
www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

Building the Realtime User Experience

www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

Building the Realtime
User Experience

Ted Roden

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://
http://www.allitebooks.org

Building the Realtime User Experience
by Ted Roden

Copyright © 2010 Ted Roden. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Kristen Borg
Copyeditor: Genevieve d’Entremont
Proofreader: Teresa Barensfeld
Production Services: Molly Sharp

Indexer: Ellen Troutman
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Building the Realtime User Experience, the image of a myna bird, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80615-6

[M]

1277230732

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://
http://www.allitebooks.org

Table of Contents

Preface . ix

1. Introduction . 1
What Is Realtime? 2

Changing Interactions 2
Push Versus Pull 4
Prerequisites 4

Python 6
JavaScript 6
JavaScript Object Notation 6
Google’s App Engine 6

The Rest 7

2. Realtime Syndication . 9
Simple Update Protocol (SUP) 11

The SUP file 12
Subscribing with SUP 13
Publishing with SUP 21

PubSubHubbub 26
The Protocol 27
Subscribing with PubSubHubbub 30
Publishing with PubSubHubbub 36

3. The Dynamic Homepage (Widgets in Pseudorealtime) . 39
The Basic Widgets 39

HTML 40
Setting Up the JavaScript 41

FriendFeed in Realtime 48
Live Images 51
It Was All a Setup! 54

The Old Versus the New 55

v

www.allitebooks.com

http://
http://www.allitebooks.org

4. River of Content . 57
A Crash Course in Server Push 57

Long Polling 58
The Bayeux Protocol 58
Cometd 60

Setting Up Your Cometd Environment 60
Putting Everything in Its Place 62

A Realtime Live Blog 66
The Two-Connection Limit 72

Server-Side Filters (with Java) 73
Integrating Cometd into Your Infrastructure 77

5. Taming the Firehose with Tornado . 79
Tornado 79

Installing Tornado 80
The Basic Framework 80
Building an Application 82
Asynchronous Tornado in Realtime 84

Twitter’s Realtime Streaming APIs 87
From the Firehose to the Web Browser 91

Templates in Tornado 91
Creating a Template for This Project 93
The JavaScript Parts 96

6. Chat . 101
Setting Up the Basic Code 101

The Basic HTML Frame 101
The Python Shell 103
The JavaScript Base 105
Checking the Progress 106

Logging In 107
On the Server Side 107
JavaScript 112

Basic Chatting 117
Chatting on the Server Side 117
Sending Messages 118
Receiving Messages 121

Acting Natural 121

7. Instant Messaging . 129
Getting Started with Google App Engine 130

Setting Up an Account 130
Creating an Application with the SDK 131

vi | Table of Contents

www.allitebooks.com

http://
http://www.allitebooks.org

Taking Advantage of Google 133
Keeping Track of the User 135
The Deploy Button 135
The Dashboard 137

Receiving Instant Messages 138
Sending Instant Messages 141
Responding Intelligently 143

The Basic Commands 143
Checking Authentication via Instant Messenger 145
Introducing a Third Party 146

Setting Up an API 148

8. SMS . 153
The SMS Landscape 153

Email to SMS 153
SMS APIs 156

Building the Basic Application 158
Extending the Instant Messaging Application 158
An SMS Service Class 160
The Base Handler 162
Preparing to Accept Messages 163
Setting Up the Server 164

Sending and Receiving the Messages 165
TextMarks 165
Zeep Mobile 172
Authenticating Users 176
Building an SMS API 180

9. Measuring User Engagement: Analytics on the Realtime Web 185
Realtime Analytics Services 185

Chartbeat 186
Woopra 187

Customized Analytics 189
Sending Tracking Pings with JavaScript 189
Catching the Statistics on the Server 193
Making Sense of the Traffic 198
Viewing the Traffic 201
Tracking Backend Traffic and Custom Data 208
Sending Out Alerts 214

10. Putting It All Together . 217
The Game 217

Caveats 217

Table of Contents | vii

www.allitebooks.com

http://
http://www.allitebooks.org

Getting Set Up 218
Google App Engine 218
Google Maps API Key 219
EC2 or Other Hosted Server 220
GeoModel 220

The Basic Models 221
UserInfo 222
Disease 224
Germ 225
CommandCenter 227
Textmark 229
Messenger 230
UserThreats 232
GameUtils 234

Building the Game Itself 235
User Authentication 235
Geolocation 241
Spreading Germs 244
Loading Germs 251
Threats 253
Spreading Germs 267
Fighting Germs 269
Realtime Syndication 271
The Command Center 275

In Review 295

Index . 297

viii | Table of Contents

www.allitebooks.com

http://
http://www.allitebooks.org

Preface

This book describes a host of technologies and practices used to build truly realtime
web applications and experiences. It’s about building applications and interfaces that
react to user input and input from other servers in milliseconds, rather than waiting for
web pages to refresh.

In some ways, these changes are incremental and fairly obvious to most developers.
Adding simple JavaScript-based widgets to a website can be done in an afternoon by
any developer. However, implementing a Python chat server, or integrating some
server-push functionality based on Java into your PHP-based-stack, takes a bit of ad-
vance planning. This book aims to break these technologies down, to ensure that you
can take any of the examples and insert them into your existing website.

This book assumes that you’re comfortable with modern web application development,
but makes almost no assumptions that you know the specific technologies discussed.
Rather than sticking with a simple technology, or writing about building applications
using a specific programming language, this book uses many different technologies. If
you’re comfortable with web application development, you should have no trouble
following the examples, even if you’re unfamiliar with the specific technology.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

ix

http://

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building the Realtime User Experience by
Ted Roden. Copyright 2010 O’Reilly Media, Inc., 978-0-596-80615-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

x | Preface

mailto:permissions@oreilly.com
http://

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596806156

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
This book would not exist without Nick Bilton, who thought it was a great idea and
had an address book big enough to get the ball moving. I’d also like to thank everybody
in the Research and Development group at the New York Times for their excitement
and for allowing me to focus on these topics during my day job.

Preface | xi

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9780596806156
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://

I’d also like to thank everybody at O’Reilly, whether or not we had any interactions.
This process was remarkably smooth thanks to the people and the system in place there.
Specifically, I’d like to mention my great editor, Simon St. Laurent, who has been
through this so many times before that a simple email would put an end to even the
biggest panic attack.

Also, I had some great technical reviewers, including Kyle Bragger, Zachary Kessin,
Niel Bornstein, and Finn Smith. If you have any issues with the code, the fault lies at
my door, not theirs.

Most importantly, I’d like to thank my lovely wife, Ara. She spent many sleepless nights
on baby duty so that I could spend as many sleepless nights on book duty. I must also
thank Harriet, who was born a couple of days before I agreed to do this, and who also
serves as an important part in the introduction of this book.

xii | Preface

http://

CHAPTER 1

Introduction

My wife and I recently had a baby girl. As she grows up, I’ll teach her all kinds of things.
Some of the things that I tell her she’ll accept as fact, and other times she’ll have her
doubts. But the one thing I know for sure is that when I get to the part about the Web,
she’ll be positively tickled when I describe what it looked like before she was born.

I’ll tell her that when we got started on the Web, developers had to be careful about
which colors they used. I’ll let her know that when I bought my first domain, I had to
fax in some paperwork and it cost me $70. But the thing that will blow her mind more
than any other detail is that we had an entire button on our web browsers dedicated to
refreshing the web page on the screen.

Even as the Web hit “version 2.0,” most sites were largely call and response affairs. The
user clicks a mouse button, data is sent to the server, and some information is returned.
Thankfully, the Web that just sat there and stared at you is gone. What was once
nothing more than a series of interconnected documents, images, and videos has be-
come much more lifelike. The Web now moves in realtime.

The realtime experience is arriving and, as users, we are noticing it as a fairly subtle
change. Unread counts now automatically update, live blogs seem to update a touch
faster, chat moved out of a desktop client and onto the web page. From there, more
and more things will start to change. Applications that were once merely static websites
are starting to make our cell phones tremble in our pockets. These experiences will
increasingly meet us in the real world, where we’ll be able to interact with them im-
mediately and on our own terms.

What users are noticing as a snowball gently rolling down the hill is hitting developers
much more abruptly. Developers have taken a great deal of time to learn relational
databases and complicated server configurations. But when they look to add realtime
features, they quickly discover it’s a whole different world. It may be different, but it
isn’t difficult.

1

http://

What Is Realtime?
Since the explosion of the Web, developers have been inclined to think in terms of
building websites. Even in this book, I’ve spent a good deal of time writing about
building websites. But make no mistake about it, a realtime user experience does not
exist entirely inside a web browser.

The original web browsers were designed to load and display web pages. The idea of
a web page is quite similar to the printed page. It is a static document, stored in a
computer, but a static document nonetheless. The interface of web browsers evolved
to work within this paradigm. There is a Next button and a Back button designed
to take you from the current page to the page that you viewed previously. That
makes perfect sense when you’re working with documents. However, the Web is quite
quickly shifting away from a document-based paradigm to a web-based form of
communication.

It used to be that a web page was more or less published to the Web. A page was created
and given a specific URI, and when the user went to that page, it was pretty clear what
to expect. Now we have sites like Facebook where the same URL is not only different
for each of the hundreds of millions of different users, but it changes moments after a
user loads the page.

Changing Interactions
In the past, the interaction between a user and a web application was very simple. When
a user wanted content, she would load up her browser, point it at a URL, and get the
content (see Figure 1-1). If she wanted to write a blog post, she’d load up her browser,
fill out a form, and press submit. When she wanted to see comments, it was much the
same.

This has changed. No longer can a website wait for users to navigate to the right URL;
the website must contact the user wherever that user may be. The paradigm has shifted
from a website-centric model, where the website was at the center of the interaction,
to a user-centric model. Now all interactions start and end at the user (see Fig-
ure 1-2), whether she is visiting the website or sending in Short Message Service (SMS)
updates.

A truly realtime experience exists anywhere the user is at a given moment. If the user
is interacting with the web browser, then that’s the place to contact her. If she’s got her
instant messenger program open, she’d better be able to interact with your app from
that window. When she’s offline and your application has an important message for
her, send it via SMS. Naturally, you’ll need to ask the user’s permission before you do
some of these things, but your application needs to offer them.

2 | Chapter 1: Introduction

http://www.facebook.com
http://

Figure 1-1. In the past, users visited websites

Figure 1-2. Websites must reach out to users wherever they are

What Is Realtime? | 3

http://

I mentioned SMS, but the mobile experience does not end there. These days, users have
phones in their pockets with full-fledged web browsers that in some cases offer more
functionality than their desktop-based brethren. Among other things, mobile browsers
can handle offline data storage, GPS sensors, and touch-based interfaces. Their im-
pressive featureset, coupled with nearly ubiquitous wireless broadband, means they
cannot be treated as second class Internet citizens. Applications and user experiences
simply must be built with mobile devices in mind.

Push Versus Pull
For about as long as the Web has been around, there have been two main ways of
getting content to a user: push and pull. Pull is the method in which most interactions
have worked—the user clicks a link and the browser pulls the content down from the
server. If the server wants to send additional messages to the user after the data has
been pulled down, it just waits and queues them up until the client makes another
request. The idea behind push technology is that as soon as the server has a new message
for the user, it sends it to him immediately. A connection is maintained between the
server and the client and new data is sent as needed.

In the scheme of the Internet, push technology is not a new development. Throughout
the years there have been different standards dictating how it should work. Each pro-
posed standard has had varying levels of support amongst browser makers and different
requirements on the server side.

The differing behaviors and requirements of the two technologies have led many de-
velopers to use one or the other. This has meant that many sites wanting to offer dy-
namic updates to their users had to resort to Ajax timers polling the site every X seconds
to check for new content. This increased amount of requests is taxing on the server and
provides a far less graceful user experience than it should have.

Pushing content out to the user as it happens gives the user a much more engaging
experience and uses far less resources on the server. Fewer requests means less band-
width is used and less CPU consumed, because the server is not constantly checking
and responding to update requests (see Figure 1-3).

Prerequisites
This book assumes the reader is comfortable with most aspects of web development.
The example code in this text uses Java, JavaScript, PHP, and Python. You are encour-
aged to use the technologies that make the most sense to you. If you’re more comfort-
able with PostgreSQL than MySQL, please use what you’re more familiar with. Many
of the command-line examples assume you’re using something Unix-like (Mac OS X,
Linux, etc.), but most of this software runs on Windows, and I’m confident that you
can translate any commands listed so that they work in your environment.

4 | Chapter 1: Introduction

http://

Building a realtime user experience is language agnostic, and in this book, I’ve chosen
to use several different languages in the examples. Some examples use several technol-
ogies chained together. If you’re not familiar with one language, don’t worry about it.
Much of the code is written so you can read it if you’re familiar with basic programming
practices, plus I’ve done my best to explain it in the text.

Figure 1-3. Visualizing push versus pull

Prerequisites | 5

http://

Another prerequisite for this book is a Google account. Several of the examples require
a Google account for App Engine, whereas others use it for authentication. Where it’s
used for authentication, you could fairly easily drop in authentication from another
third-party site.

Python
Python is the most-used language in this book for a couple of reasons. Whether or not
you know Python, it’s a very simple language to read on the page. It also has a couple
of terrific libraries that are used throughout this book. During the process of writing
this text, one of the pioneers on the realtime web, FriendFeed, was sold to Facebook.
After the acquisition, Facebook released a core piece of FriendFeed’s infrastructure as
open source software called Tornado, which is both a collection of libraries and a web
server.

JavaScript
This book uses JavaScript in many of the chapters. In most chapters I use a library that
helps with some cross-browser issues and enables the examples to contain less code by
wrapping up some common activities into simple function calls. This was done to save
space on the page and make things easier. If you have a preference of mootools.com or
any other JavaScript library over jQuery, please go ahead and use those. These examples
are not based around the languages.

JavaScript Object Notation
This book heavily uses JavaScript Object Notation (JSON) in a number of the examples.
JSON is a simple, lightweight data interchange format. It’s often used as the payload
from Application Programming Interface (API) calls to external services, but in this
book it’s also used to send messages to the server and back to the browser.

Google’s App Engine
Another technology that is used in several chapters is Google’s App Engine platform.
This service is Google’s entry into the cloud computing services industry. It’s a fairly
unique way of looking at serving applications, and the developer does not have to think
about scaling up by adding servers. It’s useful here because it gives us a lot of standard
features for free. There is a datastore, authentication, and integration with other serv-
ices, all without paying a cent or writing much complicated code. It was also picked
because it requires almost no configuration for the developer. If you’re not familiar with
the service, that is no problem, because we go through the process of setting up an
account in the text.

6 | Chapter 1: Introduction

www.allitebooks.com

http://friendfeed.com
http://tornadoweb.org
http://www.mootools.net
http://www.jquery.com
http://
http://www.allitebooks.org

The Rest
Many of the examples in this book contain a lot of code. I encourage you to type it out,
make it our own, and build applications with the knowledge. But if you’re not interested
in typing it out, you can download every bit of code at this book’s official website,
http://www.therealtimebook.com. In many cases, the code available online is expanded
in ways that are useful for development, more suitable for deployment, and better
looking than the examples here.

The website has code samples available for download, but also has many of the appli-
cations ready to run and test out. So if you’re not interested in writing the application
and getting it to run, you can follow along with the text and test the application online.

I view this book as realtime experience in its own way. Not only do I plan to keep the
code updated, but I also plan to continue the conversation about these topics online
through the website, Twitter, and any new service as it pops up. The official Twitter
account for this book is @therealtimebook. There is a lot of content being created about
this topic, and following it online will always be good way to keep up to date.

The Rest | 7

http://www.therealtimebook.com
http://twitter.com/therealtimebook
http://

http://

CHAPTER 2

Realtime Syndication

Interacting on the realtime web involves a lot of give and take; it’s more than just
removing the need to refresh your web browser and having updates filter in as they
happen. Acquiring content from external sources and publishing it back also must
happen in realtime. On the Web, this is called syndication, a process in which content
is broadcasted from one place to another.

Most syndication on the Web happens through the transmission of XML files, specif-
ically RSS or Atom, from the publisher to the consumer. This model has always been
fairly simple: a publisher specifies a feed location and updates the content in that file
as it’s posted to the site. Consumers of this content, having no way of knowing when
new content is posted, have to check that file every half hour or so to see whether any
new content has arrived. If a consumer wanted the content faster, they’d have to check
the feed more often. However, most publishers frown upon that type of activity and
specifically prohibit it in their terms of service. If too many consumers start download-
ing all of the feeds on a site every minute, it would be very taxing on the server.

Although this has been a problem on the Web for as long as RSS feeds have been around,
only recently have people put serious effort into fixing the issue. There are a good
number of competing standards aimed at solving this problem. Each of these solutions
has had varying degrees of success in getting sites to adopt their technologies. We’re
going to focus on two of the bigger winners at this point, SUP and PubSubHubbub,
but it’s worth acknowledging the other standards.

9

http://

SUP
The Simple Update Protocol (SUP) is a simple and compact poll-based protocol
that can be used to monitor thousands of feeds in one shot. It’s not a push format
like some of the others, but it can save countless amounts of server resources by
eliminating the need for frequent polling to many separate feeds, and it allows for
much quicker updates of the new data. This protocol was developed by FriendFeed
and is supported by a number of sites around the Web, including YouTube. SUP
is remarkably easy to implement for both subscribers and publishers. The biggest
downside to this protocol is that it’s still based on polling. So it’s not strictly real-
time, but it’s darn close.

PubSubHubbub
PubSubHubbub is a publish/subscribe protocol based on web hooks or callbacks.
This protocol describes an entirely push-based system designed by a group of de-
velopers at Google. It is a totally open standard with a decentralized and open
method of providing updates. When new content is posted, the publisher notifies
a hub, which then sends out the new updates to each of the subscribers. Subscribers
don’t have to ping for new content, and the hub sends only the differences in the
feed each time, significantly cutting down on the bandwidth transfer after each
update. It’s a fairly easy protocol and can be added into most existing systems
without much effort. The most complicated parts, by design, are contained within
the hub.

rssCloud
This protocol was actually developed as part of the RSS 2.0 specification. It works
very similar to the PubSubHubbub protocol with very slightly different implemen-
tation details. The cloud part of rssCloud, which is very much like the hub from
PubSubHubbub, receives updates as they’re posted. The cloud then pings each
subscriber to let them know that the content has been updated. The problem here
is that once a feed has been updated and all the subscribers have been notified,
each subscriber will have to request the feed from the server. Depending on how
many subscribers there are, this could mean a lot of requests and a ton of traffic
on a big feed. Some clouds support hosting the RSS feed directly on the cloud,
which relieves some load from the individual server, but the subscriber has to
download the entire feed either way. rssCloud isn’t covered in detail in this book,
but more information on it can be found at http://rsscloud.org.

Weblogs.com Pings
Many blogging platforms support “pinging the blogosphere.” These work by ping-
ing known URLs as things are published. After being pinged, these services can
then download the new feed. However, the basic method of pinging doesn’t supply
link to the actual feed URL, so the server must parse the site to find the usable RSS/
Atom feed. This protocol also doesn’t allow for arbitrary subscribers to receive
pings or get the data any faster than they would with standard poll requests. More
information on this can be found at http://weblogs.com/api.html#1.

10 | Chapter 2: Realtime Syndication

http://rsscloud.org
http://weblogs.com/api.html#1
http://

Simple Update Protocol (SUP)
Although SUP isn’t a push protocol enabling true realtime updates, it’s a great syndi-
cation format and worth a close look. SUP was developed by FriendFeed to solve a
problem that plagued them and many other sites on the Web: the need to reduce the
amount of polling for the remote feeds and improve the time it took to import new
content. SUP enables sites that syndicate their content to aggregators such as Google
Reader to do so without the need for constant polling of each RSS feed. For this tech-
nology, any site that provides RSS feeds is a syndicator and could benefit from this
technology.

The order of operations here is simple. The publisher adds a unique SUP ID to each
feed. Then, every time the feed is updated, the publisher also updates the SUP feed.
When a subscriber wants to get updates from any of the feeds, it only needs to check
the SUP feed, which will alert the subscriber to any recently updated feeds. Once the
subscriber knows the updated feeds, it downloads only those feeds as it normally
would. The subscriber only needs to ping the SUP feed to check for new content, which
cuts down the need to ping multiple feeds per site, saving resources for both the sub-
scriber and the publisher.

Without SUP, a consumer of feeds would have to check every feed on a site every time
it wanted to check for new updates (see Figure 2-1).

Figure 2-1. Without SUP

Simple Update Protocol (SUP) | 11

http://www.google.com/reader
http://www.google.com/reader
http://

When working with SUP, the consumer of the feed knows when each feed is updated
by checking the main SUP file. The consumer can easily check the SUP file very often
and then check the individual feeds only when they’ve been updated (see Figure 2-2).

Figure 2-2. With SUP

The SUP file
The crux of this whole protocol is the SUP file. This is the file that alerts subscribers of
new content across a site. It’s a serialized JSON object containing, amongst other
things, a list of updated feeds. The following fields need to be defined:

period

This is the number of seconds covered by this feed. If any feed on the site has been
updated in the last X seconds, it will be listed in this feed.

available_periods

This is a JSON object that specifies the different update periods supported by the
server. The keys defined in the objects are the number of seconds between updates,
and the value is the feed URL for that period.

updated_time

This is the time when the data included in this file was generated (RFC 3339
format).

12 | Chapter 2: Realtime Syndication

http://

since_time

All of the updates defined in this file were created on or after this time. The time
between this field and updated_time must be at least period seconds apart, but
ideally it would be slightly longer to ensure subscribers see all of the updates (RFC
3339 format).

updates

This array is an actual list of updated SUP IDs. Each element of the array is another
array that has two items: the first item is the SUP ID and the second is called the
update_id. The update_id is used to eliminate duplicate pings. I’d suggest using
timestamps or anything useful for debugging. Consumers should not try to inter-
pret the update_id for meaningful content. The important thing is to know which
SUP ID has been updated.

Although the spec requires the timestamps be in the format specified by
RFC 3339 (e.g., 2009-08-24T00:21:54Z), I strongly recommend that
you accept any date format. With everything on the Internet, it’s best
to follow the axiom, “be lenient in what you accept and strict in what
you produce.”

Lists of fields are great, but what does this thing look like? The following is an example
of a working SUP feed from http://enjoysthin.gs/api/generate.sup?pretty=1:

{
 "updated_time": "2009-08-21T23:40:27Z",
 "since_time": "2009-08-21T23:39:27Z",
 "period": 30,
 "available_periods": {
 "30": "http:\/\/enjoysthin.gs\/api\/generate.sup?age=30",
 "60": "http:\/\/enjoysthin.gs\/api\/generate.sup?age=60"
 },
 "updates": [
 ["2a356709bd","1250912424"]
]
}

Subscribing with SUP
To demonstrate subscribing to SUP feeds, we’re going to aggregate content from the
website http://enjoysthin.gs. Enjoysthin.gs is a visual bookmarking site that supports
SUP and has an API call to get a list of recently active users. This means that we can
grab the feeds of some active users programmatically, even if they change from the time
I’m writing this to the time you’re reading this. This also means that we’ll be able to
grab the most active RSS feeds on the site, ensuring that we have new content frequently.
Figure 2-3 shows the active users page on enjoysthin.gs.

Simple Update Protocol (SUP) | 13

http://enjoysthin.gs/api/generate.sup?pretty=1
http://enjoysthin.gs
http://

We’re going to be aggregating links to new content for any number of users. To do this,
we’re going to need to create two MySQL tables. If you don’t have a test database to
use, create one with the following command:

~ $ mysqladmin -u db_user -p create syndication_test

Now that we’ve created the database, we need to create the two tables needed for the
example. Run MySQL using your newly created database and create the following
tables:

 ~ $ mysql -u db_user -p syndication_test
mysql> CREATE TABLE feeds (
 id serial,
 feed_url varchar(128) not null default '',
 sup_url varchar(128) not null default '',
 sup_id varchar(32) not null default ''
);
mysql> CREATE TABLE entries (
 id serial,
 feed_id integer not null references feeds,
 date_created datetime not null,
 date_updated datetime not null,
 url varchar(255) not null,
 title varchar(255) not null default '',
 atom_entry_id varchar(56) not null
);

Figure 2-3. The active users page on enjoysthin.gs

14 | Chapter 2: Realtime Syndication

http://

This example and the PubSubHubbub example both use a very simple database class.
Save the following as db.php in your working directory:

<?php

function _escape(&$str) {
 $str = "'" . mysql_real_escape_string($str) . "'";
}

class db {

 private $handle;

 function __construct($database_name,
 $username, $password,
 $host="127.0.0.1") {
 $this->handle = mysql_connect($host, $username, $password);
 mysql_select_db($database_name, $this->handle);
 }

 // select a bunch of rows and return as an array
 function select_array($sql) {
 $_ret = array();
 $result = $this->query($sql);
 if($result)
 while($row = mysql_fetch_object($result))
 $_ret[] = $row;
 return $_ret;
 }

 function insert_array($table, $data=array()) {
 if(!count($data)) return false;

 $values = array_values($data);
 array_walk($values, '_escape');

 $sql = "insert into {$table} (" . join(',', array_keys($data)) . ') ' .
 " values(" . join(',', $values) . ')';
 return $this->insert_query($sql);
 }

 function insert_query($sql) {
 $this->query($sql);
 return mysql_insert_id($this->handle);
 }

 function query($sql) {
 return mysql_query($sql, $this->handle);
 }

}

Simple Update Protocol (SUP) | 15

http://

Locating SUP feeds

We’re eventually going to build a script that checks a SUP feed for a bunch of different
Atom feeds, but before we can do that, we need to get a list of fairly active Atom feeds
and their corresponding SUP IDs. Rather than scour the Web for sites that support SUP
and then manually finding the users on that site that are still active, we’re going to ask
enjoysthin.gs for that list. Enjoysthin.gs provides a public API function to get a list of
recently active users. That API function returns, amongst other things, the URL of the
Atom feed for that user. The following PHP script, sup-id-aggregator.php, grabs those
feeds, searches for the SUP ID, and saves the result to the feeds table we created.

<?php

include_once("db.php");
$db = new db('syndication_test', 'db_user', 'db_pass');

// make an API call to get a list of recently active users/feeds
$url = "http://enjoysthin.gs/api/active.users";
$data = json_decode(file_get_contents($url));
$feeds = array();
foreach($data->users as $u) {
 $feeds[] = $u->atom;
}

echo("Checking for SUP-IDs on " . count($feeds) . " Atom feeds\n");

foreach($feeds as $feed) {
 // sup_discover is at the bottom of this file
 if($sup_link = sup_discover($feed)) {
 list($sup_url, $sup_id) = explode("#", $sup_link);
 $data = array('feed_url' => $feed,
 'sup_url' => $sup_url,
 'sup_id' => $sup_id);
 $id = $db->insert_array('feeds', $data);
 echo("{$id} Found SUP-ID: ({$sup_id})\n");
 }
}

echo("Done.\n");

// Pass this function the URL of an Atom/RSS feed,
// and it will return the SUP-ID
function sup_discover($feed) {
 // download the feed as a PHP object
 $xml = @simplexml_load_file($feed);
 if(!$xml) return false;

 $sup_link = false; // initialize the variable

 // loop through the XML
 foreach($xml as $k => $v) {
 // look for the link tag with SUP feed defined
 if($k == 'link') {
 $attrs = $v->attributes();

16 | Chapter 2: Realtime Syndication

www.allitebooks.com

http://
http://www.allitebooks.org

 if($attrs['rel'] == 'http://api.friendfeed.com/2008/03#sup')
 return (string) $attrs['href'];
 }
 }

 return false;
}

After connecting to the database, this file starts by making the active.users API call.
That function returns a serialized JSON object with the list of active users. We loop
through those users to create an array called $feeds containing only the location of the
Atom feeds.

The result of the active.users API call will give us various pieces of information about
recently active users. One of these fields will be the URL to the Atom feed for that user.
The full JSON response will look something like this:

{"users":[
 {"atom":"http://georgie.enjoysthin.gs/things.xml",
 "url":"http://georgie.enjoysthin.gs/?from=api",
 "username":"georgie",
 "name":"Georgie Hammerton",
 "avatar":"http://...jpg"},
 {"atom":"http://tedroden.enjoysthin.gs/things.xml",
 "url":"http://tedroden.enjoysthin.gs/?from=api",
 "username":"tedroden",
 "name":"Ted Roden",
 "avatar":"http://....jpg"}
],"stat":"ok"}

Once we have a list of feeds to use, we need to check each of them to see whether they
have a SUP feed associated with them. They all do have a SUP feed defined, but if you
run this code against other URLs, this is a good test. Once we determine that the feed
does have a SUP-ID associated with it, we save it to the database.

The SUP specification says that the SUP-ID can be specified in one of two ways. Either
it can be a <link> tag in the feed itself, or it can be served as the X-SUP-ID header with
the HTTP response. The full SUP-ID is formatted as a string containing both the SUP
feed URL and the ID for the feed itself. Whereas the SUP URL is a standard URL, the
ID is specified by using a named anchor tag in that URL. The full SUP-ID will look
something like this: http://somesite.com/sup-feed.json#sup-id.

Calling the sup_discover function returns that full URL. So after calling that function,
we split apart that URL to get the base and the SUP-ID. Then, we build a simple PHP
object to map the fields from the feeds table to the Atom feed URL, the SUP URL, and
the SUP-ID itself. The insert_array function takes this data, turns it into SQL, and
inserts it into the database.

The sup_discover function is the function that does most of the work in this file. This
function uses PHP’s very handy SimpleXML extension to download the XML file and
parse it into a PHP object. That all happens on the first line of this function. Once that’s

Simple Update Protocol (SUP) | 17

http://

done, we just loop through the tags in the XML looking for the link tag with the proper
rel attribute. Once we find it, we return the SUP link that we found.

To run this script, run the following command:

~ $ php sup-id-aggregator.php
Checking for SUP-IDs on 30 Atom feeds
1 Found SUP-ID: (03654a851d)
2 Found SUP-ID: (033097ff53)
3 Found SUP-ID: (cdeb48b690)
...
29 Found SUP-ID: (4791d29f89)

This command may take a little bit of time to finish because it’s downloading and
parsing a number of RSS feeds, but once does it finish, you’ll have a bunch of feeds and
SUP-IDs saved locally to the database.

The time it takes to download these feeds should help illustrate the beauty of SUP.
Without SUP, you would have to download all of those feeds again every time you want
to check whether they’ve been updated. But from here on out, you don’t need to do
that. We just need to check the main SUP feed and check the files it tells us to use.

Checking the SUP feed

Now that we have a good number of Atom feeds and we know their corresponding
SUP URLs and SUP-IDs, we can starting pinging the common SUP feed to check for
updates. Prior to SUP, if we wanted to check all of these feeds for updates, we’d have
to grab each and every one and compare them to the data we have. We’d do that every
time we wanted to check for new content. With SUP, we simply have ping tell us when
things are updated. This process, while fairly straightforward, is a bit more complex
than the previous one. So we’re going to step through it piece by piece. Open your text
editor and create a file called sup-feed-aggregator.php:

<?php

include_once("db.php");
$sup_url = "http://enjoysthin.gs/api/generate.sup?age=60";
$sup_data = @json_decode(@file_get_contents($sup_url));
if(!$sup_data) die("Unable to load the SUP_URL: {$sup_url} ...");

Getting started is simple; we just need to download the SUP file used by all of our feeds.
Normally, you’d want to check the database and get all of the SUP files needed for the
data feeds you need to check, but since all of our feeds are coming from the same spot,
I removed that complexity. We just download the file and use PHP’s json_decode func-
tion, which builds it into a native PHP object.

PHP provides json_decode and json_encode, two of the most useful
functions in the language for dealing with web services and data ex-
change on the Internet. If you’re not familiar with them, you should
seriously consider giving them a look.

18 | Chapter 2: Realtime Syndication

http://

Once we have the main SUP feed, we need to load the SUP-IDs that we know about
from the feeds table in our local database. This is the SUP data that we inserted in our
previous script. To load it, add the following to your script:

$db = new db('syndication_test', 'db_user', 'db_pass');
$sql = "select id, sup_id, feed_url from feeds " ;
$local_sup_info = $db->select_array($sql);

$feeds_to_check = array();

// loop the sup entries in our database
foreach($local_sup_info as $local_info) {
 // and check to see if any of the entries we know about ($local_info)
 // have been updated on the server ($sup_data->updates)
 foreach($sup_data->updates as $u) {
 list($sup_id, $garbage) = $u;
 if($sup_id == $local_info->sup_id)
 $feeds_to_check[] = $local_info;
 }
}

if(!count($feeds_to_check))
 die("No feeds to check, sup wins again!\n");
else
 echo("Checking " . count($feeds_to_check) . " feeds\n");

As you can see, we connect to the database and select all of the SUP data from our table.
Then we loop through all the entries and compare it to the updates field loaded from
http://enjoysthin.gs/api/generate.sup. If there were any feeds on enjoysthin.gs that had
recent updates, they’ll be in the updates field. So all we need to do is compare the SUP-
IDs that we know about to the SUP-IDs provided by that file. If we have a match, add
the whole database row to the $feeds_to_check array.

That last snippet of code had one curious line operating on $u:

list($sup_id, $garbage) = $u;

When used like this, PHP’s list function pulls apart an array and assigns the different
elements in the array to the variables named in the list.

The SUP protocol specifies that the updates field is an array of arrays. Those inner arrays
declare which SUP-IDs have been updated by inserting them as the first element in the
array while providing another string as the second element. We’re not expected to
interpret that second element, so it’s assigned to $garbage here, making it clear that it’s
not needed.

If none of the feeds need to be updated, there is no need to continue with this script.
However, if we have $feeds_to_check, it’s time to check them, so add the following to
the file:

foreach($feeds_to_check as $feed) {
 $entry_ids = array();
 $sql = "select atom_entry_id from entries where feed_id = {$feed->id}";

Simple Update Protocol (SUP) | 19

http://enjoysthin.gs/api/generate.sup
http://

 $existing_atom_entries = $db->select_array($sql);
 foreach($existing_atom_entries as $e)
 $entry_ids[] = $e->atom_entry_id;

 $xml = simplexml_load_file($feed->feed_url);
 $kids = $xml->children('http://www.w3.org/2005/Atom');
 $entries = $kids->entry;
 echo("Feed has ". count($entries) . " entries\n");
 foreach($entries as $i) {
 if(!in_array((string) $i->id, $entry_ids)) {
 $link = $i->link->attributes();
 $data = array('feed_id' => $feed->id,
 'date_created' => $i->published,
 'title' => $i->title,
 'url' => $link['href'],
 'atom_entry_id' => (string) $i->id);
 $entry_id = $db->insert_array('entries', $data);
 echo("Imported {$i->id} as {$entry_id} \n");
 }
 else
 echo("Already have $i->id, not adding it.\n");
 }
}

Each time through the loop we check and import the entries contained within this feed.
However, since SUP only tells us that something has been updated, we can’t just blindly
save everything we find; we have to check the entries in the feed against our records.

The first thing to do is load up all of the entries for this particular feed. The only feed
from our local table that we care about is atom_entry_id. These IDs remain unique to
every post in the feed, even if the feed changes servers, so we can be confident about
this field signaling new content. We’ll cache that for later in the $entry_ids array.

Once we know the feed we’re interested in and which Atom IDs we aren’t interested
in, it’s time to actually look at the Atom file. Again, we turn to PHP’s SimpleXML. We
get all of the entries out of the root element of the XML and loop through each of them.

Each time through the loop we’re looking at a single entry from the feed. The first thing
that we want to do is see whether that particular entry is in our $entry_ids array. If it’s
not, save everything that we care about to entries table.

We have everything we need to consume the content feeds via SUP. Let’s try running
the script to see what we get.

~ $ php sup-feed-aggregator.php
Checking 1 feeds
http://nicedream.enjoysthin.gs/things.xml:
ENTRY-id: 1
ENTRY-id: 2
...
ENTRY-id: 29
ENTRY-id: 30

20 | Chapter 2: Realtime Syndication

http://

Your results may vary widely from mine. When I ran it, the SUP feed indicated that
one of the Atom feeds had been updated. However, you may get several of them, or
you may get none at all. It’s the nature of how SUP works. Sometimes this script will
find itself updating many feeds, and other times it doesn’t do much at all.

This script works best when run quite often via a cron job. Since the script is requesting
the feed with a period of 60 seconds, running it once a minute makes a lot of sense. So
to let’s set that up with cron. Run the command crontab -e and add this line:

* * * * * php /PATH/TO/sup-feed-aggregator.php >> /tmp/sup-feed-aggregator.log

This tells the cron daemon to run this script every minute of every hour of every
day and append the results to a file in the /tmp directory. Watching the entries table
grow will let you know that it’s working, but you can also check the /tmp/sup-feed-
aggregator.log to see what’s happening.

If you’re not careful, you could start filling up your database and your
hard drive with feed and log data. Be sure to remove that cron job when
you’re done testing.

Publishing with SUP
We’ve seen how easy it can be to implement SUP on the subscriber side, but it’s also
easy to implement for a publisher. Any system that stores the creation date of each entry
can add SUP to their site with minimal effort.

Generating a SUP file

To generate a SUP file, we need to make some assumptions about the system for which
it’s being used. For the sake of simplicity, let’s say that you are making a social book-
marking site that provides Atom feeds of each user’s bookmarks. Let’s also assume that
each time a user saves a bookmark, the system automatically updates a field called
last_update in the (hypothetical) MySQL users table. Our users table would look
something like this:

mysql> describe users;
+-------------+---------------------+------+-----+---------------------+-----+
| Field | Type | Null | Key | Default | ... |
+-------------+---------------------+------+-----+---------------------+-----+
| id | bigint(20) unsigned | NO | PRI | NULL | |
| username | varchar(32) | NO | | | |
| password | char(32) | NO | | | |
| last_update | datetime | NO | | 0000-00-00 00:00:00 | |
+-------------+---------------------+------+-----+---------------------+-----+
4 rows in set (0.00 sec)

If you want to try out these code samples and follow along, you can create that table
with the following SQL:

Simple Update Protocol (SUP) | 21

http://

CREATE TABLE users (
 id serial,
 username varchar(32) NOT NULL default '',
 password char(32) NOT NULL default '',
 last_update datetime NOT NULL default '0000-00-00 00:00:00'
);

Every SUP file is tied to a specific period, or number of seconds, that the file represents.
When generating the default SUP file, the publisher generally defaults to a period of 30
to 60 seconds. The SUP file should also provide alternate URLs for different spans of
time. No matter what time frame is used, the process to generate the file is the same.

To generate a SUP file, all the publisher needs to do is grab all the users who have
updated their bookmarks in the specified time frame, generate the SUP-ID, and output
the file. This file can be added to our hypothetical PHP-based bookmarking site with
a very short script. Create a file called sup-generator.php and add the following code:

<?php

// get the time frame they're requesting, default to 30 seconds
// this is known as the 'period' in the SUP spec.
$age = (is_numeric($_GET['age']) ? $_GET['age'] : 30);

// we also add 30 seconds to provide a good amount of overlap.
$since_age = $age + 30;

function generate_sup_id($user_id) {
 return substr(md5('secret:' . $user_id), 0, 10);
}

The first thing this file does is determine the period to be used for the SUP file. Since
this variable represents seconds, I call it age and give it a default of 30 if it’s not supplied.
Then, we generate the $since_age variable, which is what we’ll actually use when it
comes time to build the SQL statement. All we do here is add 30 extra seconds onto
the age variable. The extra time gives subscribers some leeway when checking the feeds.

The first function in the file, generate_sup_id, is used to create a unique SUP-ID for
each user. This function combines a “secret” string along with the user’s unique ID and
generates the MD5 hash of it. Then it returns the first 10 characters of the hash by
running it through PHP’s substr function. There is no string length limit on the SUP-
ID, and we’re free to use the whole MD5 for it, but the point of SUP is to provide quick
and lightweight updates to subscribers. Shortening these strings will drastically reduce
the size of this file when there is a large number of users.

Cropping the SUP-ID before returning it means that two users could quite possibly
have the same SUP-ID. “Collisions” with these IDs are fine because the worst thing
that happens is that the subscriber will grab all the feeds that have the same SUP-ID
each time a shared ID is updated. Unless there is a huge amount of overlap, this is
nothing to worry about. The smaller file is worth the risk.

22 | Chapter 2: Realtime Syndication

http://

The next thing we need to do is look at the database and figure out which users have
updated content. Add the following to sup-generator.php:

function get_updates($since_age) {
 include_once("db.php");
 $db = new db('syndication_test', 'db_user', 'db_pass');
 $sql = "select id, last_update from users
 last_update > date_format(now() - interval {$since_age} second,
 '%Y-%m-%d %H:%i:%s')
 order by last_update desc limit 100";
 $updates = array();
 foreach($db->select_array($sql) as $row)
 $updates[] = array(generate_sup_id($row->id),
 (string) strtotime($row->last_update));

 return $updates;
}

This function, get_updates, is also the last function needed (I told you this was easy).
This function selects out all of the users who have updated bookmarks in the last
$since_age seconds. After creating an array to store all of the updates, it populates that
array with another array for each user who has updated content. That second array
contains the generated SUP-ID and the time of the last update. As I mentioned before,
the second value can be anything we want, so I’m just using the timestamp. The time-
stamp value will allow us to easily debug what is happening if anything seems out of
the ordinary. The updates array will end up looking something like this:

// This is what the main updates array will look like.
// You don't need to add this to sup-generator.php
 "updates": [
 // arrays of single updates
 ['sup-id-01', 'internal-publisher-string-01'],
 ['sup-id-02', 'internal-publisher-string-02'],
 ..
]

Now that we can generate semi-unique SUP-IDs and load the data out of the database,
we just need to assemble the object that we’ll return. The following code is all that
remains to be added to sup-generator.php:

$sup = new stdClass;
$sup->updated_time = date('Y-m-d\TH:i:s\Z');
$sup->since_time = date('Y-m-d\TH:i:s\Z', strtotime("-{$since_age} second"));
$sup->period = $age;
$sup->available_periods = new stdClass;
$url = 'http://' . $_SERVER['HTTP_HOST'] . '/' . $_SERVER['PHP_SELF'];
$sup->available_periods->{'30'} = "{$url}?age=30";
$sup->available_periods->{'300'} = "{$url}?age=300";
$sup->available_periods->{'600'} = "{$url}?age=600";
$sup->updates = get_updates($since_age);

header("Content-Type: application/json");
print json_encode($sup);

Simple Update Protocol (SUP) | 23

http://

This segment of code builds a PHP object with all of the fields that need to end up in
the JSON object. The updated_time and since_time can just be generated on the fly.
The available periods are the URLs that the subscriber can access if they don’t like the
default period; we just use the same script and change the age variable for each period.
The protocol recommends providing more than one available period, so we’re provid-
ing three here, including the default period. Then we just encode the PHP object into
JSON and print it out.

Testing our SUP file

Now that we have a script to generate the SUP file, let’s test it out. You can upload it
to a web server (that has the users table already created), or you can simply run it from
the command line:

~ $ php sup-generator.php

That will print out the SUP file in one line. I’ve formatted it to look a bit nicer here, but
your output should look something like this:

{
 "updated_time": "2009-08-26T08:43:26Z",
 "since_time": "2009-08-26T08:42:26Z",
 "period": 30,
 "available_periods": {
 "30": "http:\/\/\/ch02-1-sup-generator.php?age=30",
 "300":"http:\/\/\/ch02-1-sup-generator.php?age=300",
 "600":"http:\/\/\/ch02-1-sup-generator.php?age=600"
 },
 "updates": []
}

Running this command from the command line means we have no server name for the
available_periods fields. Once we run this from a web server, those will be fine. The
main thing to notice here is that we have no SUP updates. If a SUP client was connecting,
it would think there were no updates to grab.

Ideally, the application would update the last_update field in the users table whenever
new content is available. For our purposes, we can just insert several rows and run it
again. Run the following SQL as many times as you like; this will populate the users
table with some data to test.

 insert into users(username, last_update)
 select concat('username-', round(RAND() * 100)),
 (now() + interval (rand()* 100) minute);

Running the sup-generator.php script should give us some updates now. On my ma-
chine, the updates array now looks like this:

24 | Chapter 2: Realtime Syndication

http://

"updates": [
 ["be69ff6d4c","1251296083"],
 ["dcfc912115","1251295962"],
 ["f4066352d6","1251293981"],
 ["df97cf82f1","1251292781"],
 ["a29e3fe0d9","1251292362"]
]

Once you’ve built your SUP feed, you can run it through the FriendFeed
validator at http://friendfeed.com/api/sup-validator. This validator is
an open source Python project, and you can download the code from
http://code.google.com/p/simpleupdateprotocol/source/browse/trunk/vali
datesup.py.

The SUP header

As I mentioned previously in this chapter, in order for a subscriber to find the main
SUP file useful, it needs to know which SUP-IDs to check. To do this, the subscriber
downloads the RSS file and looks for one of two things. It can be specified as either a
<link> tag in the feed itself, or it can be served as the X-SUP-ID header with the HTTP
response. Actually adding the SUP-ID to an existing feed is very straightforward. For
example, let’s assume the script that generates an RSS feed looks something like this:

<?xml version="1.0" encoding="UTF-8"?>

<feed xmlns="http://www.w3.org/2005/Atom">
<title><?= $user_name ?> - Atom Feed</title>
<id><tag:my-site.com,1980-01-19:<?= $user_id ?></id>

...

<? foreach($entries as $entry): >
 ...
<? endforeach; >

Adding our SUP-ID to this file is very easy. As you can see, we already have the
$user_id, which in the example is being used to generate the id for the Atom feed.
When generating our SUP feed, we generated the semi-unique ID from nothing more
than that $user_id. We’ve already created the sup-generator.php, so all we need to do
is add that information to the feed, as I’ve done in the additions here:

<?

function generate_sup_id($id) {
 return substr(md5('secret:' . $id), 0, 10);
}

$sup_base_url = "http://" . $_SERVER['HTTP_HOST'] . '/sup-generator.php';
$sup_url = $sup_base_url . "#" . generate_sup_id($user_id);

Simple Update Protocol (SUP) | 25

http://friendfeed.com/api/sup-validator
http://code.google.com/p/simpleupdateprotocol/source/browse/trunk/validatesup.py
http://code.google.com/p/simpleupdateprotocol/source/browse/trunk/validatesup.py
http://

header("X-SUP-ID: $sup_url");

?><?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title><?= $user_name ?> - Atom Feed</title>
<id><tag:my-site.com,1980-01-19:<?= $user_id ?></id>
<link rel="http://api.friendfeed.com/2008/03#sup" href="<?= $sup_url ?>"
 type="application/json" />
...

<? foreach($entries as $entry): >
 ...
<? endforeach; >

This adds the same generate_sup_id function that we used when creating the SUP
feeds and uses that to generate the full URL to the SUP feed. Using that function, we
just created the full SUP URL by appending the ID to the location of our
sup-generator.php script. Then, we add the SUP-ID to both the HTTP response header
and as a link in the XML feed itself.

Earlier in this chapter, we built a script called sup-id-aggregator.php that was used to
locate valid SUP data in Atom/RSS feeds. Running that script against this feed would
find the valid SUP information.

Much like the SUP feed validator listed earlier, you can also check the
validity of your Atom/RSS feed. There are many of these Atom/RSS val-
idators, but FriendFeed provides a validator that also acknowledges that
it found valid SUP headers. Check your feed at http://friendfeed.com/api/
feedtest.

PubSubHubbub
PubSubHubbub differs from the rest of the implementations because it is a fully push-
based protocol. All of the content between publishers and subscribers runs through
centralized hubs, but this protocol is completely decentralized, open source, and free.
Anybody can run a hub and publish and subscribe to content. There is no single entity
in control of this system. However, this is a server to server protocol and requires public-
facing servers end-to-end. So although this protocol isn’t used directly by end users, it
makes it possible for end users to get almost instantaneous updates from the publishers.

In the PubSubHubbub workflow, a publisher specifies a hub server in the RSS or Atom
feed. Every time a publisher adds or updates content, it pings the hub to announce that
the feed has been updated. After receiving the ping, the hub checks the updated RSS
file for differences and sends them via POST request to any subscriber that has
requested it. During the subscription process, each client specifies a callback URL, and
it’s this URL that the hub POSTs to as new data arrives.

26 | Chapter 2: Realtime Syndication

www.allitebooks.com

http://friendfeed.com/api/feedtest
http://friendfeed.com/api/feedtest
http://
http://www.allitebooks.org

The Protocol
As the name suggests, the PubSubHubbub protocol has two major components: pub-
lication and subscription.

Subscribe

The Sub part of PubSubHubbub is subscription. When your main goal is to collect
aggregated content from around the Web in real time, this is the most important part.
It’s a bit different from subscribing to RSS feeds because it involves two servers, and
instead of you pinging the central RSS server, it pings you. Figure 2-4 describes the
subscription process at a high level.

Often the Publisher and the hub are two different servers, but this is not
a requirement.

Figure 2-4. Subscribing with PubSubHubbub

The first step in subscribing to a feed with PubSubHubbub is discovery. The subscriber
must determine whether the RSS feed is already publishes to a hub. To do this, the
subscriber downloads the RSS feed and looks for the proper hub link tag in the XML,
specifically a link tag where the ref attribute is hub. In the XML, it looks like this:

 <link rel='hub' href='http://www.myhub.com/hub'/>

PubSubHubbub | 27

http://

This tag informs any subscribers of the location of the hub. While any client can con-
tinue to use the RSS feed, services supporting this protocol can use the hub instead. In
order to subscribe to this published feed, the subscriber must make a POST request to
the hub and request a subscription.

The subscription process takes several steps to complete. Every interaction from the
subscriber to the hub is done with a POST request that has a content type of
application/x-www-form-urlencoded. The subscription request requires two steps to be
successful. First, a subscriber requests a subscription from the hub. Then, the hub tries
to confirm that the subscription is desired by verifying it with the subscribing server.
This requires two HTTP POST requests with several parameters. Most importantly,
subscribing to a published feed requires specifying the topic URL and the callback URL.
A full listing of the subscription parameters follows. All fields are required unless oth-
erwise specified.

hub.mode

The mode will be either subscribe or unsubscribe.

hub.callback

This is the subscriber’s callback URL. When the hub has an update, it will POST
it to this URL. According to the protocol, this URL should not contain a query
string of any kind.

hub.topic

This is the topic URL to which the subscriber is subscribing. This is generally an
RSS or Atom feed.

hub.verify

This parameter describes the verification mode(s) supported by the subscribing
server. This parameter can be listed more than once if the server supports more
than one method. There are two possible values. First there is sync, which requires
that the verification request must happen before the subscription’s HTTP request
has been returned. async specifies that the verification request may happen after
the subscription request returns.

hub.verify_token

This is an optional parameter. A subscriber can supply this token, which will be
supplied by the hub during the verification request. If not supplied, it will not be
present during verification. This can be used to help ensure that the subscriber is
receiving valid requests.

hub.lease_seconds

This is an optional parameter. It specifies the number of seconds that the sub-
scription should be active. The hub will ping the URL only during this period; once
it expires, the pings will cease. However, hubs may or may not respect this value,
depending on their own internal policies. If not supplied, the hub should use a
value of 2,592,000 seconds, or 30 days.

28 | Chapter 2: Realtime Syndication

http://

Upon receiving a subscription request, the hub will try to verify that the server at the
end of the callback URL is actually trying to subscribe to the feed. To do this, it makes
a verification request to the callback URL by POSTing a challenge string. If the sub-
scriber actually meant to subscribe to the feed, it will verify the request by echoing the
challenge request back to the server in a normal HTTP response. If the subscriber wants
to deny this verification request, it should return an HTTP 404 “Not found” response.
The parameters that will get posted to the client are the following:

hub.mode

The mode will be either subscribe or unsubscribe.

hub.topic

This is the topic URL that was supplied when initiating the subscription request.

hub.challenge

This is the random string generated by the hub. If the subscriber verifies this re-
quest, it must be echoed back in the body of the HTTP response.

hub.lease_seconds

This is the number of seconds the subscription should remain active. If the sub-
scriber wants uninterrupted pings, it should resubscribe before this period of time
runs out.

hub.verify_token

If this field was supplied during the main subscription call, it will be present in this
field. If it’s wrong, or supplied but unexpected, the subscriber should reject this
verification request.

Publishing content

Publishing content, or notifying the hub of new content, is actually the simplest part
of the whole protocol. When the publisher has new content and wants to inform the
hub, it pings the hub with the URL. No authentication is needed, because it’s only
pinging the hub to suggest that it check for new updates. There are two fields in this
request:

hub.mode

The mode will always be publish during the publish notification.

hub.topic

This is the topic URL that has been updated. After this ping, the hub server will
check the topic URL for any updates and notify subscribers if needed.

After receiving the publish ping, the hub server will make a GET request to the topic
URL. This is where the hub gets the new Atom/RSS content. This request is a totally
standard GET request, except that it’s accompanied by the header field X-Hub-
Subscribers.

PubSubHubbub | 29

http://

Because the hub is actually handling the distribution to the end users, the publisher
would have no way of knowing how many end users are accessing the content. This
X-Hub-Subscribers header contains the approximate number of users. This number can
be used by the publisher’s analytics system to get a better idea of how many end users
are accessing your content.

Once the hub has the content, it compares the new feed to a cached version stored on
the hub to determine what has changed. The hub then rebuilds the feed so that it
contains only new and updated entries. It then cycles through its list of subscribers and
makes a POST to all of the subscribers. This POST request contains nothing more than
the updated feed in the body.

Subscribing with PubSubHubbub
To demonstrate subscribing to a PubSubHubbub feed, we’re going to add items to the
entries table created during the SUP part of this chapter. We can reuse the actual
database tables and the PHP database class, but we’re going to need to create a class
to handle the lower-level pieces of the protocol itself. To get started, open a file called
pubsubhubbub.php and add the following code.

<?php

class PubSubHubBub {

 private $_hub_url = false;
 private $_params = array();

 public function __construct($hub_url) {
 $this->_hub_url = $hub_url;
 }

 private function param($k, $v) {
 $this->_params[$k] = $v;
 }

 private function _post() {

 $query_params = array();
 foreach ($this->_params as $k => $v) {
 $query_params[] = $k . '=' . urlencode($v);
 }
 $data = join('&', $query_params);

 $options = array(CURLOPT_URL => $this->_hub_url,
 CURLOPT_POST => true,
 CURLOPT_POSTFIELDS => $data,
 CURLOPT_USERAGENT => "realtime-pubsubhubbub/1.0");

 $ch = curl_init();
 curl_setopt_array($ch, $options);
 curl_exec($ch);

30 | Chapter 2: Realtime Syndication

http://

 $info = curl_getinfo($ch);
 curl_close($ch);

 if ($info['http_code'] == 204) {
 return true;
 }
 return false;
 }
 }

This really is the bulk of the class that we’ll be using, and there really isn’t that much
to it. This defines a class called PubSubHubbub and requires the hub URL when con-
structing it. Other than that, it has a simple function called _post to POST the content
to the hub URL and a param function to add parameters to the POST request.

As it stands, this class could be used by PHP scripts to handle the work of subscribing
to feeds and publishing to hubs. However, it’ll be a lot easier for the end users of this
class if we add some convenience functions to speed the process along. To subscribe
to a feed, let’s append a subscribe function to the end of the PubSubHubbub class in the
pubsubhubbub.php file.

public function subscribe($topic_url, $callback_url, $token=false, $lease=false) {
 if (!isset($topic_url)) return; // nothing to do

 if (!preg_match("|^https?://|i", $topic_url))
 throw new Exception('Invalid URL: ' . $topic_url);

 $this->param('hub.topic', $topic_url);
 $this->param('hub.mode', 'subscribe');
 $this->param('hub.callback', $callback_url);
 $this->param('hub.verify', 'sync');

 if($token) $this->param("hub.verify_token", $token);
 if($lease) $this->param("hub.lease_seconds", $lease);

 return $this->_post();
}

This function accepts enough parameters to handle all of the options needed when
subscribing to a hub. The two important parameters in this function are the
$topic_url and the $callback_url. The topic URL specifies the actual Atom feed URL
that we want to subscribe to. The callback URL is the URL that the hub will ping when
it has new content.

In the subscribe function, we check the existence and validity of the $topic_url and
add it to the parameter list. We also want to tell the hub which action we’re doing; we
do this with the hub.mode parameter, which we’ve set to subscribe. Depending on how
your system works outside of this class, you may want to change the hub.verify method
or change the token and lease parameters, but these default values should be fine for
many implementations.

PubSubHubbub | 31

http://

Finally, that function calls PubSubHubbub::_post(), which assembles the POST request
from the parameters and contacts the hub server. While most of the response from the
hub is ignored, _post returns true or false to signify whether the post has been suc-
cessful. However, when you’re using the sync mode for hub.verify, the callback URL
will actually get pinged before this functions returns.

Although most hubs should return from the subscribe request quickly,
you should avoid forcing users to wait for this function to return. It’s
best to run this function from queue, which will enable you to return
immediately and provide the users with a much smoother and more
realtime experience.

Now that we have enough of the class built to subscribe to a hub, let’s write some code
that actually uses it. We’ll start with a simple PHP script that can run on our web server
and can handle the whole subscription process. Open a file called index.php and add
the following code:

<?php

include_once("pubsubhubbub.php");

if($_REQUEST['request_subscription']) {
 // define the hub
 $hub = "http://pubsubhubbub.appspot.com/";

 // initialize the class
 $p = new PubSubHubBub($hub);

 // enter your "Shared Items" Atom URL
 $topic_url = "http://www.google.com/reader/public/...";

 // This is the URL the hub will ping (this file).
 $callback = 'http://' . $_SERVER['HTTP_HOST'] . $_SERVER['PHP_SELF'];

 // POST to the server and request a subscription
 $r = $p->subscribe($topic_url, $callback);

 if($r) {
 die("Done... we should be all subscribed. Try sharing something.");
 }
 else {
 die("\n\nSomething went wrong when subscribing.");
 }
}

else if($_REQUEST['hub_mode'] == 'subscribe') {
 // echo the hub_challenge back to the hub.
 die($_REQUEST['hub_challenge']);
}

32 | Chapter 2: Realtime Syndication

http://

Subscribing to a hub is a two-step process, and this file handles both steps. When hitting
the URL for this script, if the query string has request_subscription=1, this will use the
PubSubHubbub class to request a subscription from the reference hub hosted on Goo-
gle’s App Engine platform. This is the hub that is used by blogger.com and Google
Reader, amongst other platforms.

If the request doesn’t specify request_subscription, but does set the hub_mode to
subscribe, then we respond to the hub challenge. Responding to the challenge requires
nothing more than printing out the string supplied by the hub. If we’d specified a
hub.verify_token, then this part of the file would check to ensure that token was correct
before responding to the challenge. However, since we didn’t do that, we can safely
ignore that step.

You may have noticed that the hub parameter called hub.mode is refer-
enced as hub_mode in the code. This is due to PHP’s handling of under-
scores in HTTP requests. PHP automatically converts periods listed in
the key of a request parameter to an underscore. So when a URL has a
query string that looks like ?hello.world=hello, the hello.world

parameter is accessible as $_REQUEST['hello_world'].

Before we can test this out on a web server, we need to specify a URL to use as the topic
URL for the feed. Luckily, PubSubHubbub is supported by an increasing number of
sites around the Web. As I mentioned before, Google Reader supports publishing to a
hub with the “Shared Items” feed. So let’s grab a valid Atom URL from Google Reader.

Under the settings feed of your Google Reader account, you should see a tab labeled
“Folders and Tags”; click on that and locate the “view public page” link for your shared
items. Figure 2-5 shows the settings page interface.

Figure 2-5. Finding your “shared items” in Google Reader

Follow that link and it will take you to the public page for your shared items. Amongst
other things, that page has a link to the Atom feed for that page. This Atom feed sup-
ports publishing to a hub, so note the URL to that feed (see Figure 2-6).

PubSubHubbub | 33

http://

Right-click on that URL and copy the link. That’s the $topic_url we’re going to request
a subscription to. In the index.php file, change the line specifying the $topic_url to the
URL you just copied from Google Reader:

 $topic_url = "your-atom-url";

This file is already capable of subscribing to hubs, but in order to really test this out,
we want to handle the publish requests as well as the subscribe requests. Adding this
functionality is very straightforward. For this example, we’re just going to add the
shared items from Google Reader as rows to our entries table from the section on SUP
feeds.

In order to accept the publish POST requests from the hub, we’re going to need to add
a bit more to our index.php file. Append this to the end of that file:

else if(@$HTTP_RAW_POST_DATA) { // publish

 include('db.php');
 $db = new db('syndication_test', 'db_user', 'db_pass');

 $xml = simplexml_load_string($HTTP_RAW_POST_DATA);

 foreach($xml->entry as $e) {

 $href = false;
 $links = $e->link;
 foreach($links as $l) {

Figure 2-6. The Atom feed for Shared Items

34 | Chapter 2: Realtime Syndication

http://

 $attributes = $l->attributes();
 if(($attributes['rel'] == 'alternate') &&
 ($attributes['type'] == 'text/html'))
 $href = $attributes['href'];
 }

 $entry_id = $db->insert_array('entries',
 array('url' => $href,
 'title' => $e->title,
 'atom_entry_id' => $e->id,
 'date_created' => $e->published,
 'date_updated' => $e->updated,
)
);
 }

}

As the protocol specifies, the publish part of the protocol has no special flags. The hub
just POSTs the updated feed to the callback URL. To parse it out, we use PHP’s
“superglobal” variable called $HTTP_RAW_POST_DATA. When working with a POST re-
quest, this variable will contain the entire payload of that POST request.

