
www.allitebooks.com

http://www.allitebooks.org

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed.

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience.

The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it.

For valuable information on pricing, previous editions, changes to current editions, and alternate formats,

please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for materials in your areas of interest.

www.allitebooks.com

http://www.allitebooks.org

CLEARLY V ISUAL BAS IC ®

PROGRAMMING WITH MICROSOFT® VISUAL BASIC® 2010

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

CLEARLY VISUAL BASIC®

PROGRAMMING WITH MICROSOFT® VISUAL BASIC® 2010

DIANE ZAK

SECOND ED I T I ON

Australia l Brazil l Japan l Korea l Mexico l Singapore l Spain l United Kingdom l United States

www.allitebooks.com

http://www.allitebooks.org

Clearly Visual Basic:
Programming with Microsoft

Visual Basic 2010, Second Edition
Diane Zak

Executive Editor: Marie Lee

Acquisitions Editor: Brandi Shailer

Senior Product Manager: Alyssa Pratt

Freelance Product Manager: Tricia Coia

Associate Product Manager:
Stephanie Lorenz

Marketing Manager: Shanna Shelton

Senior Content Project Manager: Jill Braiewa

Quality Assurance: Green Pen QA

Art Director: Faith Brosnan

Cover Designer: Cabbage Design Company

Text Designer: Shawn Girsberger

Print Buyer: Julio Esperas

Proofreader: Suzanne Huizenga

Indexer: Alexandra Nickerson

Compositor: Integra Software Services

ª 2012 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored or used in any form or by any means graphic, electronic,
or mechanical, including but not limited to photocopying, recording, scanning, digitizing,
taping, Web distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2011921829

ISBN 13: 978 1 111 53015 0

ISBN 10: 1 111 53015 7

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Some of the product names and company names used in this book have been used for
identification purposes only and may be trademarks or registered trademarks of their
respective manufacturers and sellers.

Course Technology, a part of Cengage Learning, reserves the right to revise this
publication and make changes from time to time in its content without notice.

Example: Microsoft® is a registered trademark of the Microsoft Corporation.

Cengage Learning is a leading provider of customized learning solutions with office
locations around the globe, including Singapore, the United Kingdom, Australia,
Mexico, Brazil, and Japan. Locate your local office at: www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Course Technology, visit
www.cengage.com/coursetechnology

To learn more about Cengage Learning, visit www.cengage.com

Purchase any of our products at your local college store or at our preferred online store
www.cengagebrain.com

Printed in the United States of America

1 2 3 4 5 6 7 17 16 15 14 13 12 11

www.allitebooks.com

http://www.allitebooks.org

Brief Contents

Preface . xiv

CHAPTER 1 I Am Not a Control Freak! (Control Structures) 1

CHAPTER 2 First You Need to Plan the Party (Problem-Solving Process) . . . 11

CHAPTER 3 I Need a Tour Guide (Introduction to Visual Basic 2010) 27

CHAPTER 4 Do It Yourself Designing (Designing Interfaces) 49

CHAPTER 5 The Secret Code (Assignment Statements) 67

CHAPTER 6 Where Can I Store This? (Variables and Constants) 81

CHAPTER 7 What ’s Wrong with It? (Syntax and Logic Errors)101

CHAPTER 8 Decisions, Decisions, Decisions (Selection Structure)115

CHAPTER 9 Time to Leave the Nest (Nested Selection Structures)139

CHAPTER 10 So Many Paths . . . So Litt le Time (Mult iple-Alternative
Selection Structures) .159

CHAPTER 11 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)183

CHAPTER 12 How Long Can This Go On? (Pretest Loops)203

CHAPTER 13 Do It, Then Ask Permission (Posttest Loops)231

CHAPTER 14 Let Me Count the Ways (Counter-Control led Loops)241

CHAPTER 15 I ’m on the Inside; You ’re on the Outside (Nested Loops)261

CHAPTER 16 I Hear You Are Breaking Up (Sub Procedures)279

CHAPTER 17 Talk to Me (Function Procedures)303

CHAPTER 18 A Ray of Sunshine (One-Dimensional Arrays)319

CHAPTER 19 Paral lel and Dynamic Universes (More on One-Dimensional
Arrays) .341

CHAPTER 20 Table Tennis, Anyone? (Two-Dimensional Arrays)363

CHAPTER 21 Building Your Own Structure (Structures)383

v

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 22 I ’m Saving for the Future (Sequential Access Fi les)399

CHAPTER 23 The String Section (String Manipulation)417

CHAPTER 24 I ’m Suffering from Information Overload (Access Databases) . . .439

CHAPTER 25 The Missing “LINQ” (Querying a Database)461

CHAPTER 26 I Love This Class (Creating a Class)475

CHAPTER 27 Getting “Web-if ied” (Web Applications)497

APPENDIX A Data Types .527

APPENDIX B Answers to Mini -Quizzes and TRY THIS Exercises529

Index .569

vi

C ON T E N T S

www.allitebooks.com

http://www.allitebooks.org

Contents

Preface . xiv

CHAPTER 1 I Am Not a Control Freak! (Control Structures) 1

Control Structures . 2
The Sequence Structure .2
The Selection Structure .2
The Repetition Structure .3

Summary . 4
Key Terms . 4
Review Questions . 5
Exercises . 6

CHAPTER 2 First You Need to Plan the Party (Problem-Solving Process) 11

How Do Programmers Solve Problems? . 12
Step 1 Analyze the Problem . 12
Step 2 Plan the Algorithm . 14
Step 3 Desk Check the Algorithm . 18

Summary . 21
Key Terms . 22
Review Questions . 22
Exercises . 23

CHAPTER 3 I Need a Tour Guide (Introduction to Visual Basic 2010) 27

Ok, the Algorithm Is Correct. What’s Next? . 28
Creating a Visual Basic Windows Application . 29
So Many Windows! . 31

Creating the User Interface . 33
Save, Save, Save . 36
Whose Property Is It? . 36
Using the Format Menu . 39
Lock Them Down . 40
Ok, Let’s See the Interface in Action! . 41
Closing the Current Solution . 42
Opening an Existing Solution . 42
Exiting Visual Studio 2010 or Visual Basic 2010 Express 43
Summary . 43
Key Terms . 44
Review Questions . 45
Exercises . 45

vii

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 Do It Yourself Designing (Designing Interfaces) 49

Delegating the Work . 50
Making the Interface More User Friendly . 54
Do What I Tell You to Do . 57
The Me.Close() Instruction . 58

Summary . 60
Key Terms . 61
Review Questions . 62
Exercises . 62

CHAPTER 5 The Secret Code (Assignment Statements) 67

The Fun Starts Here . 68
The Val Function . 69

Who’s in Charge of This Operation? . 70
Your Assignment, if You Choose to Accept It . 72
Summary . 75
Key Terms . 75
Review Questions . 76
Exercises . 76

CHAPTER 6 Where Can I Store This? (Variables and Constants) 81

Using Storage Bins . 82
So, What’s Your Type? . 83
Let’s Play the Name Game . 84

You’ll Need a Reservation . 84
How Many Variables Should I Use? . 85
The TryParse Method . 87
Check, Please…I’m Ready to Go . 88

Using Constants to Keep Things…Well, the Same . 89
Dressing Up the Output . 90
Summary . 92
Key Terms . 93
Review Questions . 93
Exercises . 95

CHAPTER 7 What ’s Wrong with It? (Syntax and Logic Errors)101

There’s a Bug in My Soup! . 102
Finding Syntax Errors . 102
Locating Logic Errors . 105
I’ve Reached My Breaking Point . 108

Summary . 111
Key Terms . 112
Review Questions . 112
Exercises . 113

CHAPTER 8 Decisions, Decisions, Decisions (Selection Structure)115

Someone Might Need to Make a Decision . 116
Going Beyond Rob’s Problems . 120

The If…Then…Else Statement . 121

viii

C O N T E N T S

www.allitebooks.com

http://www.allitebooks.org

Examining Another Problem Specification . 124
Hey, That’s Not the Way I Would Have Done It 129

Summary . 133
Key Terms . 133
Review Questions . 134
Exercises . 135

CHAPTER 9 Time to Leave the Nest (Nested Selection Structures)139

Nested Selection Structures . 140
Putting Rob’s Problems Aside . 143
Let’s Go to the Swap Meet . 147

That’s Way Too Logical for Me . 149
Summary of Operators . 152
Summary . 153
Key Terms . 154
Review Questions . 154
Exercises . 155

CHAPTER 10 So Many Paths . . . So Litt le Time (Mult iple-Alternative
Selection Structures) .159

Which Way Should I Go? . 160
Coding the Fitness For Good Application . 162
Don’t Be So Sensitive . 164

What’s the Next Case on the Docket? . 167
Using Select Case in the Fitness For Good Application 168

Specifying a Range of Values in a Case Clause’s ExpressionList 170
Coding the ABC Corporation Application . 171

Using Radio Buttons . 172
Coding the Gentry Supplies Application . 173

Summary . 175
Key Terms . 175
Review Questions . 176
Exercises . 177

CHAPTER 11 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)183

Will Your Application Pass the Test? . 184
The Only Cookies Version 1 Application . 184
The Only Cookies Version 2 Application . 187
Stop! This Is a Restricted Area! . 189

The Shady Hollow Hotel Version 1 Application . 191
The Shady Hollow Hotel Version 2 Application . 193
I Need to Tell You Something . 195
Just When You Thought It Was Safe . 197

Summary . 199
Key Terms . 199
Review Questions . 200
Exercises . 201

CHAPTER 12 How Long Can This Go On? (Pretest Loops)203

Over and Over Again . 204

ix

The Do…Loop Statement . 208
Counter Variables . 209
My Dream Car Version 1 Application . 210
My Dream Car Version 2 Application . 214

The Sales Express Application Counter and Accumulator Variables 216
The InputBox Function . 218

Can I Abbreviate That Assignment Statement? . 223
Summary . 225
Key Terms . 226
Review Questions . 227
Exercises . 228

CHAPTER 13 Do It, Then Ask Permission (Posttest Loops)231

Testing After the Fact . 232
More on the Do…Loop Statement . 233
Pseudocode and Flowchart Containing a Posttest Loop 234

The Bouncing Robot Application . 235
Summary . 237
Key Term . 237
Review Questions . 237
Exercises . 238

CHAPTER 14 Let Me Count the Ways (Counter-Control led Loops)241

When Will It Stop? . 242
Spaceship Version 1 Application . 244
Spaceship Version 2 Application . 246
Hey, Turn That Noise Down! . 247

The Monthly Payment Calculator Application . 247
The Financial.Pmt Method . 249
But They Said There Were No Strings Attached 250

Summary . 255
Key Terms . 255
Review Questions . 255
Exercises . 257

CHAPTER 15 I ’m on the Inside; You ’re on the Outside (Nested Loops)261

One Loop Within Another Loop . 262
Clock Application . 263

Revisiting the Monthly Payment Calculator Application 265
But I Want to Do It a Different Way . 270

Summary . 271
Key Terms . 271
Review Questions . 272
Exercises . 274

CHAPTER 16 I Hear You Are Breaking Up (Sub Procedures)279

What’s the Proper Procedure? . 280
The Weekly Pay Application . 282

Send Me Something . 284
Just Give Me Its Value . 285
Where Do You Live? . 288

x

C ON T E N T S

Summary . 294
Key Terms . 295
Review Questions . 295
Exercises . 297

CHAPTER 17 Talk to Me (Function Procedures)303

What’s the Answer? . 304
Price Calculator Application . 305

Revisiting the Total Due Calculator Application . 308
Which Way Is Better? . 312

Summary . 313
Key Terms . 313
Review Questions . 313
Exercises . 315

CHAPTER 18 A Ray of Sunshine (One-Dimensional Arrays)319

Let’s Join the Group . 320
My Friends Application . 322
Salary Application . 327
States Application . 330
Summary . 334
Key Terms . 334
Review Questions . 335
Exercises . 336

CHAPTER 19 Paral lel and Dynamic Universes (More on One-Dimensional
Arrays) .341

We Share the Same Subscripts . 342
Will You Share That with Me? . 346
But I Don’t Know How Many There Are . 352
Summary . 356
Key Terms . 356
Review Questions . 357
Exercises . 357

CHAPTER 20 Table Tennis, Anyone? (Two-Dimensional Arrays)363

Let’s Table That Idea for Now . 364
Revisiting the Employee Application . 367
The GetLowerBound and GetUpperBound Methods 368

Calendar Orders Application . 372
Summary . 375
Key Terms . 375
Review Questions . 376
Exercises . 377

CHAPTER 21 Building Your Own Structure (Structures)383

Putting the Pieces Together . 384
Willow Pools Application . 386
Revisiting the Employee Application…Again! . 389
Summary . 394

xi

Key Terms . 395
Review Questions . 395
Exercises . 396

CHAPTER 22 I ’m Saving for the Future (Sequential Access Fi les)399

Sequential Access Files . 400
Write Those Lines of Text . 400
Now Read Those Lines of Text . 405
Summary . 411
Key Terms . 411
Review Questions . 412
Exercises . 413

CHAPTER 23 The String Section (String Manipulation)417

Working with Strings . 418
How Many Characters Are There? . 418
Get Rid of Those Spaces . 418
The Product ID Application . 419

Let’s Make a Substitution . 420
I Need to Fit This in Somewhere . 421
The Phone Numbers Application . 422

Where Does It Begin? . 425
I Just Want a Part of It . 426
The Rearrange Name Application . 427

Throw Away Those Characters . 429
The Last Name Application . 430

I Like This Operator . 432
Modifying the Product Id Application . 434

Summary . 435
Key Terms . 435
Review Questions . 436
Exercises . 437

CHAPTER 24 I ’m Suffering from Information Overload (Access Databases) . . .439

Keeping Good Records . 440
Connecting…Connecting . 441
Let the Computer Do It . 444
The Copy to Output Directory Property . 448
How Does Visual Basic Do It? . 450
Thank You for Catching My Errors . 450

I’ll Use My Own Controls, Thank You . 452
Coding the Next Record and Previous Record Buttons 454

Summary . 456
Key Terms . 457
Review Questions . 458
Exercises . 458

CHAPTER 25 The Missing “LINQ” (Querying a Database)461

Asking Questions . 462
Revisiting the Raye Industries Application . 463

xii

C O N T E N T S

One for All . 466
Summary . 469
Key Terms . 469
Review Questions . 469
Exercises . 471

CHAPTER 26 I Love This Class (Creating a Class)475

That’s a Real Classy Object . 476
Revisiting the Willow Pools Application . 477
Who Owns That Property? . 479

Behave Yourself . 483
Constructive Behavior Is the Key to Success . 483
Methods Other than Constructors . 484

Using the Pattern to Create an Object . 486
Pool Supplies Application . 489
Summary . 491
Key Terms . 492
Review Questions . 493
Exercises . 493

CHAPTER 27 Getting “Web-if ied” (Web Applications)497

Web Applications . 498
Creating a Web Application . 500
Adding the Default.aspx Web Page to the Application 502
Customizing a Web Page . 503
Adding Static Text to a Web Page . 504

Viewing a Web Page in Full Screen View . 505
Adding Another Web Page to the Application . 506
Adding a Link Button Control to a Web Page . 507
Starting a Web Application . 508
Adding an Image to a Web Page . 510
Closing and Opening an Existing Web Application 512
Repositioning a Control on a Web Page . 512
Dynamic Web Pages . 514
Coding the Submit Button’s Click Event Procedure 517
Validating User Input . 519
Summary . 521
Key Terms . 522
Review Questions . 523
Exercises . 523

APPENDIX A Data Types .527

APPENDIX B Answers to Mini -Quizzes and TRY THIS Exercises529

Index .569

xiii

Preface

Clearly Visual Basic: Programming with Microsoft Visual Basic 2010, Second Edition is designed
for a beginning programming course. The book assumes students have no previous
programming knowledge or experience. However, students should be familiar with basic
Windows skills and file management. The book’s primary focus is on teaching programming
concepts, with a secondary focus on teaching the Visual Basic programming language. In other
words, the purpose of the book is to teach students how to solve a problem that requires a
computer solution. The Visual Basic language is used as a means of verifying that the solution
works correctly.

Organization and Coverage
Clearly Visual Basic: Programming with Microsoft Visual Basic 2010, Second Edition
contains 27 chapters and two appendices. In the chapters, students with no previous
programming experience learn how to analyze a problem specification and then plan and
create an appropriate computer solution. Pseudocode and flowcharts are used to plan the
solution, and desk-check tables are used to verify that the solution is correct before it is
coded. Students code the solutions using the Visual Basic 2010 language, and then desk-
check the code before it is executed. An entire chapter is devoted to teaching students how
to select appropriate test data. By the end of the book, students will have learned how to
write Visual Basic statements such as If…Then…Else, Select Case, Do…Loop, and
For…Next. Students also will learn how to create and manipulate variables, constants,
strings, sequential access files, structures, classes, and arrays. In addition, they will learn how
to connect an application to a Microsoft Access database, and then use Language Integrated
Query (LINQ) to query the database. They also will learn how to create simple Web
applications. The text also introduces students to OOP concepts and terminology. Appendix
A provides a listing of the data types available in Visual Basic. Appendix B contains the
answers to the Mini-Quizzes and TRY THIS Exercises in each chapter.

Approach
Rather than focusing on a specific programming language, Clearly Visual Basic:
Programming with Microsoft Visual Basic 2010, Second Edition focuses on programming
concepts that are common to all programming languages—such as input, output, selection,
and repetition. Concepts are introduced, illustrated, and reinforced using simple examples
and applications, which are more appropriate for a first course in programming. The
concepts are spread over many short chapters, allowing students to master the material one
small piece at a time. Because its emphasis is on teaching the fundamentals of programming,
the book covers only the basic controls, properties, and events available in Visual Basic.

Each chapter provides the steps for creating and/or coding an application that uses the
concepts covered in the chapter. The videos and PDF files that accompany each chapter are
designed to help students master the chapter’s concepts.

xiv

Features
Clearly Visual Basic: Programming with Microsoft Visual Basic 2010, Second Edition is an
exceptional textbook because it also includes the following features:

READ THIS BEFORE YOU BEGIN This section is consistent with Course Technology’s unequaled
commitment to helping instructors introduce technology into the classroom. Technical
considerations and assumptions about hardware, software, and default settings are listed in one
place to help instructors save time and eliminate unnecessary aggravation.

VIDEOS These notes direct students to videos that accompany each chapter in the book. The
videos explain and/or demonstrate one or more of the chapter’s concepts, provide additional
information about the concepts, or cover topics related to the concepts. The videos are available
online at www.cengagebrain.com. Search for the ISBN of your title (from the back cover of your
book) using the search box at the top of the page. This will take you to the product page where
free companion resources can be found.

WANT MORE INFO? FILES These notes direct students to files that accompany each chapter in
the book. The files contain additional examples and further explanations of the concepts
covered in the chapter. The files are in PDF format. The files are available online at www.
cengagebrain.com.

FIGURES Figures that introduce new statements, functions, or methods contain both the syntax
and examples of using the syntax. Including the syntax in the figures makes the examples more
meaningful.

OBJECTIVES Each chapter begins with a list of objectives so you know the topics that will be
presented in the chapter. In addition to providing a quick reference to topics covered, this
feature provides a useful study aid.

MINI-QUIZZES Mini-Quizzes are strategically placed to test students’ knowledge at various
points in each chapter. Answers to the quiz questions are provided in Appendix B in the book.

SUMMARY Each chapter contains a Summary section that recaps the concepts covered in the
chapter.

KEY TERMS Following the Summary section in each chapter is a listing of the key terms
introduced throughout the chapter, along with their definitions.

REVIEW QUESTIONS Each chapter contains Review Questions designed to test a student’s
understanding of the chapter’s concepts.

EXERCISES The Review Questions in each chapter are followed by Exercises, which provide
students with additional practice of the skills and concepts they learned in the chapter. The
Exercises are designated as TRY THIS, MODIFY THIS, INTRODUCTORY, INTERMEDIATE,
ADVANCED, FIGURE THIS OUT, and SWAT THE BUGS.

TRY THIS EXERCISES The TRY THIS Exercises should be the first Exercises students complete
after reading a chapter. These Exercises are similar to the application developed in the chapter,
and they allow students to test their understanding of the chapter’s concepts. The answers to
TRY THIS Exercises are provided in Appendix B in the book.

MODIFY THIS EXERCISES In these Exercises, students modify an existing application.

FIGURE THIS OUT EXERCISES These Exercises require students to analyze a block of code and
then answer questions about the code.

SWAT THE BUGS EXERCISES The SWAT THE BUGS Exercises provide an opportunity for
students to detect and correct errors in an existing application.

xv

Organization and Coverage

New to This Edition!
DESIGNED FOR THE DIFFERENT LEARNING STYLES The book provides videos for visual and
auditory learners, and tutorial sections and Want More Info? files for kinesthetic learners.

VIDEOS The videos that accompany each chapter have been updated and now contain self-
review quizzes.

WEB APPLICATIONS The Web Application chapter (Chapter 27) is now in the book rather than
online. The chapter now shows students how to create a Web application that contains two
Web pages. It also covers the LinkButton tool.

REVIEW QUESTIONS AND EXERCISES Additional Review Questions and Exercises have been
added to each chapter.

APPENDIX B Appendix B contains the answers to each chapter’s Mini-Quizzes and TRY THIS
Exercises. The answers are provided to give students immediate feedback and more opportunity
for learning.

POSTTEST LOOPS AND STRING CONCATENATION In the previous edition of the book, posttest
loops and string concatenation were covered in the same chapter. In this edition, posttest loops
are covered in a separate chapter (Chapter 13). String concatenation is now covered along with
counter-controlled loops in Chapter 14.

ARITHMETIC ASSIGNMENT OPERATORS These operators are covered along with pretest loops
in Chapter 12.

SELECTION STRUCTURES The selection structure chapters (Chapters 8, 9, and 10) now refer to
the different forms of the selection structure as single-alternative, dual-alternative, and multiple-
alternative.

REPETITION STRUCTURES The repetition structure chapters (Chapters 12, 13, and 14) were
revised to include the following terms: looping condition and loop exit condition.

STRING MANIPULATION The Remove method was added to the string manipulation chapter
(Chapter 23).

AUTO-IMPLEMENTED PROPERTIES Auto-implemented properties are covered in the video that
accompanies the chapter on classes (Chapter 26).

Instructor Resources and Supplements
All of the resources available with this book are provided to the instructor on a single CD-ROM.
Many also can be found at www.cengagebrain.com. At the CengageBrain.com home page, search
for the ISBN of your title (from the back cover of your book) using the search box at the top of
the page. This will take you to the product page where free companion resources can be found.

ELECTRONIC INSTRUCTOR’S MANUAL The Instructor’s Manual that accompanies this textbook
includes additional instructional material to assist in class preparation, including items such as
Sample Syllabi, Chapter Outlines, Technical Notes, Lecture Notes, Quick Quizzes, Teaching
Tips, Discussion Topics, and Additional Case Projects.

EXAMVIEW® This textbook is accompanied by ExamView, a powerful testing software package
that allows instructors to create and administer printed, computer (LAN-based), and Internet
exams. ExamView includes hundreds of questions that correspond to the topics covered in this
text, enabling students to generate detailed study guides that include page references for further
review. The computer-based and Internet testing components allow students to take exams at
their computers, and also save the instructor time by grading each exam automatically.

xvi

P R E F A C E Instructor Resources and Supplements

POWERPOINT PRESENTATIONS This book offers Microsoft PowerPoint slides for each chapter.
These are included as a teaching aid for classroom presentation, to make available to students on
the network for chapter review, or to be printed for classroom distribution. Instructors can add
their own slides for additional topics they introduce to the class.

DATA FILES Data Files are necessary for completing the computer activities in this book. The
Data Files are provided on the Instructor Resources CD-ROM and also may be found at www.
cengagebrain.com.

SOLUTION FILES Solutions to the chapter applications and the end-of-chapter Review
Questions and Exercises are provided on the Instructor Resources CD-ROM and also may be
found at www.cengagebrain.com. The solutions are password protected.

DISTANCE LEARNING Course Technology is proud to present online test banks in WebCT,
Blackboard, and Angel to provide the most complete and dynamic learning experience possible.
Instructors are encouraged to make the most of the course, both online and offline. For more
information on how to access the online test bank, contact your local Course Technology sales
representative.

