you on an alien planet? In a fantasy world? In an abstract
environment? The game setting is a critical part of the game experience and,
in partnership with the audiovisual design, turns what would otherwise be a
disconnected set of basic interactions into an engaging experience with context.
Games settings need not be elaborate to be effective; the game Candy Crush from
King has a rather simple setting with a thin narrative wrapper, but the combination
of setting, audiovisual design, and level design are uniquely well-matched and
contribute significantly to the millions of hours players invest in the experience each
month (as of 2015).

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

12

•	 Visual design: Video games exist in a largely visual medium, so it’s not surprising that
companies frequently spend as much or more on the visual design of their games as
they spend on the technical execution of the code. Large games are aggregations of
thousands of visual assets, including environments, characters, objects, animations,
and cinematics; even small casual games generally ship with hundreds or thousands
of individual visual elements. Each object a player interacts with in the game must be
a unique asset, and if that asset includes more complex animation than just moving
it from one location on the screen to another or changing the scale or opacity, the
object most likely will need to be animated by an artist. Game graphics need not
be photorealistic or stylistically elaborate to be visually excellent or to effectively
represent the setting (many games intentionally utilize a simplistic visual style),
but the best games consider art direction and visual style to be core to the player
experience, and visual choices will be intentional and well-matched to the game
setting and mechanic.

•	 Audio design: This includes music and sound effects, ambient background sounds,
and all sounds connected to player actions (select/use/swap item, open inventory,
invoke menu, and the like). Audio design functions hand-in-hand with visual
design to convey and reinforce game setting, and many new designers significantly
underestimate the impact of sound to immerse players into game worlds. Imagine
Star Wars (for example) without the music, the light saber sound effect, Darth
Vader’s breathing, or R2D2’s characteristic beeps; the audio effects and musical
score are as fundamental to the experience as the visuals.

•	 Meta-game: The meta-game centers on how individual objectives come together to
propel players through the game experience (often via scoring, unlocking individual
levels in sequence, playing through a narrative, and the like). In many modern
games, the meta-game is the narrative arc or story; players often don’t receive a
“score” per se but rather reveal a linear or semi-linear story as they progress through
game levels, driving forward to complete the story. Other games (especially social
and competitive games) involve players “leveling up” their characters, which can
happen as a result of playing through a game-spanning narrative experience or by
simply venturing into the game world and undertaking individual challenges that
grant experience points to characters. Other games, of course, continue focusing on
scoring points or winning rounds against other players.

The magic of video games typically arises from the interplay between these nine elements, and the
most successful games finely balance each as part of a unified vision to ensure a harmonious experience;
this balance will always be unique to each individual effort and is found in games ranging from King’s Candy
Crush to Bioware’s Mass Effect. The core game mechanic in many successful games is often a variation
on one or more fairly simple, common themes (Angry Birds, for example, is a relatively basic projectile
launching game), but the visual design, narrative context, audio effects, interactions, and progression system
work together with the game mechanic to create a unique experience that’s considerably more engaging
than the sum of its individual parts, making players want to return to it again and again. Great games range
from the simple to the complex, but they all feature an elegant balance of supporting design elements.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Introducing 2D Game Engine Development with JavaScript

13

References
The examples in this book are created with the assumptions that you understand data encapsulation,
inheritance, and basic data structures, such as linked lists and dictionaries, and are comfortable working
with the fundamentals of algebra and geometry, particularly linear equations and coordinate systems.
Many examples in this book apply and implement concepts in computer graphics and linear algebra. These
concepts warrant much more in-depth examinations. Interested readers can learn more about these topics
in other books.

•	 Computer graphics:

•	 Shirley, Ashikhmin, and Marschner. Fundamentals of Computer Graphics, 3rd
edition. A. K. Peters, 2009.

•	 Angle and Shreiner. Interactive Computer Graphics: A Top Down Approach with
WebGL. Pearson Education, 2014.

•	 Linear algebra:

•	 Johnson, Riess, and Arnold. Introduction to Linear Algebra, 5th edition.
Addison-Wesley, 2002.

•	 Anton and Rorres. Elementary Linear Algebra: Applications Version, 11th
edition. Wiley, 2013.

Technologies
The following list offers links for obtaining additional information on technologies used in this book:

•	 JavaScript: http://www.w3schools.com/js

•	 HTML5: http://www.w3schools.com/html/html5_intro.asp

•	 WebGL: https://www.khronos.org/webgl

•	 OpenGL:  https://www.opengl.org

•	 NetBeans: https://netbeans.org

•	 Chrome: https://www.google.com/chrome

•	 glMatrix: http://glMatrix.net

•	 JSLint: http://www.jslint.com

http://www.w3schools.com/js
http://www.w3schools.com/html/html5_intro.asp
https://www.khronos.org/webgl
https://www.opengl.org/
https://netbeans.org/
https://www.google.com/chrome
http://glmatrix.net/
http://www.jslint.com/

15

Chapter 2

Working with HTML5 and WebGL

After completing this chapter, you will be able to:

•	 Draw a simple constant color square with WebGL

•	 Create a new JavaScript source code file for your simple game engine

•	 Define new Singleton-like JavaScript objects to implement core game engine
functionality

•	 Appreciate the importance of abstraction and organize your source code structure to
support growth in complexity

Introduction
Drawing is one of the most essential functionalities common to all video games. A game engine should
offer a flexible and programmer-friendly interface to its drawing system. In this way, when building a game,
the designers and developers can focus on the important aspects of the game, such as mechanics, logic,
and aesthetics.

WebGL is a modern graphical application programming interface (API) that offers quality and
efficiency via direct access to the graphical hardware. For these reasons, WebGL can serve as an excellent
base to support drawing in a game engine, especially for video games that are designed to be played across
the Internet.

This chapter examines the fundamentals of drawing with WebGL, designs abstractions to encapsulate
irrelevant details to facilitate easy programming, and builds the foundational infrastructure to organize
a complex source code system to support future expansion.

Canvas for Drawing
To draw, you must first define and dedicate an area within the web page. We will begin with using the HTML
canvas element to define an area for WebGL drawing.

The HTML5 Canvas Project
This project demonstrates how to draw and clear a canvas element on a web page. Figure 2-1 shows an
example of running this project, which is defined in the Chapter2/2.1.HTML5Canvas folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_2

Chapter 2 ■ Working with HTML5 and WebGL

16

The goals of the project are as follows:

•	 To learn how to set up the HTML canvas element

•	 To learn how to retrieve the canvas element from an HTML document for use in
JavaScript

•	 To learn how to create a reference context to WebGL from the retrieved canvas
element and manipulate the canvas from the WebGL context

Creating and Clearing the HTML Canvas
In this first project, you will create an empty HTML5 canvas and clear the canvas to a specific color with
WebGL.

	 1.	 Create a new HTML5 project titled HTML5 Canvas.

	 2.	 Open the index.html file in the editor by double-clicking the project name
(HTML5Canvas) in the Project view, then double-clicking Site Root, and lastly
double-clicking the index.html file, as illustrated in Figure 2-2.  

Figure 2-1.  Running the HTML5 Canvas project

Figure 2-2.  Editing the index.html file in your project

Chapter 2 ■ Working with HTML5 and WebGL

17

	 3.	 Create the HTML canvas for drawing by adding the following line in the
index.html file within the body element:

<canvas id="GLCanvas" width="640" height="480">
 Your browser does not support the HTML5 canvas.
</canvas>

The code defines a canvas element named GLCanvas with the specified width and height attributes. As
you will experience later, you will retrieve the reference to the GLCanvas to draw into this area. The text inside
the element will be displayed if your browser does not support drawing with canvas.

■■ Note  The lines between the <body> and </body> tags are referred to as “within the body element.”
For the rest of this book, “within the AnyTag element” will be used to refer to any line between the beginning
(<AnyTag>) and end (</AnyTag>) of the element. 

	 4.	 Create a script element for the inclusion of JavaScript programming code, once
again within the body element.

<script type="text/javascript">
 // JavaScript code goes here.
</script>

This takes care of the HTML portion of this example. Now you will write JavaScript for the remainder of
the example.

	 5.	 Retrieve a reference to the GLCanvas in your JavaScript by adding the following
line within the script element:

var canvas = document.getElementById("GLCanvas");

The code creates a new variable named canvas and stores a reference to the GLCanvas drawing area in
this variable.

■■ Note  All local variable names begin with a lowercase letter, as in canvas. 

	 6.	 Retrieve and bind a reference to the WebGL context to the drawing area by
adding the following code:

var gl = canvas.getContext("webgl") || canvas.getContext("experimental-webgl");

As the code indicates, the retrieved reference to the WebGL context is stored in the local variable named gl.
From this variable, you have access to all WebGL functionality.

Chapter 2 ■ Working with HTML5 and WebGL

18

	 7.	 Clear the canvas drawing area to your favorite color through WebGL by adding
the following:

if (gl !== null) {
 gl.clearColor(0.0, 0.8, 0.0, 1.0); // set the color to be cleared
 gl.clear(gl.COLOR_BUFFER_BIT); // clear the colors
}

This code checks to ensure the WebGL context is properly retrieved, sets the clear color, and clears the
drawing area. Note that the clearing color is given in RGBA format, with floating-point values ranging from
0.0 to 1.0. The fourth number in the RGBA format is the alpha channel. You will learn more about the alpha
channel in the later chapters. For now, always assign 1.0 to the alpha channel.

You can refer to the final source code in the index.html file in the Chapter2/2.1.HTML5Canvas project.
Run the project, and you should see a light green area on your browser window. This is the 640×480 canvas
drawing area you defined.

You can try changing the cleared color to white by setting the RGBA of gl.clearColor() to 1 or to black
by setting the color to 0 and leaving the alpha value 1. Notice that if you set the alpha channel to 0, the canvas
color will disappear. This is because a 0 value in the alpha channel represents complete transparency, and
thus you will “see through” the canvas and observe the background color of the web page. You can also try
altering the resolution of the canvas by change the 640×480 value to any number you fancy. Notice that these
two numbers refer to the pixel counts and thus must always be integers.

Separating HTML and JavaScript
In the previous project you created an HTML canvas element and cleared the area defined by the canvas
using WebGL. Notice that all the functionality is clustered in the index.html file. As the project complexity
increases, this clustering of functionality can quickly become unmanageable and negatively impact the
programmability of your system. For this reason, throughout the development process in this book, after a
concept is introduced, efforts will be spent on separating the associated source code into either well-defined
source code files or object-oriented programming. To begin this process, the HTML and JavaScript source
code from the previous project will be separated into different source code files.

The JavaScript Source File Project
This project demonstrates how to logically separate the source code into appropriate files. This is
accomplished by creating a separate JavaScript source code file named WebGL.js to implement the
corresponding functionality in the index.html file. The web page will load the JavaScript source code as
instructed by the code in the index.html file. As illustrated in Figure 2-3, this project looks identical as the
previous project when running. The source code of this project is located in the Chapter2/2.2.JavaScript
SourceFile folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_2
http://dx.doi.org/10.1007/978-1-4842-0952-3_2

Chapter 2 ■ Working with HTML5 and WebGL

19

The goals of the project are as follows:

•	 To learn how to separate source code into different files

•	 To organize your code in a logical structure

Separate JavaScript Source Code File
This section details how to create and edit a new JavaScript source code file. You should familiarize yourself
with this process because you’ll create numerous source code files throughout this book.

	 1.	 Create a new HTML5 project titled JavaScriptSourceFile.

	 2.	 Create a new folder named src inside the Site Root folder by right-clicking and
creating a new folder, as illustrated in Figure 2-4.

Figure 2-3.  Running the JavaScript Source File project

Chapter 2 ■ Working with HTML5 and WebGL

20

 This folder will contain all of your source code.

■■ Note  In NetBeans you can create new folders, create new files, copy/paste projects, and rename projects
by using the right-click menus in the Projects window. 

	 3.	 Create a new source code file within the src folder by right-clicking the src
folder, as illustrated in Figure 2-5. 

Figure 2-4.  Creating a new source code folder

Chapter 2 ■ Working with HTML5 and WebGL

21

Name the new source file WebGL.js.

	 4.	 Open the new WebGL.js source file for editing.

	 5.	 Create a global variable referencing the WebGL context.

"use strict";
var gGL = null;

■■ Note  All global variable names begin with a lowercase g, as in gGL. 

	 6.	 Define the initializeGL() function to retrieve GLCanvas, bind the drawing area
with the WebGL context, and store the results in the global gGL variable.

function initializeGL() {
 var canvas = document.getElementById("GLCanvas");
  
 gGL = canvas.getContext("webgl") ||
 canvas.getContext("experimental-webgl");
  

Figure 2-5.  Adding a new JavaScript source code file

Chapter 2 ■ Working with HTML5 and WebGL

22

 if (gGL !== null) {
 gGL.clearColor(0.0, 0.8, 0.0, 1.0); // set the color to be cleared
 } else {
 document.write("
WebGL is not supported!");
 }
}

■■ Note  All public function names begin with a lowercase letter, as in initializeGL(). 

Notice this function is similar to the JavaScript source code you typed in the previous project.

	 7.	 Define the clearCanvas() function to invoke the WebGL context to clear the
canvas drawing area.

function clearCanvas() {
 gGL.clear(gGL.COLOR_BUFFER_BIT); // clear to the color previously set
}

	 8.	 Define the doGLDraw() function to carry out the initialization and clearing of the
canvas area.

function doGLDraw() {
 initializeGL();
 clearCanvas();
}

Load and Run JavaScript Source Code from index.html
With all the JavaScript functionality defined in the WebGL.js file, you now need to load this file and invoke
the doGLDraw() function from your web page, the index.html file.

	 1.	 Open the index.html file for editing.

	 2.	 Create the HTML canvas, GLCanvas, as in the previous project.

	 3.	 Load the WebGL.js source code by including the following code within the body
element:

<script type="text/javascript" src="src/WebGL.js"></script>

You can include this line either before or after the definition of canvas, as long as it is within the body
element.

	 4.	 Execute the doGLDraw() function after WebGL.js is loaded.

<body onload="doGLDraw();">

The modification to the body tag says once all loading operations are done, the doGLDraw() function
should be executed.

Chapter 2 ■ Working with HTML5 and WebGL

23

You can refer to the final source code in the WebGL.js and index.html files in the Chapter2/2.2.Java
ScriptSourceFile project. Although the output from this project is identical to that from the previous
project, the organization of your code will allow you to expand, debug, and understand the game engine as
you continue to add new functionality.

Observations
Examine your index.html file closely and compare its content to the same file from the previous project.
You will notice that the index.html file from the previous project contains two types of information (HTML
and JavaScript code) and that the same file from this project contains only the former, with all JavaScript
code being moved to WebGL.js. This clean separation of information allows for easy understanding of the
source code and improves support for complex systems. From this point on, all JavaScript source code will
be added to separate source code files. In all cases, in the same manner as you have included the loading of
WebGL.js, you will have to remember to load the new source code, such as NewSourceFile.js, by including
the following line within the body element of the index.html file:

<script type="text/javascript" src="src/NewSourceFile.js"></script>

Elementary Drawing with WebGL
Drawing with WebGL is a multiple-step process that involves transferring geometric data and OpenGL
Shading Language (GLSL) instructions (the shaders) from memory to the drawing hardware, or the
graphical processing unit (GPU). This process involves a significant number of WebGL function calls. This
section presents the WebGL drawing steps in detail. It is important to focus on learning these basic steps and
avoid being distracted by the less important WebGL configuration nuances such that you can continue to
learn the overall concepts and build the game engine.

In the following project, you will learn about drawing with WebGL by focusing on the most elementary
operations, including the loading to the GPU for the simple geometry of a square, a constant color shader,
and basic instructions of drawing a square as two triangles.

The Draw One Square Project
This project leads you through the steps required to draw a single square on the canvas. Figure 2-6 shows an
example of running this project, which is defined in the Chapter2/2.3.DrawOneSquare folder.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-0952-3_2
http://dx.doi.org/10.1007/978-1-4842-0952-3_2
http://www.allitebooks.org

Chapter 2 ■ Working with HTML5 and WebGL

24

The goals of the project are as follows:

•	 To understand how to load geometric data to the GPU

•	 To learn about simple GLSL shaders for drawing with WebGL

•	 To learn how to compile and load shaders to the GPU

•	 To understand the steps to draw with WebGL

Set Up and Load the Primitive Geometry Data
To draw efficiently with WebGL, the data associated with the geometry to be drawn, such as the vertex
positions of a square, should be stored in the GPU hardware. In the following steps, you will create a
contiguous buffer in the GPU, load the vertex positions of a unit square into the buffer, and store the
reference to the GPU buffer in a global variable. Learning from the previous project, the corresponding
JavaScript code will be stored in a new source code file, VertexBuffer.js.

■■ Note  A unit square is a 1×1 square centered at the origin. 

	 1.	 Create a new JavaScript source file in the src folder and name it VertexBuffer.js.

Figure 2-6.  Running the Draw One Square project

Chapter 2 ■ Working with HTML5 and WebGL

25

	 2.	 Declare a global variable gSquareVertexBuffer to store the reference to the
WebGL buffer location.

"use strict";
var gSquareVertexBuffer = null;

	 3.	 Define the initSquareBuffer() function to create and load vertices onto
the GPU.

function initSquareBuffer() {
  
 // First: define the vertices for a square
 var verticesOfSquare = [
 0.5, 0.5, 0.0,
 -0.5, 0.5, 0.0,
 0.5, -0.5, 0.0,
 -0.5, -0.5, 0.0
];
  
 // Step A: Create a buffer on the gGL context for our vertex positions
 gSquareVertexBuffer = gGL.createBuffer();
 
 // Step B: Activate vertexBuffer
 gGL.bindBuffer(gGL.ARRAY_BUFFER, gSquareVertexBuffer);
 
 // Step C: Loads verticesOfSquare into the vertexBuffer
 gGL.bufferData(gGL.ARRAY_BUFFER, new Float32Array(verticesOfSquare),
 gGL.STATIC_DRAW);
}

In the code shown, the vertices of a unit square are defined first. Notice the z-dimension is set to 0.0
because you are building a 2D game engine. Step A creates a buffer on the GPU for storing the vertex positions
of the square and stores the reference to the GPU buffer in the global variable gSquareVertexBuffer. Step B
activates the newly created buffer, and step C loads the vertex position of the square into the activated buffer.
The keyword STATIC_DRAW informs the drawing hardware that this buffer will not be changed.

■■ Tip  Remember that the gGL global variable is defined in the WebGL.js file and initialized by the
initializedGL() function. 

	 4.	 Lastly, remember to load the VertexBuffer.js source code in your web page by
adding the following code within the body element of the index.html file:

<script type="text/javascript" src="src/VertexBuffer.js"></script>

■■ Tip  From now on, when you are reminded to “load the new source file in index.html,” you should add the
script line (remember to change VertexBuffer.js to your new source code file name) into index.html.

Chapter 2 ■ Working with HTML5 and WebGL

26

With the functionality of loading vertex positions defined, you are now ready to define and load the
GLSL shaders.

Set Up the GLSL Shaders
The term shader refers to programs that run on the GPU. In the context of the game engine, shaders must
always be defined in pairs consisting of a vertex shader and a corresponding fragment shader. The GPU will
execute the vertex shader once per primitive vertex and the fragment shader once per pixel covered by the
primitive. For example, you can define a square with four vertices and display this square to cover a 100×100
pixel area. To draw this square, WebGL will invoke the vertex shader 4 times (once for each vertex) and
execute the fragment shader 10,000 times (once for each of the 100×100 pixels)!

In the case of WebGL, both the vertex and fragment shaders are implemented in the OpenGL Shading
Language (GLSL). GLSL is a language with syntax that is similar to the C programming language and
designed specifically for processing and displaying graphical primitives. You will learn sufficient GLSL to
support the drawing for the game engine when required.

In the following steps, you will load into memory the source code for both vertex and fragment shaders,
compile and link them into a single shader program, and load the compiled program into the GPU. In this
project, the shader source code is defined in the index.html file, while the loading, compiling, and linking of
the shaders are defined in the ShaderSupport.js source file.

■■ Note  The WebGL context can be considered as an abstraction of the GPU hardware. To facilitate
readability, the two terms WebGL and GPU are sometimes used interchangeably.

Define the Vertex and Fragment Shaders

GLSL shaders are simply programs consisting of GLSL instructions.

	 1.	 Define the vertex shader by opening the index.html file, and within the body
element, add the following code:

<script type="x-shader/x-vertex" id="VertexShader">
 attribute vec3 aSquareVertexPosition;
 void main(void) {
 gl_Position = vec4(aSquareVertexPosition, 1.0);
 }
</script>

The script element type is set to x-shader/x-vertex because that is a common convention for
shaders. As you will see, the id field with the value VertexShader allows you to identify and load this vertex
shader into memory.

The GLSL attribute keyword identifies per-vertex data that will be passed to the vertex shader
in the GPU. In this case, the aSquareVertexPosition attribute is of data type vec3 or an array of three
floating-point numbers. As you will see in later steps, aSquareVertexPosition will contain vertex
positions for a square.

The gl_Position is a GLSL built-in variable, specifically, an array of four floating-point numbers
that must contain the vertex position. In this case, the fourth position of the array will always be 1.0. The
code shows the shader converting the aSquareVertexPosition into a vec4 and passing the information
to WebGL.

Chapter 2 ■ Working with HTML5 and WebGL

27

	 2.	 Define the fragment shader in index.html by adding the following code within
the body element:

<script type="x-shader/x-fragment" id="FragmentShader">
 void main(void) {
 gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
 }
</script>

Note the different type and id fields. Recall that the fragment shader is invoked once per pixel. The
variable gl_FragColor is the built-in variable that determines the color of the pixel. In this case, a color of
(1,1,1,1), or white, is returned. This means all pixels covered will be shaded to a constant white color.

With both the vertex and fragment shaders defined in the index.html file, you are now ready to
implement the functionality to compile, link, and load the resulting shader program to the GPU.

Compile, Link, and Load the Vertex and Fragment Shaders

To maintain source code in logically separated source files, you will create shader support functionality in a
new source code file, ShaderSupport.js.

	 1.	 Create a new JavaScript file, ShaderSupport.js.

	 2.	 Create two global variables, gSimpleShader and
gShaderVertexPositionAttribute, to store the reference to the shader program
and the vertex position attribute in the GPU.

var gSimpleShader = null;
var gShaderVertexPositionAttribute = null;

	 3.	 Create a function to load and compile a shader from index.html.

function loadAndCompileShader(id, shaderType) {
 var shaderText, shaderSource, compiledShader;
 
 // Step A: Get the shader source from index.html
 shaderText = document.getElementById(id);
 shaderSource = shaderText.firstChild.textContent;
 
 // Step B: Create the shader based on the source type: vertex or fragment
 compiledShader = gGL.createShader(shaderType);
 
 // Step C: Compile the created shader
 gGL.shaderSource(compiledShader, shaderSource);
 gGL.compileShader(compiledShader);
 
 // Step D: check for error and return result
 if (!gGL.getShaderParameter(compiledShader, gGL.COMPILE_STATUS)) {
 alert("A shader compiling error occurred: " +
 gGL.getShaderInfoLog(compiledShader));
 }
 return compiledShader;
}

Chapter 2 ■ Working with HTML5 and WebGL

28

Step A of the code finds shader source code from the index.html file using the id field you specified
when defining the shaders, either VertexShader or FragmentShader. Step B creates a specified shader (either
vertex or fragment) in the GPU. Step C specifies the shader source code and compiles the shader. Finally,
step D checks and returns the reference to the compiled shader where an error will result in a null value.

	 4.	 You are now ready to create and compile a shader program by defining the
initSimpleShader function.

function initSimpleShader(vertexShaderID, fragmentShaderID) {
 // Step A: load and compile the vertex and fragment shaders
 var vertexShader = loadAndCompileShader(vertexShaderID, gGL.VERTEX_SHADER);
 var fragmentShader = loadAndCompileShader(fragmentShaderID,
 gGL.FRAGMENT_SHADER);
 
 // Step B: Create and link the shaders into a program.
 gSimpleShader = gGL.createProgram();
 gGL.attachShader(gSimpleShader, vertexShader);
 gGL.attachShader(gSimpleShader, fragmentShader);
 gGL.linkProgram(gSimpleShader);
 
 // Step C: check for error
 if (!gGL.getProgramParameter(gSimpleShader, gGL.LINK_STATUS))
 alert("Error linking shader");
  
 // Step D: Gets a reference to the aSquareVertexPosition attribute
 gShaderVertexPositionAttribute = gGL.getAttribLocation(gSimpleShader,
 "aSquareVertexPosition");
  
 // Step E: Activates the vertex buffer loaded in VertexBuffer.js
 gGL.bindBuffer(gGL.ARRAY_BUFFER, gSquareVertexBuffer);
 // Step F: Describe the characteristic of the vertex position attribute
 gGL.vertexAttribPointer(gShaderVertexPositionAttribute,
 3, // each vertex element is a 3-float (x,y,z)
 gGL.FLOAT, // data type is FLOAT
 false, // if the content is normalized vectors
 0, // number of bytes to skip in between elements
 0); // offsets to the first element
}

Step A of the code compiles the shader code you defined in index.html by calling the
loadAndCompileShader() function with the corresponding parameters. Step B loads the compiled shader
onto the GPU and links the two shaders into a program. The reference to this program is stored in the
global variable gSimpleShader. After error checking in step C, step D locates and stores the reference to the
aSquareVetexPosition attribute defined in your vertex shader. Step E activates the vertex buffer you loaded
in VertexBuffer.js, and step F connects the activated buffer to the aSquareVertexPosition attribute by
describing the data format of the vertex buffer, where each vertex position is a three-float (x, y, z) position.

	 5.	 Finally, as with any new source code file, remember to load the ShaderSupport.js
file the index.html file.

The shader loading and compiling functionality is now defined. You can now activate these functions to
draw with WebGL.

Chapter 2 ■ Working with HTML5 and WebGL

29

Set Up Drawing with WebGL
With the vertex data and shaders functionality defined, you can now execute the following steps to draw with
WebGL. Recall from the previous project that the initialization and drawing code is stored in the WebGL.js
file. Now open this file for editing.

	 1.	 Modify the initializeGL() function to include the initialization of the vertex
buffer and the shader program.

function initializeGL() {
 var canvas = document.getElementById("GLCanvas");
 gGL = canvas.getContext("webgl") || canvas.getContext("experimental-webgl");
  
 if (gGL !== null) {
 gGL.clearColor(0.0, 0.8, 0.0, 1.0); // set the color to be cleared
  
 // A. initialize the vertex buffer
 initSquareBuffer(); // This function is defined VertexBuffer.js

 // B. now load and compile the vertex and fragment shaders
 initSimpleShader("VertexShader", "FragmentShader");
 // the two shaders are defined in the index.html file
 // initSimpleShader() function is defined in ShaderSupport.js
 } else {
 document.write("
WebGL is not supported!");
 }
}

The code in bold shows you should modify the initializeGL() function to call the
initSquareBuffer() and initSimpleShader() functions after successfully obtaining the WebGL context.

	 2.	 Replace the clearCanvas() function with the drawSquare() function for drawing
the defined square.

function drawSquare() {
 gGL.clear(gGL.COLOR_BUFFER_BIT);
 
 // Step A: Activate the shader to use
 gGL.useProgram(gSimpleShader);
  
 // Step B: Enable the vertex position attribute
 gGL.enableVertexAttribArray(gShaderVertexPositionAttribute);
  
 // Step C: Draw with the above settings
 gGL.drawArrays(gGL.TRIANGLE_STRIP, 0, 4);
}

This code shows the steps to draw with WebGL. Step A activates the shader program to use. Step B
enables the vertex attribute for the vertex shader. Finally, step C issues the draw command. In this case, you
are issuing a command to draw the four vertices as two connected triangles that form a square.

Chapter 2 ■ Working with HTML5 and WebGL

30

	 3.	 Lastly, modify doGLDraw() to call the drawSquare() function.

function doGLDraw() {
 initializeGL(); // Binds gGL context to WebGL functionality
 drawSquare(); // Clears the GL area and draws one square
}

Recall that doGLDraw() is the function called by index.html after all source code files are completely
loaded. For this reason, WebGL will be initialized and the white square drawn. For reference, you can refer to
the source code in the Chapter2/2.3.DrawOneSquare project.

Observations
Run the project and you will see a white rectangle on a green canvas. What happened to the square?
Remember that the vertex position of your 1×1 square was defined at locations (±0.5, ±0.5). Now observe
the project output: the white rectangle is located in the middle of the green canvas covering exactly half of
the canvas’s width and height. As it turns out, WebGL draws vertices within the ±1.0 range onto the entire
defined drawing area. In this case, the ±1.0 in the x-dimension is mapped to 640 pixels, while the ±1.0 in the
y-dimension is mapped to 480 pixels (the created canvas dimension is 640×480); the 1x1 square is drawn
onto a 640x480 area, or an area with an aspect ratio of 4:3. Since the 1:1 aspect ratio of the square does not
match the 4:3 aspect ratio of the display area, the square shows up as a 4:3 rectangle. This problem will be
resolved later in this chapter.

You can try editing the fragment shader in index.html by changing the color set in the gl_FragColor
function to change the color of the white square. Notice that a value of less than 1 in the alpha channel will
result in the white square becoming transparent and showing through some of the greenish canvas color.

Finally, note that this project defines many global variables with little attempt at hiding information.
This organization does not lend itself to supporting changes in functionality or growth in complexity. In
the next sections, you will encapsulate and abstract portions of this example to form the basis of the game
engine framework.

Abstraction with JavaScript Objects
The previous project decomposed the drawing of a square into logical modules and implemented the
modules as files containing global functions and variables. In software engineering, this solution process is
referred to as functional decomposition, and the implementation is referred to as procedural programming.
Procedural programming produces solutions that are well-structured, easy to understand, and often fast to
create. This is why it is often used to prototype a concept or to learn new techniques.

This project enhances the Draw One Square solution with object-oriented analysis and programming to
introduce data abstraction. As additional concepts are introduced and as the game engine complexity grows,
proper data abstraction supports straightforward design and code reuse through inheritance.

The JavaScript Objects Project
This project demonstrates how to abstract the global functions and variables from the Draw One Square
project into JavaScript objects. This objected-oriented abstraction will result in a framework that offers
manageability and expandability for subsequent projects. As illustrated in Figure 2-7, when running, this
project displays a white rectangle in a greenish canvas, identical to that from the Draw One Square project.
The source code to this project is defined in the Chapter2/2.4.JavaScriptObjects folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_2
http://dx.doi.org/10.1007/978-1-4842-0952-3_2

Chapter 2 ■ Working with HTML5 and WebGL

31

The goals of the project are as follows:

•	 To separate the game engine from the game logic code

•	 To demonstrate the implementation of a Singleton-like object based on the
JavaScript Module pattern

•	 To understand how to build abstractions with JavaScript objects

The steps for creating the project are as follows:

	 1.	 Create separate folders to organize the source code for the game engine and the
logic of the game.

	 2.	 Define JavaScript objects to abstract the game engine functionality:
Core, VertexBuffer, and SimpleShader. These objects will be defined in
corresponding JavaScript source code files.

	 3.	 Define a JavaScript object to implement the drawing of one square, which is the
logic of your simple game for now.

Source Code Organization
Create a new HTML5 project with the NetBeans IDE with a source code folder named src. Within src, create
Engine and MyGame as subfolders, as illustrated in Figure 2-8.

Figure 2-7.  Running the JavaScript Objects project

Chapter 2 ■ Working with HTML5 and WebGL

32

The src/Engine folder will contain all the source code to the game engine, and the src/MyGame folder
will contain the source for the logic of your game. It is important to organize source code diligently because
the complexity of the system and the number of files will increase rapidly as more concepts are introduced.
A well-organized source code structure facilitates understanding and expansion.

■■ Tip  The source code in the MyGame folder implements the game by relying on the functionality provided by
the game engine defined in the Engine folder. For this reason, in this book, the source code in the MyGame folder
is often referred to as the client of the game engine.

Abstracting the Game Engine
A completed game engine would include many self-contained subsystems to fulfill different responsibilities.
For example, you may be familiar with or have heard of the geometry subsystem for managing the
geometries to be drawn, the resource management subsystem for managing images and audio clips, the
physics subsystem for managing object interactions, and so on. In most cases, the game engine would
include one unique instance of each of these subsystems, that is, one instance of the geometry subsystem, of
the resource management subsystem, of the physics subsystem, and so on.

These subsystems will be covered in later chapters of this book. This section focuses on establishing the
mechanism and organization for implementing these single-instance or Singleton-like objects based on the
JavaScript Module pattern.

The Core of the Game Engine: gEngine.Core

The core of the game engine contains the common functionality shared by the entire system. This can
include one-time initialization of the WebGL (or GPU), shared resources, utility functions, and so on.

	 1.	 Create a new source file in the src/Engine folder and name the file Engine_
Core.js. Remember to load this new source file in index.html.

	 2.	 At the beginning of the file, create gEngine, a new global variable representing
the core of the game engine as follows:

"use strict"; // Operate in Strict mode
 
var gEngine = gEngine || { };
 // initialize the variable while ensuring it is not redefined

Figure 2-8.  Creating Engine under the src folder

Chapter 2 ■ Working with HTML5 and WebGL

33

This line instructs the system to retain a current gEngine variable if it is defined; otherwise, it creates
a new instance with an initial empty object. Different subsystems of the game engine will be implemented
as distinct properties of the gEngine object in separate files. This line ensures that properties defined in
separate source files will be retained independent from the order upon which they are loaded.

	 3.	 Define the gEngine.Core property as follows:

gEngine.Core = (function() {
 // instance variable: the graphical context for drawing
 var mGL = null;
  
 // Accessor of the webgl context
 var getGL = function() { return mGL; };
 
 // Contains the functions and variables that will be accessible.
 var mPublic = {
 getGL: getGL
 };
 
 return mPublic;
}());

■■ Note  All instance variable names begin with an m and are followed by a capital letter, as in mVariable.
Though not enforced by JavaScript, you should never access an instance variable from outside the object.
For example, you should never access gEngine.Core.mGL directly; instead, call the gEngine.Core.getGL()
function to access the variable. 

The code defines the gEngine.Core property as a global object. This object contains one private
instance variable and a public accessor. It is important to note the following about the syntax:

a.	 The mPublic object defines public methods for gEngine.Core. In this case,
getGL() is the only public method of the gEngine.Core object.

b.	 The () at the end of the function block signals to the system to execute the
function immediately, and thus only a single instance of gEngine.Core will
be created.

c.	 This is the JavaScript Module pattern, which will be used to implement all
the subsystems in the game engine.

	 4.	 Inside the gEngine.Core object, add a function to initialize the WebGL context
from the HTML canvas ID.

// initialize the WebGL, the vertex buffer and compile the shaders
var initializeWebGL = function(htmlCanvasID) {
 var canvas = document.getElementById(htmlCanvasID);
  

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Working with HTML5 and WebGL

34

 // Get the standard or experimental webgl and binds to the Canvas area
 // store the results to the instance variable mGL
 mGL = canvas.getContext("webgl") || canvas.getContext("experimental-webgl");
  
 if (mGL === null) {
 document.write("
WebGL is not supported!");
 return;
 }
 
 // now initialize the VertexBuffer
 gEngine.VertexBuffer.initialize();
};

Apart from the syntax involved with the JavaScript Module pattern, the previous function should appear
very similar to the initializeGL() function from the previous project and actually accomplishes the same
task as it. A difference to note is the call to gEngine.VertexBuffer.initialize(). This function call sets up
the WebGL vertex buffer and will be described in detail.

	 5.	 Add an additional function to clear the canvas to the desired color.

// Clears the draw area and draws one square
var clearCanvas = function(color) {
 mGL.clearColor(color[0], color[1], color[2], color[3]); // set the color to
 be cleared
 mGL.clear(mGL.COLOR_BUFFER_BIT); // clear to the color previously set
};

	 6.	 Finally, export the public functions through the returned mPublic object.

var mPublic = {
 getGL: getGL,
 initializeWebGL: initializeWebGL,
 clearCanvas: clearCanvas
};

The Shared Vertex Buffer

In the game engine that you are building, all graphical objects will be drawn based on the unit square. For
this reason, the geometry subsystem is rather simplistic. The gEngine.VertexBuffer object implements the
geometry subsystem.

	 1.	 Create a new source file in the src/Engine folder and name the file Engine_
VertexBuffer.js. Remember to load this new source file in your index.html file.

	 2.	 Follow the JavaScript Module pattern and define VertexBuffer as a property of
gEngine, as follows:

"use strict"; // Operate in Strict mode
 
var gEngine = gEngine || { };
 
// The VertexBuffer object
gEngine.VertexBuffer = (function() {

Chapter 2 ■ Working with HTML5 and WebGL

35

 // First: define the vertices for a square
 var verticesOfSquare = [
 0.5, 0.5, 0.0,
 -0.5, 0.5, 0.0,
 0.5, -0.5, 0.0,
 -0.5, -0.5, 0.0
];
  
 // reference to the vertex positions for the square in the gl context
 var mSquareVertexBuffer = null;
  
 var getGLVertexRef = function() { return mSquareVertexBuffer; };
  
 var initialize = function() {
 var gl = gEngine.Core.getGL();
 
 // Step A: Create a buffer on the gGL context for our vertex positions
 mSquareVertexBuffer = gl.createBuffer();
 
 // Step B: Activate vertexBuffer
 gl.bindBuffer(gl.ARRAY_BUFFER, mSquareVertexBuffer);
 
 // Step C: Loads verticesOfSquare into the vertexBuffer
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(verticesOfSquare),
 gl.STATIC_DRAW);
 };
  
 var mPublic = {
 initialize: initialize,
 getGLVertexRef: getGLVertexRef
 };
 return mPublic;
}());

The gEngine.VertexBuffer object implements the same functionality as the source code in
VertexBuffer.js from the previous project: it creates and loads the unit square geometry to the WebGL
vertex buffer. Notice that instead of being global, mSquareVertexBuffer, the reference to the WebGL vertex
buffer, is now a private variable with a proper accessor. The initialize() function contains the same three
setup steps as the initSquareBuffer() function from the previous project.

Recall that the gEngine.VertexBuffer.initialize() function is called from the end of the gEngine.
Core.initializeWebGL() function. In this way, after the InitialzeWebGL() function, the WebGL will be
initialized and loaded with the vertex positions of the unit square, and the vertex buffer reference will be
ready for drawing operations.

The Shader Object

Although the code in the ShaderSupport.js file from the previous project properly implements the required
functionality, the global variables and functions do not lend themselves well to modification and code reuse.
This section follows the object-oriented design principles and creates a SimpleShader object to abstract the
behaviors and hide internal representations of shaders.

Chapter 2 ■ Working with HTML5 and WebGL

36

	 1.	 Create a new source file in the src/Engine folder and name the file
SimpleShader.js to implement the SimpleShader object. Remember to load this
new source file in index.html.

	 2.	 Define the constructor for SimpleShader to load, compile, and link the shaders
into a program and to create a reference for loading from the WebGL vertex
buffer for drawing.

function SimpleShader(vertexShaderID, fragmentShaderID) {
 // instance variables (Convention: all instance variables: mVariables)
 this.mCompiledShader = null;
 // reference to the compiled shader in webgl context
 this.mShaderVertexPositionAttribute = null;
 // reference to SquareVertexPosition in shader
  
 var gl = gEngine.Core.getGL();
  
 // start of constructor code
 //
 // Step A: load and compile vertex and fragment shaders
 var vertexShader = this._loadAndCompileShader(vertexShaderID, gl.VERTEX_SHADER);
 var fragmentShader = this._loadAndCompileShader(fragmentShaderID,
 gl.FRAGMENT_SHADER);
  
 // Step B: Create and link the shaders into a program.
 this.mCompiledShader = gl.createProgram();
 gl.attachShader(this.mCompiledShader, vertexShader);
 gl.attachShader(this.mCompiledShader, fragmentShader);
 gl.linkProgram(this.mCompiledShader);
 
 // Step C: check for error
 if (!gl.getProgramParameter(this.mCompiledShader, gl.LINK_STATUS)) {
 alert("Error linking shader");
 return null;
 }
  
 // Step D: Gets a reference to the aSquareVertexPosition attribute
 this.mShaderVertexPositionAttribute = gl.getAttribLocation(this.mCompiledShader,
 "aSquareVertexPosition");
  
 // Step E: Activates the vertex buffer loaded in Engine.Core_VertexBuffer
 gl.bindBuffer(gl.ARRAY_BUFFER, gEngine.VertexBuffer.getGLVertexRef());
  
 /// Step F: Describe the characteristic of the vertex position attribute
 gl.vertexAttribPointer(this.mShaderVertexPositionAttribute,
 3, // each element is a 3-float (x,y.z)
 gl.FLOAT, // data type is FLOAT
 false, // if the content is normalized vectors
 0, // number of bytes to skip in between elements
 0); // offsets to the first element
}

Chapter 2 ■ Working with HTML5 and WebGL

37

Notice that this constructor is similar to the initSimpleShader() function from the previous project,
with the following exceptions:

a.	 The global gShaderVertexPositionAttribute and gSimpleShader variables
are now the private instance variables mShaderVertexPositionAttribute
and mCompiledShader.

b.	 The reference to WebGL context, the gl variable, is now accessed through
gEngine.Core.

	 3.	 Add a _loadAndCompileShader() method to the SimpleShader prototype to
perform the actual loading and compiling functionality.

// Returns a complied shader from a shader in the dom.
// The id is the id of the script in the html tag.
SimpleShader.prototype._loadAndCompileShader = function(id, shaderType) {
 var shaderText, shaderSource, compiledShader;
 var gl = gEngine.Core.getGL();
 
 // Step A: Get the shader source from index.html
 shaderText = document.getElementById(id);
 shaderSource = shaderText.firstChild.textContent;
 
 // Step B: Create the shader based on the shader type: vertex or fragment
 compiledShader = gl.createShader(shaderType);
 
 // Step C: Compile the created shader
 gl.shaderSource(compiledShader, shaderSource);
 gl.compileShader(compiledShader);
 
 // Step D: check for errors and return results (null if error)
 // The log info is how shader compilation errors are typically displayed.
 // This is useful for debugging the shaders.
 if (!gl.getShaderParameter(compiledShader, gl.COMPILE_STATUS)) {
 alert("A shader compiling error occurred: " +
 gl.getShaderInfoLog(compiledShader));
 }
 
 return compiledShader;
};

Notice that this method is almost identical to the LoadAndCompile() function from the previous project.
The only modification is that the WebGL context is now accessed through gEngine.Core.

	 4.	 Add a function to activate the shader for drawing.

SimpleShader.prototype.activateShader = function() {
 var gl = gEngine.Core.getGL();
 gl.useProgram(this.mCompiledShader);
 gl.enableVertexAttribArray(this.mShaderVertexPositionAttribute);
};

Chapter 2 ■ Working with HTML5 and WebGL

38

■■ Note  Functions that are meant to be private will have names that begin with an underscore (_), as in
_loadAndCompileShader(). Though not enforced by JavaScript, you should never call a function with a name
that begins with an underscore from outside the object. For example, the _loadAndCompileShader() function
is not designed to be called from outside the SimpleShader object. 

	 5.	 Finally, add an accessor for the actual WebGL shader program.

SimpleShader.prototype.getShader = function() { return this.mCompiledShader; };

The src/Engine folder contains the source code to the game engine. In this way, the game engine is
simply a library that provides functionality for creating games. For now, your game engine consists of three
objects that support the initialization of WebGL and the drawing of a unit square. This is the folder that
you will continue to add source files and functionality to, which eventually will become a complete and
sophisticated game engine.

The Client Source Code
The src/MyGame folder will contain the actual source code to a game. As mentioned, the code in this folder
will be referred to as the client of the game engine. For now, the source code in the MyGame folder will focus
on testing the functionality of the simple game engine.

	 1.	 Create a new source file in the src/MyGame folder, or the client folder, and name
the file MyGame.js. Remember to load this new source file in index.html.

	 2.	 Create a constructor that receives an HTML canvas ID as a parameter and
contains a shader as an instance variable.

function MyGame(htmlCanvasID) {
 // The shader for drawing
 this.mShader = null;
 ...
}

	 3.	 Within the constructor, initialize the WebGL context and the VertexBuffer.

gEngine.Core.initializeWebGL(htmlCanvasID);

	 4.	 Then, create, load, and compile the shaders by doing the following:

this.mShader = new SimpleShader("VertexShader", "FragmentShader");

	 5.	 Finally, clear the canvas, activate the shader, and draw.

// Step C1: Clear the canvas
gEngine.Core.clearCanvas([0, 0.8, 0, 1]);
  
// Step C2: Activate the proper shader
this.mShader.activateShader();
  

Chapter 2 ■ Working with HTML5 and WebGL

39

// Step C3: Draw with the currently activated geometry and the activated shader
var gl = gEngine.Core.getGL();
gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

Remember to create the MyGame object from within the index.html body element.

<body onload="new MyGame('GLCanvas');">

Observations
Although you’re accomplishing the same tasks as with the previous project, with this project you have
created infrastructure that supports subsequent modifications and expansions of your game engine.
You have organized your source code into separate and logical folders, created Singleton-like objects to
implement core functionality of the engine, and gained experience with abstracting the SimpleShader object
that will support future design and code reuse. With the engine now comprised of well-defined objects with
clean interface methods, you can learn new concepts and build new abstractions, which you can continually
add to your engine.

Separating GLSL from HTML
Recall that in your projects thus far the GLSL shader code is embedded in the HTML source code of index.
html. This organization means that new shaders must be added through the editing of the index.html file.
Logically, GLSL shaders should be organized separately from HTML source files; logistically, continuously
adding to index.html will result in an unmanageable, cluttered file that would become difficult to work with.
For these reasons, the GLSL shaders should be stored in separate source files.

The Shader Source Files Project
This project demonstrates how to separate the GLSL shaders into separate files. As illustrated in Figure 2-9,
when running this project, a white rectangle is displayed on a greenish canvas, identical to the previous
projects. The source code to this project is defined in the Chapter2/2.5.ShaderSourceFiles folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_2

Chapter 2 ■ Working with HTML5 and WebGL

40

The goals of the project are as follows:

•	 To separate the GLSL shaders from the HTML source code

•	 To demonstrate how to load the shader source files during runtime

Loading Shaders in SimpleShader
Instead of loading the GLSL shaders as part of the HTML document, the _loadAndCompileShader() in
SimpleShader can be modified to load the GLSL shaders as separate files.

	 1.	 Continue from previous project and open the SimpleShader.js file to edit the
_loadAndCompileShader() function to receive a file path instead of an HTML ID:

SimpleShader.prototype._loadAndCompileShader = function(filePath, shaderType)

	 2.	 Replace the HTML element retrieval code with the following XMLHttpRequest to
load a file:

xmlReq = new XMLHttpRequest();
xmlReq.open('GET', filePath, false);
try {
 xmlReq.send();
} catch (error) {
 alert("Failed to load shader: " + filePath);
 return null;
}
shaderSource = xmlReq.responseText;
 

Figure 2-9.  Running the Shader Source Files project

Chapter 2 ■ Working with HTML5 and WebGL

41

if (shaderSource === null) {
 alert("WARNING: Loading of:" + filePath + " Failed!");
 return null;
}

Notice that the file loading will occur synchronously where the web page will actually stop and wait for
the completion of the xmlReq.open() function to return with the opened file content. If the file should be
missing, the opening operation will fail, and the response text will be null.

The synchronized “stop and wait” for the completion of xmlReq.open() function is inefficient and may
result in slow loading of the web page. This shortcoming will be addressed in Chapter 4 when you learn
about the asynchronous loading of game resources.

■■ Note T he XMLHttpRequest() object requires a running web server to fulfill the HTTP get request. This
means you will be able to test this project from within the NetBeans IDE. However, unless there is a web server
running on your machine, you will not be able to run this project by double-clicking the index.html file directly.
This is because there is no server to fulfill the HTTP get requests and the GLSL shader loading will fail.

With this modification, the SimpleShader constructor can now be modified to receive and forward file
paths to the _loadAndCompileShader() function instead of the HTML element IDs.

Extracting Shaders into Their Own Files
The following steps retrieve the source code to the vertex and fragment shaders from the index.html file and
create separate files for storing them.

	 1.	 Create a new folder in the src folder and name it GLSLShaders, as illustrated in
Figure 2-10.  

Figure 2-10.  Creating the GLSLShaders folder

This will be the folder that contains all of the GLSL shader source code files.

	 2.	 Create two new text files within the GLSLShaders folder and name them
SimpleVS.glsl and WhiteFS.glsl. 

■■ Note A ll GLSL shader source code files will end with the .glsl extension. The VS in the shader file names
signifies that the file contains a vertex shader, while FS signifies a fragment shader. 

http://dx.doi.org/10.1007/978-1-4842-0952-3_4

Chapter 2 ■ Working with HTML5 and WebGL

42

	 3.	 To create the GLSL vertex shader, edit SimpleVS.glsl to add the existing vertex
shader code in the index.html file from the previous project.

attribute vec3 aSquareVertexPosition; // Expects one vertex position
void main(void) {
 gl_Position = vec4(aSquareVertexPosition, 1.0);
}

	 4.	 To create the GLSL fragment shader, edit WhiteFS.glsl to add the fragment
shader code in the index.html file from the previous project.

void main(void) {
 gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
}

Cleaning Up HTML Code
With vertex and fragment shaders being stored in separate files, it is now possible to clean up the index.html
file such that it contains only HTML code.

	 1.	 Remove all the GLSL shader code from index.html, such that this file becomes
as follows:

<!DOCTYPE html>
<head>
 <title>2.5: The Shader Source Files Project</title>
</head>
<body onload="new MyGame('GLCanvas');">
 <!-- Engine code -->
 <script type="text/javascript" src="src/Engine/Engine_Core.js"></script>
 <script type="text/javascript" src="src/Engine/Engine_VertexBuffer.js">
 </script>
 <script type="text/javascript" src="src/Engine/SimpleShader.js"></script>
 <!-- Client game code -->
 <script type="text/javascript" src="src/MyGame/MyGame.js"></script>
 ...
</body>

Notice that index.html no longer contains any GLSL shader and only a single line of JavaScript code
(to create the MyGame object). With this organization, the index.html file can properly be considered as
representing the web page where you will not need to edit it to modify a shader.

	 2.	 Modify the game to load the shader files instead of HTML element IDs. Edit
MyGame.js to modify step B to refer to the shader files created.

this.mShader = new SimpleShader(
 "src/GLSLShaders/SimpleVS.glsl", // Path to the VertexShader
 "src/GLSLShaders/WhiteFS.glsl"); // Path to the FragmentShader

Chapter 2 ■ Working with HTML5 and WebGL

43

Source Code Organization
The separation of logical components in the engine source code has progressed to the following state:

•	 index.html: This is the file that contains the HTML code that defines the canvas on
the web page for the game and loads all of the source code for your game.

•	 src/GLSLShaders: This is the folder that contains all the GLSL source code files that
shade the elements of your game.

•	 src/Engine: This is the folder that contains all the source code for your game engine.

•	 src/MyGame: This is the client folder that contains the source code for the actual game.

Changing the Shader and Controlling the Color
With GLSL shaders being stored in separate source code files, it is now possible to edit or replace the shaders
with relatively minor changes to the rest of the source code. The next project demonstrates this convenience
by replacing the restrictive constant white color fragment shader, WhiteFS.glsl, with a shader that can be
parameterized to draw with any color.

The Parameterized Fragment Shader Project
This project replaces WhiteFS.glsl with a SimpleFS.glsl that supports the drawing with any color.
Figure 2-11 shows the output of running the Parameterized Fragment Shader project; notice that a blue
square replaces the white square from previous projects. The source code for this project is defined in the
Chapter2/2.6.ParameterizedFragmentShader folder.

Figure 2-11.  Running the Parameterized Fragment Shader project

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-0952-3_2
http://www.allitebooks.org

Chapter 2 ■ Working with HTML5 and WebGL

44

The goals of the project are as follows:

•	 To gain experience with creating a GLSL shader in the source code structure

•	 To learn about the uniform variable and define a fragment shader with the color parameter

Defining the SimpleFS.glsl Fragment Shader
A new fragment shader needs to be created to support changing the pixel color for each draw operation. This
can be accomplished by creating a new GLSL fragment shader in the src/GLSLShaders folder and name it
SimpleFS.glsl. Edit this file to add the following:

precision mediump float; // sets the precision for floating point computation
uniform vec4 uPixelColor; // to transform the vertex position
void main(void) {
 gl_FragColor = uPixelColor;
}

Recall that the GLSL attribute keyword identifies data that changes for every vertex position. In this
case, the uniform keyword denotes that a variable is constant for all the vertices. The uPixelColor variable
can be set from JavaScript to control the eventual pixel color. The precision mediump keywords define the
floating precisions for computations.

■■ Note  Floating-point precision trades the accuracy of computation for performance. Please follow the
references in Chapter 1 for more information on WebGL.

Modify the SimpleShader to Support the Color Parameter
The SimpleShader can now be modified to gain access to the new uPixelColor variable.

	 1.	 Edit SimpleShader.js and add a new instance variable for referencing the
uPixelColor.

this.mPixelColor = null;
// reference to the pixelColor uniform in the fragment shader

	 2.	 Add code to the end of the constructor to create the reference.

// Step G: Gets a reference to the uniform variable uPixelColor in the
// fragment shader
this.mPixelColor = gl.getUniformLocation(this.mCompiledShader, "uPixelColor");

	 3.	 Modify the shader activation to allow the setting of the pixel color.

SimpleShader.prototype.activateShader = function (pixelColor) {
 var gl = gEngine.Core.getGL();
 gl.useProgram(this.mCompiledShader);
 gl.enableVertexAttribArray(this.mShaderVertexPositionAttribute);
 gl.uniform4fv(this.mPixelColor, pixelColor);
};

http://dx.doi.org/10.1007/978-1-4842-0952-3_1

Chapter 2 ■ Working with HTML5 and WebGL

45

The gl.uniform4fv() function copies four floating-point values from pixelColor to the mPixelColor,
or the uPixelColor, in the SimpleFS.glsl fragment shader.

Drawing with the New Shader
To test SimpleFV.glsl, modify the MyGame constructor to create and draw with the new shader.

function MyGame(htmlCanvasID) {
 // Step A: Initialize the webGL Context and the VertexBuffer
 gEngine.Core.initializeWebGL(htmlCanvasID);
  
 // Step B: Create, load and compile the shaders
 this.mShader = new SimpleShader(
 "src/GLSLShaders/SimpleVS.glsl", // Path to the VertexShader
 "src/GLSLShaders/SimpleFS.glsl"); // Path to the FragmentShader
  
 // Step C: Draw!
 // Step C1: Clear the canvas
 gEngine.Core.clearCanvas([0, 0.8, 0, 1]);

 // Step C2: Activate the proper shader
 this.mShader.activateShader([0, 0, 1, 1]);

 // Step C3: Draw with the currently activated geometry and the activated shader
 var gl = gEngine.Core.getGL();
 gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
}

Notice that the mConstColorShader is created with the new SimpleFS.glsl (instead of WhiteFS) and
that it is now important to set the drawing color when activating the shader. With the new SimpleFS, you can
now experiment with drawing the squares with any desired color.

As you have experienced in this project, the source code structure supports simple and localized
changes when the game engine is expanded, in this case only changes to SimpleShader.js file. This
demonstrates the benefit of proper encapsulation and source code organization.

Summary
By this point the game engine is simple and supports only the initialization of WebGL and the drawing of
one colored square. However, through the projects in this chapter, you have gained experience with the
techniques needed in order to build an excellent foundation for the game engine. You have also structured
the source code in a way that allows you to support further complexity with limited modification to the
existing code base, and you are now ready to further encapsulate the functionality of the game engine to
facilitate additional features. The next chapter will focus on building a proper framework in the game engine
to support more flexible and configurable drawings.

47

Chapter 3

Drawing Objects in the World

After completing this chapter, you will be able to:

•	 Create and draw multiple rectangular objects

•	 Control the position, size, rotation, and color of the created rectangular objects

•	 Define a coordinate system to draw from

•	 Define a target subarea on the canvas to draw to

•	 Work with abstract representations of renderable objects, transformation operators,
and cameras

Introduction
Ideally, a video game engine should provide proper abstractions to support designing and building games in
meaningful contexts. For example, when designing a soccer game, instead of a single square with a fixed ±1.0
drawing range, a game engine should provide proper utilities to support designs in the context of players
running on a soccer field. This high-level abstraction requires the encapsulation of basic operations with
data hiding and meaningful functions for setting and receiving the desired results.

While this book is about building abstractions for a game engine, this chapter focuses on creating the
fundamental abstractions to support drawing. Based on the soccer game example, drawing support for
an effective game engine would likely include the ability to easily create the soccer players, control their
size and orientations, and allow them to be moved and drawn on the soccer field upon which they play.
Additionally, to support proper presentation, the game engine must allow drawing to specific subregions on
the canvas such that a distinct game status can be displayed at different subregions, such as the soccer field
in one subregion and player statistics and scores in another subregion.

This chapter identifies proper abstraction entities for the basic drawing operations, introduces
operators that are based on foundational mathematics to control the drawing, overviews the WebGL tools for
configuring the canvas to support subregion drawing, builds JavaScript objects to implement these concepts,
and integrates these implementations into the game engine while maintaining the organized structure of the
source code.

Chapter 3 ■ Drawing Objects in the World

48

Encapsulating Drawing
Although the ability to draw is one of the most fundamental functionality of a game engine, the details of
how drawings are accomplished can actually be distractions to the gameplay programming. For example, it
is important to create, control the locations of, and draw soccer players in a soccer game. However, leaving
the details of how each player is actually defined (by a collection of vertices that form triangles) exposed can
quickly overwhelm and complicate the process of the game’s development. Thus, it is important for a game
engine to provide a well-defined abstraction interface for drawing operations.

With a well-organized source code structure, it is possible to gradually and systematically increase the
complexity of the game engine by implementing new concepts with localized changes to the corresponding
folders. The first task is to expand the engine to support the encapsulation of drawing such that it becomes
possible to manipulate drawing operations as a logical entity or as an object that can be rendered.

■■ Note I n the context of computer graphics and video games, the word render refers to the process of
changing the color of pixels corresponding to an abstract representation. For example, in the previous chapter,
you learned how to render a square.

The Renderable Objects Project
This project introduces the Renderable object to encapsulate the drawing operation. Over the next
few projects you will learn more supporting concepts to refine the implementation of the Renderable
object such that multiple instances of this object can be created and manipulated. Figure 3-1 shows
the output of running the Renderable Objects project. The source code to this project is defined in the
Chapter3/3.1.RenderableObjects folder.

Figure 3-1.  Running the Renderable Objects project

http://dx.doi.org/10.1007/978-1-4842-0952-3_3

Chapter 3 ■ Drawing Objects in the World

49

The goals of the project are as follows:

•	 To begin the process of building an object to encapsulate the drawing operations by
first abstracting the drawing functionality

•	 To demonstrate how to create different instances of SimpleShader

•	 To demonstrate the ability to create multiple Renderable objects

The Renderable Object
This project introduces the Renderable object to encapsulate the drawing process and reorganizes the
source code folders to maintain the structure as the number of source code files increases. You will continue
to see this pattern of learning new concepts followed by defining abstractions to hide the details of the
concepts to support programmability and extensibility.

	 1.	 Define the Renderable object in the game engine by creating a new source code
file in the src/Engine folder and name the file Renderable.js. Remember to
load this new source file in index.html.

	 2.	 Open Renderable.js and create a constructor that receives a SimpleShader as a
parameter with a color instance variable.

function Renderable(shader) {
 this.mShader = shader; // the shader for shading this object
 this.mColor = [1, 1, 1, 1]; // Color for fragment shader
}

	 3.	 Define a draw function for Renderable.

Renderable.prototype.draw = function() {
 var gl = gEngine.Core.getGL();
 this.mShader.activateShader(this.mColor);
 gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
};

Notice that it is important to activate the proper GLSL shader in the GPU by calling the
activateShader() function before sending the vertices with the gl.drawArrays() function.

	 4.	 Define the getter and setter functions for the color instance variable.

Renderable.prototype.setColor = function(color) { this.mColor = color; };
Renderable.prototype.getColor = function() { return this.mColor; };

	 5.	 Finally, as the number of source files in the src/Engine continues to increase,
it is important to constantly keep this folder organized. In this case, create a
folder under src/Engine and name it Core. Move Engine_Core.js and
Engine_VertexBuffer.js into this new folder. The src/Engine/Core folder
will store all components that belong to the core of the game engine.

Though this example is simple, it is now possible to create and draw multiple instances of the
Renderable objects with different colors.

Chapter 3 ■ Drawing Objects in the World

50

Testing the Renderable Object
To test Renderable objects in MyGame, a white instance and a red instance of the object are created and
drawn as follows:

function MyGame(htmlCanvasID) {
 // Step A: Initialize the webGL Context
 gEngine.Core.initializeWebGL(htmlCanvasID);
  
 // Step B: Create the shader
 this.mConstColorShader = new SimpleShader(
 "src/GLSLShaders/SimpleVS.glsl", // Path to the VertexShader
 "src/GLSLShaders/SimpleFS.glsl"); // Path to the FragmentShader
  
 // Step C: Create the Renderable objects:
 this.mWhiteSq = new Renderable(this.mConstColorShader);
 this.mWhiteSq.setColor([1, 1, 1, 1]);
 this.mRedSq = new Renderable(this.mConstColorShader);
 this.mRedSq.setColor([1, 0, 0, 1]);
  
 // Step D: Draw!
 gEngine.Core.clearCanvas([0, 0.8, 0, 1]); // Clear the canvas
 
 // Step D1: Draw Renderable objects with the white shader
 this.mWhiteSq.draw();
  
 // Step D2: Draw Renderable objects with the red shader
 this.mRedSq.draw();
};

In the code from src/MyGame.js, the MyGame constructor is modified to include the following steps:

	 1.	 Step A initializes the gEngine.Core.

	 2.	 Step B creates the mConstColorShader based on the SimpleVS.glsl and
SimpleFS.glsl.

	 3.	 Step C creates two instances of Renderable using the shader and sets the colors
of the new Renderable objects accordingly.

	 4.	 Step D clears the canvas; steps D1 and D2 simply call the respective draw
functions of the white and red squares. Although both of the squares are drawn,
for now you will only be able to see the last drawn square in the canvas. Please
refer to the following discussion for the details.

Observations
Run the project and you will notice only the red square is visible! What happens is that both of the squares
are drawn to the same location. Being the same size, the two squares simply overlap perfectly. Since the
red square is drawn last, it overwrites all the pixels of the white square. You can verify this by commenting
out the drawing of the red square (comment out the line mRedSq.draw()) and rerunning the project. An
interesting observation to make is that objects that appear in the front are drawn last (the red square). You
will take advantage of this observation much later when working with transparency.

Chapter 3 ■ Drawing Objects in the World

51

This simple observation leads to your next task. To allow multiple instances of Renderable to be visible
at the same time, each instance needs to support the ability to be drawn at different locations, with different
sizes and with different orientations so they do not overlap one another.

Transforming a Renderable Object
A mechanism is required to manipulate the position, size, and orientation of a Renderable object. Over
the next few projects you will learn about how matrix transformations can be used to translate or move an
object’s position, scale the size of an object, and change the orientation or rotate an object on the canvas.
These operations are the most intuitive ones for object manipulations. However, before the implementation
of transformation matrices, a quick review of the operations and capabilities of matrices is required.

Matrices as Transform Operators
Before we begin, it is important to recognize that matrices and transformations are general topic areas in
mathematics. The following discussion does not attempt to include a comprehensive study of these subjects.
Instead, the focus is on the application of a small collection of relevant concepts and operators from the
perspective of what the game engine requires (or, rather, how to utilize the operators and not study the
theories behind the mathematics). If you are interested in the specifics of matrices and how they relate to
computer graphics, please refer to the discussion in Chapter 1 where you can learn more about these topics
in depth by delving into relevant books on linear algebra and computer graphics.

A matrix itself is an m-rows by n-columns array of numbers. For the purposes of this game engine, you
will be working exclusively with 4×4 matrices. While a 2D game engine could get by with 3×3 matrices, a 4×4
matrix is used to support features that will be introduced in the later chapters. Among the many powerful
applications, 4×4 matrices can be constructed as transform operators for vertex positions. The most
important and intuitive of these operators are the translation, scaling, rotation, and identity operators.

•	 The translation operator T(tx,ty), as illustrated in Figure 3-2, translates or moves a
given vertex position from (x,y) to (x+tx, y+ty). Notice that T(0,0) does not change
the value of a given vertex position and is a convenient initial value for accumulating
translation operations.  

Figure 3-2.  Translating a square by T(tx,ty)

•	 The scaling operator S(sx, sy), as illustrated by Figure 3-3, scales or resizes a given
vertex position from (x,y) to (x×sx, y×sy). Notice that S(1,1) does not change the
value of a given vertex position and is a convenient initial value for accumulating
scaling operations.  

http://dx.doi.org/10.1007/978-1-4842-0952-3_1

Chapter 3 ■ Drawing Objects in the World

52

•	 The rotation operator R(q), as illustrated in Figure 3-4, rotates a given vertex position
with respect to the origin as illustrated. 

Figure 3-3.  Scaling a square by S(sx,sy)

Figure 3-4.  Rotating a square by R(q)

In the case of rotation, R(0) does not change the value of a given vertex and is the convenient initial value
for accumulating rotation operations. The values for q are typically expressed in radians (and not degrees).

•	 The identity operator I does not affect a given vertex position. This operator is mostly
used for initialization.

As an example, a 4×4 identity matrix looks like the following:

I =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Mathematically, .a matrix transform operator operates on a vertex through a matrix-vector
multiplication. To support this operation, a vertex position p x y z= (), , must be represented as a 4x1 vector
as follows:

p

x

y

z
=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1

Chapter 3 ■ Drawing Objects in the World

53

■■ Note T he z-component is the third dimension, or the depth information, of a vertex position. In most cases,
you should leave the z-component to be 0.

For example, if position p' is the result of a translation operator T operating on the vertex position p,
mathematically p' would be computed by the following:

p T p Tp’ = ´ =

Concatenation of Matrix Operators
Multiple matrix operators can be concatenated, or combined, into a single operator while retaining the same
transformation characteristics as the original operators. For example, you may want to apply the scaling
operator S, followed by the rotation operator R, and finally the translation operator T, on a given vertex
position, or to compute p' with the following:

p TRSp’ =

Alternatively, you can compute a new operator M by concatenating all the transform operators,
as follows:

M TRS=

And then operate M on vertex position p, as follows, to produce identical results:

p Mp’ =

The M operator is a convenient and efficient way to record and re-apply the results of multiple operators.
Finally, notice that when working with transformation operators, the order of precedence is important.

For example, a scaling operation followed by a translation operation is in general different from a translation
followed by a scaling, or, in general:

ST TS¹

The glMatrix Library
The details of matrix operators and operations are nontrivial to say the least. Developing a complete matrix
library is time-consuming and not the focus of this book. Fortunately, there are many well-developed and
well-documented matrix libraries available in the public domain. The glMatrix library is one such example.
To integrate this library into your source code structure, follow these steps:

	 1.	 Create a new folder under the src folder and name the new folder lib.

	 2.	 Go to http://glMatrix.net, as shown in Figure 3-5, and download, unzip, and
store the resulting glMatrix.js source file into the new lib folder. 

http://glmatrix.net/

Chapter 3 ■ Drawing Objects in the World

54

Figure 3-5.  Downloading the glMatrix library

All projects in this book are based on glMatrix version 2.2.2.

	 3.	 Just like any of your own JavaScript source files, remember to load this new
source file in index.html by adding the following:

<script type="text/javascript" src="src/lib/gl-matrix.js"></script>

The Matrix Transform Project
This project introduces and demonstrates how to use transformation matrices as operators to
manipulate the position, size, and orientation of Renderable objects drawn on the canvas. In this way,
a Renderable can now be drawn to any location, with any size and any orientation. Figure 3-6 shows
the output of running the Matrix Transform project. The source code to this project is defined in the
Chapter3/3.2.MatrixTransform folder.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-0952-3_3
http://www.allitebooks.org

Chapter 3 ■ Drawing Objects in the World

55

The goals of the project are as follows:

•	 To introduce transformation matrices as operators for drawing a Renderable

•	 To understand how to work with the transform operators to manipulate a
Renderable

Modify the Vertex Shader to Support Transforms
As discussed, matrix transform operators operate on vertices of geometries. The vertex shader is where
all vertices are passed in from the WebGL context and is the most convenient location to apply the
transform operations.

You will continue working with the previous project to support the transformation operator in the vertex
shader.

	 1.	 Edit SimpleVS.glsl to declare a uniform 4×4 matrix.

// to transform the vertex position
uniform mat4 uModelTransform;

Recall that the uniform keyword in a GLSL shader declares a variable with values that do not change for
all the vertices within that shader. In this case, the uModelTransform variable is the transform operator, and it
maintains the operator values for all vertices of the square.

Figure 3-6.  Running the Matrix Transform project

Chapter 3 ■ Drawing Objects in the World

56

■■ Note GLSL uniform variable names always begin with a u. 

	 2.	 In the main() function, apply the uModelTransform to each vertex position in the
shader.

gl_Position = uModelTransform * vec4(aSquareVertexPosition, 1.0);

Notice that the operation follows directly from the discussion on matrix transformation operators.
The reason for converting aSquareVertexPosition to a vec4 is to support the matrix-vector multiplication.

With this simple modification, the vertex positions of the unit square will be operated on by the
uModelTransform operator, and thus the square can be drawn to different locations. The task now is to set up
SimpleShader to load the appropriate transformation operator into uModelTransform.

Modify SimpleShader to Load the Transform Operator
Follow these steps:

	 1.	 Edit SimpleShader.js and add an instance variable to hold the reference to the
uModelTransform matrix in the vertex shader.

this.mModelTransform = null;

	 2.	 At the end of the SimpleShader constructor, under step G add the following code
to initialize this reference:

// Step G: Gets a reference to the uniform variables:
// uPixelColor and uModelTransform
this.mPixelColor = gl.getUniformLocation(this.mCompiledShader, "uPixelColor");
this.mModelTransform = gl.getUniformLocation(this.mCompiledShader,
 "uModelTransform");

	 3.	 Add a new function to SimpleShader to load the transform operator to the vertex
shader.

// Loads per-object model transform to the vertex shader
SimpleShader.prototype.loadObjectTransform = function(modelTransform) {
 var gl = gEngine.Core.getGL();
 gl.uniformMatrix4fv(this.mModelTransform, false, modelTransform);
};

The gl.uniformMatrix4fv() function copies modelTransform to the vertex shader location identified
by mModelTransform or the uModelTransform operator in the vertex shader.

Modify Renderable Object to Set the Transform Operator
Edit Renderable.js to modify the draw() function to receive a transform operator as a parameter, and after
activating the proper GLSL shader with the mShader.activateShader() function, send this operator into the
shader before the actual drawing operation.

Chapter 3 ■ Drawing Objects in the World

57

Renderable.prototype.draw = function(modelTransform) {
 var gl = gEngine.Core.getGL(); // always activate the shader first!
 this.mShader.activateShader(this.mColor);
 this.mShader.loadObjectTransform(modelTransform);
 gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
};

In this way, when the vertices of the unit square are processed by the vertex shader, the
uModelTransform will contain the proper operator for transforming the vertices and thus drawing the square
in the desired location.

Testing the Transforms
Now that the game engine supports transformation, you need to modify the client code to draw with it.

	 1.	 Edit MyGame.js; after step D, instead of activating and drawing the two squares,
replace steps D1 and D2 to create a new identity transform operator.

// create a new identify transform operator
var xform = mat4.create();

	 2.	 Compute the concatenation of matrices to a single transform that implements
translation (T), rotation (R), and scaling (S), or TRS.

// Step E: compute the white square transform
mat4.translate(xform, xform, vec3.fromValues(-0.25, 0.25, 0.0));
mat4.rotateZ(xform, xform, 0.2); // rotation is in radian
mat4.scale(xform, xform, vec3.fromValues(1.2, 1.2, 1.0));
 
// Step F: draw the white square with the computed transform
this.mWhiteSq.draw(xform);

Step E concatenates T(-0.25, 0.25), moving to the left and up; with R(0.2), rotating clockwise by
0.2 radians; and S(1.2, 1.2), increasing size by 1.2 times. The concatenation order applies the scaling
operator first, followed by rotation, with translation being the last operation, or xform=TRS. In step F after
the shader is activated, the Renderable object is drawn with the xform operator or a 1.2×1.2 white rectangle
slightly rotated and located somewhat to the upper left from the center.

	 3.	 Finally, steps G and H are used to define and draw the red square.

// Step G: compute the red square transform
mat4.identity(xform); // restart
mat4.translate(xform, xform, vec3.fromValues(0.25, -0.25, 0.0));
mat4.rotateZ(xform, xform, -0.785); // rotation of about -45-degrees
mat4.scale(xform, xform, vec3.fromValues(0.4, 0.4, 1.0));
 
// Step H: draw the red square with the computed transform
this.mRedSq.draw(xform);

Step G defines the xform operator that draws a 0.4×0.4 square that is rotated by 45 degrees and located
slightly toward the lower right from the center of the canvas.

Chapter 3 ■ Drawing Objects in the World

58

Observations
Run the project, and you should see the corresponding white and red rectangles drawn on the canvas. You
can gain some intuition of the operators by changing the values; for example, move and scale the squares
to different locations with different sizes. You can try changing the order of concatenation by moving the
corresponding line of code; for example, move mat4.scale() to before mat4.translate(). You will notice
that, in general, the transformed results do not correspond to your intuition. In this book, you will always
apply the transformation operators in the fixed TRS order.

Now that you understand how to utilize the matrix transformation operators, it is time to abstract them
and hide their details.

Encapsulating the Transform Operator
In the previous project, the transformation operators were computed directly based on the matrices. While
the results were important, the computation involves distracting details and repetitive code. This project
guides you to follow good coding practices to encapsulate the transformation operators by hiding the
detailed computations with an object. In this way, you can maintain the modularity and accessibility of the
game engine by supporting further expansion while maintaining programmability.

The Transform Objects Project
This project defines the Transform object to provide a logical interface for manipulating transformation
operators and to hide the details of computing matrix transformation operators. Figure 3-7 shows the output
of running the Matrix Transform project; notice that the output of this project is identical to that from the
previous project. The source code to this project is defined in the Chapter3/3.3.TransformObjects folder.

Figure 3-7.  Running the Transform Objects project

http://dx.doi.org/10.1007/978-1-4842-0952-3_3

Chapter 3 ■ Drawing Objects in the World

59

The goals of the project are as follows:

•	 To create the Transform object so it can encapsulate the matrix transformation
functionality

•	 To integrate the Transform object into the game engine

•	 To demonstrate how to work with the Transform object

The Transform Object
Continue working with the previous project.

	 1.	 Define the Transform object in the game engine by creating a new source code
file in the src/Engine folder, and name the file Transform.js. Remember to load
the new source file in index.html.

	 2.	 Add the constructor for Transform.

function Transform() {
 this.mPosition = vec2.fromValues(0, 0); // translation operator
 this.mScale = vec2.fromValues(1,1); // Scaling operator
 this.mRotationInRad = 0.0; // Rotation in radians!
};

These instance variables store the values for the corresponding operators: mPosition for translation,
mScale for scaling, and mRotationInRad for rotation.

	 3.	 Add getters and setters for the values of each operator.

// Position getters and setters
Transform.prototype.setPosition = function(xPos,yPos) { this.setXPos(xPos);
 this.setYPos(yPos); };
Transform.prototype.getPosition = function() { return this.mPosition;};
// ... additional get and set functions for position not shown
// Size setters and getters
Transform.prototype.setSize = function(width, height) { this.setWidth(width);
 this.setHeight(height); };
Transform.prototype.getSize = function(){ return this.mScale; };
// ... additional get and set functions for size not shown
// Rotation getters and setters
Transform.prototype.setRotationInRad = function(rotationInRadians) {
 this.mRotationInRad = rotationInRadians;
 while (this.mRotationInRad > (2*Math.PI))
 this.mRotationInRad -= (2*Math.PI);
};
Transform.prototype.setRotationInDegree = function (rotationInDegree)
 { this.setRotationInRad(rotationInDegree * Math.PI/180.0); };
// ... additional get and set functions for rotation not shown

Chapter 3 ■ Drawing Objects in the World

60

	 4.	 Add a function to compute and return the concatenated transform operator, TRS.

Transform.prototype.getXform = function() {
 // Creates a blank identity matrix
 var matrix = mat4.create();

 // Step 1: compute translation, for now z is always at 0.0
 �mat4.translate(matrix, matrix, vec3.fromValues(this.getXPos(),

this.getYPos(), 0.0));
 // Step 2: concatenate with rotation.
 mat4.rotateZ(matrix, matrix, this.getRotationInRad());
 // Step 3: concatenate with scaling
 �mat4.scale(matrix, matrix, vec3.fromValues(this.getWidth(),

this.getHeight(), 1.0));
 return matrix;
};

This code is similar to steps E and G in MyGame.js from the previous project. The concatenated operator
TRS performs scaling first, followed by rotation, and last by translation.

Transformable Renderable Objects
By integrating a Transform object, a Renderable can now have a position, size (scale), and orientation
(rotation). This integration can be easily accomplished through the following:

	 1.	 Edit Renderable.js and add a Transform instance variable.

this.mXform = new Transform(); // transform operator for the object

	 2.	 Define an accessor for the transform operator.

Renderable.prototype.getXform = function() { return this.mXform; }

	 3.	 Modify the draw() function to load the mXform operator to the vertex shader
before sending the vertex positions of the unit square.

Renderable.prototype.draw = function() {
 var gl = gEngine.Core.getGL();
 �this.mShader.activateShader(this.mColor);

 // always activate the shader first!
 this.mShader.loadObjectTransform(this.mXform.getXform());
 gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
};

With this simple modification, Renderable objects will be drawn with characteristics defined by the
values of its own transformation operators.

Modify Drawing to Support Transform Object
To test the Transform object and the modified Renderable object, the MyGame constructor can be modified to
set the transform operators in each of the Renderable objects accordingly.

Chapter 3 ■ Drawing Objects in the World

61

// Step E: sets the white Renderable object's transform
this.mWhiteSq.getXform().setPosition(-0.25, 0.25);
this.mWhiteSq.getXform().setRotationInRad(0.2); // In Radians
this.mWhiteSq.getXform().setSize(1.2, 1.2);
// Step F: draws the white square (transform behavior in the object)
this.mWhiteSq.draw();
 
// Step G: sets the red square transform
this.mRedSq.getXform().setXPos(0.25); // to show alternative to setPosition
this.mRedSq.getXform().setYPos(-0.25); // it is possible to setX/Y separately
this.mRedSq.getXform().setRotationInDegree(45); // this is in Degree
this.mRedSq.getXform().setWidth(0.4); // to show alternative to setSize
this.mRedSq.getXform().setHeight(0.4); // that it is possible to width/height separately
// Step H: draw the red square (transform in the object)
this.mRedSq.draw();

Run the project to observe identical output as from the previous project. You now can create and draw a
Renderable at any location in the canvas, and the transform operator has now been properly encapsulated.

View, Projection, and Viewports
When designing and building a video game, the game programmers must be able to focus on the intrinsic
logic and presentation of the games themselves. To facilitate this, it is important that the programmer can
formulate solutions in a convenient dimension and space. For example, continuing with the soccer game
idea, consider the task of creating a soccer field itself. How big is the field? What is the unit of measurement?
In general, when building a game world, it is often easier to design a solution by referring to the real world.
In the real world, soccer fields are around 100 meters long. However, in the game or graphics world, units
are arbitrary. So, a simple solution may be to create a field that is 100 units in meters and a coordinate space
where the origin is located at the center of the soccer field. This way, opposing sides of the fields can simply
be determined by the sign of the x-value, and drawing a player at location (0, 1) would mean drawing the
player 1 meter to the right from the center of the soccer field. A contrasting example would be when building
a chess-like board game, it may be more convenient to design the solution based on a unit-less n×n grid with
the origin located at the lower-left corner of the board. In this scenario, drawing a piece at location (0, 1)
would mean drawing the piece at the location one cell or unit toward the right from the lower-left corner of
the board. As will be discussed, the ability to define specific coordinate systems is often accomplished by
computing and working with the corresponding View and Projection matrices.

In all cases, to support proper presentation of the game, it is important to allow the programmer to
control the drawing of the contents to any location on the canvas. For example, you may want to draw the
soccer field and players to one subregion and draw a mini-map into another subregion. These axis-aligned
rectangular drawing areas or subregions of the canvas are referred to as viewports.

In this section, you will learn about coordinate systems and how to use the matrix transformation as
a tool to define a drawing area that conforms to the fixed 1:1 drawing range of the WebGL in order to draw
geometries proportionally.

Coordinate Systems and Transformations
A 2D coordinate system uniquely identifies every position on a 2D plane. For example, as illustrated in
Figure 3-8, all projects in this book follow the Cartesian coordinate system where positions are defined
according to perpendicular distances from a reference point known as the origin. The perpendicular directions
for measuring the distances are known as the major axes. In 2D space, these are the familiar x- and y-axes.

Chapter 3 ■ Drawing Objects in the World

62

Modeling and Normalized Device Coordinate Systems
So far in this book, you have experience with two distinct coordinate systems. The first is the coordinate
system that defines the vertices for the 1×1 square in the vertex buffer. This is referred to as the Modeling
Coordinate System, which defines the Model Space. The Model Space is unique for each geometric object,
as in the case of the unit square. The Model Space is defined to describe the geometry of a single model.
Second, the coordinate space that the WebGL draws to, the one where the x/y-axes ranges are bounded to
±1.0, is defined by the Normalized Device Coordinates (NDC) System. As you have experienced, WebGL
always draws to NDC space and shows the results in the canvas.

The Modeling transform, typically defined by a matrix transformation operator, is the operation that
transforms geometries from its Model Space into another coordinate space that is convenient for drawing.
In the previous project, the uModelTransform variable in SimpleVS.glsl is the Modeling transform. As
illustrated in Figure 3-9, in that case, the Modeling transform transformed the unit square into the WebGL’s
NDC space.

Figure 3-8.  Working with a 2D Cartesian coordinate system

Figure 3-9.  Transforming the square from Model to NDC space

The World Coordinate System
Although it is possible to draw to any location with the Modeling transform, the disproportional scaling that
draws squares as rectangles is still a problem. In addition, the fixed -1.0 and 1.0 NDC space is not a convenient
coordinate space for designing games. The World Coordinate (WC) System describing a convenient World
Space was introduced to remedy these issues. For convenience and readability, in the rest of this book WC will
also be used to refer to the World Space that is defined by a specific World Coordinate system.

Chapter 3 ■ Drawing Objects in the World

63

As illustrated in Figure 3-10, with a WC instead of the fixed NDC space, Modeling transforms can
transform models into a convenient coordinate system that lends itself to game designs. For the soccer game
example, the World Space dimension can be the size of the soccer field. As in any Cartesian coordinate
system, the WC system is defined by a reference position and its dimensions or width and height. The
reference position can be either the lower-left corner or the center of the WC.

Figure 3-10.  Working with a World Coordinate (WC) System

The WC is a convenient coordinate system for designing games. However, it is not the space that WebGL
draws to. For this reason, it is important to transform WC to NDC. This transform is referred to as the View-
Projection transform. To accomplish this transform, you will take advantage of two important functions
provided by the glMatrix library.

mat4.lookAt(viewMatrix,
 [cx, cy, 10], // (cx,cy) is center of the WC
 [cx, cy, 0],
 [0, 1, 0]); // orientation
 
mat4.ortho(projMatrix,
 -distToLeft, // distant from (cx,cy) to left of WC
 distToRight, // distant from (cx,cy) to right of WC
 -distToBottom, // distant from (cx,cy) to bottom of WC
 distToTop, // distant from (cx,cy) to top of WC
 0, // the z-distant to near plane
 1000 // the z-distant to far plane
);

As shown, the mat4.lookAt() function defines the center, and the mat4.ortho() function defines the
dimension of the WC. In both cases, results are returned as matrix operators: the View matrix (viewMatrix)
and the Projection matrix (projMatrix). Since this book focuses on the 2D space, for now you do not need
to be concerned with the z-component of the parameters. Notice that the distances in the mat4.ortho()
function are signed quantities; in other words, the distance to the right/up is positive, while the distance to
the left/bottom is negative. For example, 5 units to the left is -5.

The View-Projection transform operator, vpMatrix, is simply the concatenation of the View and
Projection matrices, the results from the mat4.lookAt() and mat4.ortho() functions.

vpMatrix projMatrix viewMatrix= ´

Chapter 3 ■ Drawing Objects in the World

64

■■ Note I nterested readers can consult a 3D computer graphics reference book to learn more about the View
and Projection transforms.

The Viewport
A viewport is an area to be drawn to. As you have experienced, by default WebGL defines the entire canvas to
be the viewport for drawing. Fortunately, WebGL provides a function to override this default behavior.

gl.viewport(
 x, // x position of bottom-left corner of the area to be drawn
 y, // y position of bottom-left corner of the area to be drawn
 width, // width of the area to be drawn
 height // height of the area to be drawn
);

The gl.viewport() function defines a viewport for all subsequent drawings. Figure 3-11 illustrates the
View-Projection transform and drawing with a viewport.

Figure 3-11.  Working with the WebGL viewport

The View Projection and Viewport Project
This project demonstrates how to use a View-Projection transform to draw from any desired coordinate
location to any subregion of the canvas, or a viewport. Figure 3-12 shows the output of running the View
Projection and Viewport project. The source code to this project is defined in the Chapter3/3.4.ViewProjec
tionAndViewport folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_3

Chapter 3 ■ Drawing Objects in the World

65

The goals of the project are as follows:

•	 To understand the different coordinate systems

•	 To experience working with a WebGL viewport, define and draw to subregions within
the canvas

•	 To understand the View and Projection transformations

•	 To begin drawing to the user-defined World Coordinate System

You are now ready to modify the game engine to support the View-Projection transform to define your
own WC and the corresponding viewport for drawing. The first step is to modify the shaders to support a
new transform operator.

Modifying the Vertex Shader to Support the View-Projection Transform
Relatively minor changes are required to add the support for the View-Projection transform.

	 1.	 Edit SimpleVS.glsl to add a new uniform matrix operator to represent the
View-Projection transform.

uniform mat4 uViewProjTransform;

	 2.	 Make sure to apply the operator on the vertex positions in the vertex shader program.

gl_Position = uViewProjTransform * uModelTransform *
 vec4(aSquareVertexPosition, 1.0);

Figure 3-12.  Running the View Projection and Viewport project

Chapter 3 ■ Drawing Objects in the World

66

Recall that the order of matrix operations is important. In this case, the uModelTransform first
transforms the vertex positions from Model Space to WC, and then the uViewProjTransform transforms
from WC to NDC. The order of uModelTransform and uViewProjTransform cannot be switched.

Modifying SimpleVertex to Support the View-Projection Transform
The SimpleShader object must be modified to pass the View-Projection matrix to the vertex shader.

	 1.	 Edit SimpleShader.js and in the constructor add an instance variable for storing
the reference to the View-Projection transform operator in SimpleVS.glsl.

this.mViewProjTransform = null;

	 2.	 At the end of the SimpleShader constructor, retrieve the reference to the
View-Projection transform operator after retrieving those for the uModelTransform
and uPixelColor.

// Step G: references: uniforms: uModelTransform, uPixelColor, and
// uViewProjTransform
this.mModelTransform = gl.getUniformLocation(this.mCompiledShader,
 "uModelTransform");
this.mPixelColor = gl.getUniformLocation(this.mCompiledShader, "uPixelColor
this.mViewProjTransform = gl.getUniformLocation(
 this.mCompiledShader, "uViewProjTransform");

	 3.	 Modify the activateShader function to receive a View-Projection matrix and
pass it to the shader, as shown here:

SimpleShader.prototype.activateShader = function(vpMatrix) {
 var gl = gEngine.Core.getGL();
 gl.useProgram(this.mCompiledShader);
 gl.uniformMatrix4fv(this.mViewProjTransform, false, vpMatrix);
 gl.enableVertexAttribArray(this.mShaderVertexPositionAttribute);
 gl.uniform4fv(this.mPixelColor, pixelColor);
};

As you have seen previously, the gl.uniformMatrix4fv() function copies the content of vpMatrix to
the uViewProjTransform operator.

Modifying RenderObject to Support the View-Projection Transform
Recall that shaders are activated in the Renderable object’s draw() function; as such, Renderable must also
be modified to receive and pass vpMatrix to activate the shaders.

Renderable.prototype.draw = function(pixelColor, vpMatrix) {
 var gl = gEngine.Core.getGL();
 this.mShader.activateShader(this.mColor, vpMatrix); // activate first!
 this.mShader.loadObjectTransform(this.mXform.getXform());
 gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
};

Chapter 3 ■ Drawing Objects in the World

67

Testing the View-Projection Transform and the Viewport
It is now possible to set up a WC for drawing and define a subarea in the canvas to draw to.

Designing the Scene

As illustrated in Figure 3-13, for testing purposes, a World Space (WC) will be defined to be centered at (20, 60)
with a dimension of 20×10. Two rotated squares, a 5x5 blue square and a 2×2 red square, will be drawn at the
center of the WC. To verify the coordinate bounds, a 1×1 square with a distinct color will be drawn at each of
the corners of the WC.

Figure 3-14.  Drawing the WC to the viewport

Figure 3-13.  Designing a WC to support drawing

As illustrated in Figure 3-14, the WC will be drawn into a viewport with the lower-left corner located
at (20, 40) and a dimension of 600×300 pixels. It is important to note that in order for squares to show up
proportionally, the width-to-height aspect ratio of the WC must match that of the viewport. In this case, the
WC has a 20:10 aspect ratio, and this 2:1 matches that of the 600:300.

Chapter 3 ■ Drawing Objects in the World

68

Implementing the Design

The MyGame object will be modified to implement the design.

	 1.	 Edit MyGame.js to initialize the WebGL, create a constant color shader, and create
six Renderable objects (two to be drawn at the center, with four at each corner of
the WC) with corresponding colors.

// Step A: Initialize the webGL Context
gEngine.Core.initializeWebGL(htmlCanvasID);
var gl = gEngine.Core.getGL();
 
// Step B: Create the shader
this.mConstColorShader = new SimpleShader(
 "src/GLSLShaders/SimpleVS.glsl", // Path to the VertexShader
 "src/GLSLShaders/SimpleFS.glsl"); // Path to the FragmentShader
  
// Step C: Create the Renderable objects:
this.mBlueSq = new Renderable(this.mConstColorShader);
this.mBlueSq.setColor([0.25, 0.25, 0.95, 1]);
this.mRedSq = new Renderable(this.mConstColorShader);
this.mRedSq.setColor([1, 0.25, 0.25, 1]);
this.mTLSq = new Renderable(this.mConstColorShader);
this.mTLSq.setColor([0.9, 0.1, 0.1, 1]); // Top-Left shows red
this.mTRSq = new Renderable(this.mConstColorShader);
this.mTRSq.setColor([0.1, 0.9, 0.1, 1]); // Top-Right shows green
this.mBRSq = new Renderable(this.mConstColorShader);
this.mBRSq.setColor([0.1, 0.1, 0.9, 1]); // Bottom-Right shows blue
this.mBLSq = new Renderable(this.mConstColorShader);
this.mBLSq.setColor([0.1, 0.1, 0.1, 1]); // Bottom-Left shows dark gray

	 2.	 Clear the entire canvas, set up the viewport, and clear the viewport to a different
color.

// Step D: Clear the entire canvas first
gEngine.Core.clearCanvas([0.9, 0.9, 0.9, 1]); // Clear the canvas
 
// Step E: Setting up Viewport
// Step E1: Set up the viewport: area on canvas to be drawn
gl.viewport(
 20, // x position of bottom-left corner of the area to be drawn
 40, // y position of bottom-left corner of the area to be drawn
 600, // width of the area to be drawn
 300 // height of the area to be drawn
);
// Step E2: set up the corresponding scissor area to limit clear area
gl.scissor(
 20, // x position of bottom-left corner of the area to be drawn
 40, // y position of bottom-left corner of the area to be drawn
 600, // width of the area to be drawn
 300 // height of the area to be drawn
);

Chapter 3 ■ Drawing Objects in the World

69

// Step E3: enable the scissor area, clear, and then disable the scissor area
gl.enable(gl.SCISSOR_TEST);
 gEngine.Core.clearCanvas([0.8, 0.8, 0.8, 1.0]); // clear the scissor area
gl.disable(gl.SCISSOR_TEST);

Step E1 defines the viewport, and step E2 defines a corresponding scissor area. The scissor area tests
and limits the area to be cleared. Since the testing involved in gl.scissor() is computationally expensive, it
is disabled immediately after use.

	 3.	 Define the WC by setting up the View-Projection transform operator.

// Step F: Set up View and Projection matrices
var viewMatrix = mat4.create();
var projMatrix = mat4.create();
 
// Step F1: define the view matrix
mat4.lookAt(viewMatrix,
 [20, 60, 10], // camera position
 [20, 60, 0], // look at position
 [0, 1, 0]); // orientation
 
// Step F2: define the projection matrix
mat4.ortho(projMatrix,
 -10, // distant to left of WC
 10, // distant to right of WC
 -5, // distant to bottom of WC
 5, // distant to top of WC
 0, // z-distant to near plane
 1000 // z-distant to far plane
);
 
// Step F3: concatenate to form the View-Projection operator
var vpMatrix = mat4.create();
mat4.multiply(vpMatrix, projMatrix, viewMatrix);

In step F1, the mat4.lookAt() function defines the center of WC to be located at (20,60). Step F2 defines
the distances from the center position to the left and right boundaries to be 10 units and to the top and
bottom boundaries to be 5 units away. Together, these define the WC as follows:

	 a.	 Center: (20,60)

	 b.	 Top-left corner: (10, 65)

	 c.	 Top-right corner: (30, 65)

	 d.	 Bottom-right corner: (30, 55)

	 e.	 Bottom-left corner: (10, 55)

Recall that the order of multiplication is important and that the order of projMatrix and viewMatrix
should not be swapped.

Chapter 3 ■ Drawing Objects in the World

70

	 4.	 Set up the slightly rotated 5x5 blue square at the center of WC and draw with the
vpMatrix operator.

// Step G: Draw the blue square
// Centre Blue, slightly rotated square
this.mBlueSq.getXform().setPosition(20, 60);
this.mBlueSq.getXform().setRotationInRad(0.2); // In Radians
this.mBlueSq.getXform().setSize(5, 5);
this.mBlueSq.draw(vpMatrix);

	 5.	 Now draw the other five squares, first the 2x2 in the center and one each at a
corner of the WC.

// Step H: Draw with the red shader
// centre red square
this.mRedSq.getXform().setPosition(20, 60);
this.mRedSq.getXform().setSize(2, 2);
this.mRedSq.draw(vpMatrix);
 
// top left
this.mTLSq.getXform().setPosition(10, 65);
this.mTLSq.draw(vpMatrix);
 
// top right
this.mTRSq.getXform().setPosition(30, 65);
this.mTRSq.draw(vpMatrix);
 
// bottom right
this.mBRSq.getXform().setPosition(30, 55);
this.mBRSq.draw(vpMatrix);
 
// bottom left
this.mBLSq.getXform().setPosition(10, 55);
this.mBLSq.draw(vpMatrix);

Run this project and observe the distinct colors at the four corners: the top left (mTLSq) in red, the top
right (mTRSq) in green, the bottom right (mBRSq) in blue, and the bottom left (mBLSq) in dark gray. Change the
locations of the corner squares to verify that the center positions of these squares are located in the bounds
of the WC, and thus only one-quarter of the squares are actually visible. For example, set mBlSq to (12, 57)
to observe the dark-gray square is actually four times the size. This observation verifies that the areas of the
squares outside of the viewport/scissor area are clipped by WebGL.

It is now possible to define any convenient WC system and any rectangular subregions of the canvas
for drawing. With the Modeling and View-Projection transformations, a game programmer can now design
a game solution based on the semantic needs of the game and ignore the irrelevant WebGL NDC drawing
range. However, the code in the MyGame class is complicated and can be distracting. As you have seen so far,
the important next step is to create abstraction to hide the details of View-Projection matrix computation.

Chapter 3 ■ Drawing Objects in the World

71

The Camera
The View-Projection transform allows the definition of a WC to draw from. In the physical world, this is
analogous to taking a photograph with the camera. The center of the viewfinder of your camera is the center
of the WC, and the width and height of the world visible through the viewfinder are the dimensions of WC.
With this analogy, the act of taking the photograph is equivalent to computing the image drawing of each
object in the WC. Lastly, the viewport describes the location to display the computed image.

The Camera Objects Project
This project demonstrates how to abstract the View-Projection transform and the viewport to hide the
details of matrix operator computation and WebGL configurations. Figure 3-15 shows the output of running
the Camera Objects project; notice the output of this project is identical to that from the previous project.
The source code to this project is defined in the Chapter3/3.5.CameraObjects folder.

Figure 3-15.  Running the Camera Objects project

The goals of the project are as follows:

•	 To define the Camera object to encapsulate the definition of WC and the viewport
functionality

•	 To integrate the Camera object into the game engine

•	 To demonstrate how to work with the Camera object

http://dx.doi.org/10.1007/978-1-4842-0952-3_3

Chapter 3 ■ Drawing Objects in the World

72

The Camera Object
The Camera object basically encapsulates the functionality defined by the View-Projection and viewport
setup code in the MyGame constructor from the previous example. A clean and reusable object design can be
completed with appropriate getter and setter functions.

	 1.	 Define the Camera object in the game engine by creating a new source file in the
src/Engine folder, and name the file Camera.js. Remember to load the new
source file in index.html.

	 2.	 Add the constructor for Camera.

function Camera(wcCenter, wcWidth, viewportArray) {
 // WC and viewport position and size
 this.mWCCenter = wcCenter;
 this.mWCWidth = wcWidth;
 this.mViewport = viewportArray; // [x, y, width, height]
 this.mNearPlane = 0;
 this.mFarPlane = 1000;
  
 // transformation matrices
 this.mViewMatrix = mat4.create();
 this.mProjMatrix = mat4.create();
 this.mVPMatrix = mat4.create();
  
 // background color
 this.mBgColor = [0.8, 0.8, 0.8, 1]; // RGB and Alpha
}

The Camera object defines the WC center and width, the viewport, and the View-Projection transform
operator. Take note of the following:

a.	 The mWCPosition is a vec2 (vec2 is defined in the glMatrix library). It is a
float array of two elements. The first element, index position 0, of vec2 is the
x, and the second element, index position 1, is the y position.

b.	 The four elements of the viewportArray are the x and y positions of the
lower-left corner and the width and height of the viewport, in that order.
This compact representation of the viewport keeps the number of instance
variables to a minimum and helps keep the Camera object manageable.

c.	 mBgColor is an array of four floats representing the red, green, blue, and
alpha components of a color.

d.	 The mWCWidth is the width of the WC. To guarantee a matching aspect ratio
between WC and the viewport, the height of the WC is always computed
from the aspect ratio of the viewport and mWCWidth.

	 3.	 Add getters and setters for the instance variables.

// Setter/getter of WC and viewport
Camera.prototype.setWCCenter = function(xPos, yPos) {
 this.mWCCenter[0] = xPos;
 this.mWCCenter[1] = yPos;
};

Chapter 3 ■ Drawing Objects in the World

73

Camera.prototype.getWCCenter = function() { return this.mWCCenter; };
Camera.prototype.setWCWidth = function(width) { this.mWCWidth = width; };
 
Camera.prototype.setViewport = function(viewportArray) {
 this.mViewport = viewportArray; };
Camera.prototype.getViewport = function() { return this.mViewport; };
 
Camera.prototype.setBackgroundColor = function(newColor) {
 this.mBgColor = newColor; };
Camera.prototype.getBackgroundColor = function() { return this.mBgColor; };
 
// Getter for the View-Projection transform operator
Camera.prototype.getVPMatrix = function() { return this.mVPMatrix; };

	 4.	 Create a function to compute the View-Projection operator for this Camera:

// Initializes the camera to begin drawing
Camera.prototype.setupViewProjection = function() {
 var gl = gEngine.Core.getGL();
 // Step A: Configure the viewport
 // ... details to follow
  
 // Step B: define the View-Projection matrix
 // ... details to follow
};

Note that this function is called setupViewProjection() because it configures WebGL to draw to the
desire viewport and sets up the View-Projection transform operator. The following steps explain the details
of steps A and B.

	 5.	 The code to configure the viewport under step A is as follows:

// Step A: Set up and clear the Viewport
// Step A1: Set up the viewport: area on canvas to be drawn
gl.viewport(this.mViewport[0], // x position of bottom-left corner
 this.mViewport[1], // y position of bottom-left corner
 this.mViewport[2], // width of the area to be drawn
 this.mViewport[3]); // height of the area to be drawn
 
// Step A2: set up the corresponding scissor area to limit clear area
gl.scissor(this.mViewport[0], // x position of bottom-left corner
 this.mViewport[1], // y position of bottom-left corner
 this.mViewport[2], // width of the area to be drawn
 this.mViewport[3]); // height of the area to be drawn
 
// Step A3: set the color to be clear to black
gl.clearColor(this.mBgColor[0], this.mBgColor[1],
 this.mBgColor[2], this.mBgColor[3]); // set the color to be cleared
 

Chapter 3 ■ Drawing Objects in the World

74

// Step A4: enable and clear the scissor area
gl.enable(gl.SCISSOR_TEST);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.disable(gl.SCISSOR_TEST);

Notice the similarity of these steps to the viewport setup code in MyGame of the previous example. The
only difference is the use of the corresponding Camera instance variables.

	 6.	 The code to set up the View-Projection transform operator under step B is as
follows:

// Step B: Set up the View-Projection transform operator
// Step B1: define the view matrix
mat4.lookAt(this.mViewMatrix,
 [this.mWCCenter[0], this.mWCCenter[1], 10],// WC center
 [this.mWCCenter[0], this.mWCCenter[1], 0], //
 [0, 1, 0]); // orientation
  
// Step B2: define the projection matrix
var halfWCWidth = 0.5 * this.mWCWidth;
var halfWCHeight = halfWCWidth * this.mViewport[3] / this.mViewport[2];
 // WCHeight = WCWidth * viewportHeight / viewportWidth
mat4.ortho(this.mProjMatrix,
 -halfWCWidth, // distant to left of WC
 halfWCWidth, // distant to right of WC
 -halfWCHeight, // distant to bottom of WC
 halfWCHeight, // distant to top of WC
 this.mNearPlane, // z-distant to near plane
 this.mFarPlane // z-distant to far plane);
 
// Step B3: concatnate view and project matrices
mat4.multiply(this.mVPMatrix, this.mProjMatrix, this.mViewMatrix);

Once again, this code is similar to that from the previous example. In addition, take note that to
guarantee a matching aspect ratio between WC and viewport, in step B2, the WC height, halfWCHeight, is
computed based on the WC width, mWCWidth, and the aspect ratio of the viewport, which is height divided by
width (mViewport[3]/mViewport[2]).

Testing the Camera
With the Camera object properly defined, testing it from MyGame.js is straightforward.

	 1.	 Edit MyGame.js; after the initialization of WebGL, create an instance of the Camera
object with settings that define the WC and viewport from the previous project.

function MyGame(htmlCanvasID) {
 // Step A: Initialize the webGL Context
 gEngine.Core.initializeWebGL(htmlCanvasID);
  

Chapter 3 ■ Drawing Objects in the World

75

 // Step B: Setup the camera
 this.mCamera = new Camera(
 vec2.fromValues(20, 60), // center of the WC
 20, // width of WC
 [20, 40, 600, 300] // viewport (orgX, orgY, width, height)
);
 ...

	 2.	 Continue with the creation of the SimpleShader, the six Renderable objects, and
the clearing of the canvas.

// Step C: Create the shader
this.mConstColorShader = new SimpleShader(
 "src/GLSLShaders/SimpleVS.glsl", // Path to the VertexShader
 "src/GLSLShaders/SimpleFS.glsl"); // Path to the simple FragmentShader
  
// Step D: Create the Renderable objects:
this.mBlueSq = new Renderable(this.mConstColorShader);
this.mBlueSq.setColor([0.25, 0.25, 0.95, 1]);
this.mRedSq = new Renderable(this.mConstColorShader);
this.mRedSq.setColor([1, 0.25, 0.25, 1]);
this.mTLSq = new Renderable(this.mConstColorShader);
this.mTLSq.setColor([0.9, 0.1, 0.1, 1]);
this.mTRSq = new Renderable(this.mConstColorShader);
this.mTRSq.setColor([0.1, 0.9, 0.1, 1]);
this.mBRSq = new Renderable(this.mConstColorShader);
this.mBRSq.setColor([0.1, 0.1, 0.9, 1]);
this.mBLSq = new Renderable(this.mConstColorShader);
this.mBLSq.setColor([0.1, 0.1, 0.1, 1]);
  
// Step E: Clear the canvas
gEngine.Core.clearCanvas([0.9, 0.9, 0.9, 1]); // Clear the canvas

	 3.	 Now, draw with the Camera object.

// Step F: Starts the drawing by activating the camera
this.mCamera.setupViewProjection();
var vpMatrix = this.mCamera.getVPMatrix();
  
// Step G: Draw the blue square
// Centre Blue, slightly rotated square
this.mBlueSq.getXform().setPosition(20, 60);
this.mBlueSq.getXform().setRotationInRad(0.2); // In Radians
this.mBlueSq.getXform().setSize(5, 5);
this.mBlueSq.draw(vpMatrix);
  
// Step H: Draw the center and the corner squares
// centre red square
this.mRedSq.getXform().setPosition(20, 60);
this.mRedSq.getXform().setSize(2, 2);
this.mRedSq.draw(vpMatrix);
 
... rest of the code is identical to the previous project ...