The payload we receive from the hub is an Atom XML feed of the new and updated
entries. To parse that XML we use SimpleXML again. For most of the XML entities,
we can simply grab them from the SimpleXML object. However, the link back to the
original post is a bit more tricky. In the Atom format, there can be multiple links for
each entry. We loop the link entities to find the alternate location in text/html format.

To save the data, we’re reusing our entries table in the syndication_test database. If
you haven’t already created that table, go ahead and do that now. We’re using the same
db.php file introduced in the first chapter.

Now that we have everything we need in our index.php file, we can copy this file along
with pubsubhubbub.php to a public-facing server to test it out.

Once you have uploaded these files to a server, point your browser to the file with the
query string ?request_subscription=1. This will request a subscription from the hub,
which will start pinging this script whenever you share new items. Figure 2-7 shows
the result of a subscription request.

Figure 2-7. Subscribing to the Shared Items feed

PubSubHubbub | 35

http://

To test this out, head over to Google Reader and share some items. The hub should
POST the new data within seconds of sharing the item. By tailing the logfile, you can
watch each POST as it happens.

 ~ $ tail -f /path/to/apache-access.log
12.34.56.78 - - [01/Sep/2009:09:53:22 -0400] "POST /ch02/index.php HTTP/1.1" 200 -
12.34.56.78 - - [01/Sep/2009:10:06:29 -0400] "POST /ch02/index.php HTTP/1.1" 200 -
12.34.56.78 - - [01/Sep/2009:10:16:34 -0400] "POST /ch02/index.php HTTP/1.1" 200 -
...

Each POST to the server also means that at least one new row has been added to the
entries table of our syndication_test database.

mysql> select id, url from entries order by id;
+----+---+
| id | url |
+----+---+
| 7 | http://www.beingfamous.com/?p=814 |
| 8 | http://feedproxy.google.com/~r/LouisgraycomLive/~3/zbknbXICU5k/...page.html |
| 9 | http://tedroden.enjoysthin.gs/226319?from=rss |
+----+---+
3 rows in set (0.00 sec)

We’ve now built a script capable of subscribing to and handling publish requests from
various hubs around the Internet. If you’ve built web applications before, you should
have no trouble adding these features to your code base. Supporting PubSubHubbub
subscriptions is a very simple way to ensure that your users always have the newest
content, which should keep them coming back more frequently. However, now that
we’re accepting pings, it’s time to start publishing.

Publishing with PubSubHubbub
Much like SUP, publishing via PubSubHubbub is extremely easy. In fact, publishing
with this protocol is the easiest part of the implementation. If your site wants to publish
in realtime but doesn’t need to aggregate content from other hubs, you can be up and
running with PubSubHubbub in minutes.

First things first, you’ll need to alert potential subscribers to the location of the hub
you’re using. You can use any hub you want, but if you don’t have one already, a good
choice is to use the reference implementation supplied by the PubSubHubbub project
at http://pubsubhubbub.appspot.com/.

Alerting users to the location of the hub is as simple as inserting one extra line of code
into your Atom feed. At the place your feeds are generated, you simply need to add the
following line:

<link rel='hub' href='http://pubsubhubbub.appspot.com/' />

When a subscriber looks at this feed, this line tells the subscriber that we’ve handed
off syndication duties to the hub. The subscriber would then request a subscription
from that hub and receive its updates instantly from there rather than constantly

36 | Chapter 2: Realtime Syndication

www.allitebooks.com

http://pubsubhubbub.appspot.com/
http://
http://www.allitebooks.org

pinging the Atom file. However, before a subscriber receives any realtime content, we
need to ping the hub when it’s time to publish content.

The class we built earlier will work perfectly for publishing content, but let’s add one
extra function to make the process much easier. Open the pubsubhubbub.php file created
earlier and add the following code.

public function publish($topic_url) {
 if (!isset($topic_url)) return; // nothing to do

 if (!preg_match("|^https?://|i", $topic_url))
 throw new Exception('Invalid URL: ' . $topic_url);

 $this->param('hub.url', $topic_url);
 $this->param('hub.mode', 'publish');

 return $this->_post();
}

This is an extremely simple publish function. First, we do a very basic check to ensure
we have a valid topic URL. Then, we add the URL as a parameter along with setting
hub.mode to publish. Actually pinging the hub is as simple as calling the _post method.
Unlike the subscribe process, we don’t have to wait for the hub to ping us back; at this
point, we’re done publishing. The only thing left is to integrate it with your code base.

On many sites, when you save new content to the database, the content just sits in the
database waiting for a request. If the site receives a request for the Atom feed or for the
actual website, the server will look in the database and return what it finds. Although
that still works, we want any interested parties to get the content as soon as it’s pub-
lished. To do that, we need to add some new code that runs as we’re saving content to
the database. Let’s say your site looks something like this:

if($have_new_content) {
 $post = save_post();
 $post->regenerate_index();
 $post->regenerate_atom_feed();
}

To publish to a hub using the class we created earlier, you’d change the code to look
like this:

if($have_new_content) {
 $post = save_post();
 $post->regenerate_index();
 $post->regenerate_atom_feed();

 include_once("pubsubhubbub.php");
 $p = new PubSubHubbub("http://pubsubhubbub.appspot.com/");
 $p->publish($post->get_atom_feed_url());

}

PubSubHubbub | 37

http://

Obviously this code makes some assumptions about your system that are probably
false. However, you should be able to glance at those three lines of extra code and figure
out how to insert it into your setup.

One of the design principles of this protocol is that it should be easily “bootstrappable.”
The protocol was designed to keep all of the complexity in the hub itself and allow
subscribers and publishers to implement realtime syndication very easily. Of the guid-
ing principles behind this protocol, the ability to easily get this up and running with
existing systems is at the top of the list. The example code here is very simple, but it
does some very powerful things, opening up the door for truly realtime syndication.

38 | Chapter 2: Realtime Syndication

http://

CHAPTER 3

The Dynamic Homepage (Widgets in
Pseudorealtime)

Moving past syndication, which primarily gives you benefits on the backend, this
chapter looks at dipping our toes into realtime experiences on the frontend side of
things. We’re going to start with an example that uses standard pull requests to build
a few dynamic widgets to add to any website or homepage. This example will show the
power of realtime experiences and serve as a good example of why new technologies
are needed to get the most out of modern browsers.

In a change from the concepts in previous chapters, all of these examples can be built
using nothing more than HTML, a bit of CSS, and some JavaScript. Not only are they
based in the web browser, but there is no server setup to get them up and running.
With minor modifications you can easily put any and all of these widgets onto any
webpage.

The Basic Widgets
The first widget that we’re going to add to this homepage is a quick view into the
trending topics on Twitter (http://twitter.com). This widget will do two things. First, it
will use Twitter’s API to find the trending topics on Twitter. Trending topics are key-
words that are currently very active in tweets on Twitter. Then, we’ll create a realtime
feed of tweets that contain any of those keywords. So if “realtime” is a trending topic,
this widget will display any tweet containing the word “realtime” as it comes in.

39

http://twitter.com
http://

HTML
Since there is no server-side part to this example, you can put the files wherever it makes
sense in your setup. We’ll be creating two files total: one HTML file and a JavaScript
file. The first step in building these widgets is to write some HTML that will contain
them. Create a file called index.html and add the following code:

<!DOCTYPE HTML>
<html>
 <head>
 <style>
 DIV { width: 300px; }
 DIV.widget { display: inline-table; }
 DIV.title {
 background-color: #ccc;
 font-weight: bold;
 padding-top: 3px;
 padding-bottom: 3px;
 text-align: center;
 }
 DIV.line {
 display: block;
 overflow: hidden;
 width: 100%;
 border-bottom: solid 1px #ddd;
 }
 DIV.content { overflow: auto; height: 450px; }
 IMG.profile_image { max-width: 48px; max-height: 48px; }
 </style>
 </head>
 <body>

 <div class="widget"><!-- The Trending on Twitter widget -->
 <div class="title" id="trending-title">Trending</div>
 <div class="content" id="trending-on-twitter"></div>
 </div>

 <div class="widget"><!-- The FriendFeed widget -->
 <div class="title" id="friendfeed-title">FriendFeed Updates</div>
 <div class="content" id="friendfeed-updates"></div>
 </div>

 <div class="widget"><!-- The Widget showing live images posted on twitter -->
 <div class="title" id="images-title">Live Images</div>
 <div class="content" id="images-on-twitter"></div>
 </div>

 <script type="text/javascript" src="homepage.js"></script>
 </body>
</html>

The first thing this file does is define a number of CSS style entries. These take care of
the look and the layout of the elements we’ll be building programmatically through
JavaScript. These widgets will have a simple appearance, and I’ve left a lot of room for

40 | Chapter 3: The Dynamic Homepage (Widgets in Pseudorealtime)

http://

improvement, but the basic layout is that each widget has some basic fixed dimensions,
a title pane, and a line for each realtime update.

The basic shell of each widget is created in the markup of the HTML. This example
will create three widgets that can be placed on any page. The first widget will contain
a steady stream of tweets that are trending on Twitter. The second widget is a realtime
window into updates that are happening on FriendFeed. Finally, the last widget will
show a view of the images that are being posted onto Twitter.

Each widget has a DIV for the title of the widget in addition to a place to put the content
of each widget. The id attributes are important because the JavaScript for this example
references these elements by id.

Setting Up the JavaScript
For this example, we rely on server-side APIs from a few different services, but we don’t
actually have to create any ourselves. In this example, the entire application runs on
the client side, in the browser.

Initialize

All of the work in this example is done in JavaScript. To do this work, we’ll build a
simple JavaScript object that can keep track of all the moving parts. In the same direc-
tory as index.html, create a file called homepage.js and add the following code:

var Home = {
 trends: [], // what is trending on twitter?
 twitter_since_id: 0, // keep track of the twitter entries we've seen
 live_images_since_id: 0, // keep track of the twitter images we've seen
 friendfeed_entries: [] // keep track of the FF entries we've seen
};

// Get everything started
Home.init = function() {
 // load the trending topics from twitter
 Home.appendJS('http://search.twitter.com/trends.json?callback=Home.catchTrends');
};

// a simple method to append JS files to the DOM
Home.appendJS = function(url) {
 url += "&" + Math.random(); // ensure the browser doesn't cache this
 var scr = document.createElement('script');
 scr.setAttribute('src', url);
 scr.setAttribute('type', 'text/javascript');
 document.getElementsByTagName('head').item(0).appendChild(scr);
};

The Home object will contain all the logic for this application. The first thing we do is
initialize some variables that we’ll be using in the code. Next, we define an init method
that will be used to run any initial functions and start the script in general. Although
this method will grow along with the functionality of this application, at the moment

The Basic Widgets | 41

http://twitter.com
http://friendfeed.com
http://

it has only one call. The Home.init method makes a call to Home.appendJS to a Twitter
search URL. This URL will return a list of the currently trending topics across Twitter,
which will be used in the first widget to get a feed of tweets about those topics. In
addition, the standard Twitter search URL, we add a callback parameter to the URL.
When this request returns from the server, the data will be passed to this callback
method.

The Home.appendJS method appends a new script element to the DOM. It takes in a
URL parameter and adds a random number to the end. Simply adding a random num-
ber to the end of the URL won’t have any effect on most JavaScript includes, but it does
ensure that every request has a different URL. This will ensure that the browser doesn’t
automatically return cached content for the request. This URL is then used as the src
for the script. This method doesn’t do anything with the output of the included script;
it’s assumed that each included file can execute any code that is needed. In this case,
all of the scripts we’ve included are JSONP requests that execute callback functions
once the content is fully loaded.

A word about JSONP

The widgets that we are building will not use any external JavaScript libraries or even
Ajax-style XMLHttpRequest (XHR) calls. To load data from the external APIs,
this example uses JSONP or JSON with padding to make our requests. JSONP is a
super simple method of fetching JSON data from remote servers. Initially introduced
by Bob Ippolito, it has been implemented by many APIs when making JSON-based
requests. Using JSONP allows you to essentially make API requests to remote servers
by simply adding new JavaScript includes to the DOM, which can be done program-
matically.

For example, if you were making an API request for a list of videos from Vimeo in JSON
format, the URL for the JSON format would be http://vimeo.com/api/v2/ted/vid
eos.json and the output would look something like this:

[{
 {"id":"7466620","title":"Party Time", "url":"http:\/\/vimeo.com\/7466620"},
 {"id":"6955666","title":"Speaking","url":"http:\/\/vimeo.com\/6955666"}
 ...
}]

That gives you the data you requested, but there is no simple way to use the data if you
are requesting the URL via a <script> tag. With JSONP, most APIs allow you to specify
a callback URL along with the API request, so that when you include the URL, you’re
able to specify a JavaScript callback function and the whole response will be passed as
a parameter to that function. On Vimeo, that same data could be accessed by requesting
http://vimeo.com/api/v2/ted/videos.json?callback=parseVideos, which would give
you a response similar to the following:

parseVideos([{
 {"id":"7466620","title":"Party Time", "url":"http:\/\/vimeo.com\/7466620"},

42 | Chapter 3: The Dynamic Homepage (Widgets in Pseudorealtime)

http://search.twitter.com/
http://search.twitter.com/
http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp/
http://vimeo.com
http://

 {"id":"6955666","title":"Speaking","url":"http:\/\/vimeo.com\/6955666"}
 ...
}]);

When the browser sees this, it treats it as any other bit of JavaScript code and executes
it immediately. This allows us to use the data as it comes in from external sources by
including the API requests as JavaScript includes and then waiting for our callback
functions to be executed.

Catching the trends

When the Home object was initialized, we ran Home.appendJS to fetch the currently
trending topics from Twitter. That request specified a callback method called
Home.catchTrends. Add that method to the file:

Home.catchTrends = function(data) {
 // save the name of the trends to the local trends array
 for(var i = 0; i < data.trends.length; ++i)
 Home.trends.push(data.trends[i].name);

 // now that we know the trends, start grabbing tweets with those terms
 Home.getTrendingTweets();
};

When http://search.twitter.com/trends.json is finished loading, Home.catchTrends
will be executed and the parameter will be a JSON object that contains an array of trend
objects from Twitter. These objects have two fields, name and url. This method only
needs to know the name of the trends, so it loops through all of the trends and saves
each name to the Home.trends array that was created in Home.init.

Loading the trends themselves is only part of this widget; the main goal is to show a
realtime feed of tweets that are talking about these trends. In order to do that, we need
to search Twitter for those trends. So now that all of the trends are saved to the
Home.trends array, it’s time to start gathering the tweets themselves.

Home.getTrendingTweets = function() {

 // setup the base url
 var url = 'http://search.twitter.com/search.json?' +
 'callback=Home.catchTweets';

 // randomize the trends array
 Home.trends = Home.trends.sort(function() {
 return (Math.round(Math.random()) - 0.5);
 });

 // search on five trending topics
 url += '&q=' + encodeURIComponent(Home.trends.slice(0,5).join(" OR "));

 // only since the last time we searched.
 url += "&since_id=" + Home.twitter_since_id;

The Basic Widgets | 43

http://

 Home.appendJS(url);

 // wait for a few seconds and then run this method again
 setTimeout(Home.getTrendingTweets, 7000);
};

To search for individual tweets, this method uses a different URL endpoint of the
Twitter search API than it did to list the currently trending topics. We’ll be using the
same Home.appendJS method to make the request, so as we set up the base url, we specify
the callback function name that we’ll be using later.

This method will actually search for individual tweets, so we need to set up a search
query and add it to the URL. We’re only interested in seeing the tweets that are currently
trending, so we can just use our trending array. However, much like posting updates
to Twitter, the full length of the search criteria can be no more than 140 characters in
length. To ensure we’re using less characters than that, this method uses five random
trends each time it is called instead of searching for all of them. To do that, this method
rearranges the Home.trends array into a random order every time it’s called.

The search API takes a number of parameters, but this method only needs to provide
two of them. The first, and most important, parameter is the query string itself. We
concatenate the first five of the newly randomized trends array onto the URL separating
each one with the boolean OR keyword. These trends are encoded via JavaScript’s
encodeURIComponent function.

Since we’re going to be calling this method over and over again, we only want to grab
tweets that we have not yet seen. To make this easier, Twitter provides a parameter
called since_id. When supplied, Twitter will respond only with tweets that have been
created since the specified id.

Once we run Home.appendJS, the code is then waiting for a callback request to the
Home.catchTweets method. While we wait, we run setTimeout in order to run this same
method again. This will create a loop that runs as long as the page is loaded. This
method will keep running and calling itself over and over again.

Catching the tweets

When running, the application is looping through Home.getTrendingTweets, which is
including new JavaScript files, each one with a callback method that is executed when
finished loading. That method was specified as Home.catchTweets and its job is to accept
the tweets and update the user interface of the widget. Add the following code to
homepage.js:

Home.catchTweets = function(data) {

 // loop through the tweets
 for(var i = data.results.length - 1; i > -1; --i) {
 var tweet = data.results[i];

 // add the tweet to the UI

44 | Chapter 3: The Dynamic Homepage (Widgets in Pseudorealtime)

http://

 Home.addLine('trending-on-twitter', { 'username': tweet.from_user,
 'html': tweet.text,
 'profile_image':
 tweet.profile_image_url
 });
 }

 if(data.results.length)
 Home.updateTitle('trending-title', data.results.length);

 // cache the max_id so we know which tweets we've seen
 Home.twitter_since_id = data.max_id;
};

When this callback method is called, its parameter is a data object that contains an
array of tweets matching the search criteria. Each object contains the text of the tweet
along with other information such as the username and even the language of the tweet.
As this method loops through each of the tweets, it calls a method called Home.add
Line, which will add the tweet to the interface.

In addition to adding each individual tweet to the widget, it’s also a good idea to inform
the user of how many tweets were just added. To do that, we’re going to use a method
called Home.updateTitle that can be used by all of the widgets, not just the trending
widget. That method will update the title pane of the widget to display “X new results.”
In calling that method we need to provide only the id of the div and the amount of new
updates.

Back in the method Home.getTrendingTweets, we use the variable Home.twitter_since_id
to limit the tweets in our request to tweets that we haven’t yet seen. We could keep
track of each variable ID that we’ve seen and calculate the highest number, but Twitter
makes it easy by providing max_id with each result set. We can use that max_id variable
to populate Home.twitter_since_id.

Displaying the updates

In the callback function Home.catchTweets, we’re looping through all of the tweets and
calling Home.addLine to display each one in the widget. This method does not use ex-
ternal JavaScript libraries to manipulate the DOM; instead it uses the standard DOM
manipulation functions provided by the browser. We could have saved some lines of
code using one of these libraries, but using the standard methods ensures that these
widgets can easily be integrated into existing websites without causing JavaScript con-
flicts with existing frameworks. Add the following code for the ability to add updates
to the widgets:

Home.addLine = function(targetDivId, data) {
 var doc = document;

The Basic Widgets | 45

http://

 // create a div and give it the line class
 var line = doc.createElement('div');
 line.setAttribute('class', 'line');

 // if data contains a profile image, add it to the line div
 if('profile_image' in data) {
 var img = doc.createElement('img');
 img.setAttribute('align', 'right');
 img.setAttribute('class', 'profile_image');
 img.setAttribute('src', data.profile_image);
 line.appendChild(img);
 }

 // create a P tag to hold the content
 var p = doc.createElement('p');
 p.innerHTML = "";

 // if there is a username, show it
 if('username' in data)
 p.innerHTML += '' + data.username + ": ";

 // if there is html content, show that
 if('html' in data) {
 p.innerHTML += data.html;
 }

 // add the p to the line div
 line.appendChild(p);

 // add the line onto the widget itself
 var targetDiv = doc.getElementById(targetDivId);
 // prepend it to the top of the widget
 targetDiv.insertBefore(line, targetDiv.firstChild);

 // clean up the DOM
 var dom_limit = 60;
 var elements = targetDiv.getElementsByClassName('line');
 for(var i = elements.length - 1; i >= dom_limit; --i)
 targetDiv.removeChild(elements[i]);

};

This method will end up being used by all of the widgets that we’re building, so it has
to be generic enough to be used for a few different purposes. Rather than give this
method tons of optional parameters, this makes do with only two. The first parameter
is the id of the div in which to append the content. The second parameter is a JavaScript
object containing any of the fields that this method may use:

profile_image

The URL to a profile image or avatar to show with this line.

username

If supplied, this method will show the username in bold before the actual update.

46 | Chapter 3: The Dynamic Homepage (Widgets in Pseudorealtime)

www.allitebooks.com

http://
http://www.allitebooks.org

html

This is the actual content of the update. This may be a line of text, an image, or
any combination of HTML elements.

As we move through this method, we test the data object for these variables and create
the interface for each piece. After creating the main div element, line, we check the
object to see whether we should add a profile image. Adding that is as simple as creating
an image element with the right attributes and appending it to the line element. Then,
we create the paragraph element, which will be used to display the username and
HTML if they are provided, and append it to the line. Once we’ve built the entire line,
we just prepend it to the top of the widget. This will display the tweets in reverse
chronological order, with each new update being displayed at the top.

This method is called from inside a loop in the Home.catchTweets method, which runs
in a loop as well. At the end of every time through that method, it sets a timeout to call
itself again. After a few times through these loops, this Home.addLine method could
potentially add a huge number of elements to the DOM in no time at all. This would
take up quite a bit of RAM and turn a realtime experience into a sluggish nightmare.
To ensure that things don’t get out of hand, we clean up the DOM each time through
this method. The next bit of code loops through elements with a CSS class named
line and removes all but the most recently added.

After displaying the updates themselves, the widget should make it clear exactly how
many new updates have been added. To do that, the Home.catchTweets method calls
Home.updateTitle. Add it to your homepage.js file:

Home.updateTitle = function(divId, number) {
 var titleDiv = document.getElementById(divId);

 // update and highlight the title
 titleDiv.innerHTML += ": " + number + " new results";

 // Wait a beat and then return the title to the way it was
 setTimeout(function() {
 titleDiv.innerHTML = titleDiv.innerHTML.replace(/\:.+/, '');
 }, 1500);

 // Breifly highlight the title, turning it yellow and fading it back
 var highlightLevel = 1;

 // each time this method is called, it slightly changes the color of the title
 var highlightStep = function () {
 var hex = highlightLevel.toString(16);
 titleDiv.style.backgroundColor = '#cccc' + hex + hex;

 // if we're not already light grey (12), increase the highlightLevel
 // and run this method again
 if (highlightLevel < 12) { // 12 == "c" in base16 (hex)
 highlightLevel++;
 setTimeout(highlightStep, 50);
 }

The Basic Widgets | 47

http://

 };

 // start highlighting
 highlightStep();
};

This method will be used by all of the widgets, but it doesn’t have a very complicated
job to do, so the parameters are totally simple. The first parameter is the div of the title
pane for the widget, and the second parameter is the number of new updates.

Right at the start, this method updates the titleDiv and appends a string to reflect the
number of new updates. Then it sets up a timeout to undo the changes. This replace
statement searches for a colon and replaces it and everything after it with an empty
string. This process will update the title from something like “Trending,” change it to
“Trending: 5 new results,” and then finally change it back to “Trending” after a short
delay.

To really call attention to the change, this method also highlights the title pane, chang-
ing the background color to yellow. Rather than blinking back light gray, it steps
through the colors, providing a smooth transition from yellow back to light gray. This
section is totally optional; feel free to leave it out or change the colors and timing of the
fade.

We now have all the code to run the widget, but with one important exception: nothing
ever gets the code started. To initialize everything, add the following code to the bottom
of homepage.js:

// Get everything started.
Home.init();

At this point, the trending code widget should be fully operational. Since there is no
server-side code to this, you can simply open index.html in your web browser to see
the widget in action. It should look something similar to Figure 3-1.

FriendFeed in Realtime
FriendFeed is a web service that aggregates updates from many different social media
sites, social networking sites, and plain old blogs. Not long after the site launched, the
developers started introducing realtime features into the site. SUP, as described in the
previous chapter, was developed for their realtime needs. Although the site has since
been purchased by Facebook, it still has an active community and a full-featured API
that will work well for creating a realtime widget.

48 | Chapter 3: The Dynamic Homepage (Widgets in Pseudorealtime)

http://friendfeed.com
http://facebook.com
http://

In building the trending widget, we set up the basic HTML structure along with many
of the convenience methods needed to create a basic widget for this application. So to
build the FriendFeed widget, we just need to write the code that talks to the server, and
we can pass off much of the work to the existing code. To get everything started, modify
the Home.init method to look like the following code:

// Get everything started
Home.init = function() {
 // load the trending topics from twitter
 Home.appendJS('http://search.twitter.com/trends.json?callback=Home.catchTrends');

 // Start getting updates from friendfeed
 Home.getFriendFeedUpdates();
};

When everything gets started via the Home.init method, the FriendFeed code will get
started as well as the trending code. Add that method as well:

Home.getFriendFeedUpdates = function() {
 // get updates from friends of "scobleizer"
 var url = "http://friendfeed-api.com/v2/feed/scobleizer/friends?" +
 "callback=Home.catchFriendFeedUpdates";
 Home.appendJS(url);

 // start a loop by calling this mehtod again in 5 seconds
 setTimeout(Home.getFriendFeedUpdates, 5000);
};

Figure 3-1. The trending widget in action

FriendFeed in Realtime | 49

http://

This is a simple method with only two steps. First, it makes an API. Then, it sets up a
timeout to start doing it again. You may notice one peculiarity with the URL to the API,
particularly that we’re requesting data for a user named scobleizer. You can certainly
use any username for this URL; I picked this user because of the sheer number of people
he follows. This is the username of Robert Scoble, a well-known blogger. At the time
of this writing, he was subscribed to 28,066 friends on FriendFeed, which means his
feed always has new content in it. This makes for a much more compelling demon-
stration of the FriendFeed API for this realtime widget.

Just like the Twitter API, the FriendFeed API offers output in JSONP format and allows
you to specify the callback function with a parameter
named callback. In this case, the callback is to the method Home.catchFriendFeed
Updates, which does exactly what it sounds like:

Home.catchFriendFeedUpdates = function(data) {

 // keep track of the amount of upates we're adding
 var cnt = 0;

 // loop through the friendfeed updates
 for(var i = data.entries.length - 1; i > -1; --i) {
 var entry = data.entries[i];

 // check to see if we've seen this update already
 if(Home.friendfeed_entries.indexOf(entry.id) == -1) {
 // add it to the page
 Home.friendfeed_entries.push(entry.id);
 Home.addLine('friendfeed-updates', { 'username': entry.from.name,
 'html': entry.body
 });
 cnt++;
 }
 }

 // update the title
 if(cnt)
 Home.updateTitle('friendfeed-title', cnt);

};

This method should look fairly similar to method Home.catchTweets, which we created
earlier. Both the Twitter API and the FriendFeed API respond with very similar formats.
Where this method differs from Home.catchTweets, it’s only to accommodate those dif-
ferences. One of the main differences between the APIs is that FriendFeed does not
accept a since_id parameter. So this method has to look at each result manually to
ensure we haven’t seen it before. To do this, we keep a cache of the entries we’ve seen
and check against that. If we haven’t seen a particular update, it gets inserted into the
cache. Each new update gets added to the widget using the Home.addLine method.

It may seem like overkill to cache each of the IDs that we receive from the API and
check against them each time through the loop. However, we can’t simply check the

50 | Chapter 3: The Dynamic Homepage (Widgets in Pseudorealtime)

http://scobleizer.com/
http://friendfeed.com/api/
http://

last ID that we receive from FriendFeed and then grab everything after that on the next
time through. FriendFeed updates get reinserted and reordered when another user
comments or performs any other action on the update. If we stopped adding lines after
finding one that we’ve seen, we’d end up missing a good deal of updates. This method
should clear out old entries after a certain point instead of caching them indefinitely,
but that is left as an exercise for the reader.

As we loop through each entry, we increment a counter variable. This variable is used
to keep track of exactly how many updates are added to the widget. Once the loop is
finished, we update the title of the widget with the new count using the Home.update
Title method.

Once again, we have a finished widget. Open up index.html in your browser to check
the results. It should resemble Figure 3-2.

Figure 3-2. The Twitter trending and FriendFeed widget running

Live Images
Until now, the widgets primarily show text updates in realtime. So in this widget we’re
going to limit it to a realtime view of images that are streaming into Twitter at any given
moment. To get this bit started, once again we’ll need to modify the Home.init method.
Adjust yours to look like the following:

// Get everything started
Home.init = function() {
 // load the trending topics from twitter
 Home.appendJS('http://search.twitter.com/trends.json?callback=Home.catchTrends');

Live Images | 51

http://

 // Start getting updates from friendfeed
 Home.getFriendFeedUpdates();

 // Start grabbing the images
 Home.getLiveImages();
};

Like the existing code in this method, this part just initializes the code for the live
trending widget. The Home.getLiveImages method just starts searching Twitter for
tweets with images:

Home.getLiveImages = function() {
 // search twitter for popular image hosting URLs
 var url = 'http://search.twitter.com/search.json?' +
 'callback=Home.catchLiveImages&q=yfrog.com+OR+twitpic.com';
 url += "&since_id=" + Home.live_images_since_id;
 Home.appendJS(url);

 // set a timeout to run this method again
 setTimeout(Home.getLiveImages, 7000);
};

Much like Home.getTrendingTweets and Home.getFriendFeedUpdates, this method just
starts a loop to make the same API request. To search for images on Twitter, we’ll
simply search for tweets containing the domains of well-known image posting services.
Twitpic and yfrog are both services that are commonly used by Twitter users to host
images that are then posted on Twitter. This code makes the reasonably safe assump-
tion that any tweet containing these URLs will contain an image.

This uses the same Twitter search API that was used for the Trending Tweets widget.
Rather than expanding the Home.catchTweets callback method used for that widget, this
one specifies a new one called Home.catchLiveImages. Add that method to your code:

Home.catchLiveImages = function(data) {

 // setup the regexp to be used in the loop
 var image_regexp = new RegExp("http://(yfrog\.com|twitpic\.com)/([0-9a-zA-Z]+)");

 // loop through all the tweets returned by Home.getLiveImages
 for(var i = data.results.length - 1; i > -1; --i) {
 var tweet = data.results[i];

 // run the regular expression on the tweet
 var matches = image_regexp.exec(tweet.text);

 if(matches) {
 // yfrog.com or twitpic.com
 var domain = matches[1];
 // the image ID to be used in the URL
 var image_id = matches[2];

 // setup the thumbnail URL for the different services
 var image_url = '';
 if (domain == 'yfrog.com')

52 | Chapter 3: The Dynamic Homepage (Widgets in Pseudorealtime)

http://twitpic.com
http://yfrog.com
http://

 image_url = 'http://yfrog.com/' + image_id + '.th.jpg';
 if (domain == 'twitpic.com')
 image_url = 'http://twitpic.com/show/thumb/' + image_id;

 // generate an HTML string to show in the widget
 var image_str = '' +
 ''+
 '';

 // show the image (leave out the username and profile icon)
 Home.addLine('images-on-twitter', { 'html': image_str });
 }
 }

 if(data.results.length)
 Home.updateTitle('images-title', data.results.length);

 Home.live_images_since_id = data.max_id;

};

The main job of this method is too inspect each tweet that it receives, search for an
image in the text, determine the thumbnail URL for that image, and show it in the
widget. Luckily, aside from the domain, the linked URLs from each of the services will
look nearly identical; both URLs appear in the format of http://image-service.com/
ImageID. Because the URL format is the same for each service, we can use the same
regular expression to search for both types of images. The first thing this code does is
set up image_regexp to match for these types of URLs.

After creating the regular expression object, it’s time to start looping through the tweets.
The regular expression is executed against the text of the tweet, and if matches are
found, it’s time to determine which image service was used to host the image.
matches contains an array of the distinct parts of the regular expression. The first ele-
ment in the matches array is the entire string that matched against our query. The second
element in the array, matches[1], contains the domain, and matches[2] contains the ID
of the image.

Once we have those values, it’s easy to construct the final URL to the thumbnail for
each service. The URLs to the profile page of each service are different, and the URL
to the thumbnails are slightly different. To link to the thumbnail image on yfrog, the
format is http://yfrog.com/ImageID.th.jpg. On Twitpic, the thumbnail URL is con-
structed with the following pattern: http://twitpic.com/show/thumb/ImageID.

Next, we build some simple HTML to show the image and link to the original. This
widget isn’t going to show the text of the tweet, or even the profile image of the user
who posted it. We’re mostly interested in seeing a live stream of images. So the only
data passed to the Home.addLine method is the HTML of the image itself. Finally, we
cache the since_id so that the Home.getLiveImages method can request only the newest
images.

Live Images | 53

http://

With this widget finished, all of the widgets should be complete. Open your browser
to index.html to see all of the widgets in action. Figure 3-3 should resemble the finished
product.

The Live Images widget can be entertaining and addictive to watch, but
keep in mind this is an unfiltered view of images that are posted to
Twitter. Occasionally this widget may contain images that are not safe
for work.

Figure 3-3. All three widgets in action

It Was All a Setup!
These examples used a simple Ajax-like implementation to constantly ping the server
for new updates. In this case, it used the best tool for the job to provide constant updates
from various places around the Web. However, watching this example come together,
you’ve probably noticed a couple of things.

The first problem with this approach is that although content may be updated quickly,
it would be a stretch to call this a “realtime” user experience. All we’re doing here is
checking for new updates, displaying the updates, waiting for a while, and then re-
peating the process all over again. What happens when an update is ready on the server
while our script it just waiting in the timeout loop? No matter how fast we speed up
that timeout, there is still going to be a delay. Figure 3-4 shows the messages queuing
up while our code waits in the timeout loop.

54 | Chapter 3: The Dynamic Homepage (Widgets in Pseudorealtime)

http://

Another problem with this approach is that it just cannot scale. In order to get more
feeds on the page, we added more HTTP requests. In order to get updates faster, we
would need to add more HTTP requests. The script now runs three HTTP requests per
user per timeout, and adding a second user would double that. Every user who connects
would increase amount of HTTP requests needed on the server side by three. It gets
more interesting as you start to add more users.

This whole exercise also makes another big assumption: that there will be data on the
server. You could quite possibly run into the situation where you have thousands of
users pinging the server every few seconds for no reason at all. If there is no data on the
server, there is no reason to make that transaction. However, with the old technologies,
that is pretty much the only option.

The Old Versus the New
Since its inception, the Web has been powered by technologies that have gone relatively
unchanged. The specifics of the server software have slowly been updated, but the
fundamentals are the same. The major servers, such as Apache’s httpd server, were
designed to provide HTTP services as they were initially envisioned: to serve documents
across the Internet.

However, as a perfect storm of technology changes hit, it changed the way the Web
was being used. Connectivity is faster and more reliable than ever before. Client-side
technologies such as JavaScript are powerful enough to run sophisticated applications

Figure 3-4. Not realtime: new messages queue up on the server instead of arriving at the client

It Was All a Setup! | 55

http://httpd.apache.org
http://

while browser support for the language has more or less kept up. This has led to people
using HTTP in ways it was never intended. HTTP, which was initially designed as a
protocol for serving linked documents, has morphed into the de facto protocol for
almost all network applications.

As the Web has started to move from a document-serving platform to a message-serving
platform, the old web servers have started to show their age. Old web servers were built
to accept a request, serve the request, and close the connection as quickly as possible.
Older servers have a fairly low limit to maximum number of connections they can have
open at any one point in time. Closing connections as quickly as possible frees up space
for more connections.

So new web servers are being built from the ground up to handle the new ways devel-
opers are using HTTP. To support long polling, new servers are being designed to
handle much larger numbers of simultaneous connections, allowing them to stay con-
nected for extended periods of time. New software stacks are being built to handle
message routing between hundreds of concurrently connected users. The rest of this
book deals with these new paradigms and new types of technologies. Creating appli-
cations with these new technologies is not necessarily more difficult, just different. If
you’ve made it this far, both as a reader and a developer, you’ll be just fine.

56 | Chapter 3: The Dynamic Homepage (Widgets in Pseudorealtime)

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 4

River of Content

The previous chapter talked about dynamically updating your home page to show the
latest updates long after the page had been loaded. The examples used many of the
same technologies most web developers have used for years. Although this works well
for some things, it has limitations that quickly become clear. If you want to give your
users a truly realtime experience in the web browser, you need to push content to them.
In this chapter, I’ll show you how to build a simple river of content feed. The most
obvious use for this would be for a truly realtime live blog application.

During big events, many blogs will provide a link to a separate page where they will
“liveblog” the whole thing. They’ll post quick text updates, “this new product could
save the company, too bad it doesn’t support bluetooth.” They’ll also post images as
quickly as they can take them. However, the pages serving these “live” blogs tend to
be nothing more than a regular web page that automatically refreshes every 30 seconds.
Users will often refresh their browser by hand to ensure they’re seeing the latest content.
Getting your content to users faster, even if it’s just a couple of seconds, can mean the
difference between users staying on your site all day and leaving as soon as they feel
they’re getting old news.

Using a liveblog as an example, I’ll show you how to build a river of content that pushes
out updates as soon as they are available. This will help keep users from clicking away,
save wear and tear on your server, and most importantly, it’s not that hard to build.

A Crash Course in Server Push
There are several forms of server push technology. This idea is not new and has existed
in several different forms throughout the years. However, these days when people talk
about server push technologies, they tend to refer to a technology called long polling.

57

http://

Long Polling
Long polling is a method of server push technology that cleverly uses traditional HTTP
requests to create and maintain a connection to the server, allowing the server to push
data as it becomes available. In a standard HTTP request, when the browser requests
data, the server will respond immediately, regardless of whether any new data is avail-
able (see Figure 4-1). Using long polling, the browser makes a request to the server and
if no data is available, the server keeps the connection open, waiting until new data is
available. If the connection breaks, the browser reconnects and keeps waiting. When
data does become available, the server responds, closes the connection, and the whole
process is repeated (see Figure 4-2).

Technically, there is no difference between this kind of request and standard pull re-
quests. The difference, and advantage, is in the implementation. Without long polling,
the client connects and checks for data; if there is none, the client disconnects and
sleeps for 10 seconds before reconnecting again. With long polling, when the client
connects and there is no data available, it will just hang on until data arrives. So if data
arrives five seconds into the request, the client accepts the data and shows it to the user.
The normal request wouldn’t see the new data until its timer was up and it reconnected
again several seconds later.

This method of serving requests opens up a lot of doors to what is possible in a web
application, but it also complicates matters immensely.

For example, on an application where users can send messages to one another, checking
for new messages has always been a rather painless affair. When the browser requests
new messages for Peter, the server checks and has no messages. The same transaction
is made again a few seconds later, and the server has a message for Peter.

However, in long polling, when Peter connects that first time, he never disconnects. So
when Andrew sends him a new message, that message must be routed to Peter’s existing
connection. Where previously the message would be stored in a database and retrieved
on Peter’s next connection, now it must be routed immediately.

This routing and delivery of these messages to clients that are already connected is a
very complicated problem. Thankfully, it’s already been solved by a number of groups.
Amongst others, the Dojo Foundation (http://www.dojofoundation.org) has developed
a solution in the form of the Cometd server and the Bayeux protocol.

The Bayeux Protocol
At its heart, Bayeux is a messaging protocol. Messages (or events, as they’re sometimes
called) can be sent from the server to the client (and vice versa) as well as from one
client to another after a trip through the server. It’s a complicated protocol solving a
complicated problem, but for both the scope of this book and most use cases, the details
are not that important.

58 | Chapter 4: River of Content

http://www.dojofoundation.org
http://

Aside from the handshakes and housekeeping involved, the protocol describes a system
that actually is quite simple for day-to-day uses. A client subscribes to a channel by
name, which tends to be something like /foo, /foo/bar, or /chat. Channel globbing is
also supported, so a user can subscribe to /foo/**, which would include channels such
as /foo, /foo/bar, and /foo/zab.

Messages are then sent to the different named channels. For example, a server will send
a message to /foo/bar and any client that has subscribed to that channel will receive
the message. Clients can also send messages to specific channels and, assuming the

Figure 4-1. Standard HTTP message delivery

Figure 4-2. Cometd HTTP message delivery

A Crash Course in Server Push | 59

http://

server passes them along, these messages will be published to any other clients sub-
scribed to that channel.

Channel names that start with /meta are reserved for protocol use. These channels allow
the client and server to handle tasks such as figuring out which client is which and
protocol actions such as connecting and disconnecting.

One of the fields often sent along with these meta requests is an advice statement. This
is a message from the server to the client about how the client should act. This allows
the server to tell clients at which interval they should reconnect to the server after
disconnecting. It can also tell them which operation to perform when reconnecting.
The server commonly tells the client to retry the same connection after the standard
server timeout, but it may request that the client retries the handshake process all to-
gether, or the server may tell the client not to reconnect at all.

"advice": {
 "reconnect": "retry",
 "interval": 0,
 "timeout": 120000
}

The protocol specifies a number of other interesting things that are outside the scope
of this book. I encourage you to find out more about the protocol and how to leverage
it for more advanced applications, but you don’t actually need to worry about how it
works underneath the hood during your day-to-day coding. Most client and server
libraries, including the ones listed in this text, handle the vast majority of these details.

Cometd
The Dojo Foundation started this project in order to provide implementations of the
Bayeux protocol in several different languages. At the time of this writing, only the
JavaScript and Java implementations are designated as stable. There are also imple-
mentations in Python, Perl, and several other languages that are in varying stages of
beta.

The Java version includes both a client and a server in the form of the org.cometd
package. This package has already been bundled with the Jetty web server and, no
doubt, other Java servers will implement this as well.

Setting Up Your Cometd Environment
The Java implementation of Cometd comes as a completely self-contained web server
and associated bundled libraries. The web serving is done by an embedded version of
Jetty, which is an incredibly scalable Java-based web server. Get the latest version from
http://cometdproject.dojotoolkit.org/ and unzip it into any place on your computer. It
comes ready to run and, for development purposes, there is nothing to install on your
computer.

60 | Chapter 4: River of Content

http://cometdproject.dojotoolkit.org/
http://

There are two different versions you can download, a source-only
version and another with the Java code fully compiled. Both downloads
provide implementations in all of the supported programming
languages.

The compiled version is a much bigger download than the source-only
version, but it provides everything you need in an easy bundle that is
read to run.

Once Cometd has been downloaded and unzipped, you’ll notice that there are a lot of
files in there for the different language implementations. For now, we’re mainly inter-
ested in the cometd-java and cometd-demo directories.

Depending on your system, you may need to install some supporting libraries before
running the server. Thankfully, installing these libraries is dead simple, and so is han-
dling the build process. To handle all of these project management tasks, we’re going
to use a build tool called Maven (http://maven.apache.org/). Maven is a project man-
agement tool that handles everything from building an application and creating docu-
mentation, to downloading dependencies. To use it, open your terminal window and
navigate to your recently unzipped directory. Run the following command, which will
take some time and print out a lot of information:

~ cometd $ mvn
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] Cometd :: Java
...

With this command, Maven will look at the pom.xml file and do a number of different
things. Maven is project management tool for software and the pom.xml file is the most
basic unit of work in Maven, sort of like a Makefile. The main reason we’re using it
here is its ability to compile our software project. However, in addition to compiling
any updated source files, it will run some unit tests, generate documentation, and install
any additional Java libraries needed by your system.

Included in the distribution are a couple of examples of what this package can do. To
run those, we’re going to use Maven again. This time we’re going to give it specific
instructions to run the Jetty server. In the same cometd-demo directory, run the following
command:

~ cometd-demo $ mvn jetty:run

This will start up the Jetty server and start serving some example programs. Point your
browser to http://127.0.0.1:8080/ and have a look at the examples (see Figure 4-3).

Setting Up Your Cometd Environment | 61

http://maven.apache.org/
http://127.0.0.1:8080/
http://

Putting Everything in Its Place
After looking around at the examples and glancing at the directory structure of Cometd,
you’ve probably noticed a couple of things. There are a lot of files in that package, and
there is no clear place to put your code. The entire package is geared toward showing
off a couple of examples, not building real applications. So the first thing I recommend
is to get some of those files out of the way and put everything we need into one self-
contained directory. Amongst other things, this will allow us to build the distributable
WAR file much easier.

What we’re really after is a cleaned-up version of the cometd-java directory. That’s
going to require a couple of very easy tasks. First of all, we need to tell the project to
use the Jetty plug-in. By default, this plug-in is included up the chain a little bit, but
since we’re getting rid of the extra folders, we need to do it here.

Figure 4-3. The Cometd Demo page

62 | Chapter 4: River of Content

http://

This may look like a lot of work, and paradigm shifts take a bit of server-
side configuration, but it’s just a bit of housekeeping. I’ve taken the
liberty of repackaging the files to ease the development process. Feel
free to save some time and download that version from http://therealti
mebook.com. Once you do that, you can skip ahead to the next section.

First, we’re going to create an directory to house our realtime code. We’ll make two
different directory trees following the standard Java servlet conventions. From inside
the cometd-java directory, run the following commands to create the directory structure
we’ll use:

~ cometd-java $ mkdir -p apps/src/main/java/com/tedroden/realtime
~ cometd-java $ cp examples/pom.xml apps/pom.xml
~ cometd-java $ mkdir -p apps/src/main/webapp/WEB-INF

The path com/tedroden/realtime will end up as the namespace in the
Java source code. It will also be used in various forms throughout the
codebase. You’re encouraged to use your own namespace instead of one
with my name on it; just be sure to keep it consistent in the code.

The next thing we want to do is create the apps/src/main/webapp/WEB-INF/web.xml file.
This is the file that provides both configuration and deployment information for web
applications. If you’re familiar with Apache’s httpd software, this file serves a similar
purpose to the httpd.conf file. This is fairly straightforward. Create the file listed above
and add the following:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <display-name>Realtime User Experience - LiveBlog</display-name>

 <context-param>
 <param-name>org.mortbay.jetty.servlet.ManagedAttributes</param-name>
 <param-value>org.cometd.bayeux</param-value>
 </context-param>

 <servlet>
 <servlet-name>cometd</servlet-name>
 <servlet-class>
 org.cometd.server.continuation.ContinuationCometdServlet
 </servlet-class>
 <init-param>
 <param-name>timeout</param-name>
 <param-value>120000</param-value>
 </init-param>

Setting Up Your Cometd Environment | 63

http://therealtimebook.com
http://therealtimebook.com
http://

 <init-param>
 <param-name>interval</param-name>
 <param-value>0</param-value>
 </init-param>
 <init-param>
 <param-name>maxInterval</param-name>
 <param-value>10000</param-value>
 </init-param>
 <init-param>
 <param-name>multiFrameInterval</param-name>
 <param-value>2000</param-value>
 </init-param>
 <init-param>
 <param-name>logLevel</param-name>
 <param-value>0</param-value>
 </init-param>
 <init-param>
 <param-name>refsThreshold</param-name>
 <param-value>10</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <filter>
 <filter-name>Continuation</filter-name>
 <filter-class>org.eclipse.jetty.continuation.ContinuationFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>Continuation</filter-name>
 <url-pattern>/cometd/*</url-pattern>
 </filter-mapping>

 <servlet-mapping>
 <servlet-name>cometd</servlet-name>
 <url-pattern>/cometd/*</url-pattern>
 </servlet-mapping>

</web-app>

This file describes simple things like the name of the app, along with simple parameters
configuring basic variables needed to serve the content. There are tons of options
to this file and we’re using only a small subset. Via the servlet-mapping tag, we’ve
told the server where to find the cometd code (appropriately enough, at the
path /cometd/). The following are some of the more important parameters that are of
interest to most cometd applications, including this chat application:

timeout

The length of time (in milliseconds) that the server will maintain a connection with
the client while waiting for new data. This is the heart of long polling.

64 | Chapter 4: River of Content

http://

interval

If the client disconnects for any reason, this is the amount of time to wait before
connecting again. We’ve set this to zero because the client should essentially always
be connected.

maxInterval

This is the maximum amount of time to wait for a client to reconnect. If the client
doesn’t receive a connection in at least this many milliseconds, the server will con-
sider them disconnected.

multiFrameInterval

If the server detects that a client has connected more than once, meaning the user
has more than one browser window or tab open, the server will instruct the client
to back off. This value tells the client how long to wait before reconnecting in that
situation.

logLevel

Configure how verbose the logging should be. 0 is None, 1 is for logging informa-
tional messages, and 2 is for “Debug” logging.

refsThreshold

This is used internally by the server to determine when the server should generate
each message on the fly and when it should regenerate the message being sent to
multiple clients.

You’ll also notice that there is a filter-mapping and a servlet-mapping, which look
suspiciously similar. They both have identical url-pattern values. These are to handle
two different types of servlet containers. Having both of them in there will ensure your
code is more portable when you are getting ready to actually deploy it.

The next thing we need to do is make some minor modifications to that pom.xml file we
copied from the examples directory. We want to instruct Maven where to find the files
and ensure that everything is running from the right spot once we start the server.

Open up the apps/pom.xml file and change the artifactId setting from cometd-
examples-java to tedroden-realtime-apps and the name setting to TedRoden ::
Realtime :: Apps.

Since we’re slimming things down and leaving out many of the other directories, we
need to update another file that would normally be included upstream. Inside that same
cometd-java directory, open up pom.xml. Be sure to note that this is not the same file as
the pom.xml listed earlier. Search the file for the opening XML tag called <plugins> and
insert the following inside:

<plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 <configuration>
 <scanIntervalSeconds>1</scanIntervalSeconds>
 <webAppConfig>
 <contextPath>/</contextPath>

Setting Up Your Cometd Environment | 65

http://

 </webAppConfig>
 </configuration>
</plugin>

Adding this tells Maven to load up the jetty server, downloading and installing the
proper JAR files if needed. Jetty is used to serve the files for our project and can be run
from within a library inside our own project, making our app a totally self-contained
web realtime application.

We still need to make one more change to that file, so with pom.xml still open, update
the modules section and rename the examples module to apps. The modules section
should end up looking like this:

<modules>
 <module>api</module>
 <module>server</module>
 <module>client</module>
 <module>oort</module>
 <module>apps</module>
</modules>

The modules section of the pom.xml file tells Maven where to find each module that is
needed for the project. We don’t actually need all of these modules for our purposes,
and I’ve removed them in the packages I mentioned earlier, but they’re not hurting
anything, so we’ll leave them alone for now. Some of these changes may seem like
cosmetic differences, but they’ll make it much easier when it comes time to publish
your code to production environments.

A Realtime Live Blog
Now that everything is in its place, it’s time to actually write some code. At this point
the only programming skills required are HTML and JavaScript. We’re going to build
this base of this liveblog application without any server-side code at all.

To get started, use your favorite text editor and create a file in apps/src/main/webapp/
river.html. Add the following code to your file:

<!DOCTYPE HTML>
<html>
 <head>
 <script type="text/javascript" src="http://www.google.com/jsapi"></script>
 <script type="text/javascript">
 google.load("dojo", "1.3.2");
 </script>
 <script type="text/javascript" src="river.js"></script>
 </head>
 <body>
 <h3>Live Feed</h3>
 <div id="stream">
 </div>
 </body>
</html>

66 | Chapter 4: River of Content

http://

As you can see, we’re borrowing some bandwidth from Google by using their Ajax
libraries API (http://code.google.com/apis/ajaxlibs/) to host all of the Dojo Java-
Script that we’re going to use. After including their main API script (http://www.goo
gle.com/jsapi), we load the latest version of the base Dojo framework.

The rest of the file is pretty straightforward. Aside from the last JavaScript include,
which we will be creating in just a bit, this is just all standard HTML. The most im-
portant bit is the DIV tag with the stream id. This is the place on the page where we’re
going to be posting our live updates.

Now that we have a page that will display the feed, we need to be able to post content
to it. Create a file called apps/src/main/webapp/river-post.html and add the following
code:

<html>
 <head>
 <script type="text/javascript" src="http://www.google.com/jsapi"></script>
 <script type="text/javascript">
 google.load("dojo", "1.3.2");
 </script>
 <script type="text/javascript" src="river.js"></script>
 </head>
 <body>
 <div>
 <p>
 <label for="author">Author</label>

 <input type="text" id="author" value="" placeholder="Your Name" />
 </p>
 <p>
 <textarea rows="10" cols="50" id="content"></textarea>
 </p>
 <p>
 <input type="button" id="river-post-submit" value="Post" />
 </p>
 </div>
 </body>
</html>

This file has all of the same JavaScript as the river.html file, but it also has some HTML
form elements. Although this is where we’ll post the content to the realtime feed, we’re
not actually POSTing or submitting the form. We’ll be sending all the data through
JavaScript using cometd.

While the Cometd software and the Bayeux protocol handle all of the complicated parts
of this process, a small bit of JavaScript is needed to get everything running. Open apps/
src/main/webapp/river.js and we’ll add the needed code piece by piece.

function submitPost(e) {
 dojox.cometd.publish('/river/flow', {
 'content': dojo.byId('content').value,
 'author': (dojo.byId('author').value ?
 dojo.ById('author').value :
 'Anonymous')

A Realtime Live Blog | 67

http://

 });
 dojo.byId('content').value ='';
}

The first function to add to the file is submitPost. This is what is used to send the content
to the server, much like submitting a standard web form. However, rather than
POSTing the data, we grab the values of the form fields created in river-post.html and
publish them via dojox.cometd.publish.

The function dojox.cometd.publish is what is used to publish (send) data to a named
channel. The channel is the first parameter and is always a string, in this case /river/
flow. The second parameter is for the JSON data that gets sent to the server.

function setupRiver() {
 dojox.cometd.init('cometd');
 var catcher = {
 handler: function(msg) {
 if (msg.data.content) {
 var p = dojo.create("p", {style: 'opacity: 0' });
 dojo.create('strong', { innerHTML: msg.data.author }, p);
 dojo.create('p', { innerHTML: msg.data.content }, p);
 dojo.place(p, "stream", 'first');
 dojo.fadeIn({ node: p, duration: 300 }).play();
 }
 }
 };

 if(dojo.byId('river-post-submit'))
 dojo.connect(dojo.byId('river-post-submit'), "onclick", "submitPost");
 else
 dojox.cometd.subscribe("/river/flow", catcher, "handler");
}

This simple little function is the most complicated part of the JavaScript that we need
to create for this application. This one function handles the main setup for both the
liveblog viewer and the content creation process.

The first thing that happens is the call to dojox.cometd.init, which initializes the con-
nection to the cometd server. This handles the handshake required by the Bayeux pro-
tocol along with details such as determining the best transport method for your
browser, reconnecting if something goes wrong, and everything else that we’d rather
not worry about. The lone parameter is the path to the cometd server itself. This is the
same path we set up when we put the servlet-mapping tag into web.xml.

Next, we create a small object called catcher, which is what receives any messages sent
from the server. These messages are passed to the handler function as JSON objects.
The full Bayeux message response is sent from the server, but the only part we’re con-
cerned with is the data. This data object is the very same JSON object published pre-
viously in the submitPost function. You’ll remember there were two members in that
object: author and content.

68 | Chapter 4: River of Content

http://

In this function, we use the base dojo framework to create some DOM elements to
display the posted content. After creating a couple of P elements and a STRONG tag
to show the author name, we use dojo animation to make the HTML fade in. It’s just
an extensible way of printing the HTML content to the page.

Since this file gets included by both river.html and river-post.html, this function may
execute two different actions depending on which page is loaded. When a user is look-
ing at the river-post.html file, we’ll be able to access the “Post” form button via Java-
Script. We simply connect that button’s onclick event to the submitPost function we
created earlier. When we don’t have that form element, we assume that we’re going to
view the liveblog feed and subscribe to the /river/flow channel.

Finally, we need to add the code that gets this whole process up and running. Add the
following code to the bottom of your river.js file:

google.setOnLoadCallback(
 function() {
 dojo.require("dojox.cometd");
 dojo.addOnLoad(setupRiver);
 dojo.addOnUnload(dojox.cometd, "disconnect");
 }
);

Because we’re loading the dojo files from remote servers, we need to wait to run our
setup functions until all of the code has been loaded. Luckily, the Google Ajax libraries
API provides the callback function google.setOnLoadCallback to let us know when that
has happened. In that callback function, we tell Dojo which features we’re going to
need, which in this case is only the cometd extension. Then, we instruct dojo to call
our setupRiver function when it is ready to continue. The very last step is to instruct
the cometd library to disconnect when we unload (or navigate away from) this page.

At this point we have all the code in place for a fully functional liveblog, so I try it out.
Running the app is simple. From a terminal window, navigate to the apps directory and
enter the following command:

~ cometd-java/apps $ mvn jetty:run

Now the server should be up and running. To fully test this out, you’ll want to open
one browser, say Safari or Internet Explorer, and point it to http://127.0.0.1:8080/river
.html. Then, open another browser, say Firefox, and point it to http://127.0.0.1:8080/
river-post.html. Figure 4-4 shows a liveblog session in action (see Figure 4-4).

Once you’ve loaded up the browsers, you should see the two web pages we created. As
you start posting content, you should notice how quickly the content shows up in the
other browser window. Keep in mind that this involves a trip through the server, and
it’s not just drawing content from one window to the other dynamically; all of the
content is posted to the Web and loaded back in the browser in realtime. If you opened
up another browser, say Opera or Chrome, and pointed it at http://127.0.0.1:8080/river
.html, you’d see the content refresh in two browsers just as quickly as the one.

A Realtime Live Blog | 69

http://127.0.0.1:8080/river.html
http://127.0.0.1:8080/river.html
http://127.0.0.1:8080/river-post.html
http://127.0.0.1:8080/river-post.html
http://127.0.0.1:8080/river.html
http://127.0.0.1:8080/river.html
http://

So what is happening here?

In our JavaScript file, when we called dojox.cometd.init, we made a connect request
to the cometd server. This request handles all of the dirty work of Bayeux’s fairly com-
plicated handshake process. At this point the server instructs the client (our JavaScript
file) on how to interact with the server. This is where the server declares the timeout,
interval, and all the other variables we set up in our server configuration. As program-
mers, we can safely ignore all of those things now because the dojox.cometd framework
takes care of everything.

The next thing we did was call dojox.cometd.subscribe and subscribe to the /river/
flow channel. This function starts making requests to the server using long polling at
the intervals described earlier. If the server ever tells us to back off, the framework will
handle that appropriately. Once again, we can focus on building our application and
not the housekeeping required by the protocol.

The handshake and subscribe processes are detailed in Figure 4-5.

At this point, our browser-based client is maintaining a long-polling-based connection
to the server. When data is available, it will be sent through the existing connections.

In the demo, we use a second browser to send messages to the server, which then routes
the messages to the subscribed clients. To send a message to the server, pass the data
encoded as a JSON object to the dojox.cometd.publish. This function just requires the
JSON object and the channel name of where the data should be delivered. Then, we
clear out the content field to allow the blogger to quickly post more content.

Figure 4-4. Realtime updates from one browser to another

70 | Chapter 4: River of Content

http://

When that message makes it to the server, the server then routes it back to all of the
subscribed clients. In this case, it’s sent back to the handler function of the catcher
object, which we specified when we subscribed to the channel. This simple function
just draws the HTML to the screen and returns.

The whole publish to message routing process is illustrated in Figure 4-6.

Figure 4-6. Publishing message to clients

Figure 4-5. Handshake and subscribe with Bayeux

A Realtime Live Blog | 71

http://

The Two-Connection Limit
There is big a reason you need to open these files up in separate browsers and not just
different tabs in the same browser when testing. Most modern browsers limit the
amount of concurrent connections to just two connections per server. This means that
if you have two connections open to the server and try to open another connection in
the same browser, even if it’s in a new tab, the browser will wait until one of the original
connections disconnects. When we’re doing long polling, that means we’ll be waiting
a long time between connections.

Cometd actually helps with this issue by using the advice part of the protocol to instruct
the client to fall back to regular polling at standard intervals. Although this helps keep
connections alive, it means we’re not getting truly realtime content because of the
length of time between requests. In practice for normal users, this isn’t as much of an
issue, but when building sites, it poses a bit of a problem. The solution is simple: use
totally different browsers.

You can easily check to see if the cometd libraries have fallen back to standard polling
at long intervals by examining the transfers with the Firefox extension Firebug (http://
getfirebug.com). Firebug has many features that make debugging web applications
much easier, such as the ability to examine the network activity, including connections
that are still active. When you load up and enable Firebug, the Console tab will show
you the different POST requests currently active (see Figure 4-7). If one of them is
constantly active, long polling is working. If the connection returns immediately, it’s
fallen back. To fix this, navigate away from the page for a minute; it should go right
back to long polling when you return.

Figure 4-7. Firebug during a long polling session

While the browser is looking at a page in a long polling section, you may notice the
status bar say something to the effect of “completed 5 of 6 items,” as if the browser is
still loading an asset. It is! It’s waiting on your long polling operation to finish, and it
will keep waiting until it does. Although the status bar may claim the page load is
incomplete, for all intents and purposes, everything is ready to go.

72 | Chapter 4: River of Content

http://getfirebug.com
http://getfirebug.com
http://

Server-Side Filters (with Java)
Our liveblog application will allow any number of clients to connect and view the
content in realtime, but it also will allow any number of people to publish content. We
don’t want to rely on the hope that the users will never find our content creation URL,
so we’re going to have to lock it down. This is a great opportunity for us to test out
some Java code. If you’re not familiar with Java, don’t worry. It won’t hurt a bit.

To limit posting access to authorized users, we’re going to require a password to be
sent along with each publish request. If the password is correct, we’ll publish the con-
tent; if it’s wrong, we’ll silently ignore the request. On the server side we can check for
this password in a number of places, but we’re going to do it from within the server-
side content filter.