Acknowledgments
Writing a book is a team effort rather than an individual one. I would like to take this
opportunity to thank my team, especially Jill Braiewa (Senior Content Project Manager), Alyssa
Pratt (Senior Product Manager), Tricia Coia (Freelance Product Manager), Nicole Ashton
(Quality Assurance), Suzanne Huizenga (Proofreader), and the compositors at Integra. Thank
you for your support, enthusiasm, patience, and hard work. Last, but certainly not least, I want
to thank the following reviewers for their invaluable ideas and comments: Wayne Payton,
Gadsden State Community College; Annette Kerwin, College of DuPage, Matthew Alimagham,
Spartanburg Community College; Anthony Basilico, College of Rhode Island; Frank Malinowski,
Darton College; Craig Brown, Boston College; and Laura Gipson, Beaufort Community College.

Diane Zak

xvii

Acknowledgments

Read This Before
You Begin

Technical Information
Data Files
You will need data files to complete the computer activities in this book. Your instructor may
provide the data files to you. You may obtain the files electronically at www.cengagebrain.com,
and then navigating to the page for this book.

Each chapter in this book has its own set of data files, which are stored in a separate folder
within the ClearlyVB2010 folder. The files for Chapter 3 are stored in the ClearlyVB2010\Chap03
folder. Similarly, the files for Chapter 4 are stored in the ClearlyVB2010\Chap04 folder.
Throughout this book, you will be instructed to open files from or save files to these folders.

You can use a computer in your school lab or your own computer to complete the chapter
applications and Exercises in this book.

Using Your Own Computer
To use your own computer to complete the computer activities in this book, you will need the
following:

l A Pentium® 4 processor, 1.6 GHz or higher, personal computer running Microsoft Windows.
This book was written and Quality Assurance tested using Microsoft Windows 7.

l Either Microsoft Visual Studio 2010 or the Express Editions of Microsoft Visual Basic 2010
and Microsoft Visual Web Developer 2010 installed on your computer. This book was
written using Microsoft Visual Studio 2010 Professional Edition, and Quality Assurance
tested using the Express Editions of Microsoft Visual Basic 2010 and Microsoft Visual Web
Developer 2010. At the time of this writing, you can download a free copy of the Express
Editions at www.microsoft.com/express/downloads (Visual Basic 2010 Express) and
http://www.microsoft.com/express/Downloads/#2010-Visual-Web-Developer
(Visual Web Developer 2010 Express). If necessary, use the following information when
installing the Professional or Express Editions of the software:

To configure Visual Studio 2010 or Visual Basic 2010 Express:

1. Start either Visual Studio 2010 or Visual Basic 2010 Express. If the Choose Default
Environment Settings dialog box appears when you start Visual Studio, select the Visual
Basic Development Settings option.

2. If you are using Visual Basic 2010 Express, click Tools on the menu bar, point to
Settings, and then click Expert Settings.

xviii

www.allitebooks.com

http://www.allitebooks.org

3. Click Tools on the menu bar and then click Options to open the Options dialog box. If
necessary, deselect the Show all settings check box. Click the Projects and Solutions
node. Use the information shown in Figure 3-3 in Chapter 3 to select and deselect the
appropriate check boxes. (Your dialog box will look slightly different if you are using
Visual Basic 2010 Express.).

4. Expand the Projects and Solutions node in the Options dialog box and then click VB
Defaults. Verify that both Option Explicit and Option Infer are set to On. Also verify that
Option Strict and Option Compare are set to Off and Binary, respectively. Click the OK
button to close the Options dialog box.

To configure Visual Web Developer 2010 Express:

1. Start Visual Web Developer 2010 Express. Click Tools on the menu bar, point to
Settings, and then click Expert Settings.

2. Click Tools on the menu bar and then click Options to open the Options dialog box. If
necessary, select the Show all settings check box. Click the Projects and Solutions node.
Use the information shown in Figure 27-5 in Chapter 27 to select and deselect the
appropriate check boxes. When you are finished, click the OK button to close the
Options dialog box.

Figures
The figures in this book reflect how your screen will look if you are using Microsoft Visual
Studio 2010 Professional Edition and a Microsoft Windows 7 system. Your screen may appear
slightly different in some instances if you are using another version of Microsoft Visual Studio,
Microsoft Visual Basic, or Microsoft Windows.

Visit Our Web Site
Additional materials designed for this textbook might be available at www.cengagebrain.com.
Search this site for more details.

To the Instructor
To complete the computer activities in this book, your students must use a set of data files. The
files are included on the Instructor’s Resource CD. They also may be obtained electronically at
www.cengagebrain.com.

The material in this book was written using Microsoft Visual Studio 2010 Professional Edition
on a Microsoft Windows 7 system. It was Quality Assurance tested using the Express Editions of
Microsoft Visual Basic 2010 and Microsoft Visual Web Developer 2010 on a Microsoft
Windows 7 system. The book assumes that both Option Explicit and Option Infer are set to On,
Option Strict is set to Off, and Option Compare is set to Binary. To verify these settings, start
either Visual Studio 2010 or Visual Basic 2010 Express. Click Tools on the menu bar and then
click Options. Expand the Projects and Solutions node in the Options dialog box and then click
VB Defaults. Verify the four Option settings and then click the OK button to close the Options
dialog box.

Course Technology Data Files
You are granted a license to copy the data files to any computer or computer network used by
individuals who have purchased this book.

xix

Read This Before You Begin

This page intentionally left blank

CHAPTER 1
I Am Not a Control Freak!
(Control Structures)

After studying Chapter 1, you should be able to:

Describe the three control structures

Write simple algorithms using the sequence, selection, and
repetition structures

Control Structures
All computer programs, no matter how simple or how complex, are written using one or more of
three basic structures: sequence, selection, and repetition. These structures are called control
structures or logic structures, because they control the flow of a program’s logic. You will use the
sequence structure in every program you write. In most programs, you also will use both the
selection and repetition structures. This chapter gives you an introduction to the three control
structures. It also introduces you to a computerized mechanical man named Rob, who will help
illustrate the control structures. More detailed information about each structure, as well as how to
implement these structures using the Visual Basic language, is provided in subsequent chapters.

The Sequence Structure
You already are familiar with the sequence structure, because you use it each time you follow a
set of directions, in order, from beginning to end. A cookie recipe, for instance, provides a good
example of the sequence structure. To get to the finished product (edible cookies), you need
to follow each recipe instruction in order, beginning with the first instruction and ending with
the last. Likewise, the sequence structure in a computer program directs the computer to
process the program instructions, one after another, in the order listed in the program. You will
find the sequence structure in every program.

You can observe how the sequence structure works by programming a mechanical man named
Rob. Like a computer, Rob has a limited instruction set. This means that Rob can understand
only a specific number of instructions, also called commands. For now, you will use only three of
the commands from Rob’s instruction set: walk forward, turn right 90 degrees, and sit down.
When told to walk forward, Rob takes one complete step forward. In other words, he moves his
right foot forward one step and then moves his left foot to meet his right foot. For this first
example, Rob is facing a chair that is two steps away from him. Your task is to write the
instructions, using only the commands that Rob understands, that direct Rob to sit in the chair.
Figure 1-1 shows Rob, the chair, and the instructions that will get Rob seated properly. The five
instructions shown in the figure are called an algorithm, which is a set of step-by-step
instructions that accomplish a task. For Rob to be properly seated in the chair, he must follow
the instructions in order—in other words, in sequence.

The Selection Structure
As with the sequence structure, you already are familiar with the selection structure, also called
the decision structure. The selection structure indicates that a decision needs to be made,
followed by an appropriate action derived from that decision. You use the selection structure

1. walk forward
2. walk forward
3. turn right 90 degrees
4. turn right 90 degrees
5. sit down

algorithm

2 steps

Figure 1-1 An example of the sequence structure

CH A P T E R 1 I Am Not a Control Freak! (Control Structures)

2

every time you drive your car and approach a railroad crossing. Your decision, as well as the
appropriate action, is based on whether the crossing signals (flashing lights and ringing bells) are
on or off. If the crossing signals are on, you stop your car before crossing the railroad tracks;
otherwise, you proceed with caution over the railroad tracks. When used in a computer
program, the selection structure alerts the computer that a decision needs to be made, and it
provides the appropriate action to take based on the result of that decision.

You can observe how the selection structure works by programming Rob, the mechanical man.
In this example, Rob is holding either a red or yellow balloon, and he is facing two boxes. One of
the boxes is colored yellow and the other is colored red. The two boxes are located three steps
away from Rob. Your task is to have Rob drop the balloon into the appropriate box: the yellow
balloon belongs in the yellow box, and the red balloon belongs in the red box. To write an
algorithm to accomplish the current task, you need to use four additional instructions from
Rob’s instruction set: if the balloon is red, do this:, otherwise, do this:, drop the balloon in the red
box, and drop the balloon in the yellow box. The additional instructions allow Rob to make a
decision about the color of the balloon he is holding, and then take the appropriate action based
on that decision. Figure 1-2 shows an illustration of the current example, along with the correct
algorithm. Notice that the drop the balloon in the red box and drop the balloon in the yellow box
instructions are indented within the selection structure. Indenting in this manner clearly
indicates the instructions to be followed when the balloon is red, as well as the ones to be
followed when the balloon is not red.

The Repetition Structure
The last of the three control structures is the repetition structure. Like the sequence and
selection structures, you already are familiar with the repetition structure. For example,
shampoo bottles typically include the repetition structure in the directions for washing your
hair. Those directions usually tell you to repeat the “apply shampoo to hair,” “lather,” and “rinse”
steps until your hair is clean. When used in a program, the repetition structure directs the
computer to repeat one or more instructions until some condition is met, at which time the
computer should stop repeating the instructions. The repetition structure is also referred to as a
loop or as iteration.

You can observe how the repetition structure works by programming Rob, the mechanical man.
In this example, Rob is facing a chair that is 50 steps away from him. Your task is to write the
algorithm that directs Rob to sit in the chair. If the repetition structure was not available to
you, you would need to write the walk forward instruction 50 times, followed by the turn right
90 degrees instruction twice, followed by the sit down instruction. Although that algorithm
would work, it is quite cumbersome to write. Imagine if Rob were 500 steps away from the chair!
The best way to write the algorithm to get Rob seated in a chair that is 50 steps away from him

3 steps Red

1. walk forward
2. walk forward
3. walk forward
4. if the balloon is red, do this:
 drop the balloon in the red box
 otherwise, do this:
 drop the balloon in the yellow box

indent

Yellow

Figure 1-2 An example of the selection structure

Control Structures

3

is to use the repetition structure. To do so, however, you need to use another instruction from
Rob’s instruction set. In this case, you need to use the command repeat x times:, where x is the
number of times you want Rob to repeat something. Figure 1-3 shows the illustration of Rob and
the chair. It also shows the correct algorithm, which contains both the sequence and repetition
structures. Notice that the instructions to be repeated (walk forward and turn right 90 degrees)
are indented below their respective repeat x times: instruction. Indenting in this manner
indicates that the instruction is part of the repetition structure and, therefore, needs to be
repeated the specified number of times. Although both repetition structures shown in Figure 1-3
include only one instruction, a repetition structure can include many instructions.

Summary
l An algorithm is the set of step-by-step instructions that accomplish a task.

l The algorithms for all computer programs contain the sequence structure and either one or
both of the following control structures: selection and repetition.

l The control structures, also called logic structures, control the flow of a program’s logic.

l The sequence structure directs the computer to process the program instructions, one after
another, in the order listed in the program.

l The selection structure, also called the decision structure, directs the computer to make a
decision and then select an appropriate action based on that decision.

l The repetition structure directs the computer to repeat one or more program instructions
until some condition is met.

Key Terms
Algorithm—the set of step-by-step instructions that accomplish a task

Control structures—the sequence, selection, and repetition structures, which control the flow of
a program’s logic; also called logic structures

Decision structure—another term for the selection structure

Iteration—another term for the repetition structure

Logic structures—another term for control structures

1. repeat 50 times:
 walk forward
2. repeat 2 times:
 turn right 90 degrees
3. sit down

indent 50 steps

Figure 1-3 An example of the repetition structure

It’s time to view
the Ch1-Control
Structures
video.

CH A P T E R 1 I Am Not a Control Freak! (Control Structures)

4

Loop—another term for the repetition structure

Repetition structure—the control structure that directs the computer to repeat one or more
instructions until some condition is met, at which time the computer should stop repeating the
instructions; also called a loop or iteration

Selection structure—the control structure that directs the computer to make a decision and
then take the appropriate action based on that decision; also called the decision structure

Sequence structure—the control structure that directs the computer to process each
instruction in the order listed in the program

Review Questions
1. The set of instructions for adding together two numbers is an example of

the ___________ structure.

a. control

b. repetition

c. selection

d. sequence

2. The recipe instruction “Beat until smooth” is an example of the ___________ structure.

a. control

b. repetition

c. selection

d. sequence

3. The instruction “If it’s raining outside, then take an umbrella to work” is an example of
the ___________ structure.

a. control

b. repetition

c. selection

d. sequence

4. Which control structure would an algorithm use to determine whether a credit card
holder is over his credit limit?

a. repetition

b. selection

c. both repetition and selection

5. A company pays a 10% commission to salespeople whose monthly sales are at least
$5000; other salespeople receive a 7% commission. Which control structure would an
algorithm use to calculate every salesperson’s commission?

a. repetition

b. selection

c. both repetition and selection

6. Which control structure would an algorithm use to determine whether a customer is
entitled to a senior discount?

a. repetition

b. selection

c. both repetition and selection

7. Which of the following control structures is used in every program?

a. logic

b. repetition

c. selection

d. sequence

Review Questions

5

Exercises
You will use Rob (the mechanical man) and the instruction set shown in Figure 1-4 to complete
Exercises 1, 3, 4, and 6.

walk forward

sit down

stand up

pick the flower with your right hand

pick the flower with your left hand

drop the toy in the toy chest

turn right 90 degrees

jump over the box

throw the box out of the way

if the box is red, do this:

if the flower is white, do this:

otherwise, do this:

repeat x times:

repeat until you are directly in front of the chair:

repeat until you are directly in front of the toy chest:

Figure 1-4 Rob’s instruction set

1. As illustrated in Figure 1-5, Rob is five steps away from a box that is an unknown distance
away from a chair. Using only the instructions shown in Figure 1-4, create an algorithm
that directs Rob to sit in the chair. Assume that Rob must jump over the box before he
can continue toward the chair. (See Appendix B for the answer.)

2. Using only the instructions shown in Figure 1-6, create an algorithm that shows the steps
an instructor takes when grading a test that contains 25 questions. (See Appendix B for
the answer.)

5 steps ? steps

Figure 1-5 Illustration for Exercise 1

TRY THIS

TRY THIS

CH A P T E R 1 I Am Not a Control Freak! (Control Structures)

6

if the student’s answer is not the same as the correct answer, do this:
repeat 25 times:
read the student’s answer and the correct answer
mark the student’s answer incorrect

Figure 1-6 Instruction set for Exercise 2

3. Modify the answer to TRY THIS Exercise 1 as follows: Rob must jump over the box if the
box is red. If the box is not red, Rob must throw the box out of the way. Use the
instructions shown earlier in Figure 1-4.

4. Rob is facing a toy chest that is zero or more steps away from him. Rob is carrying a toy
in his right hand. Using only the instructions shown earlier in Figure 1-4, create an
algorithm that directs Rob to drop the toy in the toy chest.

5. You have just purchased a new personal computer system. Before putting the system
components together, you read the instruction booklet that came with the system. The
booklet contains a list of the components that you should have received. The booklet
advises you to verify that you received all of the components by matching those that you
received with those on the list. If a component was received, you should cross its name
off the list; otherwise, you should draw a circle around the component’s name in the list.
Using only the instructions shown in Figure 1-7, create an algorithm that shows the steps
you should take to verify that the package contains the correct components.

cross the component name off the list
read the component name from the list
circle the component name on the list
search the package for the component
if the component was received, do this:
otherwise, do this:
repeat for each component name on the list:

Figure 1-7 Instruction set for Exercise 5

6. As illustrated in Figure 1-8, Rob is standing in front of a flower bed that contains six
flowers. Your task is to create an algorithm that directs Rob to pick the flowers as he
walks to the other side of the flower bed. Rob should pick all white flowers with his right
hand. Flowers that are not white should be picked with his left hand. Use the instructions
shown earlier in Figure 1-4.

INTRODUCTORY

MODIFY THIS

INTRODUCTORY

INTERMEDIATE

Rob should end up
on the other side of
the flower bed

Figure 1-8 Illustration for Exercise 6

Exercises

7

7. A store gives a 10% discount to customers who are at least 65 years old. Using only the
instructions shown in Figure 1-9, write two versions of an algorithm that prints the
amount of money a customer owes. Be sure to indent the instructions appropriately.

assign 10% as the discount rate
assign 0 as the discount rate
calculate the amount due by subtracting the discount rate from the number 1,
and then multiplying the result by the item price

if the customer’s age is greater than or equal to 65, do this:
if the customer’s age is less than 65, do this:
otherwise, do this:
print the amount due
read the customer’s age and item price

Figure 1-9 Instruction set for Exercise 7

8. Create an algorithm for making a jelly sandwich.

9. The algorithm shown in Figure 1-10 should instruct a payroll clerk on how to calculate
and print the gross pay for five workers; however, some of the instructions are missing
from the algorithm. Complete the algorithm. If an employee works more than 40 hours,
he or she should receive time and one-half for the hours worked over 40.

read the employee’s name, hours worked, and pay rate

calculate gross pay hours worked times pay rate
otherwise, do this:

calculate regular pay pay rate times 40
calculate overtime hours hours worked minus 40
calculate overtime pay
calculate gross pay

print the employee’s name and gross pay

Figure 1-10 Algorithm for Exercise 9

10. Study the algorithm shown in Figure 1-11 and then answer the questions.

a. Which control structures are used in the algorithm?

b. What will the algorithm print when the user enters Mary Smith and 2000 as the
salesperson’s name and sales amount, respectively?

c. How would you modify the algorithm so that it also prints the salesperson’s sales
amount?

d. How would you modify the algorithm so that it can be used for any number of
salespeople?

e. How would you modify the algorithm so that it allows the user to enter the bonus
rate, and then uses that rate to calculate the bonus amount?

repeat 5 times:
get the salesperson’s name and sales amount
calculate the bonus amount by multiplying the sales amount by 3%
print the salesperson’s name and bonus amount

Figure 1-11 Algorithm for Exercise 10

INTERMEDIATE

ADVANCED

ADVANCED

FIGURE THIS OUT

CH A P T E R 1 I Am Not a Control Freak! (Control Structures)

8

www.allitebooks.com

http://www.allitebooks.org

11. The algorithm shown in Figure 1-12 does not get Rob through the maze
illustrated in the figure. Correct the algorithm.

Rob should end
up here

 1. walk into the maze
 2. turn left 90 degrees
 3. repeat until you are directly in front of a wall:
 walk forward
 4. turn right 90 degrees
 5. repeat until you are directly in front of a wall:
 walk forward
 6. turn right 90 degrees
 7. repeat until you are directly in front of a wall:
 walk forward
 8. turn right 90 degrees
 9. repeat until you are directly in front of a wall:
 walk forward
10. turn right 90 degrees
11. repeat until you are directly in front of a wall:
 walk forward
12. turn left 90 degrees
13. repeat until you are directly in front of a wall:
 turn right 90 degrees
14. repeat until you are out of the maze:
 walk forward

Figure 1-12 Illustration and algorithm for Exercise 11

SWAT THE BUGS

Exercises

9

This page intentionally left blank

CHAPTER 2
First You Need
to Plan the Party
(Problem-Solving Process)

After studying Chapter 2, you should be able to:

Identify the output and input in a problem specification

Plan an algorithm using pseudocode and flowcharts

Desk-check an algorithm

How Do Programmers Solve Problems?
Figure 2-1 lists the steps that computer programmers follow when solving problems that require
a computer solution.

This chapter covers the first three steps in the problem-solving process shown in Figure 2-1.
The fourth step, which is to create the user interface, is covered in Chapters 3 and 4. The last
three steps are explored in the remaining chapters.

Step 1—Analyze the Problem
You cannot solve a problem unless you understand it, and you cannot understand a problem
unless you analyze it—in other words, unless you identify its important components. The two
most important components of any problem are the problem’s output and its input. The output
is the goal of solving the problem, and the input is the item or items needed to achieve the goal.
When analyzing a problem, you always search first for the output and then for the input. The
first problem specification analyzed in this chapter is shown in Figure 2-2.

A helpful way to identify the output is to search the problem specification for an answer to the
following question: What does the user want to see printed on paper, displayed on the screen, or
stored in a file? The answer to this question typically is stated as nouns and adjectives in the
problem specification. For instance, the problem specification shown in Figure 2-2 indicates that
Addison (the program’s user) wants to see the amount of her annual commission displayed on
the screen; therefore, the output is the annual commission. In this context, the word annual is
an adjective, and the word commission is a noun.

After determining the output, you then determine the input. A helpful way to identify the input
is to search the problem specification for an answer to the following question: What information
will the computer need to know to print, display, or store the output items? Like the output, the
input typically is stated as nouns and adjectives in the problem specification. When determining
the input, it helps to think about the information that you would need to solve the problem
manually, because the computer will need to know the same information. In this case, to

1. Analyze the problem
2. Plan the algorithm
3. Desk-check the algorithm
4. Create the user interface
5. Code the algorithm into a program
6. Desk-check the program
7. Rigorously test the program using the computer

Figure 2-1 Steps for solving a problem using a computer

As a salesperson at J & J Sales, Addison Smith receives an annual commission, which is
calculated by multiplying her annual sales by a commission rate. Addison wants a
program that will both calculate and display the amount of her annual commission.

Figure 2-2 Problem specification for Addison Smith

CH A P T E R 2 First You Need to Plan the Party (Problem Solving Process)

12

determine Addison’s annual commission, both you and the computer need to know her annual
sales and the commission rate; both of these items, therefore, are the input. In this context,
annual and commission are adjectives, and sales and rate are nouns. This completes the analysis
step for the Addison Smith problem. Figure 2-3 summarizes the problem’s output and input
items.

Now you will analyze the problem specification shown in Figure 2-4.

First, answer the following question: What does the user want to see printed on paper,
displayed on the screen, or stored in a file? In this case, Aiden wants to see his new weekly
pay displayed on the screen; therefore, the output is the new weekly pay. In this context,
the words new and weekly are adjectives, and the word pay is a noun. Now answer the
following question: What information will the computer need to know to print, display, or
store the output items? To determine Aiden’s new weekly pay, the computer needs to know
Aiden’s current weekly pay and his raise percentage; both of these items, therefore, are the
input. In this context, current, weekly, and raise are adjectives, and pay and percentage are
nouns. You have completed the analysis step for the Aiden Turner problem. The problem’s
output and input items are listed in Figure 2-5.

Unfortunately, analyzing real-world problems is not always as easy as analyzing the problems
found in a textbook. The analysis step is the most difficult of the problem-solving steps, and it
requires a lot of time, patience, and effort. If you are having trouble analyzing a problem, try
reading the problem specification several times, as it is easy to miss information during the first
reading. If the problem still is unclear to you, do not be shy about asking the user for more
information. Remember, the more you understand a problem, the easier it will be for you to
write a correct and efficient solution to the problem.

Output: annual commission

Input: annual sales
 commission rate

Figure 2-3 Output and input items for the Addison Smith problem

Aiden Turner is paid every Friday. He is scheduled to receive a raise next week;
however, he isn’t sure of the exact raise percentage. Aiden wants a program that will both
calculate and display the amount of his new weekly pay.

Figure 2-4 Problem specification for Aiden Turner

Output: new weekly pay

Input: current weekly pay
 raise percentage

Figure 2-5 Output and input items for the Aiden Turner problem

How Do Programmers Solve Problems?

13

Mini-Quiz 2-1

See Appendix B for the answers.

1. Treyson Liverpool pays a state income tax on his yearly taxable wages. He wants a
program that allows him to enter the amount of his yearly taxable wages. The program
then should calculate and display the amount of his state income tax. Identify the
output and the input.

2. Max Jones belongs to a CD (compact disc) club that allows him to buy CDs at a much
lower price than charged at his local music store. He wants to know how much he
saves by buying all of his CDs through the club rather than through the music store.
Identify the output and the input.

3. Suman Patel saves the same amount of money each day. She wants to know the total
amount she saves during a specific month. Identify the output and the input.