Chapter 3 ■ Drawing Objects in the World

76

Step F calls mCamera.setupViewProjection() to compute the View-Projection transform operator.
This operator is used to activate the shaders in steps G and H. The rest of the squares’ model transform and
drawing code are identical to the previous project.

Summary
In this chapter, you learned how to create a system that can support the drawing of many objects. The
system is composed of three parts: the objects drawn, the scene drawn to, and how the scene is displayed
on the browser’s canvas. The objects being drawn are encapsulated by a Renderable object, which uses a
Transform object to define its position, size, and rotation. Position, though, is relative to the scene you are
drawing to.

You also learned that objects are all drawn relative to the scene and that a World Space, a convenient
coordinate system, can be defined in order to compose the entire scene by utilizing coordinate
transformations. Lastly, the View-Projection transformation is used to select which portion of the world to
actually display on the canvas within a browser. This was achieved by defining an area that is viewable by the
camera and using the viewport functionality provided through WebGL.

As you built the drawing system, the game engine source code structure has been consistently
refactored into abstracted and encapsulated components. In this way, the source code structure continues to
support further expansion including additional drawing functionality to be discussed in the next chapter.

77

Chapter 4

Implementing Common
Components of Video Games

After completing this chapter, you will be able to:

•	 Control the Renderable object’s position, size, and rotation to construct complex
movements and animations

•	 Receive keyboard input from the player and animate Renderable objects

•	 Work with asynchronous loading and unloading of external assets

•	 Define, load, and execute a simple game level from a scene file

•	 Change game levels by loading a new scene

•	 Work with sound clips for background music and audio cues

Introduction
In the previous chapters, a skeletal game engine was constructed to support basic drawing operations.
Drawing is the first step to constructing your game engine because it allows you to observe the output
while continuing to expand the game engine functionality. In this chapter, the two important mechanisms,
interactivity and resource support, will be examined and added to the game engine. Interactivity allows the
engine to receive and interpret player input, while resource support refers to the functionality of working
with external files like the GLSL shader source code files, audio clips, and images.

This chapter begins by introducing you to the game loop, a critical component that creates the
sensation of real-time interaction and immediacy in nearly all video games. Based on the game loop
foundation, player keyboard input will be supported via integrating the corresponding HTML5 input
functionality into the game engine. A resource management infrastructure will be constructed from the
ground up to support the efficient loading, storing, retrieving, and utilization of external files. Functionality
for working with external text files (for example, the GLSL shader source code files) and audio clips will be
integrated with corresponding example projects. Additionally, game scene architecture will be derived to
support the ability to work with multiple scenes and scene transitions, including scenes that are defined
in external scene files. By the end of this chapter, your game engine will support player interaction via the
keyboard, have the ability to provide audio feedback, and be able to transition between distinct game levels
including loading a level from an external file.

Chapter 4 ■ Implementing Common Components of Video Games

78

The Game Loop
One of the most basic operations of any video game is the support of seemingly instantaneous interactions
between the players’ input and the graphical gaming elements. In reality, these interactions are
implemented as a continuous running loop that receives and processes player input, updates the game state,
and renders the game. This constantly running loop is referred to as the game loop.

To convey the proper sense of instantaneity, each cycle of the game loop must be completed within a
normal human’s reaction time. This is often referred to as real time, which is the amount of time that is too
short for humans to detect visually. Typically, real-time can be achieved when the game loop is running at
a rate of higher than 40 to 60 cycles in a second. Since there is usually one drawing operation in each game
loop cycle, the game loop cycle’s rate can also be expressed as frames per second (FPS), or the frame rate. An
FPS of 60 is a good target for performance. This is to say, your game engine must receive player input, update
the game world, and then draw the game world all within 1/60th of a second!

The game loop itself, including the implementation details, is the most fundamental control structure
for a game. With the main goal of maintaining real-time performance, the details of a game loop’s operation
are of no concern to the rest of the game engine. For this reason, the implementation of a game loop should
be tightly encapsulated in the core of the game engine with its detailed operations hidden from other
gaming elements.

 Typical Game Loop Implementations
A game loop is the mechanism through which logic and drawing are continuously executed. A simple game
loop consists of processing the input, updating the state of objects, and drawing those objects, as illustrated
in the following pseudocode:

initialize();
while(game running) {
 input();
 update();
 draw();
}

As discussed, an FPS of 60 is required to maintain the sense of real-time interactivity. When the game
complexity increases, one problem that may arise is when sometimes a single loop can take longer than
1/60th of a second to complete, causing the game to run at a reduced frame rate. When this happens, the
entire game will appear to slow down. A common solution is to prioritize which operations to emphasis and
which to skip. Since correct input and updates are required for a game to function as designed, it is often
the draw operation that is skipped when necessary. This is referred to as frame skipping, and the following
pseudocode illustrates one such implementation:

elapsedTime = now;
previousLoop = now;
while(game running) {
 elapsedTime += now - previousLoop;
 previousLoop = now;
 

Chapter 4 ■ Implementing Common Components of Video Games

79

 input();
 while(elapsedTime >= UPDATE_TIME_RATE) {
 update();
 elapsedTime -= UPDATE_TIME_RATE;
 }
 draw();
}

In the previous pseudocode listing, UPDATE_TIME_RATE is the required real-time update rate. When the
elapsed time between the game loop cycle is greater than the UPDATE_TIME_RATE, update() will be called
until it is caught up. This means that the draw() operation is essentially skipped when the game loop is
running too slowly. When this happens, the entire game will appear to run slowly, with lagging play input
response and frames skipped. However, the game logic will continue to be correct.

Notice that the while loop that encompasses the update() function call simulates a fixed update time
step of UPDATE_TIME_RATE. This fixed time step update allows for a straightforward implementation in
maintaining a deterministic game state.

To ensure focusing on the core game loop operation, input will be ignored until the next project.

The Game Loop Project
This project demonstrates how to incorporate a game loop into your game engine and to support real-time
animation by updating and drawing the squares accordingly. You can see an example of this project running
in Figure 4-1. The source code to this project is defined in the Chapter4/4.1.GameLoop folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_4

Chapter 4 ■ Implementing Common Components of Video Games

80

The goals of the project are as follows:

•	 To understand the internal operations of a game loop

•	 To implement and encapsulate the operations of a game loop

•	 To gain experience with continuous update and draw to create animation

Figure 4-1.  Running the Game Loop project

Chapter 4 ■ Implementing Common Components of Video Games

81

Implement the Game Loop Component
The game loop component is a core game engine functionality and thus should be implemented similar
to Engine_Core or Engine_VertexBuffer, as a property of the gEngine object in a file defined in the
src/Engine/Core folder. The actual implementation is similar to the pseudocode listing discussed; for
clarity it’s shown without the input support for now.

	 1.	 Create a new file in the src/Engine/Core folder and name the file
Engine_GameLoop.js. Define the GameLoop component following the JavaScript
module pattern as follows:

var gEngine = gEngine || { };
 
gEngine.GameLoop = (function() {
 var mPublic = { };
 return mPublic;
} ()); 

■■ Tip T his book refers to core game engine functionality as engine components and implements each
component as an encapsulated property to the gEngine object based on this same pattern. 

	 2.	 Add the following instance variables to keep track of frame rate, processing time,
and referencing to the currently running game:

var kFPS = 60; // Frames per second
var kMPF = 1000 / kFPS; // Milleseconds per frame.
  
// Variables for timing gameloop.
var mPreviousTime;
var mLagTime;
var mCurrentTime;
var mElapsedTime;
  
// The current loop state (running or should stop)
var mIsLoopRunning = false;
  
// Reference to game logic
var mMyGame = null;

Notice that kFPS is the frame per second discussed and that kMPF is milliseconds per frame. It is
important to maintain the game at an update interval of kFPS.

	 3.	 Add a function to run the loop as follows:

// This function assumes it is sub-classed from MyGame
var _runLoop = function () {
 if(mIsLoopRunning) {
 // Step A: set up for next call to _runLoop and update input!
 requestAnimationFrame(function(){_runLoop.call(mMyGame);});

Chapter 4 ■ Implementing Common Components of Video Games

82

 // Step B: compute elapsed time since last RunLoop was executed
 mCurrentTime = Date.now();
 mElapsedTime = mCurrentTime - mPreviousTime;
 mPreviousTime = mCurrentTime;
 mLagTime += mElapsedTime;
 
 // Step C: update the game the appropriate number of times.
 // Update only every Milliseconds per frame.
 // If lag larger then update frames, update until caught up.
 while ((mLagTime >= kMPF) && mIsLoopRunning) {
 this.update(); // call MyGame.update()
 mLagTime -= kMPF;
 }
  
 // Step D: now let's draw
 this.draw(); // Call MyGame.draw()
 }
};

Notice the similarity between the pseudocode examined and the steps B, C, and D of the _runLoop()
function shown previously. The main difference is that the functionality of the outermost while loop is
implemented with the requestAnimationFrame() function call at step A, where the _runLoop() function is
set up to be called continuously. More specifically:

a.	 The requestAnimationFrame() function registers the _runLoop() function
with the browser where the browser will call on the next available frame.
Notice that each call to the requestAnimationFrame() function will result in
one execution of the corresponding _runLoop() function.

b.	 The syntax of the function passed to requestAnimationFrame(),
_runLoop.call(mMyGame), binds the 'this' context to mMyGame. In this way,
the this.update() and this.draw() function calls within the loop are those
defined in the mMyGame object. 

■■ Note T he mIsLoopRunning condition of the while loop in step C is a redundant check for now.
This condition will become important in later sections when this.update() can call GameLoop.stop()
to stop the loop (for example, for level transitions or the end of the game). 

	 4.	 Add the function to start the game loop as follows:

var start = function(myGame) {
 mMyGame = myGame;
 
 // Step A: reset frame time
 mPreviousTime = Date.now();
 mLagTime = 0.0;
  

Chapter 4 ■ Implementing Common Components of Video Games

83

 // Step B: remember that loop is now running
 mIsLoopRunning = true;
  
 // Step C: request _runLoop to start when loading is done
 requestAnimationFrame(function(){_runLoop.call(mMyGame);});
};

This function initializes the game loop internal state by setting mMyGame, initializing the frame time, and
setting the loop running flag to true, and then it starts the game loop by passing the _runLoop() function to
requestAnimationFrame().

	 5.	 Remember to add the start() function to the public interface of the GameLoop
object.

var mPublic = {
 start: start
};
return mPublic;

Using the Game Loop
To test the game loop implementation, a game class must define the update() and draw() functions. In this
case, the MyGame object will also define a constructor and an initialize() function.

	 1.	 In MyGame.js, replace the MyGame constructor with the following:

function MyGame(htmlCanvasID) {
 // variables of the constant color shader
 this.mConstColorShader = null;
  
 // variables for the squares
 this.mWhiteSq = null; // these are the renderable objects
 this.mRedSq = null;
  
 // The camera to view the scene
 this.mCamera = null;
  
 // Initialize the webGL Context
 gEngine.Core.initializeWebGL(htmlCanvasID);
  
 // Initialize the game
 this.initialize();
}

	 2.	 Add an initialization function to the prototype as follows:

MyGame.prototype.initialize = function() {
 // Step A: set up the cameras
 this.mCamera = new Camera(
 vec2.fromValues(20, 60), // position of the camera
 20, // width of camera
 [20, 40, 600, 300] // viewport (orgX, orgY, width, height)
);

Chapter 4 ■ Implementing Common Components of Video Games

84

 this.mCamera.setBackgroundColor([0.8, 0.8, 0.8, 1]);
 // sets the background to dark gray
  
 // Step B: create the shader
 this.mConstColorShader = new SimpleShader(
 "src/GLSLShaders/SimpleVS.glsl", // Path to the VertexShader
 "src/GLSLShaders/SimpleFS.glsl"); // Path to the FragmentShader
  
 // Step C: Create the renderable objects:
 this.mWhiteSq = new Renderable(this.mConstColorShader);
 this.mWhiteSq.setColor([1, 1, 1, 1]);
 this.mRedSq = new Renderable(this.mConstColorShader);
 this.mRedSq.setColor([1, 0, 0, 1]);
  
 // Step D: Initialize the white renderable object: centred, 5x5, rotated
 this.mWhiteSq.getXform().setPosition(20, 60);
 this.mWhiteSq.getXform().setRotationInRad(0.2); // In Radian
 this.mWhiteSq.getXform().setSize(5, 5);
  
 // Step E: Initialize the red renderable object: centered 2x2
 this.mRedSq.getXform().setPosition(20, 60);
 this.mRedSq.getXform().setSize(2, 2);
  
 // Step F: Start the game loop running
 gEngine.GameLoop.start(this);
};

The initialization is rather similar to previous examples, where a camera is defined and two squares are
set up. The interesting change in this case is the last step, step F, where the game loop is started with MyGame
as the parameter. Recall that the game loop _runLoop() function is set up such that the update() and draw()
functions of MyGame will be called.

	 3.	 Add an update() function to animate a moving white square and a pulsing
red square.

// The update function, updates the application state. Make sure to _NOT_ draw
// anything from this function!
MyGame.prototype.update = function() {
 // For this very simple game, let's move the white square and pulse the red
  
 // Step A: move the white square
 var whiteXform = this.mWhiteSq.getXform();
 var deltaX = 0.05;
 if (whiteXform.getXPos() > 30) // this is the right-bound of the window
 whiteXform.setPosition(10, 60);
 whiteXform.incXPosBy(deltaX);
 whiteXform.incRotationByDegree(1);
  
 // Step B: pulse the red square
 var redXform = this.mRedSq.getXform();

Chapter 4 ■ Implementing Common Components of Video Games

85

 if (redXform.getWidth() > 5)
 redXform.setSize(2, 2);
 redXform.incSizeBy(0.05);
};

Recall that the update() function is called at about 60 FPS, and each time the following happens:

•	 Step A for the white square: Increase the rotation by 1 degree; increase the x-position
by 0.05 and reset to 10 if the resulting x-position is greater than 30.

•	 Step B for the red square: Increase the size by 0.05 and reset it to 2 if the resulting size
is greater than 5.

Since the previous operations are performed continuously at about 60 times a second, you can expect to
see the following:

•	 A white square rotating while moving toward the right and reappearing when it
reaches the right boundary

•	 A red square increasing in size and reducing to a size of 2 when the size reaches 5,
thus appearing to be pulsing

	 4.	 Draw the scene as before by clearing the canvas, setting up the camera, and
drawing each square.

// This is the draw function, make sure to setup proper drawing environment,
// and more importantly, make sure to _NOT_ change any state.
MyGame.prototype.draw = function() {
 // Step A: clear the canvas
 gEngine.Core.clearCanvas([0.9, 0.9, 0.9, 1.0]); // clear to light gray
  
 // Step B: Activate the drawing Camera
 this.mCamera.setupViewProjection();
  
 // Step C: Activate the white shader to draw
 this.mWhiteSq.draw(this.mCamera.getVPMatrix());
  
 // Step D: Activate the red shader to draw
 this.mRedSq.draw(this.mCamera.getVPMatrix());
};

You can now run the project to observe the rightward-moving, rotating white square and the pulsing
red square. You can control the rate of the movement, rotation, and pulsing by changing the corresponding
parameters to the incXPosBy(), incRotationByDegree(), and incSizeBy() functions. In these cases, the
positional, rotational, and size values are changed by a constant amount in a fixed time interval. In effect, the
parameters to these functions are the rate of change; or, the speed, incXPosBy(0.05), is the rightward speed
of 0.05 units per 1/60th of a second, or 3 units per second. In this project, the width of the world is 20 units
with the white square traveling at 3 units per second. You can verify that it takes slightly more than 6 seconds
for the white square to travel from the left to the right boundary.

Chapter 4 ■ Implementing Common Components of Video Games

86

Notice that when the loop is running quickly, it is entirely possible for the _runLoop() function to be
called multiple times within a single kMPF interval. With the given _runLoop() implementation, the draw()
function will be called multiples times without any update() function calls. This way, the game loop can end
up drawing the same game state multiple times. Please refer to the following references for discussions of
supporting extrapolations in the draw() function to take advantage of efficient game loops:

•	 http://gameprogrammingpatterns.com/game-loop.html#play-catch-up

•	 http://gafferongames.com/game-physics/fix-your-timestep/

To clearly describe each component of the game engine and illustrate how these components interact,
this book does not support extrapolation of the draw() function.

Keyboard Input
It is obvious that proper support to receive player input is important to interactive video games. For a PC, the
two common input devices are the keyboard and the mouse. While keyboard input is received in the form of
a stream of characters, mouse input is packaged with positional information and is related to camera views.
For this reason, keyboard input is simpler to support at this point in the engine’s development. This section
will introduce and integrate keyboard support into your game engine. Mouse input will be examined in the
“Mouse Input project” of Chapter 7, after the coverage of supporting multiple cameras in the same game.

The Keyboard Support Project
This project examines keyboard input support and incorporates the functionality into the game engine.
The position, rotation, and size of the game objects in this project are under your input control. You can
see an example of this project running in Figure 4-2. The source code to this project is defined in the
Chapter4/4.2.KeyboardSupport folder.

http://gameprogrammingpatterns.com/game-loop.html#play-catch-up
http://gafferongames.com/game-physics/fix-your-timestep/
http://dx.doi.org/10.1007/978-1-4842-0952-3_7
http://dx.doi.org/10.1007/978-1-4842-0952-3_4

Chapter 4 ■ Implementing Common Components of Video Games

87

The controls of the project are as follows:

•	 Right arrow key: Moves the white square right and wraps it to the left of the game
window

•	 Up arrow key: Rotates the white square

•	 Down arrow key: Increases the size of the red square and then resets the size at a
threshold

The goals of the project are as follows:

•	 To implement an engine component to receive keyboard input

•	 To understand the difference between key state (if a key is released or pressed) and
key event (when the key state changes)

•	 To understand how to integrate the input component in the game loop

Figure 4-2.  Running the Keyboard Support project

Chapter 4 ■ Implementing Common Components of Video Games

88

Add an Input Component to the Engine
The input component of the game follows the same pattern as the other core engine modules such as the
vertex buffer or the game loop. A well-defined input module should allow the rest of the game engine to
query keyboard state changes without being distracted by any details. To accurately capture keyboard state
changes, the input component will be integrated with the core of game loop.

	 1.	 Create a new file in the src/Engine/Core/ folder and name it Engine_Input.js.
Similar to other engine components (for example, gEngine_GameLoop or
gEngine_VertexBuffer), add the following:

var gEngine = gEngine || { };
 
gEngine.Input = (function() {
 var mPublic = { };
 return mPublic;
}());

	 2.	 Define a set of keyboard keys to map key codes.

// Key code constants
var kKeys = {
 // arrows
 Left: 37,
 Up: 38,
 Right: 39,
 Down: 40,
  
 // space bar
 Space: 32,
  
 // numbers
 Zero: 48,
 One: 49,
 Two: 50,
 Three: 51,
 Four: 52,
 Five : 53,
 Six : 54,
 Seven : 55,
 Eight : 56,
 Nine : 57,
  
 // Alphabets
 A : 65,
 D : 68,
 E : 69,
 F : 70,
 G : 71,
 I : 73,
 J : 74,

Chapter 4 ■ Implementing Common Components of Video Games

89

 K : 75,
 L : 76,
 R : 82,
 S : 83,
 W : 87,
 
 LastKeyCode : 222
};

Key codes are the codes used by the keyboard handler where each keyboard character has its own
unique number, the corresponding key code. Note that there are up to 222 keys tracked. In the previous
listing, only the constants are shown in the public interface.

■■ Note  Key codes for the alphabets are continuous, starting from 65 for A and ending with 90 for Z.
You should feel free to add any characters for your own game engine. For a complete list of key codes, see
http://www.cambiaresearch.com/articles/15/javascript-char-codes-key-codes. 

	 3.	 Create objects to track key states.

// Previous key state
var mKeyPreviousState = [];
 
// The pressed keys.
var mIsKeyPressed = [];
 
// Click events: once an event is set, it will remain there until polled
var mIsKeyClicked = [];

Each of the three objects contains all the key states as booleans. The mKeyPreviousState records the
key states of the previous update cycle, and the mIsKeyPressed object records the current state of the keys.
The key code entries of these two objects are true when the corresponding keyboard keys are pressed, and
they are false otherwise. The mIsKeyClicked object captures key click events. The key code entries of this
object are true only when the corresponding keyboard key goes from being pressed to being released.

It is important to note that KeyPress is the state of a key, while KeyClicked is an event. For example,
if a player presses the A key for one second before she releases it, for the duration of that entire second,
KeyPress for A is true, while KeyClick for A is true only once when the player releases the key.

	 4.	 Add functions to capture the actual keyboard state changes.

// Event service functions
var _onKeyDown = function (event) {
 mIsKeyPressed[event.keyCode] = true; };
var _onKeyUp = function (event) {
 mIsKeyPressed[event.keyCode] = false; };

When the previous functions are called, they use their corresponding key code to record keyboard
state changes.

http://www.cambiaresearch.com/articles/15/javascript-char-codes-key-codes

Chapter 4 ■ Implementing Common Components of Video Games

90

	 5.	 Add a function to initialize all the key states and register the key event handlers
to the browser.

var initialize = function () {
 var I;
 for (i = 0; i<kLastKeyCode; i++) {
 mIsKeyPressed[i] = false;
 mKeyPreviousState[i] = false;
 mIsKeyClicked[i] = false;
 }
  
 // register handlers
 window.addEventListener('keyup', _onKeyUp);
 window.addEventListener('keydown', _onKeyDown);
};

Notice that the window.addEventListener() function registers the _onKeyUp/Down() event handler
functions with the browser such that these functions will be called to register the keyboard state changes.

	 6.	 Add an update() function to derive key click events.

var update = function() {
 var I;
 for (i = 0; i<kLastKeyCode; i++) {
 mIsKeyClicked[i] = (!mKeyPreviousState[i]) && mIsKeyPressed[i];
 mKeyPreviousState[i] = mIsKeyPressed[i];
 }
};

The update() function uses mIsKeyPressed and mKeyPreviousState to determine whether a key
clicked event has occured.

	 7.	 Add public functions for clean inquires to current keyboard states.

// Function for GameEngine programmer to test if a key is pressed down
var isKeyPressed = function (keyCode) {
 return mIsKeyPressed[keyCode]; };
var isKeyClicked = function(keyCode) {
 return (mIsKeyClicked[keyCode]);
};

	 8.	 Finally, add the public functions and the key constants to the interface.

var mPublic =
{
 initialize: initialize,
 update: update,
 isKeyPressed: isKeyPressed,
 isKeyClicked: isKeyClicked,
 keys: kKeys;
};

Chapter 4 ■ Implementing Common Components of Video Games

91

Modify the Engine to Support Keyboard Input
To properly support input, the engine must first initialize the arrays that represent the keyboard state, in
other words, mIsKeyPressed, mIsKeyClicked, and mKeyPreviousState, and be followed by a continuous
update of these arrays in the core of the game loop.

	 1.	 For clean and clear initialization of the game engine core, WebGL-specific
initializations are collected into a single function. In Engine_Core.js, modify
the_initializeWebGL() function to the following:

var _initializeWebGL = function(htmlCanvasID) {
 var canvas = document.getElementById(htmlCanvasID);
  
 mGL = canvas.getContext("webgl") ||
 canvas.getContext("experimental-webgl");
  
 if (mGL === null) {
 document.write("
WebGL is not supported!");
 }
};

This function only initializes WebGL.

	 2.	 The engine core initialization can now be cleanly defined as the initialization of
each essential component, as follows:

// initialize all of the EngineCore components
var initializeEngineCore = function(htmlCanvasID) {
 _initializeWebGL(htmlCanvasID);
 gEngine.VertexBuffer.initialize();
 gEngine.Input.initialize();
};

	 3.	 Remember to include the correct functions in the public interface.

var mPublic = {
 getGL: getGL,
 initializeEngineCore: initializeEngineCore,
 clearCanvas: clearCanvas
};

	 4.	 Finally, it is important to update the input states from within the game loop. In
Engine_GameLoop.js, within the _runLoop() function, add a call to update the
input before each update to the game in step C, as follows:

var _runLoop = function () {
 if(mIsLoopRunning) {
 // ... rest of the code is identical ...
 // Step C: Make sure we update the game the appropriate number of times.

Chapter 4 ■ Implementing Common Components of Video Games

92

 while ((mLagTime >= kMPF) && (mIsLoopRunning)) {
 gEngine.Input.update();
 this.update(); // call Scene.update()
 mLagTime -= kMPF;
 }
 // ... rest of the code is identical ...

Test Keyboard Input
You can test the input functionality by modifying renderable objects in MyGame.

	 1.	 First you must modify MyGame to work with the new engine core initialization
function. In MyGame.js, within the MyGame constructor, call the new initialization
function as follows:

// Initialize the webGL Context
function MyGame(htmlCanvasID) {
 // ... identical code as previous project ...
 gEngine.Core.initializeEngineCore(htmlCanvasID);
 // ... identical code as previous project ...
}

	 2.	 Replace the code in the MyGame.prototype.update() function with the
following:

MyGame.prototype.update = function() {
 // For this very simple game, let's move the white square and pulse the red
 var whiteXform = this.mWhiteSq.getXform();
 var deltaX = 0.05;
  
 // Step A: test for white square movement
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Right)) {
 if (whiteXform.getXPos() > 30) // the right-bound of the window
 whiteXform.setPosition(10, 60);
 whiteXform.incXPosBy(deltaX);
 }
  
 // Step B: test for white square rotation
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.Up))
 whiteXform.incRotationByDegree(1);
  
 var redXform = this.mRedSq.getXform();
 // Step C: test for pulsing the red square
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Down)) {
 if (redXform.getWidth() > 5)
 redXform.setSize(2, 2);
 redXform.incSizeBy(0.05);
 }
};

Chapter 4 ■ Implementing Common Components of Video Games

93

In the previous code, step A ensures that pressing and holding the right arrow key will move the white
square toward the right. Step B checks for the pressing and then the releasing of the up arrow key event.
The white square is rotated when such an event is detected. Notice that pressing and holding the up arrow
key will not generate a key press event and thus will not cause the white square to rotate. Step C tests for the
pressing and holding of the down arrow key to pulse the red square.

You can run the project and include additional controls for manipulating the squares. For example, include
support for the WASD keys to control the location of the red square. Notice once again that by increasing/
decreasing the position change amount, you are effectively controlling the speed of the object’s movement.

■■ Note T he term “WASD keys” is used to refer to the key binding of the popular game controls: key W to
move upwards, A leftwards, S downwards, and D rightwards.

Resource Management and Asynchronous Loading
Video games typically utilize a multitude of artistic assets, or resources, including audio clips and images.
When a game first begins to execute, these resources are typically stored externally on a system hard drive or
a server across the network. For this reason, these resources are sometimes referred to as external resources.
External resources must be explicitly loaded into a game.

Since there can be a large number of required resources to support an entire game, storing them
with the running game can potentially be memory intensive. A game should load and unload resources
dynamically based on necessity. However, loading external resources may involve input/output device
operations or network packet latencies and thus can be time intensive and potentially affect real-time
interactivity. For these reasons, only a portion of resources are kept in memory, with loading operations
strategically executed to avoid interrupting the game. In most cases, resources required in each level are kept
in memory to support real-time interaction during the game play of that level. With this approach, external
resource loading can be implemented during level transitions where players are expecting a new game
environment and slight delays for loadings can be tolerated.

Once loaded, a resource must be readily accessible to support interactivity. The efficient and effective
management of resources is essential to any game engine. Take note of the clear differentiation between
resource managements, the responsibility of a game engine, and the actual ownerships of the resources.
For example, a game engine must support the efficient loading and playing of the background music for
a game, and it is the game (or client of the game engine) that actually owns and supplies the audio file for
the background music. When implementing support for external resources management, it is important to
remember that the actual resources are not part of the game engine.

At this point, the game engine you have been building handles only one type of resource—the
GLSL shader files. Recall that the SimpleShader object loads and compiles the SimpleVS.glsl and
SimpleFS.glsl files in its constructor. So far, the shader file loading has been accomplished via synchronous
XMLHttpRequest.open(). This synchronous loading is an example of inefficient resource management
because no operations can occur while the browser attempts to open and load the shader file. An efficient
alternative would be to issue an asynchronous load command and allow additional operations to continue
while the file is being opened and loaded.

This section builds an infrastructure to support asynchronous loading and efficient accessing of the
loaded resources. Based on this infrastructure, over the next few projects, the game engine will be expanded
to support batch resource loading during scene transitions.

Chapter 4 ■ Implementing Common Components of Video Games

94

The Resource Map and Shader Loader Project
This project guides you to develop the ResourceMap, an infrastructural object for resource management, and
demonstrates how to work with this object to load shader files asynchronously. You can see an example of
this project running in Figure 4-3. This project appears to be identical to the previous project, with the
only difference being how the GLSL shaders are loaded. The source code to this project is defined in the
Chapter4/4.3.ResourceMapAndShaderLoader folder.

Figure 4-3.  Running the Resource Map and Shader Loader project

The controls of the project are identical to the previous project as follows:

•	 Right arrow key: Moves the white square right and wraps it to the left of the game
window

•	 Up arrow key: Rotates the white square

•	 Down arrow key: Increases the size of the red square and then resets the size at a
threshold

http://dx.doi.org/10.1007/978-1-4842-0952-3_4

Chapter 4 ■ Implementing Common Components of Video Games

95

The goals of the project are as follows:

•	 To understand the handling of asynchronous loading

•	 To build an infrastructure that supports future resource loading and accessing

•	 To experience asynchronous resource loading via loading of the GLSL shader files

Add ResourceMap Component to the Engine
The ResourceMap engine component manages resource loading, storage, and retrieval after the resources are
loaded. As in the case of all core engine components (for example, input or game loop), the implementation
pattern is as follows:

	 1.	 Create a new folder in src/Engine/Core/ and name it Resources. This new
folder is created in anticipation of the necessary support for many resource types
and to maintain a clean source code organization.

	 2.	 Create a new file in the src/Engine/Core/Resources folder and name it
Engine_ResourceMap.js. Similar to other engine components, add the following:

var gEngine = gEngine || { };
 
gEngine.ResourceMap = (function(){
 var mPublic = { };
 return mPublic;
}());

	 3.	 Define a simple object for storing each resource.

var MapEntry = function(rName) {
 this.mAsset = rName;
};

In the constructor, the mAsset is initialized to the name of the resource. As will be shown in the
following steps, this will be changed, and mAsset will store the reference to the loaded resource.

	 4.	 Add the following instance variables:

// Resource storage
var mResourceMap = {};
 
// Number of outstanding load operations
var mNumOutstandingLoads = 0;
 
// Callback function when all textures are loaded
var mLoadCompleteCallback = null;

The mResourceMap is the hashmap container of MapEntry that will support the actual storage and
retrieval according to the unique names of resources. Names of resources are typically their corresponding
file paths, which are unique. The mNumOutsandingLoads is the number of resource load requests
issued and not completed. When mNumOutsandingLoads becomes zero, the function referenced by
mLoadCompleteCallback will be called.

Chapter 4 ■ Implementing Common Components of Video Games

96

	 5.	 Define the support for setting and executing the callback.

var _checkForAllLoadCompleted = function() {
 if ((mNumOutstandingLoads === 0) && (mLoadCompleteCallback !== null)) {
 // ensures the load complete call back will only be called once!
 var funToCall = mLoadCompleteCallback;
 mLoadCompleteCallback = null;
 funToCall();
 }
};
// Make sure to set the callback _AFTER_ all load commands are issued
var setLoadCompleteCallback = function (funct) {
 mLoadCompleteCallback = funct;
 // in case all loading are done
 _checkForAllLoadCompleted();
};

When all resources are loaded or when mNumOutstandingLoads is zero and if the callback function
mLoadCompleteCallback is defined, it is called. Note that in _checkForAllLoadCompleted(), the
mLoadCompleteCallback is reset to ensure each callback can be called only once.

	 6.	 Define functions to record asynchronous loading requests and completions.

var asyncLoadRequested = function(rName) {
 mResourceMap[rName] = new MapEntry(rName);
 // place holder for the resource to be loaded
 ++mNumOutstandingLoads;
};
var asyncLoadCompleted = function(rName, loadedAsset) {
 if (!isAssetLoaded(rName))
 alert("gEngine.asyncLoadCompleted: [" + rName + "] not in map!");
 mResourceMap[rName].mAsset = loadedAsset;
 --mNumOutstandingLoads;
 _checkForAllLoadCompleted();
};

The asyncLoadRequested() and asyncLoadCompleted() functions keep track of the number of
outstanding asynchronous loads issued. Notice that asyncLoadRequested() allocates a new MapEntry and
stores it in the _ResourceMap according to the resource name. Whereas the asyncLoadCompleted() function
stored the reference to the loaded asset in MapEntry.mAsset, _checkForAllLoadCompleted() is always
called at the end of the asyncLoadCompleted() function to test for the condition where all outstanding
asynchronous loadings have been completed, and the callback should be executed.

	 7.	 Add functions for testing the load status and retrieving and unloading resources.

var isAssetLoaded = function(rName) {
 return (rName in mResourceMap);
};
var retrieveAsset = function(rName) {
 var r = null;
 if (rName in mResourceMap)
 r = mResourceMap[rName].mAsset;
 return r;
};

Chapter 4 ■ Implementing Common Components of Video Games

97

var unloadAsset = function(rName) {
 if (rName in mResourceMap) {
 delete mResourceMap[rName];
 }
};

	 8.	 Lastly, remember to add all public functions to the public interface.

// Public interface for this object.
var mPublic = {
 // asynchronous resource loading support
 asyncLoadRequested: asyncLoadRequested,
 asyncLoadCompleted: asyncLoadCompleted,
 setLoadCompleteCallback: setLoadCompleteCallback,
 
 // resource storage
 retrieveAsset: retrieveAsset,
 unloadAsset: unloadAsset,
 isAssetLoaded: isAssetLoaded
};
return mPublic;

Notice that ResourceMap is not designed to perform the actual loading of any resources. Instead, it is a
manager that allows an asynchronous resource loader to register loading commands issued and to store and
retrieve loaded results.

Define a Text File Loader as an Engine Component
This section will define a TextFileLoader object to work with ResourceMap to load text files asynchronously.
This object serves as an excellent example of how to take advantage of the ResourceMap facility and how to
replace the synchronous loading of GLSL shader files.

	 1.	 Create a new file in the src/Engine/Core/Resources folder and name it
Engine_TextFileLoader.js.

	 2.	 Define the TextFileLoader similar to other engine components.

var gEngine = gEngine || { };
 
gEngine.TextFileLoader = (function() {
 var mPublic = {};
 return mPublic;
}());

	 3.	 Define the different types of text files to be loaded, such as XML or plain text (for
example, GLSL shaders).

var eTextFileType = Object.freeze({
 eXMLFile: 0,
 eTextFile: 1
}); 

Chapter 4 ■ Implementing Common Components of Video Games

98

■■ Note  Object.freeze() disables modification and makes an object immutable. 

	 4.	 Add a function to asynchronously load a given text file.

var loadTextFile= function(fileName, fileType, callbackFunction) {
 if (!(gEngine.ResourceMap.isAssetLoaded(fileName))) {
 // Update resources in load counter.
 gEngine.ResourceMap.asyncLoadRequested(fileName);
 
 // Asyncrounsly request the data from server.
 var req = new XMLHttpRequest();
 req.onreadystatechange = function () {
 if ((req.readyState === 4) && (req.status !== 200)) {
 alert(fileName + ": loading failed!
 �[Hint: you cannot double click index.html to run this

project. " +
 "The index.html file must be loaded by a web-server.]");
 }
 };
 req.open('GET', fileName, true);
 req.setRequestHeader('Content-Type', 'text/xml');
 
 req.onload = function () {
 var fileContent = null;
 if (fileType === eTextFileType.eXMLFile) {
 var parser = new DOMParser();
 fileContent = parser.parseFromString(req.responseText, "text/xml");
 } else {
 fileContent = req.responseText;
 }
 gEngine.ResourceMap.asyncLoadCompleted(fileName, fileContent);
 
 if ((callbackFunction !== null) &&(callbackFunction !== undefined))
 callbackFunction(fileName);
 };
 req.send();
 } else {
 if ((callbackFunction !== null) && (callbackFunction !== undefined))
 callbackFunction(fileName);
 }
};

With the listing, notice the following:

a.	 The fileName parameter is the path to the text file, and it will be used as the
unique resource name.

b.	 The fileType parameter is of eTextFileType indicating whether the load
request is meant for an XML file or a simple text file.

Chapter 4 ■ Implementing Common Components of Video Games

99

c.	 The ResourceMap.isAssetLoaded() function is first called to ensure that the
requested resource is not already loaded before an actual loading command
is issued. This ensures that the same resource will be loaded only once and
will be shared.

d.	 The ResourceMap.asyncLoadRequested(fileName) function is called to
register a new asynchronous XMLHttpRequest loading request. Take note of
how these two classes collaborate; ResourceMap registers that there is one
outstanding load operation, while TextFileLoader is performing the actual
loading operation.

e.	 The ResourceMap.asyncLoadCompleted() function is called and passed
the loaded results when it becomes available. In this way, the ResourceMap
entry identified by fileName will have its MapEntry.mAsset set to reference
fileContent, the loaded asset.

f.	 Finally, when loading is done and if callbackFunction is defined, it will
be called.

	 5.	 Complete the loader object by defining an appropriate unload function.

var unloadTextFile= function(fileName) {
 gEngine.ResourceMap.unloadAsset(fileName);
};

	 6.	 Lastly, remember to add public functions to the public interface.

// Public interface for this object.
var mPublic = {
 loadTextFile: loadTextFile,
 unloadTextFile: unloadTextFile,
 eTextFileType: eTextFileType
};
return mPublic;

Load Shaders Asynchronously
The TextFileLoader object can now be used to load the shader files asynchronously as plain-text files.
Since it is impossible to predict when an asynchronous loading operation will be completed, it is important
to issue the load commands before the resources are needed and to ensure that the loading operations are
completed before proceeding to retrieve the resources. The callback function in the ResourceMap serves as
the excellent indicator that loadings are completed and resources can be used.

Implement Default Resources Support

There are two interesting observations on the SimpleShader object, and together these observations lead
to the definition of an engine-wide default resource storage support, or the DefaultResources component.
First, to avoid loading the GLSL shader files synchronously, the files must be loaded before the creation
of a SimpleShader object. Second, the SimpleShader object serves as a conduit for passing information
and can be shared by Renderable objects for supporting the drawing of different constant color squares.
Based on these observations, a DefaultResources engine component can be created to load GLSL

Chapter 4 ■ Implementing Common Components of Video Games

100

shader files during engine initialization and to create a sharable instance of SimpleShader. In general, the
DefaultResources component can serve as the infrastructure that supports all future loading and sharing
of game engine resources.

	 1.	 Create a new file in the src/Engine/Core/Resources folder and name it
Engine_DefaultResources.js.

	 2.	 Define the DefaultResources similar to all other engine components.

var gEngine = gEngine || { };
 
gEngine.DefaultResources = (function() {
 var mPublic = {};
 return mPublic;
}());

	 3.	 Define the constant file paths to the GLSL shaders and the variable and assessor
to the SimpleShader object.

// Simple Shader GLSL Shader file paths
var kSimpleVS = "src/GLSLShaders/SimpleVS.glsl"; // Path to the VertexShader
var kSimpleFS = "src/GLSLShaders/SimpleFS.glsl"; �// Path to the simple

// FragmentShader

var mConstColorShader = null; // variable for the SimpleShader object
var _getConstColorShader = function() { return mConstColorShader; }; // assessor

	 4.	 Define the initialization function to initiate the GLSL shader loadings and set
the target callback function to create the SimpleShader when all loading has
completed.

// callback function after loadings are done
var _createShaders = function(callBackFunction) {
 mConstColorShader = new SimpleShader(kSimpleVS, kSimpleFS);
 callBackFunction();
};
// initiate asynchronous loading of GLSL Shader files
var _initialize = function(callBackFunction) {
 // constant color shader: SimpleVS, and SimpleFS
 gEngine.TextFileLoader.loadTextFile(kSimpleVS,
 gEngine.TextFileLoader.eTextFileType.eTextFile);
 gEngine.TextFileLoader.loadTextFile(kSimpleFS,
 gEngine.TextFileLoader.eTextFileType.eTextFile);
 
 gEngine.ResourceMap.setLoadCompleteCallback(
 function() {_createShaders(callBackFunction);});
};

The _initialize() function issues the two loads for the GLSL vertex and fragment shader files and sets
the _createShaders() to be the callback when the load operations are completed. The _createShaders()
function in turn calls the SimpleShader constructor with the shader file paths to create the constant color
shader. In the following, you will see how these file paths are used as resource names for retrieving the
contents of the shader files.

Chapter 4 ■ Implementing Common Components of Video Games

101

	 5.	 Once again, remember to add all public functions to the public interface.

var mPublic = {
 initialize: _initialize,
 getConstColorShader: _getConstColorShader
};
return mPublic;

With DefaultResources, the game engine can now load and create constant color shaders during
internal initialization and offers the mConstColorShader as a shared SimpleShader for all instances of
Renderables. In the following, the required modifications to the SimpleShader implementation and the
overall integration of all components are examined.

Modify SimpleShader to Retrieve Shader Files

With the understanding that the GLSL shader files are already loaded, the changes to the SimpleShader object
are straightforward. Instead of synchronously loading the shader files in the _loadAndCompileShader()
function, the contents to these files can simply be retrieved via the ResourceMap.

	 1.	 Since no loading operations are required, you should change the
_loadAndCompileShader() function name to simply _compileShader() and
change the file-loading commands to content retrievals.

SimpleShader.prototype._compileShader = function(filePath, shaderType) {
 var gl = gEngine.Core.getGL();
 var shaderSource = null, compiledShader = null;
 
 // Step A: Access the shader textfile
 shaderSource = gEngine.ResourceMap.retrieveAsset(filePath);
 // ... identical to previous code ...

Notice that the synchronous loading operations are replaced by a single call to ResourceMap.
retrieveAsset() to retrieve the file content based on the filePath or the unique resource name for the
shader file.

	 2.	 Remember that in the SimpleShader constructor, the calls to _
loadAndCompileShader() functions should be replaced by _compileShader()
functions, as follows:

function SimpleShader(vertexShaderPath, fragmentShaderPath) {
 // ... identical to previous code ...
 
// Step A: load and compile vertex and fragment shaders
var vertexShader = this._compileShader(vertexShaderPath, gl.VERTEX_SHADER);
var fragmentShader = this._compileShader(fragmentShaderPath, gl.FRAGMENT_SHADER);

Recall that the instance of SimpleObject is created from the DefaultResources._createShaders()
function where the path to the vertex and fragment shaders are passed in as parameters to the constructor.
In the previous code, the file paths are used as unique resource names to retrieve the corresponding GLSL
shader file contents from the ResourceMap.

Chapter 4 ■ Implementing Common Components of Video Games

102

Initialize Engine Core

The DefaultResources component must be initialized when the engine core is first initialized. In addition,
an appropriate callback function must be provided for the DefaultResources._createShaders() function
to call after the SimpleShader object is created.

	 1.	 Initialize DefaultResources in Engine_Core.js.

var initializeEngineCore = function(htmlCanvasID, myGame) {
 _initializeWebGL(htmlCanvasID);
 gEngine.VertexBuffer.initialize();
 gEngine.Input.initialize();
  
 // Inits DefaultResoruces, when done, invoke startScene(myGame).
 gEngine.DefaultResources.initialize(function() { startScene(myGame); });
};

	 2.	 Define the startScene() function to initialize myGame and start the game loop.

var startScene = function(myGame) {
 myGame.initialize.call(myGame); // Called in this way to keep correct context
 gEngine.GameLoop.start(myGame); // start the game loop after initialization
};

With these modifications, Engine.Core initialization will call the DefaultResources initialization,
causing the asynchronous loading of the GLSL shader files. DefaultResources in turn will call the
startScene() function after the SimpleShader object is created. In this way, MyGame initialization will be
properly called, and the system game loop will be properly started.

Modify index.html for Proper Engine Core Initialization
The last step in integrating all the changes is to ensure that the initializeEngineCore() function is
properly activated, before the initialization of MyGame. To accomplish this, the index.html file’s onload event
handler must be modified to create an instance of MyGame and to call the initializeEngineCore() function
with the instance of MyGame as a parameter.

<body onload="
 var myGame = new MyGame();
 gEngine.Core.initializeEngineCore('GLCanvas', myGame);
">

Logically, the modified onload event handler initializes the engine core by passing the area upon which
the game should output to, GLCanvas, and a game object upon which the game should begin, myGame. In the
following sections, the MyGame parameter to initializeEngineCore() will be generalized into any arbitrary
game levels.

Chapter 4 ■ Implementing Common Components of Video Games

103

Test the Asynchronous Shader Loading
With DefaultResources handling the storage of the shaders and index.html initializing the engine core,
MyGame object does not need to be concerned with any special initialization calls to engine core, and it can
access DefaultResources for the sharable instance of SimpleShader.

	 1.	 Remove the call to gEngine.Core.initializeEngineCore() from the
constructor.

function MyGame() {
 // variables for the squares
 this.mWhiteSq = null; // these are the renderable objects
 this.mRedSq = null;
  
 // The camera to view the scene
 this.mCamera = null;
}

	 2.	 Remove the creation of SimpleShaders and reference to DefaultResources for
the sharable SimpleShader to create Renderable objects as follows:

// Step C: Create the renderable objects:
var constColorShader = gEngine.DefaultResources.getConstColorShader();
this.mWhiteSq = new Renderable(constColorShader);
this.mWhiteSq.setColor([1, 1, 1, 1]);
this.mRedSq = new Renderable(constColorShader);
this.mRedSq.setColor([1, 0, 0, 1]);

You can now run the project with shaders being loaded asynchronously. Though the output and
interaction experience are identical to the previous project, you now have a game engine that is much better
equipped to manage the loading and accessing of external resources efficiently.

The rest of this chapter further develops and formalizes the interface between the client, in other words,
MyGame, and the rest of the game engine. The goal is to define the interface to the client such that multiple
instances can be created and interchanged during runtime. With this new interface, you will be able to
define what a game level is and allow the game engine to load any level in any order.

Game Level from a Scene File
The scene file is a formal interface between the game engine and its client because it triggers a sequence
of function calls to create a playable game level. With a game level defined in a scene file, the game engine
must first initiate asynchronous loading, wait for the load completion, and then initialize the client for the
game loop. These steps present a complete functional interface between the game engine and the client. By
examining and deriving the proper support for these steps, the interface between the game engine and its
client can be refined.

The Scene File Project
This project uses the loading of a scene file as the vehicle to examine the necessary public methods for a typical
game level. You can see an example of this project running in Figure 4-4. This project appears and interacts
identically to the previous project with the only difference being that the scene definition is asynchronously
loaded from a file. The source code to this project is defined in the Chapter4/4.4.SceneFile folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_4

Chapter 4 ■ Implementing Common Components of Video Games

104

The controls of the project are identical to the previous project, as follows:

•	 Right arrow key: Moves the white square right and wraps it to the left of the game
window

•	 Up arrow key: Rotates the white square

•	 Down arrow key: Increases the size of the red square and then resets the size at a
threshold

The goals of the project are as follows:

•	 To introduce the protocol for supporting asynchronous loading of the resources
of a game

•	 To develop the proper game engine support for the protocol

•	 To identify and define the public interface methods for a general game level

Figure 4-4.  Running the Scene File project

Chapter 4 ■ Implementing Common Components of Video Games

105

Keep in mind the ultimate goal of this project is to define the public interface methods between the
game engine and a game level, or the client. While the definition/loading of a scene file is interesting, in
this case it is but a vehicle. The following describes the definition and parsing utility for the scene file. It is
important to remember these are only the tools for examining the required public methods for interfacing to
the game engine.

The Scene File
Instead of hard-coding the creation of all objects to a game in the initialize() function, the information
can be encoded in a file, and the file can be loaded and parsed during runtime. The advantage of such
encoding in an external file is the flexibility to modify a scene without the need to change the game source
code, while the disadvantages are the complexity and time required for loading and parsing. In general, the
importance of flexibility dictates that all game engines support the loading of game scenes from a file.

Objects in a game scene can be defined in many ways. The key decision factors are that the format can
properly describe the game objects and be easily parsed. Extensible Markup Language (XML) is well-suited
to serve as the encoding scheme for scene files.

	 1.	 Create a new folder at the same level as the src folder and name it assets. This
is the folder where all external resources, or assets, of a game will be stored
including the scene files, audio clips, texture images, and fonts. 

■■ Tip  It is important to differentiate between the src/Engine/Core/Resources/ folder that is created
for organizing game engine source code files and the assets/ folder that you just created for storing client
resources. Although GLSL shaders are also loaded at runtime, they are considered as source code and will
continue to be stored in the src/GLSLShaders folder. 

	 2.	 Create a new file in the assets folder and name it scene.xml. This file will store
the client’s game scene. Add the following content:

<MyGameLevel>
 <Camera CenterX="20" CenterY="60" Width="20"
 Viewport="20 40 600 300"
 BgColor="0.8 0.8 0.8 1.0"
 />
 <!-- Squares Rotation is in degree -->
 <Square PosX="20" PosY="60" Width="5" Height="5" Rotation="30" Color="1 1 1 1" />
 <Square PosX="20" PosY="60" Width="2" Height="2" Rotation="0" Color="1 0 0 1" />
</MyGameLevel>

The listed XML content describes the same scene as defined in the initialize() functions from
previous MyGame objects.

■■ Tip D elimiting attributes with commas is not supported.

Chapter 4 ■ Implementing Common Components of Video Games

106

Parser for the Scene File

A specific parser for the listed XML scene file must be defined to extract the scene information. Since the
scene file is specific to a game, the parser should also be specific to the game and be created within the
MyGame folder.

	 1.	 Create a new folder in the src/MyGame folder and name it Util. Add a new file
in the Util folder and name it SceneFileParser.js. This file will contain the
specific parsing logic to decode the listed scene file.

	 2.	 Define the constructor for the SceneFileParser object.

function SceneFileParser(sceneFilePath) {
 this.mSceneXml = gEngine.ResourceMap.retrieveAsset(sceneFilePath);
}

Note that sceneFilePath is the complete path to the scene file. In this case, the file path is once again
used as a unique resource name for retrieving the loaded asset from the ResourceMap.

■■ Note T he following XML parsing is based on JavaScript XML API. Please refer to
http://www.w3schools.com/dom/ for more details. 

	 3.	 Add a function to parse for contents of an XML element.

SceneFileParser.prototype._getElm = function(tagElm) {
 var theElm = this.mSceneXml.getElementsByTagName(tagElm);
 if (theElm.length === 0)
 console.error("Warning: Level element:[" + tagElm + "]: is not found!");
 return theElm;
};

	 4.	 Add a function to retrieve the definition of a camera.

SceneFileParser.prototype.parseCamera = function() {
 var camElm = this._getElm("Camera");
 var cx = Number(camElm[0].getAttribute("CenterX"));
 var cy = Number(camElm[0].getAttribute("CenterY"));
 var w = Number(camElm[0].getAttribute("Width"));
 var viewport = camElm[0].getAttribute("Viewport").split(" ");
 var bgColor = camElm[0].getAttribute("BgColor").split(" ");
 // make sure viewport and color are number
 for (var j = 0; j<4; j++) {
 bgColor[j] = Number(bgColor[j]);
 viewport[j] = Number(viewport[j]);
 }
 var cam = new Camera(
 vec2.fromValues(cx, cy), // position of the camera
 w, // width of camera
 viewport // viewport (orgX, orgY, width, height)
);

http://www.w3schools.com/dom/

Chapter 4 ■ Implementing Common Components of Video Games

107

 cam.setBackgroundColor(bgColor);
 return cam;
};

The camera parser finds a camera element and constructs a camera object with the retrieved
information. Notice that the viewport and background colors are arrays of four numbers. These are input as
string of four numbers delimited by spaces. Strings can be split into arrays, which is the case here with the
space delimiter. The JavaScript Number() function ensures all strings are converted into numbers.

	 5.	 Add a function to parse for squares.

SceneFileParser.prototype.parseSquares = function(sqSet) {
 var elm = this._getElm("Square");
 var I, j, x, y, w, h, r, c, sq;
 for (i=0; i<elm.length; i++) {
 x = Number(elm.item(i).attributes.getNamedItem("PosX").value);
 y = Number(elm.item(i).attributes.getNamedItem("PosY").value);
 w = Number(elm.item(i).attributes.getNamedItem("Width").value);
 h = Number(elm.item(i).attributes.getNamedItem("Height").value);
 r = Number(elm.item(i).attributes.getNamedItem("Rotation").value);
 c = elm.item(i).attributes.getNamedItem("Color").value.split(" ");
 sq = new Renderable(gEngine.DefaultResources.getConstColorShader());
 // make sure color array contains numbers
 for (j = 0; j<3; j++)
 c[j] = Number(c[j]);
 sq.setColor(c);
 sq.getXform().setPosition(x, y);
 sq.getXform().setRotationInDegree(r); // In Radian
 sq.getXform().setSize(w, h);
 sqSet.push(sq);
 }
};

This function parses the XML file to create Renderable objects to be placed in the array that is passed in
as a parameter.

Integrate Game Resource Loading
Though slightly involved, the details of XML-parsing specifics are less important than the fact that now XML
files can be parsed. It is now possible to use the asynchronous loading of an external resource to study the
required public methods for interfacing a game level to the game engine.

Public Methods of MyGame

At this point, it is established that MyGame should define the following:

•	 Constructor: For declaring variables and defining constants

•	 initialize(): For instantiating the variables and setting up the game scene

•	 update()/draw(): For interfacing to the game loop with these two functions being
called continuously

Chapter 4 ■ Implementing Common Components of Video Games

108

With the requirement of loading a scene file, two additional public methods will be defined.

•	 loadScene(): For initiating the asynchronous loading of external resources, in this
case, the scene file

•	 unloadScene(): For unloading of external resources when the game has ended

The implementations of these functions are as follows:

	 1.	 MyGame constructor:

function MyGame() {
 // scene file name
 this.kSceneFile = "assets/scene.xml"
 // all squares
 this.mSqSet = new Array(); // these are the renderable objects
  
 // The camera to view the scene
 this.mCamera = null;
};

The constructor defines the scene file path, the array mSqSet for storing the Renderable objects, and
the camera.

	 2.	 Define the functions to load and unload the scene file.

MyGame.prototype.loadScene = function() {
 gEngine.TextFileLoader.loadTextFile(this.kSceneFile,
 gEngine.TextFileLoader.eTextFileType.eXMLFile);
};
MyGame.prototype.unloadScene = function() {
 gEngine.TextFileLoader.unloadTextFile(this.kSceneFile);
};

The loadScene() function initiates the asynchronous XML text file loading, while the unloadScene()
function frees the resources.

	 3.	 Change the initialize() function to create objects based on the scene parser,
as follows:

MyGame.prototype.initialize = function() {
 var sceneParser = new SceneFileParser(this.kSceneFile);
  
 // Step A: Parse the camera
 this.mCamera = sceneParser.parseCamera();
  
 // Step B: Parse for all the squares
 sceneParser.parseSquares(this.mSqSet);
};

Once again, notice that the file path to the scene file is passed into the constructor of SceneFileParser
and will be used as the resource name for retrieving the scene file contents from the ResourceMap.

Chapter 4 ■ Implementing Common Components of Video Games

109

	 4.	 The draw and update functions are similar to the previous examples with the
exception of referencing the corresponding array elements.

MyGame.prototype.draw = function() {
 // ... identical code to previous project ...
 // Step C: draw all the squares
 for (var i = 0; i<this.mSqSet.length; i++) {
 this.mSqSet[i].draw(this.mCamera.getVPMatrix());
 }
};
MyGame.prototype.update = function() {
 // work with the xform of the white square ...
 var xform = this.mSqSet[0].getXform();
 // ... identical code to previous project ...
  
 // work with the red square ...
 xform = this.mSqSet[1].getXform();
 // ... identical code to previous project ...
};

Integration with the Game Engine

With the load and unload functionality defined in MyGame, the important task for the game engine is to
ensure that MyGame initialization is called only after the load operation has completed. The game engine can
ensure this sequence by coordinating the operations of engine core initialization and starting the game loop.

	 1.	 In Engine_Core.js, at the end of initializeEngineCore() after
DefaultResources initialization is completed, the callback startScene()
function needs to be modified to initiate the loading of the external resources of
MyGame with the call to the myGame.loadScene() function.

var startScene = function(myGame) {
 myGame.loadScene.call(myGame); // Called in this way to keep correct context
 �gEngine.GameLoop.start(myGame); // call initialize() only after async

loading is done
};

	 2.	 In Engine_GameLoop.js, always wait for any potential MyGame asset loading to be
completed before initializing the game and starting the loop.

var _startLoop = function() {
 // Step A: reset frame time
 mPreviousTime = Date.now();
 mLagTime = 0.0;
 // Step B: remember that loop is now running
 mIsLoopRunning = true;
 // Step C: request _runLoop to start when loading is done
 requestAnimationFrame(function(){_runLoop.call(mMyGame);});
};

Chapter 4 ■ Implementing Common Components of Video Games

110

var start = function(myGame) {
 mMyGame = myGame;
 gEngine.ResourceMap.setLoadCompleteCallback(
 function() {
 mMyGame.initialize();
 _startLoop();
 });
};

In the previous listing, the _startLoop() function implements the continuous cycling of the
game loop. The start() function registers a call with the ResourceMap to wait for the completion of
MyGame-loading operations before calling the game initialize() function, and then it begins the game
loop. In this way, the game loop will begin only after all asynchronous loading operations are completed
and the game is properly initialized.

You can now run the project and experience the identical behaviors with the previous two projects.
Though less than overwhelming, it is important to remember the purpose of this project and recognize that
through the process of supporting asynchronous loading of external resources, the public methods and
calling sequence between the game engine and the client have been defined.

Before continuing, you may notice that the MyGame.unloadScene() function is never called. This is
because in this example the game loop never stopped cycling and MyGame is never unloaded. This issue will
be addressed in the next two projects.

Scene Object: Client Interface to the Game Engine
At this point, in your game engine, the following is happening:

•	 The EngineCore component defines the startScene() function that will initiate the
loading process of MyGame and call to start the game loop.

•	 The GameLoop.start() function registers with the ResourceMap to wait for the
completion of all asynchronous loading operations before it calls to initialize MyGame
and starts the actual game loop cycle.

In the previous discussion, it is interesting to recognize that any object with the appropriately defined
public methods can replace the MyGame object. Effectively, at any point, it is possible to call the startScene()
function to load a new scene. This section pursues this observation by introducing the Scene object for
interfacing the game engine with its clients.

The Scene Objects Project
This project defines the Scene object as an abstract superclass for interfacing with your game engine.
From this project on, all client code must be encapsulated in subclasses of the abstract Scene class, and
the game engine will be able to interact with these classes in a well-defined and uniform manner. You
can see an example of this project running in Figure 4-5. The source code to this project is defined in the
Chapter4/4.5.SceneObjects folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_4

Chapter 4 ■ Implementing Common Components of Video Games

111

There are two distinct levels in this project: the MyGame level with a blue rectangle drawn above a red
square over a gray background; and the BlueLevel level with a red rectangle drawn above a rotated white
square over a dark blue background. For simplicity, the controls for both levels are the same.

•	 Left/right arrow key: Move the front rectangle left and right

Notice that on each level, moving the front rectangle toward the left to touch the left boundary will
cause the loading of the other level. The MyGame level will cause BlueLevel to be loaded, and BlueLevel will
cause the MyGame level to be loaded.

The goals of the project are as follows:

•	 To define the abstract Scene object to interface to the game engine

•	 To experience game engine support for scene transitions

•	 To create scene-specific loading and unloading support

The Abstract Scene Object
Based on the experience from the previous project, an abstract Scene object for encapsulating the interface
to the game engine must define these functions: constructor, initialize(), loadScene(), unloadScene(),
update(), and draw().

	 1.	 Create a new JavaScript file in the src/Engine folder and name it Scene.js.

	 2.	 Implement the following functions:

function Scene() { // constructor }
Scene.prototype.initialize = function() {
 // Called from GameLoop, after loading is done
};
Scene.prototype.loadScene = function() {
 // called from EngineCore.startScene()
};
Scene.prototype.unloadScene = function() { };
Scene.prototype.update = function() { };
Scene.prototype.draw = function() { };

Figure 4-5.  Running the Scene Objects project with both scenes

Chapter 4 ■ Implementing Common Components of Video Games

112

Notice that the Scene object is an abstract object because all the functions are empty. Together these
functions present a protocol to interface with the game engine. It is expected that subclasses will override
these functions to implement the actual game behaviors.

■■ Note  JavaScript does not support abstract objects. The language does not prevent a game programmer
from instantiating a Scene object. However, the created instance will be completely useless.

Modify Game Engine to Support the Scene Object
The game engine core components can now be modified to support the explicitly defined Scene object.

	 1.	 To facilitate inheritance of the Scene prototype methods, the
inheritPrototype() function is defined in the Engine_Core.js as follows:

var inheritPrototype = function(subClass, superClass) {
 var prototype = Object.create(superClass.prototype);
 prototype.constructor = subClass;
 subClass.prototype = prototype;
};

The inheritPrototype() function is a utility function that passes a reference to the prototype of
one object to another. This is called prototypal inheritance and allows the inherited object to access the
prototype functions of the original object. Note that the subclass’s constructor is explicitly saved to prevent it
from being overwritten.

	 2.	 In the Engine_GameLoop.js file, include support to stop the game loop and
remember to add this function to public interface:

var stop = function() {
 mIsLoopRunning = false;
};
var mPublic = {
 start: start,
 stop: stop
};

	 3.	 To support orderly unloading of the currently running scene, the game loop must
be stopped first, and then the unload function of the currently running scene can
be called. With the previous stop() function, the unloading can be implemented
by modifying the _runLoop() function in Engine_GameLoop.js to call the
unloadScene() function when the game loop has stopped.

var _runLoop = function () {
 if(mIsLoopRunning) {
 // ... identical to previous code ...
 } else {
 // the game loops has stopped, unload current scene!
 mMyGame.unloadScene();
 }
};

Chapter 4 ■ Implementing Common Components of Video Games

113

Test the Scene Object Interface to the Game Engine
With the abstract Scene object definition and the simple modification to the game engine core components,
it is now possible to stop an existing scene and load a new scene at will. This section uses the cycling
between two subclasses of the Scene object, BlueLevel and MyGame, to illustrate the loading and unloading
of scenes.

The BlueLevel Scene

Define a BlueLevel object that inherits from the Scene object and loads the scene from an external XML
scene file.

	 1.	 Create a new XML scene file in the assets folder and name it BlueLevel.xml.
Add a scene definition for the BlueLevel as follows:

<MyGameLevel>
 <Camera CenterX="20" CenterY="60" Width="20"
 Viewport="20 40 600 300"
 BgColor="0 0 1 1.0"/>
 <Square PosX="20" PosY="60" Width="5" Height="5" Rotation="30" Color="1 1 1 1" />
 �<Square PosX="20" PosY="60" Width="2" Height="3" Rotation="0"

 Color="1 0 0 1" />
</MyGameLevel>

Besides minor size, position, or color differences, this file defines a scene that is similar to the one
defined by the scene.xml file from the previous project.

	 2.	 Create a new file in the src/MyGame folder and name it BlueLevel.js.

	 3.	 Define a constructor for BlueLevel as follows:

function BlueLevel() {
 // scene file name
 this.kSceneFile = "assets/BlueLevel.xml";
 // all squares
 this.mSqSet = []; // these are the renderable objects
 // The camera to view the scene
 this.mCamera = null;
}
gEngine.Core.inheritPrototype(BlueLevel, Scene);

Note the inheritPrototype() function is called right after the constructor. This overrides the prototype
of the BlueLevel with that from the Scene and effectively defines all the behaviors of Scene on BlueLevel. It
is important to call the inheritPrototype() function right after the constructor before any new prototype
methods are defined for BlueLevel.

	 4.	 Override the Scene functions as follows:

BlueLevel.prototype.loadScene = function() {
 gEngine.TextFileLoader.loadTextFile(this.kSceneFile,
 gEngine.TextFileLoader.eTextFileType.eXMLFile);
};

Chapter 4 ■ Implementing Common Components of Video Games

114

BlueLevel.prototype.initialize = function() {
 // ... identical to MyGame.initialize from previous project ...
 // ... parse the scene from the this.kSceneFile ...
};
BlueLevel.prototype.draw = function() {
 // ... identical to MyGame.draw from previous project ...
 // ... set up the camera and draw all elements in the mSqSet array ...
};
BlueLevel.prototype.update = function() {
 // ... identical to MyGame.update from previous project ...
  
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Left)) {
 xform.IncXPosBy(-deltaX);
 if (xform.getXPos() < 11) { // this is the left-boundary
 gEngine.GameLoop.stop();
 }
 }
};
BlueLevel.prototype.unloadScene = function() {
 // unload the scene flie
 gEngine.TextFileLoader.unloadTextFile(this.kSceneFile);
  
 var nextLevel = new MyGame(); // the next level
 gEngine.Core.startScene(nextLevel);
};

Many of the BlueLevel functions are similar to the corresponding functions of the MyGame object from
the previous project, and thus much of the details are not shown. However, notice the following:

a.	 The loadScene() function initiates the asynchronous loading of the scene file
and returns. It is important that the game engine wait for the completion of
the load process before calling the initialize() function. Recall that in your
game engine, the GameLoop.start() function implements this.

b.	 The update() function is responsible for initiating the level transition
by calling the GameLoop.stop() function when the transition condition
becomes favorable, in this case when the rectangle approaches and touches
the left boundary from the right. Recall that the GameLoop.stop() function
will signal, stop the game loop, and call the unloadScene() function.

c.	 The unloadScene() function is called when the game loop has stopped. At
this point, since the game loop is not running, no update or draw function
will be executed, and all resources are free from being accessed. This is the
opportunity to unload and free up ResourceMap entries.

d.	 At the end of the unloadScene() function, the next scene, MyGame, is created
and passed to the EngineCore.startScene() function, which will load,
initialize, and run the MyGame scene.

Chapter 4 ■ Implementing Common Components of Video Games

115

The MyGame Scene

By this point, it may become clear that the MyGame scene definition is going to be quite similar to that of the
BlueLevel where the simple scene will include a camera and two Renderable objects. The major distinction
is that MyGame defines its entire scene in the initialize() function and does not load its scene from an
external file. As in the case of BlueLevel, because of the similarities, only important differences will be
highlighted in the code listings.

	 1.	 Change the MyGame constructor to inherit from the abstract Scene object.

function MyGame() {
 // ... smilar to previous code ...
 // ... declare a camera and two squares ...
}
gEngine.Core.inheritPrototype(MyGame, Scene);

The MyGame constructor is similar to the previous examples, with the exception of not defining the file
path to a scene file and the call to the inheritPrototype() function to set Scene as the parent in inheritance.

	 2.	 Override the Scene functions as follows:

MyGame.prototype.initialize = function() {
 // ... similar to previous code ...
 // ... allocate and define the camera and two Renderables ...
 };
MyGame.prototype.draw = function() {
 // ... similar to previous code ...
 // ... set up the camera and draw the two Renderables
};
MyGame.prototype.update = function() {
 // ... identical to MyGame.update from previous project ...
  
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Left)) {
 xform.incXPosBy(-deltaX);
 if (xform.getXPos() < 11) { // this is the left-bound
 gEngine.GameLoop.stop();
 }
 }
};
MyGame.prototype.unloadScene = function() {
 var nextLevel = new BlueLevel(); // next level to be loaded
 gEngine.Core.startScene(nextLevel);
};

Chapter 4 ■ Implementing Common Components of Video Games

116

Similar to the case of BlueLevel, many of the functions are similar to the previous projects with the
details not shown in the previous code listing. However, do take note of the following:

a.	 The loadScene() function is not defined. Since MyGame does not have any
external resources to load, there is no need to override this function.

b.	 The update() function is almost identical to that from the BlueLevel. This
should be expected because the two levels behave in almost an identical
manner. It is once again important to note that when a level transition
condition becomes favorable, the GameLoop.stop() function should be
called to halt the game loop and cause the calling of the unloadScene()
function.

c.	 The unloadScene() function is defined even though MyGame does not have
any particular resources to unload. This is because the unloadScene()
function is responsible for creating and transitioning the game to the next
level. In this case, when the rectangle touches the left boundary, the game
will transition back to the BlueLevel.

You can now run the project and experience the loading and unloading of the two scenes. Your game
engine now has a well-defined interface for working with its client. This interface follows the well-defined
protocol of the Scene object.

•	 Constructor: For declaring variables and defining constants

•	 loadScene(): For initiating the asynchronous loading of external resources

•	 initialize(): For instantiating the variables and setting up the game scene

•	 update()/draw(): For continuously receiving player input, implementing game
logic, and displaying the game state

•	 unloadScene(): For unloading external resources and initiating the loading of the
next scene by calling the EngineCore.startScene() function

Any objects that define the previous methods can be loaded and interacted with by your game engine.
You can experiment with creating other levels and even trying the loading of the MyGame level in the
MyGame.unloadScene() function.

Audio
Audio is an essential element of all video games. In general, audio effects in games fall into two categories.
The first category is background audio. This includes background music or ambient effects and is often used
to bring atmosphere or emotion to different portions of the game. The second category is sound effects.
Sound effects are useful for all sorts of purposes, from notifying users of game actions to hearing the footfalls
of your hero character. Usually, sound effects represent a specific action, triggered either by the user or by
the game itself. Such sound effects are often thought of as an audio cue.

One important difference between these two types of audio is how you control them. Sound effects or
cues cannot be stopped or have their volume adjusted once they have started; therefore, cues are generally
short. On the other hand, background audio can be started and stopped at will. These capabilities are useful
for stopping the background track completely and starting another one.

Chapter 4 ■ Implementing Common Components of Video Games

117

The Audio Support Project
This project is identical to the previous one where you can move the front rectangle left or right with the
arrow keys, and the intersection with the left boundary triggers the loading of next scene, MyGame loads
BlueLevel, and vice versa. However, in this version, each scene plays background music and triggers a
brief audio cue when the left/right arrow key is pressed. The implementation of this project also reinforces
the concept of loading and unloading of external resources and the audio clips themselves. You can
see an example of this project running in Figure 4-6. The source code to this project is defined in the
Chapter4/4.6.AudioSupport folder.

Figure 4-6.  Running the Audio Support project with both scenes

The controls of the project are as follows:

•	 Left/right arrow key: Moves the front rectangle left and right

The goals of the project are as follows:

•	 To add audio support to the resource management system

•	 To provide an interface to play audio for games

•	 To optimize and facilitate resource sharing with reference counts of individual
resources

You can find the following audio files in the Chapter4\4.6.AudioSupport\public_html\assets\sounds
folder:

•	 BGClip.mp3

•	 BlueLevel_cue.wav

•	 MyGame_cue.wav

Notice that the previous audio files are in two formats, mp3 and wav. While both are supported, audio
files of these formats should be used with care. Files in .mp3 format are compressed and are suitable for
storing longer durations of audio content, for example, for background music. Files in .wav format are
uncompressed and should contain only very short audio snippet, for example, for storing cue effects.

http://dx.doi.org/10.1007/978-1-4842-0952-3_4
http://dx.doi.org/10.1007/978-1-4842-0952-3_4

Chapter 4 ■ Implementing Common Components of Video Games

118

Define AudioClips Component with Web Audio API
While audio and text files are completely different, from the perspective of your game engine implementation,
there are two important similarities. First, both are external resources and thus will be implemented similarly
as engine components in the src/Engine/Core/Resources folder. Second, both involve standardized file
formats with existing well-defined API utilities. The Web Audio API will be used for the actual retrieving and
playing of sound files. Even though this API offers vast capabilities, in the interests of focusing on the rest of
the game engine development, only basic supports for background audio and effect cues are discussed.

■■ Note  Interested readers can learn more about the Web Audio API from http://www.w3.org/TR/webaudio/. 

	 1.	 In the src/Engine/Core/Resources folder, create a new file and name it
Engine_AudioClips.js. This file will implement the AudioClips engine
component.

var gEngine = gEngine || { };
gEngine.AudioClips = (function(){
 var mPublic = {};
 return mPublic;
}());

	 2.	 Declare variables to maintain references to the Web Audio context and
background music.

var mAudioContext = null;
var mBgAudioNode = null;

	 3.	 Define a function to create a reference to the Web Audio context and store the
results in mAudioContext.

var InitAudioContext = function() {
 try {
 var AudioContext = window.AudioContext || window.webkitAudioContext;
 mAudioContext = new AudioContext();
 }
 catch(e) {alert("Web Audio Is not supported.");}
};

	 4.	 Define the function to load an audio file asynchronously.

var loadAudio = function (clipName) {
 if (!(gEngine.ResourceMap.isAssetLoaded(clipName))) {
 // Update resources in load counter.
 gEngine.ResourceMap.asyncLoadRequested(clipName); 

 // Asyncrounsly request the data from server.
 var req = new XMLHttpRequest();

http://www.w3.org/TR/webaudio/

Chapter 4 ■ Implementing Common Components of Video Games

119

 req.onreadystatechange = function () {
 if ((req.readyState === 4) && (req.status !== 200)) {
 alert(clipName + ": loading failed!
 [Hint: you cannot double click index.html to run
 this project. " +
 "The index.html file must be loaded by a web-server.]");
 }
 };
 req.open('GET', clipName, true);
 // Specify that the request retrieves binary data.
 req.responseType = 'arraybuffer';
 
 req.onload = function () {
 // Asynchronously decode, then call the function in parameter.
 mAudioContext.decodeAudioData(req.response,
 function(buffer) {
 gEngine.ResourceMap.asyncLoadCompleted(clipName, buffer);
 }
);
 };
 req.send();
 } else {
 gEngine.ResourceMap.incAssetRefCount(clipName);
 }
};

Note the similarity between the loadAudio() function and the loadTextFile() function where the
ResourceMap is first consulted to ensure the requested resource is not already loaded, followed by registering a
new asynchronous load, and lastly, when the load is completed, the request for storage of the loaded resource.

a.	 ResourceMap.isAssetLoaded(): Checks whether the requested resource is
already loaded. Notice that if a resource is indeed already loaded, there is a
call to a ResourceMap.incAssetRefCount() function. This function ensures
resources are reference counted and can be properly shared across different
load requests. Details to reference counting will be described in the next
section.

b.	 ResourceMap.asyncLoadRequested(): Registers an outstanding
asynchronous loading with the ResourceMap.

c.	 ResourceMap.asyncLoadCompleted(): Informs the ResourceMap that an
asynchronous loading has completed and stores the loaded asset in the
ResourceMap.

Notice the actual loading of the audio file.

a.	 The XMLHttpRequest retrieves the corresponding data as an arrayBuffer
object, which holds binary data.

b.	 The loaded binary data is decoded asynchronously into playable audio
format by the mAudioContext.decodeAudioData() function. Be aware that
the asyncLoadCompleted() function is called only when the decoding has
been completed.

Chapter 4 ■ Implementing Common Components of Video Games

120

	 5.	 Add a function to unload the audio file.

var unloadAudio = function(clipName) {
 gEngine.ResourceMap.unloadAsset(clipName);
};

	 6.	 Now add a function to play the entire duration of an audio clip.

var playACue = function(clipName) {
 var clipInfo = gEngine.ResourceMap.retrieveAsset(clipName);
 if (clipInfo !== null) {
 // SourceNodes are one use only.
 var sourceNode = mAudioContext.createBufferSource();
 sourceNode.buffer = clipInfo;
 sourceNode.connect(mAudioContext.destination);
 sourceNode.start(0);
 }
};

The playACue() function uses the audio file path as a resource name to find the loaded asset from the
ResourceMap and then invokes the Web Audio API to play the audio clip. Notice that no reference to the
sourceNode is kept, and thus once started, there is no way to stop the corresponding audio clip. A game
should call this function to play short snippets of audio clips as cues.

	 7.	 Add the functionality to start, stop, and test for background audio.

var playBackgroundAudio = function(clipName) {
 var clipInfo = gEngine.ResourceMap.retrieveAsset(clipName);
 if (clipInfo !== null) {
 // Stop audio if playing.
 stopBackgroundAudio();
 mBgAudioNode = mAudioContext.createBufferSource();
 mBgAudioNode.buffer = clipInfo;
 mBgAudioNode.connect(mAudioContext.destination);
 mBgAudioNode.loop = true;
 mBgAudioNode.start(0);
 }
};
var stopBackgroundAudio = function() {
 // Check if the audio is playing.
 if(mBgAudioNode !== null) {
 mBgAudioNode.stop(0);
 mBgAudioNode = null;
 }
};
var isBackgroundAudioPlaying = function() {
 return (mBgAudioNode !== null);
};

In this case, notice that the mBgAudioNode keeps a reference to the currently running audio, and thus it is
possible to stop the clip.

Chapter 4 ■ Implementing Common Components of Video Games

121

	 8.	 Finally, remember to add the public functions to the public interface.

var mPublic = {
 InitAudioContext: initAudioContext,
 loadAudio: loadAudio,
 unloadAudio: unloadAudio,
 playACue: playACue,
 playBackgroundAudio: playBackgroundAudio,
 stopBackgroundAudio: stopBackgroundAudio,
 isBackgroundAudioPlaying: isBackgroundAudioPlaying
};
return mPublic;

Counting Resource References
It is common for a resource to be shared and reused over the course of a game, for example, an audio cue
effect or a background clip that is reused in different levels. In this case, a game may inevitably issue multiple
load requests on these resources, potentially each time when a particular resource is needed. As described,
loading external resources is a relatively expensive endeavor and should be avoided if possible. For this
reason, in both the audio and text file loading, the ResourceMap is first consulted with the isAssetLoaded()
function before the actual asynchronous load command is issued. This way, if a client issues more than one
load request for the same resource, the game engine will perform only one actual load operation.

Since the client of the game engine is responsible for always unloading external resources that it has
loaded, the support of multiple load requests must be complemented with the corresponding support for
unload requests. For example, if there are two requests to load a particular resource, then it can be assumed
that this resource is used in two separate cases, and there will be two corresponding unload requests for
this resource. In this case, the resource must be kept in the ResourceMap until the second unload request
is received. To properly support this behavior, individual resources must be reference counted. An integer
counter is introduced to keep track of the number of load and unload requests on a resource, and the
resource will be removed only when the value of this counter is zero.

To implement reference counting, an integer counter must be added to the MapEntry object in the
Engine_ResourceMap.js file.

	 1.	 Open Engine_ResourceMap.js and add a counter variable with an initial value of
1 to the MapEntry constructor.

var MapEntry = function(rName) {
 this.mAsset = rName;
 this.mRefCount = 1;
};

Since the MapEntry object is created when the first load request is made on a resource, the initial value
of 1 represents that there is one load command issued on the corresponding resource.

	 2.	 Add a function to increase the reference counter counting the number of times
load commands have been issued on the resource, and remember to add this
function to the public interface.

var incAssetRefCount = function(rName) {
 mResourceMap[rName].mRefCount += 1;
};

Chapter 4 ■ Implementing Common Components of Video Games

122

Each resource loader (for example, Engine.AudioClip or Engine.TextFileLoader) is responsible for
calling this function when it detects a target resource has already been loaded. For example, earlier you saw
this function being called from the loadAudio() function when an audio clip to be loaded is already present
in the ResourceMap.

	 3.	 Complete the reference counting implementation by updating the
unloadAsset() function.

var unloadAsset = function(rName) {
 var c = 0;
 if (rName in mResourceMap) {
 mResourceMap[rName].mRefCount -= 1;
 c = mResourceMap[rName].mRefCount;
 if (c === 0)
 delete mResourceMap[rName];
 }
 return c;
};

Notice that by checking the return value of the unloadAsset() function, a client can verify how many
more unloads are necessary to free up the associated memory.

Testing the Audio Component
To test the audio component, you must copy the necessary audio files into your game project. Create a new
folder in the assets folder and name it sounds. Copy the BG_Clip.mp3, BlueLevel_cue.wav, and MyGame_cue
files into the sounds folder. You will now need to update the MyGame and BlueLevel implementations to load
and use these audio resources.

Change MyGame.js

Update MyGame scene to load the audio clips, play background audio, and cue the player when the arrow
keys are pressed.

	 1.	 Declare constant file paths to the audio files in the constructor.

function MyGame() { // audio clips: supports both mp3 and wav formats
 this.kBgClip = "assets/sounds/BGClip.mp3";
 this.kCue = "assets/sounds/MyGame_cue.wav";
 // ... Identical to previous code ...
}

Recall that these file paths are used as resource names for loading, storage, and retrieval. Declaring
these as constants for later references is a good software engineering practice.

	 2.	 Request the loading of audio clips in the loadScene() function.

MyGame.prototype.loadScene = function() {
 gEngine.AudioClips.loadAudio(this.kBgClip);
 gEngine.AudioClips.loadAudio(this.kCue);
}

Chapter 4 ■ Implementing Common Components of Video Games

123

	 3.	 Remember to unload external resources that are loaded.

MyGame.prototype.unloadScene = function() {
 // stop the background audio before unloading it
 gEngine.AudioClips.stopBackgroundAudio();
  
 // unload the scene resources
 // gEngine.AudioClips.unloadAudio(this.kBgClip);
 // The above line is commented out on purpose because
 // you know this clip will be used elsewhere in the game
 // so you decide to not unload this clip!!
 gEngine.AudioClips.unloadAudio(this.kCue);
  
 // starts the next level
 var nextLevel = new BlueLevel(); // next level to be loaded
 gEngine.Core.startScene(nextLevel);
};

While it is important to unload resources, there can be exceptions. In this case, the background music
clip is not unloaded because BlueLevel will be using the same resource. In addition, this is an excellent
opportunity for testing resources reference counting.

	 4.	 Start the background audio at the end of the initialize() function.

MyGame.prototype.initialize = function() {
 // ... identical to previous code ...
 gEngine.AudioClips.playBackgroundAudio(this.kBgClip);
}

	 5.	 In the update() function, cue the players when the left and right arrow keys are
pressed.

MyGame.prototype.update = function(){
 // ... Identical to previous code ...
  
 // Support hero movements
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Right)) {
 gEngine.AudioClips.playACue(this.kCue);
 xform.incXPosBy(deltaX);
 // ... identical to previous code ...
 }
  
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Left)) {
 gEngine.AudioClips. playACue (this.kCue);
 xform.incXPosBy(-deltaX);
 // ... identical to previous code ...
 }
};

Chapter 4 ■ Implementing Common Components of Video Games

124

Change BlueLevel.js

The changes to the BlueLevel scene are similar to those of the MyGame scene but with a different audio cue.

	 1.	 In the BlueLevel constructor, add the following:

function BlueLevel() {
 // audio clips: supports both mp3 and wav formats
 this.kBgClip = "assets/sounds/BGClip.mp3";
 this.kCue = "assets/sounds/BlueLevel_cue.wav";
 // ... Identical to previous code ...
}

	 2.	 In addition to the scene file, request the loading of the audio clips in the
loadScene() function.

BlueLevel.prototype.loadScene = function() {
 // load the scene file
 gEngine.TextFileLoader.loadTextFile(this.kSceneFile,
 gEngine.TextFileLoader.eTextFileType.eXMLFile);
 // loads the audios
 gEngine.AudioClips.loadAudio(this.kBgClip);
 gEngine.AudioClips.loadAudio(this.kCue);
};

	 3.	 Remember to stop background audio and unload all external resources.

BlueLevel.prototype.unloadScene = function() {
 // stop the background audio
 gEngine.AudioClips.stopBackgroundAudio();
  
 // unload the scene flie and loaded Resources
 gEngine.TextFileLoader.unloadTextFile(this.kSceneFile);
 gEngine.AudioClips.unloadAudio(this.kBgClip);
 gEngine.AudioClips.unloadAudio(this.kCue);
  
 var nextLevel = new MyGame(); // load the next level
 gEngine.Core.startScene(nextLevel);
};

	 4.	 In the same manner as MyGame, start the background audio in the initialize()
function and cue the player when the left and right keys are pressed in the
update() function.

BlueLevel.prototype.initialize = function() {
 // ... identical to previous code ...
 gEngine.AudioClips.playBackgroundAudio(this.kBgClip);
};
BlueLevel. prototype.update = function(){
 // ... Identical to previous code ...
  

Chapter 4 ■ Implementing Common Components of Video Games

125

 // Support hero movements
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Right)) {
 gEngine.AudioClips.playACue(this.kCue);
 xform.incXPosBy(deltaX);
 // ... identical to previous code ...
 }
  
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Left)) {
 gEngine.AudioClips.playACue (this.kCue);
 xform.incXPosBy(-deltaX);
 // ... identical to previous code ...
 }
};

You can now run the project and listen to the wonderful audio feedback. Take note that when
transitioning from the MyGame level to the BlueLevel, the background music reloading request actually
triggers an integer increment (instead of a full reload/re-decode) and the music was stopped and restarted.
If you press and hold the arrow keys, there will be many cues repeatedly played. In fact, there are so many
cues echoed that the sound effects are blurred into an annoying blast. This is an excellent example to
illustrate the importance of using audio cues with care and ensuring each individual cue is nice and short.
You can try tapping the arrow keys to listen to more distinct and pleasant sounding cues, or you can simply
replace the isKeyPressed() function with the isKeyClicked() function and listen to each individual cue.

Summary
In this chapter, you learned how several common components of a game engine come together. Starting with
the ever-important game loop, you learned how it implements an input, update, and draw pattern in order
to surpass human perception or trick our senses into believing that the system is continuous and running
in real-time. This pattern is at the heart of any game engine and has everything needed in order to create
basic games. You learned how full keyboard support can be implemented with flexibility and reusability to
provide the engine with a reliable input component. Furthermore, you saw how a resource manager can be
implemented to load files asynchronously and how scenes can be abstracted to support scenes being loaded
from a file, which can drastically reduce duplication in the code. Lastly, you learned how audio support
supplies the client with an interface to load and play both ambient background audio as well as audio cues.

These components separately have little in common but together make up the core fundamentals of
nearly every game. As you implement these common core components into the game engine, the games
that are created with the engine will not need to worry about the specifics of each component. Instead, the
games programmer can focus on utilizing the functionality provided by the engine to hasten and streamline
the development process. In the next chapter, you will learn how to create the illusion of an animation with
external images.

Game Design Considerations
In this chapter, we discussed the game loop or the technical foundation contributing to the apparent
immediate connection between what the player does and how the game responds. If a player grabs a
square that’s drawn on the screen and moves it from location A to location B by using the arrow keys (for
example), you’d typically want that action to appear as a smooth motion that begins as soon as the arrow
key is pressed, without stutters, delays, or noticeable lag. The game loop contributes significantly to what’s
known as presence in game design; presence is the player’s ability to feel as if they’re connected to the game
world, and object and action responsiveness play a key role in making players feel connected. Presence is

Chapter 4 ■ Implementing Common Components of Video Games

126

reinforced when actions in the real world (such as pressing arrow keys) seamlessly translate to actions in the
game world (such as moving objects, flipping switches, jumping, and so on); presence is compromised when
actions in the real world suffer “translation errors” such as delays and lag.

As mentioned in Chapter 1, effective game mechanic design can begin with just a few simple elements.
By the time you’ve completed the Keyboard Support project in this chapter, for example, many of the
pieces will already be in place to begin constructing game levels. You’ve provided players with the ability
to manipulate two individual elements on the screen (the red and white squares), and all that remains in
order to create a basic “chunk” of game play is to design a causal chain using those elements that results in a
new event when completed. Imagine the Keyboard Support project is your game. How might you use what’s
available to create a causal chain? You might choose to play with the relationship between the squares,
perhaps requiring that the red square be contained completely within the white square in order to complete
the level and move on to the next challenge; once the player met the conditions of that causal chain (that
is, once the player successfully placed the red square in the white square), the level would complete. This
basic mechanic isn’t quite enough on its own to create a fun experience, but by including just a few of the
other eight elements of game design (systems design, setting, visual design, music and audio, and the like),
it’s possible to turn this one basic interaction into an almost infinite number of engaging experiences and to
begin creating that sense of presence for players. You’ll add more game design elements to these exercises as
you continue through subsequent chapters.

The Resource Map and shader Loads project, the Scene File project, and the Scene Objects project are
designed to help you begin thinking about architecting game designs from the ground up for maximum
efficiency so that problems such as asset loading delays that detract from the player’s sense of presence
are minimized. As you begin designing games with multiple stages and levels and many assets, a resource
management plan becomes essential. Understanding the limits of available memory and how to smartly
load and unload assets can mean the difference between a great experience and a frustrating experience.

We experience the world through our senses, and our feeling of presence in games tends to be
magnified as we include additional sensory inputs. The Audio Support project adds basic audio to our
simple state-changing exercise from the Scene Objects project in the form of a constant background score to
provide ambient mood and includes a distinct movement sound for each of the two areas. Compare the two
experiences and consider how different they feel because of the presence of sound cues. Although the visual
and interaction experience is identical between the two, the Audio Support project begins to add some
emotional cues because of the beat of the background score and the individual tones the rectangle makes
as it moves. Audio is a powerful enhancement to interactive experiences and can dramatically increase a
player’s sense of presence in game environments; as you continue through the chapters, you’ll explore how
audio contributes to game design in more detail.

http://dx.doi.org/10.1007/978-1-4842-0952-3_1

127

Chapter 5

Working with Textures, Sprites,
and Fonts

After completing this chapter, you will be able to:

•	 Use any image or photograph as a texture representing characters or objects
in your game

•	 Understand and use texture coordinates to identify a location on an image

•	 Optimize texture memory utilization by combining multiple characters and objects
into one image

•	 Produce and control animations using sprite sheets

•	 Display texts of different fonts and sizes anywhere in your game

Introduction
Custom-composed images are used to represent almost all objects including characters, backgrounds,
and even animations in most 2D games. For this reason, the proper support of image operations is core to
2D game engines. A game typically works with an image in three distinct stages: loading, rendering, and
unloading.

Loading is the reading of the image from the hard drive of the web server into the client’s system main
memory, where it is processed and stored in the graphics subsystem. Rendering occurs during gameplay
when the loaded image is drawn continuously to represent the respective game objects. Unloading happens
when an image is no longer required by the game and the associated resources are reclaimed for future uses.
Because of the slower response time of the hard drive and the potentially large amount of data that must be
transferred and processed, loading images can be slower than real time. This, together with the fact that, just
like the objects that images represent, the usefulness of an image is usually associated with individual game
level, image loading and unloading operations typically occur during game-level transitions. To optimize the
number of loading and unloading operations, it is a common practice to combine multiple lower-resolution
images and form a single larger image. This larger image is referred to as a sprite sheet.

To represent objects, images with meaningful drawings are pasted, or mapped, on simple geometries.
For example, a horse in a game can be represented by a square that is mapped with an image of a horse.
In this way, a game developer can manipulate the transformation of the square to control the horse. This
mapping of images on geometries is referred to as texture mapping in computer graphics.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

128

The illusion of movement, or animation, can be created by cycling through strategically mapping
selected images on the same geometry. For example, during subsequent game loop updates, different
images of the same horse with strategically drawn leg positions can be mapped on the same square to create
the illusion that the horse is galloping. Usually, these images of different animated positions are stored in
one sprite sheet, or an animated sprite sheet, and the process of sequencing through these images to create
animation is referred to as sprite animation or sprite sheet animation.

This chapter first introduces you to the concept of texture coordinates such that you can understand
and program with the WebGL texture mapping interface. You will then build a core texture component
and the associated supporting classes to support mapping with simple textures, working with sprite sheets
that contain multiple objects, creating and controlling motions with animated sprite sheets, and extracting
characters from a sprite sheet to display text messages.

■■ Note A texture is an image that is loaded into the graphics system and ready to be mapped onto a
geometry. When discussing the process of texture mapping, you’ll hear “an image” and “a texture” often used
interchangeably.

Texture Mapping and Texture Coordinates
As discussed, texture mapping is the process of pasting an image on a geometry, just like putting a sticker
on an object. In the case of your game engine, instead of drawing a constant color for each pixel occupied
by the unit square, you will create GLSL shaders to strategically select texels from the texture and display
the corresponding texel colors at the screen pixel locations covered by the unit square. The process of
selecting a texel, or converting a group of texels into a single color, to be displayed to a screen pixel location
is referred to as texture sampling. To render a texture-mapped pixel, the texture must be sampled to extract a
corresponding texel color.

■■ Note  Just as a pixel is a color location in an image, a texel is a color location in a texture.

The process of mapping a texture of any resolution to a fixed-size geometry can be daunting. The
Texture Coordinate System that specifies the Texture Space is designed to hide the resolution of textures to
facilitate this mapping process. As depicted in Figure 5-1, the Texture Coordinate System is a normalized
system defined over the entire texture with the origin located at the lower-left corner and (1,1) located at
the top-right corner. This simple fact, that the normalized 0 to 1 range is always defined over the entire
texture regardless of the resolution, is the elegance of the Texture Coordinate System. Given a texture of
any resolution, (0.5, 0.5) is always the center, (0, 1) is always the top-left corner, and so on. Notice that in
Figure 5-1 the horizontal axis is labeled as the u-axis, and the vertical axis is labeled as the v-axis. Oftentimes
a texture coordinate, or the uv values associated with a texture coordinate, is used interchangeably to refer to
a location in the Texture Coordinate System.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

129

■■ Note T here are conventions that define the v-axis increasing either upward or downward. In all examples
of this book, you will program WebGL to follow the convention in Figure 5-1, with the v-axis increasing upward.

To map a texture onto a unit square, you must define a corresponding uv value for each of the vertex
positions. As illustrated in Figure 5-2, in addition to defining the value of the xy position for each of the
four corners of the square, to map an image onto this square, a corresponding uv coordinate must also be
defined. In this case, the top-left corner has xy=(-0.5, 0.5) and uv=(0,1), the top-right corner has xy=(0.5, 0.5)
and uv=(1, 1), and so on. Given this definition, it is possible to compute a unique uv value for any position
inside the square by linearly interpolating the uv values defined at the vertices. For example, given the
settings shown in Figure 5-2, you know that the midpoint along the top edge of the square maps to a uv of
(0.5, 1.0) in Texture Space, the midpoint along the left edge maps to a uv of (0, 0.5), and so on.

Figure 5-1.  The Texture Coordinate System and the corresponding uv values defined for all images

Figure 5-2.  Defining texture space uv values to map the entire image onto the geometry in Model Space

Chapter 5 ■ Working with Textures, Sprites, and Fonts

130

The Texture Shaders Project
This project demonstrates the loading, rendering, and unloading of textures with WebGL. You can see
an example of this project running in Figure 5-3 with the left and right screenshots from the two scenes
implemented. Notice the naturally appearing objects without white borders in the left screenshot and
the images with white backgrounds in the right screenshot. This project will also highlight the differences
between images with and without the alpha channel, or transparency. The source code to this project is
defined in the Chapter5/5.1.TextureShaders folder.

The controls of the project are as follows, for both scenes:

•	 Right arrow key: Moves the middle rectangle toward the right. If this rectangle passes
the right window boundary, it will be wrapped to the left side of the window.

•	 Left arrow key: Moves the middle rectangle toward the left. If this rectangle crosses
the left window boundary, the game will transition to the next scene.

The goals of the project are as follows:

•	 To demonstrate how to define uv coordinates for geometries with WebGL

•	 To create a texture coordinate buffer in the graphics system with WebGL

•	 To build GLSL shaders to render the textured geometry

•	 To define the texture core engine component to load and process an image into a
texture and to unload a texture

•	 To implement simple texture tinting, a modification of all texels with a programmer-
specified color

You can find the following external resource files in the assets folder: a scene-level file (BlueLevel.xml) and
four images (minion_collector.jpg, minion_collector.png, minion_portal.jpg, and minion_portal.png).

Figure 5-3.  Running the Texture Shaders project with both scenes

http://dx.doi.org/10.1007/978-1-4842-0952-3_5

Chapter 5 ■ Working with Textures, Sprites, and Fonts

131

Overview
Creating and integrating textures involves relatively significant changes and new classes to be added to the
game engine. The following overview contextualizes and describes the reasons for the changes:

•	 TextureVS.glsl and TextureFS.glsl: These are new files created to define GLSL
shaders for supporting drawing with uv coordinates. Recall that the GLSL shaders
must be loaded into WebGL and compiled during the initialization of the game
engine.

•	 Engine_VertexBuffer.js: This file is modified to create a corresponding uv
coordinate buffer to define the texture coordinate for the vertices of the unit square.

•	 TextureShader.js: This is a new file that defines TextureShader as a subclass of
SimpleShader to interface the game engine to the corresponding GLSL shaders
(TextureVS and TextureFS).

•	 Engine_DefaultResources.js: This is a new file that defines a core engine
component to facilitate the sharing of systemwide resources. In this case, it’s to
facilitate the sharing of both SimpleShader and TextureShader by the corresponding
Renderable objects.

•	 Renderable.js: This file is modified to facilitate Renderable serving as the base class
to all future types of Renderable objects and to share the Shader resource provided
by gEngine_DefaultResources.

•	 TextureRenderable.js: This is a new file that defines RenderableTexture as a
subclass of Renderable to facilitate the creation, manipulation, and drawing of
multiple instances of textured objects.

•	 Engine_Core.js: This file is modified to configure WebGL to support drawing with a
texture map.

•	 Engine_Textures.js: This is a new file that defines the core engine component that
is capable of loading, activating (for rendering), and unloading texture images.

•	 MyGame.js and BlueLevel.js: These game engine client files are modified to test the
new texture mapping functionality.

Extension of Shader/Renderable Architecture
Recall that the Shader/Renderable object pair is designed to load relevant game engine data to the
SimpleVS/FS GLSL shaders and to support instantiating multiple copies of renderable geometries by the
game engine clients. As illustrated in Figure 5-4, the horizontal dotted line separates the game engine from
WebGL. Notice that the GLSL shaders, SimpleVS and SimpleFS, are modules in WebGL and outside the game
engine. The Shader object maintains references to all attributes and uniform variables in the GLSL shaders
and acts as the conduit for sending all transformation and vertex information to the SimpleVS/FS shaders.
Although not depicted explicitly in Figure 5-4, there is only one instance of the Shader object created in the
game engine, in Engine.DefaultResoruces, and this instance is shared by all Renderable objects.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

132

The proper support of texture mapping demands new GLSL vertex and fragment shaders and thus
requires that a corresponding shader and renderable object pair be defined in the game engine. As
illustrated in Figure 5-5, both the GLSL TextureVS/FS shaders and TextureShader/TextureRenderable
object pair are extensions (or subclasses) to the corresponding existing objects. The
TextureShader/TextureRenderable object pair extends from the corresponding Shader/Renderable
objects to forward texture coordinates to the GLSL shaders. The TextureVS/FS shaders are extensions to the
corresponding SimpleVS/FS shaders to read texels from the provided texture map when computing pixel
colors. Note that since GLSL does not support subclassing, the TextureVS/FS source code is copied from the
SimpleVS/FS files.

Figure 5-4.  The Shader and Renderable architecture

Chapter 5 ■ Working with Textures, Sprites, and Fonts

133

GLSL Texture Shader
To support drawing with textures, you must create a shader that accepts both geometric (xy) and texture (uv)
coordinates at each of the vertices. You will create new GLSL texture vertex and fragment shaders by copying
and modifying the corresponding SimpleVS and SimpleFS programs. Now, create the texture vertex shader.

	 1.	 Create a new file in the src/GLSLShaders/ folder and name it TextureVS.glsl.

	 2.	 Add the following code to the TextureVS.glsl file:

attribute vec3 aSquareVertexPosition; // Expects one vertex position
attribute vec2 aTextureCoordinate;
 
// texture coordinate that will map the entire image to the entire square
varying vec2 vTexCoord;
 
// to transform the vertex position
uniform mat4 uModelTransform;
uniform mat4 uViewProjTransform;
 
void main(void) {
 �gl_Position = uViewProjTransform * uModelTransform *

 vec4(aSquareVertexPosition, 1.0);
  
 // pass the texture coordinate to the fragment shader
 vTexCoord = aTextureCoordinate;
}

Figure 5-5.  The TextureVS/FS GLSL shaders and the corresponding TextureShader/TextureRenderable
object pair

Chapter 5 ■ Working with Textures, Sprites, and Fonts

134

You may notice that the TextureVS shader is similar to the SimpleVS shader, with only three additional
lines of code.

a.	 Add the aTextureCoordinate attribute. This defines a vertex to include a
vec3 (aSquareVertexPosition, the xyz position of the vertex) and a vec2
(aTextureCooridnate, the uv coordinate of the vertex).

b.	 Declare the varying vTexCoord variable. The varying keyword in GLSL
signifies that the associated variable will be linearly interpolated and passed
to the fragment shader. As explained earlier and illustrated in Figure 5-2,
uv values are defined only at vertex positions. In this case, the varying
vTexCoord variable instructs the graphics hardware to linearly interpolate
the uv values to compute the texture coordinate for each invocation of the
fragment shader.

c.	 Assign the vertex uv coordinate values to the varying variable for
interpolation and forwarding to the fragment shader.

With the vertex shader defined, you can now create the associated fragment shader.

	 1.	 Create a new file in the src/GLSLShaders/ folder and name it TextureFS.glsl.

	 2.	 Add the following code to the TextureFS.glsl file to declare the variables:

precision mediump float; // precision for floating point computation
 
// The object that fetches data from texture.
// Must be set outside the shader.
uniform sampler2D uSampler;
 
// Color of pixel
uniform vec4 uPixelColor;
 
// The "varying" keyword is for signifing that the texture coordinate will be
// interpolated and thus varies.
varying vec2 vTexCoord;

The sampler2D data type is a GLSL utility that is capable of reading texel values from a 2D texture. In this
case, the uSampler object will be bounded to a GLSL texture such that texel values can be sampled for every
pixel rendered. The uPixelColor is the same as the one from SimpleFS. The vTexCoord is the interpolated uv
coordinate value for each pixel.

	 3.	 Add the following code to compute the color for each pixel:

void main(void) {
 // texel color look up based on interpolated UV value in vTexCoord
 vec4 c = texture2D(uSampler, vec2(vTexCoord.s, vTexCoord.t));
  
 // tint the textured area. Leave transparent area as defined by the texture
 vec3 r = vec3(c) * (1.0-uPixelColor.a) + vec3(uPixelColor) * uPixelColor.a;
 vec4 result = vec4(r, c.a);
 
 gl_FragColor = result;
}

Chapter 5 ■ Working with Textures, Sprites, and Fonts

135

	 4.	 The texture2D() function samples and reads the texel value from the texture
that is associated with uSampler using the interpolated uv values from
vTexCoord. In this example, the texel color is modified, or tinted, by a weighted
sum of the color value defined in uPixelColor according to the transparency,
or the value of the corresponding alpha channel. In general, there is no
agreed-upon definition for tinting texture colors. You are free to experiment
with different ways to combine uPixelColor and the sampled texel color; for
example, you can try multiplying the two. In the provided source code file, a few
alternatives are suggested. Please do experiment with them.

Define and Set Up Texture Coordinates
Recall that all shaders share the same xy coordinate buffer of a unit square that is defined in the
Engine_VertexBuffer.js file. In a similar fashion, a corresponding buffer must be defined to supply texture
coordinates to the GLSL shaders.

	 1.	 Modify Engine_VertexBuffer.js to define both xy and uv coordinates for the
unit square.

// reference to the vertex positions for the square in the gl context
var mSquareVertexBuffer = null;
 
// reference to the texture positions for the square vertices in the gl context
var mTextureCoordBuffer = null;
 
// First: define the vertices for a square
var verticesOfSquare = [
 0.5, 0.5, 0.0,
 -0.5, 0.5, 0.0,
 0.5, -0.5, 0.0,
 -0.5, -0.5, 0.0
];
 
// Second: define the corresponding texture cooridnates
var textureCoordinates = [
 1.0, 1.0,
 0.0, 1.0,
 1.0, 0.0,
 0.0, 0.0
];

As illustrated in Figure 5-2, the textureCoordinates variable defines the uv values for the
corresponding four xy values of the unit square defined in verticesOfSquare, sequentially. For example,
(1, 1) are the uv values associated with the (0.5, 0.5, 0) xy position, (0, 1) for (-0.5, 0.5, 0), and so on. The new
mTextureCoordBuffer instance variable will be initialized to refer to the WebGL buffer that stores the values
of textureCoordinates.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

136

	 2.	 Modify the initialize() function to the following:

var initialize = function () {
 var gl = gEngine.Core.getGL();
 
 // Step A: Allocate and store vertex positions into the webGL context
 // Create a buffer on the gGL context for our vertex positions
 mSquareVertexBuffer = gl.createBuffer();
 
 // Activate vertexBuffer
 gl.bindBuffer(gl.ARRAY_BUFFER, mSquareVertexBuffer);
 
 // Loads verticesOfSquare into the vertexBuffer
 �gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(verticesOfSquare),

 gl.STATIC_DRAW);
 
 // Step B: Allocate and store texture coordinates
 // Create a buffer on the gGL context for our vertex positions
 mTextureCoordBuffer = gl.createBuffer();
 
 // Activate vertexBuffer
 gl.bindBuffer(gl.ARRAY_BUFFER, mTextureCoordBuffer);
 
 // Loads verticesOfSquare into the vertexBuffer
 gl.bufferData(gl.ARRAY_BUFFER,
 new Float32Array(textureCoordinates), gl.STATIC_DRAW);
};

Step B of the initialize() function handles the initialization of the texture coordinates as a WebGL
buffer and is identical to how the vertex xy coordinates are handled with the mTextureCoordBuffer variable.

	 3.	 Add a function to retrieve the texture coordinates.

var getGLTexCoordRef = function() { return mTextureCoordBuffer; };

	 4.	 Finally, remember to add the changes to the public interface.

var mPublic = {
 initialize: initialize,
 getGLVertexRef: getGLVertexRef,
 getGLTexCoordRef: getGLTexCoordRef
};

Interface GLSL Shader to the Engine
Just as the SimpleShader object was defined to interface to the SimpleVS and SimpleFS shaders, a
corresponding shader object needs to be created in the game engine to interface to the TextureVS and
TextureFS GLSL shaders. In addition, you will create a new folder to organize the growing number of
different shaders.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

137

	 1.	 Create a new folder called Shaders in src/Engine. Move the SimpleShader.js
file into this folder, and do not forget to update the reference path in index.html.