Server-side filters are Java-based classes that work very simply. As messages get sent to
specific channels on the server, the server checks to see whether those channels have
any filters set up. If a filter is configured, the request is sent to the filter before doing
any other processing on the request. Inside the filter class, the data may be modified
and returned to be operated on by the server or passed back to the clients. But if the
filter returns null, the message is dropped and not delivered any further up the chain,
and certainly not back to clients who have subscribed to the channel. This makes it a
perfect place for us to check for the correct password.

The first thing we need to do is set up the filter configuration file. These files are just
JSON data structures linking channels to Java classes, stored near the configuration
file in the WEB-INF folder of the servlet. Open the file apps/src/main/webapp/WEB-INF/
filters.json and add the following data structure:

[
 {
 "channels": "/river/**",
 "filter" : "com.tedroden.realtime.FilterPasswordCheck",
 "init" : { "required_password": "12345" }
 }
]

This file is pretty straightforward. While this example has only one filter in it, the data
structure is set up as an array, so as you add more filters, simply append them as JSON
objects into the existing array. The fields in the object are as follows:

channels

The channel name (or names) that this filter applies to. The channel names follow
the same conventions as everywhere else, and we can use a channel glob as we’ve
done here. This will allow us to filter any content sent to any /river channel.

filter

This is the actual Java classname that is used as the filter. When a request matches
the channel listed in that field, the request is sent through this class as soon as it is
received.

Server-Side Filters (with Java) | 73

http://

init

This JSON object gets sent to the filter class listed in the previous field upon
initialization. You can use this space to pass any variables to the class that apply
to this specific instance of the filter.

Next, we need to create the filter class that is called when a publish request is made
to /river/flow. Open the file apps/src/main/java/com/tedroden/realtime/Filter

PasswordCheck.java and add this:

package com.tedroden.realtime;

import java.util.Map;
import org.cometd.Client;
import org.cometd.Channel;
import org.cometd.server.filter.JSONDataFilter;

public class FilterPasswordCheck extends JSONDataFilter
{

 String required_password;
 @Override
 public void init(Object init)
 {
 super.init(init);
 required_password = (String) ((Map)init).get("required_password");
 }

 @Override
 public Object filter(Client from, Channel to, Object data)
 {
 try {
 if(((Map)data).get("password").equals(required_password))
 return data;
 else
 return null;
 }
 catch (NullPointerException e) {
 return null;
 }
 }
}

The top of this file just declares that it’s part of the com.tedroden.realtime package, or
whichever namespace you’ve decided to use. After that, we import a few Java libraries
that this file uses. Then, we just create our filter class, which extends the JSON
DataFilter class provided by the cometd distribution.

When we set up the filters.json file, we specified certain data that got passed to
the init function of the filter. As you can see, it’s the first and only parameter this
init function accepts. We pass it along to the parent class and then grab the
required_password, which will be used for the lifetime of this filter.

74 | Chapter 4: River of Content

http://

The only other function in this file is the actual filter function. On top of the data
parameter, which is the JSON data passed in from the client, there are also two other
parameters. The first parameter is the Client object, otherwise known as the sender of
the message. The second parameter is an object representation of the destination
channel.

The data parameter is the JSON object we pass in from JavaScript when we publish to
the server. All we do is check to see that the provided password matches the
required_password that we set up in the init function. If it does, we return the data;
otherwise, we return null. This is a very basic filter that does one of two things. It either
blocks the data from getting through to the client or passes it along unchanged.

Before this filter is picked up by the server, we need to tell the apps/src/main/webapp/
WEB-INF/web.xml file about it. Open up that file and add the filters parameter to the
<servlet> section:

<servlet-name>cometd</servlet-name>
 <servlet-class>
 org.cometd.server.continuation.ContinuationCometdServlet
 </servlet-class>
 <init-param>
 <param-name>filters</param-name>
 <param-value>/WEB-INF/filters.json</param-value>
 </init-param>
...

Finally, we need to collect the password from the author and pass it along with the
Bayeux publish request. We need to make two minor changes to get this to work. First,
let’s add the password field to apps/src/main/webapp/river-post.html:

<p>
 <label for="author">Author</label>

 <input type="text" id="author" value="" placeholder="Your Name" />
</p>
<p>
 <label for="password">Password</label>

 <input type="text" id="password" value="" placeholder="Password (12345)" />
</p>

Then, inside apps/src/main/webapp/river.js, we add one additional line to send the
password to the server:

function submitPost(e) {
 dojox.cometd.publish('/river/flow', {
 'content': dojo.byId('content').value,
 'password': dojo.byId('password').value,
 'author': (dojo.byId('author').value ?
 dojo.byId('author').value :
 'Anonymous')
...

Server-Side Filters (with Java) | 75

http://

We’ve added all of the code needed to secure this form with a password, so now we
need to start the server and test it out. From the apps directory, instruct Maven to start
the server:

~ cometd-java/apps $ mvn jetty:run
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'jetty'.
...

This will compile the newly created filter and then start the server. When you point
your web browser to the same river-post.html, you’ll notice the newly added password
field (see Figure 4-8). The password we set in the filters.json file was “12345”. Try
submitting the form both with and without the correct password. When the correct
password is supplied, the form submits like normal. If the password is wrong, the
publish request is silently ignored.

Figure 4-8. The form with its password field

76 | Chapter 4: River of Content

http://

Integrating Cometd into Your Infrastructure
So far, we’ve seen a fairly interesting example of how Bayeux and Cometd change things
for both users and developers. This is great stuff, but unless you’re starting a project
from scratch, there is a good chance that these examples have used different technol-
ogies than your existing infrastructure. Moving over all of your existing code doesn’t
make a lot of sense. The good news is that incorporating this into a standard web
environment is remarkably easy.

For the sake of simplicity, I’ll demonstrate how to set this up with Apache’s httpd server,
which is extremely popular and runs on just about every platform. This idea should
work on most other server platforms as well; you’ll just need to use their configuration
methods.

On Apache, you’ll need to install the proxy module if it’s not installed already. If
you installed Apache through your operating system’s package manager, you should
be able to install it that way. On Ubuntu, this should do the trick: sudo apt-get install
libapache2-mod-proxy-html. If you compiled Apache from source, this is as simple as
reconfiguring with --enable-proxy=shared and recompiling.

You’ll also need to update your httpd.conf file to load the proxy module. To do that,
add the following lines near any other LoadModule statements:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so

Now, before you restart your Apache server, you want to add the proxy directives to
your (virtual) host configuration. Open up your host’s configuration file and add the
following:

 <Location /cometd>
 ProxyPass http://localhost:8080/cometd/
 </Location>

This Location directive tells apache to take any requests that it receives for /cometd and
pass them along to http://localhost:8080/cometd/. Any response from http://local
host:8080/cometd/ is proxied back to the web client through Apache. The web browser
never knows anything about the proxy or port 8080. All of the content appears to come
from the same server.

This configuration sets up Apache to use the exact same relative path as our Java-based
Cometd code. This means we can actually drop in the client-side code, unchanged, and
it will just work. To test this out, copy river.html and river.js to your standard docu-
ment root and bring up river.html in your web browser. When posting content from
http://127.0.0.1:8080/river-post.html, it should work exactly the same as if it were being
served by the Jetty server. This allows you to easily integrate this functionality into new
and existing pages on your site.

Integrating Cometd into Your Infrastructure | 77

http://127.0.0.1:8080/river-post.html
http://

http://

CHAPTER 5

Taming the Firehose with Tornado

In the previous chapter, we built an application that gets the data to users as quickly
as possible. However, that application is limited by how fast the authors can post new
content. This chapter is about speed and about handling huge amounts of data. We’re
going to build an application that shows off just how fast the realtime web can work.
We’ll be combining one of the best sources of big data that is publicly available with a
truly great piece of software designed for creating realtime web experiences.

Using Twitter’s streaming APIs, we’re going to build an application to make sense of
the firehose of information they make publicly available. Instead of Cometd, this ex-
ample will use a web server and framework called Tornado. Tornado is a set of Python
libraries that were originally created by FriendFeed and open sourced shortly after they
were acquired by Facebook.

Tornado
Tornado is a really fantastic piece of software that is both a web framework and a
nonblocking web server written entirely in Python. The nonblocking architecture of
the web server allows it to scale up to handle thousands of simultaneous connections.
On top of being able to handle so many connections, it can also keep them open for
long periods of time, making it perfectly suited for realtime web applications. The server
was built specifically for the realtime aspects of FriendFeed, and it enables each user
to maintain an active connection to the server.

79

http://www.tornadoweb.org
http://www.friendfeed.com
http://www.facebook.com
http://

Installing Tornado
Before we can install or use the Tornado web server and framework, we need to install
the required Python libraries. The main requirements are pycurl and simplejson, so if
you have those, you may be in the clear. Running the following command should get
you up and running on a recent Mac:

~ $ sudo easy_install setuptools pycurl==7.16.2.1 simplejson

If you’re using an Ubuntu-based distribution, run the following command (other Linux
distributions will be similar enough):

~ $ sudo apt-get install python-dev python-pycurl python-simplejson

Now that we have the prerequisites, we need to download the latest version of Tornado
itself from the official Tornado website. Once downloaded, unzip it and install it with
the following commands:

~ $ tar zxf tornado-0.2.tar.gz
~ $ cd tornado-0.2/
~tornado-0.2 $ python setup.py build
running build
running build_py
creating build
creating build/lib
...
~tornado-0.2 $ sudo python setup.py install
running install
running build
running build_py
running install_lib
copying build/lib/tornado/__init__.py -> /Library/Python/2.6/site-packages/tornado
...

Tornado is written purely in Python, so it should run on any system that
you throw at it. However, parts of it are optimized to run on Linux,
which means when you deploy your Tornado-based applications, it’s
best to use a Linux server.

The Basic Framework
Web applications built with Tornado will look familiar if you have experience using
web.py or even Google’s Python webapp framework. If not, you have nothing to worry
about, because building an application with this framework is remarkably simple.

80 | Chapter 5: Taming the Firehose with Tornado

http://www.tornadoweb.org/
http://webpy.org/
http://code.google.com/appengine/docs/python/tools/webapp/
http://

Tornado applications are built using a very basic Model-View-Controller (MVC)
framework. Each application provides a simple mapping of URLs or URL patterns to
specific classes. These classes can define methods to handle both GET and POST re-
quests to the URL. As requests hit the server, the web framework looks at the requested
URL and determines which class should respond to the request. It then calls either the
get() or post() function of the class, depending on the method of the HTTP request.
See Figure 5-1 for an example of how requests are handled in Tornado.

Figure 5-1. HTTP request routing in Tornado

Tornado also has built-in support for long polling, or as it is called in Tornado parlance,
“hanging” requests. Just like in Bayeux, when the browser makes a request to the server,
the server waits to respond until data is actually available. However, when writing a
Tornado application, the developer makes a request to an asynchronous function and
provides the framework with a callback function. When the data is ready, the server
executes the developer’s callback function which finishes the final request. Figure 5-2
shows the callback process in Tornado.

Tornado | 81

http://

Figure 5-2. Tornado hanging requests via callback functions

Building an Application
So before we can build any realtime features with Tornado, we need to put together an
app that responds to basic requests in using this framework. Create a file called
runner.py and add the following code.

import logging
import tornado.httpserver
import tornado.ioloop
import tornado.web
from tornado.options import define, options
import os

Define options that can be changed as we run this via the command line
define("port", default=8888, help="Run server on a specific port", type=int)

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 logging.info("Request to MainHandler!")
 self.write("Great, now let's make this app speak in realtime.")

local_static_path = os.path.join(os.path.dirname(__file__), "static")

application = tornado.web.Application([
 (r"/", MainHandler),
], static_path=local_static_path)

if __name__ == "__main__":
 http_server = tornado.httpserver.HTTPServer(application)
 tornado.options.parse_command_line()
 http_server.listen(options.port)
 tornado.ioloop.IOLoop.instance().start()

Like all Python scripts, this script first imports the libraries it needs to run and does a
bit of housekeeping. In this case we define the port on which this server should run.
Using Tornado’s options library, we set it to port 8888, but that can be changed at

82 | Chapter 5: Taming the Firehose with Tornado

http://

runtime via the command line. Automatic handling of command-line options is a neat
little feature of Tornado that allows you to create apps without config files. This script
could be started several times on the same server, each one running on a different port
that is specified at runtime. This type of configuration is very useful for running big
scalable applications in the cloud.

The next thing in this file is the MainHandler. This class, along with the call to the
tornado.web.Application function, are the main bits of web code in this example. We
create a Tornado application with the latter function and assign it to the application
variable. In creating the application object, we define the URL patterns and their
matching classes. Defining these patterns is the main purpose of creating an application
with this call. This defines the URL routing that we’ll be using, as described in Fig-
ure 5-1. In this case, when Tornado receives a request to /, it will call either the get()
or post() method in the MainHandler class.

When creating your Tornado application, you set up the URL mappings that are needed
as well as any special settings that are needed by your application. There are several
settings you can specify when creating your application, including a secret key to be
used when securing cookies and even the login URL that users are redirected to when
they are not authenticated. In this case, we’re only configuring the static_path setting.
This setting is used to tell Tornado the full filesystem path for our static assets. We’ll
be using this path when we start setting up our templates.

Finally, we get to the code that is called when we’re actually running the application.
We pass the application object to the HTTPServer constructor. This will let the server
know about the URL options we’ve defined and anything else that goes into the ap-
plication object. Next, we ask Tornado to parse the command-line options. At this
point, the user can override the port defined earlier. Many other options can be defined
and parsed at this point. To get things up and running, we instruct the server to listen
on a specified port and start the I/O loop. At this point, the server will call our methods
as requests are made to the server.

Let’s start up the server and test it out. Open your terminal window and run the fol-
lowing command:

~ $ python runner.py

Now the server is up and running on port 8888. Open your browser and take a look at
the results (see Figure 5-3).

Another nice thing about the Tornado server that you may have noticed is the nicely
formatted output from the server as it responds to HTTP requests. This comes from
the logging module. Certain actions, such as HTTP requests, get logged automatically
along with HTTP errors. But we also can add logging info, as we do in MainHandler with
the call to logging.info. As each request comes in, our message is printed nicely to the
screen (see Figure 5-4), which can help make debugging much easier.

Tornado | 83

http://

Asynchronous Tornado in Realtime
While Tornado can be used to create standard dynamic websites like the example
shown earlier, it really shines when creating realtime applications. The framework al-
lows for developers to iterate fairly easily, so we’ll just modify the previous script to
turn it into our realtime Twitter application. In your runner.py file, add the following
code just after the existing import statements:

Tornado imports
import threading
import re
import simplejson as json

Setup the queue
import Queue
tweetQueue = Queue.Queue(0)

This just imports some extra libraries that we’ll be using and sets up a queue that we’ll
be using to store the tweets. Some of the modules that we’re importing here will be

Figure 5-3. “Hello World!” from Tornado

Figure 5-4. Formatted logging output provided by Tornado

84 | Chapter 5: Taming the Firehose with Tornado

http://

used later when we get into the thick of working with the Twitter stream itself. The rest
are needed for some of the functionality we’ll be using inside the Tornado parts of our
app. This queue is made with Python’s Queue module, which is a multiproducer and
multiconsumer queue. The key part is that it works wonderfully across multiple
threads. One thread can add items while the other removes them. All of the locking
and heavy lifting is handled by the class itself.

Next we’re going to add the most complicated part of this file, the main Tweet class.
This class will handle the routing of specific tweets to the different web clients. In your
runner.py file, add the following code after the MainHandler class:

class Tweet(object):
 waiters = [] # a list of clients waiting for updates
 cache = [] # a list of recent tweets
 cache_size = 200 # the amount of recent tweets to store

 def wait_for_messages(self, callback, cursor=None):
 cls = Tweet
 if cursor:
 index = 0
 for i in xrange(len(cls.cache)):
 index = len(cls.cache) - i - 1
 if cls.cache[index]["id"] == cursor: break
 recent = cls.cache[index + 1:]
 if recent:
 callback(recent)
 return
 cls.waiters.append(callback)

 def new_tweets(self, messages):
 cls = Tweet
 for callback in cls.waiters:
 try:
 callback(messages)
 except:
 logging.error("Error in waiter callback", exc_info=True)
 cls.waiters = []
 cls.cache.extend(messages)
 if len(cls.cache) > self.cache_size:
 cls.cache = cls.cache[-self.cache_size:]

This code defines the basic functionality that will be used when web requests come in
looking for new tweets. We haven’t written the code that uses this class, but it’s worth
looking into how it works at this point. First, we specify a few member variables that
are used by the class. The waiters list will be populated with each of the callback
functions used during the asynchronous requests. When we have no data to provide
to a web client, we’ll store them in this array until data becomes available. We also
define the cache and the size of the cache. This specifies where we’re going to store
tweets that are waiting to get sent to clients and how many of them we’re going to keep
around.

Tornado | 85

http://

As for the functions, there aren’t too many required for this example. The first function,
wait_for_messages, is supplied with a callback function and an optional cursor. The
callback function is the function that we should call when new data is available, whether
it’s available now or in a couple of minutes. The cursor is used to let the server know
the last tweet received by the client. Using this cursor, we can search through the cache
of tweets and serve anything that’s arrived since the last time the client made a request.
If there’s no cursor, we add the callback to the list of waiters and call the function as
soon as data becomes available.

The other function defined here is new_tweets, which is called immediately when new
tweets arrive from Twitter. This is fairly simple; it loops through the waiters list, calling
each callback function with the messages it receives as a parameter. This is realtime,
so that’s the first thing it does. The next thing it does is update the cache. This will
allow any client that is currently reconnecting to get the tweets that it missed while
disconnected.

The next thing to do is handle the actual requests from the web browsers. We’ll be
adding one new class and modifying the array that we pass when creating the applica-
tion object. Inside your runner.py file, insert this code right after the Tweet class:

class UpdateHandler(tornado.web.RequestHandler, Tweet):
 @tornado.web.asynchronous
 def post(self):
 cursor = self.get_argument("cursor", None)
 self.wait_for_messages(self.async_callback(self.on_new_tweets),
 cursor=cursor)

 def on_new_tweets(self, tweets):
 if not self.request.connection.stream.closed():
 self.finish(dict(tweets=tweets))

This class is much simpler. This is the code that is actually called when we get an Ajax
request from the browser. The first thing you’ll notice is the @tornado.web.asynchro
nous decorator. Adding this bit of code tells Tornado that we want the HTTP connec-
tion to remain open even after returning from our request handler method. Inside that
handler method, we call our wait_for_messages function supplied with on_new_
tweets, our callback function.

Decorators, while outside the scope of this book, are a really nice feature
of Python. They enable you to “decorate” functions and classes to give
them extra code or to make them act differently. You’re actually able to
inject new code or modify the existing functions themselves.

The method on_new_tweets is what finally gets called when we have new data. There
isn’t much to do in this method other than printing out the tweets to the client. After
checking to ensure that the client is still connected, we need to “finish” the connection.
Because we’re in the middle of an asynchronous request, Tornado relies on us to close

86 | Chapter 5: Taming the Firehose with Tornado

http://

the connection to the client. We do that by calling finish with the output that we want
to send to the browser. Simply supplying a Python dictionary structure to the finish
method is good enough because the Tornado framework will convert that to JSON
automatically.

Now that we’ve prepared Tornado to accept and serve an influx of updates from Twit-
ter, it’s time to start collecting them.

Twitter’s Realtime Streaming APIs
Twitter has a lot of data. Every second, amazing numbers of tweets are created by users
and sent to Twitter. Users are constantly reporting everything from their latest meal to
firsthand accounts of airplanes landing in the Hudson River. Almost as frequently, and
with almost as many different purposes, applications repeatedly ping Twitter's APIs
and web browsers pound their servers in hopes of grabbing the latest content.

For a long while, Twitter has offered up fairly complete but also standard API functions
to developers wanting to grab the Twitter feed. For example, if a developer wanted to
get some tweets from the public timeline, she would make a request to the public
timeline API, which would return 20 or so of the latest tweets. Recently, though, Twitter
has started providing streaming APIs to developers. So instead of grabbing 20 updates
per request, the developer can make one web request and just leave it open. Instead of
sending out a set number of updates, Twitter will keep sending them until the developer
closes the connection.

Twitter offers several different streaming methods for several different purposes. Each
of these methods requires a certain level of access by the user. The basic methods can
be used by anyone, but if you want the totally full feed, you’re going to have to talk
directly with Twitter to set that up. For us, though, there’s plenty of data to work with.
The different streaming API methods are listed next.

statuses/filter

This allows you to get a subset of the public feed while filtering out specific key-
words. The developer can specify keywords to track and users to follow. Anybody
can filter up to 200 keywords; more than that requires special permission.

statuses/firehose

The firehose is the largest feed of all. This is an unfiltered view of the public time-
line. This is not generally available to developers and requires a special level of
access.

statuses/links

This returns all of the public statuses containing strings that look like links. If a
tweet has http:// or https://, it’ll be in this stream. This method is also restricted
and requires special access.

Twitter’s Realtime Streaming APIs | 87

http://

statuses/retweet

The retweet feed returns all of the updates that contains all of the retweets on the
public timeline. Like several other methods, access to this one also is restricted and
requires special access.

statuses/sample

This is a public feed that contains a small sample of the main firehose feed. De-
velopers who are granted higher access levels can get more data out of this feed,
making it a more statistically significant sample and appropriate for data mining
and research applications.

For this application, we’ll be using the statuses/sample streaming API method. Al-
though this is just a small (and therefore statistically insignificant) subset of the main
firehose feed, it’s a lot of data, and certainly enough for our purposes. It also requires
no special permission from Twitter, aside from a standard user account.

This example will require an active Twitter account. If you don’t have
an account, head over to the Twitter website to sign up. Once you’ve
done that, feel free to follow the Twitter account of this very book at
@therealtimebook.

The Tornado web server runs as a single process on a single thread. Its nonblocking
architecture ensures that it can quickly respond to certain requests even while many
other connections are open and waiting. However, even though Tornado runs in a
single thread, we’re going to need to create some other threads to handle the work from
Twitter. The Twitter streaming API feeds will essentially stay open forever, as long as
we can keep up with them. To ensure that we do keep up, we’re going to separate the
work into separate threads. The first thread just catches the data as it arrives and queues
it up. Any processing work to be done on the tweets should be in a separate thread, to
ensure that we’re able to keep up with Twitter. Our example doesn’t do any compli-
cated processing of the data, but I’ve separated the work out anyway, to ensure we can
easily modify it in the future.

In its simplest form, creating new threads in Python is as simple as creating a class and
defining a run method. When you ask Python to start the thread, it will automatically
call that method and you’re on your way.

Python has a bit of a reputation for poor handling of multithreaded
applications. However, the threaded aspects of our application aren’t
very complicated, so it should be fine.

The first thread we’re going to create is the thread that handles the communication
with Twitter. In your runner.py file, add the following code after the UpdateHandler
class:

88 | Chapter 5: Taming the Firehose with Tornado

http://twitter.com
http://

class TweetFirehose(threading.Thread):
 import urllib2
 import base64
 def run(self):
 status_sample_url = 'http://stream.twitter.com/1/statuses/sample.json'
 request = urllib2.Request(status_sample_url)

 # Be sure to use your own twitter login information
 auth_basic = base64.encodestring('USERNAME:PASSWORD')[:-1]
 request.add_header('Authorization', 'Basic %s' % auth_basic)

 # open the connection
 firehose = urllib2.urlopen(request)

 for tweet in firehose:
 if len(tweet) > 2:
 tweetQueue.put(tweet)

 firehose.close()

You can see this creates a class called TweetFirehose. This class is defined as a subclass
of Python’s Thread class and defines only one function: run. In this function we start
out by building an HTTP request to Twitter using urllib2. At the moment, the only
method of authentication to the streaming APIs is via HTTP Basic Auth. To do that,
we join our username and password together with a colon, encode it using Base64
encoding, and add the Authorization header to the HTTP request.

Having built the request, the only thing left to do is open it. If you’ve ever used url
lib2 to download a file from the Web, this works a lot like that but with one key
difference: it doesn’t end. After calling urllib2.urlopen with our request, we’ll start
receiving tweets one line at a time, each one encoded into JSON. The following is an
example tweet as received from the streaming API feed:

{"text":"Hah! I just ...","in_reply_to_status_id":false, ... "truncated":false}

In the code, we just start looping through those lines as fast as we get them. Assuming
we don’t get any blank lines, we add them to tweetQueue that we created at the top of
the file. We pretend to close the handle to the firehose, but in all honesty, the code
will probably never get there.

That’s all the code it takes to stream the data in from Twitter in realtime. All it really
takes is making one request to their streaming URL and finding some place to put all
the data. In our case, the place we found to put the data is a simple queue. It’s up to
another thread to pull the tweets off of the queue and process them.

To actually process these tweets, we’re going to create another thread in the same way
we created the previous one. Underneath the TweetFirehose class, add the following
code:

class TweetProcessor(threading.Thread):
 import re
 import simplejson as json

Twitter’s Realtime Streaming APIs | 89

http://

 def run(self):
 # pre-compile some regular expressions
 links = re.compile("(http\:\/\/[^\]+)")
 hashtag = re.compile("(\#[0-9a-zA-Z]+)")
 ats = re.compile("(\@[0-9a-zA-Z]+)")
 retweets = re.compile("RT|via\ ")

 while True:
 tweet = tweetQueue.get()
 if tweet:
 t = json.loads(tweet)
 try:
 stats = {}
 stats['hashtags'] = hashtag.findall(t['text'])
 stats['ats'] = ats.findall(t['text'])
 stats['links'] = links.findall(t['text'])
 stats['retweets'] = retweets.findall(t['text'])
 # pack the message up
 message = {
 "id": str(uuid.uuid4()),
 "stats": stats
 }
 message["html"] = "<div class=\"message\" id=\"m" +
 message["id"] +
 "\">" + t['user']['screen_name'] + ": " +
 t['text'] + "</div>"
 Tweet().new_tweets([message])

 except Exception, e:
 # ignore any exceptions...
 pass

Once again, we have a couple of newly imported libraries and a single run method.
When a new thread is created with this class, that method is called and it jumps right
into a never-ending loop. The only thing we do outside that loop is compile some
regular expressions so that they run quickly as possible when we need them.

These regular expressions are designed to pull out some items that are commonly found
in tweets. Aside from a very basic check for URLs in the tweet, this also looks for
hashtags, something called “at replies,” and retweets. If a tweet has a pound sign and
some text—“#realtime”, for example—we’ll pull it out as a hashtag. We also pull
out any reference to other users in the tweet, so if someone writes a message to
“@tedroden,” this regular expression will find it. Also, retweets are commonly denoted
with either “RT” or “via” and so this will find those instances as well. Keep in mind
that these regular expressions will miss some of the data and probably turn up some
false positives, but it’s good enough for our example.

After we set up the regular expressions, we move into the unending loop. This loop
will keep going until we shut down the server. Each time through the loop we check
the queue for new tweets and parse the JSON object using Python’s simplejson module.
We’re going to use the precompiled regular expressions to create an object that contains
all of the stats we’ll be filtering on in the web browser. Python’s regular expression

90 | Chapter 5: Taming the Firehose with Tornado

http://

module, re, has a method called findall. This method returns an array of any matches
found in the string we provide. This way, on the client side we can just check the size
of the array to determine how many matches we’ve made, if any.

Next, we build the message object that we’ll be sending out to the browser. This object
contains a unique field called id, which we’ll be using as our cursor. It also contains
basic information such as the tweet itself and who sent it. The stats object is also passed
through. To save time, we even build the HTML string that will be displayed by the
browser. When the browser gets the data, it can simply display this html value to the
client.

To send it to the browser, we call the Tweet().new_tweets method that we built earlier.
As you’ll remember, that method loops through all of the connected clients and outputs
the Python object encoded as a JSON string. The whole workflow of this method is
pictured in Figure 5-5.

This processing workflow ends up calling the new_tweets method. As a quick refresher,
that method then loops through the list of connected clients to run the callback method
associated with each request. That callback method then outputs the data in JSON
format and finishes the connection.

The server side of this script is totally complete, though if you run the server from the
command line, you won’t see much of a change. At this point we’re accepting web
requests, collecting tons of data from Twitter, parsing it up, and sending it back to any
client who cares to connect. There’s a big missing piece, though: the web page. So let’s
build that next.

From the Firehose to the Web Browser
We’re already collecting the data we need, and Tornado is ready to respond to requests
for updates. Basically, all we have left to do is build the web page and write the
JavaScript.

Templates in Tornado
The template language in Tornado is based on the templates in Django. Both of these
projects contain rich templating languages where standard HTML files get parsed based
on logic written in a subset of Python. However, a big difference between the templating
language that inspired Tornado and Tornado itself is the ability to include arbitrary
Python code. In Django, you’re restricted to variables, filters, and standard flow control
statements. To go beyond the most basic logic, you must create new template filters
and run those. With Tornado, you’re allowed to use any valid Python expression, in-
cluding functions and list comprehensions. As long as it’s a valid Python expression, it
will work in these templates.

From the Firehose to the Web Browser | 91

http://www.djangoproject.com/
http://

Tornado offers a straightforward mapping of most of Python’s standard flow control
statements. You can specify for loops, if statements, try/catch blocks, and many of
the basic control statements that come to mind. These control statements are wrapped
between {% and %}. Developers can also specify arbitrary expressions; those are marked
up by wrapping the code with {{ and }}. The expression is evaluated and the result is
then placed directly into the HTML. The following is an example template that contains
both flow control and a simple Python expression. This template would show different
welcome messages after testing for the existence of a variable called username:

Figure 5-5. Processing the tweets as they arrive

92 | Chapter 5: Taming the Firehose with Tornado

http://

<body>
 {% if username: %}
 <h1>Welcome, {{ username.strip() }}!</h1>
 {% else %}
 <h1>Sign Up Now!</h1>
 {% end %}
 ...
</body>

Creating a Template for This Project
In the basic “Hello World” example that we built, our output was a static string printed
out to the screen. Normally, when displaying anything more than JSON output or single
strings, you’ll probably want to make a template and show that. Setting up our current
project to use templates requires making two changes. First, we need to specify the
template that we want to use, and then we need to create the template itself.

To specify the template, we need to change our MainHandler class ever so slightly. To
replace our static string with a dynamic template, replace the last line of your current
MainHandler with the boldface code:

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 logging.info("Request to MainHandler!")
 self.render("templates/main.html")

In the first iteration of this function, we used Tornado’s self.write method to write a
specific string to the client’s browser. In this version, we tell the framework to render
a template as a string and then send that to the client.

Our new MainHandler class specifies a template relatively located at templates/
main.html. When Tornado sees this call, it opens that file, parses it by executing any
Python code in it, and prints it to the client. To build this template, create a tem-
plates directory in the same directory as runner.py, open a file called main.html, and
add the following code:

<!DOCTYPE html>
<html>
 <head>
 <title>Twitter / Tornado</title>
 <script type="text/javascript" src="http://www.google.com/jsapi"></script>
 <script type="text/javascript" src="{{ static_url('twitter.js') }}"></script>
 <style>
 BODY { margin: 0px; padding: 0px; }
 #content { width: 50%; margin: auto; }
 #toolbar {
 text-align: center;
 border-bottom: solid 1px grey;
 margin: 0px;
 background-color: #dfdfdf;
 }

From the Firehose to the Web Browser | 93

http://

 #toolbar UL { margin: 0px; }
 #toolbar UL LI { display: inline; }
 #waiting { text-align: center; font-style: italic; }
 </style>
 </head>

 <body>
 <div id="toolbar">

 <input checked="yes" type="checkbox" id="all" value="1" />
 <label for="all">All</label>
 (0)

 <input checked="yes" type="checkbox" id="hashtags" value="1" />
 <label for="hashtags">#hashtags</label>
 (0)

 <input checked="yes" type="checkbox" id="ats" value="1" />
 <label for="ats">@ats</label>
 (0)

 <input checked="yes" type="checkbox" id="retweets" value="1" />
 <label for="retweets">retweets</label>
 (0)

 <input checked="yes" type="checkbox" id="links" value="1" />
 <label for="links">links</label>
 (0)

 </div>

 <div id="content">
 <div id="waiting">Waiting for content...</div>
 </div>

 </body>
</html>

This is a fairly standard and simple HTML file. It lays out a basic web page, has the
most minimal of CSS styling, and includes two JavaScript files. Again, we’re including
the jsapi from Google’s JavaScript hosting, which we’ll be using to include jQuery. To
include the other JavaScript file, we’re using one of the template functions defined by
Tornado. Anything inside of these curly braces is evaluated, and the output is inserted
in place. In this case, it’s our lone Python expression, the function call to static_url
('twitter.js'). This function expands the full URL to one of our static assets. We set
up the filesystem path for this function when we initially created the application object.

94 | Chapter 5: Taming the Firehose with Tornado

http://

Tornado offers a couple of neat features when serving static content. First of all, it
aggressively tries to get the client to cache any content that is served from the static
directory, going as far to suggest that the content won’t expire for at least 10 years. To
ensure that browsers do see the newest content, it also appends a unique version string
to each URL served using the static_url function. So in our template shown earlier,
the full path to a JavaScript file may be /Users/tedroden/realtime/static/twitter
.js, but it will be translated to the following by static_url:

http://localhost:8888/static/twitter.js?v=aa3ce

The parameter v is calculated by generating a hash of the content of the static file. So
it will remain the same until the actual content of the file is changed. All this means
that Tornado will enable unchanged files to remain cached on the client for a very long
time. This type of performance gain is a definite part of providing a realtime experience
to the user.

The template itself specifies some basic markup that will enable us to do some basic
filtering and show some statistics on the data we’re receiving from Twitter. By checking
the boxes on the page, the users will be able to specify whether they want to see tweets
that are retweets, contain hashtags or links, or even if they just reference a specific
Twitter user. We’ve also specified a place in the template to show the number of each
type of tweet that we’ve received.

Let’s start the server to see what that page looks like when it’s served by Tornado. This
isn’t going to show any tweets (we need to set up the JavaScript for that to happen),
but let’s start it up and take a look at our work so far. In your terminal window, run
the following command:

~ $ python runner.py

Now point your browser to http://localhost:8888. It should look something like
Figure 5-6.

Figure 5-6. The updated, if still inactive, realtime Twitter interface

From the Firehose to the Web Browser | 95

http://

The JavaScript Parts
We’ve created our classes in Python and coded our templates in HTML, so now it’s
time for a bit of JavaScript. The template file that we created included a JavaScript file
called twitter.js that was supposed to be served from the static directory. Let’s create
that file now. Create a new directory called static and create a file called twitter.js inside
it. Set up the basics of that file with the following code:

google.load("jquery", "1");

google.setOnLoadCallback(
 function() {
 $(document).ready(function() { T.init(); T.poll(); });
 }
);

var T = {
 cursor: false,
 types: ['hashtags', 'retweets', 'ats', 'links']
};

T.init = function() {
 $('input[type=checkbox]').click(T.click);
};

T.click = function(ev) {
 if(ev.target.id == 'all') {
 for(i in T.types)
 $('#' + T.types[i]).attr('checked', $('#all').attr('checked'));
 }
 else
 $('#all').attr('checked', false);
};

T.poll = function () {
 var args = {};
 if(T.cursor) args.cursor = T.cursor;
 $.ajax({
 url: "/updates",
 type: "POST",
 dataType: "json",
 data: $.param(args),
 success: T.new_tweets
 });
};

This JavaScript sets up our application. Once again, we ask Google’s Ajax APIs to load
the jQuery library for us and wait for a callback from Google before we run any initi-
alization functions. Once that callback arrives, we run the init and poll methods on
an object called T.

96 | Chapter 5: Taming the Firehose with Tornado

http://

We’re going to build the entire client-side functionality of our Twitter application inside
this T object. In constructing the object, we initialize two variables that we’ll need in
T’s methods, cursor and types.

You probably remember that the logic that we built into the runner.py file relies on
receiving a cursor parameter sent from the client. This variable is used to determine
which tweets have already been seen by the client when it requests new updates. This
variable is stored in the object’s cursor field. We also create an array with the names
of the possible types of tweets we’ll be filtering, which will allow us to loop through
them in various places in the code.

The first of T’s methods that we define is the init method. This is used to set up anything
before we actually get to requesting data from the server. It uses jQuery to bind a
method to the onClick event of every checkbox on the page to the T.click method.

The T.click method is defined next. This method is called only as a callback from a
JavaScript onClick event on one of our checkboxes. T.click is just to update the check-
boxes in the user interface to behave as a user would expect. We’re doing this because
one of our checkboxes works a bit differently than the rest. A checkbox called “All”
will enable the user to see all types of tweets as they come in. If users click on that, we
want to set all of the other checkboxes to match it. So if a user checks the “All” check-
box, we want all of the other types to be checked as well. If the user unchecks the box,
we want all checkboxes to become unchecked. We do that by looping through the array
of T.types that we created earlier and checking or unchecking all of the matching
checkboxes. If the user isn’t clicking on the “All” checkbox, we mark it as unchecked.

We’re also creating the poll method here. This is the method that actually makes the
long polling request to our Tornado server. If our object has a cursor set, we’ll pass
that along as a parameter. We also specify T.new_tweets as a callback method for when
the request is finished. The request is being made to the URL /updates, which has been
mapped in Tornado to the UpdateHandler method in runner.py.

Now that we’re polling for updates, let’s create the method that will catch them as they
are sent by the server. Append the following code to your twitter.js file:

T.new_tweets = function(response) {
 if(!T.cursor)
 $('#waiting').remove();

 T.cursor = response.tweets[response.tweets.length - 1].id;

 for(var i = 0; i < response.tweets.length; ++i) {
 if(T.should_show_tweet(response.tweets[i])) {
 var d = $(response.tweets[i].html);
 d.css('display', 'none');
 $('#content').prepend(d);
 d.slideDown();
 }
 }

From the Firehose to the Web Browser | 97

http://

 // clean up the DOM
 var limit = 100;
 var messages = $('.message');
 for(var x = messages.length-1; x > limit; --x)
 $(messages[x]).remove();

 T.poll();
};

If we ran this code now, it would give us some JavaScript errors, but we’ve got every-
thing in place to actually show the tweets on the page. The first thing we do is check
to see whether this is our first time through this function. We determine this by checking
for the existence of a cursor variable; if there isn’t one, it’s our first time through and
we remove the “Waiting for content...” message. After that, we save the id of the last
tweet to our cursor field. This is the field that is sent back in the poll method.

Next, we loop through all of the tweets we’ve just received, check to see whether we
should display them, and actually add them to the page. We’ve already built the HTML
string in runner.py, so all we need to do is add it to the DOM. We use jQuery to create
the DOM element, prepend it to our content DIV, and show it with the slideDown effect.

We’ll be appending quite a few tweets to the page every second, so the DOM is going
to get quite large. To counter this, we’re going to keep only the last 100 tweets on the
page. We use jQuery’s CSS selector methods to grab all of the messages and remove all
but the latest 100 of them. Once we’ve cleaned up the DOM a bit, we call the poll
method and start the process over again.

You’ve probably noticed that we checked to see whether we should display the tweets
using the should_show_tweet method, but we haven’t defined it yet. So let’s create that
method now. Add the following code to your twitter.js file:

T.should_show_tweet = function(tweet) {
 $('#all-count').text(parseInt($('#all-count').text())+1);

 var show_tweet = false;

 for(x in T.types) {
 var type = T.types[x];

 // does the tweet have the specified type?
 if(tweet.stats[type].length) {

 // does the user want to see it?
 if($("#" + type).attr('checked'))
 show_tweet = true;

 var count_div = $('#' + type + '-count');
 count_div.text(parseInt(count_div.text())+1);

 }
 }
 return show_tweet;
};

98 | Chapter 5: Taming the Firehose with Tornado

http://

Although this method is called should_show_tweet, we actually do two different things.
In the HTML template, we defined a space to keep track of the number of each type of
tweet that we’ve received. So the first thing we do is increment the number of all tweets
that have seen. On top of tracking the counts of each type of tweet, this will show how
many total tweets have gone through the stream.

The tweet object that we’re receiving is a JSON version of the object we built in
runner.py. It has fields for the id, the html to display, and the dictionary of stats. This
method only cares about that stats dictionary, which is nothing more than a key-value
pair of the type of stat (hashtags, for example) and the result of our regular expression
for that field. So to check whether a tweet has a hashtag or any of our filter criteria, we
simply need to know if there are objects in the array for that array key. If we wanted to
check for hashtags, we’d simply need to use the following code.

if(tweets.stats["hashtags"].length) {
 alert("Hurray! This tweet contains hashtags");
}

Since we’re checking for several different types of filter criteria, we loop through the
T.types array and check each type. If the tweet matches a specific part of our criteria,
we then check to see whether the user has checked the corresponding checkbox in the
HTML template. We’re letting the users configure what types of tweets they want to
see, and this check ensures that they only see those types. Initially the show_tweet var-
iable is set to false, but if the user wants to see it, we set that variable to true and
continue on with the method.

Since we’re also counting the number of tweets we get for each type, we don’t return
immediately after determining whether we should show the tweet. That’s because we’re
keeping track of several different types of tweets. Each time we get a match on one of
those types, we increment the counter for that type; the next two lines of code do just
that. This will ensure that we count the tweets even when we’re not showing them.

We’ve finally finished writing the code, so let’s start this up. In your terminal window,
enter the following command:

~ $ python runner.py

Pointing your browser to http://localhost:8888 should show quite a bit of data coming
in. Figure 5-7 shows what it should look like.

The default settings for this application are pretty unusable. Unchecking some of the
checkboxes should help a bit. It’s easy to imagine setting up some extra filters to make
the experience more compelling, but this is a good start to a realtime application with
Twitter’s data. Try changing the application to use the filter API with some keywords
that interest you, or even track Twitter’s trending topics. You could also let the user
pick some keywords for filtering the data.

From the Firehose to the Web Browser | 99

http://

If you look at the terminal window where you started the server, you’ll notice tons of
logging information is streaming by very quickly (see Figure 5-8). Because the data is
coming in so fast and being served out in real time, this log moves very quickly.

If you point different browsers at the URL, you’ll see even more logging information.
When working with large amounts of data and concurrent users, you’ll want to be
careful with the amount of logging that your application does. If you were writing this
log to a file, it could easily fill up a hard drive very quickly.

Figure 5-8. Watching the log messages from our application

Figure 5-7. Data streaming through our Twitter application

100 | Chapter 5: Taming the Firehose with Tornado

http://

CHAPTER 6

Chat

One of the most compelling aspects of creating realtime web applications is the ability
to create experiences that were previously available only on the desktop. The syndica-
tion example worked as a realtime experience from server to server, and the others have
largely been from server to user. This chapter builds on those principles to create a
realtime user-to-user experience. In this chapter, we’re going to exploit JavaScript and
Tornado to build a fully interactive realtime chat application reminiscent of AOL
Instant Messenger.

Before moving onto the code, it’s important to discuss what features a user expects to
see when he logs into an instant messaging application. The obvious first expectation
is that the application will deliver the messages instantly. Second, chat sessions happen
between two specific users; this is not group chat. Finally, users of modern chat appli-
cations expect subtle realtime interactions, such as the ability to see that the user on
the other end of the line is typing. This application will have those features while
operating in a standard web browser.

Setting Up the Basic Code

The Basic HTML Frame
Building this application with Tornado means we can reuse the existing directory
structure from our last application. We’ll store our templates in the existing tem-
plates folder and our static JavaScript files in the static directory. To get started, open
your templates directory and create a file called chat-main.html. Add the following code
to that file:

<!DOCTYPE html>
<html>
 <head>
 <title>Realtime Chat</title>
 <style>.chat-content { max-height: 200px; overflow: auto; }</style>
 </head>

101

http://

 <body class="yui-skin-sam">
 <div id="container">

 <!-- a super basic login window -->
 <div id="login">
 <div class="hd">Enter a username</div><!-- login window titlebar -->
 <div class="bd"><!-- login window content -->
 <input type="text" id="username" />
 <input type="button" id="login-button" value="Log In" />
 </div>
 <div class="ft"></div><!-- login window footer -->
 </div>

 </div>

 <!-- Include a JavaScript file from Yahoo! -->
 <script type="text/javascript"
 src="http://yui.yahooapis.com/2.8.0r4/build/yuiloader/yuiloader-min.js">
 </script>

 <!-- Include our local JS file -->
 <script type="text/javascript" src="{{ static_url('chat.js') }}"></script>

 </body>
</html>

This chat application is about demonstrating how realtime interfaces can make web
applications behave with the same level of interactivity and responsiveness as desktop-
based applications; it’s not about building a complicated user interface. So our HTML
for this application is just a shell of a page with the JavaScript includes that we’ll need.

The most important thing to notice about this page is that we’re including some Java-
Script and stylesheets from Yahoo!. In this example, we’ll be using some of the great
(Yahoo User Interface Library (YUI) (http://developer.yahoo.com/yui/) JavaScript
library. This library includes code for everything from Ajax convenience functions to
interface elements called widgets. YUI allows you to mix and match components so
that you can use only what you need. Because this application will use a few different
parts of the YUI library, we’re utilizing YUILoader to automatically calculate and in-
clude the JavaScript and CSS dependencies. Including the external files like this allows
YUI to determine exactly what needs to be downloaded, and it can combine the Java-
Script into one download. Fewer downloads means faster load times and a more thor-
oughly realtime experience.

One of the things that sticks out about the HTML shown earlier is the class names for
the div and body tags. These classes are used by YUI to style the interface elements when
it comes time to render the page. You’re free to change or omit the class names, but
you’ll lose the benefit of the styles provided by the library.

The way we include the other JavaScript file should look familiar after reading the
previous chapter. It’s simply using Tornado’s static_url function to include a file from
our static directory. We’ll add the chat.js file soon; it’s important and does all of the

102 | Chapter 6: Chat

http://developer.yahoo.com/yui/
http://

client-side work in this example. However, let’s set up the basic Tornado server file so
that we can get this example running.

The Python Shell
Since this example also uses Tornado, there is no complicated server setup. We simply
write a script using the right libraries and run it directly. Open up a file called chat-
server.py and add the following code:

import os, logging
import tornado.httpserver
import tornado.ioloop
import tornado.web
import uuid
import simplejson as json
from tornado.options import define, options

Define options that can be changed as we run this via the command line
define("port", default=8888, help="Run server on a specific port", type=int)

a convenience function to quickly build a notification object
def notification(_type, _data):
 return {'type': _type, 'data': _data}

Declare the chat class. We'll fill it out later
class Chat(object):
 pass

The Basic handler class
class BaseHandler(tornado.web.RequestHandler):
 @property
 def chat(self):
 return self.application.chat

handle the main html request
class MainHandler(BaseHandler):
 def get(self):
 self.render("templates/chat-main.html")

Extend tornado's web.Application module
class Application(tornado.web.Application):
 def __init__(self):
 # setup the URL handlers
 handlers = [
 (r"/", MainHandler),
]

 # setup the static path
 path = os.path.join(os.path.dirname(__file__), "static")
 settings = dict(static_path=path)

 tornado.web.Application.__init__(self, handlers, **settings)

Setting Up the Basic Code | 103

http://

 # Load the chat class
 self.chat = Chat()

actually start up the server
if __name__ == "__main__":
 http_server = tornado.httpserver.HTTPServer(Application())
 tornado.options.parse_command_line()
 http_server.listen(options.port)
 tornado.ioloop.IOLoop.instance().start()

Much of this script will look familiar from the last chapter. We import a number of
Python modules that this file requires and use Tornado’s define function to define the
port the server will actually run on. Once again, this can be changed at runtime.

The first thing in this file other than the standard pieces is a global function called
notification. This is just a convenience function to help build the notification object
that we send to the browser. While the realtime web is a largely being built on top of
sending messages or notifications, each application needs to define what the messages
look like. In this case they’re going to have a type such as “login” and a data payload,
such as information about the user that just came online.

Next, this script defines two new classes that are essentially empty. The Chat class will
contain some of the basic functionality needed for this script, including keeping track
of which users are connected and sending out new messages. This is an important class
that will be filled in throughout the chapter.

The BaseHandler class extends Tornado’s web.RequestHandler module. Each of our
controller classes that actually respond to HTTP requests will extend this class, so any
method we add to this class is available in those classes as well. This class defines the
method chat, which simply returns the chat object from the main application object.
Adding the @property decorator allows our code to access that method as we would
access a read-only variable. This will help out in our controller functions by
allowing us to reference self.chat.some_method() instead of self.application.chat()
.some_method(). The Python @property decorator saves some typing and also allows
developers to add logic into basic getter methods.

The MainHandler class also looks like a shell of a class, but that’s actually all we need
to serve the web page requests for this application. This class just accepts get requests
and renders the chat-main.html file from our templates directory.

This example expands on the previous chapter by building an Application object that
extends Tornado’s web.Application. While the organization of this section has
changed, the logic is just the same. We build a simple list that instructs Tornado which
class is responsible for each URL. Next, we specify the settings, which in this case is
nothing more than the location of the static files. Then, we pass those variables to the
tornado.web.Application object when we initialize it.

104 | Chapter 6: Chat

http://

The Application class also defines and loads a member variable called self.chat, which
is an instance of the chat class that was defined earlier. Creating this object here, and
only here, will ensure that we have only one server-side chat object for the entire lifetime
of the server.

At the tail end of the script, we run the basic code to start the server. It parses the
command-line options in case you want to override the default port or any other setting.
Then, it instructs the Tornado’s http_server to listen on that port. Finally, it starts up
the loop that runs until the server is killed.

The JavaScript Base
Now that we have a runnable Python script and a serviceable HTML page, we just need
to add some JavaScript to finish building the shell of our application. In the static
directory, create a file called chat.js. This is the file that is included via the static_url
function inside our chat-main.html template. In chat.js, add the following code:

// Load the YUI JavaScript from Yahoo.
new YAHOO.util.YUILoader({
 require: ["connection","container","fonts",
 "json", "yahoo-dom-event", "dragdrop"],
 combine: true, // combine the files
 filter: "MIN", // minimize them
 // once the includes are loaded, initialize the chat code
 onSuccess: function() { chat.init(); } // our callback function
}).insert();

// the basic object that we'll be using
var chat = {
 login_panel: false, //
 user_id: false, // the current user (me)
 user_name: false, // the current user name (me)
 users: [], // all connected users
 user_count: 0 // the count of those users.
};

chat.init = function() {
 // Setup the onClick method
 YAHOO.util.Event.addListener("login-button",
 "click",
 chat.login);

 // turn the login div into a YUI panel
 chat.login_panel = new YAHOO.widget.Panel("login", { width:"230px",
 visible:true,
 close:false,
 constraintoviewport:true
 });
 chat.login_panel.render();
};

Setting Up the Basic Code | 105

http://

This is just a shell of the JavaScript code that we’re going to need, but it’s enough to
get started. To begin, we make a call using the YUI toolkit to load all of the JavaScript
and CSS that we’ll need for this application. YUI has truckloads of different features,
but you’re not required to download all of them every time. This allows you to mix and
match and include only what is useful for each application. In this case, we’re loading
files related to Ajax commands, YUI interface widgets, font stylesheets, JSON encoding
and decoding, basic DOM event wrappers, and drag-and-drop functionality. Aside
from instructing YUI to minimize the JavaScript and combine it into one HTTP request,
all we do is set up the callback function that gets called when all of the code has been
loaded. We set that up to call chat.init, which will initialize our chat application.

The JavaScript side of the chat application will be built as one big JavaScript object.
The next lines in the file start building that object, defining some variables that we’ll
use later. The variables user_id and user_name reference the current user, whereas the
remaining variables are used to keep track of every other user using the application.

The chat.init method is what gets called as soon as YUI has loaded all of the required
JavaScript and the page is ready to go. This method immediately adds an onClick event
to the login-button input button. When clicked, this method will call a method on the
chat object called login.

The next two statements simply tell YUI that the div we created in chat-main.html
should be rendered as a YUI Panel and behave as one. In the options, we tell it to be
visible, that it should not have a close button, and that it should stay in the viewport
or the bounds of the browser window. A YUI Panel is a div that is rendered to look and
act like a separate window. It’s just a div on the page, but it has the appearance of a
window, complete with a title bar, and can be moved around by the user.

Checking the Progress
At this point, we have a shell of JavaScript, Python, and even some HTML. Running
the script now will give us a good look at what users will see when they first come to
this application. Open your terminal window and start up the server:

~ $ python chat-server.py

If you open your browser to http://localhost:8888, it should look something like
Figure 6-1.

The first thing to notice is that YUI really added a lot of functionality right out of the
box. First, it styled the simple div from our HTML and made it look like a window. It
also added drag and drop functionality, allowing users to move the div around their
browser windows. At this point, it looks like an application that may do something,
but it isn’t able to do anything at all. It’s time to start plugging in some real functionality.

106 | Chapter 6: Chat

http://

Logging In
The first thing we’ll need to add to this script is the ability for users to sign in. This
won’t be a complicated login process; it will only require users to select a username in
order to access the system. Using Tornado’s authentication functionality, it would be
fairly easy to implement a much more robust login scheme, but that’s overkill for this
example.

On the Server Side
To accommodate users logging into the chat application, the Python script is going to
need to accept login requests for the form we created before. To do that, we’ll need to
expand the list of URL handlers from the main application class. In the chat-server
.py file, locate the Application class and make the following highlighted change:

class Application(tornado.web.Application):
 def __init__(self):
 # setup the URL handlers
 handlers = [
 (r"/", MainHandler),
 (r"/login/?", LoginHandler),
 (r"/updates/?", UpdateHandler),
]

This addition tells Tornado to accept requests for /login and direct them to a class
called LoginHandler. That class is illustrated next; add it to the chat-server.py file:

class LoginHandler(BaseHandler):
 def post(self):
 # generate a unique ID for each user
 user_id = str(uuid.uuid4())

Figure 6-1. The login window

Logging In | 107

http://

 # get the user_name submitted from the form
 user_name = self.get_argument('username')

 # Add this user to the chat class
 self.chat.add_user(user_id, user_name)

 # We're done, notify the client.
 self.finish(dict(user_id=user_id, user_name=user_name, users=self.chat.users))

This login handler class just does a couple of things before handing the real work off
to the chat class to process the request. Any time it receives a post request, it generates
a unique enough identifier using Python’s uuid. This user_id field will be used internally
by the server and client side of this application to identify users.

This controller function also collects the username field from the text input field on the
HTML form and sets it to user_name. Our call to self.get_argument doesn’t specify a
default value if none is specified by the client. If it’s not included in the HTTP request,
Tornado will automatically reject it with a 404 error, so we don’t have to do any check-
ing to see whether it exists. Other than an empty field, this code accepts any value it
receives for a username. If you were building this for a production environment, you
would probably want to check for duplicate usernames, invalid characters, and any-
thing else your application would require.

The user_id and user_name are then passed off to a method called add_user in the
chat object. That’s the code that is going to do the heavy lifting for the login process,
and we’ll get to that next. But at the end of this method, we call Tornado’s finish
method to print out a JSON response. This response includes the user_id, and the
accepted user_name, as well as a list of all of the connected users. To generate that list
of users, the Chat class needs to be expanded.

The current Chat class has nothing more than a pass statement inside it. The pass
statement is Python’s way of having an empty block, or empty class in this case. We’re
going to want to replace the current Chat with the following code:

class Chat(object):
 listeners = [] # connected clients waiting for a callback
 users = [] # the list of currently logged in users

 def add_listener(self, callback, user_id=None):
 data = {}
 data['user_id'] = user_id
 data['callback'] = callback
 self.listeners.append(data)

 def add_user(self, user_id, user_name):
 # assemble the user data into an object
 user_data = dict(user_id=user_id, user_name=user_name)

 # store the user data in the users list
 self.users.append(user_data)

108 | Chapter 6: Chat

http://

 # let the other users know about this new user
 note = notification('login', user_data)
 self.send_notification(note)

This code introduces two variables that are used to store information about the current
chat session. The users variable is a list that will contain all of the users currently logged
in. The listeners variable is a list of the web clients that are currently awaiting a call-
back. The two methods defined here are designed to populate those lists with data.

The add_listener method simply appends the supplied information onto the
listeners list. The listeners list is exactly the same as the waiters list from the previous
chapter. Because this application works using Tornado’s long polling framework, any
client that connects hits an asynchronous method. Before that method returns, it sets
up a callback method that should be called when new data becomes available. In this
script, all of that is handled by this Chat class, and add_listener method queues up all
of the clients waiting for new messages. When new data is available, after an
add_user calls for example, the listeners on this list are notified by calling their callback
methods.

You may remember the next method, add_user, because we actually wrote code that
uses it already. In the LoginHandler controller, we call self.chat.add_user and supply
it with the user information; that is this method. It takes those user variables and ap-
pends them to the users list defined earlier. The next thing this method does is create
a notification object called note with the notification global function defined earlier.
This is the object that is sent to clients to let them know something has happened. In
this case, the server will inform the clients that a user has logged in and give them the
user’s information. This note object will be sent to all of the connected clients via the
send_notification method, which we’ll define next.

This chat class needs only one final thing: the ability to run the callback methods
for each of the listeners when new data arrives. This is done through the send_
notification method. When a client logs in, we send a notification to all of the con-
nected clients. When one user wants to send a message to another user, we need to
send a notification to that user. To get this functionality, add the following code to the
Chat class:

 def send_notification(self, message, user_id=None):
 # create a copy of the listeners list and clear the original
 tmp_listeners = self.listeners
 self.listeners = []

 # loop through the list of listeners
 for data in tmp_listeners:

 # if we're not sending it to all users,
 if user_id != None:
 # and we're not sending it to this user
 if user_id != data['user_id']:
 # keep listening, but don't send any messages
 self.listeners.append(data)

Logging In | 109

http://

 continue

 # run the callback function
 callback = data['callback']
 try:
 callback(message)
 except:
 logging.error("Error in listeners callback", exc_info=True)

At a very high level, this method loops through all of the clients currently listening for
a callback and sends each of them a message. This implementation is a bit more com-
plicated than that because we may or may not be sending the notification to all of the
connected clients. This method has to account for several things. First, if it sends a
message to a specific user, it must remove that user from the listeners list, as she will
be receiving a notification and will need to reconnect. It also needs to know whether
it’s sending a notification to a specific user or to every user who is currently connected.
Finally, it needs to run the actual callback method. The flow of the method looks
something like Figure 6-2.

Figure 6-2. The flow of send_notification

110 | Chapter 6: Chat

http://

The first thing this method does is create a copy of the listeners list called tmp_listen
ers and then clear the original list. We clear out the list because every listener whose
callback we actually run no longer needs to be in the listeners list. If the callback is
called, we’ll end up closing the HTTP connection to the client, and they’ll have to
reconnect and add themselves to the listeners list again. So instead of looping through
listeners, we clear it out and loop through tmp_listeners instead.

If no user_id is supplied to this method, we simply run the callback on every single
listener and never add any back to the original listeners list. However, if a user_id has
been supplied, we need to check each listener and send it only to the correct user. As
we loop through the list and find users that are not matches, we add them back to the
main listeners array and continue on with the loop. Each time we actually run the
callback, we supply the message as the parameter, catching any errors and logging them.

Several of our methods thus far have dealt with callbacks and responding to them, but
this script hasn’t actually added the ability to request them. So that’s the next thing to
add. Although requesting callbacks isn’t needed to actually log in, it is needed to find
out when other users have logged in. So let’s add that before we move on to the Java-
Script portion. In your chat-server.py file, add the following code, but be sure to add it
after the BaseHandler definition.

class UpdateHandler(BaseHandler):

 @tornado.web.asynchronous
 def post(self):
 user_id = self.get_argument('user_id')

 # add a listener, specifying the handle_updates callback
 self.chat.add_listener(self.async_callback(self.handle_updates),
 user_id=user_id)

 # when we get a callback, send it to the client
 def handle_updates(self, update):
 if not self.request.connection.stream.closed():
 self.finish(update)

According to the URL mapping that we specified, this UpdateHandler class handles all
the requests that come into the /updates URL. This class has two main jobs, which are
handled by the two methods defined here. When a web client requests updates from
the server, whether the updates are login notifications or chat messages, it does so by
making a long polling request to the /updates URL. That request is handled by the
post method. The only work to be done is to add the client as a listener of the chat
object. The call to add_listener tells the chat object to call the handle_updates method
when new data arrives for the supplied user_id. Because this is an asynchronous
method, that callback method is wrapped in Tornado’s async_callback functionality.

Once the chat class has data available for a specific client, it will call that client’s callback
function. That function is handle_updates, which has one job: send the data to the
client. This method handles that by checking to ensure the client is still connected and

Logging In | 111

http://

then calling Tornado’s finish method with the supplied Python dictionary. Tornado
will automatically convert this dictionary to a JSON object, and finally close the con-
nection to the client. At that point, it’s the responsibility of the JavaScript client to
reconnect and start the process over.

JavaScript
On the server side of things, we built a couple of URL endpoints that were designed to
be used by the JavaScript side of the application. The /updates URL will be used to
subscribe to notifications as they’re sent from the server, and we designed the /login
URL to help a user log in. We now need to hook up the JavaScript side of the application
to interact with those URLs.