Step 2—Plan the Algorithm
The second step in the problem-solving process is to plan the algorithm, which is the set of
instructions that, when followed, will transform the problem’s input into its output. Most
algorithms begin with an instruction that enters the input items into the computer. Next,
you usually record instructions to process the input items to achieve the problem’s output.
The processing typically involves performing one or more calculations on the input items.
Most algorithms end with an instruction to print, display, or store the output items.
Display, print, and store refer to the computer screen, the printer, and a file on a disk,
respectively. Figure 2-6 shows the output, input, and algorithm for the Addison Smith
problem. The algorithm begins by entering the input items. It then uses the input items to
calculate the output item. Notice that the algorithm states both what is to be calculated and
how to calculate it. In this case, the annual commission is to be calculated by multiplying
the annual sales by the commission rate. The last instruction in the algorithm displays the
output item. To avoid confusion, it is important that the algorithm is consistent when
referring to the input and output items. For example, if the input item is listed as annual
sales, then the algorithm should refer to the item as annual sales, rather than using a
different name, such as sales or yearly sales.

Output: annual commission

Input: annual sales
 commission rate

Algorithm:
1. enter the annual sales and commission rate
2. calculate the annual commission by multiplying the annual sales by the
 commission rate

3. display the annual commission

Figure 2-6 Output, input, and algorithm for the Addison Smith problem

For more
examples
of analyzing
problems,
see the

Analyzing Problems
section in the
Ch2WantMore.pdf file.

CH A P T E R 2 First You Need to Plan the Party (Problem Solving Process)

14

The algorithm in Figure 2-6 is composed of short phrases, referred to as pseudocode. The word
pseudocode means false code. It’s called false code because, although it resembles programming
language instructions, pseudocode cannot be understood by a computer. Programmers use
pseudocode to help them while they are planning an algorithm. It allows them to jot down their
ideas using a human-readable language without having to worry about the syntax of the
programming language itself. Pseudocode is not standardized; every programmer has his or
her own version, but you will find some similarities among the various versions. Programmers
use the pseudocode as a guide when coding the algorithm, which is the fifth step in the
problem-solving process.

Besides using pseudocode, programmers also use flowcharts when planning algorithms. Unlike
pseudocode, a flowchart uses standardized symbols to visually depict an algorithm. You can
draw the flowchart symbols by hand; or, you can use the drawing or shapes feature in a word
processor. You also can use a flowcharting program, such as SmartDraw or Visio. Figure 2-7
shows the Addison Smith problem’s algorithm in flowchart form. The flowchart contains
three different symbols: an oval, a parallelogram, and a rectangle. The symbols are connected
with lines, called flowlines. The oval symbol is called the start/stop symbol. The start oval
indicates the beginning of the flowchart, and the stop oval indicates the end of the flowchart.
Between the start and stop ovals are two parallelograms, called input/output symbols. You
use the input/output symbol to represent input tasks (such as getting information from the
user) and output tasks (such as displaying, printing, or storing information). The first
parallelogram in Figure 2-7 represents an input task, while the last parallelogram represents
an output task. The rectangle in a flowchart is called the process symbol and is used to
represent tasks such as calculations.

When planning an algorithm, you do not need to create both a flowchart and pseudocode; you
need to use only one of these planning tools. The tool you use is really a matter of personal
preference. For simple algorithms, pseudocode works just fine. When an algorithm becomes

Output: annual commission

Input: annual sales
 commission rate

Algorithm:

start

enter annual sales
and commission rate

annual commission = annual
sales times commission rate

stop

display annual
commission

Figure 2-7 Flowchart for the Addison Smith problem’s algorithm

How Do Programmers Solve Problems?

15

more complex, however, the program’s logic may be easier to see in a flowchart. As the old
adage goes, a picture is sometimes worth a thousand words.

Figure 2-8 shows the output, input, and algorithm for the Aiden Turner problem. Here too, the
algorithm begins by entering the input items. It then uses both input items to calculate the
output item. Again, notice that the calculation instructions state both what is to be calculated
and how to calculate it. The last instruction in the algorithm displays the output item.

Even a very simple problem can have more than one solution. For example, Figure 2-9 shows a
different solution to the Aiden Turner problem. In this solution, the weekly raise is calculated in a
separate instruction rather than in the instruction that calculates the new weekly pay. The weekly
raise is neither an input item (because it’s not provided by the user) nor an output item (because it
won’t be displayed, printed, or stored in a file). Instead, the weekly raise is a special item, commonly
referred to as a processing item. A processing item represents an intermediate value that the
algorithm uses when processing the input into the output. In this case, the algorithm uses the two
input items to calculate the weekly raise (an intermediate value), which the algorithm then uses to
compute the new weekly pay. Keep in mind that not all algorithms require a processing item.

The solutions shown in Figures 2-8 and 2-9 produce the same result and simply represent two
different ways of solving the same problem. Figure 2-10 shows Figure 2-9’s algorithm in
flowchart form.

Output: new weekly pay

Input: current weekly pay
 raise percentage

Algorithm:
1. enter the current weekly pay and raise percentage
2. calculate the new weekly pay by multiplying the current weekly pay by the raise
 percentage, and then adding the result to the current weekly pay
3. display the new weekly pay

Figure 2-8 Output, input, and algorithm for the Aiden Turner problem

Output: new weekly pay

Processing: weekly raise

Input: current weekly pay
 raise percentage

Algorithm:
1. enter the current weekly pay and raise percentage
2. calculate the weekly raise by multiplying the current weekly pay by the raise percentage
3. calculate the new weekly pay by adding the weekly raise to the current weekly pay
4. display the new weekly pay

Figure 2-9 A different solution to the Aiden Turner problem

CH A P T E R 2 First You Need to Plan the Party (Problem Solving Process)

16

Mini-Quiz 2-2

See Appendix B for the answers.

1. Treyson Liverpool pays a state income tax on his yearly taxable wages. He wants a
program that both calculates and displays the amount of state income tax he must pay.
The output is the annual state income tax. The input is the yearly taxable wages and
the state income tax rate. Write the algorithm using pseudocode.

2. Rewrite Question 1’s algorithm using a flowchart.

3. Max Jones belongs to a CD (compact disc) club that allows him to buy CDs at a much
lower price than charged at his local music store. He wants to know how much he
saves by buying all of his CDs through the club rather than through the music store.
The output is the savings. The input is the number of CDs purchased, the club CD
price, and the store CD price. The algorithm should use two processing items: one for
the cost of buying the CDs through the club, and the other for the cost of buying the
CDs through the store. Write the algorithm using pseudocode.

Output: new weekly pay

Processing: weekly raise

Input: current weekly pay
 raise percentage

Algorithm:

start

enter current weekly
pay and raise percentage

calculate weekly raise =
current weekly pay times
raise percentage

calculate new weekly pay =
weekly raise + current weekly
pay

stop

display new
weekly pay

Figure 2-10 Flowchart for the algorithm shown in Figure 2-9

For more
examples
of planning
algorithms,
see the

Planning Algorithms
section in the
Ch2WantMore.pdf file.

How Do Programmers Solve Problems?

17

Step 3—Desk-Check the Algorithm
After analyzing a problem and planning its algorithm, you then desk-check the algorithm.
The term desk-checking refers to the fact that the programmer reviews the algorithm while
seated at his or her desk rather than in front of the computer. Desk-checking is also called
hand-tracing, because the programmer uses a pencil and paper to follow each of the algorithm’s
instructions by hand. You desk-check an algorithm to verify that it is not missing any steps,
and that the existing steps are correct and in the proper order.

Before you begin the desk-check, you first choose a set of sample data for the input values,
which you then use to manually compute the expected output values. For the Addison Smith
solution, you will use input values of $85000 and .08 (8%) as Addison’s annual sales and
commission rate, respectively. Addison’s annual commission should be $6800 ($85000 times
.08); therefore, $6800 is the expected output value. You now use the sample input values to
desk-check the algorithm, which should result in the expected output value.

It is helpful to use a desk-check table when desk-checking an algorithm. The table should
contain one column for each input item, as well as one column for each output item and one
column for each processing item (if any). You can perform the desk-check using either the
algorithm’s pseudocode or its flowchart. Figure 2-11 shows the Addison Smith solution along
with an appropriate desk-check table. (The flowchart for this solution is shown earlier in
Figure 2-7.)

The first instruction in the algorithm is to enter the input values: $85000 for the annual sales
and .08 for the commission rate. You record the results of this instruction by writing 85000 and
.08 in the annual sales and commission rate columns, respectively, in the desk-check table, as
shown in Figure 2-12.

Output: annual commission

Input: annual sales
 commission rate

Algorithm:
1. enter the annual sales and commission rate
2. calculate the annual commission by multiplying the annual sales by the
 commission rate
3. display the annual commission

Desk check table:

Figure 2-11 Addison Smith solution and desk-check table

85000 .08

Figure 2-12 Input values entered in the desk-check table

CH A P T E R 2 First You Need to Plan the Party (Problem Solving Process)

18

www.allitebooks.com

http://www.allitebooks.org

The second instruction in the algorithm is to calculate the annual commission by multiplying
the annual sales by the commission rate. The desk-check table shows that the annual sales are
85000 and the commission rate is .08. Notice that you use the table to determine the annual
sales and commission rate values; this helps to verify the accuracy of the algorithm. If, for
example, the table did not show any amount in the commission rate column, you would know
that your algorithm missed a step; in this case, it would have missed entering the commission
rate. When you multiply the annual sales (85000) by the commission rate (.08), you get 6800.
You record the number 6800 in the annual commission column, as shown in Figure 2-13.

The last instruction in the algorithm is to display the annual commission. In this case, the
number 6800 will be displayed because that is what appears in the annual commission column.
Notice that this amount agrees with the manual calculation you performed prior to desk-
checking the algorithm, so the algorithm appears to be correct. The only way to know for sure,
however, is to test the algorithm a few more times with different input values. For the second
desk-check, you will test the algorithm with annual sales of $3000 and a commission rate of .1
(10%). The annual commission should be $300. Recall that the first instruction in the algorithm
is to enter the annual sales and commission rate. Therefore, you write 3000 in the annual sales
column and .1 in the commission rate column, as shown in Figure 2-14. Notice that you cross
out the previous values of these two items in the table before recording the new values; this is
because each column should contain only one value at any time.

Next, you need to calculate the annual commission by multiplying the annual sales (3000) by the
commission rate (.1); this results in an annual commission of 300. So you cross out the 6800 that
appears in the annual commission column in the desk-check table and write 300 immediately
below it, as shown in Figure 2-15. The last instruction in the algorithm is to display the annual
commission. In this case, the number 300 will be displayed, which agrees with the manual
calculation you performed earlier.

Next, you will desk-check the Aiden Turner algorithm twice, first using $400 and .03 (3%) as the
current weekly pay and raise percentage, respectively, and then using $600 and .15 (15%). The

85000 .08 6800

Figure 2-13 Output value entered in the desk-check table

85000 .08 6800
3000 .1

Figure 2-14 Second set of input values included in the desk-check table

85000 .08 6800
3000 .1 300

Figure 2-15 Results of the second desk-check included in the desk-check table

How Do Programmers Solve Problems?

19

new weekly pay for the first desk-check should be $412. The new weekly pay for the second
desk-check should be $690. The Aiden Turner solution and completed desk-check table are
shown in Figure 2-16. (The pseudocode is shown earlier in Figure 2-9.)

The amounts in the table agree with the manual calculations you performed earlier, so the
algorithm appears to be correct. To be sure, however, you should desk-check it several more
times, using both valid and invalid data. Valid data is data that the algorithm is expecting the
user to enter. The Aiden Turner algorithm, for example, expects the user to provide positive
numbers for the input values (current weekly pay and raise percentage). Invalid data is data that
the algorithm is not expecting the user to enter. You should test an algorithm with invalid data
because users sometimes make mistakes when entering data. The Aiden Turner algorithm, for
instance, is not expecting the user to enter a negative value as the current weekly pay. A negative
weekly pay is obviously an input error, because an employee cannot earn a negative amount for
the week. In later chapters in this book, you will learn how to write algorithms that correctly
handle input errors. You also will learn more about selecting good test data. For now, however,
you can assume that the user of the program will always enter valid data.

Output: new weekly pay

Processing: weekly raise

Input: current weekly pay
 raise percentage

Algorithm:

400 .03 12 412
600 .15 90 690

start

enter current weekly
pay and raise percentage

calculate weekly raise =
current weekly pay times
raise percentage

calculate new weekly pay =
weekly raise + current weekly
pay

stop

display new
weekly pay

Figure 2-16 Aiden Turner solution and desk-check table

CH A P T E R 2 First You Need to Plan the Party (Problem Solving Process)

20

Mini-Quiz 2-3

See Appendix B for the answers.

1. Desk-check the following algorithm twice. First, use a yearly taxable wage of $23000
and a 3% state income tax rate. Then use a yearly taxable wage of $14000 and a 2% state
income tax.

Algorithm:
1. enter the yearly taxable wages and state income tax rate
2. calculate the annual state income tax by multiplying the yearly taxable wages by the

state income tax rate
3. display the annual state income tax

2. Desk-check the following algorithm twice. First, use 20, $10.50, and $14.99 as the
number of CDs purchased, the club CD price, and the store CD price, respectively.
Then use 5, $9.99, and $11.

Algorithm:
1. enter the number of CDs purchased, the club CD price, and the store CD price
2. calculate the club cost by multiplying the number of CDs purchased by the club CD price
3. calculate the store cost by multiplying the number of CDs purchased by the store CD

price
4. calculate the savings by subtracting the club cost from the store cost
5. display the savings

Summary
l The first three steps in the problem-solving process are to analyze the problem, plan the

algorithm, and desk-check the algorithm.

l When analyzing a problem description, the programmer first determines the output, which
is the goal or purpose of solving the problem. The programmer then determines the input,
which is the information needed to reach the goal. Some algorithms use intermediate values,
called processing items.

l Programmers use tools, such as pseudocode and flowcharts, to organize their thoughts as
they analyze problems and develop algorithms. These tools are used when coding the
algorithm into a program, which is the fifth step in the problem-solving process.

l Most algorithms begin by entering data (the input items), followed by processing the data
(usually by performing some calculations), followed by displaying, printing, or storing data
(the output items).

l The calculation instructions in an algorithm should specify both what is to be calculated and
how to perform the calculation.

l After completing the analysis and planning steps, a programmer then desk-checks the
algorithm to determine whether it works as intended.

For more
examples
of desk-
checking
algorithms,

see the Desk-Checking
Algorithms section in the
Ch2WantMore.pdf file.

It’s time to
view the
Ch2-Planning
Algorithms
video.

Summary

21

Key Terms
Desk-checking—the process of manually walking through each of the steps in an algorithm; also
called hand-tracing

Flowchart—a tool that programmers use when planning an algorithm; consists of standardized
symbols

Flowlines—the lines connecting the symbols in a flowchart

Hand-tracing—another term for desk-checking

Input—the items an algorithm needs to achieve the output

Input/output symbol—the parallelogram in a flowchart; used to represent input and output tasks

Invalid data—data that an algorithm is not expecting the user to enter

Output—the goal or purpose of solving a problem

Process symbol—the rectangle in a flowchart; used to represent tasks such as calculations

Processing item—an intermediate value that an algorithm uses when transforming the input
into the output

Pseudocode—a tool that programmers use when planning an algorithm; consists of short
phrases

Start/stop symbol—the oval in a flowchart; used to mark the beginning and end of the
flowchart

Valid data—data that an algorithm is expecting the user to enter

Review Questions
1. Programmers refer to the items needed to reach a problem’s goal as the ___________ .

a. input

b. output

c. processing

d. purpose

2. The calculation instructions in an algorithm should state ___________ .

a. only what is to be calculated

b. only how to calculate something

c. both what is to be calculated and how to calculate it

d. both what is to be calculated and why it is calculated

3. Most algorithms follow the format of ___________ .

a. entering the input items; then displaying, printing, or storing the output items; and
then processing the output items

b. entering the input items; then processing the output items; and then displaying,
printing, or storing the output items

c. entering the input items; then processing the input items; and then displaying,
printing, or storing the output items

d. entering the output items; then processing the input items; and then displaying,
printing, or storing the output items

CH A P T E R 2 First You Need to Plan the Party (Problem Solving Process)

22

4. In a flowchart, the ___________ symbol is used to represent an instruction that gets
information from the user.

a. enter

b. input/output

c. process

d. start/stop

5. When desk-checking an algorithm, you should set up a table that contains ___________ .

a. one column for each input item and one column for each output item

b. one column for each input item and one column for each processing item

c. one column for each processing item and one column for each output item

d. one column for each input item, one column for each processing item, and one
column for each output item

6. The instruction sales tax sales times tax rate would appear in a(n) ___________ in a
flowchart.

a. oval

b. parallelogram

c. rectangle

d. square

7. What is the purpose of a processing item in an algorithm?

Exercises
1. Jerry Feingold wants a program that will help him calculate the amount to tip a waiter at

a restaurant. The program should subtract any liquor charge from the total bill and then
calculate the tip (using a percentage) on the remainder. Finally, the program should
display the tip on the screen. Desk-check your solution’s algorithm using $85 as the total
bill, $20 as the liquor charge, and 20% as the tip percentage. Then desk-check it using $35
as the total bill, $0 as the liquor charge, and 15% as the tip percentage. (See Appendix B
for the answer.)

2. Party-On sells individual hot/cold cups and dessert plates for parties. Sue Chen wants a
program that allows her to enter the price of a cup, the price of a plate, the number of cups
purchased, and the number of plates purchased. The program should then calculate the
total cost of the purchase, including the sales tax. Finally, the program should display the
total cost on the screen. Desk-check your solution’s algorithm using $.50 as the cup price, $1
as the plate price, 35 as the number of cups, 35 as the number of plates, and 2% as the tax
rate. Then desk-check it using $.25, $.75, 20, 10, and 6%. (See Appendix B for the answer.)

3. Modify the answer to Exercise 1 as follows. Jerry will be charging the total bill, including
the tip, to his credit card. Modify the solution so that, in addition to calculating and
displaying the appropriate tip, it also calculates and displays the amount charged to
Jerry’s credit card. Desk-check the algorithm using $50 as the total bill, $5 as the liquor
charge, and 20% as the tip percentage. Then desk-check it using $15 as the total bill, $0 as
the liquor charge, and 15% as the tip percentage.

4. Wilma Peterson is paid by the hour. She would like a program that both calculates and
displays her weekly gross pay. For this exercise, you do not need to worry about overtime
pay, as Wilma never works more than 40 hours in a week. Desk-check your solution’s
algorithm using $10 as the hourly pay and 35 as the number of hours worked. Then desk-
check it using $15 as the hourly pay and 25 as the number of hours worked.

5. When Jacob Steinberg began his trip from California to Vermont, he filled his car’s tank
with gas and reset its trip meter to zero. After traveling 324 miles, Jacob stopped at a gas
station to refuel; the gas tank required 17 gallons. Jacob wants a program that calculates
his car’s gas mileage at any time during the trip. The gas mileage is the number of miles

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

Exercises

23

his car can be driven per gallon of gas. The program should display the gas mileage on
the screen. Desk-check your solution’s algorithm using 324 as the number of miles driven
and 17 as the number of gallons used. Then desk-check it using 280 and 15.

6. Jenna Williams is paid based on an annual salary rather than an hourly wage. She wants a
program that both calculates and displays the amount of money she should receive each
pay period. Desk-check your solution’s algorithm twice, using your own set of data.

7. Rent A Van wants a program that calculates the total cost of renting a van. Customers
pay a base fee plus a charge per mile. Currently, the base fee and charge per mile are $50
and $.20, respectively; however, the program should allow the user to enter both items.
The program should display the total cost on the screen. Desk-check your solution’s
algorithm twice, using your own set of data.

8. To celebrate her birthday, Sydney Pomeroy is taking a group of friends (adults and
children) to a movie. If they attend the matinee showing, the price for adults and children
is $7; otherwise, it is $12 for adults and $7 for children. Sydney wants a program that
calculates how much less it would cost to take her friends to the matinee showing. Desk-
check your solution’s algorithm twice, using your own set of data.

9. The manager of Mama Calari’s Pizza Palace wants a program that both calculates and
displays the number of pizza slices into which a circular pizza can be divided. The
manager will enter the radius of the entire pizza. For this exercise, use 14.13 as the area of
a pizza slice, and use 3.14 as the value of pi. Desk-check your solution’s algorithm twice.
For the first desk-check, use 10 as the pizza’s radius; use 8 for the second desk-check.
(Hint: For the first desk-check, the number of pizza slices should be a little over 22.)

10. The River Bend Hotel needs a program that both calculates and displays a customer’s
total bill. Each customer pays a room charge that is based on a per-night rate. For
example, if the per-night rate is $55 and the customer stays two nights, the room charge
is $110. Customers also may incur room service charges and telephone charges. In
addition, each customer pays an entertainment tax, which is a percentage of the room
charge only. Desk-check your solution’s algorithm twice, using your own set of data.

11. The Paper Tree store wants a program that both calculates and displays the number of
single rolls of wallpaper needed to cover a room. The salesclerk will provide the room’s
length, width, and ceiling height, in feet. He or she also will provide the number of square
feet a single roll will cover. Desk-check your solution’s algorithm twice, using your own
set of data.

12. The manager of a video store wants a program that calculates the amount a customer
owes when he or she returns a video. A customer can return only one video at a time.
The rental fee is $3.50 for four days. Customers are charged a late fee (currently, $2) per
day when the video is returned after the due date. Study the algorithm and desk-check
table shown in Figure 2-17, and then answer the questions.

a. What will the algorithm display when the user enters 3 as the number of late days?
What will it display when the user enters 0 as the number of late days?

b. How would you modify the solution and desk-check table to include the total late
charge as a processing item?

c. How would you modify the solution from Question b to also display the total late
charge?

ADVANCED

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

FIGURE THIS OUT

INTERMEDIATE

CH A P T E R 2 First You Need to Plan the Party (Problem Solving Process)

24

13. Correct the algorithm shown in Figure 2-18. The algorithm should calculate the
average of three numbers.

Output: average

Processing: sum

Input: first number
 second number
 third number

Algorithm:
1. enter the first number, second number, and third number
2. calculate the average by dividing the sum by 3
3. display the average number

Figure 2-18 Algorithm for Exercise 13

Output: amount due

Input: number of late days
 daily late fee

Algorithm:
1. enter the number of late days and daily late fee
2. calculate the amount due by multiplying the number of late days by the daily late
 fee, and then adding 3.50 to the result
3. display the amount due

Desk-check table:

3 2 9.50
0 2 3.50

Figure 2-17 Algorithm and desk-check table for Exercise 12

SWAT THE BUGS

Exercises

25

This page intentionally left blank

CHAPTER 3
I Need a Tour Guide
(Introduction to Visual
Basic 2010)

After studying Chapter 3, you should be able to:

Create a Windows application in Visual Basic 2010

Use the Label and PictureBox tools to add controls to a form

Set the properties of an object

Save a solution

Size and align objects using the Format menu

Lock the controls on a form

Start and end an application

Close and open an existing solution

Ok, the Algorithm Is Correct. What’s Next?
As you learned in Chapter 2, the first three steps in the problem-solving process are to analyze the
problem, plan the algorithm, and then desk-check the algorithm. When you are sure that the
algorithm produces the desired results, you can move on to the fourth step, which is to create the
user interface. A user interface is what appears on the screen, and with which you interact, while
using a program. In this book, you will create the user interfaces for your programs using the tools
available in Visual Basic 2010. Visual Basic 2010 is available as a stand-alone product, called Visual
Basic 2010 Express, or as part of Visual Studio 2010—Microsoft’s newest integrated development
environment. An integrated development environment (IDE) is an environment that contains all
of the tools and features you need to create, run, and test your programs. In the following steps,
you learn how to start either Visual Studio 2010 or Visual Basic 2010 Express.

To start Visual Studio 2010 or Visual Basic 2010 Express:

1. Click the Start button on the Windows 7 taskbar and then point to All Programs.

2. If you are using Visual Studio 2010, click Microsoft Visual Studio 2010 on the All
Programs menu and then click Microsoft Visual Studio 2010. If the Choose Default
Environment Settings dialog box appears, click Visual Basic Development Settings
and then click Start Visual Studio.
If you are using Visual Basic 2010 Express, you will need to either click Microsoft Visual
Basic 2010 Express on the All Programs menu or click Microsoft Visual Studio 2010
Express on the All Programs menu and then clickMicrosoft Visual Basic 2010 Express.