	 2.	 Create a new file in the src/Engine/Shaders/ folder and name it
TextureShader.js. Add the following code to construct the object:

// constructor
function TextureShader(vertexShaderPath, fragmentShaderPath) {
 // Call super class constructor
 SimpleShader.call(this, vertexShaderPath, fragmentShaderPath);
  
 // reference to aTextureCoordinate within the shader
 this.mShaderTextureCoordAttribute = null;
  
 // get the reference of aTextureCoordinate from the shader
 var gl = gEngine.Core.getGL();
 this.mShaderTextureCoordAttribute =
 gl.getAttribLocation(this.mCompiledShader, "aTextureCoordinate");
}
// get all the prototype functions from SimpleShader
gEngine.Core.inheritPrototype(TextureShader, SimpleShader);

The SimpleShader.call() syntax invokes the constructor of SimpleShader with the current
TextureShader object as the caller. This line of code is simply invoking the superclass constructor. Recall that
the SimpleShader constructor will load and compile the GLSL shaders defined by the vertexShaderPath
and fragmentShaderPath and will locate a reference to the mShaderVertexPositionAttribute attribute
defined in the shader. In the rest of the TextureShader constructor, the mShaderTextureCoordAttribute
keeps a reference to the aTextureCoordinate attribute defined in the TextureVS. In this way, both of the
vertex attributes defined in TextureVS.glsl are referenced by the JavaScript TextureShader object.

	 3.	 Override the activateShader() function to enable the texture coordinate data.

// Overriding the Activation of the shader for rendering
TextureShader.prototype.activateShader = function(pixelColor, vpMatrix) {
 // first call the super class's activate
 SimpleShader.prototype.activateShader.call(this, pixelColor, vpMatrix);
  
 // now our own functionality: enable texture coordinate array
 var gl = gEngine.Core.getGL();
 gl.bindBuffer(gl.ARRAY_BUFFER, gEngine.VertexBuffer.getGLTexCoordRef());
 gl.enableVertexAttribArray(this.mShaderTextureCoordAttribute);
 �gl.vertexAttribPointer(this.mShaderTextureCoordAttribute, 2, gl.FLOAT,

 false, 0,0);
};

The superclass activateShader.call() sets up the xy vertex position and passes the pixelColor to the
shader. The rest of the code binds mShaderTextureCoordAttribute to the texture coordinate buffer defined
in the gEngine.VertexBuffer component, as discussed in the Define and Set up Up Texture Coordinates
section previously.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

138

In this way, after the activateShader() function call, both the geometry’s xy coordinate
(mShaderVertexPositionAttribute) and the texture’s uv coordinate (mShaderTextureCoordAttribute)
of each vertex are connected to the corresponding buffers in the GLSL shaders.

Facilitate Sharing with Engine_DefaultResources
In the same manner as SimpleShader is a reusable resource, only one instance of the TextureShader needs
to be created, and this instance can be shared. The DefaultResources component should be modified to
reflect this.

	 1.	 In Engine_DefaultResources.js, add the variables to hold a texture shader.

// Texture Shader
var kTextureVS = "src/GLSLShaders/TextureVS.glsl"; // Path to VertexShader
var kTextureFS = "src/GLSLShaders/TextureFS.glsl"; // Path to FragmentShader
var mTextureShader = null;
  

	 2.	 Define a function to retrieve the texture shader.

var getTextureShader = function() { return mTextureShader; };

	 3.	 Add the creation of the texture shader to the _createShaders() function.

var _createShaders = function(callBackFunction) {
 mConstColorShader = new SimpleShader(kSimpleVS, kSimpleFS);
 mTextureShader = new TextureShader(kTextureVS, kTextureFS);
 callBackFunction();
};

	 4.	 Modify the initialize() function to load the source files for the texture shader.

var initialize = function(callBackFunction) {
 // constant color shader: SimpleVS, and SimpleFS
 gEngine.TextFileLoader.loadTextFile(kSimpleVS,
 gEngine.TextFileLoader.eTextFileType.eTextFile);
 gEngine.TextFileLoader.loadTextFile(kSimpleFS,
 gEngine.TextFileLoader.eTextFileType.eTextFile);
  
 // texture shader:
 gEngine.TextFileLoader.loadTextFile(kTextureVS,
 gEngine.TextFileLoader.eTextFileType.eTextFile);
 gEngine.TextFileLoader.loadTextFile(kTextureFS,
 gEngine.TextFileLoader.eTextFileType.eTextFile);
  
 gEngine.ResourceMap.setLoadCompleteCallback(
 function(){ _createShaders(callBackFunction); }
);
};

Chapter 5 ■ Working with Textures, Sprites, and Fonts

139

	 5.	 Lastly, remember to add the changes to the public interface.

var mPublic =
{
 initialize: initialize,
 getConstColorShader: getConstColorShader,
 getTextureShader: getTextureShader
};

Renderable Texture Object
Just as the Renderable class encapsulates and facilitates the definition and drawing of multiple instances
of SimpleShader objects, a corresponding TextureRenderable class needs to be defined to support the
drawing of multiple instances of TextureShader objects.

Changes to the Renderable Object

For the same reason as creating and organizing shader classes in the Shaders folder, a Renderables folder
should be created to organize the growing number of different kinds of Renderable objects. In addition, the
Renderable class must be modified to support it being the base class of all Renderable objects.

	 1.	 Create the src/Engine/Renderables folder and move Renderable.js into this
folder. Remember to update index.html to reflect the change.

	 2.	 Modify the Renderable constructor to refer to SimpleShader, the constant color
shader, by default.

function Renderable() {
 this.mShader = gEngine.DefaultResources.getConstColorShader();
 this.mXform = new Transform(); // transform that moves this object around
 this.mColor = [1, 1, 1, 1];
}

	 3.	 Define a function that sets the shader for the Renderable.

Renderable.prototype._setShader = function(s) { this.mShader = s; };

This is a protected function designed for subclasses to modify the mShader variable to refer to the
appropriate shaders for each corresponding subclass.

The TextureRenderable Object

You are now ready to create the TextureRenderable object. As noted, TextureRenderable is derived from
and extends the Renderable object functionality to render the object with a texture mapped to it.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

140

	 1.	 Create a new file in the src/Engine/Renderables/ folder and name it
TextureRenderable.js. Add the constructor.

// Constructor and object definition
function TextureRenderable(myTexture) {
 Renderable.call(this);
 �Renderable.prototype.setColor.call(this, [1, 1, 1, 0]);

 // Alpha 0: switch off tinting
 �Renderable.prototype._setShader.call(this, gEngine.DefaultResources.

 getTextureShader());
 this.mTexture = myTexture; // the object's texture, cannot be null.
}
gEngine.Core.inheritPrototype(TextureRenderable, Renderable);

Renderable.call(this) is a call to the superclass (Renderable) constructor. Likewise, the setColor()
and _setShader() functions are invoked with the TextureRenderable context to set the corresponding
variables in the superclass. As will be discussed, the myTexture parameter is the path to the file that contains
the texture image.

	 2.	 Define a draw() function to overwrite the function defined in the Renderable
object to support textures.

TextureRenderable.prototype.draw = function(vpMatrix) {
 // activate the texture
 gEngine.Textures.activateTexture(this.mTexture);
 Renderable.prototype.draw.call(this, vpMatrix);
};

The activateTexture() function activates and allows drawing with the specific texture. The details of
this function will be discussed in the following section.

	 3.	 Finally, define a getter and setter for the texture reference.

TextureRenderable.prototype.getTexture = function() { return this.mTexture; };
TextureRenderable.prototype.setTexture = function(t) { this.mTexture = t; };

Texture Support in the Engine
To support drawing with textures, the rest of the game engine requires two main modifications: WebGL
context configuration and a dedicated engine component to support operations associated with textures.

Configure WebGL to Support Textures

The configuration of WebGL context must be updated to support textures. In Engine_Core.js, update
_initializeWebGL() according to the following:

// initialize the WebGL, the vertex buffer and compile the shaders
var _initializeWebGL = function(htmlCanvasID) {
 var canvas = document.getElementById(htmlCanvasID);
  

Chapter 5 ■ Working with Textures, Sprites, and Fonts

141

 // Get standard webgl, or experimental
 // binds webgl to the Canvas area on the web-page to the variable mGL
 mGL = canvas.getContext("webgl", {alpha: false}) ||
 canvas.getContext("experimental-webgl", {alpha: false});
 
 // Allows transperency with textures.
 mGL.blendFunc(mGL.SRC_ALPHA, mGL.ONE_MINUS_SRC_ALPHA);
 mGL.enable(mGL.BLEND) ;
  
 // Set images to flip the y axis to match the texture coordinate space.
 mGL.pixelStorei(mGL.UNPACK_FLIP_Y_WEBGL, true);
 
 if (mGL === null) {
 document.write("
WebGL is not supported!");
 }
};

The parameter passed to canvas.getContext() informs the browser that the canvas should be opaque.
This can speed up the drawing of transparent content and images. The blendFunc() function enables
transparencies when drawing images with the alpha channel. The pixelStorei() function defines the origin
of the uv coordinate to be at the lower-left corner.

Create the Texture Management Engine Component

Like audio and text files, a new engine component must be defined to support the corresponding operations,
including reading from the server file system, loading to the WebGL context, activating the WebGL texture
buffer for drawing, and unloading from WebGL.

	 1.	 Create a new file in the src/Engine/Core/ folder and name it Engine_Textures.
js. This file will implement the Textures engine component.

	 2.	 Add the following object definition to represent a texture in the game engine:

function TextureInfo(name, w, h, id) {
 this.mName = name;
 this.mWidth = w;
 this.mHeight = h;
 this.mGLTexID = id;
};

mWidth and mHeight are the pixel resolution of the texture image, mName stores the path to the image file,
and mGLTexID is a reference to the WebGL texture storage.

■■ Note  For an efficient implementation, many graphics hardware only supports texture with image
resolutions in powers of 2, such as 2x4 (21x22), or 4x16 (22x24), or 64x256 (26x28), and so on. This is also the
case for your configuration of WebGL. All examples in this book work only with textures with resolutions that are
powers of 2.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

142

	 3.	 Now, define a Textures component similar to the other engine components.

var gEngine = gEngine || { };
 
gEngine.Textures = (function(){
 var mPublic = { };
 return mPublic;
}());

	 4.	 Define a function to load an image asynchronously.

// Loads an texture so that it can be drawn.
// If already in the map, will do nothing.
var loadTexture = function(textureName) {
 if (!(gEngine.ResourceMap.isAssetLoaded(textureName))) {
 // Create new Texture object.
 var img = new Image();
 
 // Update resources in loading counter.
 gEngine.ResourceMap.asyncLoadRequested(textureName);
 
 // When the texture loads, convert it to the WebGL format then put
 // it back into the mTextureMap.
 img.onload = function () {
 _processLoadedImage(textureName, img);
 };
 img.src = textureName;
 } else {
 gEngine.ResourceMap.incAssetRefCount(textureName);
 }
};

Note the similarity between the loading of textures and the loading of audio or text files. In this case,
once an image is loaded, it is passed to the _processLoadedImage() function with its file path as the name.

	 5.	 Add an unloadTexture() function to clean up the engine and release WebGL
resources.

// Remove the reference to allow associated memory
// be available for subsequent garbage collection
var unloadTexture = function(textureName) {
 var gl = gEngine.Core.getGL();
 var texInfo = gEngine.ResourceMap.retrieveAsset(textureName);
 gl.deleteTexture(texInfo.mGLTexID);
 gEngine.ResourceMap.unloadAsset(textureName);
};

Chapter 5 ■ Working with Textures, Sprites, and Fonts

143

	 6.	 Now define a function to convert the format of an image and store it to the
WebGL context.

var _processLoadedImage = function(textureName, image) {
 var gl = gEngine.Core.getGL();
 
 // Creates a WebGL texture object
 var textureID = gl.createTexture();
 
 // bind texture with the current texture functionality in webGL
 gl.bindTexture(gl.TEXTURE_2D, textureID);
 
 // Load the texture into the texture data structure with descriptive info.
 // Parameters:
 // 1: Which "binding point" or target the texture is being loaded to.
 // 2: Level of detail. Used for mipmapping. 0 is base texture level.
 // 3: Internal format. The composition of each element, i.e. pixels.
 // 4: Format of texel data. Must match internal format.
 // 5: The data type of the texel data.
 // 6: Texture Data.
 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);
 
 // Creates a mipmap for this texture.
 gl.generateMipmap(gl.TEXTURE_2D);
 
 // Tells WebGL we are done manipulating data at the mGL.TEXTURE_2D target.
 gl.bindTexture(gl.TEXTURE_2D, null);
 
 var texInfo = new TextureInfo(textureName,
 image.naturalWidth, image.naturalHeight, textureID);
 gEngine.ResourceMap.ayncLoadCompleted(textureName, texInfo);
};

The createTexture() function creates a WebGL texture buffer and returns a unique ID. The
texImage2D() function stores the image into the WebGL texture buffer, and generateMipmap() computes a
mipmap for the texture. Lastly, a TextureInfo object is instantiated to refer to the WebGL texture and stored
into ResourceMap according to the file path to the texture image file.

■■ Note  A mipmap is a representation of the texture image that facilitates high-quality rendering. Please
consult a computer graphics reference book to learn more about mipmap representation and the associated
texture mapping algorithms.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

144

	 7.	 Define a function to activate a WebGL texture for drawing.

var activateTexture = function (textureName) {
 var gl = gEngine.Core.getGL();
 var texInfo = gEngine.ResourceMap.retrieveAsset(textureName);
 
 // Binds our texture reference to the current webGL texture functionality
 gl.bindTexture(gl.TEXTURE_2D, texInfo.mGLTexID);
  
 // To prevent texture wrappings
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
 
 // Handles how magnification and minimization filters will work.
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
 �gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,

 gl.LINEAR_MIPMAP_LINEAR);
 
 �// For pixel-graphics where you want the texture to look "sharp"

// do the following:
 // gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
 // gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
 };

a.	 The retrieveAsset() function locates the TextureInfo object from the
ResourceMap based on the textureName. The located mGLTexID is used in the
bindTexture() function to activate the corresponding WebGL texture buffer
for rendering.

b.	 The texParameteri() function defines the rendering behavior for the
texture. The TEXTURE_WRAP_S/T parameters ensure that the texel values
will not wrap around at the texture boundaries. The TEXTURE_MAG_FILTER
parameter defines how to magnify a texture, in other words, when a low-
resolution texture is rendered to many pixels in the game window. The
TEXTURE_MIN_FILTER parameter defines how to minimize a texture, in
other words, when a high-resolution texture is rendered to a small number
of pixels. The LINEAR and LINEAR_MIPMAP_LINEAR configurations generate
smooth textures by blurring the details of the original images, while the
commented-out NEAREST option will result in sharp textures but color
boundaries of the texture image may appear jagged.

■■ Note I n general, it is best to use texture images with similar resolution as the number of pixels occupied by
the objects in the game.

	 8.	 Define a function to deactivate a texture as follows:

var deactivateTexture = function() {
 var gl = gEngine.Core.getGL();
 gl.bindTexture(gl.TEXTURE_2D, null);
};

Chapter 5 ■ Working with Textures, Sprites, and Fonts

145

This function sets the WebGL context to a state of not working with a texture.

	 9.	 Add a getter function to retrieve the texture information by its name (a file path).

var getTextureInfo = function(textureName) {
 return gEngine.ResourceMap.retrieveAsset(textureName);
}

	 10.	 Finally, remember to add the public functions to the public interface.

// Public interface for this object. Anything not in here will
// not be accessable.
var mPublic = {
 loadTexture: loadTexture,
 unloadTexture: unloadTexture,
 activateTexture: activateTexture,
 deactivateTexture: deactivateTexture,
 getTextureInfo: getTextureInfo
};
return mPublic;

Testing of Texture Mapping Functionality
With the previous modifications, the game engine can now render constant color objects as well as objects
with interesting and different types of textures. The following testing code is similar to that from the previous
example where two scenes, MyGame and BlueLevel, are used to demonstrate the newly added texture
mapping functionality. The main modifications include the loading and unloading of texture images and the
creation and drawing of TextureRenderable objects. In addition, the MyGame scene highlights transparent
texture maps with alpha channel using PNG images, and the BlueScene scene shows corresponding textures
with images in JPEG format.

As in all cases of building a game, it is essential to ensure that all external resources are located at proper
locations. Recall that the assets folder is created specifically for this purpose. Take note of the four new
texture files located in the assets folder: minion_collector.jpg, minion_collector.png, minion_portal.jpg,
and minion_portal.png.

Modify the BlueLevel Scene File to Support Textures

The BlueLevel.xml scene file is modified from the previous example to support texture mapping.

<MyGameLevel>
 <!-- cameras -->
 <!-- Viewport: x, y, w, h -->
 <Camera CenterX="20" CenterY="60" Width="20"
 Viewport="20 40 600 300"
 BgColor="0 0 1 1.0"/>
  
 <!-- The red rectangle -->
 <Square PosX="20" PosY="60" Width="2" Height="3" Rotation="0" Color="1 0 0 1" />
  

Chapter 5 ■ Working with Textures, Sprites, and Fonts

146

 <!-- Textures Square -->
 <TextureSquare PosX="15" PosY="60" Width="3" Height="3" Rotation="-5"
 Color="1 0 0 0.3"
 Texture="assets/minion_portal.jpg" />
  
 <TextureSquare PosX="25" PosY="60" Width="3" Height="3" Rotation="5"
 Color="0 0 0 0"
 Texture="assets/minion_collector.jpg"/>
 <!-- without tinting, alpha should be 0 -->
</MyGameLevel>

The TextureSquare element is similar to Square with the addition of a Texture attribute that specifies
which image file should be used as a texture map for the square. Note that as implemented in TextureFS.glsl,
the alpha value of the Color element is used for tinting the texture map. The previous code shows slight
tinting of the minion_portal.jpg texture and no tinting of the minion_collector.jpg texture. This texture
tinting effect can be observed in the right image of Figure 5-3. In addition, notice that both images specified
are in the JPEG format. Since the JPEG format does not support the storing of alpha channel, there are the
white areas outside the portal and collector minions in the right image of Figure 5-3.

Modify SceneFileParser

The scene file parser, SceneFileParser.js, is modified to support the parsing of the updated BlueScene.xml,
in particular, to parse Square elements into Renderable objects and TextureSquare elements into
TextureRenderable objects. For details of the changes, please refer to the source code file in the
src/MyGame/Util folder.

Test BlueLevel with JPEGs

The modifications to BlueLevel.js are in the loadScene(), unloadScene(), and initialize() functions
where the texture images are loaded and unloaded and new TextureRenderable objects are parsed.

	 1.	 Modify the constructor to define constants to represent the texture images that
will be used.

function BlueLevel() {
 // scene file name
 this.kSceneFile = "assets/BlueLevel.xml";
  
 // textures: (Note: jpg does not support transparency)
 this.kPortal = "assets/minion_portal.jpg";
 this.kCollector = "assets/minion_collector.jpg";
  
 // all square
 this.mSqSet = []; // these are the renderable objects
  
 // The camera to view the rectangles
 this.mCamera = null;
};
gEngine.Core.inheritPrototype(BlueLevel, Scene);

Chapter 5 ■ Working with Textures, Sprites, and Fonts

147

	 2.	 Initiate loading of the textures in the loadScene() function.

BlueLevel.prototype.loadScene = function() {
 // load the scene file
 gEngine.TextFileLoader.loadTextFile(this.kSceneFile,
 gEngine.TextFileLoader.eTextFileType.eXMLFile);
  
 // load the textures
 gEngine.Textures.loadTexture(this.kPortal);
 gEngine.Textures.loadTexture(this.kCollector);
};

	 3.	 Likewise, add code to clean up by unloading the textures in the unloadScene()
function.

BlueLevel.prototype.unloadScene = function() {
 // unload the scene flie and loaded resources
 gEngine.TextFileLoader.unloadTextFile(this.kSceneFile);
 gEngine.Textures.unloadTexture(this.kPortal);
 gEngine.Textures.unloadTexture(this.kCollector);
  
 var nextLevel = new MyGame(); // load the next level
 gEngine.Core.startScene(nextLevel);
};

	 4.	 Parse the textured squares in the initialize() function.

BlueLevel.prototype.initialize = function() {
 var sceneParser = new SceneFileParser(this.kSceneFile);
  
 // Step A: Read in the camera
 this.mCamera = sceneParser.parseCamera();
  
 // Step B: Read all the squares and textureSquares
 sceneParser.parseSquares(this.mSqSet);
 sceneParser.parseTextureSquares(this.mSqSet);
};

	 5.	 Include extra code in the update() function to continuously change the tinting of
the portal TextureRenderable, as follows:

BlueLevel.prototype.update = function() {
 // ... Identical to previous code ...
  
 // continously change texture tinting
 var c = this.mSqSet[1].getColor();
 var ca = c[3] + deltaX;
 if (ca > 1) {
 ca = 0;
 }
 c[3] = ca;
};

Chapter 5 ■ Working with Textures, Sprites, and Fonts

148

a.	 Index 1 of mSqSet is the portal TextureRenderable object, and index 3 of the
color array is the alpha channel.

b.	 The previous code continuously increases and wraps the alpha value of
the mColor variable in the TextureRenderable object. Recall this variable
is passed to TextureShader and then loaded into the uPixelColor of
TextureFS for tinting the texture map results.

c.	 As defined in the first TextureSquare element in the BlueScene.xml file,
the color defined for the portal object is red. For this reason, when running
the example for this project, in the blue level the portal object appears to be
blinking in red.

Test MyGame with PNGs

Similar to the BlueLevel scene, MyGame is a straightforward modification of the previous example with
changes to load and unload texture images and to create TextureRenderable objects.

	 1.	 Modify the MyGame constructor to define texture image files that will be used
and the variables for referencing the TextureRenderable objects that will be
instantiated.

function MyGame() {
 // textures: (Note: supports png with transparency)
 this.kPortal = "assets/minion_portal.png";
 this.kCollector = "assets/minion_collector.png";
  
 // The camera to view the rectangles
 this.mCamera = null;
  
 // the hero and the support objects
 this.mHero = null;
 this.mPortal = null;
 this.mCollector = null;
};
gEngine.Core.inheritPrototype(MyGame, Scene);

	 2.	 Load the textures in loadScene().

MyGame.prototype.loadScene = function() {
 // loads the textures
 gEngine.Textures.loadTexture(this.kPortal);
 gEngine.Textures.loadTexture(this.kCollector);
};

	 3.	 Make sure you remember to unload the textures in unloadScene().

MyGame.prototype.unloadScene = function() {
 // Game loop not running, unload all assets
 gEngine.Textures.unloadTexture(this.kPortal);
 gEngine.Textures.unloadTexture(this.kCollector);
 

Chapter 5 ■ Working with Textures, Sprites, and Fonts

149

 // starts the next level
 var nextLevel = new BlueLevel(); // next level to be loaded
 gEngine.Core.startScene(nextLevel);
};

	 4.	 Create and initialize the TextureRenderables objects in the initialize()
function.

MyGame.prototype.initialize = function() {
 // Step A: set up the cameras
 this.mCamera = new Camera(
 vec2.fromValues(20, 60), // position of the camera
 20, // width of camera
 [20, 40, 600, 300] // viewport (orgX, orgY, width, height)
);
 this.mCamera.setBackgroundColor([0.8, 0.8, 0.8, 1]);
 // sets the background to gray
  
 // Step B: Create the game objects
 this.mPortal = new TextureRenderable(this.kPortal);
 this.mPortal.setColor([1, 0, 0, 0.2]); // tints red
 this.mPortal.getXform().setPosition(25, 60);
 this.mPortal.getXform().setSize(3, 3);
  
 this.mCollector = new TextureRenderable(this.kCollector);
 this.mCollector.setColor([0, 0, 0, 0]); // No tinting
 this.mCollector.getXform().setPosition(15, 60);
 this.mCollector.getXform().setSize(3, 3);
  
 // Step C: Create the hero object in blue
 this.mHero = new Renderable();
 this.mHero.setColor([0, 0, 1, 1]);
 this.mHero.getXform().setPosition(20, 60);
 this.mHero.getXform().setSize(2, 3);
};

Remember that the texture file path is used as the unique identifier in the ResourceMap. For this reason,
it is essential for file texture loading and unloading and for the creation of TextureRenderable objects to
refer to the same file path. In the previous code, all three functions refer to the same constants defined in the
constructor.

	 5.	 The modification to the draw() function draws the two new TextureRenderable
objects by calling their corresponding draw() functions, while the modification
to the update() function is similar to that of the BlueLevel discussed earlier.
Please refer to the MyGame.js source code file in the src/MyGame folder for details.

When running the example for this project in the Chapter5/5.1.TextureShaders folder, once again
take note of the results of continuously changing the texture tinting—the blinking of the portal minion
in red. In addition, notice the differences between the PNG-based textures in the MyGame level and the
corresponding JPEG ones with white borders in the BlueLevel. It is visually more pleasing and accurate to
represent objects using textures with the alpha (or transparency) channel. PNG is one of the most popular
image formats supporting the alpha channel.

http://dx.doi.org/10.1007/978-1-4842-0952-3_5

Chapter 5 ■ Working with Textures, Sprites, and Fonts

150

Observations
This project has been the longest and most complicated one that you have worked with. This is because
working with texture mapping requires you to understand texture coordinates, the implementation cuts
across many of the files in the engine, and the fact that actual images must be loaded, converted into
textures, and stored/accessed from WebGL. To help summarize the changes, Figure 5-6 shows the game
engine states in relation to the states of an image used for texture mapping and some of the main game
engine operations.

The left column of Figure 5-6 identifies the main game engine states, from WebGL initialization to
the initialization of a scene, to the game loop, and to the eventual unloading of the scene. The middle
column shows the corresponding states of an image that will be used as a texture. Initially, this image
is stored on the server file system. During scene initialization, the loadScene() function will invoke the
gEngine_Texture.loadTexture() function to load the image and process it with the gEngine_Texture._
processLoadedImage() function into a corresponding WebGL texture and store it in a WebGL context.
During the game loop cycles, the TextureRenderable.draw() function activates the appropriate WebGL
texture via the gEngine_Texture.activateTexture() function. This enables the corresponding GLSL
fragment shader sample from the correct texture during rendering. Finally, when a texture is no longer
needed by the game engine, the gEngineTexture_unloadTexture() call will remove its existence from
the system.

Figure 5-6.  Overview of the states of an image file and the corresponding WebGL texture

Drawing with Sprite Sheets
As described earlier, a sprite sheet is an image that is composed of multiple lower-resolution images that
individually represent different objects. Each of these individual images is referred to as a sprite sheet
element. For example, Figure 5-7 shows a sprite sheet with 13 elements showing four different objects. Each
of the top two rows contains five elements of the same object in different animated positions, and in the last
row there are three elements of different objects: the character Dye, the portal minion, and the collector
minion. The artist or software program that created the sprite sheet must communicate the pixel locations of
each sprite element to the game developer, in much the same way as illustrated in Figure 5-7.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

151

Sprite sheets are defined to optimize both memory and processing requirements. For example, recall
that WebGL supports only textures that are defined by images with 2x × 2y resolutions; this means a 256x128
(28 × 27) image would be required in order to create a WebGL texture for the Dye character. In addition, if the
13 elements of Figure 5-7 were stored as separate images, 13 slow file system accesses would be required to
load all the images, instead of one single system access to load the sprite sheet.

The key to working with a sprite sheet and the associated elements is to remember that the texture
coordinate uv values are defined over the 0 to 1 normalized range regardless of the actual image resolution.
For example, Figure 5-8 focuses on the uv values of the collector minion in Figure 5-7, the third row’s
rightmost element. The top, center, and bottom rows of Figure 5-8 show coordinate values of the portal
element.

•	 Pixel positions: The lower-left corner is (315, 0), and the upper-right corner is
(495, 180).

•	 UV values: The lower-left corner is (0.308, 0.0), and the upper-right corner is
(0.483, 0.352).

•	 Use in Model Space: Texture mapping of the element is accomplished by associating
the corresponding uv values with the xy values at each vertex position.

Figure 5-7.  Example sprite sheet: minion_sprite.png composed of lower-resolution images of different objects

Chapter 5 ■ Working with Textures, Sprites, and Fonts

152

The Sprite Shaders Project
This project demonstrates how to draw objects with sprite sheet elements by defining appropriate
abstractions and classes. You can see an example of this project running in Figure 5-9. The source code to
this project is defined in the Chapter5/5.2.SpriteShaders folder.

Figure 5-8.  A conversion of coordinates from pixel position to uv values and used for mapping on geometry

http://dx.doi.org/10.1007/978-1-4842-0952-3_5

Chapter 5 ■ Working with Textures, Sprites, and Fonts

153

The controls of the project are as follows:

•	 Right arrow key: Moves the Dye character (the hero) right and loops to the left
boundary when the right boundary is reached

•	 Left arrow key: Moves the hero left and resets the position to the middle of the
window when the left boundary is reached

The goals of the project are as follows:

•	 To gain a deeper understanding for texture coordinate

•	 To experience defining subregions within an image for texture mapping

•	 To draw squares by mapping from sprite sheet elements

•	 To prepare for working with sprite animation and bitmap fonts

You can find the following external resource files in the assets folder: Consolas-72.png and
minion_sprite.png. Notice that minion_sprite.png is the image shown in Figure 5-7.

As depicted in Figure 5-5, one of the main advantages and shortcomings of the texture support defined
in the previous section is that the texture coordinate accessed via the getGLTexCoordRef() function is
statically defined in the Engine_VertexBuffer.js file. This is an advantage because in those cases where

Figure 5-9.  Running the Sprite Shaders project

Chapter 5 ■ Working with Textures, Sprites, and Fonts

154

an entire image is mapped onto a square, all instances of TextureShader objects can share the same default
uv values. This is also a shortcoming because the static texture coordinate buffer does not allow support for
working with different subregions of an image. In other words, the static texture coordinate values do not
allow the support for working with sprite sheet elements. As illustrated in Figure 5-10, the example from
this section overcomes this shortcoming by defining per-object texture coordinates in the SpriteShader
and SpriteRenderable objects. Notice that there are no new GLSL shaders defined since their functionality
remains the same.

Interface GLSL Texture Shaders to the Engine with SpriteShader

Shaders supporting texture mapping with sprite sheet elements must be able to identify different unique
subregions of an image. To support this functionality, you will implement the SpriteShader to define its own
texture coordinates. Since this new shader extends the functionality of TextureShader, it is convenient to
implement it as a subclass.

	 1.	 Create a new file in the src/Engine/Shaders folder and name it SpriteShader.js.

	 2.	 Define the SpriteShader constructor to derive it from TextureShader.

function SpriteShader(vertexShaderPath, fragmentShaderPath) {
 // Call super class constructor
 TextureShader.call(this, vertexShaderPath, fragmentShaderPath);
  
 this.mTexCoordBuffer = null; // gl buffer containing texture coordinate
 var initTexCoord = [
 1.0, 1.0,
 0.0, 1.0,
 1.0, 0.0,
 0.0, 0.0
];
  

Figure 5-10.  Defining a texture coordinate buffer in the SpriteShader

Chapter 5 ■ Working with Textures, Sprites, and Fonts

155

 var gl = gEngine.Core.getGL();
 this.mTexCoordBuffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, this.mTexCoordBuffer);
 �gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(initTexCoord),

 gl.DYNAMIC_DRAW);
}
// get all the prototype functions from SimpleShader
gEngine.Core.inheritPrototype(SpriteShader, TextureShader);

SpriteShader defines its own texture coordinate buffer in WebGL, and the reference to this buffer is
kept by mTexCoordBuffer. Notice that in the previous code when creating this buffer in the gl.bufferData()
function, the DYNAMIC_DRAW option is specified. This is compared with the STATIC_DRAW option used in
Engine_VertexBuffer.js when defining the system default texture coordinate buffer. In this case, the
dynamic option informs the WebGL graphics system that the content to this buffer will be subject to
changes.

	 3.	 Define a function to set the WebGL texture coordinate buffer.

SpriteShader.prototype.setTextureCoordinate = function(texCoord) {
 var gl = gEngine.Core.getGL();
 gl.bindBuffer(gl.ARRAY_BUFFER, this.mTexCoordBuffer);
 gl.bufferSubData(gl.ARRAY_BUFFER, 0, new Float32Array(texCoord));
};

Note that texCoord is an array of eight floating-point numbers that specifies texture coordinate
locations to the WebGL context. The format and content of this array are defined by the WebGL interface.
texCoord must be a float array with eight floating-point numbers that identify four corners of a subregion in
a Texture Space: top-right, top-left, bottom-right, and bottom-left corners. In your case, these should be the
four corners of a sprite sheet element.

	 4.	 Override the shader activation function to enable the custom texture coordinate
buffer for rendering.

SpriteShader.prototype.activateShader = function(pixelColor, vpMatrix) {
 // first call the super class's activate
 SimpleShader.prototype.activateShader.call(this, pixelColor, vpMatrix);
  
 // now binds the proper texture coordinate buffer
 var gl = gEngine.Core.getGL();
 gl.bindBuffer(gl.ARRAY_BUFFER, this.mTexCoordBuffer);
 �gl.vertexAttribPointer(this.mShaderTextureCoordAttribute, 2, gl.FLOAT,

 false, 0, 0);
 gl.enableVertexAttribArray(this.mShaderTextureCoordAttribute);
};

Notice that the superclass activateShader() function is called to SimpleShader instead of
TextureShader. This is to avoid TextureShader activating the system default texture coordinate buffer for
rendering.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

156

SpriteRenderable Object

Similar to Renderable objects (which are shaded with SimpleShader) and TextureRenderable objects
(which are shaded with TextureShader), a corresponding SpriteRenderable object should be defined to
represent objects that will be shaded with SpriteShader.

	 1.	 Create a new file in the src/Engine/Renderables folder and name it
SpriteRenderable.js.

	 2.	 Define the SpriteRenderable constructor to derive it from TextureRenderable.

function SpriteRenderable(myTexture) {
 TextureRenderable.call(this, myTexture);
 �Renderable.prototype._setShader.call(this, gEngine.DefaultResources.

 getSpriteShader());
 
 this.mTexLeft = 0.0; // bounds of texture coord (0 is left, 1 is right)
 this.mTexRight = 1.0; //
 this.mTexTop = 1.0; // 1 is top and 0 is bottom of image
 this.mTexBottom = 0.0; //
}
gEngine.Core.inheritPrototype(SpriteRenderable, TextureRenderable);

A SpriteRenderable object extends the TextureRenderable object by defining the set of variables that
identifies the texture coordinate bounds of a subregion within the Texture Space, the bounds of a sprite sheet
element.

	 3.	 Define an enumerated data type with values that identify corresponding offset
positions of a WebGL texture coordinate specification array.

// the expected texture cooridnate array is an array of 8 floats where:
// [0] [1]: is u/v cooridnate of Top-Right
// [2] [3]: is u/v coordinate of Top-Left
// [4] [5]: is u/v coordinate of Bottom-Right
// [6] [7]: is u/v coordinate of Bottom-Left
SpriteRenderable.eTexCoordArray = Object.freeze({
 eLeft: 2,
 eRight: 0,
 eTop: 1,
 eBottom: 5
});

■■ Note  eName is an enumerated data type.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

157

	 4.	 Define functions to allow the specification of a sprite sheet element’s uv values
in both texture coordinate space (normalized between 0 to 1) and with pixel
positions (which will be converted to uv values).

SpriteRenderable.prototype.setElementUVCoordinate = function(left, right,
bottom, top) {
 this.mTexLeft = left;
 this.mTexRight = right;
 this.mTexBottom = bottom;
 this.mTexTop = top;
};
 
SpriteRenderable.prototype.setElementPixelPositions = function(left, right,
bottom, top) {
 var texInfo = gEngine.ResourceMap.retrieveAsset(this.mTexture);
 
 // entire image width, height
 var imageW = texInfo.mWidth;
 var imageH = texInfo.mHeight;
  
 this.mTexLeft = left / imageW;
 this.mTexRight = right / imageW;
 this.mTexBottom = bottom / imageH;
 this.mTexTop = top / imageH;
};

Note that the setElementPixelPositions() function converts from pixel to texture coordinates before
storing the results with the corresponding instance variables.

	 5.	 Add a function to construct the texture coordinate specification array that is
appropriate for passing the corresponding values to the WebGL context.

SpriteRenderable.prototype.getElementUVCoordinateArray = function() {
 return [
 this.mTexRight, this.mTexTop, // x,y of top-right
 this.mTexLeft, this.mTexTop,
 this.mTexRight, this.mTexBottom,
 this.mTexLeft, this.mTexBottom
];
};

	 6.	 Override the draw() function to load the specific texture coordinates values into
WebGL context before the actual drawing.

SpriteRenderable.prototype.draw = function(pixelColor, vpMatrix) {
 // set the current texture coordinate
 this.mShader.setTextureCoordinate(this.getElementUVCoordinateArray());
 TextureRenderable.prototype.draw.call(this, pixelColor, vpMatrix);
};

Chapter 5 ■ Working with Textures, Sprites, and Fonts

158

SpriteShader as a Default Resource

Similar to SimpleShader and TextureShader, the SpriteShader is a resource that can be shared. Thus, it
should be added to the engine’s DefaultResources.

	 1.	 In the Engine_DefaultResources.js file, add a variable for storing a
SpriteShader.

var mSpriteShader = null;

	 2.	 Define a getter function for the SpriteShader.

var getSpriteShader = function() { return mSpriteShader; };

	 3.	 Modify the _createShaders function to also create the SpriteShader.

var _createShaders = function(callBackFunction) {
 gEngine.ResourceMap.setLoadCompleteCallback(null);
 mConstColorShader = new SimpleShader(kSimpleVS, kSimpleFS);
 mTextureShader = new TextureShader(kTextureVS, kTextureFS);
 mSpriteShader = new SpriteShader(kTextureVS, kTextureFS);
 callBackFunction();
};

Notice that the SpriteShader actually wraps over the existing GLSL shaders defined in the
TextureVS.glsl and TextureFS.glsl files. From the perspective of WebGL, the functionality of drawing
with texture remains the same; the only difference with SpriteShader is that the texture’s coordinate values
are now programmable.

	 4.	 Remember to update the public interface.

var mPublic = {
 initialize: initialize,
 getConstColorShader: getConstColorShader,
 getTextureShader: getTextureShader,
 getSpriteShader: getSpriteShader
};

Testing the SpriteRenderable

There are two important functionalities of working with sprite elements and texture coordinates that should
be tested: the proper extraction, drawing, and controlling of a sprite sheet element as an object; and the
changing and controlling of uv coordinate on an object. For proper testing of the added functionality, you
must modify the MyGame.js file.

	 1.	 The constructing, loading, unloading, and drawing of MyGame are similar to
previous examples, so the details will not be repeated here. Please refer to the
source code in the src/MyGame folder for details.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

159

	 2.	 In the initialize() function, do the following:

MyGame.prototype.initialize = function() {
 // Step A: set up the cameras
 this.mCamera = new Camera(
 vec2.fromValues(20, 60), // position of the camera
 20, // width of camera
 [20, 40, 600, 300] // viewport (orgX, orgY, width, height)
);
 this.mCamera.setBackgroundColor([0.8, 0.8, 0.8, 1]);
 // sets the background to gray
  
 // Step B: Create the support objects
 this.mPortal = new SpriteRenderable(this.kMinionSprite);
 this.mPortal.setColor([1, 0, 0, 0.2]); // tints red
 this.mPortal.getXform().setPosition(25, 60);
 this.mPortal.getXform().setSize(3, 3);
 this.mPortal.setElementPixelPositions(130, 310, 0, 180);
  
 this.mCollector = new SpriteRenderable(this.kMinionSprite);
 this.mCollector.setColor([0, 0, 0, 0]); // No tinting
 this.mCollector.getXform().setPosition(15, 60);
 this.mCollector.getXform().setSize(3, 3);
 this.mCollector.setElementPixelPositions(315, 495, 0, 180);
  
 // Step C: Create the font and minion images using sprite
 this.mFontImage = new SpriteRenderable(this.kFontImage);
 this.mFontImage.setColor([1, 1, 1, 0]);
 this.mFontImage.getXform().setPosition(13, 62);
 this.mFontImage.getXform().setSize(4, 4);
  
 this.mMinion= new SpriteRenderable(this.kMinionSprite);
 this.mMinion.setColor([1, 1, 1, 0]);
 this.mMinion.getXform().setPosition(26, 56);
 this.mMinion.getXform().setSize(5, 2.5);
  
 // Step D: Create the hero object with texture from lower-left corner
 this.mHero = new SpriteRenderable(this.kMinionSprite);
 this.mHero.setColor([1, 1, 1, 0]);
 this.mHero.getXform().setPosition(20, 60);
 this.mHero.getXform().setSize(2, 3);
 this.mHero.setElementPixelPositions(0, 120, 0, 180);
};

a.	 After the camera is set up, in step B, notice that both mPortal and
mCollector are created based on the same image, kMinionSprite, with the
respective setElementPixelPositions() calls to specify the actual sprite
element to use for rendering.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

160

b.	 Step C creates two additional SpriteRenderable objects: mFontImage and
mMinion. The sprite element uv coordinate settings are left to the defaults
where the texture image will cover the entire geometry.

c.	 Similar to step B, step C creates the hero character as a SpriteRenderable
object based on the same kMinionSprite image. The sprite
sheet element that corresponds to the hero is identified with the
setElementPixelPositions() call.

Notice that in this example, four of the five SpriteRenderable objects created are based on the same
kMinionSprite image.

	 3.	 The update() function is modified to support the controlling of the hero object
and changes to the uv values.

MyGame.prototype.update = function() {
 // let's only allow the movement of hero,
 // and if hero moves too far off, this level ends, we will
 // load the next level
 var deltaX = 0.05;
 var xform = this.mHero.getXform();
  
 // Support hero movements
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Right)) {
 xform.incXPosBy(deltaX);
 if (xform.getXPos() > 30) // this is the right-bound of the window
 xform.setPosition(12, 60);
 }
  
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Left)) {
 xform.incXPosBy(-deltaX);
 if (xform.getXPos() < 11) { // this is the left-bound of the window
 xform.setXPos(20);
 }
 }
  
 // continously change texture tinting
 var c = this.mPortal.getColor();
 var ca = c[3] + deltaX;
 if (ca > 1) ca = 0;
 c[3] = ca;
  
 // New update code for changing the sub-texture regions being shown
 var deltaT = 0.001;
  
 // The font image:
 // zoom into the texture by updating texture coordinate
 // For font: zoom to the upper left corner by changing bottom right
 var texCoord = this.mFontImage.getElementUVCoordinateArray();
 // The 8 elements:
 // mTexRight, mTexTop, // x,y of top-right
 // mTexLeft, mTexTop,

Chapter 5 ■ Working with Textures, Sprites, and Fonts

161

 // mTexRight, mTexBottom,
 // mTexLeft, mTexBottom
 var b = texCoord[SpriteRenderable.eTexCoordArray.eBottom] + deltaT;
 var r = texCoord[SpriteRenderable.eTexCoordArray.eRight] - deltaT;
 
 if (b > 1.0) b = 0;
 if (r < 0) r = 1.0;
 this.mFontImage.setElementUVCoordinate(
 texCoord[SpriteRenderable.eTexCoordArray.eLeft], r,
 b, texCoord[SpriteRenderable.eTexCoordArray.eTop]);
  
 // The minion image:
 // For minion: zoom to the bottom right corner by changing top left
 var texCoord = this.mMinion.getElementUVCoordinateArray();
 // The 8 elements:
 // mTexRight, mTexTop, // x,y of top-right
 // mTexLeft, mTexTop,
 // mTexRight, mTexBottom,
 // mTexLeft, mTexBottom
 var t = texCoord[SpriteRenderable.eTexCoordArray.eTop] - deltaT;
 var l = texCoord[SpriteRenderable.eTexCoordArray.eLeft] + deltaT;
  
 if (l > 0.5) l = 0;
 if (t < 0.5) t = 1.0;
  
 this.mMinion.setElementUVCoordinate(
 l, texCoord[SpriteRenderable.eTexCoordArray.eRight],
 texCoord[SpriteRenderable.eTexCoordArray.eBottom], t);
};

a.	 Observe that the keyboard control and the drawing of the hero object are
identical to previous projects.

b.	 Notice the calls to setElementUVCoordinate() for mFontImage and mMinion.
These calls continuously decrease and reset the V values that correspond to
the bottom, the U values that correspond to the right for mFontImage, the V
values that correspond to the top, and the U values that correspond to the
left for mMinion. The end results are the continuous changing of texture and
the appearance of a zooming animation on these two objects

Sprite Animations
In games, you often want to create animations that reflect the movements or actions of your characters.
In the previous chapter, you learned about moving the geometries of these objects with transformation
operators. However, as you have observed when controlling the hero character in the previous example, if
the textures on these objects do not change in ways that correspond to the control, the interaction conveys
the sensation of moving a static image rather than setting a character in motion. What is needed is the ability
to create the illusion of animations on geometries when desired.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

162

In the previous example, you observed from the mFontImage and mMinion objects that the appearance
of an animation can be created by constantly changing the uv values on a texture-mapped geometry. As
discussed at the beginning of this chapter, one way to control this type of animation is by working with an
animated sprite sheet.

Overview of Animated Sprite Sheets
Recall that an animated sprite sheet is a sprite sheet that contains the sequence of images of an object in
an animation, typically in one or more rows and columns. For example, in Figure 5-11 you can see a 2x5
animated sprite sheet that contains two separate animations organized in two rows. The animations depict
an object retracting its spikes toward the right in the top row and extending them toward the left in the
bottom row. In this example, the animations are separated into separate rows; however, this is not always the
case. The organization of a sprite sheet and the details of element pixel locations are generally handled by its
creator and must be explicitly communicated to the game developer for use in games.

Figure 5-11.  An animated sprite sheet organized into two rows representing two animated sequences of the
same object

Figure 5-12.  A sprite animation sequence that loops

Figure 5-12 shows that to achieve the animated effect of an object retracting its spikes toward the right,
as depicted by the top row of Figure 5-11, you map the elements from the left to the right in the sequence 1,
2, 3, 4, 5. When these images are mapped onto the same geometry, sequenced, and looped in an appropriate
rate, it conveys the sense that the object is indeed repeating the action of retracting its spikes. Alternatively,
if the sequence is reversed where the elements are mapped in the right-to-left sequence, it would create the
animation that corresponds to the object extending the spikes toward the left. Last, it is also possible to map
the sequence in a swing loop from left to right and then back from right to left. In this case, the animation
would correspond to the object going through the motion of retracting and extending its spikes continuously.

With a firm background in sprite sheet animation and understanding the different ways of generating
sprite animation, you can now tackle the implementation.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

163

The Sprite Animation Project
This project demonstrates how to work with animated sprite sheet and generate continuous sprite
animations. You can see an example of this project running in Figure 5-13. The project scene contains the
objects from the previous scene plus two animated objects. The source code to this project is defined in the
Chapter5/5.3.SpriteAnimation folder.

Figure 5-13.  Running the Sprite Animation project

The controls of the project are as follows:

•	 Right arrow key: Moves the hero right; when crossing the right boundary, the hero is
wrapped back to the left boundary

•	 Left arrow key: Opposite of the right arrow key

•	 Number 1 key: Animates by showing sprite elements continuously from right to left

•	 Number 2 key: Animates by showing sprite elements moving back and forth
continuously from left to right and right to left

•	 Number 3 key: Animates by showing sprite elements continuously from left to right

•	 Number 4 key: Increases the animation speed

•	 Number 5 key: Decreases the animation speed

http://dx.doi.org/10.1007/978-1-4842-0952-3_5

Chapter 5 ■ Working with Textures, Sprites, and Fonts

164

The goals of the project are as follows:

•	 To gain a deeper understanding of animated sprite sheets

•	 To experience the creation of sprite animations

•	 To define abstractions for implementing sprite animations

You can find the same files as in the previous project in the assets folder.

SpriteAnimateRenderable Object
Sprite animation can be implemented by strategically controlling the uv values of a SpriteRenderable
to display the appropriate sprite element at desired time periods. For this reason, only a single class,
SpriteAnimateRenderable, needs to be defined to support sprite animations.

For simplicity and ease of understanding, the following implementation assumes that all sprite
elements associated with an animation are always organized along the same row. Animated sprite elements
organized along a column are not supported. For example, in Figure 5-11, the rightward retraction and
leftward extension movements of the spikes are each organized along a row; neither spans more than one
single row, and neither is organized along a column.

	 1.	 Create a new file in the src/Engine/Renderables folder and name it
SpriteAnimateRenderable.js.

	 2.	 Define an enumerated data type that describes the different ways to animate
with a sprite sheet.

// Assumption: first sprite in an animation is always the left-most element.
SpriteAnimateRenderable.eAnimationType = Object.freeze({
 eAnimateRight: 0, // Animate from left to right, then restart to left
 eAnimateLeft: 1, // Animate from right to left, then restart to right
 eAnimateSwing: 2 // Animate first left to right, then animates backwards
});

eAnimationType defines three modes for animation.

a.	 eAnimateRight starts at the leftmost element and animates by iterating
toward the right along the same row. When the last element is reached, the
animation continues by starting from the leftmost element again.

b.	 eAnimateLeft is the reverse of eAnimateRight; it starts from the right,
animates toward the left, and continues by starting from the rightmost
element after reaching the leftmost element.

c.	 eAnimateSwing is a continuous loop from left to right and then from
right to left.

	 3.	 Define the SpriteAnimateRenderable constructor to derive it from
SpriteRenderable.

function SpriteAnimateRenderable(myTexture) {
 SpriteRenderable.call(this, myTexture);
 �Renderable.prototype._setShader.call(this, gEngine.DefaultResources.

 getSpriteShader());
  

Chapter 5 ■ Working with Textures, Sprites, and Fonts

165

 // All coordinates are in texture coordinate (UV between 0 to 1)
  
 // Information on the sprite element
 this.mFirstElmLeft = 0.0; // 0.0 is left corner of image
 this.mElmTop = 1.0; // 1.0 is top corner of image
 this.mElmWidth = 1.0; // default sprite element size is the entire image
 this.mElmHeight = 1.0;
 this.mWidthPadding = 0.0;
 this.mNumElems = 1; // number of elements in an animation
  
 // per animation settings
 this.mAnimationType = SpriteAnimateRenderable.eAnimationType.eAnimateRight;
 this.mUpdateInterval = 1; // how often to advance
  
 // current animation state
 this.mCurrentAnimAdvance = -1;
 this.mCurrentElm = 0;
 
 this._initAnimation();
}
gEngine.Core.inheritPrototype(SpriteAnimateRenderable, SpriteRenderable);

The SpriteAnimateRenderable constructor defines three sets of variables:

a.	 The first set, including mFirstElmLeft, mElmTop, and so on, defines the
location and dimensions of each sprite element and the number of elements
in the animation. This information can be used to accurately compute the
texture coordinates for each sprite element when the elements are ordered
by rows and columns. Note that all coordinates are in Texture Space (0 to 1).

b.	 The second set stores information on how to animate: the mAnimationType
of left, right, or swing; and how many mUpdateInterval time to wait before
advancing to the next sprite element to control the speed of the animation. This
information can be changed during runtime to reverse a character’s movement,
loop the character’s movement, or speed up or slow down the movement.

c.	 The third set, mCurrentAnimAdvance and mCurrentElm, describes the
current animation state, which frame, and the direction of the animation.
Both of these variables are in units of element counts, are not accessible by
the game programmer, and are used internally to compute the next sprite
element for display.

The _initAnimation() function computes the values of mCurrentAnimAdvance and mCurrentElm to
initialize an animation sequence.

	 4.	 Define a function to set the animation type.

SpriteAnimateRenderable.prototype.setAnimationType = function(animationType) {
 this.mAnimationType = animationType;
 this.mCurrentAnimAdvance = -1;
 this.mCurrentElm = 0;
 this._initAnimation();
};

Chapter 5 ■ Working with Textures, Sprites, and Fonts

166

Note that the animation is always reset to start from the beginning when the animation type
(left, right, or swing) is changed.

	 5.	 Define the _initAnimation() function to compute the proper vales for
mCurrentAnimAdance and mCurrentElm according to the current animation type.

SpriteAnimateRenderable.prototype._initAnimation = function() {
 // Currently running animation
 this.mCurrentTick = 0;
 switch (this.mAnimationType) {
 
 case SpriteAnimateRenderable.eAnimationType.eAnimateRight:
 this.mCurrentElm = 0;
 this.mCurrentAnimAdvance = 1; // either 1 or -1
 break;
 
 case SpriteAnimateRenderable.eAnimationType.eAnimateSwing:
 this.mCurrentAnimAdvance = -1 * this.mCurrentAnimAdvance;
 this.mCurrentElm += 2*this.mCurrentAnimAdvance;
 break;
 
 case SpriteAnimateRenderable.eAnimationType.eAnimateLeft:
 this.mCurrentElm = this.mNumElems - 1;
 this.mCurrentAnimAdvance = -1; // either 1 or -1
 break;
 }
 this._setSpriteElement();
};

The previous code shows that mCurrentElm is the number of elements offset from the leftmost element,
and mCurrentAnimAdvance records whether the mCurrentElm offset should be incremented (for rightward
animation) or decremented (for leftward animation) during each update.

The _setSpriteElement() is called to set the uv values that correspond to the currently identified sprite
element for displaying on the geometry (by the superclass, SpriteRenderable).

	 6.	 Define the _setSpriteElement() function to compute and load the uv values of
the currently identified sprite element for rendering.

SpriteAnimateRenderable.prototype._setSpriteElement = function() {
 �var left = this.mFirstElmLeft + (this.mCurrentElm * (this.mElmWidth +

this.mWidthPadding));
 
 SpriteRenderable.prototype.setElementUVCoordinate.call(this, left,
 left+this.mElmWidth,
 this.mElmTop-this.mElmHeight,
 this.mElmTop);
};

The variable left is the left u value of mCurrentElm. Based on this value, the right, bottom, and top uv
values can be derived and set to SpriteRenderable.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

167

	 7.	 Define a function to allow game programmers to specify a sprite animation.

// Always set the right-most element to be the first
SpriteAnimateRenderable.prototype.setSpriteSequence = function(
 topPixel, // offset from top-left
 rightPixel, // offset from top-left
 elmWidthInPixel,
 elmHeightInPixel,
 numElements, // number of elements in sequence
 wPaddingInPixel // left/right padding
)
{
 var texInfo = gEngine.ResourceMap.retrieveAsset(this.mTexture);
 // entire image width, height
 var imageW = texInfo.mWidth;
 var imageH = texInfo.mHeight;
  
 this.mNumElems = numElements; // number of elements in animation
 this.mFirstElmLeft = rightPixel / imageW;
 this.mElmTop = topPixel / imageH;
 this.mElmWidth = elmWidthInPixel / imageW;
 this.mElmHeight = elmHeightInPixel / imageH;
 this.mWidthPadding = wPaddingInPixel / imageW;
 this._initAnimation();
};

The inputs of the setSpriteSequence() function are in pixels and are converted to texture coordinates
by dividing by the width and height of the image.

	 8.	 Implement functions to change animation speed, either directly or by an offset.

SpriteAnimateRenderable.prototype.setAnimationSpeed = function(tickInterval) {
 // number of update calls before advancing animation
 this.mUpdateInterval = tickInterval; // how often to advance
};
 
SpriteAnimateRenderable.prototype.incAnimationSpeed = function(deltaInterval) {
 // number of update calls before advancing animation
 this.mUpdateInterval += deltaInterval; // how often to advance
};

	 9.	 Finally, define a function to advance the animation for each game loop update.

SpriteAnimateRenderable.prototype.updateAnimation = function() {
 this.mCurrentTick++;
 if (this.mCurrentTick >= this.mUpdateInterval) {
 this.mCurrentTick = 0;
 this.mCurrentElm += this.mCurrentAnimAdvance;
 if ((this.mCurrentElm >= 0) && (this.mCurrentElm < this.mNumElems))
 this._setSpriteElement();

Chapter 5 ■ Working with Textures, Sprites, and Fonts

168

 else
 this._initAnimation();
 }
};

Each time the updateAnimation() function is called, the mCurrentTick counter is incremented,
and when the number of ticks reaches the mUpdateInterval value, the animation is re-initialized by the
_initAnimation() function. It is important to note that the time unit for controlling the animation is the
number of times the updateAnimation() function is called and not the real-world elapsed time. Recall that
the engine GameLoop _runLoop() function ensures systemwide updates to occur at kMPF intervals even
when frame rate lags. The game engine architecture ensures the updateAnimation() function calls are kMPF
millisecond apart.

Testing Sprite Animation
The test cases for the SpriteAnimateRenderable object must demonstrate how the forward, reverse, and
swing modes of animation and the animation speed are under the programmer's control. The MyGame object
is modified to accomplish these purposes.

	 1.	 The constructing, loading, unloading, and drawing of MyGame are similar to the
previous example, so the details will not be repeated here. Please refer to the
source code in the src/MyGame folder for details.

	 2.	 In the initialize() function, add code to create and initialize the
SpriteAnimateRenderable objects.

MyGame.prototype.initialize = function() {
 // ... Identical to previous code ...
 
 // The right minion
 this.mRightMinion= new SpriteAnimateRenderable(this.kMinionSprite);
 this.mRightMinion.setColor([1, 1, 1, 0]);
 this.mRightMinion.getXform().setPosition(26, 56.5);
 this.mRightMinion.getXform().setSize(4, 3.2);
 this.mRightMinion.setSpriteSequence(
 512, 0, // first element position: top-right, 512 is top, 0 is right
 204,164, // width x height in pixels
 5, // number of elements in this sequence
 0); // horizontal padding in between
 �this.mRightMinion.setAnimationType(SpriteAnimateRenderable.eAnimationType.

 eAnimateRight);
 this.mRightMinion.setAnimationSpeed(50);
  
 // the left minion
 this.mLeftMinion= new SpriteAnimateRenderable(this.kMinionSprite);
 this.mLeftMinion.setColor([1, 1, 1, 0]);
 this.mLeftMinion.getXform().setPosition(15, 56.5);
 this.mLeftMinion.getXform().setSize(4, 3.2);

Chapter 5 ■ Working with Textures, Sprites, and Fonts

169

 this.mLeftMinion.setSpriteSequence(
 348, 0, // first element: top-right, 164 from 512 is top, 0 is right
 204,164, // widthxheight in pixels
 5, // number of elements in this sequence
 0); // horizontal padding in between
 �this.mLeftMinion.setAnimationType(SpriteAnimateRenderable.eAnimationType.

 eAnimateRight);
 this.mLeftMinion.setAnimationSpeed(50);
 
 // ... Identical to previous code ...
}

The SpriteAnimateRenderable objects are created in similar ways as SpriteRenderable
objects with a sprite sheet as the texture parameter. Additionally, in this case, it is essential to call the
setSpriteSequence() function to identify the elements involved in the animation including the location,
dimension, and total number of elements.

	 3.	 The update() function must invoke the SpriteAnimateRenderable object’s
updateAnimation() function to advance the sprite animation.

MyGame.prototype.update = function() {
 // ... Identical to previous code ...
  
 // remember to update the minion's animation
 this.mRightMinion.updateAnimation();
 this.mLeftMinion.updateAnimation();
  
 // Animate left on the sprite sheet
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.One)) {
 this.mRightMinion.setAnimationType(
 SpriteAnimateRenderable.eAnimationType.eAnimateLeft);
 this.mLeftMinion.setAnimationType(
 SpriteAnimateRenderable.eAnimationType.eAnimateLeft);
 }
  
 // swing animation
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.Two)) {
 this.mRightMinion.setAnimationType(
 SpriteAnimateRenderable.eAnimationType.eAnimateSwing);
 this.mLeftMinion.setAnimationType(
 SpriteAnimateRenderable.eAnimationType.eAnimateSwing);
 }
  
 // Animate right on the sprite sheet
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.Three)) {
 this.mRightMinion.setAnimationType(
 SpriteAnimateRenderable.eAnimationType.eAnimateRight);
 this.mLeftMinion.setAnimationType(
 SpriteAnimateRenderable.eAnimationType.eAnimateRight);
 }
  

Chapter 5 ■ Working with Textures, Sprites, and Fonts

170

 �// decrease the duration of showing sprite elements,
// speeding up the animation

 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.Four)) {
 this.mRightMinion.incAnimationSpeed(-2);
 this.mLeftMinion.incAnimationSpeed(-2);
 }
  
 �// increase the duration of showing sprite elements,

// slowing down the animation
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.Five)) {
 this.mRightMinion.incAnimationSpeed(2);
 this.mLeftMinion.incAnimationSpeed(2);
 }
};

The keys 1, 2, and 3 change the animation type, and keys 4 and 5 change the animation speed. Note that
the limit of the animation speed is the update rate of the game loop.

Fonts and Drawing of Text
A valuable tool that many games use for a variety of tasks is text output. Drawing of text messages is an
efficient way to communicate to the user as well as you, the developer. For example, text messages can be
used to communicate the game’s story, the player’s score, or debugging information during development.
Unfortunately, WebGL does not support the drawing of text. This section briefly introduces bitmap fonts and
introduces FontRenderable objects to support the drawing of texts.

Bitmap Fonts
A font must be defined such that individual characters can be extracted for the drawing of text messages.
A bitmap font, as the name implies, is a simple map describing which bit (or pixel) must be switched on to
represent characters in the font. Combining all characters of a bitmap font into a single image and defining
an accompanied decoding description document provide a straightforward solution for drawing text output.
For example, Figure 5-14 shows a bitmap font sprite where all the defined characters are tightly organized
into the same image. Figure 5-15 is a snippet of the accompanying decoding description in XML format.

Figure 5-14.  An example bitmap font sprite image

Chapter 5 ■ Working with Textures, Sprites, and Fonts

171

Notice that the decoding information as shown in Figure 5-15 uniquely defines the uv coordinate
positions for each character in the image, as shown in Figure 5-14. In this way, the texture mapping of
individual characters from a bitmap font sprite image can be performed in a straightforward manner by the
SpriteRenderable objects.

■■ Note T here are many bitmap font file formats. The format used in this book is the AngleCode BMFont-
compatible font in XML form. BMFont is an open source software that converts vector fonts, such as TrueType
and OpenType, into bitmap fonts. See http://www.angelcode.com/products/bmfont/ for more information.

The Font Support Project
This project demonstrates how to draw text from a bitmap font using the SpriteRenderable object. You can
see an example of this project running in Figure 5-16. This project consists of two scenes. The first is a simple
extension from the previous project with sample text output from different bitmap fonts. You can control the
hero’s position with the arrow keys. If the hero exits the window from the left boundary, the second scene
will be invoked. The second scene simply shows the “Game Over!” message and stops the game loop. The
source code to this project is defined in the Chapter5/5.4.FontSupport folder.

Figure 5-15.  A snippet of the XML file with the decoding information for the bitmap font image shown
in Figure 5-14

Figure 5-16.  Running the Font Support project

http://www.angelcode.com/products/bmfont/
http://dx.doi.org/10.1007/978-1-4842-0952-3_5

Chapter 5 ■ Working with Textures, Sprites, and Fonts

172

The controls of the project are as follows:

•	 Number keys 0, 1, 2, and 3: Selects the Consolas, 16, 24, 32, or 72 fonts, respectively,
for size modification

•	 Up/down key while holding down X/Y key: Increases or decreases (arrow keys) the
width (X key) or the height (Y key) of the selected font

•	 Left arrow key: Moves the hero left; if the hero exits the screen from the left
boundary, the GameOver level is invoked and the game ends

•	 Right arrow key: Moves the hero right; when crossing the right boundary, the hero is
wrapped back to the left boundary

The goals of the project are as follows:

•	 To gain a basic understanding of drawing text strings in a game

•	 To understand what bitmap fonts are

•	 To implement text drawing support in your game engine

You can find the following external resource files in the assets folder: Consolas-72.png and
minion_sprite.png. In the assets/fonts folder are the bitmap font sprite image files and the associated
XML files that contain the decoding information: Consolas-16.fnt, Consolas-16.png, Consolas-24.fnt,
Consolas-24.png, Consolas-32.fnt, Consolas-32.png, Consolas-72.fnt, Consolas-72.png, Segment7-96.fnt,
Segment7-96.png, system-default-font.fnt, and system-default-font.png.

Notice that the .fnt and .png files are paired. The former contains decoding information for the latter. These
file pairs must be included in the same folder for the engine to load the font properly. system-default-font is the
default font for the game engine, and it is assumed that this font is always present in the asset/fonts folder.

■■ Note T he actions of parsing, decoding, and extracting of character information from the .fnt files are
independent from the foundational operations of a game engine. For this reason, the details of these operations
are not presented. If you are interested, you should consult the source code.

Loading and Storing Fonts in the Engine
Loading font files is special because fonts are defined in pairs: the .fnt file that contains decoding information
and the corresponding .png sprite image file. However, since the .fnt file is an XML file and the .png file
is a simple texture image, the actual loading of these two files is already supported by the existing engine
functionality. The details of loading and storing fonts in the engine will be hidden by a new engine component.

	 1.	 Create a new file in the src/Engine/Resources folder and name it Engine_Fonts.js.

	 2.	 Before implementing the gEngine_Fonts component, first define an object for
storing pixel location and display information associated with the characters.

function CharacterInfo() {
 // in texture coordinate (0 to 1) maps to the entier image
 this.mTexCoordLeft = 0;
 this.mTexCoordRight = 1;
 this.mTexCoordBottom = 0;
 this.mTexCoordTop = 0;
  

Chapter 5 ■ Working with Textures, Sprites, and Fonts

173

 // nominal character size, 1 is "standard width/height" of a char
 this.mCharWidth = 1;
 this.mCharHeight = 1;
 this.mCharWidthOffset = 0;
 this.mCharHeightOffset = 0;
  
 // reference of char width/height ration
 this.mCharAspectRatio = 1;
}

The uv coordinate and character appearance information can be computed based on the contents from
the .fnt file.

	 3.	 Following the pattern of previous engine components, implement the Fonts
engine component.

var gEngine = gEngine || { };
 
gEngine.Fonts = (function() {
 var mPublic = { };
 return mPublic;
}());

	 4.	 Define a function to load font files from a given path.

var loadFont = function(fontName) {
 if (!(gEngine.ResourceMap.isAssetLoaded(fontName))) {
 var fontInfoSourceString = fontName + ".fnt";
 var textureSourceString = fontName + ".png";
 
 // register an entry in the map
 gEngine.ResourceMap.asyncLoadRequested(fontName);
 
 gEngine.Textures.loadTexture(textureSourceString);
 gEngine.TextFileLoader.loadTextFile(fontInfoSourceString,
 gEngine.TextFileLoader.eTextFileType.eXMLFile,
 _storeLoadedFont);
 } else {
 gEngine.ResourceMap.incAssetRefCount(fontName);
 }
};

a.	 fontName is a path to the font files but without any file extensions. For
example, assets/fonts/system-default-font is the string that identifies
the two associated .fnt and .png files.

b.	 Two file load operations are actually invoked: one to load the .fnt as a text
file and the second to load the .png as a texture image file.

c.	 The last parameter of the loadTextFile() function specifies that the
_storeLoadedFont() function should be invoked when the load operation is
completed.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

174

	 5.	 Define the _storeLoadedFont() function to store the loaded results in the
ResourceMap.

var _storeLoadedFont = function(fontInfoSourceString) {
 var fontName = fontInfoSourceString.slice(0, -4); // trims .fnt extension
 var fontInfo = gEngine.ResourceMap.retrieveAsset(fontInfoSourceString);
 fontInfo.FontImage = fontName + ".png";
 gEngine.ResourceMap.ayncLoadCompleted(fontName, fontInfo);
};

Recall that the ResourceMap.retrieveAsset() function returns an MapEntry object that contains the
reference to the loaded asset, the XML file content in this case, and a reference count. The previous code
creates an additional property, FontImage, on the returned MapEntry to record the associated sprite image
for the font.

	 6.	 Define a function to unload a font and release the associated memory.

var unloadFont = function(fontName) {
 gEngine.ResourceMap.unloadAsset(fontName);
 if (!(gEngine.ResourceMap.isAssetLoaded(fontName))) {
 var fontInfoSourceString = fontName + ".fnt";
 var textureSourceString = fontName + ".png";
 
 gEngine.Textures.unloadTexture(textureSourceString);
 gEngine.TextFileLoader.unloadTextFile(fontInfoSourceString);
 };
};

It is important to remember to unload both the text .fnt file and the .png texture image file.

	 7.	 Define a function to compute CharacterInfo based on the information
presented in the .fnt file.

var getCharInfo = function(fontName, aChar) {
 // ... details omitted for lack of relevancy
 
 returnInfo = new CharacterInfo();
 
 // computes and fills in the contents of CharacterInfo
 // ... details omitted for lack of relevancy
 
 return returnInfo;
};

Details of decoding and extracting information for the given character are omitted because they are
unrelated to the rest of the game engine implementation.

■■ Note  For details of the .fnt format information, please refer to http://www.angelcode.com/products/
bmfont/doc/file_format.html.

http://www.angelcode.com/products/bmfont/doc/file_format.html
http://www.angelcode.com/products/bmfont/doc/file_format.html

Chapter 5 ■ Working with Textures, Sprites, and Fonts

175

	 8.	 Finally, remember to add the public functions to the public interface.

var mPublic = {
 loadFont: loadFont,
 unloadFont: unloadFont,
 getCharInfo: getCharInfo
};
return mPublic;

Defining a FontRenderable Object to Draw Texts
The defined gEngine_Fonts component is capable of loading font files and extracting per-character
uv coordinate and appearance information. With this functionality, the drawing of a text string can be
accomplished by identifying each character in the string, extracting the corresponding texture mapping
information from the gEngine_Fonts component, and rendering the character using the SpriteRenderable
object. The FontRenderable object will be defined to accomplish this.

	 1.	 Create a new file in the src/Engine/Renderables folder and name it
FontRenderable.js.

	 2.	 Implement a constructor for FontRenderable that accepts a string as its
parameter.

function FontRenderable(aString) {
 this.mFont = gEngine.DefaultResources.getDefaultFont();
 this.mOneChar = new SpriteRenderable(this.mFont + ".png");
 this.mXform = new Transform(); // transform that moves this object around
 this.mText = aString;
}

a.	 The aString variable is the message to be drawn.

b.	 Notice that FontRenderable objects do not customize the behaviors of
SpriteRenderable objects. Rather, it relies on a SpriteRenderable object
to draw each character in the string. For this reason, FontRenderable is not
a subclass of but instead contains an instance of the SpriteRenderable
object, the mOneChar variable.

	 3.	 Define the draw() function to parse and draw each character in the string using
the mOneChar variable.

FontRenderable.prototype.draw = function(vpMatrix) {
 var widthOfOneChar = this.mXform.getWidth() / this.mText.length;
 var heightOfOneChar = this.mXform.getHeight();
 var yPos = this.mXform.getYPos();
 
 // center position of the first char
 �var xPos = this.mXform.getXPos() - (widthOfOneChar / 2) +

(widthOfOneChar * 0.5);
 var charIndex, aChar, charInfo, xSize, ySize, xOffset, yOffset;
 for (charIndex = 0; charIndex < this.mText.length; charIndex++) {
 aChar = this.mText.charCodeAt(charIndex);
 charInfo = gEngine.Fonts.getCharInfo(this.mFont, aChar);
 

Chapter 5 ■ Working with Textures, Sprites, and Fonts

176

 // set the texture coordinate
 �this.mOneChar.setElementUVCoordinate(charInfo.mTexCoordLeft,

charInfo.mTexCoordRight,
 charInfo.mTexCoordBottom, charInfo.mTexCoordTop);
 
 // now the size of the char
 xSize = widthOfOneChar * charInfo.mCharWidth;
 ySize = heightOfOneChar * charInfo.mCharHeight;
 this.mOneChar.getXform().setSize(xSize, ySize);
 
 // how much to offset from the center
 xOffset = widthOfOneChar * charInfo.mCharWidthOffset * 0.5;
 yOffset = heightOfOneChar * charInfo.mCharHeightOffset * 0.5;
 
 this.mOneChar.getXform().setPosition(xPos - xOffset, yPos - yOffset);
 
 this.mOneChar.draw(vpMatrix);
 
 xPos += widthOfOneChar;
 }
};

The dimension of each character is defined by widthOfOneChar and heightOfOneChar where the width
is simply dividing the total FontRenderable width by the number of characters in the string. The for loop
then does the following:

a.	 Extracts each character in the string

b.	 Calls the getCharInfo() function to receive the character’s uv values and
appearance information in charInfo

c.	 Uses the uv values from charInfo to identify the sprite element location
for mOneChar (by calling and passing the information to the mOneChar.
setElementUVCoordinate() function)

d.	 Uses the appearance information from charInfo to compute the actual
size (xSize and ySize) and location offset for the character (xOffset and
yOffset) and draws the character mOneChar with the appropriate settings

	 4.	 Implement the getters and setters for the transform, the text message to be
drawn, the font to use for drawing, and the color.

FontRenderable.prototype.getXform = function() { return this.mXform; };
FontRenderable.prototype.getText = function() { return this.mText; };
FontRenderable.prototype.setText = function(t) {
 this.mText = t;
 this.setTextHeight(this.getXform().getHeight());
};
 
FontRenderable.prototype.getFont = function() { return this.mFont; };
FontRenderable.prototype.setFont = function(f) {
 this.mFont = f;
 this.mOneChar.setTexture(this.mFont + ".png");
};
 

Chapter 5 ■ Working with Textures, Sprites, and Fonts

177

FontRenderable.prototype.setColor = function(c){ this.mOneChar.setColor(c); };
FontRenderable.prototype.getColor = function() {
 return this.mOneChar.getColor();
};

	 5.	 Define the setTextHeight() function to define the height of the message to be
output.

FontRenderable.prototype.setTextHeight = function(h) {
 // this is for "A"
 var charInfo = gEngine.Fonts.getCharInfo(this.mFont, "A".charCodeAt(0));
 var w = h * charInfo.mCharAspectRatio;
 this.getXform().setSize(w * this.mText.length, h);
};

Notice that the width of the entire message to be drawn is automatically computed based on the
message string length and maintaining the character width to height aspect ratio.

■■ Note  FontRenderable does not support the rotation of the entire message. Text messages are always
drawn horizontally from left to right.

Adding a Default Font to the Engine
A default system font should be provided by the game engine for the convenience of the game programmer.
This can be accomplished with simple modifications to the gEngine_DefaultResources component.

	 1.	 Edit the Engine_DefaultResources.js file to define the default system font
name and to define a getter function to retrieve it.

// Default font
var kDefaultFont = "assets/fonts/system-default-font";
var getDefaultFont = function() { return kDefaultFont; };

	 2.	 Modify the initialize() function to also load the default font.

var initialize = function(callBackFunction) {
 // ... Identical to previous code ...
  
 // load default font
 gEngine.Fonts.loadFont(kDefaultFont);
  
 // ... Identical to previous code ...
};

Chapter 5 ■ Working with Textures, Sprites, and Fonts

178

After Game Cleanup
In all the examples, the WebGL resource allocation and cleanup have been carefully handled during scene
transitions where loaded external resources are always unloaded. However, when the entire game is ready
to terminate, there is no current support to release the allocated shared resources. In the game engine,
there are two components that allocated WebGL resources for sharing: gEngine_VertexBuffer for sharing
unit square vertex positions and static texture coordinate buffers, and gEngine_DefaultResources for the
allocated shared resources.

The following files must be modified to support proper cleanup at the end of a game:

	 1.	 In the Engine_Core.js file, add the following function to instruct VertexBuffer
and DefaultResources to release their allocated resources, and remember to
add the cleanup() function to the public interface:

var cleanUp = function() {
 gEngine.VertexBuffer.cleanUp();
 gEngine.DefaultResources.cleanUp();
};
 
var mPublic = {
 // ... Identical to previous code ...
 cleanUp: cleanUp
};

	 2.	 In the Engine_DefaultResources.js file, add the following function to release
all default resources, and remember to add the cleanup() function to the public
interface so that this function is accessible:

var cleanUp = function() {
 mConstColorShader.cleanUp();
 mTextureShader.cleanUp();
 mSpriteShader.cleanUp();
  
 gEngine.TextFileLoader.unloadTextFile(kSimpleVS);
 gEngine.TextFileLoader.unloadTextFile(kSimpleFS);
  
 // textuire shader:
 gEngine.TextFileLoader.unloadTextFile(kTextureVS);
 gEngine.TextFileLoader.unloadTextFile(kTextureFS);
  
 // default font
 gEngine.Fonts.unloadFont(kDefaultFont);
};

	 3.	 In the Engine_VertexBuffer.js file, add the following function to release the
allocated WebGL buffers, and remember to add the cleanup() function to the
public interface so that this function is accessible:

var cleanUp = function() {
 var gl = gEngine.Core.getGL();
 gl.deleteBuffer(mSquareVertexBuffer);
 gl.deleteBuffer(mTextureCoordBuffer);
};

Chapter 5 ■ Working with Textures, Sprites, and Fonts

179

	 4.	 In the SpriteShader.js file, add the following function to release the allocated
texture coordinate buffer:

SpriteShader.prototype.cleanUp = function() {
 var gl = gEngine.Core.getGL();
 gl.deleteBuffer(this.mTexCoordBuffer);
  
 // now call super class's clean up ...
 SimpleShader.prototype.cleanUp.call(this);
};

	 5.	 In the SimpleShader.js file, the WebGL memory allocated for vertex shader,
fragment shader, and compiled GLSL shader must all be released. To accomplish
this, instance variables must be defined to refer to the corresponding shaders.

function SimpleShader(vertexShaderPath, fragmentShaderPath) {
  
 // ... Identical to previous code ...
 
 // Step A: load and compile vertex and fragment shaders
 this.mVertexShader = this._CompileShader(vertexShaderPath,
 gl.VERTEX_SHADER);
 this.mFragmentShader = this._CompileShader(fragmentShaderPath,
 gl.FRAGMENT_SHADER);
  
 // Step B: Create and link the shaders into a program.
 this.mCompiledShader = gl.createProgram();
 gl.attachShader(this.mCompiledShader, this.mVertexShader);
 gl.attachShader(this.mCompiledShader, this.mFragmentShader);
 gl.linkProgram(this.mCompiledShader);
 
 // Step C, D, E, F, G:
 // ... Identical to previous code ...
};
 
SimpleShader.prototype.cleanUp = function() {
 var gl = gEngine.Core.getGL();
 gl.detachShader(this.mCompiledShader, this.mVertexShader);
 gl.detachShader(this.mCompiledShader, this.mFragmentShader);
 gl.deleteShader(this.mVertexShader);
 gl.deleteShader(this.mFragmentShader);
};

a.	 The constructor is modified to reference the vertex and fragment shaders
with the mVertexShader and mFragmentShader variables.

b.	 The new cleanUp() function releases the memory associated with the
shaders.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

180

Testing Fonts
You are now ready to test the system font support for drawing text messages and to actually end the game by
stopping the game loop. The first step is to define the GameOver scene.

The GameOver Scene

The goal of this scene is to output a “Game Over” message for the player and end the game gracefully.
The scene will set up a proper WC system, draw the “Game Over” text, and stop the game loop.

	 1.	 Create a new file in the src/Engine/MyGame folder and name it GameOver.js.

	 2.	 Implement the constructor, with the mCamera to set up a convenient World
Coordinate (WC) system and the mMsg to contain the “Game Over” message.

function GameOver() {
 this.mCamera = null;
 this.mMsg = null;
};
gEngine.Core.inheritPrototype(GameOver, Scene);

	 3.	 In the initialize() function, define a convenient WC and initialize the
mMsg object.

GameOver.prototype.initialize = function() {
 // Step A: set up the cameras
 this.mCamera = new Camera(
 vec2.fromValues(50, 33), // position of the camera
 100, // width of camera
 [0, 0, 600, 400] // viewport (orgX, orgY, width, height)
);
 this.mCamera.setBackgroundColor([0.9, 0.9, 0.9, 1]);
  
 this.mMsg = new FontRenderable("Game Over!");
 this.mMsg.setColor([0, 0, 0, 1]);
 this.mMsg.getXform().setPosition(22, 32);
 this.mMsg.setTextHeight(10);
};

The mMsg is instantiated as a FontRenderable object with “Game Over” as the default message. Notice
that only the height of the text is set, setTextHeight(); the width of the entire message is computed based
on preserving the aspect ratio of the font.

	 4.	 Draw the text in the same manner as all Renderable objects.

GameOver.prototype.draw = function() {
 // Step A: clear the canvas
 gEngine.Core.clearCanvas([0.9, 0.9, 0.9, 1.0]); // clear to light gray
  
 // Step B: Activate the drawing Camera
 this.mCamera.setupViewProjection();
 this.mMsg.draw(this.mCamera.getVPMatrix());
};

Chapter 5 ■ Working with Textures, Sprites, and Fonts

181

	 5.	 In the update() function, stop the GameLoop to trigger the call to the
unloadScene() function.

GameOver.prototype.update = function() {
 gEngine.GameLoop.stop();
};

	 6.	 In the unloadScene() function, call gEngine_Core to clean up all system default
resources.

GameOver.prototype.unloadScene = function() {
 gEngine.Core.cleanUp(); // release gl resources
};

The GameOver scene is designed to print the “Game Over” message and terminate the entire game.

The MyGame Scene

You can now finally modify the MyGame scene to print messages with the various fonts found in the
assets folder.

	 1.	 In the MyGame.js file, modify the constructor to contain corresponding variables
for printing the messages, and modify the draw() function to draw all objects
accordingly. Please refer to the src/MyGame/MyGame.js file for the details of
the code.

	 2.	 Modify the loadScene() function to load the textures and fonts.

MyGame.prototype.loadScene = function() {
 // Step A: loads the textures
 gEngine.Textures.loadTexture(this.kFontImage);
 gEngine.Textures.loadTexture(this.kMinionSprite);
  
 // Step B: loads all the fonts
 gEngine.Fonts.loadFont(this.kFontCon16);
 gEngine.Fonts.loadFont(this.kFontCon24);
 gEngine.Fonts.loadFont(this.kFontCon32);
 gEngine.Fonts.loadFont(this.kFontCon72);
 gEngine.Fonts.loadFont(this.kFontSeg96);
};

	 3.	 Modify the unloadScene() function to unload the textures and fonts and to start
the GameOver scene.

MyGame.prototype.unloadScene = function() {
 gEngine.Textures.unloadTexture(this.kFontImage);
 gEngine.Textures.unloadTexture(this.kMinionSprite);
  
 // unload the fonts
 gEngine.Fonts.unloadFont(this.kFontCon16);
 gEngine.Fonts.unloadFont(this.kFontCon24);

Chapter 5 ■ Working with Textures, Sprites, and Fonts

182

 gEngine.Fonts.unloadFont(this.kFontCon32);
 gEngine.Fonts.unloadFont(this.kFontCon72);
 gEngine.Fonts.unloadFont(this.kFontSeg96);
 
 // Step B: starts the next level
 var nextLevel = new GameOver(); // next level to be loaded
 gEngine.Core.startScene(nextLevel);
};

	 4.	 Define a private _initText() function to set the color, location, and height of a
FontRenderable object. Modify the initialize() function to set up the proper
WC system and initialize the fonts.

MyGame.prototype._InitText = function(font, posX, posY, color, textH) {
 font.setColor(color);
 font.getXform().setPosition(posX, posY);
 font.setTextHeight(textH);
};
 
MyGame.prototype.initialize = function() {
 // Step A: set up the cameras
 // ... Identical to previous code ...
  
 // Step B: Create the font and minion images using sprite
 // ... Identical to previous code ...
  
 // Create the fonts!
 this.mTextSysFont = new FontRenderable("System Font: in Red");
 this._InitText(this.mTextSysFont, 50, 60, [1, 0, 0, 1], 3);
  
 this.mTextCon16 = new FontRenderable("Consolas 16: in black");
 this.mTextCon16.setFont(this.kFontCon16);
 this._InitText(this.mTextCon16, 50, 55, [0, 0, 0, 1], 2);
  
 this.mTextCon24 = new FontRenderable("Consolas 24: in black");
 this.mTextCon24.setFont(this.kFontCon24);
 this._InitText(this.mTextCon24, 50, 50, [0, 0, 0, 1], 3);
  
 this.mTextCon32 = new FontRenderable("Consolas 32: in white");
 this.mTextCon32.setFont(this.kFontCon32);
 this._InitText(this.mTextCon32, 40, 40, [1, 1, 1, 1], 4);
  
 this.mTextCon72 = new FontRenderable("Consolas 72: in blue");
 this.mTextCon72.setFont(this.kFontCon72);
 this._InitText(this.mTextCon72, 30, 30, [0, 0, 1, 1], 6);
  
 this.mTextSeg96 = new FontRenderable("Segment7-92");
 this.mTextSeg96.setFont(this.kFontSeg96);
 this._InitText(this.mTextSeg96 , 30, 15, [1, 1, 0, 1], 7);
  
 this.mTextToWork = this.mTextCon16;
};

Chapter 5 ■ Working with Textures, Sprites, and Fonts

183

Notice the calls to setFont() function to change the font type for each message.

	 5.	 Modify the update() function with the following:

MyGame.prototype.update = function() {
 // Controlling of hero and zooming of font image
 // ... Identical to previous code ...
  
 // choose which text to work on
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.Zero))
 this.mTextToWork = this.mTextCon16;
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.One))
 this.mTextToWork = this.mTextCon24;
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.Three))
 this.mTextToWork = this.mTextCon32;
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.Four))
 this.mTextToWork = this.mTextCon72;
  
 var deltaF = 0.005;
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Up)) {
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.X)) {
 this.mTextToWork.getXform().incWidthBy(deltaF);
 }
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Y)) {
 this.mTextToWork.getXform().incHeightBy(deltaF);
 }
 �this.mTextSysFont.setText(

 this.mTextToWork.getXform().getWidth().toFixed(2) +
 "x" + this.mTextToWork.getXform().getHeight().toFixed(2));
 }
  
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Down)) {
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.X)) {
 this.mTextToWork.getXform().incWidthBy(-deltaF);
 }
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Y)) {
 this.mTextToWork.getXform().incHeightBy(-deltaF);
 }
 �this.mTextSysFont.setText(

 this.mTextToWork.getXform().getWidth().toFixed(2) + "x"
 + this.mTextToWork.getXform().getHeight().toFixed(2));
 }
};

The previous code shows that you can do the following:

a.	 Select which FontRenderable object to work with based on keyboard 0 to 4
input.

b.	 Control the width and height of the selected FontRenderable object when
both the left/right arrow and x/y keys are pressed.

Chapter 5 ■ Working with Textures, Sprites, and Fonts

184

You can now interact with the FontSupport project to modify each of the displayed font message sizes
and to move the hero to trigger the end of the game.

Summary
In this chapter, you learned how to paste, or texture map, images on unit squares to better represent objects
in your games. You also learned how to identify and texture map a selected subregion of an image to the unit
square based on the normalize-ranged texture coordinate system. The chapter then explained how sprite
sheets can conserve the time required for loading texture images and facilitate the creation of animations.
This knowledge was then generalized and applied to the drawing of bitmap fonts.

The implementation of texture mapping and sprite sheet rendering take advantage of an important
aspect of game engine architecture: the Shader/Renderable object pair where JavaScript Shader objects
are defined to interface with corresponding GLSL shaders and Renderable objects to facilitate the creation
and interaction with multiple object instances. For example, you created TextureShader to interface with
TextureVS and TextureFS GLSL shaders and created TextureRenderable for the game programmers to
work with. This same pattern is repeated for SpriteShader and SpriteRenderable. The experience from
SpriteShader objects pairing with SpriteAnimateRenderable shows that, when appropriate, the same
Shader object can support multiple renderable object types in the game engine. This Shader/Renderable
pair implementation pattern will appear again in Chapter 8, when you learn to create 3D illumination effects.
Lastly, you have learned about the importance of cleaning up system resources when the game terminates.

At the beginning of this chapter, your game engine supports the player manipulating objects with the
keyboard and the drawing of these objects in various sizes and orientations. With the functionality from this
chapter, you can now represent these objects with interesting images and create animations of these objects
when desired. In the next chapter, you will learn about supporting intrinsic properties for these objects
including pseudo autonomous behaviors such as chasing and collision detections.

Game Design Considerations
In Chapter 4 you learned how responsive game feedback is essential to making players feel connected to a
game world and that this sense of connection is known as presence in game design. As you move through
future chapters in this book, you’ll notice that most game design is ultimately focused on enhancing the
sense of presence in one way or another, and you’ll discover that visual design is one of the most important
contributors to presence. Imagine, for example, a game where an object controlled by the player (referred
to as the hero moving forward) must maneuver through a 2D platformer-style game world; the player’s goal
might be to use the mouse and keyboard to jump the hero between individual surfaces rendered in the
game without falling through gaps that exist between those surfaces. The visual representation of the hero
and other objects in the environment determine how the player identifies with the game setting, which in
turn determines how effectively the game creates presence. Is the hero represented as a living creature or
just an abstract shape like a square or circle? Are the surfaces represented as building rooftops, as floating
rocks on an alien planet, or simply as abstract rectangles? There is no right or wrong answer when it comes
to selecting a visual representation or game setting, but it is important to design a visual style for all game
elements that feels unified and integrated into whatever game setting you choose (for example, abstract
rectangle platforms may negatively impact presence if your game setting is a tropical rainforest).

The Texture Shaders project demonstrated how .png images with transparency more effectively integrate
game elements into the game environment than formats like JPEG that don’t support transparency. If you
move the hero (represented here as simply a rectangle) to the right, nothing on the screen changes, but if you
move the hero to the left, you’ll eventually trigger a state change that alters the displayed visual elements as
you did in the Scene Objects project from Chapter 4. Notice how much more effectively the robot sprites are
integrated into the game scene when they’re .png files with transparency on the gray background compared to
when they’re .jpg images without transparency on the blue background. The Sprite Shaders project introduces

http://dx.doi.org/10.1007/978-1-4842-0952-3_8
http://dx.doi.org/10.1007/978-1-4842-0952-3_4
http://dx.doi.org/10.1007/978-1-4842-0952-3_4

Chapter 5 ■ Working with Textures, Sprites, and Fonts

185

a hero that more closely matches other elements in the game setting. You’ve replaced the hero rectangle from
the Texture Shaders project with a humanoid figure stylistically matched to the flying robots on the screen,
and the area of the rectangular hero image not occupied by the humanoid figure is transparent. If you were
to combine the hero from the Sprite Shaders project with the screen-altering action in the Texture Shaders
project, imagine that as the hero moves toward the robot on the right side of the screen, the robot might turn
red when the hero gets too close. The coded events are still simple at this point, but you can see how the visual
design and a few simple triggered actions can already begin to convey a game setting and enhance presence.

Note that as game designers, we often become enamored with highly detailed and elaborate visual
designs, and we begin to believe that higher fidelity and more elaborate visual elements are required to
make the best games. This drive for ever-more powerful graphics is the familiar race that many AAA games
engage in with their competition. While it’s true that game experiences and the sense of presence can
be considerably enhanced when paired with excellent art direction, excellence does not always require
elaborate and complex. Good art direction relies on developing a unified visual language where all elements
harmonize with each other and contribute to driving the game forward, and that harmony can be achieved
with anything from simple shapes and colors in a 2D plane to hyper-real 3D environments, and every
combination in between.

Adding animated motion to the game’s visual elements can further enhance game presence because
animation brings a sense of cinematic dynamism to gameplay that further connects players to the game
world. We typically experience motion in our world as interconnected systems. When you walk across the
room, for example, you don’t just glide without moving your body; you move different parts of your body
together in different ways. By adding targeted animations to objects onscreen that cause those objects to
behave in ways you might expect complex systems to move or act, you connect players in a more immersive
and engaging way to what’s going on in the game world. The Sprite Animation project demonstrates how
animation increases presence by allowing you to articulate the flying robot’s spikes, controlling direction
and speed. And again, imagine combining the Sprite Animation project with the earlier projects in this
chapter. As the hero moves closer to the robot, it might turn first turn red; closer still might trigger the robot’s
animations and move it either toward or away from the player. Animations often come fairly late in the
game design process because it’s helpful to have the game mechanic and other systems well defined so that
animations, which tend to be time-consuming to change once complete, can be produced after level designs
have been finalized and tested with placeholder assets.

As was the case with visual design, the animation approach need not be especially complex to be
effective. Animation needs to be intentional and unified, and it should feel smooth and stutter-free unless it’s
intentionally designed to be otherwise; a wide degree of artistic license can be employed in how movement
is represented onscreen.

The Font Support project introduced you to game fonts. While fonts rarely have a direct impact on
gameplay, they can have a dramatic impact on presence. Fonts are a form of visual communication, and
the style of the font is often as important as the words it conveys in setting tone and mood and can either
support or detract from the game setting and visual style. Pay particular attention to the fonts displayed in
this project. Note how the yellow font conveys a digital feeling that’s matched to the science fiction–inspired
visual style of the hero and robots, while the Consolas font family with its round letterforms feels a bit out
of place with this game setting (sparse though the game setting may still be). As a more extreme example,
imagine how disconnected a flowing calligraphic script font (the type typically used in high-fantasy games)
would appear in a futuristic game that takes place on a spaceship.

There are as many visual style possibilities for games as there are people and ideas, and great games
can feature extremely simple graphics. Remember that excellent game design is a combination of the
nine contributing elements (return to the introduction if you need to refresh your memory), and the most
important thing to keep in mind as a game designer is maintaining focus on how each of those elements
harmonizes with and elevates the others to create something greater than the sum of its parts.

187

Chapter 6

Defining Behaviors and
Detecting Collisions

After completing this chapter, you will be able to:

•	 Implement autonomous, controlled, gradual turning and target-locked
chasing behaviors

•	 Collide textured objects accurately

•	 Understand the efficiency concerns of pixel-accurate collision

•	 Program with pixel-accurate collision effectively and efficiently

Introduction
By this point, your game engine is capable of implementing games in convenient coordinate systems
and presenting and animating objects that are visually appealing. However, there is a lack of abstraction
support for the behaviors of objects. You can see the direct result of this shortcoming in the initialize()
and update() functions of the MyGame objects in all the previous projects: the initialize() function is
often crowded with mundane per-game object settings, while the update() function is often crowded with
conditional statements for controlling objects, such as checking for key presses for moving the hero.

A well-designed system should hide the initialization and controls of individual objects with proper
object-oriented abstractions, or classes. An abstract GameObject class should be introduced to abstract and
hide the specifics of initialization and behaviors. There are two main advantages to this approach. First, the
initialize() and update() functions of a game level can focus on managing individual game object and
the interactions of these objects without being clustered with details specific to different types of objects.
Second, as you have experienced with the Renderable and Shader object hierarchies, proper object-oriented
abstraction creates a standardized interface and facilitates code sharing and reuse.

As you transition from working with the mere drawing of objects (in other words, Renderable) to
programming with behavior of objects (in other words, GameObject), you will immediately notice that for
the game to be entertaining or fun, the objects need to interact. Interesting behaviors of objects, such as
facing or evading enemies, often require the knowledge of the relative positions of other relevant objects
in the game. In general, resolving relative positions of all objects in a two-dimensional world is nontrivial.
Fortunately, typical video games require the knowledge only of objects that are in close proximity to each
other or of detecting objects that are about to collide or have collided. An efficient but somewhat crude
approximation to detect collision is to compute, bound, and collide objects with bounding boxes. In the
simplest cases, bounding boxes are rectangular boxes with edges that are aligned with the x/y-axes. Because
of the axes alignments, it is computationally efficient to detect when two bounding boxes overlap or when

Chapter 6 ■ Defining Behaviors and Detecting Collisions

188

collision is about to occur. Most 2D game engines detect the actual collision between two textured objects
by comparing the location of pixels from both objects and detecting the situation when at least one of the
pixels overlaps. This computationally intensive process is known as per-pixel-accurate collision detection,
pixel-accurate collision, or per-pixel collision.

This chapter begins by introducing the GameObject class to provide a platform for abstracting game
object behaviors. The GameObject class is then generalized to introduce common behavior attributes
including speed, movement direction, and target-locked chasing. The rest of the chapter focuses on deriving
an efficient per-pixel accurate collision implementation that supports both textured and animated sprite
objects.

Game Objects
As mentioned, an abstraction that encapsulates the intrinsic behavior of typical game objects should be
introduced to minimize the clustering of code in the initialize() and update() functions of a game level
and to facilitate reuse. This section introduces the simple GameObject class to illustrate how the cleaner and
unclustered initialize() and update() functions clearly reflect the in-game logic and to demonstrate how
the basic platform for abstracting object behaviors facilitates design and code reuse.

The Game Objects Project
This project defines the simple GameObject class as the first step in building an abstraction to represent
actual objects with behaviors in a game. You can see an example of this project running in Figure 6-1. Notice
the many minions charging from right to left and wrapping around when they reach the left boundary. This
project leads you to create the infrastructure to support the many minions while keeping the logic in the
MyGame level simple. The source code to this project is defined in the Chapter6/6.1.GameObjects folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_6

Chapter 6 ■ Defining Behaviors and Detecting Collisions

189

The controls of the project are as follows:

•	 WASD keys: Move the hero up, left, down, and right

The goals of the project are as follows:

•	 To improve the engine drawing infrastructure to receive the Camera object instead of
just the View-Projection matrix of a camera. Although this goal is minimally related
to game object behaviors, this is a necessary step to include in order to support the
growing game engine sophistication.

•	 To begin defining the GameObject class to encapsulate object behaviors in games.

•	 To demonstrate the creation of subclasses to the GameObject class to maintain the
simplicity of the MyGame level update() function.

You can find the following external resource file in the assets folder: minion_sprite.png; you’ll
also find the fonts folder that contains the default system fonts. Note that, as shown in Figure 6-2, the
minion_sprite.png image file has been updated from the previous project to include two extra sprite
elements: the DyePack and the Brain minion.

Figure 6-1.  Running the Game Objects project

Chapter 6 ■ Defining Behaviors and Detecting Collisions

190

Modify Renderable and Shader Objects to Draw with a Camera
As the game engine improves to a higher level of abstraction, it is important to upgrade its drawing capability
from receiving and working with a simple View-Projection transformation to a Camera object. This change
prepares the engine to support the more sophisticated shaders to be covered in later chapters. This change
involves all the Shader and Renderable objects. Though many files are involved, the actual changes are
mundane; they consist of a simple replacement of the matrix with a camera. For this reason, only changes
to the base objects, Renderable and SimpleShader, are shown here. You can refer to the source code files of
TextureShader, SpriteShader, TextureRenderable, SpriteRenderable, SpriteAnimateRenderable, and
FontRenderable for details.

	 1.	 Modify the Renderable object’s draw() function to replace the vpMatrix
parameter with aCamera and forward this camera to the shader.

Renderable.prototype.draw = function (aCamera) {
 var gl = gEngine.Core.getGL();
 this.mShader.activateShader(this.mColor, aCamera);
 this.mShader.loadObjectTransform(this.mXform.getXform());
 gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
};

	 2.	 Modify the SimpleShader object’s activateShader() function to work
with a camera.

SimpleShader.prototype.activateShader = function (pixelColor, aCamera) {
 var gl = gEngine.Core.getGL();
 gl.useProgram(this.mCompiledShader);
 gl.uniformMatrix4fv(this.mViewProjTransform, false, aCamera.getVPMatrix());
 gl.enableVertexAttribArray(this.mShaderVertexPositionAttribute);
 gl.uniform4fv(this.mPixelColor, pixelColor);
};

Figure 6-2.  The new sprite elements of the minion_sprite.png image

Chapter 6 ■ Defining Behaviors and Detecting Collisions

191

Notice that these changes are trivial replacements of the parameter. Please refer to the source code files
for all similar changes to all the objects derived from the Renderable and SimpleShader objects.

Define the GameObject
The goal is to define a logical abstraction to integrate the behavioral characteristics of a game object
including the ability to control positions, drawing, and so on. As in the case for the Scene objects in the
earlier chapter, the main result is to provide a well-defined interface governing the functions that subclasses
implement. The more sophisticated behaviors will be introduced in the next section. This example
demonstrates the potentials of only the GameObject class with minimal behaviors defined.

	 1.	 Add a new folder src/Engine/GameObjects for storing GameObject-related files.

	 2.	 Create a new file in this folder, name it GameObject.js, and add the following code:

function GameObject(renderableObj) {
 this.mRenderComponent = renderableObj;
}
 
GameObject.prototype.getXform = function () {
 return this.mRenderComponent.getXform();
};
 
GameObject.prototype.update = function () {};
 
GameObject.prototype.getRenderable = function () {
 return this.mRenderComponent;
};
 
GameObject.prototype.draw = function (aCamera) {
 this.mRenderComponent.draw(aCamera);
};

With the assessors to the Renderable and Transfrom objects defined, all GameObject instances can be
drawn and have defined locations and sizes. Note that the update() function is designed for subclasses to
override with per-object specific behaviors, and thus it is left empty.

Manage Game Objects in Sets
Because most games consist of many interacting objects, it is useful to define a utility class to support
working with a set of GameObject instances.

	 1.	 Create a new file in the src/Engine/GameObjects folder and name it
GameObjectSet.js. Define the constructor to create an array for holding
GameObject instances.

function GameObjectSet() {
 this.mSet = [];
}

Chapter 6 ■ Defining Behaviors and Detecting Collisions

192

	 2.	 Define functions for managing the set membership.

GameObjectSet.prototype.size = function() { return this.mSet.length; };
 
GameObjectSet.prototype.getObjectAt = function(index) {
 return this.mSet[index];
};
 
GameObjectSet.prototype.addToSet = function(obj) {
 this.mSet.push(obj);
};

	 3.	 Define functions to update and draw each of the GameObject instances in the set.

GameObjectSet.prototype.update = function() {
 var i;
 for (i = 0; i < this.mSet.length; i++) {
 this.mSet[i].update();
 }
};
 
GameObjectSet.prototype.draw = function(aCamera) {
 var i;
 for (i = 0; i < this.mSet.length; i++) {
 this.mSet[i].draw(aCamera);
 }
};

Test the GameObject and GameObjectSet
The goals are to ensure proper functioning of the new GameObject class, to demonstrate customization of
behaviors by individual object types, and to observe a cleaner MyGame implementation clearly reflecting the
in-game logic. To accomplish these goals, three object types are defined: DyePack, Hero, and Minion. Before
you begin to examine the detail implementation of these objects, following good source code organization
practice, create the new folder src/MyGame/Objects for storing the new object types.

The DyePack GameObject

The DyePack object derives from the GameObject class to demonstrate the simplest example of a GameObject
where the object can be drawn only without any specific behaviors.

•	 Create a new file in the src/MyGame/Objects/ folder and name it DyePack.js. Define
this as a subclass of GameObject and implement the constructor as follows:

function DyePack(spriteTexture) {
 this.kRefWidth = 80;
 this.kRefHeight = 130;
 
 this.mDyePack = new SpriteRenderable(spriteTexture);
 this.mDyePack.setColor([1, 1, 1, 0.1]);
 this.mDyePack.getXform().setPosition(50, 33);

Chapter 6 ■ Defining Behaviors and Detecting Collisions

193

 this.mDyePack.getXform().setSize(this.kRefWidth / 50, this.kRefHeight / 50);
 this.mDyePack.setElementPixelPositions(510, 595, 23, 153);
 GameObject.call(this, this.mDyePack);
}
gEngine.Core.inheritPrototype(DyePack, GameObject);

Notice that even without specific behaviors, the DyePack is implementing code that used to be found
in the initialize() function of the MyGame level. In this way, the DyePack object hides specific geometric
information and simplifies the MyGame level.

The Hero GameObject

The Hero object supports direct user keyboard control. This object demonstrates hiding of game object
control logic from the MyGame level’s update() function.

	 1.	 Create a new file in the src/MyGame/Objects/ folder and name it Hero.js. Define
this as a subclass of GameObject and implement the constructor to initialize the
sprite UV values, size, and position as follows:

function Hero(spriteTexture) {
 this.kDelta = 0.3;
 this.mDye = new SpriteRenderable(spriteTexture);
 this.mDye.setColor([1, 1, 1, 0]);
 this.mDye.getXform().setPosition(35, 50);
 this.mDye.getXform().setSize(9, 12);
 this.mDye.setElementPixelPositions(0, 120, 0, 180);
 GameObject.call(this, this.mDye);
}
gEngine.Core.inheritPrototype(Hero, GameObject);

	 2.	 Add a function to support the update of this object by user keyboard control:

Hero.prototype.update = function () {
 // control by WASD
 var xform = this.getXform();
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.W))
 xform.incYPosBy(this.kDelta);
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.S))
 xform.incYPosBy(-this.kDelta);
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.A))
 xform.incXPosBy(-this.kDelta);
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.D))
 xform.incXPosBy(this.kDelta);
};

The Hero object moves at a kDelta rate based on WASD input from the keyboard.

Chapter 6 ■ Defining Behaviors and Detecting Collisions

194

The Minion GameObject

The Minion object demonstrates that simple autonomous behavior can also be hidden.

	 1.	 Create a new file in the src/MyGame/Objects/ folder and name it Minion.js.
Define this as a subclass of GameObject and implement the constructor to initialize
the sprite UV values, sprite animation parameters, size, and position as follows:

function Minion(spriteTexture, atY) {
 this.kDelta = 0.2;
 this.mMinion = new SpriteAnimateRenderable(spriteTexture);
 this.mMinion.setColor([1, 1, 1, 0]);
 this.mMinion.getXform().setPosition(Math.random() * 100, atY);
 this.mMinion.getXform().setSize(12, 9.6);
 this.mMinion.setSpriteSequence(512, 0, // first element pixel
 204, 164, // widthxheight in pixels
 5, // number of elements
 0); // horizontal padding in between
 this.mMinion.setAnimationType(SpriteAnimateRenderable.eAnimationType.eAnimateSwing);
 this.mMinion.setAnimationSpeed(15); // show each element for mAnimSpeed updates
 GameObject.call(this, this.mMinion);
}
gEngine.Core.inheritPrototype(Minion, GameObject);

	 2.	 Add a function to update the sprite animation, support the simple right-to-left
movements, and provide the wrapping functionality.