We’ve already built some of the JavaScript required for the application. The YUI code
should be loading and the basic chat object has been configured, but as of yet, nothing
is talking with the server. In the code we’ve already written, an event listener has been
configured so that when the user clicks on the login button, we’re expecting to get a
callback to a method called chat.login. That method needs to make an Ajax request
to the /login URL. Open your chat.js file and add the following code:

chat.login = function() {
 var username = document.getElementById('username').value;

 if(!username.length) {
 chat.login_panel.setFooter("Please specify a username");
 return false;
 }

 // Give the user feedback about what's happening
 chat.login_panel.setFooter("Logging in...");

 // setup the callback function and HTTP parameters
 var callback = { success: chat.login_success };

 // Make the Ajax request
 YAHOO.util.Connect.asyncRequest('POST',
 '/login',
 callback,
 'username=' + username);
};

Applications built on the realtime web must be responsive to every user interaction, so
the first thing this code does is give the user some immediate feedback. If the user has
neglected to supply a username, we politely ask her to provide one and return without
going any further. Otherwise, we inform the user that the application has received the
request and is working on getting her signed in.

112 | Chapter 6: Chat

http://

To notify the user of these types of status messages, we update part of the login window
that we created in HTML and then rendered as a YUI Panel in the chat.init method.
These Panel interface widgets have a footer div that was designed to give the user this
type of feedback. We simply call the setFooter method and YUI takes care of the rest.

The rest of the method is dedicated to the actual Ajax request. Since this request is an
asynchronous HTTP request, we specify a callback method named chat.login_
success. This will be called by YUI’s Connect class as soon as the Ajax call returns
successfully. The /login URL takes only one parameter, the username to associate with
the user who is logging in. Once we make that request, we exit this method and wait
for a response in our callback method. It should happen almost instantly. Open your
chat.js file and add that callback method:

chat.login_success = function(ev) {
 // Tell the user we got a response
 chat.login_panel.setFooter("Success!");

 // Wait a moment and then close the login window
 setTimeout(function() { chat.login_panel.destroy(); }, 500);

 // parse the response data and setup the chat object
 data = YAHOO.lang.JSON.parse(ev.responseText);
 chat.user_id = data.user_id;
 chat.user_name = data.user_name;

 // loop through the list of other users
 for(var x in data.users) {
 var user = data.users[x];
 if(user.user_id != chat.user_id)
 chat.add_user(user);
 }

 // begin (long) polling the server for updates
 chat.poll();
};

Once again, the first step of this method is to give the user some feedback. In this case,
we tell her that the login was successful by updating the footer of the login window.
After that’s displayed, we’re not actually going to use that window anymore, so we wait
for half a second and close that with the YUI Panel’s destroy method. Beyond that, we
know the response we receive from the server is a JSON object, so we parse that and
set up the variables in the chat object with the proper user_id and user_name values.

The response we get from the call to /login provides the user_id and user_name of the
user who just logged in, but it also provides a list of all the other connected users. We
loop through that list, and each time through, as long as we’re not looking at the current
user, we call the method chat.add_user. This method generates chat windows for each
of the connected users. This is what that method would look like:

chat.add_user = function(user) {
 chat.user_count++; // keep track of the # of connected users

Logging In | 113

http://

 var u = {}; // build the user object
 u.user_name = user.user_name;
 u.user_id = user.user_id;
 // setup the window
 u.panel = new YAHOO.widget.Panel("user-" + user.user_id,
 { width:"300px",
 constraintoviewport:true,
 x: chat.user_count * 50,
 y: chat.user_count * 50
 });

 // set the title of the window
 u.panel.setHeader("Chatting with " + user.user_name);

 // add content div, where we'll display the chat
 var content = document.createElement('div');
 content.setAttribute('id', 'chat-' + user.user_id);
 u.panel.appendToBody(content);

 // the textarea we'll use to send messages to this user
 var textarea = document.createElement('textarea');
 textarea.setAttribute('cols', 36);
 textarea.setAttribute('id', 'text-' + user.user_id);
 u.panel.appendToBody(textarea);

 // show the online status and hide it after half a second
 u.panel.setFooter("Online...");
 setTimeout(function() { u.panel.setFooter(''); }, 500);

 // keep track of all of the connected users.
 chat.users[user.user_id] = u;
 // render the window
 u.panel.render("container");
};

There is quite a bit of code in this method, but most of it is geared toward creating the
HTML elements that are needed in the actual chat window. The first thing it does is
increment the user_count variable. There are ways that we could dynamically figure
out how many users are connected each time we need to know, but keeping it calculated
in advance will save some computation and lead to a faster experience on browsers
with slow JavaScript implementations.

The speed of JavaScript is another factor in truly realtime web experi-
ences. For more information on this topic, I highly recommend the book
High Performance JavaScript by Nicholas C. Zakas (O’Reilly).

In addition to creating and showing some HTML elements that represent the user on
the screen, we also want to build a JavaScript object that represents the user in the code.
That object contains the user_name and user_id fields as well as the actual YUI Panel
object. The login panel is created with an ID that is unique to the user being added.

114 | Chapter 6: Chat

http://

The x and y coordinates are set dynamically to ensure that this window doesn’t com-
pletely cover any of the other windows that have already been displayed.

Next, we set the title of the Panel window and create the HTML elements within it.
The first element created is the div that will actually be used as the content area of the
chat. When a user sends a message, it will be rendered in the content div. Since the
chat object will add the content to this div from other functions, we set the id attribute
of the div to a value that is unique to the user it represents. The textarea is then rendered
in the same fashion. This textarea will be the input field for sending new messages in
the chat window.

Now, we’ve built the contents of the chat window, we want to give the user some
feedback about what just happened. So, in the footer of the newly created window, the
next line shows that the user is “Online.” Rather than keep that as a permanent status
message for the user, we set up a function to clear the message after half a second. It
may seem like a superfluous action, but it’s these types of small details that create a
well-rounded experience for the user.

At this point, we’re done building the internal representation of the user, so we add it
to the chat.users array. This object is used in other methods to help keep track of users
as they perform different actions. After that, we simply need to render the chat window
to the screen.

The final bit of code needed to tie the whole login process together is the ability to poll
the server to receive notifications. As shown earlier, the login_success method looped
through all of the connected users and added them to the screen. Once it finished
displaying the users, it ran a method called chat.poll to start polling the server for new
updates. It’s a simple little method to add to the chat.js file:

chat.poll = function() {
 var callback = { success: chat.handle_updates };
 YAHOO.util.Connect.asyncRequest('POST',
 '/updates',
 callback,
 'user_id=' + chat.user_id);
};

After seeing how the Ajax request worked in the login method, this code should look
pretty familiar. All this does is make a request to the /updates URL and specify a callback
for when it successfully returns. In the Python code, the class UpdateHandler responds
to the /updates URL, it’s designed to be general enough to handle responses for all
types of events. So we’ve specified a general handle_updates as the callback method for
those requests. We’ll be expanding this method a bit, but to handle login requests, it’s
fairly straightforward:

chat.handle_updates = function(ev) {
 // parse the JSON
 var message = YAHOO.lang.JSON.parse(ev.responseText);

Logging In | 115

http://

 // if it's a login request, add the user to the screen
 if(message.type == 'login') {
 chat.add_user(message.data);
 chat.poll(); // keep polling
 }
};

This method gets called as a result of a successful Ajax request. It receives a parameter
that is a JavaScript object containing information about the request. There are fields
that include the response headers and status messages, but the only field we’re con-
cerned with is responseText. This field contains a text representation of the output of
our UpdateHandler server method. That object is a JSON string, so we parse that into
a native JavaScript object and inspect the message’s type field. If it’s a login message,
we pass the data part of the object up to the add_user method, which will show the
window on the screen. After that, we run the poll method to keep polling the server in
order to receive more updates as they happen.

At this point we’re logging in successfully, adding users to the screen, and polling for
updates from the server. We’re really getting somewhere. Figure 6-3 shows what it
should look like if you start the server and log in different usernames in a few different
browser windows.

Figure 6-3. Starting up a chat session with multiple users

116 | Chapter 6: Chat

http://

Basic Chatting
It looks like a chat application and it allows multiple users to log in, but it has one fatal
flaw: users cannot actually send or receive any chat messages. To allow users to send
messages, we need to make a couple of changes. The server-side Python code has almost
everything needed to support this feature; now it just needs to accept the messages from
the web client and funnel them to the other users. Luckily, much of that code is already
written.

Chatting on the Server Side
The Python code already has the ability to send generic messages to users via the
send_notification method. So the only thing we need to handle basic chatting is to
catch messages from the user and funnel them through that method. To do that, we
need to add one more URL handler to the array. In the Application.__init__ method
of chat-server.py, make the following addition:

class Application(tornado.web.Application):
 def __init__(self):
 # setup the URL handlers
 handlers = [
 (r"/", MainHandler),
 (r"/login/?", LoginHandler),
 (r"/updates/?", UpdateHandler),
 (r"/send/?", SendHandler),
]

This code just sets up another URL handler so that Tornado knows which class should
respond to requests to the /send URL. That class, SendHandler, will be responsible for
accepting the user input, building a message, and sending it to the receiving user. In
chat-server.py, add the following code above the Application class:

class SendHandler(BaseHandler):
 def post(self):

 # who is the message to and from?
 to_user_id = self.get_argument('to_user_id')
 from_user_id = self.get_argument('from_user_id')

 # setup the message object that is sent to the user
 data = dict(from_user_id=from_user_id,
 to_user_id=to_user_id,
 text=self.get_argument('text'))

 # build and send the notification
 msg = notification('message', data)
 self.chat.send_notification(msg, user_id=to_user_id)

 # send a response to the user sending the message
 msg['type'] = 'sent'
 self.finish(msg)

Basic Chatting | 117

http://

Although we haven’t built the JavaScript side of this method yet, it’s not hard to imagine
what should go into a request to send a chat message. That call would need to know
who the message was being sent from, who is receiving it, and the actual text of the
message. The first part of this method collects the to and from parameters and puts
them into a dictionary with the text of the message itself. That data object is populated
with both the to_user_id and the from_user_id, which will be used by the JavaScript
side of the application to determine who sent the message.

Next, we build the notification object using the notification function, which builds a
Python dictionary in the format expected by the send_notification method. Once that
is built, we send the message to the user through that send_notification method.

Finally, it’s probably a good idea to let the sending user know the message has been
sent successfully. To do that, we just update the type field of the msg object to reflect
that the message has been sent instead of received.

Sending Messages
Now that the server is expecting us to send messages, let’s get it set up on the client
side. For each connected user, the chat window has an HTML textarea input field
designed for writing messages; however, there is no way to submit them. Rather than
forcing the user to type a message and then click a “send” button, this application is
going to automatically send messages when the user presses the Enter key. To do this,
we need to make modifications to the chat.js file. First, we need to listen for keyboard
events on that text area. The best place to do that is inside the chat.add_user method
that already exists. At the end of that method, add the following code:

 // render the window
 u.panel.render("container");

 // listen for keypresses
 YAHOO.util.Event.addListener("text-" + user.user_id, "keypress", chat.keypress);
};

That line of code sets up an event listener to catch all the keypresses that occur in the
textarea field. Any time a user types into that text field, we’ll immediately get a callback
to the chat.keypress method. Let’s add that next:

chat.keypress = function(ev) {
 // the ev.target is the textarea field
 var textarea = ev.target;

 // parse the user_id from the textarea id
 var to_user_id = textarea.id.replace("text-", "");

 // setup the basic Ajax HTTP parameters (to and from)
 var params = "from_user_id=" + chat.user_id;
 params += "&to_user_id=" + to_user_id;

118 | Chapter 6: Chat

http://

 // Did they press the enter key?
 if(ev.keyCode && (ev.keyCode == 13)) {

 // add the message text to the parameters
 params += "&text=" + textarea.value;

 // reuse the handle_updates method and run the Ajax
 var callback = { success: chat.handle_updates };
 YAHOO.util.Connect.asyncRequest('POST',
 '/send',
 callback,
 params);
 }
};

The main job of this code is to listen for every keystroke until it detects that the Enter
key has been pressed. Once that happens, it will make an Ajax request to the server.

The first thing this method does is figure out which user is supposed to be on the
receiving end of this message. When we added each textfield to the page, we gave
them all predictable id attributes. Each id is the string text- followed by the user_id.
So to figure out the user, we simply parse out everything after text- in that id field.
That value becomes the to_user_id, which is the user who should receive this message.

We know it’s time to send the message if the user has hit the Enter key. To detect this,
we simply inspect the ev object, which is the event object that arrives as the only pa-
rameter to this callback method. In JavaScript, the Enter key is represented by the
number 13. If the keyCode is 13, the user is pressing the Enter key; otherwise, she’s just
typing the rest of the message.

Once we’ve detected that the user is pressing the Enter key, it’s time to send the message
via a standard Ajax request. The textarea contains the text of the message, so we just
need to append that to the existing parameter string contained in the params variable.
Then, we specify that we want a callback to our existing chat.handle_updates method
upon a successful request. Next, we fire off that request and wait for the callback to
tell us that everything worked.

Right now, that message will be sent to the server and the server will attempt to send
it to the other user, but nothing happens on this end. We’re going to want to respond
a bit to a successful request. To do that, make the following changes to the
chat.handle_updates method:

 chat.poll(); // keep polling
 }
 else if(message.type == 'sent') {
 // clear the textarea
 var input = document.getElementById("text-" + message.data.to_user_id);
 input.value = "";
 input.focus();
 // show the message
 chat.append_message(message.data);

Basic Chatting | 119

http://

 }
};

Having built a generic chat.handle_updates method, we can easily add new function-
ality by catching all notifications in this one method. This particular bit of code checks
the type of the notification message to see whether it’s sent. If it is, it does two different
things. First, it clears out the text box and focuses it. This will ensure that the user
can just keep typing and sending messages without using the mouse or any other
interaction. The second and most important part of this code is that it calls
chat.append_message to show the message to the user. It’s important that we display it
to the user on the receiving side, but we also have to show it to the user who is sending
it. Add the chat.append_message method to your chat.js file:

chat.append_message = function(data) {

 // the user that sent the message
 var user_id = data.from_user_id;

 // the display name of who sent the message
 var from_user_name = "";

 // if it's from the current user, append it to the "to" user box.
 if(user_id == chat.user_id) {
 user_id = data.to_user_id;
 from_user_name = "You"; // it's from You, not them
 }
 else
 from_user_name = chat.users[user_id].user_name;

 var doc = document;
 var div = doc.createElement('div'); // create the HTML element

 // insert the message text into the message div
 div.appendChild(doc.createTextNode(from_user_name + ": " + data.text));

 // get the content div
 var contentDiv = doc.getElementById("chat-" + user_id);

 // append the content
 contentDiv.appendChild(div);

 // ensure the window is scrolled down to the newest message
 contentDiv.scrollTop = contentDiv.scrollHeight;
};

The chat.append_message method is used for displaying messages both sent and re-
ceived by the current user. So the first thing we do is figure out who sent us this message
and store it as user_id. This user_id variable will eventually be used by this method to
determine which chat window we should use to display this message. If we’re receiving
this message from another user, we’re going to append the message to that user’s win-
dow and display it as coming from that particular username. However, if the message
is from us to another user, we’ll display it in the window as sent by “You.”

120 | Chapter 6: Chat

http://

Next, we create a DIV element and append the message to it. Once we have the final
div text that we’ll be using, we append it to the actual chat window. Then, we grab the
contentDiv, onto which we’ll actually be appending the content. This is either the win-
dow of the user who sent the message or the window of the user who is receiving it.
After appending the content, we scroll the contentDiv to ensure the newest message is
still on the screen.

Receiving Messages
Since our methods are fairly generic, most of them are already working double duty for
sending and receiving messages. We can send messages from the client, and the server
already handles directing those messages back to the correct receiving client, so all we
need to do is watch for those messages. To receive those messages, update the
chat.handle_updates method and add the following code:

 else if(message.type == 'sent') {
 ...
 }
 else if(message.type == 'message') {
 chat.append_message(message.data);
 chat.poll(); // keep polling
 }
};

This code has a fairly easy job to do, so it does it quickly and gets out of the way. First,
it calls the existing chat.append_message method to append this message to the correct
window. Then, it continues polling the server for updates. When this code gets into
the chat.append_message method, the only difference is that it will display the message
as coming from the user who sent it instead of coming from “You.”

We now have a pretty functional chat application. We can log in and send and receive
messages in realtime. With YUI we can even drag windows around the screen and more
or less act like a desktop application. Start up the server, launch a couple of browser
windows, and test out what we’ve got so far.

~ $ python chat-server.py

Now open your browser window to http://localhost:8888. After logging in with a couple
of different browser windows and chatting for a bit, you should see something like
Figure 6-4.

Acting Natural
At this point we have a reasonably full-featured chat application. You can log in and
chat with as many users as you like, and messages are sent around in realtime, but the
experience is not quite complete. After a user sends a message to another user, there
isn’t a lot of feedback about what is happening. Users of modern chat applications
expect to be informed about what the other user is doing. Is the user typing? Did the

Acting Natural | 121

http://

user start typing and stop? Is this person still online? These are the types of features
that change a standard chat script into a living, breathing realtime application. Luckily,
with the code that’s already written, these features are easy to implement.

Figure 6-4. A sample chat session in multiple browser windows

122 | Chapter 6: Chat

http://

When the ability to see that a user is typing was introduced into chat applications, it
seemed like a little thing. But after using this feature for even a short amount of time,
it became hard to remember how chatting worked without it. To enable it in this
application, it’s going to take a mixture of both Python and JavaScript. In the
chat-server.py file, add a new URL handler to deal with typing messages:

class Application(tornado.web.Application):
 handlers = [
 (r"/", MainHandler),
 (r"/login/?", LoginHandler),
 (r"/updates/?", UpdateHandler),
 (r"/send/?", SendHandler),
 (r"/typing/?", TypingHandler),
]

This will route any requests for the URL /typing to a new class called TypingHandler.
Moving right along, add the following code somewhere above the Application
declaration:

class TypingHandler(BaseHandler):
 def post(self):
 # Who is typing to who?
 to_user_id = self.get_argument('to_user_id')
 from_user_id = self.get_argument('from_user_id')

 # build and send the notification
 data = dict(from_user_id=from_user_id, to_user_id=to_user_id)
 msg = notification('typing', data)
 self.chat.send_notification(msg, user_id=to_user_id)

 # respond to the sending user
 msg['type'] = 'recv'
 self.finish(msg)

This code actually looks quite similar to the SendHandler class. The first thing it does
is gather the variables that were included as parameters to the HTTP request. Next, it
builds a simple dictionary of those variables and creates the notification object. At this
point, the only difference between this and the SendHandler class is that this class doesn’t
include any text parameter in the notification object. We’re not actually sending the
chat message at this point, just a notification informing the receiving user that someone
is typing. After the notification is sent, we respond to the user who is actually doing
the typing to indicate that the message was received.

That’s all the server-side code needed for this feature. All that’s left is to hook up the
client-side code. In this case, the JavaScript code has two different jobs to do. First,
when a user starts typing, it needs to make a request to the /typing URL to inform the
other user. Then, on the receiving end, the JavaScript needs to update the UI to show
that it’s happening.

Acting Natural | 123

http://

Luckily, we’re already monitoring keystrokes on the client side while waiting for the
user to press the Enter key. This code can easily go in that method as well. However,
we don’t want to send an update to the server with every single keystroke. We just want
to determine whether a user is typing and ensure we send the notification once every
couple of seconds. So first we want to keep track of every keystroke. To do that, let’s
add another variable to the main chat object. In the chat.js file, modify it to include the
following variable:

var chat = {
 // initialize variables
 login_panel: false,
 user_id: false, // the current user (me)
 ...
 previous_typing_ping: 0,
 timeouts: {};
};

We’re going to ping the server every couple of seconds to let it know that the current
user is typing a message to another user, and previous_typing_ping will hold the last
time that we actually sent that message. When the user types a key, we’ll be able to
check whether enough time has elapsed between “now” and previous_typing_ping to
warrant a new ping. Now that we have a place to store the amount of elapsed time, we
need to actually monitor the typing and make the HTTP request. To do that, add the
following code to chat.keypress:

 // setup the Ajax params
 var params = "from_user_id=" + chat.user_id;
 params += "&to_user_id=" + to_user_id;
 if(ev.keyCode && (ev.keyCode == 13)) {
 ...
 }
 else {
 // the current time, in milliseconds since 1970
 var now = new Date().getTime();

 // ping every 1.5 seconds (1500 milliseconds)
 if((now - chat.previous_typing_ping) > 1500) {
 // update the "previous" time
 chat.previous_typing_ping = now;
 // notification the server
 YAHOO.util.Connect.asyncRequest('POST', '/typing', false, params);
 }
 }

This code monitors every keystroke that a user makes inside a textarea, except for the
Enter key, which is caught by the if statement. When we get any other keystroke, we
check to see how long ago we last submitted a request to the server. The first time a
user starts typing, the previous_typing_ping variable is zero, which means the time
difference between now and then is easily greater than one and a half seconds. So the
first time a user types a key, we’ll immediately send an HTTP request to /send. If the

124 | Chapter 6: Chat

http://

user types two keys in a row, chances are good that it’ll be within that 1.5 second
window, and we won’t send a notification to the server.

We’re not sending a request with every keystroke, because that would be a ton of
keystrokes and thus a lot of HTTP requests. We can easily determine whether a user
is typing and still conserve HTTP requests by giving it a reasonable timeout between
keystrokes. Figure 6-5 shows this process.

Figure 6-5. Waiting 1.5 seconds between requests to report new keystrokes

We’re effectively queueing up and sending notifications when one user starts typing to
another user. All that’s left is to inform the user on the receiving end. Add the following
code into the chat.handle_updates method of chat.js:

 if(message.type == 'login') {
 ...
 }
 else if(message.type == 'typing') {
 // get the user
 var u = chat.users[message.data.from_user_id];
 u.panel.setFooter(u.user_name + ' is typing...');
 // clear any existing timeouts
 clearTimeout(chat.timeouts[u.user_id]);
 // setup a new timeout
 chat.timeouts[u.user_id] = setTimeout(function() {
 u.panel.setFooter(u.user_name + ' typed...');
 }, 3000);
 chat.poll(); // keep polling
 }

Acting Natural | 125

http://

 else if(message.type == 'message') {
 chat.append_message(message.data);
 chat.poll(); // keep polling
 // clear the typing timeout
 var u = chat.users[message.data.from_user_id];
 clearTimeout(chat.timeouts[u.user_id]);
 // clear the footer status
 u.panel.setFooter('');
 }

All of the notifications sent from the server go through this one function. So we simply
add a new condition to the if statement and put our logic in there. We saved a reference
to the user window along with each user object in the form of u.panel. We use that
object and set the footer to inform the user that the other user has started typing.

We know that if the user continues to type, we’ll get another message in 1.5 seconds,
so we can actually inform the local user when the remote user has stopped typing. If
we don’t receive another typing message in the next three seconds, change the footer
status message to say “typed” instead of “is typing.” This will let the user know that
the other party has started typing and stopped for some reason. If that user starts up
again, we’ll get another typing ping, and the status will be changed back to “is typing.”

Finally, we make one minor modification to the code that handles receiving a message.
When we get a message, we can safely assume that the user has stopped typing, so we
clear the footer message along with any timeouts associated with it. When you set a
timeout in JavaScript, it will call a callback function after a set period of time. If you
keep track of the return value of the setTimeout call, you can clear it later if you want
to cancel the timeout.

Restart the server, open a couple of browser windows, and try this out. It should look
similar to Figure 6-6.

126 | Chapter 6: Chat

http://

Figure 6-6. Several chat windows with the typing status displayed

Acting Natural | 127

http://

http://

CHAPTER 7

Instant Messaging

We’ve already built an example of a fully featured chat application that functions en-
tirely in a browser window, but realtime experiences are increasingly happening outside
of the browser. Users expect to be able to input data and get it back out not only from
an unending array of mobile devices, but also from inside applications that they cur-
rently use. This chapter shows an example of integrating a web-based application with
standard instant messaging protocols and programs.

There are many different instant messaging protocols that are in wide use today. Skype,
Windows Messenger, AOL Instant Messenger, and Yahoo! Instant Messenger all have
their own clients and their own protocols. Those are all proprietary protocols that are
not technically open to interoperability, but there is a popular open protocol called
XMPP. Being an open technology, it’s supported by many instant messaging clients,
including Apple’s iChat, Digsby, and Pidgin. Basically, whatever the platform, there is
an application that supports XMPP.

The easy availability of client applications is a good reason for us to use this technology,
but the size of the userbase is another consideration. Thankfully, XMPP has a huge
built-in userbase due to Google using it in their Google Talk service, which is linked to
their Gmail service. Google also offers nearly seamless XMPP integration for developers
on their cloud computing platform, Google App Engine.

129

http://xmpp.org/
http://www.digsby.com/
http://www.pidgin.im/
http://appengine.google.com
http://

Getting Started with Google App Engine
Google App Engine is Google’s cloud computing offering, allowing developers to build
applications on their infrastructure. It’s even free to get started and entirely free for
most applications. However, if you reach a certain threshold, you are charged for your
usage. Applications can use up to 500 MB of storage and enough CPU and bandwidth
to serve about 5 million page views per month before a developer is charged anything.

This example will build an application using Python, but applications can also be built
using Java or any language that can be interpreted inside the Java Virtual Machine. It’s
fairly easy to build these applications once you understand the basic differences be-
tween how App Engine works and how standard development works outside of the
cloud. MySQL and other relational databases are not available inside App Engine; in-
stead, applications save data using the built-in key-value-based datastore API. Another
difference is that web requests must be served within 30 seconds, so the long polling
that we used in previous examples doesn’t work in App Engine. However, any limita-
tions imposed by the service can easily be overcome by using App Engine for its good
parts and other solutions for their good parts. The very last example in this book dem-
onstrates how to integrate all of these technologies.

Setting Up an Account
Getting started in App Engine requires a standard Google Account and a phone capable
of receiving SMS messages to verify your account. Navigate to the Google App Engine
website and, if you’re logged in, you’ll be greeted with the button shown in Fig-
ure 7-1 inviting you to “Create an Application.”

Figure 7-1. Creating your first application

After clicking that button to create an application, you’re first asked to provide a phone
number to verify that you’re a person. Google will send an SMS message containing a
short verification code and take you to another page where you can enter that code.

Once you have been verified, your App Engine account is ready to go. At this point you
can start setting up your application. From Google’s perspective, they only need to
know two things about your application. First, pick an Application Identifier that you’d
like to use. This ID will be used as part of the URL when users access your application

130 | Chapter 7: Instant Messaging

http://appengine.google.com
http://appengine.google.com
http://

on the Web. These identifiers must be unique across all of App Engine, so check the
availability and pick something suitable. If you want to write a new application in the
future, you can always create a second application and give it a new identifier. You’re
also asked to provide a title for the application. This title will be used for the screen
shown to users when they’re trying to sign into your service. Figure 7-2 shows my
attempt at filling out this form.

Figure 7-2. Configuring your Google App Engine application

Creating an Application with the SDK
To develop applications on Google’s cloud, you must first install the Google App En-
gine SDK for Python. It’s available for Mac OSX, Windows, and Linux from the App
Engine project on Google Code. Download the appropriate package and install it for
your platform. Both the Mac and Windows versions have a graphical interface for cre-
ating projects, launching the development server, and deploying the code to Google’s
servers.

After installing the SDK, you have a program called Google App Engine Launcher.
Using that application, create a “New Application” from the File menu. It prompts you
for an “Application Name” and a directory to house it in. The Application Name should
match the Application Identifier that you selected when creating your application on
the Google website. Figure 7-3 should resemble what you see.

Getting Started with Google App Engine | 131

http://code.google.com/appengine/downloads.html
http://code.google.com/appengine/downloads.html
http://

Figure 7-3. Setting up your application in Google App Engine Launcher

Inspecting the default application

The launcher program creates a basic shell of an application inside the directory speci-
fied earlier. It creates three files that are needed for the most basic application. The files
that are created by default are even populated with a simple “Hello World” application.
The basic application consists of the following files:

app.yaml
A configuration file giving App Engine the most basic information about an appli-
cation. It specifies whether to use the Java or Python runtime, the version of the
application, and the version of the App Engine API being used. If different URLs
are handled by different physical files, you can specify that in this file as well.
Certain features of the App Engine framework can also be configured or requested
by making modifications to this file.

index.yaml
This file is used by App Engine’s Datastore API to instruct it how to best index the
data inside your application. App Engine is clever enough to automatically update
this file based on your code, so you won’t need to update this until you have specific
indexing requirements.

main.py
The main Python file that handles all of the HTTP requests by default. This is where
the application code to your application gets started. This filename can be changed

132 | Chapter 7: Instant Messaging

http://

as long as the app.yaml file is updated as well. Applications are not limited to one
Python file; this is just the single file created by the launcher application.

The application created by the launcher program is actually complete and ready to run.
From the launcher interface, click the button called “Run,” which will start up the
development server on your local machine. Assuming your project was also set up to
run on port 8080, you can point your browser at http://localhost:8080 to see something
like Figure 7-4.

Figure 7-4. “Hello World” without touching a line of code

Taking Advantage of Google
Writing applications on App Engine gives the developer access to Google’s web-serving
infrastructure as well as some other useful services. One of the most immediately useful
features is the ability to get some user information for free through Google Accounts.
It takes only one line of code to force a user to log in, and knowing they’re logged in,
you can easily make use of some of their user information.

The Python part of a Google App Engine application, as specified in main.py, is very
similar to the way Tornado works. In main(), the actual application object is created
by defining which classes respond to which URL requests. If a request comes into a
specified variable via an HTTP get request, the get method of the class is called; the
same logic applies for post requests.

Starting with the shell of the application created by the launcher application, let’s
modify it slightly to force users to log in and prepare for the instant messaging part of
our application. When you open the main.py file, it should look like the following code
below. Expand it by adding the highlighted:

Getting Started with Google App Engine | 133

http://

import wsgiref.handlers

App Engine supports standard logging, use it.
import os, logging

from google.appengine.ext import webapp, db

import some more app engine module
from google.appengine.api import xmpp, users, urlfetch
from google.appengine.ext.webapp.util import login_required

class BaseHandler(webapp.RequestHandler):
 # the jabber id of the server
 server_jid = os.environ['APPLICATION_ID'] + '@appspot.com'
 # the server URL
 server_url = "http://%s.appspot.com" % os.environ['APPLICATION_ID']

class MainHandler(BaseHandler):
 # force the user to log in to see this page.
 @login_required
 def get(self):
 user = users.get_current_user()
 logging.info("Got request for MainHandler")
 self.response.out.write('Hello, %s!' % user.nickname())

def main():
 application = webapp.WSGIApplication([('/', MainHandler)],
 debug=True)
 wsgiref.handlers.CGIHandler().run(application)

if __name__ == '__main__':
 main()

This code is still essentially a “Hello World” application, but it has been expanded in
a couple of key ways. We added a couple of new import statements to pull in modules
supplied by google.appengine as well as from Python’s standard library, all of which is
available in the App Engine environment.

Another modification is the creation of a BaseHandler class to use in place of App En-
gine’s webapp.Request module. This class serves exactly the same purpose as the Base
Handler class introduced in the chat application created with Tornado, which is to offer
some convenience functionality during web requests that are specific to our application.
In this case, we’re setting up some variables that can be accessed later. These variables
make it easy for our application to refer to both its URL address and its XMPP address.

We’ve also added a @login_required decorator to the MainHandler class. This one line
of code tells Google that any user who views this page must be authenticated using
their Google Account credentials. If a user hits this page without first authenticating,
Google will automatically take them to a special login page, redirecting them here once
that is complete. The get method still serves the same purpose, but this time it logs
some information and responds with the logged-in user’s nickname instead of saying
hello to the entire “World.”

134 | Chapter 7: Instant Messaging

http://

Keeping Track of the User
Getting to this application from a web browser now requires that the user is authenti-
cated with his Google account. However, the main point of this application is to accept
content outside the web browser, so we’re going to have to keep track of which users
have signed up and check against that list in the future. Thankfully, App Engine pro-
vides a simple Datastore API that will allow us to create objects, save them, and load
them again later. One of the nice side effects of using this Datastore API is that we are
not required to create and manage the database structure. The Datastore API looks at
your object definitions and does everything you need to start using the data. To get
started, let’s set up a basic model class that represents the user. Add the following class
to main.py after the BaseHandler class:

class IMUser(db.Model):
 account = db.UserProperty()
 email = db.EmailProperty()

This defines a class called IMUser that is a subclass of App Engine’s db.Model class. That’s
all the setup we need to actually start using it as if we had already built database tables
and set up the server. Having defined our object, let’s start saving which users have
successfully authenticated. Update the MainHandler class:

class MainHandler(BaseHandler):
 # force the user to log in to see this page.
 @login_required
 def get(self):
 user = users.get_current_user()
 logging.info("Got request for MainHandler")

 # get the IMUser if they've been here before
 u = IMUser.gql('WHERE email = :1', user.email()).get()
 if not u:
 # if it's their first time here, store it in the cloud
 u = IMUser(email=user.email(), account=user)
 u.put()

 self.response.out.write('Hello, %s!' % user.nickname())

This code checks to see whether a user has logged in before and, if not, saves them to
the cloud. To do this, we use Google’s SQL-like query language called GQL. The GQL
language lets us search the datastore as if it were a local database table. In this case
we’re saving the email address and the actual Google user account object. This allows
us to query the datastore for existing users with nothing more than an email address.

The Deploy Button
The actual process of getting an application up and running in the cloud is very com-
plicated. Files need to be copied to data servers all over the world, server software needs
to be restarted, indexes must be updated and created to reflect the new code, and
certainly countless other thankless activities. However, you don’t actually have to worry

Getting Started with Google App Engine | 135

http://

about any of that. Deploying an application here is as basic as running a simple com-
mand-line script, and the Google App Engine Launcher program makes it even easier
with a big button called “Deploy.”

With our code updated to log users in and show them their names, let’s try it out on
Google’s servers. Pressing that big “Deploy” button should open up a log window with
output similar to this:

*** Running appfg.py with the following flags:
 --no_cookies --passin update
google_appengine/appcfg.py:41: DeprecationWarning: ...
 os.path.join(DIR_PATH, 'lib', 'antlr3'),
Application: instant-messaging; version: 1.
Server: appengine.google.com.
Scanning files on local disk.
Initiating update.
Cloning 3 application files.
Uploading 3 files and blobs.
Uploaded 3 files and blobs
Deploying new version.
Checking if new version is ready to serve.
Will check again in 1 seconds.
Checking if new version is ready to serve.
Closing update: new version is ready to start serving.
Uploading index definitions.
If deploy fails you might need to 'rollback' manually.
*** appcfg.py has finished with exit code 0 ***

There’s not a whole lot of useful information there, but unless you got a big error
message, you can safely assume that your application is now running on App Engine.
To test it out, open your browser to http://application-id.appspot.com/. The applica
tion-id should match the one you set up with Google; mine is instant-messaging. When
you load that page, you should be immediately redirected to a Google login page similar
to the one shown in Figure 7-5.

Figure 7-5. Signing into your application

136 | Chapter 7: Instant Messaging

http://

This is where Google uses the title you picked when creating your application. When
forcing a user to sign in, it redirects her to a Google-branded page to let her know exactly
what type of data will be shared between Google and our application. Once the
user signs in, she is redirected back to the application, and the new and improved
Hello World message appears. After logging in, you should see something similar to
Figure 7-6.

Figure 7-6. An authenticated and personalized greeting

The Dashboard
In MainHandler, we use logging.info to log some data announcing that the get method
has been called. In Google App Engine, these messages are stored in and available from
the App Engine dashboard. The dashboard website shows all the stats about your ap-
plication, including HTTP requests, CPU usage, bandwidth consumed, the data stored,
and of course all of the log messages your application has created.

At the moment, we’re only interested in viewing the logs and the data that has been
stored. To view logs, click on the “Logs” tab on the left side of the screen, and you’ll
see a list of errors that have occurred. You can filter that view with a select box that
will let you limit the page to different types of logging messages. If you change it to
“Info,” you should see something resembling Figure 7-7. This is the list of log messages
that have been emitted by our application each time the MainHandler.get method was
called.

To view the data stored with the application, click on “Data View” under the “Data-
store” heading. If there are no options, type “SELECT * FROM IMUser” and run it as
a query. This shows a list all the users that have logged into the application. If you ever
have an issue with data not matching up with what you expect, you can always come
to this page and inspect each object. Figure 7-8 shows an example of the datastore data
viewer.

Getting Started with Google App Engine | 137

http://appengine.google.com
http://

Receiving Instant Messages
So far, we’ve written some code, signed up for services, and launched applications, but
nothing we’ve done involves sending or receiving instant messages from our users.
However, getting all that set up will make those two actions much easier. Since we’re
forcing people to log in with their Google accounts, we know that all of the users have
an XMPP account that can send and receive messages from the application. In this case,
we’re starting with accepting incoming instant messages from users. Accepting mes-

Figure 7-7. The “Logs” tab of the App Engine dashboard

Figure 7-8. Viewing the datastore

138 | Chapter 7: Instant Messaging

http://

sages via XMPP opens up the door to very interesting ways of interacting with users.
Building in accepting messages before sending them also helps us get around a security
and usability issue without much effort.

The XMPP protocol does not allow users to send messages to other users unless the
receiving user has allowed it to happen. This is generally done through an “invitation.”
In practice, one user would request a chat session, or invitation, and if the other user
accepted it, the chat session would begin. Within our application, we don’t want to be
sending chat messages or requests to any unsuspecting users, so to prevent that, we’re
going to ensure they send us a message first. Once they do that, our application can
send messages freely to the user.

To deal with XMPP in App Engine, we must first announce that we’re going to use
XMPP services. This is one of the services that is configured by editing the app.yaml
file. Open that file and add the following lines:

inbound_services:
- xmpp_message

This tells App Engine that our application would like to send and receive XMPP mes-
sages. If App Engine gets an XMPP message addressed to our domain, it will convert
it to an HTTP request and post it to a specific URL in our application. So in the appli-
cation side, the only thing we need to do to listen for these requests is listen to a special
URL. Update the main function to accept the special XMPP URL:

def main():
 application = webapp.WSGIApplication([('/', MainHandler),
 ('/_ah/xmpp/message/chat/', XMPPHandler),
],
 debug=True)
 wsgiref.handlers.CGIHandler().run(application)

App Engine posts any XMPP messages addressed to our application to /_ah/xmpp/mes
sage/chat/. We simply set up our application to use the XMPPHandler class when it
receives such a request. XMPPHandler handler will then be used for every XMPP message
that is received.

To get started receiving messages, let’s just accept the messages and log them to the
console. In main.py, add the following class:

class XMPPHandler(BaseHandler):
 def post(self):
 # Parse the XMPP request
 message = xmpp.Message(self.request.POST)
 # Log it to the console
 logging.info("XMMP sender: %s - body: %s" % (message.sender, message.body))

The internals of accepting an XMPP request work exactly like receiving any other re-
quest in App Engine. In this case, the payload of the POST request is the raw XML of
the XMPP message. We use the xmpp module to parse that message and turn it into an

Receiving Instant Messages | 139

http://

object that we can easily manipulate. Once we have it, we log the important fields to
the console.

Everything is now in place to accept and parse XMPP requests in this application, so
let’s try it out and send some messages. Testing an application in App Engine is nor-
mally as easy as pressing the Run button and viewing the code locally on your machine.
However, there is currently no way to send XMPP messages to the local version of App
Engine, so we’re going to have to redeploy the code when we make changes. Press the
Deploy button again to send the code to the server.

Once the code has been successfully deployed, we can start sending messages to the
server. To send a message, you need to open your instant messaging client and initiate
a chat. To send a message to the server, you’ll have to specify the recipient as applica
tion-id@appspot.com, where application-id is the identifier that you picked earlier.
Most instant messaging programs should have a similar interface for initiating a chat
with another user. In iChat, it will look like Figure 7-9.

Figure 7-9. Initiating a chat to the application in iChat

This should bring up a chat window where you can start chatting. Send some messages
to the server; you won’t receive any responses at the moment, but they are getting to
the server. To verify this fact, check the “Info” logs in the App Engine dashboard. The
result should look like Figure 7-10.

A message being sent from an instant messaging window has to take a pretty long
journey before it reaches the “Logs” tab in the App Engine dashboard. When it leaves
your instant messaging application, it is sent to the Google Talk servers, which pass it
on to the XMPP servers in the App Engine cloud. App Engine then takes the message
data, which is entirely XML, and posts it to /_ah/xmpp/message/chat on your applica-
tion. That URL is mapped to the XMPPHandler method, which then parses the message
and logs it. Figure 7-11 illustrates this whole process.

140 | Chapter 7: Instant Messaging

http://

Figure 7-10. The instant messages as received by the server

Sending Instant Messages
Receiving messages that originated from an instant messenger client is nice to have,
and certainly opens up a lot of possibilities for collecting data in realtime. But the true
realtime power of this technology comes from the ability to both send and receive these
messages.

Let’s expand on our existing application by taking the message that we received and
just printing it back to the client. In the main.py file, make the following addition to
the XMPPHandler class:

class XMPPHandler(BaseHandler):
 def post(self):
 # Parse the XMPP request
 message = xmpp.Message(self.request.POST)
 # Log it to the console
 logging.info("XMMP sender: %s - body: %s" % (message.sender, message.body))
 message.reply(message.body)

That additional line of code takes the message that was received and calls the reply
method to send the body right back to the sender. If you’d like to test this out on the
server, go ahead and deploy the code as it is now. Figure 7-12 shows a typical chat
session with the server after adding this functionality.

Sending Instant Messages | 141

http://

Figure 7-12. Chatting with myself via the server

Figure 7-11. The lifetime of the instant message

142 | Chapter 7: Instant Messaging

http://

Responding Intelligently
At this point, we’re receiving messages and sending back simple output. Let’s take some
time to examine the data as it comes in and respond to it. We’ll allow the user to enter
simple commands to our application and respond appropriately to the request.

The Basic Commands
We’re going to expand this application to accept basic commands and respond with
the appropriate response. To do this, we must first understand the command format.
To keep it simple, we’ll assume that any instant message that we receive is a command.
The first word of that message is the command itself, and the rest of string represents
any additional parameters for the command.

Let’s start by parsing out the command itself from the rest of the message. Add the
following code to your XMPPHandler class:

class XMPPHandler(BaseHandler):
 def post(self):
 message = xmpp.Message(self.request.POST)
 logging.info("XMPP sender: %s - body: %s" % (message.sender, message.body))
 # The command from the user
 cmd = message.body.split(' ')[0].lower()
 # the rest of the message
 body = message.body[len(cmd) + 1:]

Because the format is command and the rest of the string, to parse out the command,
we simply need to grab anything before the first space character. We then convert it to
lowercase to make it easier to match in the next step, which determines what we do
with each command. Keep adding to that method:

 # echo the data back to the client
 if cmd == 'echo':
 message.reply(body)

 # convert string to rot13 and repeat it back to them
 elif cmd == 'rot13':
 message.reply(body.encode('rot13'))

 # add up all the numbers
 elif cmd == 'sum':
 numbers = body.split(" ")
 total = 0
 # try to add the numbers together
 try:
 for x in numbers:
 total += int(x)
 text = "%s = %d" % (" + ".join(numbers), total)
 except:
 text = "Couldn't add these up. Invalid numbers?"

Responding Intelligently | 143

http://

 message.reply(text)
 else:
 message.reply("I don't understand '%s'" % cmd)

This gives the user several different options for interacting with the application. First
off, by typing echo Hello World, this would reply to the client with the string Hello
World.

If the user sends the rot13 command, we’ll respond by replacing each character in the
body with the character thirteen places away in alphabetical order. The Python standard
library provides this functionality in the same library that can encode strings in base64
and compress them with zlib.

When we receive the sum command, we’ll assume the rest of the string is a series of
number separated by spaces. We’ll take each of those numbers and add them together,
returning the final sum. We’ll also take the each of the numbers and join them with a
plus character to display the entire equation. If we have trouble adding them, we’ve
most likely received something that isn’t a number, so we just complain back to the
user in this case.

If the user either sends a command that we do not understand or doesn’t send one at
all, we just respond and tell him that we don’t understand. Figure 7-13 shows a chat
session using all of these commands.

Figure 7-13. Testing out the commands

144 | Chapter 7: Instant Messaging

http://

Checking Authentication via Instant Messenger
Sending and receiving instant messages is a somewhat personal matter. When an instant
message arrives to an end user, it generally interrupts him by opening a window. So we
don’t want to be sending messages to users who have not authenticated with the
application.

Forcing a user to be authenticated during a web request is as simple as adding the
@login_required decorator. However, deep inside the XMPP response, we’re not able
to seamlessly redirect a user to a web page and expect him to be sent right back. So
adding a decorator to this method wouldn’t have the same effect. This is why we started
saving the IMUser objects in MainHandler for each user who did visit the site.

When we receive an XMPP request, we may not have access to the get_current_user
method, but we do have access to the user’s email address. We can easily check that
email address against any of the users who have authenticated. To do a super basic
authentication check, update your IMUser class with the following:

class IMUser(db.Model):
 account = db.UserProperty()
 email = db.EmailProperty()

 def is_authenticated(self, email):
 # remove the "resource" string to reveal the email address by itself
 if email.find('/') != -1:
 email = email[:email.find('/')]
 im_user = IMUser.gql('WHERE email = :1', email).get()
 if im_user:
 return True
 else:
 return False

When we receive an instant message from a user, the sender field contains the XMPP
user identifier followed by a slash and a resource string. This slash and anything after
it can be stripped away, resulting in the ID of the user, which for our purposes is an
email address. To check to see whether a user has been authenticated, all we need to
do is check that email address against the data store. If we locate the im_user, return
True, and otherwise return False.

Now that we have the ability to check for authenticated users, let’s check before we
actually send out new messages. Update XMPPHandler:

class XMPPHandler(BaseHandler):
 def post(self):
 message = xmpp.Message(self.request.POST)
 logging.info("XMMP sender: %s - body: %s" % (message.sender, message.body))

 ...

 # get the IMUser object
 if not IMUser.is_authenticated(message.sender):
 message.reply("Please register, it's painless: %s" % self.server_url)

Responding Intelligently | 145

http://

 return

 # echo the data back to the client
 if cmd == 'echo':
 message.reply(body)

 ...

If the user isn’t authenticated, we simply send him a message with a link to get au-
thenticated and stop processing. If the user has been authenticated in the past, we
simply continue on and respond to the request as we normally would. Although this
is not exactly NSA-grade security, it’s a pretty simple way of ensuring that we send
messages only to users who want to receive them. Figure 7-14 shows a chat session
with a user who has not authenticated.

Figure 7-14. Forcing users to authenticate

Introducing a Third Party
So far, this example is fairly simple in its responses. It repeats text back to the sender,
manipulates strings, and does basic arithmetic. However, we can easily add more
sophisticated functionality using freely available APIs and start providing useful infor-
mation through an instant message chat session. To get started, let’s add the ability to
look up weather information. When a user sends in the command weather and a zip
code, we’ll respond with the basic weather conditions at that location.

To get the weather information, we’ll be using the Yahoo! Query Language (YQL)
service (http://developer.yahoo.com/yql/). YQL provides a SQL-like language to various
APIs around the Web. Using YQL and its SQL-like syntax, a developer can do every-
thing from searching the archive of he New York Times to updating a Twitter status.
We’ll be using the service to load the current weather information.

YQL offers a couple of different response formats for each query. We’ll be using the
JSON format, but to handle that in App Engine, we need to import an external library.
At the top of your main.py file, add the following import code:

146 | Chapter 7: Instant Messaging

http://developer.yahoo.com/yql/
http://

from django.utils import simplejson as json

This line imports an easy to use JSON-parsing library called simplejson. App Engine
offers this module as part of the code to include some compatibility with the Django
project. Normally you’d have to install this module separately, and even compile it to
get the best performance, but including it this way saves several steps.

Loading the weather information from YQL is fairly straightforward. Add this function
near the top of your main.py file:

def get_weather_for_zipcode(zipcode):
 # build the YQL statement
 yql = "select item from weather.forecast where location = %s" % zipcode

 # encode it for use in a web request
 yql = yql.replace(" ", "%20")
 url = "http://query.yahooapis.com/v1/public/yql?format=json&=%s" % yql

 # make the request and parse the json response
 response = urlfetch.fetch(url)
 data = json.loads(response.content)

 try:
 # return the current weather conditions
 return data['query']['results']['channel']['item']['condition']
 except:
 return None

This method takes a zip code as a parameter and builds a YQL statement with it. That
statement gets encoded for use as a URL and is turned into the actual web request that
we’ll be using.

One of the limitations of App Engine is that you’re not given direct access to the net-
work. In order to make a web request, you have to use Google’s urlfetch module. To
make this YQL API request, we can just hand off the URL to urlfetch.fetch and it will
synchronously handle the request and return a response object. The content of that
object is the JSON response from the YQL request. This API actually returns a lot of
data about the weather, including the forecast and links to images that represent the
weather, but we’re only concerned with the current conditions, so we parse that part
out and return it.

To get the application to supply the weather information, we need to add a new com-
mand to the XMPPHandler class. In that class, make the following changes:

class XMPPHandler(BaseHandler):
 def post(self):
 ...

 # add up all the numbers
 elif cmd == 'sum':
 ...
 elif cmd == 'weather':
 # assume body is a zipcode and get the weather report

Responding Intelligently | 147

http://www.djangoproject.com/
http://www.djangoproject.com/
http://

 weather = get_weather_for_zipcode(body)

 # if we got a good response, respond with the weather report
 if weather:
 text = "Currently \"%s\" - temp %s" % (weather['text'],
 weather['temp'])
 # otherwise, ask the user to try again
 else:
 text = "Couldn't load weather? Invalid Location? Try again."

 # finally, send the message
 message.reply(text)

 # we didn't get a command that we understand... complain
 else:
 message.reply("I don't understand '%s'" % cmd)

This code adds a new command to the application called weather. When a user sends
the weather command during an instant message session, we’ll use the newly created
get_weather_for_zipcode function. If we get a valid response, we’ll pass it back to the
user in the form of a simple list of weather conditions. If not, we’ll tell the user that we
couldn’t load the weather data and ask him to try again.

After making this change, you’ll need to redeploy the code to see it on the server. Once
it’s loaded on App Engine, send a couple of weather requests to see the response.
Figure 7-15 shows an example of what it should look like.

Figure 7-15. Checking the weather via instant message

Setting Up an API
Due to the nature of App Engine, you may or may not be able to build your entire
application using the service. However, just because it has certain limitations that make

148 | Chapter 7: Instant Messaging

http://

it ill-suited for all aspects of realtime web development, this doesn’t mean you should
ditch it all together.

For the sake of discussion, let’s say that we wanted to expand our Twitter application
to send instant messages when it encountered certain words as they came through the
stream. Perhaps a user could set up the ability to track his own username in realtime.
This would be a perfect use of App Engine if it weren’t for the fact that you can’t run
the code that connects to Twitter and monitors the updates. The 30-second execution
limit would get in the way and make it unsuitable for that part of the application.

However, since we’ve already built the Twitter application using the Tornado frame-
work, there is no need to build it on App Engine. We could simply add some API
functionality to this instant message code and then modify the Twitter application to
use that API.

To accept the API requests, we need to add a handler when we create the main appli-
cation object. In the main function of main.py, make the following modifications:

def main():
 application = webapp.WSGIApplication([('/', MainHandler),
 ('/_ah/xmpp/message/chat/', XMPPHandler),
 ('/api/send', APISendHandler)
],
 debug=True)

That just tells App Engine to use the APISendHandler, when it receives a request to /api/
send. Above the main function, add that class to the file:

class APISendHandler(BaseHandler):
 def post(self):
 # pull out who the message is to, and what they want to say
 to = self.request.get('to')
 body = self.request.get('body')

 if not IMUser().is_authenticated(to):
 self.response.out.write(json.dumps({'status': 'fail',
 'mesg': 'User not authenticated.'}))
 return

 # check to see if the "password" matches
 if self.request.get('secret') == 's3cret-c0de':
 # if so, send the message and write a response
 xmpp.send_message(to, body)
 logging.info("to: %s, body: %s" % (to, body))
 self.response.out.write(json.dumps({'status': 'ok', 'mesg': 'Sent.'}))

 # if the password is wrong, don't send any instant message
 else:
 self.response.out.write(json.dumps({'status': 'fail',
 'mesg': 'Wrong secret code.'}))

Setting Up an API | 149

http://

This API expects three HTTP parameters when it’s called. It expects to receive a to
parameter, which is the account of the user on the receiving end of this message. It also
expects body, which will be used as the content of the message. Finally, because this
API call will respond when anyone on the Internet hits the URL, we’re forcing every
request to know a secret code. This acts like a password, and if this is not correct, we
don’t send anything at all.

The first thing we do is check to see whether the user is authenticated, because we don’t
want to send instant messages via the API that we wouldn’t send through the web
interface. If the user is not authenticated, respond to the request and return from this
method. In a production environment, it would probably be wise to respond with a
different message that does not identify the exact problem. As it stands, spammers
could easily hit this API looking for valid email addresses.

Next, we move on and check the password, or secret. Assuming it is correct, we use
the xmpp module to send the message and print out a JSON-formatted object that can
be easily parsed by the caller of the API. If the secret is incorrect, we don’t bother
sending out the message, but we do inform whoever contacted the API that they used
the wrong secret code.

Redeploy this application, and let’s test it out. From the command line, you can simply
use curl or any other command-line-based HTTP client. Using curl, the command
would be similar to the following:

~ $ curl -d "secret=s3cret-c0de&body=Hi+You&to=you@gmail.com" \
http://application-id.appspot.com/api/send
{"status": "ok", "mesg": "Sent."}

Immediately after calling this method, you should receive an instant message from the
application. If you do, you now have a fully functioning API that can send instant
messages to your users. If not, check the logs in the App Engine dashboard; chances
are the fix is easy.

According to the XMPP specification, a user can send messages only to
someone who has added them to their contact list. If you’re going to
launch an application with this API, ensure that the user first sends a
message to your application-id@appspot.com account. Once they send
you a message, you’ll be able to send them messages whenever you like.
This is XMPP’s way of allowing an opt-in mechanism.

150 | Chapter 7: Instant Messaging

http://

Adding this instant messaging functionality—which opens an instantaneous commu-
nication channel with a user, regardless of whether they’re using your site in the web
browser—opens up a lot of doors. Part of building a truly realtime experience is
allowing users to get data in and take it out from whatever method is most readily
available. Instant messaging provides a paradigm that is familiar to most users and
allows for communication in places not available via the standard web browser.

Setting Up an API | 151

http://

http://

CHAPTER 8

SMS

Previous chapters have focused on communicating with users in realtime while they
are sitting in front of their computer. In this chapter, we step back from the desktop
and venture out into the real world.

A big part of creating realtime user experiences means delivering messages to a user,
whether she is on the website, in a chat window, or via text messages sent to her phone.
Users increasingly expect that the applications they use online can notify them of up-
dates long after they have stepped away from the computer. But sending a message to
a user is only half the battle; modern applications need to be able to receive messages
that originate as SMS messages from any old mobile phone. Luckily, there are several
ways to accomplish this.

The SMS Landscape
There are several different methods of sending or receiving an SMS message sent to or
from a user. Most wireless providers offer an email address that can be used to send an
SMS message to a user. There are also several different providers of that offer varying
degrees of SMS integration, including the ability to send and receive messages to specific
mobile phones through a simple API. The most complete option wold be to connect a
GSM/GPRS modem to a computer and send and receive messages just like you’re
reading from and writing to a local landline-based modem. Sadly, that’s outside the
scope of this chapter.

Email to SMS
The easiest way to send an SMS to a user is simply by sending an email. If your appli-
cation has the ability to send out updates via email, SMS messaging can be implemented
quite easily. Although there are some drawbacks to this method, it’s a very quick way
of getting this functionality added into your application, and it’s currently being used
by sites such as Google and Facebook.

153

http://

To send one of these SMS messages, you need to send an email to a specially formatted
address provided by the wireless carrier. Most of the addresses are in the format of
phonenumber@wirelesscarrier.net. When you send an email to one of these addresses,
the wireless carrier converts it to an SMS message and forwards it on to the user. These
messages are free for the developer sending the message (aside from bandwidth costs
associated with sending an email), but standard text messaging rates do apply to the
user receiving the messages. The following table is an incomplete list of the email for-
mats needed to send an SMS at several carriers:

Provider Email format

Alltel phonenumber@message.alltel.com

AT&T phonenumber@txt.att.net

Cingular phonenumber@cingularme.com

Metro PCS phonenumber@MyMetroPcs.com

Nextel phonenumber@messaging.nextel.com

Powertel phonenumber@ptel.net

Sprint phonenumber@messaging.sprintpcs.com

SunCom phonenumber@tms.suncom.com

T-Mobile phonenumber@tmomail.net

US Cellular phonenumber@email.uscc.net

Verizon phonenumber@vtext.com

Virgin Mobile phonenumber@vmobl.com

Considering that most web applications support sending email messages in some form,
the difficult part of supporting this type of SMS service is determining the relationship
between phone numbers and their wireless carriers. The most common way to handle
this mapping is simply to ask the user which carrier she uses when asking for her phone
number. Figure 8-1 shows how this process is handled on Facebook.

Actually sending a message with this method is simple: in the functionality of your
application that sends an email, just replace the user’s email address with the formatted
SMS email address. Rather than write code to demonstrate how this works, it’s clearly
illustrated by sending an SMS message from the command line of a Unix-like operating
system. On your Mac or Linux computer, try the following command:

troden@nelson ~$ echo "SMS from the command line" | mail -s "Greetings" \
myphonenumber@txt.att.net

This command just pipes a simple string into the standard mail command, which will
send it off to AT&T’s servers. Once there, the message will get converted into an SMS
message and delivered directly to my phone. Figure 8-2 shows what this message looked
like when it finally arrived at my phone. Try substituting my email address and wireless
carrier for yours, and you should receive a text message after a few moments.

154 | Chapter 8: SMS

http://

Figure 8-2. The emailed message on a phone

Figure 8-1. Entering your wireless carrier on Facebook

The SMS Landscape | 155

http://

Although it’s certainly easy to send an email and have it arrive as a text message to the
end user, it’s not the best experience for a number of reasons. First of all, you can see
from the screenshot that the formatting of the message is not great, and this is totally
out of our control. In this case, the wireless carrier added the FRM: field, but there is no
real set standard as to what that message will look like. If you sent it from another
carrier, the message may look different and include different additional text. Messages
are also slow to arrive at the end user’s device; what takes a few seconds through a
traditional SMS service takes much longer using this method.

So this method isn’t great. It can’t be formatted and the speed is too slow, but it also
fails the user experience test using another important metric: users cannot respond to
messages that they receive. In this case, the message is sent directly from the carrier’s
servers rather than an answerable wireless account. If a user responds to the message,
the carrier will respond with an error, and the message certainly won’t be delivered
your server. As a developer, if you’re giving users access to SMS messages sent from the
server, it only makes sense that you let them respond in some way.

SMS APIs
There are several services that offer the ability to send and receive messages via a
web-based API. From full-featured XML-RPC or REST-based APIs to webhooks and
callback URLs, these APIs make it possible to integrate SMS into your application at a
much deeper level than a simple email-to-SMS gateway. To send a message, the devel-
oper hits a URL with some fairly obvious parameters, and the service does the work of
actually translating that message to an SMS message and sending it to the user.

Most of these providers offer a version that is totally free, but each message includes a
short advertisement in any outgoing message. So if you were to send an SMS message
to a user, you’d have around 120 characters to work with, and the service would append
a short advertisement to the end. Almost universally, these services offer a paid version
that removes the advertisements from the messages. For a certain price per month and
per message, you can send messages without the advertisements appended to the end.

The major benefit of using these services is that you’re given relatively cheap access to
a shortcode—a short phone number used primarily for SMS messaging—that your
users can use. However, because this shortcode is shared among any number of other
web applications, your users must preface every message with a reserved keyword. Each
application registers a specific keyword and then, in order to send a message to the
service, the user must start each SMS with that keyword.

156 | Chapter 8: SMS

http://

For example, if you had a service that provided movie showtimes, you may register the
keyword movietimes. When a user wanted to request showtimes for a certain movie,
she would have to text movietimes movie title to the shortcode provided by the service.
If the user sends the wrong keyword to the shortcode, your application will never be
notified. Even when the user is replying to a message sent from your server, the user
will have to prepend the keyword to the message. Figure 8-3 shows the flow of a message
from the user to the server.

In this case, when a user sends an SMS message using the keyword realtime, the API
provider directs the request to a third-party server called realtime-apps.com. Despite
all of the different services sharing the same short code number, each service is notified
only if the message has the proper keyword at the start of the message. When a message
is sent to a specific keyword, the message is routed to a specific service, and none of
the other servers are notified.

Figure 8-3. Routing a keyword to a server

SMS API providers

There are a number of service providers that offer the ability to send and receive SMS
messages. The following table shows some of the major players in this space, most of
which have free options that are perfect for development and suitable for production
use. In the sections that follow, we’ll build an application that uses a few of these
services. In the event that this book does not cover the service that you would like to
use, check the service’s website; most of these providers have fully featured API classes
to help developers as they get started.

The SMS Landscape | 157

http://

Provider Free version with advertisements Ad-free version Ability to send messages Ability to receive
messages

Email to SMS - - Yes No

ZeepMobile Yes Yes Yes Yes

Textmarks Yes Yes Yes Yes

Clickatell No Yes Yes Yes

Building the Basic Application
To demonstrate some basic SMS functionality, we’re going to build an application that
can handle sending and receiving SMS messages from two different SMS API providers.
This application will look and feel very similar to the instant messaging application
from the previous chapter, with the main differences lying in how the user interacts
with the application and how our code sends and receives the messages.