3. Click Window on the menu bar, click Reset Window Layout, and then click the Yes
button. When you start Visual Studio 2010 Professional, your screen will appear similar
to Figure 3-1. When you start Visual Basic 2010 Express, your screen will appear similar
to Figure 3-2. As both figures indicate, the startup screen contains the Start Page
window, Toolbox window, and Solution Explorer window. The startup screen in Visual
Studio 2010 Professional also contains the Team Explorer window.

Toolbox window’s tab

Start Page window

be sure these check
boxes are selected

Solution Explorer window

Team Explorer
window’s tab

Figure 3-1 Microsoft Visual Studio 2010 Professional startup screen

CH A P T E R 3 I Need a Tour Guide (Introduction to Visual Basic 2010)

28

www.allitebooks.com

http://www.allitebooks.org

Included in Visual Studio 2010 are the Visual Basic, Visual C++, and Visual C# programming
languages. You can use these languages to code your algorithms into programs, which is the fifth
step in the problem-solving process. The combination of the user interface and the program’s
code is referred to as an application. You can create various types of applications in Visual Basic,
such as Windows applications and Web applications. A Windows application has a Windows
user interface and runs on a desktop computer. A Web application, on the other hand, has a
Web user interface and runs on a server. You access a Web application using your computer’s
browser. This book focuses on Windows applications; however, Web applications are covered
later in the book.

Creating a Visual Basic Windows Application
Windows applications in Visual Basic are composed of solutions, projects, and files. A
solution is a container that stores the projects and files for an entire application. Although
most solutions contain only one project, a solution can contain several projects. A project
also is a container, but it stores only the files associated with that particular project. The
following steps show you how to create a Windows application in Visual Basic 2010. The
first two steps are necessary so that your screen agrees with the figures and subsequent
steps in this book.

To create a Visual Basic 2010 Windows application:

1. If you are using Visual Basic 2010 Express, click Tools on the menu bar and then point
to Settings. If necessary, click Expert Settings to select it.

2. Click Tools on the menu bar and then click Options to open the Options dialog box. If
necessary, deselect the Show all settings check box. Click the Projects and Solutions
node. Use the information shown in Figure 3-3 to select and deselect the appropriate
check boxes. (Your dialog box will look slightly different if you are using Visual Basic
2010 Express.)

Toolbox window’s tab

Start Page window

be sure these check
boxes are selected

Solution Explorer window

Figure 3-2 Microsoft Visual Basic 2010 Express startup screen

Creating a Visual Basic Windows Application

29

3. Click the OK button to close the Options dialog box.

4. Click File on the menu bar and then click New Project to open the New Project dialog
box. If necessary, click Visual Basic in the Installed Templates list. If you are using
Visual Studio, expand the Visual Basic node, if necessary, and then click Windows.

5. If necessary, click Windows Forms Application in the middle column of the dialog box.

6. Change the name entered in the Name box to My Pet Project.

7. Click the Browse button to open the Project Location dialog box. Locate and then click
the ClearlyVB2010\Chap03 folder. Click the Select Folder button to close the Project
Location dialog box.

8. If necessary, select the Create directory for solution check box in the New Project
dialog box. Change the name entered in the Solution name box to My Pet Solution.
Figures 3-4 and 3-5 show the completed New Project dialog box in Visual Studio 2010
Professional and Visual Basic 2010 Express, respectively. The drive letter will be different
if you are saving to a device other than your computer’s hard drive—for example, if you
are saving to a flash drive.

your drive letter
might be different

Figure 3-4 Completed New Project dialog box in Visual Studio 2010 Professional

select these five
check boxes

deselect these
three check
boxes

Figure 3-3 Options dialog box

CH A P T E R 3 I Need a Tour Guide (Introduction to Visual Basic 2010)

30

9. Click the OK button to close the New Project dialog box. The computer creates a
solution and adds a Visual Basic project to the solution, as shown in Figure 3-6. The
solution and project names appear in the Solution Explorer window. Notice that, in
addition to the windows mentioned earlier, three other windows appear in the IDE:
Windows Form Designer, Properties, and Data Sources. (If you are using Visual Basic
2010 Express, your title bar will say “My Pet Solution – Microsoft Visual Basic 2010
Express”. In addition, your screen will not have the Team Explorer window.)

So Many Windows!
Having so many windows open in the IDE at the same time can be confusing, especially when you
are first learning the IDE. In most cases, you will find it easier to work in the IDE if you either close or

Data Sources
window’s tab

Auto Hide button

solution and
project names
and information

Properties window

Windows Form Designer window

Figure 3-6 Solution and Visual Basic project

your drive letter
might be different

Figure 3-5 Completed New Project dialog box in Visual Basic 2010 Express

Creating a Visual Basic Windows Application

31

auto-hide the windows you are not currently using. The easiest way to close an open window is to click
the Close button on the window’s title bar. In most cases, the View menu provides an appropriate
option for opening a closedwindow. Rather than closing a window, you also can auto-hide it. You auto-
hide a window using the Auto Hide button (shown earlier in Figure 3-6) on the window’s title bar. The
Auto Hide button is a toggle button: clicking it once activates it, and clicking it again deactivates it. The
Toolbox and Data Sources windows shown in Figure 3-6 are examples of auto-hidden windows.

To close, open, auto-hide, and display the windows in the IDE:

1. Click the Close button on the Properties window’s title bar to close the window. To
open the window, click View on the menu bar and then click Properties Window.

2. If necessary, click the Team Explorer tab, and then click the Close button on the Team
Explorer window’s title bar.

3. Click the Auto Hide button (the vertical pushpin) on the Solution Explorer window’s
title bar. The Solution Explorer window is minimized and appears as a tab on the right
edge of the IDE.

4. To temporarily display the Solution Explorer window, place your mouse pointer on the
Solution Explorer tab. The Solution Explorer window slides into view. Notice that the
Auto Hide button is now a horizontal pushpin rather than a vertical pushpin.

5. Move your mouse pointer away from the Solution Explorer window. The window is
minimized and appears as a tab again.

6. If necessary, close the Data Sources window.

7. To permanently display the Toolbox window, place your mouse pointer on the Toolbox
tab and then click the Auto Hide button (the horizontal pushpin) on the window’s title
bar. The vertical pushpin replaces the horizontal pushpin on the button. If necessary,
expand the Common Controls node in the Toolbox window.

8. Click the Form1.vb [Design] tab. Figure 3-7 shows the current status of the windows in
the IDE. Only the Windows Form Designer, Toolbox, and Properties windows are open.
The Solution Explorer window is auto-hidden. If the items in the Properties window do
not appear in alphabetical order, click the Alphabetical button.

Alphabetical button

Figure 3-7 Current status of the windows in the IDE

CH A P T E R 3 I Need a Tour Guide (Introduction to Visual Basic 2010)

32

Creating the User Interface
The Windows Form Designer window is where you create (or design) your application’s
user interface. The designer window shown in Figure 3-8 contains a Windows Form object,
or form. A form is the foundation for the user interface in a Windows application. A form
automatically includes a title bar that contains a default caption—in this case, Form1—as
well as Minimize, Maximize, and Close buttons. At the top of the designer window is a
tab labeled Form1.vb [Design]. [Design] identifies the window as the designer window.
Form1.vb is the name of the file on your computer’s hard disk (or on the device
designated by your instructor or technical support person) that contains the Visual Basic
instructions associated with the form.

You create the user interface by adding objects (such as buttons, check boxes, and list boxes) to
the form. The objects added to a form are called controls. Because the controls are graphical in
nature, the user interface is often referred to as a graphical user interface, or GUI. You add the
controls to the form using the tools contained in the Toolbox window. In the next set of steps,
you begin creating the Pet Application interface shown in Figure 3-9. The interface contains
four controls: two picture boxes and two labels. You use a picture box to display an image on
the form. You use a label control to display text that the user is not allowed to edit while the
application is running. Some label controls simply identify the contents of other controls. The
label controls in Figure 3-9, for example, identify the contents of the picture boxes. Label
controls also are used in an interface to display program output, such as the result of
calculations. As you are creating the interface in the following steps, you also will learn how to
move, delete, undelete, and size a control.

designer window’s tab title bar

form

Figure 3-8 Windows Form Designer window

picture boxes

labels

Figure 3-9 Pet Application user interface

Creating the User Interface

33

To begin creating the Pet Application user interface:

1. Click the Label tool in the toolbox, but do not release the mouse button. Hold
down the mouse button as you drag the mouse pointer to the lower-left corner of
the form. As you drag the mouse pointer, you will see a solid box, as well as an
outline of a rectangle and a plus box, following the mouse pointer. See Figure 3-10.
Notice that a blue line appears between the form’s left border and the control’s left
border, and between the control’s bottom border and the form’s bottom border.
The blue lines are called margin lines, because their size is determined by the
contents of the control’s Margin property. The purpose of the margin lines is to
assist you in spacing the controls properly on a form.

2. Release the mouse button. A label control appears on the form, as shown in Figure 3-11.
Notice that an asterisk (*) appears on the Form1.vb [Design] tab in the designer window.
The asterisk indicates that the form has been changed since the last time it was saved.

3. Now you will practice repositioning a control on the form. Place your mouse pointer
on the center of the label control, and then press the left mouse button and drag the
control to another area of the form. (Don’t worry about the exact location.) Release
the mouse button.

Label tool

the length of the blue
lines is determined by
the control’s Margin
property

Figure 3-10 Label tool being dragged to the form

the asterisk indicates
that the form has been
changed since the last
time it was saved

Figure 3-11 Label control added to the form

CH A P T E R 3 I Need a Tour Guide (Introduction to Visual Basic 2010)

34

4. Next, you will practice deleting and then restoring a control. Press the Delete key on
your keyboard to delete the label control. Click Edit on the menu bar, and then click
Undo to reinstate the label control.

5. Drag the label control back to its original location in the lower-left corner of the form.

6. Add another label control to the form. Place the label control in the center of the form.

7. Drag the Label2 control until its left border is aligned with the left border of the Label1
control, but don’t release the mouse button. When the left borders of both controls are
aligned, the designer displays a blue snap line, as shown in Figure 3-12.

8. Release the mouse button.

9. Now drag the Label2 control so that the Label2 text is aligned with the Label1 text. When the
text in both controls is aligned, the designer displays a pink snap line, as shown in Figure 3-13.

10. Release the mouse button.

11. Use the PictureBox tool to add two picture boxes to the form. See Figure 3-14. (You do
not need to worry about the exact location of the controls in the interface.)

12. The sizing handles on the PictureBox2 control indicate that the control is selected. You
can use the sizing handles to make the control bigger or smaller. First, use the sizing
handles to make the picture box bigger. Then, use the Undo option on the Edit menu to
return the control to its original size.

this blue snap line
shows left border
alignment

this blue snap line
shows right
border alignment

Figure 3-12 A blue snap line appears when the borders are aligned

the blue margin line
shows control spacing

the pink snap line
shows text alignment

Figure 3-13 A pink snap line appears when the text is aligned

PictureBox1

PictureBox2

sizing handle

Figure 3-14 Picture boxes added to the form

To learn
more about
adding
controls to a
form, as

well as sizing, moving,
deleting, and undeleting
the controls, view the
Ch03-Controls video.

Creating the User Interface

35

Save, Save, Save
It is a good practice to save the current solution every 10 or 15 minutes so that you will not lose a
lot of your work if the computer loses power. You can save a solution by clicking File on the menu
bar and then clicking Save All. You also can click the Save All button on the Standard toolbar.
When you save a solution, the computer saves any changes made to the files included in the
solution. It also removes the asterisk that appears on the designer window’s tab.

To save the current solution:

1. Click File on the menu bar and then click Save All.

Mini-Quiz 3-1
See Appendix B for the answers.

1. A ___________ control displays text that the user is not allowed to edit while
an application is running.

2. The ___________ window contains the tools you use to add objects to a form.

3. GUI stands for ___________.

Whose Property Is It?
Every object in a Visual Basic application has a set of attributes that determine the object’s
appearance and behavior; the attributes are called properties. When an object is created, a
default value is assigned to each of its properties. The name and current value of each property
appear in the Properties window when the object is selected.

To view the form's properties:

1. Click the form (but not a control on the form) to select it. Sizing handles appear on the
form to indicate that the form is selected, and the form’s properties appear in the
Properties window.

2. Scroll up to the top of the Properties window. If necessary, click the Alphabetical
button in the Properties window to display the property names in alphabetical order.
Most times, it’s easier to work with the Properties window when the property names are
listed alphabetically.

3. Click (Name), which is the third item in the Properties list, to select the form’s Name
property. Figure 3-15 shows a partial listing of the form’s properties. Notice that items
within parentheses appear at the top of the Properties list.

Alphabetical button

Object box

Properties list Settings box

Figure 3-15 Partial listing of the form’s properties

CH A P T E R 3 I Need a Tour Guide (Introduction to Visual Basic 2010)

36

As indicated in Figure 3-15, the Properties window has an Object box and a Properties list. The
Object box contains the name of the selected object—in this case, Form1. The Properties list
has two columns. The left column displays the names of the selected object’s properties. The
right column contains the Settings box for each property. The Settings box displays the current
value (or setting) of the property. For example, the current value of the form’s Name property is
Form1. Depending on the property, you can change the default value assigned to a property by
selecting the property in the Properties list and then either typing the new value in the Settings
box or selecting a predefined value from a list or dialog box. Although not shown in Figure 3-15,
a brief description of the selected property appears in the Description pane located at the
bottom of the Properties window.

In the next set of steps, you will change the values assigned to the form’s Text, StartPosition, and
Font properties. A form’s Text property controls the text displayed in the form’s title bar. The
text also appears when you hover your mouse pointer over the application’s button on the
Windows 7 taskbar while the application is running. The StartPosition property specifies the
position of the form when it first appears on the screen after the application is started. The Font
property determines the type, style, and size of the font used to display the text on the form. A
font is the general shape of the characters in the text. Segoe UI, Tahoma, and Microsoft Sans
Serif are examples of font types. Font styles include regular, bold, and italic. The numbers 9, 12,
and 18 are examples of font sizes, which typically are measured in points, with one point
equaling 1/72 of an inch.

To change the values assigned to some of the form's properties:

1. Scroll down the Properties window and then click Text in the Properties list. Type Pet
Application and press Enter. The Pet Application text appears in the Settings box and
in the form’s title bar.

2. Click StartPosition in the Properties list and then click the list arrow in the Settings
box. Click CenterScreen to display the form in the center of the screen when the
application is started.

3. Click Font in the Properties list and then click the… (ellipsis) button in the Settings box.
Doing this opens the Font dialog box.
Important note: The recommended font for applications created for systems running
Windows 7 (or Windows Vista) is Segoe UI, because it offers improved readability. Segoe
is pronounced SEE-go, and UI stands for user interface. For most of the elements in the
interface, you will use the 9-point size of the font. However, to make the figures in the
book more readable, some of the interfaces created in this book will use the 11-point
Segoe UI font. You can change the Font property for each control individually; however,
an easier way is to change the form’s Font property. Any control whose Font property
has not been set individually will be assigned the same font as the form.

4. Click Segoe UI in the Font list box and then click 9 in the Size list box. Click the OK
button to close the Font dialog box. The form’s Font property setting changes to the new
value. The Font property setting for each label control also changes to the new value. To
verify that fact, click the Label1 control and then view its Font property setting. Click
the Label2 control and then view its Font property setting.

Next, you will change the Text and Location properties of the two label controls. A label
control’s Text property specifies the text displayed inside the control. Its Location property
controls the location of the upper-left corner of the control on the form. (Although you
can simply drag a control to the desired location, many times you will be provided with
the setting for the Location property so that your screen agrees with the figures in this book.)

Whose Property Is It?

37

To change two properties of each label control:

1. Click the Label1 control to select it, and then change its Text property to Dog.

2. Click the Location property in the Properties list. The first number in the Settings box
specifies the control’s horizontal location on the form; the second number specifies its
vertical location. In other words, the first number is the location of the control’s left border,
and the second number is the location of its top border. Type 55, 212 and press Enter.

3. Click the Label2 control. Set its Text property toCat and its Location property to 240, 212.

Finally, you will change the Image and SizeMode properties of the picture boxes. The Image
property specifies the name of the file containing the image to display. The SizeMode property
handles how the image is displayed and can be set to Normal, StretchImage, AutoSize,
CenterImage, or Zoom. The images for the Pet Application’s interface are stored in two image
files contained in the ClearlyVB2010\Chap03 folder. Both image files were downloaded from the
Microsoft Office site at http://office.microsoft.com/en-us/images/.

To change two properties of each picture box:

1. Click the PictureBox1 control to select it. A box containing a triangle appears in the
upper-right corner of the control. The box is referred to as the task box because, when
you click it, it displays a list of the tasks associated with the control. Each task in the list
is associated with one or more properties. You can set the properties using either the
task list or the Properties window.

2. Click the task box on the PictureBox1 control. A list of tasks associated with a picture
box appears. See Figure 3-16.

3. Click Choose Image to open the Select Resource dialog box. The Choose Image task is
associated with the Image property in the Properties window.

4. Verify that the Project resource file radio button is selected, and then click the Import
button to open the Open dialog box.

5. Open the ClearlyVB2010\Chap03 folder. Click Dog (Dog.gif) in the list of filenames and
then click the Open button. A portion of the dog image appears in the Select Resource
dialog box. See Figure 3-17.

task box

Figure 3-16 PictureBox1 control’s task list

CH A P T E R 3 I Need a Tour Guide (Introduction to Visual Basic 2010)

38

www.allitebooks.com

http://www.allitebooks.org

6. Click the OK button to close the Select Resource dialog box. Click the Size Mode list
arrow in the task list and then click StretchImage. The dog image appears in the
PictureBox1 control.

7. Click the PictureBox1 control to close its task list, and then change its Size property to
115, 145.

8. Drag the PictureBox1 control so that it is located above the Dog label. See Figure 3-18.

9. Click the PictureBox2 control and then click its task box. Use the task list to display the
image contained in the Cat (Cat.gif) file. Also use the task list to set the SizeMode
property to StretchImage.

10. Save the solution by clicking the Save All button on the Standard toolbar. (You also can
click File on the menu bar and then click Save All.)

Using the Format Menu
The two picture boxes in the Pet Application interface are not the same size: PictureBox1
is larger than PictureBox2. You can make both picture boxes the same size by setting their
Size properties to the same value in the Properties window. However, an easier way is to
use the Format menu, which provides several options for manipulating the controls in the
interface. The Align option, for example, allows you to align two or more controls by their
left, right, top, or bottom borders. You can use the Make Same Size option to make two or
more controls the same width and/or height. Before you can use the Format menu to
change the alignment or size of two or more controls, you first must select the controls.
You select the first control by clicking it. You select the second and subsequent controls by
pressing and holding down the Control (Ctrl) key as you click the control. The first

image filename

portion of the
dog image

Figure 3-17 Select Resource dialog box

PictureBox1 control

Figure 3-18 Location of the PictureBox1 control

Using the Format Menu

39

control you select should always be the one whose size and/or location you want to match.
For example, to make the PictureBox2 control the same size as the PictureBox1 control,
you first select the PictureBox1 control and then select the PictureBox2 control. The first
control you select is referred to as the reference control. The reference control will have
white sizing handles, whereas the other selected controls will have black sizing handles.
The Format menu also has a Center in Form option that centers one or more controls
either horizontally or vertically on the form. In the next set of steps, you will use the
Format menu to make the PictureBox2 control the same size as the PictureBox1 control.
You also will use the Format menu to align the top border of the PictureBox2 control with
the top border of the PictureBox1 control.

To size and align the PictureBox2 control:

1. Click the PictureBox1 control to select it. Now press and hold down the Control (Ctrl)
key as you click the PictureBox2 control, and then release the Control key. The two
picture boxes are now selected. See Figure 3-19.

2. Click Format on the menu bar, point to Make Same Size, and then click Both. The
PictureBox2 control is now the same size as the PictureBox1 control.

3. Click Format on the menu bar, point to Align, and then click Tops. The top border of
the PictureBox2 control is now aligned with the top border of the PictureBox1 control.

4. Click the form to deselect the picture boxes, and then set the form’s Size property to
340, 305. (You may need to reposition one or more of the controls after setting the
form's Size property.)

5. Save the solution.

Lock Them Down
In the next set of steps, you will lock the controls in place on the form. Locking the controls
prevents them from being moved inadvertently as you work in the IDE.

To lock the controls:

1. Right-click the form and then click Lock Controls on the context menu. Notice that a
small lock appears in the upper-left corner of the form. (You also can lock the controls
by clicking Format on the menu bar and then clicking Lock Controls.) See Figure 3-20.

the reference control
has white sizing handles

Figure 3-19 Both picture boxes selected on the form

To learn
more about
the Format
menu, view
the Ch03-

Format Menu video.

CH A P T E R 3 I Need a Tour Guide (Introduction to Visual Basic 2010)

40

2. Click the PictureBox1 control. The small lock in the upper-left corner of the control
indicates that the control is locked.

3. Try dragging the PictureBox1 control to a different location on the form. You will not be
able to do so.

If you need to move a control after you have locked the controls in place, you can change the
control’s Location property setting in the Properties window. You also can unlock the control by
changing its Locked property to False. To unlock all of the controls, right-click the form and
then click Lock Controls on the context menu; you also can use the Lock Controls option on the
Format menu. The Lock Controls option on both the context menu and the Format menu is a
toggle option: clicking it once activates it, and clicking it again deactivates it.

To unlock and then lock the controls:

1. Right-click the form and then click Lock Controls to unlock the controls. Notice that
the small lock no longer appears in the upper-left corner of the form.

2. Right-click the form and then click Lock Controls to lock the controls.

Ok, Let’s See the Interface in Action!
Now that the user interface is complete, you can start the application to see how it will look to
the user. You can start an application by clicking the Start Debugging option on the Debug
menu; or you can simply press the F5 key on your keyboard.

To start and then stop the current application:

1. Save the solution. Click Debug on the menu bar and then click Start Debugging
to start the application. (You also can press the F5 key on your keyboard.) See
Figure 3-21. (Do not be concerned about any windows that appear at the bottom
of your screen.)

lock

Figure 3-20 Controls locked on the form

Ok, Let’s See the Interface in Action!

41

2. Click the Close button on the form’s title bar to stop the application. (You also can
click the designer window to make it the active window, click Debug on the menu
bar, and then click Stop Debugging.) When the application ends, you are returned to
the IDE.

Closing the Current Solution
When you are finished working on a solution, you should close it. Closing a solution closes all
projects and files contained in the solution. If unsaved changes were made to the solution,
project, or form, a dialog box opens and prompts you to save the appropriate files. You close a
solution using the Close Solution option on the File menu. Be careful to use the Close Solution
option rather than the Close option. The Close option does not close the solution; instead, it
closes the designer window.

To close the current solution:

1. Click File on the menu bar and then click Close Solution.

2. Temporarily display the Solution Explorer window to verify that no solutions are open
in the IDE.

Opening an Existing Solution
You can use the File menu to open an existing solution. If a solution is already open in the IDE,
it is closed before another solution is opened.

To open the My Pet Solution:

1. Permanently display the Solution Explorer window.

2. Click File on themenu bar, and then clickOpen Project to open the Open Project dialog box.

3. Locate and then open the ClearlyVB2010\Chap03\My Pet Solution folder. If necessary,
click My Pet Solution (My Pet Solution.sln) in the list of filenames, and then click the
Open button.

4. If you do not see the form in the designer window, right-click Form1.vb in the Solution
Explorer window and then click View Designer.

the form’s Close button

Figure 3-21 Result of starting the Pet Application

CH A P T E R 3 I Need a Tour Guide (Introduction to Visual Basic 2010)

42

Exiting Visual Studio 2010 or Visual Basic 2010 Express
You can exit Visual Studio 2010 or Visual Basic 2010 Express using either the Close button on
its title bar or the Exit option on the File menu.

To exit Visual Studio 2010 or Visual Basic 2010 Express:

1. Click File on the menu bar and then click Exit on the menu.

Mini-Quiz 3-2
See Appendix B for the answers.