Minion.prototype.update = function () {
 // remember to update this.mMinion's animation
 this.mMinion.updateAnimation();
 
 // move toward the left and wraps
 var xform = this.getXform();
 xform.incXPosBy(-this.kDelta);
 
 // if fly off to the left, re-appear at the right
 if (xform.getXPos() < 0) {
 xform.setXPos(100);
 xform.setYPos(65 * Math.random());
 }
};

MyGame Scene

As in all cases, the MyGame level is implemented in the MyGame.js file. In this case, with the three specific
GameObject subclasses defined, follow these steps:

	 1.	 The constructor and the loadScene(), unloadScene(), and draw() functions are
similar as in previous projects, so the details are not shown here. Please refer to
the MyGame.js file for the actual implementations.

Chapter 6 ■ Defining Behaviors and Detecting Collisions

195

	 2.	 Edit the initialize() function and add the following code:

MyGame.prototype.initialize = function () {
 // ... identical code to previous project ...
 
 // Step B: The dye pack: simply another GameObject
 this.mDyePack = new DyePack(this.kMinionSprite);
 
 // Step C: A set of Minions
 this.mMinionset = new GameObjectSet();
 var i = 0, randomY, aMinion;
 // create 5 minions at random Y values
 for (i = 0; i < 5; i++) {
 randomY = Math.random() * 65;
 aMinion = new Minion(this.kMinionSprite, randomY);
 this.mMinionset.addToSet(aMinion);
 }
 
 // Step D: Create the hero object
 this.mHero = new Hero(this.kMinionSprite);
 
 // Step E: Create and initialize message output
 this.mMsg = new FontRenderable("Status Message");
 this.mMsg.setColor([0, 0, 0, 1]);
 this.mMsg.getXform().setPosition(1, 2);
 this.mMsg.setTextHeight(3);
};

The details of step A, the creation of the camera and initialization of the background color, are not
shown because they are identical to previous projects. Steps B, C, and D show the instantiation of the three
object types, with step C showing the creation and insertion of the right-to-left moving Minion objects into
the mMinionset. Notice that the initialization function is free from the clustering of setting each object’s
textures, geometries, and so on.

	 3.	 Edit the update() function to update the game state.

MyGame.prototype.update = function () {
 this.mHero.update();
 this.mMinionset.update();
 this.mDyePack.update();
};

With the well-defined behaviors for each object type abstracted, the clean update() function clearly
shows that the game consists of three noninteracting objects.

You can now run the project and notice that the slightly more complex movements of six minions
are accomplished with much cleaner initialize() and update() functions. The initialize() function
simply consists of only logic and controls of placing created objects in the game world and does not include
any specific settings for different object types. With the Minion object defining its motion behaviors in its
own update() function, the logic in the MyGame level’s update() function can focus on object-level controls
without being clustered by the details. Note that the structure of this function clearly shows the three objects
are updated independently and do not interact with each other.

Chapter 6 ■ Defining Behaviors and Detecting Collisions

196

Chasing of a GameObject
A closer examination of the previous project reveals that though there are quite a few minions moving on
the screen, their motions are simple and boring. Even though there are variations in speed and direction,
the motions are without purpose or awareness of other game objects in the scene. To support more
sophisticated or interesting movements, a GameObject needs to be aware of the locations of other objects
and determine motion based on that information.

Chasing behavior is one such example. The goal of a chasing object is usually to catch the game object
that it is targeting. This requires programmatic manipulation of the chaser’s front direction and speed so it
can hone in on its target. However, it is generally important to avoid implementing a chaser that has perfect
aim and always hits its target—because if the projectile always hits its target and characters are unable to
avoid being hit, the challenge will essentially be removed from the game. Nonetheless, this does not mean
you should not implement a perfect chaser if your game design requires it. You will implement a chaser in
the next project.

Vectors and the associated operations are the foundation for implementing object movements
and behaviors. Before programming with vectors, a quick review is provided. As in the case of matrices
and transform operators, the following discussion is not meant to be a comprehensive coverage of
vectors. Instead, the focus is on the application of a small collection of concepts that are relevant to the
implementation of the game engine. This is not a study of the theories behind the mathematics. If you are
interested in the specifics of vectors and how they relate to computer graphics, please refer to the discussion
in Chapter 1 where you can learn more about these topics in depth by delving into relevant books on linear
algebra and computer graphics.

Vectors Review
Vectors are used across many fields of study, including mathematics, physics, computer science, and
engineering. They are particularly important in games; nearly every game uses vectors in one way or
another. Because they are used so extensively, this section is devoted to understanding and utilizing vectors
in games.

One of the most common uses for vectors is to represent an object’s displacement and direction, or
velocity. This can be done easily because a vector is defined by its size and direction. Using only this small
amount of information, you can represent attributes such as an object’s velocity or acceleration. If you
have the position of an object, its direction, and its velocity, then you have sufficient information to move it
around the game world without user input.

Before going any further, it is important to review the concepts of a vector, starting with how you can
define one. A vector can be specified using two points. For example, given the arbitrary positions
P x ya a a= (), and P x yb b b= (), , you can define the vector from P

a
 to P

b
 or (



Vab) as P Pb a- . You can see this

represented in the following equations and Figure 6-3:

•	 P x ya a a= (),

•	 P x yb b b= (),

•	


V P P x x y yab b a b a b a= - = - -(),

http://dx.doi.org/10.1007/978-1-4842-0952-3_1

Chapter 6 ■ Defining Behaviors and Detecting Collisions

197

Now that you have a vector


Vab , you can easily ascertain its length (or size) and its direction. A vector’s
length is equal to the distance between the two points that created it. In this example, the length of



Vab is
equal to the distance between P

a
 and P

b
, while the direction of



Vab goes from P
a
 toward P

b
.

■■ Note  The size of a vector is often referred to as its length, or magnitude.

In the gl-matrix library, the vec2 object implements the functionality of a two-dimensional (2D)
vector. Conveniently, you can also use the vec2 object to represent 2D points, or positions in space. In the
preceding example, P

a
, P

b
, and



Vab can all be implemented as instances of the vec2 object; however,


Vab is
the only mathematically defined vector. P

a
 and P

b
 represent positions, or points used to create a vector.

Recall that a vector can also be normalized. A normalized vector (also known as a unit vector) always
has a size of 1. You can see a normalized vector by the following function and Figure 6-4. Notice that the
mathematic symbol for a regular vector is



Va and for a normalized vector is V̂a :

•	 vec normalized Va2.
() : Normalizes vector



Va and stores the results to the vec2 object

Figure 6-3.  A vector defined by two points

Figure 6-4.  A vector being normalized

Vectors to a position can also be rotated. If, for example, the vector


V x yv v= (), represents the direction

from the origin to the position (x
v
,  y

v
) and you want to rotate it by q, then you can use the following

equations shown to derive x
r
 and y

r
. Figure 6-5 shows the rotation of a vector to a position from the origin

being applied.

•	 x x yr v v= -cos sinq q

•	 y x yr v v= +sin cosq q

Chapter 6 ■ Defining Behaviors and Detecting Collisions

198

■■ Note  JavaScript trigonometric functions, including the Math.sin() and Math.cos() functions, assume
input to be in radians and not degrees. Recall that 1 degree is equal to

p
180

 radians.

Furthermore, it is important to remember that vectors are defined by their direction and size; in other
words, two vectors can be equal to each other independent of the locations of the vectors. Figure 6-6 shows
two vectors (



Va and


Vbc) that are located at different positions but have the same direction and magnitude.

Because their direction and magnitude are the same, these vectors are equal to each other. In contrast, the
vector



Vd is not the same because its direction and magnitude are different from the others.

Figure 6-5.  A vector from the origin to a position being rotated by the angle theta

Figure 6-6.  Three vectors represented in 2D space with two vectors equal to each other

The Dot Product
The dot product of two normalized vectors provides you with the means to find the angle between those
vectors. For example, given the following:

•	


V x y1 1 1= (),

•	


V x y2 2 2= (),

then the following is true:

•	
   

V V V V x x y y1 2 2 1 1 2 1 2× = × = + .

Additionally, if both vectors


V1 and


V2 are normalized, then:

•	 ˆ ˆ cosV V1 2× = q .

Chapter 6 ■ Defining Behaviors and Detecting Collisions

199

You can see this concept reinforced in Figure 6-7. Moreover, it is also important to recognize that if
 

V V1 2 0× = , then the two vectors are perpendicular.

Figure 6-7.  The angle between two vectors, which can be found through the dot product

■■ Note I f you need to review or refresh the concept of a dot product, please refer to
http://www.mathsisfun.com/algebra/vectors-dot-product.html.

The Cross Product
The cross product of two vectors produces a vector that is orthogonal, or perpendicular, to both of the
original vectors. In 2D games, where the 2D dimensions lie flat on the screen, the cross product results in a
vector that points either inward (toward the screen) or outward (away from the screen). This may seem odd
because it is not intuitive that crossing two vectors in 2D or the XY plane results in a vector that lies in the
third dimension, or along the z-axis. However, this vector is essential for the sole purpose of determining
whether the game object needs to rotate in the clockwise or counterclockwise direction. Take a closer look at
the following:

•	


V x y1 1 1= (),

•	


V x y2 2 2= (),

Given the previous, the following is true:

•	
  

V V V3 1 2= ´ is a vector perpendicular to both


V1 and


V2 .

Also, you know that the cross product of two vectors on the XY plane results in a vector in the Z direction.
When

 

V V1 2 0´ > , you know that


V1 is in the clockwise direction from


V2 ; similarly, when
 

V V1 2 0´ < , you

know that


V1 is in the counterclockwise direction. Figure 6-8 should help clarify this concept.

http://www.mathsisfun.com/algebra/vectors-dot-product.html
http://www.mathsisfun.com/algebra/vectors-dot-product.html

Chapter 6 ■ Defining Behaviors and Detecting Collisions

200

■■ Note I f you need to review or refresh the concept of a cross product, please refer to
http://www.mathsisfun.com/algebra/vectors-cross-product.html.

The Front and Chase Project
This project implements more interesting and sophisticated behaviors based on the vector concepts
reviewed. Instead of constant and aimless motions, you will experience defining and varying the
front direction of an object and guiding an object to chase after another object in the scene. You can
see an example of this project running in Figure 6-9. The source code to this project is defined in the
Chapter6/6.2.FrontAndChase folder.

Figure 6-8.  The cross product on two vectors

http://www.mathsisfun.com/algebra/vectors-cross-product.html
http://dx.doi.org/10.1007/978-1-4842-0952-3_6

Chapter 6 ■ Defining Behaviors and Detecting Collisions

201

The controls of the project are as follows:

•	 WASD keys: Moves the Hero object

•	 Left/Right Arrow keys: Change the front direction of the Brain object when it is under
user control

•	 Up/Down Arrow keys: Increase/decrease the speed of the Brain object

•	 H key: Switches the Brain object to be under user arrow keys control

•	 J key: Switches the Brain object to always point at and move toward the current
Hero object position

•	 K key: Switches the Brain object to turn and move gradually toward the current
Hero object position

The goals of the project are as follows:

•	 To experience working with speed and direction

•	 To practice traveling along a predefined direction

Figure 6-9.  Running the Front and Chase project

Chapter 6 ■ Defining Behaviors and Detecting Collisions

202

•	 To implement algorithms with vector dot and cross products

•	 To examine and implement chasing behavior

You can find the same external resource files as in the previous project in the assets folder.

Add Vector Rotation to the gl-matrix Library
The gl-matrix library does not support rotating a position in 2D space. This can be rectified by adding the
following code to the gl-matrix.js file in the lib folder:

vec2.rotate = function(out, a, c){
 var r=[];
 // perform rotation
 r[0] = a[0]*Math.cos(c) - a[1]*Math.sin(c);
 r[1] = a[0]*Math.sin(c) + a[1]*Math.cos(c);
 out[0] = r[0];
 out[1] = r[1];
 return r;
};

■■ Note T his modification to the gl-matrix library must be present in all the projects from this point forward.

Modify GameObject to Support Interesting Behaviors
The GameObject class abstracts and implements the desired new object behaviors:

	 1.	 Edit the GameObject.js file and modify the GameObject constructor to define
visibility, front direction, and speed.

function GameObject(renderableObj) {
 this.mRenderComponent = renderableObj;
 this.mVisible = true;
 this.mCurrentFrontDir = vec2.fromValues(0, 1); // current front direction
 this.mSpeed = 0;
}

	 2.	 Add assessor and setter functions for the instance variables.

GameObject.prototype.getXform = function () { return this.mRenderComponent.getXform(); };
GameObject.prototype.setVisibility = function (f) { this.mVisible = f; };
GameObject.prototype.isVisible = function () { return this.mVisible; };
 
GameObject.prototype.setSpeed = function (s) { this.mSpeed = s; };
GameObject.prototype.getSpeed = function () { return this.mSpeed; };
GameObject.prototype.incSpeedBy = function (delta) { this.mSpeed += delta; };
 

Chapter 6 ■ Defining Behaviors and Detecting Collisions

203

Game�Object.prototype.setCurrentFrontDir = function (f) { vec2.normalize(this.
mCurrentFrontDir, f); };

GameObject.prototype.getCurrentFrontDir = function () { return this.mCurrentFrontDir; };
 
GameObject.prototype.getRenderable = function () { return this.mRenderComponent; };

	 3.	 Implement a function to rotate the front direction toward a position, p.

GameObject.prototype.rotateObjPointTo = function (p, rate) {
 // Step A: determine if reach the destination position p
 var dir = [];
 vec2.sub(dir, p, this.getXform().getPosition());
 var len = vec2.length(dir);
 if (len < Number.MIN_VALUE)
 return; // we are there.
 vec2.scale(dir, dir, 1 / len);
 
 // Step B: compute the angle to rotate
 var fdir = this.getCurrentFrontDir();
 var cosTheta = vec2.dot(dir, fdir);
 if (cosTheta > 0.999999) // almost exactly the same direction
 return;
 
 // Step C: clamp the cosTheda to -1 to 1
 // in a perfect world, this would never happen! BUT ...
 if (cosTheta > 1)
 cosTheta = 1;
 else
 if (cosTheta < -1)
 cosTheta = -1;
  
 // Step D: compute whether to rotate clockwise, or counterclockwise
 var dir3d = vec3.fromValues(dir[0], dir[1], 0);
 var f3d = vec3.fromValues(fdir[0], fdir[1], 0);
 var r3d = [];
 vec3.cross(r3d, f3d, dir3d);
 
 var rad = Math.acos(cosTheta); // radian to roate
 if (r3d[2] < 0)
 rad = -rad;
 
 // Step E: rotate the facing direction with the angle and rate
 rad *= rate; // actual angle need to rotate from Obj's front
 vec2.rotate(this.getCurrentFrontDir(), this.getCurrentFrontDir(), rad);
 this.getXform().incRotationByRad(rad);
};

Chapter 6 ■ Defining Behaviors and Detecting Collisions

204

The rotateObjPointTo() function rotates the mCurrentFrontDir to point to destination position p at
the rate specified by the parameter. Here are the detailed operations:

a.	 Step A computes the distance between the current object and the
destination position p. If this value is small, it means current object and the
target position are close. The function returns without further processing.

b.	 Step B computes the dot product to determine the angle between the current
front direction of the object (fdir) and the direction toward the destination
position p (dir). If these two vectors are pointing in the same direction, the
function returns. This computation is illustrated in Figure 6-10.

Figure 6-10.  A GameObject (Brain) chasing a target (Hero)

c.	 Step C checks for the range of cosTheta. This is a step that must be
performed because of the inaccuracy of floating-point operations in
JavaScript.

d.	 Step D computes the results of the cross product to determine whether the
current GameObject should be turning clockwise or counterclockwise to
face toward the destination position p.

e.	 Step E rotates mCurrentFrontDir and sets the rotation in the Transform of
the Renderable object.

	 4.	 Add a function to update the object’s position with its direction and speed.

GameObject.prototype.update = function () {
 // simple default behavior
 var pos = this.getXform().getPosition();
 vec2.scaleAndAdd(pos, pos, this.getCurrentFrontDir(), this.getSpeed());
};

Chapter 6 ■ Defining Behaviors and Detecting Collisions

205

Notice that if the mCurrentFrontDir is modified by the rotateObjPointTo() function, then this
update() function will move the object toward the target position p, and the object will behave as though it
is chasing the target.

	 5.	 Add a function to draw the object based on the visibility setting.

GameObject.prototype.draw = function (aCamera) {
 if (this.isVisible())
 this.mRenderComponent.draw(aCamera);
};

Test the Chasing Functionality
The strategy and goals of this test case are to create a steerable Brain object for testing traveling along a predefined
front direction and direct the Brain object to chase after the Hero object to test the chasing functionality.

Define the Brain GameObject

The Brain object will travel along its front direction under the control of the user’s Left/Right Arrow keys
for steering:

	 1.	 Create a new file in the src/MyGame/Objects folder and name it Brain.js. Define
this as a subclass of GameObject and implement the constructor to initialize the
appearance and initial behavior of the object.

function Brain(spriteTexture) {
 this.kDeltaDegree = 1;
 this.kDeltaRad = Math.PI * this.kDeltaDegree / 180;
 this.kDeltaSpeed = 0.01;
 this.mBrain = new SpriteRenderable(spriteTexture);
 this.mBrain.setColor([1, 1, 1, 0]);
 this.mBrain.getXform().setPosition(50, 10);
 this.mBrain.getXform().setSize(3, 5.4);
 this.mBrain.setElementPixelPositions(600, 700, 0, 180);
 GameObject.call(this, this.mBrain);
 this.setSpeed(0.05);
}
gEngine.Core.inheritPrototype(Brain, GameObject);

	 2.	 Override the update() function to support user steering and controlling the
speed. Notice that the default update() function in the GameObject must be
called to support the basic traveling of the object along the front direction
according to its speed.

Brain.prototype.update = function () {
 GameObject.prototype.update.call(this); // default moving forward
 var xf = this.getXform();
 var fdir = this.getCurrentFrontDir();
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Left)) {
 xf.incRotationByDegree(this.kDeltaDegree);
 vec2.rotate(fdir, fdir, this.kDeltaRad);
 }

Chapter 6 ■ Defining Behaviors and Detecting Collisions

206

 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Right)) {
 xf.incRotationByRad(-this.kDeltaRad);
 vec2.rotate(fdir, fdir, -this.kDeltaRad);
 }
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.Up))
 this.incSpeedBy(this.kDeltaSpeed);
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.Down))
 this.incSpeedBy(-this.kDeltaSpeed);
};

The MyGame Scene

Modify the MyGame scene to test the Brain object movement. In this case, except for the update() function,
the rest of the source code in MyGame.js is similar to previous projects. For this reason, only the details of
the update() function are shown. Please refer to the source code in the MyGame.js file for the rest of the
implementation details.

MyGame.prototype.update = function () {
 var msg = "Brain modes [H:keys, J:immediate, K:gradual]: ";
 var rate = 1;
 
 this.mHero.update();
 
 switch (this.mMode) {
 case 'H':
 this.mBrain.update(); // player steers with arrow keys
 break;
 case 'K':
 rate = 0.02; // graduate rate
 // When "K" is typed, the following should also be executed.
 case 'J':
 this.mBrain.rotateObjPointTo(this.mHero.getXform().getPosition(), rate);
 GameObject.prototype.update.call(this.mBrain);
 break;
 }
 
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.H))
 this.mMode = 'H';
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.J))
 this.mMode = 'J';=
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.K))
 this.mMode = 'K';
 
 this.mMsg.setText(msg + this.mMode);
};

In the update() function, the switch statement uses mMode to determine how to update the Brain
object. In the cases of J and K modes, the Brain object turns toward the Hero object position with the
rotateObjPointTo() function call. While in the H mode, the Brain object update() function is called for
the user to steer the object with the arrow keys. The final three if statements simply set the mMode variable
according to user input.

Chapter 6 ■ Defining Behaviors and Detecting Collisions

207

You can now try running the project. Initially the Brain object is under the user control. You can use the
Left and Right Arrow keys to change the front direction of the Brain object to experience with steering of the
object. Pressing the J key causes the Brain object to immediately point and move toward the Hero object.
This is a result of the default turn rate value of 1.0. The K key causes a more natural behavior, where the
Brain object continues to move forward and turns gradually to moves toward the Hero object. Feel free to
change the values of the rate variable or modify the controls value of the Brain object; for example, change
the kDeltaRad or kDeltaSpeed to experience with different behavior settings.

Collisions Between GameObjects
In the previous project, the Brain object would never stop traveling. Notice that under the J and K modes,
the Brain object would orbit or rapidly flip directions when it reaches the target position. The Brain object
misses the crucial ability to detect that it has collided with the Hero object, and thus it can stop moving. This
section describes the axes-aligned bounding boxes, one of the most straightforward tools for approximating
object collisions, and demonstrates the implementation of collision detection based on bounding boxes.

Bounding Box
A bounding box is an x/y-axes aligned rectangular box that bounds a given object. The term x/y-axes aligned
refers to the fact that the four sides of a bounding box are parallel either to the horizontal x-axis or to
the vertical y-axis. Figure 6-11 shows an example of representing the bounds to the Brain object by the
lower-left corner (mLL), width, and height. This is a fairly common way to represent a bounding box because
it uses only one position and two floating-point numbers to represent the dimensions.

Figure 6-11.  The lower-left corner and size of the bounds for an object

It is interesting to note that, in addition to representing the bounds of an object, bounding boxes can be
used to represent the bounds of any given rectangular area. For example, recall that the WC visible through
the Camera is a rectangular area with the camera’s position located at the center and the WC width/height
defined. A bounding box can be defined to represent the visible WC rectangular area, or the WC window,
and used for detecting collision between the WC window and GameObject instances in the game world.

Chapter 6 ■ Defining Behaviors and Detecting Collisions

208

The Bounding Box and Collisions Project
This project demonstrates how to define a bounding box for a GameObject instance and detect collisions
between two GameObject instances based on their bounding boxes. It is important to remember that
bounding boxes are axes aligned, and thus the solution presented in this section does not support collision
detections between rotated objects. You can see an example of this project running in Figure 6-12. The
source code to this project is defined in the Chapter6/6.3.BBoxAndCollisions folder.

Figure 6-12.  Running the Bounding Box and Collisions project

The controls of the project are identical to the previous project.

•	 WASD keys: Moves the Hero object

•	 Left/Right Arrow keys: Change the front direction of the Brain object when it is under
user control

•	 Up/Down Arrow keys: Increase/decrease the speed of the Brain object

•	 H key: Switches the Brain object to be under user arrow keys control

http://dx.doi.org/10.1007/978-1-4842-0952-3_6

Chapter 6 ■ Defining Behaviors and Detecting Collisions

209

•	 J key: Switches the Brain object to always point at and move toward the current Hero
object position

•	 K key: Switches the Brain object to turn and move gradually toward the current Hero
object position

The goals of the project are as follows:

•	 To understand the implementation of a bounding box class

•	 To experience working with the bounding box of a GameObject instance

•	 To compute and work with the bounds of a Camera WC window

•	 To program with object collisions and object and camera WC window collisions

You can find the same external resource files as in the previous project in the assets folder.

Define a Bounding Box Object
Define a BoundingBox object to represent the bounds of a rectangular area.

	 1.	 Create a new file in the src/Engine folder, name it BoundingBox.js, and define its
constructor with instance variables to represent a bound, as illustrated in Figure 6-11.

function BoundingBox(centerPos, w, h) {
 this.mLL = vec2.fromValues(0, 0); // the lower-left corner position
 this.setBounds(centerPos, w, h);
}

	 2.	 The setBounds() function computes and sets the instance variables of the
bounding box.

BoundingBox.prototype.setBounds = function (centerPos, w, h) {
 this.mWidth = w;
 this.mHeight = h;
 this.mLL[0] = centerPos[0] - (w / 2);
 this.mLL[1] = centerPos[1] - (h / 2);
};

	 3.	 Define an enumerated data type with values that identify the collision sides of a
bounding box.

BoundingBox.eboundCollideStatus = Object.freeze({
 eCollideLeft: 1,
 eCollideRight: 2,
 eCollideTop: 4,
 eCollideBottom: 8,
 eInside : 16,
 eOutside: 0
});

Notice that each enumerated value is different and has only one nonzero bit. This allows the
enumerated values to be combined with the bitwise-or operator to represent a multisided collision. For
example, if an object collides with both the top and left sides of a bounding box, the collision status will be
eCollideLeft | eCollideTop = 4 | 1 = 5.

Chapter 6 ■ Defining Behaviors and Detecting Collisions

210

	 4.	 Define a function to determine whether a given position, (x, y), is within the
bounds of the box.

BoundingBox.prototype.containsPoint = function (x, y) {
 return ((x > this.minX()) && (x < this.maxX()) &&
 (y > this.minY()) && (y < this.maxY()));
};

	 5.	 Define a function to determine whether a given bound intersects with the
current one.

BoundingBox.prototype.intersectsBound = function (otherBound) {
 return ((this.minX() < otherBound.maxX()) &&
 (this.maxX() > otherBound.minX()) &&
 (this.minY() < otherBound.maxY()) &&
 (this.maxY() > otherBound.minY()));
};

	 6.	 Define a function to compute the intersection status between a given bound and
the current one.

BoundingBox.prototype.boundCollideStatus = function (otherBound) {
 var status = BoundingBox.eboundCollideStatus.eOutside;
 if (this.intersectsBound(otherBound)) {
 if (otherBound.minX() < this.minX())
 status |= BoundingBox.eboundCollideStatus.eCollideLeft;
 if (otherBound.maxX() > this.maxX())
 status |= BoundingBox.eboundCollideStatus.eCollideRight;
 if (otherBound.minY() < this.minY())
 status |= BoundingBox.eboundCollideStatus.eCollideBottom;
 if (otherBound.maxY() > this.maxY())
 status |= BoundingBox.eboundCollideStatus.eCollideTop;
 // if the bounds intersects and yet none of the sides overlaps
 // otherBound is completely inside thisBound
 if (status === BoundingBox.eboundCollideStatus.eOutside)
 status = BoundingBox.eboundCollideStatus.eInside;
 }
 return status;
};

Notice the subtle yet important difference between the intersectsBound() and boundCollideStatus()
functions where the former is capable only of returning a true or false condition while the latter function
encodes the colliding sides in the returned status.

	 7.	 Implement the functions that returns the X/Y values to the min and max bounds
of the bounding box.

BoundingBox.prototype.minX = function () { return this.mLL[0]; };
BoundingBox.prototype.maxX = function () { return this.mLL[0] + this.mWidth; };
BoundingBox.prototype.minY = function () { return this.mLL[1]; };
BoundingBox.prototype.maxY = function () { return this.mLL[1] + this.mHeight;};

Chapter 6 ■ Defining Behaviors and Detecting Collisions

211

Use the BoundingBox in the Engine
Follow these steps:

	 1.	 Modify the GameObject class to return the bounding box of the unrotated
Renderable object.

GameObject.prototype.getBBox = function () {
 var xform = this.getXform();
 var b = new BoundingBox(xform.getPosition(),xform.getWidth(), xform.getHeight());
 return b;
};

	 2.	 Modify the Camera object to compute the collision status between the bounds to
a Transform object (typically defined in a Renderable object) and that of the
WC window.

Camera.prototype.collideWCBound = function (aXform, zone) {
 var bbox = new BoundingBox(aXform.getPosition(),aXform.getWidth(), aXform.getHeight());
 var w = zone * this.getWCWidth();
 var h = zone * this.getWCHeight();
 var cameraBound = new BoundingBox(this.getWCCenter(), w, h);
 return cameraBound.boundCollideStatus(bbox);
};

Notice that the zone parameter defines the relative size of WC that should be used in the collision
computation. For example, a zone value of 0.8 would mean computing for intersection status based on 80
percent of the current WC window size. Figure 6-13 shows how the camera collides with an object.

Figure 6-13.  Camera WC Bounds colliding with the bounds defined a Transform object

Chapter 6 ■ Defining Behaviors and Detecting Collisions

212

Test Bounding Boxes with MyGame
The goal of this test case is to verify the correctness of the bounding box implementation in detecting
object-object and object-camera intersections. Once again, with the exception of the update() function, the
majority of the code in the MyGame.js file is similar to the previous projects and is not repeated here. The
update() function is modified from the previous project to test for bounding box intersections.

MyGame.prototype.update = function () {
 // ... identical code to previous project ...
 
 switch (this.mMode) {
 case 'H':
 this.mBrain.update(); // player steers with arrow keys
 break;
 case 'K':
 rate = 0.02; // graduate rate
 // no break here on purpose
 case 'J':
 if (!hBbox.intersectsBound(bBbox)) { // stop brain when touches hero
 this.mBrain.rotateObjPointTo(
 this.mHero.getXform().getPosition(),rate);
 GameObject.prototype.update.call(this.mBrain);
 }
 break;
 }
 
 // Check for hero going outside 80% of the WC Window bound
 var status = this.mCamera.collideWCBound(this.mHero.getXform(), 0.8);
 
 // ... identical code to previous project ...
 this.mMsg.setText(msg + this.mMode + " [Hero bound=" + status + "]");
};

The previous modification tests for bounding box collision between the Brain and Hero objects before
invoking the Brain.rotateObjPointTo() and update() functions to cause the chasing behavior. In this
way, the Brain object will stop moving as soon as it touches the bounds of the Hero object. In addition,
the collision results between the Hero object and 80 percent of the camera WC window are computed and
echoed.

You can now run the project and observe the Brain object stop moving as soon as it touches the Hero
object. When you move the Hero object around, observe that the output Hero Bound message echoes
WC window collisions before the Hero object actually touches the WC window bounds. This is a result
of the 0.8, or 80 percent, parameter passed to the mCamera.collideWCBound() function, configuring the
collision computation to 80 percent of the current WC window size. When the Hero object is completely
within 80 percent of the WC window bounds, the output Hero Bound value is 16, or the value of
eboundcollideStatus.eInside. Try moving the Hero object to touch the top 20 percent of the window
bound and observe the Hero Bound value of 4, or the value of eboundcollideStatus.eCollideTop. Now
move the Hero object toward the top-left corner of the window and observe the Hero Bound value of 5, or
eboundcollideStatus.eCollideTop | eboundcollideStatus.eCollideLeft. In this way, the collision
status is a bitwise-or result of all the colliding bounds.

Chapter 6 ■ Defining Behaviors and Detecting Collisions

213

Per-Pixel Collisions
In the previous example, you saw the results of bounding box collision approximation. Namely, the Brain
object’s motion stops as soon as its bounds overlap that of the Hero object. This is much improved over the
original situation where the Brain object never stops moving. However, as illustrated in Figure 6-14, there
are two serious limitations to the bounding box–based collisions.

Figure 6-14.  Limitation with bounding box–based collision

	 1.	 The BoundingBox object introduced in the previous example does not account
for rotation. This is a well-known limitation for axes-aligned bounding boxes:
although the approach is computationally efficient, it does not support rotation.

	 2.	 The two objects do not actually collide. The fact that the bounds of two objects
overlap does not automatically equate to the two objects colliding.

In this project, you will see how to achieve per-pixel-accurate collision detection, pixel-accurate
collision, or per-pixel collision, which identifies the overlapping of nontransparent pixels of two colliding
objects. However, keep in mind that this is not an end-all solution. While the collision detection is precise,
the trade-off is potential performance costs. As an image becomes larger and more complex, it also has more
pixels that need to be checked for collisions. This is in contrast to the constant computation cost required for
bounding box collision detection from the previous example.

The Per-Pixel Collisions Project
This project demonstrates how to detect collision between a large textured object, the Collector minion
and a small textured object, the Portal minion. Both of the textures contain transparent and nontransparent
areas. A collision occurs only when the nontransparent pixels overlap. In this project, when a collision
occurs, a yellow DyePack appears at the collision point. You can see an example of this project in Figure 6-15.
The source code to this project is defined in the Chapter6/6.4.PerPixelCollisions folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_6

Chapter 6 ■ Defining Behaviors and Detecting Collisions

214

The controls of the project are as follows:

•	 Arrow keys: Move the small textured object, the Portal minion

•	 WASD keys: Move the large textured object, the Collector minion

The goals of the project are as follows:

•	 To demonstrate how to detect nontransparent pixel overlap

•	 To understand the pros and cons of using per-pixel-accurate collision detection

You can find the following external resources in the assets folder: the fonts folder that contains the
default system fonts, minion_collector.png, minion_portal.png, and minion_sprite.png. Note that
minion_collector.png is a large, 1024x1024 image, while minion_portal.png is a small, 64x64 image;
minion_sprite.png defines the DyePack sprite element.

Figure 6-15.  Running the Per-Pixel Collisions project

Chapter 6 ■ Defining Behaviors and Detecting Collisions

215

Overview of Per-Pixel Collision Algorithm
Before moving forward, it is important to identify the requirements for detecting a collision between two
textured objects. Foremost is that the texture itself needs to contain an area of transparency in order for this
type of collision detection to provide any increase in accuracy. Without transparency in the texture, you can
and should use a simple bounding box collision detection. If one or both of the textures contain transparent
areas, then you’ll need to handle two cases of collision. The first case is to check whether the bounds of the
two objects collide. You can see this reflected in Figure 6-16. Notice how the bounds of the objects overlap
yet none of the nontransparent colored pixels are touching.

Figure 6-16.  Overlapping bounding boxes without actual collision

The next case is to check whether the nontransparent pixels of the textures overlap. Take a look at
Figure 6-17. Nontransparent pixels from the textures of the Collector and Portal objects are clearly in
contact with one another.

Figure 6-17.  Pixel collision occurring between the large texture and the small texture

Chapter 6 ■ Defining Behaviors and Detecting Collisions

216

Now that the problem is clearly defined, here is the logic or pseudocode for per-pixel-accurate
collision detection:

Given two images, Image-A and Image-B
If the bounds of the object of Image-A and Image-B collide then
 For each Pixel-A in Image-A
 pixelCameraSpace = Pixel-A position in camera space
 Transform pixelCameraSpace to Image-B space
 Read Pixel-B from Image-B
 If Pixel-A and Pixel-B are not both completely transparent then
 A collision has occurred

The per-pixel transformation to Image-B space from pixelCameraSpace is required because collision
checking must be carried out within the same coordinate space. Additionally, pay attention to the runtime
of this algorithm. Each pixel within Image-A must be checked, so the runtime is O(N), where N is equal
to the number of pixels in Image-A, or Image-A’s resolution. To mitigate this performance hit, you should
use the smaller of the two images (the portal minion in this case) as Image-A. However, at this point, you
can probably see why the performance of pixel-accurate collision detection is concerning. Checking for
these collisions during every update with many high-resolution textures onscreen can quickly bog down
performance. You are now ready to examine the implementation of per-pixel accurate collision.

Modify Engine_Textures to Load a Texture as an Array of Color
Recall that the Engine_Texture component reads image files from the server file system, loads the images
to the WebGL context, and processes the images into WebGL textures. In this way, there is no actual storage
of the file texture in the game engine. To support per-pixel collision detection, the color information must
be retrieved from the WebGL context. The Engine_Texture component can be modified to support this
requirement.

	 1.	 In the Engine_Textures.js file, expand the TextureInfo object to include a new
variable for storing the color array of a file texture.

function TextureInfo(name, w, h, id) {
 this.mName = name;
 this.mWidth = w;
 this.mHeight = h;
 this.mGLTexID = id;
 this.mColorArray = null;
}

	 2.	 Define a function to retrieve the color array from the WebGL context and
remember to add this new function to the public interface of Engine_Texture.

var getColorArray = function (textureName) {
 var texInfo = getTextureInfo(textureName);
 if (texInfo.mColorArray === null) {
 // create a framebuffer, bind it to the texture, and read the color content
 var gl = gEngine.Core.getGL();
 var fb = gl.createFramebuffer();
 gl.bindFramebuffer(gl.FRAMEBUFFER, fb);
 �gl.f�ramebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D,

texInfo.mGLTexID, 0);
  

Chapter 6 ■ Defining Behaviors and Detecting Collisions

217

 if (gl.checkFramebufferStatus(gl.FRAMEBUFFER) === gl.FRAMEBUFFER_COMPLETE) {
 var pixels = new Uint8Array(texInfo.mWidth * texInfo.mHeight * 4);
 �gl.r�eadPixels(0, 0, texInfo.mWidth, texInfo.mHeight, gl.RGBA,

gl.UNSIGNED_BYTE, pixels);
 texInfo.mColorArray = pixels;
 } else {
 alert("WARNING: Engine.Textures.GetColorArray() failed!");
 }
 
 gl.bindFramebuffer(gl.FRAMEBUFFER, null);
 gl.deleteFramebuffer(fb);
 }
 return texInfo.mColorArray;
};
 
var mPublic = {
 loadTexture: loadTexture,
 unloadTexture: unloadTexture,
 activateTexture: activateTexture,
 deactivateTexture: deactivateTexture,
 getTextureInfo: getTextureInfo,
 getColorArray: getColorArray
};

The previous code creates a WebGL FRAMEBUFFER, fills the buffer with the desired texture, and retrieves
the buffer content into the associated texInfo.mColorArray.

Modify TextureRenderable to Support Per-Pixel Collision
The TextureRenderable object is the most appropriate for implementing the per-pixel collision
functionality. This is because the TextureRenderable object is the base class for all classes that render
textures. Implementation in this base class means all subclasses can inherit the functionality with minimal
additional changes.

	 1.	 Edit the TextureRenderable.js file and modify the constructor to add instance
variables to hold texture information for supporting per-pixel collision detection
and for later subclass overrides:

function TextureRenderable(myTexture) {
 Renderable.call(this);
 Renderable.prototype.setColor.call(this, [1, 1, 1, 0]);
 Renderable.prototype._setShader.call(this, gEngine.DefaultResources.getTextureShader());
 this.mTexture = null;
 // these two instance variables are to cache texture information
 // for supporting per-pixel accurate collision
 this.mTextureInfo = null;
 this.mColorArray = null;
 // defined for subclass to override
 this.mTexWidth = 0;
 this.mTexHeight = 0;

Chapter 6 ■ Defining Behaviors and Detecting Collisions

218

 this.mTexLeftIndex = 0;
 this.mTexBottomIndex = 0;
 this.setTexture(myTexture);
}

	 2.	 Modify the setTexture() function to initialize the instance variables accordingly.

TextureRenderable.prototype.setTexture = function (newTexture) {
 this.mTexture = newTexture;
 this.mTextureInfo = gEngine.Textures.getTextureInfo(newTexture);
 this.mColorArray = null;
 this.mTexWidth = this.mTextureInfo.mWidth;
 this.mTexHeight = this.mTextureInfo.mHeight;
 this.mTexLeftIndex = 0;
 this.mTexBottomIndex = 0;
};

Note that the mTexWidth/Height variables are defined for later subclass overrides such that the
algorithm can support the collision of sprite elements.

Create TextureRenderable_PixelCollision.js File to Implement
Per-Pixel Collision
To maintain the readability of the source code, create a new file in the src/Engine/Renderables/
folder and name it TextureRenderable_PixelCollision.js. All per-pixel collision functionality for the
TextureRenderable object will be implemented in the TextureRenderable_PixelCollision.js file.
Remember to include commands to load this new file in index.html.

■■ Note S ource files with names in the form of object_functionality.js implement functionality for
object. By separating complex implementations of related functionality into separate files, the readability of
each source code file can be maintained. 

	 1.	 Edit the TextureRenderable_PixelCollision.js file and define a function to set
the mColorArray.

TextureRenderable.prototype.setColorArray = function () {
 if (this.mColorArray === null)
 this.mColorArray = gEngine.Textures.getColorArray(this.mTexture);
};

	 2.	 Define a function to return the alpha value, or the transparency, of any given
pixel (x, y).

TextureRenderable.prototype._pixelAlphaValue = function (x, y) {
 x = x * 4;
 y = y * 4;
 return this.mColorArray[(y * this.mTextureInfo.mWidth) + x + 3];
};

Chapter 6 ■ Defining Behaviors and Detecting Collisions

219

Notice that the mColorArray is a one-dimensional array where colors of pixels are stored as four floats
and organized by rows.

	 3.	 Define a function to compute the WC position (returnWCPos) of a given pixel (i, j).

TextureRenderable.prototype._indexToWCPosition = function (returnWCPos, i, j) {
 var x = i * this.mXform.getWidth() / (this.mTexWidth - 1);
 var y = j * this.mXform.getHeight() / (this.mTexHeight - 1);
 returnWCPos[0] = this.mXform.getXPos() + (x - (this.mXform.getWidth() * 0.5));
 returnWCPos[1] = this.mXform.getYPos() + (y - (this.mXform.getHeight() * 0.5));
};

	 4.	 Now, implement the inverse of the previous function and use a WC position
(wcPos) to compute the texture pixel indices (returnIndex).

TextureRenderable.prototype._wcPositionToIndex = function (returnIndex, wcPos) {
 // use wcPos to compute the corresponding returnIndex[0 and 1]
 var delta = [];
 vec2.sub(delta, wcPos, this.mXform.getPosition());
 returnIndex[0] = this.mTexWidth * (delta[0] / this.mXform.getWidth());
 returnIndex[1] = this.mTexHeight * (delta[1] / this.mXform.getHeight());
 
 // recall that xForm.getPosition() returns center, yet Texture origin is at lower-left corner!
 returnIndex[0] += this.mTexWidth / 2;
 returnIndex[1] += this.mTexHeight / 2;
 
 returnIndex[0] = Math.floor(returnIndex[0]);
 returnIndex[1] = Math.floor(returnIndex[1]);
};

	 5.	 Now, it is possible to implement the outlined per-pixel collision algorithm.

TextureRenderable.prototype.pixelTouches = function(other, wcTouchPos) {
 var pixelTouch = false;
 var xIndex = 0, yIndex;
 var otherIndex = [0, 0];
 
 while ((!pixelTouch) && (xIndex < this.mTexWidth)) {
 yIndex = 0;
 while ((!pixelTouch) && (yIndex < this.mTexHeight)) {
 if (this._pixelAlphaValue(xIndex, yIndex) > 0) {
 this._indexToWCPosition(wcTouchPos, xIndex, yIndex);
 other._wcPositionToIndex(otherIndex, wcTouchPos);
 if ((otherIndex[0] > 0) && (otherIndex[0] < other.mTexWidth) &&
 (otherIndex[1] > 0) && (otherIndex[1] < other.mTexHeight)) {
 pixelTouch = other._pixelAlphaValue(otherIndex[0], otherIndex[1]) > 0;
 }
 }
 yIndex++;
 }
 xIndex++;
 }
 return pixelTouch;
};

Chapter 6 ■ Defining Behaviors and Detecting Collisions

220

The parameter other is a reference to the other TextureRenderable object that is being tested for
collision. If pixels do overlap between the objects, the returned value of wcTouchPos is the first detected
colliding position in the WC space. Notice that the nested loops terminate as soon as one pixel overlap is
detected or when pixelTouch becomes true. This is an important feature for efficiency concerns. However,
this also means that the returned wcTouchPos is simply one of many potentially colliding points.

Support GameObject Per-Pixel Collision in GameObject_PixelCollision.js
The GameObject class must be modified to support per-pixel collision. Create a new file in the
src/Engine/GameObjects/ folder and name it GameObject_PixelCollision.js. As always, remember to
include the loading of this new file in index.html. This new file will implement the support for per-pixel
collision of the GameObject class.

GameObject.prototype.pixelTouches = function (otherObj, wcTouchPos) {
 // only continue if both objects have GetColorArray defined
 var pixelTouch = false;
 var myRen = this.getRenderable();
 var otherRen = otherObj.getRenderable();
 
 �if ((typeof myRen.pixelTouches === "function") &&

 (typeof otherRen.pixelTouches === "function")) {
 var otherBbox = otherObj.getBBox();
 if (otherBbox.intersectsBound(this.getBBox())) {
 myRen.setColorArray();
 otherRen.setColorArray();
 pixelTouch = myRen.pixelTouches(otherRen, wcTouchPos);
 }
 }
 return pixelTouch;
};

This function checks to ensure that the objects are colliding and delegates the actual per-pixel collision
to TextureRenderable objects. Notice the intersectsBound() function for a bounding box intersection
check before invoking the potentially expensive TextureRenderable.pixelTouches() function.

Test the Per-Pixel Collision in MyGame
As illustrated in Figure 6-15, the testing of per-pixel collision is rather straightforward, involving three
instances of GameObject instances: the large Collector minion, the small Portal minion, and the DyePack.
The Collector and Portal minions are controlled by arrow and WASD keys, respectively. The detail of
the implementation of MyGame is similar to previous projects and is not shown. The only noteworthy code
fragment is the collision testing in the update() function, as shown here:

MyGame.prototype.update = function () {
 var msg = "No Collision";
 
 this.mPortal.update(gEngine.Input.keys.W, gEngine.Input.keys.S,
 gEngine.Input.keys.A, gEngine.Input.keys.D);
 this.mCollector.update(gEngine.Input.keys.Up, gEngine.Input.keys.Down,
 gEngine.Input.keys.Left, gEngine.Input.keys.Right);
 

Chapter 6 ■ Defining Behaviors and Detecting Collisions

221

 var h = [];
 // Portal's resolution is 1/16 that of Collector!
 // if (this.mCollector.pixelTouches(this.mPortal, h)) { // VERY EXPENSIVE!!
 if (this.mPortal.pixelTouches(this.mCollector, h)) {
 msg = "Collided!: (" + h[0].toPrecision(4) + " " + h[1].toPrecision(4) + ")";
 this.mDyePack.setVisibility(true);
 this.mDyePack.getXform().setXPos(h[0]);
 this.mDyePack.getXform().setYPos(h[1]);
 } else {
 this.mDyePack.setVisibility(false);
 }
 this.mMsg.setText(msg);
};

You can now test the collision accuracy by moving the two minions and intersecting them at different
locations (for example, top colliding with the bottom, left colliding with the right) or moving them such
that there are large overlapping areas. Notice that it is rather difficult, if not impossible, to predict the actual
reported intersection position (position of the DyePack). It is important to remember that the per-pixel
collision function is mainly a function that returns true or false indicating whether there is a collision.
You cannot rely on this function to compute the actual collision position. Lastly, try switching to calling the
Collector.pixelTouches() function to detect collisions. Notice the less than real-time performance! In
this case, the computation cost of the Collector.pixelTouches() function is 16×16=256 times that of the
Portal.pixelTouches() function.

Generalized Per-Pixel Collisions
In the previous section, you saw the basic operations required to achieve per-pixel-accurate collision
detection. However, as you may have noticed, the previous project applies only when the textures are
aligned along the x/y-axes. This means that your implementation does not support collisions between
rotated objects.

This section explains how you can achieve per-pixel-accurate collision detection when objects are
rotated. The fundamental concepts of this project are the same as in the previous project; however, this
version involves working with vector decomposition, and a quick review can be helpful.

Vector Review: Components and Decomposition
Recall that two perpendicular directions can be used to decompose a vector into corresponding
components. For example, Figure 6-18 contains two normalized vectors, or the component vectors, that can
be used to decompose the vector



V = ()2 3, : the normalized component vectors î = ()1 0, and ĵ = ()1 0,
decompose the vector



V into the components 2î and 3ĵ .

Chapter 6 ■ Defining Behaviors and Detecting Collisions

222

Figure 6-18.  The decomposition of vector


V

With that in mind, given the normalized perpendicular component vectors L̂ and M̂ and any vector


V ,

the following formulas will always be true. You can see a representation of this principle in Figure 6-19.

  

V V i V ji j= ×() + ×()ˆ ˆˆ ˆ

  

V V V M ML L= ×() + ×() ×ˆ ˆ ˆ ˆ

Figure 6-19.  Decomposing a vector by two normalized component vectors

Chapter 6 ■ Defining Behaviors and Detecting Collisions

223

Vector decomposition is relevant to this project because of the rotated image axes. Without rotation, an
image can be referenced by the familiar normalized perpendicular set of vectors along the default x-axis (î)
and y-axis (ĵ). You handled this case in the previous project. You can see an example of this in Figure 6-20.

Figure 6-20.  An axes-aligned texture

However, after the image has been rotated, the reference vector set no longer resides along the x/y-axes.
Therefore, the collision computation must take into account the newly rotated axes L̂ and M̂ , as shown in

Figure 6-21.

Figure 6-21.  A rotated texture and its component vectors

Chapter 6 ■ Defining Behaviors and Detecting Collisions

224

The General Pixel Collisions Project
This project demonstrates how to detect a collision between two rotated TextureRenderable objects with
per-pixel accuracy. As in the previous project, a yellow DyePack object (as a test confirmation) will be
displayed at the detected colliding position. You can see an example of this project running in Figure 6-22.
The source code to this project is defined in the Chapter6/6.5.GeneralPixelCollisions folder.

The controls of the project are as follows:

•	 Arrow keys: Move the small textured object, the Portal minion

•	 P key: Rotates the small textured object, the Portal minion

•	 WASD keys: Move the large textured object, the Collector minion

•	 E key: Rotates the large textured object, the Collector minion

The goals of the project are as follows:

•	 To access pixels of a rotated image via vector decomposition

•	 To support per-pixel accurate collision detection between two rotated textured objects

You can find the same external resource files as in the previous project in the assets folder.

Figure 6-22.  Running the General Pixel Collisions project

http://dx.doi.org/10.1007/978-1-4842-0952-3_6

Chapter 6 ■ Defining Behaviors and Detecting Collisions

225

Modify TextureRenderable_PixelCollision to Support Rotation
	 1.	 Edit the TextureRenderable_PixelCollision.js file and modify the

 _indexToWCPosition() function accordingly.

TextureRenderable.prototype._indexToWCPosition = function (returnWCPos, i, j, xDir, yDir) {
 var x = i * this.mXform.getWidth() / (this.mTexWidth - 1);
 var y = j * this.mXform.getHeight() / (this.mTexHeight - 1);
 var xDisp = x - (this.mXform.getWidth() * 0.5);
 var yDisp = y - (this.mXform.getHeight() * 0.5);
 var xDirDisp = [];
 var yDirDisp = [];
 
 vec2.scale(xDirDisp, xDir, xDisp);
 vec2.scale(yDirDisp, yDir, yDisp);
 vec2.add(returnWCPos, this.mXform.getPosition(), xDirDisp);
 vec2.add(returnWCPos, returnWCPos, yDirDisp);
};

In the previous code, xDir and yDir are the L̂ and M̂ normalized component vectors. The variables

xDisp and yDisp are the displacements to be offset along the xDir and yDir, respectively. The returned value
of returnWCPos is a simple displacement from the object’s center position along the xDirDisp and yDirDisp
vectors, the scaled xDir and yDir vectors.

	 2.	 In a similar fashion, modify the _wcPositionToIndex() function to support the
rotated normalized vector components.

TextureRenderable.prototype._wcPositionToIndex = function (returnIndex, wcPos, xDir, yDir) {
 // use wcPos to compute the corresponding returnIndex[0 and 1]
 var delta = [];
 vec2.sub(delta, wcPos, this.mXform.getPosition());
 var xDisp = vec2.dot(delta, xDir);
 var yDisp = vec2.dot(delta, yDir);
 returnIndex[0] = this.mTexWidth * (xDisp / this.mXform.getWidth());
 returnIndex[1] = this.mTexHeight * (yDisp / this.mXform.getHeight());
 
 // recall that xForm.getPosition() returns lower-left corner, yet
 // Texture origin is at lower-left corner!
 returnIndex[0] += this.mTexWidth / 2;
 returnIndex[1] += this.mTexHeight / 2;
 
 returnIndex[0] = Math.floor(returnIndex[0]);
 returnIndex[1] = Math.floor(returnIndex[1]);
};

	 3.	 The pixelTouches() function needs to be modified to compute the rotated
normalized component vectors.

TextureRenderable.prototype.pixelTouches = function(other, wcTouchPos) {
 var pixelTouch = false;
 var xIndex = 0, yIndex;
 var otherIndex = [0, 0];
 

Chapter 6 ■ Defining Behaviors and Detecting Collisions

226

 var xDir = [1, 0];
 var yDir = [0, 1];
 var otherXDir = [1, 0];
 var otherYDir = [0, 1];
 vec2.rotate(xDir, xDir, this.mXform.getRotationInRad());
 vec2.rotate(yDir, yDir, this.mXform.getRotationInRad());
 vec2.rotate(otherXDir, otherXDir, other.mXform.getRotationInRad());
 vec2.rotate(otherYDir, otherYDir, other.mXform.getRotationInRad());
 
 while ((!pixelTouch) && (xIndex < this.mTexWidth)) {
 yIndex = 0;
 while ((!pixelTouch) && (yIndex < this.mTexHeight)) {
 if (this._pixelAlphaValue(xIndex, yIndex) > 0) {
 this._indexToWCPosition(wcTouchPos, xIndex, yIndex,
 xDir, yDir);
 other._wcPositionToIndex(otherIndex, wcTouchPos,
 otherXDir, therYDir);
 if ((otherIndex[0] > 0) && (otherIndex[0] < other.mTexWidth) &&
 (otherIndex[1] > 0) && (otherIndex[1] < other.mTexHeight)) {
 pixelTouch = other._pixelAlphaValue (otherIndex[0], otherIndex[1]) > 0;
 }
 }
 yIndex++;
 }
 xIndex++;
 }
 return pixelTouch;
};

The variables xDir and yDir are the rotated normalized component vectors L̂ and M̂ of this
TextureRenderable object, while otherXDir and otherYDir are those of the colliding object. These vectors
are used as references for computing transformations from texture index to WC and from WC to texture index.

Modify the GameObject_PixelCollision.js to Support Rotation
Recall that the GameObject class first tests for the bounding-box collision between two objects before it
actually invokes the much more expensive per-pixel collision computation. As illustrated in Figure 6-14,
the BoundingBox object does not support object rotation correctly, and the following code remedies this
shortcoming:

GameObject.prototype.pixelTouches = function (otherObj, wcTouchPos) {
 // only continue if both objects have getColorArray defined
 // if defined, should have other texture intersection support!
 var pixelTouch = false;
 var myRen = this.getRenderable();
 var otherRen = otherObj.getRenderable();
 
 �if ((typeof myRen.pixelTouches === "function") &&

 (typeof otherRen.pixelTouches === "function")) {
 �if ((myRen.getXform().getRotationInRad() === 0) &&

 (otherRen.getXform().getRotationInRad() === 0)) {

Chapter 6 ■ Defining Behaviors and Detecting Collisions

227

 // no rotation, we can use bbox ...
 var otherBbox = otherObj.getBBox();
 if (otherBbox.intersectsBound(this.getBBox())) {
 myRen.setColorArray();
 otherRen.setColorArray();
 pixelTouch = myRen.pixelTouches(otherRen, wcTouchPos);
 }
 } else {
 �// One or both are rotated, compute an encompassing circle by using the

hypertenuse as radius
 var mySize = myRen.getXform().getSize();
 var otherSize = otherRen.getXform().getSize();
 var myR = Math.sqrt(0.5*mySize[0]*0.5*mySize[0] + 0.5*mySize[1]*0.5*mySize[1]);
 �var otherR = Math.sqrt(�0.5*otherSize[0]*0.5*otherSize[0] +

0.5*otherSize[1]*0.5*otherSize[1]);
 var d = [];
 vec2.sub(d, myRen.getXform().getPosition(), otherRen.getXform().getPosition());
 if (vec2.length(d) < (myR + otherR)) {
 myRen.setColorArray();
 otherRen.setColorArray();
 pixelTouch = myRen.pixelTouches(otherRen, wcTouchPos);
 }
 }
 }
 return pixelTouch;
};

The previous code shows that if either of the colliding objects is rotated, then two encompassing
circles are used to determine whether the objects are sufficiently close for the expensive per-pixel
collision computation. The two circles are defined with radii equal to the hypotenuse of the x/y size of the
corresponding TextureRenderable objects. The per-pixel collision detection is invoked only if the distance
between these two circles is less than the sum of the radii.

Test Generalized Per-Pixel Collision
The code for testing the rotated TextureRenderable objects is essentially identical to that from the previous
project, with the exception of the two added controls for rotations. The details of the implementation are not
shown. You can now run the project, rotate the two objects, and observe the accurate collision results.

Per-Pixel Collisions for Sprites
The previous project implicitly assumes that the Renderable object is covered by the entire texture map. This
assumption means that the per-pixel collision implementation does not support sprite or animated sprite
objects. In this section, you will see how to remedy this deficiency.

Chapter 6 ■ Defining Behaviors and Detecting Collisions

228

The Sprite Pixel Collisions Project
This project demonstrates how to move an animated sprite object around the screen and perform
per-pixel collision detection with other objects. The project tests for the correctness between collisions of
TextureRenderable, SpriteRenderable, and SpriteAnimateRenderable objects. You can see an
example of this project running in Figure 6-23. The source code to this project is defined in the
Chapter6/6.6.SpritePixelCollisions folder.

Figure 6-23.  Running the Sprite Pixel Collisions project

The controls of the project are as follows:

•	 Arrow and P keys: Move and rotate the Portal minion

•	 WASD keys: Move the Hero

•	 L, R, H, B keys: Select the target for colliding with the Portal minion

The goal of the project is as follow:

•	 To implement per-pixel collision detection for sprite and animated sprite objects

You can find the following external resource file in the assets folder: the fonts folder that contains the
default system fonts and minion_sprite.png, and minion_portal.png.

http://dx.doi.org/10.1007/978-1-4842-0952-3_6

Chapter 6 ■ Defining Behaviors and Detecting Collisions

229

Create SpriteRenderable_PixelCollision.js file to Implement
Per-Pixel Collision
Create a new file in the src/Engine/Renderables/ folder and name it SpriteRenderable_PixelCollision.js.
This file implements the per-pixel specific support for SpriteRenderable objects. Remember to include
commands to load this new file in index.html. In this file, define the _setTexInfo() function to override
instance variables defined in the superclass, TextureRenderable, such that these variables identify the
currently active sprite element.

SpriteRenderable.prototype._setTexInfo = function () {
 var imageW = this.mTextureInfo.mWidth;
 var imageH = this.mTextureInfo.mHeight;
 
 this.mTexLeftIndex = this.mTexLeft * imageW;
 this.mTexBottomIndex = this.mTexBottom * imageH;
 
 this.mTexWidth = ((this.mTexRight - this.mTexLeft) * imageW) + 1;
 this.mTexHeight = ((this.mTexTop - this.mTexBottom) * imageH) + 1;
};

Notice that instead of the dimension of the entire texture map, mTexWidth/Height now contain values
that correspond to the dimension of a single sprite element in the sprite sheet.

Modify Existing SpriteRenderable Functions to Support Per-Pixel Collision
Follow these steps:

	 1.	 Edit the SpriteRenderable.js file and modify the constructor to call the newly
defined _setTexInfo() function to properly record the dimension of a sprite element.

function SpriteRenderable(myTexture) {
 TextureRenderable.call(this, myTexture);
 Renderable.prototype._setShader.call(this, gEngine.DefaultResources.getSpriteShader());
 this.mTexLeft = 0.0; // bounds of texture coordinate (0 is left, 1 is right)
 this.mTexRight = 1.0; //
 this.mTexTop = 1.0; // 1 is top and 0 is bottom of image
 this.mTexBottom = 0.0; //
 this._setTexInfo();
}

	 2.	 Remember to call the _setTexInfo() function when the current sprite element is
updated in the setElementUVCooridnate() and setElementPixelPositions()
functions.

SpriteRenderable.prototype.setElementUVCoordinate = function (left, right, bottom, top) {
 this.mTexLeft = left;
 this.mTexRight = right;
 this.mTexBottom = bottom;
 this.mTexTop = top;
 this._setTexInfo();
};
 

Chapter 6 ■ Defining Behaviors and Detecting Collisions

230

SpriteRenderable.prototype.setElementPixelPositions = function (left, right, bottom, top) {
 var imageW = this.mTextureInfo.mWidth;
 var imageH = this.mTextureInfo.mHeight;
 this.mTexLeft = left / imageW;
 this.mTexRight = right / imageW;
 this.mTexBottom = bottom / imageH;
 this.mTexTop = top / imageH;
 this._setTexInfo();
};

Modify TextureRenderable to Support Accesses to Sprite Pixels
Edit the TextureRenderable_PixelCollision.js file and modify the _pixelAlphaValue() function to
support pixel accesses with a sprite element index offset.

TextureRenderable.prototype._pixelAlphaValue = function (x, y) {
 y += this.mTexBottomIndex;
 x += this.mTexLeftIndex;
 x = x * 4;
 y = y * 4;
 return this.mColorArray[(y * this.mTextureInfo.mWidth) + x + 3];
};

Test Per-Pixel Collision for Sprites in MyGame
The code for testing this project is a simple modification from previous projects, and the details are not
listed. It is important to note the different object types in the scene.

•	 Portal minion: A simple TextureRenderable object

•	 Hero and Brain: SpriteRenderable objects where the textures shown on the
geometries are sprite elements defined in the minion_sprite.png sprite sheet

•	 Left and Right minions: SpriteAnimateRenderable objects with sprite elements
defined in the top two rows of the minion_sprite.png animated sprite sheet

You can now run this project and observe the correct results from the collisions of the different object types.

	 1.	 Try moving the Hero object and observe how the Brain object constantly
seeks out and collides with it. This is the case of collision between two
SpriteRenderable objects.

	 2.	 Press the L/R keys and then move the Portal minion with the WASD keys to
collide with the Left or Right minions. Remember that you can rotate the Portal
minion with the P key. This is the case of collision between TextureRenderable
and SpriteAnimatedRenderable objects.

	 3.	 Type the H key and then move the Portal minion to collide with the Hero object.
This is the case of collision between TextureRenderable and SpriteRenderable
objects.

	 4.	 Type the B key and then move the Portal minion to collide with the Brain
object. This is the case of collision between rotated TextureRenderable and
SpriteRenderable objects.

Chapter 6 ■ Defining Behaviors and Detecting Collisions

231

Summary
This chapter showed you how to encapsulate common behaviors of objects in games and demonstrated the
benefits of the encapsulation in the forms of simpler and better organized control logic in the client MyGame
test levels. You reviewed vectors in 2D space. A vector is defined by its direction and magnitude. Vectors
are convenient for describing defined displacements (velocities). You reviewed some foundational vector
operations, including normalization of a vector and how to calculate dot and cross products. You worked
with these operators to implement the front-facing direction capability and create simple autonomous
behaviors such as pointing toward a specific object and chasing.

The need for detecting object collisions becomes prominent as the objects’ behaviors increase in
sophistication. The axes-aligned bounding boxes were introduced as a crude and yet computationally efficient
solution for approximating object collisions. You learned the algorithm for per-pixel-accurate collision detection
and that it is accurate but computationally expensive. You now understand how to mitigate the computational
cost in two ways. First, you invoke the pixel-accurate procedure only when the objects are sufficiently close to
each other, such as when their bounding boxes collide. Second, you execute the pixel iteration process based
on the texture with lower resolution. When implementing pixel-accurate collision, you began with tackling the
basic case of working with aligned textures. After that implementation, you went back and added support for
collision detection between rotated textures. Finally, you generalized the implementation to support collisions
between sprite elements. Solving the easiest case first lets you test and observe the results and helps define what
you might need for the more advanced problems (rotation and subregions of a texture in this case).

At the beginning of this chapter, your game engine supported interesting sophistication in drawing
ranging from the abilities to define WC space, to view the WC space with the Camera object, and to draw
visually pleasing textures and animations on objects. However, there was no infrastructure for supporting
the behaviors of the objects. This shortcoming resulted in clustering of initialization and control logic in the
client-level implementations. With the object behavior abstraction, mathematics, and collision algorithms
introduced and implemented in this chapter, your game engine functionality is now better balanced. The
clients of your game engine now have tools for encapsulating specific behaviors and detecting collisions.
The next chapter reexamines and enhances the functionality of the Camera object. You will learn to control
and manipulate the Camera object and work with multiple Cameras in the same game.

Game Design Considerations
Chapters 1–5 introduced foundation techniques for drawing, moving, and animating objects on the screen.
The Scene Objects project from Chapter 4 described a simple interaction behavior and showed you how
to change the game screen based on the location of a rectangle. Recall that moving the rectangle to the left
boundary caused the level to visually change, and the Audio Support project added contextual sound to
reinforce the overall sense of presence. Although it’s possible to build an intriguing (albeit simple) puzzle
game using only the elements from Chapters 1–5, things get much more interesting when you can integrate
object detection and collision triggers; these behaviors form the basis for many common game mechanics
and provide opportunities to design a wide range of interesting gameplay options.

Starting with the Game Objects project, you can see how the screen elements start working together to
convey the game setting. Even with the interaction in this project limited to character movement, the setting
is beginning to resolve into something that feels coherent. The hero character appears to be flying through a
moving scene populated by a number of mechanized robots; there’s also a small object in the center of the
screen that you might imagine could become some kind of special pickup.

Even at this basic stage of development, it’s possible to brainstorm game mechanics that could
potentially form the foundation for a full game. If you were designing a simple game mechanic based on
only the screen elements found in the Game Object Abstraction project, what kind of behaviors would you
choose and what kind of interactions would you require? As one example, imagine that the hero character
must avoid colliding with the flying robots and that perhaps some of the robots will detect and follow the
hero; maybe the hero is also “zapped” if she comes into contact with a robot. Imagine also that the small

http://dx.doi.org/10.1007/978-1-4842-0952-3_1
http://dx.doi.org/10.1007/978-1-4842-0952-3_5
http://dx.doi.org/10.1007/978-1-4842-0952-3_4
http://dx.doi.org/10.1007/978-1-4842-0952-3_1
http://dx.doi.org/10.1007/978-1-4842-0952-3_5

Chapter 6 ■ Defining Behaviors and Detecting Collisions

232

object in the center of the screen allows the hero to be invincible for a certain duration. With these few
basic interactions, you have opened opportunities to explore mechanics and levels typically associated
with familiar game genres, all with just the inclusion of the object detection, chase, and collision behaviors
covered in Chapter 6. Try this design exercise yourself using just the elements shown in the Game Object
Abstraction project. What kinds of simple conditions and behaviors might you design to make your
experience unique? How many ways can you think of to use the small object in the center of the screen?
The final design project in Chapter 11 will explore these themes in greater detail.

This is also a good opportunity to brainstorm some of the other nine elements of game design discussed in
Chapter 1. What if the game wasn’t set in space with robots? Perhaps the setting is in a forest, or under water, or
even something completely abstract. How might you incorporate audio to enhance the sense of presence and
reinforce the game setting? You’ll probably be surprised by the variety of settings and scenarios you come up
with, and keeping yourself limited to just the elements and interactions covered through Chapter 6 is actually a
beneficial exercise; design constraints often help the creative process by shaping and guiding your ideas.

The Vectors: Front and Chase project is interesting from both a game mechanic and presence
perspective. Many games, of course, require objects in the game world to detect the hero character and
will either chase or try to avoid the player (or both if the object has multiple states). The project also
demonstrates two different approaches to chase behavior, instant and smooth pursuit, and the game setting
will typically influence which behavior you choose to implement. The choice between instant and smooth
pursuit is a great example of subtle behaviors that can significantly influence the sense of presence. If you
were designing a game where ships were interacting on the ocean, for example, you would likely want their
pursuit behavior to take real-world inertia and momentum into consideration because ships can’t instantly
turn and respond to changes in movement; rather, they move smoothly and gradually, demonstrating a
noticeable delay in how quickly they can respond to a moving target. Most objects in the physical world will
display the same inertial and momentum constraint to some degree, but there are also situations where
you may want game objects to respond directly to path changes (or, perhaps, you want to intentionally flout
real-world physics and create a behavior that isn’t based on the limitations of physical objects). The key is to
always be intentional about your design choices, and it’s good to remember that virtually no implementation
details are too small to be noticed by players.

The Bounding Box and Collisions project introduces the key element of detection to your design arsenal.
Detection allows you to begin including more robust cause-and-effect mechanics that form the basis for
many game interactions. Chapter 6 discusses the trade-offs of choosing between the less precise but more
performant bounding box collision detection method versus the precise but resource-intensive per-pixel
detection method. There are situations where the bounding-box approach is sufficient, but if players perceive
collisions to be arbitrary because the bounding boxes are too removed from the actual visual objects, it can
negatively impact the sense of presence. Detection and collision are even more powerful design tools when
coupled with the result from the Per Pixel Collisions project. Although the dye pack in this example was used
to indicate the first point of collision, you can imagine building interesting casual chains around a new object
being produced as the result of two objects colliding (for example, player pursues object, player collides with
object, object “drops” a new object that enables the player to do something they couldn’t do before). Game
objects that move around the game screen will typically be animated, of course, so the Sprite Pixel Collisions
project reviewed how to implement collision detection when the object boundaries aren’t stationary.

With the addition of the techniques in Chapter 6, you now have a critical mass of behaviors that can
be combined to create truly interesting game mechanics relevant to many genres from action games to
puzzlers. Of course, game mechanic behaviors are only one of the nine elements of game design and
typically aren’t sufficient on their own to create a magical gameplay experience: the setting, visual style,
meta game elements, and the like all have something important to contribute. The good news is that creating
a memorable game experience need not be as elaborate as you often believe. Great games continue being
produced based on relatively basic combinations of the behaviors and techniques covered in Chapters 1–6.
The games that often shine the brightest aren’t always the most complex, but rather they’re often the games
where every aspect of each of the nine elements of design is intentional and working together in harmony.
If you give the appropriate attention and focus to all aspects of the game design, you’re on a great track to
produce something great whether you’re working on your own or you’re part of a large team.

http://dx.doi.org/10.1007/978-1-4842-0952-3_6
http://dx.doi.org/10.1007/978-1-4842-0952-3_11
http://dx.doi.org/10.1007/978-1-4842-0952-3_1
http://dx.doi.org/10.1007/978-1-4842-0952-3_6
http://dx.doi.org/10.1007/978-1-4842-0952-3_6
http://dx.doi.org/10.1007/978-1-4842-0952-3_6
http://dx.doi.org/10.1007/978-1-4842-0952-3_1
http://dx.doi.org/10.1007/978-1-4842-0952-3_6

233

Chapter 7

Manipulating the Camera

After completing this chapter, you will be able to:

•	 Implement operations that are commonly employed by manipulating a camera

•	 Interpolate values between old and new to create a smooth transition

•	 Understand how some motions or behaviors can be described by simple mathematic
formulations

•	 Build games with multiple camera views

•	 Transform positions from the Canvas Coordinate space to the World Coordinate
(WC) space

•	 Program with mouse input in a game environment with multiple cameras

Introduction
Your game engine is now capable of representing and drawing objects. With the basic abstraction
mechanism introduced in the previous chapter, the engine can also support the interactions and behaviors
of these objects. This chapter refocuses the attention on controlling and interacting with the Camera object
that abstracts and facilitates the presentation of the game objects on the canvas. In this way, your game
engine will be able to control and manipulate the presentation of visually pleasant game objects with well-
structured behaviors.

Figure 7-1 presents a brief review of the Camera object abstraction that was introduced in Chapter 3. The
Camera object allows the game programmer to define a World Coordinate (WC) window of the game world
to be displayed into a viewport on the HTML canvas. The WC window is the bounds defined by a WC center
and a dimension of W

wc
 × H

wc
. A viewport is a rectangular area on the HTML canvas with the lower-left

corner located at (V
x

, V
y
) and a dimension of W

v
 × H

v
. The Camera object’s setUpViewProjection() function

encapsulates the details and enables the drawing of all game objects inside the WC window bounds to be
displayed in the corresponding viewport.

■■ Note  In this book, the WC window or WC bounds are used to refer to the WC window bounds.

http://dx.doi.org/10.1007/978-1-4842-0952-3_3

Chapter 7 ■ Manipulating the Camera

234

The Camera object abstraction allows the game programmer to ignore the details of WC bounds and
the HTML canvas and focus on designing a fun and entertaining gameplay experience. Programming with
a Camera object in a game level should reflect the use of a physical video camera in the real world. For
example, you may want to pan the video camera to show your audiences the environment, you may want
to attach the video camera on an actress and share her journey with your audience, or you may want to
play the role of director and instruct the actors in your scene to stay within the visual ranges of the video
camera. The distinct characteristics of these examples, such as panning or following a character’s view,
are the high-level functional specifications. Notice that in the real world you do not specify coordinate
positions or bounds of windows.

This chapter introduces some of the most commonly encountered camera manipulation operations
including clamping, panning, and zooming. Solutions in the form of interpolation will be derived to alleviate
annoying or confusing abrupt transitions resulting from the manipulation of cameras. You will also learn
about supporting multiple camera views in the same game level and working with mouse input.

Camera Manipulations
In a 2D world, you may want to clamp or restrict the movements of objects to be within the bounds of a
camera, to pan or move the camera, or to zoom the camera into or away from specific areas. These high-
level functional specifications can be realized by strategically changing the parameters of the Camera object:
the WC center and the W

wc
 × H

wc
 of the WC window. The key is to create convenient functions for the game

developers to manipulate these values in the context of the game. For example, instead of increasing/
decreasing the width/height of the WC windows, zoom functions can be defined for the programmer.

The Camera Manipulations Project
This project demonstrates how to implement intuitive camera manipulation operations by working with
the WC center, width, and height of the Camera object. You can see an example of this project running in
Figure 7-2. The source code to this project is defined in the Chapter7/7.1.CameraManipulations folder.

Figure 7-1.  Review of WC parameters that define a Camera object

http://dx.doi.org/10.1007/978-1-4842-0952-3_7

Chapter 7 ■ Manipulating the Camera

235

The controls of the project are as follows:

•	 WASD keys: Move the Dye character (the Hero object). Notice that the camera WC
window updates to follow the Hero object when it attempts to move beyond 90
percent of the WC bounds.

•	 Arrow keys: Move the Portal object. Notice that the Portal object cannot move
beyond 80 percent of the WC bounds.

•	 L/R/P/H keys: Select the Left minion, Right minion, Portal object, or Hero object to
be the object in focus; the L/R keys also set the camera to focus on the Left or Right
minion.

•	 N/M keys: Zoom into or away from the center of the camera.

•	 J/K keys: Zoom into or away while ensuring the constant relative position of the
currently in-focus object. In other words, as the camera zooms, the positions of all
objects will change except that of the in-focus object.

Figure 7-2.  Running the Camera Manipulations project

Chapter 7 ■ Manipulating the Camera

236

The goals of the project are as follows:

•	 To experience some of the common camera manipulation operations

•	 To understand the mapping from manipulation operations to the corresponding
camera parameter values that must be altered

•	 To implement camera manipulation operations

You can find the following external resources in the assets folder: the fonts folder that contains the
default system fonts and three texture images (minion_portal.png, minion_sprite.png, and bg.png).
The Portal object is represented by the first texture image, the remaining objects are sprite elements of
minion_sprite.png, and the background is represented by bg.png.

Organize the Source Code
To accommodate the increase in functionality and the complexity of the Camera object, you will create a
separate folder for storing the Camera object implementation and all supporting operations’ source code files.

•	 Create a new folder called Cameras in src/Engine. Move the Camera.js file into this
folder, and remember to update the reference path in index.html.

Support Clamping to Camera WC Bounds
Edit Camera.js and define a function to clamp the bounds associated with a Transform object to the camera
WC bound.

Camera.prototype.clampAtBoundary = function (aXform, zone) {
 var status = this.collideWCBound(aXform, zone);
 if (status !== BoundingBox.eboundCollideStatus.eInside) {
 var pos = aXform.getPosition();
 if ((status & BoundingBox.eboundCollideStatus.eCollideTop) !== 0)
 pos[1] = (this.getWCCenter())[1] + (zone * this.getWCHeight() / 2)
 - (aXform.getHeight() / 2);
 if ((status & BoundingBox.eboundCollideStatus.eCollideBottom) !== 0)
 pos[1] = (this.getWCCenter())[1] - (zone * this.getWCHeight() / 2)
 + (aXform.getHeight() / 2);
 if ((status & BoundingBox.eboundCollideStatus.eCollideRight) !== 0)
 pos[0] = (this.getWCCenter())[0] + (zone * this.getWCWidth() / 2)
 - (aXform.getWidth() / 2);
 if ((status & BoundingBox.eboundCollideStatus.eCollideLeft) !== 0)
 pos[0] = (this.getWCCenter())[0] - (zone * this.getWCWidth() / 2)
 + (aXform.getWidth() / 2);
 }
 return status;
};

The aXform object can be the Transform of a GameObject or Renderable object. The clampAtBoundary()
function ensures that the bounds of the aXform remain inside the WC bounds of the camera by clamping
the aXform position. Once again, the zone variable defines a percentage of clamping for the WC bounds. For
example, a 1.0 would mean clamping to the exact WC bounds, while a 0.9 means clamping to a bound that
is 90 percent of the current WC window size. It is important to note that the clampAtBoundary() function
operates only on bounds that collide with the camera WC bounds. For example, if the aXform object has its
bounds that are completely outside of the camera WC bounds, it will remain outside.

Chapter 7 ■ Manipulating the Camera

237

Define Camera Manipulation Operations in Camera_Manipulation.js File
As discussed in the previous chapter, to maintain the readability of source code files, related functions of
objects are grouped into separate source code files.

	 1.	 Create a new file in the src/Engine/Cameras folder and name it
Camera_Manipulation.js.

	 2.	 Edit this file to define functions to pan, or move, the camera by an offset and to a
new WC center.

Camera.prototype.panBy = function (dx, dy) {
 this.mWCCenter[0] += dx;
 this.mWCCenter[1] += dy;
};
 
Camera.prototype.panTo = function (cx, cy) {
 this.setWCCenter(cx, cy);
};

	 3.	 Define a function to pan the camera based on the bounds of a Transform object.

Camera.prototype.panWith = function (aXform, zone) {
 var status = this.collideWCBound(aXform, zone);
 if (status !== BoundingBox.eboundCollideStatus.eInside) {
 var pos = aXform.getPosition();
 var newC = this.getWCCenter();
 if ((status & BoundingBox.eboundCollideStatus.eCollideTop) !== 0)
 �newC[1] = �pos[1] + (aXform.getHeight() / 2) -

(zone * this.getWCHeight() / 2);
 if ((status & BoundingBox.eboundCollideStatus.eCollideBottom) !== 0)
 �newC[1] = �pos[1] - (aXform.getHeight() / 2) +

(zone * this.getWCHeight() / 2);
 if ((status & BoundingBox.eboundCollideStatus.eCollideRight) !== 0)
 �newC[0] = �pos[0] + (aXform.getWidth() / 2) -

(zone * this.getWCWidth() / 2);
 if ((status & BoundingBox.eboundCollideStatus.eCollideLeft) !== 0)
 �newC[0] = �pos[0] - (aXform.getWidth() / 2) +

(zone * this.getWCWidth() / 2);
 }
};

The panWidth() function is complementary to the clampAtBoundary() function, where instead of
changing the aXform position, the camera is moved to ensure the proper inclusion of the aXform bounds.
As in the case of the clampAtBoundary() function, the camera will not be changed if the aXform bounds are
completely outside the tested WC bounds area.

Chapter 7 ■ Manipulating the Camera

238

	 4.	 Define functions to zoom the camera with respect to the center or a target
position.

Camera.prototype.zoomBy = function (zoom) {
 if (zoom > 0)
 this.mWCWidth *= zoom;
};
 
Camera.prototype.zoomTowards = function (pos, zoom) {
 var delta = [];
 vec2.sub(delta, pos, this.mWCCenter);
 vec2.scale(delta, delta, zoom - 1);
 vec2.sub(this.mWCCenter, this.mWCCenter, delta);
 this.zoomBy(zoom);
};

The zoomBy() function zooms with respect to the center of the camera, and the zoomTowards() function
zooms with respect to a world coordinate position. If the zoom variable is greater than 1, the WC window size
becomes larger, and you will see more of the world and, thus, zoom out. The zoom value of less than 1 zooms
in. Figure 7-3 shows the results of zoom=0.5 for zooming with respect to the center of WC and with respect to
the position of the Hero object.

Figure 7-3.  Zooming toward the WC Center and toward a target position

Manipulating the Camera in MyGame
There are two important functionality to be tested: panning and zooming. Once again, with the exception of
the update() function, the majority of the code in the MyGame.js file is similar to the previous projects and
are not repeated. The update() function is modified from the previous project to manipulate the camera.

MyGame.prototype.update = function () {
 // ... identical code to previous project ...
 

Chapter 7 ■ Manipulating the Camera

239

 // Pan camera to object
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.L)) {
 this.mFocusObj = this.mLMinion;
 this.mChoice = 'L';
 this.mCamera.panTo(this.mLMinion.getXform().getXPos(),
 this.mLMinion.getXform().getYPos());
 }
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.R)) {
 this.mFocusObj = this.mRMinion;
 this.mChoice = 'R';
 this.mCamera.panTo(this.mRMinion.getXform().getXPos(),
 this.mRMinion.getXform().getYPos());
 }
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.P)) {
 this.mFocusObj = this.mPortal;
 this.mChoice = 'P';
 }
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.H)) {
 this.mFocusObj = this.mHero;
 this.mChoice = 'H';
 }
 
 // zoom
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.N))
 this.mCamera.zoomBy(1 - zoomDelta);
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.M))
 this.mCamera.zoomBy(1 + zoomDelta);
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.J))
 this.mCamera.zoomTowards(this.mFocusObj.getXform().getPosition(), 1 - zoomDelta);
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.K))
 this.mCamera.zoomTowards(this.mFocusObj.getXform().getPosition(), 1 + zoomDelta);
 
 // interaction with the WC bounds
 this.mCamera.clampAtBoundary(this.mBrain.getXform(), 0.9);
 this.mCamera.clampAtBoundary(this.mPortal.getXform(), 0.8);
 this.mCamera.panWith(this.mHero.getXform(), 0.9);
 
 this.mMsg.setText(msg + this.mChoice);
};

In the previous code, the first four if statements select the in-focus object, where L and R keys also
recenter the camera by calling the panTo() function with the appropriate WC positions. The second four
if statements control the zoom, whether toward the WC center or toward the current in-focus object. The
function ends with clamping the Brain and Portal objects to within 90 percent and 80 percent of the WC
bounds, respectively, and panning the camera based on the transform (or position) of the Hero object.

You can now run the project and move the Hero object with the WASD keys. Move the Hero object
toward the WC bounds to observe the camera being pushed. Continue pushing the camera with the Hero
object; notice that because of the clampAtBoundary() function call, the Portal object will in turn be pushed
such that it never leaves the camera WC bounds. Now press the L/R key to observe the camera center
switching to the center on the Left or Right minion. The N/M keys demonstrate straightforward zooming
with respect to the center. To experience zooming with respect to a target, move the Hero object toward the

Chapter 7 ■ Manipulating the Camera

240

top left of the canvas and then press the H key to select it as the zoom focus. Now, with your mouse pointer
pointing at the head of the Hero object, you can press the K key to zoom out first and then the J key to zoom
back in. Notice that as you zoom, all objects in the scene change positions except the areas around the Hero
object. This is a convenient functionality to support zooming into a desired region of your game. You can
experience moving the Hero object around while zooming into/away from it.

Interpolation
It is now possible to manipulate the camera based on high-level functions such as pan or zoom. However,
the results are often sudden or even incoherent changes to the rendered image, which may result in
annoyance or confusion. For example, in the previous project, the L or R key causes the camera to re-center
with a simple assignment of new WC center values. The abrupt change in camera position results in the
sudden appearance of a seemingly new game world. This sudden appearance of a completely different
world is not only visually unpleasant; it can also cause player confusion.

When new values for camera parameters are available, instead of assigning them and causing an abrupt
change, it is desirable to morph the values gradually from the old to the new over time, or interpolate the
values. For example, as illustrated in Figure 7-4, at time t

1
 a parameter with the old value is to be assigned

a new one. In this case, instead of updating the value abruptly, an interpolation will change the value
gradually over time. It will compute the intermediate results with decreasing values and complete the
change to the new value at a later time t

2
.

Figure 7-4.  Interpolating values based on linear and exponential functions

Figure 7-4 shows that there is more than one way to interpolate values over time. For example, linear
interpolation computes intermediate results according to the slope of the line connecting the old and new
values. In contrast, an exponential function may compute intermediate results based on percentages from
previous values. Linear interpolation interpolates from the old to the new values in constant steps, whereas
the shown exponential function will result in rapid changes initially followed by much slower changes.
In this way, with linear interpolation, a camera position would move from an old to new position with a
constant speed similar to a constant-speed camera that is panning. In comparison, the interpolation based
on the given exponential function would move the camera position rapidly at the beginning, with the motion
slowing down quickly over time giving a sensation of focusing the camera on a new target.

Chapter 7 ■ Manipulating the Camera

241

This section introduces the Interpolate and InterpolateVec2 utility objects to support smooth and
gradual camera movements resulting from camera manipulation operations.

The Camera Interpolations Project
This project demonstrates the smoother and visually more pleasing interpolated results from camera
manipulation operations. You can see an example of this project running in Figure 7-5. The source code to
this project is defined in the Chapter7/7.2.CameraInterpolations folder.

Figure 7-5.  Running the Camera Interpolations project

The controls of the project are identical to the previous project:

•	 WASD keys: Move the Dye character (the Hero object). Notice that the camera WC
window updates to follow the Hero object when it attempts to move beyond
90 percent of the WC bounds.

•	 Arrow keys: Move the Portal object. Notice that the Portal object cannot move
beyond 80 percent of the WC bounds.

http://dx.doi.org/10.1007/978-1-4842-0952-3_7

Chapter 7 ■ Manipulating the Camera

242

•	 L/R/P/H keys: Select the Left minion, Right minion, Portal object, or Hero object to be
the object in focus; the L/R keys also set the camera to focus on the Left or Right minion.

•	 N/M keys: Zoom into or away from the center of the camera.

•	 J/K keys: Zoom into or away while ensuring constant relative position of the currently
in-focus object. In other words, as the camera zooms, the positions of all objects will
change except that of the in-focus object.

The goals of the project are as follows:

•	 To understand interpolated results between given values

•	 To implement interpolation supporting gradual camera parameter changes

•	 To experience interpolated changes in camera parameters

You can find the same external resource files as in the previous project in the assets folder.

Interpolation as an Utility
Similar to Transform objects supporting transformation functionality and BoundingBox objects supporting
collision detection, an Interpolate object can be defined to support interpolation of values. To maintained
source code organization, a new folder should be defined to store these utilities objects.

•	 Create the new folder called src/Engine/Utils and move the Transform.js and
BoundingBox.js files into this folder. Remember to update the reference path in
index.html.

The Interpolate Object

Define the Interpolate object to compute interpolation between two values.

	 1.	 Create a new file in the src/Engine/Utils/ folder and name it Interpolate.js.
Add the following code to construct the object:

function Interpolate(value, cycles, rate) {
 this.mCurrentValue = value; // begin value of interpolation
 this.mFinalValue = value; // final value of interpolation
 this.mCycles = cycles;
 this.mRate = rate;
 
 �// if there is a new value to interpolate to, number of cycles

left for interpolation
 this.mCyclesLeft = 0;
}

This object interpolates from mCurrentValue to mFinalValue in mCycles. During each update,
intermediate results are computed based on the mRate increment on the difference between mCurrentValue
and mFinalValue, as shown next.

Chapter 7 ■ Manipulating the Camera

243

	 2.	 Define the function that computes the intermediate results.

Interpolate.prototype._interpolateValue = function () {
 this.mCurrentValue = this.mCurrentValue +
 this.mRate * (this.mFinalValue - this.mCurrentValue);
};

Note that the _interpolateValue() function computes a result that linearly interpolates between
mCurrentValue and mFinalValue. However, since during each iteration the mCurrentValue is updated
to the computed intermediate result, over the entire interpolation cycle mCurrentValue changes to the
mFinalValue following an exponential function.

	 3.	 Define relevant getter and setter functions.

Interpolate.prototype.getValue = function () { return this.mCurrentValue; };
Interpolate.prototype.configInterpolation = function (stiffness, duration) {
 this.mRate = stiffness;
 this.mCycles = duration;
};
 
Interpolate.prototype.setFinalValue = function (v) {
 this.mFinalValue = v;
 this.mCyclesLeft = this.mCycles; // will trigger interpolation
};

	 4.	 Define the function to trigger the computation of each intermediate result.

Interpolate.prototype.updateInterpolation = function () {
 if (this.mCyclesLeft <= 0)
 return;
 this.mCyclesLeft--;
 if (this.mCyclesLeft === 0)
 this.mCurrentValue = this.mFinalValue;
 else
 this._interpolateValue();
};

The InterpolateVec2 Object

Since many of the camera parameters are vec2 objects (for example, the WC center position), it is important
to generalize the Interpolate object to support the interpolation of vec2 objects.

	 1.	 Create a new file in the src/Engine/Utils/ folder and name it
InterpolateVec2.js. Add the following to construct the object as a child of
Interpolate:

function InterpolateVec2(value, cycle, rate) {
 Interpolate.call(this, value, cycle, rate);
}
gEngine.Core.inheritPrototype(InterpolateVec2, Interpolate);

Chapter 7 ■ Manipulating the Camera

244

	 2.	 Override the _interpolateValue() function to compute intermediate
results for vec2.

InterpolateVec2.prototype._interpolateValue = function () {
 vec2.lerp(this.mCurrentValue, this.mCurrentValue, this.mFinalValue,
 this.mRate);
};

The vec2.lerp() function, defined in the gl-matrix.js file, computes for each of the x and y components
of vec2 with identical calculations as the _interpolateValue() function in the Interpolate object.

Represent Interpolated Intermediate Results with the CameraState Object
The state of a Camera object must be generalized to support gradual changes of interpolated intermediate
results. The CameraState object is introduced to accomplish this purpose.

	 1.	 Create a new file in the src/Engine/Cameras/ folder and name it CameraState.js.
Add the following code to construct the object:

function CameraState(center, width) {
 this.kCycles = 300; // number of cycles to complete the transition
 this.kRate = 0.1; // rate of change for each cycle
 this.mCenter = new InterpolateVec2(center, this.kCycles, this.kRate);
 this.mWidth = new Interpolate(width, this.kCycles, this.kRate);
}

Observe that mCenter and mWidth are the only variables required to support camera panning (changing
of mCenter) and zooming (changing of mWidth). Both of these variables are instances of the Interpolate
class and are capable of interpolating and computing intermediate results that achieve gradual changes.

	 2.	 Define the setting and getting functions for the center and width.

CameraState.prototype.getCenter = function ()
 { return this.mCenter.getValue(); };
CameraState.prototype.getWidth = function ()
 { return this.mWidth.getValue(); };
 
CameraState.prototype.setCenter = function (c)
 { this.mCenter.setFinalValue(c); };
CameraState.prototype.setWidth = function (w)
 { this.mWidth.setFinalValue(w); };

	 3.	 Define the update function to trigger the interpolation computation.

CameraState.prototype.updateCameraState = function () {
 this.mCenter.updateInterpolation();
 this.mWidth.updateInterpolation();
};

Chapter 7 ■ Manipulating the Camera

245

	 4.	 Define the function to configure the interpolation.

CameraState.prototype.configInterpolation = function (stiffness, duration) {
 this.mCenter.configInterpolation(stiffness, duration);
 this.mWidth.configInterpolation(stiffness, duration);
};

The stiffness variable defines how quickly the interpolated intermediate results should converge
to the final value. This is a number between 0 to 1, where a 0 means the convergence will never happen
and a 1 means instantaneous convergence. The duration variable defines in how many update cycles the
convergence should take place. This must be a positive integer value.

Integrate Interpolation into Camera Manipulation Operations
The Camera object must be modified to represent the WC center and width using the newly defined
CameraState object.

	 1.	 Modify the Camera constructor to replace the center and width variables with an
instance of CameraState.

function Camera(wcCenter, wcWidth, viewportArray) {
 // WC and viewport position and size
 this.mCameraState = new CameraState(wcCenter, wcWidth);
 this.mViewport = viewportArray; // [x, y, width, height]
 this.mNearPlane = 0;
 this.mFarPlane = 1000;
 
 // transformation matrices
 this.mViewMatrix = mat4.create();
 this.mProjMatrix = mat4.create();
 this.mVPMatrix = mat4.create();
 
 // background color
 this.mBgColor = [0.8, 0.8, 0.8, 1]; // RGB and Alpha
}

The rest of the changes in the Camera.js file are trivial replacements of accessing and setting the center
and width through the this.mCameraState instance variable and are not shown.

	 2.	 Now, edit the Camera_Manipulation.js file to define the functions to update and
configure the interpolation functionality of the CameraState object.

Camera.prototype.update = function () {
 this.mCameraState.updateCameraState();
};
Camera.prototype.configInterpolation = function (stiffness, duration) {
 this.mCameraState.configInterpolation(stiffness, duration);
};

Chapter 7 ■ Manipulating the Camera

246

	 3.	 Modify the panBy() camera manipulation function to support the CameraState
object as follows:

Camera.prototype.panBy = function (dx, dy) {
 var newC = vec2.clone(this.getWCCenter());
 this.mWCCenter[0] += dx;
 this.mWCCenter[1] += dy;
 this.mCameraState.setCenter(newC);
};

Similar to the panBy() function, the rest of the changes in the Camera_Manipulation.js file are trivial
replacements to access and set WC window center and width via the this.mCameraState instance variable
and are not shown.

Testing Interpolations in MyGame
Recall that the user controls of this project are identical to that from the previous project. The only
difference is that in this project you can expect gradual and smooth transitions between different camera
settings. To observe the proper interpolated results, the camera update() function must be invoked at
each game scene update.

•	 Modify the MyGame update() function.

MyGame.prototype.update = function () {
 var zoomDelta = 0.05;
 var msg = "L/R: Left or Right Minion; H: Dye; P: Portal]: ";
 
 this.mCamera.update(); // for smoother camera movements
 
 //... Identical to previous project ...
};

The previous call to update the camera for computing interpolated intermediate results is the only
change in the MyGame.js file. You can now run the project and experiment with the smooth and gradual
changes resulting from camera manipulation operations. Notice that the uninterrupted interpolated results
mean the rendered image never abruptly changes and the sense of continuation in space from before and
after the user’s camera manipulation commands is preserved. You can try changing the stiffness and
duration variables to better appreciate the different rates of interpolation convergence.

Camera Shake Effect
In video games, shaking the camera can be a convenient way to convey the significance or mightiness
of events, such as the appearance of an enemy boss or the collisions between large objects. Similar
to the interpolation of values, the camera shake movement can also be modeled by straightforward
mathematical formulations.

Chapter 7 ■ Manipulating the Camera

247

Consider how a camera shake may occur in a real-life situation. For instance, while shooting with
a video camera, say you are surprised or startled by someone or something could collide with you. Your
reaction will probably be slight disorientation followed by quickly refocusing on the original targets of
shooting. From the perspective of the camera, this reaction can be described as initial large displacements
from the original camera center followed by quick adjustments to recenter the camera. Mathematically, as
illustrated in Figure 7-6, damped simple harmonic motions, which can be represented with the damping
of trigonometric functions, can be used to describe these types of displacements. However, in contrast to
the slightly chaotic and unpredictable randomness of human reactions, straight mathematic formulation
is precise, with perfect predictability. For this reason, a pseudorandom simple harmonic function will be
introduced to model the camera shake effect.

Figure 7-6.  The displacements of a damped simple harmonic motion

The Camera Shake Project
This project demonstrates how to implement camera shake as a pseudorandom damped simple harmonic
motion. You can see an example of this project running in Figure 7-7. This project is identical to the previous
project except for the added command to create the camera shake effect. The source code to this project is
defined in the Chapter7/7.3.CameraShake folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_7

Chapter 7 ■ Manipulating the Camera

248

The following is the new control of this project:

•	 Q key: Initiates the camera shake effect

The following controls are identical to the previous project:

•	 WASD keys: Move the Dye character (the Hero object). Notice that the camera WC
window updates to follow the Hero object when it attempts to move beyond 90
percent of the WC bounds.

•	 Arrow keys: Move the Portal object. Notice that the Portal object cannot move
beyond 80 percent of the WC bounds.

•	 L/R/P/H keys: Select the Left minion, Right minion, Portal object, or Hero object to
be the object in focus; the L/R keys also set the camera to focus on the Left or Right
minion.

•	 N/M keys: Zoom into or away from the center of the camera.

•	 J/K keys: Zoom into or away while ensuring constant relative position of the currently
in-focus object. In other words, as the camera zooms, the positions of all objects will
change except that of the in-focus object.

Figure 7-7.  Running the Camera Shake project

Chapter 7 ■ Manipulating the Camera

249

The goals of the project are as follows:

•	 To gain some insights into modeling displacements with simple mathematical
functions

•	 To experience with the camera shake effect

•	 To implement camera shake as a pseudorandom damped simple harmonic motion

You can find the same external resource files as in the previous project in the assets folder.

Create the ShakePosition Class to Model the Shaking of a Position
As discussed, the shaking of a camera is described by the movements of its center position. For this reason,
the implementation of shake effects should begin with modeling the shaking of a position.

	 1.	 Create a new file in the src/Engine/Utils/ folder and name it ShakePosition.js.
Add the following code to construct the object:

// xDelta, yDelta: how large a shake
// shakeFrequency: how much movement
// shakeDuration: for how long in number of cycles
function ShakePosition(xDelta, yDelta, shakeFrequency, shakeDuration) {
 this.mXMag = xDelta;
 this.mYMag = yDelta;
 this.mCycles = shakeDuration; // number of cycles to complete the transition
 this.mOmega = shakeFrequency * 2 * Math.PI; // Converts frequency to radians
 this.mNumCyclesLeft = shakeDuration;
}

The xDelta and yDelta variables represent the initial displacements before damping, in WC space.
The shakeFrequency parameter specifies how much to oscillate with a value of 1 representing one complete
period of a cosine function. The shakeDuration parameter defines how long to shake, in units of game
loop updates.

	 2.	 Define the damped simple harmonic motion.

ShakePosition.prototype._nextDampedHarmonic = function () {
 // computes (Cycles) * cos(Omega * t)
 var frac = this.mNumCyclesLeft / this.mCycles;
 return frac * frac * Math.cos((1 - frac) * this.mOmega);
};

The frac variable is a ratio of the number of cycles left in the shake (mNumCyclesLeft) to the total
number of cycles the camera should shake (mCycles). This value decreases from 1 to 0 as mNumCyclesLeft
decreases from mCycles to 0. Figure 7-8 illustrates the damped simple harmonic motion that governs the
camera shake displacements.

Chapter 7 ■ Manipulating the Camera

250

	 3.	 Define a function to check for the status of camera shake.

ShakePosition.prototype.shakeDone = function () {
 return (this.mNumCyclesLeft <= 0);
};

	 4.	 Define a function to trigger the calculation of shake displacements.

ShakePosition.prototype.getShakeResults = function () {
 this.mNumCyclesLeft--;
 var c = [];
 var fx = 0;
 var fy = 0;
 if (!this.shakeDone()) {
 var v = this._nextDampedHarmonic();
 fx = (Math.random() > 0.5) ? -v : v;
 fy = (Math.random() > 0.5) ? -v : v;
 }
 c[0] = this.mXMag * fx;
 c[1] = this.mYMag * fy;
 return c;
};

For the same mNumCyclesLeft, the call to the _nextDampedHarmonic() function will return the same
value. The call to the Math.random() function introduces pseudorandomness into the x and y displacements.

Figure 7-8.  The damped simple harmonic motion that specifies camera shake

Chapter 7 ■ Manipulating the Camera

251

Define the CameraShake Object to Abstract Camera Shaking Effect
With the defined ShakePoint object, it is convenient to trace the displacements of a pseudorandom damped
simple harmonic motion. However, the Camera object requires an additional abstraction layer.

	 1.	 Create a new file in the src/Engine/Cameras/ folder and name it CameraShake.js.
Add the following code to construct the object:

function CameraShake(state, xDelta, yDelta, shakeFrequency, shakeDuration) {
 this.mOrgCenter = vec2.clone(state.getCenter());
 this.mShakeCenter = vec2.clone(this.mOrgCenter);
 �this.mShake = new ShakePosition(xDelta, yDelta, shakeFrequency,
 shakeDuration);
}

The CameraShake object receives the center of a camera via the CameraState parameter (state). This
center is kept as the origin of shake displacements.

	 2.	 Define the function that triggers the displacement computation for
accomplishing the shaking effect.

CameraShake.prototype.updateShakeState = function () {
 var s = this.mShake.getShakeResults();
 vec2.add(this.mShakeCenter, this.mOrgCenter, s);
};

	 3.	 Define a function to check whether the shaking effect has completed.

CameraShake.prototype.shakeDone = function () {
 return this.mShake.shakeDone();
};

	 4.	 Define the getter and setting functions for the camera center.

CameraShake.prototype.getCenter = function () { return this.mShakeCenter; };
CameraShake.prototype.setRefCenter = function (c) {
 this.mOrgCenter[0] = c[0];
 this.mOrgCenter[1] = c[1];
};

Modify the Camera to Support Shake Effect
With the proper CameraShake abstraction, supporting the shaking of the camera simply means defining,
using, initiating, and updating the shake effect.

	 1.	 Modify the Camera constructor to define a CameraShake object.

function Camera(wcCenter, wcWidth, viewportArray) {
 // WC and viewport position and size
 this.mCameraState = new CameraState(wcCenter, wcWidth);
 this.mCameraShake = null;
 

Chapter 7 ■ Manipulating the Camera

252

 this.mViewport = viewportArray; // [x, y, width, height]
 this.mNearPlane = 0;
 this.mFarPlane = 1000;
 
 // transformation matrices
 this.mViewMatrix = mat4.create();
 this.mProjMatrix = mat4.create();
 this.mVPMatrix = mat4.create();
 
 // background color
 this.mBgColor = [0.8, 0.8, 0.8, 1]; // RGB and Alpha
}

	 2.	 Modify step B1 of the setupViewProjection() function to use the CameraShake
object’s center if it is defined.

// Initializes the camera to begin drawing
Camera.prototype.setupViewProjection = function () {
 var gl = gEngine.Core.getGL();
 // Step A1-A4: Set up and clear the Viewport
 
 // Identical to previous project ...
 
 // Step B: Set up the View-Projection transform operator
 // Step B1: define the view matrix
 var center = [];
 if (this.mCameraShake !== null) {
 center = this.mCameraShake.getCenter();
 } else {
 center = this.getWCCenter();
 }
 mat4.lookAt(this.mViewMatrix,
 [center[0], center[1], 10], // WC center
 [center[0], center[1], 0], //
 [0, 1, 0]); // orientation
 
 // Identical to previous project ...
 
 // Step B2: define the projection matrix
 // Step B3: concatenate view and project matrices
};

	 3.	 Modify the Camera_Manipulation.js file to add support to initiate the shake
effect.

Camera.prototype.shake = function (xDelta, yDelta, shakeFrequency, duration) {
 this.mCameraShake = �new CameraShake(this.mCameraState, xDelta, yDelta,

shakeFrequency, duration);
};

Chapter 7 ■ Manipulating the Camera

253

	 4.	 Continue working with the Camera_Manipulation.js file and modify the Camera
object update() function to trigger a camera shake update if one is defined.

Camera.prototype.update = function () {
 if (this.mCameraShake !== null) {
 if (this.mCameraShake.shakeDone()) {
 this.mCameraShake = null;
 } else {
 this.mCameraShake.setRefCenter(this.getWCCenter());
 this.mCameraShake.updateShakeState();
 }
 }
 this.mCameraState.updateCameraState();
};

Testing the Camera Shake Effect in MyGame
When comparing to the previous project, MyGame.js file adds only a few lines in the update() function: to
trigger camera shake effect with the Q key.

MyGame.prototype.update = function () {
 // Identical to previous project ...
 
 if (gEngine.Input.isKeyClicked(gEngine.Input.keys.Q))
 this.mCamera.shake(-2, -2, 20, 30);
 this.mMsg.setText(msg + this.mChoice);
};

You can now run the project and experience with the pseudorandom damped simple harmonic
motion that simulates the camera shake effect. Notice that the displacement of the camera center position
will undergo interpolation and thus result in a smoother final shake effect. You can try changing the
parameters to the mCamera.shake() function to experiment with different shake configurations. Recall that
the first two parameters control the initial shake displacements, and the third and fourth parameters are
the shakeFrequency and shakeDuration that control the shake amplitude and how long the shake effect
should last.

Multiple Cameras
Video games often present the players with multiple views into the game world to communicate vital or
interesting gameplay information, such as showing a mini-map to help the player navigate the world or
prompting a view of the enemy boss to warn the player of what is to come.

In your game engine, the Camera object abstracts the WC window of the game world to draw from and
the viewport for the area on the canvas to draw to. This effective abstraction supports the multiple view idea
with multiple Camera objects. Each view in the game can simply be handled with a separate Camera object
with distinct WC window and viewport configurations.

Chapter 7 ■ Manipulating the Camera

254

The Multiple Cameras Project
This project demonstrates how to represent multiple views into the game world with multiple Camera
objects. You can see an example of this project running in Figure 7-9. The source code to this project is
defined in the Chapter7/7.4.MultipleCameras folder.

Figure 7-9.  Running the Multiple Cameras project

The controls of the project are identical to the previous project.

•	 Q key: Initiates the camera shake effect.

•	 WASD keys: Move the Dye character (the Hero object). Notice that the camera WC
window updates to follow the Hero object when it attempts to move beyond
90 percent of the WC bounds.

•	 Arrow keys: Move the Portal object. Notice that the Portal object cannot move
beyond 80 percent of the WC bounds.

•	 L/R/P/H keys: Select the Left minion, Right minion, Portal object, or Hero object to
be the object in focus; the L/R keys also set the camera to focus on the Left or Right
minion.

http://dx.doi.org/10.1007/978-1-4842-0952-3_7

Chapter 7 ■ Manipulating the Camera

255

•	 N/M keys: Zoom into or away from the center of the camera.