Extending the Instant Messaging Application
This type of application is another perfect candidate to run on Google’s App Engine
platform. However, rather than register and create a new application, we’ll just extend
the existing application to send and receive SMS messages in addition to its existing
functionality to handle instant messages via XMPP. At the moment, any URL request
that comes into the instant messaging application is handled by the main.py file, as we
specified in our configuration. To handle the SMS requests, we’ll segment everything
off into URLs that start with the /sms/ path. We can even create a new Python file to
handle all of those requests. To set up this configuration, make the following change
to your app.yaml file:

application: your-application-id
version: 1
runtime: python
api_version: 1

handlers:
- url: /sms/.*
 script: sms.py

- url: .*
 script: main.py

...

158 | Chapter 8: SMS

http://www.zeepmobile.com
http://www.textmarks.com
http://www.clickatell.com
http://

This change tells App Engine to send any request starting with /sms/ to the sms.py file.
If the URL does not match that pattern, it will be picked up by the much more lib-
eral .* regular expression below and sent on to main.py. The SMS functionality is not
provided by App Engine, so we do not need to add any new inbound_services to get
the server to respond. Everything we do in this will actually be initiated via a standard
HTTP request. From Google’s point of view, this is a much more standard request than
the XMPP request we used in the previous example.

To get this script started, let’s add a lot of the housekeeping code that is needed just to
get this thing set up. Create a file called sms.py and add the following code:

import wsgiref.handlers
import logging

import base64
import hmac
import sha
import time

import urllib
from google.appengine.api import urlfetch, users
from google.appengine.ext import webapp, db
from google.appengine.ext.webapp.util import login_required

from django.utils import simplejson as json

the SMSUser data Model
class SMSUser(db.Model):
 # two properties... the google user account and the mobile phone number
 account = db.UserProperty()
 mobile_number = db.PhoneNumberProperty()

 # add a record for this mobile number
 def authenticate(self, mobile_number):
 u = SMSUser(mobile_number=mobile_number)
 u.put()

 # is a specific mobile_number already authenticated?
 def is_authenticated(self, mobile_number):
 sms_user = SMSUser.gql('WHERE mobile_number = :1', mobile_number).get()
 if sms_user:
 return True
 else:
 return False

Assuming you worked through the previous example, this code should look very fa-
miliar. It imports all of the different Python modules that this script will use. Then, it
defines a simple db.Model module that will be used to store data about the SMS user as
she interacts with this application.

Building the Basic Application | 159

http://

Logic-wise, the biggest issue this code deals with is deciding whether a particular user
is authenticated in one function and authenticating her in another. In this case, au-
thentication is not meant to determine whether a user has entered the correct password,
but to ensure that she wants to receive SMS messages from us. For the time being,
sending and receiving SMS messages on an end user’s mobile device is relatively ex-
pensive and can quite easily be considered an intrusion. Considering these facts, we
want to be perfectly clear that any time this application sends an SMS message to a
user, she has opted in to receive them.

To authenticate a user, we simply add her mobile number to the data store. Then, later
on, to check whether she is authenticated, we just need to check to see whether her
mobile number exists in the data store. This allows us to authenticate and verify a user
without her hitting any web service; authentication can be done entirely through SMS
messages.

An SMS Service Class
We’re going to design this script to handle any number of different SMS APIs. The goal
is not only to handle the SMS requests from the services that I’ve selected for this text,
but to be able to easily extend it to use other services in the future. To do that, let’s
define a basic SMS message module that can be extended with methods that can be
overridden for each new service. This way, the basic logic of the module doesn’t have
to change when adding new SMS providers in the future. This will just define a simple
base class in Python; in a language such as Java, this would be considered defining an
interface. However you want to classify it, add the following code to sms.py:

define the basic interface/base class
class SMSService(object):
 def __init__(self, short_code, keyword, api_key=None, api_secret=None):
 self._short_code = short_code
 self._keyword = keyword
 self._api_key = api_key
 self._api_secret = api_secret

 # easy programmatic access to the short code.
 @property
 def short_code(self):
 return self._short_code

 # each service will have a different way of sending a message to a user
 # they'll all have to override this method
 def send(self, number, body):
 # override this method
 logging.info("I should send a message to %s" % number)

 # Is the current user authenticated?
 def is_authenticated(self, mobile_number):
 # check with the user object
 return SMSUser().is_authenticated(mobile_number)

160 | Chapter 8: SMS

http://

 # should we authenticate a given mobile number?
 def should_authenticate(self, mobile_number, event, body):
 if mobile_number:
 return True

 # pass this up the chain
 def authenticate(self, mobile_number):
 return SMSUser().authenticate(mobile_number)

This SMSService class sets up the basic behavior that the different SMS services will
need to use. Since the basic interactions of each service are essentially the same, we can
make a lot of safe assumptions with the base class. The __init__ method has the basic
parameters that will be needed for every service, including the SMS short_code and
keyword. Also, many services will require either an API key or secret, which can be
defined by supplying the api_key and api_secret parameters.

Following that, there is a property method that will allow us safe access to the
short_code variable by simple reference to self.short_code. Next is a method that will
have to be overridden by every subclass of this one. The main difference between each
of the SMS API interactions provided by the different services will be contained within
the send method. Although we can safely assume that all APIs will have the same basic
variables, such as keyword and short_code, we cannot assume how to construct the web
service call needed by the final endpoint. So, we expect that this method will be over-
ridden by each and every SMS class.

The next method determines whether the user is authenticated or not. In this case, we
just pass all the logic up to the is_authenticated method on the SMSUser class. This
method accepts a single mobile_number parameter, which is used to check against the
data in the datastore.

After is_authenticated, we define a method called should_authenticate. This method
gets called to find out whether a given user should be authenticated by the system. For
example, if we check to see whether a user is already authenticated and find out that
she is not, we would then call should_authenticate to see whether this is a good time
to authenticate. In this example, we simply assume that if we have a mobile_number, we
can allow authentication and return True.

The should_authenticate method also takes several parameters, even though they are
ignored by this instance of the method. This is just to define the signature of the method
that we’re going to use in child classes. Many SMS providers signal that a user is au-
thenticated when they provide the mobile number of the user, but other services have
slightly more complicated logic. Providing the body and other parameters allows the
child classes to take useful actions based on the contents of the message. This way, if
a user sends an SMS saying, in effect, “authenticate me,” the child class can inspect it
and respond properly.

Building the Basic Application | 161

http://

The Base Handler
This application sends and receives SMS messages by sending and receiving HTTP
requests. When a message arrives, one of our controller classes is called. That class
needs to do a number of jobs, no matter which controller is being called. With every
HTTP request, at some point we need to determine which service should be used to
interact with the user and respond differently depending on the service. Rather than
handle all of that at the controller level, we can just override the base RequestHandler
class to mask some of that complexity from the controller class.

class SMSBaseHandler(webapp.RequestHandler):

 def __init__(self):
 self.user = SMSUser()
 # a dictionary filled with the supported services
 self._supported_services = {}
 # the service being used
 self._service = None

 # the controller will need to tell us which class to use
 def set_service_type(self, service_type):
 if service_type in self._supported_services:
 self._service = self._supported_services[service_type]()
 else:
 raise Exception('type', 'Invalid SMS Service Type')

 # a convenience property allowing easy access to the resulting class
 @property
 def service(self):
 if self._service:
 return self._service
 # no service is defined, throw an exception
 else:
 raise Exception('noservice', 'No service type set.')

In initializing this class with the __init__ method, we just want to set up a few variables.
First, self.user is initialized to ensure that we can access it throughout the entirety of
the web request.

Next, we define an object called self._supported_services that will contain the services
supported by this application. We’ll fill in those services as we support each one, but
this object is just a simple way to programmatically refer to a specific class by name.
It’s essentially a named list of classes so that we can easily equate "service_name" to an
instance of a class called SMS_Fancy_Service_Name. This self._supported_services dic-
tionary will be populated to look something like the following snippet:

No need to add this to your code, it's just an example
self._supported_services = {
 'some_service': Some_Service_Class,
 'another_service': Another_Service_Class
}

162 | Chapter 8: SMS

http://

That variable is a dictionary of key/value pairs that specify the different classes that can
be used by this script as an SMS service. This list of services will be used to map a
plain-text service name to a class object that can be instantiated. The next block of code
does exactly that: it takes the text name of a service, checks it against the
self._supported_services list, and instantiates a class if it’s a supported service.

That set_service_type method is called by each controller to inform the SMSBase
Handler which actual SMS API class we’ll be using. For example, using the example
self._supported_services dictionary defined earlier, the code would call self.set_
service_type('some_service') to use the Some_Service_Class as the SMS provider.
From then on, the controller class, and any code that it utilizes, does not need to know
which service type is being used.

The next method defines the self._service variable and exposes it via the service
property. This allows controllers to use self.service to access any of the SMS API
functionality. Instead of constantly determining which class is being used with each
web request, the controllers can make one call to self.set_service_type and then use
the interface defined by SMSService. In practice, it would look very much like this:

No need to add this to your code, it's just an example
self.set_service_type('some_service')
if not self.service.is_authenticated():
 raise Exception, "Not logged in!"
else:
 self.service.send(phone_number, "Greetings from SMS!")

Preparing to Accept Messages
Now that we have defined the basic interface for SMS services as well as a base class to
handle the high-level functionality shared by each of the controller classes, let’s look
into responding to the SMS requests as they come in. Each of these requests will hit the
server as either a POST or GET HTTP request, but the basic functionality will be the same,
regardless of the request method. To start handling these requests, add the following
class to your sms.py file:

class SMSIncomingHandler(SMSBaseHandler):
 # handle the GET requests
 def get(self, service_type):
 self.respond(service_type)

 # handle the POST requests
 def post(self, service_type):
 self.respond(service_type)

 # all of the HTTP requests end up handled by this method
 def respond(self, service_type):

 # setup the service type
 self.set_service_type(service_type)

Building the Basic Application | 163

http://

 # respond to the request
 self.response.headers['Content-Type'] = 'text/plain'
 self.response.out.write("Hello there via %s!" % self.service.short_code)

In Google’s App Engine, when each request is made, the application automatically calls
the get or post method on appropriate controller class. Since different SMS API pro-
viders use different methods of sending these request, we just forward each one to a
single respond method. This gives us one method to work with, no matter which type
of request is being made at the HTTP level. Both the get and post methods accept a
service_type parameter and pass it along unchanged to the respond method.

At this point, the respond method has no real logic associated with it. The first thing to
do is call set_service_type with the service_type variable. This variable contains the
name of the service that is being used, and sending it as a parameter to set_service_
type will ensure that it is available as an instantiated class when we need it.

Next, we respond with a basic bit of “hello world” text by simply printing it out as the
response. Each API provider has a different way of sending a message to a user, but
most of them will let you reply to an incoming message by simply returning anything
when the service makes the HTTP request to our application. In this case, we simply
set the content type to plain text and write out a quick message.

At this point we’re more or less able to respond to any incoming SMS service that sends
us a greeting, but with two major exceptions. We haven’t yet set up any of the SMS
API services, and although we’ve set up a controller to respond to HTTP requests, it’s
not mapped to any URL in our App Engine application.

Setting Up the Server
We’ve already built a few Python classes that are ready to respond to an SMS message
as it comes in and have even defined the programmatic interface that we’ll use to send
messages and interact with the SMS APIs. However, at this point, the application is not
responding to any HTTP requests. To do that, we simply need to set the URL param-
eters that we’ll respond to when a provider pings our application.

Generally, when you set up a server to work with one of these SMS providers, you
specify a callback URL that their service uses when a message is sent to your application.
This means we can easily define a simple pattern and configure all of the providers to
use it. That way, we can use one URL for any number of different providers and, al-
though we’d need to add a small new class to handle a new provider, we can add it
without modifying the controller itself. To get the application responding to these
HTTP requests, append the following code to your sms.py file:

def main():
 application = webapp.WSGIApplication([(r'/sms/incoming/via/([a-z]+)/?',
 SMSIncomingHandler)],
 debug=True)
 wsgiref.handlers.CGIHandler().run(application)

164 | Chapter 8: SMS

http://

if __name__ == '__main__':
 main()

Once again, this code should look familiar from building the instant messaging appli-
cation in the previous chapter. This code simply sets up an application object and runs
it. The single URL that we handle is routed to SMSIncomingHandler and is defined by
the following regular expression:

r'/sms/incoming/via/([a-z]+)/?'

Anything that matches this regular expression will be passed along to the SMSIncoming
Handler method. Anything that matches the a-z set will be passed along to the controller
class as the first parameter, which is defined as service_type. This will allow us to set
up a callback URL from “Acme SMS Service” to use the URL path /sms/incoming/via/
acme while setting up “XYZ SMS Provider Incorporated” to use /sms/incoming/via/
xyz. The only difference that our application will notice is that the first parameter of
SMSIncomingHandler will be different.

Sending and Receiving the Messages
As it exists, the application we’ve built is fairly full-featured—except for the caveat that
it doesn’t actually do anything at all. We’ve built a lot of code that acts as a framework
for the functionality that we still need to add. Without the ability to actually send and
receive SMS messages, this application isn’t very useful. So let’s set up this application
to interact with a couple of the more popular services in the SMS API service space.

TextMarks
Textmarks is a service that provides several different bits of functionality related to
sending SMS messages. One of its core services is the ability to send and receive SMS
messages via a simple HTTP-based API. The most basic service is also free, provided
that you’re willing to put up with advertisements attached to the end of each message.
In this case you’re given 120 characters to work with, and the rest may be used for an
advertisement from a third-party company. You can pay for different levels of service
that will allow you to remove this advertisement, but the free version is perfect for our
purposes.

Reserving a keyword

To get started with this service, you must sign up for your keyword and configure your
settings. Go to the TextMarks website and reserve a keyword to use for your applica-
tion. You should see a form that looks like Figure 8-4.

Sending and Receiving the Messages | 165

http://www.textmarks.com/create
http://

For step one of the form, feel free to select any keyword that is available or makes sense
with your intended application. Although any number of application developers can
sign up for a keyword, the actual end users are all sending messages to the same short-
code number. By asking your users to prepend a specific keyword when sending a
message to that shortcode, TextMarks is able to know whether to send a message to
our application or another application.

In the second step, instruct the service to “Respond to a keyword with text from a web
page.” This means that when a user sends a text message to a specific keyword, Text-
Marks will request a URL of our choosing and respond with the text that appears in
the response. To configure that URL, you’ll want to use the same server that you used
in the previous chapter. This is built using the application-id of your current
App Engine application. In my case, the URL for this callback is http://instant-
messaging.appspot.com/sms/incoming/via/textmark?uid=\p&body=\0&action=\a. Your
URL should look identical with the exception that it uses your application-id.

Figure 8-4. Reserving a keyword with the TextMarks service

166 | Chapter 8: SMS

http://

If you didn’t build the example in the previous chapter, you can flip
back and follow the steps for creating an App Engine application. If
you’re integrating this into an existing App Engine application, just use
your existing application-id.

While it should be clear that this application uses the URL pattern that we set up with
our regular expression, it also appends some HTTP parameters to the request. We’ll
be using a few parameters to inform our application of what is happening with each
request. These variables will be available to our controller classes by simply checking
the HTTP request parameters. Each parameter is defined here:

uid

This is the unique user ID that is sending the text message. In our case it will always
be the mobile phone number of the user.

body

The actual entire body of the text message sent from the user.

action

The action identifier informing us what the user is trying to do. TextMarks will
autosubscribe any user who sends a message to our service, so this is almost always
“REQ.” Other services may send actions such as “SUBSCRIBE.”

Finally, click the “Create” button to reserve your account. After you click this button,
the service will require that you link your account to an actual mobile phone number
and will send you a message to confirm that you do have access to that number. Upon
receiving this text message, enter the password into the form (which should look like
Figure 8-5) and continue.

Figure 8-5. Confirming an account on TextMarks

Sending and Receiving the Messages | 167

http://

After signing up for the service and registering a keyword, you’ll still need to create an
API key to use the API functions. This is a simple process initiated from the developer
section on the TextMarks website. You’ll be greeted with a form resembling Fig-
ure 8-6. After filling out this form, you should receive an email message from the service
almost immediately with your API key. Save this key in a safe place; it’ll be used when
we start writing the messaging functionality.

Figure 8-6. Acquiring an API key on TextMarks

The Python class

Having built the SMSService interface class, we can start building the actual service
classes by expanding on the class we have already defined. In this case, we’ll create a
class called Textmark. To handle sending messages from the TextMarks service, we only
need to override two methods. Inside your sms.py file, add the following code:

class Textmark(SMSService):
 def __init__(self):
 # The authentication parameters supplied by textmarks
 self._auth_user = 'your-auth-user'
 self._auth_pass = 'your-auth-pass'

 # call the constructor of the parent class
 SMSService.__init__(self,
 '41411', # textmarks.com's short code
 'your-keyword',
 api_key='your-api-key',
)

168 | Chapter 8: SMS

http://www.textmarks.com/dev/api/reg/
http://www.textmarks.com/dev/api/reg/
http://

 # override the send method from SMSService
 def send(self, number, body):

The Send URL
 url = "http://dev1.api2.textmarks.com/GroupLeader/send_one_message/"

 # setup the http arguments
 args = {}
 args['to'] = number
 args['msg'] = body
 args['tm'] = self._keyword
 args['api_key'] = self._api_key
 args['auth_user'] = self._auth_user
 args['auth_pass'] = self._auth_pass

 # make the HTTP API call to send the message
 result = urlfetch.fetch(url=url,
 payload=urllib.urlencode(args),
 method=urlfetch.POST)
 logging.info(result.content)

The first thing we need to do is override the __init__ method, which sets up the different
variables such as the shortcode and API keys. While the SMSService class accepts and
can handle variables such as the shortcode for the SMS service, the keyword that users
will use to direct messages to our service, and the API key, we’re going to need some
extra variables.

The TextMarks API requires an API key as well as a username and password specified
as auth_user and auth_pass. Populate these variables with the SMS number you used
when signing up for the TextMarks service. Unless you’ve changed the password, the
password field will be the one sent to you via text message to verify your account.

Having set up the special authentication variables that are unique to the TextMarks
service, we simply call the constructor of the parent class to properly create the rest of
the object. Because every service that uses TextMarks will share the same shortcode,
the first parameter should be 41411. However, the shortcode is different for every
service, so fill in the keyword that you reserved when signing up. The final parameter
that we need to send to the constructor is the api_key parameter. This is the same API
key that TextMarks should have emailed you when you signed up for an account. You
can always locate your API keys, and sign up for more, on the TextMarks developer site.

With the main object initialized, we can rely on almost all of the default methods pro-
vided by the SMSService class. The main exception is that we need to override the
send method. This method takes only two parameters, the mobile number that will
receive the SMS message and the actual body of the message.

The TextMarks API has a number of what it calls API packages containing many func-
tions. From the API, you can handle everything from unsubscribing users, sending bulk
messages to every subscriber of your keyword, and even programmatically changing
the callback URL and how to handle advertising on your keyword. Amongst the

Sending and Receiving the Messages | 169

http://www.textmarks.com/dev/api/reg/
http://

packages provided is one called GroupLeader, which contains a function called
send_one_message that can be used to send one message to one user. To use this API
function, we simply need to send an HTTP POST request to http://dev1.api2.text-
marks.com/GroupLeader/send_one_message/.

The bulk of the code in this method sets up the arguments that get sent as the payload
of that HTTP API call. After building a simple dictionary that contains all of the
parameters, we run App Engine’s urlfetch.fetch method, which actually makes the
request. Whereas most of the parameters for this method are contained in variables
that are handled by the SMSService class, the parameters required by this API call are
outlined here:

to

The mobile number that is the recipient of this message.

msg

The body of the message itself, which should be no more than 120 characters when
using the free account.

tm

This is the keyword (or text mark) associated with your message.

api_key

The TextMarks API key.

auth_user

The username used to log in to the Text Marks website.

auth_pass

The password used to log in to the Text Marks website.

Testing it out

At this point, our code may not do much, but it has the ability to respond to SMS
messages. This is a good time to test it out to ensure that we’re on the right track. Just
like in the previous chapter, we can use the Google App Engine Launcher to deploy
this application. Press the Deploy button to redeploy the instant messaging application.

Once this code has been pushed, there is nothing new to see by simply visiting the
website. From your cell phone, send a text message to 41411 using your shortcode. You
can send any message to the service that you want as long as it’s preceded by the key-
word that you registered with TextMarks. In my case, I would send a message along
the lines of realtime Hi There! to 41411 and wait for a response. The transaction should
look like Figure 8-7.

If you received an error message or no response at all, go to the App Engine dashboard
and take a look at the logs. These logs generally provide a backtrace that is helpful in
determining what went wrong.

170 | Chapter 8: SMS

http://

However, assuming that it did work, you will probably notice a couple of things about
the transaction. First of all, the keyword is not case-sensitive, which is great for modern
phones that tend to capitalize the first word of the sentence. Also, in addition to the
expected response that greets the user with a friendly “Hello” message, there was also
a slightly less friendly message sent. This second text message is sent directly from the
TextMarks service, informing the user that they are now subscribed to the service and
how to unsubscribe.

In the event that you want to keep testing the TextMarks functionality but want to save
some money on your messaging plan, you can use the service’s emulator. This is a small
AJAX-based application that allows you to interact with your keyword without sending
actual text messages. The application will send the proper POST messages to your
server, but the response will be directed back to the web application. To access your
emulator, go to http://www.textmarks.com/your-keyword. You will be able to send and
receive messages through the interface pictured in Figure 8-8.

Figure 8-7. Greetings sent via SMS

Sending and Receiving the Messages | 171

http://

Zeep Mobile
Now that we have this functionality up and running on one service, let’s add in support
for another. This will allow us to help keep costs down by taking advantage of the
different pricing structures, and we can open our service up to more users in cases where
one service supports a specific carrier and another does not.

Reserving a keyword

To sign up for a Zeep Mobile account, head over to the signup page and enter your
email address. You will then receive an activation link to your email address that will
enable you to set up your account.

Once you have an account, you need to reserve a keyword and generate your API keys.
While you’re logged in, click on the tab labeled “My Account,” and then click on the
button called “Generate New API Keys.” Figure 8-9 demonstrates an example of this
signup page.

In this example, I’ve selected the same keyword used in the TextMarks example; feel
free to do the same. While most of the fields are administrative and help you remember
which keys are for which purpose, it’s important to specify the correct value callback
URL field at the bottom of the form. This should be the same URL that was used in the
Text Marks example, but with the word textmarks changed to zeep. This will direct all

Figure 8-8. The TextMarks SMS phone emulator

172 | Chapter 8: SMS

https://www.zeepmobile.com/users/login
http://

of the callbacks from the service to the same SMSIncomingHandler controller that we
created to handle all of the incoming messages. Changing the service name enables the
code to quickly determine the source of each request.

After reserving your keyword, the Zeep Mobile website greets you with a newly created
API key and secret. Keep these values handy, as we’ll be using them in the code.

Figure 8-9. Reserving a keyword with Zeep Mobile

Sending and Receiving the Messages | 173

http://

The Python class

Although there are similarities between the way the Zeep Mobile and TextMarks
services act, the main differences come out in the way they handle authentication and
sending messages. To get started with this service, add the following class to your
sms.py file:

class Zeep(SMSService):
 def __init__(self):
 SMSService.__init__(self,
 '88147', # the shared zeep short code
 'your-keyword',
 api_key='your-zeep-api-key',
 api_secret='your-zeep-api-secret')

 def send(self, number, body):

 # the payload to send (and for the signature)
 payload = "user_id=%s&body=%s" % (number, urllib.quote(body))

 # the timestamp needed for the signature
 ts = time.strftime('%a, %d %b %Y %H:%M:%S GMT',time.gmtime())

 # the main part of the signature
 sig_content = "%s%s%s" % (self._api_key, ts, payload)

 # start building the signature with the api secret
 sig = hmac.new(self._api_secret, digestmod=sha)

 # add the main content to the signature hash
 sig.update(sig_content)

 # generate and encode the hash
 usable_sig = base64.encodestring(sig.digest()).strip()

 # setup the authorization headers
 headers = {'Date': ts,
 'Authorization': 'Zeep %s:%s' % (self._api_key, usable_sig)
 }

 # the send API url
 url = "https://api.zeepmobile.com/messaging/2008-07-14/send_message"

 # make the request
 result = urlfetch.fetch(url=url,
 payload=payload,
 method=urlfetch.POST,
 headers=headers
)

 logging.info(headers)
 logging.info(result.content)

174 | Chapter 8: SMS

http://

The first thing to notice about this class is that the __init__ method is very similar to
the __init__ method of the Textmark class, even if it’s a bit simpler. This method simply
calls the parent constructor with the correct keyword and API parameters.

The bigger change comes from the send method. Whereas the Textmark class could
simply make a simple web request with a username and password parameter, the Zeep
Mobile service requires us to sign each request individually with our API information.

The signature is a fairly standard Hash-Based Message Authentication Code (HMAC)
(http://en.wikipedia.org/wiki/HMAC) implementation. Generally, with these types of
signatures, you build a string starting with your API secret, append several parameters,
and encode using some predefined method. This is exactly how it works with the Zeep
service. In this case, the parameters included in the signature are the api_key, the current
timestamp, and the payload of the actual HTTP request. We take all those parameters,
combine them into a single string, and create a hash using the API secret as the key.
That is then encoded to the base64 encoding, which is then the actual request signature.
Figure 8-10 shows the flow of creating this signature.

Figure 8-10. Reserving a keyword with Zeep Mobile

To make a request to the Zeep Mobile service, we just need to add our signature to
the Authorization header in the HTTP request. This authorization header is in the
following format: Zeep [api-key]:[request-signature]. So we simply build a string

Sending and Receiving the Messages | 175

http://en.wikipedia.org/wiki/HMAC
http://

containing those two variables and add it to the headers array passed along in the
request. In addition to the Authorization header, we also add a Date header. We need
to make sure that the timestamp that we used when generating our signature matches
this header exactly. When our request makes it to the Zeep Mobile servers, they’ll use
this Date header to validate our signature; if these values are different, our signature
will not be verified.

Once we have all the parameters and headers set up, we simply make the HTTP request.
This request includes all of the headers that we set up, and also includes the payload
we created at the very start of this method. This payload contains a user_id, which is
just the mobile number of the user on the receiving end of this message, and the body
of message itself. To help with debugging, we’re also going to log the headers and the
result. If something goes wrong at some point, we can easily check the logs to see the
root of the problem, and whether it’s from the signature or the request itself.

Authenticating Users
The code we’ve built so far can accept SMS messages from users and respond with
appropriate responses. However, as it stands, we’re not saving any information about
the users or authenticating them in any way. In this case, the main reason that we want
to authenticate a user is so that we can send her messages that are more than simply
responses to messages that she has sent to us. With a user who has been authenticated,
we can send messages to our users who were not directly solicited. For example, if our
application monitored the status of an airline flight, we would be able send a message
to a user when our application notices the flight has been delayed. At the moment, we
can provide that information only when the users asks for it; after she’s authenticated,
we can send her that information as soon as it’s available.

The authentication process

Our application already has an interface defined to handle authentication. The
SMSService class defines three methods designed specifically for this purpose. The flow
between is_authenticated, should_authenticate, and authenticate is quite simple.
First, we want to check whether the user is authenticated. If not, check to see if
we should authenticate a user. If so, authenticate her. This logic flow is outlined in
Figure 8-11.

The basic code

Having defined how this process will work, we need to decide where in the code it
belongs. While most of the SMS service providers allow users to subscribe to a service
through a web-based HTML form, our application is only going to allow users to au-
thenticate themselves by sending an SMS message to the service. This means that we’re
able to check for and authenticate users easily from one spot, the respond method of
the SMSIncomingHandler class. Because users can be authenticated only by sending us a

176 | Chapter 8: SMS

http://

message, all requests, whether they are from authenticated users or unauthenticated
users, funnel through this one method. If the user is trying to authenticate, we can easily
honor that request from this one method. Update the respond method to reflect the
following changes:

 # all of the HTTP requests end up handled by this method
 def respond(self, service_type):

 # setup the service type
 self.set_service_type(service_type)

 # prepare some HTTP parameters as variables
 uid = self.request.get('uid')
 event = self.request.get('event')
 body = self.request.get('body')

 # are we authenticated?
 if uid and not self.service.is_authenticated(uid):
 # should we authenticate?
 logging.info("Not authenticated, should we? (uid: %s)" % uid)
 if self.service.should_authenticate(uid, event, body):
 logging.info("Authenticating: %s " % uid)
 self.service.authenticate(uid)
 else:
 logging.info("No reason to authenticate uid: %s" % uid)
 elif len(uid):
 logging.info("Previously authenticated uid: %s" % uid)

Figure 8-11. The flow of our authentication process

Sending and Receiving the Messages | 177

http://

 else:
 logging.info("No UID, not authenticating")

 # respond to the request
 self.response.headers['Content-Type'] = 'text/plain'
 self.response.out.write("Hello there via %s!" % self.service.short_code)

The first change to this method simply collects the various parameters that we may
need during the authentication process. You’ll remember that we set up the callback
URLs of both services to send the exact same parameters. So we collect the uid,
event, and body of the request. The uid is the mobile number of the user sending the
message, although it may be empty. The event is the type of message being sent to the
service, which can include a request to subscribe to this service. Finally, the body is the
message text itself.

Before we can actually authenticate the user, we need to run a couple of sanity checks.
First, we need to ensure that we actually have a uid, or mobile number. Without the
uid, there is nothing to authenticate. If we have that, check to see whether that uid has
already been authenticated with the is_authenticated method. Upon passing that first
test, we log some text to indicate where we are in this process. This will help us if we
need to debug the login process for a specific user.

At this point we know that we have a mobile number and that the user is not authen-
ticated. Now we need to check whether the user should be authenticated. The different
API providers handle this logic differently. On the TextMarks service, for example, the
answer to this question is always a “Yes.” The policy on TextMarks is that if a user
sends an SMS to our service, they can be counted as subscribed. The default code
written in the should_authenticate method of SMSService acts in this way. However,
the Zeep Mobile policy is that a user is not subscribed until the user affirmatively re-
quests to join the service by sending the message join keyword to their shortcode. Either
way, the interface to the should_authenticate method is always the same.

Once we know that we have a mobile number, that the user is not authenticated, and
that the user should be authenticated, the only thing left to do is actually authenticate
the user. Using the authenticate method, we simply supply the mobile number, which
is stored in the App Engine Datastore by our SMSUser class.

The code is ready to run with SMS providers that have
more liberal subscription policies, but authenticating while using Zeep Mobile service
will require a bit more code. Using the existing interface, we can continue to use the
is_authenticated and authenticate methods without changing anything. The only
change comes in determining whether or not a specific user should be authenticated
during the process. To add this functionality, modify your Zeep class and add the fol-
lowing method:

def should_authenticate(self, mobile_number, event, body):
 # the user is actually subscribing
 if event == 'SUBSCRIPTION_UPDATE':
 return True

Authenticating with Zeep Mobile.

178 | Chapter 8: SMS

http://

This method follows the Zeep Mobile authentication logic and simply checks to see
whether the user is requesting to subscribe to the service. When a user sends a message
of join keyword, Zeep Mobile supplies the event parameter with a value of SUBSCRIP
TION_UPDATE. So, to determine whether this user can be authenticated, we simply need
to check to ensure that we have received a subscription event.

At this point, though we’ve sent a number of messages,
we have not authenticated any users. We can easily test this out by sending SMS mes-
sages to the TextMarks shortcode, but let’s try it using Zeep Mobile. Since Zeep has
the additional logic, we’ll be able to test the various states of authentication with the
one service.

To save some money on text messages, head over to the Zeep Mobile website, create a
virtual SMS device, and send the messages from there. You can create as many of these
devices as you like, which is nice when testing out the various states of authentication.
Open up your virtual device and send the following messages to your keyword. First,
send a simple request such as keyword Hi there. Next, send a join request in the format
join keyword. The result should resemble Figure 8-12.

Figure 8-12. Authenticating via a Zeep Mobile virtual device

Because we have a standard response to any message that comes in to our application,
the responses from the two requests that we send to the virtual device are identical, but

Testing the authentication process.

Sending and Receiving the Messages | 179

http://www.zeepmobile.com/account/test_devices
http://

the user is authenticated from one request to the next. Head over to the Google App
Engine Dashboard and look at the logs by filtering on the “Info” severity. In reverse
chronological order, the top log entires should be from the virtual device. While the
uids are not valid mobile device numbers, we had no trouble with the authentication.
Your log entries should resemble Figure 8-13.

Figure 8-13. Viewing the authentication logs on the Google App Engine Dashboard

Starting from the bottom of the logs, you can see that our first request made it to our
server without a uid. Requests from Zeep that are not authenticated, or are requesting
authentication, are sent without a uid. Without the uid, we don’t bother trying to
authenticate and simply respond to the request normally.

The second request, shown at the top of Figure 8-13, shows that our server did receive
a uid. This request was the result of the join keyword command. This request was also
accompanied by an event parameter, so when our code checked should_authenti
cate, it returned True.

Building an SMS API
At this point we have an application that responds to SMS messages and authenticates
users, but we have no way to send a user a message on our own timetable. A truly
realtime user experience cannot just respond to messages as they come in from users;
it needs to be able to send a user a message without any user interaction.

Having already built the authentication code, we know that we’re allowed to send
messages to certain users, so the only thing that is left to do is build an API that will
allow us to send these messages. In your sms.py file, add another URL handler in the
main function:

def main():
 application = webapp.WSGIApplication([(r'/sms/incoming/via/([a-z]+)/?',
 SMSIncomingHandler),

 (r'/sms/send/via/([a-z]+)/?',
 SMSSendHandler)
],

180 | Chapter 8: SMS

http://

 debug=True)
 wsgiref.handlers.CGIHandler().run(application)

This just informs our application that if we get a request to a URL such as /sms/send/
via/xyz, we should direct those requests to a class called SMSSendHandler. Any patterns
that match the regular expression in this URL will be passed along as parameters to the
get and post requests. In our case, we’ll be using this URL to send messages via Zeep
Mobile and TextMarks with URLs resembling /sms/send/via/zeep.

To add this functionality, add the following class to your sms.py file:

class SMSSendHandler(SMSBaseHandler):
 def get(self, service_type):
 self.respond(service_type)
 def post(self, service_type):
 self.respond(service_type)

 def respond(self, service_type):
 # set the service type
 self.set_service_type(service_type)

 # load the parameters
 mobile_number = self.request.get('mobile_number')
 body = self.request.get('body')

 # prepare our response variables
 response = ""
 status = ""

 # check to ensure the designated user is authenticated
 if self.service.is_authenticated(mobile_number):

 # send the message
 self.service.send(mobile_number, body)
 status = "success"
 response = "Sending request to %s" % mobile_number

 # not authenticated, don't send anything
 else:
 status = "fail"
 response = "Not Authenticated: %s" % mobile_number

 logging.info("API response: %s - %s" % (status, response))

 # send the JSON response object
 self.response.headers['Content-Type'] = 'text/plain'
 self.response.out.write(json.dumps({'status': status,
 'mesg': response}))

Sending and Receiving the Messages | 181

http://

This code operates in a similar fashion to the SMSIncomingHandler class. It simply funnels
the get and post requests through one method called respond and does all of its work
in that method. This method accepts two HTTP parameters per request, the mobile_
number that will receive this message and the body of the message itself.

Once we’ve collected the HTTP parameters and set up some variables that we’ll use
when responding to the request, the next thing to do is check to see whether the user
is authenticated. If the user is_authenticated, we run the send method for this service
and set the response variables accordingly. This is where our standard SMSService in-
terface really shines. Although both Zeep Mobile and TextMarks have drastically dif-
ferent ways of sending messages, we can simply call this single method and it will get
handled, regardless of which service is being used.

In the event that this user is not authenticated, we refrain from sending the message
but still set the response variables. These variables are then logged, encoded to JSON,
and sent back as the HTTP response. While any response that we provide in the
SMSIncomingHandler sends an SMS message back to the user, responding to the HTTP
request here just sends it back to the client making the API request. In this method, no
message is being sent without calling send.

This API method is intentionally simple. In production use, it should
be secured to ensure that it can’t be used to send unsolicited SMS mes-
sages to your users. It wouldn’t hurt to add some error checking as well.

Testing the API

The idea behind building this API is that other parts of an application can use it to send
messages to users when needed. So, to ensure that these messages can be sent, we need
to test out sending messages from outside this application. To keep it simple, we’ll use
the command-line program called curl to make some requests and test it out. From
the command line, enter the following command:

~ $ curl "http://your-app-id.appspot.com/sms/send/via/textmark?mobile_number=invalid-
number&body=Can+you+hear+me+now?"
{"status": "fail", "mesg": "Not Authenticated:
invalid-number"}

As expected, calling this method with a totally invalid number (in this case, invalid-
number) fails miserably. But what happens if you use your personal phone number that
you’ve been using to test? For sake of this example, let’s assume that number is (555)
555-1212. Try that from the command line:

~ $ curl "http://your-app-id.appspot.com/sms/send/via/textmark?
mobile_number=5555551212&body=Can+you+hear+me+now?"
{"status": "fail", "mesg": "Not Authenticated: 5555551212"}

While that certainly looks like it should work, the number provided is not actually the
number that we have on file. Each of these SMS services sends us the mobile number
in E.164, complete with the + prefix. So in this example, the number we have on file is

182 | Chapter 8: SMS

http://en.wikipedia.org/wiki/E.164
http://

actually +15555551212. To use that number in an HTTP request, we need to encode the
+ character to %2B. Try your phone number again in this format:

~ $ curl "http://your-app-id.appspot.com/sms/send/via/textmark?
mobile_number=%2B15555551212&body=Can+you+hear+me+now?"
{"status": "success", "mesg": "Sending request to +15555551212"}%

If you got the format right, you should see a similar response. You should also have
received a text message from the TextMarks shortcode. Figure 8-14 shows an example
of this.

Figure 8-14. Receiving a message sent via the API

Sending and Receiving the Messages | 183

http://

http://

CHAPTER 9

Measuring User Engagement:
Analytics on the Realtime Web

As a publisher on the Web or a website creator, there is nothing better than writing a
new post or launching a new feature and then watching the traffic come rolling in. The
problem is that the standard web analytics suites leave users waiting several hours, at
best, before reporting on the traffic. Google Analytics provides a tremendous amount
of depth and analytical capability, but the data that it collects from a website is not
available immediately or even after a short delay. It could be hours before the data from
a given website turns up on Google Analytics. The legacy analytics products allow you
to see aggregate counts of hits, visitors, page views, and other statistics over a 24-hour
period. However, they do very little to give a website creator a picture of what is hap-
pening on the site at any given moment.

If a website is interacting with users in realtime, providing constant updates and
prompting for responses from the users on any number of different platforms, the an-
alytics package had better be able to keep up. This chapter looks at a couple of new
analytics packages that allow for monitoring your web traffic in realtime, and then we’re
going to dive in and create a small analytics application that can be deeply integrated
with your site.

Realtime Analytics Services
Noticing the gap in time between the actual page view and the ability to analyze that
traffic, several startups have launched paid services to give insight into the traffic much
more quickly. Using included JavaScript files, these services monitor a website’s traffic
as it happens and then provide either an application or a website that enables users to
view the stats in realtime.

185

http://

Chartbeat
Chartbeat is a paid web service that enables users to monitor web traffic in realtime
through a web-based user interface, an iPhone application, and SMS alerts. Installation
onto a website is as simple as pasting in a bit of JavaScript code. Once installed, a user
can start viewing stats through the web interface; (see Figure 9-1) or by downloading
the iPhone application.

Figure 9-1. Monitoring a website with Chartbeat

On top of viewing standard analytics, such as the number of people looking at a site at
a given time, Chartbeat also enables users to track who is talking about a certain website
on services such as Twitter. It also offers fairly robust alerting tools. For example,
Chartbeat serves as a simple uptime monitor, sending out SMS alerts if it notices that
the site has stopped responding to HTTP requests. On the other hand, a user can
configure Chartbeat to send out alerts via SMS or through push notification on the
iPhone application if site activity goes beyond predetermined limits. Figure 9-2 shows
the iPhone application.

186 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://chartbeat.com/
http://

Woopra
Another service providing realtime analytics tracking is called Woopra. This service is
also installed by adding some JavaScript code to a site and then watching the statistics
as quickly as they are collected. However, one differentiating factor of Woopra is that
it requires users to install a Java-based desktop application to monitor the traffic (see
Figure 9-3).

Although Woopra lacks the alerting capability of Chartbeat, it does allow website
owners to interact with their users on a very personal level. From the Woopra interface,
a Woopra subscriber can initiate an instant message chat session with any user who is
currently viewing the website (see Figure 9-4).

Figure 9-2. Monitoring a website with the Chartbeat iPhone application

Realtime Analytics Services | 187

http://www.woopra.com/
http://

Figure 9-3. Monitoring a website through the Woopra desktop application

Figure 9-4. Initiating a chat with a user via Woopra

188 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

Customized Analytics
The paid realtime analytics services are useful to get an overview of what is happening
on a website in realtime. However, the applications that we’ve been building so far have
not been limited to the web browser. In order to properly figure out the current status
of our applications, we’re going to need to build a custom solution that can handle
tracking the different types of actions our users take. In this section we’ll build a simple
analytics application that can track users as they navigate a website, but also tracks any
other arbitrary action that happens outside of a web browser.

Sending Tracking Pings with JavaScript
For the web-browser-based part of collecting these analytics, we’re going to use a simple
JavaScript-based implementation. The JavaScript file that we build can be hosted either
on the same machine as the main web application or somewhere else entirely. Once
this JavaScript is ready, we’ll include it from each page of the site and run a function
to start tracking user actions. To get started, create a file called realtime-analytics.js and
insert the following code:

var Analytics = {
 uid: 0,
 start_time: 0,
 last_activity: 0,
 ping_url: "{{ ping_url }}",

 start: function() {
 Analytics.start_time = new Date().getTime();
 Analytics.last_activity = Analytics.start_time;

 // ensure we have a user ID
 Analytics.setupUID();

 // setup the event listeners
 var updateLastActivity = function() {
 Analytics.last_activity = new Date().getTime();
 };
 window.addEventListener('click', updateLastActivity, false);
 window.addEventListener('scroll', updateLastActivity, false);
 window.addEventListener('mousemove', updateLastActivity, false);
 window.addEventListener('keypress', updateLastActivity, false);

 // when we're unloading the page
 var beforeUnload = function() {
 // ping again, but note that we're exiting
 Analytics.ping('exit');
 };

 // ensure that we get one last ping in before we unload the page
 window.addEventListener('beforeunload', beforeUnload, false);

Customized Analytics | 189

http://

 // start pinging.
 Analytics.ping();
 }
};

This code doesn’t do anything too complicated. We build the start of an object called
Analytics, which will contain all of the client-side tracking functionality. First, we de-
fine a few variables that we’ll be using throughout the object. The variable uid will be
used to contain the unique identifier for each user who loads this page. The variables
start_time and last_activity are used to contain the time of when the script first gets
started and to monitor the time of the last user interaction, respectively. The final var-
iable defined is called ping_url. This is used to inform the script which base URL to
use when pinging the server. In this case, we’ll be serving this code from our Tornado
server, and the ping_url be determined by the server and populated into this field. This
is a small convenience that will allow us to serve this up and copy the file to different
servers. You could get some performance gains by serving this file from a content de-
livery network (CDN) and hard-coding this value in place.

The next bit of code here defines the start method, which is called from each web page
to get the analytics process started. Inside this method we populate the timing variables
start_time and last_activity. Next, we call the method setupUID, which will be de-
fined next.

Once we have the basic variables set up and the UID has been either generated or
loaded, the next job is to attach callback methods to any of the events that signal the
user has been active. If the user moves a mouse, presses a key, clicks, or scrolls, we
want to know and update the last_activity field. The only event that we want to track
differently is the onbeforeunload event, which is the event that is called when a user
navigates away from the page. When this happens, we want to not only log the time,
but also ensure we get in one last ping to the server. The ping is defined next, but before
we get to that, let’s set up the uid field by writing the setupUID method. In your realtime-
analytics.js file, add the following method:

Analytics.setupUID = function() {
 // check for a cookie
 var cookie_name = "realtime_analytics";
 var cookies = document.cookie.split(/\; ?/g);
 for(var i = 0; i < cookies.length; ++i) {
 var name = cookies[i].split("=")[0];
 if (name == cookie_name) {
 Analytics.uid = cookies[i].split("=")[1];
 return;
 }
 }

 // if we're here, we need to generate and store a UID
 // generate the UID
 Analytics.uid = new Date().getTime().toString();
 Analytics.uid += "-" + Math.floor(Math.random() * 100000);

190 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

 // save it as a cookie
 var expire = new Date();
 expire.setDate(expire.getDate()+60); // 60 days in the FUTURE
 var cookie_data = cookie_name + "=" + escape(Analytics.uid) +
 ";expires=" + expire.toGMTString();
 document.cookie = cookie_data;
};

This method has two jobs to do. First, this method must check the user’s cookies to
see whether a cookie exists that stores the uid field. If that cookie exists, store it in the
Analytics.uid field and return. If it doesn’t exist, simply create a unique identifier by
appending a random number onto the current time. This isn’t the most scientific way
to generate a unique ID, but it is close enough for our purposes. Once created, we
simply store the uid in a cookie so that it sticks around for a while.

Now that we have the UID generated, we have everything ready that we’re going to
need to ping the server. To add the ping method, add the following code to your
realtime-analytics.js file:

Analytics.ping = function(on_exit) {

 // was this method called because we were exiting the page?
 if ((typeof on_exit != 'undefined') && (on_exit == 'exit'))
 on_exit = 1;
 else
 on_exit = 0;

 var params =
 // send the UID
 "&u=" + Analytics.uid +
 // the X and Y coordinates where the user has currently scrolled to
 "&x=" + (typeof window.pageXOffset != 'undefined' ? window.pageXOffset : 0) +
 "&y=" + (typeof window.pageYOffset != 'undefined' ? window.pageYOffset : 0) +
 // The time since the last activity
 "&l=" + (new Date().getTime() - Analytics.last_activity) +
 // The total time the user has been on this page
 "&t=" + (new Date().getTime() - Analytics.start_time) +
 // Is this ping the result of exiting the page?
 "&e=" + on_exit +
 // The title of this document
 "&dt=" + encodeURIComponent(document.title.slice(0, 50)) +
 // Where do the user come from?
 "&r=" + encodeURIComponent(document.referrer ? document.referrer : '-direct-') +
 // Append a random number to ensure the browser doesn't use the cache
 "&*=" + Math.random();

 // append the script to the page (make the actual ping)
 var scr = document.createElement('script');
 scr.setAttribute('type', 'text/javascript');
 scr.setAttribute('src', Analytics.ping_url + '?' + params);
 document.getElementsByTagName('head')[0].appendChild(scr);

Customized Analytics | 191

http://

 // setup a loop to ping again in 3 seconds
 window.setTimeout(Analytics.ping, 3000);
};

This method does the actual pinging to the server. The first thing we do here is figure
out whether on_exit should be set. If this method is being called as a result of the
onbeforeunload callback, the on_exit callback, as it’s passed in as a parameter, will be
set to “exit.” Once that’s figured out, we simply build the big list of parameters, shown
next, that we’ll pass to the server. These are variables that can help the server under-
stand a bit about the current state of the page.

u

The unique identifier uid of the current user.

x

The x coordinate of the scroll position. This is how many pixels the user has scrolled
along the X axis.

x

The y coordinate of the scroll position. This is how many pixels the user has scrolled
along the Y axis.

l

This is the number of seconds since the last activity. Rather than submitting the
timestamp of the last activity, we calculate the difference in time so that we don’t
have to synchronize clocks between the server and browser.

t

This is the amount of time that the user has been on the page.

e

This is the type of ping we’re sending. If the value is 1, the ping is the result of a
beforeunload event; otherwise, the value of this field is zero.

dt

This is the current title of the document.

r

The referrer value provided by the browser. This field tells us whether the user got
to this page from clicking on a link or by direct access, which could also be from
a desktop application such as an instant messaging window or a Twitter client.

*

A random number to ensure the browser makes a new web request rather than
returning the data from cache.

At this point we’ve built a pretty big string of data that will get sent back to the server,
so the next job is to actually send it. Since there is a good possibility that this script was
loaded from a different domain, or at the very least a different port than the rest of the
web page, we can’t make a standard Ajax request. Ajax requests across domains and
ports are, of course, blocked to ensure safety in a world of cross-site scripting and other

192 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

concerns. To get around that, we’ll simply supply these parameters onto the end of
another included JavaScript file. To do that, we simply create the element and append
it to the page. That officially sends the ping to the server. The only thing left to do in
this method is to schedule the next ping. In this case, we call setTimeout and request
another ping in three seconds.

Other than including this JavaScript file on an HTML page, this is all of the code needed
to start pinging the server and measuring user traffic as it moves across a website. The
purpose of this script is to be small, fast, ping the server, and get out of the way. The
real analytics work is done on the server side.

Catching the Statistics on the Server
To keep this application totally portable, allowing it to be installed alongside just about
any server implementation, we’re going to use the Tornado framework to build this
application. This will enable us to drop in the code and run it on any chosen port
alongside any existing infrastructure. To get started, create a file called server.py and
fill it with the following code:

start with some standard imports that we'll be using
import os, logging
import tornado.httpserver
import tornado.ioloop
import tornado.web
import simplejson as json
import time
import re
from tornado.options import define, options
from tornado.escape import url_escape
import urllib

Define options that can be changed as we run this via the command line
define("port", default=8888, help="Run server on a specific port", type=int)

class Analytics(object):
 users = {}
 pages = {}

 # Number of seconds for which a session is live.
 # After this time, they're considered idle.
 # the user must continue to ping
 live_session_time = 30

 # If the ping timeout passes, the user has left the page.
 ping_timeout_time = 30

 def user_ping(self, data):

 uid = data['uid']
 url = data['url']

 logging.info("Received ping from %s", uid)

Customized Analytics | 193

http://

 if uid not in self.users:
 self.users[uid] = {}

 # note the last time they actually pinged us (now)
 data['last_ping'] = time.time()
 # Assume the user is active
 data['status'] = 'Active'

 # add the data to the object
 self.users[uid][url] = data

The first part of this should look familiar from the previous Tornado examples; we
simply import the needed libraries and then define the default port. After that, we jump
right in to creating our Analytics object. This object will keep track of all the analytics
information that we’ll be using during this application. To start with, we create two
dictionaries called user and pages. These will hold the list of users and all the user
information, as well as the list of web pages that are currently being accessed.

Next up, we set up some variables that will be used later in the program. The variable
live_session_time is going to be used to determine how many seconds must pass before
a user is considered “Idle” rather than “Active.” If a user has loaded the page in his web
browser but hasn’t been moving the mouse or clicking around, we can start to assume
that he is idle and not actively using the site. While a user is idle, the web page is still
open in the browser and the script will continue to ping the server, letting us know that
he’s still around. The next variable, ping_timeout_time, is used to determine how long
we’re willing to wait between pings before we determine that the user has left the page
entirely. If we don’t receive a single ping in 30 seconds, we consider the user gone.

Then, we have the user_ping method. This method ends up being called as a result of
the ping method from the JavaScript code. The only parameter is a data object that
contains all of the fields that were passed in from the JavaScript client. We then update
the self.users object to ensure that we’re keeping track of this user. That users object
will be populated with the different URLs currently loaded by a specific user. Because
a user may have multiple tabs or browser windows open, we accept all of them while
still understanding that it’s just one user.

We then add a couple of extra fields to the data object. We want to save the server-side
value for the most recent ping, which is saved into data['last_ping']. We also add a
status field to the object. This field will be either “Active” or “Idle.” For the time being,
we’ll assume that the user is active.

Although this code handles the logic of what happens when we receive a ping, it’s not
actually hooked up to the web server to accept the web request from the client. To add
that functionality, add the following code to your server.py file:

class PingHandler(tornado.web.RequestHandler):
 def get(self):

194 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

 # setup some local convenience variables for later
 uid = self.get_argument('u')
 url = self.request.headers['Referer']

 # build the data object to pass to the user_ping method
 data = {
 'uid': uid,
 'url': url,
 'user_agent': self.request.headers['User-Agent'],
 'referrer': self.get_argument('r', '-direct-'),
 'time_on_page': self.get_argument('t'),
 'last_activity': self.get_argument('l'),
 'x': self.get_argument('x'),
 'y': self.get_argument('y'),
 'title': self.get_argument('dt')
 };

 self.application.analytics.user_ping(data)

PingHandler is the controller class that accepts requests from the ping JavaScript
method. The first action is to set up some local variables, storing the uid and url vari-
ables for later use. The uid variable is passed along as the u parameter from the Java-
Script file. The url variable can be collected by grabbing it out of the HTTP headers
object. The Referrer page is the actual URL that the user is currently browsing, which
is the URL we want to store.

The next thing we do is build the data object that gets passed to the user_ping method.
This data is mostly a field-by-field copy of the parameters we received from the Java-
Script file. We lengthen the field names a bit in order to make them easier to use as we
inspect them in the future. The only field that we add to the object that hasn’t already
been collected is the User-Agent field. This field, like the 'Referrer' field, can be col-
lected from the headers that get passed along with the HTTP request.

At this point, we’re ready to respond to the ping requests from the JavaScript requests,
but we’re missing one key element: we cannot serve the actual JavaScript to the client.
To do that, we’re going to have to add another controller class. In your server.py file:

class JSHandler(tornado.web.RequestHandler):
 def get(self):
 # setup the ping URL that will be used
 ping_url = self.request.protocol + "://" + self.request.host + "/ping"

 # serve the file
 self.set_header("Content-Type", "text/javascript")
 self.render("realtime-analytics.js", ping_url=ping_url)

This method should be very straightforward. It simply looks at the request to determine
which ping_url will be used in the JavaScript file. Then, it serves the file to the user. In
practice, it would probably make more sense to hardcode this variable into the Java-
Script file and serve it statically from a web server that specializes in serving static files
or from a CDN.

Customized Analytics | 195

http://

Both of the controllers that allow for us to serve the JavaScript and accept pings from
the server are ready to go. The next thing to do is set up the Tornado application object
and start the server. Add the following code to your server.py file:

class Application(tornado.web.Application):
 def __init__(self):

 # create an application-wide version of the analytics object
 self.analytics = Analytics()

 # map the two controller classes to the URLs
 handlers = [
 (r"/ping/?", PingHandler),
 (r"/js/?", JSHandler),
]

 # define static file path that we'll be using
 settings = dict(
 static_path=os.path.join(os.path.dirname(__file__), "static-new"),
)

 # start the application!
 tornado.web.Application.__init__(self, handlers, **settings)

keep this at the bottom of the file
if __name__ == "__main__":
 tornado.options.parse_command_line()
 http_server = tornado.httpserver.HTTPServer(Application())
 http_server.listen(options.port)
 tornado.ioloop.IOLoop.instance().start()

Once again, this code should look fairly familiar if you’ve followed along with any of
the other Tornado-based examples. The first thing we do is define an Application object
that extends the tornado.web.Application class. In it, we instantiate an Analytics object
that is used by the controller classes. Next, we define a couple of URL mappings from
the actual URL to the controller class that handles the work. The rest of the code is
essentially Tornado boilerplate code that gets the server up and running on the correct
port.

Testing the pings

In order to test this out, the first thing you need to do is decide which server which is
going to run it. This code was designed to be flexible in terms of where and how you
run it. As such, you have a number of options with regard to running the server code.
You can put it on a public-facing site, either on its own port or on the standard port
80, if that’s available. If you just want to test it out yourself, you can easily start it locally
and limit access to only your browser. Either way, once you’ve copied the code onto
the correct server, launch it from the command line:

$ python server.py --port=8888

196 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

In my case, I decided to start the server on my local machine and run it on port 8888,
which is actually the default port for our script.

At this point, we’re all set to install some tracking code and track some basic statistics.
The tracking code is installed by copying a couple of lines of JavaScript onto any web
page that should be tracked. Ideally, you’d want to cover your entire site by copying
the code into the header, or preferably the footer, of your website. For page load per-
formance reasons, it’s probably best to install this code just before the closing BODY tag
in your HTML page. To install the code, copy the following into the HTML of your
website:

<script type="text/javascript" src="http://localhost:8888/js/"></script>
<script type="text/javascript" language="JavaScript">
 try { Analytics.start(); } catch(e) {}
</script>

The problem with this code is that it makes a web request to the server located at
localhost. This is fine if the site you’re testing on is located on your local machine, but
it will never work for users who are not using your computer. If you want to run the
analytics code locally but install the code on a public site, wrap the code in some logic
to ensure that it shows up only for you. In my case, on a site developed with PHP, I
added this code in the following way:

<? if($current_user_id == 1): ?> // if the user is "me," show the code
 <script type="text/javascript" src="http://localhost:8888/js/"></script>
 <script type="text/javascript" language="JavaScript">
 try { Analytics.start(); } catch(e) {}
 </script>
 <? endif; ?> // if the user is not me, do nothing.

The downside to this is that the code will never run against any user other than me,
but it allows us to develop the analytics code locally against the actual actions on a site
that we’re interested in tracking.

Now that the JavaScript is installed and the server is running, it’s time to load the site
and see what happens. Point your browser to a URL that will print out the code you’ve
loaded, and watch the logging statements from the Tornado server. It should look
something like this:

$ python server.py --port=8888
[I 100201 22:18:08 web:714] 200 GET /js/ (127.0.0.1) 4.68ms
[I 100201 22:18:08 server:35] Received ping from 1264985825771-73154
[I 100201 22:18:08 web:714] 200 GET /ping?&u=1264985825771-73154&x=0&y=0
 &l=1&t=1&e=0&dt=
 Everybody%20enjoys%20things%20%40%20enjoysthin.gs&r=-direct-&*=0.41045479103922844
 (127.0.0.1) 1.14ms
[I 100201 22:18:11 server:35] Received ping from 1264985825771-73154
[I 100201 22:18:11 web:714] 200 GET /ping?&u=1264985825771-73154&x=0&y=0
 &l=3001&t=3002&e=
 0&dt=Everybody%20enjoys%20things%20%40%20enjoysthin.gs&r=-direct-
 &*=0.6840199520811439
 (127.0.0.1) 0.62ms

Customized Analytics | 197

http://

[I 100201 22:18:14 server:35] Received ping from 1264985825771-73154
[I 100201 22:18:14 web:714] 200 GET /ping?&u=1264985825771-73154&x=0&y=0
 &l=6002&t=6002&e=
 0&dt=Everybody%20enjoys%20things%20%40%20enjoysthin.gs&r=-direct-
 &*=0.20731655228883028
 (127.0.0.1) 0.78ms
...

Obviously your logs will look slightly different than this, but the basics should be the
same. Around every three seconds, you should see a logging message indicating that a
ping was received. You’ll also see the actual ping request as received by the server in
another line. This repeats endlessly as long as your browser is on the server; when you
navigate away from the page, the logging stops. We’re on our way to being able to
understand what exactly a user is doing when he visits a given website. But before we
bother writing an interface to view this data, let’s look at the data as it comes in, clean
it up, and start to make sense of it.

Making Sense of the Traffic
At this point, we essentially have website that does some overactive logging. It logs hits
as the users are on the site, but it doesn’t tell us much that we can’t learn from the
standard server logs. This application is only going to hit the tip of the iceberg as far as
analyzing the traffic, but we can really start to see how people are using a given site
with just a bit of cleanup. We’re going to do two main things. First, we’re going separate
users into groups of “Active” and “Idle” users. Then, we’re going to figure out which
pages are the most popular at any given moment.

At this point, after we receive a ping from a user, we add that to our users object, but
then we never do anything with it. When tracking engagement in realtime, we’re going
to want to figure out exactly what the user is doing and, perhaps more importantly, if
he is even still around. In order to do that, we’ll inspect the list of users every time we
receive a ping and ensure that everyone is still active, or at the very least, we’ll make
sure the users are all still on the site. To do this, amend the Analytics class of your
server.py file with the following changes:

 def user_ping(self, data):
...
 # add the data to the object
 self.users[uid][url] = data

 # for every ping, let's cleanup the data...
 self.update_data()

 def update_data(self):

 # keep track of how many different pages are being viewed
 active_user_count = 0

 # clear the pages array, we'll recalculate it below
 self.pages = {}

198 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

 # loop through all the users and the URLs they're looking at
 for x in self.users.keys():
 for url in self.users[x].keys():

 # keep track of how many people are looking at a giving URL
 if url not in self.pages:
 self.pages[url] = 0
 self.pages[url] += 1

 # figure out the time of last ping and activity
 last_ping_in_seconds = int(self.users[x][url]['last_ping'])

 # get the time since last_activity and convert it to seconds
 last_activity = int(self.users[x][url]['last_activity']) / 1000

 # if the last_activity is less than session time,they're a live user
 if last_activity < Analytics.live_session_time:
 active_user_count += 1

 # otherwise, they're idle
 else:
 self.users[x][url]['status'] = 'Idle'

 # or, perhaps they've stopped pinging, remove them
 if last_ping_in_seconds <(time.time() - Analytics.ping_timeout_time):
 self.remove_user_url(x, url)

 # did we find a user that isn't looking at anything? delete them!
 if not len(self.users[x]):
 del self.users[x]

This appends a single call to the update_data method at the end of the user-ping
method. Then, we define that method itself. In update_data, we initialize a variable to
keep track of how many active users we have on the site and clear out the self.pages
object.