1. The name of the image file assigned to a picture box control is stored in the control’s
___________ property.

2. The value assigned to a label control’s ___________ property appears inside the
control.

3. A control’s Location property specifies the location of the control’s ___________
corner on the form.

4. To make the PictureBox1 control the same size as the PictureBox2 control, you first
select the ___________ control.

5. To start a Visual Basic application, click Debug on the menu bar and then click
___________ .

Summary
l Creating the user interface is the fourth step in the problem-solving process.

l Windows applications in Visual Basic are composed of solutions, projects, and files.

l You create a user interface by adding controls to a form in the Windows Form Designer
window. You add a control using a tool from the Toolbox window.

l Label controls display text that the user is not allowed to edit while an application is
running.

l You use picture boxes to display images on a form.

l A blue snap line appears when the border of one control is aligned with the border of
another control. A pink snap line appears when the text in two or more controls is aligned.

l It’s a good practice to save a solution every 10 or 15 minutes.

l The Properties window lists the properties of the selected object.

l The value assigned to a form’s Text property appears in the form’s title bar. It also appears
when you hover your mouse pointer over the application’s button on the Windows 7 taskbar
while an application is running. The value assigned to a label control’s Text property, on the
other hand, appears inside the control.

l A form’s StartPosition property specifies the position of the form when it first appears on the
screen after the application is started.

l The Font property determines the type, style, and size of the font used to display the text on
the form or inside a control. Segoe UI is the recommended font for applications created for

Summary

43

systems running either Windows 7 or Windows Vista. Any control whose Font property has
not been set individually will be assigned the same Font property value as the form.

l The value assigned to a control’s Location property specifies the location of the upper-left
corner of the control on the form.

l A picture box control’s Image property specifies the name of the file containing the image to
display. Its SizeMode property handles how the image is displayed.

l The Format menu provides options for aligning, sizing, and centering the controls on a form.
The first control you select is called the reference control and is the one whose size and/or
location you want to match. The reference control will have white sizing handles, whereas
the other selected controls will have black sizing handles.

l It’s a good practice to lock the controls in place on the form.

l To start an application, click Debug on the menu bar and then click Start Debugging. You
also can start an application by pressing the F5 key on your keyboard.

l You use the Close Solution option on the File menu to close a solution.

Key Terms
Controls—objects (such as labels and picture boxes) added to a form

Font—the general shape of the characters used to display text

Form—the foundation for the user interface in a Windows application; also called a Windows
form object

GUI—an acronym for graphical user interface

IDE—an acronym for integrated development environment

Integrated development environment—an environment that contains all of the tools and
features needed to create, run, and test programs; also called an IDE

Label control—the control used to display text that the user is not allowed to edit while an
application is running

Object box—the section of the Properties window that contains the name of the selected object

Picture box—the control used to display an image on a form

Point—used to measure font size; 1/72 of an inch

Properties—the attributes that determine an object’s appearance and behavior

Properties list—the section of the Properties window that lists the names of the properties
associated with the selected object, as well as each property’s value

Properties window—the window that lists the selected object’s attributes (properties)

Reference control—the first control selected in a group of two or more controls; this is the
control whose size and/or location you want the other selected controls to match

Settings box—the right column of the Properties list; displays the current value (setting) of a
property

Toolbox window—the window that contains the tools used to add controls to a form; referred to
more simply as the toolbox

User interface—what the user sees and interacts with while an application is running

Windows Form Designer window—the window in which you create your application’s GUI

Windows Form object—the foundation for the user interface in a Windows application; referred
to more simply as a form

CH A P T E R 3 I Need a Tour Guide (Introduction to Visual Basic 2010)

44

Review Questions
1. A Windows form automatically contains which of the following?

a. Close,Maximize, andMinimize buttons

b. a default caption

c. a title bar

d. all of the above

2. When a form has been modified since the last time it was saved, what appears on its tab
in the designer window?

a. an ampersand (&)

b. an asterisk (*)

c. a percent sign (%)

d. a plus sign (+)

3. You use the ___________ window to set the characteristics that control an object’s
appearance and behavior.

a. Characteristics

b. Designer

c. Object

d. Properties

4. Which property determines the location of a form on the screen when the application is
started?

a. StartPosition

b. Location

c. StartLocation

d. InitialPosition

5. When aligning two or more controls, the first control selected is called the ___________
control.

a. initializer

b. positioning

c. reference

d. none of the above

6. You can run an application by pressing the ___________ key on your keyboard.

a. F4

b. F5

c. F6

d. F7

7. The Close option on the File menu closes the current solution.

a. True b. False

Exercises
1. In this exercise, you create the Scottsville Library application. (See Appendix B for the

answer.)

a. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and permanently
display the Solution Explorer window. Create a Visual Basic Windows application.
Use the following names for the solution and project, respectively: Library Solution
and Library Project. Save the application in the ClearlyVB2010\Chap03 folder.

b. Create the interface shown in Figure 3-22. Use the 9-point Segoe UI font for the form
and the label. The form should appear centered on the screen when the application
starts. The label should be centered horizontally on the form. The Book_opens.gif
image file for the picture box is stored in the ClearlyVB2010\Chap03 folder. (The file
was downloaded from the Animation Library site at www.animationlibrary.com.) The
picture box should be centered both horizontally and vertically on the form.

c. Lock the controls on the form. Save the solution and then start the application. Stop
the application by clicking the form’s Close button, and then use the File menu to
close the solution.

TRY THIS

Exercises

45

2. In this exercise, you modify the My Pet application created in the chapter.

a. Use Windows to make a copy of the My Pet Solution folder. Save the copy in the
ClearlyVB2010\Chap03 folder. Rename the copy Modified My Pet Solution.

b. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and
permanently display the Solution Explorer window. Open the My Pet Solution
(My Pet Solution.sln) file contained in the Modified My Pet Solution folder. Open the
designer window by right-clicking Form1.vb in the Solution Explorer window and
then clicking View Designer.

c. Unlock the controls and thenmodify the interface as shown in Figure 3-23. Themonkey
image is stored in theClearlyVB2010\Chap03\Monkey.gif file. (The file was downloaded
from the Microsoft Office site at http://office.microsoft.com/en-us/images/.)

d. Lock the controls. Save the solution and then start the application. Stop the application
by clicking the form’s Close button, and then use the File menu to close the solution.

3. In this exercise, you create an application for Scenic Vacations.

a. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and permanently
display the Solution Explorer window. Create a Visual Basic Windows application.
Use the following names for the solution and project, respectively: Scenic Solution
and Scenic Project. Save the application in the ClearlyVB2010\Chap03 folder.

b. Create the interface shown in Figure 3-24. Use the 9-point Segoe UI font for the
form. Use the 18-point Segoe UI font for the label. The form should appear
centered on the screen when the application starts. The scenic image for the
picture box is stored in the ClearlyVB2010\Chap03\Lightsnow.gif file. The label
and picture box should be centered horizontally on the form.

c. Lock the controls on the form. Save the solution and then start the application. Stop
the application by clicking the form’s Close button, and then use the File menu to
close the solution.

Figure 3-22 Interface for Exercise 1

Figure 3-23 Interface for Exercise 2

INTRODUCTORY

MODIFY THIS

CH A P T E R 3 I Need a Tour Guide (Introduction to Visual Basic 2010)

46

4. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
SolutionExplorerwindow.Create aVisual BasicWindows application.Use the followingnames
for the solution and project, respectively: Arrows Solution and Arrows Project. Save the
application in theClearlyVB2010\Chap03 folder. Create the interface shown inFigure 3-25. The
interface contains four picture boxes and four labels. Use the 11-point Segoe UI font. The
form should appear centered on the screen when the application starts. The arrow images are
stored in the following files, which are contained in the ClearlyVB2010\Chap03 folder: Up.gif,
Down.gif, Right.gif, and Left.gif. (The files were downloaded from the Microsoft Office site
at http://office.microsoft.com/en-us/images/.) Lock the controls on the form. Save the
solution and then start the application. Stop the application and then use the File menu to close
the solution.

5. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and permanently display
the Solution Explorer window. Create a Visual Basic Windows application. Use the following
names for the solution and project, respectively: Homestead Solution and Homestead
Project. Save the application in the ClearlyVB2010\Chap03 folder. Create the interface shown
in Figure 3-26. You can use any font style, size, and color for the label control’s text. (The
color of a label’s text is determined by the label’s ForeColor property.) The form should be
centered on the screen when the application is started. The VACANCY image is stored in
the ClearlyVB2010\Chap03\00223754.gif file. (The file was downloaded from the Microsoft

Figure 3-24 Interface for Exercise 3

INTERMEDIATE

Figure 3-25 Interface for Exercise 4

INTERMEDIATE

Exercises

47

Office site at http://office.microsoft.com/en-us/images/.) Lock the controls on the form. Save
the solution and then start the application. Stop the application and then close the solution.

6. Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Show Hide Solution and Show Hide Project. Save the application in
the ClearlyVB2010\Chap03 folder. Create the interface shown in Figure 3-27. The
interface contains a picture box and three button controls. The wizard image is stored in
the ClearlyVB2010\Chap03\Lightning_bolts.gif file. (The file was downloaded from the
Animation Library site at www.animationlibrary.com.) The picture box should have a
border around it; set the appropriate property. The form should appear centered on the
screen when the application is started. Lock the controls on the form. Save the solution
and then start the application. Stop the application and then close the solution.

Figure 3-26 Interface for Exercise 5

ADVANCED

Figure 3-27 Interface for Exercise 6

CH A P T E R 3 I Need a Tour Guide (Introduction to Visual Basic 2010)

48

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4
Do It Yourself Designing
(Designing Interfaces)

After studying Chapter 4, you should be able to:

Use a text box to get user input

Perform an action with a button control

Code a control’s Click event procedure

Stop an application using the Me.Close() instruction

Delegating the Work
In Chapter 2, you learned how to analyze a problem, plan an appropriate algorithm, and desk-
check the algorithm. Then, in Chapter 3, you learned the mechanics of creating a user interface in
Visual Basic. In this chapter, you will learn how to design the interface, using a problem’s output
and input items and its algorithm. More specifically, you’ll learn how to design an interface for the
Addison Smith problem from Chapter 2. Figure 4-1 shows the Addison Smith problem’s output,
input, and algorithm. As you may remember, the algorithm calculates and displays an annual
commission based on the annual sales and commission rate entered by the user.

When designing an interface for a problem, you need to examine each step in the problem’s
algorithm, along with its output and input items. The first step in the Addison Smith algorithm is
to enter the annual sales and commission rate, which are the two input items. Visual Basic
provides many controls that allow the user to enter data; in this case, you will use two text boxes.
Step 2 in the algorithm is to calculate the annual commission. The user should have control over
when (and if) the calculation task is performed. This is the perfect place to use a button control,
because buttons perform their tasks only when the user clicks them. Examples of buttons with
which you already are familiar include the Open, Save, andOK buttons. In this case, you will assign
the calculation task to a buttonmarked Calculate Commission. The Calculate Commission button
also will be assigned the display the annual commission task from Step 3, because the user will
want to view the annual commission immediately after it has been calculated. As Figure 4-1
indicates, the annual commission is an output item. In most interfaces, output items appear in
label controls, because users should not be able to edit the value of an output item while an
application is running. In this case, for instance, the user should not be able to edit the annual
commission after it has been calculated. Based on the information shown in Figure 4-1, the
interface will use two text boxes to get the annual sales and commission rate, a button to calculate
and display the annual commission, and a label to show the annual commission to the user. In
addition to the controls required by the algorithm, every interface also needs a control that allows
the user to end the application. In this interface, you will use a buttonmarked Exit for this purpose.
Figure 4-2 lists the controls mentioned in this section.

Output: annual commission

Input: annual sales
 commission rate

Algorithm:
1. enter the annual sales and commission rate
2. calculate the annual commission by multiplying the
 annual sales by the commission rate
3. display the annual commission

Figure 4-1 Output, input, and algorithm for the Addison Smith problem

Control Purpose
Label
Text box get the annual sales
Text box get the commission rate
Button (Calculate Commission) calculate and display the annual commission
Button (Exit) end the application

 show the annual commission

Figure 4-2 List of controls

CH A P T E R 4 Do It Yourself Designing (Designing Interfaces)

50

You should assign a meaningful name to each of the controls listed in Figure 4-2, because doing
so will help you keep track of the various objects included in the interface. In addition, as you
will learn in Chapter 6, the programmer uses an object’s name to refer to the object in code. The
name must begin with a letter and can contain only letters, numbers, and the underscore
character. You cannot include punctuation characters or spaces in the name. There are several
conventions for naming objects in Visual Basic; in this book, you will use a naming convention
called Hungarian notation. Names in Hungarian notation begin with a three (or more) character
ID that represents the object’s type. Label control names, for example, begin with lbl. Names of
buttons begin with btn, and text box names begin with txt. The remaining characters in the
name represent the object’s purpose. For instance, using Hungarian notation, you might assign
the name lblCommission to the label that displays the annual commission. The “lbl” identifies
the object as a label, and “Commission” reminds you of the label’s purpose. Hungarian notation
names are entered using camel case, which means you lowercase the ID characters and then
uppercase the first letter of each word in the name. Camel case refers to the fact that the
uppercase letters appear as “humps” in the name because they are taller than the lowercase
letters. Figure 4-3 lists the name and purpose of each of the controls listed in Figure 4-2.

Mini-Quiz 4-1
See Appendix B for the answers.

1. It is customary to show the result of a calculation in a ___________ control in the interface.

2. Using Hungarian notation, which of the following is a good name for a text box that
accepts the name of a city?

a. cityTextBox
b. textBoxCity
c. txtCity
d. TxtCity

3. The three-character ID for a button control’s name is ___________.

To begin creating the Commission Calculator application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer and Toolbox windows. Create a Visual Basic Windows application.
Use the following names for the solution and project, respectively: Commission
Calculator Solution and Commission Calculator Project. Save the application in the
ClearlyVB2010\Chap04 folder.

Control name Purpose
lblCommission show the annual commission
txtSales get the annual sales
txtRate get the commission rate
btnCalculate (Calculate Commission) calculate and display the annual commission
btnExit (Exit) end the application

Figure 4-3 Name and purpose of each control

Before you
begin
creating the
Commission
Calculator

application, you may
want to view the Ch04-
Commission Calculator
video. The video
demonstrates all of the
steps contained in this
chapter. You may find it
helpful to view the steps
before you perform
them.

Delegating the Work

51

2. Permanently display the Properties window. Click the form to select it, and then change
the following properties:

Font Segoe UI, 9pt

StartPosition CenterScreen

Text Commission Calculator

3. A project can contain many forms; therefore, it’s a good programming practice to give
each form a meaningful name. The name of each form in a project must be unique. In
other words, the name of each form must be different from the name of any other form in
the same project. The three-character ID for form names is frm. Change the form’s Name
property to frmMain. (The Name property is the third item in the Properties list.)

4. You also will change the name of the file (on your disk) that contains the form. Right-
click Form1.vb in the Solution Explorer window and then click Rename. Type
frmMain.vb and press Enter.

5. Next, you will begin adding the controls listed in Figure 4-3 to the form. For now, you do
not have to worry about the exact location of the controls. Use the Label tool to add a
label to the form, and then change the label’s name to lblCommission.

6. Use the TextBox tool to add two text boxes to the form. Name the first text box
txtSales, and name the second text box txtRate.

7. Use the Button tool to add two buttons to the form. Name the first button
btnCalculate, and name the second button btnExit.

8. Position the controls as shown in Figure 4-4.

You will need to add descriptive identifying labels above the two text boxes; otherwise, the user
won’t know where to enter the input items. An identifying label should be from one to three
words only, with the entire label appearing on one line. It is customary in Windows applications
for identifying labels to end with a colon. The colon allows some assistive technologies, which
are technologies that provide assistance to individuals with disabilities, to locate the identifying
labels in the interface. It also is customary to enter identifying labels using sentence
capitalization, which means capitalizing only the first letter in the first word and in any words
that are customarily capitalized.

txtSales txtRate

lblCommission

btnCalculate btnExit

Figure 4-4 Controls added to the form

CH A P T E R 4 Do It Yourself Designing (Designing Interfaces)

52

To continue creating the Commission Calculator application:

1. Add two more labels to the form. Position one of the labels above the txtSales control.
Position the other label above the txtRate control. Use the blue snap lines to align the left
border of each label with the left border of its respective text box.

2. Change the Text property of the txtSales control’s identifying label to Enter sales:. Change
the Text property of the txtRate control’s identifying label to Enter decimal rate:.

3. The lblCommission control also needs a label to identify its contents for the user. Add
another label to the form. Position the label above the lblCommission control, aligning
both controls by their left borders. Change the label’s Text property to Commission:.

4. Save the solution.

Next, you will change each button’s Text property to a value that indicates the task performed when
the button is clicked. The value in a button’s Text property appears on the button’s face and is often
referred to as the button’s caption. As with identifying labels, a button’s caption should be from one
to three words only, with the entire caption appearing on one line. However, unlike identifying
labels, a button’s caption does not end with a colon and is entered using book title capitalization.
With book title capitalization, you capitalize the first letter in each word, except for articles,
conjunctions, and prepositions that do not occur at either the beginning or the end of the caption.

To continue creating the Commission Calculator application:

1. Change the btnCalculate control’s Text property to Calculate Commission. Drag the
button’s right border until the entire caption is visible. Also make the button slightly
taller. (If necessary, reposition the button.)

2. Change the btnExit control’s Text property to Exit, and then use the Format menu to
make the Exit button the same height as the Calculate Commission button.

3. The lblCommission control should be empty when the user interface appears on the
screen. In addition, it is customary to put a border around a label that displays the
application’s output, and to prevent the label from changing its size while the application
is running. Click the lblCommission control on the form. Change its AutoSize property
to False, and then change its BorderStyle property to FixedSingle. Click Text in the
Properties list. Press the Backspace key on your keyboard and then press Enter.

4. Make the lblCommission control slightly taller. Then make it the same width as its
identifying label.

5. Lock the controls on the form and then save the solution. Figure 4-5 shows the current
status of the interface.

Figure 4-5 Current status of the interface

Delegating the Work

53

Making the Interface More User-Friendly
Looking closely at the Visual Studio menu bar in Figure 4-6, you will notice that the menu titles
contain an underlined letter. The underlined letter is called an access key, and it allows the user
to select a menu using the Alt key in combination with a letter or number. For example, you can
select the File menu in Visual Studio by pressing Alt+F, because the letter F is the File menu’s
access key. Access keys are not case sensitive; therefore, you can select the File menu by pressing
either Alt+F or Alt+f. Depending on your system’s settings, the access keys may or may not
appear underlined on your screen. If you do not see the underlined access keys, you can display
them temporarily by pressing the Alt key. You can subsequently hide them by pressing the Alt
key again. (To always display access keys, see the Summary section at the end of this chapter.)

You should assign an access key to each control (in the interface) that can accept user
input. Examples of such controls include text boxes and buttons, because the user can enter
information in a text box and click a button. The only exceptions to this rule are the OK
and Cancel buttons, which typically do not have access keys in Windows applications.
Access keys are important because they allow a user to work with the interface even when
their mouse becomes inoperative. In addition, some fast typists prefer to use access keys,
because the access keys allow them to keep their hands on the keyboard. Finally, access keys
are important for people with disabilities that prevent them from working with a mouse.

You assign an access key by including an ampersand (&) in the control’s caption or identifying
label. If the control is a button, you include the ampersand in the button’s Text property,
which is where a button’s caption is stored. If the control is a text box, you include the
ampersand in the Text property of its identifying label. (As you will learn later in this lesson,
you also must set the TabIndex properties of the text box and its identifying label
appropriately.) You enter the ampersand to the immediate left of the character you want to
designate as the access key. For example, to assign the letter C as the access key for the
Calculate Commission button, you enter &Calculate Commission in the button’s Text
property. To assign the letter s as the access key for the txtSales control, you enter Enter
&sales: in the Text property of its identifying label.

Each access key in an interface should be unique. The first choice for an access key is the first
letter of the caption or identifying label, unless another letter provides a more meaningful
association. For example, the letter x is the access key for an Exit button, because it provides a
more meaningful association than does the letter E. If you can’t use the first letter (perhaps
because it already is used as the access key for another control) and no other letter provides a
more meaningful association, then use a distinctive consonant in the caption or label. The last
choices for an access key are a vowel or a number. In the Commission Calculator interface, four
controls can accept user input: the two text boxes and the two buttons. Figure 4-7 lists the four
controls along with their access keys.

access key

Figure 4-6 Visual Studio menu bar

Control name Access key
txtSales the first letter s in the Enter sales: identifying label
txtRate the second letter r in the Enter decimal rate: identifying label
btnCalculate the first letter C in the Calculate Commission caption
btnExit the letter x in the Exit caption

Figure 4-7 List of controls and their access keys

CH A P T E R 4 Do It Yourself Designing (Designing Interfaces)

54

To assign access keys to the controls that can accept user input:

1. Change the Text property of the Enter sales: label to Enter &sales:, and then change the
Text property of the Enter decimal rate: label to Enter decimal &rate:.

2. Change the btnCalculate control’s Text property to &Calculate Commission, and then
change the btnExit control’s Text property to E&xit. Figure 4-8 shows the access keys in
the interface. (If you do not see the access keys, press the Alt key.)

Notice that the Commission: label in Figure 4-8 does not have an access key. This is because the
label does not identify a control that accepts user input. Instead, it identifies the lblCommission
control, whose purpose is simply to show the annual commission after it has been calculated.
Users cannot access the lblCommission control while the application is running; therefore, it is
inappropriate to assign an access key to the control.

In addition to assigning access keys for an interface, you also should set the interface’s tab order,
which is the order in which the controls receive the focus when the user presses either a Tab key
or an access key. The tab order is determined by the number stored in each control’s TabIndex
property. When the interface is first created, the TabIndex values reflect the order in which
each control was added to the form. The first control added to a form has a TabIndex of 0, the
second control a TabIndex of 1, and so on. You can use the Properties window to reset the
TabIndex property of each control so that it reflects the desired position of the control in the tab
order. However, an easier way is to use the Tab Order option on the View menu. The Tab Order
option is available only when the designer window is the active window. When using the Tab
Order option, you need to set the TabIndex values in numerical order, beginning with the
number 0. If you make a mistake while you are performing the next set of steps, press the Esc
key to remove the TabIndex information from the form and then repeat all of the steps.

To set the tab order:

1. Click the form to select it. Click View on the menu bar and then click Tab Order.
The numbers in the blue boxes indicate the value stored in each control’s TabIndex
property. The numbers reflect the order in which the controls were placed on the
form. See Figure 4-9.

Figure 4-8 Access keys shown in the interface

Making the Interface More User Friendly

55

2. Most times, the user will want to enter the sales amount first. So your initial thought
might be to change the txtSales control’s TabIndex value to 0. However, for a text box’s
access key to work properly, the TabIndex value of its identifying label must be one
number less than the text box’s TabIndex value. Therefore, you will need to set the
Label1 control’s TabIndex to 0, and the txtSales control’s TabIndex to 1. Click the blue
box that appears on top of the Enter sales: label. The number 0 replaces the current
number in the box, and the color of the box changes from blue to white to indicate that
you have set the TabIndex value for that control. Next, click the blue box that appears
on top of the txtSales control. See Figure 4-10.

3. The user will want to enter the rate next. Here again, before setting the txtRate control’s
TabIndex, you will need to set the TabIndex of its identifying label. Click the blue box
that appears on top of the Enter decimal rate: label, and then click the blue box that
appears on top of the txtRate control. The white boxes now show TabIndex values of
2 and 3.

4. After entering the input items, the user will probably want to calculate the commission.
Therefore, the next control in the tab order should be the Calculate Commission button.
Click the blue box that appears on top of the Calculate Commission button. The
white box indicates that the button’s TabIndex is set to 4.

5. The only remaining control that can accept user input is the Exit button. Click the blue
box that appears on top of the Exit button to set the button’s TabIndex to 5.

6. Controls that cannot accept user input (such as the lblCommission control) and
those that do not identify controls that accept user input (such as the Commission:
label) should be placed at the end of the tab order. Click the blue box that appears
on top of the lblCommission control, and then click the blue box that appears
on top of the Commission: label. When you have finished setting all of the
TabIndex values, the color of the boxes will automatically change from white to
blue, as shown in Figure 4-11.