•	 J/K keys: Zoom into or away while ensuring the constant relative position of the
currently in-focus object. In other words, as the camera zooms, the positions of all
objects will change except that of the in-focus object.

The goals of the project are as follows:

•	 To understand the camera abstraction for presenting views into the game world

•	 To experience working with multiple cameras in the same game level

•	 To appreciate the importance of interpolation configuration for cameras with a
specific purpose

You can find the same external resource files as in the previous project in the assets folder.

Modify the Camera
The Camera object will be slightly modified to allow the drawing of the viewport with a bound. This would
allow easy differentiation of camera views on the canvas.

	 1.	 Modify the Camera constructor to allow programmers to define a bound-number
of pixels to surround the viewport of the camera.

function Camera(wcCenter, wcWidth, viewportArray, bound) {
 // WC and viewport position and size
 this.mCameraState = new CameraState(wcCenter, wcWidth);
 this.mCameraShake = null;
 
 this.mViewport = []; // [x, y, width, height]
 this.mViewportBound = 0;
 if (bound !== undefined) {
 this.mViewportBound = bound;
 }
 this.mScissorBound = []; // use for bounds
 this.setViewport(viewportArray, this.mViewportBound);
 this.mNearPlane = 0;
 this.mFarPlane = 1000;
 
 // ... Identical to previous projects ...
}

By default, bound is assumed to be zero, and the camera will draw to the entire mViewport. Please refer
to the setViewport() function that follows. A nonzero bound instructs the camera to leave bound-number
of pixels that surround the camera mViewport in the background color, thereby allowing easy differentiation
of multiple viewports on a canvas.

Chapter 7 ■ Manipulating the Camera

256

	 2.	 Define the setViewport() function.

Camera.prototype.setViewport = function (viewportArray, bound) {
 if (bound === undefined) {
 bound = this.mViewportBound;
 }
 // [x, y, width, height]
 this.mViewport[0] = viewportArray[0] + bound;
 this.mViewport[1] = viewportArray[1] + bound;
 this.mViewport[2] = viewportArray[2] - (2 * bound);
 this.mViewport[3] = viewportArray[3] - (2 * bound);
 this.mScissorBound[0] = viewportArray[0];
 this.mScissorBound[1] = viewportArray[1];
 this.mScissorBound[2] = viewportArray[2];
 this.mScissorBound[3] = viewportArray[3];
};

Recall that when setting the camera viewport, you invoke the gl.scissor() function to define an
area to be cleared and the gl.viewport() function to identify the target area for drawing. Previously, the
scissor and viewport bounds are identical. In this case, notice that the actual mViewport bounds are the
bound-number of pixels smaller than the mScissorBound. These settings allow the mScissorBound to identify
the area to be cleared to background color, while the mViewport bounds define the actual canvas area for
drawing. In this way, the bound-number of pixels around the viewport will remain the background color.

	 3.	 Modify the getViewport() function to return the actual bounds that are reserved
for this camera. In this case, it is the mScissorBound instead of the potentially
smaller viewport bounds.

Camera.prototype.getViewport = function () {
 var out = [];
 out[0] = this.mScissorBound[0];
 out[1] = this.mScissorBound[1];
 out[2] = this.mScissorBound[2];
 out[3] = this.mScissorBound[3];
 return out;
};

	 4.	 Modify the setupViewProjection() function to bind scissor bounds with
mScissorBound instead of the viewport bounds.

Camera.prototype.setupViewProjection = function () {
 var gl = gEngine.Core.getGL();
 // ... Identical to previous projects ...
 

Chapter 7 ■ Manipulating the Camera

257

 // Step A2: set up the corresponding scissor area to limit the clear area
 gl.scissor(this.mScissorBound[0], // x pos of bottom-left of the area to be drawn
 this.mScissorBound[1], // y pos of bottom-left of the area to be drawn
 this.mScissorBound[2], // width of the area to be drawn
 this.mScissorBound[3]); // height of the area to be drawn
 
 // ... Identical to previous projects ...
};

Testing Multiple Cameras in MyGame
The MyGame level must create multiple cameras, configure them properly, and draw each independently. For
ease of demonstration, two new Camera objects will be created, one to focus on the Hero object and one to
focus on the chasing Brain object. As in the previous examples, the implementation of the MyGame level is
largely identical. In this example, some portions of the initialize(), draw(), and update() functions are
modified to handle the multiple Camera objects and are highlighted here:

	 1.	 Modify the initialize() function to define and configure three Camera objects.

MyGame.prototype.initialize = function () {
 // Step A: set up the cameras
 this.mCamera = new Camera(
 vec2.fromValues(50, 36), // position of the camera
 100, // width of camera
 [0, 0, 640, 480] // viewport (orgX, orgY, width, height)
);
 this.mCamera.setBackgroundColor([0.8, 0.8, 0.8, 1]);
 
 this.mHeroCam = new Camera(
 vec2.fromValues(50, 30), // will be updated at each cycle to point to hero
 20,
 [490, 330, 150, 150],
 2 // viewport bounds
);
 this.mHeroCam.setBackgroundColor([0.5, 0.5, 0.5, 1]);
 this.mBrainCam = new Camera(
 vec2.fromValues(50, 30), // will be updated at each cycle to point to the brain
 10,
 [0, 330, 150, 150],
 2 // viewport bounds
);
 this.mBrainCam.setBackgroundColor([1, 1, 1, 1]);
 this.mBrainCam.configInterpolation(0.7, 10);
 
 // ... Identical to previous projects ...
};

Both the mHeroCam and mBrainCam define a 2-pixel boundary for their viewports, with the mHeroCam
boundary defined to be gray (the background color) and with mBrainCam white. Notice the mBrainCam
object’s stiff interpolation setting informing the camera interpolation to converge to new values in ten cycles.

Chapter 7 ■ Manipulating the Camera

258

	 2.	 Define a helper function to draw the world that is common to all three cameras.

MyGame.prototype.drawCamera = function (camera) {
 camera.setupViewProjection();
 this.mBg.draw(camera);
 this.mHero.draw(camera);
 this.mBrain.draw(camera);
 this.mPortal.draw(camera);
 this.mLMinion.draw(camera);
 this.mRMinion.draw(camera);
};

	 3.	 Modify the MyGame object draw() function to draw all three cameras.

MyGame.prototype.draw = function () {
 // Step A: clear the canvas
 gEngine.Core.clearCanvas([0.9, 0.9, 0.9, 1.0]); // clear to light gray
 
 // Step B: Draw with all three cameras
 this.drawCamera(this.mCamera);
 this.mMsg.draw(this.mCamera); // only draw status in the main camera
 this.drawCamera(this.mHeroCam);
 this.drawCamera(this.mBrainCam);
};

Take note of the mMsg object only being drawn to the mCamera, the main camera. For this reason, the
echo message will appear only in the viewport of the main camera.

	 4.	 Modify the update() function to pan the mHeroCam and mBrainCam with the
corresponding objects and to move the mHeroCam viewport continuously.

MyGame.prototype.update = function () {
 var zoomDelta = 0.05;
 var msg = "L/R: Left or Right Minion; H: Dye; P: Portal]: ";
 
 this.mCamera.update(); // for smoother camera movements
 this.mHeroCam.update();
 this.mBrainCam.update();
 
 // ... Identical to previous projects ...
 
 // set the hero and brain cams
 this.mHeroCam.panTo(this.mHero.getXform().getXPos(),
 this.mHero.getXform().getYPos());
 this.mBrainCam.panTo(this.mBrain.getXform().getXPos(),
 this.mBrain.getXform().getYPos());
 
 // Move the hero cam viewport just to show it is possible
 var v = this.mHeroCam.getViewport();
 v[0] += 1;

Chapter 7 ■ Manipulating the Camera

259

 if (v[0] > 500) {
 v[0] = 0;
 }
 this.mHeroCam.setViewport(v);
 
 this.mMsg.setText(msg + this.mChoice);
};

You can now run the project and notice the three different viewports showing on the HTML canvas.
The 2-pixel-wide bounds around the mHeroCam and mBrainCam viewports allow easy visual parsing of the
three views. Observe that the mBrainCam viewport is drawn on top of the mHeroCam. This is because in the
MyGame object draw() function, the mBrainCam is drawn last. The last drawn always appears on the top. You
can move the Hero object to observe that mHeroCam follows the hero and experience the smooth interpolated
results of panning the camera.

Now try changing the parameters to the mBrainCam.configInterpolation() function to generate
smoother interpolated results, such as by setting the stiffness to 0.1 and the duration to 100 cycles. Note how
it appears as though the camera is constantly trying to catch up to the Brain object. In this case, the camera
needs a stiff interpolation setting to ensure the main object remains in the center of the camera view. For a
much more drastic and fun effect, you can try setting mBrainCam to have much smoother interpolated results,
such as with a stiffness value of 0.01 and a duration of 200 cycles. With these values, the camera can never
catch up to the Brain object and will appear as though it is wandering aimlessly around the game world.

Mouse Input Through Cameras
The mouse is a pointing input device that reports position information in the Canvas Coordinate space.
Recall that the Canvas Coordinate space is simply a measurement of pixel offsets along the x/y-axes with
respect to the lower-left corner of the canvas. The game engine defines and works with the WC space where
all objects and measurements are specified in WC. For the game engine to work with the reported mouse
position, this position must be transformed from Canvas Coordinate space to WC.

The drawing on the left of Figure 7-10 shows an example of a mouse position located at (mouseX,
mouseY) on the canvas. The drawing on the right of Figure 7-10 shows that when a viewport with the lower-
left corner located at (V

x
,V

y
) and a dimension of W

v
 × H

v
 is defined within the canvas, the same (mouseX,

mouseY) position can be represented as a position in the viewport as (mouseDCX, mouseDCY) where:

•	 mouseDCX = mouseX–V
x

•	 mouseDCY = mouseY–V
y

Figure 7-10.  Mouse position on canvas and viewport

Chapter 7 ■ Manipulating the Camera

260

In this way, (mouseDCX, mouseDCY) is the offset from the (V
x

,V
y
), the lower-left corner of

the viewport.
The drawing on the left of Figure 7-11 shows that the Device Coordinate (DC) space defines a pixel

position within a viewport with offsets measured with respect to the lower-left corner of the viewport. For
this reason, the DC space is also referred to as the pixel space. The computed (mouseDCX, mouseDCY)
position is an example of a position in DC space. The drawing on the right of Figure 7-11 shows that this
position can be transformed into the WC space with the lower-left corner located at (minWCX, minWCY)
and a dimension of W

wc
 × H

wc
 according to these formulae:

•	 mouseWCX minWCX mouseDCX= + ´
æ

è
ç

ö

ø
÷

W

W
wc

v

•	 mouseWCY minWCY mouseDCY= + ´
æ

è
ç

ö

ø
÷

H

H
wc

v

Figure 7-11.  Mouse position in viewport DC space and WC space

With the knowledge of how to transform positions from the Canvas Coordinate space to the WC space,
it is now possible to implement mouse input support in the game engine.

The Mouse Input Project
This project demonstrates mouse input support in the game engine. You can see an example of this project
running in Figure 7-12. The source code to this project is defined in the Chapter7/7.5.MouseInput folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_7

Chapter 7 ■ Manipulating the Camera

261

The new controls of this project are as follows:

•	 Left mouse button pressed in the main Camera view: Drags the Portal object

•	 Middle mouse button pressed in the HeroCam view: Drags the Hero object

•	 Right or middle mouse button pressed in any view: Hides/shows the Portal object

The following controls are identical to the previous project:

•	 Q key: Initiates the camera shake effect

•	 WASD keys: Move the Dye character (the Hero object) and push the camera WC
bounds

•	 Arrow keys: Move the Portal object

•	 L/R/P/H keys: Select the in-focus object with L/R keys refocusing the camera to the
Left or Right minion

•	 N/M and J/K keys: Zoom into or away from the center of the camera, or the
in-focus object

Figure 7-12.  Running the Mouse Input project

Chapter 7 ■ Manipulating the Camera

262

The goals of the project are as follows:

•	 To understand the Canvas Coordinate space to WC space transform

•	 To appreciate mouse clicks are specific to individual viewports

•	 To implement transformation between coordinate spaces and support mouse input

You can find the same external resource files as in the previous project in the assets folder.

Modify gEngine_Core to Pass Canvas ID to Input Component
To receive mouse input information, the gEngine_Input component needs to have access to the
HTML canvas. This can be accomplished by editing the Engine_Core.js file and modifying the
intializeEngineCore() function to pass the HTML canvas ID to the engine input component.

var initializeEngineCore = function (htmlCanvasID, myGame) {
 _initializeWebGL(htmlCanvasID);
 gEngine.VertexBuffer.initialize();
 gEngine.Input.initialize(htmlCanvasID);
 gEngine.AudioClips.initAudioContext();
 
 // Inits DefaultResoruces, when done, call startScene(myGame).
 gEngine.DefaultResources.initialize(function () { startScene(myGame); });

Implement Mouse Support in gEngine_Input
Follow these steps:

	 1.	 Edit Engine_Input.js and define a set of constants to represent the three
|mouse buttons.

var kMouseButton = {
 Left: 0,
 Middle: 1,
 Right: 2
};

	 2.	 Define the variables to support mouse input.

// Support mouse
var mCanvas = null;
var mButtonPreviousState = [];
var mIsButtonPressed = [];
var mIsButtonClicked = [];
var mMousePosX = -1;
var mMousePosY = -1;

Similar to keyboard input, mouse button states are arrays of three Boolean elements, each representing
the state of the three mouse buttons.

Chapter 7 ■ Manipulating the Camera

263

	 3.	 Define the mouse movement event handler.

var _onMouseMove = function (event) {
 var inside = false;
 var bBox = mCanvas.getBoundingClientRect();
 
 // In Canvas Space now. Convert via ratio from canvas to client.
 �var x = Math.round((event.clientX - bBox.left) *
 (mCanvas.width / bBox.width));
 �var y = Math.round((event.clientY - bBox.top) *
 (mCanvas.width / bBox.width));
 
 �if ((x >= 0) && (x < mCanvas.width) && (y >= 0) &&
 (y < mCanvas.height)) {
 mMousePosX = x;
 mMousePosY = mCanvas.height - 1 - y;
 inside = true;
 }
 return inside;
};

Notice that the mouse event handler transforms a raw pixel position into the Canvas Coordinate space
by first checking whether the position is within the bounds of the canvas and then flipping the y position
such that the displacement is measured with respect to the lower-left corner.

	 4.	 Define the mouse button press handler to record the button event.

var _onMouseDown = function (event) {
 if (_onMouseMove(event))
 mIsButtonPressed[event.button] = true;
};

	 5.	 Define t.e button release handler to facilitate the detection of a mouse button
click event.

var _onMouseUp = function (event) {
 _onMouseMove(event);
 mIsButtonPressed[event.button] = false;
};

	 6.	 Modify the initialize() function to receive the canvasID parameter and
initialize mouse event handlers.

var initialize = function (canvasID) {
 // Keyboard support
 // ... Identical to previous projects ...
 

Chapter 7 ■ Manipulating the Camera

264

 // Mouse support
 for (i = 0; i < 3; i++) {
 mButtonPreviousState[i] = false;
 mIsButtonPressed[i] = false;
 mIsButtonClicked[i] = false;
 }
 window.addEventListener('mousedown', _onMouseDown);
 window.addEventListener('mouseup', _onMouseUp);
 window.addEventListener('mousemove', _onMouseMove);
 mCanvas = document.getElementById(canvasID);
};

	 7.	 Modify the update() function to process mouse button state changes in a similar
fashion to the keyboard.

var update = function () {
 var i;
 for (i = 0; i < kKeys.LastKeyCode; i++) {
 mIsKeyClicked[i] = (!mKeyPreviousState[i]) && mIsKeyPressed[i];
 mKeyPreviousState[i] = mIsKeyPressed[i];
 }
 for (i = 0; i < 3; i++) {
 �mIsButtonClicked[i] = �(!mButtonPreviousState[i]) &&

mIsButtonPressed[i];
 mButtonPreviousState[i] = mIsButtonPressed[i];
 }
};

	 8.	 Define the functions to retrieve mouse position and mouse button states.

var isButtonPressed = function (button) {
 return mIsButtonPressed[button];
};
 
var isButtonClicked = function (button) {
 return mIsButtonClicked[button];
};
var getMousePosX = function () { return mMousePosX; };
var getMousePosY = function () { return mMousePosY; };

	 9.	 When all is done, please remember to update the public interface.

Modify the Camera to Support Transformation to WC Space
The Camera object encapsulates the WC window and viewport and thus should be responsible for
transforming mouse positions.

	 1.	 Create a new file in the src/Engine/Camera/ folder and name it Camera_Input.js.
This file will contain the mouse input support functionality.

Chapter 7 ■ Manipulating the Camera

265

	 2.	 Define functions to transform mouse positions from Canvas Coordinate space to
the DC space, as illustrated in Figure 7-10.

Camera.prototype._mouseDCX = function () {
 return gEngine.Input.getMousePosX() - this.mViewport[Camera.eViewport.eOrgX];
};
Camera.prototype._mouseDCY = function () {
 return gEngine.Input.getMousePosY() - this.mViewport[Camera.eViewport.eOrgY];
};

	 3.	 Define a function to determine whether a given mouse position is within the
viewport bounds of the camera.

Camera.prototype.isMouseInViewport = function () {
 var dcX = this._mouseDCX();
 var dcY = this._mouseDCY();
 return ((dcX >= 0) && (dcX < this.mViewport[Camera.eViewport.eWidth]) &&
 (dcY >= 0) && (dcY < this.mViewport[Camera.eViewport.eHeight]));
};

	 4.	 Define the functions to transform the mouse position into the WC space, as
illustrated in Figure 7-11.

Camera.prototype.mouseWCX = function () {
 var minWCX = this.getWCCenter()[0] - this.getWCWidth() / 2;
 return minWCX + (this._mouseDCX() * (this.getWCWidth() /
 this.mViewport[Camera.eViewport.eWidth]));
};
 
Camera.prototype.mouseWCY = function () {
 var minWCY = this.getWCCenter()[1] - this.getWCHeight() / 2;
 return minWCY + (this._mouseDCY() * (this.getWCHeight() /
 this.mViewport[Camera.eViewport.eHeight]));
};

Testing the Mouse Input in MyGame
The main functionality to be tested includes the ability to detect which view should receive the mouse
input, proper mouse button state identification, and correct transformed WC position. As in previous
few examples, the MyGame.js implementation is largely similar to previous projects. In this case, only the
update() function contains noteworthy changes that work with the new mouse input functionality.

MyGame.prototype.update = function () {
  
 // ... Identical to previous projects ...
 

Chapter 7 ■ Manipulating the Camera

266

 msg = "";
 // testing the mouse input
 if (gEngine.Input.isButtonPressed(gEngine.Input.mouseButton.Left)) {
 msg += "[L Down]";
 if (this.mCamera.isMouseInViewport()) {
 this.mPortal.getXform().setXPos(this.mCamera.mouseWCX());
 this.mPortal.getXform().setYPos(this.mCamera.mouseWCY());
 }
 }
 
 if (gEngine.Input.isButtonPressed(gEngine.Input.mouseButton.Middle)) {
 if (this.mHeroCam.isMouseInViewport()) {
 this.mHero.getXform().setXPos(this.mHeroCam.mouseWCX());
 this.mHero.getXform().setYPos(this.mHeroCam.mouseWCY());
 }
 }
 if (gEngine.Input.isButtonClicked(gEngine.Input.mouseButton.Right))
 this.mPortal.setVisibility(false);
 
 if (gEngine.Input.isButtonClicked(gEngine.Input.mouseButton.Middle))
 this.mPortal.setVisibility(true);
 
 msg += " X=" + gEngine.Input.getMousePosX() + " Y="
 + gEngine.Input.getMousePosY();
 this.mMsg.setText(msg);
};

The camera.isMouseInViewport() condition is checked when the viewport context is important, as
in the case of a left mouse button press in the main camera view or a middle mouse button press in the
mHeroCam view. This is in contrast to a right or middle mouse button click for setting the visibility of the
Portal object. The controls will be executed no matter where the mouse position is.

You can now run the project and verify the correctness of the transformation to WC space. Press and
drag with left mouse button in the main view or middle mouse button in the mHeroCam view to observe the
accurate movement of the corresponding object centers to the mouse position. Left or middle mouse button
drags in the wrong views have no effect on the corresponding objects; for example, a left mouse button drag
in the mHeroCam or mBrainCam view has no effect on the Portal object. The right or middle mouse button
click properly controls the visibility of the Portal object, independent of the location of the mouse pointer.
Be aware that the browser maps the right mouse button click to a default pop-up menu. For this reason, you
should avoid working with right mouse button clicks in your games.

Summary
This chapter was about controlling and interacting with the Camera object. You have learned about the most
common camera manipulation operations including clamping, panning, and zooming. These operations
are implemented in the game engine with utility functions that map the high-level specifications to actual
WC window bound parameters. The sudden, often annoying, and potentially confusing results from camera
manipulations are mitigated with the introduction of interpolation. Through the implementation of the
camera shake effect, you have discovered that some movements can be modeled by simple mathematical
formulations. You have experienced the importance of effective Camera object abstraction in supporting
multiple camera views. The last section guided you through the implementation of transforming a mouse
position from the Canvas Coordinate space to the WC space.

Chapter 7 ■ Manipulating the Camera

267

In Chapter 5, you found out how to represent and draw an object with a visually appealing image
and control the animation of this object. In Chapter 6, you read about how to define an abstraction to
encapsulate the behaviors of an object and the fundamental support to detect collisions between objects.
This chapter is about the “directing” of these objects: what should be visible, where the focus should be, how
much of the world to show, how to ensure smooth transition between foci, and how to receive input from the
mouse. With these capabilities, you now have a well-rounded game engine framework, from representing
and drawing objects to modeling and managing the behaviors of these objects to controlling what, where,
and how to show the game world.

The following chapters will continue to examine object appearance and behavior at more advanced
levels, including creating lighting and illumination effects in a 2D world and simulating and integrating
behaviors based on simple classical mechanics.

Game Design Considerations
Now that you’ve learned the basics of object interaction, it’s a good time to start thinking about creating your
first simple game mechanic to begin gaining insight into the logical conditions and rules that constitute
well-formed gameplay experiences. Many designers approach game creation from the top down (meaning
they start with an idea for an implementation of a specific genre, like a real-time strategy, tower defense, or
role-playing game), which is common in an industry such as video games where the creators typically spend
quite a bit of time as content consumers before transitioning into content makers. Game studios reinforce
this top-down design approach, assigning new staff to work under seasoned leads to learn best practices
for whatever genre that particular studio works in. This approach has proven effective for training designers
who can competently iterate on known genres, but it’s not always the best path to develop well-rounded
creators who can design new systems and mechanics from the ground up.

This begs the question, “What makes gameplay well-formed?” At a fundamental level, a game is an
interactive experience where rules must be learned and applied to achieve a specified outcome. All games
must meet this minimum criteria, including card and board, physical, video, and other game types. Taking
things a step further, a good game is an interactive experience with rules people enjoy learning and applying
to achieve an outcome they’re invested in. There’s quite a bit to unpack in that brief definition, of course,
but as a general rule, players will enjoy a game more when the rules are discoverable, are consistent, and
make logical sense and when the outcome feels like a satisfactory reward for mastering those rules. This
definition applies to both individual game mechanics as well as entire game experiences. To use a metaphor,
it can be helpful to think of game designs as built with letters (interactions) that form words (mechanics)
that form sentences (levels) that ultimately form readable content (genres). Most new designers attempt
to write novels before they know the alphabet, and everyone has played games where the mechanics and
levels felt at best like sentences written with poor grammar and at worst like unsatisfying, random jumbles of
unintelligible letters.

Over the next several chapters you’ll learn about more advanced features in 2D game engines, including
simulations of illumination and physical behaviors. You’ll also be introduced to a set of design techniques
enabling you to deliver a complete and well-formed game level, integrating these techniques and utilizing
more of the nine elements of game design discussed in Chapter 4 in an intentional way and working from
the ground up to deliver a unified experience. In the earliest stages of design exploration, it’s often helpful
to focus only on creating and refining the basic game mechanics and interaction model; at this stage, try to
avoid thinking about setting, meta-game, systems design, and the like (these will be folded into the design as
it progresses).

http://dx.doi.org/10.1007/978-1-4842-0952-3_5
http://dx.doi.org/10.1007/978-1-4842-0952-3_6
http://dx.doi.org/10.1007/978-1-4842-0952-3_4

Chapter 7 ■ Manipulating the Camera

268

The first design technique is a simple exercise that allows you to start learning the game design
alphabet: an “escape the room” scenario with one simple mechanic, where you must accomplish a task
in order to unlock a door and claim a reward. One goal of this exercise is to begin developing insight into
how to create well-formed and logical rules that are discoverable and consistent, which is much easier to
accomplish when the tasks are separated into basic interactions. You’ve already explored the beginnings
of potential rule-based scenarios in earlier projects. Recall the Keyboard Support project from Chapter 4,
which suggested you might have players move a smaller square completely into the boundary of a larger
square in order to trigger some kind of behavior. How might that single interaction (or “letter of the game
alphabet”) combine to form a game mechanic (or “word”) that makes sense? Figure 7-13 sets the stage for
the locked room sandbox.

Figure 7-13.  The image represents a single game screen divided into three areas. a playable area on the left
with a hero character (the circle marked with a P), an impassable barrier marked with a lock icon, and a
reward area on the right

The screen represented in Figure 7-13 is a useful starting place when exploring new mechanics. The
goal for this exercise is to create one logical challenge that a player must complete to unlock the barrier and
reach the reward. The specific nature of the task can be based on a wide range of elemental mechanics. It
can involve jumping or shooting, puzzle solving, narrative situations, and the like. The key is to keep this
first iteration simple (this first challenge should have a limited number of components contributing to the
solution) and discoverable (players must be able to experiment and learn the rules of engagement so they
can intentionally solve the challenge). You’ll add complexity and interest to the mechanic in later iterations,
and you’ll see how elemental mechanics can be evolved to support many kinds of game types.

http://dx.doi.org/10.1007/978-1-4842-0952-3_4

Chapter 7 ■ Manipulating the Camera

269

It’s not immediately apparent just by looking at Figure 7-14 what the player needs to do to unlock
the barrier, so they must experiment in order to learn the rules by which the game world operates; it’s this
experimentation that forms the core element of a game mechanic driving players forward through the level,
and the mechanic will be more or less satisfying based on the discoverability and logical consistency of its
rules. In this example, imagine that as the player moves around the game screen, they notice that when the
hero character interacts with an object, it always “activates” with a highlight, as shown in Figure 7-15, and
sometimes causes a section of the lock icon and one-third of the ring around the lock icon to glow. Some
shapes, however, will not cause the lock and ring to glow when activated, as shown in Figure 7-16.

Figure 7-14.  The game screen is populated with an assortment of individual objects

Figure 7-14 sets the stage for a logical relationship mechanic where players must interact with objects in
the environment to learn the rules.

Chapter 7 ■ Manipulating the Camera

270

Figure 7-15.  As the player moves the hero character around the game screen, the shapes “activate” with a
highlight (#1); activating certain shapes causes a section of the lock and one-third of the surrounding ring to
glow (#2)

Figure 7-16.  Activating some shapes (#3) will not cause the lock and ring to glow (#4)

Chapter 7 ■ Manipulating the Camera

271

You (and players) should now have all required clues to learn the rules of this mechanic and solve the
puzzle. There are three instances, each with a unique shape, that the player can interact with, and there is
only one instance of each shape per row. The shapes are representations of the top, middle, and bottom
of the lock icon, and as shown in Figure 7-15, activating the circle shape caused the corresponding section
of the lock to glow. Figure 7-16, however, did not cause the corresponding section of the lock to glow, and
the difference is the “hook” for this mechanic: sections of the lock must be activated in the correct relative
position: top in the top row, middle in the middle row, bottom on the bottom (you might also choose to
require that players activate them in the correct sequence starting with the top section, although that
requirement is not discoverable just from looking at Figures 7-15 to 7-17).

You’ve now created a well-formed and logically consistent, if simple, puzzle, with all of the elements
needed to build a larger and more ambitious level. This unlocking sequence is an abstract mechanic. The
game screen is intentionally devoid of game setting, visual style, or genre alignment at this stage of design
because I don’t want to burden the exploration with any preconceived expectations. It will benefit you
as a designer to spend time exploring the mechanic in its purest form before burdening it with a specific
implementation, and you’ll likely be surprised at the directions these simple mechanics will take you as you
build them out.

Simple mechanics like the previous, which can be described as “complete a multistage task in the
correct sequence to achieve a goal,” are featured in many kinds of games; any game that requires players to
collect parts of an object and combine them in an inventory to complete a challenge, for example, utilizes
this mechanic. Individual mechanics can also be combined with other mechanics and game features to form
compound elements that add complexity and flavor to the game experience.

Astute players will learn the rules for this puzzle fairly quickly. Can you guess what they might be
just from looking at Figures 7-15 and 7-16? If you’re feeling stuck, Figure 7-17 should provide enough
information to solve the puzzle.

Figure 7-17.  After the first object was activated (the circle in the upper-right) and caused the top section of the
lock and first third of the ring to glow, as shown in Figure 7-15, the second object in the correct sequence (#5)
caused the middle section of the lock and second third of the ring to glow (#6)

Chapter 7 ■ Manipulating the Camera

272

The camera exercises in this chapter provide good examples for how you might add interest to a single
mechanic. The Simple Camera Manipulations project, for example, demonstrates one method for advancing
game action. Imagine in the previous example that after a player receives the reward for unlocking the
barrier, the player moves the hero object to the right side of the screen and advances to a new “room” or
area. Now imagine how gameplay would change if the camera advanced the screen at a fixed rate when the
level started; the addition of autoscrolling changes this mechanic considerably because the player must
solve the puzzle and unlock the barrier before the advancing barrier pushes the player off the screen. The
first instance creates a leisurely puzzle-solving game experience, while the latter increases the tension
considerably by giving the player a limited amount of time to complete each screen. In an autoscrolling
implementation, how might you lay out the game screen to ensure the player had sufficient time to learn the
rules and solve the puzzle?

The Multiple Cameras project can be especially useful as a mini-map that provides information about
places in the game world not currently displayed on the game screen; in the case of the previous exercise,
imagine that the locked barrier appeared somewhere else in the game world other than the player’s current
screen and that a secondary camera acting as a mini-map displayed a zoomed-out view of the entire game
world map. As the game designer, you might want to let the player know when they complete a task that
allows them to advance and provide information about where they need to go next, so in this case you might
flash a beacon on the mini-map calling attention to the barrier that just unlocked and showing the player
where to go. In the context of the “game design is like a written language” metaphor, adding additional
elements like camera behavior to enhance or extend a simple mechanic is one way to begin forming words
from the game design alphabet.

A game designer’s primary challenge is to create scenarios that require clever experimentation while
maintaining logical consistency; it’s perfectly fine to frustrate players by creating devious scenarios requiring
creative problem solving (we call this “good” frustration), but it’s not typically sound design to frustrate
players by creating scenarios that are logically inconsistent and make players feel that they succeeded in
the challenge only by trial-and-error or luck (“bad” frustration). Think back to the games you’ve played
that have resulted in bad frustration: where did they go wrong, and what might the designers have done to
improve the experience?

The locked room scenario is a useful design tool because it forces you to construct basic mechanics,
but you might be surprised at the variety of scenarios that can result from this exercise. Try a few different
approaches to the locked room puzzle and see where the design process takes you, but keep it simple. For
now, stay focused on one-step events to unlock the room that require players to learn only one rule. You’ll
revisit this exercise in the next chapter and begin creating more ambitious mechanics that add additional
challenges.

273

Chapter 8

Implementing Illumination and
Shadow

After completing this chapter, you will be able to:

•	 Understand the parameters of simple illumination models

•	 Define infrastructure supports for working with multiple light sources

•	 Understand the basics of diffuse reflection and normal mapping

•	 Understand the basics of specular reflection and the Phong illumination model

•	 Implement GLSL shaders to simulate diffuse and specular reflection and the Phong
illumination model

•	 Create and manipulate point, directional, and spotlights

•	 Simulate shadows with the WebGL stencil buffer

Introduction
Up to now in your game engine you have implemented mostly functional modules in order to provide the
core fundamentals required for many types of 2D games (that is, modules that serve to provide functionality
directly to the end gameplay of a game created with your engine). This is a great approach because it allows
you to systematically expand the capabilities of your engine to allow more types of games and gameplay. For
instance, with the topics covered thus far, you can implement a variety of different games including puzzle
games, top-down space shooters, and even simple platform games.

An illumination model, or a lighting model, is a mathematic formulation that describes the color and
brightness of a scene based on simulating light energy reflecting off the surfaces in the scene. In this chapter,
you will implement an illumination model that indirectly affects the types of gameplay your game engine
can support and the visual fidelity that can be achieved. This is because illumination within a game engine
can be more than a simple aesthetic effect. When used creatively, illumination can enhance gameplay
or provide a dramatic setting for your game. For example, you could have a scene with a torch light that
illuminates an otherwise dark pathway for the hero, with the torch flickering to communicate a sense of
unease or danger to the player. Additionally, while the lighting model is based on light behaviors within the
real world, in your game implementation the lighting model allows surreal or physically impossible settings,
such as an oversaturated light source that displays bright or iridescent colors or even a negative light
intensity that seemingly absorbs the light around it.

Chapter 8 ■ Implementing Illumination and Shadow

274

When implementing illumination models commonly present in game engines, you will need to venture
into concepts in 3D space to properly simulate light within your scenes. You will need to define depth values
for the light sources to cast light energy upon the game objects, or renderables, which are flat 2D geometries.
Once you consider concepts in 3D, the task of implementing a lighting model becomes much more
straightforward, and you can apply knowledge from computer graphics to properly illuminate a scene.

A variation of the Phong illumination model will be derived and implemented in your game engine.
While there are many versions of the Phong illumination model, you will be implementing a simplified
version that caters to the 2D aspect of your game engine. However, the principles of the illumination model
remain the same. If you desire more information or a further in-depth analysis of the Phong illumination
model, please refer to the discussion in Chapter 1.

Overview of Illumination and GLSL Implementation
In general, an illumination model is one or a set of mathematical equations describing how humans
observe the interaction of light with object materials in the environment. As you can imagine, an accurate
illumination model that is based on the physical world can be highly complex and computationally
intensive. The Phong illumination model captures many of the interesting aspects of light/material
interactions with a relatively simple equation that can be implemented efficiently. The projects in this
chapter guide you in understanding the fundamental elements of the Phong illumination model.

•	 Ambient Light: Reviews the effects of lights in the absence of explicit light sources

•	 Light Source: Examines the effect of illumination from a single light source

•	 Multiple Light Sources: Develops game engine infrastructure to support multiple
light sources

•	 Diffuse Reflection and Normal Maps: Simulates diffuse light reflection in 2D

•	 Specular Light and Material: Models light reflecting off surfaces and reaching
the camera

•	 Light Source types: Introduces illumination based on different types of light sources

•	 Shadow: Approximates the results from light occlusion

Together, the projects in this chapter build a powerful tool for adding visual intricacy into your games.

Ambient Light
Ambient light, often referred to as background light, allows you to see objects in the environment when there
are no explicit light sources. For example, in the dark of night, you can see objects in a room even though all
lights are switched off. In the real world, light coming from the window, from underneath the door, or from
the background illuminates the room for you. A realistic simulation of the background light illumination,
often referred to as indirect illumination, is complex and computationally too expensive to simulate in real
time. Instead, in computer graphics and most 2D games, ambient lighting is approximated by adding a
constant ambient light color to every object within the current scene or world. It is important to note that
while ambient lighting can provide desired results, it is not meant to mimic real-world lighting exactly. For
your specific engine implementation, each object within the scene needs access to an ambient color and an
ambient intensity before it is drawn in order to take into account the ambient lighting of the scene.

http://dx.doi.org/10.1007/978-1-4842-0952-3_1

Chapter 8 ■ Implementing Illumination and Shadow

275

The Global Ambient Project
This project demonstrates how to implement ambient lighting within your scenes by providing a global
ambient color and a global ambient intensity that each renderable object references before being drawn.
You can see an example of this project running in Figure 8-1. The source code of this project is located in the
Chapter8/8.1.GlobalAmbient folder.

Figure 8-1.  Running the Global Ambient project

The controls of the project are as follows:

•	 Left mouse button: Increases the global red ambient

•	 Middle mouse button: Decreases the global red ambient

•	 Left/right arrow keys: Decrease/increase the global ambient intensity

The goals of the project are as follows:

•	 To experience the effects of ambient lighting

•	 To understand how to implement a simple global ambient across a scene

•	 To refamiliarize yourself with the Shader/Renderable pair structure to interface to
GLSL shaders and the game engine

http://dx.doi.org/10.1007/978-1-4842-0952-3_8

Chapter 8 ■ Implementing Illumination and Shadow

276

You can find the following external resources in the assets folder: the fonts folder that contains the
default system fonts and two texture images (minion_sprite.png, which defines the sprite elements for the
hero and the minions, and bg.png, which defines the background).

Modifying the GLSL Shaders
A good place to start when implementing new shaders for the game engine is the GLSL shader. This is
because it allows you to implement the shading technique, which in turn provides the outline for how your
engine must be modified in order to support this new shader. Thus, to start, implement the global ambient
into your SimpleFS.glsl.

	 1.	 Modify the fragment shader SimpleFS.glsl by adding the uniform variables
uGlobalAmbientColor and uGlobalAmbientIntensity. Then utilize them by
multiplying them by uPixelColor to get the final color for each fragment. You
can see this implemented in the following code:

precision mediump float;
 
// Color of the object
uniform vec4 uPixelColor;
uniform vec4 uGlobalAmbientColor; // this is shared globally
uniform float uGlobalAmbientIntensity; // this is shared globally
 
void main(void) {
 // for every pixel called sets to the user specified color
 gl_FragColor = uPixelColor * uGlobalAmbientIntensity * uGlobalAmbientColor;
}

	 2.	 Similarly modify the texture fragment shader TextureFS.glsl by adding the
uniform variables uGlobalAmbientColor and uGlobalAmbientIntensity. Then
utilize them by multiplying them by c (the fragment color sampled from the
texture) to get the final color for each fragment. Remember that the color for
c was obtained by using the interpolated vTexCoord variable from the vertex
shader to sample a fragment from the passed-in texture. You can see this
implemented in the following code:

precision mediump float;
 
uniform sampler2D uSampler;
 
// Color of the object
uniform vec4 uPixelColor;
uniform vec4 uGlobalAmbientColor; // this is shared globally
uniform float uGlobalAmbientIntensity;
 
varying vec2 vTexCoord;
 
void main(void) {
 // texel color look up based on interpolated UV value in vTexCoord
 vec4 c = texture2D(uSampler, vec2(vTexCoord.s, vTexCoord.t));
  
 c = c * uGlobalAmbientIntensity * uGlobalAmbientColor;
  

Chapter 8 ■ Implementing Illumination and Shadow

277

 �// tint the textured area, and
// leave transparent area as defined by the texture

 vec3 r = vec3(c) * (1.0-uPixelColor.a) + vec3(uPixelColor) * uPixelColor.a;
 vec4 result = vec4(r, c.a);
 
 gl_FragColor = result;
}

Modifying SimpleShader
With global ambient color and intensity now implemented within the shader, you need to modify the simple
shader in order to accommodate the new variables by passing the values onto the GLSL shader.

	 1.	 Modify the SimpleShader.js file in the src/Engine/Shaders folder to hold two
new variables in the constructor for storing the references or locations of the
ambient color and intensity variables within the GLSL shader.

this.mGlobalAmbientColor = null;
this.mGlobalAmbientIntensity = null;

	 2.	 In step E of the SimpleShader constructor, get the locations of the ambient
color and intensity within the shader by using WebGL’s getUniformLocation()
function, as shown in the following code:

// Step E: references: uniforms:
// uPixelColor, uModelTransform, and uViewProjTransform
this.mPixelColor = gl.getUniformLocation(this.mCompiledShader, "uPixelColor");
this.mModelTransform = gl�.getUniformLocation(

this.mCompiledShader, "uModelTransform");
this.mViewProjTransform =� gl.getUniformLocation(

this.mCompiledShader, "uViewProjTransform");
this.mGlobalAmbientColor = gl.getUniformLocation(
 this.mCompiledShader, "uGlobalAmbientColor");
this.mGlobalAmbientIntensity = gl.getUniformLocation(
 this.mCompiledShader, "uGlobalAmbientIntensity");

	 3.	 In the activateShader() function, pass the ambient color and intensity values
to the shader by utilizing the global values and the locations you obtained in the
previous step along with the GLSL uniform set functions provided by WebGL.
Notice that the data type used by the set functions for GLSL variables state which
data type is used explicitly. As you can probably guess, uniform4fv corresponds
to vec4, which is used to hold the color, and to uniform1f, which corresponds to
a float and is used to hold the intensity.

// Activate the shader for rendering
SimpleShader.prototype.activateShader = function(pixelColor, aCamera) {
 var gl = gEngine.Core.getGL();
 gl.useProgram(this.mCompiledShader);
 gl.uniformMatrix4fv(this.mViewProjTransform, false, aCamera.getVPMatrix());
 gl.bindBuffer(gl.ARRAY_BUFFER, gEngine.VertexBuffer.getGLVertexRef());
 gl.vertexAttribPointer(this.mShaderVertexPositionAttribute,

Chapter 8 ■ Implementing Illumination and Shadow

278

 3, // each element is a 3-float (x,y.z)
 gl.FLOAT, // data type is FLOAT
 false, // if the content is normalized vectors
 0, // number of bytes to skip in between elements
 0); // offsets to the first element
 gl.enableVertexAttribArray(this.mShaderVertexPositionAttribute);
 gl.uniform4fv(this.mPixelColor, pixelColor);
 gl.uniform4fv(this.mGlobalAmbientColor,
 gEngine.DefaultResources.getGlobalAmbientColor());
 gl.uniform1f(this.mGlobalAmbientIntensity,
 gEngine.DefaultResources.getGlobalAmbientIntensity());
};

Modifying the Engine
Now that the shader and the corresponding shader object for ambient color and intensity are properly
integrated, you can modify the engine in order to support the variables for global ambient.

	 1.	 Begin by adding a global ambient color and a global ambient intensity variable
in the Engine_DefaultResources.js file, located in the src/Engine/Core/
Resources folder, as shown here:

// Global Ambient color
var mGlobalAmbientColor = [0.3, 0.3, 0.3, 1];
var mGlobalAmbientIntensity = 1;

	 2.	 Define basic get and set accessors to allow for the modification of the ambient
color and intensity, as shown in the following code:

var getGlobalAmbientIntensity = function() { return mGlobalAmbientIntensity; };
var setGlobalAmbientIntensity = function(v) { mGlobalAmbientIntensity = v; };
var getGlobalAmbientColor = function() { return mGlobalAmbientColor; };
var setGlobalAmbientColor = function(v) {
 mGlobalAmbientColor = vec4.fromValues(v[0], v[1], v[2], v[3]); };

	 3.	 Remember to include the accessors in your mPublic() function list.

getGlobalAmbientColor: getGlobalAmbientColor,
setGlobalAmbientColor: setGlobalAmbientColor,
getGlobalAmbientIntensity: getGlobalAmbientIntensity,
setGlobalAmbientIntensity: setGlobalAmbientIntensity,

Testing the Ambient Illumination
Now that the engine supports ambient lighting for a scene, all that is left is to verify the correctness by
utilizing it within MyGame.js and observe the shaded results. To get a better picture of what exactly is
happening and how exactly the ambient lighting can be utilized, you can begin with a clean MyGame.js file
and re-implement the core functions.

Chapter 8 ■ Implementing Illumination and Shadow

279

	 1.	 Start by adding variables to the constructor for a camera, a background, a hero,
and some minions. Additionally, remember to inherit from the Scene class in
order to utilize its functionality.

"use strict";
function MyGame() {
 this.kMinionSprite = "assets/minion_sprite.png";
 this.kBg = "assets/bg.png";
  
 // The camera to view the rectangles
 this.mCamera = null;
 this.mBg = null;
  
 this.mMsg = null;
  
 // the hero and the support objects
 this.mHero = null;
 this.mLMinion = null;
 this.mRMinion = null;
}
gEngine.Core.inheritPrototype(MyGame, Scene);

	 2.	 Next, practice proper implementation by remembering to load and unload the
background and the minions. You can see this in the following code:

MyGame.prototype.loadScene = function() {
 gEngine.Textures.LoadTexture(this.kMinionSprite);
 gEngine.Textures.LoadTexture(this.kBg);
};
 
MyGame.prototype.unloadScene = function() {
 gEngine.Textures.UnloadTexture(this.kMinionSprite);
 gEngine.Textures.UnloadTexture(this.kBg);
};

	 3.	 Now initialize the camera and scene objects by setting them to the values shown
here so that the scene is visible by the camera upon startup:

MyGame.prototype.initialize = function() {
 // Step A: set up the cameras
 this.mCamera = new Camera(
 vec2.fromValues(50, 37.5), // position of the camera
 100, // width of camera
 [0, 0, 640, 480] // viewport (orgX, orgY, width, height)
);
 this.mCamera.setBackgroundColor([0.8, 0.8, 0.8, 1]);
 // Sets the background to gray
  
 var bgR = new SpriteRenderable(this.kBg);
 bgR.setTexPixelPositions(0, 1900, 0, 1000);
 bgR.getXform().setSize(190, 100);

Chapter 8 ■ Implementing Illumination and Shadow

280

 bgR.getXform().setPosition(50, 35);
 this.mBg = new GameObject(bgR);
  
 // Step B: Create the hero object with texture from lower-left corner
 this.mHero = new Hero(this.kMinionSprite);
  
 this.mLMinion = new Minion(this.kMinionSprite, 30, 30);
 this.mRMinion = new Minion(this.kMinionSprite, 70, 30);
  
 this.mMsg = new FontRenderable("Status Message");
 this.mMsg.setColor([1, 1, 1, 1]);
 this.mMsg.getXform().setPosition(1, 2);
 this.mMsg.setTextHeight(3);
};

	 4.	 Next, draw each object in the scene, as shown in the following functions:

MyGame.prototype.drawCamera = function(camera) {
 camera.setupViewProjection();
 this.mBg.draw(camera);
 this.mHero.draw(camera);
 this.mLMinion.draw(camera);
 this.mRMinion.draw(camera);
};
 
// This is the draw function, make sure to setup proper drawing environment,
// and more importantly, make sure to _NOT_ change any state.
MyGame.prototype.draw = function() {
 // Step A: clear the canvas
 gEngine.Core.clearCanvas([0.9, 0.9, 0.9, 1.0]); // clear to light gray
  
 // Step B: draw with all three cameras
 this.drawCamera(this.mCamera);
 this.mMsg.draw(this.mCamera); // only draw status in the main camera
};

	 5.	 Lastly, implement the following update function to update each object as well
as the camera within the scene. Additionally, provide control over the global
ambient color and intensity for testing purposes and display a status for color
and intensity.

// The update function, updates the application state. Make sure to _NOT_ draw
// anything from this function!
MyGame.prototype.update = function() {
 var deltaAmbient = 0.01;
 var msg = "Current Ambient]: ";
  
 this.mCamera.update(); // to ensure proper interpolated movement effects
  
 this.mLMinion.update(); // ensure sprite animation
 this.mRMinion.update();

  

Chapter 8 ■ Implementing Illumination and Shadow

281

 this.mHero.update(); // allow keyboard control to move
  
 this.mCamera.panWith(this.mHero.getXform(), 0.8);
  
 var v = gEngine.DefaultResources.getGlobalAmbientColor();
 if (gEngine.Input.isButtonPressed(gEngine.Input.mouseButton.Left))
 v[0] += deltaAmbient;
 if (gEngine.Input.isButtonPressed(gEngine.Input.mouseButton.Middle)
 v[0] -= deltaAmbient;
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Left))
 gEngine.DefaultResources.setGlobalAmbientIntensity(
 gEngine.DefaultResources.getGlobalAmbientIntensity() - deltaAmbient);
 if (gEngine.Input.isKeyPressed(gEngine.Input.keys.Right))
 gEngine.DefaultResources.setGlobalAmbientIntensity(
 gEngine.DefaultResources.getGlobalAmbientIntensity() + deltaAmbient);
  
 msg += " Red=" + v[0].toPrecision(3) + " Intensity=" +
 Engine.DefaultResources.getGlobalAmbientIntensity().toPrecision(3);
 this.mMsg.setText(msg);
};

Observations
You can now see the results of the project by running it. Notice that the scene itself is dark. This is because
the RGB values for the global ambient color were all initialized to 0.3, and since the ambient color is
multiplied by the color sampled from the textures, the results are similar to applying a dark tint across the
entire scene. The same effect would happen if the RGB values were set to 1 and the intensity was set 0.3
because applying the ambient values is done through straightforward multiplication. Before moving onto
the next project, try fiddling with the ambient red channel and the ambient intensity in order to see its effect
on the scene. By pressing the right arrow key, you can increase the intensity of the entire scene and make all
objects more visible. The next section describes how to create and direct a light source to illuminate only on
selected objects.

Light Source
With ambient lighting for the scene completed, it is now time to implement light with an object-oriented
approach while adhering to your expectations of what a light is and how it interacts with the environment.
This can be achieved through the definition of a Light object to represent a light source. As mentioned, to
implement a light source, the 2D engine will need to venture into the third dimension to properly simulate
light energy traveling from the source to the surface of your geometries. There are several types of light
sources; you will begin with the implementation of a simple point light. A point light is a light that emits light
uniformly in all directions. In the real world, a point light can be thought of as a simple lightbulb.

The most basic implementation of a point light can be distilled down to illuminating an area or radius
around a specified point. In three-dimensional space, the region of illumination by a point light source
can simply be thought of as a sphere, referred to as volume of illumination. The volume of illumination of a
point light is defined with the light’s position being at the center of the sphere and illuminating the volume
that is within the radius of the sphere. To observe the effects of a light source, objects must be present and
within the volume of illumination. Now, consider your 2D engine; thus far you have implemented a system
in which everything is rendered in 2D. Or, rather, everything is rendered at a single plane where z = 0 and
objects are layered (by draw order) in order to display one object in front of another. On this system, you

Chapter 8 ■ Implementing Illumination and Shadow

282

are now going to add light sources that reside in 3D. To observe the effects of a light source, its illumination
volume must overlap an object on the XY plane where your objects exist. Figure 8-2 shows the volume of
illumination from a simple point light intersecting an object on the XY plane where z = 0. This intersection
results in an illuminated circle on the object.

Figure 8-2.  Point light and the corresponding volume of illumination in 3D

GLSL Implementation and Integration into the Game Engine
For quality results, the computations associated with illumination models must be performed once
for each affected pixel. Recall that in WebGL and GLSL shaders the color of each pixel is computed by
the corresponding GLSL fragment shader. In this chapter, as each fundamental element of the Phong
illumination model is studied, the accompanied GLSL fragment shader implementation will also be
explained.

From your experience building the game engine, you will remember that the engine interfaces to the
GLSL shaders with the corresponding subclasses of the Shader/Renderable object pairs: Shader objects
to interface to the GLSL shaders and Renderable objects to provide programmers with the convenience of
manipulating many copies of geometries of the same shader type. For example, TextureVS and TextureFS
are interfaced to the game engine via the TextureShader object, and the TextureRenderable objects
allow game programmers to create and manipulate multiple instances of geometries shaded by the
TextureVS/FS shaders. Figure 8-3 depicts that the next project extends this architecture to implement point
light illumination. The Light class encapsulates the attributes of a point light including position, radius,
and color. This information is forwarded to the GLSL fragment shader, LightFS, via the LightShader/
LightRenderable pair for computing the appropriate pixel colors. The GLSL vertex shader, TextureVS, is
reused because light source illumination involves the same information to be processed at each vertex.

Chapter 8 ■ Implementing Illumination and Shadow

283

Finally, before you begin learning about the elements of a Phong Illumination model, it is important to
point out again that the GLSL fragment shader is invoked once for every pixel covered by the corresponding
geometry. This means the GLSL fragment shaders you are about to learn will be invoked many times per
frame, probably in the range of hundreds of thousands or even millions. Considering the fact that the game
loop initiates redrawing at a real-time rate, or around 60 frame redraws per second, the GLSL fragment
shaders will be invoked many millions of times per second! The efficiency of the implementation is of most
importance!

The Simple Light Shader Project
This project demonstrates how to implement a simple point light and illuminate objects within the scene.
You can see an example of this project running in Figure 8-4. The source code of this project is located in the
Chapter8/8.2.SimpleLightShader folder.

Figure 8-3.  LightShader/LightRenderable pair and the corresponding GLSL LightShader

http://dx.doi.org/10.1007/978-1-4842-0952-3_8

Chapter 8 ■ Implementing Illumination and Shadow

284

The controls of the project are as follows:

•	 WASD keys: Move the hero character on the screen

•	 WASD keys + left mouse button: Move the hero character and the light source around
the screen

•	 Left/right arrow key: Decreases/increases the light intensity

•	 Z/X key: Increases/decreases the light Z position

•	 C/V key: Increases/decreases the light radius

The goals of the project are as follows:

•	 To understand how to simulate the illumination effects from a point light

•	 To experience illumination results from a point light

•	 To implement a GLSL shader that supports point light illumination

You can find the following external resources in the assets folder: the fonts folder that contains
the default system fonts and two texture images (minion_sprite.png and bg.png). The objects are sprite
elements of minion_sprite.png, and the background is represented by bg.png.

Figure 8-4.  Running the Simple Light Shader project

Chapter 8 ■ Implementing Illumination and Shadow

285

Creating the GLSL Light Fragment Shader
As with the previous section, the implementation will begin with the GLSL shader. The shader uses light
properties to calculate the illuminated circle. The GLSL vertex shader will remain identical to the TextureVS
since the same information and computation will be performed at each vertex.

	 1.	 Under the src/GLSLShaders folder, create a new file and name it LightFS.glsl.

	 2.	 Add the standard uniform and varying variables for the texture sampler,
texture coordinate, ambient properties, and pixel color as in previous projects.
Furthermore, you can now add support for a single light by adding variables for
each of the light’s properties. It is also important to notice that the light’s position
and radius are in pixel space, or Device Coordinate (DC) space, to facilitate
illumination computations.

precision mediump float;
 
// The object that fetches data from texture.
uniform sampler2D uSampler;
 
// Color of pixel
uniform vec4 uPixelColor;
uniform vec4 uGlobalAmbientColor; // this is shared globally
uniform float uGlobalAmbientIntensity;
 
// Light information
uniform bool uLightOn;
uniform vec4 uLightColor;
uniform vec4 uLightPosition; // in pixel space!
uniform float uLightRadius; // in pixel space!
 
varying vec2 vTexCoord;

	 3.	 To complete the shader, implement the main() function to do the following:

a.	 Sample the texture color and apply the ambient color and intensity.

b.	 Determine whether the current fragment should be illuminated by the
light source. To do this, first check whether the light is on; if it is, compute
the distance between the light’s position (in pixel space) and the current
fragment’s position (in pixel space) that is defined in the GLSL-provided
variable gl_FragCord.xyz. If the distance is less than that of the light’s
radius (again in pixel space), then accumulate the light’s color.

c.	 The last step is to apply the tint and to set the final color via gl_FragColor.

void main(void) {
 vec4 textureMapColor = texture2D(uSampler, vec2(vTexCoord.s, vTexCoord.t));
 vec4 lgtResults = uGlobalAmbientIntensity * uGlobalAmbientColor;
 
 // now decide if we should illuminate by the light
 if (uLightOn && (textureMapColor.a > 0.0)) {
 float dist = length(uLightPosition.xyz - gl_FragCoord.xyz);

Chapter 8 ■ Implementing Illumination and Shadow

286

 if (dist <= uLightRadius)
 lgtResults += uLightColor;
 }
 lgtResults *= textureMapColor;
 
 // tint the textured area, and leave transparent area as defined by the texture
 vec3 r = �vec3(lgtResults) * (1.0-uPixelColor.a) + vec3(uPixelColor) *

uPixelColor.a;
 vec4 result = vec4(r, lgtResults.a);
 
 gl_FragColor = result;
}

Creating a Light Object
With the GLSL LightFS shader defined, you can now create an object to encapsulate a point light source.

	 1.	 Create a new folder called Lights under the src/Engine folder. In the Lights
folder, add a new file and name it Lights.js. Remember to load this new source
file in index.html.

	 2.	 In Lights.js, create a simple constructor that initializes a color, position, radius,
and on-off variable for the light. Set their initial values as follows:

// Constructor
function Light() {
 this.mColor = vec4.fromValues(0.1, 0.1, 0.1, 1); // light color
 this.mPosition = vec3.fromValues(0, 0, 5); // light position in WC
 this.mRadius = 10; // effective radius in WC
 this.mIsOn = true;
}

	 3.	 Add the get and set accessors shown here to allow for the proper modification of
the light’s instance variables from outside the object.

// simple setters and getters
Light.prototype.setColor = function(c) { this.mColor = vec4.clone(c); };
Light.prototype.getColor = function() { return this.mColor; };
 
Light.prototype.set2DPosition = function(p) {
 this.mPosition = vec3.fromValues(p[0], p[1], this.mPosition[2]); };
Light.prototype.setXPos = function(x) { this.mPosition[0] = x; };
Light.prototype.setYPos = function(y) { this.mPosition[1] = y; };
Light.prototype.setZPos = function(z) { this.mPosition[2] = z; };
Light.prototype.getPosition = function() { return this.mPosition; };
 
Light.prototype.setRadius = function(r) { this.mRadius = r; };
Light.prototype.getRadius = function() { return this.mRadius; };
 
Light.prototype.setLightTo = function(isOn) { this.mIsOn = isOn; };
Light.prototype.isLightOn = function() { return this.mIsOn; };

Chapter 8 ■ Implementing Illumination and Shadow

287

Creating the LightShader Object
The LightShader object subclasses from the SpriteShader to encapsulate its communication, which
handles the WebGL-specific details of passing information to the GLSL shader. This provides the engine with
a convenient interface for the shader.

	 1.	 Under the src/Engine/Shaders folder, create a new file and name it
LightShader.js. Remember to load this new source file in index.html.

	 2.	 Now add a constructor in order to initialize the references for the light’s variables
and to obtain their reference locations within the shader. Remember to inherit
from the SpriteShader object.

"use strict";
function LightShader(vertexShaderPath, fragmentShaderPath) {
 // Call super class constructor
 SpriteShader.call(this, vertexShaderPath, fragmentShaderPath);
 
 // glsl uniform position references
 this.mColorRef = null;
 this.mPosRef = null;
 this.mRadiusRef = null;
 this.mIsOnRef = null;
 this.mLight = null; // <-- this is the light source in the Game Engine
 
 // create the references to these uniforms in the LightShader
 var shader = this.mCompiledShader;
 var gl = gEngine.Core.getGL();
 this.mColorRef = gl.getUniformLocation(shader, "uLightColor");
 this.mPosRef = gl.getUniformLocation(shader, "uLightPosition");
 this.mRadiusRef = gl.getUniformLocation(shader, "uLightRadius");
 this.mIsOnRef = gl.getUniformLocation(shader, "uLightOn");
}
gEngine.Core.inheritPrototype(LightShader, SpriteShader);

	 3.	 Provide a basic set function to specify which light the shader should use.

LightShader.prototype.setLight = function(l) {
 this.mLight = l;
};

	 4.	 Override the activateShader() function from the SpriteShader object to add
the new functionality of turning the light on and off, as shown here. Notice that
you still call the superclass’s activateShader() function.

LightShader.prototype.activateShader = function (pixelColor, aCamera) {
 // first call the super class's activate
 SpriteShader.prototype.activateShader.call(this, pixelColor, aCamera);
 

Chapter 8 ■ Implementing Illumination and Shadow

288

 // now push the light information to the shader
 if (this.mLight !== null) {
 this._loadToShader(aCamera);
 } else {
 �gEngine.Core.getGL().uniform1i(this.mIsOnRef, false); // <-- switch off

the light!
 }
};

	 5.	 Implement a function to load the light’s properties into the corresponding
shader. Recall that this is achieved by using the references created in the
constructor and WebGL’s uniform set functions. Also notice that the camera
provides the new coordinate space functionality of wcPosToPixel and
wcSizeToPixel. The implementation of these functions will be examined shortly.

LightShader.prototype._loadToShader = function(aCamera) {
 var gl = gEngine.Core.getGL();
 gl.uniform1i(this.mIsOnRef, this.mLight.isLightOn());
 if (this.mLight.isLightOn()) {
 var p = aCamera.wcPosToPixel(this.mLight.getPosition());
 var r = aCamera.wcSizeToPixel(this.mLight.getRadius());
 var c = this.mLight.getColor();
 
 gl.uniform4fv(this.mColorRef, c);
 gl.uniform4fv(this.mPosRef, vec4.fromValues(p[0], p[1], p[2], 1));
 gl.uniform1f(this.mRadiusRef, r);
 }
};

Creating the LightRendererable Object
With the engine’s LightShader object defined to interface to the GLSL LightFS shader, you can now focus on
creating a new Renderable object that subclasses from SpriteAnimateRenderable to support the interaction
with lights. You can think of this object as a SpriteAnimateRenderable that can be illuminated by a Light
object.

	 1.	 Begin by creating a new file in the src/Engine/Renderables folder and naming it
LightRendererable.js. Remember to load this new source file in index.html.

	 2.	 Next, add a constructor to call the superclass’s constructor to set the
corresponding light shader and to create a variable for the light that will
illuminate this object.

function LightRenderable(myTexture) {
 SpriteAnimateRenderable.call(this, myTexture);
 �Renderable.prototype._setShader.call(this,

 gEngine.DefaultResources.getLightShader());
  
 // here is the Light source
 this.mLight = null;
}
gEngine.Core.inheritPrototype(LightRenderable, SpriteAnimateRenderable);

Chapter 8 ■ Implementing Illumination and Shadow

289

	 3.	 Add a draw function that passes the illuminating light source to the LightShader
object for communicating with the GLSL fragment shader.

LightRenderable.prototype.draw = function(aCamera) {
 this.mShader.setLight(this.mLight);
 SpriteAnimateRenderable.prototype.draw.call(this, aCamera);
  
};

	 4.	 Lastly, simply add the support to get and set the light, as shown in the following
code:

LightRenderable.prototype.getLight = function() {
 return this.mLight;
};
LightRenderable.prototype.addLight = function(l) {
 this.mLight = l;
};

Defining a Default LightShader Instance
You can now modify the engine to support the initializing, loading, and unloading of the new LightShader
object.

	 1.	 Begin by adding a variable for the light shader in the Engine_DefaultResources.
js file located in the src/Engine/Core/Resources folder. Also, define an
accessor function as shown here:

// Light Shader
var kLightFS = "src/GLSLShaders/LightFS.glsl";
var mLightShader = null;
 
var getLightShader = function() { return mLightShader; };

	 2.	 Now instantiate a new light shader in the _createShaders() function, as shown
here:

var _createShaders = function(callBackFunction) {
 gEngine.ResourceMap.setLoadCompleteCallback(null);
 mConstColorShader = new SimpleShader(kSimpleVS, kSimpleFS);
 mTextureShader = new TextureShader(kTextureVS, kTextureFS);
 mSpriteShader = new SpriteShader(kTextureVS, kTextureFS);
 mLineShader = new LineShader(kSimpleVS, kSimpleFS);
 mLightShader = new LightShader(kTextureVS, kLightFS);
 callBackFunction();
};

	 3.	 In the initialize() function, add the following code to properly load the file:

gEngine.TextFileLoader.loadTextFile(kLightFS,
 gEngine.TextFileLoader.eTextFileType.eTextFile);

Chapter 8 ■ Implementing Illumination and Shadow

290

	 4.	 In the cleanUp() function, add the following line of code to unload the file when
it is no longer needed:

gEngine.TextFileLoader.unloadTextFile(kLightFS);

	 5.	 Don’t forget to add the get accessor function to mPublic() so that it can be
accessed.

getLightShader: getLightShader,

Modifying the Camera
The Camera utility functions, such as wcPosToPixel(), are invoked multiple times while rendering the
LightShader object. These functions compute the transformation between WC and pixel space. This
transformation requires the computation of intermediate values (for example, origin of the Camera) that do
not change during each rendering invocation. To avoid repeated computation of these values, a per-render
invocation cache should be defined for the Camera object.

Defining a Per-Render Cache for the Camera

Define a per-render cache to store intermediate values that are required to support shading operations.

	 1.	 Edit Camera.js and define the constructor for the PerRenderCache object to
hold the ratio between the WC space and the pixel space as well as the origin
of the Camera. These are intermediate values required for computing the
transformation from WC to pixel space, and these values do not change once a
rendering begins.

function PerRenderCache() {
 this.mWCToPixelRatio = 1; // WC to pixel transformation
 this.mCameraOrgX = 1; // Lower-left corner of camera in WC
 this.mCameraOrgY = 1;
}

	 2.	 Modify the constructor of the Camera to instantiate a new PerRenderCache
object. It is important to note that this variable should be used only for rendering
purposes. It should not be used for functionality within the game or game
engine.

function Camera(wcCenter, wcWidth, viewportArray, bound) {
 // WC and viewport position and size
 this.mCameraState = new CameraState(wcCenter, wcWidth);
 this.mCameraShake = null;
  
 // ...
  
 // per-rendering cached information
 // needed for computing transforms for shaders
 // updated each time in setupViewProjection()

Chapter 8 ■ Implementing Illumination and Shadow

291

 this.mRenderCache = new PerRenderCache();
 // SHOULD NOT be used except
 // xform operations during the rendering
 // Client game should not access this!
}

	 3.	 Initiate the per-render cache in the setupViewProjection() function by adding
step B4 to calculate and set the cache using the existing Camera viewport width,
world width, and world height.

// Step B4: compute and cache per-rendering information
this.mRenderCache.mWCToPixelRatio =
 this.mViewport[Camera.eViewport.eWidth] / this.getWCWidth();
this.mRenderCache.mCameraOrgX = center[0] - (this.getWCWidth()/2);
this.mRenderCache.mCameraOrgY = center[1] - (this.getWCHeight()/2);

Adding Camera Transform Functions

Now that the per-render cache is defined and properly initialized, you can extend the functionality of
the camera by implementing the functions to convert from WC and pixel space. For code readability and
maintainability, this functionality has been delegated to a separate file because of its specific purpose.
Another important note is that since you are converting from WC to pixel space and pixel space has no
z-axis, you need to calculate a fake z-value for the pixel space coordinate.

	 1.	 Under the src/Engine/Cameras folder, create a new file and name it Camera_
Xform.js. Remember to load this new source file in index.html.

	 2.	 Approximate a fake pixel space z value by scaling the input parameter according
to the mWCToPixelRatio variable.

Camera.prototype.fakeZInPixelSpace = function(z) {
 return z * this.mRenderCache.mWCToPixelRatio;
};

	 3.	 Provide a function to convert from WC to pixel space for a vec3 position. This
is accomplished by subtracting the camera origin followed by scaling with the
mWCToPixelRatio. The 0.5 offset at the end of the x and y conversion ensure that
you are working with the center of the pixel rather than a corner.

Camera.prototype.wcPosToPixel = function(p) { // p is a vec3, fake Z
 // Convert the position to pixel space
 var x = this.mViewport[Camera.eViewport.eOrgX] +
 ((p[0] - this.mRenderCache.mCameraOrgX) *
 this.mRenderCache.mWCToPixelRatio) + 0.5;
 var y = this.mViewport[Camera.eViewport.eOrgY] +
 ((p[1] - this.mRenderCache.mCameraOrgY) *
 this.mRenderCache.mWCToPixelRatio) + 0.5;
 var z = this.FakeZInPixelSpace(p[2]);
 return vec3.fromValues(x, y, z);
};

Chapter 8 ■ Implementing Illumination and Shadow

292

	 4.	 Simply provide a function for converting a length from WC to pixel space by
scaling with the mWCToPixelRatio variable.

Camera.prototype.wcSizeToPixel = function(s) {
 return (s * this.mRenderCache.mWCToPixelRatio) + 0.5;
};

Testing the Light
The MyGame level must be modified to utilize and test the new light functionality.

Modifying the Hero and Minion

Make a few quick modifications to the Hero and Minion objects to accommodate the new LightRenderable
object.

	 1.	 In the Hero.js file within the src/MyGame/Objects folder, replace the
SpriteRenderable instantiation with a LightRenderable instantiation.

this.mDye = new LightRenderable(spriteTexture);

	 2.	 In the Minion.js file within the src/MyGame/Objects folder, replace the
SpriteRenderable instantiation with a LightRenderable instantiation.

this.mMinion= new LightRenderable(spriteTexture);

Modifying the MyGame Object

With the implementation of the light completed and the game objects properly updated, you can now
modify the MyGame level to display and test the light source. Because of the simplistic and repetitive nature
of the code in the MyGame.js file of adding variables for the new objects, initializing the objects, drawing
the objects, and updating the objects, each line of code changed will not be listed. Rather, you can open the
MyGame.js file within the src/MyGame folder and look at changes made in order to test the newly added light
source.

Observations
With the project now complete, you can run it and examine the results. There are a few observations to take
note of. First is the fact that the illuminated results from the light source look like a circle. As depicted in
Figure 8-2, this is the illuminated circle of the point light on the z = 0 plane where your objects are located.
Press the Z or X key to increase or decrease the light z position to observe the illuminated circle decreases
(smaller intersection area) and increases in size. Alternatively, you can press the C or V key to increase
or decrease the point light radius to increase or decrease the volume of illumination, and observe the
corresponding changes in the illuminated circle radius. Another observation to take note of is that the light
source illuminates the left minion, the hero, and the background but not the other three objects in the scene.
This is because the right minion and the two blocks are not LightRenderable objects and thus cannot be
illuminated by the defined light source.

Chapter 8 ■ Implementing Illumination and Shadow

293

Multiple Light Sources and Distance Attenuation
In the previous project, a single point light source was defined with the capability of illuminating a spherical
volume. This type of light source is useful in many games, but it is restrictive to limit a game to only a single
light source. The engine should support the illumination from multiple light sources to fulfill the design
needs of different games. This shortcoming is remedied in the next project with general support for multiple
light sources. The implementation principle for multiple lights remains the same as the previous project,
with the modification of replacing the single light source with an array of lights. As illustrated in Figure 8-5,
a new Light object will be defined, while the LightRenderable object will be modified to support an array
of the Light objects. The LightShader object will define an array of ShaderLightAtindex objects that are
capable of communicating light source information to the uLights array in the GLSL LightFS fragment
shader for illumination computations.

Figure 8-5.  Support for multiple light sources

The point light illumination results from the previous project can be improved. You have observed
that the illuminated circle disappears abruptly with a sharp illuminated bright boundary. This sudden
disappearance of illumination results does not reflect real life where effects from a given light source decrease
gradually over distance instead of switching off abruptly. A more visually pleasing light illumination result
should show an illuminated circle where the illumination results at the boundary disappear gradually. This
gradual decrease of light illumination effect over distance is referred to as distance attenuation. It is a common
practice to approximate distant attenuation with quadratic functions because they produce effects that
resemble the real world. In general, distance attenuation can be approximated in many ways, and it is often
refined to suit the needs of the game. In addition to distance attenuation, you will also implement a near cutoff
distance and a far cutoff distance (that is, two distances from the light source at which the distant attenuation
effect will begin and end). These two values give you control over a light source to show a fully illuminated
center area with illumination drop-off occurring only at a specified distance. Lastly, a light intensity will be
defined to allow dramatically different effects. For example, you can have a soft, barely noticeable light that
covers a wide area or an oversaturated glowing light that is concentrated over a small area in the scene.

Chapter 8 ■ Implementing Illumination and Shadow

294

The Multiple Lights Project
This project demonstrates how to implement multiple point lights within a single scene. It also demonstrates
how to increase the complexity of your point lights so that they are more flexible to serve a wider variety of
purposes. You can see an example of this project running in Figure 8-6. The source code of this project is
located in the Chapter8/8.3.MultipleLights folder.

Figure 8-6.  Running the Multiple Lights project

The controls of the project are as follows:

•	 WASD keys: Move the hero character on the screen

•	 Number keys 0, 1, 2, and 3: Select the corresponding light source

•	 Arrow keys: Move the currently selected light

•	 Z/X key: Increase/decrease the light z position

•	 C/V and B/N keys: Increase/decrease the near and far cutoff distances of the
selected light

•	 K/L key: Increase/decrease the intensity of the selected light

•	 H key: Toggles the selected light on/off

http://dx.doi.org/10.1007/978-1-4842-0952-3_8

Chapter 8 ■ Implementing Illumination and Shadow

295

The goals of the project are as follows:

•	 To build the infrastructure for supporting multiple light sources in the engine and in
GLSL shaders

•	 To understand and examine the distance attenuation effects of light

•	 To experience controlling and manipulating multiple light sources in a scene

You can find the following external resources in the assets folder: the fonts folder that contains
the default system fonts and two texture images (minion_sprite.png and bg.png). The objects are sprite
elements of minion_sprite.png, and the background is represented by bg.png.

Modifying the GLSL Light Fragment Shader
The LightFS fragment shader needs to be modified to support the distance attenuation, cutoffs, and
multiple light sources.

	 1.	 In the LightFS.glsl file, remove the light variables that were added for a single
light and add a struct for light information that holds the position, color, near
distance, far distance, intensity, and on-off variables. With the struct defined,
add a uniform array of lights to the fragment shader. Notice that a #define has
been added to hold the number of light sources to be used. You can see these
changes in the following code.

■■ Note  You can define as many lights as the hardware can support. For example, you can try increasing the
number of lights to 50 and then test and measure its performance.

// Light information
#define kGLSLuLightArraySize 4
 // GLSL Fragment shader requires loop control
 // variable to be a constant number. This number 4
 // says, this fragment shader will _ALWAYS_ process
 // all 4 light sources.
 // ***********WARNING***********************
 // This number must correspond to the constant with
 // the same name defined in LightShader.js file.
 // ***********WARNING**************************
 // To change this number MAKE SURE: to update the
 // kGLSLuLightArraySize
 // defined in LightShader.js file.
struct Light {
 vec4 Position; // in pixel space!
 vec4 Color;
 float Near; // distance in pixel space
 float Far; // distance in pixel space
 float Intensity;
 bool IsOn;
};
uniform Light uLights[kGLSLuLightArraySize];
 // Maximum array of lights this shader supports

Chapter 8 ■ Implementing Illumination and Shadow

296

	 2.	 Next add a function called LightEffect() that takes a light parameter and
returns a color as a result. This function calculates the distance between the light
and the current fragment and determines whether it lies within the near radius,
in between near and far radii, or farther than the far radius. If the fragment’s
current position lies within the near radius, there is no attenuation, so a value
of 1 is applied. If the fragment’s current position lies in between the near and far
radii, then a quadratic attenuation is applied. A distance of greater than the far
radius will result in no illumination from the corresponding light source, or
a 0 value will be applied. You can see how this is achieved in the following code:

vec4 LightEffect(Light lgt) {
 vec4 result = vec4(0);
 float atten = 0.0;
 float dist = length(lgt.Position.xyz - gl_FragCoord.xyz);
 if (dist <= lgt.Far) {
 if (dist <= lgt.Near)
 atten = 1.0; // no attenuation
 else {
 // simple quadratic drop off
 float n = dist - lgt.Near;
 float d = lgt.Far - lgt.Near;
 atten = smoothstep(0.0, 1.0, 1.0-(n*n)/(d*d)); // blended attenuation
 }
 }
 result = atten * lgt.Intensity * lgt.Color;
 return result;
}

	 3.	 The main function iterates through all the defined light sources and calls the
LightEffect() function to calculate and accumulate the contribution from the
corresponding light in the array.

void main(void) {
 // simple tint based on uPixelColor setting
 vec4 textureMapColor = texture2D(uSampler, vec2(vTexCoord.s, vTexCoord.t));
 vec4 lgtResults = uGlobalAmbientIntensity * uGlobalAmbientColor;
 
 // now decide if we should illuminate by the light
 if (textureMapColor.a > 0.0) {
 for (int i=0; i<kGLSLuLightArraySize; i++) {
 if (uLights[i].IsOn) {
 lgtResults += LightEffect(uLights[i]);
 }
 }
 }
 lgtResults *= textureMapColor;
 

Chapter 8 ■ Implementing Illumination and Shadow

297

 // �tint the textured area, and leave transparent area as defined by the
texture

 �vec3 r = vec3(lgtResults) * (1.0-uPixelColor.a) +
 vec3(uPixelColor) * uPixelColor.a;

 vec4 result = vec4(r, lgtResults.a);
 
 gl_FragColor = result;
}

Modifying the Light Object
The game engine Light object must be modified to reflect the newly added properties: near and far
attenuation and intensity.

	 1.	 Modify the Lights.js constructor to include variables for near and far
attenuation and intensity. You can see this achieved in the following code:

// Constructor
function Light() {
 this.mColor = vec4.fromValues(0.1, 0.1, 0.1, 1); // light color
 this.mPosition = vec3.fromValues(0, 0, 5); // light position in WC
 this.mNear = 5; // within Near is fully lighted
 this.mFar = 10; // farther than Far is not lighted
 this.mIntensity = 1;
 this.mIsOn = true;
}

	 2.	 Define the get and set accessors for the new variables. Note that the radius
variable has been generalized and replaced by the near and far cutoff distances.

Light.prototype.setColor = function(c) { this.mColor = vec4.clone(c); };
Light.prototype.getColor = function() { return this.mColor; };
 
Light.prototype.set2DPosition = function(p) {
 this.mPosition = vec3.fromValues(p[0], p[1], this.mPosition[2]); };
Light.prototype.setXPos = function(x) { this.mPosition[0] = x; };
Light.prototype.setYPos = function(y) { this.mPosition[1] = y; };
Light.prototype.setZPos = function(z) { this.mPosition[2] = z; };
Light.prototype.getPosition = function() { return this.mPosition; };
 
Light.prototype.setNear = function(r) { this.mNear = r; };
Light.prototype.getNear = function() { return this.mNear; };
 
Light.prototype.setFar = function(r) { this.mFar = r; };
Light.prototype.getFar = function() { return this.mFar; };
 
Light.prototype.setIntensity = function(i) { this.mIntensity = i; };
Light.prototype.getIntensity = function() { return this.mIntensity; };
 
Light.prototype.isLightOn = function() { return this.mIsOn;};
Light.prototype.setLightTo = function(on) { this.mIsOn = on; };

Chapter 8 ■ Implementing Illumination and Shadow

298

Creating the LightSet Object
Under the src/Engine/Lights folder, create a new file and name it LightSet.js. Provide a basic interface
for a light set that makes the process of working with the light array more convenient. Remember to load this
new source file in index.html.

function LightSet() {
 this.mSet = [];
}
 
LightSet.prototype.NumLights = function() { return this.mSet.length; };
 
LightSet.prototype.getLightAt = function(index) {
 return this.mSet[index];
};
 
LightSet.prototype.AddToSet = function(light) {
 this.mSet.push(light);
};

Creating the ShaderLightAtIndex Object
Define the ShaderLightAtIndex object to send information from a Light object to an element in the
uLights array in the LightFS GLSL fragment shader.

	 1.	 Under the src/Engine/Shaders folder, create a new file and name it
ShaderLightAtIndex.js. Remember to load this new source file in index.html.

	 2.	 Define a constructor to set the light property references to a specific index in the
uLights array in the fragment shader.

function ShaderLightAtIndex(shader, index) {
 this._setShaderReferences(shader, index);
}
ShaderLightAtIndex.prototype._setShaderReferences = function(aLightShader, index)
{
 var gl = gEngine.Core.getGL();
 �this.mColorRef = gl.getUn�iformLocation(aLightShader,

"uLights[" + index + "].Color");
 �this.mPosRef = gl.getUnif�ormLocation(aLightShader,

"uLights[" + index + "].Position");
 �this.mNearRef = gl.getUni�formLocation(aLightShader,

"uLights[" + index + "].Near");
 �this.mFarRef = gl.getUnif�ormLocation(aLightShader,

"uLights[" + index + "].Far");
 this.mIntensityRef = gl.getUniformLocation(aLightShader,
 "uLights[" + index + "].Intensity");
 �this.mIsOnRef = gl.getUni�formLocation(aLightShader,

"uLights[" + index + "].IsOn");
};

Chapter 8 ■ Implementing Illumination and Shadow

299

	 3.	 Implement the loadToShader() function to push the light’s properties to the
GLSL shader. Notice that this function is similar to the previous loadToShader()
function defined in the LightShader.js file.

ShaderLightAtIndex.prototype.loadToShader = function (aCamera, aLight) {
 var gl = gEngine.Core.getGL();
 gl.uniform1i(this.mIsOnRef, aLight.isLightOn());
 if (aLight.isLightOn()) {
 var p = aCamera.wcPosToPixel(aLight.getPosition());
 var ic = aCamera.wcSizeToPixel(aLight.getNear());
 var oc = aCamera.wcSizeToPixel(aLight.getFar());
 var c = aLight.getColor();
 gl.uniform4fv(this.mColorRef, c);
 gl.uniform3fv(this.mPosRef, vec3.fromValues(p[0], p[1], p[2]));
 gl.uniform1f(this.mNearRef, ic);
 gl.uniform1f(this.mFarRef, oc);
 gl.uniform1f(this.mIntensityRef, aLight.getIntensity());
 }
};

	 4.	 Provide a function to update the shader’s on/off property for the light.

ShaderLightAtIndex.prototype.switchOffLight = function() {
 var gl = gEngine.Core.getGL();
 gl.uniform1i(this.mIsOnRef, false);
};

Modifying the LightShader Object
You must modify the LightShader object to properly handle the communication between the Light object
and the array of lights in the LightFS fragment shader.

	 1.	 Begin by editing the LightShader.js file and removing the loadToShader()
function because the actual loading of light information to GLSL shaders will be
handled by the newly defined ShaderLightAtIndex objects.

	 2.	 Modify the constructor to define mLights, which is an array of
ShaderLightAtIndex objects to correspond to the uLights array defined in the
LightFS fragment shader. It is important to note that the mLights and uLights
arrays must be the exact same size. You can see this in the following code:

function LightShader(vertexShaderPath, fragmentShaderPath) {
 // Call super class constructor
 SpriteShader.call(this, vertexShaderPath, fragmentShaderPath);
  
 this.mLights = null; // lights from the renderable
  
 //*******WARNING***************
 // this number MUST correspond to the GLSL uLight[] array size
 // (for LightFS.glsl and IllumFS.glsl)
 //*******WARNING********************

Chapter 8 ■ Implementing Illumination and Shadow

300

 �this.kGLSLuLightArraySize = 4; �// <-- make sure this is
// the same as LightFS.glsl

 this.mShaderLights = [];
 for (var i = 0; i<this.kGLSLuLightArraySize; i++) {
 var ls = new ShaderLightAtIndex(this.mCompiledShader, i);
 this.mShaderLights.push(ls);
 }
}
gEngine.Core.inheritPrototype(LightShader, SpriteShader);

	 3.	 Modify the activateShader() function to iterate and load the contents of each
ShaderLightAtIndex object to the LightFS shader by calling the corresponding
loadToShader() function. Recall that the GLSL fragment shader requires the
for loop control variable to be a constant. This implies that all elements of
the uLights array will be processed on each LightFS invocation, and thus it is
important to ensure all unused lights are switched off. This is ensured by the last
while loop in the following code:

// Overriding the Activation of the shader for rendering
LightShader.prototype.activateShader = function(pixelColor, aCamera) {
 // first call the super class's activate
 SpriteShader.prototype.activateShader.call(this, pixelColor, aCamera);
  
 // now push the light information to the shader
 var numLight = 0;
 if (this.mLights !== null) {
 while (numLight < this.mLights.length) {
 �this.mShaderLights[numLight].loadToShader(

 aCamera, this.mLights[numLight]);
 numLight++;
 }
 }
 // switch off the left over ones.
 while (numLight < this.kGLSLuLightArraySize) {
 this.mShaderLights[numLight].switchOffLight(); // switch off unused lights
 numLight++;
 }
};

	 4.	 Make a simple modification to the setLight() function so that it becomes
setLights() and handles the array rather than the single light.

LightShader.prototype.setLights = function(l) {
 this.mLights = l;
};

Chapter 8 ■ Implementing Illumination and Shadow

301

Modifying the LightRenderable Object
You can now modify the LightRenderable object to support multiple light sources.

	 1.	 In the LightRenderable constructor, replace the single light reference variable
with an array.

function LightRenderable(myTexture) {
 SpriteAnimateRenderable.call(this, myTexture);
 �Renderable.prototype._setShader.call(

 this, gEngine.DefaultResources.getLightShader());
  
 // here is the light source
 this.mLights = []; // allocates a new array
}

	 2.	 Make sure to update the draw function to reflect the change to multiple light
sources.

LightRenderable.prototype.draw = function(aCamera) {
 this.mShader.setLights(this.mLights);
 SpriteAnimateRenderable.prototype.draw.call(this, aCamera);
};

	 3.	 Define the corresponding accessor functions for the light array.

LightRenderable.prototype.getLightAt = function(index) {
 return this.mLights[index];
};
LightRenderable.prototype.addLight = function(l) {
 this.mLights.push(l);
};

Testing the Light Sources with MyGame
With multiple lights support properly integrated in the engine, you can now modify MyGame to test your
implementation and examine the results. In addition to adding multiple lights to the scene, you will be
adding the ability to control the properties of each light. Because of the scope of this MyGame, you will divide
the light instantiation and controls into separate files to maintain the readability of the source code. To avoid
redundancy and repetitive code listings, the details to the straightforward implementations are not shown.

	 1.	 Modify the MyGame.js file in the src/MyGame folder to reflect the changes to the
constructor, initialize function, draw function, and update function. All these
changes revolve around handling multiple lights through a light set.

	 2.	 In the src/MyGame folder, create the new file MyGame_Lights.js to instantiate and
initialize the lights. Remember to load this new source file in index.html.

	 3.	 In the src/MyGame folder, create the new file MyGame_lightControls.js to
implement the controls of the lights. Remember to load this new source file in
index.html.

Chapter 8 ■ Implementing Illumination and Shadow

302

Observations
Run the project to examine the implementation. Try selecting the lights with the 0, 1, 2, and 3 keys
and toggling the selected light on/off. Notice that all lights illuminate the background, while the hero
is illuminated only by lights 0 and 3, the left minion is illuminated only by lights 1 and 3, and the right
minion is illuminated only by lights 2 and 3. Move the Hero object with the WASD keys to observe how the
illumination on the object changes as she is moved through the near and far radii of light source 0. Select
and move the light sources with the arrow keys to observe the additive property of lights. Experiment with
changing the light source’s z position and its near/far values to observe how similar illumination effects
can be accomplished with different z/near/far settings. The two constant color squares are in the scene to
confirm that nonilluminated objects can still be rendered.

Diffuse Reflection and Normal Mapping
You can now place or move many light sources and control the illumination or shading at localized
regions. However, if you run the previous project and move the lights around while paying attention to
the vertical boundaries of the geometric blocks in the background, you will notice the peculiar effect that
the illumination along these boundaries changes uniformly when a light position moves across it. You are
observing boundary surfaces being illuminated by light sources that seem to be spatially behind the surface!
Although visually odd, this is to be expected in a 2D world. The vertical boundaries are only artist renditions,
and your illumination calculation does not consider the geometric contours suggested by the image content.
This restriction of illumination in a flat 2D world is remedied in this section with the introduction of diffuse
reflection and normal mapping to approximate normal vectors of surfaces.

As illustrated by the left drawing in Figure 8-7, a surface normal vector, a surface normal, or a normal
vector is the vector that is perpendicular to a given surface element. The right drawing of Figure 8-7 shows
that in 3D space the surface normal vectors of an object describe the shape or contour of the object.

Figure 8-7.  Surface normal vectors of an object

A human’s observation of light illumination is the result of visible energy from the light sources
reflecting off object surfaces and reaching the eyes. A diffuse, or Lambertian, surface reflects light energy
uniformly in all directions. Examples of diffuse surfaces include typical printer papers or matte painted
surfaces. Figure 8-8 shows a light source illuminating three diffuse surface element positions, A, B, and C.
First, notice that the direction from the position being illuminated toward the light source is defined as the
position’s light vector, L̂ . It is important to note that the direction of the L̂ vector is always toward the light
source and that this is a normalized vector with a magnitude of 1. Figure 8-8 illustrates the diffuse
illumination, or magnitude of diffuse reflection, with examples. Position A cannot receive any energy from
the given light source because its normal vector, N̂ , is perpendicular to its light vector L̂ , or ˆ ˆN L⋅ = 0 .
Position B can receive all the energy because its normal vector is pointing in the same direction as its light
vector, or ˆ ˆN L⋅ = 1. In general, as exemplified by position C, the proportion of light energy received and
reflected by a diffuse surface is proportional to the cosine of the angle between its normal and light vector,
or ˆ ˆN L× .

Chapter 8 ■ Implementing Illumination and Shadow

303

Displaying the ˆ ˆN L× computation results, or the diffuse component, cues 3D shape contours for the
human vision system. For example, Figure 8-9 shows a sphere and torus (doughnut shape object) with
(the left image) and without (the right image) the corresponding diffuse components. Clearly, in both cases,
the 3D contour of the objects are captured by the left versions of the image with the ˆ ˆN L× computation.

Figure 8-8.  Normal and light vectors and diffuse illumination

Figure 8-9.  Examples of 3D objects with and without diffuse component

In a 2D world, as in the case of your game engine, all objects are represented as 2D images, or textures.
Since all objects are 2D textured images defined on the xy plane, the normal vectors for all the objects
are the same: the vector in the z direction. This lack of distinct normal vectors for objects implies that it is
not possible to compute the diffuse component of objects. Fortunately, similar to how texture mapping
addresses the limitation of each geometry having only a single color, normal mapping can resolve the
problem of each geometry having only a single normal vector. Figure 8-10 shows the idea behind normal
mapping where in addition to the color texture image a corresponding normal texture image is required. The
left image of Figure 8-10 is a typical color texture image, and the two right images are zoomed images of the
highlighted square on the left image. Notice once again that two images are involved in normal mapping: the
color texture image where the RGB channels of the texture record the color of objects (bottom of the right
image of Figure 8-10) and a corresponding normal texture image where the RGB channels record the x, y,
and z values of the normal vector for the corresponding object in the color texture (top of the right image).

Chapter 8 ■ Implementing Illumination and Shadow

304

Figure 8-11 captures the view of the three corresponding positions labeled on the right images of
Figure 8-10 (the positions n

1
, n

2
, and n

3
 on the normal texture and the corresponding positions c

1
, c

2
, and c

3

on the color texture) to illustrate the details of normal mapping. The bottom layer of Figure 8-11 shows that
the color texture records colors and the colors c

1
, c

2
, and c

3
 are sampled at those three positions. The middle

layer of Figure 8-11 shows that the RGB components of the normal texture records the normal vector xyz
values of objects at the corresponding color texture positions. The top layer of Figure 8-11 shows that when
illuminated by a light source with the ˆ ˆN L× term properly computed and displayed, the human vision system
will perceive a sloped contour.

Figure 8-11.  Normal mapping with two texture images: the normal and the color texture

Figure 8-10.  Normal mapping with two texture images: the normal and the color texture

Chapter 8 ■ Implementing Illumination and Shadow

305

In summary, a normal texture map or a normal map is a texture map that stores normal vector
information rather than the usual color information. Each texel of a normal map encodes the xyz values of a
normal vector in the RGB channels. In lieu of displaying the normal map texels as you would with a color
texture, the texels are used purely for calculating how the surface would interact with light. In this way,
instead of a constant normal vector pointing in the z direction, when a square is normal mapped, the normal
vector of each pixel being rendered will be defined by texels from the normal map and used for computing
the diffuse component. When computing light illumination, the ˆ ˆN L× computation is referred to as diffuse
computation, lighting, or illumination. The mathematic term ˆ ˆN L× is referred to as the diffuse term.

In the previous project, you expanded the engine to support multiple light sources with individual light
to model the real world closely. In this section, you will define the IllumShader object to generalize the
LightShader object to support the computation of the diffuse component based on normal mapping.

The Normal Maps and Illumination Shaders Project
This project demonstrates how to integrate normal mapping into your game engine and use the results to
compute the diffuse component of objects. You can see an example of this project running in Figure 8-12.
The source code of this project is located in the Chapter8/8.4.NormalMapsAndIlluminationShaders folder.

Figure 8-12.  Running the Normal Maps and Illumination Shaders project

http://dx.doi.org/10.1007/978-1-4842-0952-3_8

Chapter 8 ■ Implementing Illumination and Shadow

306

The controls of the project are as follows:

•	 WASD keys: Move the hero character on the screen

•	 Number keys 0, 1, 2, and 3: Select the corresponding light source

•	 Arrow keys: Move the currently selected light

•	 Z/X key: Increases/decreases the light z position

•	 C/V and B/N keys: Increases/decreases the near and far cutoff distances of the
selected light

•	 K/L key: Increases/decreases the intensity of the selected light

•	 H key: Toggles the selected light on/off

The goals of the project are as follows:

•	 To understand and work with normal maps

•	 To implement normal maps as textures in the game engine

•	 To implement GLSL shaders that support diffuse component illumination

•	 To examine the diffuse component illumination of ˆ ˆN L×

You can find the following external resource files in the assets folder: the fonts folder that contains
the default system fonts, two texture images, and two corresponding normal maps for the texture images
(minion_sprite.png and bg.png) and the corresponding normal maps: minion_sprite_normal.png and
bg_normal.png. As in previous projects, the objects are sprite elements of minion_sprite.png, and the
background is represented by bg.png.

■■ Note T he minion_sprite_normal.png normal map is generated automatically based on the
minion_sprite.png image from http://cpetry.github.io/NormalMap-Online/.

Creating the GLSL Illumination Fragment Shader
As with the previous projects, your normal map integration will begin with the implementation of the GLSL
shader. Note that this new shader will be remarkably similar to your LightFS.glsl but with the inclusion of
normal mapping and diffuse computation support. To ensure the support for simple lighting without normal
mapping, you will create a new GLSL fragment shader.

	 1.	 Begin by copying and pasting LightFS.glsl and naming the new file
IllumFS.glsl within the src/GLSLShaders folder.

	 2.	 Edit the IllumFS.glsl file and add a sampler2D object, uNormalSampler,
to sample the normal map.

precision mediump float;
 
// The object that fetches data from texture.
// Must be set outside the shader.
uniform sampler2D uSampler;
uniform sampler2D uNormalSampler;
 

http://cpetry.github.io/NormalMap-Online/

Chapter 8 ■ Implementing Illumination and Shadow

307

// Color of pixel
uniform vec4 uPixelColor;
uniform vec4 uGlobalAmbientColor; // this is shared globally
uniform float uGlobalAmbientIntensity;
 
// Light information
#define kGLSLuLightArraySize 4
struct Light {
 vec4 Position; // in pixel space!
 vec4 Color;
 float Near; // distance in pixel space
 float Far; // distance in pixel space
 float Intensity;
 bool IsOn;
};
uniform Light uLights[kGLSLuLightArraySize];
 // Maximum array of lights this shader supports
 
varying vec2 vTexCoord;

	 3.	 Modify the LightEffect() function to receive a normal vector parameter, N. This
normal vector N is assumed to be normalized with a magnitude of 1 and will be
used in the diffuse component ˆ ˆN L× computation. Include code to compute the
L̂ vector, remember to normalize the vector, and use the result of ˆ ˆN L× to scale

the light attenuation accordingly as follows:

vec4 LightEffect(Light lgt, vec3 N) {
 vec4 result = vec4(0);
 float atten = 0.0;
 vec3 L = lgt.Position.xyz - gl_FragCoord.xyz;
 float dist = length(L);
 if (dist <= lgt.Far) {
 if (dist <= lgt.Near)
 atten = 1.0; // no attenuation
 else {
 // simple quadratic drop off
 float n = dist - lgt.Near;
 float d = lgt.Far - lgt.Near;
 atten = smoothstep(0.0, 1.0, 1.0-(n*n)/(d*d)); // blended attenuation
 }
 L = L / dist; // To normalize L
 // Not calling the normalize() function to avoid re-computing
 // the "dist". This is computationally more efficient.
 float NdotL = max(0.0, dot(N, L));
 atten *= NdotL;
 }
 result = atten * lgt.Intensity * lgt.Color;
 return result;
}

Chapter 8 ■ Implementing Illumination and Shadow

308

	 4.	 Edit the main function to sample from both the color texture with uSampler
and the normal texture with uNormalSampler. Remember that the normal map
provides you with a vector that represents the normal vector direction of the
surface element at that given point. Because the xyz normal vector values are
stored in the 0 to 1 RGB color format, the sampled normal map results must
be scaled and offset to the -1 to 1 range. In addition, recall that texture uv
coordinates can be defined with the v direction increasing upward or downward.
In this case, depending on the v direction of the normal map, you may also have
to flip the y direction of the sampled normal map values. The normalized normal
vector, N, is then passed on to the LightEffect() function for the illumination
calculations.

■■ Note  Normal maps can be created in a variety of different layouts where x or y might need to be flipped
in order to properly represent the surface geometries desired. This entirely depends upon the tool or artist that
created the map.

void main(void) {
 // simple tint based on uPixelColor setting
 vec4 textureMapColor = texture2D(uSampler, vTexCoord);
 vec4 normal = texture2D(uNormalSampler, vTexCoord);
 // using the same coordinate as the sprite texture!
 vec4 normalMap = (2.0 * normal) - 1.0;
  
 // normalMap.y = -normalMap.y; // flip Y
 // depending on the normal map you work with, this may or may not be flipped
 //
 vec3 N = normalize(normalMap.xyz);
  
 vec4 lgtResult = uGlobalAmbientColor * uGlobalAmbientIntensity;
 
 // now decide if we should illuminate by the light
 if (textureMapColor.a > 0.0) {
 for (int i=0; i<kGLSLuLightArraySize; i++) {
 if (uLights[i].IsOn) {
 lgtResult += LightEffect(uLights[i], N);
 }
 }
 }
 lgtResult *= textureMapColor;
 
 �// tint the textured area, and

// leave transparent area as defined by the texture
 �vec3 r = vec3(lgtResult) * (1.0-uPixelColor.a) +

 vec3(uPixelColor) * uPixelColor.a;
 vec4 result = vec4(r, lgtResult.a);
 
 gl_FragColor = result;
}

Chapter 8 ■ Implementing Illumination and Shadow

309

Creating the IllumShader Object
With the GLSL shader now supporting normal maps, you can create the JavaScript IlluminationShader
object to interface to it.

	 1.	 Under the src/Engine/Shaders folder, create a new file and name it
IllumShader.js. Remember to load this new source file in index.html.

	 2.	 Create the constructor by first subclassing from the LightShader to take
advantage of the functionality related to light sources and define a variable,
mNormalSamplerRef, to maintain a reference to the normal sampler in the GLSL
shader.

function IllumShader(vertexShaderPath, fragmentShaderPath) {
 // Call super class constructor
 LightShader.call(this, vertexShaderPath, fragmentShaderPath);
 
 // reference to the normal map sampler
 var gl = gEngine.Core.getGL();
 �this.mNormalSamplerRef = gl.getUniformLocation(

 this.mCompiledShader, "uNormalSampler");
}
gEngine.Core.inheritPrototype(IllumShader, LightShader);

	 3.	 Override and extend the activateShader() function by binding the normal
texture sampler reference to WebGL texture unit 1. So far, you have been working
with the color texture sampler that is bounded to the default texture unit of 0. In
this way, the WebGL texture system can work with two active textures: units 0
and 1. As will be discussed, the TextureShader object must now explicitly bind
the color texture to unit 0, and in gEngine.Textures, it is important to configure
the WebGL to activate the appropriate texture units for the corresponding
purpose: color versus normal texture mapping.

IllumShader.prototype.activateShader = function(pixelColor, aCamera) {
 // first call the super class's activate
 LightShader.prototype.activateShader.call(this, pixelColor, aCamera);
 var gl = gEngine.Core.getGL();
 gl.uniform1i(this.mNormalSamplerRef, 1); // binds to texture unit 1
 // do not need to set up texture coordinate buffer
 // as we are going to use the ones from the sprite texture
 // in the fragment shader
};

■■ Note W ebGL supports simultaneous activation of multiple texture units during rendering. Depending on the
graphics card capability, up to 32 texture units can be active simultaneously during a single rendering pass. In
this book, you will activate only two of the texture units during rendering: one for color texture and the other for
normal texture.

Chapter 8 ■ Implementing Illumination and Shadow

310

Modifying the TextureShader Object
So far, you have been working with the default binding of the color texture map to WebGL texture unit 0.
With the addition of the normal texture, you now need to explicitly bind your color texture to WebGL texture
unit 0. Fortunately, this is a straightforward change.

	 1.	 Modify the constructor to include and initialize a reference to the sampler
location, as shown in the following code:

function TextureShader(vertexShaderPath, fragmentShaderPath) {
 // Call super class constructor
 SimpleShader.call(this, vertexShaderPath, fragmentShaderPath);
 
 // reference to aTextureCoordinate within the shader
 this.mShaderTextureCoordAttribute = null;
 this.mSamplerRef = null; // reference to the uSampler, when using only texture,
    �// this is not necessary,

// with NormalMap, we must do this.
 
 // get the reference of uSampler and aTextureCoordinate within the shader
 var gl = gEngine.Core.getGL();
 this.mSamplerRef = gl.getUniformLocation(this.mCompiledShader, "uSampler");
 this.mShaderTextureCoordAttribute =
 gl.getAttribLocation(this.mCompiledShader, "aTextureCoordinate");
}

	 2.	 Add a line to the activateShader() function to bind the texture to unit 0, as
shown in the following code:

// Overriding the Activation of the shader for rendering
TextureShader.prototype.activateShader = function(pixelColor, aCamera) {
 // first call the super class's activate
 SimpleShader.prototype.activateShader.call(this, pixelColor, aCamera);
 
 // now our own functionality: enable texture coordinate array
 var gl = gEngine.Core.getGL();
 gl.bindBuffer(gl.ARRAY_BUFFER, gEngine.VertexBuffer.getGLTexCoordRef());
 gl.enableVertexAttribArray(this.mShaderTextureCoordAttribute);
 �gl.vertexAttribPointer(this.mShaderTextureCoordAttribute, 2, gl.FLOAT,

 false, 0, 0);
 gl.uniform1i(this.mSamplerRef, 0); // <-- binds to texture unit 0
};

Creating the IllumRenderable Object
You can now create your renderable object to leverage the illumination shader.

	 1.	 Begin by creating a new file under the src/Engine/Renderables folder and
naming it IllumRenderable.js. Remember to load this new source file in
index.html.

Chapter 8 ■ Implementing Illumination and Shadow

311

	 2.	 Create a constructor to subclass from the LightRenderable object and
define a mNormalMap instance variable to record the normal map ID. The
IllumRenderable object works with two texture maps: myTexture for color
texture map and myNormalMap for normal mapping. Note that these two texture
maps share the same texture coordinates defined in mTexCoordBuffer in the
SpriteShader superclass. This assumes that the geometry of the object is
depicted in the color texture map and the normal texture map is derived to
capture the contours of the object, which is almost always the case.

function IllumRenderable(myTexture, myNormalMap) {
 LightRenderable.call(this, myTexture);
 �Renderable.prototype._setShader.call(

 this, gEngine.DefaultResources.getIllumShader());
 
 // here is the normal map resource id
 this.mNormalMap = myNormalMap;
 
 // Normal map texture coordinate will reproduce the corresponding sprite sheet
 // This means, the normal map MUST be based on the sprite sheet
}
gEngine.Core.inheritPrototype(IllumRenderable, LightRenderable);

	 3.	 Next override the draw() function to activate the normal map before calling the
base class’s draw() method.

IllumRenderable.prototype.draw = function (aCamera) {
 gEngine.Textures.activateNormalMap(this.mNormalMap);
 // Here thenormal map texture coordinate is copied from those of
 // the corresponding sprite sheet
 LightRenderable.prototype.draw.call(this, aCamera);
};

Modifying the Engine
You have to update the engine to support the new texture map, shader, and renderable objects.

Defining the Default in Engine_DefaultResources

You must modify the Engine_DefaultResources.js file to define the default instance of the IllumShader
object.

	 1.	 Define a constant file path and variable for the newly created fragment shader.

// Illumination Shader
var kIllumFS = "src/GLSLShaders/IllumFS.glsl";
 // Path to the Illumination FragmentShader
var mIllumShader = null;

Chapter 8 ■ Implementing Illumination and Shadow

312

	 2.	 Modify the _createShaders() function to instantiate an IllumShader object.

var _createShaders = function(callBackFunction) {
 //...
 mIllumShader = new IllumShader(kIllumVS, kIllumFS);
 callBackFunction();
};

	 3.	 Add a simple accessor for the illumination shader.

var getIllumShader = function() { return mIllumShader; };

	 4.	 Modify the initialize() function to load the text file that defines the
illumination shader.

var initialize = function(callBackFunction) {
 //...
  
 // Illumination Shader
 gEngine.TextFileLoader.LoadTextFile(kIllumFS,
 gEngine.TextFileLoader.eTextFileType.eTextFile);
 
 // load default font
 gEngine.Fonts.LoadFont(kDefaultFont);
  
 gEngine.ResourceMap.setLoadCompleteCallback(function()
 {_createShaders(callBackFunction);});
};

	 5.	 Modify the cleanUp() function to unload the text file that defines the
illumination shader.

// Unload all resources
var cleanUp = function() {
 //...
 mIllumShader.cleanUp();
 // Illumination Shader
 gEngine.TextFileLoader.unloadTextFile(kIllumFS);
 // default font
 gEngine.Fonts.unloadFont(kDefaultFont);
};

	 6.	 Export the get accessor in the public function list.

var mPublic = {
 initialize: initialize,
 getConstColorShader: getConstColorShader,
 // ...
 getIllumShader: getIllumShader,
 getDefaultFont: getDefaultFont,
 // ...
};

Chapter 8 ■ Implementing Illumination and Shadow

313

Configuring WebGL Texture Units in Engine_Textures

The engine texture support in the Engine_Textures.js file must be updated to support configuring the
WebGL texture units accordingly: color texture binding to unit 0 and normal texture binding to unit 1.