After setting up the variables, we jump into a loop of each of the users by iterating over
the key of the object. Because this object is built with the uid as a key, we can then use
that key as the uid to reference the user going forward. In Python, it’s possible to iterate
over a dictionary object itself, but since we may be removing users from this object, we
don’t want to iterate over it in this case. If we do, Python would throw an error in-
forming us that the size of the dictionary had changed during the loop.

Each entry in this users object contains an array of URLs that the user is currently
browsing. We want to loop over this array as well. A count of the actual self.users
object would give us the number of total unique visitors on the site, but we’re interested
in what they’re actually doing. Looping over this array of URLs allows us to do just that.

Inside that loop, we start rebuilding the pages object. We count up the list of different
users that are viewing each page on the site and store it in the self.pages object. After
that, we set up last_ping_in_seconds and last_activity as integers. Respectively, these

Customized Analytics | 199

http://

variables measure the time since the last actual HTTP ping from the client and the time
since the user last moved his mouse or interacted with the page in some way.

If the last_activity variable is less than the Analytics.live_session_time, we know
that we have an active user. Otherwise, we say that this user is “Idle” and update the
status field of the object. We then check to see whether the last_ping_in_seconds
happened outside the ping_timeout_time. If it did, we remove the user from the object
by calling the remove_user_url method, which we’ll define next. That method will re-
move just one of the URL entries for a given user. If, after running through the loop,
we end up removing all of the entries for a given user, we remove the entire user from
the users object.

The update_data method called a method to remove a URL entry from a specific user
object in our big users dictionary. Let’s define that method now. In your server.py file,
add the following method to your Analytics object:

 def remove_user_url(self, uid, url):
 # make sure we have a user here.
 if uid not in self.users:
 return

 # try to remove the user/url mapping
 try:
 del self.users[uid][url]
 except Exception, e:
 logging.error("Error remove user: %s, %url: %s", uid, url)

This method, remove_user_url, simply removes a specific URL mapping from a specific
user inside our Analytics.users object. To do this, we just check to see if the entry
exists and remove it. This means that we now have the ability to add and remove
information about users and URLs as they come and go from the site.

While it’s a good to ensure that we remove users after a predetermined amount of time,
our JavaScript code actually sends a different type of ping when we know that the user
is leaving the page. We have an event handler set up to track when the beforeunload
event occurs, and when it does, the client will immediately ping the server to let us
know that the user is leaving. Let’s update our PingHandler class to remove the user
when that happens. In your server.py file, add the highlighted code to the
PingHandler class:

class PingHandler(tornado.web.RequestHandler):
 def get(self):

 # setup some local convenience variables for later
 uid = self.get_argument('u')
 url = self.request.headers['Referer']

 # remove the user if they're leaving the page
 ping_on_exit = self.get_argument('e')
 if ping_on_exit is not None and ping_on_exit == "1":
 self.application.analytics.remove_user_url(uid, url)
 return

200 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

 # build the data object to pass to the user_ping method
 data = {
 ...

This change simply checks to see whether the parameter designed to signal that the
user is exiting the page, e, exists. If it does, we call the newly created remove_user_url
method to remove this from the array. Once that happens, there is no sense in con-
tinuing on with the method, so we simply return right then and there.

Prior to adding the Analytics.update_data and Analytics.remove_user_url methods,
we were collecting statistics that essentially created a running total of all the users who
had viewed the site, which wasn’t very useful. Now we’re gleaning the tiniest bit of
information about what users are doing, and we stop tracking them when they leave
the page. With this information, it starts to become interesting to watch the users as
they bounce around the site. Let’s build a simple page to view the information we’re
currently gathering.

Viewing the Traffic
To view the information that we’ve collected thus far, we’re going to build a simple
HTML page that pings the server to get the latest stats. In order to set this up, we need
to build a couple of things. We need to make an HTML template and tell Tornado to
render it upon request. Then, we need to write a JavaScript file to ping and display the
data, and finally a server-side method to prepare and return the results when asked.
Let’s start on the server side. In your server.py file, modify the Application object to
respond to the following URLs:

class Application(tornado.web.Application):
 def __init__(self):

 # create an application-wide version of the analytics object
 self.analytics = Analytics()

 # map the two controller classes to the URLs
 handlers = [
 (r"/ping/?", PingHandler),
 (r"/js/?", JSHandler),
 (r"/", HomeHandler),
 (r"/get/stats/?", GetStatsHandler),
]

This just adds two new URL handlers and tells Tornado which controller classes to use
when we receive requests on / and /get/stats. We’ll use the first URL to host the
HTML template and the second URL to host the methods needed when we ping the
server through JavaScript. First, let’s create the HomeHandler class. Also in your
server.py file, add the following code:

Customized Analytics | 201

http://

class HomeHandler(tornado.web.RequestHandler):
 def get(self):
 self.render("home.html")

This method is about as simple as they come. When we receive a request, we simply
serve out a static HTML page called home.html. Moving on from there, let’s also add
the GetStatsHandler class. This class is called from JavaScript to grab the latest user
and pageview information. Add the following code to server.py:

class GetStatsHandler(tornado.web.RequestHandler):
 def post(self):
 # reference the main analytics object locally
 a = self.application.analytics

 # remove some stale users
 a.update_data()

 # convert the pages object into an array that's easily sortable
 sortable_pages = []
 for x in a.pages:
 sortable_pages.append({'url': x, 'count': a.pages[x]});

 # sort the pages so that we can show the most popular pages first
 def compare(a, b):
 return cmp(b['count'], a['count'])
 sortable_pages.sort(compare)

 # print the results
 self.write(dict(users=a.users, pages=sortable_pages[:5]))

When a request comes in for this URL, we have a couple of simple jobs. First, we want
to clean up the data and ensure that everything is up to date. To do that, we call
Analytics.update_data. The other piece of computation that we want to do is sort the
pages into an array of descending popularity. The easiest way to do that is to convert
it to a simple array and then run a basic sort based on the values of the keys. Once we
have that calculated, we simply write back to the client as a dictionary object. Tornado
automatically handles converting this object to JSON, which can be used by our client-
side script without any effort.

Now let’s build the HTML page that gets rendered when someone hits the root URL
of our service. Create a file called home.html and add the following code.

<!DOCTYPE html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Analytics</title>
 <script type="text/javascript" src="http://www.google.com/jsapi"></script>
 <script type="text/javascript" language="javascript"
 src="{{ static_url('viewer.js') }}"></script>
 <style>
 h1, h2 { font-family: sans-serif; }
 A { color: red; }
 #active_users A { font-weight: bold; }
 A.domain { font-size: small; color: #333; }

202 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

 .data SPAN { display: block; font-size: small; }
 .data .referrer A { font-weight: normal; color: #444; }
 ul li { padding-bottom: 1em; }
 TABLE TR TD { vertical-align: top; }
 UL { list-style-type: none; padding-left: 1em;}
 </style>
 </head>

 <body>
 <table>
 <tr>
 <td>
 <h1>Active Users</h1>
 <ul id="active_users">

 </td>
 <td>
 <h1>Pages</h1>
 <ul id="pages">

 </td>
 </tr>
 <tr>
 <td>
 <h1>Idle Users</h1>
 <ul id="idle_users">

 </td>
 <td>
 <h1>Custom data</h1>
 <div id="custom_data">
 </div>
 </td>
 </tr>
 </table>

 </body>
</html>

This just creates a shell of a page with some fairly basic HTML. Everything inside the
HEAD tag should look familiar from the previous Tornado examples in this book. Once
again, we’re using Google’s Ajax API service to host part of our JavaScript and using
Tornado’s static_url function to link to our included JavaScript file. After some style
information, which you can take or leave, we simply build an HTML table with some
unordered list tags inside the cells. I apologize for using HTML tables for layout, but
this is just a quick and dirty interface; in live practice, you can take only the parts you’re
interested in using.

Although the style information associated with the HTML elements is
optional, you should use the same element ID fields that are listed here.
We’ll be referring to these ID tags inside our JavaScript code.

Customized Analytics | 203

http://

Having created the HTML shell that we’ll be populating through Ajax, let’s create the
JavaScript file that will do the client-side work. In the same folder that you’ve been
working in, create a directory called static and add the following code into a file called
viewer.js:

// ask google to load the jquery libraries
google.load("jquery", "1");

// when the library is loaded, get
google.setOnLoadCallback(
 function() {
 $(document).ready(A.poll);
 }
);

// create the main client side analytics object
var A = {
 poll: function() {
 // poll the server using ajax
 $.ajax({
 url: "/get/stats",
 type: "POST",
 dataType: "json",
 success: A.catch_new_data
 });
 }
};

After requesting the jQuery library from Google, we simply wait for a callback for the
library to load and for the DOM to be ready. Once everything is read, we call the run
method on the A object. In this object we’re going to build all the functionality to
populate the HTML template. To get started, we wait for the DOM and immediately
start polling the server with the poll method. This method simply makes a request to
our /get/stats URL. Once that method returns successfully, the jQuery library runs a
callback method located at A.catch_new_data. Add that to your viewer.js file:

A.catch_new_data = function(response) {
 if(response) {
 A.display_users(response.users);
 }

 setTimeout(A.poll, 1000);
};

This method is called when we get a successful response from the /get/stats request.
That request returns a JSON object with two fields: users, which is the object filled
with the users currently using the site, and the pages object, which is nothing more than
the most popular pages on the site. This method, catch_new_data, simply checks to see
whether the response looks valid enough and runs another method to display the re-
sults. This method just takes the data received from the server and converts it into a
viewable HTML format. Once it returns, this method schedules another poll request
for one second in the future. Let’s build the display_users method now:

204 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

A.display_users = function(users) {

 // grab the HTML divs and clear them out
 var active_list = $('#active_users');
 var idle_list = $('#idle_users');
 idle_list.html('');
 active_list.html('');

 // loop through the users object
 for (var uid in users) {

 var user = users[uid];
 // each user can be looking at multiple URLs, loop through them
 for (var url in user) {
 u = user[url];

 // create a list item to add to the ul object
 var li = $('');

 // create a link object to display the page the user is viewing
 var a = $('<A>');
 a.attr({href: u.url, title: u.user_agent});
 a.html(u.title);
 li.append(a);

 li.append($('').html(' / '));

 // what domain/website is the user looking at
 var dom = $('<a>');
 dom.attr('href', 'http://' + u.domain);
 dom.attr('class', 'domain');
 dom.html(u.domain);
 li.append(dom);

 // create a DIV to hold some other data
 var data = $('<div>');
 data.attr('class', 'data');
 li.append(data);

 // display the referrer
 if(u.referrer) {
 var ref = $('');
 ref.attr('class', 'referrer');
 ref.html('' + u.referrer.slice(0, 50)
 + "");
 data.append(ref);
 }

 // display the last activity and current scroll position
 var t = u.last_activity / 1000;
 if (t > 60) {
 t = Math.round(t / 60) + ' minute(s)';
 }
 else {
 t += " seconds";

Customized Analytics | 205

http://

 }
 var time = $('');
 time.html('Idle Time: ' + t + ' | Scroll x: ' + u.x + ' y: ' + u.y);
 data.append(time);

 // if the user is idle, add them to the idle list
 if (u.status == 'Idle')
 idle_list.append(li);
 // otherwise to the active list
 else
 active_list.append(li);

 }
 }
};

This is a big chunk of code, and it may look fairly intimidating, but it’s actually very
simple. For the most part, we’re just taking the data we receive from the object and
wrapping it in HTML tags. To get started, we use jQuery to grab the active_users and
idle_users elements and promptly clear them out. Then, we loop through the list of
the users that we’ve received. Much like the Analytics.update_data method on the
server side, we loop through both the users themselves and the current list of URLs
they are browsing.

Inside that loop, we create an LI element that is going to be used to house all the data
about a particular session. The first thing we add to that is an anchor tag displaying the
current page and linking off to that URL. We then append a slash, and after that the
domain the user is currently viewing. Adding the domain is useful because, as a website
creator, we can add our JavaScript code onto any number of sites and watch all of our
web properties at the same time from the same URL.

Once we have displayed the current URL and domain that user is viewing, we build a
DIV container in order to house the rest of the secondary data that we’re going to view.
The first field we add to that DIV is the referrer information. After that, we append the
amount of time during which the user has been idle. If that number is more than 60
seconds, we convert it to minutes. Also, appended to that same HTML SPAN element
is the x and y scroll position.

Once we’ve added all of the data to the LI element, we have to append it to one of the
two lists. To do that, we check the status field as it was supplied by the server. If
the status is “Idle,” we add it to the idle_users listed; otherwise, it goes onto the
active_users list.

With that one method, we’re already populating two of the lists that we’ve created.
Start up the server again and load up a couple of different tabs or windows in your web
browser. Assuming that you started your server on port 8888 of your local machine,
point one browser at http://localhost:8888/. Then, load up a few tabs full of the website
onto which you’ve installed the JavaScript tracking code. Click around in some tabs
and let other tabs rest. You should see the page views jump right onto the screen and

206 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

move between the “Idle” and “Active” user lists as you click around. If you click away
from one of the URLs, you should see it disappear from the page almost immediately.
The end result should look similar to Figure 9-5.

Figure 9-5. Viewing active and idle users on the site

We’re populating two lists with that one method, but we’re already receiving enough
data to build three lists. The server-side /get/stats/ API call returns two different ob-
jects, users and pages. We’re displaying the users object already, but let’s build a
method to show the most popular pages on the site. Update the A.catch_new_data
method to have an additional method call:

A.catch_new_data = function(response) {
 if(response) {
 A.display_users(response.users);
 A.display_pages(response.pages);
 }
 setTimeout(A.poll, 1000);
};

Now let’s go ahead and add that method:

A.display_pages = function(data) {

 // grab the pages list and clear it
 var ul = $('#pages');
 ul.html('');

Customized Analytics | 207

http://

 // loop through the pages array
 for(var i = 0; i < data.length; ++i) {

 // pull out the URL and the number of hits from the object
 var url = data[i].url;
 var cnt = data[i].count;

 // create the LI and anchor objects.
 var li = $('');
 var a = $('<a>');
 a.attr('href', url);

 // remove the "http://" from the URL when displaying it
 a.html(url.slice(0, 50).replace(/^https?\:\/\//, ''));
 li.append(a);

 var s = $('');
 s.html(" (" + cnt + ')');
 li.append(s);

 ul.append(li);
 }
};

This method, display_pages, is an awful lot like the display_users method shown ear-
lier. First, we grab the correct UL element and clear it out. Then, we loop through the
data array, which just contains a list of the most popular pages. We build a simple LI
element and append an anchor element onto it. The anchor element links the user off
to the page that is currently popular and shows a slightly cleaned-up version of that
URL. It also displays the actual hit count to that URL itself. After restarting the server,
http://localhost:8888/ should look something like Figure 9-6.

We’ve built a fairly nice little analytics application that shows the realtime picture of
who is viewing the site. If someone is on one of the site’s web pages, he will show up
on this page. The moment he leaves the website, he’ll be removed from this page. It’s
a good way to get an accurate, real feel for all of the users browser your site. The problem
is that, as this book has discussed, many interactions on the realtime web take place
outside of a web browser. As it stands, our application has no way of tracking users’
actions when they interact with other components of our web application. To do that,
we need to build some customized tracking options.

Tracking Backend Traffic and Custom Data
Watching users as they browse the site in realtime is quite interesting and useful, but
it tells only part of the story. We need to ensure that this application can track arbitrary
data collected from the backend traffic on the site. For example, using this custom
feature, we can log the amount of traffic coming in and out through instant messenger
or SMS. We can also use it to track newly launched features or keep an eye on signups
in realtime.

208 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

Let’s build a super simple way to track custom data from any number of sources. We’ll
create an API method that can be called from anywhere with a few simple parameters.
We’ll collect the type of data that is being logged with a variable that will tell us if we’re
receiving an SMS event or a logout event or whatever else is useful to log and view in
realtime. We’ll also receive an arbitrary value for the data, which can be anything at
all. Finally, we’ll also collect a variable called expires_in_seconds, which tells us how
long, in seconds, we should display this data. If the expires_in_seconds is set to 5, we
display the value for 5 seconds and then get rid of it.

To get started with this functionality, we need to add another URL handler to the
Application class. In your server.py file, make the following addition:

class Application(tornado.web.Application):
 def __init__(self):

 # create an application-wide version of the analytics object
 self.analytics = Analytics()

 # map the two controller classes to the URLs
 handlers = [
 (r"/ping/?", PingHandler),
 (r"/js/?", JSHandler),
 (r"/", HomeHandler),
 (r"/get/stats/?", GetStatsHandler),
 (r"/custom/?", CustomHandler),
]

Figure 9-6. Viewing active and idle users plus the most popular pages

Customized Analytics | 209

http://

This just directs traffic from the /custom URL to the CustomHandler controller. Let’s
define that next:

class CustomHandler(tornado.web.RequestHandler):
 # whether we receive a GET or POST request, respond
 def get(self):
 self.respond()
 def post(self):
 self.respond()

 def respond(self):
 # a local reference to the application's analytics object
 analytics = self.application.analytics

 # Grab the variables
 data_type = self.get_argument('type')
 value = self.get_argument('value')
 expires = self.get_argument('expires_in_seconds')

 # ping the analytics object
 analytics.data_ping(data_type, value, time.time() + int(expires))

 # assume everything worked...
 self.write("OK")

This controller class takes input from either GET or POST HTTP requests and passes
them both along to a single method called respond. Inside that method we simply collect
all of the parameters that we need and pass them along to a method in the Analytics
object called data_ping. The data_ping method functions very similarly to the
user_ping method. Let’s create that now. In the Analytics object of your server.py, add
the following code:

class Analytics(object):
 users = {}
 pages = {}
 data = {}

 # Number of seconds for which a session is live.
 # After this time, they're considered idle.
 # the user must continue to ping
 live_session_time = 30

 # If the ping timeout passes, the user has left the page.
 ping_timeout_time = 30

 def data_ping(self, data_type, value, expire_time):
 # ensure we have this this data type in the dictionary
 if not data_type in self.data:
 self.data[data_type] = []

 # append the new data to teh array
 self.data[data_type].append({'type': data_type,
 'value': value,
 'action_time':

210 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

 time.strftime("%I:%M:%S %p",
 time.localtime()),
 'expire_time': expire_time})

 def user_ping(self, data):
 ...

This changes two parts of the Analytics object. First, we add a member variable called
data that is available to our newly created data_ping method as well as throughout the
object. This code also creates the data_ping method itself. Inside that method we simply
build the data object. This object is a dictionary with any number of keys. The keys are
strings supplied by the data_type variable. We create an entry using that key and ini-
tialize a variable if it’s not already there. Knowing that we have an entry for this specific
data_type, we can now append the data as a dictionary. The only modification that we
make is to add another field that contains the current time so we can display it if needed.

At this point we can accept data from any source and store it internally in our object.
We’re also going to need to return it to the client when the request comes in for /get/
stats. Modify the GetStatsHandler class to return this new data object as well as the
other objects:

class GetStatsHandler(tornado.web.RequestHandler):
 def post(self):
 ...
 # print the results
 self.write(dict(users=a.users, pages=sortable_pages[:5], data=a.data))

We’re collecting data from an API URL and returning it to the web client through
the /get/stats URL. However, we’re still ignoring that expire time sent during the
initial API request. We need to periodically look at the data that we receive and throw
out any data that has expired. To do that, we can just append some code to the end of
the Analytics.update_data method:

 def update_data(self):
 ...
 # loop through the data keys
 for x in self.data.keys():

 # for each key, clear out the data and keep only what we need
 tmp_data = self.data[x]
 self.data[x] = []

 for d in tmp_data:
 # if the expire_time has not yet passed, keep the data
 if time.time() < d['expire_time']:
 self.data[x].append(d)

This new addition to the method simply looks at all of the data and determines which
values are still valid. Looping through each key in the dictionary, this method makes a
copy of the data for that entry and clears it out. Then, looping through each key in that
array, we check to see whether the time has expired by comparing it to the current time.

Customized Analytics | 211

http://

If it hasn’t expired, we append it back to the original array; otherwise, we simply
ignore it.

Having added all the server-side code we need for this method, the next step is to update
our JavaScript file to show this data. The first thing we need to do is update the method
that is called whenever we get new data. In your static/viewer.js file, change
A.catch_new_data to have this additional code:

A.catch_new_data = function(response) {
 if(response) {
 A.display_users(response.users);
 A.display_pages(response.pages);
 A.display_custom(response.data);
 }

 setTimeout(A.poll, 1000);
};

This new code looks a lot like the previous two lines. We’re just calling a new method
to handle the new data that we’re receiving. To manage that data, let’s add
A.display_custom to the same file:

A.display_custom = function(data) {
 // grab the custom_data list and clear it
 var div = $('#custom_data');
 div.html(""); // clear it

 // if we have a data object
 if(typeof data == 'object') {

 // loop through each of the keys
 for (var data_type in data) {

 // add a new header for each key
 var h2 = $('<h2>');
 h2.html(data_type);
 div.append(h2);

 // create a list for each key
 var ul = $('');

 // add the data value and action_time to the list item
 for (var i = 0; i < data[data_type].length; ++i) {
 var d = data[data_type][i];
 var li = $('');
 li.html(d.value + " (" + d.action_time + ')');
 ul.append(li);
 }
 div.append(ul);
 }
 }
};

212 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

This method is also very similar to the display_users method. The custom data is in a
slightly different format, so we have a new method to handle it all. Once again, we grab
the UL element and clear out any HTML that is already in it. Then, we loop through
all of the keys in the object. Each of these keys is a new data point that we want to
display. One might be “SMS Messages Sent,” “New Logins,” “Signups,” or anything
else worth tracking from the backend of the system. We display these keys as a header
tag and then create a list to go underneath it. This list is then populated with the values
stored inside the object. We display the value itself and the time the data was recorded.

Let’s test this out. First off, restart your server and reload the main page. In my case, I
can get there by navigating to http://localhost:8888/. You should continue to see the
same sites pinging the server. While viewing those, let’s make a few custom analytics
requests. From your command line, let’s run a few commands.

$ curl "http://localhost:8888/custom?type=Greetings&value=hello+earthling!&expires_
 in_seconds=60"
$ curl "http://localhost:8888/custom?type=Greetings&value=hello+again!&expires_in_
 seconds=60"

After running these commands, the data should have appeared in the log viewer almost
instantly. Figure 9-7 shows an example of the custom data displayed on the screen.

Figure 9-7. Viewing the web-based traffic plus our custom data

Customized Analytics | 213

http://

With this addition, we have the ability to track statistics and users in realtime as they
trigger events on the backend side of a web application. This gives us the ability to
collect the whole picture about what is happening in our application. In practice, using
this functionality does not normally involve making curl requests from the command
line but instead integrating this API call into significant events in the core functionality
of an application. For example, a reasonable use case for this functionality would be
to create a log entry for every user who signs up for a service. To do something like this
in PHP, you’d add the following code to the same method that handles a successful
signup:

$data = array('type' => 'User Signup',
 'value' => 'Some User Name',
 'expires_in_seconds' => (60 * 60 * 24)); // keep this around for a day
$s = curl_init();
curl_setopt($s,CURLOPT_URL, "http://localhost:8888/custom");
curl_setopt($s,CURLOPT_POST,true);
curl_setopt($s,CURLOPT_POSTFIELDS,$data);
$return_value = curl_exec($s);

Sending Out Alerts
Having set up our application to monitor itself in realtime, one feature that is currently
lacking in this application stands out as being particularly useful. It would be nice to
get SMS alerts from our application in the event that the amount of users, or any other
statistic, reaches a certain threshold. Let’s add this functionality into this application.

To keep it simple, we’ll send out an SMS alert when the number of currently active
users goes above a predetermined number. This is going to be remarkably easy to build
using the SMS functionality we built previously. To get started, let’s update the
server.py file to contain the basic SMS integration information:

class Analytics(object):
 users = {}
 pages = {}
 data = {}

 # which number should we send a message to?
 SMS_alert_mobile_number = '+15555551212'

 # When should we send a message? after how many users?
 SMS_alert_current_users = 15

 # What's the URL of the SMS service you want to use?
 SMS_api_base_url = 'http://instant-messaging.appspot.com/sms/send/via/textmark'

 # how often do we send messages if the site stays busy?
 SMS_send_interval = 600 # send an SMS no more than every ten minutes

 # this is used internally to determine the last time we sent a message
 SMS_last_send = 0
...

214 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

These additions don’t do anything other than configure some variables about how often
to send out SMS alerts, which number to use when sending them, and the API to use
in order to send them. Depending on the traffic you’re expecting to get on your site,
you’ll probably want to configure the numbers to ensure that you’re getting enough
alert messages, but not too many.

To actually send the message, we’re going to have to monitor the number of currently
active users on the site. Once that number goes above our newly created
Analytics.SMS_alert_current_users, we’re going to send a message. We can easily add
that to the Analytics.update_data method. At the bottom of Analytics.update_data,
after you’ve counted the current number of active users and stored it in the
active_user_count variable, add the following code to your server.py file:

 def update_data(self):
 ...
 # did we find a user that isn't looking at anything? delete them!
 if not len(self.users[x]):
 del self.users[x]

 # if the active_user_count goes about the SMS threshold
 if active_user_count > Analytics.SMS_alert_current_users:
 # and we haven't recently sent a message
 if Analytics.SMS_last_send < (time.time() - Analytics.SMS_send_interval):
 logging.info("Sending an SMS Alert!")

 # note the current time
 Analytics.SMS_last_send = time.time()

 # build the URL
 url = Analytics.SMS_api_base_url
 url += '?mobile_number=' +
 url_escape(Analytics.SMS_alert_mobile_number)
 url += '&body=' + url_escape("Currently %d users on the site!")
 % (len(self.users)))

 # make the API request
 f = urllib.urlopen(url)
 f.read()

The update_data method was already counting the current number of active users, so
the only addition we had to make was to check whether that number went above our
predetermined limit. If it did, we check to see whether we’ve recently sent out a message,
and if not, we simply make the API call to our SMS application. If you set the
SMS_alert_current_users low enough, you’ll be able to see the SMS message after
opening a few tabs on your browser. If you hook it up to a live site, you should see a
message like Figure 9-8.

Customized Analytics | 215

http://

When you have the realtime analytics that we’ve built in this chapter and add in this
type of SMS alert mechanism to different parts of your website, it means that you can
see your users move around your site in realtime and react in realtime. The ability to
keep your finger on the pulse of your site with these technologies helps you understand
much more quickly exactly how users are interacting with your application. If there is
an issue, good or bad, you’ll be able to confront it within minutes instead of days.

Figure 9-8. Receiving an SMS alert from the analytics application

216 | Chapter 9: Measuring User Engagement: Analytics on the Realtime Web

http://

CHAPTER 10

Putting It All Together

We’ve built a number of small applications that demonstrate a single aspect of the type
of experiences that can be had on the realtime web. In this chapter we’ll take the
different technologies that we’ve started using and build a much larger, complete
application.

In this chapter we’ll build a game specifically designed to utilize many of the types of
features that we’ve built. In the previous chapters, these features were designed to be
applied to an already existing application. This chapter will explore an application that
has these features integrated at a much deeper level as part of the core functionality of
the application.

The Game
The game that we’ll build in this chapter is a location-aware game designed to be played
with a modern phone that supports geolocation JavaScript API calls. Like other loca-
tion-based games, the purpose of this game is to encourage users to travel around their
city and check in using a mobile phone. In this case, we’re building a game called
iPandemic, in which a user “coughs” to infect a new location rather than checking in
and announcing her presence. If she turns up in a place where another user has already
infected, this is considered a challenge, and both users have to take action within a set
period of time or risk losing points and having their germs die off. Once a “germ” has
infected a location, it will continue to grow until it reaches an enemy germ. When the
two germs meet up, they fight and the strongest germ prevails.

Caveats
This game works best when it’s played with a number of other people, so to test out
different features, you can simply join in with the other users at http://www.ipandemic
.com. Playing with the other users will help illustrate how the different parts of this
game work much more easily than logging in with multiple mobile phones.

217

http://www.ipandemic.com
http://www.ipandemic.com
http://

This game also requires a fair amount of Python code, plus HTML and CSS markup.
All of this code is provided for download on this book’s website. It may be easier to
download the code and follow along with the text rather than typing out each passage.
Plus, I’ll be omitting some of the CSS and nonessential code for brevity in the text, but
it’s all included on the website and in the working application at the iPandemic website.

Getting Set Up
The setup of this application involves signing up for different services and acquiring
some API keys. We’ve already used several of these services this book. For services that
you’ve already set up, you can either reconfigure the service to work with this new
application or start fresh with each one.

We’ll be using a number of different technologies to build this application and even
hosting it on two different servers. To set up the environment, we’re going to want to
create a couple of directories. Assuming you’re keeping this project in your home di-
rectory, open a terminal window and enter the following commands to create the basic
directory structure of this project:

~ $ mkdir ~/ipandemic
~ $ mkdir ~/ipandemic/appengine
~ $ mkdir ~/ipandemic/appengine/static
~ $ mkdir ~/ipandemic/appengine/templates
~ $ mkdir ~/ipandemic/tornado
~ $ mkdir ~/ipandemic/tornado/templates
~ $ mkdir ~/ipandemic/tornado/static

Google App Engine
This application uses two different methods to host the code, the first of which is Google
App Engine. Chapter 7 includes a complete explanation of how to sign up for and
configure an App Engine account. You can easily reuse the account and application
that you previously used. If you are going to set up a new application, you should
configure it through the interface on the App Engine website and then set it up locally.
Each App Engine application must have a unique application identifier, which are be-
coming increasingly hard to find. So, after you create the application on the App Engine
website, create a file in ipandemic/appengine called app.yaml and add the following
code:

application: your-application-id
version: 1
runtime: python
api_version: 1

handlers:
- url: /static
 static_dir: static/

218 | Chapter 10: Putting It All Together

http://therealtimebook.com
http://appengine.google.com/
http://

- url: .*
 script: main.py

inbound_services:
- xmpp_message

This file simply lays out the details of your application for both the actual App Engine
service and the launcher application. Once you’ve created and saved that file, we can
set up this application in GoogleAppEngineLauncher. From the File menu, select “Add
an Existing Application,” click the browse button, and select the directory containing
the app.yaml file (see Figure 10-1).

Figure 10-1. Importing our existing project with its unique App Engine ID

Although the official App Engine application ID for the public iPandemic
application is ipandemicapp, it’s mapped to the http://www.ipandemic.com
URL. Google App Engine allows you to map custom domains to your
application. Throughout the rest of this of this chapter, you’ll need to
use the URL assigned to you in place of www.ipandemic.com.

Google Maps API Key
On the client side of this application, we’re going to be using the Google Maps API to
display the maps and draw the spread of each of the germs. Although this service is free
to use, even for an unlimited amount of traffic, it does require an API key. To get one
of these keys, head over to the Google Maps API site to generate a new API key for this
application. When the form asks for your URL, enter the App Engine URL created

Getting Set Up | 219

http://code.google.com/apis/maps/signup.html
http://

earlier. The next page will display your unique Google Maps API key; be sure to copy
that URL and save it locally on your computer. We’ll be using that key in this appli-
cation, and there is no obvious way to get Google Maps to display the same key for you
again.

EC2 or Other Hosted Server
Part of this application runs on Google’s App Engine infrastructure, but another part
is hosted on a standard web server. This server needs to have Python installed and you
must have shell access, as we’ll be running this application with the Tornado server,
which must be started from the command line. Any public-facing server will work for
this task as long as you have shell access and Python is either installed or installable. If
you’re using this server to host another application, you can easily host this right
alongside it using a different port.

If you’re using Amazon EC2 to host the part of the application that does not run on
App Engine, you’re going to want to open a new port for this application. To do that
from your EC2 instance, you’ll want to open the port with the following command:

~ $ ec2-authorize default -C ~/your-cert-file.pem -K ~/your-private-key-file.pem \
-p 8088

Many of the community AMIs (Amazon Machine Instance) already have the ec2-
authorize command installed. If you don’t have it installed already, your package
manager may have it under ec2-api-tools; otherwise, it can be downloaded directly
from the Amazon Web Services developer website.

GeoModel
This application deals with geolocation in a number of different ways. As users cough
and germs spread, we’re going to need to determine how close one germ is to another.
There are a couple of ways to do this, but a convenient method would be to ask our
datastore to return a list of germs within a specified distance of a certain germ. While
App Engine’s data store does understand the concept of latitude and longitude coor-
dinates through its GeoPt datatype, it has no built-in ability to return a list based on
proximity. To get this functionality, we can use an open source third-party library called
GeoModel. The easiest way to incorporate the source is to check out the latest version
from Subversion directly into our project directory.

~/ipandemic/appengine $ svn co http://geomodel.googlecode.com/svn/trunk/geo
A geo/geocell_test.py
A geo/geocell.py
A geo/geomodel.py
...
 U geo
Checked out revision 22.

220 | Chapter 10: Putting It All Together

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351&categoryID=88
http://code.google.com/p/geomodel/
http://

The Basic Models
This game contains a fair bit more application logic than the previous examples and
requires a decent number of model classes to define how everything behaves. To get
these set up, we need to create a file to contain these models and set up the basics. In
your appengine directory, create a file called models.py and fill it with the following code:

from geo.geomodel import GeoModel
import geo.geotypes as geotypes

from google.appengine.api import xmpp, users, urlfetch, memcache
from google.appengine.ext import db
from django.utils import simplejson as json
import logging, os, string, random, urllib
from datetime import datetime, timedelta
import math

class Game(object):
 # setup some gameplay variables
 default_score = 5
 default_germ_spread = 0.03
 default_germ_speed = 0.0055
 default_germ_slowdown = 0.00015
 default_germ_strength = 0.03
 default_disease_strength = 0.5
 default_disease_strength_increment = 0.001

 # the color of the germs as they get displayed on the map
 default_color_friendly = "#577ff5"
 default_color_enemy = "#007b00"
 default_color_threat = "#ff0000"

This codes does all the imports that we’re going to need for this file in the future. Then,
we define a number of variables that we’ll use to govern the gameplay of iPandemic.
There is no real science behind these numbers, so feel free to modify them as much as
you wish.

default_score

Every user has a score, which is the number of points she has accumulated. When
user join the game, we’ll give them some points just for signing up.

default_germ_spread

When a user first coughs and a germ is born, it takes up space on the map. This
variable defines the default amount of space that the disease takes up. This is the
spread of the disease.

default_germ_speed

As time passes, each germ grows bigger and spreads across the map. This variable
governs the default speed for how quickly the germ spreads.

The Basic Models | 221

http://

default_germ_slowdown

While the germ spreads as time passes, the speed at which is grows slows down.
This variable determines how quickly it slows down. Essentially, every time a germ
grows, the speed as determined by the default_germ_speed decreases.

default_germ_strength

Each germ has a specific amount of strength. If a germ gets threatened by another
user coughing or just due to the natural course of growing, the each germ’s strength
helps determine which will win.

default_disease_strength

Germs are part of a larger disease. As a user spreads germs, the disease itself
gets stronger. This strength is also used to determine which germ wins when it’s
threatened.

default_disease_strength_increment

Throughout the course of the game, germs and diseases get stronger and weaker.
This variable specifies the amount to change the strength as these events occur.

UserInfo
The next model to add to models.py is the UserInfo class. While Google provides the
actual user object and even its authentication, we still want to store some data with
each user and have some additional logic. Add the start of the UserInfo object to your
models.py file:

class UserInfo(db.Model):
 # google's user object
 user = db.UserProperty()

 # save the date we created the user.
 timestamp = db.DateTimeProperty(auto_now_add=True)

 # the user's score in the game
 score = db.IntegerProperty(default=0)

 # when a new germ is created, what is the default strength?
 # as a user's score increases, this can increase as well
 default_germ_strength = db.FloatProperty(Game().default_germ_strength)

 # can we send IM and SMS to this user?
 allow_xmpp = db.BooleanProperty(default=True)
 allow_sms = db.BooleanProperty(default=False)
 mobile_key = db.IntegerProperty()
 mobile_number = db.PhoneNumberProperty()

This class adds the basic setup of our UserInfo object. Aside from the obvious member
variables that we set up, we add some variables for functionality. The first of those is
the default_germ_strength variable. This variable defines how strong a germ will be
when created by this particular user. It defaults to the value defined in the Game class,
but as the user progresses through the game, this variable can increase or decrease

222 | Chapter 10: Putting It All Together

http://

depending on outside factors, leaving more experienced users to create stronger germs
from the start.

The other variables that we create will be used when we add the instant messaging and
SMS functionality. The variables allow_sms and allow_xmpp define if we can send either
type of message to the user. Because sending an XMPP message doesn’t cost a user
anything, we set up the allow_xmpp variable to default to True, meaning that we can
send messages to that user.

Although it’s free for the application and the user to receive XMPP messages, many
users pay per SMS message. So we can’t automatically send everyone SMS messages;
each user will have to turn that on explicitly. Users will sign up for SMS functionality
by sending a text message to the application. To sign someone up for this type of service,
we’re going to require that each send a text message that includes a unique
mobile_key. This will allow us to identify which user is sending a message prior to
storing her mobile_number and will allow us to ensure the user does want to receive SMS
messages.

Let’s move on to fleshing out the rest of the UserInfo class. Add the following methods
to the class we’ve just defined:

 def by_user(self, user):
 q = db.GqlQuery("SELECT * FROM UserInfo WHERE user = :1", user)
 return q.get()

 def by_current_user(self):
 return self.by_user(users.get_current_user())

 def by_mobile_number(self, mobile_number):
 q = db.GqlQuery("SELECT * FROM UserInfo WHERE mobile_number = :1",
 mobile_number)
 return q.get()

 def by_mobile_key(self, mobile_key):
 q = db.GqlQuery("SELECT * FROM UserInfo WHERE mobile_key = :1",
 int(mobile_key))
 return q.get()

 def sync(self, user):
 # if we have a user, ensure that we've logged them to our datastore
 if user:
 if not UserInfo().by_user(user):
 ui = UserInfo(user=user,
 mobile_key=random.randint(1000, 9999),
 score = Game().default_score)
 ui.put()
 xmpp.send_invite(user.email())
 else:
 raise Exception("No current user to sync")

 def update_score(self, amount):
 self.score += amount
 self.put()

The Basic Models | 223

http://

The first method, by_user, is a simple convenience method that allows us to quickly
load a UserInfo by supplying one of App Engine’s user objects. After that,
by_current_user does the same thing, but it automatically loads the current user object.
The next two methods are the same basic concept; the only difference is a unique value
is used to load the UserInfo object.

The sync method is used after a user logs into this application. Every time a user logs
in, we want to make sure that our application has a unique record for her. Using the
sync method, we check to see whether the UserInfo already exists, and if not, we create
a new one. Creating a new one means instantiating a new UserInfo object and supplying
it with the user object as well as the mobile_key and the score. The mobile_key is the
pseudo-unique number that a user will send in via SMS when signing up for SMS
integration.

The final method in this class is the update_score method. This is used throughout the
game to quickly adjust the score of a user when no other information needs to be
updated.

Disease
The next model that we need to create is the Disease class. Each time a user “coughs,”
a Germ is created. Each Germ belongs to a certain user, but it is also part of a Disease.
The class is fairly small, so let’s just add the entire thing all at once:

class Disease(db.Model):
 # the time this disease was created
 timestamp = db.DateTimeProperty(auto_now_add=True)

 # the first patient with this disease
 patient_zero = db.UserProperty()

 # a fun name for the disease
 strain = db.StringProperty() # auto generated name

 # how strong is the disease?
 strength = db.FloatProperty(default=Game().default_disease_strength)

 def get_default_disease_for_user(self, user):
 q = Disease().gql("WHERE patient_zero = :1", user)
 disease = q.get()
 if not disease:
 disease = Disease().generate_disease(user)
 disease.put()
 return disease

 def generate_disease(self, user):
 disease = Disease()
 disease.patient_zero = user
 disease.strain = Disease().unique_strain_name()
 return disease

224 | Chapter 10: Putting It All Together

http://

 def unique_strain_name(self):
 while True:
 s = string.uppercase[random.randint(0, 25)] + \
 str(random.randint(1, 9)) + \
 string.uppercase[random.randint(0, 25)] + \
 str(random.randint(10, 99))
 q = db.GqlQuery("SELECT * FROM Disease WHERE strain = :1", s)
 if not q.count():
 break
 return s

The first couple of member variables defined in this class simply keep track of when
this disease was created and by whom. The next variable, strain, is a shorter name that
can be used to refer to this particular disease. The strength variable defaults to the value
defined by the Game object but is adjusted throughout the game as germs are created
and removed.

The methods for this class are all centered around doing one of two things, loading the
disease and creating a new one if one doesn’t exist for a particular user. The first
method, get_default_disease_for_user, simply loads the disease if there already is one
for the specified user. If one doesn’t exist, it creates one by calling generate_disease
and saving it to the datastore with put.

The method generate_disease simply instantiates a new Disease object, setting the
patient_zero field to the supplied user and setting the name of the strain to the result
of unique_strain_name. This method generates a unique strain name in the format of
“A9A99.” These strain names are meaningless, other than to look and sound vaguely
like the name of a disease, so feel free to get creative with this name.

Germ
A large part of this game is spent “coughing” and spreading germs. These germs are
the most fundamental part of this game. How often germs are created, how far they
spread, and how often they defeat other germs are the basic metrics of success in this
game. Let’s put together the basic Germ model now and expand on it as needed. In
models.py:

class Germ(GeoModel):
 user = db.UserProperty()
 timestamp = db.DateTimeProperty(auto_now_add=True)

 # every germ is part of a disease
 disease = db.ReferenceProperty(Disease)

 # how strong is the germ
 strength = db.FloatProperty(default=Game().default_germ_strength)

 # the current speed at which it's growing
 spread = db.FloatProperty(default=Game().default_germ_spread)

The Basic Models | 225

http://

 # how fast does it increase its spread
 spread_speed = db.FloatProperty(default=Game().default_germ_speed)

 # grab a list of other germs near a certain lat/long
 def get_germs_near_point(self, lat, lon, max_distance_in_meters=100):
 center = geotypes.Point(lat, lon)
 base_query = Germ.all()
 data = Germ.proximity_fetch(
 base_query,
 center, max_results=10, max_distance=max_distance_in_meters)
 return data

 # would the current germ defeat another in a fight?
 def would_defeat(self, enemy):

 # determine the strength of each germ by
 # adding the current strength to the overall disease sterngth
 our_strength = self.disease.strength + self.strength
 enemy_strength = enemy.disease.strength + enemy.strength

 if our_strength >= enemy_strength:
 return True
 else:
 return False

 # We'll be outputting germs in the JSON format.
 # this method simply makes an germ object suitable for json encoding
 def format_for_json(self, current_user):
 return {
 'id': str(self.key()),
 'lat': self.location.lat,
 'lon': self.location.lon,
 'strength': self.strength,
 'spread': self.spread,
 'timestamp': GameUtils().date_rfcformat(self.timestamp),
 'threat': False,
 'disease': {
 'id': str(self.disease.key()),
 'strain': self.disease.strain,
 'name': self.disease.name,
 'host': self.disease.patient_zero.nickname(),
 'host_is_you': self.disease.patient_zero == current_user,
 }
 }

The first thing to notice about this class is that it extends the GeoModel class rather than
the db.Model class that we’ve been using up until now. Extending the GeoModel class
gives the germ some extra functionality to help with the geolocation logic that we’ll be
using. Extending this class means this object contains a location member variable and
another variable called location_geocells. We’ll be using the location field directly to
save the specific location of each germ, and the GeoModel class will update the
location_geocells field and use that during location-based queries on this datatype.

226 | Chapter 10: Putting It All Together

http://

This is a shell of the final germ class that we’ll end up using, but it’s enough to get
started without complicating things too much. The first couple of member variables
spell out who created this particular germ and when they did it. After that, we keep
track of the disease to which this germ belongs. Then we set up the strength, spread,
and spread_speed of this germ.

The first member function in this class is called get_germs_near_point. This method
searches the datastore for other Germ objects within a certain number of meters of the
specified latitude and longitude parameters. This allows us to figure out the user’s
location and query the datastore to find out which germs are in the immediate vicinity.
The proximity_fetch search is provided by the GeoModel from which the Germ class
extends.

The next method, would_defeat, takes in one germ as a parameter, which it then com-
pares against itself to determine who would win if they were to fight one another. To
calculate this, we look at the strength of each germ and add it to the strength of each
disease. Whichever disease has the most overall strength would win this fight. It’s a
pretty simple, and fast, way to determine the strongest germ.

Finally, the last method that we add to the Germ class at this point is the
format_for_json method. This application sends the germ information to the browser
and other clients encoded in the JSON format. Encoding the entire class into JSON
would leave us with a lot more data than is necessary, so we build a simple Python
dictionary that can translate directly to the JSON format for the browser.

We’ll be adding more functionality to this class as we continue building this applica-
tion, but this is enough to get the game started.

CommandCenter
The next class that we’re going to define is called CommandCenter. This class contains
functionality similar to what we created in Chapter 9. Any time a germ gets created,
changes, or gets deleted, we’ll notify this class. This class can then run all sorts of
analytics based on the data. We’ll actually use this data to generate a command center
view that allows users to monitor all of the germs as they spread around the planet on
top of some other realtime functionality. We’ll get to all of that in a bit, but first we
want to create the basic logging methods so that we can start keeping track of these
changes from the start. Update your models.py file and add the following class:

class CommandCenter(object):
 cc_memcache_key = 'cc-germs'

 def get_germs(self):
 # grab the germs from memcache
 germs = memcache.get(self.cc_memcache_key)
 if germs is None:
 germs = {}
 return germs

The Basic Models | 227

http://

 # this will update if it's already in there
 def add_germ(self, germ):
 # grab the germs from memcache
 germs = self.get_germs()

 # add or update this germ
 k = str(germ.key())
 germs[k] = germ.format_for_json(False)

 # This germ has not been deleted
 germs[k]['deleted'] = False

 # mark this as updated and store everything back in the cache
 germs[k]['updated'] = GameUtils().date_rfcformat(datetime.now())
 memcache.set(self.cc_memcache_key, germs)

 def delete_germ(self, germ):
 # grab the germs from memcache
 germs = self.get_germs()
 k = str(germ.key())

 # if this germ exists, mark it as deleted and updated
 if k in germs:
 germs[k]['deleted'] = True
 germs[k]['updated'] = GameUtils().date_rfcformat(datetime.now())

 # put them back in memcache
 memcache.set(self.cc_memcache_key, germs)

 # notify everyone of the changes
 def update(self):
 # we'll fill this in later
 pass

This is a very simple class that we can use throughout the code to keep track of the
germs that are currently in play. We keep the list of germs in memcache, formatted in
JSON encoding, and even keep track of the deleted germs after they’ve left the datastore.
This allows us to build pages that show the activity of the germs as they happen without
hitting the datastore each time we want to load it. The way we’re going to use this will
also allow us to publish these updates across the Web in realtime.

This is the first class that we’ve built that uses the App Engine implementation of
memcache. For the uninitiated, memcache is a key/value store that allows us to store
data in memory for simple and fast access. Memcache is very simple to use, and the
App Engine implementation stays true to that form. You simply define a key and get
and set data using that key. The only member variable in this class is that cache key.
In this case it is stored in the cc_memcache_key variable and will be used to store the list
of germs that the CommandCenter knows about.

The first method in this class, get_germs, simply loads all of the germs out of memcache
and returns them. If there isn’t anything in the datastore, it returns an empty dictionary.

228 | Chapter 10: Putting It All Together

http://

The add_germ method takes in a germ as the parameter and either adds it to the cache
if it doesn’t exist or simply updates it if the germ is already in the cache. Each germ is
stored using the unique key as the dictionary key, which allows us to update it easily
in the future. Rather than storing the entire germ, we simply store the JSON encoding
version, which is all we’ll need in the future. We also want to keep track of whether or
not this particular germ was deleted. Since we’re adding the germ now, we can safely
assume that it hasn’t been deleted. We’ll also use this method to update existing germs,
but we won’t be updating germs that have been deleted, so we can affirmatively say
that this particular germ hasn’t been deleted.

However, when we do want to delete a germ, we need to call delete_germ. This method
is a lot like the add_germ method. The main difference between the two methods is that
this time we simply check to see whether the germ is in the cache; if it is, we mark it as
deleted, update the updated timestamp, and leave it alone. In applications that want to
use this data, we want to affirmatively tell them that this germ has been deleted and
not expect them to rely on noticing the absence of data from one update to the next.

Finally, we have the method that will actually tell any interested parties that the data
has been updated. There are a couple of steps between where this application is now
and when it makes sense to notify third parties, so let’s just leave this method blank
for the time being. We’ll get back to it once we have updates to send around.

Textmark
This application interacts with users in realtime through a number of different methods.
One of those methods is via SMS. This application sends out SMS messages if a user
earns points while she isn’t interacting with the system and even allows users to
“threaten” and respond to threats via SMS. To do that, we need to include some simple
SMS functionality.

In Chapter 8, we built out some SMS functionality that allowed an application to send
and receive SMS messages from a couple of different services. This application also
needs to send out SMS messages. Rather than supporting more than one service in this
application, I’ve just picked one. If you’d prefer to use another service, just swap it out
for that one; the code should be almost identical to that in Chapter 8. If you elect to
use the TextMark service as well, add the following code to your models.py file:

class Textmark(object):
 auth_user = 'your-textmarks-username'
 auth_pass = 'your-textmarks-password'
 short_code = '41411'
 keyword = 'your-textmarks-keyword'
 api_key = 'your-textmarks-api-key'

 # override the send method from SMSService
 def send(self, number, body):

The Basic Models | 229

http://

 # The Send URL
 url = "http://dev1.api2.textmarks.com/GroupLeader/send_one_message/"

 # setup the http arguments
 args = {}
 args['to'] = number
 args['msg'] = body
 args['tm'] = self.keyword
 args['api_key'] = self.api_key
 args['auth_user'] = self.auth_user
 args['auth_pass'] = self.auth_pass

 # make the HTTP API call to send the message
 result = urlfetch.fetch(url=url,
 payload=urllib.urlencode(args),
 method=urlfetch.POST)
 logging.info(result.content)

This code should look very similar to the code from Chapter 8. It’s a fair bit simpler
because we don’t need to support more than one service, but the base logic is the same.
We set up the basic API information as the member variables of the class and then
provide a single member function.

That single member function is the send method, which is used to actually send the
message. As parameters, it takes in the mobile number of the recipient and the body of
the message. We assemble the simple API parameters into a dictionary and post them
to the TextMarks service using the App Engine urlfetch class. In case there are issues,
we log the response, but other than that, we’re done with the SMS class.

Messenger
We’ve already added a class to send SMS messages, but we’re only part of the way to
our message-sending goals. We want to be able to send both SMS and XMPP-based
instant messages from the same interface. To do that, we’ll wrap the functionality up
into a class called Messenger and use that class to send a message. To add this class, add
the following code to your models.py file:

class Messenger(object):

 # to send an message via SMS, simply pass this on to the Textmark class
 def send_via_sms(self, mobile_number, body):
 sms = Textmark()
 sms.send(mobile_number, body)

 # simply call the xmpp send_message method to send xmpp messages
 def send_via_xmpp(self, to, body):
 xmpp_response = xmpp.send_message(to, body)
 logging.info(xmpp_response)

230 | Chapter 10: Putting It All Together

http://

 # send a message
 def send(self, from_user, to_user, body, response_key=False):
 if from_user:
 body = from_user.nickname() + ": " + body

 # load the UserInfo to figure out which methods we can use to send a message
 ui = UserInfo().by_user(to_user)

 # are we allowed to send xmpp messages?
 if ui.allow_xmpp:
 im_body = body
 if response_key:
 im_body += " Respond with @%d [message here]" % int(response_key)

 self.send_via_xmpp(to_user.email(), im_body)

 # are we allowed to send sms messages?
 if ui.mobile_number and ui.allow_sms:
 sms_body = body
 if response_key:
 sms_body += " Respond with \"%s @%d [message here]\"" %
 (Textmark.keyword, int(response_key))
 self.send_via_sms(ui.mobile_number, sms_body)

This model gets right down to the business of sending messages; there are no member
variables for this class. The first method defined is the send_via_sms method, and be-
cause we’ve already defined all the logic to send an SMS message in the TextMark class,
we simply pass along the parameters we receive in send_via_sms to the send method of
the TextMark class.

The next method, send_via_xmpp, is similarly simple. All of the work for sending an
XMPP message is handled inside Google App Engine’s xmpp class. We simply call the
send_message method and log the response. Unlike sending an SMS message, where
we’re limited to a small number of characters in every message, we don’t have the same
restraints in sending XMPP messages, so we append a short message to the end of every
outgoing message. This additional message just instructs the user how to opt out of
receiving XMPP messages from this application.

Throughout this application, we don’t want to have to repeatedly check to see which
type of messages we’re allowed to send to each user and then send each of them. Instead,
we’ll simply wrap up that functionality into a single send method. From that method
we can also prepare the message with any other content that is needed. First off, we
want to announce which user is sending a message if it’s coming from a specific user.
If user “jondoe” sends a message, we want to prepend “jondoe: ” onto that message.
We also may want to append information about how to respond to this particular
message. If there is a response_key, we want to instruct the user to prepend that key
onto the message in his response. We simply check to see whether we can send each
type of message to the user and send the same message via any and all available methods.
This way, if a user sees a message arrive as an SMS, she can respond via her instant

The Basic Models | 231

http://

messenger program for the same result. It also allows her to receive the message on her
phone after she’s stepped away from her computer.

UserThreats
As germs are created and die, they interact with other germs. If one user, Thom, opens
up the application inside an area that has been infected by a user named Jane, Thom
is threatened by that germ. Thom is then required to take some sort of action because
he is “threatened” by the germ. In this case, he faces a threat simply by being in the
area of an existing germ. Thom has some options. He can challenge Jane by sending
her a message that is delivered to her in realtime through a number of different methods.
At this point, two different UserThreats objects have been created. One threat was
directed at Thom because he turned up in hostile territory. Another threat was created
by Thom, who directed a challenge directly at Jane. One way or another, these threats
need to be dealt with by the users, and the class UserThreats stores these threats in the
datastore until then. Let’s build the basic parts of this class. Add the following to
models.py:

class UserThreats(db.Model):
 # who needs to respond to this threat?
 user = db.UserProperty()

 # what type of threat is this?
 threat_type = db.StringProperty()

 # some threats can be addressed via IM/SMS usign a specific key
 response_key = db.IntegerProperty()

 # when does this threat expire?
 expire_time = db.DateTimeProperty()

 # does this threat involve a specific germ?
 germ_threat = db.ReferenceProperty(Germ)

 # did a specific user initiate this challenge?
 challenge_user = db.UserProperty()

 def create(self, user, germ_threat, expires_in_minutes=5, challenge_user=None,
 threat_type="natural"):
 # because failing to respond to threats affects score and strength
 # we want to make sure not to create the same threat multiple times
 q = UserThreats.all()
 q.filter('user =', user)
 q.filter('challenge_user =', challenge_user)
 q.filter('germ_threat = ', germ_threat)
 q.filter('threat_type =', threat_type)

 # if this threat doesn't exist
 if not q.count():

232 | Chapter 10: Putting It All Together

http://

 # turn the number of minutes into a specific timestamp
 expire_time = (timedelta(minutes=expires_in_minutes) + datetime.now())

 ut = UserThreats(user = user,
 challenge_user = challenge_user,
 threat_type = threat_type,
 germ_threat = germ_threat,
 expire_time = expire_time)

 # if this is a challenge threat, setup a new response key
 if threat_type == 'challenge':
 # get the biggest response key
 cq = UserThreats.all()
 cq.filter('user = ', user)
 cq.filter('threat_type = ', 'challenge')
 cq.order('-response_key')
 biggest = cq.get()
 if biggest and biggest.response_key:
 ut.response_key = biggest.response_key + 1
 else:
 ut.response_key = 1

 # save and return this threat
 ut.put()
 return ut

To start, we extend the db.Model class and give it the expected user property. We also
want to keep track of the threat_type. This can be set to either “natural,” which occurs
when a user loads the application in an infected area, or it could be “challenge,” which
is the threat that occurs when one user challenges another. The response_key is used
during challenge threats. This is the key that allows the user to respond directly, in
realtime, to threats as they happen. The expire_time variable is the time at which this
threat expires. If a user does not respond to a threat before this time, bad things
will happen. Also, most threats reference a specific germ, which is stored in the
germ_threat variable. Finally, if the threat is a challenge threat, we store the user who
issued the challenge in challenge_user.

Creating a challenge threat involves a small bit of logic to ensure that everything goes
smoothly. The first thing we need to do is check to see whether this particular challenge
has already been created. Because failing to properly address a challenge results in losses
and gains of points for different users, we want to ensure that we have a unique chal-
lenge. If we do have a new challenge, we convert the parameter expires_in_minutes to
an actual datetime object that can be stored in the datastore. We then take all of the
parameters that we received and pass them on to the UserThreats object.

If this is a “natural” threat type, we’re done and all we have to do is save and return the
newly created object. However, if this is a challenge threat, we want to add an additional
field to the object. We want to generate and store the response_key field. When one
user receives a challenge threat from another user, we notify the threatened user with
an XMPP-based instant message and optionally an SMS message. We want the user to

The Basic Models | 233

http://

be able to respond to the threat directly from whichever form of communication is
fastest.

To ensure that we always know which threat a user is responding to, we save a numeric
response_key with each challenge threat. The user can then reply to the threat by pre-
facing @response_key before any message. If the response key is 1, the user would reply
with “@1 response_key [message to user].” To determine this number, we simply look
at all of the open challenge threats and determine the next available response_key.
Because this application functions in realtime and users are constantly addressing
threats, this number is almost always one, but we want to make sure that each response
is directed to the proper challenge_user.

GameUtils
Another model that needs to be created is the GameUtils class. This class contains two
functions that are needed for various parts of the game but are much more general than
the other models. Add this class to your models.py file:

class GameUtils(object):
 def distance_in_miles(self, lat1, lon1, lat2, lon2):

 r = 3963 # "radius of the earth" (in miles)

 lat1 = float(lat1)
 lon1 = float(lon1)
 lat2 = float(lat2)
 lon2 = float(lon2)

 dLat = math.radians(lat2-lat1)
 dLon = math.radians(lon2-lon1)
 a = math.sin(dLat/2) * math.sin(dLat/2) + \
 math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * \
 math.sin(dLon/2) * math.sin(dLon/2)
 c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a));
 d = r * c;
 return d

 def date_rfcformat(self, dt):
 if dt.tzinfo is None:
 suffix = "-00:00"
 else:
 suffix = dt.strftime("%z")
 suffix = suffix[:-2] + ":" + suffix[-2:]
 return dt.strftime("%Y-%m-%dT%H:%M:%S") + suffix

The first method here takes in two sets of geolocation coordinates and calculates the
distance between them in miles. This is based on the Haversine formula, and specifically
how it works is outside the scope of both this book and my knowledge. This method
is based on the JavaScript code found at http://www.movable-type.co.uk/scripts/latlong
.html. For this method, it was ported to Python and converted to calculate the distance
in miles rather than kilometers.

234 | Chapter 10: Putting It All Together

http://www.movable-type.co.uk/scripts/latlong.html
http://www.movable-type.co.uk/scripts/latlong.html
http://

The next method simply takes in a Python datetime object and converts it into the
format defined by RFC 3339 . Implementations of this code can be found on various
sites on the Internet. This particular implementation can be found on the official Python
website.

Building the Game Itself
At this point we’ve got a pretty good collection of models to help manage the back-end
logic of this game. Now let’s move on to the game itself and start building some realtime
user interactions.

User Authentication
The models.py file contains a good deal of the code needed to run the core of this game,
but we still have to build the views and start assembling the controller classes to actually
interact with the user. We’ll be using a single file to handle all of the controller func-
tionality, whether the request originates from an HTTP request, an XMPP request, or
even an SMS message. Inside your appengine folder, create a file called main.py and add
the following code:

standard python library stuff
import wsgiref.handlers
import os, logging, random, urllib, cgi, re
from datetime import datetime

app engine imports
from google.appengine.ext.webapp import template
from google.appengine.ext import webapp, db
from google.appengine.api import xmpp, users, urlfetch
from google.appengine.ext.webapp.util import login_required
from django.utils import simplejson as json

import all models:
from models import *

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
],
 debug=True)
 # run the application
 wsgiref.handlers.CGIHandler().run(application)

handle the root URL for the site
class MainHandler(webapp.RequestHandler):
 def get(self):

 # load the current user from google
 current_user = users.get_current_user()

Building the Game Itself | 235

http://www.ietf.org/rfc/rfc3339.txt
http://bugs.python.org/issue7584
http://bugs.python.org/issue7584
http://

 # the file location of the logged out template
 template_path = os.path.join(os.path.dirname(__file__),
 'templates/main-logged-out.html')

 # setup the basic template variables
 template_values = {
 "user": current_user,
 "login_url": users.create_login_url('/sync/user'),
 "logout_url": users.create_logout_url('/')
 }

 # If the user is logged in, use the full template
 if current_user:
 template_path = os.path.join(os.path.dirname(__file__),
 'templates/main.html')

 # load the UserInfo object for this user
 ui = UserInfo().by_user(current_user)

 # add UserInfo data to the template
 template_values["allow_sms"] = ui.allow_sms
 template_values["mobile_key"] = ui.mobile_key
 template_values["mobile_number"] = ui.mobile_number
 template_values["mobile_short_code"] = Textmark.short_code
 template_values["mobile_keyword"] = Textmark.keyword

 # render the template
 self.response.out.write(template.render(template_path, template_values))

this needs to stay at the bottom of the file
if __name__ == '__main__':
 main()

Having built the previous App Engine examples, this code should be pretty easy to
understand. We import the modules that we’ll need from the standard Python library
and from Google’s additional libraries. After that, we import every class contained
inside our new models.py file. After that, we define the main function, which just creates
the URL mappings and runs the application. At this point, we’ve set up only one URL
to display. When a user hits the root of the site, /, we’ll route them off to the
MainHandler controller class, which is the next method defined in this file.