Label1 TabIndex

txtSales TabIndex

Figure 4-10 TabIndex values for the Label1 and txtSales controls

Figure 4-9 Current TabIndex values for the interface

CH A P T E R 4 Do It Yourself Designing (Designing Interfaces)

56

7. Press the Esc key to remove the TabIndex boxes from the form.

8. Now you will test the tab order. Save the solution and then start the application. The
insertion point appears in the txtSales text box. The insertion point indicates that the
text box has the focus. When a control has the focus, it can accept user input. Press the
Tab key two times. The focus moves to the txtRate control and then to the Calculate
Commission button. When a button has the focus, its border is darkened. Press Tab two
more times. The focus moves to the Exit button and then to the txtSales control.

9. For now, you will test the access keys for the text boxes only. Press Alt+r (press and hold
down the Alt key as you tap the letter r). The focus moves to the txtRate control. Press
Alt+s to move the focus to the txtSales control.

10. Click the Close button on the form’s title bar to close the application.

Do What I Tell You to Do
After creating the interface, you can begin entering the Visual Basic instructions, or code, that
tell the controls how to respond to the user’s actions. Those actions—such as clicking and
double-clicking—are called events. You tell an object how to respond to an event by writing
an event procedure, which is simply a set of Visual Basic instructions that are processed when
a specific event occurs. In this chapter, you will write a Click event procedure for the Exit
button, which should end the application when it is clicked. (You will code the Calculate
Commission button in Chapter 5.) You enter an event procedure’s code in the Code Editor
window.

To open the Exit button’s Click event procedure in the Code Editor window:

1. Auto-hide the Solution Explorer, Properties, and Toolbox windows.

2. Right-click the form and then click View Code on the context menu. The Code Editor
window opens in the IDE. Click the list arrow that appears in the lower-left corner of
the window and then click 150 % in the list; doing this increases the size of the code
font. See Figure 4-12. Notice that the Code Editor window already contains some Visual
Basic instructions. It also contains a Class Name list box and a Method Name list box.
The Class Name list box lists the names of the objects included in the user interface. The
Method Name list box, on the other hand, lists the events to which the selected object is
capable of responding. You use the Class Name and Method Name list boxes to select
the object and event, respectively, that you want to code.

Figure 4-11 Correct TabIndex values for the interface

Do What I Tell You to Do

57

3. Click the Class Name list arrow and then click btnExit in the list. Click the Method
Name list arrow and then click Click in the list. A code template for the btnExit control’s
Click event procedure appears in the Code Editor window, as shown in Figure 4-13.

The Code Editor provides a code template for every event procedure. The code templates help
you follow the rules of the Visual Basic language. The rules of a programming language are
called its syntax. The first line in a code template is called the procedure header, and the last
line is called the procedure footer. The procedure header begins with the two keywords
Private Sub. A keyword is a word that has a special meaning in a programming
language. Keywords appear in a different color from the rest of the code. The Private keyword
in Figure 4-13 indicates that the button’s Click event procedure can be used only within the
current Code Editor window. The Sub keyword is an abbreviation of the term Sub procedure,
which is a block of code that performs a specific task. Following the Sub keyword is the name of
the object, an underscore, the name of the event, and parentheses containing some text. For
now, you do not have to be concerned with the text that appears between the parentheses. After
the closing parenthesis is Handles btnExit.Click. This part of the procedure header indicates
that the procedure handles (or is associated with) the btnExit control’s Click event. It tells the
computer to process the procedure when the btnExit control is clicked.

The code template ends with the procedure footer, which contains the keywords End Sub. You
enter your Visual Basic instructions at the location of the insertion point, which appears between
the Private Sub and End Sub clauses in Figure 4-13. The Code Editor automatically indents the
line between the procedure’s header and footer. Indenting the lines within a procedure makes the
instructions easier to read and is a common programming practice. In this case, the instruction
you enter will tell the computer to end the application when the btnExit control is clicked.

The Me.Close() Instruction
The Me.Close() instruction tells the computer to close the current form. If the current form is
the only form in the application, closing it terminates the entire application. In the instruction,
Me is a keyword that refers to the current form, and Close is one of the methods available in

procedure header

procedure footer

Figure 4-13 Code template for the btnExit control’s Click event procedure

Class Name list arrow Method Name list arrow

you can use this list box
to increase or decrease
the size of the code font

Figure 4-12 Code Editor window

CH A P T E R 4 Do It Yourself Designing (Designing Interfaces)

58

Visual Basic. A method is a predefined procedure that you can call (or invoke) when needed. For
example, if you want the computer to close the current form when the user clicks the Exit button,
you enter the Me.Close() instruction in the button’s Click event procedure. Notice the empty
set of parentheses after the method’s name in the instruction. The parentheses are required when
calling some Visual Basic methods. However, depending on the method, the parentheses may or
may not be empty. If you forget to enter the empty set of parentheses, the Code Editor will enter
them for you when you move the insertion point to another line in the Code Editor window.

To code the btnExit control’s Click event procedure:

1. You can type the Me.Close() instruction on your own or use the Code Editor window’s
IntelliSense feature. In this set of steps, you will use the IntelliSense feature. Type me.
(but don’t press Enter). When you type the period, the IntelliSense feature displays a list
of properties, methods, and so on from which you can select.

Important note: If a list of choices does not appear, the IntelliSense feature may have
been turned off on your computer system. To turn it on, click Tools on the menu bar
and then click Options. If necessary, select the Show all settings check box. Expand the
Text Editor node and then click Basic. Select the Auto list members check box and then
click the OK button. Delete the me. that you typed in Step 1 and repeat Step 1.

2. If necessary, click the Common tab. The Common tab displays the most commonly
used items, whereas the All tab displays all of the items. Type cl (but don’t press Enter).
The IntelliSense feature highlights the Close method in the list. See Figure 4-14.

3. Press Tab to include the Close method in the instruction and then press Enter. See
Figure 4-15.

It’s a good programming practice to test a procedure after you have coded it. By doing this,
you’ll know where to look if an error occurs. You can test the Exit button’s Click event
procedure by starting the application and then clicking the button. When the button is clicked,
the computer will process the Me.Close() instruction contained in the procedure.

To test the Exit button’s Click event procedure:

1. Save the solution and then start the application. Click the Exit button to end the
application.

2. Now you will test the Exit button’s access key. Start the application and then press Alt+x.
When you employ a button’s access key, the computer processes any instructions contained

Figure 4-15 Completed btnExit Click event procedure

Figure 4-14 List displayed by the IntelliSense feature

Do What I Tell You to Do

59

in the button’s Click event procedure. In this case, the instruction directs the computer to
end the application.

3. Close the Code Editor window and then close the solution.

Mini-Quiz 4-2
See Appendix B for the answers.

1. If a text box’s TabIndex is set to 7, its identifying label’s TabIndex should be set to ___________.

2. If a text box’s access key is the letter t, you can move the focus to the text box by
pressing ___________.

a. Alt+t
b. Ctrl+t

c. Esc+t

d. Shift+t

3. The first line in a procedure is called the ___________.

Summary

l You use a problem’s input, output, and algorithm when designing the solution’s interface.

l Text boxes provide an area for the user to enter data.

l Buttons are used to perform an action when clicked.

l Output items typically appear in label controls so that their values cannot be edited by the
user.

l Object names in Hungarian notation begin with an ID that identifies the object’s type.
The rest of the name identifies the object’s purpose. Object names are entered using
camel case.

l Form names begin with frm. Button names begin with btn. Label names begin with lbl. Text
box names begin with txt.

l Identifying labels and button captions should be from one to three words, with the entire
label or caption appearing on one line. Identifying labels should end with a colon and be
entered using sentence capitalization. Button captions should be entered using book title
capitalization.

l To prevent a label from changing its size while the application is running, change its
AutoSize property to False.

l A label’s BorderStyle property determines whether the label has a border.

l You should assign an access key to each control that can accept user input.

l An interface’s tab order is determined by the number stored in each control’s TabIndex
property.

l When a control has the focus, it can accept user input.

l When an event occurs on an object, the computer processes any instructions contained in
the associated event procedure.

l Event procedures, which are procedures that tell an object how to respond to an event, are
entered in the Code Editor window.

CH A P T E R 4 Do It Yourself Designing (Designing Interfaces)

60

l The Handles part of a procedure header indicates the object and event associated with the
procedure.

l You can use the Me.Close() instruction to end an application.

l To always display access keys in Windows 7, click the Start button on the Windows 7
taskbar. Click Control Panel and then click Appearance and Personalization. In the Ease of
Access Center section, click Turn on easy access keys. Select the Underline keyboard
shortcuts and access keys check box, and then click the OK button. Close the Control Panel
window.

l To always display access keys in Windows Vista, click Start on the Windows Vista
taskbar. Click Control Panel and then click Appearance and Personalization. In the Ease of
Access Center section, click Underline keyboard shortcuts and access keys, and then select
the Underline keyboard shortcuts and access keys check box. (You may need to scroll
down to view the check box.) Click the Save button and then close the Ease of Access
Center dialog box.

l To always display access keys when using the Classic View in Windows Vista, click the Start
button on the Windows Vista taskbar. Click Control Panel, double-click Ease of Access
Center, click Make the keyboard easier to use, and then select the Underline keyboard
shortcuts and access keys check box. Click the Save button and then close the Ease of Access
Center dialog box.

Key Terms
Access key—the underlined character in an object’s identifying label or caption; allows the user
to select the object using the Alt key in combination with the underlined character

Book title capitalization—the capitalization used for a button’s caption; refers to capitalizing the
first letter in each word, except for articles, conjunctions, and prepositions that do not occur at
either the beginning or end of the caption

Camel case—used when entering object names in Hungarian notation; the practice of entering
the object’s ID characters in lowercase and then capitalizing the first letter of each word in
the name

Caption—the text that appears on a button’s face

Code—Visual Basic instructions

Code Editor window—the window in which you enter your Visual Basic instructions (code)

Event procedure—a set of Visual Basic instructions that tell an object how to respond to an
event

Events—actions to which an object can respond; examples include clicking and double-clicking

Keyword—a word that has a special meaning in a programming language

Method—a predefined procedure that you can call (invoke) when needed

Procedure footer—the last line in a procedure

Procedure header—the first line in a procedure

Sentence capitalization—the capitalization used for identifying labels; refers to capitalizing only
the first letter in the first word and in any words that are customarily capitalized

Sub procedure—a block of code that performs a specific task

Syntax—the rules of a programming language

TabIndex property—determines the position of a control in the tab order

Key Terms

61

Review Questions
1. You can allow the user to determine when (and if) a task is performed by assigning the

task to a ___________ control in the interface.

a. button

b. label

c. picture box

d. text box

2. Which of the following designates the letter Z as an access key?

a. @ZIP code:

b. &ZIP code:

c. ^ZIP code:

d. #ZIP code:

3. The computer processes a button’s Click event procedure when the user ___________.

a. clicks the button

b. employs the button’s access key

c. presses the Enter key when the button has the focus

d. all of the above

4. Which of the following appears in a procedure header and associates the procedure with
the btnSave control’s Click event?

a. Handles btnSave.Click

b. Handles Click.btnSave

c. Header btnSave.Click

d. Event Click.btnSave

5. Which of the following tells the computer to stop an application?

a. Close.Me()

b. Me.Close()

c. Me.End()

d. Me.Stop()

6. A button’s caption should be entered using ___________ capitalization.

a. book title

b. sentence

7. Which of the following is a keyword in Visual Basic?

a. Me

b. Private

c. Sub

d. all of the above

Exercises
1. In this exercise, you create an interface for the Aiden Turner problem from Chapter 2.

(See Appendix B for the answer.)

a. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and permanently
display the Solution Explorer window. Create a Visual Basic Windows application.
Use the following names for the solution and project, respectively: New Pay Solution
and New Pay Project. Save the application in the ClearlyVB2010\Chap04 folder.

b. Use the Properties window to change the form’s name to frmMain. Change the name
of the form file in the Solution Explorer window to frmMain.vb.

c. Create a suitable interface using the information shown in Figure 4-16. Also include
an Exit button. Be sure to assign names to the appropriate controls. Also be sure to
assign access keys and set the tab order.

d. Code the Exit button’s Click event procedure so that it ends the application. You will
code the algorithm in Chapter 5’s Exercise 1.

TRY THIS

CH A P T E R 4 Do It Yourself Designing (Designing Interfaces)

62

e. Save the solution and then start the application. Test the interface’s tab order and
access keys.

f. Use the Exit button to stop the application. Close the Code Editor window and then
use the File menu to close the solution.

2. In this exercise, you modify the interface created in Exercise 1.

a. Use Windows to make a copy of the New Pay Solution folder. Save the copy in the
ClearlyVB2010\Chap04 folder. Rename the copy Modified New Pay Solution.

b. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and permanently
display the Solution Explorer window. Open the New Pay Solution (New Pay
Solution.sln) file contained in the Modified New Pay Solution folder. In addition to
calculating and displaying the new weekly pay, Aiden Turner would now like to
calculate and display his weekly raise. Modify the interface to include a label for
showing the weekly raise. Be sure to also include an identifying label.

c. Save the solution and then start the application. Stop the application and then close
the solution.

3. In this exercise, you create an interface for an application that calculates and displays a
10%, 15%, and 20% tip on a restaurant bill.

a. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and permanently
display the Solution Explorer window. Create a Visual Basic Windows application. Use
the following names for the solution and project, respectively: Tip Solution and Tip
Project. Save the application in the ClearlyVB2010\Chap04 folder.

b. Use the Properties window to change the form’s name to frmMain. Change the name
of the form file in the Solution Explorer window to frmMain.vb.

c. Create a suitable interface using the information shown in Figure 4-17. Also include
an Exit button. Be sure to assign names to the appropriate controls. Also be sure to
assign access keys and set the tab order.

d. Code the Exit button’s Click event procedure so that it ends the application. You will
code the algorithm in Chapter 5’s Exercise 4.

e. Save the solution and then start the application. Test the interface’s tab order and
access keys.

f. Use the Exit button to stop the application. Close the Code Editor window and then
use the File menu to close the solution.

INTRODUCTORY

Output: new weekly pay

 Input: current weekly pay
 raise percentage

Algorithm:
1. enter the current weekly pay and raise percentage
2. calculate the new weekly pay by multiplying the current
 weekly pay by the raise percentage, and then adding the
 result to the current weekly pay
3. display the new weekly pay

Figure 4-16 Information for Exercise 1

MODIFY THIS

Exercises

63

4. In this exercise, you create an interface for an application that calculates and displays an
annual property tax. Currently, the property tax rate is $1.02 for each $100 of a property’s
assessed value. However, the tax rate changes each year.

a. Complete the algorithm shown in Figure 4-18.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Property Tax Solution and Property Tax Project. Save the
application in the ClearlyVB2010\Chap04 folder.

c. Change the name of the form file on your disk to frmMain.vb. If necessary, change the
form’s name to frmMain.

d. Create a suitable interface using the information shown in Figure 4-18. Also include
an Exit button. Be sure to assign names to the appropriate controls. Also be sure to
assign access keys and set the tab order.

e. Code the Exit button’s Click event procedure so that it ends the application. You will
code the algorithm in Chapter 5’s Exercise 6.

f. Save the solution and then start the application. Test the interface’s tab order and
access keys.

g. Stop the application. Close the Code Editor window and then close the solution.

5. In this exercise, you create an interface for an application that calculates and displays the
total amount a customer owes.

a. Complete the algorithm shown in Figure 4-19.

INTERMEDIATE

Output: 10% tip
 15% tip
 20% tip

Input: restaurant bill

Algorithm:
1. enter the restaurant bill
2. calculate a 10% tip by multiplying the restaurant bill by 10%
3. calculate a 15% tip by multiplying the restaurant bill by 15%
4. calculate a 20% tip by multiplying the restaurant bill by 20%
5. display the 10% tip, 15% tip, and 20% tip

Figure 4-17 Information for Exercise 3

Output: annual property tax

Input: assessed value
 property tax rate

Algorithm:
1. enter
2. calculate
3. display

Figure 4-18 Information for Exercise 4

INTERMEDIATE

CH A P T E R 4 Do It Yourself Designing (Designing Interfaces)

64

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Total Solution and Total Project. Save the application in the
ClearlyVB2010\Chap04 folder.

c. Change the name of the form file on your disk to frmMain.vb. If necessary, change the
form’s name to frmMain.

d. Create a suitable interface using the information shown in Figure 4-19. Also include
an Exit button. Be sure to assign names to the appropriate controls. Also be sure to
assign access keys and set the tab order.

e. Code the Exit button’s Click event procedure so that it ends the application.

f. Save the solution and then start the application. Test the interface’s tab order and
access keys.

g. Stop the application. Close the Code Editor window and then close the solution.

6. In this exercise, you create an interface for an application that calculates and displays the
total cost for running a party at a local restaurant. The restaurant charges a fee for
renting its party room. It also charges a fee per guest.

a. Complete the algorithm shown in Figure 4-20.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Party Solution and Party Project. Save the application in the
ClearlyVB2010\Chap04 folder.

c. Change the name of the form file on your disk to frmMain.vb. If necessary, change the
form’s name to frmMain.

d. Create a suitable interface using the information shown in Figure 4-20. Also include
an Exit button. Be sure to assign names to the appropriate controls. Also be sure to
assign access keys and set the tab order.

e. Code the Exit button’s Click event procedure so that it ends the application. You will
code the algorithm in Chapter 5’s Exercise 8.

f. Save the solution and then start the application. Test the interface’s tab order and
access keys.

g. Stop the application. Close the Code Editor window and then close the solution.

Output: total due

Processing: subtotal
 sales tax

Input: number of folders purchased
 folder price
 sales tax rate

Algorithm:
1. enter
2. calculate
3. calculate
4. calculate
5. display

Figure 4-19 Information for Exercise 5

INTERMEDIATE

Exercises

65

7. In this exercise, you create an interface for RM Sales. The company divides its sales
territory into four regions: North, South, East, and West. The sales manager wants an
application that allows him to enter each region’s sales amount. The application should
calculate and display the total sales, as well as the percentage of sales attributed to each
region. For example, if the sales manager enters the numbers 4000, 2000, 1000, and 3000
as the North, South, East, and West regions’ sales amounts, respectively, then the total
sales amount is $10,000. 40% of the sales come from the North region, 20% from the
South region, and so on.

a. List the output and input items, and then create an appropriate algorithm.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Sales Solution and Sales Project. Save the application in the
ClearlyVB2010\Chap04 folder.

c. Change the name of the form file on your disk to frmMain.vb. If necessary, change the
form’s name to frmMain.

d. Create a suitable interface. Include an Exit button. Be sure to assign names to the
appropriate controls. Also be sure to assign access keys and set the tab order.

e. Code the Exit button’s Click event procedure so that it ends the application. You will
code the algorithm in Chapter 5’s Exercise 11.

f. Save the solution and then start the application. Test the interface’s tab order and
access keys.

g. Stop the application. Close the Code Editor window and then close the solution.

8. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap04\SwatTheBugs Solution folder. Start the application and then
click the Exit button. Notice that the Exit button does not end the application. Locate
and then correct the error. (Hint: Look closely at the procedure header in the Exit
button’s Click event procedure.)

ADVANCED

SWAT THE BUGS

Output: total cost

Input: room rental fee
 number of guests
 fee per guest

Algorithm:
1. enter
2. calculate
3. display

Figure 4-20 Information for Exercise 6

CH A P T E R 4 Do It Yourself Designing (Designing Interfaces)

66

CHAPTER 5
The Secret Code
(Assignment Statements)

After studying Chapter 5, you should be able to:

Include a comment in the Code Editor window

Use the Val function to convert text to a number

Write expressions containing arithmetic operators

Write an assignment statement

The Fun Starts Here
You completed the Addison Smith problem’s interface in Chapter 4. You also coded the Exit
button’s Click event procedure. Now it’s time to code the problem’s algorithm. As you learned
in Chapter 2, coding the algorithm is the fifth step in the problem-solving process. For most
programmers, this is the most rewarding step, because this is where they give life to the
interface. At the end of this step, the interface will change from one that the user can simply
look at to one with which the user can interact. Figure 5-1 shows the Addison Smith problem’s
interface, and Figure 5-2 shows the problem’s output, input, and algorithm.

Step 1 in the algorithm is to enter the annual sales and commission rate. Theuserwill enter the values in
the two text boxes in the interface. A text box is designed to accept information from the user, and
it automatically stores the information in its Text property. Therefore, no special coding is necessary
for Step 1. Steps 2 and 3 are to calculate and display the annual commission. Recall that you assigned
the tasks in these steps to the Calculate Commission button. The tasks should be performed when
the user clicks the button. Obviously, the Calculate Commission button needs you to tell it how to
calculate the annual commissionwhen theClick event occurs. It alsoneeds you to tell itwhere to display
the calculated result. You do this by coding the button’s Click event procedure.

To open the Calculate Commission button’s Click event procedure:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Commission Calculator Solution (Commission
Calculator Solution.sln) file contained in the ClearlyVB2010\Chap05\Commission
Calculator Solution folder. If the designer window is not open, double-click frmMain.vb
in the Solution Explorer window.

txtSales txtRate

lblCommission

btnCalculate

btnExit

Figure 5-1 Interface for the Addison Smith problem

Output: annual commission

Input: annual sales
 commission rate

Algorithm:
1. enter the annual sales and commission rate
2. calculate the annual commission by multiplying
 the annual sales by the commission rate
3. display the annual commission

Figure 5-2 Output, input, and algorithm for the Addison Smith problem

Before you
begin
coding the
Calculate
Commission

button, you may want to
view the Ch05-
Commission Calculator
video. The video
demonstrates all of the
steps contained in this
chapter. You may find it
helpful to view the steps
before you perform
them.

CH A P T E R 5 The Secret Code (Assignment Statements)

68

2. Auto-hide the Solution Explorer window. Right-click the form and then click View
Code on the context menu. The Code Editor window contains the btnExit control’s
Click event procedure, which you coded in Chapter 4.

3. Use the Class Name and Method Name list arrows to open the code template for the
btnCalculate control’s Click event procedure.

It’s a common programming practice to include one or more comments in a procedure. A
comment is a message to the person reading the code and is referred to as internal
documentation. Many programmers use comments to document a procedure’s purpose, as
well as to explain various sections of the procedure’s code. Comments make the code more
readable and easier to understand by anyone viewing it. You create a comment in Visual Basic
by placing an apostrophe (') before the text that represents the comment. The computer ignores
everything that appears after the apostrophe on that line. Although it is not required, some
programmers use a space to separate the apostrophe from the comment itself, and they follow
the comment with a blank line.

To internally document the btnCalculate control’s Click event procedure:

1. Type ' calculates and displays the annual commission (notice the space after the
apostrophe).

2. Press Enter twice. See Figure 5-3. (For readability, the font size was changed to 150 %.
It’s not necessary for you to change the font size.)

First you need to tell the procedure how to calculate the annual commission. According to the
algorithm, the annual commission is calculated by multiplying the annual sales by the
commission rate. The annual sales and commission rate are stored in the Text property of the
txtSales and txtRate controls, respectively. However, before you can use the Text property
value in a calculation, you need to convert the value to a number. One way to do this is by using
the Visual Basic Val function.

The Val Function
The characters entered in a text box can be numbers, letters, or special characters (such as
the dollar sign, comma, or percent sign). Because of this, the value stored in a control’s Text
property is always treated as alphanumeric text, even when the value contains only numbers.
For example, the computer treats a Text property value of 589 as three separate characters
(a 5, an 8, and a 9) rather than as the number 589 (five hundred and eighty-nine). As a result,
before you can use the Text property in a calculation, you must convert its alphanumeric value
to a number. Visual Basic provides several ways of performing the conversion; the easiest way is
to use the Val function. Therefore, in this chapter (and only in this chapter), you will use the Val
function to convert text to numbers. A function is a predefined procedure that performs a
specific task and then returns a value after completing the task. The Val function, for instance,
temporarily converts one or more characters to a number; it then returns the number. The
number is stored in the computer’s internal memory only while the function is processing.

comment

font size

Figure 5-3 Comment entered in the procedure

The Fun Starts Here

69

The syntax of the Val function is Val(text), where text is the characters you want treated as a
number. The item within parentheses in the syntax is called an argument, and it represents
information that is passed to the function while the function is processing. To temporarily
convert the Text property of the txtSales control to a number, you use txtSales.Text as the text
argument, like this: Val(txtSales.Text). For the text argument to be converted to a number,
it must contain only numbers and an optional period; it cannot contain a letter or a special
character. When an invalid character is encountered in the text argument, the Val function
stops the conversion process at that point. Figure 5-4 shows the numbers returned by the
Val(txtSales.Text) function, using various Text property values. Notice that the function
returns the number 0 when the txtSales control is empty. It also returns the number 0 when
the first character in the text argument is invalid. However, when the invalid character occurs
after the first character, the function returns the numbers previous to the invalid one.