	 1.	 Add a line to the activateTexture() function to specify the texture unit 0.
Recall that this function activates the color texture mapping functionality.
The gl.TEXTURE0 constant informs WebGL to bind to the texture unit 0.

var activateTexture = function(textureName) {
 var gl = gEngine.Core.getGL();
 var texInfo = gEngine.ResourceMap.retrieveAsset(textureName);
  
 // Binds our texture reference to the current webGL texture functionality
 gl.activeTexture(gl.TEXTURE0);
 gl.bindTexture(gl.TEXTURE_2D, texInfo.mGLTexID);
 
 //...
};

	 2.	 Add a function to activate the normal map texture and bind this texture to
WebGL texture unit 1 with the TEXTURE1 constant.

// texture 1 is always normal map for this game engine
var activateNormalMap = function(textureName) {
 var gl = gEngine.Core.getGL();
 var texInfo = gEngine.ResourceMap.retrieveAsset(textureName);
  
 // Binds our texture reference to the current webGL texture functionality
 gl.activeTexture(gl.TEXTURE1);
 gl.bindTexture(gl.TEXTURE_2D, texInfo.mGLTexID);
 
 // To prevent texture wrappings
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
 
 // Handles how magnification and minimization filters will work.
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR_MIPMAP_LINEAR);
};

	 3.	 Remember to export the activation of the normal map in the public function list.

var mPublic = {
 // ...
 activateTexture: activateTexture,
 activateNormalMap: activateNormalMap,
 // ...
};

Chapter 8 ■ Implementing Illumination and Shadow

314

Testing the Normal Map
Testing the newly integrated normal map functionality must include the verification that the non-normal
mapped simple color texture is working correctly. To accomplish this, the background, hero, and left
minion will be created as the newly defined IllumRenderable object, while the right minion will remain a
LightRenderable object.

Modifying the Hero and the Minion

The Hero and Minion objects should be modified to support the newly defined IllumRenderable object.

	 1.	 Modify the Hero’s constructor to utilize the IllumRenderable.

function Hero(spriteTexture, normalMap) {
 this.kDelta = 0.3;
 
 this.mDye = new IllumRenderable(spriteTexture, normalMap);
 this.mDye.setColor([1, 1, 1, 0]);
 this.mDye.getXform().setPosition(15, 50);
 this.mDye.getXform().setSize(18, 24);
 this.mDye.setElementPixelPositions(0, 120, 0, 180);
 GameObject.call(this, this.mDye);
}

	 2.	 Modify the Minion’s constructor to utilize the IllumRenderable, and notice that
depending on whether a normal texture map is present, a Minion can be either
an IllumRenderable or a LightRenderable.

function Minion(spriteTexture, normalMap, atX, atY) {
 this.kDelta = 0.2;
 
 if (normalMap === null) {
 this.mMinion = new LightRenderable(spriteTexture);
 } else {
 this.mMinion = new IllumRenderable(spriteTexture, normalMap);
 }
 
 this.mMinion.setColor([1, 1, 1, 0]);
 this.mMinion.getXform().setPosition(atX, atY);
 this.mMinion.getXform().setSize(18, 14.4);
 �// first element pixel position:

// top-right 512 is top of image, 0 is right of image
 this.mMinion.setSpriteSequence(512, 0,
 204, 164, // widthxheight in pixels
 5, // number of elements in this sequence
 0); // horizontal padding in between
 this.mMinion.setAnimationType(SpriteAnimateRenderable.eAnimationType.eAnimateSwing);
 this.mMinion.setAnimationSpeed(30);
 // show each element for mAnimSpeed updates
 
 GameObject.call(this, this.mMinion);
}

Chapter 8 ■ Implementing Illumination and Shadow

315

Modifying MyGame

You can now modify MyGame to test and display your implementation of the illumination shader. Modify the
MyGame.js file in the src/MyGame folder to load and unload the new normal maps and to create the Hero
and Minion objects with the normal map files. As previously, the involved changes are straightforward and
relatively minimum; as such, the details are not shown here.

Observations
With the project now complete, you can run it and check your results to observe the effects of diffuse
illumination. Notice that the Hero, left Minion, and the background objects are illuminated with a diffuse
computation and appear to provide more depth from the lights. There is much more variation of colors and
shades across these objects (most notably, in the background where the composing geometric blocks now
appear to be individually defined 3D shapes). The fact that the normal maps for the Hero and left Minion
objects are generated automatically can be observed with their slightly pixelated and rough appearances.
Select one of the light sources, such as light 2, and move the light position with the arrow keys. Take note of
the boundary edges of the geometric blocks in the background image; these edges are surfaces facing either
horizontally or vertically, whereas the corresponding normal vector directions point either toward the x or y
direction. As the light position moves across such a boundary, the sign of the ˆ ˆN L× term would flip, and the
corresponding surface illumination would undergo drastic changes (from dark to lit, or vice versa). In this
way, with the normal map and diffuse computation, you have turned a static background image into a
background that is defined by complex 3D geometric shapes. Try moving the other light sources and observe
the illumination changes on all the objects as the light sources move across them.

Specular Reflection and Materials
The diffuse lighting you have implemented is suitable for simulating the illumination of matted surfaces
such as typical printer papers, many painted interior walls, or even a traditional blackboard. The Phong
illumination model extends this simple diffuse lighting by introducing a specular term to simulate the
reflection of the light source across a shiny surface. Figure 8-13 illustrates that given a shiny or reflective
surface like a polished floor or plastic, the reflection of the light source will be visible when the eye, or the
camera, is in the reflection direction of the light source. This reflection of the light source across shiny
surface is referred to as specular reflection, specular highlight, or specularity.

Figure 8-13.  Specularity: the reflection of the light source

Chapter 8 ■ Implementing Illumination and Shadow

316

From real-life experience, you know that specular highlights are visible even when the eye’s viewing
direction is not perfectly aligned with the reflection direction of the light source. As illustrated in Figure 8-14,
where the R̂ vector is the reflection direction of the light vector L̂ , the specular highlight on an object is
visible even when the viewing direction V̂ is not perfectly aligned with the R̂ vector. Real-life experience also
informs you that the further away V̂ is from R̂, the less likely you will observe the light reflection. In fact, you
know that when a, the angle between V̂ and R̂, is zero, you would observe the maximum light reflection, and
when a is 90° or when V̂ and R̂ are perpendicular, you would observe zero light reflection.

Figure 8-14.  The Phong specularity model

The Phone illumination model simulates the characteristic of specularity with a ˆ ˆV R
n

×() term. When V̂
and R̂ are aligned, or when a=0°, the specularity term evaluates to 1, and the term drops off to 0 according to
the cosine function when the separation between V̂ and R̂ increases to 90° or when a=90°. The power n,
referred to as shininess, describes how rapidly the specular highlight will roll off. The larger the n value, the
faster the cosine function decreases as a increases, the faster the specular highlight drops off, and the
glossier the surface would appear. For example, in Figure 8-15, the right sphere has a n value of 0, the middle
sphere has a n value of 5, and the right sphere’s n value is 30.

Figure 8-15.  Specularity and shininess (n)

While the ˆ ˆV R
n

×() term models specular highlight effectively, the cost involved in computing the R̂
vector for every shaded pixel can be significant. As illustrated in Figure 8-16, Ĥ is the halfway vector, which
is the vector halfway between the L̂ and V̂ vectors. It is observed that b, the angle between the N̂ and Ĥ ,

Chapter 8 ■ Implementing Illumination and Shadow

317

can also be used to characterize specular reflection. Though slightly different, ˆ ˆN H
n

×() produces similar
results as ˆ ˆV R

n

×() with less per-pixel computation cost in computing the Ĥ vector. The halfway vector will
be used to approximate specularity in your implementation.

Figure 8-16.  The halfway vector

As illustrated in Figure 8-17, the variation of the Phong illumination model that you will implement
consists of simulating the interaction of three participating elements in the scene through three distinct
terms. The three participating elements are the global ambient lighting, the light source, and the material
property of the object to be illuminated. The previous examples have explained the first two participating
elements: the global ambient lighting and the light source. The materials property of an object are
represented by K

a
, K

d
, K

s
, and n. These stand for three colors, representing the ambient, diffuse, and specular

reflectivity, and a floating-point number representing the shininess of an object. The three terms of the
Phong illumination model are as follows:

•	 The ambient term: K I Ca a a+

•	 The diffuse term: I C K N LL L d
ˆ ˆ×()

•	 The specular term: I C K N HL L s

nˆ ˆ×()

Figure 8-17.  The Phone illumination model

Chapter 8 ■ Implementing Illumination and Shadow

318

Note that the first two terms, the ambient and diffuse terms, have been covered in the previous
examples. The IllumFS GLSL fragment shader from the previous example implements these two terms with
a light distance attenuation and without the K

a
 and K

d
 material properties. This project guides you to build

the support for per-object material property and complete the Phong illumination model implementation in
the IllumFS GLSL shader with the engine support in the IllumShader/IllumRenderable object pair.

Integration of Material in the Game Engine and GLSL Shaders
To implement the Phong illumination model, a Material object that corresponds to the surface material
property in Figure 8-17 must be defined and referenced by each IllumRenderable object that is to be
shaded by the corresponding IllumFS GLSL shader. Figure 8-18 illustrates that in your implementation a
new ShaderMaterial object will be defined and referenced in the IllumShader to load the content of the
Material object to the IllumFS GLSL fragment shader.

Figure 8-18.  Support for material

The Material and Specularity Project
This project demonstrates the implementation of the Phong illumination model utilizing the normal map
and the camera’s position. It also implements a system that stores and forwards per-Renderable object
material properties to the GLSL shader for the Phong lighting computation. You can see an example of the
project running in Figure 8-19. The source code of this project is located in the Chapter8/8.5.MaterialAnd
Specularity folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_8

Chapter 8 ■ Implementing Illumination and Shadow

319

The controls of the project are as follows:

•	 WASD keys: Move the hero character on the screen

•	 Lighting controls:

•	 Number keys 0, 1, 2, and 3: Select the corresponding light source

•	 Arrow keys: Move the currently selected light

•	 Z/X key: Increases/decreases the light z position

•	 C/V and B/N keys: Increases/decreases the near and far cutoff distances of the
selected light

•	 K/L key: Increases/decreases the intensity of the selected light

•	 H key: Toggles the selected light on/off

•	 Material property controls:

•	 Number keys 5 and 6: Select the left minion and the hero

•	 Number keys 7, 8, and 9: Select the : K
a
, K

d
, and K

s
 material properties of the

selected character (left minion or the hero)

Figure 8-19.  Running the Material and Specularity project

Chapter 8 ■ Implementing Illumination and Shadow

320

•	 E/R, T/Y, and U/I keys: Increase/decrease the red, green, and blue channels of
the selected material property

•	 O/P keys: Increase/decrease the shininess of the selected material property

The goals of the project are as follows:

•	 To understand specular reflection and the Phong specular term

•	 To implement specular highlight illumination in GLSL shaders

•	 To understand and experience the control of Material of illuminated objects

•	 To examine specular highlights in illuminated images

In the assets folder you can find the same set of external resource files as in the previous project: the
fonts folder that contains the default system fonts, two texture images, two corresponding normal maps
for the texture images (minion_sprite.png and bg.png), and the corresponding normal maps: (minion_
sprite_normal.png, and bg_normal.png). As in previous projects, the objects are sprite elements of minion_
sprite.png, and the background is represented by bg.png.

Modifying the GLSL Illumination Fragment Shader
As in the previous projects, you will begin with implementing the actual illumination model in the GLSL
fragment shader.

	 1.	 Edit the IllumFS.glsl file and define a variable, uCameraPosition, for storing
the camera position. This position is used to compute the V̂ vector. In addition,
create a material struct and a corresponding variable, uMaterial, for storing the
per-object material properties. Note the correspondence between the variable
names Ka, Kd, Ks, and n and the terms in the Phong illumination model in
Figure 8-17.

// for supporting a simple Phong-like illumination model
uniform vec3 uCameraPosition; // for computing the V-vector
 
// material properties
struct Material {
 vec4 Ka; // simple boosting of color
 vec4 Kd; // Diffuse
 vec4 Ks; // Specular
 float Shininess; // this is the "n"
};
uniform Material uMaterial;

	 2.	 As in the previous project, create the LightAttenuation() function to calculate
the distance attenuation of the light.

// Computes the L-vector, and returns attenuation
float LightAttenuation(Light lgt, dist) {
 float atten = 0.0;
 if (dist <= lgt.Far) {
 if (dist <= lgt.Near)
 atten = 1.0; // no attenuation

Chapter 8 ■ Implementing Illumination and Shadow

321

 else {
 // simple quadratic drop off
 float n = dist - lgt.Near;
 float d = lgt.Far - lgt.Near;
 atten = smoothstep(0.0, 1.0, 1.0-(n*n)/(d*d)); // blended attenuation
 }
 }
 return atten;
}

	 3.	 Define the SpecularResult() and DiffuseResults() functions to calculate the
specular and diffuse terms. The V̂ vector, V, is computed by subtracting
uCameraPosition from the current fragment coordinate, gl_FragCoord. It is
important to observe that this operation is performed in the pixel space, and the
IllumShader/IllumRenderable object pair must transform the WC camera
position to pixel space before sending over the information. In addition, notice
that the texture map color is accumulated in the diffuse and not the specular
term.

vec4 SpecularResult(vec3 N, vec3 L) {
 vec3 V = normalize(uCameraPosition - gl_FragCoord.xyz);
 vec3 H = (L + V) * 0.5;
 return uMaterial.Ks * pow(max(0.0, dot(N, H)), uMaterial.Shininess);
}
vec4 DiffuseResult(vec3 N, vec3 L, vec4 textureMapColor) {
 return uMaterial.Kd * max(0.0, dot(N, L)) * textureMapColor;
}

	 4.	 Implement a ShadedResult() function to compute and accumulate the diffuse
and specular terms. Notice that lgt.Intensity, I

L
 in Figure 8-17, and lgt.Color,

C
L
 in Figure 8-17, are factored out and multiplied to the sum of diffuse and

specular results. The scaling by the light distance attenuation, atten, is the only
variation between this implementation and the diffuse/specular terms listed
in Figure 8-17.

vec4 ShadedResult(Light lgt, vec3 N, vec4 textureMapColor) {
 vec3 L = lgt.Position.xyz - gl_FragCoord.xyz;
 float dist = length(L);
 L = L / dist;
 float atten = LightAttenuation(lgt, dist);
 vec4 diffuse = DiffuseResult(N, L, textureMapColor);
 vec4 specular = SpecularResult(N, L);
 vec4 result = atten * lgt.Intensity * lgt.Color * (diffuse + specular);
 return result;
}

Chapter 8 ■ Implementing Illumination and Shadow

322

	 5.	 Complete the implementation in the main() function by accounting for the
ambient term and looping over all defined light sources to accumulate for
ShadedResults(). The bulk of the main function is similar to the one in the
IllumFS.glsl file from the previous project; the only important differences are
highlighted in bold in the following:

void main(void) {
 // simple tint based on uPixelColor setting
 vec4 textureMapColor = texture2D(uSampler, vTexCoord);
 vec4 normal = texture2D(uNormalSampler, vNormalMapCoord);
 vec4 normalMap = (2.0 * normal) - 1.0;
  
 // normalMap.y = -normalMap.y; // flip Y
 // �depending on the normal map you work with, this may or may not be flipped
 //
 vec3 N = normalize(normalMap.xyz);
  
 vec4 shadedResult = uMaterial.Ka +
 (textureMapColor * uGlobalAmbientColor * uGlobalAmbientIntensity);
 
 // now decide if we should illuminate by the light
 if (textureMapColor.a > 0.0) {
 for (int i=0; i<4; i++) {
 if (uLights[i].IsOn) {
 shadedResult += ShadedResult(uLights[i], N, textureMapColor);
 }
 }
 }
 
 // �tint the textured area, and leave transparent area as defined by the texture
 vec3 tintResult = vec3(shadedResult) * (1.0-uPixelColor.a) +
 vec3(uPixelColor) * uPixelColor.a;
 vec4 result = vec4(tintResult, shadedResult.a);
 
 gl_FragColor = result;
}

Creating the Material Object
As described, a simple Material object is required to store the per-object material property for the Phong
illumination model.

	 1.	 Create a new file under the src/Engine folder and name it Material.js.
Remember to load this new source file in index.html.

	 2.	 Define a constructor to initialize the variables as defined in the surface material
property in Figure 8-17. Notice that ambient, diffuse, and specular (Ka, Kd, and
Ks) are colors, while shininess is a floating point number.

function Material() {
 this.mKa = vec4.fromValues(0.0, 0.0, 0.0, 0);
 this.mKs = vec4.fromValues(0.2, 0.2, 0.2, 1);

Chapter 8 ■ Implementing Illumination and Shadow

323

 this.mKd = vec4.fromValues(1.0, 1.0, 1.0, 1);
 this.mShininess = 20;
}

	 3.	 Provide straightforward get and set accessors to these properties.

Material.prototype.setAmbient = function(a) { this.mKa = vec4.clone(a); };
Material.prototype.getAmbient = function() { return this.mKa; };
 
Material.prototype.setDiffuse = function(d) { this.mKd = vec4.clone(d); };
Material.prototype.getDiffuse = function() { return this.mKd; };
 
Material.prototype.setSpecular = function(s) { this.mKs = vec4.clone(s); };
Material.prototype.getSpecular = function() { return this.mKs; };
 
Material.prototype.setShininess = function(s) { this.mShininess= s; };
Material.prototype.getShininess = function() { return this.mShininess; };

Defining the ShaderMaterial Object
Define a new ShaderMaterial object to communicate the contents of Material to the GLSL IllumFS shader.

	 1.	 Create a new file under the src/Engine/Shaders folder and name it
ShaderMaterial.js. Remember to load this new source file in index.html.

	 2.	 Define a constructor to initialize the variables as references to the ambient,
diffuse, specular, and shininess in the IllumFS GLSL shader.

function ShaderMaterial(aIllumShader) {
 // reference to the normal map sampler
 var gl = gEngine.Core.getGL();
 this.mKaRef = gl.getUniformLocation(aIllumShader, "uMaterial.Ka");
 this.mKdRef = gl.getUniformLocation(aIllumShader, "uMaterial.Kd");
 this.mKsRef = gl.getUniformLocation(aIllumShader, "uMaterial.Ks");
 this.mShineRef = gl.getUniformLocation(aIllumShader, "uMaterial.Shininess");
}

	 3.	 Define the loadToShader() function to push the content of a Material to the
GLSL shader.

ShaderMaterial.prototype.loadToShader = function (aMaterial) {
 var gl = gEngine.Core.getGL();
 gl.uniform4fv(this.mKaRef, aMaterial.getAmbient());
 gl.uniform4fv(this.mKdRef, aMaterial.getDiffuse());
 gl.uniform4fv(this.mKsRef, aMaterial.getSpecular());
 gl.uniform1f(this.mShineRef, aMaterial.getShininess());
};

Chapter 8 ■ Implementing Illumination and Shadow

324

Modifying the IllumShader Object
Recall that the IllumShader object is the engine’s interface to the corresponding GLSL IllumFS shader.
Modify the IllumShader object to define an instance of the ShaderMaterial object to load the contents of
the Material object.

	 1.	 Edit the IllumShader.js file to define variables for Material and
ShaderMaterial. Recall that ShaderMaterial is the Material loader. In addition,
define the variables for the camera position and the reference to the camera
uniform location in the GLSL shader.

function IllumShader(vertexShaderPath, fragmentShaderPath) {
 var gl = gEngine.Core.getGL();
  
 // Call super class constructor
 LightShader.call(this, vertexShaderPath, fragmentShaderPath);
  
 // this is the material property of the renderable
 this.mMaterial = null;
 this.mMaterialLoader = new ShaderMaterial(this.mCompiledShader);
  
 // Reference to the camera position
 this.mCameraPos = null; // points to a vec3
 this.mCameraPosRef = gl.getUniformLocation(
 this.mCompiledShader, "uCameraPosition");
  
 //...
}

	 2.	 Modify the activateShader() function to include the loading of the material and
camera position to the shader.

IllumShader.prototype.activateShader = function(pixelColor, aCamera) {
 //...
 this.mMaterialLoader.loadToShader(this.mMaterial);
 gl.uniform3fv(this.mCameraPosRef, this.mCameraPos);
};

	 3.	 Define the setMaterialAndCameraPos() function to set the corresponding
variables for Phong illumination computation.

IllumShader.prototype.setMaterialAndCameraPos = function(m, p) {
 this.mMaterial = m;
 this.mCameraPos = p;
};

Chapter 8 ■ Implementing Illumination and Shadow

325

Modifying the IllumRenderable Object
You need to modify the IllumRenderable object to support a material property. This is a straightforward
change.

	 1.	 Edit the IllumRenderable.js file and modify the constructor to instantiate a new
Material object.

function IllumRenderable(myTexture, myNormalMap) {
 //...
  
 // Material for this renderable
 this.mMaterial = new Material();
};

	 2.	 Modify the draw() function to set the material in camera position before the
actual rendering. Notice the call to aCamera.getPosInPIxelSpace(): the camera
position obtained is properly transformed into pixel space.

IllumRenderable.prototype.draw = function(aCamera) {
 gEngine.Textures.ActivateNormalMap(this.mNormalMap);
 // Here thenormal map texture coordinate is copied from those of
 // the corresponding sprite sheet
 this.mShader.setMaterialAndCameraPos(this.mMaterial,
 aCamera.getPosInPixelSpace());
 LightRenderable.prototype.draw.call(this, aCamera);
};

	 3.	 Define a simple accessor for the material.

IllumRenderable.prototype.getMaterial = function() { return this.mMaterial; };

Modifying the Camera Object
As you have seen in the IllumFS GLSL shader implementation, the camera position required for computing
the V̂ vector must be in pixel space. The Camera object must be modified to provide such information. Since
the Camera object stores its position in WC space, this position must be transformed to pixel space for each
IllumRenderable object rendered. There may be a large number of IllumRenderable objects in a scene, and
the camera position cannot be changed once rendering begins. These observations suggest that a pixel
space camera position should be computed and cached.

	 1.	 Edit the Camera.js file and add a vec3 to your PerRenderCache function to cache
the camera’s position in pixel space.

function PerRenderCache() {
 this.mWCToPixelRatio = 1; // WC to pixel transformation
 this.mCameraOrgX = 1; // Lower-left corner of camera in WC
 this.mCameraOrgY = 1;
 this.mCameraPosInPixelSpace = vec3.fromValues(0, 0, 0);
}

Chapter 8 ■ Implementing Illumination and Shadow

326

	 2.	 In the Camera constructor, define a z variable to simulate the distance between
the Camera object and the rest of the Renderable objects. This third depth
information is required for illumination computation.

this.kCameraZ = 10; // This is for illumination computation

	 3.	 In step B4 of the setupViewProjection() function, call the wcPosToPixel()
function to transform the camera’s position to 3D pixel space and cache the
computed results.

// Step B4: compute and cache per-rendering information
this.mRenderCache.mWCToPixelRatio = this.mViewport[Camera.eViewport.eWidth] /
this.getWCWidth();
this.mRenderCache.mCameraOrgX = center[0] - (this.getWCWidth() / 2);
this.mRenderCache.mCameraOrgY = center[1] - (this.getWCHeight() / 2);
var p = this.wcPosToPixel(this.getWCCenter());
this.mRenderCache.mCameraPosInPixelSpace[0] = p[0];
this.mRenderCache.mCameraPosInPixelSpace[1] = p[1];
this.mRenderCache.mCameraPosInPixelSpace[2] =
 this.fakeZInPixelSpace(this.kCameraZ);

	 4.	 Define a simple get accessor function for the camera position in pixel space.

Camera.prototype.getPosInPixelSpace = function () {
 return this.mRenderCache.mCameraPosInPixelSpace; };

Testing Specular Reflection
You can now test your implementation of the Phong illumination model and observe the effects of altering
object material property and specularity. Since the background, Hero, and left Minion are already instances
of the IllumRenderable object, these three objects will exhibit specularity by default. To ensure prominence
of specular reflection, the specular material property, Ks, of the background object is set to bright red in the
initialize() function.

MyGame.prototype.initialize = function () {
 // ...
 
 // the Background
 var bgR = new IllumRenderable(this.kBg, this.kBgNormal);
 bgR.setElementPixelPositions(0, 1024, 0, 1024);
 bgR.getXform().setSize(100, 100);
 bgR.getXform().setPosition(50, 35);
 // set background materal properties
 bgR.getMaterial().setShininess(100);
 bgR.getMaterial().setSpecular([1, 0, 0, 1]);
  
 // ...
}

Chapter 8 ■ Implementing Illumination and Shadow

327

A new function, _selectCharacter(), is defined to allow the user to work with the material property of
either the Hero or the left Minion object. The file MyGame_MaterialControl.js implements the actual user
interaction for controlling the selected material property.

Observations
You can run the project and interactively control the object’s material property. For example, by default
the material property of the Hero object is selected. You can try changing the diffuse RGB components by
pressing the E/R, T/Y, or U/I keys. Notice that you can press multiple keys simultaneously to change multiple
color channels at the same time.

The normal map of the background image is carefully generated and thus is best for examining
specularity effects. Press the 1 key to select the first light source, and press the right arrow key to move the
light toward the right. You should see the illuminated circle of the light moving toward the right from its
initial position that is slightly toward the left of the center of the window. After the light crosses the center
of the window and as you continue to move it toward the right, notice there will be a red specular highlight
showing up at around the right boundary of the background image. This is the specular reflection of light
source number 1 reflecting off the background image reaching the current camera position.

Do experiment with selecting and manipulating the material property of the left Minion object and
moving the other light sources around to observe the red specular highlight on the background. Notice
that because the normal maps of the Hero and Minion objects are generated automatically and do not fully
represent the geometric characteristics of these objects, it can be tricky to observe specular reflection off them.

Light Source Types
So far your game engine supports the illumination by many instances of a single type of light, a point light.
A point light, behaving much like a lightbulb in the real world, illuminates from a single position with near
and far radii where objects can be fully, partial, or not lit at all by the light source. There are two other light
types that are popular in most game engines: the directional light and the spotlight.

A directional light models the sun rays where the light appears to arrive in parallel from the same
direction, instead of a single position, and does not seem to suffer from distance attenuation. While in
reality the sun casts light in all directions, from the perspective of the earth, the light rays from the sun are
practically parallel because of the great distance. A directional light is a simple light type that requires only a
direction variable and has no distance drop-off. The directional lights are typically used as global lights that
illuminate the entire scene.

A spotlight models a desk lamp with a cone-shape lampshade. As illustrated in Figure 8-20, a spotlight
is a point light encompassed by a cone pointing in a specific direction, the light direction, with angular
attenuation parameters for the inner and outer cone angles. Similar to the near and far radii of the distance
attenuation, objects inside the inner cone angle are fully lit, outside the outer cone angle are not lit, and
in between the two angles are partially lit. Just as in the case of a point light, a spotlight is often used for
creating illumination effects in specific regions of a game scene. The spotlight, with directional and angular
attenuation parameters, offers finer controls for simulating effects that are local to specific areas in a game.

Chapter 8 ■ Implementing Illumination and Shadow

328

■■ Note  In illustrative diagrams, like Figure 8-20, for clarity purposes light directions are usually represented
by lines extending from the light position toward the environment. These lines are usually for illustrative
purposes and do not carry mathematic meanings. These illustrative diagrams are contrasted with vector
diagrams that explain illumination computations, like Figures 8-13 and 8-14. In illumination vector diagrams,
all vectors always point away from the position to be illuminated, and all vectors are assumed to be normalized
vectors with a magnitude of 1.

The Directional and Spot Lights Project
This project demonstrates how to integrate directional lights and a spotlight into your engine to support a
wider range of illumination effects. You can see an example of the project running in Figure 8-21. The source
code of this project is located in the Chapter8/8.6.DirectionalAndSpotLights folder.

Figure 8-20.  A spotlight and its parameters

http://dx.doi.org/10.1007/978-1-4842-0952-3_8

Chapter 8 ■ Implementing Illumination and Shadow

329

The controls of the project are as follows:

•	 WASD keys: Move the hero character on the screen

•	 Lighting controls:

•	 Number keys 0, 1, 2, and 3: Select the corresponding light source

•	 Arrow keys: Move the currently selected light

•	 Arrow keys with spacebar pressed: Change the direction of the currently selected
light

•	 Z/X key: Increases/decreases the light z position

•	 C/V and B/N keys: Increase/decrease the inner and outer cone angles of the
selected light

•	 K/L key: Increases/decreases the intensity of the selected light

•	 H key: Toggles the selected light on/off

Figure 8-21.  Running the Directional and Spotlights project

Chapter 8 ■ Implementing Illumination and Shadow

330

•	 Material property controls:

•	 Number keys 5 and 6: Select the left minion and the hero

•	 Number keys 7, 8, and 9: Select the : K
a
, K

d
, and K

s
 material properties of the

selected character (left minion or the hero)

•	 E/R, T/Y, and U/I keys: Increase/decrease the red, green, and blue channels of
the selected material property

•	 O/P keys: Increase/decrease the shininess of the selected material property

The goals of the project are as follows:

•	 To understand the two additional light types: directional lights and spotlights

•	 To examine the illumination results from all three different light types

•	 To experience controlling the parameters of all three light types

•	 To support the three different light types in the engine and GLSL shaders

In the assets folder you can find the same set of external resource files as in the previous project: the
fonts folder that contains the default system fonts, two texture images, two corresponding normal maps for
the texture images (minion_sprite.png and bg.png), and the corresponding normal maps (minion_sprite_
normal.png and bg_normal.png). As in previous projects, the objects are sprite elements of minion_sprite.
png, and the background is represented by bg.png.

Supporting New Light Types in GLSL Fragment Shaders
As with the previous projects, the integration of the new functionality will begin with the GLSL shader. You
must modify the GLSL IllumShader and LightShader fragment shaders to support the two new light types.

Modifying the GLSL Illumination Fragment Shader

Recall that the IllumShader simulates the Phong illumination model based on a point light. This will be
expanded to support the two new light types.

	 1.	 Begin by editing IllumFS.glsl and defining constants for the three light types.
Notice that to support proper communications between the WebGL shader and
the engine, these constants must have identical values as the corresponding
enumerated data defined in the Light.js file.

#define ePointLight 0
#define eDirectionalLight 1
#define eSpotLight 2
 // ******** WARNING ******
 // The above enumerated values must be identical to
 // Light.eLightType values defined in Light.js
 // ******** WARNING ******

Chapter 8 ■ Implementing Illumination and Shadow

331

	 2.	 Expand the light struct within the shader to accommodate the new light
types. While the directional light requires only a Direction variable, a spotlight
requires a Direction, inner and outer angles, and a DropOff variable. Notice
that, as will be detailed next, instead of the actual angle values, the cosine of the
inner and outer angles are stored in the struct to facilitate implementation.
The DropOff variable controls how rapidly light drops off between the inner and
outer angles of the spotlight. The LightType variable identifies the type of light
that is being represented in the struct.

struct Light {
 vec4 Position; // in pixel space!
 vec4 Direction; // Light direction
 vec4 Color;
 float Near;
 float Far;
 float CosInner; // cosine of inner cone angle for spotlight
 float CosOuter; // cosine of outer cone angle for spotlight
 float Intensity;
 float DropOff; // for spotlight
 bool IsOn;
 int LightType; // One of ePointLight, eDirectionalLight, eSpotLight
};

	 3.	 Define an AngularDropOff() function to compute the angular attenuation for
the spotlight.

float AngularDropOff(Light lgt, vec3 lgtDir, vec3 L) {
 float atten = 0.0;
 float cosL = dot(lgtDir, L);
 float num = cosL - lgt.CosOuter;
 if (num > 0.0) {
 if (cosL > lgt.CosInner)
 atten = 1.0;
 else {
 float denom = lgt.CosInner - lgt.CosOuter;
 atten = smoothstep(0.0, 1.0, pow(num/denom, lgt.DropOff));
 }
 }
 return atten;
}

		 The parameter lgt is the reference to the spotlight in light struct, lgtDir is
the direction of the spotlight (or Light.Direction), and L is the light vector
of the current position to be illuminated. Note that since the dot product of
normalized vectors is the cosine of the angle between the vectors, it is convenient
to represent all angular displacements by their corresponding cosine values
and to carry out the computations based on cosines of the actual angular
displacements. Figure 8-22 illustrates the parameters involved in angular
attenuation computation.

Chapter 8 ■ Implementing Illumination and Shadow

332

a.	 The cosL is the dot product of L with lgtDir; it records the angular
displacement of the position currently being illuminated.

b.	 The num variable stores the difference between cosL and cosOuter.
A negative num would mean the position currently being illuminated is
outside the outer cone, and the angular attenuation would result in no
contribution. Thus, no further computation would be required.

c.	 If the point to be illuminated is within the inner cone, cosL would be
less than lgt.CosInner, and the angular attenuation would result in full
contribution.

d.	 If the point to be illuminated is in between the inner and outer cone angles,
use the smoothstep() function to compute a drop-off.

	 4.	 Rename the LightAttentuation() function from the previous project to
DistanceDropOff().

float DistanceDropOff(Light lgt, float dist) {
 float atten = 0.0;
 if (dist <= lgt.Far) {
 if (dist <= lgt.Near)
 atten = 1.0; // no attenuation
 else {
 // simple quadratic drop off
 float n = dist - lgt.Near;
 float d = lgt.Far - lgt.Near;
 atten = smoothstep(0.0, 1.0, 1.0-(n*n)/(d*d)); // blended attenuation
 }
 }
 return atten;
}

Figure 8-22.  Computing the angular attenuation of a spotlight

Chapter 8 ■ Implementing Illumination and Shadow

333

	 5.	 Modify the ShadedResults() function to handle each separate case of light
source type before combining the results into a color.

vec4 ShadedResult(Light lgt, vec3 N, vec4 textureMapColor) {
 float aAtten = 1.0, dAtten = 1.0;
 vec3 lgtDir = -normalize(lgt.Direction.xyz);
 vec3 L; // light vector
 float dist; // distant to light
 if (lgt.LightType == eDirectionalLight) {
 L = lgtDir;
 } else {
 L = lgt.Position.xyz - gl_FragCoord.xyz;
 dist = length(L);
 L = L / dist;
 }
 if (lgt.LightType == eSpotLight) {
 // spotlight: do angle dropoff
 aAtten = AngularDropOff(lgt, lgtDir, L);
 }
 if (lgt.LightType != eDirectionalLight) {
 // both spot and point light has distant dropoff
 dAtten = DistanceDropOff(lgt, dist);
 }
 vec4 diffuse = DiffuseResult(N, L, textureMapColor);
 vec4 specular = SpecularResult(N, L);
 vec4 result = aAtten * dAtten * lgt.Intensity * lgt.Color * (diffuse + specular);
 return result;
}

Modifying the GLSL Light Fragment Shader

You can now modify the GLSL LightFS fragment shader to support the two new light types. The
modifications involved are remarkably similar to the case of IllumFS discussed previously, where constant
values that correspond to light types are defined, the Light struct is extended to support directional and
spotlights, and the angular and distant attenuation functions are defined to properly attenuate the light.
Please refer to the LightFS.glsl source code file for details of the implementation.

Modifying the Light Object
You must extend the Light object to support the parameters of the two new light types.

	 1.	 Edit the Light.js file and define an enumerated data type for the different light
types. It is important that the enumerated values correspond to the constant
values defined in the GLSL IllumFS and LightFS shaders.

// **** WARNING: The following enumerate values must be identical to
// the values of
// ePointLight, eDirectionalLight, eSpotLight
// defined in LightFS.glsl and IllumFS.glsl

Chapter 8 ■ Implementing Illumination and Shadow

334

Light.eLightType = Object.freeze({
 ePoint: 0,
 eDirectionalLight: 1,
 eSpotLight: 2
});

	 2.	 Modify the constructor to define and initialize the new variables that correspond
to the parameters of directional light and spotlight.

function Light() {
 this.mColor = vec4.fromValues(1, 1, 1, 1); // light color
 this.mPosition = vec3.fromValues(0, 0, 5); // light position in WC
 this.mDirection = vec3.fromValues(0, 0, -1); // in WC
 this.mNear = 5; // effective radius in WC
 this.mFar = 10;
 this.mInner = 0.1; // in radian
 this.mOuter = 0.3;
 this.mIntensity = 1;
 this.mDropOff = 1;
 this.mLightType = Light.eLightType.ePointLight;
 this.mIsOn = true;
}

	 3.	 Define the get and set accessors for the new variables. The exhaustive listing of
these functions is not shown here. Please refer to the Light.js source code file
for details.

Modifying the ShaderLightAtIndex Object
Recall that the ShaderLightAtIndex object is responsible for loading the values in a light source to the GLSL
fragment shader. This object must be refined to support the new light source parameters that correspond to
directional lights and spotlights.

	 1.	 Edit the ShaderLightAtIndex.js file and modify the setShaderReferences()
function to obtain and save the references to the newly added light properties, as
shown in the following code:

ShaderLightAtIndex.prototype._setShaderReferences = function (aLightShader, index) {
 var gl = gEngine.Core.getGL();
 �this.mColorRef = gl.getUniformLocation(aLightShader,

 "uLights[" + index + "].Color");
 �this.mPosRef = gl.getUniformLocation(aLightShader,

 "uLights[" + index + "].Position");
 �this.mDirRef = gl.getUniformLocation(aLightShader,

 "uLights[" + index + "].Direction");
 �this.mNearRef = gl.getUniformLocation(aLightShader, "uLights[" + index + "].Near");
 �this.mFarRef = gl.getUniformLocation(aLightShader, "uLights[" + index + "].Far");
 �this.mInnerRef = gl.getUniformLocation(aLightShader,

 "uLights[" + index + "].CosInner");

Chapter 8 ■ Implementing Illumination and Shadow

335

 �this.mOuterRef = gl.getUn�iformLocation(aLightShader,
"uLights[" + index + "].CosOuter");

 this.mIntensityRef = gl.getUniformLocation(aLightShader,
 "uLights[" + index + "].Intensity");
 this.mDropOffRef = gl.getUniformLocation(aLightShader,
 "uLights[" + index + "].DropOff");
 �this.mIsOnRef = gl.getUniformLocation(aLightShader, "uLights[" + index + "].IsOn");
 this.mLightTypeRef = gl.getUniformLocation(aLightShader,
 "uLights[" + index + "].LightType");
};

	 2.	 Modify the loadToShader() function to load the newly added light variables for
the directional light and spotlight. Notice that depending upon the light type, the
values of some variables may not be transferred to the GLSL shader. For example,
the parameters associated with angular attenuation, the inner and outer angles,
and the drop-off will be transferred only for spotlights.

ShaderLightAtIndex.prototype.loadToShader = function (aCamera, aLight) {
 var gl = gEngine.Core.getGL();
 gl.uniform1i(this.mIsOnRef, aLight.isLightOn());
 if (aLight.isLightOn()) {
 var p = aCamera.wcPosToPixel(aLight.getPosition());
 var n = aCamera.wcSizeToPixel(aLight.getNear());
 var f = aCamera.wcSizeToPixel(aLight.getFar());
 var c = aLight.getColor();
 gl.uniform4fv(this.mColorRef, c);
 gl.uniform3fv(this.mPosRef, vec3.fromValues(p[0], p[1], p[2]));
 gl.uniform1f(this.mNearRef, n);
 gl.uniform1f(this.mFarRef, f);
 gl.uniform1f(this.mInnerRef, 0.0);
 gl.uniform1f(this.mOuterRef, 0.0);
 gl.uniform1f(this.mIntensityRef, aLight.getIntensity());
 gl.uniform1f(this.mDropOffRef, 0);
 gl.uniform1i(this.mLightTypeRef, aLight.getLightType());
 
 if (aLight.getLightType() === Light.eLightType.ePointLight) {
 gl.uniform3fv(this.mDirRef, vec3.fromValues(0, 0, 0));
 } else {
 // either spot or directional lights: must compute direction
 var d = aCamera.wcDirToPixel(aLight.getDirection());
 gl.uniform3fv(this.mDirRef, vec3.fromValues(d[0], d[1], d[2]));
 if (aLight.getLightType() === Light.eLightType.eSpotLight) {
 gl.uniform1f(this.mInnerRef, Math.cos(0.5 * aLight.getInner()));
 // stores cosine of half of inner angle
 gl.uniform1f(this.mOuterRef, Math.cos(0.5 * aLight.getOuter()));
 // stores cosine of half of outer cone
 gl.uniform1f(this.mDropOffRef, aLight.getDropOff());
 }
 }
 }
};

Chapter 8 ■ Implementing Illumination and Shadow

336

Note, for mInnerRef and mOuterRef, the cosine of half the angle is actually computed and passed. Half
angles are used because they capture the angular displacements from the light direction. This optimization
relieves the GLSL fragment shaders from computing the cosine of these angles for every invocation.

Modifying the Camera Transform Object
Directional lights and spotlights require a light direction, and the GLSL IllumFS and LightFS shaders expect
this direction to be specified in pixel space. Edit the Camera_Xform.js file of the Camera object to define the
wcDirToPixel() function to transform a direction from WC to pixel space.

Camera.prototype.wcDirToPixel = function (d) { // d is a vec3 direction in WC
 // Convert the position to pixel space
 var x = d[0] * this.mRenderCache.mWCToPixelRatio;
 var y = d[1] * this.mRenderCache.mWCToPixelRatio;
 var z = d[2];
 return vec3.fromValues(x, y, z);
};

Testing the New Light Types
The main goals of the MyGame level are to test and provide functionality for manipulating the new light types.
The modifications involved are straightforward; MyGame_Lights.js is modified to create all three light types,
and MyGame_LightControl.js is modified to support the manipulation of the direction of the selected light
when the arrow and space keys are pressed simultaneously. The listing to these simple changes are not
shown here; please refer to the source code files for details of the implementation.

Observations
You can run the project and interactively control the lights to examine the corresponding effects. There are
four light sources defined, each illuminating all objects in the scene. Light source 0 is a point light, 1 is a
directional light, and 2 and 3 are spotlights.

You can examine the effect from a directional light by pressing the 1 key to select the light. Now hold the
spacebar while taking turns pressing the left/right or up/down keys to swing the direction of the directional
light. You will notice drastic illumination changes on the boundary edges of the 3D geometric shapes in
the background image, together with occasional prominent specular reflections in red. Now, press the H key
to switch off the directional light and observe as the entire scene becomes darker. Without any kinds of
attenuation, directional lights can be used as effective tools for brightening the entire scene.

Press the 2 or 3 key to select one of the spotlights. Once again, by holding the spacebar while taking
turns pressing the left/right or up/down keys, swing the direction of the spotlight. With the spotlight, you
will observe the illuminated region swinging and changing shapes between a circle (when the spotlight is
pointing perpendicularly toward the background image) and different elongated ellipses. The arrow keys
will move the illuminated region around. Try experimenting with the C/V and B/N keys to increase/decrease
the inner and outer cone angles. Notice that if you set the inner cone angle to be larger than the outer one,
the boundary of the illuminated region becomes sharp where lighting effects from the spotlight will drop off
abruptly.

Try experimenting with the different light settings, including overlapping the light illumination regions
and setting the light intensities to negative numbers. While impossible in the physical world, negative
intensity lights are completely valid options in a game world.

Chapter 8 ■ Implementing Illumination and Shadow

337

Shadow Simulation
Shadow is the result of light being obstructed. As an everyday phenomenon, shadow is something you
observe but probably do not give much thought to. However, shadow plays a vital role in a human’s vision
system. For example, the shadows of objects convey important cues of relative sizes, depths, distances,
orderings, and so on. In video games, proper simulation of shadows not only can increase the quality of
appearance of the games but can significantly increase the fidelity of the games. For example, you can use
shadows to properly convey the distance between two game objects or the height that the hero is jumping.

Shadows can be simulated by determining the visibility between the position to be illuminated and
each of the light source positions in the environment. Computationally, this is an expensive operation
because general visibility determination is an O(n) operation, where n is the number of objects in the scene.
Algorithmically, this is a challenging problem because the visibility computation needs to occur within the
fragment shader during illumination computation. In this section, you will learn about simulating shadows
using a dedicated shadow caster and receiver to facilitate the rendering of the shadow based on the WebGL
stencil buffer.

Figure 8-23 shows an example where a game wants to cast the shadow of the Hero object on the minion
and yet not on the background. In this case, the background object will not participate in the shadow
simulation computation and thus will not receive the shadow.

Figure 8-23.  Hero casting shadow on the minion but not on the background

To properly simulate and render the shadow in Figure 8-23, as illustrated in Figure 8-24, there are three
important elements.

•	 Shadow caster: This is the object that causes the shadow. In the Figure 8-23 example,
the Hero object is the shadow caster.

•	 Shadow receiver: This is the object that the shadow appears on. In the Figure 8-23
example, the Minion object is the shadow receiver.

•	 Shadow caster geometry: This is the actual shadow, in other words, the darkness on
the shadow receiver because of the occlusion of light. In the Figure 8-23 example, the
dark imprint of the hero appearing on the minion behind the actual hero object is
the shadow caster geometry.

Chapter 8 ■ Implementing Illumination and Shadow

338

Given the three participating elements, the shadow simulation algorithm is rather straightforward:
compute the shadow caster geometry, render the shadow receiver as usual, render the shadow caster
geometry as a dark shadow caster object over the receiver, and, finally, render the shadow caster as usual.
For example, to render the shadow in Figure 8-23, the dark hero shadow caster geometry is first computed
based on the positions of the light source, the Hero object (shadow caster), and the Minion object (shadow
receiver). After that, the Minion object (shadow receiver) is first rendered as usual, followed by rendering the
shadow caster geometry as the Hero object with a dark constant color, and lastly the Hero object (shadow
caster) is rendered as usual. As illustrated in Figure 8-25, the challenging problem of this simple simulation
occurs when the shadow caster geometry extends beyond the bounds of the shadow receiver. This situation
can be observed in Figure 8-23: the top portion of the hero helmet shadow extends beyond the bounds of the
minion and is not drawn.

Figure 8-25.  Shadow caster extends beyond the bounds of shadow receiver

Figure 8-24.  The three participating elements of shadow simulation: the caster, the caster geometry, and the
receiver

Fortunately, the WebGL stencil buffer is designed specifically to resolve these types of situations. The
WebGL stencil buffer can be configured as a buffer of on/off switches with the same pixel resolution as
the canvas that is displayed on the web browser. With this configuration, when stencil buffer checking is
enabled, the only pixels in the canvas that can be drawn on will be those with corresponding stencil buffer
pixels that are switched on. Figure 8-26 uses an example to illustrate this functionality. In this example, the
middle layer is the stencil buffer with all pixels initialized to off except for the pixels in the white triangular
region being initialized to on. When the stencil buffer checking is enabled, the drawing of the top layer
image will result in only the triangular region that corresponds to the stencil triangle appearing in the canvas
(bottom layer). In this way, the stencil buffer acts exactly like a stencil over the canvas where only the on-
regions can be drawn on.

Chapter 8 ■ Implementing Illumination and Shadow

339

With the support of the WebGL stencil buffer, shadow simulation can now be specified accordingly by
identifying all shadow receivers and by grouping corresponding shadow casters with each receiver.
In the Figure 8-23 example, the Hero object is grouped as the shadow caster of the minion shadow receiver.
In this example, for the background object to receive a shadow from the hero, it must be explicitly identified
as a shadow receiver, and the Hero object must be grouped with it as a shadow caster. Notice that without
explicitly grouping the minion object as a shadow caster of the background shadow receiver, the minion
will not cast a shadow on the background. As will be detailed in the following implementation discussion,
the transparencies of the shadow casters and receivers and the intensity of the casting light source can all
affect the generation of shadows. It is important to recognize that this is a fake and virtual simulation. This
procedure does not describe how shadows are formed in the real world, and it is entirely possible to create
unrealistic dramatic effects such as casting transparent or blue-colored shadows.

The Shadow Simulation Algorithm
Given the WebGL stencil buffer, the shadow simulation and rendering algorithm can now be outlined as
follows:

Given a shadowReceiver
 A: Draw the shadowReceiver to the canvas as usual
  
 // Stencil operations to enable the region for drawing shadowCaster
 B1: Initialize all stencil buffer pixels to off
 B2: Switch on the stencil buffer pixels that correspond to the shadowReceiver object
 B3: Enable stencil buffer checking
  
 // Compute shadowCaster geometries and draw them on the shadowReceiver
 C: For each shadowCaster of this shadowReceiver
 D: For each shadow casting light source
 D1: Compute the shadowCaster geometry
 D2: Draw the shadowCaster geometry

The previous listing renders the shadow receiver and all the shadow caster geometries without
rendering the actual shadow caster objects. The B1, B2, and B3 steps switch on the stencil buffer pixels that
correspond to the shadow receiver; this is similar to switching on the white triangle in Figure 8-26, enabling
the region that can be drawn on. The loops of steps C and D point out that a separate geometry must be
computed for each shadow casting light source. By the time step D1 draws the shadow caster geometry, with

Figure 8-26.  The WebGL stencil buffer

Chapter 8 ■ Implementing Illumination and Shadow

340

the stencil buffer containing the shadow receiver imprint and checking enabled, only pixels occupied by the
shadow receiver will be drawn on in the canvas.

The Shadow Shaders Project
This project demonstrates how to implement and integrate the shadow simulation algorithm into your game
engine. You can see an example of the project running in Figure 8-27. The source code of this project is
located in the Chapter8/8.7.ShadowShaders folder.

Figure 8-27.  Running the Shadow Shaders project

The controls of the project are as follows:

•	 WASD keys: Move both of the hero characters on the screen

•	 Lighting controls:

•	 Number keys 0, 1, 2, and 3: Select the corresponding light source

•	 Arrow keys: Move the currently selected light

•	 Arrow keys with spacebar pressed: Change the direction of the currently
selected light

•	 Z/X key: Increases/decreases the light z position

http://dx.doi.org/10.1007/978-1-4842-0952-3_8

Chapter 8 ■ Implementing Illumination and Shadow

341

•	 C/V and B/N keys: Increase/decrease the inner and outer cone angles of the
selected light

•	 K/L key: Increases/decreases the intensity of the selected light

•	 H key: Toggles the selected light on/off

•	 Material property controls:

•	 Number keys 5 and 6: Select the left minion and the hero

•	 Number keys 7, 8, and 9: Select the K
a
, K

d
, and K

s
 material properties of the

selected character (left minion or the hero)

•	 E/R, T/Y, and U/I keys: Increase/decrease the red, green, and blue channels of
the selected material property

•	 O/P keys: Increase/decrease the shininess of the selected material property

The goals of the project are as follows:

•	 Understand shadows can be simulated by rendering explicit geometries

•	 Appreciate the basic operations of the WebGL stencil buffer

•	 Understand the simulation of shadows with shadow caster and receiver

•	 Implement the shadow simulation algorithm based on the WebGL stencil buffer

In the assets folder, you can find the same set of external resource files as in the previous project: the
fonts folder that contains the default system fonts, two texture images, two corresponding normal maps for
the texture images (minion_sprite.png and bg.png), and the corresponding normal maps (minion_sprite_
normal.png and bg_normal.png). As in previous projects, the objects are sprite elements of minion_sprite.
png, and the background is represented by bg.png.

Create GLSL Fragment Shaders
Two separate GLSL fragment shaders are required to support the rendering of shadow: one for drawing the
shadow caster geometry onto the canvas and one for drawing the shadow receiver into the stencil buffer.

Creating the GLSL Shadow Caster Fragment Shader

The GLSL ShadowCasterFS fragment shader is the shader for drawing the shadow caster geometries.

	 1.	 Under the src/GLSLShaders folder, make a copy of the IllumFS.glsl file and
name it ShadowCasterFS.glsl.

	 2.	 Keep the light type constants and Light struct definitions (not shown), and
define new constants: kMaxShadowOpacity as how opaque shadows should be
and kLightStrengthCutOff as a cutoff where a light with intensity less than this
value will not cast shadows.

// ... the same as IllumFS.glsl
 
#define kMaxShadowOpacity 0.7 // max of shadow opacity
#define kLightStrengthCutOff 0.05 // any less will not cause chadow
 
// ...

Chapter 8 ■ Implementing Illumination and Shadow

342

	 3.	 Leave the AngularDropOff() and DistanceDropOff() functions the same (not
shown) and create a LightStrength() function to compute the strength of a
given light source. This function is similar to the ShadedResult() function of the
IllumFS shader, except that this function computes the light strength arriving at
the position to be illuminated instead of a shaded color.

float LightStrength() {
 float aAtten = 1.0, dAtten = 1.0;
 vec3 lgtDir = -normalize(uLights[0].Direction.xyz);
 vec3 L; // light vector
 float dist; // distant to light
 if (uLights[0].LightType == eDirectionalLight) {
 L = lgtDir;
 } else {
 L = uLights[0].Position.xyz - gl_FragCoord.xyz;
 dist = length(L);
 L = L / dist;
 }
 if (uLights[0].LightType == eSpotLight) {
 // spotlight: do angle dropoff
 aAtten = AngularDropOff(lgtDir, L);
 }
 if (uLights[0].LightType != eDirectionalLight) {
 // both spot and point light has distant dropoff
 dAtten = DistanceDropOff(dist);
 }
 float result = aAtten * dAtten;
 return result;
}

	 4.	 Compute the shadow in the main() function based on the strength of the
light source. Notice that no shadows will be cast if the light intensity is less
than kLightStrengthCutOff and that the shadow caster geometry’s color is
not exactly black or opaque. Instead, it is a blend of the programmer-defined
uPixelColor and the sampled transparency from the texture map.

void main(void) {
 vec4 texFragColor = texture2D(uSampler, vTexCoord);
 float lgtStrength = LightStrength();
 if (lgtStrength < kLightStrengthCutOff)
 discard;
 vec3 shadowColor = lgtStrength * uPixelColor.rgb;
 shadowColor *= uPixelColor.a * texFragColor.a;
 gl_FragColor = vec4(shadowColor, kMaxShadowOpacity * lgtStrength * texFragColor.a);
}

Chapter 8 ■ Implementing Illumination and Shadow

343

Creating the GLSL Shadow Receiver Fragment Shader

The GLSL ShadowReceiverFS fragment shader is the shader for drawing the shadow receiver into the stencil
buffer. Take note that the stencil buffer is configured as an on/off buffer, and the shader returning any value
in gl_FragColor will switch the corresponding pixel to on. For this reason, transparent receiver fragments
must be discarded.

	 1.	 Under the src/GLSLShaders folder, create a new file and name it
ShadowReceiverFS.glsl.

	 2.	 Define a sampler2D object such that the shadow receiver object’s color
texture map can be properly sampled. In addition, define the constant
kSufficientlyOpaque. Fragments with opacity of less than this value will be
treated as transparent and discarded. Stencil buffer pixels that correspond to
discarded fragments will remain off and thus will not be able to receive shadow
geometries.

// The object that fetches data from texture.
// Must be set outside the shader.
uniform sampler2D uSampler;
 
// The "varying" keyword is for signifying that the texture coordinate will be
// interpolated and thus varies.
varying vec2 vTexCoord;
 
#define kSufficientlyOpaque 0.1

		 Note that to facilitate engine Shader object code reuse, the variable names
of uSampler and vTexCoord must not be changed. These correspond to the
variables names defined in TextureFS.glsl, and the game engine can use the
existing SpriteShader to facilitate the loading of information to this shader.

	 3.	 Implement the main() function to sample the texture for the shadow receiver
object and test for sufficient opacity for receiving shadow caster geometries.

void main(void) {
 vec4 texFragColor = texture2D(uSampler, vTexCoord);
 if (texFragColor.a < kSufficientlyOpaque)
 discard;
 else
 gl_FragColor = vec4(1, 1, 1, 1);
}

Interfacing the GLSL Shaders to the Engine
With two new GLSL shaders defined, you may expect that it is necessary to define two corresponding
Shader/Renderable object pairs to facilitate the communications. This is not the case for two reasons.

•	 With the strategic variable naming in the ShadowReceiverFS shader, the existing
SpriteShader object can be used to communicate with the ShadowReceiverFS GLSL
fragment shader.

Chapter 8 ■ Implementing Illumination and Shadow

344

•	 Recall that the Renderable objects are designed to support instantiating and
manipulating multiple game objects with the corresponding shaders. In this case,
the ShadowCasterFS shader is meant for drawing shadow caster geometries, while
the ShadowReceiverFS shader is meant for drawing the shadow receiver object into
the stencil butter. Notice that neither of the shaders is designed to support objects
that are suitable for direct instantiation or manipulations. For these reasons, there is
no need for the corresponding Renderable objects.

Creating the Shadow Caster Shader

A JavaScript Shader object must be defined to facilitate the loading of information from the game engine to
the GLSL shader. In this case, a ShadowCasterShader needs to be defined to communicate with the GLSL
ShadowCasterFS fragment shader.

	 1.	 Under the src/Engine/Shaders folder, create a new file and name it
ShadowCasterShader.js. Remember to load this new source file in index.html.

	 2.	 Define a constructor to inherit ShadowCasterShader from the SpriteShader
object. Since each shadow caster geometry is created by one casting light source,
define a single light source for the shader.

function ShadowCasterShader(vertexShaderPath, fragmentShaderPath) {
 // Call super class constructor
 SpriteShader.call(this, vertexShaderPath, fragmentShaderPath);
 
 this.mLight = null; // The light that casts the shadow
 
 // **** The GLSL Shader must define uLights[1] <-- as the only light source!!
 this.mShaderLight = new ShaderLightAtIndex(this.mCompiledShader, 0);
}
gEngine.Core.inheritPrototype(ShadowCasterShader, SpriteShader);

	 3.	 Override the activateShader() function to ensure the single light source is
loaded to the shader.

// Overriding the Activation of the shader for rendering
ShadowCasterShader.prototype.activateShader = function (pixelColor, aCamera) {
 // first call the super class's activate
 SpriteShader.prototype.activateShader.call(this, pixelColor, aCamera);
 this.mShaderLight.loadToShader(aCamera, this.mLight);
};

	 4.	 Define a function to set the current light source for this shader.

ShadowCasterShader.prototype.setLight = function (l) {
 this.mLight = l;
};

Chapter 8 ■ Implementing Illumination and Shadow

345

Modifying the Engine Core
The core of the game engine and objects defined under the src/Engine/Core folder must be updated in
two ways. First, the WebGL stencil buffer must be enabled and maintained. Second, default instances of the
engine shaders must be defined to interface to the new GLSL shaders.

Configuring and Maintaining the WebGL Stencil and Depth Buffers

The WebGL stencil buffer must be allocated during WebGL system initialization and cleared when the
canvas is cleared. With the well-designed and organized engine system, both of these operations should be
defined in the Engine_Core.js file.

	 1.	 Edit the Engine_Core.js file. In the _initializeWebGL() function, add the
request for the allocation and configuration of stencil and depth buffers during
WebGL initialization. Notice that the depth buffer, or z buffer, is also allocated
and configured. This is necessary for proper shadow caster support, where a
shadow caster must be in front of a receiver, or with a larger z depth in order to
cast shadow on the receiver.

var _initializeWebGL = function (htmlCanvasID) {
 var canvas = document.getElementById(htmlCanvasID);
 
 // Get the standard or experimental webgl and binds to the Canvas area
 // store the results to the instance variable mGL
 mGL = canvas.getContext("webgl", {alpha: false, depth: true, stencil: true}) ||
 canvas.getContext("experimental-webgl",
 {alpha: false, depth: true, stencil: true});
 
 // Allows transperency with textures.
 mGL.blendFunc(mGL.SRC_ALPHA, mGL.ONE_MINUS_SRC_ALPHA);
 mGL.enable(mGL.BLEND);
 
 // Set images to flip y axis to match the texture coordinate space.
 mGL.pixelStorei(mGL.UNPACK_FLIP_Y_WEBGL, true);
 
 // make sure depth testing is enabled
 mGL.enable(mGL.DEPTH_TEST);
 mGL.depthFunc(mGL.LEQUAL);
 
 if (mGL === null) {
 document.write("
WebGL is not supported!");
 return;
 }
};

Chapter 8 ■ Implementing Illumination and Shadow

346

	 2.	 Modify the clearCanvas() function. In addition to clearing the canvas, the
stencil and depth buffers must also be cleared.

var clearCanvas = function (color) {
 �mGL.clearColor(color[0], color[1], color[2], color[3]); // set the color

to be cleared
 mGL.clear(mGL.COLOR_BUFFER_BIT | mGL.STENCIL_BUFFER_BIT | mGL.DEPTH_BUFFER_BIT);
 // clear to the color, stencil bit, and depth buffer bits
};

Instantiating Default Shadow Caster and Receiver Shaders

Default instances of engine shaders must be created to connect to the newly defined GLSL shader caster and
receiver fragment shaders.

	 1.	 Create constants and variables for the shaders in the Engine_DefaultResources.js
file located in the src/Engine/Core/Resources folder.

// Shadow shaders
var kShadowReceiverFS = "src/GLSLShaders/ShadowReceiverFS.glsl";
// Path to the FragmentShader
var mShadowReceiverShader = null;
var kShadowCasterFS = "src/GLSLShaders/ShadowCasterFS.glsl";
// Path to the FragmentShader
var mShadowCasterShader = null;

	 2.	 Define engine shaders to interface to the new GLSL fragment shaders. Notice
that both of the engine shaders are based on the TextureVS GLSL vertex shader.
In addition, as discussed, the engine SpriteShader is created to interface to the
ShadowReceiverFS GLSL fragment shader.

var _createShaders = function (callBackFunction) {
 gEngine.ResourceMap.setLoadCompleteCallback(null);
 // ...
 mShadowReceiverShader = new SpriteShader(kTextureVS, kShadowReceiverFS);
 mShadowCasterShader = new ShadowCasterShader(kTextureVS, kShadowCasterFS);
 callBackFunction();
};

	 3.	 The rest of the modifications to the Engine_DefaultResources.js file are
routine, involving defining accessors, loading and unloading the GLSL source
code files, cleaning up the shaders, and exporting the accessors via the public
function list. The detailed listings of these are not included here because you saw
similar changes on many occasions. Please refer to the source code file for the
actual implementations.

Creating the Shadow Caster Object
As mentioned, creating a Renderable object to pair with the ShadowCasterShader object would allow
game clients to create and manipulate shadow casters as game objects. However, shadow casters and the
associated geometries are implicitly computed based on the associated shadow receiver and light sources.
For this reason, shadow casters cannot be directly manipulated by the game clients.

Chapter 8 ■ Implementing Illumination and Shadow

347

Instead of the familiar Renderable object hierarchy, the ShadowCaster object is defined to encapsulate
the implicitly defined shadow caster geometry functionality. A ShadowCaster object represents a Renderable
game object that will cast shadow on a shadow receiver, another Renderable game object. To support
receiving shadows on an animated sprite element, the shadow receiver must be at least a SpriteRenderable
object. The shadow casting Renderable object must be able to receive light sources and thus is at least
a LightRenderable object. The ShadowCaster object maintains references to the actual shadow casting
and receiving Renderable objects and defines the algorithm to compute and render shadow caster
geometries for each of the light sources referenced by the caster LightRenderable object. The details of the
ShadowCaster object implementation are as follows:

	 1.	 Create the new src/Engine/Shadows folder for organizing shadow-related
support files.

	 2.	 Create a new file in the src/Engine/Shadows/ folder and name it ShadowCaster.js.
Remember to load this new source file in index.html.

	 3.	 Define the constructor to initialize the instance variables and constants required
for caster geometry computations.

function ShadowCaster (shadowCaster, shadowReceiver) {
 this.mShadowCaster = shadowCaster;
 this.mShadowReceiver = shadowReceiver;
 this.mCasterShader = gEngine.DefaultResources.getShadowCasterShader();
 this.mShadowColor = [0, 0, 0, 0.2];
 this.mSaveXform = new Transform();
  
 this.kCasterMaxScale = 3; // maximum size a caster will be scaled
 this.kVerySmall = 0.001; //
 �this.kDistanceFudge = 0.01;

 // Ensure shadow caster is not at the same depth as receiver
 �this.kReceiverDistanceFudge = 0.6;

 // Reduce the projection size increase of the caster
}

		 As discussed, the mShadwCaster is a reference to the shadow caster
GameObject, which must reference at least a LightRenderable object, and the
mShadowReceiver is a GameObject referencing at least a SpriteRenderable
object. As will be detailed in the next step, mCasterShader, mShadowColor, and
mSaveXform are variables to support the rendering of shadow caster geometries.

	 4.	 Implement the draw() function to compute and draw a shadow caster
geometry for each of the light sources that illuminates the Renderable object of
mShadowCaster.

ShadowCaster.prototype.draw = function(aCamera) {
 var casterRenderable = this.mShadowCaster.getRenderable();
 this.mShadowCaster.getXform().cloneTo(this.mSaveXform);
 var s = casterRenderable.swapShader(this.mCasterShader);
 var c = casterRenderable.getColor();
 casterRenderable.setColor(this.mShadowColor);
 var l, lgt;
 for (l = 0; l < casterRenderable.numLights(); l++) {
 lgt = casterRenderable.getLightAt(l);

Chapter 8 ■ Implementing Illumination and Shadow

348

 if (lgt.isLightOn() && lgt.isLightCastShadow()) {
 this.mSaveXform.cloneTo(this.mShadowCaster.getXform());
 if (this._computeShadowGeometry(lgt)) {
 this.mCasterShader.setLight(lgt);
 SpriteRenderable.prototype.draw.call(casterRenderable, aCamera);
 }
 }
 }
 this.mSaveXform.cloneTo(this.mShadowCaster.getXform());
 casterRenderable.swapShader(s);
 casterRenderable.setColor(c);
};

		 casterRenderable is the Renderable object that is actually casting the shadow.
The draw() function first saves the current transform, shader, and color of
the casterRenderable object; iterates through all light sources, turning the
casterRenderable into the shadow caster geometry; and renders it in three steps.

a.	 Sets the casterRenderable shader to ShadowCasterShader.

b.	 Calls the _computeShadowGeometry() function for each illuminating light
source to project the casterRenderable onto the shadow receiver.

c.	 Renders the casterRenderable as a SpriteRenderable. Recall that the
ShadowCasterShader will sample the texture map, compute the strength of
the current light source to scale the mShadowColor, and turn the pixel into
the resulting color.

The casterRenderable state is restored before the draw() function returns.

	 5.	 Define the _computeShadowGeometry() function to compute the shadow caster
geometry based on the mShadowCaster, the mShadowReceiver, and a casting light
source. Although slightly intimidating in length, the following function can be
logically separated into four regions. The first region declares and initializes the
variables. The second and third regions are the two cases of the if statement
that handle the computation of transform parameters for directional and point/
spotlights. The last and fourth region sets the computed parameters to the cxf
transform.

ShadowCaster.prototype._computeShadowGeometry = function(aLight) {
 // Region 1: variable initialization
 var cxf = this.mShadowCaster.getXform();
 var rxf = this.mShadowReceiver.getXform();
 // vector from light to caster
 var lgtToCaster = vec3.create();
 var lgtToReceiverZ;
 var receiverToCasterZ;
 var distToCaster, distToReceiver; // measured along the lgtToCaster vector
 var scale;
 var offset = vec3.fromValues(0, 0, 0);
 receiverToCasterZ = rxf.getZPos() - cxf.getZPos();
  

Chapter 8 ■ Implementing Illumination and Shadow

349

 if (aLight.getLightType() === Light.eLightType.eDirectionalLight) {
 // Region 2: parallel projection based on the directional light
 if (((Math.abs(aLight.getDirection())[2]) < this.kVerySmall) ||
 ((receiverToCasterZ * (aLight.getDirection())[2]) < 0)) {
 return false; // direction light casting side way or
 // caster and receiver on different sides of light in Z
 }
 vec3.copy(lgtToCaster, aLight.getDirection());
 vec3.normalize(lgtToCaster, lgtToCaster);
  
 distToReceiver = Math.abs(receiverToCasterZ / lgtToCaster[2]);
 // distant measured along lgtToCaster
 scale = Math.abs(1/lgtToCaster[2]);
 } else {
 // Region 3: projection from a point (point light or spot light position)
 vec3.sub(lgtToCaster, cxf.get3DPosition(), aLight.getPosition());
 lgtToReceiverZ = rxf.getZPos() - (aLight.getPosition())[2];
  
 if ((lgtToReceiverZ * lgtToCaster[2]) < 0) {
 return false; // caster and receiver on different sides of light in Z
 }
 
 if ((Math.abs(lgtToReceiverZ) < this.kVerySmall) ||
 ((Math.abs(lgtToCaster[2]) < this.kVerySmall))) {
 // alomst the same Z, can't see shadow
 return false;
 }
 
 distToCaster = vec3.length(lgtToCaster);
 �vec3.scale(lgtToCaster, lgtToCaster, 1/distToCaster);

 // normalize lgtToCaster
  
 distToReceiver = Math.abs(receiverToCasterZ / lgtToCaster[2]);
 // distant measured along lgtToCaster
 scale = (distToCaster + (distToReceiver * this.kReceiverDistanceFudge))
 / distToCaster;
 }
 // Region 4: sets the cxf transform
 vec3.scaleAndAdd(offset, cxf.get3DPosition(), lgtToCaster,
 distToReceiver + this.kDistanceFudge);
  
 cxf.setRotationInRad(cxf.getRotationInRad());
 cxf.setPosition(offset[0], offset[1]);
 cxf.setZPos(offset[2]);
 cxf.setWidth(cxf.getWidth() * scale);
 cxf.setHeight(cxf.getHeight() * scale);
  
 return true;
};

Chapter 8 ■ Implementing Illumination and Shadow

350

		 The aLight parameter is the casting light source. The goals of this function is
to compute and set the shadow caster geometry transform, cxf, by using the
aLight to project the shadow caster onto the shadow receiver. As illustrated in
Figure 8-28, there are two cases to consider: parallel projection for a directional
light source or projection from a point for the point or spotlight.

Figure 8-28.  Computing the shadow caster geometry

a.	 Region 2: Computes parallel projection according to the directional light.
The if statement is to ensure no shadow is computed when the light
direction is parallel to the xy plan or when the light is in the direction from
the shadow receiver toward the shadow caster. Notice that for dramatic
effects, the shadow caster geometry will be moderately scaled.

b.	 Region 3: Computes projection from the point or spotlight position. The two
if statements ensure the shadow caster and receiver are on the same side
of the light position and that, for the purpose of maintaining mathematic
stability, neither is close to the light source.

c.	 Region 4: Uses the computed distToReceiver and scale to set the cxf
transform or the transform of the shadow caster.

Creating the Shadow Receiver Object
The ShadowReceiver object implements the outlined shadow simulation algorithm. The actual
implementation of this object is separated into two files. The first file implements the core operations of the
object, while the second defines the WebGL-specific stencil operations.

Defining the Shadow Receiver Operations

Follow these steps:

	 1.	 Create a new file in the src/Engine/Shadows/ folder and name it
ShadowReceiver.js. Remember to load this new source file in index.html.

	 2.	 Define the constructor to initialize the constants and variables necessary for
receiving shadows. As discussed, the mReceiver is a GameObject with at least a
SpriteRenderable reference and is the actual receiver of the shadow. Notice
that mShadowCaster is an array of ShadowCaster objects. These objects will cast
shadows on the mReceiver.

Chapter 8 ■ Implementing Illumination and Shadow

351

function ShadowReceiver (theReceiverObject) {
 �this.kShadowStencilBit = 0x01; // The stencil bit to switch on/

off for shadow
 this.kShadowStencilMask = 0xFF; // The stencil mask
 this.mReceiverShader = gEngine.DefaultResources.getShadowReceiverShader();
  
 this.mReceiver = theReceiverObject;
  
 // To support shadow drawing
 this.mShadowCaster = []; // array of ShadowCasters
}

	 3.	 Define the function addShadowCaster() to add a game object as a shadow caster
for this receiver.

ShadowReceiver.prototype.addShadowCaster = function (lgtRenderable) {
 var c = new ShadowCaster(lgtRenderable, this.mReceiver);
 this.mShadowCaster.push(c);
};

	 4.	 Define the draw() function to draw the receiver and all the shadow caster
geometries.

ShadowReceiver.prototype.draw = function (aCamera) {
 var c;
  
 // A: draw receiver as a regular renderable
 this.mReceiver.draw(aCamera);
  
 this._shadowRecieverStencilOn(); // B1
 var s = this.mReceiver.getRenderable().swapShader(this.mReceiverShader);
 this.mReceiver.draw(aCamera); // B2
 this.mReceiver.getRenderable().swapShader(s);
 this._shadowRecieverStencilOff(); // B3
  
 �// C + D: now draw shadow color to the pixels in the stencil that are

switched on
 for (c = 0; c < this.mShadowCaster.length; c++)
 this.mShadowCaster[c].draw(aCamera);
  
 // switch off stencil checking
 this._shadowRecieverStencilDisable();
};

		 This function closely implements the outlined shadow simulation algorithm and
does not draw the actual shadow caster. Notice that the mReceiver object is drawn
twice, in steps A and B2. Step A, the first draw() function, renders the mReceiver
to the canvas as usual. Step B1 enables the stencil buffer where all subsequent
drawings will be directed to switching on stencil buffer pixels. For this reason,
the draw() function at step B2 uses the ShadowReceiverShader and switches on
all pixels in the stencil buffer that corresponds to the mReceiver object. With the
proper stencil buffer setup, the calls to the mShadowCaster draw() function will
draw shadow caster geometries only into the pixels that are covered by the receiver.

Chapter 8 ■ Implementing Illumination and Shadow

352

Defining the Shadow Receiver Stencil Operations

The stencil buffer configuration actually consists of WebGL-specific operations. These operations are
gathered in this file for convenience.

	 1.	 Create a new file in the src/Engine/Shadows/ folder and name it
ShadowReceiver_Stencil.js. Remember to load this new source file
in index.html.

	 2.	 Please refer to the source code file for the WebGL operations to configure
the stencil buffer to implement the _shadowRecieverStencilOn(), _
shadowRecieverStencilOff(), and _shadowRecieverStencilDisable() functions.

Updating Engine Supporting Objects
With the new objects defined and engine configured, some of the existing engine objects must also be
modified to support the new shadow operations.

Modifying the Renderable

Both of the ShadowCaster and ShadowReceiver objects require the ability to swap the shaders and render the
objects for shadow simulation purpose. This function is best realized in the root of the Renderable hierarchy.
Edit the Renderable.js file and define the swapShader() function.

Renderable.prototype.swapShader = function (s) {
 var out = this.mShader;
 this.mShader = s;
 return out;
};

Modifying the SpriteShader

The engine interfaces to the GLSL ShadowReceiverFS using a SpriteShader, while the engine
ShadowReceiver may be a reference to any of the SpriteRenderable, LightRenderable, and
IllumRenderable objects. Edit the SpriteShader.js file to define the following two functions to ensure
proper drawing for all ShadowReceiver objects:

// will be override by LightShader
SpriteShader.prototype.setLights = function (l) { };
 
// will be override by IllumShader
SpriteShader.prototype.setMaterialAndCameraPos = function(m, p) { };

Modifying the Light

The Light object should support the ability to switch shadow casting on or off. Edit the Light.js file to
define the instance variable mCastShadow and accessor functions.

function Light() {
 // ... code identical to previous
 this.mCastShadow = false;
}
 

Chapter 8 ■ Implementing Illumination and Shadow

353

Light.prototype.isLightCastShadow = function () { return this.mCastShadow; };
Light.prototype.setLightCastShadowTo = function (on) { this.mCastShadow = on; };

Modifying the Camera

The Camera WC center must now be located at some z distance away. This is easily implemented by editing
the Camera.js file and modifying the camera lookAt() matrix computation in the setupViewProjection()
function.

mat4.lookAt(this.mViewMatrix,
 [center[0], center[1], this.kCameraZ], // WC center
 [center[0], center[1], 0],
 [0, 1, 0]); // orientation

Modifying the Transform Object

The last object that must be modified is the Transform utility. Recall that the Transform object is defined
to implement the transformation operations in 2D. This object must now be updated to support some 3D
positioning.

	 1.	 Edit the Transform.js file and add a z component.

function Transform() {
 this.mPosition = vec2.fromValues(0, 0); // this is the translation
 this.mScale = vec2.fromValues(1, 1); // this is the width (x) and height (y)
 �this.mZ = 0.0; �// must be a positive number,

// larger is closer to eye
 this.mRotationInRad = 0.0; // in radians!
}

	 2.	 Define assessors for the z position.

Transform.prototype.get3DPosition = function () {
 return vec3.fromValues(this.getXPos(), this.getYPos(), this.getZPos());
};
Transform.prototype.setZPos = function (d) { this.mZ = d; };
Transform.prototype.getZPos = function () { return this.mZ; };
Transform.prototype.incZPosBy = function (delta) { this.mZ += delta; };

	 3.	 Define the cloneTo() function to duplicate the transform.

Transform.prototype.cloneTo = function (aXform) {
 aXform.mPosition = vec2.clone(this.mPosition);
 aXform.mScale = vec2.clone(this.mScale);
 aXform.mZ = this.mZ;
 aXform.mRotationInRad = this.mRotationInRad;
};

Chapter 8 ■ Implementing Illumination and Shadow

354

	 4.	 Utilize the z component when computing an object transform.

Transform.prototype.getXform = function () {
 // Creates a blank identity matrix
 var matrix = mat4.create();
 
 // The matrices that WebGL uses are transposed, thus the typical matrix
 // operations must be in reverse.
 
 // Step A: compute translation, for now z is the mHeight
 mat4.translate(matrix, matrix, this.get3DPosition());
 // Step B: concatenate with rotation.
 mat4.rotateZ(matrix, matrix, this.getRotationInRad());
 // Step C: concatenate with scaling
 �mat4.scale(matrix, matrix, vec3.fromValues(this.getWidth(),

this.getHeight(), 1.0));
 
 return matrix;
};

Testing the Shadow Algorithm
There are two important aspects to testing the shadow simulation. First, you must understand how to
program and create shadow effects based on the implementation. Second, you must verify that Renderable
objects can serve as shadow casters and receivers. The MyGame level test case is similar to the previous project
with the exception of the shadow setup and drawing.

Setting Up the Shadow

The proper way of setting up the shadow system is to create ShadowReceiver objects and then add
ShadowCaster objects to it. The MyGame_Shadow.js file defines the _setupShadow() function to demonstrate
this. The _setupShadow() function is called at the end of the MyGame initialize() function, when all
GameObject instances are properly created and initialized. The details of the MyGame _setupShadow()
function are as follows:

MyGame.prototype._setupShadow = function () {
 this.mBgShadow = new ShadowReceiver(this.mBg);
 this.mBgShadow.addShadowCaster(this.mLgtHero);
 this.mBgShadow.addShadowCaster(this.mIllumMinion);
 this.mBgShadow.addShadowCaster(this.mLgtMinion);
 
 this.mMinionShadow = new ShadowReceiver(this.mIllumMinion);
 this.mMinionShadow.addShadowCaster(this.mIllumHero);
 this.mMinionShadow.addShadowCaster(this.mLgtHero);
 this.mMinionShadow.addShadowCaster(this.mLgtMinion);
 
 this.mLgtMinionShaodw = new ShadowReceiver(this.mLgtMinion);
 this.mLgtMinionShaodw.addShadowCaster(this.mIllumHero);
 this.mLgtMinionShaodw.addShadowCaster(this.mLgtHero);
};

Chapter 8 ■ Implementing Illumination and Shadow

355

This function demonstrates that three types of Renderable objects can serve as shadow receivers.

•	 IllumRenderable: mBgShadow has mBg as a receiver, which has a reference to an
IllumRenderable object.

•	 SpriteAnimateRenderable: mMinionShadow has mIllumMinion as a receiver, which
has a reference to a SpriteAnimateRenderable object.

•	 LightRenderable: mLgtMinionShadow has mLgtMinon as a receiver, which has a
reference to a LightRenderable object.

The shadow casters for these receivers show that IllumRenderable, SpriteAnimateRenderable, and
LightRenderable can all serve as shadow casters.

Drawing the Shadow

In 2D drawings, objects are drawn and overwrite the previously drawn objects. For this reason, it is
important to draw the shadow receivers and the shadow caster geometries before drawing the shadow
casters. The following drawCamera() function is defined in the MyGame.js file:

MyGame.prototype.drawCamera = function (camera) {
 // set up the View Projection matrix
 camera.setupViewProjection();
  
 // always draw shadow receivers first!
 this.mBgShadow.draw(camera); // also draws the receiver object
 this.mMinionShadow.draw(camera);
 this.mLgtMinionShaodw.draw(camera);
  
 this.mBlock1.draw(camera);
 this.mIllumHero.draw(camera);
 this.mBlock2.draw(camera);
 this.mLgtHero.draw(camera);
  
};

The rest of the MyGame level is largely similar to previous projects and is not listed here. Please refer to
the source code for the details.

Observations
You can now run the project and observe the shadows. Notice the effect of the stencil buffer where the
shadow from the mIllumHero object is cast on the minion and yet not on the background. Press the WASD
keys to move both of the Hero objects. Observe how the shadows offer depth and distance cues as they
move with the Hero objects. The mLgtHero on the right is illuminated by all four lights and thus casts many
shadows. Light 1 does not illuminate the background, and thus the mLgtHero shadow from light 1 is not
visible on the background but visible on the minions. Try selecting and manipulating each of the lights,
such as moving or changing the direction or switching the light on/off to observe the effects on the shadows.
You can even try changing the color of the shadow (in ShadowCaster.js) to something dramatic, such as to
bright blue [0, 0, 5, 1], and observe shadows that could never exist in the real world.

Chapter 8 ■ Implementing Illumination and Shadow

356

Summary
This chapter guided you in developing a variation of the simple yet complete Phong illumination model for
your game engine. The examples were organized to follow the three terms of the Phong illumination model:
ambient, diffuse, and specular. The light source examples were strategically intermixed because without the
lights illumination cannot occur.

The first example in this chapter on ambient illumination introduced the idea of interactively
controlling and fine-tuning the color of the scene. The following two examples on light sources presented the
notion that illumination, an algorithmic approach to color manipulation, can be localized and developed
in the engine infrastructure for supporting the eventual Phong illumination model. The example on diffuse
reflection and normal mapping was a critical one because it enabled illumination computation based on
simple physical models and simulation of an environment in 3D. The Phong illumination model and the
need for a per-object material property were presented in the specular reflection example. The halfway
vector variant of the Phong illumination model was implemented to avoid computing the light source
reflection vector for each pixel. The light source types example demonstrated how subtle but important
illumination variations can be accomplished by simulating different light sources in the real world.
Finally, the last example explained that accurate shadow computation is nontrivial and introduced an
approximation algorithm. The resulting shadow simulation, though inaccurate from a real-world perspective
and with limitations, can be aesthetically appealing and is able to convey many of the vital visual cues.

The first four chapters of this book introduced the basic foundations and components of a game engine.
Chapters 5, 6, and 7 extended the core engine functionality to support drawing, game object behaviors, and
camera controls, respectively. This chapter complements Chapter 5 by bringing the engine’s capability in
rendering higher-fidelity scenes to a new level. Over the next two chapters, this complementary pattern will
be repeated. Chapter 9 will introduce physical behavior simulation, and Chapter 10 will complete the engine
development with more advanced support for the camera including tiling and parallax.

Game Design Considerations
The work you did in the “Game Design Consideration” section of Chapter 7 to create a basic well-formed
game mechanic will ultimately need to be paired with the other elements of game design to create something
that feels satisfying for players. In addition to the basic mechanic or mechanics, you’ll need to think about
your game’s systems, setting, and metagame and how they’ll help determine the kinds of levels you design,
and you’ll want to begin exploring ideas for visual and audio design as you begin to define the setting.

As with most visual work, games rely in no small measure on lighting to convey setting. A horror game
taking place in a graveyard at midnight will typically use a very different lighting model and color palette
than a game focusing on upbeat, happy themes. Many people think that lighting applies primarily to games
created in 3D engines that are capable of simulating realistic light and shadow, but the notion of lighting
applies to most 2D game environments as well; consider the example presented by Playdead studio’s 2D
side-scrolling platform game Limbo, as shown in Figure 8-29.

http://dx.doi.org/10.1007/978-1-4842-0952-3_5
http://dx.doi.org/10.1007/978-1-4842-0952-3_6
http://dx.doi.org/10.1007/978-1-4842-0952-3_7
http://dx.doi.org/10.1007/978-1-4842-0952-3_5
http://dx.doi.org/10.1007/978-1-4842-0952-3_9
http://dx.doi.org/10.1007/978-1-4842-0952-3_10
http://dx.doi.org/10.1007/978-1-4842-0952-3_7

Chapter 8 ■ Implementing Illumination and Shadow

357

Lighting is also often used to help drive a game mechanic in addition to setting the mood; if you’ve ever
played a game where you were navigating a game space in the dark with a virtual flashlight, that’s one direct
example, but lights can also indirectly support game mechanics by providing important information about
the game environment. Red pulsing lights often signal dangerous areas, certain kinds of green environment
lights might signal areas with deadly gas, flashing lights on a map can help direct players to important areas,
and the like.

In the Simple Global Ambient project, you saw the impact that colored environment lighting has on the
game setting. In this project, the hero character moves in front of a background that appears to be made of
metallic panels, tubes, and machinery; perhaps it’s the exterior of a space ship. The environment light is red,
and it can be pulsed. Notice the effect on mood when the intensity is set at a comparatively low 1.5 versus
when it’s set to something like a super-saturated 3.5, and imagine how the pulsing between the two values
might convey a story or increase tension. In the Simple Light Shader: One Light Source project, a light was
attached to the hero character (a point light in this case), and you can imagine that the hero must navigate
the environment to collect objects to complete the level that are visible only when illuminated by the light
(or perhaps activate objects that switch on only when illuminated).

The Diffuse Shader with Multiple Light Sources project illustrated how various light sources and colors
can add considerable visual interest to an environment, sometimes referred to as localized environment
lighting. Varying the types, intensities, and color values of lights often makes environments (especially
representational environments of physical spaces) appear more alive and engaging because the light you
encounter in the real world typically originates from many different sources. The other projects in this
chapter all served to similarly enhance the sense of presence in the game level; as you work with diffuse
shaders, normal maps, specularity, different light types, and shadows, consider how you might integrate
some or all of these techniques into a level’s visual design to make game objects and environments feel more
vibrant and interesting.

Figure 8-29.  Playdead and Double Eleven’s Limbo, a 2D side-scrolling game making clever use of background
lighting and chiaroscuro techniques to convey tension and horror. Lighting can be both programmatic and
designed into the color palettes of the images themselves by the visual artist and is frequently a combination of
the two (image copyright Playdead media; please see http://www.playdead.com/limbo for more information)

http://www.playdead.com/limbo

Chapter 8 ■ Implementing Illumination and Shadow

358

Before you begin thinking about how lighting and other design elements might enhance the game
setting and visual style, let’s return for a moment to the simple game mechanic project from the “Game
Design Consideration” section of Chapter 7 and consider how you might think about adding lighting to the
mechanic to make the puzzle more engaging; Figure 8-30 begins with the basic mechanic from the end of
the exercise.

Figure 8-30.  The simple game mechanic project, without lighting. Recall that the player controls the circle
labeled with a P and must activate each of the three sections of the lock in proper sequence to disengage the
barrier and reach the reward

Lighting can be used exclusively to support a game’s visual style with no direct impact on gameplay, or
as mentioned earlier, it can be integrated more or less directly with the game mechanic; depending on the
direction your mechanic follows, either you’ll want to begin experimenting with lighting right away (if it’s
integrated with the game mechanic) or you’ll first focus on defining the game setting (if it’s purely part of the
visual style) because the setting will typically determine the colors, shapes, and lighting you choose.

For the next phase of the simple game mechanic project, how might you integrate light directly into
the mechanic so that it becomes part of gameplay? As with the previous exercise, minimizing complexity
and limiting yourself to one addition or evolution to the current mechanic at a time will help prevent
the design from becoming over-burdened or too complex. Start this phase of the exercise by considering
all the different ways that light might impact the current game screen. You might choose to have a dark
environment where the player sees only shadowy shapes unless illuminating an area with a flashlight, you
might use colored light to change the visible color of illuminated objects, or you might use something like an
X-ray or ultraviolet beam to reveal information about the objects that wouldn’t be seen with the naked eye.
For this example, you’ll add one additional dimension to the simple sequence mechanic: a light beam that
reveals hidden information about the objects, as shown in Figure 8-31.

http://dx.doi.org/10.1007/978-1-4842-0952-3_7

Chapter 8 ■ Implementing Illumination and Shadow

359

In the first iteration of this mechanic, the design required players to activate each segment of the lock
in both the correct relative position (top on top, middle in the middle, bottom on bottom) and the correct
order (top-middle-bottom). The interaction design provided consistent visual feedback for both correct and
incorrect moves that allowed the player to understand the rules of play, and with some experimentation,
astute players could deduce the proper sequence required to unlock the barrier. Now imagine how the
addition of a special light beam might take the mechanic in a new direction. Building upon the basic
notion of sequencing, you can create an incrementally cleverer puzzle requiring players to first discover
the flashlight in the environment and experiment with it as a tool before making any progress on the lock.
Imagine perhaps that the player can still directly activate the shapes when the hero character touches
them even without the flashlight (triggering the highlight ring around the object as was the case in the first
iteration, as shown in Figure 8-32) but that direct interaction is insufficient to activate the corresponding area
of the lock unless the flashlight first reveals the secret clues required to understand the puzzle. Figure 8-33
shows the flashlight moved to illuminate one of the objects with its beam, revealing a single white dot.

Figure 8-31.  The addition of a movable “flashlight” that shines a special beam

Chapter 8 ■ Implementing Illumination and Shadow

360

Figure 8-32.  The player is able to directly activate the objects as in the first iteration of the mechanic, but the
corresponding section of the lock now remains inactive

Figure 8-33.  The player moves the flashlight under one of the shapes to reveal a hidden clue (#1)

From a gameplay point of view, any object in a game environment can be conscripted into service as
a tool; your job as a mechanic designer is to ensure the use of the tool follows consistent, logical rules the
player can first understand and then predictively apply to achieve their goal. In this case, it’s reasonable to
assume that players will explore the game environment looking for tools or clues; if the flashlight is an active
object, players will attempt to learn how it functions in the context of the level.

Chapter 8 ■ Implementing Illumination and Shadow

361

The mechanic is evolving with the flashlight but uses the same basic sequencing principles and feedback
metaphors. When the player reveals the secret symbol on the object with the flashlight, the player can begin
the unlocking sequence by activating the object when the symbol is visible. The new design requires players
to activate each of the three objects corresponding to each section of the lock in the correct order, in this case
from one dot to three dots; when all objects in a section are activated in order, that section of the lock will light
up just as it did in the first iteration. Figures 8-34 to 8-36 show the new sequence using the flashlight beam.

Figure 8-34.  With the flashlight revealing the hidden symbol, the player can now activate the object (#2), and
a progress bar (#3) on the lock indicates the player is on the right track to complete a sequence

Figure 8-35.  The player activates the second of the three top sections in the correct order (#4), and the progress
bar confirms the correct sequence by lighting another section (#5). In this implementation, the player would
not be able to activate the object with two dots before activating the object with one dot (the rules require
activating like objects in order from one to three dots)

Chapter 8 ■ Implementing Illumination and Shadow

362

Note that you’ve changed the feedback players receive slightly from the first iteration of the mechanic.
You originally used the progress bar to signal overall progress toward unlocking the barrier, but you’re now
using it to signal overall progress toward unlocking each section of the lock. The flashlight introduces an
extra step into the causal chain leading to the level solution, and you’ve now taken a one-step elemental
game mechanic and made something considerably more complex and challenging while maintaining logical
consistency and following a set of rules that players can first learn and then predictively apply. In fact, the level
is beginning to typify the kind of puzzle found in many adventure games. If the game screen was a complex
environment filled with a number of movable objects, finding the flashlight and learning that its beam reveals
hidden information about objects in the game world would become part of the game setting itself.

Although somewhat tangential to the focus of this chapter, It’s important to be aware that as gameplay
complexity increases, so increases the complexity of the interaction model and the importance of providing
players with proper audiovisual feedback to help them make sense of their actions (recall from Chapter
1 that the interaction model is the combination of keys, buttons, controller sticks, touch gestures, and the
like that the player uses to accomplish game tasks). In the current example, the player is now capable of
controlling not just the hero character but also the flashlight. Creating intuitive interaction models is a
critical component of game design and often much more complex than designers realize; as one example,
consider the difficulty in porting many PC games designed for a mouse and keyboard to a game console
using buttons and thumb sticks. Development teams often pour thousands of hours of research and testing
into control schemes, yet they still frequently miss the mark. There are many books dedicated to examining
interaction design in detail, but for the purposes of this book, you should keep the two golden rules in
mind when you design interactions. First, use known and tested patterns when possible unless you have
a compelling reason to ask players to learn something new; second, keep the number of unique actions
players must remember to a minimum. Decades of user testing have clearly shown that players don’t enjoy
relearning basic key combinations for tasks that are similar across titles (which is why so many games
have standardized on WASD for movement, for example), and similar data is available showing how easily
players can become overwhelmed when you ask them to remember more than a few simple unique button

Figure 8-36.  The third of the three top sections is revealed with the flashlight beam and activated by the player
(#6), thereby activating the top section of the lock (#7). Once the middle and lower sections of the lock have
been similarly activated, the barrier is disabled and players can claim the reward

http://dx.doi.org/10.1007/978-1-4842-0952-3_1

Chapter 8 ■ Implementing Illumination and Shadow

363

combinations. There are exceptions, of course; many classic arcade fighting games, for example, use dozens
of complex combinations, but those genres are targeted to a specific kind of player who considers mastering
button combinations to be a fundamental component of the game mechanic. As a general rule, most
players prefer to keep interaction complexity as streamlined and simple as possible if it’s not an intentional
component of play.

There are a number of ways to deal with moving two objects in the current example. It would be
reasonable to assign one kind of interaction for the hero character (the circle labeled P) and another for
all other game objects (in this case, the flashlight). Perhaps the hero character can move around the game
screen freely, while other objects are first selected with a left mouse click and can be moved by holding the
left mouse button and dragging them into position. There are similarly a number of ways to provide the
player with contextual feedback that will help teach the puzzle logic and rules (in this case, using a progress
bar to confirm players are following the correct sequence). As you experiment with various interaction and
feedback models, it’s always a good idea to review how other games have handled similar tasks, paying
particular attention to things you believe to work especially well.

In the next chapter, you’ll investigate how your mechanic can evolve once again by applying simple
physics to objects in the game world.

365

Chapter 9

Integrating Physics and Particles

After completing this chapter, you will be able to:

•	 Understand how to approximate integrals with Euler Method and Symplectic Euler
Integration

•	 Approximate Newtonian motion formulation with Symplectic Euler Integration

•	 Understand the needs for and implement collision detections of bounding
rectangles and circles

•	 Resolve interpenetrating collisions based on a numerically stable relaxation method

•	 Understand, implement, and work with particle systems

Introduction
In the previous chapter, you experienced building the illumination component by simulating the
propagation of light energy in a game scene. Recall that only selected objects participated in the simulation.
For instance, in a scene, only IllumRenderable objects can be illuminated by the light sources, while others
such as SpriteRenderable objects are not. In a similar fashion, the physics component you will learn about
in this chapter simulates the transfer of energy between selected objects. Just as illumination, the physics
component of a game engine is also a large and complex area of game engine design, architecture, and
implementation. With this in mind, you will develop the physics component with the same approach you
used for all the previous game engine components you have implemented. That is, by focusing on the core
functionality of the component, you increase the game engine’s ability to create a diverse set of 2D games.

■■ Note  In games, the functionality of simulating energy transfer is often referred to as physics, physics
system, or physics component. This convention is followed in the book.

Physics in 2D games can be seen in a wide variety of genres from simple Pong-like reaction-based
games to more advanced Angry Birds–style block destruction games. Both of these games and everything
in between (such as platformers) rely on specific physical behavior to implement their core gameplay. You
will implement a physics system that can support a large variety of gameplay based on an architecture that
supports expansion.

Chapter 9 ■ Integrating Physics and Particles

366

Particles are textured images displayed at positions with no defined dimensions that often participate
in the physics simulation. The textured images facilitate representation of interesting effects while positions
without dimensions allow simple and efficient physics simulations. A particle system controls and
strategizes the generation of particles with specific appearance and behavior. A particle system provides a
game engine with the ability to implement dynamic-looking reactions. This includes common effects such
as explosions and effects associated with casting spells. Building upon the physics component, you will
create a particle system that can support diverse gameplay requirements.

Physics Overview
Physics simulations in games involve three core concepts: movement, collision detection, and collision
resolution. The proper implementation based on these concepts enables believable scenarios where objects
physically interact with each other in the game world. To satisfy the real-time interaction requirement, the
energy transfer simulations are approximated with optimization compromises.

Movement
Movement is the description of how object positions are maneuvered around the game world.
Mathematically, movement can be formulated in many ways. In Chapter 6, you experienced working with
movement where you continuously accumulated a velocity to an object’s position. Although desired results
can be achieved, mathematically this is problematic because a velocity and a position are different types of
quantities and strictly speaking cannot. be combined. In practice, you have been working with describing
movement based on displacements.

•	 p
new

 = p
current

 + displacement

Movements governed by the displacement formulation become restrictive when it is necessary to
change the quantity being displaced over time. Newtonian mechanics address this restriction by considering
time in movement formulations.

•	 v v a t dtnew current= + ()ò
•	 p p tnew current= + ()òv t d

where v(t) is the velocity that describes the change of position over time and a(t) is the acceleration that
describes the change of velocity over time.

Notice that both velocity and acceleration are vector quantities encoding the change in magnitude and
direction. The magnitude of a velocity vector defines the speed, and the normalized velocity vector identifies
the direction that the object is traveling. An acceleration vector lets you know whether an object is speeding
up or slowing down via its magnitude and the direction the acceleration is occurring in. Acceleration is
changed by the forces acting upon the object. For example, if you were to throw a ball into the air, the
gravitational force on the earth would affect the object’s acceleration over time, which in turn would change
the object’s velocity.

Euler method, or Explicit Euler Integration, approximates integrals based on initial values. Though
potentially unstable, this is one of the simplest and thus a good beginning point to learn about integration
approximation methods. In the case of the Newtonian movement formulation, the new velocity of the object
can be approximated as the current velocity plus the current acceleration multiplied by the amount of
elapsed time. Similarly, the object’s new position can be approximated by the object’s current position plus
the current velocity multiplied by the amount of elapsed time.

http://dx.doi.org/10.1007/978-1-4842-0952-3_6

Chapter 9 ■ Integrating Physics and Particles

367

■■ Note A n example of a numerically unstable system is one where under gravitational force a bouncing ball
slows down but never stops jittering and, in some cases, may even start bouncing again. 

•	 v
new

 = v
current

 + a
current

 * dt

•	 p
new

 = p
current

 + v
current

 * dt

In practice, because of system stability concerns, Explicit Euler Integration is seldom implemented.
This shortcoming is overcome with the method you will be implementing, known as the Semi-Implicit
Euler Integration or Symplectic Euler Integration, where intermediate results are used in subsequent
approximations. The following equations show Symplectic Euler Integration. Notice that it is nearly identical
to the Euler method except that the new velocity is being used when calculating the new position. This
essentially means that the velocity for the next frame is being used to calculate the position of this frame.

•	 v
new

 = v
current

 + a
current

 * dt

•	 p
new

 = p
current

 + vnew * dt

Recall that the game loop you have created has a fixed time step, where the update() function is called 60
times per second consistently. In typical implementations, the Symplectic Euler Integration method is invoked
once for each update() function call, and the dt quantity can simply be the fixed time step. This means that the
integration approximation occurs once during each time interval. In this way, an object in continuous motion
is approximated by a discrete set of positions. Figure 9-1 shows a moving object being approximated by the object
at three different time steps. However, in a continuous motion, the approximation places the object in only one of
these three positions. This is a consequence of the discrete time step nature of a game engine. The most notable
ramifications of this approximation are in detecting collisions. You can see one such problem in Figure 9-1;
imagine a thin wall existed in the space between the current and the next update. You would expect the object to
collide and stop by the wall in the next update. However, if the wall were thin enough, the object would essentially
pass right through it as it jumped from one position to the next. This is a common problem faced in many game
engines. A general solution for these types of problems can be algorithmically complex and computationally
intensive. It is typically the job of the game designer to mitigate and avoid this problem with well-designed (for
example, appropriate size) and well-behaved (for example, appropriate traveling speed) game objects.

Figure 9-1.  Approximating object position with Symplectic Euler Integration over three distinct time steps

Chapter 9 ■ Integrating Physics and Particles

368

Collision Detection
Collision detection is a vital and potentially a costly piece of physics simulation that can impact
performance. For example, if you want to detect the collisions between five enemies, in the worst case you
must perform four detection computations for the first enemy, followed by three computations for the
second, two for the third, and one for the forth. In general, without dedicated optimizations, in the worst
case you must perform O(N2) operations to detect the collisions between N objects.

■■ Note  Optimizations for collision detection typically exploit the proximity of game objects in the scene
by organizing these objects either with a spatial structure such as uniform grid or quad-tree or into coherent
groups such as hierarchies of bounding colliders. To focus on the core concepts and avoid unnecessary
complications, these optimizations will not be covered.

You have experienced computing the collisions between objects from Chapters 6 with the BoundingBox
utility class and the per-pixel collision detection algorithm. Although those methods can successfully detect
the situation when objects overlap in space, they are not capable of computing the details of the collision.
The details of a collision become important when it is necessary to resolve undesirable collision results.

Figure 9-2 shows two objects colliding after a time step. Before the time step, the objects are not touching.
However, after the time step, the results of the numerical integration place the two objects over each other.
This is another example ramification of the update() function being called at discrete time intervals. In the
real world, given that the objects were solid, the two would never interpenetrate. This is where details of a
collision must be computed such that the interpenetrating situation can be properly resolved.

Figure 9-2.  Interpenetration of objects after an update

http://dx.doi.org/10.1007/978-1-4842-0952-3_6

Chapter 9 ■ Integrating Physics and Particles

369

Collision Resolution
In the context of game engines, collision resolution refers to the process that determines how objects
respond after a collision, including strategies to resolve the potential interpenetration situation. Notice that
there are no collision resolution processes in the real world where collisions are strictly governed by the law
of physics and interpenetration of rigid objects would never occur. Resolutions of collisions are relevant only
in the virtual game world, where movements are approximated and impossible conditions may occur but
can be resolved in ways that are desirable to the designer.

In general, there are three common methods for responding to interpenetrating collisions. The first is
to simply displace the objects from one another by the depth of penetration. This is known as the Projection
Method since you simply move the object’s position so that it is no longer penetrating the other. While
this is simple to calculate and implement, it lacks stability when many objects are in proximity and resting
upon one another. The simple resolving of one pair of interpenetration can result in new penetrations
with other close objects. However, this is still a common method for simple engines or games with simple
object interaction rules. For example, in the Pong game, the ball never comes to rest on the paddles or walls
and continuously remains in motion by bouncing off any object it collides with. The Projection Method is
perfect for resolving collisions for these types of simple object interactions. The second method is known as
the Impulse Method, which uses object velocities to compute and apply impulses to initiate the objects to
move in the opposite directions at the point of collision. This method tends to slow down colliding objects
rapidly and converges to stable solutions. This is because impulses are computed based on the transfer of
momentum, which in turn has a damping effect on the velocities of the colliding objects. The third method
is known as the Penalty Method, which models the depth of object interpenetration as the degree of
compression of a spring and approximates an acceleration to apply forces to separate the objects. This last
method is the most complex and challenging to implement.

For your engine, you will be combining the strengths of the Projection and Impulse Methods. The
Projection Method will be used to separate the interpenetrating objects, while the Impulse Method will be
used to apply small impulses to reduce the object velocities in the direction that caused the interpenetration.
As described, the simple Projection Method can result in an unstable system, such as objects that sink
into each other when stacked. You will overcome this instability by implementing relaxation where
interpenetrated objects are separated incrementally via repeated applications of the Projection Method in a
single update cycle. With relaxation, the number of times that the Projection Method is applied is referred to
as relaxation iterations. For example, by default the engine sets relaxation iterations to 15. This means that
within one update() function call, after the movement integration approximation, the collision detection
andk resolution procedures will be executed 15 times.

■■ Note  The Impulse Method was popularized and championed by Erin Catto with the popular Box2D physics
game engine component. You can view the source code at http://box2d.org/.

Detecting Collisions
You have already worked with axis-aligned bounding boxes in Chapter 6. For flexibility and to better bound
objects of different shapes, you will also support bounding circles in your game engine. The collision
between game objects will be determined based on the collision results between bounding boxes and
circles. You can position a bounding shape or shapes on your object regardless of the object’s center
position, and you can use multiple bounding shapes for detecting collisions with the object. Focusing
on the core concepts and clarity of implementation, you will implement the straightforward system with
one bounding shape centered on each game object. You can expand and improve this basic system after
mastering the concepts involved.

http://box2d.org/
http://dx.doi.org/10.1007/978-1-4842-0952-3_6

Chapter 9 ■ Integrating Physics and Particles

370

■■ Note  This book covers the collision detection only between axis-aligned rectangles and circles. There
are algorithms, such as the popular Separating Axis Theorem (SAT) and the Gilbert-Johnson-Keerthi (GJK),
that are capable of detecting the collisions between any general convex shapes in 2D. These algorithms are
computationally intensive and typically use simple bounding colliders such as bounding boxes or circles as a
first pass.

The Rigid Shape Bounds Project
This project demonstrates how to detect collisions between bounding boxes and circles. For debugging
purposes, the new bounding shapes can be drawn with the RenderableLine class. You can see
an example of this project running in Figure 9-3. The source code to this project is defined in the
Chapter9/9.1.RigidShapeBounds folder.