At its heart, the MainHandler class is very simple. Its main job is to check whether a user
is logged into the system and load the UserInfo object it’s available. We then take that
information and pass it on as template variables to help render the view and display it
to the user.

Rather than reinvent the authentication wheel, we’re just going to use App Engine’s
users functionality, which has Google handle the user authentication aspect of this
application. This allows us to authenticate users and get some basic information about
them without having to write any code. It also allows users to log in without creating

236 | Chapter 10: Putting It All Together

http://

yet another account on another service. While we can force users to be logged in to
access this view, we simply load the user’s object from Google and generate URLs for
both logging in and logging out. To create the login URL, we simply call the
users.create_login_url supplied with the URL where we’d like the user to end up after
a successful login. In this case, we’re going to send them off to a URL called /sync/
user. Next, we check our datastore to see if we can load a UserInfo for the currently
logged in user. If it exists, we populate a few more template variables and, finally, render
the HTML view.

Depending on whether or not the user is authenticated, we need to display one of two
different templates. If a user is not authenticated, we’ll show her a template called main-
logged-out.html. In the appengine/templates directory, create a file called main-logged-
out.html:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
 <meta name = "viewport" content = "width = device-width; maximum-scale=1.0;
 user-scalable=0;">
 <title>iPandemic</title>
 </head>

 <body>
 <div id="header">
 <h1>iPandemic</h1>
 </div>
 <p>Welcome to the game. Sign in (via google) to get started.</p>
 Log in with your Google Account
 </body>

</html>

When users come to the site and they are not logged in, there isn’t much we can do for
them. So this template simply displays the header and provides a link for the user to
log in. Although also essentially a static HTML page, the logged-in version of this page
has a bit more code. Add a file called main.html to your templates directory:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
 <meta name = "viewport" content = "width = device-width; maximum-scale=1.0;
 user-scalable=0;">

 <title>iPandemic</title>
 <!-- for jQuery -->
 <script type="text/javascript" src="http://www.google.com/jsapi"></script>

 <!-- for the maps API -->
 <script src="http://maps.google.com/maps?file=api&v=2&sensor=true&key=YOUR-
 GOOGLE-MAPS-API-KEY"
 type="text/javascript"></script>

Building the Game Itself | 237

http://

 <!-- the basic CSS for the site -->
 <link rel="stylesheet" type="text/css" href="/static/main.css" />

 </head>

 <body onunload="GUnload()">

 <div id="header">
 <h1>iPandemic</h1>
 <ul id="options">

 </div>

 <div id="messageWindow">
 <form id="msg-form">
 <input id="msg" placeholder="I challenge you to a duel!" />
 <input type="submit" id="msg-send" value="Send" />
 <p>
 Send a message (whatever you want) to challenge the user.
 </p>
 </form>
 </div>

 <div id="map"></div>
 <div id="fullscreen"></div>

 <div id="footer">
 {% if allow_sms %}
 SMS is enabled to {{ mobile_number }}
 {% else %}
 To enable SMS send "{{ mobile_keyword }} {{ mobile_key }}"
 to {{ mobile_short_code }}.
 {% endif %}
 Log Out
 </div>

 </body>

</html>

We don’t have much to do for a user who isn’t logged in, but once she does log in,
we’re going to want to load up the JavaScript files that we’ll be using from Google.
After the standard includes, this HTML file is just the shell that we’ll end up populating
with JavaScript. Feel free to change the CSS styles, but the id attributes should be
retained because we’ll be referring to them directly in the JavaScript.

Starting from the top of the BODY, we’ve added a header and an unordered list that
will contain any number of options for the user at certain points during the game. Below
that is a DIV, hidden by default, that will allow a user to send a message to another
user during a challenge. Below that we have the map DIV, in which we’ll draw the actual
map. The fullscreen DIV is used to overlay content across the entire screen when the
user takes certain actions.

238 | Chapter 10: Putting It All Together

http://

Toward the bottom of the file, we have a small bit of template logic around whether
the user has enabled the SMS functionality of this application. To sign up for this func-
tionality, we ask the user to send in his unique mobile_key to our specific keyword. If
he has already enabled this service, we simply tell him which number he has on file.
We also provide a link to log out this user from the application.

This is a perfectly functioning HTML file that contains most of what we’ll need to
continue. But in order to make the most out of the small screen real estate on a mobile
device, we’re going to want to ensure the map is the proper size, that padding sizes
aren’t too big, and various other minor style adjustments. To take care of these styling
issues, create a file called appengine/static/main.css and fill it with the following basic
style information:

BODY { font-family: monospace; }

/* header and options */
div#header { width: 100%; height: 42px; display: block; }
div#header h1 { float:left; margin: 0px; padding: 0px; }
div#header ul#options { float:right;
 margin:0;
 list-style:none;
 text-align:right;
 font-weight:bold; }

/* the map */
#map { width: 85%; height: 300px; border: #ccc solid 1px; }

/* hide the message window by default */
#messageWindow { display: none; }

/* the "fullscreen" overlay */
#fullscreen { background-color: white;
 top: 0px; left: 0px;
 height: 90%; width: 90%;
 margin-left: 5%;
 z-index: 1000;
 position: absolute;
 display: none; }

/* the big "close button" for the full screen overlay */
#fullscreen .close { width: 100%;
 font-size: 1.7em;
 text-align: center;
 background-color: #ccc;
 color: black;
 top: 0px;
 left: 0px; }

We’re close to having the ability to log into this application, but we’re missing one step
between the login page and displaying this fully authenticated template. When we
created the login_url earlier, we requested that the Google Accounts authentication

Building the Game Itself | 239

http://

service redirect the user to our /sync/user URL. Let’s update the main.py file to have
this functionality:

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
 ('/sync/user/?', SyncUserHandler),
],
 debug=True)
 # run the application
 wsgiref.handlers.CGIHandler().run(application)

class SyncUserHandler(webapp.RequestHandler):
 def get(self):
 UserInfo().sync(users.get_current_user())
 self.redirect('/')

After logging into the service, users are directed to the /sync/user URL, which is routed
through the SyncUserHandler controller. This controller calls the sync method on the
UserInfo object, which just ensures that we have a record for this user in our datastore.
If this user isn’t in our datastore, we generate a new entry; otherwise, it simply returns.
When that finishes, we simply send the user on to the main site.

Now we have enough code to handle a number of different aspects of this game, but
through the browser we only have the ability to log in. This application can run locally
using the App Engine Launcher program. Start it up and direct your browser to the
local site. After logging in, you should see a page resembling Figure 10-2.

Figure 10-2. Logging into the local copy of iPandemic

240 | Chapter 10: Putting It All Together

http://

Geolocation
Having built the HTML shell of the logged-in view, we can now start building out our
application using JavaScript. The first thing we want to do is set up the Geolocation
functionality of this application. Let’s create a new JavaScript file in the static directory
called geo.js:

// ask google to load the jquery libraries
google.load("jquery", "1");

// setup our basic object
var ipGeo = {
 map: false
};

// the function that actually grabs the geolocation information
ipGeo.getLocation = function(successCB, failCB) {
 if(navigator.geolocation && navigator.geolocation.getCurrentPosition)
 navigator.geolocation.getCurrentPosition(successCB, failCB,
 {maximumAge: 300000});

 else
 failCB();
};

ipGeo.initialize = function(map_div_id) {
 if (GBrowserIsCompatible()) {
 // setup the default map using the map div supplied as a parameter
 ipGeo.map = new GMap2(document.getElementById(map_div_id));
 ipGeo.map.setUIToDefault();

 // setup the map
 ipGeo.getLocation(function(position) {
 // pull out the coordinates and center the map
 var lat = position.coords.latitude;
 var lon = position.coords.longitude;
 var gpos = new GLatLng(lat, lon)
 // center the map
 ipGeo.map.setCenter(gpos, 17);
 // set a marker at the current location
 ipGeo.map.addOverlay(new GMarker(gpos));
 },
 function() {
 alert("Your browser doesn't support geolocation");
 });
 }
 else {
 alert("Google doesn't think your browser is compatible with their maps, " +
 "this will be painful without them...");
};

Since we’re using Google’s Ajax API hosting to host our JavaScript files, we ask Google
to load the jQuery library. After that, we jump right into setting up our application
object, ipGeo. The only member variable that we need at this point is a variable to

Building the Game Itself | 241

http://

contain the map object, so that it can be easily referenced in the different member
functions.

The first of those member functions is getLocation, which is a wrapper call for the
browsers, own navigator.geolocation.getCurrentPosition method. This method is
available on most recent mobile browsers and is even available on desktop browsers
with increasing frequency. Firefox on the desktop already includes this functionality
natively within the browser. Rather than checking to see whether each browser sup-
ports this function every time we want to call it, we simply call this ipGeo.getLoca
tion method, which wraps up that logic and makes the proper success and failure
callbacks depending on what happens. Because locating the exact GPS coordinates of
the browser can take some time, navigator.geolocation.getCurrentPosition runs
asynchronously and executes the proper callback when data is available.

Aside from the success and fail callback functions, we also pass along a small object
with a single key/value pair for maximumAge. Making a getCurrentLocation request is
expensive, both in terms of the amount of time it takes to return and the drain on
batteries it takes to use a GPS sensor in a mobile device. Setting the maximumAge param-
eter to 300,000 milliseconds allows us to cache the results for five minutes. This amount
of cache time will ensure that any geolocation-based action that takes place in a stand-
ard session will require only one actual external request. This also stops the result from
being cached indefinitely, which is actually the default behavior on some devices.

The next method is ipGeo.initialize, which takes in a parameter that is just the ID of
the DIV we’re going to use to display the map. This method then checks to see whether
Google thinks this browser is compatible with their maps API and creates the map
object. There are a number of different options that can be used when working with
these maps, but we’re just going to use the default options and tell the map to use the
default user interface. Next, we simply call the getLocation method and, upon success,
we center the map on the coordinates it returned and add a marker at the current
location.

Now that we’ve built some basic JavaScript functionality into this application, we need
to add it to the HTML views. We don’t need to add this to the logged-out page, just
the page where the user has already been authenticated. Open up templates/
main.html and make the following adjustments:

...

 <title>iPandemic</title>
 <!-- for jQuery -->
 <script type="text/javascript" src="http://www.google.com/jsapi"></script>

 <!-- for the maps API -->
 <script src="http://maps.google.com/maps?file=api&v=2&sensor=true&key=
 YOUR-GOOGLE-MAPS-API-KEY" type="text/javascript"></script>

242 | Chapter 10: Putting It All Together

http://code.google.com/apis/maps/documentation/reference.html#GMapOptions
http://

 <!-- our local JS and CSS -->
 <script type="text/javascript" src="/static/geo.js"></script>

 </head>

 <body onload="ipGeo.initialize('map')" onunload="GUnload()">
 <div id="header">
...

This is all the code that is needed to locate users graphically and pinpoint them on a
map. Try heading back to your iPandemic test application. If you’re using a browser
such as Firefox or even the Safari emulator included in some versions of XCode on the
Mac, you should see something like Figure 10-3 for your current location.

Figure 10-3. Finding the current location of a user and displaying it on the map

Building the Game Itself | 243

http://

Keep in mind that if you’re testing this code out using a desktop browser-
based implementation of getLocation, the actual coordinates may be
slightly off from your actual location. At the time of this writing, most
computers lack GPS sensors. Without GPS, the geolocation is accom-
plished by other methods, such as finding the general location of your
IP address, which is much less accurate.

Spreading Germs
The most basic action to be taken in this game is to “cough,” which creates and spreads
germs in specific locations. We’ve already built the Germ class, which can load and store
the germs in our datastore, and have even written the code to locate the user. So adding
the cough action to the game is fairly straightforward. Let’s start by adding the con-
troller and URL routing for this action. In the main.py file:

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
 ('/cough/?', CoughActionHandler),
 ('/sync/user/?', SyncUserHandler),
],
 debug=True)
 # run the application
 wsgiref.handlers.CGIHandler().run(application)

class CoughActionHandler(webapp.RequestHandler):
 def post(self):
 # make sure the latitude/longitude are floats
 lat = float(self.request.get('lat'))
 lon = float(self.request.get('lon'))

 # load up the user information
 current_user = users.get_current_user()
 user_info = UserInfo().by_current_user()

 # get the default disease for this user
 d = Disease().get_default_disease_for_user(current_user)

 # instantiate a new germ object
 new_germ = Germ(user=current_user,
 disease=d,
 location=db.GeoPt(lat, lon))

 # tell GeoModel that the location has been updated
 new_germ.update_location()
 # save the germ
 new_germ.put()

 # update the disease
 d.strength += new_germ.strength
 d.put()

244 | Chapter 10: Putting It All Together

http://

 # let the command center know
 CommandCenter().add_germ(new_germ)
 CommandCenter().update()

 # finally send the germ back to the browser
 germ = new_germ.format_for_json(current_user)
 germ['color'] = Game().default_color_friendly
 self.response.out.write(json.dumps({'message': '', 'germs': [germ]}))

To save a Germ, we only need three different pieces of information from the client. We
need to know which user is creating the germ and that user’s current latitude and
longitude coordinates. Once we have those formatted suitably, we can load up the
user’s default disease using get_default_disease_for_user and instantiate the new
Germ object.

Whereas most of our models extend the db.Model class, the Germ class extends
GeoModel. The GeoModel class provides us with various geolocation capabilities, but in
order to use them, we must inform the base class whenever the location of a specific
object has been updated by calling the update_location method. This generates a list
of properties that will be used later to search for germs based on proximity. Once we’ve
updated the location, we can simply put into the datastore like we would with any other
model.

This germ is part of a larger disease, and as germs are created and die off, this affects
the total strength of the disease. So since we’ve just created a new germ, we want to
add the strength of this new germ to the overall strength of the disease. This information
is used in the model class when we want to find out which germ would win if they had
to fight.

Once the germ and the disease have been updated and saved to the datastore, it’s time
to notify the CommandCenter of the new germ. To do this, we call add_germ and then
update. This is separated into two steps because adding a germ to the CommandCenter
doesn’t take any time, but updating the command center is a much more expensive
call. This way we can add several germs in a loop and then run the update method
across all of the newly created germs.

Finally, we want to respond to this browser request with the newly created germ. To
do this, we simply format it using JSON and respond back to the client. Because the
current user created this germ, it’s considered a friendly germ and we give it the friendly
color. This is a useful visual cue that tells the user with a glance which germs on the
map are friendly and which are enemies. We’re also including a blank message field,
which will be used by other methods later.

We now have the ability to add a germ to the datastore, but we don’t have anything on
the client side that allows us to create a germ, nor do we have any logic to display it on
the map. Let’s fix that by updating the main.html file to have a new link:

Building the Game Itself | 245

http://

...
 <body onload="ipGeo.initialize('map')" onunload="GUnload()">

 <div id="header">
 <h1>iPandemic</h1>
 <ul id="options">

 [COUGH!]

 </div>
...

This new option simply gives the user an interface element to click on and initiate a
cough action. Let’s keep going and add the client cough functionality. In the appengine/
static/geo.js file, add the following method:

ipGeo.cough = function() {
 ipGeo.getLocation(function(position) {
 // pull out the lat/long coords
 var lat = position.coords.latitude;
 var lon = position.coords.longitude;
 // recenter the map
 ipGeo.map.setCenter(new GLatLng(lat, lon), 17);
 // post the actual cough request
 $.post('/cough/',
 { 'lat': lat,
 'lon': lon },
 ipGeo.receivedGermData,
 'json');

 }, function() {});

};

This method keeps all of its functionality wrapped up inside a successful callback from
the ipGeo.getLocation method. When that method returns successfully, we pull out
the latitude and longitude coordinates, recenter the map, and post the results to
the /cough/ URL. Once we’ve made the request to that URL, our cough should be added
to the datastore, but we’re still not showing anything on the map. To handle that, we
request a callback when jQuery’s post method completes. Let’s add that callback
method to appengine/static/geo.js now:

ipGeo.receivedGermData = function(data) {
 // pull out the data sent from the cough callback
 var message = data.message;
 var germs = data.germs;

 // if there is a message, display it to the user
 if(message) {
 alert(message);
 }

246 | Chapter 10: Putting It All Together

http://

 // if there is a germ, draw it on the map
 for(var i in germs) {
 ipGeo.putGermOnMap(germs[i]);
 }
};

This method simply catches the JSON-enoded data that is received from the /cough/
URL. If a message is supplied, we’ll display that to the user, but otherwise we simply
loop through all of the germs and put them on the map with a method called ipGeo.put
GermOnMap. Let’s go ahead and add that method, along with a couple of others needed
to display the extra germ information on the map:

ipGeo.putGermOnMap = function(germ) {
 var lat = germ.lat;
 var lon = germ.lon;
 var spread = germ.spread;
 var color = germ.color;

 // generate a marker that looks different than the default
 var blueIcon = new GIcon(G_DEFAULT_ICON);
 blueIcon.image = "http://www.google.com/intl/en_us/mapfiles/ms/micons/
 blue-dot.png";
 blueIcon.iconSize = blueIcon.shadowSize = new GSize(46, 46);
 var markerOptions = { icon: blueIcon };

 var marker = new GMarker(new GLatLng(lat, lon), markerOptions);

 // allow the user to click and see the data about this germ
 GEvent.addListener(marker, 'click', function() {
 var d = germ.disease;
 html = "<div id='"+ germ.id + "'>'";
 html += "
<small>";
 html += "Strain: " + d.strain + "
";
 html += "Host: " + d.host + "
";
 html += "</div>";

 ipGeo.fullscreenShow(html);
 });

 // show it on the map
 ipGeo.map.addOverlay(marker);

};

// show and hide the extra germ data
ipGeo.fullscreenHide = function() {
 $('#fullscreen').html('');
 $('#fullscreen').hide();
};

ipGeo.fullscreenShow = function(html) {
 $('#fullscreen').css('display', 'block');
 var a = $('<div>')
 .click(ipGeo.fullscreenHide)
 .attr('class', 'close')

Building the Game Itself | 247

http://

 .html('[close]');
 $('#fullscreen').append(a);
 $('#fullscreen').append(html);
};

This adds three new methods to the ipGeo object. The first of these methods, putGerm
OnMap, does the actual work of adding the marker to the map. To do this, we start by
pulling apart the germ that is passed in as the only parameter. Then, we build a simple
marker using Google Maps API’s blue icon, and we increase the size a bit to make sure
it’s visible around the first marker that we drew on the screen in initialize.

Next, we add a callback function so that we get notified when the user clicks on the
marker itself. When the user does this, we want to show the user extra information
about the germ, such as the name of the strain and the host of the disease. The Google
Maps API actually provides a really nice method of displaying information about a
specific marker, openInfoWindowHtml, but its performance on a mobile phone is quite
slow. To ensure a smoother performance, we use a custom function that just displays
a large DIV on the screen. This performs much better on older phones than the open
InfoWindowHtml, which involves adjusting the map, drawing a shadow, and even down-
loading new map tiles to display the information.

That faster method for displaying information is called ipGeo.fullScreenshow. Along
with its companion function ipGeo.fullScreenhide, this gives us the ability to quickly
show additional information on the screen with a limited performance hit on mobile
devices.

Let’s open the browser again and test out this new cough functionality. When I view
it in the XCode iPhone simulator, the result looks like Figure 10-4.

Drawing the germ itself as a little point on the map tells only half the story of the germ.
Each germ has a different level that affects how far it has spread out over the map, and
we should display that information as well. To do that, let’s draw a circle around the
germ that illustrates how far it has spread. For this action, we’ll need to add another
method to geo.js:

ipGeo.drawCircle = function(center, radius, color) {
 var poly = [];
 var lat = center.lat() ;
 var lng = center.lng() ;
 var d2r = Math.PI/180 ; // degrees to radians
 var r2d = 180/Math.PI ; // radians to degrees
 var Clat = (radius/3963) * r2d ; // using 3963 as earth's radius
 var Clng = Clat/Math.cos(lat*d2r);

 var points_in_circle = 10;

 // add each point in the circle
 for (var i = 0 ; i < points_in_circle; i++) {
 var theta = Math.PI * (i / (points_in_circle / 2)) ;
 Cx = lng + (Clng * Math.cos(theta)) ;
 Cy = lat + (Clat * Math.sin(theta)) ;

248 | Chapter 10: Putting It All Together

http://

 poly.push(new GLatLng(Cy,Cx)) ;
 }

 // add the first point to complete the circle
 poly.push(poly[0]) ;

 var line = new GPolygon(poly, color, 3, 1, color, 0.2);
 ipGeo.map.addOverlay(line) ;
};

Figure 10-4. Viewing the new cough marker and additional information

This code generates a circle and displays it on the map based on a single center point
and a radius of a certain number of miles. Essentially, it figures out how to draw the
circle based on how many points we elect to show. Because we’re showing this on a
mobile phone, and performance counts in realtime applications, we’re only going to
show 10 points, but this can be increased to be as smooth as you’d like. Once again,
this code was not written by me from scratch; it is a modified function based on the
work of Jeremy Schneider.

Building the Game Itself | 249

http://jerschneid.blogspot.com/2008/12/simple-way-to-draw-circle-with-google.html
http://

To actually draw this for each germ, we need to call it from within the ipGeo.putGer
mOnMap method. Update that method to have the following changes:

ipGeo.putGermOnMap = function(germ) {
 var lat = germ.lat;
 var lon = germ.lon;
 var spread = germ.spread;
 var color = germ.color;

 ipGeo.drawCircle(new GLatLng(lat, lon), spread, color);
...

Running the application again and hitting the cough link gives the same approximate
results, only this time with the circle drawn around the point of the germ in the color
specified by the CoughActionHandler (see Figure 10-5).

Figure 10-5. The cough marker complete with the spread of the germ

250 | Chapter 10: Putting It All Together

http://

Loading Germs
Now that we’re saving, displaying, and showing germs as we cough, we need to start
to load them when a user loads the web page. A big part of the game is finding out if
your current area is infected and responding to that. In order to add that functionality,
we need to be able to load up germs that already exist in the area. We need to add some
server-side functionality to get this to work, but on the client side, most of the work is
already done. Let’s start on the client side. In your appengine/static/geo.js file, add the
following method:

ipGeo.showNearbyGerms = function(lat, lon) {
 $.post('/get/nearby/germs/',
 { 'lat': lat, 'lon': lon },
 ipGeo.receivedGermData,
 'json');
};

This method does one thing, so it’s fairly simple to understand. When giving latitude
and longitude parameters, it simply makes an Ajax request to /get/nearby/germs and
supplies a callback method. That callback method is the exact same method that we
use in the cough method. It will take any number of germs, loop through them, and
draw them onto the screen. This function is ready to load nearby germs, but we need
to make sure to actually call this method every time a user loads the page. To do that,
let’s modify the initialize function to call showNearbyGerms:

ipGeo.initialize = function(map_div_id) {
...
 // set a marker at the current location
 ipGeo.map.addOverlay(new GMarker(gpos));

 // show the nerby germs
 ipGeo.showNearbyGerms(lat, lon);
 },
...

This ensures that every time a user loads this page, we’ll load up the nearby germs.
Now that we can load and show them on the client side, let’s move over to the server.
We need to add the ability to pull these germs out of the datastore based on their
proximity to the current location. Inside appengine/main.py, add the following con-
troller and the new URL route in the application object:

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
 ('/cough/?', CoughActionHandler),
 ('/sync/user/?', SyncUserHandler),
 ('/get/nearby/germs/?',
 GetNearbyGermsHandler),
],
 debug=True)

Building the Game Itself | 251

http://

 # run the application
 wsgiref.handlers.CGIHandler().run(application)

class GetNearbyGermsHandler(webapp.RequestHandler):
 def post(self):
 lat = float(self.request.get('lat'))
 lon = float(self.request.get('lon'))
 germs = Germ().get_germs_near_point(lat, lon,
 max_distance_in_meters=1609*3)

 output = []
 current_user = users.get_current_user()

 # loop through each of these germs
 for germ in germs:
 # the same germ in JSON format
 g = germ.format_for_json(current_user)

 # assume this is an enemy
 g['color'] = Game().default_color_enemy

 # if the creator of this germ is us, it's not an enemy
 if germ.user == current_user:
 g['color'] = Game().default_color_friendly

 # otherwise, let's figure ot exactly how far away this germ is...
 else:
 distance = GameUtils().distance_in_miles(lat,
 lon,
 germ.location.lat,
 germ.location.lon)

 # are we within the spread of this germ?
 if distance < germ.spread:
 g['color'] = Game().default_color_threat
 g['threat'] = True

 # this user is threated by this.
 # log it so we can force them to do something
 UserThreats().create(current_user, germ)

 # add this germ to the list of germs we'll send back to the client
 output.append(g)

 self.response.out.write(json.dumps({'message': '',
 'germs': output}))

The point of GetNearbyGermsHandler is to load nearby germs and encode them into
JSON so they can be easily displayed by the web browser. To do that, we take the
latitude and longitude parameters supplied during the Ajax request and pass them
along to the get_germs_near_point method. In this case, we’re looking for germs within
a distance of three miles. This will allow us to ensure that we show any germs that have
grown from their original area toward where the user is currently located. It also gives

252 | Chapter 10: Putting It All Together

http://

us enough breathing room to show germs on the map if the user starts to scroll around
the map beyond what is immediately available.

The get_germs_near_point method takes those latitude and longitude parameters, loads
up nearby germs, and returns them in an array. We then want to loop through each of
them to format them and take a couple of other actions based on the type of germ we
find. First of all, we want to format the germ to JSON. Once we’ve done that, we want
to determine whether the germ is an enemy or a friend. We consider a germ to be
friendly if the current user created it; otherwise, it’s an enemy.

If the germ is an enemy, we know that it’s close to the current user by virtue of it having
been included in the results from get_germs_near_point. However, we want to figure
out whether our current user is inside the spread of that germ. If it is, it’s a threat to the
current user and we want to do a few extra things. First of all, we want to draw the
circle around the germ in a different color to make it clear that the germ is a threat and
not just an enemy. We also want to mark the germ as a threat in case the client-side
script wants to behave differently in light of this fact. We want to actually create a
UserThreats object for this threat. Any time a threat occurs, we need to put it in the
datastore and ensure the user reacts within a reasonable amount of time. Finally, we
add this particular germ to the output array and send the entire array back to the client.
This will then get picked up by the receivedGermData method, which will display each
germ on the screen.

If you venture out and “cough” in a number of different locations while logged in as
different users, you’ll be able to see the different types of germs displayed on the screen.
Figure 10-6 shows an area with the different types of germs loaded.

Threats
The previous section touched on the idea of the threat concept in this game. There are
two types of these threats in iPandemic: a “natural” threat and the “challenge” threat.
We started creating natural threats in the previous section. These occur naturally when
a user loads the game and is in an area already infected by another user. A challenge
threat is that user’s direct challenge to the germ already in the area.

Natural threats

Natural threats happen when a user loads the game from a location that is already
infected by another user. When this happens, the user must respond to the threat in
some way. There are two options to respond to this threat: the user can “cover” up and
try to avoid the disease or she can challenge the other user.

Building the Game Itself | 253

http://

Figure 10-6. Viewing the different types of nearby germs

We are already storing the natural threat types, so let’s add some logic on the client
side that lets the user know she’s been threatened and gives her options to respond. In
appengine/static/geo.js, let’s add a new member variable to the ipGeo object that keeps
track of the current threat:

var ipGeo = {
 map: false,
 current_germ_threat: ''
};

On the server side, the GetNearbyGermsHandler checks each germ that is nearby and sets
the threat field to True if a specific germ is a threat to the user. When we receive this
list of germs on the client side, we can easily set the current_germ_threat variable based
on which of these germs is a threat. We simply check each germ and set this variable
for the germ that is a threat in the receivedGermData method:

254 | Chapter 10: Putting It All Together

http://

ipGeo.receivedGermData = function(data) {
...
 ipGeo.current_germ_threat = '';
 for(var i in germs) {
 if(germs[i].threat) {
 // setup the current_germ_threat variable
 ipGeo.current_germ_threat = germs[i].id;

 // update the options to illustrate the threat
 var options = "You are Threatened!
";
 options += "[CHALLENGE] |";
 options += "[COVER UP]";
 $('#options').html(options);
 }

 ipGeo.putGermOnMap(germs[i]);
 }
};

Now if any of the germs are threats, we’ll store that germ’s id in the current_
germ_threat variable. We also update the options at the top of the page. Normally this
list gives the user the option to “cough,” but when she is threatened we want to warn
her about that and give her some new options. In this case, we suggest that she either
“challenge” the other user or “cover up” so she doesn’t lose points.

Let’s start by building the cover functionality. The idea behind this feature is that when
faced with an infected area, sometimes it makes sense to cover up rather than challenge
the germ. This is the easiest of the two features to implement and potentially the safest
possible route for the user. On the client side, all we need to do is implement a single
Ajax request. Add the following method to appengine/static/geo.js:

ipGeo.cover = function() {
 ipGeo.getLocation(function(position) {
 $.post('/cover/',
 { 'target_germ_id': ipGeo.current_germ_threat },
 function (data) {
 $('#options').html('Covered Up!');
 },
 'json');
 }, function() {});
};

This method just makes a request to the /cough/ URL. The single parameter is the germ
that threatened the user and caused her to cover up. Upon successful completion of
this request, we update the options menu to let the user know what happened. The
server side isn’t too complicated, but we’re going to need to add two new methods.
Let’s start by adding the following:

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
 ('/cough/?', CoughActionHandler),
 ('/sync/user/?', SyncUserHandler),

Building the Game Itself | 255

http://

 ('/get/nearby/germs/?',
 GetNearbyGermsHandler),
 ('/cover/?', CoverActionHandler),
],
 debug=True)
 # run the application
 wsgiref.handlers.CGIHandler().run(application)

class CoverActionHandler(webapp.RequestHandler):
 def post(self):

 target_germ_id = self.request.get('target_germ_id')
 current_user = users.get_current_user()

 if target_germ_id:
 # load the enemy germ
 enemy_germ = db.get(target_germ_id)

 # you covered up, so your disease strength increases
 disease = Disease().get_default_disease_for_user(current_user)
 disease.strength += Game().default_disease_strength_increment
 disease.put()

 # this threat has been handled though, let's remove it from the datastore
 UserThreats().remove_threat(current_user, enemy_germ)

 self.response.out.write(json.dumps({}))

When a user covers up, we want to take a couple of actions. We want to increase the
strength of their disease, even though they’re not creating any germs. We also want to
remove this threat from the datastore. Once a threat expires, the user loses points if it
hasn’t been addressed. Because this user is addressing the threat by covering up, we
want to ensure it doesn’t affect the user’s score. To remove the threat, we call the
remove_threat method on the UserThreats object. Let’s create that now. In the
models.py file add the following method to the UserThreats class:

class UserThreats(db.Model):
 # who needs to respond to this threat?
 user = db.UserProperty()
...
 def remove_threat(self, user, germ):
 q = UserThreats.all()
 q.filter('user = ', user)
 q.filter('germ_threat = ', germ)
 threat = q.get()
 if threat:
 threat.delete()

256 | Chapter 10: Putting It All Together

http://

To delete a threat from the datastore, we only need two pieces of information: the
user who was threatened and the germ involved. We use those variables to locate the
germ and, if we find it, we delete it from the datastore.

If you log in as one user, cough, and then log in as another user, you can easily test this
functionality. Figure 10-7 shows what it looks like after successfully covering up from
a germ threat.

Figure 10-7. Successfully covering up

For a more complete game experience, the CoughActionHandler would
be a good place to adjust the scores of both the current user and the
enemy user. For brevity, we’re not adding it here, but the code available
online does update the scores at this point.

Building the Game Itself | 257

http://

Initiating a challenge

When a user is threatened by a natural threat, she can cover up and avoid the situation
entirely or she can challenge the user. Challenging a user starts a series of events that
involve communicating in realtime with the other user, regardless of whether they are
logged into the application, and a race against the clock for all parties involved.

We’ve already added the link to initiate a “challenge” when a user is threatened. Let’s
add the JavaScript to handle this action. In appengine/static/geo.js, add the following
method:

ipGeo.challenge = function() {
 // hide the fullscreen viewer if it's open
 ipGeo.fullscreenHide();

 // show the message window and focus the text input
 $('#messageWindow').show();
 $('#msg').focus();

 // listen for a submit event
 $('#msg-form').submit(function() {

 $.post('/message/to/germ/host',
 { 'target_germ_id': ipGeo.current_germ_threat,
 'msg': $('#msg').val()
 },

 // on successful submit, clear and hide the form
 function() {
 $('#msg').val('');
 $('#msg-send').unbind('submit');
 $('#messageWindow').hide();
 $('#msg').blur();
 $('#options').html('Challenged User!');
 }
);
 return false;
 });
};

For one user to challenge another, she must send a message to the other user. The
application isn’t concerned about the content of the message; the goal is to have the
users interact in realtime through a variety of methods. To initiate this communication,
we wait until a user clicks the challenge link and then provide a small text entry field
and a submit button that will allow them to enter a message and send it the other user.
We then listen for a submit event on this form. When we receive it, we post a request
containing the text of the message along with the germ involved in this threat.

The server side of this action is actually surprisingly simple. We need to create a new
threat object and send a message to the user who has been threatened. In your
main.py file, add the URL mapping and the controller for this functionality:

258 | Chapter 10: Putting It All Together

http://

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
 ('/cough/?', CoughActionHandler),
 ('/sync/user/?', SyncUserHandler),
 ('/get/nearby/germs/?',
 GetNearbyGermsHandler),
 ('/cover/?', CoverActionHandler),

 ('/message/to/germ/host/?',
 MessageToGermHostHandler),
],
 debug=True)
 # run the application
 wsgiref.handlers.CGIHandler().run(application)

class MessageToGermHostHandler(webapp.RequestHandler):
 def post(self):
 g = Germ.get(self.request.get('target_germ_id'))

 # a couple of things happened here:
 # by sending this message, the current user has instigated
 # a threat against the enemy user.
 # if the enemy responds in two minutes
 ut = UserThreats().create(g.user, g.key(),
 expires_in_minutes=2,
 challenge_user=users.get_current_user(),
 threat_type='challenge')

 if ut:
 mesg = self.request.get('msg')
 mesg += "\n\nThis is a direct threat! Protect yourself."
 Messenger().send(from_user=users.get_current_user(),
 to_user=g.user,
 body=mesg,
 response_key=ut.response_key)

All the logic in creating a threat like this is already handled by the code we’ve already
written. When we receive this type of request, we want to do two separate things. First,
we need to create a new UserThreats object. By challenging a user, this threatens the
owner of the germ, so we create a threat directed at that user. This threat expires in
only two minutes because we want the challenged user to respond quickly. However,
this likely happened while the threatened user was not logged into the site. So we must
inform that user by sending them a message, complete with the response_key that will
enable the user to respond from either SMS or XMPP, whichever method is most con-
venient. Figure 10-8 shows the flow of threats as they function in realtime.

Updating threats

We’re creating and responding to threats, but because they don’t expire, there is no
reason for the users to respond as they happen. If threats expire without being dealt
with, the application needs to penalize the users and tell them what happened. To do

Building the Game Itself | 259

http://

this, we’ll define a cron job that runs every minute and takes action on any threat that
has expired. Running cron jobs in App Engine is similar to running them on a standard
server. We define a job to run and the schedule for running it. When it’s time to run
one of the jobs, App Engine makes a GET request to the specified URL, and your
application executes anything that needs to be done. To get started, let’s define the
cron schedule by create a file in appengine called cron.yaml:

cron:
- description: see if there are open challenges
 url: /cron/update/threats
 schedule: every 1 minutes

This entry tells Google that we want to run the code at /cron/update/threats once a
minute. While App Engine’s cron jobs can get slightly delayed, having this job run close
to once every minute is perfect for our needs. We’re not doing anything super time-
sensitive; we just want to check to make sure that none of the threats have expired.

On the server side, responding to these cron requests works exactly like responding to
any other HTTP request. Let’s add the URL mapping and the new controller now. In
your appengine/main.py file, make the following changes:

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
...
 ('/cron/update/threats/?',
 CronThreatHandler),
],

Figure 10-8. How threats work in iPandemic

260 | Chapter 10: Putting It All Together

http://

 debug=True)
 # run the application
 wsgiref.handlers.CGIHandler().run(application)

class CronThreatHandler(webapp.RequestHandler):
 def get(self):
 UserThreats().update_threats()

When we receive a request for this cron job, we simply call a method on the User
Threats object and return. Although this works perfectly, in a production setting you
may want to ensure that this request originated from Google’s App Engine cron system
by checking the header or setting it up to run for a specific user. For now, let’s go ahead
and add the update_threats method to the UserThreats class. In your models.py file,
add the following code:

 def update_threats(self):
 # load the expired threats
 timeformat = '%Y-%m-%d %H:%M:%S'
 q = UserThreats.gql('WHERE expire_time < datetime(:1)',
 datetime.now().strftime(timeformat))

 for x in q:
 if x.threat_type == 'challenge':

 # a local reference to the germ
 germ_threat = x.germ_threat

 # deduct points and send a message to the user
 UserInfo().by_user(x.user).update_score(-3)
 message = "Someone threatened you and you didn't respond. "
 message += "Points deducted! Also, your germs died!"
 Messenger().send(None, x.user, message)

 # update the overall strength of the disease
 germ_threat.disease.strength -= germ_threat.strength
 germ_threat.disease.put()

 # Delete any natural threats related to this threat
 tq = UserThreats.all()
 tq.filter('user = ', x.challenge_user)
 tq.filter('germ_threat = ', germ_threat)
 tq.filter('threat_type = ', 'natural')
 natural_threat = tq.get()
 if natural_threat:
 natural_threat.delete()

 # send a message to the winner of this challenge
 message = "Good challenge. You wiped out the other disease.
 (Refresh and) cough again to spread yours!"
 Messenger().send(None, x.challenge_user, message)

 # delete the original GERM that caused the threat
 CommandCenter().delete_germ(germ_threat)
 germ_threat.delete()

Building the Game Itself | 261

http://

 elif x.threat_type == 'natural':
 # this user didn't do anything!
 UserInfo().by_user(x.user).update_score(-3)

 # the other user scared someone off
 UserInfo().by_user(x.germ_threat.user).update_score(+3)

 message = "You were threatened by a disease on your last check-in"
 message += " and didn't cover or challenge successfully.
 message += "Points deducted!"
 Messenger().send(None, x.user, message)

 # delete this threat whether it's a challenge or natural threat
 x.delete()

 # update the command center after the loop has finished
 CommandCenter().update()

This method starts by loading all of the expired threats out of the datastore by looking
for any threat whose expire_time is in the past. For each expired threat we check the
threat_type and take different actions based on which type we find.

If the expired threat is a challenge threat, we need to do a few different things. Suppose
Jane sends a challenge to Dexter. After receiving a challenge threat, Dexter must re-
spond in a certain amount of time. If he doesn’t respond, we want to inform him that
time is up and deduct points. We then want to deduct some strength from the overall
disease because the germ involved in this challenge was defeated.

When Jane sent this threat to Dexter, she had been threatened by a natural threat
because the place where she checked in had already infected by Dexter’s germ. To
respond, she sent out this challenge threat, which has since expired. As far as the game
is concerned, Jane has addressed her natural threat by challenging Dexter and winning.
Because she’s addressed her natural threat, we delete it so that it doesn’t expire later
and send her a message. Finally, this challenge threat all started because of a germ and
in losing this challenge, the germ should also be deleted.

Going through that loop, we may also find that the expired threat had a threat_type
of natural. When this happens, a user is checked in at an infected location and didn’t
properly handle the threat. This means that the user may not have done anything, or
it could mean she sent a challenge request but the challenged user responded in time.

If a natural threat expires, we want to update the scores for both of the users. Whoever
failed to respond to the threat has some points deducted and the other user gains some
points. We also want to notify the user by sending her a message about what happened.
Finally, whether the threat was a natural or challenge threat, we want to delete it from
the datastore.

262 | Chapter 10: Putting It All Together

http://

Responding to challenge threats: Receiving XMPP and SMS messages

When Jane challenges Dexter, Dexter is notified by instant message and SMS and given
a short period of time to respond to the threat. He can do this by replying to either of
those messages. At the end of each message sent as a challenge threat, there is a string
resembling “Respond with @4 [your message here].” That response key, @4, allows
Dexter to respond directly to Jane via XMPP or SMS through the game without knowing
any other information about Jane.

To get started with this functionality, let’s start accepting the
XMPP responses. When we set up our app.yaml file for this application, we enabled an
inbound service called xmpp_message that allows us to receive XMPP messages from
users. Receiving these messages is as simple as responding to any other type of HTTP
request, only messages are received to a specific URL. Update your main.py file:

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
...
 ('/_ah/xmpp/message/chat/?', XMPPHandler),
],
 debug=True)
 # run the application
 wsgiref.handlers.CGIHandler().run(application)

class XMPPHandler(webapp.RequestHandler):
 def post(self):
 # parse the message object
 message = xmpp.Message(self.request.POST)

 # clean up the resource name
 email = message.sender
 if email.find('/') != -1:
 email = email[:email.find('/')]

 # the sender should be a user of our system.
 sender = users.User(email)
 body = message.body.strip()

 # pull out the response key from the message
 results = re.findall("@([0-9]+)\ (.+)", body)
 if len(results) == 1:
 response_key, msg = results[0]
 response = UserThreats().respond_to_threat(sender, int(response_key), msg)

 # if we have a message from respond_to_threat, send it back to the user
 if response:
 message.reply(response)
 else:
 message.reply("Message delivered, we'll see what happens.")

 # we couldn't figure out what the resource key was...
 else:
 message.reply("I had trouble dealing with that... sorry :(")

Receiving XMPP messages.

Building the Game Itself | 263

http://

Having built the XMPP functionality in a previous chapter, some of this should look
familiar. The first thing we do is set up the XMPP message object using the POST data
that we’ve received. Next, because XMPP sender addresses are often in the format of
an email address with an additional resource string attached to the end, we want to
strip off that additional string. Then, we load the users object based on the email address
and clean up the body of the message.

Once we’ve done all the housekeeping associated with accepting this message, it’s time
to look at the message body itself and see if we can figure out what the user is trying to
tell us. All messages that come into the system are directed at a specific threat using the
response_key. So, the first thing we want to do is see if we can pull out the resource key
with a simple regular expression. If we load exactly one result, we know we’ve probably
understood this type of message.

We then notify the UserThreats object that sender is responding to the threat identified
by the response_key. We’ll define respond_to_threat next, but it will return a message
to the user, which this method just passes back up the chain. If we don’t get a response
or we don’t understand the request, we notify the user and return.

It’s good practice to allow the user to opt out of receiving XMPP mes-
sages through the XMPP interface itself. That code has been left out of
this version for brevity, but it exists in the version of the application that
you can download from the website.

Now that we’re accepting IM messages, let’s move on to accept-
ing SMS messages and allowing users to respond to threats in that way. Still in the same
main.py file:

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
...
 ('/catch/sms/?', SMSIncomingHandler),
],
 debug=True)
 # run the application
 wsgiref.handlers.CGIHandler().run(application)

class SMSIncomingHandler(webapp.RequestHandler):
 def get(self):
 self.response.headers['Content-Type'] = 'text/plain'

 # prepare some HTTP parameters as variables
 uid = self.request.get('uid')
 body = self.request.get('body').strip()

 # try to load the sender of this message from the datastore
 ui = UserInfo().by_mobile_number(uid)

Receiving SMS messages.

264 | Chapter 10: Putting It All Together

http://

 # great we found this user in the datastore
 if ui:
 # pull out the response_key, if it's in there...
 results = re.findall("@([0-9]+)\ (.+)", body)
 if len(results) == 1:
 code, msg = results[0]
 response = UserThreats().respond_to_threat(ui.user, int(code), msg)
 self.response.out.write(response)
 else:
 self.response.out.write("I'm not sure what you wanted me to do.")

 # we didn't find this user by UID.
 else:
 # perhaps they're trying to sign up by sending their mobile_key?
 ui = UserInfo().by_mobile_key(body)
 if ui:
 # check
 ui.allow_sms = True
 ui.mobile_number = uid
 ui.put()
 self.response.out.write("OK, SMS is enabled. Good choice.")
 else:
 self.response.out.write("I couldn't find that mobile key.")
 return

This method assumes that we’re using the TextMarks service in much
the same way as we did previously in this book, setting it up to make a
request to /catch/sms whenever an SMS is sent to our keyword.

This method works in much the same way that the XMPPHandler worked. In the XMPP
method, we had the email of the user as it exists in our datastore, but when we’re using
SMS, we have to load each user based on her phone number. If we have the mobile
number in our datastore, we load the UserInfo object and run respond_to_threat in the
exact same way that we did in the XMPP method.

SMSIncomingHandler’s only real deviation from XMPPHandler comes when we are unable
to load the UserInfo object for the mobile number. In XMPPHandler, we can assume that
we have that user’s XMPP address in the datastore because we use that when she logs
into the application. With SMS, though, we don’t have a user’s phone number until
she explicitly signs up and gives it to us.

When a user views the application, she’s greeted with a message explaining that she
can sign up for SMS messages by sending her mobile_key to the keyword. This next bit
of code checks to see whether that is happening. If we don’t know who a certain user
is, we try to load the UserInfo object using by_mobile_key. If the body of the message
is the mobile_key for a specific user, we save her mobile number and respond back.

Building the Game Itself | 265

http://

When a user receives a threat, she needs to be able to respond to
that threat. That ends up coming through a method called respond_to_threat. Add it
to your models.py file:

 def respond_to_threat(self, user, response_key, response):
 # load the response using the user/response key combo
 q = UserThreats.all()
 q.filter('user = ', user)
 q.filter('response_key = ', response_key)
 threat = q.get()

 if not threat: return

 # did they respond to a challenge threat?
 # let's increase the strength of the challenged germ
 if threat.threat_type == 'challenge':
 challenge_user = threat.challenge_user

 # increase the strength of the germ that was threatened
 threat.germ_threat.strength += Game().default_disease_strength_increment
 threat.germ_threat.put()

 # update the score of the users
 UserInfo().by_user(user).update_score(3)
 UserInfo().by_user(challenge_user).update_score(-1)

 # the loser should get a response too...
 message = "%s: %s\nYou lost the challenge! You should probably cover up."
 % (user.nickname(), response)
 Messenger().send(user, challenge_user, message)

 # The threat has been responded to!
 # we can delete it
 threat.delete()

 # this is a successful challenge, tell the user who responded
 response_to_sender = "Awesome! You defeated a challenge!"
 response_to_sender += "Points, strength, good looks? All increased."
 return response_to_sender

When one user responds to a threat, respond_to_threat handles the logic for what
follows. This happens when a user checks in at a location that is infected by another
germ. That user then decides to challenge the germ rather than cover up. Immediately,
a message is sent out proclaiming the challenge. To defend herself against a challenge,
all a user must do is reply via instant messenger or SMS. If she does that, she’s suc-
cessfully defeated the challenge. This method handles that logic.

So the first thing we need to do is load the UserThreats object based on the user object
and the response_key. Assuming we were able to load this threat, we want to check to
ensure it’s a “challenge” threat type. If it is, we have a couple of tasks that we need to
accomplish. First, we want to increase the strength of the threatened germ as a reward
for being successfully defended. Next, we want to adjust the scores of the two players

Handling the response.

266 | Chapter 10: Putting It All Together

http://

involved. The user who successfully defeated this challenge sees a score increase and
the loser receives a slight decrease in score.

Next, we set up and send out messages to the different users. First, we want to notify
the user who issued the challenge that his challenge has failed. That user still has the
active “natural” threat out there and should cover up, so we advise the user of this.
Next, we set up the message that we’ll send back to the user who fended off this chal-
lenge to inform her that she was successful.

Having responded to a threat means that it’s no longer a threat to the user. Because it’s
no longer a threat, we can get rid of it. To do that, we simply delete it from the datastore.
We also want to send a message to the user who responded to this request. To respond,
we simply return the response message that we want to send to the user, and the con-
troller class will handle routing the message back to the user. We can’t actually send
the reply at this point in the code, because it’s not clear whether the user sent a response
through XMPP or SMS, so leaving this up to the controller is the simplest option.

As we add more of these communication features, it becomes harder
to test them out locally. While you can use the App Engine admin section to test XMPP
messages locally in your application, testing the SMS functionality requires a publicly
facing URL. This means that the easiest path to test some of this functionality is to
deploy it to your live App Engine instance and run it from there.

To test a challenge on your application, you’ll need two separate Google accounts.
Check in and “cough” at one location and then sign out. Using your second account,
sign in again, and you should be presented with a threat. If you challenge that threat,
you should receive an instant message and an SMS if you’ve enabled that service.
Figure 10-9 shows an example of this communication.

You can always see examples of how this works by using the live iPan
demic instance.

Spreading Germs
When we go to display the germs on the map, one of the things we look at is the
spread of the germ. The spread is a variable that dictates the size of the germ on the
map and in the game logic. A germ with a spread of 1.0 is drawn on the map as being
a mile wide. As time passes, the germs need to grow and expand on the map. To do
that, we’ll set up another cron job that spreads the germs. Add the following code to
your main.py file:

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
...

Responses in action.

Building the Game Itself | 267

http://www.ipandemic.com
http://www.ipandemic.com
http://

 ('/cron/spread/germs/?',
 CronSpreadGermsHandler),
],
 debug=True)
 # run the application
 wsgiref.handlers.CGIHandler().run(application)

class CronSpreadGermsHandler(webapp.RequestHandler):
 def get(self):
 Germ().auto_spread()

Figure 10-9. Responding to a threat via SMS

Once again, this cron job controller does nothing more than accept the request and
pass all of the logic in to a method inside a model class. In this case we call auto_spread in
the Germ model. Open up models.py and add the auto_spread method to the Germ class:

 def auto_spread(self):
 # get all of the germs
 germs = Germ().all()

 for g in germs:

 # each germ increases size by its speed
 g.spread += g.spread_speed

268 | Chapter 10: Putting It All Together

http://

 # as it grows, it gets slower
 if g.spread_speed > Game().default_germ_slowdown:
 g.spread_speed -= Game().default_germ_slowdown

 # we've updated the germ, notify the command center
 CommandCenter().add_germ(g)
 g.put()

 # update the command center after running through everything
 CommandCenter().update()

The purpose of this method is to take every germ on the map and make it slightly larger.
To do that, we loop through every germ in the datastore and increase its spread prop-
erty. We accomplish this by incrementing it by the value of its spread_speed. The spread
speed starts out as a relatively large number, which enables new germs to spread quickly
and not die out initially. However, as they grow, they get slower, which is what the
next bit of this code does. Once we’ve increased the spread of the germ and decreased
the speed, it’s time to notify the CommandCenter and save the germ with the put method.

We don’t run update on the CommandCenter until after we’ve completed the loop with
all of the germs. Every time this code runs, the germs will increase all across the map.
New germs will spread faster than old ones, but they’ll all increase by some amount.
To test this out, simply load the /cron/spread/germs URL in your browser several times
in a row. You should be able to notice a jump in the size of the existing germs.

However, we’re not going to access this URL manually; we’ll be running this through
Google’s cron service as well. So let’s add this to the cron.yaml file now. While we’re
in there, let’s also add an entry for the final cron job we’ll need for this application:

cron:
- description: see if there are open challenges
 url: /cron/update/threats
 schedule: every 1 minutes

- description: make the germs grow
 url: /cron/spread/germs
 schedule: every 10 minutes

- description: should any germs fight each other?
 url: /cron/fight/germs
 schedule: every 10 minutes

Once you redeploy this application, Google will start running this cron job every 10
minutes, which means that every 10 minutes, each germ on the map will grow. They’re
set to grow very slowly, but at some point, they’ll all start overlapping. That’s where
last cron job comes in.

Fighting Germs
As the germs grow behind the scenes, they occasionally step on one another’s toes.
More specifically, after a while, germs start to grow so big that they are in the same

Building the Game Itself | 269

http://

space, even if they weren’t when they were created. When this happens, we want them
to fight on their own without any user interaction.

We’ve already added a cron job for this activity that hits the URL /cron/fight/germs
every 10 minutes. Let’s add the handler code to accept this request from App Engine.
In your main.py file, make the following additions:

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
...
 ('/cron/fight/germs/?',
 CronFightGermsHandler),
],
 debug=True)
 # run the application
 wsgiref.handlers.CGIHandler().run(application)

class CronFightGermsHandler(webapp.RequestHandler):
 def get(self):
 Germ().auto_fight()

Aside from calling code specific to fighting the germs, this code is exactly like the
CronSpreadGermsHandler. So let’s move right on to the models.py file and add the
auto_fight method to the Germ class:

 def auto_fight(self):
 # keep track of who needs to go
 losers = []

 # get all of the germs
 germs = Germ().all()

 # loop through each germ
 for g in germs:
 # no need to check the losers
 if g in losers: continue

 # test it against all the othr germs
 for x in germs:

 # no need to check the losers
 if x in losers: continue

 if x.key() != g.key():
 distance = GameUtils().distance_in_miles(g.location.lat,
 g.location.lon,
 x.location.lat,
 x.location.lon)

 # are they close together? They should fight
 if distance < g.spread:
 if g.would_defeat(x):
 losers.append(x)

270 | Chapter 10: Putting It All Together

http://

 else:
 losers.append(g)

 if len(losers):
 message = "I hate to be the one to tell you this, "
 message += "but one of your germs was outmatched."
 for loser in losers:
 # send a message to the user...
 Messenger().send(None, loser.user, message)
 # notify the command center
 CommandCenter().delete_germ(loser)
 # delete the germ
 loser.delete()

 # let's update the command center
 CommandCenter().update()

The purpose of the auto_fight method is to look at each of the germs on the map and
determine whether any of them are overlapping. If one germ overlaps with another in
some way, they should fight it out. The strongest germ wins and continues to exist,
while the weaker germ dies out.

So to get started with this, we create an empty array to keep track of which germs have
already fought and lost. Then, we just start looping through the germs. Any time we
run into a germ that has already lost, we skip it and continue. Otherwise, we take that
germ and compare it against every other germ in the datastore. We then figure out the
distance between the germs to see whether they are overlapping. If the spread of the
germ is greater than the distance between them, it’s time to fight.

Fighting the germs is actually very simple. We just look at one of the germs and see
whether it would defeat the other. The losing germ is then appended to the losers array
and we keep going with the loop.

Once we make it through all of the entries in the loop, we check to see whether there
are any losers. If there are, we have a couple of things to do. First, we want to quickly
send a message to the user who created the germ that says he just lost a germ and might
want to get out there and “cough” or challenge another user. After that, we notify the
CommandCenter that a germ has been deleted. After deleting the germ and any other germs
that lost their fights, we call update on the CommandCenter object. Figure 10-10 shows
the result of this action.

Realtime Syndication
Many different parts of the code have notified something called the command center
after taking action, but it hasn’t actually done anything other than keep track of the
germs as they come and go. Let’s start using this data to work in some realtime syndi-
cation, which will lead the way to realtime analytics and a fully multiuser chat
application.

Building the Game Itself | 271

http://

To start with, we’re going to take the knowledge that the command center has about
the current state of our application and create an Atom-based XML feed that can be
used by other applications to monitor, visualize, and expand on this application. To
do that, we need to add a new controller and view to this application. Let’s start with
the controller. Inside the main.py file, add the following controller:

def main():
 # setup the specific URL handlers
 application = webapp.WSGIApplication([('/', MainHandler),
 ('/feed/?', FeedHandler),
],
 debug=True)
 # run the application
 wsgiref.handlers.CGIHandler().run(application)

class FeedHandler(webapp.RequestHandler):
 def get(self):
 # grab the germs from the command center
 germs = CommandCenter().get_germs()

 # generate a nicely formatted array including JSON formatted germs
 output = []

Figure 10-10. Receiving a message from the game

272 | Chapter 10: Putting It All Together

http://

 for x in germs:
 germs[x]['json'] = json.dumps(germs[x])
 output.append(germs[x])

 # set some template variables
 template_values = {
 'germs': output,
 'url': 'http://' + os.environ["HTTP_HOST"],
 'updated': GameUtils().date_rfcformat(datetime.now()),
 'title': 'iPandemic'
 }

 # render the xml
 path = os.path.join(os.path.dirname(__file__), 'templates/atom.xml')
 self.response.headers['Content-Type'] = 'application/atom+xml'
 self.response.out.write(template.render(path, template_values))

To generate our XML feed, we simply need to get the list of current germs from the
command center. Although we’re using the Atom format to contain all of this data, the
actual payload for the entry will be JSON formatted. To prepare for the template, we
format the germ into a JSON-encoded string here in the controller.

Once we have all of the germs assembled into an array, we set up the other template
variables that we’ll need when rendering the Atom output. We’ll be using the current
URL in several spots in the file, as well as the title and the updated date of this file.
Since we’re always generating this file on the fly, we’ll just use the current time for the
updated field.

We have the germs and the other template variables all sorted out, so the only thing
left to do is actually render the XML. We do that using App Engine’s template system.
All that’s left to do is create the template itself. Create a file called appengine/templates/
atom.xml and fill it with the following code:

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

 <title>{{ title }}</title>
 <updated>{{ updated }}</updated>

 <id>{{ url }}/</id>
 <link rel="alternate" href="{{ url }}/" title="{{ title }}" type="text/html"/>
 <link rel="self" href="{{ url }}/feed" title="{{ title }}"
 type="application/atom+xml"/>
 <link rel='hub' href='http://pubsubhubbub.appspot.com/' />
 <author><name>{{ title }}</name></author>

 {% for germ in germs %}
 <entry>
 <id>{{ url }}/#{{ germ.id }}</id>
 <title type="text">Germ {{ germ.id }}</title>
 <link href="{{ url }}/#{{ germ.id }}" rel="alternate" type="text/html"/>
 <updated>{{ germ.updated }}</updated>
 <published>{{ germ.timestamp }}</published>
 <content type="text/plain" xml:base="{{ url }}">

Building the Game Itself | 273

http://

 {{ germ.json }}
 </content>
 </entry>
 {% endfor %}

</feed>

This is a pretty standard Atom-based XML file. We define the title and all of the fields
required and expected by a proper Atom file. We even advertise a hub property for
people who wish to subscribe via PubSubHubbub.

Inside the entry tags, we supply an automatically generated title based on the ID of the
germ. That’s fine because we don’t expect end users to actually see the title of this entry.
Germs don’t have permalink style pages, so the link specified here just links to a frag-
ment on the main index page of the site.

The most important part here is the content entry. In this case we’re printing only the
JSON-encoded germ and nothing else. This allows for any application that wants to
use this data to import this file, look at the content fields, and get all of the data it needs.

Publishing the feed

Since we have a proper Atom XML file that we can use for syndication, we can publish
it using PubSubHubbub. Combining this protocol with our command center, which is
notified about every minor action that affects a germ on the site, third parties can get
a total realtime view of what is happening in this application. It’s also extremely simple
to implement on this end.

Every time we called the add_germ or delete_germ method on the CommandCenter object,
we followed it up with a call to update. This means that we can enable realtime syndi-
cation for all the germ activity on the site just by pinging the Hub from that one method.
Inside models.py, add the following method to CommandCenter:

class CommandCenter(object):
 cc_memcache_key = 'cc-germs'
...
 # notify everyone of the changes
 def update(self):
 url = "http://pubsubhubbub.appspot.com"
 data = urllib.urlencode({'hub.url':
 'http://' + os.environ["HTTP_HOST"] + '/feed',
 'hub.mode': 'publish'})
 logging.info(urlfetch.fetch(url=url, payload=data, method=urlfetch.POST))

This simply changes the update method to ping the hub instead of the pass statement
that it was running before. Because we already defined the update method and were
calling it at all the right spots, enabling realtime syndication is as simple as adding those
four new lines to the CommandCenter object.

274 | Chapter 10: Putting It All Together

http://

The Command Center
The application that we’ve built at this point runs on Google’s App Engine platform
and exists almost entirely on the mobile phone. It has realtime components that allow
the application to reach users when they’re not currently looking at the site, and even
via SMS, when they’re not actively doing anything on the phone or the computer.
However, now we that we have realtime access to the germs as they are built and
destroyed, we can build a full-featured front-end to view everything while not actively
participating in the game.

This part of the game will be built using Tornado so that we can take advantage of its
support for long polling. This will also require us to run the game from a separate server,
which will enable us to use PubSubHubbub in the same way that any other subscriber
would use it.