As mentioned earlier, you can convert the txtSales control’s Text property to a number using
the Val(txtSales.Text) function. Likewise, you can convert the txtRate control’s Text
property to a number using Val(txtRate.Text). To calculate the annual commission, you
multiply the sales number by the rate number. You perform the calculation using an arithmetic
expression, which is an expression that contains one or more arithmetic operators.

Who’s in Charge of This Operation?
Most programs require the computer to perform one or more calculations. You instruct the
computer to perform a calculation by writing an arithmetic expression that contains one or
more arithmetic operators. Figure 5-5 lists the most commonly used arithmetic operators
available in Visual Basic, along with their precedence numbers. The precedence numbers
indicate the order in which the computer performs the operation in an expression. Operations
with a precedence number of 1 are performed first, followed by operations with a precedence
number of 2, and so on. However, you can use parentheses to override the order of precedence,
because operations within parentheses always are performed before operations outside of
parentheses.

 Number returned by the
txtSales.Text value Val(txtSales.Text) function
456 456
24,500 24
$56.88 0
Abc 0
Empty text box 0

Figure 5-4 Examples of the Val function

Operator Operation Precedence number
^ exponentiation (raises a number to a power) 1
– negation (reverses the sign of a number) 2
∗, / multiplication and division 3
\ integer division 4
Mod modulus 5
+,– addition and subtraction 6

Figure 5-5 Most commonly used arithmetic operators and their order of precedence

CH A P T E R 5 The Secret Code (Assignment Statements)

70

Some of the operators in Figure 5-5 have the same precedence number. For example, both the
addition and subtraction operators have a precedence number of 6. When an expression
contains more than one operator having the same priority, those operators are evaluated from
left to right. In the expression 5 + 12 / 3 – 1, for instance, the division is performed first,
followed by the addition and then the subtraction. The result of the expression is the number 8,
as illustrated in Figure 5-6. You can use parentheses to change the order in which the operators
in an expression are evaluated. For example, the expression 5 + 12 / (3 – 1) evaluates to 11
rather than to 8, as illustrated in Figure 5-6. This is because the parentheses tell the computer
to perform the subtraction operation first.

Two of the arithmetic operators in Figure 5-5 might be less familiar to you: the integer division
operator (\) and the modulus operator (Mod). The integer division operator divides two integers
(whole numbers) and then returns the result as an integer. For example, the expression 211 \ 4
results in 52, which is the integer result of dividing 211 by 4. (If you use the standard division
operator [/] to divide 211 by 4, the result is 52.75 rather than 52.) You might use the integer
division operator in a program that determines the number of quarters, dimes, and nickels to
return as change to a customer. For instance, if a customer should receive 53 cents in change,
you could use the expression 53 \ 25 to determine the number of quarters to return; the
expression evaluates to 2.

The modulus operator also is used to divide two numbers, but the numbers do not have to be
integers. In other words, the numbers may contain a decimal place. After dividing the numbers,
the modulus operator returns the remainder of the division. For instance, 211 Mod 4 equals 3,
which is the remainder of 211 divided by 4. You can use the modulus operator to determine
whether a number is even or odd. If you divide the number by 2 and the remainder is 0, the
number is even; if the remainder is 1, however, the number is odd. Figure 5-7 shows examples of
using arithmetic operators in expressions.

Original expression 5 + 12 / 3 – 1
The division is performed first 5 + 4 – 1
The addition is performed next 9 – 1
The subtraction is performed last 8

Original expression 5 + 12 / (3 – 1)
The subtraction is performed first 5 + 12 / 2
The division is performed next 5 + 6
The addition is performed last 11

result

result

Figure 5-6 Examples showing how expressions are evaluated

Expression Result
2 ^ 3 8
4 ∗ –3 –12
25 / 4 6.25
25 \ 4 6
25 Mod 4 1
7 + 6 ∗ (5 – 2) 25

Figure 5-7 Expressions containing arithmetic operators

For more
examples
of using
arithmetic
operators,

see the Arithmetic
Operators section in the
Ch5WantMore.pdf file.

Who’s in Charge of This Operation?

71

Recall that you need to tell the btnCalculate control’s Click event procedure how to calculate
the annual commission. You can do this using the expression Val(txtSales.Text) *
Val(txtRate.Text). You also need to tell the procedure where to display the result of the
calculation. In this case, you want to display the result in the lblCommission control. To display
the annual commission in the label control, you need to assign it to the control’s Text property.
You can accomplish this using an assignment statement, which you learn about next.

Mini-Quiz 5-1
See Appendix B for the answers.

1. Write an expression to add the number 100 to the contents of the lblTotal control.

2. If the user enters $67.45 in the txtTax control, the Val(txtTax.Text) function will
return the number ___________.

3. If the user enters 23 in the txtTotal control, the Val(txtTotal.Text) Mod 2
expression evaluates to the number ___________.

Your Assignment, if You Choose to Accept It
An assignment statement is used to assign a value to something (such as the property of a
control) during run time, which occurs while an application is running. The syntax of an
assignment statement is destination = value, where destination is where you want to assign
(or store) the value. The value can be anything, such as numbers, letters, special characters,
the property of a control, or an expression. To assign the result of the annual commission
calculation to the Text property of the lblCommission control, you use lblCommission.Text
as the destination, and the expression Val(txtSales.Text) * Val(txtRate.Text) as the
value. The appropriate assignment statement looks like this: lblCommission.Text =
Val(txtSales.Text) * Val(txtRate.Text). The equal sign in an assignment statement is
referred to as the assignment operator. When the computer processes the assignment
statement, it first performs the calculation that appears on the right side of the assignment
operator. It then assigns the result of the calculation to the location that appears on the left side
of the assignment operator. You can either type the assignment statement into the procedure
on your own or use the Code Editor window’s IntelliSense feature. You learned about the
IntelliSense feature in Chapter 4.

To code the btnCalculate control’s Click event procedure:

1. If you want to type the assignment statement on your own, type lblCommission.Text =
Val(txtSales.Text) * Val(txtRate.Text) and press Enter. See Figure 5-8.

If you want to use the IntelliSense feature, type lbl to highlight lblCommission in the list
and then press Tab to enter lblCommission in the statement. Type .te to highlight the
Text property in the list. Now you can either press the Tab key or type the equal sign,
which is the character that comes after the Text property in the assignment statement.
Type = to include the Text property in the statement. Next, type va to highlight the Val
function in the list. Type (txts to highlight txtSales in the list and then type .te to
highlight the Text property. Type)*va to highlight the Val function in the list and then
type (txt to highlight txtRate in the list. Type .te to highlight the Text property, press
Tab, type) and then press Enter. See Figure 5-8.

CH A P T E R 5 The Secret Code (Assignment Statements)

72

2. Now you will test the procedure to verify that it is working correctly. Save the solution
and then start the application. First, you will use a sales amount of 2000 and a
commission rate of 10%. Type 2000 as the sales amount, press Tab, and then type .1 as
the commission rate. Click the Calculate Commission button. The button’s Click event
procedure calculates and displays the annual commission. See Figure 5-9.

3. On your own, test the application using different sales and rates. Also test the application
when one or both text boxes are empty. When you are finished testing the application,
click the Exit button.

Before closing the solution, you will add a few more comments in the Code Editor window.
More specifically, you will enter the comments in the window’s General Declarations section.
The comments will document the project’s name and purpose, your name, and the date the
project was either created or modified. You also will center the annual commission in the
lblCommission control. You center the contents of a control by setting the control’s TextAlign
property.

To enter additional comments and also center the annual commission:

1. Position the insertion point at the beginning of the Public Class clause and then press
Enter to insert a blank line above the clause.

2. Press the up arrow on your keyboard to move the insertion point into the blank line. As
the Class Name and Method Name list boxes indicate, the area above the Public Class
clause is called the General Declarations section.

3. Type the comments indicated in Figure 5-10, replacing <your name> and <current date>
with your name and the current date, respectively.

annual commission

Figure 5-9 Annual commission shown in the interface

assignment statement

Figure 5-8 Assignment statement entered in the procedure

Your Assignment, if You Choose to Accept It

73

4. Close the Code Editor window.

5. Click the lblCommission control and then click TextAlign in the Properties list. Click
the list arrow in the Settings box and then click the rectangle that appears in the
second row, second column. Doing this changes the TextAlign property’s value to
MiddleCenter.

6. Save the solution and then run the application. Type 3000 as the sales amount, press
Tab, and then type .2 as the commission rate. Click the Calculate Commission button.
The annual commission (600) appears centered in the lblCommission control.

7. Click the Exit button and then close the solution.

Mini-Quiz 5-2
See Appendix B for the answers.

1. Write an assignment statement that assigns the result of the Val(txtHours.Text) *
Val(txtRate.Text) expression to the lblGross control.

2. Write an assignment statement that increases the contents of the txtOldPrice control
by 5 and then assigns the result to the lblNewPrice control.

3. The equal sign in an assignment statement is called the ___________.

4. The area above the Public Class clause in the Code Editor window is called
the ___________.

General Declarations section

enter these three
comments

Figure 5-10 Comments entered in the General Declarations section

CH A P T E R 5 The Secret Code (Assignment Statements)

74

Summary
l The fifth step in the problem-solving process is to code the problem’s algorithm.

l A procedure needs to know how to make a calculation and where to store the result.

l You use comments to internally document a project’s code. A comment begins with an
apostrophe.

l The Val function temporarily converts one or more characters to a number; it then returns
the number.

l You instruct a computer to perform a calculation by writing an expression that contains one
or more arithmetic operators.

l Arithmetic operators having the same precedence number are evaluated from left to right in
an expression.

l You can use parentheses to override the order of precedence for arithmetic operators.

l You use an assignment statement to assign a value to something while an application is
running.

l When an assignment statement contains a calculation, the calculation is performed before
the resulting value is assigned to its destination.

l A control’s TextAlign property determines the position of the text within the control.

Key Terms
Argument—appears within parentheses after a function’s name; represents information that the
function uses while it is processing

Assignment operator—the equal sign in an assignment statement

Assignment statement—a statement that assigns a value to a destination (such as the property
of a control)

Comment—a message entered in the Code Editor window for the purpose of internally
documenting the code; begins with an apostrophe; also referred to as internal documentation

Function—a predefined procedure that performs a specific task and then returns a value after
completing the task

General Declarations section—the area above the Public Class clause in the Code Editor
window

Integer division operator—one of the arithmetic operators; represented by a backslash (\);
divides two integers and then returns the quotient as an integer

Internal documentation—the comments entered in the Code Editor window

Modulus operator—represented by the keyword Mod; divides two numbers and then returns the
remainder of the division

Run time—the state of an application while it is running

TextAlign property—determines the position of the text within a control

Val function—temporarily converts one or more characters to a number, and then returns the
number

Key Terms

75

Review Questions
1. Comments in Visual Basic begin with ___________.

a. ' (apostrophe)

b. * (asterisk)

c. ^ (caret)

d. none of the above

2. If the user enters $5 in the txtPrice control and enters 3 in the txtQuantity
control, the Val(txtPrice.Text) * Val(txtQuantity.Text) expression will
evaluate to ___________.

a. 0

b. 3

c. 15

d. none of the above

3. If the user enters 75 in the txtNum control, which of the following changes the control’s
contents to –75 (a negative 75)?

a. –txtNum.Text = Val(txtNum.Text)

b. txtNum.Text = –txtNum.Text

c. txtNum.Text = –Val(txtNum.Text)

d. both b and c

4. If the txtNum control contains the value 82, which of the following expressions evaluates
to the number 4?

a. (Val(txtNum.Text) + 6) / 22

b. Val(txtNum.Text) Mod 6

c. Val(txtNum.Text) \ 20

d. all of the above

5. The expression in which of the following assignment statements will not calculate
correctly?

a. lblTotal.Text = Val(txtSales1.Text) + Val(txtSales2.Text)

b. lblTotal.Text = Val(txtSales1.Text + txtSales2.Text)

c. lblTotal.Text = Val(txtRed.Text) * 2

d. lblTotal.Text = Val(txtBlue.Text) * 1.1

6. The expression 2 ^ 3 * 43 Mod 3 * 6 evaluates to ___________.

a. 2

b. 3

c. 10

d. 12

7. The expression 44 Mod 3 ^ 2 \ 4 evaluates to ___________.

a. 0

b. 1

c. 2

d. 3

Exercises
1. In this exercise, you code the Aiden Turner problem’s algorithm from Chapter 2.

(See Appendix B for the answer.)

a. Open the New Pay Solution (New Pay Solution.sln) file contained in the ClearlyVB2010\
Chap05\New Pay Solution folder. If necessary, open the designer window. Figure 5-11
shows the problem’s output, input, and algorithm. Complete the application by coding its
algorithm. The calculation instruction associated with Step 2 in the algorithm will be
fairly long. For readability, you can enter the instruction on more than one line in the
Code Editor window. You do this by pressing the Enter key after typing either the equal
sign or any of the arithmetic operators. For example, to enter the assignment statement

TRY THIS

CH A P T E R 5 The Secret Code (Assignment Statements)

76

shown earlier in Figure 5-10 on two lines, you could type lblCommission.Text = on the
first line and then press the Enter key to move the insertion point to the next line, where
you would type the remainder of the assignment statement.

b. Include comments in the Code Editor window. The contents of the lblNewPay
control should be centered; set the appropriate property. Save the solution and then
start the application. Test the application using various values for the current weekly
pay and raise percentage. When you are finished testing the application, close the
Code Editor window and then close the solution.

2. In this exercise, you modify the Commission Calculator application created in the
chapter.

a. Use Windows to make a copy of the Commission Calculator Solution folder. Save the
copy in the ClearlyVB2010\Chap05 folder. Rename the copy Modified Commission
Calculator Solution.

b. If necessary, start Visual Studio 2010 or Visual Basic 2010 Express and permanently
display the Solution Explorer window. Open the Commission Calculator Solution
(Commission Calculator Solution.sln) file contained in the Modified Commission
Calculator Solution folder. Currently, the application is designed to accept the
decimal version of the commission rate. For example, if the rate is 6%, the application
expects the user to enter .06. Modify the application so that it expects the user to
enter the rate as a whole number. For example, if the rate is 6%, the user should
enter 6. First, change the Enter decimal rate: label to Enter % rate:. Next, modify the
Calculate Commission button’s code appropriately.

c. Save the solution and then start the application. Test the application using 2000 as
the sales amount and 10 (for 10%) as the commission rate. The annual commission
should be 200. Close the Code Editor window and then close the solution.

3. Open the Skate Away Solution (Skate Away Solution.sln) file contained in the
ClearlyVB2010\Chap05\Skate Away Solution folder. The Calculate Order button
should calculate and display the total number of skateboards ordered and the total price
of the order. Each skateboard costs $100. Code the button’s Click event procedure.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

4. Open the Tip Solution (Tip Solution.sln) file contained in the ClearlyVB2010\Chap05\Tip
Solution folder. Figure 5-12 shows the problem’s output, input, and algorithm. Complete
the application by coding its algorithm. Include comments in the Code Editor window.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

Output: new weekly pay

Input: current weekly pay
 raise percentage

Algorithm:
1. enter the current weekly pay and raise percentage
2. calculate the new weekly pay by multiplying the current weekly pay by the raise
 percentage, and then adding the result to the current weekly pay
3. display the new weekly pay

Figure 5-11 Information for Exercise 1

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

Exercises

77

5. In this exercise, you create an application for the Vans & More Depot, which rents
vans for company outings. Each van can transport 10 people. The interface should allow
the user to enter the number of people attending the outing. The application should
calculate and display the number of vans that can be filled completely. It also should
calculate and display the number of people who will need to find another way to get
to the outing. For example, if 48 people are attending the outing, 40 of them will fit
into four vans; the remaining eight people will need to arrange for their own
transportation. The output for this problem is the number of vans that can be filled
completely, and the number of people remaining. The input is the number of people
attending the outing.

a. Write the problem’s algorithm.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Vans Solution and Vans Project. Save the application in the
ClearlyVB2010\Chap05 folder.

c. Change the name of the form file on your disk to frmMain.vb. If necessary, change the
form’s name to frmMain.

d. Create an appropriate interface. Also include an Exit button.

e. Code the Exit button’s Click event procedure and the algorithm. Include comments in
the Code Editor window.

f. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

6. In this exercise, you finish coding the Property Tax application from Chapter 4’s Exercise 4.

a. If necessary, complete the algorithm shown in Figure 4-18 in Chapter 4.

b. Open the Property Tax Solution (Property Tax Solution.sln) file contained in the
ClearlyVB2010\Chap05\Property Tax Solution folder. Code the problem’s algorithm.
Include comments in the Code Editor window.

c. Save the solution and then start and test the application. (Using 104000 and 1.02 as
the assessed value and property tax rate, respectively, the tax is 1060.8.) Close the
Code Editor window and then close the solution.

Output: 10% tip
 15% tip
 20% tip

Input: restaurant bill

Algorithm:
1. enter the restaurant bill
2. calculate a 10% tip by multiplying the restaurant bill by 10%
3. calculate a 15% tip by multiplying the restaurant bill by 15%
4. calculate a 20% tip by multiplying the restaurant bill by 20%
5. display the 10% tip, 15% tip, and 20% tip

Figure 5-12 Information for Exercise 4

INTERMEDIATE

INTERMEDIATE

CH A P T E R 5 The Secret Code (Assignment Statements)

78

7. In this exercise, you finish coding an application that calculates and displays the total
amount a customer owes.

a. Open the Total Solution (Total Solution.sln) file contained in the
ClearlyVB2010\Chap05\Total Solution folder. Center the contents of the lblTotal
control. Code the Calculate button's Click event procedure. Include comments
in the Code Editor window.

b. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

8. In this exercise, you finish coding the application from Chapter 4’s Exercise 6.

a. If necessary, complete the algorithm shown in Figure 4-20 in Chapter 4.

b. Open the Party Solution (Party Solution.sln) file contained in the
ClearlyVB2010\Chap05\Party Solution folder. Center the contents of the lblTotal
control. Code the problem’s algorithm. Include comments in the Code Editor window.

c. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

9. In this exercise, you modify the application from Exercise 5. In addition to renting
vans, Vans & More Depot also rents cars. Each van can transport 10 people, and each
car can transport five people. The modified application should calculate three values:
the number of vans that can be filled, the number of cars that can be filled, and the
number of people who will need to arrange other means of transportation. As an
example, if 48 people are attending the outing, the company will need to rent four vans
(to transport 40 people) and one car (to transport five people). The remaining three
people will need to arrange for their own transportation.

a. Use Windows to make a copy of the Vans Solution folder. Save the copy in the
ClearlyVB2010\Chap05 folder. Rename the copy Modified Vans Solution.

b. Open the Vans Solution (Vans Solution.sln) file contained in the Modified Vans
Solution folder. Make the appropriate modifications to the interface and code.

c. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

10. The payroll clerk at Sun Projects wants an application that computes an employee’s
net pay. The clerk will enter the employee’s name, hours worked, and rate of pay.
For this application, you do not have to worry about overtime, because employees are
not allowed to work more than 40 hours. The application should calculate and
display the gross pay, federal withholding tax (FWT), Social Security tax (FICA),
state income tax, and net pay. The FWT is calculated by multiplying the gross pay
by 20%. The FICA tax is 8% of the gross pay, and the state income tax is 2% of the
gross pay.

a. List the output and input items, and then create an appropriate algorithm.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Sun Solution and Sun Project. Save the application in the
ClearlyVB2010\Chap05 folder.

c. Change the name of the form file on your disk to frmMain.vb. If necessary, change
the form’s name to frmMain.

d. Create a suitable interface. Include an Exit button.

ADVANCED

INTERMEDIATE

ADVANCED

INTERMEDIATE

Exercises

79

e. Code the Exit button’s Click event procedure and the problem’s algorithm.

f. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

11. In this exercise, you finish coding the RM Sales application from Chapter 4’s Exercise 7.
If you did not complete Chapter 4’s Exercise 7, you will need to do so before you can
complete this exercise. Use Windows to copy the Sales Solution folder from the
ClearlyVB2010\Chap04 folder to the ClearlyVB2010\Chap05 folder. Open the Sales
Solution (Sales Solution.sln) file contained in the ClearlyVB2010\Chap05\Sales Solution
folder. Center the contents of the label controls in the Percentage column and also the
contents of the lblTotalSales control. Code the problem’s algorithm. Include
appropriate comments in the Code Editor window. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

12. A Calculate button’s Click event procedure contains the lblDue.Text = Val
(txtDaysLate.Text) * 2 + 3.5 statement.

a. If the user enters the number 3 in the txtDaysLate control, what will be assigned
to the lblDue control when the user clicks the Calculate button?

b. If the user enters the letters AB in the txtDaysLate control, what will be assigned
to the lblDue control when the user clicks the Calculate button?

c. If the txtDaysLate control is empty when the user clicks the Calculate button,
what will the button’s Click event procedure assign to the lblDue control?

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap05\SwatTheBugs Solution folder. Start and test the application.
Notice that the code is not working correctly. Locate and correct any errors.

ADVANCED

SWAT THE BUGS

FIGURE THIS OUT

CH A P T E R 5 The Secret Code (Assignment Statements)

80

CHAPTER 6
Where Can I Store This?
(Variables and Constants)

After studying Chapter 6, you should be able to:

Declare variables and named constants

Convert text to a numeric data type using the TryParse method

Understand the scope and lifetime of variables

Desk-check a program

Format a program’s numeric output

Using Storage Bins
Inside every computer is a component called internal memory. The internal memory of a
computer is composed of memory locations. It may be helpful to picture memory locations as
storage bins, similar to the ones illustrated in Figure 6-1. However, unlike the storage bins in the
figure, each storage bin (memory location) inside a computer can hold only one item of data at a
time. The item can be a number, such as 5 or 45.89. It also can be text, which is a group of
characters treated as one unit and not used in a calculation. Examples of text include your name,
the part number ABN123X, the phone number 111-2345, and the Visual Basic statement
Me.Close(). Some of the storage bins (memory locations) inside the computer are
automatically filled with data while you use your computer. For example, when you enter the
number 5 at your keyboard, the computer saves the number 5 in a memory location for you.
Likewise, when you start an application, each program instruction is placed in a memory
location, where it awaits processing.

Some of the memory locations inside a computer are special in that they can be reserved by a
programmer for use in a program. You reserve a memory location using a Visual Basic
instruction that assigns both a name and data type to the memory location. The data type
indicates the type of data—for example, numeric or textual—the memory location will store. But
why would a programmer need to use one of these special memory locations? In Chapter 5, you
calculated Addison Smith’s commission using the expression Val(txtSales.Text) * Val
(txtRate.Text). Typically, programmers do not use the Text properties of controls in
arithmetic expressions. One reason for this is that such expressions can get rather long and
difficult to understand. Imagine writing an expression that calculates a value using the Text
properties of 10 controls! And then imagine trying to understand the instruction a year after you
wrote it! Instead, programmers store the Text property values in special memory locations
called variables. The memory locations are called variables because their contents can change
(vary) as the program is running. The programmer then uses the variable’s name, rather than
the Text property of its associated control, in the arithmetic expression. Because variable names

Figure 6-1 Illustration of storage bins

CH A P T E R 6 Where Can I Store This? (Variables and Constants)

82

typically are more concise than control names, using variable names in an expression makes the
expression much shorter and easier to understand. Before learning how to reserve a variable in
Visual Basic, you will learn how to select an appropriate data type and name for the variable.

So, What’s Your Type?
Like storage bins, variables come in different types and sizes. The type and size you use depends
on the item you want the variable to store. Some variables can store a number, while others can
hold text, a date, or a Boolean value (True or False). The item that a variable will accept for
storage is determined by the variable’s data type, which the programmer assigns to the variable
when it is reserved. In this chapter, you will learn about numeric data types, which are used to
reserve variables that will store numbers. The three most commonly used numeric data types
available in Visual Basic are listed in Figure 6-2, along with the range of values they can store
and the amount of memory needed to store each value. (You will learn about other data types in
later chapters in this book. Appendix A in this book contains a complete listing of the Visual
Basic data types.)