Figure 9-3.  Running the Rigid Shape Bounds project

The controls of the project are as follows:

•	 H/M/P keys: Select one of Hero, Minion, or Platform. The selected object will not be
drawn; instead, only its bounds will be drawn for better visual inspection of collision
detection results.

•	 Left mouse button press and move in the game window: Drags the selected object
(with only the bounding shape drawn) for collision detection. A detected collision
causes the bounding shapes to be drawn in red.

http://dx.doi.org/10.1007/978-1-4842-0952-3_9

Chapter 9 ■ Integrating Physics and Particles

371

The goals of the project are as follows:

•	 To derive the basic infrastructure to support collision detection between rigid shapes

•	 To understand and implement collision detection algorithms between bounding
boxes and circles

•	 To lay the foundation for building a physics component

You can find the following external resources in the assets folder: the fonts folder that contains the
default system fonts and two texture images (minion_sprite.png, which defines the sprite elements for the
heroes and the minions, and platform.png, which defines the platforms).

Creating the Rigid Shape Base Class
You will begin by defining a base class for the bounding rectangle and circle. The base class will define all
functionality that is common to the two bounding shapes. Note that a new class, RigidRectangle, is created
for detecting collisions with bounding circles. Although similar, the existing functionality of the BoundingBox
class is left unchanged to avoid affecting the rest of the engine that currently utilizes the BoundingBox class.

	 1.	 Start by creating a new subfolder called Physics under the src/Engine folder. In
the Physics folder, create a new file called RigidShape.js.

	 2.	 Edit RigidShape.js and define the eRigidType enumerated data type to
distinguish between the different types of rigid shapes.

RigidShape.eRigidType = Object.freeze({
 eRigidAbstract: 0,
 eRigidCircle: 1,
 eRigidRectangle: 2
});

	 3.	 Define the constructor for the rigid shape, which takes the transform and
contains a LineRenderable object for drawing the center position of the rigid
shape. The mDrawBounds variable defines whether the bounds should be drawn.

function RigidShape(xform) {
 this.mXform = xform; // this is typically from gameObject
 this.kPadding = 0.25 // size of the position mark
 this.mPositionMark = new LineRenderable();
 this.mDrawBounds = false;
}

	 4.	 Create a draw() function to draw an X at the center position of the rigid shape
by utilizing the transform and the constant padding created in the constructor.
Notice that the same LineRenderable is used for both pieces of the X to save
memory. This may seem like an extraneous detail; however, when drawing many
bounding boxes and circles, the savings can quickly add up.

RigidShape.prototype.draw = function (aCamera) {
 if (!this.mDrawBounds) {
 return;
 }
  

Chapter 9 ■ Integrating Physics and Particles

372

 //calculation for the X at the center of the shape
 var x = this.mXform.getXPos();
 var y = this.mXform.getYPos();
  
 this.mPositionMark.setFirstVertex(x - this.kPadding, y + this.kPadding);
 //TOP LEFT
 this.mPositionMark.setSecondVertex(x + this.kPadding, y - this.kPadding);
 //BOTTOM RIGHT
 this.mPositionMark.draw(aCamera);
  
 this.mPositionMark.setFirstVertex(x + this.kPadding, y + this.kPadding);
 //TOP RIGHT
 this.mPositionMark.setSecondVertex(x - this.kPadding, y - this.kPadding);
 //BOTTOM LEFT
 this.mPositionMark.draw(aCamera);
};

	 5.	 Create an empty update() function for subclasses to override and add get and
set accessors.

RigidShape.prototype.update = function () {};
 
RigidShape.prototype.rigidType = function () {
 return RigidShape.eRigidType.eRigidAbstract;
};
 
RigidShape.prototype.getPosition = function() {
 return this.mXform.getPosition();
};
RigidShape.prototype.setPosition = function(x, y) {
 this.mXform.setPosition(x, y);
};
RigidShape.prototype.getXform = function () { return this.mXform; };
RigidShape.prototype.setXform = function (xform) { this.mXform = xform; };
RigidShape.prototype.setColor = function (color) {
 this.mPositionMark.setColor(color); };
RigidShape.prototype.getColor = function () {
 return this.mPositionMark.getColor(); };
RigidShape.prototype.setDrawBounds = function(d) { this.mDrawBounds = d; };
RigidShape.prototype.getDrawBounds = function() { return this.mDrawBounds; };

Creating the Rigid Rectangle Object
With the base abstract class for rigid shapes defined, you can now create your first rigid object, the rigid rectangle.

	 1.	 Under the Physics folder, create a new file called RigidRectangle.js.

	 2.	 Edit this file to create a constructor that initializes a width property and a height
property and a LineRenderable object for drawing the sides of the rectangle.
Make sure to inherit from the RigidShape base class.

function RigidRectangle(xform, w, h) {
 RigidShape.call(this, xform);
 this.mSides = new LineRenderable();
  

Chapter 9 ■ Integrating Physics and Particles

373

 this.mWidth = w;
 this.mHeight = h;
}
gEngine.Core.inheritPrototype(RigidRectangle, RigidShape);

	 3.	 Override the draw() function to draw the bounds of the rectangle when
mDrawBounds is true. Remember to call the superclass draw() function to draw
the center position of the shape.

RigidRectangle.prototype.draw = function (aCamera) {
 if (!this.mDrawBounds) {
 return;
 }
 RigidShape.prototype.draw.call(this, aCamera);
 var x = this.getPosition()[0];
 var y = this.getPosition()[1];
 var w = this.mWidth/2;
 var h = this.mHeight/2;
  
 this.mSides.setFirstVertex(x - w, y + h); //TOP LEFT
 this.mSides.setSecondVertex(x + w, y + h); //TOP RIGHT
 this.mSides.draw(aCamera);
 this.mSides.setFirstVertex(x + w, y - h); //BOTTOM RIGHT
 this.mSides.draw(aCamera);
 this.mSides.setSecondVertex(x - w, y - h); //BOTTOM LEFT
 this.mSides.draw(aCamera);
 this.mSides.setFirstVertex(x - w, y + h); //TOP LEFT
 this.mSides.draw(aCamera);
};

	 4.	 Define the get and set accessors and override the rigidType() function to return
the appropriate value.

RigidRectangle.prototype.rigidType = function () {
 return RigidShape.eRigidType.eRigidRectangle;
};
RigidRectangle.prototype.getWidth = function () { return this.mWidth; };
RigidRectangle.prototype.getHeight = function () { return this.mHeight; };
RigidRectangle.prototype.setColor = function (color) {
 RigidShape.prototype.setColor.call(this, color);
 this.mSides.setColor(color);
};

Creating the Rigid Circle Object
You can now implement the rigid circle object based on a similar overall structure.

	 1.	 Under the Physics folder, create a new file called RigidCircle.js.

	 2.	 Edit this file to create a constructor that initializes a radius property and create a
LineRenderable for drawing the bounds of the circle. This class must also inherit
from the RigidShape base class.

Chapter 9 ■ Integrating Physics and Particles

374

function RigidCircle(xform, r) {
 RigidShape.call(this, xform);
 this.kNumSides = 16;
 this.mSides = new LineRenderable();
 this.mRadius = r;
}
gEngine.Core.inheritPrototype(RigidCircle, RigidShape);

	 3.	 Override the draw() function to draw the circumference of the circle when
mDrawBounds is true. Take note that the circumference of the circle is drawn as 16
individual line segments.

RigidCircle.prototype.draw = function (aCamera) {
 if (!this.mDrawBounds) {
 return;
 }
 RigidShape.prototype.draw.call(this, aCamera);
  
 // kNumSides forms the circle.
 var pos = this.getPosition();
 var prevPoint = vec2.clone(pos);
 var deltaTheta = (Math.PI * 2.0) / this.kNumSides;
 var theta = deltaTheta;
 prevPoint[0] += this.mRadius;
 var i, x, y;
 for (i = 1; i <= this.kNumSides; i++) {
 x = pos[0] + this.mRadius * Math.cos(theta);
 y = pos[1] + this.mRadius * Math.sin(theta);
  
 this.mSides.setFirstVertex(prevPoint[0], prevPoint[1]);
 this.mSides.setSecondVertex(x, y);
 this.mSides.draw(aCamera);
  
 theta = theta + deltaTheta;
 prevPoint[0] = x;
 prevPoint[1] = y;
 }
};

	 4.	 Define the get and set accessors and override the rigidType() function to return
the appropriate value.

RigidCircle.prototype.rigidType = function () {
 return RigidShape.eRigidType.eRigidCircle;
};
RigidCircle.prototype.getRadius = function () {
 return this.mRadius;
};
RigidCircle.prototype.setColor = function (color) {
 RigidShape.prototype.setColor.call(this, color);
 this.mSides.setColor(color);
};

Chapter 9 ■ Integrating Physics and Particles

375

Detecting Collisions Between the Rigid Objects
Thus far you have implemented simple shapes that can be drawn on the canvas. You can now add
collision detection behaviors to these shapes to determine whether they are colliding. You need to define
functionality to detect collisions between two rectangles, between two circles, and between a rectangle and a
circle. You will also add functions for determining whether a position is within the bounds of a shape.

Collision Detection Between a Rectangle and a Circle

Follow these steps:

	 1.	 In the Physics folder, create a new file called RigidShape_Collision.js. This
file defines collision-related functions of the RigidShape class. The separate
source code files ensure readability.

	 2.	 Create the collidedRectCirc() function to compute the collision between a
rectangle and a circle. As illustrated in Figure 9-4, there are three distinct cases
when a rectangle and a circle collide. The left and middle sketches of Figure 9-4
illustrate the first two cases where either the center of the rectangle is within the
bounds of the circle or the center of circle is within the bounds of the rectangle.
The third case on the right of Figure 9-4 illustrates two colliding shapes with
centers outside the bounds of the other shape.

Figure 9-4.  The three cases of rectangle and circle interpenetration

You can see this logic reflected in the following code where the first two simple cases are tested in the
beginning of the function. For the third and more general case, Figure 9-5 uses two circles with centers
at position V

2a
 and V

2b
 that interpenetrate the rectangle with a center at V

1
 to illustrate two cases of this

computation. Circle V
2a

 collides the rectangle from the top side, and V
2b

 collides from the right side. In
both cases, the vFrom1to2 vector connects the corresponding centers, and the size of the normal vector
determines the collision condition: the collision is true when the length of the normal vector is less than the
corresponding circle radius. The normal vector can be computed by subtracting vec from vFrom1to2. The
vec vector is the result of clamping the corresponding component of the vFrom1to2 vector by the collision
side of the rectangle. For example, in the case of V

2a
 the y-component of the vFrom1to2

a
 vector is clamped by

the y-value of the top side of the rectangle to form vec
a
. Similarly, the x-component of the vFrom1to2

b
 vector

is clamped by the x-value of the right side of the rectangle to form vec
b
.

RigidShape.prototype.collidedRectCirc = function(rect1Shape, circ2Shape) {
 var rect1Pos = rect1Shape.getPosition();
 var circ2Pos = circ2Shape.getPosition();
  
 if (rect1Shape.containsPos(circ2Pos) || (circ2Shape.containsPos(rect1Pos))) {
 return true;
 }
  

Chapter 9 ■ Integrating Physics and Particles

376

Figure 9-5.  Two examples of general case of rectangle/circle collision

 var vFrom1to2 = [0, 0];
 vec2.subtract(vFrom1to2, circ2Pos, rect1Pos);
 var vec = vec2.clone(vFrom1to2);
 
 var alongX = rect1Shape.getWidth() / 2;
 var alongY = rect1Shape.getHeight() / 2;
 
 vec[0] = this.clamp(vec[0], -alongX, alongX);
 vec[1] = this.clamp(vec[1], -alongY, alongY);
  
 var normal = [0, 0];
 vec2.subtract(normal, vFrom1to2, vec);

 var distSqr = vec2.squaredLength(normal);
 var rSqr = circ2Shape.getRadius() * circ2Shape.getRadius();
 
 return (distSqr < rSqr);
};

	 3.	 Define the clamp() function to clamp a value between minimum and
maximum values.

RigidShape.prototype.clamp = function (value, min, max) {
 return Math.min(Math.max(value, min), max);
};

Chapter 9 ■ Integrating Physics and Particles

377

Collision Detection Between Two Rectangles

Follow these steps:

	 1.	 In the Physics folder, create a new file, RigidRectangle_Collision.js, to define
the collision-related functions for the RigidRectangle object.

	 2.	 Create the collidedRectRect() function to receive two RigidRectangle objects
and return whether the two have collided. Since the rectangles are axis-aligned,
the collision condition can be determined by X and Y bounds check, similar to
the boundCollideStatus() function of the BoundingBox class.

RigidRectangle.prototype.collidedRectRect = function(r1, r2) {
 var r1Pos = r1.getPosition();
 var r1MinX = r1Pos[0] - r1.getWidth() / 2;
 var r1MaxX = r1Pos[0] + r1.getWidth() / 2;
 var r1MinY = r1Pos[1] - r1.getHeight() / 2;
 var r1MaxY = r1Pos[1] + r1.getHeight() / 2;
 
 var r2Pos = r2.getPosition();
 var r2MinX = r2Pos[0] - r2.getWidth() / 2;
 var r2MaxX = r2Pos[0] + r2.getWidth() / 2;
 var r2MinY = r2Pos[1] - r2.getHeight() / 2;
 var r2MaxY = r2Pos[1] + r2.getHeight() / 2;
 
 return ((r1MaxX > r2MinX) && (r1MinX < r2MaxX) &&
 (r1MaxY > r2MinY) && (r1MinY < r2MaxY));
};

	 3.	 Define a collided() function for the RigidRectangle class to detect collisions
between two arbitrary rigid shapes.

RigidRectangle.prototype.collided = function(otherShape) {
 var status = false;
 switch (otherShape.rigidType()) {
 case RigidShape.eRigidType.eRigidCircle:
 status = this.collidedRectCirc(this, otherShape);
 break;
 case RigidShape.eRigidType.eRigidRectangle:
 status = this.collidedRectRect(otherShape, this);
 break;
 }
 return status;
};

	 4.	 Create the containsPos() function to determine whether a given position is
within the bounds of the rectangle.

RigidRectangle.prototype.containsPos = function (pos) {
 var rPos = this.getPosition();
 var rMinX = rPos[0] - this.getWidth() / 2;
 var rMaxX = rPos[0] + this.getWidth() / 2;

Chapter 9 ■ Integrating Physics and Particles

378

 var rMinY = rPos[1] - this.getHeight() / 2;
 var rMaxY = rPos[1] + this.getHeight() / 2;
 
 return ((rMinX < pos[0]) && (rMaxX > pos[0]) &&
 (rMinY < pos[1] && rMaxY > pos[1]));
};

Collision Detection Between Two Circles

Follow these steps:

	 1.	 In the Physics folder, create a new file, RigidCircle_Collision.js, to define the
collision-related functions for the RigidCircle object.

	 2.	 Create the collidedCircCirc() function to receive two RigidCircle objects
and return whether the two have collided. The collision condition is true when
the distance between the two circle centers is less than the sum of their radii. To
avoid the expensive square root function when computing a vector magnitude,
the squared values are compared instead.

RigidCircle.prototype.collidedCircCirc = function(c1, c2) {
 var vecToCenter = [0, 0];
 vec2.sub(vecToCenter, c1.getPosition(), c2.getPosition());
 var rSum = c1.getRadius() + c2.getRadius();
 return (vec2.squaredLength(vecToCenter) < (rSum * rSum));
};

	 3.	 As in the case for RigidRectangle, define a collide() function to support
collisions with an arbitrary rigid shape.

RigidCircle.prototype.collided = function(otherShape) {
 var status = false;
 switch (otherShape.rigidType()) {
 case RigidShape.eRigidType.eRigidCircle:
 status = this.collidedCircCirc(this, otherShape);
 break;
 case RigidShape.eRigidType.eRigidRectangle:
 status = this.collidedRectCirc(otherShape, this);
 break;
 }
 return status;
};

	 4.	 Create the containsPos() function to determine whether a given position is
within the bounds of the circle.

RigidCircle.prototype.containsPos = function(pos) {
 var dist = vec2.distance(this.getPosition(), pos);
 return (dist < this.getRadius());
};

Chapter 9 ■ Integrating Physics and Particles

379

Modifying the Game Object
You can now modify the GameObject class to begin building the support for the eventual physics component
of the game engine.

	 1.	 Edit GameObject.js and declare a new variable: mPhysicsComponent in
the constructor.

function GameObject(renderableObj) {
 this.mRenderComponent = renderableObj;
 this.mVisible = true;
 this.mCurrentFrontDir = vec2.fromValues(0, 1); // the current front direction
 this.mSpeed = 0;
 this.mPhysicsComponent = null;
}

	 2.	 Define simple get and set accessors for the physics component.

GameObject.prototype.setPhysicsComponent = function (p)
 { this.mPhysicsComponent = p; };
GameObject.prototype.getPhysicsComponent = function ()
 { return this.mPhysicsComponent; };

	 3.	 Modify the update() and draw() functions to support the physics component
if it exists.

GameObject.prototype.update = function () {
 // simple default behavior
 var pos = this.getXform().getPosition();
 vec2.scaleAndAdd(pos, pos, this.getCurrentFrontDir(), this.getSpeed());
 
 if (this.mPhysicsComponent !== null) {
 this.mPhysicsComponent.update();
 }
};
 
GameObject.prototype.draw = function (aCamera) {
 if (this.isVisible()) {
 this.mRenderComponent.draw(aCamera);
 }
 if (this.mPhysicsComponent !== null) {
 this.mPhysicsComponent.draw(aCamera);
 }
};

Testing the Collision Detection
It is important to create objects with both rectangle and circle bounds to verify the correctness of collision
detection functionality.

Chapter 9 ■ Integrating Physics and Particles

380

Modifying the Game Objects

Modify the Hero and Minion objects to define rigid objects as their physics component.

	 1.	 Modify the Hero.js file to define a RigidCircle to be its physics component.

function Hero(spriteTexture, atX, atY) {
 // ... identical code to previous project
  
 var r = new RigidCircle(this.getXform(), 9);
 r.setColor([0, 1, 0, 1]);
 r.setDrawBounds(true);
 this.setPhysicsComponent(r);
}

	 2.	 Edit the Minion.js file to define either a RigidCircle or a RigidRectangle to be
its physics component.

function Minion(spriteTexture, atX, atY) {
 // ... identical code to previous project
 
 var r;
 if (Math.random() > 0.5) {
 r = new RigidCircle(this.getXform(), 7);
 } else {
 r = new RigidRectangle(this.getXform(), 17, 14);
 }
 r.setColor([0, 1, 0, 1]);
 r.setDrawBounds(true);
 this.setPhysicsComponent(r);
}

	 3.	 Create a new GameObject type, Platform, with a RigidRectangle defined as its
physics component. Because of the similarity with the previous code, the details
are not shown here.

Modifying the MyGame Object

To properly test and observe the results of your collision detection implementation, begin with a new
MyGame.js file and implement the usual necessary functions of the constructor: initialize(), update(),
and draw(). Please refer to the MyGame.js file for the details of the implementation. The interesting elements
of this example are in the _detectCollision() function. This function is called by the update() function
to compute the collision between the selected object against all other objects in the scene. The colliding
objects will have their corresponding RigidShape objects drawn in red.

MyGame.prototype._detectCollision = function () {
 var i, obj;
 this.mCollidedObj = null;
 var selectedRigidShape = this.mSelectedObj.getPhysicsComponent();

Chapter 9 ■ Integrating Physics and Particles

381

 for (i = 0; i<this.mAllObjects.size(); i++) {
 obj = this.mAllObjects.getObjectAt(i);
 if (obj !== this.mSelectedObj) {
 if (selectedRigidShape.collided(obj.getPhysicsComponent())) {
 this.mCollidedObj = obj;
 this.mCollidedObj.getPhysicsComponent().setColor(this.kCollideColor);
 } else {
 obj.getPhysicsComponent().setColor(this.kNormalColor);
 }
 }
 }
};

Observations
Run the project to test your implementation. Notice that the texture for the selected object is not drawn.
This is to ensure that you can clearly observe and verify that the edges of colliding bounds are touching
when the bound color changes to red. Cycle through the H, M, and P keys to observe the same three objects
of the many instances are always selected. Now you can move the mouse with a left button click to move
the bounds of the selected object. Notice that you can simultaneously collide with the bounds of multiple
objects. Lastly, take note that the bounding shapes may not completely enclose the GameObject textures, as
in the case of the Hero object where part of Dye’s head and leg are outside of the bounding circle. How tightly
a bounding shape should enclose an object should be determined by the gameplay requirement and not by
the geometries.

Resolving Collisions
With a functioning collision detection system, you can now begin implementing collision resolution and
support more natural and realistic behaviors. Focusing on the core concepts and building a stable system,
you will continue to work with axis-aligned rigid rectangles and circles and avoid the complications involved
in computing angular impulse resolutions and detecting collisions between rotated rectangles. For this
reason, in your implementation, objects will not rotate as a response to collisions. However, the concepts
and implementation approach described in this section can be generalized to support object rotation
collision responses.

■■ Note  Interested readers can refer to the following links on how rotation for impulse resolution can
be supported: https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/ or http://
gamedevelopment.tutsplus.com/series/how-to-create-a-custom-physics-engine--gamedev-12715.

The Rigid Shape Impulse Project
This project demonstrates how to combine and implement projection and impulse-based collision
resolution for collided rigid rectangles and circles. Additionally, this project implements the Symplectic
Euler Integration for object movements. You can see an example of this project running in Figure 9-6. The
source code of this project is located in the Chapter9/9.2.RigidShapeImpulse folder.

https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/
http://gamedevelopment.tutsplus.com/series/how-to-create-a-custom-physics-engine--gamedev-12715
http://gamedevelopment.tutsplus.com/series/how-to-create-a-custom-physics-engine--gamedev-12715
http://dx.doi.org/10.1007/978-1-4842-0952-3_9

Chapter 9 ■ Integrating Physics and Particles

382

The controls of the project are as follows:

•	 WASD keys: Moves the Hero object

•	 Left mouse button click in the game window: Sends a DyePack chasing after the Hero

•	 For testing the stability of collision resolution:

•	 Z key: Creates dumb minions with white bounds under the current mouse
pointer position

•	 X key: Selects the dumb minion under the current mouse pointer position;
moving the mouse with the X key pressed will move the selected dumb minion

•	 C key: Agitates all dumb minions with a random velocity; press and hold the
C key to increase the agitation

•	 V key: Clears all dumb minions

The goals of the project are as follows:

•	 To experience implementing movements based on Symplectic Euler Integration

•	 To understand the need for and experience the implementation of collecting
collision information

•	 To build a physics component with relaxation support

You can find the following external resources in the assets folder: the fonts folder that contains the
default system fonts and four texture images (minion_sprite.png, which defines the sprite elements for
the hero and the minions; platform.png, which defines the platforms and floor and ceiling tiles; wall.png,
which defines the walls; and dye_pack.png, which defines the dye packs).

Figure 9-6.  Running the Rigid Shape Impulse project

Chapter 9 ■ Integrating Physics and Particles

383

Implementing Symplectic Euler Integration
For objects to collide and the resulting collisions resolved, their movements must be properly
simulated. Recall the discussion from the beginning of this chapter that such movements can be
described by the Newtonian motion equations, and the solutions can be approximated by the
Symplectic Euler Integration.

•	 v
new

 = v
current

 + a
current

 * dt

•	 p
new

 = p
current

 + v
new

 * dt

The fixed time step update() function architecture of the game engine allows the dt quantity to be
implemented as the update time interval and the integral to be evaluated once per update cycle. You will
modify the RigidShape class for this implementation.

Modifying the RigidShape Class

Modify the RigidShape class to include variables for mass, restitution (bounciness), velocity, friction, and
acceleration, as shown in the following code. Notice that the inversed of the mass value is actually stored for
computation efficiency.

function RigidShape(xform) {
 this.mXform = xform; // this is typically from gameObject
 this.kPadding = 0.25; // size of the position mark
 this.mPositionMark = new LineRenderable();
 this.mDrawBounds = false;
  
 // physical properties
 this.mInvMass = 1;
 this.mRestitution = 0.8;
 this.mVelocity = vec2.fromValues(0, 0);
 this.mFriction = 0.3;
 this.mAcceleration = gEngine.Physics.getSystemAcceleration();
}

Creating the Rigid Shape Behavior

You can now add the behavior to the rigid shape object for numerical integration.

	 1.	 Under the src/Engine/Physics folder, add a new file and name it
RigidShapeBehavior.js. Remember to load this new source file in index.html.

	 2.	 Define an update() function to apply Symplectic Euler Integration to the
rigid shape where the updated velocity is used for computing the new
position. Notice that the use of the inverse mass in computing the velocity is
a deviation from classical physics. This is a convenient trick that affords you
the ability to switch off an object’s motion by initializing both the velocity and
inverse mass to zero.

Chapter 9 ■ Integrating Physics and Particles

384

RigidShape.prototype.update = function () {
 var dt = gEngine.GameLoop.getUpdateIntervalInSeconds();
  
 // Symplectic Euler
 // v += (1/m * a) * dt
 // x += v * dt
 var v = this.getVelocity();
 vec2.scaleAndAdd(v, v, this.mAcceleration, (this.getInvMass() * dt));
  
 var pos = this.getPosition();
 vec2.scaleAndAdd(pos, pos, v, dt);
};

	 3.	 Create get and set accessors for each of the newly added variables. Note that the
setMass() function actually computes the inverse value or initializes mInvMass to zero.

RigidShape.prototype.getInvMass = function () { return this.mInvMass; };
RigidShape.prototype.setMass = function (m) {
 if(m > 0) {
 this.mInvMass = 1/m;
 } else {
 this.mInvMass = 0;
 }
};
RigidShape.prototype.getVelocity = function () { return this.mVelocity; };
RigidShape.prototype.setVelocity = function (v) { this.mVelocity = v; };
RigidShape.prototype.getRestitution = function () { return this.mRestitution; };
RigidShape.prototype.setRestitution = function (r) { this.mRestitution = r; };
RigidShape.prototype.getFriction = function () { return this.mFriction; };
RigidShape.prototype.setFriction = function (f) { this.mFriction = f; };
RigidShape.prototype.getAcceleration = function () { return this.mAcceleration; };
RigidShape.prototype.setAcceleration = function (g) { this.mAcceleration = g; };

Extracting Collision Information
To support proper resolution, at each collision you need to compute a collision depth and the
corresponding collision normal. The collision depth is the smallest amount that the objects interpenetrated
where the collision normal is the direction along which the collision depth is measured. For example, in
Figure 9-5 the distance defined by subtracting the length of the normal vector from the circle radius is the
collision depth, and the normal vector is the collision normal because the collision depth is measured
along this direction. It is always the case that any interpenetration can be resolved by moving the objects
along the collision normal by collision depth distance. The RigidShape collision functions must be
modified to compute for this information.

Chapter 9 ■ Integrating Physics and Particles

385

Figure 9-7.  Circle center in the bounds of the colliding rectangle

Creating the CollisionInfo object

For convenience, create a new object for recording the collision information.

	 1.	 Under the src/Engine/Utils folder, add a new file and name it CollisionInfo.js.
Remember to load this new source file in index.html.

	 2.	 Define the constructor and the accessors for the collision depth and normal.

function CollisionInfo() {
 this.mDepth = 0;
 this.mNormal = vec2.fromValues(0, 0);
}
CollisionInfo.prototype.setDepth = function (s) { this.mDepth = s; };
CollisionInfo.prototype.setNormal = function (s) { this.mNormal = s; };
 
CollisionInfo.prototype.getDepth = function () { return this.mDepth; };
CollisionInfo.prototype.getNormal = function () { return this.mNormal; };

Modifying the RigidShape Collision

You can now edit the RigidShape_Collision.js file to extract the collision information when a rectangle
and circle collide. Figure 9-5 illustrates the general strategy of computing the collision normal, normal,
and collision depth (subtracting the length of normal from the radius). As discussed previously, the normal
vector is derived from vec, the result of clamping the components of the vFrom1to2 vector by the colliding
side of the rectangle. As illustrated in Figure 9-7, the only slight complication is when the circle center is
inside the bounds of the rectangle, where instead of clamping, you must extend corresponding vFrom1to2
components to compute the vec vector. For example, in Figure 9-7, the x-component of vFrom1to2 must be
extended to reach the x-value of the rectangle right boundary to form the vec vector. Notice that in all cases,
the computed normal is a vector from the collision rectangle bound toward the circle center. For this reason,
in the case of Figure 9-7, the normal vector must be reversed to represent collision normal.

Chapter 9 ■ Integrating Physics and Particles

386

RigidShape.prototype.collidedRectCirc = function(rect1Shape, circ2Shape, collisionInfo) {
 var rect1Pos = rect1Shape.getXform().getPosition();
 var circ2Pos = circ2Shape.getXform().getPosition();
 var vFrom1to2 = [0, 0];
 vec2.subtract(vFrom1to2, circ2Pos, rect1Pos);
 
 var vec = vec2.clone(vFrom1to2);
 
 var alongX = rect1Shape.getWidth() / 2;
 var alongY = rect1Shape.getHeight() / 2;
 
 vec[0] = this.clamp(vec[0], -alongX, alongX);
 vec[1] = this.clamp(vec[1], -alongY, alongY);
 
 var isInside = false;
 if (rect1Shape.containsPos(circ2Pos)) {
 isInside = true;
 // Find closest axis
 if (Math.abs(vFrom1to2[0] - alongX) < Math.abs(vFrom1to2[1] - alongY)) {
 // Clamp to closest side
 if (vec[0] > 0) {
 vec[0] = alongX;
 } else {
 vec[0] = -alongX;
 }
 } else { // y axis is shorter
 // Clamp to closest side
 if (vec[1] > 0) {
 vec[1] = alongY;
 } else {
 vec[1] = -alongY;
 }
 }
 }
 
 var normal = [0, 0];
 vec2.subtract(normal, vFrom1to2, vec);
 
 var distSqr = vec2.squaredLength(normal);
 var rSqr = circ2Shape.getRadius() * circ2Shape.getRadius();
 
 if (distSqr > rSqr && !isInside) {
 return false; //no collision exit before costly square root
 }
 
 var len = Math.sqrt(distSqr);
 var depth;
  

Chapter 9 ■ Integrating Physics and Particles

387

 vec2.scale(normal, normal, 1/len); // normalize normal
 if (isInside) { //flip normal if inside the rect
 vec2.scale(normal, normal, -1);
 depth = circ2Shape.getRadius() + len;
 } else {
 depth = circ2Shape.getRadius() - len;
 }
  
 collisionInfo.setNormal(normal);
 collisionInfo.setDepth(depth);
 return true;
};

Modifying the RigidRectangle Collision

Edit the RigidRectangle_Collision.js file to compute for collision information when a collision occurs.

	 1.	 Modify the collidedRectRect() function to calculate the collision depth and
normal. In the following code, the collision normal is chosen to be along either
the x- or y-direction with the corresponding depth.

RigidRectangle.prototype.collidedRectRect = function(r1, r2, collisionInfo) {
 var vFrom1to2 = vec2.fromValues(0, 0);
 vec2.sub(vFrom1to2, r2.getPosition(), r1.getPosition());
 var xDepth = (r1.getWidth() / 2) + (r2.getWidth() / 2) - Math.abs(vFrom1to2[0]);
 if (xDepth > 0) {
 var yDepth = (r1.getHeight() / 2) + (r2.getHeight() / 2) -
 Math.abs(vFrom1to2[1]);
 if (yDepth > 0) {
 //axis of least penetration
 if (xDepth < yDepth) {
 if (vFrom1to2[0] < 0) {
 collisionInfo.setNormal([-1, 0]);
 } else {
 collisionInfo.setNormal([1, 0]);
 }
 collisionInfo.setDepth(xDepth);
 } else {
 if (vFrom1to2[1] < 0) {
 collisionInfo.setNormal([0, -1]);
 } else {
 collisionInfo.setNormal([0, 1]);
 }
 collisionInfo.setDepth(yDepth);
 }
 return true;
 }
 }
 return false;
};

Chapter 9 ■ Integrating Physics and Particles

388

	 2.	 Modify the collided() function to include the collisionInfo parameter. Take
note that the default collision depth value is initialized to zero.

RigidRectangle.prototype.collided = function(otherShape, collisionInfo) {
 var status = false;
 collisionInfo.setDepth(0);
 switch (otherShape.rigidType()) {
 case RigidShape.eRigidType.eRigidCircle:
 status = this.collidedRectCirc(this, otherShape, collisionInfo);
 break;
 case RigidShape.eRigidType.eRigidRectangle:
 status = this.collidedRectRect(this, otherShape, collisionInfo);
 break;
 }
 return status;
};

Modifying the Rigid Circle Collision

Similarly to the RigidRectangle collision, the RigidCircle_Collision.js file must also be edited for
extracting the collision information.

	 1.	 Modify the collidedCircCirc() function to calculate the collision depth and
normal. In the following code, vFrom1to2 defines the vector between the two
circle centers. The collision depth is simply the difference between the length of
the vFrom1to2 vector and the sum of the circle radii, while the collision normal is
simply vFrom1to2. Notice that when the two circles overlap completely, collision
normal is defined to be along the positive y-direction.

RigidCircle.prototype.collidedCircCirc = function(c1, c2, collisionInfo) {
 var vFrom1to2 = [0, 0];
 vec2.sub(vFrom1to2, c2.getPosition(), c1.getPosition());
 var rSum = c1.getRadius() + c2.getRadius();
 var sqLen = vec2.squaredLength(vFrom1to2);
 if (sqLen > (rSum * rSum)) {
 return false;
 }
 var dist = Math.sqrt(sqLen);
 
 if (dist !== 0) { // overlapping
 vec2.scale(vFrom1to2, vFrom1to2, 1/dist);
 collisionInfo.setNormal(vFrom1to2);
 collisionInfo.setDepth(rSum - dist);
 }
 else //same position
 {
 collisionInfo.setDepth(rSum / 10);
 collisionInfo.setNormal([0, 1]);
 }
 return true;
};

Chapter 9 ■ Integrating Physics and Particles

389

	 2.	 Modify the collided() function to support the new collisionInfo parameter.
Once again, note that the depth of the collision is initialized to zero by default
and that the collision normal returned from collidedRectCirc() must be
reversed for the RigidCircle object.

RigidCircle.prototype.collided = function(otherShape, collisionInfo) {
 var status = false;
 var n;
 collisionInfo.setDepth(0);
 switch (otherShape.rigidType()) {
 case RigidShape.eRigidType.eRigidCircle:
 status = this.collidedCircCirc(this, otherShape, collisionInfo);
 break;
 case RigidShape.eRigidType.eRigidRectangle:
 status = this.collidedRectCirc(otherShape, this, collisionInfo);
 n = collisionInfo.getNormal();
 n[0] = -n[0];
 n[1] = -n[1];
 break;
 }
 return status;
};

Defining the Engine Physics Component
A new physics engine component can now be defined to coordinate collision detections and collision
responses via the relaxation iteration loops. To begin, follow the pattern of defining an engine component.

	 1.	 In the src/Engine/Core folder, create a new file and name it Engine_Physics.js.
This file will implement the physics engine component. Remember to load this
new source file in index.html.

	 2.	 Define the physics component following the JavaScript Module Pattern
as follows:

var gEngine = gEngine || { };
 // initialize the variable while ensuring it is not redefined
 
gEngine.Physics = (function () {
 var mPublic = { };
 return mPublic;
}());

	 3.	 Define variables for relaxation count, current relaxation loop count, has collided
collision check, position correction rate, system acceleration, and collision
information. In addition, create an initialization function to allocate and
initialize the shared mCollisionInfo object.

Chapter 9 ■ Integrating Physics and Particles

390

var mRelaxationCount = 15; // number of relaxation iteration
var mRelaxationOffset = 1/mRelaxationCount; // porportion to apply when scaling friction
var mPosCorrectionRate = 0.8; // percentage of separation to project objects
var mSystemtAcceleration = [0, -50]; // system-wide default acceleration
  
var mRelaxationLoopCount = 0; // the current relaxation count
var mHasOneCollision = false; // detect the first collision
  
var mCollisionInfo = null; // information of the current collision
  
var initialize = function() {
 mCollisionInfo = new CollisionInfo(); // to avoid allocating this constantly
};

Resolving Collisions and Applying Friction

Define functions to resolve interpenetrating objects by the Projection Method and to slow down the moving
objects by applying friction.

	 1.	 Define the function _positionalCorrection() to apply the Projection Method
to correct the positions of the colliding objects. Calculate the correctionAmount
in the collision normal direction as a function of the collision depth and mass
of the respective objects. Note that the actual correction amount is inversely
proportional to the mass of the object and scaled by the mPosCorrectionRate.
For this reason, an object with infinite mass (invMass of 0) will not be positional
corrected. In other words, this object will be unmovable (for example, a
platform). The scaling by mPosCorrectionRate means that the interpenetration
will not be resolved completely. Rather, it is expected that, through relaxation,
the _positionalCorrection() function will be invoked multiple times in each
game loop update.

var _positionalCorrection = function (s1, s2, collisionInfo) {
 var s1InvMass = s1.getInvMass();
 var s2InvMass = s2.getInvMass();
 var num = collisionInfo.getDepth() / (s1InvMass + s2InvMass) * mPosCorrectionRate;
 var correctionAmount = [0, 0];
 vec2.scale(correctionAmount, collisionInfo.getNormal(), num);
 
 var ca = [0, 0];
 vec2.scale(ca, correctionAmount, s1InvMass);
 var s1Pos = s1.getPosition();
 vec2.subtract(s1Pos, s1Pos, ca);
 
 vec2.scale(ca, correctionAmount, s2InvMass);
 var s2Pos = s2.getPosition();
 vec2.add(s2Pos, s2Pos, ca);
};

	 2.	 Create a function for applying friction to a colliding rigid shape. As illustrated in
Figure 9-8, fiction is simulated by applying a deceleration in the tangent
direction, T̂ , of the collision. The actual deceleration size is scaled by the
mRelaxationOffset to account for multiple invocations from relaxation.

Chapter 9 ■ Integrating Physics and Particles

391

// n is the collision normal
// v is the velocity
// f is the friction
// m is the invMass
var _applyFriction = function(n, v, f, m) {
 var tangent = vec2.fromValues(n[1], -n[0]); // perpendicular to n
 var tComponent = vec2.dot(v, tangent);
 if (Math.abs(tComponent) < 0.01)
 return;
  
 f *= m * mRelaxationOffset;
 if (tComponent < 0) {
 vec2.scale(tangent, tangent, -f);
 } else {
 vec2.scale(tangent, tangent, f);
 }
 vec2.sub(v, v, tangent);
};

	 3.	 You can now create the resolveCollision() function to implement the
collision resolution between two colliding objects. The resolution procedure
requires access to the two objects and the corresponding collision information.
Notice that the function is defined based on the abstract RigidShape and thus
is able to resolve the collisions between any combinations of RigidCircle and
RigidRectangle. The following are the steps to resolve the collision between two
RigidShapes:

a.	 Steps A sets mHasOneCollision to true to ensure that that relaxation loop
will continue.

b.	 Steps B calls to _positionalCorrection() to apply positional correction
to the objects to push them apart by 80 percent (by default) of the collision
depth.

c.	 Step C calls to _applyFriction() to dampen the tangent component of the
object velocities.

Figure 9-8.  The tangent direction of a collision

Chapter 9 ■ Integrating Physics and Particles

392

d.	 Step D calculates the relative velocity between the two objects by subtracting
them. This relative velocity is important for computing the impulse that
pushes the objects apart.

e.	 Step E computes rVelocityInNormal, the component of the relative velocity
vector that is in the collision normal direction. This component indicates
how rapidly the two objects are moving toward or away from each other. If
rVelocityInNormal is greater than zero, then the objects are moving away
from each other and impulse response will not be necessary.

f.	 Step F computes the impulse magnitude, j, based on rVelocityInNormal,
restitution (bounciness), and the masses of the colliding objects. This
impulse magnitude value will be used to modify both velocities to push
them apart.

Figure 9-9 depicts the details of step F. S1 and S2 are the two colliding RigidShapes, where the normal
vector is the collision normal. Note that this vector always points from object S1 toward S2. The vectors
s1V-before and s2V-before are the velocity vectors of the corresponding objects before step F, and
the s1V-after and s2V-after are the impulse modified velocities after the step. Notice the two –after
velocities would bring the corresponding objects away from the interpenetration.

Figure 9-9.  Computing new object velocities based on collision normal and impulse

var resolveCollision = function (s1, s2, collisionInfo) {
 // Step A: one collision has been found
 mHasOneCollision = true;
  
 // Step B: correct positions
 _positionalCorrection(s1, s2, collisionInfo);
 
 // Step C: apply friction
 var s1V = s1.getVelocity(); // collision normal direction is _against_ s2
 var s2V = s2.getVelocity();
 var n = collisionInfo.getNormal();
 _applyFriction(n, s1V, s1.getFriction(), s1.getInvMass());
 _applyFriction(n, s2V, -s2.getFriction(), s2.getInvMass());
 

Chapter 9 ■ Integrating Physics and Particles

393

 // Step D: compute relatively velocity of the colliding objects
 var relativeVelocity = [0, 0];
 vec2.sub(relativeVelocity, s2V, s1V);
 
 // Step E: examine the component in the normal direction
 var rVelocityInNormal = vec2.dot(relativeVelocity, n);
 if (rVelocityInNormal > 0) { //if objects moving apart ignore
 return;
 }
  
 // Step F: compute and apply response impulses for each object
 var newRestituion = Math.min(s1.getRestitution(), s2.getRestitution());
 var j = -(1 + newRestituion) * rVelocityInNormal;
 j = j / (s1.getInvMass() + s2.getInvMass());
 
 var impulse = [0, 0];
 vec2.scale(impulse, collisionInfo.getNormal(), j);
 
 var newImpulse = [0, 0];
 vec2.scale(newImpulse, impulse, s1.getInvMass());
 vec2.sub(s1V, s1V, newImpulse);
 
 vec2.scale(newImpulse, impulse, s2.getInvMass());
 vec2.add(s2V, s2V, newImpulse);
 };

Adding the Relaxation Loop for Stability

With all the components of collision resolutions defined, you are now ready to define the relaxation support.
Recall relaxation allows the collision resolution process to resolve the interpenetrations gradually over a
predetermined number of times, in this case a default of 15. In general, larger relaxation iterations would
result with a more natural appearance and more stable collision system. The associated computation cost is
the main drawback with large relaxation iterations.

	 1.	 Continue with editing the Engine_Physics.js file and define the
beginRelaxation() and continueRelaxation() functions to manage the
relaxation iteration loop. Relaxation iterations can terminate when there are no
more collisions detected.

var beginRelaxation = function() {
 mRelaxationLoopCount = mRelaxationCount;
 mHasOneCollision = true;
};
var continueRelaxation = function() {
 var oneCollision = mHasOneCollision;
 mHasOneCollision = false;
 mRelaxationLoopCount = mRelaxationLoopCount - 1;
 return ((mRelaxationLoopCount > 0) && oneCollision);
};

Chapter 9 ■ Integrating Physics and Particles

394

	 2.	 Define a processObjObj() function to support the relaxation of resolving the
collision between two individual GameObject instances. The relaxation loop will
continue only if the two objects continue to collide.

// Rigid Shape interactions: two game objects
var processObjObj = function(obj1, obj2) {
 var s1 = obj1.getPhysicsComponent();
 var s2 = obj2.getPhysicsComponent();
 if (s1 === s2)
 return;
 beginRelaxation();
 while (continueRelaxation()) {
 if (s1.collided(s2, mCollisionInfo)) {
 resolveCollision(s1, s2, mCollisionInfo);
 }
 }
};

	 3.	 Define a processObjSet() function to process the collision resolution between
a GameObject instance and a GameObjectSet. Notice the nested loops. In the
worst case, with the outer loop iterating at constant 15 times, the run time of this
function is O(N), where N is the size of the RigidShape set. It is important to be
mindful of the cost of collision resolution.

// Rigid Shape interactions: a game object and a game object set
var processObjSet = function(obj, set) {
 var s1 = obj.getPhysicsComponent();
 var i, s2;
 beginRelaxation();
 while (continueRelaxation()) {
 for (i=0; i<set.size(); i++) {
 s2 = set.getObjectAt(i).getPhysicsComponent();
 if ((s1 !== s2) && (s1.collided(s2, mCollisionInfo))) {
 resolveCollision(s1, s2, mCollisionInfo);
 }
 }
 }
};

	 4.	 Define the processSetSet() function to process the collision resolution between
two instances of GameObjectSet. Notice the triple nested loops. In the worst
case, even with the outer loop iterating at constant 15 times, the run time of this
function is O(NM), where N and M are the sizes of the respective GameObjectSet.
In other words, this function runs in quadratic times, and any large numbers of
N or M will quickly degrade the performance of the system to non-real-time. It is
important to design your system to avoid large set-to-set collisions.

// Rigid Shape interactions: two game object sets
var processSetSet = function(set1, set2) {
 var i, j, s1, s2;
 beginRelaxation();

Chapter 9 ■ Integrating Physics and Particles

395

 while (continueRelaxation()) {
 for (i=0; i<set1.size(); i++) {
 s1 = set1.getObjectAt(i).getPhysicsComponent();
 for (j=0; j<set2.size(); j++) {
 s2 = set2.getObjectAt(j).getPhysicsComponent();
 if ((s1 !== s2) && (s1.collided(s2, mCollisionInfo))) {
 resolveCollision(s1, s2, mCollisionInfo);
 }
 }
 }
 }
};

	 5.	 Create get and set accessors. Notice that since the relaxation rate is a percentage,
it should remain between zero and one, and note that the relaxation count
should never be below zero.

var getSystemAcceleration = function() { return mSystemAcceleration; };
var setSystemAcceleration = function(g) { mSystemAcceleration = g; };
var getRelaxationCorrectionRate = function() { return mPosCorrectionRate; };
var setRelaxationCorrectionRate = function(r) {
 if ((r <= 0) || (r>=1)) {
 r = 0.8;
 }
 mPosCorrectionRate = r;
};
var getRelaxationLoopCount = function() { return mRelaxationCount; };
var setRelaxationLoopCount = function(c) {
 if (c <= 0)
 c = 1;
 mRelaxationCount = c;
 mRelaxationOffset = 1/mRelaxationCount;
};

	 6.	 Provide public access to the functions.

var mPublic = {
 initialize: initialize,
 resolveCollision: resolveCollision,
 beginRelaxation: beginRelaxation,
 continueRelaxation: continueRelaxation,
 getSystemAcceleration: getSystemAcceleration,
 setSystemAcceleration: setSystemAcceleration,
 getRelaxationCorrectionRate: getRelaxationCorrectionRate,
 setRelaxationCorrectionRate: setRelaxationCorrectionRate,
 getRelaxationLoopCount: getRelaxationLoopCount,
 setRelaxationLoopCount: setRelaxationLoopCount,
 processObjObj: processObjObj,
 processObjSet: processObjSet,
 processSetSet: processSetSet
};
return mPublic;

Chapter 9 ■ Integrating Physics and Particles

396

Supporting the Engine Physics Component
A few minor modifications are required to integrate the physics component into the engine.

	 1.	 Edit the Engine_Core.js file by adding the following code to the
initializeEngineCore() function to initialize the physics component of
the engine:

gEngine.Physics.initialize();

	 2.	 Edit the Engine_GameLoop.js file by adding the following variables and functions
to gain access to the time interval between frames. This is the delta time used in
your numerical integration.

var kFrameTime = 1 / kFPS;
var kMPF = 1000 * kFrameTime; // Milliseconds per frame.
 
var getUpdateIntervalInSeconds = function () {
 return kFrameTime;
};
 
var mPublic = {
 start: start,
 stop: stop,
 getUpdateIntervalInSeconds: getUpdateIntervalInSeconds
};

Testing Impulse Resolution
The implementation should be tested in two ways, first to ensure moving objects collide and behave
naturally and second to ensure the collision resolution system is stable when there are many objects in
proximity. The implementation of the testing system has three interesting details.

•	 A new object type, Wall, is defined in the Wall.js file to represent the bounding
walls of the world.

•	 It is important to take note to call the RigidShape.setMess() function to set the
mass of stationary objects to zero, such as the platform and the wall.

•	 The new physics engine functionality is invoked from the
MyGame._physicsSimulation() function defined in the MyGame_Physics.js file.

The rest of the testing system is largely similar to previous projects, and the detailed code listing will not
be presented. Please refer to the source code files for the details of the implementations.

Observations
Run the project to test your results. Notice that right off the bat the hero character falls gradually to
the floor and stops with a slight rebound. This is a clear indication that the base case for numerical
integration, collision detection, and resolution all are operating as expected. Now notice the wandering
Minion objects; they interact properly with the platforms and the walls of the game world with soft
bounces and no apparent interpenetrations. Now, use the WASD keys to navigate the Hero object; make

Chapter 9 ■ Integrating Physics and Particles

397

sure to collide the Hero into the Minion objects and observe the apparent transfer of energies. A right-click
releases home-in DyePack objects. This is to verify the proper functioning of the rest of the GameObject
class. Notice that when the DyePack objects collide with the Platforms or with the Minions, they properly
skirt the edges of the RigidShape. Additionally, observe that the relatively small mass of a DyePack object
resulting in the DyePack has little effect on the Minion’s trajectory when they collide. However, when many
DyePack objects collide with the same Minion object at the same time, the results can have a significant
effect on a Minion’s movement.

The stability of the system can be tested by pressing the Z key, where many dumb Minion objects with
white RigidShape bounds will be spawned. Take note that these white-bounded Minion objects are meant
for testing system stability and will collide only with the Platform objects and among themselves. Notice
how the white-bounded Minion objects settle and stack at the bottom of the scene; the lack of jitter in the
objects here demonstrates the stability of the system. Now, press the C key a few times to excite the white-
bounded Minions and watch the system settle back into a stable state. Alternatively, you can press the X
key and select and move a white-bounded Minion to observe how the system settles back into a stable state
after a local disturbance. Be careful with the number of white-bounded Minions you spawn. The quadratic
runtime means the system performance can degrade quickly with even a modest number of Minions. You
can press the C key to clear all the white-bounded Minions.

Particles and Particle Systems
A particle is a textured position with no defined dimensions. This description may seem contradictory
because you have learned that a texture is an image and images are always defined by a width and height
and will definitely occupy areas. The important clarification is that the game engine logic processes a
particle as a position with no area, and the drawing system displays the particle as a texture. In this way, even
though an actual displayed area is shown, the width and height dimensions of the texture are ignored by the
underlying logic.

In addition to a position, a particle also has properties such as life span, color (for tinting the texture),
and size (for scaling the texture). A particle system is a collection of particles with the same set of properties.
By strategically spawning, manipulating the properties of, and removing particles in a particle system,
interesting visual effects such as fire or explosions can be simulated.

In this section, you will create a simple and flexible particle system that includes the basic functionality
required to achieve common effects, such as explosions and spell effects. Additionally, you will implement
a particle shader to properly blend your particles within your scenes. The particles will collide and interact
accordingly with the RigidShape objects.

The Particles Project
This project demonstrates how to implement a particle system to simulate explosion-like effects and to
interact with the RigidShape object within the scene. You can see an example of this project running in
Figure 9-10. The source code of this project is located in the Chapter9/9.3.Particles folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_9

Chapter 9 ■ Integrating Physics and Particles

398

The controls of the project are as follows:

•	 WASD keys: Moves the Hero object

•	 Left mouse button click in the game window: Sends a DyePack chasing after the Hero

•	 Z key: Spawns particles at the current mouse position

The goals of the project are as follows:

•	 To understand the details of how to draw a particle and define its behaviors

•	 To experience implementing a particle system

•	 To build a particle engine component that supports interaction with RigidShape

You can find the following external resources in the assets folder: the fonts folder that contains the
default system fonts and four texture images (minion_sprite.png, which defines the sprite elements for
the hero and the minions; platform.png, which defines the platforms and floor and ceiling tiles; wall.png,
which defines the walls; dye_pack.png, which defines the dye packs; and particle.png, which is used to
draw one particle).

In the following exercise, you will first learn about the support for drawing a particle object. After
that, you will examine the details of how to create an actual particle object and define its behaviors.
Lastly, you will create a new game engine component to manage the interaction of the particles with the
RigidShape objects.

A particle is a new type of object for your game engine and requires the entire drawing system support,
including custom GLSL shaders, default sharable shader instance, and a new Shader/Renderable pair.

Figure 9-10.  Running the Particles project

Chapter 9 ■ Integrating Physics and Particles

399

Creating GLSL Particle Fragment Shader

Particles are textured positions with no areas. However, as discussed, your engine will draw each particle as a
textured rectangle. For this reason, you can simply reuse the existing texture vertex shader TextureVS.glsl.
When it comes to the actual computation of each pixel color, a new fragment shader, ParticleFS.glsl,
must be created to properly simulate the intense brightness of fire and explosions. The new fragment shader
aggressively composites colors to create oversaturation, where the resulting values of the RGB components
quickly become the maximum displayable value of 1.0.

	 1.	 Under the src/GLSLShaders folder, add a new file and name it ParticleFS.glsl.

	 2.	 Similar to the texture fragment shader defined in TextureFS.glsl, you need
to declare uPixelColor and vTexCoord to receive these values from the game
engine and define the uSampler to sample the texture.

precision mediump float;
 // sets the precision for floating point computation
 
// The object that fetches data from texture.
// Must be set outside the shader.
uniform sampler2D uSampler;
 
// Color of pixel
uniform vec4 uPixelColor;
 
// The "varying" keyword is for signifing that the texture coordinate will be
// interpolated and thus varies.
varying vec2 vTexCoord;

	 3.	 Implement the main function to accumulate colors aggressively.

void main(void) {
 // texel color look up based on interpolated UV value in vTexCoord
 vec4 c = texture2D(uSampler, vec2(vTexCoord.s, vTexCoord.t));
  
 vec3 r = vec3(c) * c.a * vec3(uPixelColor);
 vec4 result = vec4(r, uPixelColor.a);
 
 gl_FragColor = result;
}

Defining a Default ParticleShader Instance

You can now modify the engine to support the initializing, loading, and unloading of a new ParticleShader.

	 1.	 Begin by adding a variable for the particle shader in the
Engine_DefaultResources.js file located in the src/Engine/Core/
Resources folder. Also, define an accessor function as shown here:

var kParticleFS = "src/GLSLShaders/ParticleFS.glsl";
var mParticleShader = null;
var getParticleShader = function () { return mParticleShader };

Chapter 9 ■ Integrating Physics and Particles

400

	 2.	 Now instantiate a new particle shader in the _createShaders() function, as
shown here:

var _createShaders = function(callBackFunction) {
 gEngine.ResourceMap.setLoadCompleteCallback(null);
 // ... identical to previous projects
 mParticleShader = new TextureShader(kTextureVS, kParticleFS);
 callBackFunction();
};

	 3.	 In the initialize() function, add the following code to properly load the file:

gEngine.TextFileLoader.loadTextFile(kParticleFS,
 gEngine.TextFileLoader.eTextFileType.eTextFile);

	 4.	 In the cleanUp() function, add the following line of code to unload the file when
it is no longer needed:

gEngine.TextFileLoader.unloadTextFile(kParticleFS);

	 5.	 Don’t forget to add the get accessor function to mPublic() so that it
can be accessed.

getParticleShader: getParticleShader,

Creating the ParticleRenderable Object

Recall that a Shader/Renderable pair of objects must be defined to interface the GLSL shader to the game
engine. With the default ParticleShader object defined to interface to the GLSL ParticleFS shader, you can
now create a new Renderable object to support the drawing of particles. Fortunately, the detailed behaviors
of a particle, or a textured position, is identical to that of a TextureRenderable with the exception of the
different shader. As such, the definition of the ParticleRenderable object is trivial.

	 1.	 Under the src/Engine/Renderables folder, add a new file and name it
ParticleRenderable.js. Remember to load this new source file in index.html.

	 2.	 Define the new renderable object as a simple subclass of the TextureRenderable,
with the exception of a different default shader.

function ParticleRenderable(myTexture) {
 TextureRenderable.call(this, myTexture);
 Renderable.prototype._setShader.call(this,
 gEngine.DefaultResources.getParticleShader());
}
gEngine.Core.inheritPrototype(ParticleRenderable, TextureRenderable);

Chapter 9 ■ Integrating Physics and Particles

401

Defining the Particle and Particle Game Object
With the infrastructure for drawing a particle object defined, it is time to create the actual particle and define
its behaviors.

Creating a Particle

To support moving particles around the scene, their movements can be approximated with the Symplectic
Euler Integration.

	 1.	 Begin by creating a new subfolder called Particles under the src/Engine folder.
In this folder, create a new file called Particle.js. Remember to load this new
source file in index.html.

	 2.	 Create the constructor and add variables for position, velocity, acceleration,
drag, and drawing variables for marking its position (for debugging).

function Particle(pos) {
 this.kPadding = 0.5; // for drawing particle bounds
  
 this.mPosition = pos; // this is likely to be a reference to xform.mPosition
 this.mVelocity = vec2.fromValues(0, 0);
 this.mAcceleration = gEngine.Particle.getSystemtAcceleration();
 this.mDrag = 0.95;
  
 this.mPositionMark = new LineRenderable();
 this.mDrawBounds = false;
}

	 3.	 Create a draw() function to draw the position of the particle with a simple X. This
function is to support the debugging of a particle system.

Particle.prototype.draw = function (aCamera) {
 if (!this.mDrawBounds) {
 return;
 }
 //calculation for the X at the particle position
 var x = this.mPosition[0];
 var y = this.mPosition[1];
 this.mPositionMark.setFirstVertex(x - this.kPadding, y + this.kPadding);
 //TOP LEFT
 this.mPositionMark.setSecondVertex(x + this.kPadding, y - this.kPadding);
 //BOTTOM RIGHT
 this.mPositionMark.draw(aCamera);
 this.mPositionMark.setFirstVertex(x + this.kPadding, y + this.kPadding);
 //TOP RIGHT
 this.mPositionMark.setSecondVertex(x - this.kPadding, y - this.kPadding);
 //BOTTOM LEFT
 this.mPositionMark.draw(aCamera);
};

Chapter 9 ■ Integrating Physics and Particles

402

	 4.	 You can now implement the update() function for calculating the particle’s
position. This is a straightforward implementation of the Symplectic Euler
Integration. The mDrag variable simulates drags on the particles.

Particle.prototype.update = function () {
 var dt = gEngine.GameLoop.getUpdateIntervalInSeconds();
 // Symplectic Euler
 // v += a * dt
 // x += v * dt
 var p = this.getPosition();
 vec2.scaleAndAdd(this.mVelocity, this.mVelocity, this.mAcceleration, dt);
 vec2.scale(this.mVelocity, this.mVelocity, this.mDrag);
 vec2.scaleAndAdd(p, p, this.mVelocity, dt);
};

	 5.	 Define simple get and set accessors. These functions are straightforward and are
not listed here.

Creating the ParticleGameObject

With the actual particle object defined, you can now create the ParticleGameObject class to abstract the
particle’s behavior and to support the drawing of the particle.

	 1.	 Under the src/Engine/Particles folder, add a new file and name it
ParticleGameObject.js. Remember to load this new source file in index.html.

	 2.	 Define a constructor to initialize variables for manipulating the color, size, and
life span of the particle.

function ParticleGameObject(texture, atX, atY, cyclesToLive) {
 var renderableObj = new ParticleRenderable(texture);
 var xf = renderableObj.getXform();
 xf.setPosition(atX, atY);
 GameObject.call(this, renderableObj);
  
 var p = new Particle(xf.getPosition());
 this.setPhysicsComponent(p);
  
 this.mDeltaColor = [0, 0, 0, 0];
 this.mSizeDelta = 0;
 this.mCyclesToLive = cyclesToLive;
}
gEngine.Core.inheritPrototype(ParticleGameObject, GameObject);

	 3.	 Create a function for setting the final color of the particle. This function
computes the required rate of change such that the color of the particle will be
constantly changing during each update cycle unit the particle expires.

Chapter 9 ■ Integrating Physics and Particles

403

ParticleGameObject.prototype.setFinalColor = function(f) {
 vec4.sub(this.mDeltaColor, f, this.mRenderComponent.getColor());
 if (this.mCyclesToLive !== 0) {
 vec4.scale(this.mDeltaColor, this.mDeltaColor, 1/this.mCyclesToLive);
 }
};

	 4.	 Define accessor functions to set the particle size change rate and to test whether
the particle has expired. An expired particle should be removed from the system.

ParticleGameObject.prototype.setSizeDelta = function(d) { this.mSizeDelta = d; };
ParticleGameObject.prototype.hasExpired = function() {
 return (this.mCyclesToLive < 0); };

	 5.	 Add an update() function to change the color and size of the particle.

ParticleGameObject.prototype.update = function () {
 GameObject.prototype.update.call(this);
  
 this.mCyclesToLive--;
 var c = this.mRenderComponent.getColor();
 vec4.add(c, c, this.mDeltaColor);
  
 var xf = this.getXform();
 var s = xf.getWidth() * this.mSizeDelta;
 xf.setSize(s, s);
};

Creating the ParticleGameObjectSet

To work with a collection of particles, you can now create the ParticleGameObjectSet to support
conveniently looping over ParticleGameObjects.

	 1.	 Under the src/Engine/Particles folder, add a new file and name it
ParticleGameObjectSet.js. Remember to load this new source file in index.html.

	 2.	 Define ParticleGameObjectSet to be a subclass of GameObjectSet.

function ParticleGameObjectSet() {
 GameObjectSet.call(this);
}
gEngine.Core.inheritPrototype(ParticleGameObjectSet, GameObjectSet);

	 3.	 Override the draw() function of GameObjectSet to ensure particles are drawn
with additive blending. Recall that the default gl.blendFunc() setting utilizes
the alpha channel value to implement transparency. This is referred to as
alpha blending. In this case, the gl.blendFunc() setting results in a simple
accumulation of colors without considering the alpha channel. This is referred to
as additive blending. As mentioned, to properly simulate the intense brightness
of fire and explosions, it is desirable to aggressively accumulate colors such that
the RGB components can quickly reach the maximum displayable value of 1.0.
Additive blending facilitates the aggressive accumulation.

Chapter 9 ■ Integrating Physics and Particles

404

ParticleGameObjectSet.prototype.draw = function (aCamera) {
 var gl = gEngine.Core.getGL();
 gl.blendFunc(gl.ONE, gl.ONE); // for additive blending!
 GameObjectSet.prototype.draw.call(this, aCamera);
 gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA); // restore alpha blending
};

	 4.	 Override the update() function to ensure expired particles are removed.

ParticleGameObjectSet.prototype.update = function () {
 GameObjectSet.prototype.update.call(this);
  
 // Cleanup Particles
 var i, obj;
 for (i=0; i<this.size(); i++) {
 obj = this.getObjectAt(i);
 if (obj.hasExpired()) {
 this.removeFromSet(obj);
 }
 }
};

Defining the Engine Particle Component
With the drawing and behavior infrastructures defined, you can now define the engine component to
manage the particle system.

	 1.	 In the src/Engine/Core folder, add a new file and name it Engine_Particle.js.
Remember to load this new source file in index.html.

	 2.	 Define the particle component following the JavaScript Module Pattern as follows:

var gEngine = gEngine || { };
 // initialize the variable while ensuring it is not redefined
 
gEngine.Particle = (function () {
 var mPublic = { };
 return mPublic;
}());

	 3.	 Define variables for system acceleration and a common calculation space for
heavily used variables.

var mSystemAcceleration = [0, -50.0];
 
// the follows are scratch workspace for vec2
var mFrom1to2 = [0, 0];
var mVec = [0, 0];
var mNormal = [0, 0];

Chapter 9 ■ Integrating Physics and Particles

405

	 4.	 Add a function to resolve the collision between a circle and a particle. This can
be accomplished by a simple radius check. Particles inside a circle are projected
out. Notice that, in this case, with a zero-area particle, collision resolution is
straightforward to handle and that there is no need for relaxation.

var resolveCirclePos = function (circShape, particle) {
 var collided = false;
 var pos = particle.getPosition();
 var cPos = circShape.getPosition();
 vec2.subtract(mFrom1to2, pos, cPos);
 var dist = vec2.length(mFrom1to2);
 if (dist < circShape.getRadius()) {
 vec2.scale(mFrom1to2, mFrom1to2, 1/dist);
 vec2.scaleAndAdd(pos, cPos, mFrom1to2, circShape.getRadius());
 collided = true;
 }
 return collided;
};

	 5.	 Similar to the case of a circle, add the resolveRectPos() function to resolve
the collision between a rectangle and a particle. Once again, particles inside a
rectangle are simply projected out along the nearest x- or y-boundary.

var resolveRectPos = function (rectShape, particle) {
 var collided = false;
 var alongX = rectShape.getWidth() / 2;
 var alongY = rectShape.getHeight() / 2;
 
 var pos = particle.getPosition();
 var rPos = rectShape.getPosition();
 
 var rMinX = rPos[0] - alongX;
 var rMaxX = rPos[0] + alongX;
 var rMinY = rPos[1] - alongY;
 var rMaxY = rPos[1] + alongY;
 
 collided = ((rMinX<pos[0]) && (rMinY<pos[1]) &&
 (rMaxX>pos[0]) && (rMaxY>pos[1]));
 
 if (collided) {
 vec2.subtract(mFrom1to2, pos, rPos);
 mVec[0] = mFrom1to2[0];
 mVec[1] = mFrom1to2[1];
 
 // Find closest axis
 if (Math.abs(mFrom1to2[0] - alongX) < Math.abs(mFrom1to2[1] - alongY)) {
 // Clamp to closest side
 mNormal[0] = 0;
 mNormal[1] = 1;
 if (mVec[0] > 0) {
 mVec[0] = alongX;

Chapter 9 ■ Integrating Physics and Particles

406

 } else {
 mVec[0] = -alongX;
 }
 } else { // y axis is shorter
 mNormal[0] = 1;
 mNormal[1] = 0;
 // Clamp to closest side
 if (mVec[1] > 0) {
 mVec[1] = alongY;
 } else {
 mVec[1] = -alongY;
 }
 }
 
 vec2.subtract(mVec, mVec, mFrom1to2);
 vec2.add(pos, pos, mVec); // remember pos is particle position
 }
 return collided;
};

	 6.	 Define a function for processing the collision between an object and a set of
particles.

// Rigid Shape interactions: a game object and a set of particle game objects
var processObjSet = function(obj, pSet) {
 var s1 = obj.getPhysicsComponent(); // a RigidShape
 var i, p;
 for (i=0; i<pSet.size(); i++) {
 p = pSet.getObjectAt(i).getPhysicsComponent(); // a Particle
 s1.resolveParticleCollision(p);
 }
};

	 7.	 Define a function to process the collision between a GameObjectSet and a set of
particles.

// Rigid Shape interactions: game object set and a set of particle game objects
var processSetSet = function(objSet, pSet) {
 var i;
 for (i=0; i<objSet.size(); i++) {
 processObjSet(objSet.getObjectAt(i), pSet);
 }
};

	 8.	 Finally, implement the necessary get and set accessors for the system’s
acceleration and remember to add the necessary functions to mPublic.

var getSystemAcceleration = function() { return mSystemAcceleration; };
var setSystemAcceleration = function(g) { mSystemAcceleration = g; };
 

Chapter 9 ■ Integrating Physics and Particles

407

var mPublic = {
 getSystemAcceleration: getSystemAcceleration,
 setSystemAcceleration: setSystemAcceleration,
 resolveCirclePos: resolveCirclePos,
 resolveRectPos: resolveRectPos,
 processObjSet: processObjSet,
 processSetSet: processSetSet
};
return mPublic;

Interacting Particles with RigidShape
To properly support the interaction between Particle objects and RigidShape objects, edit the
RigidShape_Collision.js file and define the following function to define the corresponding
collision function:

RigidShape.prototype.resolveParticleCollision = function(aParticle) {
 var status = false;
 switch (this.rigidType()) {
 case RigidShape.eRigidType.eRigidCircle:
 status = gEngine.Particle.resolveCirclePos(this, aParticle);
 break;
 case RigidShape.eRigidType.eRigidRectangle:
 status = gEngine.Particle.resolveRectPos(this, aParticle);
 break;
 }
 return status;
};

Testing the Particle System
The test should verify two main goals. First, the implemented particle system is capable of generating
visually pleasant effects. Second, the particles are capable of colliding with RigidShape objects and resulting
in expected behaviors. The test case is based mainly on the previous project with one simple modification—
invoking the _createParticle() function when the Z key is pressed. Please consult the source code for the
details of the implementation.

The _createParticle() function listed in the following configures and creates particles. There are two
important observations. First, the random() function is used many times to configure each created Particle.
Particle systems utilize large numbers of similar yet slightly different particles to build and convey a sense
of the desired visual effect. It is important to avoid patterns of any sort, and this use of randomness is an
important rule to follow. Second, there are many seemingly arbitrary numbers used in the configuration,
such as setting the life of the particle to be between 30 and 230 or setting the final red component to a
number between 3.5 and 4.5. This, unfortunately is the nature of working with particle systems: there is quite
a bit of ad hoc trying. Commercial game engines typically alleviate this difficulty by releasing a collection of
preset values for their particle systems. In this way, game designers can fine-tune specific desired effects by
tweaking the provided presets.

MyGame.prototype._createParticle = function(atX, atY) {
 var life = 30 + Math.random() * 200;
 var p = new ParticleGameObject(this.kParticleTexture, atX, atY, life);
 p.getRenderable().setColor([1, 0, 0, 1]);
  

Chapter 9 ■ Integrating Physics and Particles

408

 // size of the particle
 var r = 5.5 + Math.random() * 0.5;
 p.getXform().setSize(r, r);
  
 // final color
 var fr = 3.5 + Math.random();
 var fg = 0.4 + 0.1 * Math.random();
 var fb = 0.3 + 0.1 * Math.random();
 p.setFinalColor([fr, fg, fb, 0.6]);
  
 // velocity on the particle
 var fx = 10 - 20 * Math.random();
 var fy = 10 * Math.random();
 p.getPhysicsComponent().setVelocity([fx, fy]);
  
 // size delta
 p.setSizeDelta(0.98);
  
 return p;
};

Observations
Run the project and press the Z key to observe the generated particles. It appears as though there is
combustion occurring underneath the mouse pointer. Hold the Z key and move the mouse pointer
around slowly to observe the combustion following the mouse as though there is an engine generating
flames under the mouse pointer. If you move the mouse pointer quickly, you will observe individual pink
circles changing color while dropping toward the floor. Particle systems must be fine-tuned for individual
situations. Now, hold the Z key and move the mouse pointer over any of the other RigidShape objects,
such as one of the Minions. Observe that particles are projected to the boundary and continue to behave
as expected. In addition, notice that the particles skirt the RigidShape object bounds when collided, just
as you would expect.

Particle Emitters
With your current particle system implementation, you can create particles at a specific point and time.
These particles when created can move and change based on their properties. However, particles can be
created only when there is an explicit state change such as a key click. This becomes restricting when it is
desirable to persist the generation of particles after the state change, such as an explosion that persists for a
short while after the dye pack collides with the hero. A particle emitter addresses this issue by defining the
functionality of generating particles over a time period.

The Particle Emitters Project
This project demonstrates how to implement a particle emitter for your particle system to support emitting
particles over time. You can see an example of this project running in Figure 9-11. The source code of this
project is located in the Chapter9/9.4.ParticleEmitters folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_9

Chapter 9 ■ Integrating Physics and Particles

409

The controls of the project are as follows:

•	 WASD keys: Moves the Hero object

•	 Left mouse button click in the game window: Sends a DyePack chasing after the Hero

•	 Z key: Spawns particles at the current mouse position

The goals of the project are as follows:

•	 To understand the need for particle emitters

•	 To experience implementing particle emitters

You can find the following external resources in the assets folder: the fonts folder that contains the
default system fonts and four texture images (minion_sprite.png, which defines the sprite elements for
the hero and the minions; platform.png, which defines the platforms and floor and ceiling tiles; wall.png,
which defines the walls; dye_pack.png, which defines the dye packs; and particle.png, which is used to
draw one particle).

Creating the ParticleEmitter Object
Recall that when working with particles, it is important to avoid patterns. In this case, as the
ParticleEmitter object generates new particles over time, it is important to build in randomness to avoid
any patterns.

	 1.	 Under the src/Engine/Particles folder, add a new file and name it
ParticleEmitter.js. Remember to load this new source file in index.html.

Figure 9-11.  Running the Particle Emitters project

Chapter 9 ■ Integrating Physics and Particles

410

	 2.	 Create a constructor to define and set the default number of particles to emit at
each cycle, the emitter’s position, the number of particles left to be emitted, and
mParticleCreator, the callback function for actual particles creation.

function ParticleEmitter(pos, num, createrFunc) {
 // Smallest number of particle emitted per cycle
 this.kMinToEmit = 5;
 
 // Emitter position
 this.mEmitPosition = pos; // this can be a reference to a xform.mPosition
 
 // Number of particles left to be emitted
 this.mNumRemains = num;
  
 this.mParticleCreator = createrFunc;
}

	 3.	 Define a function to return the functioning status for the emitter. When there are
no more particles to emit, the emitters should be removed.

ParticleEmitter.prototype.expired = function () { return (this.mNumRemains <= 0); };

	 4.	 Create a function to actually emit particles. Take note of the randomness in
the number of particles that are actually emitted and the invocation of the
mParticleCreator() callback function. With this design, there would be no
patterns in the number of particles that are created over time. In addition, the
emitter defines only the mechanisms of how, when, and where particles will
be emitted and does not define the characteristics of the created particles. The
function pointed to by mParticleCreator is responsible for defining that.

ParticleEmitter.prototype.emitParticles = function (pSet) {
 var numToEmit = 0;
 if (this.mNumRemains < this.kMinToEmit) {
 // If only a few are left, emits all of them
 numToEmit = this.mNumRemains;
 } else {
 // Otherwise, emits about 20% of what's left
 numToEmit = Math.random() * 0.2 * this.mNumRemains;
 }
 // Left for future emitting.
 this.mNumRemains -= numToEmit;
 var i, p;
 for (i = 0; i < numToEmit; i++) {
 p = this.mParticleCreator(this.mEmitPosition[0], this.mEmitPosition[1]);
 pSet.addToSet(p);
 }
};

Chapter 9 ■ Integrating Physics and Particles

411

Modifying the Particle Game Object Set
The defined ParticleEmitter object needs to be integrated into ParticleGemeObjectSet to manage the
emitted particles.

	 1.	 Edit the ParticleGameObjectSet.js file; in the constructor, define and initialize
a particle emitter set.

this.mEmitterSet = [];

	 2.	 Define a function for instantiating a new emitter. Take note of the func
parameter; this is the callback function that is responsible for the actual creation
of individual Particle objects.

ParticleGameObjectSet.prototype.addEmitterAt = function (p, n, func) {
 var e = new ParticleEmitter(p, n, func);
 this.mEmitterSet.push(e);
};

	 3.	 Modify the update function to loop through the emitter set to generate new
particles. Expired emitters are removed.

ParticleGameObjectSet.prototype.update = function () {
 // ... identical to previous project
  
 // Emit new particles
 for (i=0; i<this.mEmitterSet.length; i++) {
 e = this.mEmitterSet[i];
 e.emitParticles(this);
 if (e.expired()) {
 this.mEmitterSet.splice(i, 1);
 }
 }
};

Testing the Particle Emitter
This is a straightforward testing of the correct functioning of the ParticleEmitter object. The two
interesting implementation details are as follows:

	 1.	 In the Hero.js file, at the end of the update() function, when a collision
between a dye pack and the hero is detected, a new ParticleEmitter object is
instantiated with the func callback function.

for (i=0; i<dyePacks.size(); i++) {
 obj = dyePacks.getObjectAt(i);
 // chase after hero
 obj.rotateObjPointTo(p, 0.8);
 if (obj.pixelTouches(this, collisionPt)) {
 dyePacks.removeFromSet(obj);
 allParticles.addEmitterAt(collisionPt, 200, func);
 }
}

Chapter 9 ■ Integrating Physics and Particles

412

The func parameter is defined in the update() function of the MyGame.js file as follows:

var func = function(x, y) { this.createParticle.call(this, x, y); };

where the createParticle() function is identical to the one from the previous project.

	 2.	 The RigidShape and Particle system interaction is triggered from the end of
the _physicsSimulation() function defined in the MyGame_Physics.js file as
follows:

MyGame.prototype._physicsSimulation = function() {
 // ... identical to previous project
  
 // Particle system collisions
 gEngine.Particle.processSetSet(this.mAllMinions, this.mAllParticles);
 gEngine.Particle.processSetSet(this.mAllPlatforms, this.mAllParticles);
};

As previously, the rest of the implementation is straightforward and will not be listed to avoid
unnecessary distraction. Please refer to the source code in the src/MyGame folder for details.

Observations
Run the project and see the same behavior as in the previous project. The only exception is the new
explosion effects after the dye packs collide with the Hero object. Notice how each explosion is triggered by
the collision and persists for a short while before disappearing gradually. Comparing this effect with the one
resulting from a short tapping of the Z key, observe that without a dedicated particle emitter, the explosion
seems to have fizzled before it begins.

Summary
This chapter led you in building a simple yet flexible physics infrastructure for your game engine. Focusing
on the implementation of core concepts, you learned to approximate Newtonian motion integrals with
the Symplectic Euler Integration and how to build a numerically stable physics simulation that includes
relaxation, collisions detection computation between axis-aligned rectangles and circles, extraction of
collision normal and depth, and collision resolution using the Projection and Impulse methods. In addition,
you have integrated a basic particle system with your physics engine with particles that interact with the
RigidShape objects in the system. Through working with your particle system, you have learned that
appropriate use of randomness is important and that creating interesting visual effects requires hands-on
experience and fine-tuning iterations.

Chapter 8 complemented Chapter 5 by covering the simulation of illumination to improve the fidelity
of the drawn game objects. In turn, this chapter augmented Chapter 6 by presenting the approximation of
Newtonian motions to support the increase in behavioral complexity of the interacting game objects. The
next chapter will extend Chapter 7 and describe more advanced topics in working with the camera.

http://dx.doi.org/10.1007/978-1-4842-0952-3_8
http://dx.doi.org/10.1007/978-1-4842-0952-3_5
http://dx.doi.org/10.1007/978-1-4842-0952-3_6
http://dx.doi.org/10.1007/978-1-4842-0952-3_7

Chapter 9 ■ Integrating Physics and Particles

413

Game Design Considerations
The puzzle level I’ve been building in the examples to this point has focused entirely on creating an
understandable and consistent logical challenge. I’ve avoided burdening the exercise with any kind of visual
design, narrative, or setting (design elements traditionally associated with enhancing player presence) to
ensure you’re thinking only about the rules of play without introducing superfluous distractions. However,
as you create core game mechanics, it’s important to understand how certain elements of gameplay can
contribute directly to presence (recall that presence is the player’s sense of feeling as if they’re connected to
the game world). The logical rules and requirements of core mechanics often have no effect on presence
until they’re paired with an interaction model, audiovisual design, or game setting, although some elements
of game mechanics can directly influence presence. As discussed in Chapter 8, lighting is one example of a
typically presence-enhancing visual design element that can also be used directly as a core game mechanic;
object physics is similarly a presence-enhancing design element that’s perhaps even more frequently
connected directly to core game mechanics.

Our entire experience in the physical world is governed by physical laws, and when you model physics
in virtual worlds, it makes an immediate and natural connection to the physical world and will therefore
frequently strengthen presence. An example of objectphysics enhancing presence but not contributing
to design would be destructible environments that have no direct impact on gameplay. If you’re playing a
first-person shooter, for example, and shoot at crates and other game objects that respond by realistically
exploding on impact or if you throw a ball in the game world that bounces in a reasonable approximation of
how a ball would bounce in the physical world, these are examples of physics being used purely to enhance
presence but not necessarily contributing to the game mechanic. If you’re playing Angry Birds, however,
and launching one of the birds from your slingshot into the game space and must aim your shot based on
the physics-modeled parabolic arc the bird follows upon launch, as shown in Figure 9-12, that’s an example
of physics being used as both a core element of gameplay while also enhancing presence. In fact, any game
that involves jumping a hero character in an environment with simulated gravity is an example of physics
contributing to both presence and the core mechanic, so most platformer games utilize physics as both a
core mechanic and a presence-enhancing design element.

Figure 9-12.  Rovio’s Angry Birds requires players to launch projectiles from a slingshot in a virtual world that
models gravity, mass, momentum, and object collision detection. The game physics are a fundamental component
of the game mechanic and enhance the sense of presence by assigning physical world traits to virtual objects

http://dx.doi.org/10.1007/978-1-4842-0952-3_8

Chapter 9 ■ Integrating Physics and Particles

414

The Rigid Shape Bounds and Rigid Shape Impulse projects introduce you to the powerful ability of
physics to bring players into the game world. Instead of simply moving the hero character like a screen
cursor, the player is now experiencing simulated inertia, momentum, and gravity requiring the same kind
of predictive assessments around aiming, timing, and trajectory that would exist when manipulating
objects in the physical world, and objects in the game are now colliding in a manner similarly anchored
in physical experience. Even though specific values might take a detour from the physical world in a
simulated game space (e.g., lower or higher gravity, more or less inertia, and the like), as long as the
relationships are consistent and reasonably analogous to our physical experience, presence will typically
increase when these effects are added to game objects.

As with earlier projects, it’s possible to use basic behaviors to explore new game mechanics.
Imagine, for example, a game level where the hero character in the Rigid Shape Impulse project was
required to push all the robots into a specific area within a specified time limit while avoiding being
hit with the tracking projectiles. Imagine the same level without physics, and it’s a different experience
(although not necessarily inferior). The Verlet Particles and Particle Emitters projects provide an
example where object physics contribute to presence but don’t necessarily have a direct impact on the
game mechanic. If the tracking projectiles explode on impact without any kind of simulated particle
effect (perhaps using a sprite-based animation to show an explosion), it will potentially be less effective
as a presence-enhancing effect than a particle simulation based on a physically accurate model of
particle dispersion (again, because we experience combustion in the physical world in a way that
follows the laws of physics).

At this point in the discussion it’s worth stepping back and interrogating the notion that presence
is necessarily increased by modeling physical world experience in game environments. While modeling
physical behavior in virtual environments is a common and high-confidence method of connecting players
to game worlds, there are frequently other style choices that can be quite effective at bringing players into
the game. In the case of a particle emitter versus an animated sprite to show an explosion, consider a game
featuring a comic book style and displaying a “BLAM!” graphic to signal an explosion. Objects don’t show
the word “BLAM!” when they explode in the physical world, of course, but the highly stylized use of “BLAM!”
in the context of a comic book aesthetic can be quite effective at bringing players into the game world.
Many AAA studios have embraced the notion that high-fidelity environments featuring physically accurate
materials and robust physics are critical for enhancing presence, although the recent surge of independent
studios working in a myriad of different styles is challenging this notion.

I left the level design in Chapter 8 with an interesting two-stage mechanic that focused almost
exclusively on abstract logical rules and therefore hadn’t yet considered elements that would add
presence to the experience and bring players into the game world. Recall the current state of the
level in Figure 9-13.

http://dx.doi.org/10.1007/978-1-4842-0952-3_8

Chapter 9 ■ Integrating Physics and Particles

415

There is, of course, some sense of presence conveyed by the current level design. The barrier preventing
players from accessing the reward is “impenetrable” and conveyed by a virtual wall, and the flashlight
object is “shining” a virtual light beam that reveals hidden clues in the manner perhaps that a UV light in
the real world might reveal special ink. Presence is fairly weak at this stage, however, as you have yet to place
the game experience in a setting or context and the intentionally generic shapes don’t provide the game
with any kind of visual identity the player can relate to. If you decided to take this mechanic further, now
would be a reasonable time to begin exploring the game’s setting. This example used a flashlight metaphor
to reveal hidden symbols, but it’s now possible to abstract the mechanic’s logical rules from the current
implementation. This mechanic can be described as follows: “The player must explore the environment to
find tools required to assemble a sequence in the correct order.”

For the next iteration of the mechanic, let’s revisit the interaction model and evolve it from purely a logic
puzzle to something a bit more active that makes use of object physics. Figure 9-14 changes the game screen
to include a jumping component.

Figure 9-13.  The level as it currently stands includes a two-step puzzle first requiring players to move a
flashlight and reveal hidden symbols; the player must then activate the shapes in the correct sequence to
unlock the barrier and claim the reward

Chapter 9 ■ Integrating Physics and Particles

416

The mechanic is evolving to include a dexterity challenge (in this case, timing the jumps), yet it retains
the logical rules from the earlier iteration: the shapes must be activated in the correct order to unlock the
barrier blocking the reward. Imagine the player experiences this screen for the first time; they’ll begin
exploring the screen to learn the rules of engagement for the level, including the interaction model (the
keys and/or mouse buttons used to move and jump the hero character), whether missing a jump results in
a penalty (for example, the loss of a “life” if the hero character misses a jump and falls off the game screen),
and what it means to “activate” a shape and begin the sequence to unlock the barrier.

Figure 9-14 is the beginning of an interesting (although still basic) platformer puzzle, but you’ve now
simplified the solution compared to the earlier iteration, and the platformer jumping component isn’t
especially challenging. Recall how adding the flashlight in Chapter 8 increased the logical challenge of the
original mechanic by adding a second kind of challenge requiring players to identify and use an object in
the environment as a tool; you can add a similar second challenge to the platformer component, as shown
in Figure 9-15.

Figure 9-14.  The game screen now shows just one instance of each part of the lock (top, middle, bottom), and
the hero character moves in the manner of a traditional jumping 2D platformer. The six platforms on the left
and right are stationary, and the middle platform moves up and down, allowing the player to ascend to higher
levels. (This image assumes the player is able to “jump” the hero character between platforms on the same level
but cannot reach higher levels without using the moving platform.)

http://dx.doi.org/10.1007/978-1-4842-0952-3_8

Chapter 9 ■ Integrating Physics and Particles

417

The introduction of a force field opens a number of interesting possibilities to increase the challenge.
The player must time the jump from the moving platform to the switch before hitting the force field, and the
shapes must be activated in order (requiring the player to first activate top right, then the bottom right, and
then the top left). Imagine a time limit is placed on the deactivation when the switch is engaged and that the
puzzle will reset if all shapes aren’t activated before the force field is reengaged.

You’ve now taken an elemental mechanic based on a logical sequence and adapted it to support an
action platformer experience. At this stage, the mechanic is becoming more interesting and beginning to feel
more like a playable level, but it’s still lacking setting and context, both of which will influence the further
evolution and implementation of this particular mechanic. This is a good opportunity to explore the kind of
story you might want to tell with this game. Are you interested in a sci-fi adventure, perhaps a survival horror
experience, or maybe a series of puzzle levels with no connected narrative? The setting you choose will not
only help inform the visual identity of the game but can also guide your decisions on the kinds of challenges
you create for players (that is, are “enemies” in the game working against you, or will you keep the emphasis
on solving logic puzzles?). A good exercise to practice connecting a mechanic to a game setting is to pick
a place (for example, the interior of a space ship) and begin contextualizing the mechanic in that scenario
and defining the elements of the challenge in a way that make sense for the setting. For a spaceship setting,
perhaps something has gone wrong and you must make your way from one end of the ship to the other while
neutralizing security lasers through the clever use of environment objects. Experiment with applying the
spaceship setting to the current mechanic and adjusting the elements in the level to fit that theme: lasers are
just one option, but can you think of other uses for the mechanic that don’t involve the unlocking sequence?
Practice working with the structure of the mechanic from the examples and try applying it to a range of
different settings to begin building your comfort for taking abstract mechanics and applying them to specific
settings.

Figure 9-15.  The introduction of a force field blocking access to the upper platforms (#1) can significantly
increase the challenge of the platformer component. In this design, the player must activate the switch
(represented with a lightbulb in #2) to disable the force field and reach the first and third shapes

Chapter 9 ■ Integrating Physics and Particles

418

Remember, including object physics in your level designs isn’t a universal requirement. Game design
is infinitely flexible, and sometimes you may want to subvert or completely ignore the laws of physics in
the game worlds you create. The final quality of your game experience is the result of how effectively you
harmonize all nine elements of game design; it’s not about the mandatory implementation of any one design
option. Your game might be completely abstract and involve shapes and forms shifting in space in a way
that has no bearing on the physical world, or it might take place in an analogous real-world environment;
yet, your mechanic may not relay on object physics at all, and your use of color, audio, and narrative might
still combine to create an experience with a strong presence for players. However, if you find yourself with
a game environment that seeks to convey a sense of physicality by making use of objects that people can
relate to objects found in the physical world, it’s worth exploring how object physics might enhance the
experience.

419

Chapter 10

Supporting Camera Background

After completing this chapter, you will be able to:

•	 Implement background tiling with any image in any given camera WC bounds

•	 Understand parallax and simulate motion parallax with parallax scrolling

•	 Appreciate the need for layering objects in 2D games and support layered drawing

Introduction
By this point your game engine is capable of illuminating 2D images to generate highlights and shadows and
of simulating basic physical behaviors. To complete the engine development, this chapter focuses on the
general support for creating the game world environment with background tiling and parallax and relieving
the game programmers from having to manage draw ordering. Background images or objects are included
to decorate the game world to further engage the players; this often requires being vast in scale with subtle
visual complexities. For example, in a side-scrolling game, the background must always be present, and
simple motion parallax can create the sense of depth and further capture the players’ interests.

Tiling, in the context of computer graphics and video games, refers to the duplication of an image
or pattern along the x and y directions. In video games, images used for tiling are usually strategically
constructed to ensure content continuation across the duplicating boundaries. Figure 10-1 shows an
example of a strategically drawn background image tiled three times in the x direction and two times in the
y direction. Notice the perfect continuation across the duplication boundaries. Proper tiling conveys a sense
of complexity in a boundless game world by creating only a single image.

Figure 10-1.  Tiling of a strategically drawn background image

Chapter 10 ■ Supporting Camera Background

420

Parallax is the apparent displacements of objects when the objects are viewed from different positions.
Figure 10-2 shows an example of the parallax of a shaded circle. When viewed from the middle eye position,
the center shaded circle appears to be covering the center rectangular block. However, this same shaded circle
appears to be covering the top rectangular block when viewed from the bottom eye position. Motion parallax
is the observation that when one is in motion, nearby objects move quicker than those in the distance. This is
a fundamental visual cue that informs depth perception. In 2D games, the simulation of motion parallax is a
straightforward approach to introduce depth complexity to further captivate the players.

Figure 10-2.  Parallax: seeing different positions of objects from different viewpoints

This chapter presents a general algorithm for tiling the camera WC bounds and describes an abstraction
for hiding the details of parallax scrolling. With the increase in visual complexity of the background, this
chapter discusses the importance of and creates a layer manager to alleviate game programmers from the
details of draw ordering.

Tiling of the Background
When tiling the background in a 2D game, it is important to recognize that only the tiles result in covering
the camera WC bounds need to be drawn. This is illustrated in Figure 10-3. In this example, the background
object to be tiled is defined at the WC origin with its own width and height. However, in this case, the camera
WC bounds do not intersect with the defined background object. Figure 10-3 shows that the background
object needs to be tiled six times to cover the camera WC bounds. Notice that since it is not visible through
the camera, the player-defined background object that located at the origin does not need to be drawn.

Chapter 10 ■ Supporting Camera Background

421

There are many ways to compute the required tiling for a given background object and the camera
WC bounds. A simple approach is to determine the tile position that covers the lower-left corner of the WC
bound and tile in the positive x and y directions.

The Tiled Objects Project
This project demonstrates how to implement simple background tiling. You can see an
example of this project running in Figure 10-4. The source code to this project is defined in the
Chapter10/10.1.TiledObjects folder.

Figure 10-3.  Generating tiled background for camera WC bounds

Figure 10-4.  Running the Tiled Objects project

http://dx.doi.org/10.1007/978-1-4842-0952-3_10

Chapter 10 ■ Supporting Camera Background

422

The controls of the project are as follows:

•	 WASD keys: Move the Dye character (the hero) to pan the WC window bounds

The goals of the project are as follows:

•	 To experience working with multiple layers of background

•	 To implement the tiling of background objects for camera WC window bounds

You can find the following external resources in the assets folder: the fonts folder that contains the
default system fonts and six texture images (minion_sprite.png, minion_sprite_normal.png, bg.png,
bg_normal.png, byLayer.png, and bgLayer_normal.png). The Hero and Minion objects are represented by
sprite elements in the minion_sprite.png image, and bg.png and bgLayer.png are two layers of background
images. The corresponding _normal files are the normal maps.

Define TiledGameObject
Recall that a GameObject abstracts the basic behavior of an object in the game where its appearance is
determined by the Renderable object that it references. A TiledGameObject is a GameObject that is capable
of tiling the referenced Renderable object to cover the WC bounds of a given Camera object.

	 1.	 Create a new file in the src/Engine/GameObjects/ folder and name it
TiledGameObject.js. Add the following code to construct the object:

function TiledGameObject(renderableObj) {
 this.mShouldTile = true; // can switch this off if desired
 GameObject.call(this, renderableObj);
}
gEngine.Core.inheritPrototype(TiledGameObject, GameObject);

The TiledGameObject object has only one variable, mShouldTile, which is a Boolean that determines
whether the object should tile.

	 2.	 Define the getter and setter functions for mShouldTile.

TiledGameObject.prototype.setIsTiled = function (t) {
 this.mShouldTile = t;
};
 
TiledGameObject.prototype.shouldTile = function () {
 return this.mShouldTile;
};

	 3.	 Define the function to tile and draw the Renderable object to cover the WC
bounds of the aCamera object.

TiledGameObject.prototype._drawTile = function(aCamera) {
 // Step A: Compute the positions and dimensions of tiling object.
 var xf = this.getXform();
 var w = xf.getWidth();
 var h = xf.getHeight();
 var pos = xf.getPosition();

Chapter 10 ■ Supporting Camera Background

423

 var left = pos[0] - (w/2);
 var right = left + w;
 var top = pos[1] + (h/2);
 var bottom = top - h;
  
 // Step B: Get the world positions and dimensions of the drawing camera.
 var wcPos = aCamera.getWCCenter();
 var wcLeft = wcPos[0] - (aCamera.getWCWidth() / 2);
 var wcRight = wcLeft + aCamera.getWCWidth();
 var wcBottom = wcPos[1] - (aCamera.getWCHeight() / 2);
 var wcTop = wcBottom + aCamera.getWCHeight();
 
 // Step C: Determine the offset to the camera window's lower left corner.
 var dx = 0, dy = 0; // offset to the lower left corner
 // left/right boundary?
 if (right < wcLeft) { // left of WC left
 dx = Math.ceil((wcLeft - right)/w) * w;
 } else {
 if (left > wcLeft) { // not touching the left side
 dx = -Math.ceil((left-wcLeft)/w) * w;
 }
 }
 // top/bottom boundary
 if (top < wcBottom) { // Lower than the WC bottom
 dy = Math.ceil((wcBottom - top)/h) * h;
 } else {
 if (bottom > wcBottom) { // not touching the bottom
 dy = -Math.ceil((bottom - wcBottom)/h) * h;
 }
 }
 
 // Step D: Save the original position of the tiling object.
 var sX = pos[0];
 var sY = pos[1];
 
 // Step E: Offset tiling object and modify the related position variables.
 xf.incXPosBy(dx);
 xf.incYPosBy(dy);
 right = pos[0] + (w/2);
 top = pos[1] + (h/2);
 
 // Step F: Determine the number of times to tile in the x and y directions.
 var nx = 1, ny = 1; // number of times to draw in the x and y directions
 nx = Math.ceil((wcRight - right) / w);
 ny = Math.ceil((wcTop - top) / h);
 
 // Step G: Loop through each location to draw a tile.
 var cx = nx;
 var xPos = pos[0];
 while (ny >= 0) {
 cx = nx;

Chapter 10 ■ Supporting Camera Background

424

 pos[0] = xPos;
 while (cx >= 0) {
 this.mRenderComponent.draw(aCamera);
 xf.incXPosBy(w);
 --cx;
 }
 xf.incYPosBy(h);
 --ny;
 }
 
 // Step H: Reset the tiling object to its original position.
 pos[0] = sX;
 pos[1] = sY;
};

The _drawTile() function computes and repositions the Renderable object to cover the lower-left
corner of the camera WC bounds and tiles the object in the positive x and y directions. Note the following:

a.	 Steps A and B compute the position and dimension of the tiling object and
the camera WC bounds.

b.	 Step C computes the dx and dy offsets that will translate the Renderable
object with bounds that cover the lower-left corner of the aCamera WC
bounds. The calls to the Math.ceil() function ensure that the computed nx
and ny are integers.

c.	 Step D saves the original position of the Renderable object before offsetting
and drawing it. Step E offsets the Renderable object to cover the lower-left
corner of the camera WC bounds.

d.	 Step F computes the number of repeats required, and step G tiles the
Renderable object in the positive x and y directions until the results cover
the entire camera WC bounds.

e.	 Step H resets the position of the tiled object to the original location.

	 4.	 Override the draw() function to call the _drawTile() function when tiling is true.

TiledGameObject.prototype.draw = function (aCamera) {
 if (this.isVisible()) {
 if (this.shouldTile()) {
 // find out where we should be drawing
 this._drawTile(aCamera);
 } else {
 this.mRenderComponent.draw(aCamera);
 }
 }
};

Chapter 10 ■ Supporting Camera Background

425

Modify MyGame to Test Tiled Objects
MyGame should test for the correctness of object tiling. To test multiple layers of tiling, two separate instances
of TiledGameObject and Camera are created. The two TiledGameObject instances are located at different
distances from the cameras (z-depth) and are illuminated by different combinations of light sources. The
newly added camera is focused on one of the Hero objects.

Only the creation of the TiledGameObject instance is of interest. This is because, once created, a
TiledGameObject instance can be handled in the same manner as a GameObject instance. For this reason,
only the MyGame initialize() function is examined in detail here. The rest of the MyGame functions are
largely similar to previous projects and are not listed here to avoid unnecessary distraction.

MyGame.prototype.initialize = function () {
 // Step A: set up the cameras
 this.mHeroCam = new Camera(
 vec2.fromValues(20, 30.5), // position of the camera
 14, // width of camera
 [0, 420, 300, 300], // viewport (orgX, orgY, width, height)
 2
);
 this.mHeroCam.setBackgroundColor([0.5, 0.5, 0.9, 1]);
  
 this.mCamera = new Camera(
 vec2.fromValues(50, 37.5), // position of the camera
 100, // width of camera
 [0, 0, 1280, 720] // viewport (orgX, orgY, width, height)
);
 this.mCamera.setBackgroundColor([0.8, 0.8, 0.8, 1]);
 // sets the background to gray
  
 // Step B: the lights
 this._initializeLights(); // defined in MyGame_Lights.js
 
 // Step C: the far Background
 var bgR = new IllumRenderable(this.kBg, this.kBgNormal);
 bgR.setElementPixelPositions(0, 1024, 0, 1024);
 bgR.getXform().setSize(30, 30);
 bgR.getXform().setPosition(0, 0);
 bgR.getMaterial().setSpecular([0.2, 0.1, 0.1, 1]);
 bgR.getMaterial().setShininess(50);
 bgR.getXform().setZPos(-20);
 bgR.addLight(this.mGlobalLightSet.getLightAt(1)); // only directional light
 this.mBg = new TiledGameObject(bgR);
  
 // Step D: the closer Background
 var i;
 var bgR1 = new IllumRenderable(this.kBgLayer, this.kBgLayerNormal);
 bgR1.getXform().setSize(30, 30);
 bgR1.getXform().setPosition(0, 0);
 bgR1.getXform().setZPos(-10);
 for (i = 0; i < 4; i++)
 bgR1.addLight(this.mGlobalLightSet.getLightAt(i)); // all the lights
 bgR1.getMaterial().setSpecular([0.2, 0.2, 0.5, 1]);

Chapter 10 ■ Supporting Camera Background

426

 bgR1.getMaterial().setShininess(10);
 this.mBgL1 = new TiledGameObject(bgR1);
 this.mBgL1.setSpeed(0.1);
 this.mBgL1.setCurrentFrontDir([-1, 0]);
  
 // Initialize the other objects in the scene
 //
 // ... code not shown because of similarity to previous projects ...
 //
};

In the previous code, the two cameras are first created in step A, followed by the creation and
initialization of all the light sources (in MyGame_Lights.js, not shown because of similarity to previous
projects). Step C defines bgR as an IllumRenderable object that is being illuminated by one light source
and creates a TiledGameObject instance based on bgR. Step D defines the second IllumRenderable object
that is being illuminated by four light sources and again creates a TiledGameObject instance based on the
Renderable object. Notice that the second tile object initializes its speed to 0.1 and front direction to point
toward the negative x-axis. This object will move toward the left continuously. Since the TileGameObject
mShouldTile variable defaults to true, both of the tile objects will tile the camera that they are drawing to.

You can now run the project and move the Hero object with the WASD keys. As expected, the two layers
of tiled backgrounds are clearly visible with the front layer moving continuously toward the left. Move the
Hero object to pan the cameras to verify that the tiling and the background movement behaviors are correct
in both of the cameras.

Simulating Motion Parallax with Parallax Scrolling
Parallax scrolling simulates motion parallax by defining and scrolling objects at different speeds to convey
the sense that these objects are located at different distances from the camera. Figure 10-5 illustrates this
idea with a top view showing the conceptual distances of objects from the camera. Since this is a bird’s-eye
view, the width of the camera WC bounds is shown as a horizontal line at the bottom. The Hero object is
closest to the camera in front of two layers of backgrounds, Layer1 and Layer2. For typical 2D games, the
vast majority of objects in the game will be located at this default distance from the camera. The background
objects are located farther from the camera, behind the default distance. The distance perception can be
conveyed by strategic drawings on the background objects (for example, grass fields for Layer1 and distant
mountains for Layer2) accompanied with appropriate scroll speeds. Take note that positions P

1
 and P

2
 on

background objects Layer1 and Layer2 are directly behind the Hero object.

Figure 10-5.  Top view of a scene with two background objects at different distances

Chapter 10 ■ Supporting Camera Background

427

Figure 10-6 shows the results of leftward parallax scrolling with a stationary camera. With Layer1
scrolling at a faster speed than Layer2, position P

1
 has a greater displacement than P

2
 from their original

positions. A continuous scrolling will move Layer1 faster than Layer2 and properly convey the sense that it
is closer than Layer2. In parallax scrolling, objects that are closer to the camera always have a greater scroll
speed than objects that are farther.

Figure 10-7.  Top view of parallax scrolling with the camera in motion

In the case when the camera is in motion, relative speeds of objects must be considered when
implementing parallax scrolling. Figure 10-7 illustrates, with a top view, the situation of a moving camera
with stationary objects. In this example, the camera WC bounds have moved rightward by d units. Since the
movement is in the camera, all stationary objects in the camera view will appear to have been displaced by
the inverse of the camera movement. For example, the stationary Hero object is displaced from the center
leftward to the left edge of the new WC bounds. To properly simulate motion parallax, the two backgrounds,
Layer1 and Layer2, must be displaced by different relative distances. In this case, relative distances must be
computed such that farther objects will appear to move slower. At the end of the camera movement, in the
new WC bounds, the Hero object that is closest to the camera will appear to have been displaced leftward
by d units, the Layer1 object by 0.75d, and the Layer2 object by 0.25d. In this way, the displacements of the
objects reflect their relative distances from the camera. To achieve this, the translation of the Hero object
is zero, and the Layer1 and Layer2 objects must be translated rightward by 0.25d and 0.75d, respectively.
Notice that the backgrounds are translated rightward by amounts that are less than that of the camera
movement, and as a result the backgrounds are actually moving leftward. For example, although the Layer1
object is translated rightward by 0.25d, when viewed from the camera that has been moved rightwards by d,
the resulting relative movement is such that the Layer1 object has been displaced leftward by 0.75d.

Figure 10-6.  Top view of parallax scrolling with stationary camera

Chapter 10 ■ Supporting Camera Background

428

It is important to note that in the described approach to implement parallax scrolling for a moving
camera, stationary background objects are displaced. There are two limitations to this implementation. First,
the object locations are changed for the purpose of conveying visual cues and do not reflect any specific
game state logic. This can create challenging conflicts if the game logic requires the precise control of the
movements of the background objects. Fortunately, background objects are usually designed to serve the
purposes of decorating the environment and engaging the players. Background objects typically do not
participate in the actual gameplay logic. The second limitation is that the stationary background objects are
actually in motion and will appear so when viewed from cameras other than the one causing the motion
parallax. When views from multiple cameras are necessary in the presence of motion parallax, it is important
to carefully coordinate them to avoid player confusion.

The ParallaxObjects Project
This project demonstrates parallax scrolling. You can see an example of this project running in Figure 10-8.
The source code to this project is defined in the Chapter10/10.2.ParallaxObjects folder.

Figure 10-8.  Running the Parallax Objects project

The controls of the project are as follows:

•	 P key: Toggles the drawing of parallax camera to provide a zoomed view of
object parallax

•	 WASD keys: Move the Dye character (the hero) to pan the WC window bounds

The goals of the project are as follows:

•	 To understand and appreciate motion parallax

•	 To simulate motion parallax with parallax scrolling

http://dx.doi.org/10.1007/978-1-4842-0952-3_10

Chapter 10 ■ Supporting Camera Background

429

Define ParallaxGameObject to Implement Parallax Scrolling
Parallax scrolling involves the continuous scrolling of objects, and TiledGameObject provides a convenient
platform for never-ending scrolling. For this reason, ParallaxGameObject is defined as a subclass to the
TiledGameObject class.