The basic site

To get started, let’s create a file in the ipandemic/tornado folder called server.py. Start
if off with the following code:

import os, logging
import tornado.httpserver
import tornado.ioloop
import tornado.web
import tornado.auth
import simplejson as json
import time, re, uuid
from tornado.options import define, options
from tornado.escape import url_escape
import urllib, urllib2
from xml.dom import minidom

Define options that can be changed as we run this via the command line
define("port", default=8088, help="Run server on a specific port", type=int)

a basic controller to load the default template
class HomeHandler(tornado.web.RequestHandler):
 def get(self):
 # see if we can load the user info from a cookie
 user_json = self.get_secure_cookie('user')

 if user_json:
 user = json.loads(user_json)
 else:
 user = None

 self.render("command-center.html", user=user)

class Application(tornado.web.Application):
 def __init__(self):
 handlers = [

Building the Game Itself | 275

http://

 (r"/", HomeHandler),
]

 settings = {
 "static_path": os.path.join(os.path.dirname(__file__), "static"),
 "template_path": os.path.join(os.path.dirname(__file__), "templates"),
 "cookie_secret": "you-cookie-secret",
 "login_url": "/login",
 }
 tornado.web.Application.__init__(self, handlers, **settings)

if __name__ == "__main__":
 tornado.options.parse_command_line()
 http_server = tornado.httpserver.HTTPServer(Application())
 http_server.listen(options.port)
 tornado.ioloop.IOLoop.instance().start()

This is essentially the same base Tornado application that we’ve used in previous chap-
ters. We import what we need, build an application class, and start the application.
There are only a couple of things to notice here. In this particular instance, we specify
a default port of 8088. While it’s not strictly necessary to use this port, this application
must run on a port that can be accessed from App Engine, which has restrictions
on the ports it can access. We’re using the reference PubSubHubbub hub located
at pubsubhubbub.appspot.com, which runs on App Engine. Also, we specify a cookie_
secret in this code. This will allow Tornado to secure the cookies against forgery.

HomeHandler, the controller class that handles the root URL of the domain, just does
two quick things. First, HomeHandler tries to load the user information out of the
secure cookie. Then, it simply renders a template called command-center.html. Let’s
define that file now. Create a file in your tornado directory called templates/
command-center.html and add the following code.

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>

 <title>iPandemic - Command Center</title>
 <!-- for jQuery -->
 <script type="text/javascript" src="http://www.google.com/jsapi"></script>

 <!-- for the maps API -->
 <script src="http://maps.google.com/maps?file=api&v=2&sensor=false&key=
 YOUR-GOOGLE-MAPS-API-KEY"
 type="text/javascript"></script>

 <!-- our local JS -->
 <script type="text/javascript" src="{{ static_url('cc.js') }}"></script>

 </head>

 <body onload="cc.initialize('map', false);" onunload="GUnload()"
 class="control-center">

276 | Chapter 10: Putting It All Together

http://

 <div id="header">
 <h1>iPandemic - Command Center</h1>

 <ul id="options">
 {% if user %}
 Logged in as {{ user['name'] }}
 {% else %}
 Log In with your Google Account
 {% end %}

 </div>

 {% if user %}
 <div id="footer">Logout</div>
 {% end %}
 </body>

</html>

This template simply loads up the different JavaScript files that we’ll need and defines
a basic shell of a page. We also check to see whether the user is logged in and present
either a link to log in or out, depending on the status. Part of that HTML code involves
including a local JavaScript file and defining a DIV that will be used for a map. Let’s
add that JavaScript now to show that map. Create a file in ipandemic/tornado/static/
called cc.js and add the following code:

google.load("jquery", "1");

var cc = {
 map: false,
 default_lat: 40.730521,
 default_lon: -73.984337
};

cc.initialize = function(map_div_id) {
 if (GBrowserIsCompatible()) {
 cc.map = new GMap2(document.getElementById(map_div_id));
 cc.map.setCenter(new GLatLng(cc.default_lat, cc.default_lon), 13);
 cc.map.setUIToDefault();
 }
 else
 alert("Google doesn't think your browser is compatible with " +
 "their maps, this will be painful without them...");
};

The first thing this file does is ask the Google Ajax APIs to load the jQuery library. After
that, we start defining our Command Center, or cc, object. The first variable that we
need is map, which will hold a reference to the GMap2 instance that we’ll be interacting
with throughout this application. The next two variables, default_lat and
default_lon, simply define the default position that we load on the map. These two

Building the Game Itself | 277

http://

numbers center the map on the lower part of Manhattan, so feel free to change that to
whatever makes sense for your user base.

Then, we add a method called initialize that just sets up the map by centering it on
the default location and loading the default user interface elements. This method is
actually called from command-center.html through the onload tag on the body element.

We’ve now got the shell of an application ready to run. Let’s start up the server and
ensure everything is working. From your terminal window, start the server:

~ipandemic/tornado $ python server.py

Now if you point your browser to http://localhost:8088, you should see a page similar
to Figure 10-11.

Figure 10-11. The basic command center

278 | Chapter 10: Putting It All Together

http://

Authentication

By default, Tornado ships with the ability to authenticate through a variety of third-
party sites, including Google, Facebook, Twitter, Yahoo, and FriendFeed. Since we’re
already using Google Authentication on the game side of this application, let’s continue
with that and use it here. Inside server.py, add the following controller:

class Application(tornado.web.Application):
 def __init__(self):
 handlers = [
 (r"/", HomeHandler),
 (r"/login/?", GoogleLoginHandler),
]
...

class GoogleLoginHandler(tornado.web.RequestHandler, tornado.auth.GoogleMixin):

 @tornado.web.asynchronous
 def get(self):
 if self.get_argument("openid.mode", None):
 self.get_authenticated_user(self.async_callback(self._on_auth))
 return
 self.authenticate_redirect()

 def _on_auth(self, user):
 # if we're authenticated, set the cookie, otherwise try again...
 if not user:
 self.authenticate_redirect()
 return
 else:
 self.set_secure_cookie('user', json.dumps(user))
 self.redirect("/")

This code adds the routing from the /login URL to the GoogleLoginHandler class. There
are many different options to choose from when authenticating through third-party
sites, but we’re only interesting in the most basic form, which is identifying the users.
To do that, when we get a login request, we simply forward the user along to Google
with the authenticate_redirect method. When Google sends the user back, the request
will get routed to the _on_auth method. When we receive this request, we simply dump
the user object into a JSON-encoded string and set it as a cookie.

This code uses the @tornado.web.asynchronous decorator. Decorators in Python are
analogous to macros in most other languages. In this case, adding this bit of code before
the method definition extends the method itself. For a thorough look at decorators in
Python, view Bruce Eckel’s great post entitled “Decorators I: Introduction to Python
Decorators” (http://www.artima.com/weblogs/viewpost.jsp?thread=240808).

Now that users can log in, let’s give them the ability to log out. To do this, we can
simply clear the cookie. In your server.py file:

class Application(tornado.web.Application):
 def __init__(self):

Building the Game Itself | 279

http://www.artima.com/weblogs/viewpost.jsp?thread=240808
http://

 handlers = [
 (r"/", HomeHandler),
 (r"/login/?", GoogleLoginHandler),
 (r"/logout/?", LogoutHandler),
]
...
class LogoutHandler(tornado.web.RequestHandler):
 def get(self):
 self.clear_cookie("user")
 self.redirect('/')

With Tornado, when you enable third party authentication, you can fully authenticate
with the actual service, even if you are running the application locally. Whereas App
Engine only allows you to authenticate using test users, Tornado allows you to do the
real thing. Try starting up the server now and logging in. When you are redirected to
Google, you should see a screen resembling Figure 10-12.

Figure 10-12. Authenticating a local Tornado application on Google

Consuming PubSubHubbub

On the game side of this application, we spent a lot of time notifying the Command
Center class of different germ activity and setting up the update method to ping the
PubSubHubbub server. Let’s take advantage of that work now by subscribing to the
PubSubHubbub updates.

To get this feature moving, the first thing we need to do is actually request the sub-
scription from the hub. We can do that by modifying the Application object to
subscribe whenever we launch this server. In your server.py file, append the following
code to the end of the __init__ method on the Application object:

280 | Chapter 10: Putting It All Together

http://

 app_host = 'http://cdc.ipandemic.com:%d' % options.port
 topic_url = "http://www.ipandemic.com/feed"
 hub_url = "http://pubsubhubbub.appspot.com"
 callback_url = app_host + "/catch/germs"

 # set up the different urls we need to know
 logging.info("Subscribing to the HUB")
 data = urllib.urlencode({'hub.topic': topic_url,
 'hub.callback': callback_url,
 'hub.verify': 'async',
 'hub.mode': 'subscribe'})

 try:
 response = urllib2.urlopen(hub_url, data)
 except (IOError, urllib2.HTTPError), e:
 if hasattr(e, 'code') and e.code == 204:
 logging.info("204: No Content")
 error = ''
 if hasattr(e, 'read'):
 error = e.read()
 logging.info('%s, Response: "%s"' % (e, error))

This should look vaguely familiar from when we subscribed to a hub way back in
Chapter 3. Before we can contact the server and request the subscription, we have to
define some variables to explain where everything is located. The first variable,
app_host, is the endpoint of this Tornado-based command center application. This host
must be publicly accessible because the hub is going to make HTTP requests to it. For
this variable, enter in the final URL that you’ll be using.

The next variable, topic_url, is the URL of the Atom feed to which we want to sub-
scribe. This would be the Atom feed built previously in this chapter. After that, you
can safely leave the variables as they are in the text. We’re just defining the URL of the
hub that is shared by multiple applications. Finally, we define the callback_url, which
is the endpoint URL used when the hub has new data.

Subscribing to a hub is a two-step process. The first part is requesting the subscription,
which we’ve just defined. The second part of the subscription process is responding to
the challenge request sent by the hub. This challenge request is used by the hub to
ensure that the URL we provide is actually expecting to receive updates. To define this,
we need to add a new URL route and a controller class. Let’s define that now:

class Application(tornado.web.Application):
 def __init__(self):
 handlers = [
 (r"/", HomeHandler),
 (r"/login/?", GoogleLoginHandler),
 (r"/logout/?", LogoutHandler),
 (r"/catch/germs/?", CatchGermsHandler),
]
...
class CatchGermsHandler(tornado.web.RequestHandler):
 def get(self):

Building the Game Itself | 281

http://

 if self.get_argument('hub.mode', False):
 self.finish(self.get_argument('hub.challenge'))

This new controller class, CatchGermsHandler, will be used to accept publish requests
from the hub. However, before we can receive any published messages, we’ll have to
respond to the challenge request. To do that, we simply check to see whether the server
sent the hub.mode parameter along with the request. If it was sent, we then take the
hub.challenge parameter and write it out as our response. This informs the server that
we are expecting publish requests and that the subscribe request was valid. If you want
to start the server.py script from your publicly accessible server, you should see some
traffic into the Tornado console similar to the following:

 ~ipandemic/tornado $ python server.py
[I 100217 23:31:41 server:78] Subscribing to the HUB
[I 100217 23:31:41 web:714] 200 GET /catch/germs?hub.challenge=
 WfVLMg1RlBCbv1ktrk3OrOpZ7_EZYpakg5_yF6o5eUbghf4bDOIMy4FkABt_aY66m
 W6uPe6XwIfy8LGV8wc4OL6VPkGUG9Z8ZjciSPUPXYlFSPFEakDL6xodwh-sFDYl&hub.
 topic=http%3A%2F%2Fwww.ipandemic.com%2Ffeed&hub.mode=subscribe&hub.
 lease_seconds=2592000 (66.249.85.65) 0.92ms

The first thing you can see here is our logging message announcing that we’re about to
try to subscribe to the hub. It may take a few seconds, but at some point after that you
should see the challenge request come in from the hub. Our script responds to that just
fine and you’re subscribed. There is no final check in from the Hub telling you that
everything worked, but everything should be fine.

Now that we’re subscribing to the hub and responding to the hub.challenge, we’re all
set to actually accept the published data from the hub. To do that, let’s add another
method to the CatchGermsHandler class.

class CatchGermsHandler(tornado.web.RequestHandler):
 def get(self):
 if self.get_argument('hub.mode', False):
 self.finish(self.get_argument('hub.challenge'))

 def post(self):
 # parse the XML with the minidom module
 dom = minidom.parseString(self.request.body)
 ATOM_NS = "http://www.w3.org/2005/Atom"

 # loop through all of the content nodes
 for node in dom.getElementsByTagNameNS(ATOM_NS, 'content'):
 germ = json.loads(node.firstChild.data.strip())

 # add them to the notifier class
 self.application.notifier.add_germ(germ)

 # update the notifier class
 self.application.notifier.update_clients()

This adds some new functionality to the same /catch/germs URL. When we receive a
POST request from the hub, we immediately start parsing the XML payload using
Python’s minidom module. This XML payload may be anything from the entire Atom

282 | Chapter 10: Putting It All Together

http://

file with hundreds of germs to a single entry tag informing us of one change. Whatever
the extent of the data, we can easily ignore everything in it aside from the content tags,
which contain JSON-encoded germ. We simply loop through each of those content
tags and run a method called add_germ on an object called notifier. Once we’re
through with the loop, we take that same notifier object and run a method called
update_clients.

Notifying users

Previously, in the CatchGermsHandler class, we referred to an object called notifier.
Although it hasn’t been defined yet, its purpose is probably clear. The Notifier class
is what keeps track of the germ data on this end and publishes it out to the web clients
watching the command center home page. Let’s add that class now. In your server.py
file, add the following code somewhere above your Application object:

class Notifier(object):
 # the connected web clients
 listeners = []
 # the list of germs
 germs = []

 def add_listener(self, callback):
 self.listeners.append(callback)

 # send the
 def notify_listeners(self, messages=False, germs=False):

 # call the callback method on each of the listeners
 for callback in self.listeners:
 try:
 callback(messages=messages, germs=germs)
 except:
 logging.error("Error in listeners callback", exc_info=True)

 # we've just sent something to each listener, clear the list
 self.listeners = []

 def add_germ(self, germ):
 x = 0
 # if we already have this germ, update the data and return
 while x < len(self.germs):
 if self.germs[x]['id'] == germ['id']:
 self.germs[x] = germ
 return
 x += 1

 # otherwise, just append the germ to the list
 self.germs.append(germ)

 # a convenience method to notify the listeners
 def update_clients(self):

Building the Game Itself | 283

http://

 # notify everyone about the germs
 self.notify_listeners(germs=self.germs)

Parts of this code are quite similar to the Tweet class defined in Chapter 5. Before we
get started, we set up two variables to keep track of both the list of connected clients
and the current list of germs. Then the first method, add_listener, simply adds the
listener to the list. In this case, when a client starts a long polling request with this
server, the controller class will call this add_listener method with a callback method
as the only parameter. We store this callback in the listeners list and use it when we
have data available.

The next method, notifier_listeners, is the method that we call when data becomes
available. When this method is called, the caller specifies which type of data has been
updated, and then we simply loop through the list of listeners, calling the callback
method for each one. Once we’ve updated all of the listeners, we clear out the list
because we know that everybody just received data and no one is currently waiting for
anything. However, in practice, the clients will all reconnect immediately and the proc-
ess will start anew.

The next two methods are those that we already referenced in CatchGermsHandler. The
first of the two, add_germ, takes in a parameter called germ, which is a dictionary rep-
resentation of the germ data itself. We just check to see whether we already have this
specific germ by comparing its id field with the ids that we currently have in the
germs list. If we don’t have it, we simply append it to the list.

After that, we have a method called update_clients that is provided as a convenience
method to users of this class. This class allows other objects to notify the listeners of
the new data without requiring the classes to know about the internal workings of this
class.

Now that we’ve added this class to the application, we have to instantiate it in a way
that will allow us to access it from all of the controllers. We can just do that from the
__init__ method on the Application object. In server.py, add the following line:

class Application(tornado.web.Application):
 def __init__(self):
 self.notifier = Notifier()
 handlers = [
...

Because we added the notifier object as a member variable of the application class,
we’re able to access it from any of the controller methods. It’s available through
self.application.notifier in each of those classes.

This part of the application is going to use long polling
to ensure that the clients always have the latest data. On the server side of things, adding
this functionality is fairly straightforward. We just have to add another URL mapping
and a small controller method. In server.py:

Handling long polling on the server.

284 | Chapter 10: Putting It All Together

http://

class Application(tornado.web.Application):
 def __init__(self):
 handlers = [
 (r"/", HomeHandler),
 (r"/login/?", GoogleLoginHandler),
 (r"/logout/?", LogoutHandler),
 (r"/catch/germs/?", CatchGermsHandler),
 (r"/updates/?", UpdateHandler),
]
...

wait for updates and return them when available
class UpdateHandler(tornado.web.RequestHandler):

 @tornado.web.asynchronous
 def post(self):
 self.application.notifier.add_listener(\
 self.async_callback(self.handle_updates))

 def handle_updates(self, messages=False, germs=False):
 if not self.request.connection.stream.closed():
 self.finish({'germs': germs})

This method uses Tornado’s tornado.web.asynchronous decorator. This decorator
means that this method will return, but the connection to the client will not be termi-
nated until explicitly finished. So inside this method, all we need to do is add a new
listener via the add_listener method and supply a callback method.

This callback method, handle_updates, will be called when new data is available to send
to the client. When that happens, we’ll check to make sure that the connection is still
open and then finish the connection by sending the JSON-encoded germs object. The
JavaScript side of this application will then take those germs and display them on the
map.

The server side of this application is all ready to go. We’re
accepting long polling requests from the clients, waiting for data to become available
through PubSubHubbub subscriptions, and sending the data back out to any number
of clients. However, the client side of this application isn’t doing anything more than
displaying a map. Let’s set it up to handle the germs as they come in.

This application uses long polling to get the latest realtime data from the server. To do
that, we must start polling the server continuously. Let’s update the cc.initialize
method in tornado/static/cc.js to start this process:

cc.initialize = function(map_div_id) {
 if (GBrowserIsCompatible()) {
 cc.map = new GMap2(document.getElementById(map_div_id));
 cc.map.setCenter(new GLatLng(cc.default_lat, cc.default_lon), 13);
 cc.map.setUIToDefault();
 cc.commandCentralPoll();
 }
...
};

Long polling on the client side.

Building the Game Itself | 285

http://

cc.commandCentralPoll = function() {
 $.post('/updates/',
 {},
 function(data) {
 cc.receivedData(data);
 cc.commandCentralPoll();
 },
 'json');
};

Adding this method simply starts the process of polling the server. We make a POST
request to /updates, and when it returns, we send the data along to a method called
receivedData. Then, we call commandCentralPoll again. This Ajax request may return
instantly or it may take several minutes before any data is available. However, once that
data is available, we act on it quickly and immediately request more.

Asking for the data is only a small part of the issue; we also need to do something with
it once it’s returned. To do that, let’s define the receivedData method:

cc.receivedData = function(data) {
 if(!data) return;
 var germs = data.germs;

 // put the germs on the map
 if(germs) {

 // clear the current map
 cc.map.clearOverlays();

 for(var i in germs) {

 // only draw germs that aren't deleted
 if(!germs[i].deleted)
 cc.putGermOnMap(germs[i]);
 }
 }
};

The data returned from our long polling request is a JSON-encoded object. The only
key inside that object is called germs, which contains the array of germs that the server
knows about. So the main point of receivedData is to take those germs, loop through
them, and display them on the map unless they are marked as deleted. To do that, we
simply clear all of the existing germs off of the map, loop through the ones we have,
and put them on the map using putGermOnMap. That method is a simpler version of the
one used for the mobile phone:

cc.putGermOnMap = function(germ) {
 var geo_pt = new GLatLng(germ.lat, germ.lon);
 var spread = germ.spread;
 var color = germ.color;

 cc.drawCircle(geo_pt, spread, color);

286 | Chapter 10: Putting It All Together

http://

 var marker = new GMarker(geo_pt);

 // allow the user to click and see the data about this germ
 GEvent.addListener(marker, 'click', function() {
 var d = germ.disease;
 html = "<div id='"+ germ.id + "'>";
 html += "
<small>";
 html += "Strain: " + d.strain + "
";
 html += "Host: " + d.host + "
";
 html += "</div>";

 marker.openInfoWindowHtml(html);
 });

 // show it on the map
 cc.map.addOverlay(marker);

};

This version of putGermOnMap is a stripped-down version of a method with the same
name from appengine/static/geo.js. Because it’s designed to work on a desktop browser,
it uses Google’s openInfoWindowHtml. Although that method works on mobile devices,
it tends to slow the application down too much for it to be useful. However, on a
desktop browser, users expect it.

The only thing missing from drawing these germs on the map is drawing the spread of
the germ. Just like on the mobile phone, we want to draw a circle around each germ to
show the relative size of the germ. Add the drawCircle method now:

cc.drawCircle = function(center, radius, color) {
 var poly = [];
 var lat = center.lat() ;
 var lng = center.lng() ;
 var d2r = Math.PI/180 ; // degrees to radians
 var r2d = 180/Math.PI ; // radians to degrees
 var Clat = (radius/3963) * r2d ; // using 3963 as earth's radius
 var Clng = Clat/Math.cos(lat*d2r);

 var points_in_circle = 90;

 // add each point in the circle
 for (var i = 0 ; i < points_in_circle; i++) {
 var theta = Math.PI * (i / (points_in_circle / 2)) ;
 Cx = lng + (Clng * Math.cos(theta)) ;
 Cy = lat + (Clat * Math.sin(theta)) ;
 poly.push(new GLatLng(Cy,Cx)) ;
 }

 // add the first point to complete the circle
 poly.push(poly[0]) ;

 var line = new GPolygon(poly, color, 3, 1, color, 0.2);
 cc.map.addOverlay(line) ;
};

Building the Game Itself | 287

http://

The only difference between this version of drawCircle and the version we made in
appengine/static/geo.js is that this one draws far more points in the circle than the one
designed for the mobile phone. Again, it’s important to tailor the code for the device
on which it will run.

If you run this application from a publicly accessible location, you’ll be able to see the
germs on the screen. If a germ gets deleted from the iPandemic application, it will
disappear from this screen in a matter of milliseconds. That event would have triggered
a delete_germ call on CommandCenter on the game side of the application. That call would
have been followed by a call to update on the same CommandCenter object. That method
would ping the PubSubHubbub server, which would grab the feed and immediately
notify this application. If you start this server, you should see something like
Figure 10-13.

Figure 10-13. Watch germs spread in realtime

288 | Chapter 10: Putting It All Together

http://

Chat

Although a good portion of this game exists entirely on a mobile phone, the command
center does push out realtime updates to any number of connected clients. When users
arrive at a location, they should be able to continue to interact with the game and each
other. Knowing that we always have a good number of users connected who are watch-
ing their germs spread and die out, it’s a good place to allow more realtime communi-
cation. In this case, we’ll add a chat interface to allow all of the users to communicate
with one another.

The chat application that we built in Chapter 6 allowed users to communicate privately
with each other. For this game, we’ll build a public chat where each user can see the
messages sent by every other user. This simplifies things in some ways because we do
not have to worry about managing user interface windows or routing the messages from
one user to another. However, we can’t just add all new functionality; we want to
continue to use the existing long polling system that we set up to monitor the germs.

To get started with this, let’s update the main template to have a space for
chatting. In command-center.html, add the following code:

<!DOCTYPE html>
<html>
...
 <div id="map" style="width: 700px; height: 700px; float: left;"></div>

 <!-- something to hold the whole chat UI -->
 <div id="chat-container" style="float: left; width: 200px; width: 200px;">

 <!-- A simple input to accept new messages -->
 <div id="chat-form">
 {% if user %}
 <input type="text" id="chat-input" placeholder="Say something..." />
 {% else %}
 Log in to join the chat
 {% end %}
 </div>

 <!-- A container to hold the existing messages -->
 <div id="chat" style="height: 700px; overflow: auto;">
 </div>

 </div>

This just adds the interface elements that we’ll need for chat. We build a container DIV,
chat-container, with a style attribute that will allow it to sit next to the map. Then,
we build the form and the chat DIV that will hold all of the messages as they arrive.

Moving along, let’s set up the Notifier class to handle messages along with the germs.
Parts of it are already set up for this, so it’s not a big deal to add in this new functionality.
In server.py, update the Notifier class to have the following code:

class Notifier(object):
 listeners = []

Server side.

Building the Game Itself | 289

http://

 germs = []
 message_cache = [] # a list of recent chat messages
 message_cache_size = 20 # the amount of recent messages to store

 # send a message to the other users.
 def send_message(self, text):

 # build the message object
 message = {'text': text,
 'id': str(uuid.uuid4()) }

 # send it out to the clients.
 self.notify_listeners(messages=[message])

 # and update the message cache
 self.message_cache.extend([message])
 if len(self.message_cache) > self.message_cache_size:
 self.message_cache = self.message_cache[-self.message_cache_size:]

The first thing we do here is create some new member variables to hold the existing
message cache. We want to keep a small cache of the most recent messages so that
clients can catch up if messages arrive while they’re reconnecting after receiving data.
This will also allow us to send the most recent messages to a user when she connects
for the first time, allowing her to get caught up with the current state of the chat.

Then, we add the send_message method, which is what we’ll use in other Python code
to actually send a message to all of the users. The first thing we do is build the message
object, which consists of the text of the message itself and a unique uuid. This id field
will be used by the client when requesting new messages to signal the last message that
was received. After that, we simply call the notifier_listeners method, supplying a
messages parameter instead of the germs parameter. That method will actually send the
message to each of the clients.

Once we’ve sent the message, we want to add it to the existing cache, which we do by
calling extend on it. Then, we clean up the cache to ensure it doesn’t grow too big. This
cache is used to send to the new clients as they connect, or it’s used to send any new
messages to users if they fall behind for some reason. To do that, we need to update
the add_listener method to check whether the user needs to see new messages. Let’s
update the add_listener method in the server.py file to handle this:

def add_listener(self, callback, cursor=None):
 # if they've supplied a cursor, send them any messages since that cursor
 if cursor:
 index = 0
 for i in xrange(len(self.message_cache)):
 index = len(self.message_cache) - i - 1
 if self.message_cache[index]["id"] == cursor: break
 recent = self.message_cache[index + 1:]
 if recent:
 callback(messages=recent)
 return

290 | Chapter 10: Putting It All Together

http://

 # if they haven't sent a cursor, send them everything in the cache
 if not cursor and len(self.message_cache):
 callback(messages=self.message_cache, germs=self.germs)
 return

 self.listeners.append(callback)

Previously, this method simply added the callback to the listeners list and returned.
We still have that line of code, but now we want to check whether any messages are
immediately available. We start that by accepting a cursor variable. This variable is the
id field that is saved by the client and tells us the last message a particular client received.

If we have a cursor, we want to see whether it matches up to the latest message sent to
the server. If it doesn’t, gather up all of the messages sent since cursor and send those
messages immediately. We do that by simply searching the message_cache for the
cursor and running the callback function if we find any new messages.

If the client doesn’t supply a cursor variable, we can just assume they’ve never seen any
of the messages, so we simply run the callback and send all messages to the client. If
we end up making it to the end of the method, the client supplied a cursor, but it’s the
most recent message, so we simply add them to the listeners array and wait for any new
messages to arrive.

Whenever the server has new content to send to the client, it calls the callback method
stored in the listeners list. In this particular code, that method is always the
handle_updates method of the UpdateHandler controller. Let’s update that to send the
chat messages as well as the germs:

wait for updates and return them when available
class UpdateHandler(tornado.web.RequestHandler):

 @tornado.web.asynchronous
 def post(self):
 cursor = self.get_argument('chat_cursor', False)
 self.application.notifier.add_listener(\
 self.async_callback(self.handle_updates), cursor)

 def handle_updates(self, messages=False, germs=False):
 if not self.request.connection.stream.closed():
 self.finish({'chat_messages': messages, 'germs': germs})

The first change here is that we listen for a parameter called chat_cursor and add it
as a parameter to the add_listener method. This will be used in that method to
check whether we’re all caught up with messages or need to send previous messages
immediately.

To send the messages back, all we need to do is add the messages parameter and send
it back out to the client when we’re closing the connection. We do that by adding
another field to the dictionary called chat_messages. With that, the client-side Java-
Script can simply look for another object as part of the dictionary it receives as a
parameter and pull the messages out of that.

Building the Game Itself | 291

http://

However, before we worry about handling things on the client side, we still need to
add some code to send messages using the send_message method. First, let’s start with
the obvious method of accepting chat messages from users. Add the following URL
route and controller to server.py:

class Application(tornado.web.Application):
 def __init__(self):
 self.notifier = Notifier()
 handlers = [
 (r"/", HomeHandler),
 (r"/chat/say/?", ChatSayHandler),

...

class ChatSayHandler(tornado.web.RequestHandler):

 def post(self):
 # figure out which user is sending a message
 user_json = self.get_secure_cookie('user')
 if user_json:
 user = json.loads(user_json)

 text = self.get_argument('text').strip()
 if len(text):
 # assuming we have a message, format it and send it!
 text = "%s: %s" % (user['first_name'], text)
 self.application.notifier.send_message(text)
 # send a response to the client
 self.finish({'status': 'ok!'})

This method accepts a post request from the client and immediately tries to load the
user object from the cookie. If we do have a user object, we grab a parameter called
text, clean it up, format it, and send it using the send_message method. To format it,
we simply add the username of the sender before the message to let everyone know
who sent the message. Once we’ve handed the message off to send_notifier, we don’t
have anything else to do, so we just return a response message.

Sending messages that users explicitly send is useful, but we should also let the existing
users know when another user has joined that chat. To do that, we just need to add a
line to the login handler. Inside server.py, update GoogleLoginHandler to send the mes-
sage on behalf of the newly authenticated user:

class GoogleLoginHandler(tornado.web.RequestHandler, tornado.auth.GoogleMixin):
...
 def _on_auth(self, user):
 if not user:
 self.authenticate_redirect()
 return
 else:
 self.set_secure_cookie('user', json.dumps(user))
 self.application.notifier.send_message(user['first_name'] + " joined")
 self.redirect("/")

292 | Chapter 10: Putting It All Together

http://

In this code, just before the user is redirected to the home page after successfully com-
pleting the login process, we send a simple message announcing the user’s arrival.

As it exists now, the JavaScript we’ve written for this application is already
polling the /updates URL, which now provides both the germs and the messages that
we need to display on the screen. So now we need to update the methods that receive
data to do something with those messages and then add the ability to send them back.
To get started, let’s update the main cc object to keep track of the current chat cursor
variable. In tornado/static/cc.js, update the following member variable:

var cc = {
 map: false,
 default_lat: 40.730521,
 default_lon: -73.984337,
 chat_cursor: ''
};

This additional variable allows us to keep track of the last message that we’ve seen and
send it back to the server when we are in the process of polling for new updates. Let’s
go ahead and add that parameter now:

cc.commandCentralPoll = function() {
 $.post('/updates/',
 { 'chat_cursor': cc.chat_cursor },
 function(data) {
 cc.receivedData(data);
 cc.commandCentralPoll();
 },
 'json');
};

This simply takes that new variable and sends it along to the server whenever we poll
for new updates. Now let’s start keeping track of that cursor. To do that, we want to
monitor each and every message that comes in and save the id of the latest one that we
receive. We can easily do that as soon as we receive a message and start the process of
displaying it on the screen. Let’s update cc.receivedData to handle the messages and,
in turn, this cursor variable:

cc.receivedData = function(data) {
 if(!data) return;
 var germs = data.germs;
 var chat_messages = data.chat_messages;

 if(chat_messages) {
 for(var x in chat_messages) {
 cc.chat_cursor = chat_messages[x].id;
 cc.addToChat(chat_messages[x]);
 }
 }
...
 // put the germs on the map
 if(germs) {

Client side.

Building the Game Itself | 293

http://

The first change we make here is to check the data parameter for both the
chat_messages field as well as germs. If we find any messages, we loop through them
one by one and save the id to the chat_cursor variable. When we get to the end of the
loop, that will always be the most recent message. Once we set that variable, we pass
the message along to a method called addToChat, which will add it to the screen. Let’s
define that now. Inside your tornado/static/cc.js file, add the following method:

cc.addToChat = function(message) {
 var span = $('<div>');
 span.attr('class', 'single-message');
 span.html(message.text);
 $('#chat').prepend(span);
};

This method simply takes the message parameter, which is just a string of the message
itself, and adds it to the DIV identified by having chat as an id.

If you restart the server now, you’ll be able to see users join the chat as they log in.
Figure 10-14 shows what this should look like.

Figure 10-14. A user joined the chat

294 | Chapter 10: Putting It All Together

http://

The only thing missing now is the ability to actually send out a message. To do that,
we need to listen as users type into the form and then send the messages when it’s
appropriate. To do that, let’s update the cc.initialize method to listen for this event.

cc.initialize = function(map_div_id) {
 $('#chat-input').bind('keypress', function(e) {
 var code = (e.keyCode ? e.keyCode : e.which);
 if (code == 13) { cc.sendChat(); }
 });
...

All we do here is bind a callback function onto the keypress event of our input field.
This method ignores every keypress until the user presses Enter, which has a keyCode
value of 13. When the user does press Enter, we call the method cc.sendChat. Let’s
define that now:

cc.sendChat = function() {
 // get the value of the text input
 var text = $('#chat-input').val();

 // send it to the server
 $.post('/chat/say',
 { 'text': text },
 function(data) {
 // upon success, clear the text input field
 $('#chat-input').val('');
 },
 'json');
};

This method simply takes the value out of the text input field and sends it in a post
request to the server at /chat/say. Assuming that the request is successful, we clear out
the text input field so that the user can send another message.

This method is all that’s needed for the complete chat functionality of this application.
Populating the chat DIV will be handled when the polling to /updates comes back,
which will probably occur within a few milliseconds. Figure 10-15 shows a few people
chatting, along with updates from the germs.

In Review
This application takes a good number of the technologies that we’ve discussed in this
book and puts them together in one more or less cohesive application. While we started
from scratch to build this application, there is no reason why a developer couldn’t take
a single part and incorporate it into her application.

In Review | 295

http://

Adding a chat based on long polling can be done from almost any server setup; if it’s
not directly supported, firing up a simple Tornado web server on a separate port will
certainly do the trick. The SMS integration on this application is a small extra feature—
the application would certainly work without it—but having it there enhances the
user’s experience. Likewise for Instant Messaging, this addition can easily be done by
firing up an App Engine instance and responding to a few API calls.

Having these technologies in your application is pretty easy—small steps, but the end
result is that users can interact with your application in drastically different ways. As
the web increasingly moves away from the desktop computer, it’s important that your
application can respond in every way your users expect. Depending on your applica-
tion, there is a good chance that users would start interacting with your application
more frequently, and hang around longer, if you gave them the means to do it on their
own terms.

Figure 10-15. Viewing the completed control center

296 | Chapter 10: Putting It All Together

http://

Index

Symbols
$HTTP_RAW_POST_DATA variable (PHP),

35
% (percent signs), enclosing Tornado flow

control statements, 92
. (period) in hub parameters, 33
@login_required decorator, 134
@property decorator, 104
@tornado.web.asynchronous decorator, 86
_ (underscore) in HTTP requests, PHP handling

of, 33
{ } (curly braces), enclosing arbitrary

expressions in Tornado, 92

A
active users list, obtaining from enjoysthin.gs,

13
active.users API call, 17
advice statement (Bayeux protocol), 60
Ajax libraries API, 67
Amazon

EC2 server, 220
Web Services developer website, 220

AMIs (Amazon Machine Instances), 220
analytics on realtime Web, 185–216

Chartbeat service, 186
customized, 189

catching statistics on server, 193–198
making sense of traffic, 198–201
sending SMS alerts, 214–216
sending tracking pings with JavaScript,

189–193
tracking backend traffic and custom

data, 208–214

viewing traffic, 201–208
Woopra service, 187

Apache, httpd server, 55, 77
(see also Cometd server)

APISendHandler class, 149
App Engine, 6, 130–151

authentication logs on Dashboard, 180
creating application with the SDK, 131
dashboard, 137
Deploy button in Launcher, 136
instant messaging application extended for

SMS, 158–160
iPandemic game, 218
making web request with urlfetch module,

147
memcache implementation, 228
modifying main.py file for instant

messaging, 133
receiving instant messages, 139–141
responding to instant messaging user

commands, 143
sending instant messages, 141
setting up an API, 149–151
setting up Google account, 130
signing into your application, 136
taking advantage of Google, 133
urlfetch class, 230
weather information from instant

messenger, 146–149
app.yaml file, 132

changing for SMS, 158
XMPP services, 139

Application class (Tornado), 104
URL handler for typing messages, 123
__init__ method, 117

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

297

http://

Application Identifier (App Engine), 131
asynchronous functions, 81
asynchronous methods (chat application), 109
asynchronous Tornado, realtime application,

84–87
Atom, 9
Atom feeds, 16

(see also syndication)
validators for SUP data in, 26

authentication
checking via instant messenger, 145
command center site (iPandemic game),

279–280
forcing for instant messaging users, 146
HTTP Basic Auth, using for Twitter

streaming APIs, 89
users of iPandemic game (example), 235–

241
users of SMS application, 160, 176–180

basic code for, 177
process of, 176
testing process with Zeep Mobile

emulator, 179
with Zeep Mobile, 178

users of SMS Application, 161
using Google Account credentials, 134

Authorization header, 89
HTTP request to Zeep Mobile, 176

available_periods field (SUP file), 12
generating, 24

B
BaseHandler class (example)

App Engine application, 134
chat application, 104

Bayeux protocol, 58
handshake and subscribe processes, 70
in realtime live blog feed, 68

blogs
aggregation of updates by FriendFeed, 48
live, 57
realtime live blog, 66–72

C
callbacks

chat clients waiting for, 108
on_new_tweets function (example), 86
requesting, in chat application, 111

Tornado hanging requests via, 81
catcher object, 68
CDN (content delivery network), 190
challenge threats in iPandemic game, 258–259

responding to, 263–267
handling the response, 266
receiving SMS messages, 264–265
receiving XMPP messages, 263–264
testing response, 267

channels, 59
linking to Java server-side filters, 73
publishing to, using dojox.cometd.publish

function, 68
Chartbeat (analytics service), 186
chat

chatting with instant messaging server, 141
command center, iPandemic game, 289–

295
client side, 293–295
server side, 289–293

initiating to App Engine application in
iChat, 140

initiating with user via Woopra, 187
chat application, realtime, 101–126

chatting on server side, 117
JavaScript base, 105
logging in, 107–117

JavaScript, 112–117
on server side, 107–112

Python shell, 103–105
receiving messages, 121
seeing that user is typing, 122–126
sending messages, 118
testing, 106

Chat class (example), 108–111
add_listeners() method, 109
add_user() method, 109
append_message() method, 120, 121
handle_updates() method, 111, 119, 121

sending notifications of user typing, 125
keypress() method, 118

modifying to show user typing, 124
send_notification() method, 109

code examples from this book, x
Cometd server, 58, 60–66

creating web.xml file, 63–65
Demo page, 61
downloading, 60

298 | Index

http://

help with two-connection limit in browsers,
72

initializing connection and Bayeux
handshake, 70

initializing connection to, 68
integrating into your infrastructure, 77
modifying pom.xml file for Maven, 65
organizing files and directories, 62
starting for live blog application, 69

command center (iPandemic game), 275–295
authentication, 279–280
basic site, 275–279
chat, 289–295

client side, 293–295
server side, 289–293

consuming PubSubHubbub, 280–283
long polling on client side, 285–289
long polling on server, 284
notifying users, 283–284

command line, sending SMS from, 154
command-line options in Tornado, 83
CommandCenter class (example), 227–229
content delivery network (CDN), 190
cron jobs, 261, 269

crontab -e command, 21
spreading germs in iPandemic (example),

267
CSS (Cascading Style Sheets)

style entries for trending widget, 41
trending widget, line class, 47

curl utility, 150

D
dashboard (App Engine), 137
databases, 17

(see also MySQL)
creating in MySQL, 14

Datastore API (App Engine), 135
viewing the datastore, 137

db.Model class (App Engine), 135, 159
decorators (Python), 86
Disease class (example), 224
Django project, 146
document-serving platform, Web as, 56
Dojo, 69

(see also river of content feed)
DOM elements to display posted content,

69

Dojo Foundation, Cometd server and Bayeux
protocol, 58

dojox.cometd.init function, 68
dojox.cometd.publish function, 68, 70
dojox.cometd.subscribe function, 70
DOM elements to display posted content (live

blog feed), 69

E
EC2 server, 220
echo command, 144
email

messages received on a phone, 154
sending SMS via, 153–156

encodeURIComponent function, 44
enjoysthin.gs, 13
Enter key pressed by chat user, 119
event listeners to catch keypresses in chat

application, 118
expressions, Python and Tornado, 92

F
Facebook, 79

(see also FriendFeed)
entering your wireless carrier on, 154

filesystem path for static assets (Tornado), 83
filters (server-side), using Java, 73–77

filter function for live blog feed, 75
filter-mapping tag, 65
FilterPasswordCheck class (example), 74
filters parameter, servlet section in web.xml

file, 75
init function, 74

Firebug (Firefox extension), 72
firehose feed (Twitter), 87
flow control statements (Python), Tornado's

mapping of, 91
FriendFeed, 48–51

API output in JSONP format, 50
Tornado, 79
validator for SUP feeds, 25

G
game, building, 217–295

basic models, 221–235
CommandCenter class, 227–229
Disease class, 224
Game class and variables, 221

Index | 299

http://

GameUtils class, 234
Germ class, 225–227
Messenger class, 230
Textmark class, 229
UserInfo class, 222–224
UserThreats class (example), 232–234

command center, 275–295
EC2 or other hosted server, 220
fighting germs, 270–271
geolocation, 241
GeoModel, 220
Google App Engine, 218
Google Maps API key, 220
loading germs, 251–253
realtime syndication, 271–274
setting up environment, 218
spreading germs, 267–269
spreading germs in cough action, 244–251
threats, 253–267

initiating challenge, 258–259
natural threats, 253–257
responding to challenge threats, 263–

267
updating threats, 260–262

user authentication, 235–241
GameUtils class (example), 234
geolocation, 241–244

phone supporting JavaScript API calls, 217
spread of germs in iPandemic game, 245–

251
GeoModel

class, 226, 245
library, 220

Germ class (example), 225
Google

account with, 6
Ajax libraries API, 67
App Engine (see App Engine)
requesting jQuery library from, 204
urlfetch module, 147
use of XMPP, 129

Google Maps API key, 220
Google Reader

Shared Items feed, 33
subscribing to Shared Items feed, 35

google.setOnLoadCallback function, 69
GPS sensors, 4
GQL query language, 135

H
hanging requests (see long polling)
Hash-Based Message Authentication Code

(HMAC), 175
hashtags in tweets, 90
HTML

containing JavaScript tracking code, 197
file for chat application, 101
file for posting content to live blog, 67
file laying out basic web page, 94
realtime live blog file, 66
trending on Twitter widget (example), 40

HTTP
building request to Twitter using urllib2,

89
GET request header, X-Hub-Subscribers,

29
POST requests

hub subscription parameters, 28
hub subscription verification, 29

request routing in Tornado, 81
requests used to send and receive SMS

messages, 162
requests, PHP handling of underscores in,

33
response header, X-SUP-ID, 17, 25
standard message delivery, 58
use in ways not envisioned, 55

httpd server, 55, 77
httpd.conf file, updating to load proxy module,

77
$HTTP_RAW_POST_DATA variable (PHP),

35
hubs

accepting publish POST request from, 34
determining if feeds are published to, 27
parameters, in PHP, 33
publish notifications to, 29
reference implementation from

PubSubHubbub, 36
subscribing to, 30–36
subscription request parameters, 28
subscription request verification

parameters, 29

I
iChat, initiating chat to App Engine

application, 140

300 | Index

http://

IDs (SUP), 17
generating for feeds, 25
generating for users, 22

IMUser class (example)
adding to main.py file, 135
authentication check, 145

index.yaml file, 132
instant messaging, 2, 129–151

adding weather lookup, 146–149
capabilities in game, UserInfo class

(example), 223
chat with website user, initiating with

Woopra, 187
checking authentication, 145
extending application to handle SMS, 158–

160
Google App Engine, 130–139
receiving messages, 139–141
responding to user commands, 143
sending messages in App Engine

application, 141
setting up App Engine API, 149–151

interactions between users and web
applications, 2

interval for reconnection to server (Bayeux
protocol), 60

iPhone application, Chartbeat, 186

J
Java

Jetty server, 60
server-side filters, 73

JavaScript, 6
chat application (example), 105

adding user to connected list, 113
clients logging in, 112
modifying UI to show user typing, 123–

126
polling server for updates, 115
sending messages, 118–121

code to get realtime live blog running, 67,
69

encodeURIComponent function, 44
geolocation functionality in iPandemic

game, 241–244
river of content feed, realtime live blog, 67
sending tracking pings, 189–193
tracking code added to website, 197
trending on Twitter widget, 41–48

twitter.js file (example), 96–99
YUI library, 102

JavaScript Object Notation (see JSON)
Jetty server, 60

running, 61
telling Maven to load it, 66

jQuery library, 96, 204
JSON (JavaScript Object Notation), 6

data structures linking channels to server-
side filters, 73

importing simplejson library into App
Engine, 146

messages passed to handler function as
objects, 68

object returned from active.users API call,
17

parsing objects using Python simplejson
module, 91

simplejson library, Python, 80
JSONDataFilter class, 74
JSONP, 42

output from FriendFeed API, 50
json_decode function, 18

K
keyword for SMS application

reserving with TextMarks, 165
reserving with Zeep Mobile, 172

L
Launcher (Google App Engine), 131

application shell, files in, 132
Deploy button, 136, 140

<link tags> (XML)
rel attribute, hub, 27
specifying SUP IDs, 17, 25

list function, 19
live blogs, 57

realtime, 66–72
realtime updates between browsers, 69
server-side filters (with Java), 73

live images widget, 51–54
logging module (Tornado), formatted output,

83
login, chat application, 107–117

client side, 112–117
on server side, 107–112

LoginHandler class (chat example), 107

Index | 301

http://

logs, viewing in App Engine dashboard, 137
long polling, 58

browser two-connection limit and, 72
client side (iPandemic game control center),

285–289
handling on server (iPandemic game), 284
timeout parameter, 64
Tornado support for, 81

M
mail command, 154
main.py file, 133

adding IMUser class, 135
adding XMPPHandler class, 139
importing simplejson module, 146
main function, API request handler, 149
modifying for instant messaging, 133

MainHandler class (example)
App Engine application, 134
chat application, 104
Tornado application, 83

changing to specify template, 93
Maven, 61

instructing to start server for live blog, 76
pom.xml file, 65

measuring user involvement (see analytics on
realtime Web)

memcache, 228
message-serving platform, Web as, 56
messaging, 2

(see also instant messaging; SMS)
Bayeux protocol, 58
standard HTTP message delivery, 58

Messenger class (example), 230
/meta channels, 60
mobile devices, web browsers, 4
Model-View-Controller (MVC) framework, 81
modules section (pom.xml file), 66
MySQL

creating database and tables, 14
entries table, syndication_test database, 36
users table (example)

updates for user bookmarks, 21
updates to last_update field, 24

N
namespace, Java source code in cometd-java,

63

natural threats in iPandemic game, 253–257
notification

defining notification object and function
(chat example), 109

notification function (chat example), 104
Notifier class (iPandemic command center),

283–284

O
offline data storage, 4

P
pass statement (Python), 108
passwords, 89

(see also authentication)
collecting and passing along with publish

request in live blog, 75
requiring for live blog, 73

period field (SUP file), 12
PHP

defining PubSubHubBub class (example),
30

json_decode function, 18
list function, 19
SimpleXML extension, 18, 20
substr function, 22
superglobal variable,

$HTTP_RAW_POST_DATA, 35
pinging server when no new content available,

55
pings

catching tracking ping statistics on server,
193–198

sending tracking pings with JavaScript, 189–
193

updating and analyzing data from user
pings, 198–201

Weblogs.com, 10
<plugins> tag (XML), 65
polling, 64

(see also long polling)
chat server for updates, 115
long polling in server push, 58

pom.xml file (Maven), 61
changes to, 65

POST requests (HTTP), 36
(see also HTTP)

302 | Index

http://

$HTTP_RAW_POST_DATA variable in
PHP, 35

hub subscription requests, 28
hub subscription verification, 29
posting to hub URL and adding parameters,

31
publish POST requests from hubs, 34

proxy module, installing on Apache httpd
server, 77

publish/subscribe services
publishing with SUP, 21–26
subscribing with SUP, 13–21

publishing
content to server in live blog feed, 68
in live blog feed, limiting to authorized

users, 73
messages to clients in live blog feed, 71

PubSubHubbub protocol, 26–38
publishing with, 36–38
subscribing to feed updates, 280–283
subscribing with, 30–36
subscriptions, 27

pull versus push, 4
push

pull versus, 4
server push, 57–60

Python, 6
chat-server.py script, 103–105

chatting on server side, 117
login process, 107–112
LoginHandler class, 107
URL handler for typing messages, 123

decorators, 86
flow control statements, mapping in

Tornado, 91
FriendFeed validator, 25
Google App Engine SDK, 131
main.py file in App Engine, 133

modifying for instant messaging, 133
pass statement, 108
pycurl and simplejson libraries, 80
Queue module, 85
re (regular expression) module, findall

method, 91
simplejson module, 90
sms.py script, 159
SMSSendHandler class (example), 181
SMSService class (example), 160–161
Textmark class (example), 168

Thread class, 89
Tornado, 79
uuid, 108
Zeep class (example), 174

Q
queue, setting up to store Twitter tweets, 85

R
re (regular expression) module (Python), 91
realtime user experience

definition of realtime, 2
prerequisites for building, 4

regular expressions
matching items commonly found in tweets,

90
searching for images, 53
for URL routed to SMSIncomingHandler,

165
RequestHandler module (Tornado), 104
retweets, 90
river of content feed, 57–77

integrating Cometd into your infrastructure,
77

realtime live blog, 66–72
posting content to, 67

server push technology, 57–60
server-side filters, 73–77
setting up Cometd environment, 60–66

rot13 command, 144
RSS, 9
RSS feeds, 18

(see also syndication)
published to hub, 27
validators for SUP data in, 26

rssCloud protocol, 10

S
SendHandler class (chat example), 117
server push, 57–60

Bayeux protocol, 58
long polling, 58

server-side filters (with Java), 73–77
FilterPasswordCheck class (example), 74

servers
designed old way, 55
EC2 or other hosted server, 220
new design to handle use of HTTP, 56

Index | 303

http://

setting up SMS server, 164
Tornado, 79

servlet-mapping tag, 64
setOnLoadCallback() function, 69
Shared Items feed (Google Reader), 33
shortcode, 156

prepending specific keyword to, 166
Simple Update Protocol (see SUP)
simplejson library, 80
simplejson module (Python), 91
SimpleXML extension (PHP), 18

reading Atom feed IDs and files, 20
since_time field (SUP file), 13
SMS (Short Message Service), 2, 153–183

alerts sent from analytics application, 214–
216

APIs for, 156
providers, 157

building basic application, 158–165
base RequestHandler class, 162
extending instant messaging application,

158–160
preparing to accept messages, 163
setting up server, 164
SMS service class, 160–164

email to, 153–156
receiving messages in iPandemic game, 264–

265
sending and receiving messages, 165

authenticating users, 176–180
building SMS API, 180–183
using TextMarks service, 165–172
using Zeep Mobiles service, 172–176

sending via TextMarks service, 229
users of iPandemic game (example), 223

SMSBaseHandler class (example), 162
SMSIncomingHandler class (example), 163

authentication code in respond method,
177

SMSSendHandler class (example), 181
SMSService class (example), 160–161
statuses/sample streaming API, 88
streaming APIs (realtime), from Twitter, 87–

91
submitPost() function, 68
substr function, 22
sum command, 144
SUP (Simple Update Protocol), 11

publishing with, 21–26

generating SUP file, 21
SUP header, 25
testing SUP file, 24

specifying IDs, 17
subscribing with, 13–21

checking the feed, 18
locating feeds, 16

SUP file, 12–26
syndication, 9–38

PubSubHubbub, 26–38
publishing with, 36–38
subscribing with, 30–36

realtime syndication in iPandemic game,
271–274

SUP (Simple Update Protocol), 11
publishing with SUP, 21–26
subscribing with SUP, 13–21
SUP file, 12

T
T object (Tornado example), 96–99
templates

chat-main.html (example), 101
creating in Tornado, 93
in Tornado, 91

Textmark class (example), 229
TextMarks service, 165–172

acquiring API key, 168
class handling sending messages from, 168
confirming account with, 167
reserving a keyword, 165
testing out application using, 170

Thread class (Python), 89
threads, creating in Python, 88
timeout loop, new messages accumulating

during, 54
Tornado, 79–100

asynchronous, in realtime, 84–87
async_callback functionality, 111
basic framework, 80
building an application, 82–84
chat application, chat-server Python script,

103
define function, 104
finish method, 108
installing, 80
static_url function, 103
Twitter realtime streaming APIs, 87–91

304 | Index

http://

Twitter updates, from firehose to web
browser, 91–100

web framework and nonblocking web
server, 79

web server, 88
tornado.web.Application function, 83
tornado.web.Application module, 104
tornado.web.RequestHandler module, 104
touch-based interfaces, 4
Tweet class (example), 85
TweetFirehose class (Tornado example), 88
TweetProcessor class (Tornado example), 89
Twitpic, thumbnail URL, 53
Twitter

account for this book, 7
realtime application, asynchronous

Tornado, 84–87
realtime streaming APIs, 87–91
realtime view of images streaming into, 51–

54
trending widget (example), 39–48

TypingHandler class (chat example), 123

U
Unix-like operating systems, sending SMS via

command line, 154
updated_time field (SUP file), 12
UpdateHandler class (example)

chat application, 111, 115
Tornado application, 86

updates field (SUP file), 13, 19
urlfetch module (Google), 147
urllib2, 89
URLs

generating for SUP feeds, 26
image service, 53
routing for Tornado requests, 83
SUP feeds, 17
thumbnails for image services, 53
topic URL for PubSubHubbub feed, 33

user involvement, measuring (see analytics on
realtime Web)

user-centric model, 2
UserInfo class (example), 222–224
UserThreats class (example), 232–234
uuid (Python), 108

V
validators

for Atom/RSS feeds and SUP headers, 26
FriendFeed validator, 25

W
weather command, 148
weather information via instant messaging,

146–149
web application development, 4
web browsers

realtime updates in live blog feed, 69
two-connection limit, 72

Web, move from document-serving to message-
serving, 56

web.xml file
adding filters parameter to <servlet>

section, 75
creating, 63–65
parameters of interest to cometd

applications, 64
Weblogs.com Pings, 10
website for this book, xi, 7
website-centric model, 2
widgets, 39–56

FriendFeed in realtime, 48–51
live images streaming into Twitter, 51–54
trending on Twitter (example), 39–48

HTML, 40
setting up JavaScript, 41–48

wireless carriers, email address for SMS
messages, 154

Woopra (analytics service), 187

X
X-Hub-Subscribers headers, 29
X-SUP-ID headers, 17, 25
XMPP, 129

allowing for users of iPandemic game
(example), 223

receiving instant messages via, 139
receiving messages in iPandemic game, 263–

264
user identifier in sender field, 145

xmpp module, 140
XMPPHandler class, 139

checking for authenticated users, 145
command for weather information, 147

Index | 305

http://

modifying to handle user commands, 143
reply method, 141

Y
Yahoo!, 102

YQL service, 146
yfrog, thumbnail URL, 53
YQL query language, 146

weather information from, loading, 147
YUI JavaScript library, 102, 106

Panel object, 115

Z
Zeep Mobile, 172–176

authenticating via virtual device, 179
authenticating with, 178
requests to, signature in Authorization

header, 175
reserving keyword with, 172

306 | Index

http://

About the Author
Ted Roden was the first full-time developer hired on at Vimeo.com, and currently works
in the Research and Development group at The New York Times. His work researching
and prototyping topics closely related to the content of this book has been profiled by
Harvard University's Nieman Journalism Lab (http://bit.ly/f7rdJ and http://bit.ly/
YzELI). At the Times, he has also worked on bringing election night coverage, maps,
and updates to the mobile website, as well as March Madness fantasy brackets. He is
also the creator of a popular social bookmarking site: enjoysthin.gs.

Colophon
The animal on the cover of Building the Realtime User Experience is a common hill myna
(Gracula religiosa). Myna birds (sometimes spelled mynah) are not a biological group:
instead, humans applied the term to species of the starling family that are native to
India and surrounding areas. These are very social animals, and are typically found in
forested areas in groups of around six individuals. Mynas are omnivorous, with a diet
of insects, nectar, and fruit.

Common hill mynas have glossy black plumage with white patches on their wings.
Their bill is colored orange fading into yellow (rather like a piece of candy corn), and
their legs are yellow. They have distinctive yellow wattles beneath their eyes and on the
back of their neck. The position and shape of these wattles are the easiest way to dis-
tinguish between the various hill mynas of the Gracula genus. Rather than walking with
the jaunty gait common to other starlings, hill mynas hop from branch to branch in the
treetops.

Myna birds are famous for their talking ability, and the common hill myna in particular
is renowned for mimicry. In the wild, this species has a large repertoire of calls shared
by neighboring groups—local dialects that change completely between different areas.
In captivity, if training begins at a young age, these mynas are able to imitate a wide
range of phrases and sounds with uncanny accuracy and pitch. Myna owners should
remember that these birds are intelligent, will only learn phrases that appeal to them
(an enthusiastic tone of voice usually catches their attention), and are always listening
to conversation around them. Check out Johnny Carson’s interview session with a
myna bird at http://bit.ly/bWJFYu.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

http://vimeo.com/
http://bit.ly/f7rdJ
http://bit.ly/YzELI
http://bit.ly/YzELI
http://enjoysthin.gs/
http://bit.ly/bWJFYu
http://

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	What Is Realtime?
	Changing Interactions

	Push Versus Pull
	Prerequisites
	Python
	JavaScript
	JavaScript Object Notation
	Google’s App Engine

	The Rest

	Chapter 2. Realtime Syndication
	Simple Update Protocol (SUP)
	The SUP file
	Subscribing with SUP
	Locating SUP feeds
	Checking the SUP feed

	Publishing with SUP
	Generating a SUP file
	Testing our SUP file
	The SUP header

	PubSubHubbub
	The Protocol
	Subscribe
	Publishing content

	Subscribing with PubSubHubbub
	Publishing with PubSubHubbub

	Chapter 3. The Dynamic Homepage (Widgets in Pseudorealtime)
	The Basic Widgets
	HTML
	Setting Up the JavaScript
	Initialize
	A word about JSONP
	Catching the trends
	Catching the tweets
	Displaying the updates

	FriendFeed in Realtime
	Live Images
	It Was All a Setup!
	The Old Versus the New

	Chapter 4. River of Content
	A Crash Course in Server Push
	Long Polling
	The Bayeux Protocol
	Cometd

	Setting Up Your Cometd Environment
	Putting Everything in Its Place

	A Realtime Live Blog
	The Two-Connection Limit

	Server-Side Filters (with Java)
	Integrating Cometd into Your Infrastructure

	Chapter 5. Taming the Firehose with Tornado
	Tornado
	Installing Tornado
	The Basic Framework
	Building an Application
	Asynchronous Tornado in Realtime

	Twitter’s Realtime Streaming APIs
	From the Firehose to the Web Browser
	Templates in Tornado
	Creating a Template for This Project
	The JavaScript Parts

	Chapter 6. Chat
	Setting Up the Basic Code
	The Basic HTML Frame
	The Python Shell
	The JavaScript Base
	Checking the Progress

	Logging In
	On the Server Side
	JavaScript

	Basic Chatting
	Chatting on the Server Side
	Sending Messages
	Receiving Messages

	Acting Natural

	Chapter 7. Instant Messaging
	Getting Started with Google App Engine
	Setting Up an Account
	Creating an Application with the SDK
	Inspecting the default application

	Taking Advantage of Google
	Keeping Track of the User
	The Deploy Button
	The Dashboard

	Receiving Instant Messages
	Sending Instant Messages
	Responding Intelligently
	The Basic Commands
	Checking Authentication via Instant Messenger
	Introducing a Third Party

	Setting Up an API

	Chapter 8. SMS
	The SMS Landscape
	Email to SMS
	SMS APIs
	SMS API providers

	Building the Basic Application
	Extending the Instant Messaging Application
	An SMS Service Class
	The Base Handler
	Preparing to Accept Messages
	Setting Up the Server

	Sending and Receiving the Messages
	TextMarks
	Reserving a keyword
	The Python class
	Testing it out

	Zeep Mobile
	Reserving a keyword
	The Python class

	Authenticating Users
	The authentication process
	The basic code
	Authenticating with Zeep Mobile
	Testing the authentication process

	Building an SMS API
	Testing the API

	Chapter 9. Measuring User Engagement: Analytics on the Realtime Web
	Realtime Analytics Services
	Chartbeat
	Woopra

	Customized Analytics
	Sending Tracking Pings with JavaScript
	Catching the Statistics on the Server
	Testing the pings

	Making Sense of the Traffic
	Viewing the Traffic
	Tracking Backend Traffic and Custom Data
	Sending Out Alerts

	Chapter 10. Putting It All Together
	The Game
	Caveats

	Getting Set Up
	Google App Engine
	Google Maps API Key
	EC2 or Other Hosted Server
	GeoModel

	The Basic Models
	UserInfo
	Disease
	Germ
	CommandCenter
	Textmark
	Messenger
	UserThreats
	GameUtils

	Building the Game Itself
	User Authentication
	Geolocation
	Spreading Germs
	Loading Germs
	Threats
	Natural threats
	Initiating a challenge
	Updating threats
	Responding to challenge threats: Receiving XMPP and SMS messages
	Receiving XMPP messages
	Receiving SMS messages
	Handling the response

	Spreading Germs
	Fighting Germs
	Realtime Syndication
	Publishing the feed

	The Command Center
	The basic site
	Authentication
	Consuming PubSubHubbub
	Notifying users
	Handling long polling on the server
	Long polling on the client side

	Chat
	Server side
	Client side

	In Review

	Index