	 1.	 Create a new file in the src/Engine/GameObjects/ folder and name it
ParallaxGameObject.js. Add the following code to construct the object:

function ParallaxGameObject(renderableObj, scale, aCamera) {
 this.mRefCamera = aCamera;
 this.mCameraWCCenterRef = vec2.clone(this.mRefCamera.getWCCenter());
 this.mParallaxScale = 1;
 this.setParallaxScale(scale);
 TiledGameObject.call(this, renderableObj);
}
gEngine.Core.inheritPrototype(ParallaxGameObject, TiledGameObject);

The ParallaxGameObject object maintains mRefCamera, a reference to aCamera and
mCameraWCCenterRef, the current WC bounds center. These values are used to compute relative movements
based on the motion of the referenced camera to support parallax scrolling. The scale parameter is a positive
value. A scale value of 1 represents that the object is located at the default distance, and values of less than
1 convey that the object is in front of the default distance. A scale of greater than 1 represents objects that are
behind the default distance. The larger the scale value, the farther the object is from the camera.

	 2.	 Define the getter and setter functions for mParallaxScale, and notice that
mParallaxScale is the inverse of the object distance.

ParallaxGameObject.prototype.getParallaxScale = function () {
 return this.mParallaxScale;
};
 
ParallaxGameObject.prototype.setParallaxScale = function(s) {
 if (s <= 0) {
 this.mParallaxScale = 1;
 } else {
 this.mParallaxScale = 1/s;
 }
};

	 3.	 Override the update() function to implement parallax scrolling.

ParallaxGameObject.prototype.update = function () {
 // simple default behavior
 this._refPosUpdate(); // check to see if the camera has moved
 var pos = this.getXform().getPosition(); // our own xform
 vec2.scaleAndAdd(pos, pos, this.getCurrentFrontDir(),
 this.getSpeed() * this.mParallaxScale);
};

Chapter 10 ■ Supporting Camera Background

430

The _refPosUpdate() function is the one that computes a relative displacement based on the reference
camera’s WC center position. The vec2.scaleAndAdd() function moves the current object at a speed that is
scaled by the mParallaxScale.

	 4.	 Define the _refPosUpdate() function.

ParallaxGameObject.prototype._refPosUpdate = function () {
 // now check for reference movement
 var deltaT = vec2.fromValues(0, 0);
 vec2.sub(deltaT, this.mCameraWCCenterRef, this.mRefCamera.getWCCenter());
 this.setWCTranslationBy(deltaT);
 // now update WC center ref position
 vec2.sub(this.mCameraWCCenterRef, this.mCameraWCCenterRef, deltaT);
};

The deltaT variable records the relative displacements, and setWCTranslationBy() moves the object to
simulate parallax scrolling.

	 5.	 Define the function to translate the object to implement parallax scrolling.

ParallaxGameObject.prototype.setWCTranslationBy = function (delta) {
 var f = (1-this.mParallaxScale);
 this.getXform().incXPosBy(-delta[0] * f);
 this.getXform().incYPosBy(-delta[1] * f);
};

Testing ParallaxGameObject in MyGame
The testing of ParallaxGameObject involves testing for the correctness of parallax scrolling with the
stationary camera, testing for the motion camera with an object in front of and behind the default distance,
and observing the ParallaxGameObject from an alternative camera. The MyGame-level source code is largely
similar to that from the previous project, and the details are not listed. The relevant part of the initialize()
function is listed for the purpose of demonstrating how to create the ParallaxGameObject instances.

MyGame.prototype.initialize = function () {
 // Step A: set up the cameras
 // creating the two cameras and initializing the lights
 //
 // ... code not shown because of similarity to previous projects ...
 //
  
 // Step C: the far Background
 var bgR = new IllumRenderable(this.kBg, this.kBgNormal);
 bgR.setElementPixelPositions(0, 1024, 0, 1024);
 bgR.getXform().setSize(30, 30);
 bgR.getXform().setPosition(0, 0);
 bgR.getMaterial().setSpecular([0.2, 0.1, 0.1, 1]);
 bgR.getMaterial().setShininess(50);
 bgR.getXform().setZPos(-10);

Chapter 10 ■ Supporting Camera Background

431

 bgR.addLight(this.mGlobalLightSet.getLightAt(1)); // only the directional light
 this.mBg = new ParallaxGameObject(bgR, 5, this.mCamera);
 this.mBg.setCurrentFrontDir([0, -1, 0]);
 this.mBg.setSpeed(0.1);
  
 // Step D: the closer Background
 var i;
 var bgR1 = new IllumRenderable(this.kBgLayer, this.kBgLayerNormal);
 bgR1.getXform().setSize(25, 25);
 bgR1.getXform().setPosition(0, 0);
 bgR1.getXform().setZPos(0);
 bgR1.addLight(this.mGlobalLightSet.getLightAt(1)); // the directional light
 bgR1.addLight(this.mGlobalLightSet.getLightAt(2)); // the hero spotlight light
 bgR1.addLight(this.mGlobalLightSet.getLightAt(3)); // the hero spotlight light
 bgR1.getMaterial().setSpecular([0.2, 0.2, 0.5, 1]);
 bgR1.getMaterial().setShininess(10);
 this.mBgL1 = new ParallaxGameObject(bgR1, 3, this.mCamera);
 this.mBgL1.setCurrentFrontDir([0, -1, 0]);
 this.mBgL1.setSpeed(0.1);
  
 // Step E: the front layer
 var f = new TextureRenderable(this.kBgLayer);
 f.getXform().setSize(30, 30);
 f.getXform().setPosition(0, 0);
 this.mFront = new ParallaxGameObject(f, 0.9, this.mCamera);
  
 // ... Identical to previous project ...
};

The mBg object is created as a ParallaxGameObject with a scale value of 5, mBgL1 with a scale of 3,
and mFront with a scale of 0.9. Recall that scale is the second parameter of the ParallaxGameObject
constructor, and it signifies the object distance from the camera, with values greater than 1 being farther
from the default distance and less than 1 being closer than the default distance. In this case, mBg is the
furthest and mBgL1 is closer, and both are behind the default distance. The mFront object is actually closer
to the camera than the default distance. It is in front of the Hero object. Notice that mBg and mBgL1 are both
defined to be continuously scrolling downward (setCurrentFrontDir([0, -1, 0])) with a speed of 0.1.

You can now run the project and observe the darker foreground layer partially blocking the Hero and
Minions objects. You can see the two background layers continuously scrolling downward but with different
speeds. The mBg object is farther away and thus scrolls slower than the mBgL1 object. Move the Hero object
with WASD and pan the camera. You will notice the front-layer parallax scrolls at a faster speed than all other
objects, and as a result, panning the camera reveals different parts of the animated Minion objects.

Press the P key to enable the drawing of the second camera. Notice that the view in this camera is as
expected. The Hero object is stationary, and the two background layers scroll continuously downward. Now,
if you move the Hero object to pan the main camera, note the foreground and background objects in the
second camera view are also moving and exhibit motion parallax even though the second camera is not
moving! As game designer, it is important to ensure this side effect does not cause player confusion.

Chapter 10 ■ Supporting Camera Background

432

Layer Management
Although the engine you are developing is for supporting 2D games, you have worked with a few situations
where depth ordering and drawing orders are important. For example, the shadow receiver must always be
defined behind the shadow casters, and as discussed in the previous example, foreground and background
parallax objects must be carefully defined and drawn in the order of their depth ordering. It is convenient for
the game engine to provide a utility manager to help game programmers manage and work with the depth
layering. A typical 2D game can have the following layers, in the order of the distance from the camera, from
nearest to furthest:

•	 Heads-up display (HUD) layer: Typically closest to the camera displaying essential
user interface information

•	 Foreground or front layer: The layer in front of the game objects for decorative or
partial occlusion of the game objects

•	 Actor layer: The default distance layer in Figure 10-5, where all game objects reside

•	 Shadow Receiver layer: The layer behind the actor layer to receive potential shadows

•	 Background layer: The decorative background

Each layer will reference all objects defined for that layer, and these objects will be drawn in the order
they were inserted into the layer, with the last inserted drawn last and covering objects before it. This
section presents the LayerManager engine component to support the described five layers to relieve game
programmers from the details of managing updates and drawings the objects. Note that the number of layers
a game engine should support is determined by the kinds of games that the engine is designed to build. The
five layers presented are logical and convenient for simple games. You may choose to expand the number of
layers in your own game engine.

The Layer Manager Project
This project demonstrates how to develop a utility component to assist in managing layers for the game
programmers. You can see an example of this project running in Figure 10-9. The source code to this project
is defined in the Chapter10/10.3.LayerManager folder.

http://dx.doi.org/10.1007/978-1-4842-0952-3_10

Chapter 10 ■ Supporting Camera Background

433

The controls of the project are identical to the previous project:

•	 P key: Toggles the drawing of parallax camera, to provide a zoomed view of object
parallax

•	 WASD keys: Move the Dye character (the hero) to pan the WC window bounds

The goals of the project are as follows:

•	 To appreciate the importance of layering in 2D games

•	 To develop a layer manager engine component

Layer Management in the Engine
Follow the pattern of defining engine components.

	 1.	 Create a new file in the src/Engine/Core/ folder and name it Engine_
LayerManager.js. This file will implement the LayerManager engine component.

	 2.	 Define enumerators for the layers.

gEngine.eLayer = Object.freeze({
 eBackground: 0,
 eShadowReceiver: 1,
 eActors: 2,
 eFront: 3,
 eHUD: 4
});

Figure 10-9.  Running the Layer Manager project

Chapter 10 ■ Supporting Camera Background

434

	 3.	 Define the LayerManager component following the JavaScript Module Pattern as
follows:

var gEngine = gEngine || { };
 // initialize the variable while ensuring it is not redefined
 
gEngine.LayerManager = (function () {
 var mPublic = { };
 return mPublic;
}());

	 4.	 Within the LayerManager component, define appropriate constants and instance
variables to keep track of the layers.

var kNumLayers = 5;
var mAllLayers = [];

mAllLayers is an array of GameObjectSet instances representing each of the five layers.

	 5.	 Define an initialize() function to create the array of GameObjectSet instances.

var initialize = function() {
 mAllLayers[gEngine.eLayer.eBackground] = new GameObjectSet();
 mAllLayers[gEngine.eLayer.eShadowReceiver] = new GameObjectSet();
 mAllLayers[gEngine.eLayer.eActors] = new GameObjectSet();
 mAllLayers[gEngine.eLayer.eFront] = new GameObjectSet();
 mAllLayers[gEngine.eLayer.eHUD] = new GameObjectSet();
};

	 6.	 Define a cleanUp() function to reset the mAllLayer array.

var cleanUp = function() {
 initialize();
};

	 7.	 Define functions to add to, remove from, and query the layers.

var addToLayer = function(layerEnum, obj) {
 mAllLayers[layerEnum].addToSet(obj);
};
 
var removeFromLayer = function(layerEnum, obj) {
 mAllLayers[layerEnum].removeFromSet(obj);
};
 
var layerSize = function(layerEnum) {
 return mAllLayers[layerEnum].size();
};
 

Chapter 10 ■ Supporting Camera Background

435

var addAsShadowCaster = function(obj) {
 var i;
 for (i = 0; i<mAllLayers[gEngine.eLayer.eShadowReceiver].size(); i++)
 mAllLayers[gEngine.eLayer.eShadowReceiver].getObjectAt(i).
 addShadowCaster(obj);
};

Note the addAsShadowCaster() function assumes that the shadow receiver objects are already
inserted into the eShadowReceiver layer. Additionally, this function adds the casting object to all receivers
in the layer.

	 8.	 Define functions to draw a specific layer or all the layers, from the furthest to the
nearest to the camera.

var drawLayer = function(layerEnum, aCamera) {
 mAllLayers[layerEnum].draw(aCamera);
};
 
var drawAllLayers = function(aCamera) {
 var i;
 for (i=0; i<kNumLayers; i++)
 mAllLayers[i].draw(aCamera);
};

	 9.	 Define a function to move a specific object such that it will be drawn last (on top).

var moveToLayerFront = function(layerEnum, obj) {
 mAllLayers[layerEnum].moveToLast(obj);
};

	 10.	 Define functions to update a specific layer or all the layers.

var updateLayer = function(layerEnum) {
 mAllLayers[layerEnum].update();
};
 
var updateAllLayers = function() {
 var i;
 for (i=0; i<kNumLayers; i++)
 mAllLayers[i].update();
};

	 11.	 Remember to add all the functions to the public interface.

var mPublic = {
 initialize: initialize,
 drawAllLayers: drawAllLayers,
 updateAllLayers: updateAllLayers,
 cleanUp: cleanUp,
 

Chapter 10 ■ Supporting Camera Background

436

 drawLayer: drawLayer,
 updateLayer: updateLayer,
 addToLayer: addToLayer,
 addAsShadowCaster: addAsShadowCaster,
 removeFromLayer: removeFromLayer,
 moveToLayerFront: moveToLayerFront,
 layerSize: layerSize
};
return mPublic;

Modify Engine Components and Objects
You must modify the rest of the game engine slightly to integrate the new LayerManager component.

Enhance the GameObjectSet Functionality

Add the following two functions to support removing membership and moving objects to the end of a set array:

GameObjectSet.prototype.removeFromSet = function (obj) {
 var index = this.mSet.indexOf(obj);
 if (index > -1)
 this.mSet.splice(index, 1);
};
 
// Ensures the given obj is the last element (when drawn, appears on top)
GameObjectSet.prototype.moveToLast = function (obj) {
 this.removeFromSet(obj);
 this.addToSet(obj);
};

Initialize LayerManager in gEngine_Core

Modify the engine’s Core component to initialize the LayerManager component in the
initializeEngineCore() function.

// initialize all of the EngineCore components
var initializeEngineCore = function (htmlCanvasID, myGame) {
 _initializeWebGL(htmlCanvasID);
 gEngine.VertexBuffer.initialize();
 gEngine.Input.initialize(htmlCanvasID);
 gEngine.AudioClips.initAudioContext();
 gEngine.Physics.initialize();
 gEngine.LayerManager.initialize();
 
 // Inits DefaultResources, when done,
 // invoke the anonymous function to call startScene(myGame).
 gEngine.DefaultResources.initialize(function () { startScene(myGame); });
};

Chapter 10 ■ Supporting Camera Background

437

Define the Update Function for Layer Membership Objects

Define update functions for objects that may appear as members in the LayerManager layers: Renderable,
FontRenderable, and ShadowReceiver.

Modify MyGame to Work with LayerManager
The MyGame level implements the same functionality as in the previous project. The only difference is the
delegation of layer management to the LayerManager component. The following description focuses only on
how the LayerManager functions are called.

	 1.	 Modify the unloadScene() function to clean up the LayerManager.

MyGame.prototype.unloadScene = function () {
 gEngine.LayerManager.cleanUp();

 gEngine.Textures.unloadTexture(this.kMinionSprite);
 gEngine.Textures.unloadTexture(this.kBg);
 gEngine.Textures.unloadTexture(this.kBgNormal);
 gEngine.Textures.unloadTexture(this.kBgLayer);
 gEngine.Textures.unloadTexture(this.kBgLayerNormal);
 gEngine.Textures.unloadTexture(this.kMinionSpriteNormal);
};

	 2.	 Modify the initialize() function to add the game objects to the corresponding
layers in the LayerManager component.

MyGame.prototype.initialize = function () {
 // ... Identical to previous project ...
 
 // add to layer managers ...
 gEngine.LayerManager.addToLayer(gEngine.eLayer.eBackground, this.mBg);
 gEngine.LayerManager.addToLayer(gEngine.eLayer.eShadowReceiver, this.mBgShadow1);
  
 gEngine.LayerManager.addToLayer(gEngine.eLayer.eActors, this.mIllumMinion);
 gEngine.LayerManager.addToLayer(gEngine.eLayer.eActors, this.mLgtMinion);
 gEngine.LayerManager.addToLayer(gEngine.eLayer.eActors, this.mIllumHero);
 gEngine.LayerManager.addToLayer(gEngine.eLayer.eActors, this.mLgtHero);
  
 gEngine.LayerManager.addToLayer(gEngine.eLayer.eFront, this.mBlock1);
 gEngine.LayerManager.addToLayer(gEngine.eLayer.eFront, this.mBlock2);
 gEngine.LayerManager.addToLayer(gEngine.eLayer.eFront, this.mFront);
 gEngine.LayerManager.addToLayer(gEngine.eLayer.eHUD, this.mMsg);
 gEngine.LayerManager.addToLayer(gEngine.eLayer.eHUD, this.mMatMsg);
};

Chapter 10 ■ Supporting Camera Background

438

	 3.	 Modify the draw() function to rely on the LayerManager component for the
actual drawings.

MyGame.prototype.draw = function () {
 // Step A: clear the canvas
 gEngine.Core.clearCanvas([0.9, 0.9, 0.9, 1.0]); // clear to light gray
  
 this.mCamera.setupViewProjection();
 gEngine.LayerManager.drawAllLayers(this.mCamera);
 
 if (this.mShowHeroCam) {
 this.mParallaxCam.setupViewProjection();
 gEngine.LayerManager.drawAllLayers(this.mParallaxCam);
 }
};

	 4.	 Modify the update() function to rely on the LayerManager component for the
actual update of all game objects.

MyGame.prototype.update = function () {
 this.mCamera.update(); // to ensure proper interploated movement effects
 this.mParallaxCam.update();
 
 gEngine.LayerManager.updateAllLayers();
  
 // ... Identical to previous project ...
};

You can now run the project and observe the same output and interactions as the previous project.
The important observation for this project is in the implementation. By inserting game objects to the
proper LayerManager layers during initialize(), the draw() and update() functions of a game level can
be much cleaner. The simpler and cleaner MyGame update() function is of special importance. Instead of
being crowded with mundane game object update() function calls, the MyGame update() function can now
focus on implementing the game logic and controlling the interactions between game objects.

Summary
This chapter explained the need for tiling and introduced the TileGameObject to implement a simple
algorithm that tiles and covers a given camera WC bounds. The basics of parallax and approaches to
simulate motion parallax with parallax scrolling were introduced. Motion parallax with stationary and
motioned camera were examined, and solutions were derived and implemented. You learned that
computing movements relative to the camera motions to displace background objects results in visually
pleasing motion parallax but may cause player confusion when viewed from different cameras. With shadow
computations introduced earlier and now parallax scrolling, game programmers must dedicate code and
attention to coordinate the drawing order of different types of objects. To facilitate the programmability
of the game engine, the LayerManager engine component is presented as a utility tool to alleviate game
programmers from managing the drawing of the layers.

Chapter 10 ■ Supporting Camera Background

439

Your game engine is now completed, and it can draw objects with texture maps, sprite animations, and
even illumination by various light sources. The engine defines proper abstractions for simple behaviors,
mechanisms to approximate and accurately compute the collisions, and simulates the physical behaviors of
these objects. Views from multiple cameras can conveniently be displayed over the same game screens with
manipulation functionality that is smoothly interpolated. Keyboard/mouse input is supported, and now
background objects can scroll without bounds and simulate motion parallax.

The important next step is to go through a simple game design process and implement a game based on
your new completed game engine.

Game Design Considerations
In previous “Game Design Considerations” sections, you’ve explored how developing one simple mechanic
from the ground up can lead in many directions and be applied to a variety of game types. Creative teams
in game design studios frequently debate which elements of game design take the lead in the creative
process. Writers often believe story comes first, while many designers believe that story and everything
else must be secondary to gameplay. There’s no right or wrong answer, of course. The creative process is a
chaotic system, and every team and studio is unique; some creative directors want to tell a particular story
and search for mechanics and genres that are best suited to supporting specific narratives, while others are
gameplay purists and completely devoted to a culture of “gameplay first, next, and last.” The decision often
comes down to understanding your audience. If you’re creating an AAA first-person-shooter experience,
for example, consumers will have specific expectations for many of the core elements of play, and it’s
usually a smart move to ensure that gameplay drives the design. If you’re creating an indie adventure game
designed to provide players with new experiences and unexpected twists, however, story and setting might
lead the way.

Many game designers (and this includes seasoned veterans as well as those new to the discipline)
begin new projects by designing complex experiences that are relatively minor variations on existing well-
understood mechanics; and while there are sound reasons for this approach (as in the case of AAA studios
developing content for particularly demanding audiences or a desire to work with mechanics that have
proven to be successful across many titles), it tends to significantly limit exploration into new territory and is
one reason why many gamers complain about creative stagnation and a lack of gameplay diversity between
games within the same genre. Many of us who are professional game designers grew up enjoying certain
kinds of games and dreamed about creating new experiences based on the mechanics we know and love,
and several decades of that culture has solidified much of the industry around a comparatively few number
of similar mechanics and conventions. The good news is that a rapidly growing independent and small
studio community has boldly begun throwing long-standing genre convention to the wind in recent years,
and new distribution platforms like mobile app stores and Valve’s Steam have opened opportunities for a
wide range of never-before-seen mechanics and experiences to flourish.

If you continue exploring game design, you’ll realize there are relatively few completely unique core
mechanics, but there are endless opportunities for innovating as you intentionally and logically build
those elemental interactions into more complex causal chains, adding unique flavor and texture through
elegant integration with the other elements of game design. Some of the most groundbreaking games in
recent memory were created through exercises very much like the mechanic exploration you’ve done
in the “Game Design Considerations” sections. Valve’s Portal, for example, is based on the same kind of
“escape the room” sandbox you explored and is designed around a similarly simple base mechanic. So,
what made Portal such a breakthrough hit? While many things need to come together to create a hit game,
Portal undoubtedly benefitted from a design team that started building the experience from the most basic
mechanic and smartly increased complexity as they became increasingly fluent in its unique structure and
characteristics, instead of starting at the 10,000-foot level with a codified genre and a host of expectations
and overly familiar mechanics.

Chapter 10 ■ Supporting Camera Background

440

Of course, nobody talks about Portal without also mentioning the rogue artificial intelligence character
GLaDOS and her Aperture Laboratories playground: setting, narrative, and audiovisual design are as
important to the Portal experience as the portal-launching mechanic, and it’s hard to separate gameplay
from the narrative given how skillfully intertwined they are. The projects in this chapter provide a good
opportunity to begin similarly situating the mechanic from the “Game Design Considerations” sections in a
unique setting and context. You’ve probably noticed many of the projects throughout this book are building
toward a sci-fi visual theme, with a spacesuit-wearing hero character, a variety of flying robots, and now in
Chapter 10 the introduction of large-scale parallaxing environments. And while you’re not building a game
with the same degree of environment and interaction complexity as Portal, that doesn’t mean you don’t have
the same opportunity to develop a highly engaging game setting, context, and cast of characters.

The first thing you should notice about the Tiled Objects project is the dramatic impact on environment
experience and scale compared to earlier projects. The factors enhancing presence in this project are the
three independently moving layers (hero, moving wall, and stationary wall) and the seamless tiling of the
two background layers. Compare the Tiled Objects project to the Shadow Shaders project from Chapter 8;
notice the difference in presence when the environment is broken into multiple layers that appear to move
in an analogous (if not physically accurate) way to how you experience movement in the physical world.
The sense of presence is further strengthened when you add multiple background layers of parallaxing
movement in the Parallax Objects project; as you move through the physical world, the environment
appears to move at different speeds, with closer objects seeming to pass-by quickly while objects toward the
horizon appear to move slowly. Parallaxing environment objects simulate this effect, adding considerable
depth and interest to game environments. The Layer Manager project pulls things together and begins to
show the potential for a game setting to immediately engage the imaginations of players. With just a few
techniques, you’re able to create the impression of a massive environment that might be the interior of an
ancient alien machine, the outside of a large space craft, or anything else you might care to create. Try using
different kinds of image assets with this technique: exterior landscapes, underwater locations, abstract
shapes, and the like would all be interesting to explore. You’ll often find inspiration for game settings by
experimenting with just a few basic elements, as you did in Chapter 10.

Pairing game environment design (both audio and visual) with interaction design (and occasionally
the inclusion of haptic feedback–like controller vibrations) is the mechanism you use to create and
enhance presence, and the relationship that environments and interactions have with the game mechanic
contributes the majority of what players experience in games. Environment design and narrative context
create the game setting, and as previously mentioned, the most successful and memorable games achieve an
excellent harmony between game setting and player experience. At this point, the mechanic from the “Game
Design Considerations” section in Chapter 9 has been intentionally devoid of any game setting context, and
you’ve only briefly considered the interaction design, leaving you free to explore any setting that captures
your interest. In Chapter 11, you’ll pair and further evolve the sci-fi setting and image assets used in the main
chapter projects with the unlocking mechanic from the “Game Design Considerations” section to create a
fairly advanced 2D platformer game-level prototype.

http://dx.doi.org/10.1007/978-1-4842-0952-3_10
http://dx.doi.org/10.1007/978-1-4842-0952-3_8
http://dx.doi.org/10.1007/978-1-4842-0952-3_10
http://dx.doi.org/10.1007/978-1-4842-0952-3_9
http://dx.doi.org/10.1007/978-1-4842-0952-3_11

441

Chapter 11

Building a Sample Game: From
Design to Completion

The projects included in the main sections of Chapters 1 to 10 began with simple shapes, slowly introducing
characters and environments to illustrate the concepts in each chapter; those projects focused on individual
behaviors and techniques (such as collision detection, object physics, lighting, and the like) but lacked the
kind of structured challenges necessary for game mechanics. The projects in the “Design Considerations”
sections demonstrate how to introduce the types of logical rules and challenges required to turn basic
behaviors into well-formed mechanics. This chapter changes the focus to emphasize the design process
from earliest conception through functional prototype, bringing together and extending the work done in
earlier projects by using the characters and environments from prior chapters along with the basic idea for
the “unlocking platformer” from the “Design Considerations” section of Chapter 10. As with earlier chapters,
the design framework utilized here begins with a simple and flexible starting template and adds complexity
incrementally and intentionally to allow the game to grow in a controlled manner.

The design exercises have until now avoided considering most of the nine elements of game design
described in the How Do You Make a Great Video Game? Section of Chapter 1 while crafting the mechanic to
stay focused on refining the core characteristics of play. The design approach used in this book is a ground-
up framework that emphasizes first working with a pure mechanic prior to considering genre or setting;
when you begin incorporating a setting and building out levels that include additional design elements, the
mechanic will grow and evolve in unique directions as you grow the game world. There are endless potential
variations for the mechanics you design, and you’ll be surprised by how differently the same elemental
mechanic develops and evolves based on the kind of game you make.

Part 1: Refining the Concept
At this point, you should have the beginning of a concept using a 2D jumping and puzzle-solving mechanic to
unlock a barrier and reach a reward. Recall Figure 11-1 as the final screen layout and design from Chapter 10.

http://dx.doi.org/10.1007/978-1-4842-0952-3_1
http://dx.doi.org/10.1007/978-1-4842-0952-3_10
http://dx.doi.org/10.1007/978-1-4842-0952-3_10
http://dx.doi.org/10.1007/978-1-4842-0952-3_1
http://dx.doi.org/10.1007/978-1-4842-0952-3_10

Chapter 11 ■ Building a Sample Game: From Design to Completion

442

Figure 11-1.  The 2D implementation from Chapter 10

This design already has a multistage solution requiring the player to both demonstrate timing-based
agility and puzzle-solving logic. In the current design, the player controls the hero character (perhaps by
using the A and D keys to move left and right and using the spacebar to jump). The player can jump between
horizontal platforms on the same level but can’t reach platforms above without using the middle “elevator”
platform that rises and falls. A horizontal “energy field” will zap the player if they touch it, causing the game
to reset. The explicit steps to completing the level are as follows:

	 1.	 The player must jump the hero character (the circle with the letter p in the center
of Figure 11-1) on the moving elevator platform (#1 in Figure 11-1) and jump off
to the middle platform of the right column before touching the energy field.

	 2.	 The player activates the off switch for the energy field by colliding the hero
character with it (#2, represented by the lightbulb icon in Figure 11-1).

	 3.	 When the energy field is switched off, the player rides the elevator platform to the
top (#3) and jumps the hero to the top platform in the right column.

	 4.	 The player collides the hero with the small circle that represents the top third of the
lock icon (#4), activating the corresponding part of the lock icon and making it glow.

	 5.	 The player jumps the hero back on the elevator platform (#5) and then jumps the
hero to the bottom platform in the right column.

	 6.	 The player collides the hero with the shape corresponding to the middle section
of the lock icon (#6), activating the corresponding part of the lock icon and
making it glow. Two-thirds of the lock icon now glow, signaling progress.

	 7.	 The player jumps the hero on the elevator platform once again (#7) and then
jumps the hero to the top platform in the left column.

	 8.	 The player collides the hero with the shape corresponding to the bottom section of
the lock icon (#8), activating the final section of the icon and unlocking the barrier.

http://dx.doi.org/10.1007/978-1-4842-0952-3_10

Chapter 11 ■ Building a Sample Game: From Design to Completion

443

Writing out this sequence (or game flow) may seem unnecessary given the mock-up screens you’ve
created for the mechanic. However, it’s important for designers to understand everything the player must do
in exact order and detail to ensure you’re able to tune, balance, and evolve the gameplay without becoming
mired in complexity or losing sight of how the player makes their way through the level. It’s clear from the
previous game flow, for example, that the elevator platform is the centerpiece of this level and is required to
complete every action. This is great information to have available in a schematic representation and game
flow description because it provides an opportunity to smartly refine the gameplay logic in a way that allows
you to visualize the effect of each change on the flow of the level.

You could continue building out the mechanic to make the level more interesting and challenging (for
example, you might include a timer on the off switch for the energy field requiring players to collide with all
lock parts in rapid succession). However, at this stage of concept development it’s often helpful to take a step
back from gameplay and begin considering game setting and genre, using those elements to help inform
how the mechanic evolves from here.

Recall from Chapter 10 that the projects ended with a set of concept explorations supporting a sci-fi
setting. Figure 11-2 shows a futuristic industrial environment design, a hero character wearing a space suit,
and what appear to be flying robots.

Note that there isn’t anything specific about the game mechanic you’ve been creating that would
necessarily lead in a sci-fi direction; game mechanics are abstract structures and can typically integrate with
any kind of setting or visual style. In this case, the authors of this book enjoy settings that take place in space
(particularly on spaceships), so this chapter will use that motif as the setting for the game prototype. As you
proceed through the design process, consider exploring alternate settings. How might the mechanic from
Chapter 10 be adapted to a jungle setting, a contemporary urban location, a medieval fantasy world, or an
underwater metropolis?

Figure 11-2.  Concepts from Chapter 10

http://dx.doi.org/10.1007/978-1-4842-0952-3_10
http://dx.doi.org/10.1007/978-1-4842-0952-3_10
http://dx.doi.org/10.1007/978-1-4842-0952-3_10

Chapter 11 ■ Building a Sample Game: From Design to Completion

444

Part 2: Integrating a Setting
It can be helpful at this stage of design to begin assigning some basic fictional background to the game. This
will help to evolve and extend the mechanic in unique ways that integrate with and enhance the setting you
choose (don’t worry if this is unclear at the moment; the mechanism will become more apparent as you
proceed with the level design). Imagine the hero character is a member of the crew on a large spaceship and
that she must complete a number of objectives to save the ship from exploding. Again, there is nothing about
the current state of the mechanic driving this narrative. The design task at this stage includes brainstorming
some fictional context that propels the player through the game. (Using the same few concept art assets
already created, the hero could be participating in a race, looking for something that was lost, exploring an
abandoned alien vessel, or any of a million other possibilities.)

Contextual Images Bring the Setting to Life
Now that you’ve described a basic fictional wrapper and mechanic (“Players must complete sequence-based
levels to save their spaceship before it explodes”), swap just a few of the shapes from the mechanic design
with some of the concept elements. Figure 11-3 introduces a humanoid hero character, platforms that feel a
bit more like spaceship components, and a barrier wall with a locked door to replace the abstract lock from
the mechanic design.

Although you’ve made only a few minor substitutions and don’t yet have the visual elements anchored
in an environment, Figure 11-3 conveys quite a bit more context and contributes significantly more to
presence than the abstract shapes of Figure 11-1. The hero character now suggests a scale that will naturally
be contextualized as players benchmark relative sizes against the human figure, which brings the relative
size of the entire game environment into focus for players. The implementation of object physics for the
hero character as described in Chapter 10 also becomes an important component of play: simulated gravity,

Figure 11-3.  The introduction of several visual design elements supporting the game setting and nascent fiction

http://dx.doi.org/10.1007/978-1-4842-0952-3_10

Chapter 11 ■ Building a Sample Game: From Design to Completion

445

momentum, and the like connect players viscerally to the hero character. This becomes an extension of
their own physical bodies. (If you’ve ever seen gamers lean in when virtually jumping or running during
gameplay, it’s this extension of physical presence through a virtually controlled object that’s responsible.)
By implementing the design as described in Figure 11-3, you’ve already accomplished some impressive
cognitive feats that support presence simply by adding a few visual elements and some object physics.

Defining the Playable Space
At this point in the design process you’ve sufficiently described the mechanic and setting to begin expanding
the single screen into a full-level concept. It’s not critical at this stage to have a final visual style defined,
but including some concept art will help guide how the level grows. (Figure 11-3 provides a good visual
representation for the amount of gameplay that will take place on a single screen given the scale of objects.)
This is also a good stage to “block in” the elements from Figure 11-3 in a working prototype to begin getting a
sense for how movement feels (for example, the speed the hero character runs, the height the hero can jump,
and so on), the scale of objects in the environment and the zoom level of the camera, and the like. There’s no
need to include interaction behaviors such as the lock components or the energy field at this stage because
you haven’t yet designed the level; you’re still working with the abstract schematic layout for the sequencing
mechanic, and the next set of tasks includes laying out the full level and tuning all the interactions. At this
stage you’re experimenting with basic hero character movement, object placement, and collision.

The current state of the design in Figure 11-3 still needs some work to provide sufficient challenge.
While all the elements of a well-formed level are in place, the current difficulty is trivial, and most players
will likely be able to complete the level quickly. There is, however, a strong foundation to begin extending the
jumping and sequencing mechanic; to begin, extend the horizontal game space to include a more playable
area and provide additional room for the character to maneuver, as shown in Figure 11-4.

Recall from the Simple Camera Manipulations project in Chapter 7 that you can “push” the game screen
forward by moving the character close to the edge of the bound region. You might choose to keep this level
contained to the original game screen size, of course, and increase the complexity of the timing-based agility
and logical sequence challenges (and indeed it’s a good design exercise to challenge yourself to work within
space constraints), but for the purposes of this design, a horizontal scrolling presentation will drive game
progression.

Figure 11-4.  The level design grows to include an additional playable area

http://dx.doi.org/10.1007/978-1-4842-0952-3_7

Chapter 11 ■ Building a Sample Game: From Design to Completion

446

Adding Layout to the Playable Space
It’s now time to begin laying out the level to make good use of the additional space. There’s no need to
change the gameplay at this point; you just need to work with the new dimensions of the game screen.
Figure 11-5 includes some additional platforms placed with no particular methodology other than ensuring
players can successfully reach each platform.

Now that the level has some additional space to work with, there are several factors to evaluate and
tune. The scale of the hero character in Figure 11-5 has been slightly reduced, for example, to increase
the number of vertical jumps that can be executed on a single screen. Note that at this point you also have
the opportunity to include additional vertical gameplay in the design if desired, implementing the same
mechanism used to move the camera to the left and right; many 2D platformer games allow players to
move through the game world both horizontally and vertically. This level prototype will limit movement to
the x plane (left and right), although you can easily extend the level design to include vertical play in future
iterations and/or subsequent levels.

As you’re placing platforms in the level, you will again want to minimize design complexity while
blocking out the game flow. Figure 11-5 adds one additional design element, a platform that moves left to
right. Try to list the detailed sequence required to activate the three lock sections in Figure 11-5 using the
same numbering methodology shown in Figure 11-1. When you’re finished mapping out the sequence,
compare it with Figure 11-6.

Figure 11-5.  Expanding the layout to use the additional screen real estate, the diagram represents the entire
length of stage 1 with the player able to see approximately 50 percent of the full level at any time. The camera
moves forward or backward as the player moves the hero character toward the screen bound regions (for the
moving platforms, darker arrows represent direction, an lighter arrows represent the range of movement)

Figure 11-6.  The most efficient sequence to unlock the barrier

Chapter 11 ■ Building a Sample Game: From Design to Completion

447

Did your sequence match Figure 11-6, or did you have extra steps? There are many potential paths
players can take to complete this level, and it’s likely that no two players will take the same route (the only
requirement from the mechanic design is that the lock sections be activated in order from top to bottom).

Tuning the Challenge and Adding Fun
Design aside: this stage of design is when the puzzle-making process really begins to open up; Figure 11-6
shows the potential to create highly engaging gameplay with only the few basic elements you’ve been
working with. The authors’ studio uses the previous template and many similar variations in brainstorming
sessions for many kinds of games, introducing one or two novel elements to a well-understood mechanic
and exploring the impact new additions have on gameplay; the results often open exciting new directions.
As an example, you might introduce platforms that appear and disappear, platforms that rotate after a
switch is activated, a moving energy field, teleporting stations, and so on. The list of ways you can build out
this mechanic is limitless, but there is enough definition with the current template that adding a single new
element is fairly easy to experiment with and test, even on paper.

There are two factors with the newly expanded level design that increase the challenge. First, the
addition of the horizontally moving platform requires players to time the jump to the “elevator” platform
more precisely (if they jump while the platform is ascending, there is little time to deactivate the energy
field before it zaps them). The second factor is less immediately evident but equally challenging: only a
portion of the level is visible at any time, so the player is not able to easily create a mental model of the entire
level sequence like they can when the entire layout is visible on a single screen. It’s important for designers
to understand both explicit challenges (such as requiring players to time jumps between two moving
platforms) but also less obvious (and often unintentional) challenges such as being able to see only part of
the level at any given time. Think back to a game you’ve played where it felt like the designers expected you
remember too many elements; that kind of frustration is often the result of unintentional challenges over-
burdening what the player can reasonably hold in short-term memory.

As a designer, you need to be aware of unintentional challenges and areas of unintentional frustration
or difficulty. This is a key reason it’s vital to observe people playing your game as early and often as possible
(as a general rule, any time you’re 100 percent certain you’ve designed something that makes perfect sense,
at least half the people who play your game will tell you exactly the opposite). Although a detailed discussion
of the benefits of user testing is outside the scope of this book, you should plan to observe people playing
your game from the earliest proof-of-concept all the way to final release. There is no substitute for the
insights you’ll gain from watching different people play what you’ve designed.

The level currently assumes the hero character can rest only on platforms; although there’s no design
plan for what happens if the character misses a jump and falls to the bottom of the screen, players might
reasonably imagine that it would result in a loss condition and trigger a game reset. If you added a “floor”
to the level, gameplay would noticeably change. In addition to removing a significant risk, players would be
able to access the elevator platform directly, as shown in Figure 11-7.

Figure 11-7.  The addition of a “floor” to the game world significantly changes the level challenge

Chapter 11 ■ Building a Sample Game: From Design to Completion

448

Further Tuning: Introducing Enemies
You’re now experimenting with variations on the level layout to evolve it along with the setting and looking
for ways to increase player engagement while also upping the challenge (if desired). Prior to adding a floor,
the level had two risks: failing to land on a platform and colliding with the energy field. The addition of the
floor removes the falling risk and decreases the challenge of the level, but you might decide that the floor
encourages players to more freely explore and pay closer attention to the environment. You’re becoming
increasingly conversant with the gameplay and flow for this mechanic and layout, so it’s time to introduce
a new element: attacking enemies (you can’t let those robot designs from previous chapters go to waste)!
Figure 11-8 introduces two basic enemy robot types: one that fires a projectile and one that simply patrols.

You’ve reached a turning point in the design of this level, where the setting is now exerting a significant
influence on the evolution of the mechanic. The core of the mechanic hasn’t changed from Chapter 10. This
level is still fundamentally about activating sections of a lock in the proper sequence to remove a barrier;
moving platforms and attacking enemies are additional obstacles that add incremental challenge to play,
strongly influenced by the particular setting you’ve chosen.

You certainly could have added the attacking enemy behavior while still working with abstract shapes
and pure mechanics. However, it’s worth noting that the more complex and multistaged a mechanic
becomes, the more the setting will need to conform to the implementation; this is why transitioning from
purely abstract mechanic design to laying out a level (or part of a level) in the context of a particular setting
when the mechanic is still fairly elemental is helpful. Designers typically want the game mechanic to feel
deeply integrated with the game setting, so it’s beneficial to allow both to develop in tandem. Finding that
sweet spot can be challenging. Bring in the setting too soon and you lose focus on refining pure gameplay;
bring in the setting too late, and gameplay may feel like an afterthought or something that’s bolted on.

General Considerations
Returning to the current design as represented in Figure 11-8, you now have all the elements required to
create a truly engaging sequence situated in an emerging setting. Players will need to observe patterns of
movement for both platforms and enemies to time their jumps so they can navigate the level without getting
zapped or rammed, all while discovering and solving the unlocking puzzle; you can also fairly easily tune
the movement and placement of individual units to make the challenge harder or easier. Note how quickly
the level went from trivially easy to complete to potentially quite challenging. Working with multiple moving
platforms adds an element of complexity, and the need to use timing for jumps and adding attacking
enemies—even the simple enemies from Figure 11-8 that are locked into basic movement patterns—opens
nearly unlimited possibilities to create devious puzzles in a controlled and intentional way.

Figure 11-8.  Two new object types are introduced to the level: a shooting robot (#1) that moves vertically and
fires at a constant rate and a patrolling robot (#2) that moves back and forth in a specific range

http://dx.doi.org/10.1007/978-1-4842-0952-3_10

Chapter 11 ■ Building a Sample Game: From Design to Completion

449

If you haven’t already, now is a good time to prototype your level design (including interactions) in
code to validate gameplay. For this early-level prototype, it’s only important that major behaviors (running,
jumping, projectile firing, moving platforms, object activations, and the like) and steps required to complete
the level (puzzle sequences) are properly implemented. Some designers insist at this stage that players
who have never encountered the level before should able to play through the entire experience and fully
understand what they need to do with little or no assistance, while others are willing to provide direction
and fill in gaps around missing onscreen UI and incomplete puzzle sequences. In the authors’ studio,
we typically playtest and validate major sections of gameplay at this stage and provide playtesters with
additional guidance to compensate for incomplete UI or unimplemented parts of a sequence. As a general
rule, the less you need to rely on over-the-shoulder guidance for players at this stage, the better your insights
into the overall design will be. The amount of the early-level prototype you’ll implement at this stage also
depends on the size and complexity of your design. Large and highly complex levels may be implemented
and tested in several (or many) pieces before the entire level can be played through at once, but even in the
case of large and complex levels, the goal is to have the full experience playable as early as possible.

■■ Note  If you’ve been exploring the working prototype included with this book, you’ll discover some minor
variations between the design concepts in this chapter and the playable level (the energy field was not included
in the working prototype, for example). Consider exploring alternate design implementations with the included
assets; exploration and improvisation are key elements of the creative-level design process. How many
extensions of the current mechanic can you create?

Part 3: Integrating Additional Design Elements
The prototype you’ve been building in this chapter would serve as an effective proof of concept for a
full game at its current level of development, but it’s still missing many elements typically required for a
complete game experience (including visual detail and animations, sounds, scoring systems and other win
conditions, menus and user interface [UI] elements, and the like). In game parlance, the prototype level is
now at the “blockout-plus” stage (blockout is a term used to describe a prototype that includes layout and
functional gameplay but lacks other design elements; the inclusion of some additional concept art is the
“plus” here). It’s now a good time to begin exploring audio, scoring systems, menu and onscreen UI, and
the like. If this prototype were in production at a game studio, a small group might take the current level to
a final production level of polish and completeness while another team worked to design and prototype
additional levels. A single level or a part of a level that’s taken to final production is referred to as a vertical
slice, meaning that one small section of the game includes everything that will ship with the final product.
Creating a vertical slice is helpful to focus the team on what the final experience will look, feel, and sound
like and can be used to validate the creative direction with playtesters.

Visual Design
Although you’ve begun integrating some visual design assets that align with the setting and narrative, the
game typically will have few (if any) final production assets at this time, and any animations will be either
rough or not yet implemented (the same is true for game audio). While it’s good practice to have gameplay
evolve in parallel with the game setting, studios don’t want to burn time and resources creating production
assets until the team is confident that the level design is locked and they know what objects are needed and
where they’ll be placed.

Chapter 11 ■ Building a Sample Game: From Design to Completion

450

You should now have a fairly well-described layout and sequence for your level design. (If you’ve
been experimenting with a different layout compared to what’s shown in the examples, make sure you
have a complete game flow described, as in Figure 11-1 and Figure 11-6.) At this point in the project, you
can confidently begin “rezzing in” production assets (rezzing in is a term used by game studios to mean
“increasing the visual polish and overall production quality of the level over time”). Rezzing in is typically a
multistage process that begins when the major elements of the level design are locked, and it can continue
for most of the active production schedule. There are often hundreds (or thousands) of individual assets,
animations, icons, and the like that will typically need to be adjusted a number of times based on the
difference between how they appear outside the game build compared to inside the game build. Elements
that appear to harmonize well in isolation and in mockups often appear quite differently after being
integrated into the game.

The process of rezzing in assets can be tedious (there always seems to be an order of magnitude more
assets than you think there will be) and frustrating (it can be challenging to make things look as awesome
in the game as they do in artist mockups). However, it’s also typically a satisfying time: something magical
happens to a level design as it transitions from blockout to polished production level, and there will usually
be one build where a few key visual assets have come in that make the team say “Wow, now this feels like our
game!” For AAA 3D games, these “wow” moments frequently happen as high-resolution textures are added
to 3D models and as complex animations, lighting, and shadows bring the world to life; for the current
prototype level, adding a parallaxing background and some localized lighting effects should really make the
spaceship setting pop.

The working prototype included with this book represents a build of the final game that would typically
be midway between blockout and production polish. The hero character includes several animations
states (idle, run, jump), localized lighting on the hero and robots adds visual interest and drama, the level
features a two-layer parallaxing background with normal maps that respond to the lighting, and major game
behaviors are in place.

Game Audio
Many new game designers (and even some veteran designers) make the mistake of treating audio as
less important than the visual design, but as every gamer knows, bad audio in some cases can mean the
difference between a game you love and a game you stop playing after a short time. Audio is an interesting
topic in 2015. As with visual design, audio often contributes directly to the game mechanic (countdown
timers, warning sirens, positional audio that signals enemy location, for example), and background scores
enhance drama and emotion in the same way directors use musical scores to support the action on film).
However, all audio in mobile games is often considered optional because many players mute the sound
on their mobile devices. Well-designed audio, however, can have a dramatic impact on presence even for
mobile games. In addition to sounds corresponding to game objects (walking sounds for characters who
walk, shooting sounds for enemies who fire, popping sounds for things that pop, and the like), contextual
audio attached to in-game actions is an important feedback mechanism for players. Menu selections,
activating in-game switches, and the like should all be evaluated for potential audio support. As a general
rule, if an in-game object responds to player interaction, it should be evaluated for contextual audio.

Audio designers work with level designers to create a comprehensive review of game objects and events
that require sounds, and as the visuals rez in, the associated sounds will typically follow. Game sounds often
lag behind visual design because audio designers want to see what they’re creating sounds for. It’s difficult
to create a “robot walking” sound, for example, if you can’t see what the robot looks like or how it moves. In
much the same way that designers want to tightly integrate the game setting and mechanic, audio engineers
want to ensure that the visual and audio design work well together.

Chapter 11 ■ Building a Sample Game: From Design to Completion

451

Interaction Model
The current prototype uses a common interaction model. A and D keys on the keyboard move the character
right and left, and the spacebar is used to jump. Object activations in the world happen simply by colliding
the hero character with the object, and the complexity is fairly low. Imagine, however, that as you continue
building out the mechanic (perhaps in later levels), you include the ability for the character to launch
projectiles and collect game objects to store in inventory. As the range of possible interactions in the game
expands, complexity can increase dramatically, and unintentional challenges (as mentioned previously)
can begin to accumulate, which can lead to bad player frustration (as opposed to “good” player frustration,
which results from intentionally designed challenges).

It’s also important to be aware of the challenges encountered when adapting interaction models
between different platforms. Interactions designed initially for mouse and keyboard often face considerable
difficulty when moving to a game console or touch-based mobile device. Mice and keyboard interaction
schemes allow for extreme precision and speed of movement compared to the imprecise thumb sticks of
game controllers, and although touch interactions can be precise, screens tend to be significantly smaller
and obscured by fingers covering the play area. The industry took many years and iterations to adapt the
first-person-shooter (FPS) genre from using mice and keyboards to game consoles (for example), and there
are still no definitive FPS conventions for touch devices (which is largely responsible for why so few FPS
games ship on tablets and phones). Many designers prototype games on PCs that they hope to eventually
deliver on mobile devices and are often surprised at the difficulty in translating interaction metaphors. If you
plan to deliver a game across platforms, make sure you consider the unique requirements of each as you’re
developing the game.

Game Systems and Meta Game
The current prototype has few systems to balance and does not yet incorporate a meta game, but imagine
adding elements that require balancing such as variable-length timers for object activations and the energy
field. If you’re unsure what this means, consider the following scenario. The hero character has two potential
ways to deactivate the energy field, and each option is a trade-off. The first option perhaps deactivates
the energy field permanently but spawns more enemy robots and considerably increases the difficulty in
reaching the target object, while the second option does not spawn additional robots but only deactivates
the energy field for a short time, requiring players to choose the most efficient path and execute nearly
perfect timing. To balance effectively between the two options, you need to understand the design and
degree of challenge associated with each system (unlimited versus limited time). Similarly, if you added
hit points to the hero character and made the firing robot create x amount of damage while the charging
minion creates y amount of damage per hit, you’d want to understand the relative trade-offs between paths
to objectives, perhaps making some paths less dangerous but more complex to navigate, while others might
be faster to navigate but more dangerous.

As with most other aspects of the current design, there are many directions you could choose to pursue
in the development of a meta game; what might you provide to players for additional positive reinforcement
or overarching context as they played through a full game created in the style of the prototype level? As one
example, imagine that players must collect a certain number of objects to access the final area and prevent
the ship from exploding. Perhaps each level has one object that required players to solve a puzzle of some
kind before they could access it, and only after collecting the object would they then be able to solve the
door-unlocking component of the level. Alternatively, perhaps each level has an object players can access
to unlock cinematics and learn more about what happened on the ship for it to reach such a dire state. Or
perhaps players are able to disable enemy robots in some way and collect points, with a goal to collect as
many points as possible by the end of the game.

Chapter 11 ■ Building a Sample Game: From Design to Completion

452

Perhaps you’ll choose to forego traditional win and loss conditions entirely. Games no longer always
focus on explicit win and loss conditions as a core component of the meta game, and for a growing
number of contemporary titles, especially indie games, it’s more about the journey than the competitive
experience (or the competitive element becomes optional). Perhaps you can find a way to incorporate both
a competitive aspect (for example, score the most points or complete each level in the shortest time) with
meta game elements that focus more on enhancing play.

A final note on systems and meta game: player education (frequently achieved by in-game tutorials)
is an important component of these processes. Designers become intimately acquainted with how the
mechanics they design function and how the controls work, and it’s easy (and common) to lose awareness
of how the game will appear to someone who encounters it for the first time. Early and frequent playtests
help provide information about how much explanation players will require in order to understand what they
need to do, but most games require some level of tutorial support to help teach the rules of the game world.
Tutorial design techniques are outside the scope of this book. However, it’s most effective to teach players
the logical rules and interactions of the game as they play through an introductory level or levels. It’s also
more effective to show players what you want them to do rather than making them read long blocks of text.
(Research shows that many players never access optional tutorials and will dismiss tutorials with excessive
text without reading them; one or two very short sentences per tutorial event is a reasonable target.) If you
were creating an in-level tutorial system for your prototype, how would you implement it? What do you
think players would reasonably discover on their own versus what you might need to surface for them in a
tutorial experience? If you haven’t played mobile games recently, it’s worth exploring a few titles and paying
attention to how they integrate tutorial content with gameplay.

User Interface (UI) Design
Game UI design is important not just from a functionality perspective (in-game menus, tutorials, and
contextually important information such as health, score, and the like) but also as a contributor to the
overall setting and visual design of the experience. Game UI is a core component of visual game design that’s
frequently overlooked by new designers and can mean the difference between a game people love and a
game nobody plays. Think back to games you’ve played that make use of complex inventory systems or that
have many levels of menus you must navigate through before you can access common functions or items;
can you recall games where you were frequently required to navigate through multiple sublevels to complete
often-used tasks? Or perhaps games that required you to remember elaborate button combinations to access
common game objects?

Elegant and logical UI is critical to player comprehension, but aesthetically integrated UI also supports
the game setting and narrative. Using the current prototype and proposed systems design as reference,
how would you visually represent game UI in a way that supported the setting and aesthetic? If you haven’t
spent time evaluating UI before (and even if you have), revisit several games with sci-fi settings and pay
particular attention to how they integrate UI elements visually in the game screen. Figure 11-9 shows the
weapon customization UI from Visceral Games’ Dead Space 3. Note how the interface design is completely
embedded within the game setting, represented as an information screen on the fictional ship.

Chapter 11 ■ Building a Sample Game: From Design to Completion

453

Many games choose to house their UI elements in reserved areas of the game screen (typically around
the outer edges) that don’t directly interact with the game world; however, integrating the visual aesthetic
with the game setting is still important and contributes directly to presence. Imagine the current sci-fi
prototype example with a fantasy-themed UI and menu system, using the kind of medieval aesthetic design
and calligraphic fonts used for a game like Bioware’s Dragon Age, for example; the resulting mismatch would
be jarring and likely to pull players out of the game setting. User interface design is a high-level discipline
that can be challenging to master; you’ll be well-served, however, by spending focused time to ensure
elegant and aesthetically appropriate UI integration into the game worlds you create.

Game Narrative
You’ve added just a basic narrative wrapper to the prototype example: a hero character must complete a
number of objectives to prevent her spaceship from exploding. At the moment, you haven’t exposed this
narrative to players at all, and they have no way of knowing the environment is on a spaceship or what the
objective might be other than perhaps eventually unlocking the door at the far right of the screen. Designers
have a number of options for exposing the game narrative to players. You might create an introductory
cinematic or animated sequence that introduces players to the hero character, her ship, and the crisis.
Perhaps choose something simple like a pop-up window at the start of the level with brief introduction text
that provides players with the required information. Alternatively, you might not provide any information
about what’s happening when the game starts but instead choose to slowly reveal the dire situation of the
ship and the objectives over time as the player proceeds through the game world. You could even choose
to keep any narrative elements implied, allowing players to overlay their own interpretation. As with many
other aspects of game design, there’s no single way to introduce players to a narrative and no universal
guidance for how much (or how little) narrative might be required for a satisfying experience.

Figure 11-9.  Most UI elements in Visceral Games’ Dead Space 3 are represented completely within the game
setting and fiction, with menus appearing as holographic projections invoked by the hero character or on
objects in the game world (image copyright Electronic Arts)

Chapter 11 ■ Building a Sample Game: From Design to Completion

454

Narrative can also be used by designers to influence the way levels are evolved and built out even if
those elements are never exposed to players. In the case of this prototype, it’s helpful as the designer to
visualize the threat of an exploding ship to propel the hero character through a series of challenges with a
sense of urgency; players, however, might experience a well-constructed side-scrolling action platformer
only with a series of devilishly clever levels. You might create additional fiction around robots that have been
infected with a virus, causing them to turn against the hero as a reason for their attack behavior (as just one
example). By creating a narrative framework for the action to unfold within, you’re able to make informed
decisions about ways to extend the mechanic that feel nicely integrated into the setting even if you don’t
share all the background with players.

Of course, some game experiences have virtually no explicit narrative elements either exposed to
players or not and are simply implementations of novel mechanics. Games like Zynga’s Words with Friends
and Gabriele Cirulli’s hit 2048 are examples of game experiences purely based on a mechanic with no
narrative wrapper.

If you continue developing this prototype, how much narrative would you choose to include, and how
much would you want to expose to players to make the game come alive?

Bonus Content: Adding a Second Stage to the Level
If you’ve completed playing through stage 1 of the included prototype, you’ll enter a second room with a
large moving unit. This is a sandbox with a set of assets for you to explore. The prototype implementation
includes just some basic behaviors to spark your imagination: a large, animated level boss unit hovers in the
chamber and produces a new kind of enemy robot that seeks out the hero character, spawning a new unit
every few seconds.

Figure 11-10 shows a layout in the style you’ve been using to prototype basic mechanics.

Figure 11-10.  This is a possible second stage the hero character can enter after unlocking the door in stage 1.
This concept includes a large “boss” unit with three nodes; one objective for this stage might be to disable each
of the nodes to shut the boss down

It’s a bit of a shortcut to begin the mechanic exploration with the diagram in Figure 11-10, but
because you’ve already identified the setting and a number of visual elements, it can be helpful to
continue developing new stages with some of the visual assets already in place. The diagram includes
the same kind of platforms used in stage 1, but what if (for example) this area had no gravity and the hero
character was able to fly freely? Compare this area with stage 1, and think about how you might slightly
alter the experience to mix things up a bit without fundamentally changing the game; you’ve ideally
become fairly fluent with the sequencing mechanic from stage 1, and the experience in stage 2 can be a
greater or lesser evolution of that mechanic.

Chapter 11 ■ Building a Sample Game: From Design to Completion

455

If you choose to include the hero-seeking flying robot units, the game flow diagram will become more
complex than the model used in stage 1 because of the unpredictable movement of the new robot types. You
may also want to consider a mechanism for the hero character to eliminate the robot units (perhaps even
working the removal of robot units into the mechanic for disabling the nodes on the boss). If you find your
designs becoming difficult to describe as part of an explicit and repeatable game flow, it may signal that
you’re working with more complex systems and may need to evaluate them in a playable prototype before
you can effectively balance their integration with other components of the level. Of course, you can also
reuse conventions and units from stage 1. You might choose to combine patrolling robots with hero-seeking
robots and an energy field, creating a challenging web of potential risks for the player to navigate as they
work to disable the boss nodes.

You might also decide that the main objective for the level is to enable the boss nodes in order to unlock
the next stage or level of the game. You can extend the narrative in any direction you like, so units can be
helpful or harmful, objectives can involve disabling or enabling, the hero character can be running toward
something or away from something, or any other possible scenario you can imagine. Remember, narrative
development and the level design will play off each other to drive the experience forward, so stay alert for
inspiration as you become increasingly fluent with the level designs for this prototype.

Summary
Game design is unique among the creative arts in the ways it requires players to become active partners
in the experience, which can change dramatically depending on who’s in the driver’s seat. Although some
games share quite a bit in common with cinema (especially as story-driven indie games become more
popular), there’s always an unpredictable element when the player controls the action to a greater or lesser
extent. Unlike movies and books, video games are interactive experiences that demand constant two-way
engagement with players, and poorly designed mechanics or levels with unclear rules can block players
from making progress through the experience you’ve created.

The design methodology presented in this book focuses first on teaching you the letters of the design
alphabet (basic interactions), leading into the creation of words (game mechanics), followed by sentences
(levels); we hope you’ll take the next step and begin writing the next great novel (full-game experiences in
existing or entirely new genres). The “escape the room” design template can be used to quickly prototype
a wide range of mechanics for many kinds of game experiences, from the included 2D side-scroller to
isometric games to first-person experiences and more. Remember, game mechanics are fundamentally
well-formed abstract puzzles that can be adapted as needed. If you find yourself having difficulty
brainstorming new mechanics in the beginning, borrow some simple mechanics from common casual
games (“match 3” variants are a great source for inspiration) and start there, adding one or two simple
variations as you go. As with any creative discipline, the more you practice the basics, the more fluent
you’ll become with the process. After you’ve gained some experience with simple mechanics and systems,
you’ll likely be surprised by the number of interesting variations you can quickly create, and some of those
variations might just contribute to the next breakthrough title.

This book demonstrates the relationship between the technical and experiential aspects of game
design. Designers, developers, artists, and audio engineers must work in close partnership to deliver the best
experiences, taking issues such as performance/responsiveness, user inputs, system stability, and the like
into consideration throughout production. The game engine you’ve developed in this book is well-matched
for the type of game described in this chapter (and many others). You should now be ready to explore your
own game designs with a strong technical foundation to build upon and a global understanding of how the
nine elements of game design work together to create experiences that players love.

457

�       � A
addAsShadowCaster() function, 435
Ambient light

background light, 274
camera and scene objects, 279
color and intensity, 275
DefaultResources.js file, 278
functionality, 279
GLSL shaders, 276–277
minion_sprite.png, 276
mPublic() function list, 278
MyGame.js, 278
real time, 274
RGB values, 281
shader/renderable structure, 275
SimpleShader, 277–278
update function, 280

Angry Birds, 12
Audio, video games

asyncLoadCompleted(), 119
AudioClips engine, 118
BlueLevel constructor, 124
external resources, 117
file formats, 118
game engine development, 118
initialize() function, 123
isAssetLoaded() function, 121
isKeyClicked() function, 125
isKeyPressed() function, 125
loadAudio() function, 119, 122
load commands, 121
loadScene() function, 122
MapEntry object, 121
mAudioContext, 118
mAudioContext.decodeAudioData(), 119
mBgAudioNode, 120
MyGame scene, 122
playACue() function, 120
reference counts, 117
ResourceMap.asyncLoadCompleted(), 119

ResourceMap.incAssetRefCount(), 119
ResourceMap.isAssetLoaded(), 119
sound effects, 116
unloadAsset() function, 122
update() function, 123

�       � B
Background

AAA first-person-shooter experience, 439
aperture laboratories playground, 440
creative process, 439
engine development, 419
game designers, 439
game engine, 439
groundbreaking games, 439
large-scale parallaxing environments, 440
layer management, 432
Layer Manager Project, 432–438, 440
motion parallax, 426–428, 438
parallax, 420
ParallaxGameObject in MyGame, 430–431
parallaxing environment objects, 440
ParallaxObjects project, 428–430
players experience, 440
professional game designers, 439
Shadow Shaders project, 440
side-scrolling game, 419
test tiled objects, 425–426
TiledGameObject, 422–424
tiled objects project, 421–422
Tiled Objects project, 440
tiling, 419–420
visual complexity, 420

Birds–style block destruction games, 365
Bounding box

and collisions project (see Collisions project)
definition, 209–210
description, 207
in engine, 211
lower-left corner and size of object, 207

Index

■ index

458

WC rectangular area/WC window, 207
with MyGame, 212

BoundingBox class, 371
Brain GameObject, 205–206

�       � C
Camera

Camera Objects Project, 71–74
testing, 74–76

Camera manipulation
abrupt transitions, 234
abstraction mechanism, 233
aXform object, 236
behaviors, 233, 267
canvas coordinate space, 266
clampAtBoundary() function, 236, 239
convenient functions, 234
Dye character, 235
external resources, 236
functionality, 240
game programmer, 234
Hero object, 239
HTML canvas, 233
lighting, 267
minion_sprite.png, 236
MyGame.js file, 238
panTo() function, 239
panWidth() function, 237
Portal object, 235
setUpViewProjection()

function, 233
source code, 234, 236
target position, 238
Transform object, 237
update() function, 238
utility functions, 266
video camera, 234
WASD keys, 235
WC, 233
zone variable, 236
zoomBy() function, 238
zoom functions, 234
zoomTowards() function, 238

Camera modification
per-render invocation, 290
setUpViewProjection() function, 291
transformation, 290–292
utility functions, 290
WC space, 290

Camera shake project
abstraction layer, 251
CameraState parameter, 251
constructor, 251

disorientation, 247
displacements, 251
Dye character, 248
frac variable, 249
harmonic motion, 247, 249
mathematical formulations, 246
Math.random() function, 250
mCamera.shake() function, 253
modeling displacements, 249
nextDampedHarmonic() function, 250
portal object, 248
pseudorandomness, 247, 250
resource files, 249
setting functions, 251
setUpViewProjection() function, 252
shakeDuration parameter, 249, 253
shakeFrequency parameter, 249, 253
ShakePosition.js, 249
source code, 247
trigonometric functions, 247
update() function, 253
xDelta and yDelta variables, 249

Candy Crush, 11
clamp() function, 376
Client source code

index.html body element, 39
src/MyGame folder, 38

collide() function, 378
collided() function, 377, 388–389
collidedCircCirc() function, 378, 388
collidedRectCirc() function, 375
collidedRectRect() function, 377, 387
Collision resolution

axis-aligned rigid rectangles and
circles, 381

CollisionInfo object, 385
observations, 396
physics engine component, 389–390, 392–396
Rigid Circle collision, 388–389
RigidRectangle collision, 387–388
RigidShape collision, 385–387
Rigid Shape Impulse project

(see Rigid Shape Impulse project)
symplectic Euler integration, 383–384
testing impulse resolution, 396

Collisions project
controls of, 208
goals of, 209
running of, 208

containsPos() function, 377–378
Coordinate systems and transformations

major axes, 61
NDC (see Normalized device coordinates

(NDC) system)
origin, 61

Bounding box (cont.)

■ Index

459

2D Cartesian, 61–62
WC system (see World coordinate (WC) system)

Cross product, 199–200

�       � D
Diffuse reflection

3D shapes, 315
activateShader() function, 309
activateTexture() function, 313
boundary surfaces, 302
cleanUp() function, 312
color texture, 304
createShaders() function, 312
default system, 306
Engine_DefaultResources.js, 311
GLSL shader, 306
human vision system, 303–304
IllumFS.glsl file, 306
IllumRenderable object, 310–311
IllumShader object, 305
initialize() function, 312
JavaScript IlluminationShader, 309
light attenuation, 307
light computation, 305
LightEffect() function, 307
map integration, 306
minion_sprite_normal.png, 306
normalized vector, 302
normal mapping, 303
peculiar effect, 302
public function, 312
resource files, 306
RGB channels, 303
static background, 315
surface normal vectors, 302
texture mapping, 303
TextureShader object, 310
texture uv coordinates, 308
uNormalSampler, 308
WebGL texture, 309, 313

Dot product, 198–199
draw() function, 373–374, 401
Drawing operations

encapsulation, 47, 48
subregions, 47

Drawing operations. See Renderable Objects project
Draw One Square project

global variable gSquareVertexBuffer, 25
GLSL shaders (see GLSL shaders)
goals of, 24
initSquareBuffer() function, 25
running of, 23–24
STATIC_DRAW informs, 25
VertexBuffer.js., 24

The DyePack GameObject, 192–193
DyePack objects, 397

�       � E
Engine core initialization

gEngine.Core.initializeEngineCore(), 103
initializeEngineCore() function, 102
onload event, 102
SimpleShaders, 103

Engine_Core.js file, 396
Engine core modification

caster support, 345
clearCanvas() function, 346
Engine_DefaultResources.js, 346
GLSL shaders, 345
initializeWebGL() function, 345
shadow caster object, 346–348, 350
SpriteShader, 346
WebGL stencil buffer, 345

Engine_GameLoop.js file, 396
Engine_Physics.js file, 393
Extensible Markup Language (XML), 105

�       � F
First-person-shooter (FPS) genre, 451
FontRenderable objects

aString variable, 175
bitmap fonts, 170–171
CharacterInfo, 174
cleanUp() function, 178
Consolas-72.png, 172
draw() function, 175
Engine_VertexBuffer.js, 178
GameOver scene, 180–181
gEngine_DefaultResources, 178
gEngine_Fonts, 175
getCharInfo() function, 176
initialize() function, 177
initText() function, 182
loadScene() function, 181
minion_sprite.png, 172
mOneChar variable, 175
mOneChar.setElementUVCoordinate()

function, 176
MyGame scene, 181, 183–184
ResourceMap.retrieveAsset(), 174
setFont() function, 183
setTextHeight() function, 177
SimpleShader.js, 179
storeLoadedFont() function, 173
system-default-font, 172
unloadScene() function, 181
uv coordinates, 173

■ index

460

Front and chase project
controls of, 201
functionality

Brain GameObject, 205–206
MyGame Scene, 206–207

GameObject modification, 202–205
gl-matrix library, 202
goals of, 201
running of, 200–201

�       � G
Game design

2D jumping and puzzle-solving
mechanic, 441–442

activation, 269–270, 361
assortment, 269
attacking enemy, 448
basic narrative wrapper, 453–454
“blockout-plus” stage, 449
bonus content, 454–455
challenge, 447
chiaroscuro techniques, 357
contextual images, 444
dark environment, 358
development teams, 362
early-level prototype, 449
“elevator” platform, 442
experience, 455
explicit steps, 442
flashlight, 359–360
frustration, 272
game audio, 450
game environment, 357
game systems and meta game, 451–452
genres, 267
hero character, 268, 270, 357
horizontal “energy field”, 442
interaction model, 267, 362, 451
interactive experience, 267
keyboard support project, 268
lighting, 357
localized environment, 357
logical consistency, 269, 272, 362
mastering, 267
mechanics, 268, 356
metaphors, 361
mini-map, 272
multistage task, 271
playable space, 445, 447
player controls, 358
puzzle-solving game, 272
reinforcement, 267
sci-fi setting, 443
sequence, 271

sequencing principles, 361
technical and experiential aspects, 455
user interface (UI) design, 452–453
visual design, 449
well-formed mechanics, 441

Game engine
gEngine.Core, 32–34
resource management subsystem, 32
self-contained subsystems, 32
single-instance/Singleton-like objects, 32

Game loop
draw() functions, 83
draw() operation, 79
Engine_GameLoop.js, 81
Engine_VertexBuffer, 81
frame rate, 78
incRotationByDegree(), 85
incSizeBy() functions, 85
initialize() function, 83
kMPF interval, 86
pseudocode, 78
real time, 78
requestAnimationFrame() function, 82
runLoop() function, 82, 84
runLoop.call(mMyGame), 82
source code, 79
start() function, 83
update() function, 79, 85

Game objects. See also Game Objects project
chasing behavior, 196
initialize() and update() functions, 188

Game Objects project
definition, 191
The DyePack GameObject, 192–193
goals of, 189
The Hero GameObject, 193
The Minion GameObject, 194
MyGame Scene, 194–195
new sprite elements, minion_sprite.png

image, 189–190
renderable and shader objects

modification, 190–191
running of, 188–189
set management, 191–192
WASD keys, 189

Generalized per-pixel collisions project
axes-aligned texture, 223
controls of, 224
GameObject_PixelCollision.js

modification, 226–227
goals of, 224
rotated texture and component

vectors, 223
running of, 224
testing, 227

■ Index

461

TextureRenderable_PixelCollision
modification, 225–226

two normalized component vectors, vector
decomposition, 222

gEngine.Core property, 32–34
Geometric data and OpenGL Shading Language

(GLSL), 23
gl.blendFunc() setting, 403
GLCanvas, canvas element, 17
glMatrix Library, 53–54
GLSL. See Geometric data and OpenGL Shading

Language (GLSL)
GLSL shaders

activateShader() function, 137
aTextureCoordinate attribute, 134
description, 26
mShaderVertexPositionAttribute, 137
sampler2D data, 134
ShaderSupport.js source file, 26
SimpleShader object, 136
SimpleShader.call() syntax, 137
syntax, C programming, 26
texture2D() function, 135
TextureShader.js, 137
texture vertex, 133
TextureVS.glsl, 133
uPixelColor, 135
varying vTexCoord, 134
vertex and fragment shaders (see tex and

fragment shaders)
vertexShaderPath, 137

�       � H
Heads-up display (HUD) layer, 432
The Hero GameObject, 193
Hero.js file, 380
HTML5 Canvas project

editing index.html file, 16
GLCanvas, 17
gl.clearColor(), 18
goals of, 16
running of, 15–16

�       � I
IllumRenderable objects, 365
initialize() function, 437
initializeEngineCore() function, 436
Integrated development environment (IDE). See

NetBeans IDE
Interpolation

annoyance/confusion, 240
assets folder, 242
BoundingBox objects, 242

camera parameters, 240
CameraState object, 244–245
constant speed, 240
Dye character, 241
gl-matrix.js file, 244
Hero object, 241
interpolateValue() function, 243
InterpolateVec2 utility, 241
linear and exponential functions, 240
mCurrentValue, 242
mFinalValue, 242
MyGame update() function, 246
operations, 241
panBy() function, 246
Portal object, 242
this.mCameraState, 245
transform objects, 242
trivial replacements, 246
vec2.lerp() function, 244
WC center, 245

�       � J
JavaScript objects project

goals of, 31
project creation, 31
running of, 30–31
source code organization, 31–32

JavaScript source file project
clearCanvas() function, 22
doGLDraw() function, 22
goals of, 19
initializeGL() function, 21
loading and running, 22–23
new JavaScript source code file, 20–21
new source code folder creation, 19–20
running of, 18–19

�       � K
Keyboard input

engine component, 87
functionality, 86
gEngine_VertexBuffer, 88
initializeWebGL() function, 91
mIsKeyClicked, 89
mKeyPreviousState, 89
MyGame constructor, 92
MyGame.prototype.update() function, 92
onKeyUp/Down() event, 90
public interface, 89
runLoop() function, 91
update() function, 90
WebGL, 91
window.addEventListener(), 90

■ index

462

�       � L
Light source

accessor function, 289
activateShader() function, 287
camera, 290–292
cleanUp() function, 290
computations, 285
convenient interface, 287
createShaders() function, 289
DC space, 285
distance attenuation, 327
energy traveling, 281
Engine_DefaultResources.js file, 289
environment, 281
geometries, 282
gl_FragCord.xyz, 285
global lights, 327
GLSL fragment shaders, 283
initialize() function, 289
GLSL LightFS shader, 286
light rendererable object, 288
main() function, 285
mPublic(), 290
MyGame level, 292
Phong illumination model, 282
pixel colors, 282
point light, 281, 292, 327
SimpleLightShader, 283–284
space functionality, 288
spotlight models, 327
SpriteShader object, 287
TextureRenderable objects, 282
WebGL, 282

�       � M
Mapping

normalized system, 128
resolution, 128
shaders (see Shaders project)
texel color, 128
texture space, 129
uv values, 129

Math.ceil() function, 424
Matrix operators

concatenation, 53
4×4 identity matrix, 52
4x1 vector, 52
rotation operator R (q), 52
glMatrix Library, 53–54
m-rows by n-columns array of numbers, 51
scaling operator S(sx, sy), 51–52
translation operator T(tx,ty), 51

Matrix Transform project
goals of, 55

renderable objects, 54
Renderable object modification, 56–57
running of, 54–55
SimpleShader modification, 56
testing, 57
vertex shader modification, 55–56

mDrawBounds variable, 371
The Minion GameObject, 194
Minion.js file, 380
Mouse input, camera

camera.isMouseInViewport(), 266
canvas coordinate space, 259
canvasID parameter, 263
device coordinate (DC) space, 260
event handler, 263
gEngine_Input component, 262
initialize() function, 263
intializeEngineCore() function, 262
keyboard input, 262
main functionality, 265
mHeroCam view, 266
portal object, 261, 266
resource files, 262
transform positions, 260
update() function, 264–265
WC space, 259, 264–265

mParallaxScale, 429
mPhysicsComponent, 379
mRelaxationOffset, 390
Multiple cameras

assets folder, 255
bound-number, 255
Camera objects, 253
draw() function, 258–259
gameplay information, 253
getViewport() function, 256
gl.scissor() function, 256
gl.viewport() function, 256
HTML canvas, 259
initialize() function, 257
interpolation, 255
mBrainCam object, 257
mBrainCam.configInterpolation() function, 259
mHeroCam, 257
mScissorBound, 256
mViewport, 255
setUpViewProjection() function, 256
setViewport() function, 255
update() functions, 257
video games, 253
WASD keys, 254
WC window, 253

Multiple lights project
activateShader() function, 300
additive property, 302
array of lights, 293

■ Index

463

attenuation and intensity, 297
distance attenuation, 293
hero character, 294
initialize function, 301
intensity, 294
LightEffect(), 296
LightFS.glsl file, 295
LightRenderable object, 301
LightSet Object, 298
loadToShader() function, 299
minion_sprite.png, 295
point light, 293
quadratic attenuation, 296
quadratic functions, 293
radius variable, 297
repetitive code listings, 301
setLight() function, 300
ShaderLightAtIndex object, 293, 298–299
single point light source, 293
single scene, 294
uLights array, 299

MyGame initialize() function, 425
MyGame_Physics.js file, 412
MyGame._physicsSimulation() function, 396
MyGame Scene, 194–195

�       � N, O
NDC. See Normalized device coordinates (NDC)

system
NetBeans IDE

action items window, 4
editor window, 4
HTML5 project

application, 6
creation, 5
folders and files, 8
naming, 6
running, 7
selection, 5

projects window, 4
Newtonian movement formulation, 366
Normalized device coordinates (NDC) system, 62
Normal map functionality

color texture, 314
Hero and Minion objects, 314
IllumRenderable object, 314
load and unload, 315

�       � P, Q
ParallaxGameObject, 429
Parameterized fragment shader project

goals of, 44
new shader drawing, 45

running of, 43
SimpleFS.glsl Fragment Shader, 44
SimpleShader modification, 44–45

Particle Emitters Project
controls of, 409
goals of, 409
minion_sprite.png, 409
observations, 412
ParticleEmitter Object, 409–410
Particle Game Object Set, 411
running, 409
testing, 411

ParticleGameObjectSet.js file, 411
Per-pixel collisions projectSee also Sprite Pixel

Collisions project
between large and small texture, 215
controls of, 214
Engine_Texture component, 216–217
GameObject_PixelCollision.js, 220
goals of, 214
limitation with bounding box–based collision, 213
in MyGame, 220–221
nontransparent pixels overlapping, 213
overlapping bounding boxes without actual

collision, 215
pixelCameraSpace, 216
running of, 213–214
TextureRenderable modification, 217–218
TextureRenderable_PixelCollision.js

File, 218–220
Phong illumination model, 274
Physics simulations in games

analogous real-world environment, 418
collision detection, 368
collision resolution (see Collision resolution)
engine logic processes, 397
force field blocking access to upper

platforms, 417
mechanic, 416
movement, 366–367
Particle Emitters Project (see Particle Emitters

project)
particles project

controls of, 398
creating, 401
default particleShader instance, 399
Engine Particle Component, 404–406
GLSL particle fragment shader, 399
goals of, 398
minion_sprite.png, 398
observations, 408
ParticleGameObject, 402–403
ParticleGameObjectSet, 403–404
ParticleRenderable object, 400
with RigidShape, 407

■ index

464

RigidShape object, 397
running, 398
testing, 407–408

platformer puzzle, 416
puzzle levels, 417
RigidShape objects, 412
Rigid Shape Bounds Project (see Rigid Shape

Bounds project)
Rovio’s Angry Birds requires players, 413
simple and flexible particle system, 397
spaceship setting, 417
UV light, 415
Verlet particles and particle emitters

projects, 414
P key, 433
Pong-like reaction-based games, 365
processObjSet() function, 394
processSetSet() function, 394

�       � R
Renderable Objects project

goals of, 49
matrix transformations, 51
programmability and extensibility, 49
running of, 48
testing, 50

resolveCollision() function, 391
resolveRectPos() function, 405, 406
Resource management

asyncLoadCompleted() function, 96
callbackFunction, 99
checkForAllLoadCompleted(), 96
compileShader(), 101
createShaders() function, 100
DefaultResources._createShaders()

function, 102
engine core, 102–103
external resources, 93
fileName parameter, 98
GLSL shaders, 94, 97
initialize() function, 100
loadAndCompileShader(), 101
MapEntry, 96
mAsset, 95
mConstColorShader, 101
mLoadCompleteCallback, 95
mNumOutsandingLoads, 95
real-time interactivity, 93
renderable objects, 99
ResourceMap.isAssetLoaded(), 99
ResourceMap.retrieveAsset(), 101
SimpleShader object, 100
SimpleVS.glsl, 93

source code, 94
startScene() function, 102
TextFileLoader, 97, 99
XMLHttpRequest, 99
XMLHttpRequest.open(), 93

Rezzing, 450
RigidCircle_Collision.js file, 388
RigidCircle.js., 373
RigidRectangle_Collision.js, 377, 387
RigidRectangle.js, 372
Rigid Shape Bounds project

controls of, 370–371
game objects, 380
MyGame object, 380–381
rectangle and circle, 375–376
RenderableLine class, 370
Rigid Circle Object, 373–374
Rigid Rectangle Object, 372–373
Rigid Shape Base Class, 371–372
two circles, 378–379
two rectangles, 377–378

RigidShape_Collision.js, 375, 385
Rigid Shape Impulse project

controls of, 382
goals of, 382
running, 382
symplectic Euler integration, 381

RigidShape.setMess() function, 396
rigidType() function, 373–374
Rovio’s Angry Birds requires players, 413
rVelocityInNormal, 392

�       � S
Scene object

BlueLevel, 111, 113
EngineCore.startScene() function, 114
Engine_GameLoop.js, 112
game behaviors, 112
GameLoop.stop() function, 110, 114, 116
inheritPrototype() function, 112–113
initialize() function, 115
loadScene() function, 114
MyGame.unloadScene(), 116
runLoop() function, 112
startScene(), 110
superclass, 110
unloadScene() function, 112
update() function, 114
update()/draw(), 116

setMass() function, 384
Shader object, 35, 37–38
Shader Source Files project

goals of, 40
HTML Code cleaning up, 42

Physics simulations in games (cont.)

■ Index

465

loading shaders, SimpleShader, 40–41
running of, 39–40
shaders extraction into files, 41–42

Shaders project
activateTexture() function, 140
blendFunc() function, 141
canvas.getContext(), 141
createTexture() function, 143
draw() function, 140
Engine_DefaultResources, 131, 138
Engine_Textures.js, 131
Engine_VertexBuffer.js, 135
gEngine_Texture.activateTexture(), 150
gEngine_Texture._processLoadedImage(), 150
GLSL, 130, 132
initialize() function, 136
initializeWebGL(), 140
loadScene() function, 150
mGLTexID, 141
mTextureCoordBuffer, 135
MyGame.js, 131
pixelStorei() function, 141
processLoadedImage() function, 142
retrieveAsset() function, 144
SimpleVS/FS, 131
texImage2D() function, 143
texParameteri() function, 144
TextureRenderable class, 133, 139–140
TextureShader.js, 131
TextureVS.glsl, 131
transparency, 130
unloadTexture() function, 142
WebGL, 130, 141

Shadow caster object
aLight parameter, 350
computation, 350
computeShadowGeometry()

function, 348
cxf transform, 350
distToReceiver, 350
draw() function, 347
geometries, 346
LightRenderable object, 347
mShadowReceiver, 347
renderable object, 346
SpriteRenderable object, 347
variables, 348

Shadow implementation
activateShader() function, 344
aesthetic effect, 273
ambient light, 274–281
AngularDropOff(), 342
Camera WC center, 353
caster geometry, 337
casting shadow, 337

cloneTo() function, 353
computation, 337
diffuse reflection, 273
DistanceDropOff() functions, 342
drawCamera() function, 355
external resource files, 341
functionality, 338
functional modules, 273
game fidelity, 337
gl_FragColor, 343
GLSL, 274
Hero object, 338
human vision system, 337
infrastructure, 273
initialize() function, 354
intensity, 339
kMaxShadowOpacity, 341
lighting model, 273
LightStrength() function, 342
main() function, 342
material properties, 341
mIllumHero object, 355
Minion object, 338
minion shadow receiver, 339
minion_sprite.png, 341
mLgtHero shadow, 355
MyGame_Shadow.js, 354
Phong illumination model, 356
physical models, 356
pixels, 338
receiver, 338
renderable objects, 344
setupShadow() function, 354
setUpViewProjection() function, 353
ShadedResult() function, 342
shaders project, 340
ShadowCasterFS fragment, 341
ShadowCasterShader, 344
simulation algorithm, 338–340
specular reflection, 273
SpriteAnimateRenderable, 355
SpriteShader object, 343, 352
swapShader() function, 352
TextureFS.glsl, 343
Transform utility, 353
transparencies, 339
visual fidelity, 273
WebGL stencil buffer, 338

Shadow receiver object
addShadowCaster(), 351
draw() function, 351
mShadowCaster, 351
ShadowReceiver_Stencil.js, 352
shadowRecieverStencilOn(), 352
WebGL, 350

■ index

466

Shared vertex buffer
gEngine.VertexBuffer object, 34–35
initSquareBuffer() function, 35

Source code organization, 43
Specular reflection

aCamera.getPosInPIxelSpace(), 325
activateShader() function, 324
ambient lighting, 317
computation cost, 317
constructor, 322
diffuse lighting, 315
DiffuseResults() functions, 321
draw() function, 325
halfway vector, 317
hero character, 319
IllumFS GLSL, 318
IllumRenderable object, 325
IllumShader object, 324
initialize() function, 326
integration, material, 318
LightAttenuation() function, 320
light source, 315, 317
main() function, 322
materials property, 317
minion_sprite.png, 320
MyGame_MaterialControl.js, 327
PerRenderCache function, 325
Phong illumination model, 315
Phong lighting computation, 318
real-life experience, 316
reflection direction, 316
resource files, 320
selectCharacter(), 327
setMaterialAndCameraPos() function, 324
setUpViewProjection() function, 326
ShadedResult() function, 321
ShaderMaterial object, 323
shininess, 316
shiny surface, 315
SpecularResult(), 321
surface material property, 322
uCameraPosition, 320
wcPosToPixel() function, 326

Spot lights project
angular attenuation, 332
AngularDropOff() function, 331
boundary edges, 336
camera transform object, 336
default system fonts, 330
directional lights, 328–329, 336
DropOff variable, 331
half angles, 336
IllumFS.glsl, 330
intensity lights, 336
LightFS.glsl source code, 333

LightShader fragment, 330
loadToShader() function, 335
material property controls, 330
minion_sprite.png, 330
mInnerRef, 336
mOuterRef, 336
MyGame_LightControl.js, 336
num variable, 332
Phong illumination model, 330
setShaderReferences() function, 334
ShadedResults() function, 333
ShaderLightAtIndex object, 334
smoothstep() function, 332
wcDirToPixel() function, 336

Sprite animations
constructor, 165
eAnimateSwing, 164
eAnimationType, 164
game developer, 162
GameLoop _runLoop() function, 168
initAnimation() function, 165
initialize() function, 168
mCurrentAnimAdvance, 165–166
mFontImage, 162
retraction, 162
setSpriteElement(), 166
setSpriteSequence() function, 167, 169
SpriteAnimateRenderable, 164
texture-mapping, 162
transformation operators, 161
updateAnimation() function, 168

Sprite Pixel Collisions project
goal of, 228
in MyGame, 230
modification, 229–230
running of, 228
SpriteRenderable_PixelCollision.js.

creation, 229
TextureRenderable, SpriteRenderable, and

SpriteAnimateRenderable objects, 228
TextureRenderable modification, 230

SpriteRenderable objects, 365
Sprite sheets

activateShader() function, 155
draw() function, 157
dye character, 151
Engine_DefaultResources.js, 158
Engine_VertexBuffer.js, 153
getGLTexCoordRef() function, 153
GLSL texture shaders, 154–155
initialize() function, 159
kMinionSprite, 159
minion_sprite.png, 151, 153
model space, 151
MyGame.js file, 158

■ Index

467

pixel locations, 150
setElementPixelPositions() functions, 159
setElementUVCoordinate(), 161
source code, 152
SpriteRenderable objects, 154, 156
texCoord, 155
TextureRenderable objects, 156
uv values, 151

Symplectic Euler Integration method, 367

�       � T
Texture coordinates

bitmap fonts, 184
custom-composed images, 127
game design, 184–185
loading and unloading, 127
rendering, 127
WebGL, 128

Texture mapping functionality
BlueLevel.xml scene, 145
BlueScene scene, 145
draw() function, 149
initialize() functions, 146, 149
loadScene(), 146
minion_collector.jpg, 146
MyGame constructor, 148
ResourceMap, 149
SceneFileParser.js, 146
TextureRenderable object, 148
TextureSquare element, 146
unloadScene() function, 147
update() function, 147, 149

TiledGameObject, 422–424
Tiled Objects Project, 421–422
Tiling, 420–421
Transform Objects project

concatenated transform operator, TRS, 60
drawing modification, 60
getters and setters, 59
goals of, 59
running of, 58
src/Engine folder, 59
transformable renderable objects, 60

2D game engine development, JavaScript
audio design, 12
big-budget, 10
game mechanics, 10
games settings, 11
graphical user interface (GUI), 1
guidance, 9
HTML5, 2
inheritance, 2
interaction model, 11
JSLint, download and installation, 3

level design, 11
meta-game, 12
NetBeans (see NetBeans IDE)
programmability and maintainability, 1
set up

Connector Google Chrome plug-in, 3
glMatrix math library, 3
IDE, 3
runtime environment, 3
Unix, 3

software library, 1
systems design, 10
technical design, 10
visual design, 12
web browsers, 2

_positionalCorrection() function, 390
_refPosUpdate() function, 430

�       � U
unloadScene() function, 437
update() function, 402

�       � V
vec2.scaleAndAdd() function, 430
Vectors

2D space with two vectors equal to each
other, 198

being normalized, 197
cross product, 199–200
definition, 196–197
dot product, 198–199
object movements and behaviors, 196
object’s velocity/acceleration, 196
origin to position being rotated by

angle theta, 197–198
Vertex and fragment shaders

clearCanvas() function, 29
compile, link and load, 27–28
definition, 26–27
doGLDraw(), 30
initializeGL() function, 29

Video games
causal chain, 126
constructor, 107
decision factors, 105
DefaultResources, 109
drawing operations, 77
functional interface, 103
game environments, 126
initialize() function, 105
interpret player, 77
loadScene(), 108
loop (see Game loop)

■ index

468

MyGame.unloadScene() function, 110
Number() function, 107
parsing utility, 105
public interface, 104
renderable objects, 107
resource management, 77
responsiveness, 125
SceneFileParser.js, 106
sceneFilePath, 106
shader Loads project, 126
startLoop() function, 110
startScene() function, 109
translation errors, 126
unloadScene() function, 108
update()/draw(), 107

Viewport
description, 64
working with, 64

View-Projection transform
goals of, 65
RenderObject modification, 66
running of, 64–65

SimpleVertex modification, 66
testing

design implementation, 68–70
scene designing, 67

vertex shader modification, 65–66
View-Projection transform See Camera
View-Projection transform operator, vpMatrix, 63
Visceral Games’ Dead Space 3, 453

�       � W, X, Y, Z
WASD keys, 433
WebGLSee also Draw One Square project; HTML5

Canvas project; JavaScript Source File
Project

description, 15
drawing, 15

World Coordinate (WC) System, 233
description, 62
glMatrix library, 63
View-Projection transform operator,

vpMatrix, 63
working with, 63

Video games (cont.)

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing 2D Game Engine Development with JavaScript
	 The Technologies
	 Setting Up Your Development Environment
	 Downloading and Installing JavaScript Syntax Checker

	 Working in the NetBeans Development Environment
	 Creating an HTML5 Project in NetBeans
	 The Relationship Between the Project Files and the File System

	 How to Use This Book
	 How Do You Make a Great Video Game?
	 References
	 Technologies

	Chapter 2: Working with HTML5 and WebGL
	 Introduction
	 Canvas for Drawing
	 The HTML5 Canvas Project
	Creating and Clearing the HTML Canvas

	 Separating HTML and JavaScript
	 The JavaScript Source File Project
	Separate JavaScript Source Code File
	Load and Run JavaScript Source Code from index.html

	 Observations

	 Elementary Drawing with WebGL
	 The Draw One Square Project
	Set Up and Load the Primitive Geometry Data
	Set Up the GLSL Shaders
	Define the Vertex and Fragment Shaders
	Compile, Link, and Load the Vertex and Fragment Shaders

	Set Up Drawing with WebGL

	 Observations

	 Abstraction with JavaScript Objects
	 The JavaScript Objects Project
	Source Code Organization
	Abstracting the Game Engine
	The Core of the Game Engine: gEngine.Core
	The Shared Vertex Buffer
	The Shader Object

	The Client Source Code

	 Observations

	 Separating GLSL from HTML
	 The Shader Source Files Project
	Loading Shaders in SimpleShader
	Extracting Shaders into Their Own Files
	Cleaning Up HTML Code

	 Source Code Organization

	 Changing the Shader and Controlling the Color
	 The Parameterized Fragment Shader Project
	Defining the SimpleFS.glsl Fragment Shader
	Modify the SimpleShader to Support the Color Parameter
	Drawing with the New Shader

	 Summary

	Chapter 3: Drawing Objects in the World
	 Introduction
	 Encapsulating Drawing
	 The Renderable Objects Project
	The Renderable Object
	 Testing the Renderable Object

	 Observations

	 Transforming a Renderable Object
	 Matrices as Transform Operators
	Concatenation of Matrix Operators

	 The glMatrix Library
	 The Matrix Transform Project
	Modify the Vertex Shader to Support Transforms
	Modify SimpleShader to Load the Transform Operator
	Modify Renderable Object to Set the Transform Operator
	Testing the Transforms

	 Observations

	 Encapsulating the Transform Operator
	 The Transform Objects Project
	 The Transform Object
	Transformable Renderable Objects
	Modify Drawing to Support Transform Object

	 View, Projection, and Viewports
	 Coordinate Systems and Transformations
	Modeling and Normalized Device Coordinate Systems
	The World Coordinate System
	The Viewport

	 The View Projection and Viewport Project
	Modifying the Vertex Shader to Support the View-Projection Transform
	Modifying SimpleVertex to Support the View-Projection Transform
	Modifying RenderObject to Support the View-Projection Transform
	Testing the View-Projection Transform and the Viewport
	Designing the Scene
	 Implementing the Design

	 The Camera
	 The Camera Objects Project
	The Camera Object
	 Testing the Camera

	 Summary

	Chapter 4: Implementing Common Components of Video Games
	 Introduction
	 The Game Loop
	
	Typical Game Loop Implementations

	 The Game Loop Project
	Implement the Game Loop Component
	Using the Game Loop

	 Keyboard Input
	 The Keyboard Support Project
	Add an Input Component to the Engine
	Modify the Engine to Support Keyboard Input
	Test Keyboard Input

	 Resource Management and Asynchronous Loading
	 The Resource Map and Shader Loader Project
	Add ResourceMap Component to the Engine
	Define a Text File Loader as an Engine Component
	Load Shaders Asynchronously
	Implement Default Resources Support
	Modify SimpleShader to Retrieve Shader Files
	Initialize Engine Core

	Modify index.html for Proper Engine Core Initialization
	Test the Asynchronous Shader Loading

	 Game Level from a Scene File
	 The Scene File Project
	The Scene File
	Parser for the Scene File

	Integrate Game Resource Loading
	Public Methods of MyGame
	Integration with the Game Engine

	 Scene Object: Client Interface to the Game Engine
	 The Scene Objects Project
	The Abstract Scene Object
	Modify Game Engine to Support the Scene Object
	Test the Scene Object Interface to the Game Engine
	The BlueLevel Scene
	The MyGame Scene

	 Audio
	 The Audio Support Project
	Define AudioClips Component with Web Audio API
	Counting Resource References
	Testing the Audio Component
	Change MyGame.js
	Change BlueLevel.js

	 Summary
	 Game Design Considerations

	Chapter 5: Working with Textures, Sprites, and Fonts
	 Introduction
	 Texture Mapping and Texture Coordinates
	 The Texture Shaders Project
	Overview
	Extension of Shader/Renderable Architecture
	GLSL Texture Shader
	Define and Set Up Texture Coordinates
	Interface GLSL Shader to the Engine
	Facilitate Sharing with Engine_DefaultResources
	Renderable Texture Object
	Changes to the Renderable Object
	The TextureRenderable Object

	Texture Support in the Engine
	Configure WebGL to Support Textures
	Create the Texture Management Engine Component

	Testing of Texture Mapping Functionality
	Modify the BlueLevel Scene File to Support Textures
	Modify SceneFileParser
	Test BlueLevel with JPEGs
	Test MyGame with PNGs

	Observations
	Interface GLSL Texture Shaders to the Engine with SpriteShader
	SpriteRenderable Object
	SpriteShader as a Default Resource
	Testing the SpriteRenderable

	 Drawing with Sprite Sheets
	 The Sprite Shaders Project

	 Sprite Animations
	 Overview of Animated Sprite Sheets
	 The Sprite Animation Project
	SpriteAnimateRenderable Object
	Testing Sprite Animation

	 Fonts and Drawing of Text
	 Bitmap Fonts
	 The Font Support Project
	Loading and Storing Fonts in the Engine
	Defining a FontRenderable Object to Draw Texts
	Adding a Default Font to the Engine
	After Game Cleanup
	Testing Fonts
	The GameOver Scene
	The MyGame Scene

	 Summary
	 Game Design Considerations

	Chapter 6: Defining Behaviors and Detecting Collisions
	Introduction
	Game Objects
	The Game Objects Project
	Modify Renderable and Shader Objects to Draw with a Camera
	Define the GameObject
	Manage Game Objects in Sets
	Test the GameObject and GameObjectSet
	The DyePack GameObject
	The Hero GameObject
	The Minion GameObject
	MyGame Scene

	Chasing of a GameObject
	Vectors Review
	The Dot Product
	The Cross Product

	The Front and Chase Project
	Add Vector Rotation to the gl-matrix Library
	Modify GameObject to Support Interesting Behaviors
	Test the Chasing Functionality
	Define the Brain GameObject
	The MyGame Scene

	Collisions Between GameObjects
	Bounding Box
	The Bounding Box and Collisions Project
	Define a Bounding Box Object
	Use the BoundingBox in the Engine
	Test Bounding Boxes with MyGame

	Per-Pixel Collisions
	The Per-Pixel Collisions Project
	Overview of Per-Pixel Collision Algorithm
	Modify Engine_Textures to Load a Texture as an Array of Color
	Modify TextureRenderable to Support Per-Pixel Collision
	Create TextureRenderable_PixelCollision.js File to Implement Per-Pixel Collision
	Support GameObject Per-Pixel Collision in GameObject_PixelCollision.js
	Test the Per-Pixel Collision in MyGame

	Generalized Per-Pixel Collisions
	Vector Review: Components and Decomposition
	The General Pixel Collisions Project
	Modify TextureRenderable_PixelCollision to Support Rotation
	Modify the GameObject_PixelCollision.js to Support Rotation
	Test Generalized Per-Pixel Collision

	Per-Pixel Collisions for Sprites
	The Sprite Pixel Collisions Project
	Create SpriteRenderable_PixelCollision.js file to Implement Per-Pixel Collision
	Modify Existing SpriteRenderable Functions to Support Per-Pixel Collision
	Modify TextureRenderable to Support Accesses to Sprite Pixels
	Test Per-Pixel Collision for Sprites in MyGame

	Summary
	Game Design Considerations

	Chapter 7: Manipulating the Camera
	 Introduction
	 Camera Manipulations
	 The Camera Manipulations Project
	Organize the Source Code
	Support Clamping to Camera WC Bounds
	Define Camera Manipulation Operations in Camera_Manipulation.js File
	Manipulating the Camera in MyGame

	 Interpolation
	 The Camera Interpolations Project
	Interpolation as an Utility
	The Interpolate Object
	The InterpolateVec2 Object

	Represent Interpolated Intermediate Results with the CameraState Object
	Integrate Interpolation into Camera Manipulation Operations
	Testing Interpolations in MyGame

	 Camera Shake Effect
	 The Camera Shake Project
	Create the ShakePosition Class to Model the Shaking of a Position
	Define the CameraShake Object to Abstract Camera Shaking Effect
	Modify the Camera to Support Shake Effect
	Testing the Camera Shake Effect in MyGame

	 Multiple Cameras
	 The Multiple Cameras Project
	Modify the Camera
	Testing Multiple Cameras in MyGame

	 Mouse Input Through Cameras
	 The Mouse Input Project
	Modify gEngine_Core to Pass Canvas ID to Input Component
	Implement Mouse Support in gEngine_Input
	Modify the Camera to Support Transformation to WC Space
	Testing the Mouse Input in MyGame

	 Summary
	 Game Design Considerations

	Chapter 8: Implementing Illumination and Shadow
	 Introduction
	 Overview of Illumination and GLSL Implementation
	 Ambient Light
	 The Global Ambient Project
	Modifying the GLSL Shaders
	Modifying SimpleShader
	Modifying the Engine
	Testing the Ambient Illumination
	Observations

	 Light Source
	 GLSL Implementation and Integration into the Game Engine
	 The Simple Light Shader Project
	Creating the GLSL Light Fragment Shader
	Creating a Light Object
	Creating the LightShader Object
	Creating the LightRendererable Object
	Defining a Default LightShader Instance
	Modifying the Camera
	Defining a Per-Render Cache for the Camera
	Adding Camera Transform Functions

	Testing the Light
	Modifying the Hero and Minion
	Modifying the MyGame Object

	Observations

	 Multiple Light Sources and Distance Attenuation
	 The Multiple Lights Project
	Modifying the GLSL Light Fragment Shader
	Modifying the Light Object
	Creating the LightSet Object
	Creating the ShaderLightAtIndex Object
	Modifying the LightShader Object
	Modifying the LightRenderable Object
	Testing the Light Sources with MyGame
	Observations

	 Diffuse Reflection and Normal Mapping
	 The Normal Maps and Illumination Shaders Project
	Creating the GLSL Illumination Fragment Shader
	Creating the IllumShader Object
	Modifying the TextureShader Object
	Creating the IllumRenderable Object
	Modifying the Engine
	Defining the Default in Engine_DefaultResources
	Configuring WebGL Texture Units in Engine_Textures

	Testing the Normal Map
	Modifying the Hero and the Minion
	Modifying MyGame

	Observations

	 Specular Reflection and Materials
	 Integration of Material in the Game Engine and GLSL Shaders
	 The Material and Specularity Project
	Modifying the GLSL Illumination Fragment Shader
	Creating the Material Object
	Defining the ShaderMaterial Object
	Modifying the IllumShader Object
	Modifying the IllumRenderable Object
	Modifying the Camera Object
	Observations

	 Light Source Types
	 The Directional and Spot Lights Project
	Supporting New Light Types in GLSL Fragment Shaders
	Modifying the GLSL Illumination Fragment Shader
	Modifying the GLSL Light Fragment Shader

	Modifying the Light Object
	Modifying the ShaderLightAtIndex Object
	Modifying the Camera Transform Object
	Testing the New Light Types
	Observations

	 Shadow Simulation
	 The Shadow Simulation Algorithm
	 The Shadow Shaders Project
	Create GLSL Fragment Shaders
	Creating the GLSL Shadow Caster Fragment Shader
	Creating the GLSL Shadow Receiver Fragment Shader

	Interfacing the GLSL Shaders to the Engine
	Creating the Shadow Caster Shader

	Modifying the Engine Core
	Configuring and Maintaining the WebGL Stencil and Depth Buffers
	Instantiating Default Shadow Caster and Receiver Shaders

	Creating the Shadow Caster Object
	Creating the Shadow Receiver Object
	Defining the Shadow Receiver Operations
	Defining the Shadow Receiver Stencil Operations

	Updating Engine Supporting Objects
	Modifying the Renderable
	Modifying the SpriteShader
	Modifying the Light
	Modifying the Camera
	Modifying the Transform Object

	Testing the Shadow Algorithm
	Setting Up the Shadow
	Drawing the Shadow

	Observations

	 Summary
	 Game Design Considerations

	Chapter 9: Integrating Physics and Particles
	 Introduction
	 Physics Overview
	 Movement
	 Collision Detection
	 Collision Resolution

	 Detecting Collisions
	 The Rigid Shape Bounds Project
	Creating the Rigid Shape Base Class
	Creating the Rigid Rectangle Object
	Creating the Rigid Circle Object
	Detecting Collisions Between the Rigid Objects
	Collision Detection Between a Rectangle and a Circle
	Collision Detection Between Two Rectangles
	Collision Detection Between Two Circles

	Modifying the Game Object
	Testing the Collision Detection
	Modifying the Game Objects
	Modifying the MyGame Object

	Observations

	 Resolving Collisions
	 The Rigid Shape Impulse Project
	Implementing Symplectic Euler Integration
	Modifying the RigidShape Class
	Creating the Rigid Shape Behavior

	Extracting Collision Information
	Creating the CollisionInfo object
	Modifying the RigidShape Collision
	Modifying the RigidRectangle Collision
	Modifying the Rigid Circle Collision

	Defining the Engine Physics Component
	Resolving Collisions and Applying Friction
	Adding the Relaxation Loop for Stability

	Supporting the Engine Physics Component
	 Testing Impulse Resolution
	 Observations
	Creating GLSL Particle Fragment Shader
	Defining a Default ParticleShader Instance
	Creating the ParticleRenderable Object

	 Particles and Particle Systems
	 The Particles Project
	Defining the Particle and Particle Game Object
	Creating a Particle
	Creating the ParticleGameObject
	Creating the ParticleGameObjectSet

	Defining the Engine Particle Component
	Interacting Particles with RigidShape
	 Testing the Particle System
	 Observations

	 Particle Emitters
	 The Particle Emitters Project
	Creating the ParticleEmitter Object
	Modifying the Particle Game Object Set
	 Testing the Particle Emitter
	 Observations

	 Summary
	 Game Design Considerations

	Chapter 10: Supporting Camera Background
	 Introduction
	 Tiling of the Background
	 The Tiled Objects Project
	Define TiledGameObject
	Modify MyGame to Test Tiled Objects

	 Simulating Motion Parallax with Parallax Scrolling
	 The ParallaxObjects Project
	Define ParallaxGameObject to Implement Parallax Scrolling
	Testing ParallaxGameObject in MyGame

	 Layer Management
	 The Layer Manager Project
	Layer Management in the Engine
	Modify Engine Components and Objects
	Enhance the GameObjectSet Functionality
	Initialize LayerManager in gEngine_Core
	Define the Update Function for Layer Membership Objects

	Modify MyGame to Work with LayerManager

	 Summary
	 Game Design Considerations

	Chapter 11: Building a Sample Game: From Design to Completion
	 Part 1: Refining the Concept
	 Part 2: Integrating a Setting
	 Contextual Images Bring the Setting to Life
	 Defining the Playable Space
	 Adding Layout to the Playable Space
	 Tuning the Challenge and Adding Fun
	 Further Tuning: Introducing Enemies
	 General Considerations

	 Part 3: Integrating Additional Design Elements
	 Visual Design
	 Game Audio
	 Interaction Model
	 Game Systems and Meta Game
	 User Interface (UI) Design
	 Game Narrative

	 Bonus Content: Adding a Second Stage to the Level
	 Summary

	Index