As Figure 6-2 indicates, variables assigned the Integer data type can store integers. An integer is
a whole number, which is a number that does not contain a decimal place. Examples of integers
include the numbers 0, 45, and –678. If the Text property of a control contains a whole number
that you want to use in a calculation, you would assign the Text property value to an Integer
variable and then use the Integer variable in the calculation. However, if the Text property
contains a number with a decimal place, and you want to use that number in a calculation, you
would assign the Text property value to either a Decimal variable or a Double variable. Both
data types allow variables to store numbers that have a decimal place. The differences between
the two data types are in the range of numbers each type can store and the amount of memory
each type needs to store the numbers. As indicated in Figure 6-2, Decimal variables take twice as
much room in memory as do Double variables. However, calculations involving Decimal
variables are not subject to the small rounding errors that may occur when using Double
variables. In most cases, the small rounding errors do not create any problems in an application.
One exception, however, is when the application performs financial calculations that require
accuracy to the penny. In those cases, the Decimal data type is the best type to use.

Data type Stores Memory required
Integer an integer 4 bytes

 Range: –2,147,483,648 to 2,147,483,647

Decimal a number with a decimal place 16 bytes

 Range with no decimal place:
 +/–79,228,162,514,264,337,593,543,950,335

 Range with a decimal place:
 +/–7.9228162514264337593543950335

Double a number with a decimal place 8 bytes

 Range: +/– 4.94065645841247 X 10–324

 to +/–1.79769313486231 X 10308

Figure 6-2 Most commonly used numeric data types

Using Storage Bins

83

Let’s Play the Name Game
Every variable that a programmer uses must be assigned a name. The name should be
descriptive in that it should help you remember the variable’s purpose. In other words, it should
describe the contents of the variable. A good variable name is one that is meaningful right after
you finish a program, and also years later when you (or perhaps a co-worker) need to modify the
program. A variable name must begin with a letter or an underscore. The name can contain only
letters, numbers, and the underscore character. No punctuation marks or spaces are allowed in
the name. In addition, the name cannot be a reserved word, such as Val.

There are several conventions for naming variables in Visual Basic. In this book, you will use
Hungarian notation, which is the same naming convention used for controls. Variable names in
Hungarian notation begin with a three-character ID that represents the variable’s data type. The
names of Integer variables, for example, begin with int. The remaining characters in the name
represent the variable’s purpose. Using Hungarian notation, you might assign the name intAge
to an Integer variable that stores a person’s age. Like control names, variable names are entered
using camel case, which means you lowercase the ID and then uppercase the first letter of each
word in the name. Figure 6-3 lists the three-character ID associated with each data type listed in
Figure 6-2. The figure also includes examples of variable names.

You’ll Need a Reservation
Now that you know how to select an appropriate name and data type for a variable, you can
learn how to reserve a variable for your program to use. Reserving a variable is often referred to
as declaring a variable. To declare a variable in an event procedure, where most variables are
declared, you use the Visual Basic Dim statement. Figure 6-4 shows the Dim statement’s syntax.
Items in boldface in the syntax are required, while italicized items represent information that the
programmer must provide. In the syntax, variableName and dataType are the name and data
type, respectively, you want assigned to a memory location. The computer stores a default value
in the variable when it is declared; the default value depends on the variable’s data type. Integer,
Decimal, and Double variables are automatically initialized to—in other words, given a
beginning value of—the number 0. Also included in Figure 6-4 are examples of declaring
variables.

Data type ID Example
Integer int intAge
Decimal dec decPayRate
Double dbl dblPrice

Figure 6-3 Data type IDs and examples of variable names

Declaring a Variable
Syntax
Dim variableName As dataType

Examples
Dim intAge As Integer
Dim decPayRate As Decimal
Dim dblPrice As Double

Figure 6-4 Syntax and examples of the Dim statement

CH A P T E R 6 Where Can I Store This? (Variables and Constants)

84

Mini-Quiz 6-1
See Appendix B for the answers.

1. Which of the three data types listed in Figure 6-2 is appropriate for storing the number of
desks purchased by a customer?

2. Which of the following is not a valid name for a variable?
a. decRate

b. dblRate

c. decRate Of Pay

d. dblPay.Rate

3. Write a Dim statement to declare a Double variable named dblHoursWorked.

How Many Variables Should I Use?
You use a problem’s solution—in other words, its output, processing, and input information and
its algorithm—to determine the variables to use when coding the application. Most times, you
will use a different variable for each unique output, processing, and input item listed in the
solution. The Circle Area problem’s solution shown in Figure 6-5 will utilize two different
variables: one to store the output item and the other one to store the input item. Looking at the
algorithm, you will notice that both items are involved in calculations. The items may contain a
decimal place, so you should assign their values to variables of either the Decimal or Double data
type. In this case, because the values don’t involve money, you’ll use the Double data type.
Suitable names for the two variables are dblArea and dblRadius.

To open the Circle Area application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window.

2. Open the Circle Area Solution (Circle Area Solution.sln) file contained in the
ClearlyVB2010\Chap06\Circle Area Solution folder. If the designer window is not open,
double-click frmMain.vb in the Solution Explorer window. The application’s interface
is shown in Figure 6-6.

Output: circle’s area

Input: circle’s radius

Algorithm:
1. enter the circle’s radius
2. calculate the circle’s area by multiplying the circle’s radius by itself and then
 multiplying the result by 3.141593 (which is pi rounded to six decimal places)
3. display the circle’s area

Figure 6-5 Circle Area problem’s solution

For more
examples
of using
variables,
see the

Variables section in the
Ch6WantMore.pdf file.

Before you
begin
coding the
Circle Area
application,

you may want to view the
Ch06-Circle Area video.
The video demonstrates
all of the steps contained
in this chapter. You may
find it helpful to view the
steps before you perform
them.

How Many Variables Should I Use?

85

The user will enter the circle’s radius (the input item) in the txtRadius control. When the user
clicks the Calculate button, the button’s Click event procedure will use the circle’s radius to
calculate the circle’s area (the output item). The formula for calculating the area of a circle is πr2,
where π stands for pi. Before the procedure ends, it will display the circle’s area in the lblArea
control.

To begin coding the Calculate button’s Click event procedure:

1. Auto-hide the Solution Explorer window and then open the Code Editor window, which
contains the code for the btnExit control’s Click event procedure.

2. Open the btnCalc control’s Click event procedure. First, you will enter the
instructions to declare the necessary variables. It is customary to enter the variable
declaration statements at the beginning of the procedure. Type the comments and
two Dim statements indicated in Figure 6-7, and then position the insertion point
as shown in the figure. The green jagged line below each variable’s name indicates
that the variable has been declared, but it is not used by any other statement in
the procedure.

Now you can begin coding the application’s algorithm. The first step in the algorithm is
to enter the circle’s radius. Recall that the user enters the radius in the txtRadius control.
The second step is to calculate the circle’s area by multiplying the radius by itself, and then
multiplying the result by 3.141593 (the value of pi rounded to six decimal places). Using
what you learned in Chapter 5, you could calculate the circle’s area using the expression
Val(txtRadius.Text) * Val(txtRadius.Text) * 3.141593. The expression tells the
computer to multiply the contents of the txtRadius control’s Text property (converted
temporarily to a number) by the contents of the txtRadius control’s Text property
(again converted temporarily to a number), and then multiply the result by the number
3.141593. However, although the Val function has been a part of the Visual Basic
language since its inception, there is no guarantee that it will always be a part of
the language. As a result, most programmers now use the TryParse method to convert text
to numbers.

txtRadius

lblArea

btnExit

btnCalc

Figure 6-6 Circle Area application’s interface

enter these
comments and
Dim statements

position the
insertion
point here

Figure 6-7 Comments and Dim statements entered in the procedure

CH A P T E R 6 Where Can I Store This? (Variables and Constants)

86

The TryParse Method
Every numeric data type in Visual Basic has a TryParse method that can be used to
convert text to that numeric data type. The basic syntax of the TryParse method is
dataType.TryParse(text, variable). In the syntax, dataType is one of the numeric data types
available in Visual Basic, such as Double, Decimal, and Integer. The text argument is the
text you want converted to a number of the dataType type and typically is the Text property
of a control. The variable argument is the name of a numeric variable where the TryParse
method can store the number. The numeric variable must have the same data type as
specified in the dataType portion of the syntax. In other words, when using the TryParse
method to convert text to a Double number, you need to provide the method with the name
of a Double variable in which to store the number.

The TryParse method parses the text, which means it looks at each character in the text, to
determine whether the text can be converted to a number of the specified data type. If the text
can be converted, the TryParse method converts the text to a number and then stores the
number in the variable specified in the variable argument. However, if the TryParse method
determines that the text cannot be converted to the appropriate data type, the method assigns
the number 0 to the variable. Figure 6-8 shows the basic syntax of the TryParse method and
includes examples of using the method. (To learn more about the TryParse method, complete
FIGURE THIS OUT Exercise 12 at the end of the chapter.)

Before entering the instruction to calculate the circle’s area, you first will use the TryParse
method to convert the Text property of the txtRadius control to a number. You will have the
method assign the resulting number to the dblRadius variable. You then will use the
dblRadius variable in the circle area calculation.

Basic Syntax of the TryParse Method
Syntax
dataType.TryParse(text, variable)

Example 1
Double.TryParse(txtRadius.Text, dblRadius)

If the text entered in the txtRadius control can be converted to a Double number, the
TryParse method converts the text and then stores the result in the dblRadius variable;
otherwise, it stores the number 0 in the dblRadius variable.

Example 2
Decimal.TryParse(txtSales.Text, decSales)

If the text entered in the txtSales control can be converted to a Decimal number, the
TryParse method converts the text and then stores the result in the decSales variable;
otherwise, it stores the number 0 in the decSales variable.

Example 3
Integer.TryParse(txtNum.Text, intNum)

If the text entered in the txtNum control can be converted to an Integer number, the
TryParse method converts the text and then stores the result in the intNum variable;
otherwise, it stores the number 0 in the intNum variable.

Figure 6-8 Basic syntax and examples of the TryParse method

How Many Variables Should I Use?

87

To continue coding the Circle Area application:

1. The insertion point should be positioned as shown earlier in Figure 6-7. Enter the
following comment and TryParse method. Press Enter twice after typing the method.
(Notice that when you press Enter after typing the method, the Code Editor removes the
jagged green line below the dblRadius variable.)

' store radius in a variable
Double.TryParse(txtRadius.Text, dblRadius)

2. Now you can use the dblRadius variable in the expression that calculates the circle’s
area. You will assign the result of the calculation to the dblArea variable. Enter the
following comment and assignment statement. Press Enter twice after typing the
statement. (You also can use the dblArea = dblRadius ^ 2 * 3.141593 assignment
statement.)

' calculate area
dblArea = dblRadius * dblRadius * 3.141593

3. Step 3 in the algorithm (shown earlier in Figure 6-5) is to display the circle’s area. Enter
the comment and assignment statement indicated in Figure 6-9.

Most variables are declared in procedures, such as event procedures. These variables are
referred to as procedure-level variables and are said to have procedure scope, because they can
be used only by the procedure in which they are declared. Scope refers to the area where a
variable is recognized in an application’s code. The dblRadius and dblArea variables in Figure
6-9 are procedure-level variables that can be used only by the btnCalc control’s Click event
procedure. When a procedure ends, its procedure-level variables are removed from the
computer’s internal memory. Programmers refer to the length of time a variable remains in
memory as its lifetime. A procedure-level variable has the same lifetime as the procedure
in which it is declared.

Check, Please…I’m Ready to Go
Before testing the Circle Area application using the computer, which is Step 7 in the
problem-solving process from Chapter 2, you will perform Step 6, which is to desk-check
the program. You can do this using a desk-check table, similar to one that you use when
desk-checking an algorithm. The desk-check table for a program will contain one column
for each variable. As an example, you will desk-check the Circle Area program using radius
values of 6.5 and 10. Figure 6-10 shows the completed desk-check table. On your own,
desk-check the program using other values.

enter this comment and
assignment statement

Figure 6-9 Code entered in the btnCalc control’s Click event procedure

CH A P T E R 6 Where Can I Store This? (Variables and Constants)

88

To test the Circle Area application using the computer:

1. Save the solution and then start the application. Type 6.5 in the Radius box and then
click the Calculate button. See Figure 6-11. The button’s Click event procedure tells the
computer to reserve two Double variables named dblRadius and dblArea. The
TryParse method in the procedure converts the 6.5 entered in the Radius box to a
number, and then stores the number in the dblRadius variable. Next, the computer
multiplies the contents of the dblRadius variable by itself, and then multiplies the result
by 3.141593. It then stores the result in the dblArea variable. The last statement in the
procedure displays the contents of the dblArea variable in the lblArea control. When
the procedure ends, the dblRadius and dblArea variables are removed from the
computer’s internal memory.

2. Change the radius from 6.5 to 10 and then click the Calculate button. The circle’s area
is 314.1593.

3. On your own, test the application using other values for the radius. When you are
finished testing, click the Exit button.

Using Constants to Keep Things…Well, the Same
In addition to reserving (or declaring) variables in a program, you also can declare named
constants. A named constant is a memory location whose value cannot change while the
application is running. The programmer assigns a value to the named constant when it is
declared. It might be helpful to picture a named constant as a locked storage bin that no one but
the owner (in this case, the programmer) can open. When a named constant’s value needs to be
changed, the programmer must change its value in its declaration statement.

Programmers use named constants to give names to constant values. After a named constant
is created, the programmer then can use the constant’s name (rather than its value) in the
application’s code. For example, rather than using the number 3.141593 in the area calculation
statement shown earlier in Figure 6-9, you could assign a name (such as dblPI) to the
number and then use the name in the calculation statement. Named constants make code more
self-documenting and easier to modify, because they allow a programmer to use meaningful
words in place of values that are less clear. The name dblPI, for example, is much more
meaningful than is the number 3.141593. Using a named constant to represent a value has
another advantage: If the value changes in the future, the programmer will need to modify

b d ldblRadius dblArea
 6.5 132.73230425
 10 314.1593

Figure 6-10 Desk-check table for the Circle Area program

Figure 6-11 Circle’s area shown in the interface

Using Constants to Keep Things…Well, the Same

89

only the named constant’s declaration statement, rather than all of the program statements that
use the value.

You create a named constant using the Const statement. The statement’s syntax is shown in
Figure 6-12. In the syntax, constantName is the name you want assigned to the named constant.
To distinguish the named constants from the variables in a program, many programmers use a
modified form of Hungarian notation for the named constant names. In the modified notation,
the ID characters in the name are still entered in lowercase, but the remaining part of the name
is entered in uppercase, like this: dblPI. DataType in the syntax is the named constant’s data
type, and value is the value you want stored in the named constant. Also included in Figure 6-12
are examples of declaring named constants.

To declare a named constant in the Circle Area application:

1. In this step, you will declare a Double named constant named dblPI whose value is
3.141593. Like the variables declared in the procedure, the dblPI named constant will
have procedure scope and will remain in memory until the procedure ends. Click the
blank line above the ' declare variables comment and then press Enter. Enter the
following comment and declaration statement:

' declare named constant
Const dblPI As Double = 3.141593

2. In the statement that calculates the area, replace 3.141593 with dblPI.

3. Save the solution and then start the application. Type 2 in the Radius box and then click
the Calculate button. The interface shows that the area is 12.566372.

4. Click the Exit button.

Dressing Up the Output
Many times you will want to control the number of decimal places and the special characters
that appear in an application’s numeric output. For example, numbers representing monetary
amounts typically are displayed with either zero or two decimal places and usually include a
dollar sign and a thousands separator. Similarly, numbers representing percentage amounts
usually are displayed with zero or more decimal places and a percent sign. Specifying the
number of decimal places and the special characters to display in a number is called formatting.
You can format a number using the syntax variable.ToString(formatString). In the syntax,
variable is the name of a numeric variable, and ToString is a method that can be used with
any of the numeric data types. The ToString method converts the contents of the numeric
variable to text. The formatString argument in the syntax is a string that specifies the
format you want to use. A string is text that is enclosed in double quotation marks.
The formatString argument must take the form “Axx”, where A is an alphabetic character

Declaring a Named Constant
Syntax
Const constantName As dataType = value

Examples
Const dblPI As Double = 3.141593
Const intMAX_HOURS As Integer = 40
Const decTAXRATE As Decimal = .05

Figure 6-12 Syntax and examples of the Const statement

CH A P T E R 6 Where Can I Store This? (Variables and Constants)

90

called the format specifier, and xx is a sequence of digits called the precision specifier. The
format specifier must be one of the built-in format characters. The most commonly used format
characters are listed in Figure 6-13. Notice that you can use either an uppercase letter or a
lowercase letter as the format specifier. When used with one of the format characters listed in
Figure 6-13, the precision specifier controls the number of digits that will appear after the
decimal point in the formatted number. Also included in Figure 6-13 are examples of using the
ToString method.

To format the area output to include only two decimal places:

1. Change the last assignment statement to lblArea.Text = dblArea.ToString("N2") and
then click the blank line below the statement. See Figure 6-14.

Formatting a Number
Syntax
variable.ToString(formatString)

Format specifier (Name) Description
C or c (Currency) displays the text with a dollar sign; includes a thousands
 separator (if appropriate); negative values are enclosed in parentheses

N or n (Number) similar to the Currency format, but does not include a
 dollar sign and negative values are preceded by a minus sign

F or f (Fixed-point) same as the Number format, but does not include a
 thousands separator

P or p (Percent) multiplies the value by 100 and displays the result with a
 percent sign; negative values are preceded by a minus sign

Example 1
lblCommission.Text = intCommission.ToString("C2")

if the intCommission variable contains the number 1250, the statement assigns the
text $1,250.00 to the Text property of the lblCommission control

Example 2
lblTotal.Text = decTotal.ToString("N2")

if the decTotal variable contains the number 123.675, the statement assigns the text
123.68 to the Text property of the lblTotal control

Example 3
lblRate.Text = dblRate.ToString("P0")

if the dblRate variable contains the number .06, the statement assigns the text 6 % to
the Text property of the lblRate control

Figure 6-13 Syntax and examples of formatting numeric output

Dressing Up the Output

91

2. Save the solution and then start the application. Type 2 in the Radius box and then click
the Calculate button. The interface shows that the circle’s area is 12.57.

3. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 6-2
See Appendix B for the answers.

1. Write a TryParse method that converts the value entered in the txtIncome control to the
Decimal data type and then stores the result in the decIncome variable.

2. Write the statement to declare the intMINIMUM named constant whose value is 55.

3. The dblSales variable contains the number 56.78. Write the assignment statement to
display the value with a dollar sign and no decimal places in the lblSales control.

Summary
l The internal memory of a computer is composed of memory locations. Programmers can

reserve some of the locations for variables and named constants.

l A memory location can store only one value at any one time.

l The value in a variable can change during run time. The value in a named constant, on the
other hand, cannot change during run time.

l The Integer data type stores integers. The Decimal and Double data types store numbers
with a decimal place. The Decimal data type typically is used for numbers involved in
monetary calculations, because it is not subject to the small rounding errors that may occur
with the Double data type.

named constant
declaration

named constant

formats the area

Figure 6-14 Completed btnCalc Click event procedure

CH A P T E R 6 Where Can I Store This? (Variables and Constants)

92

l You use the Dim statement to reserve a procedure-level variable. A procedure-level variable
can be used only by the procedure in which it is declared, and it is removed from memory
when the procedure ends.

l Most times, you will use a different variable for each unique output, processing, and input
item listed in a problem’s solution.

l Most programmers use the TryParse method, rather than the Val function, to convert text
to numbers.

l You use the Const statement to declare named constants.

l You can use the ToString method to convert a number to text that contains a specific
number of decimal places and optional formatting characters.

Key Terms
Boolean value—the values True and False

Const statement—the statement used to declare a named constant

Dim statement—the statement used to declare a procedure-level variable

Formatting—specifying the number of decimal places and the special characters to display in a
number

Lifetime—indicates how long a variable or named constant remains in the computer’s internal
memory

Named constant—a computer memory location whose value cannot be changed during run
time; created using the Const statement

Procedure scope—the scope of a procedure-level variable; refers to the fact that the variable
can be used only by the procedure in which it is declared

Procedure-level variables—variables declared in a procedure; a procedure-level variable has
procedure scope

Scope—indicates where a memory location (variable or named constant) can be used in an
application’s code

String—text enclosed in double quotation marks

ToString method—formats a number stored in a numeric variable and then returns the result as
text

TryParse method—converts text to a numeric data type

Variables—computer memory locations where programmers can temporarily store data, as well
as change the data, while an application is running

Review Questions
1. Which of the following statements declares a variable named intNumSold?

a. Dim intNumSold As Integer

b. Dim As Integer intNumSold

c. Const intNumSold As Integer

d. none of the above

Review Questions

93

2. If the user enters the text A34 in the txtPrice control, the TryParse(txtPrice.Text,
decPrice) statement will assign ___________ to the decPrice variable.

a. A

b. A34

c. 0

d. 34

3. Which of the following statements adds together the contents of the intScore1 and
intScore2 variables and then multiplies the sum by 2, assigning the result to the
intTotal variable?

a. intScore1 + intScore2 * 2 = intTotal

b. (intScore1 + intScore2) * 2 = intTotal

c. intTotal = intScore1 + intScore2 * 2

d. none of the above

4. Which of the following statements declares the dblRATE named constant and initializes
it to .15?

a. Con dblRATE As Double = .15

b. Const dblRATE As Double = .15

c. Constant dblRATE As Double = .15

d. none of the above

5. Which of the following statements formats the contents of the dblDue variable with a
dollar sign and two decimal places?

a. lblDue.Text = dblDue.ToString("C2")

b. lblDue.Text = dblDue.ToCurrency("C2")

c. lblDue.Text = ToString(dblDue, "C2")

d. lblDue.Text = dblDue.ToFormat("C2")

6. If the intNum variable contains the number 5, which of the following assigns the number
125 to the intCubed variable?

a. intCubed = intNum ^ 3

b. intCubed = intNum * intNum * intNum

c. intCubed = intNum * intNum ^ 2

d. all of the above

7. If intPRICE is a named constant, which of the following statements is incorrect?

a. intTotal = intPRICE * intQuantity

b. intPRICE = intPRICE * .9

c. lblPrice.Text = intPRICE.ToString("C2")

d. none of the above

CH A P T E R 6 Where Can I Store This? (Variables and Constants)

94

Exercises
1. In this exercise, you modify the Commission Calculator application from Chapter 5.

Open the Commission Calculator Solution (Commission Calculator Solution.sln) file
contained in the ClearlyVB2010\Chap06\Commission Calculator Solution folder. Modify
the code so that it uses Decimal variables and the TryParse method. Format the
commission with a dollar sign and two decimal places. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.
(See Appendix B for the answer.)

2. In this exercise, you code an application that calculates and displays the amount of an
employee’s new weekly pay. (See Appendix B for the answer.)

a. Open the New Pay Solution (New Pay Solution.sln) file contained in the
ClearlyVB2010\Chap06\New Pay Solution folder. Code the algorithm shown in
Figure 6-15. Be sure to use the TryParse method. Use the Double data type for the
variables. Use a Double named constant for the raise rate of .03. Format the new
weekly pay with a dollar sign and two decimal places.

b. Save the solution. Desk-check the program twice, using 200 and 330 as the current
weekly pay.

c. Start and then test the application. Close the Code Editor window and then close the
solution.

3. In this exercise, you modify the Circle Area application created in the chapter.

a. Use Windows to make a copy of the Circle Area Solution folder. Save the copy in the
ClearlyVB2010\Chap06 folder. Rename the copy Modified Circle Area Solution.

b. Open the Circle Area Solution (Circle Area Solution.sln) file contained in the
Modified Circle Area Solution folder. Modify the code so that it uses a separate
calculation for the radius squared. Assign the result of the radius squared calculation
to a variable, and then modify the statement that calculates the circle’s area.

c. Save the solution and then start the application. Test the application using 4.6 as the
radius. The area should be 66.48. Close the Code Editor window and then close the
solution.

4. The cashier at Jackson College wants an application that displays the total amount a
student owes for the semester, including tuition and room and board. The tuition is $100
per semester hour, and room and board combined is $1800 per semester. The cashier will
need to enter the number of hours the student is enrolled. Use Integer named constants
for the semester hour fee and the room and board fee. Use Integer variables for the input

Output: new weekly pay

Processing: weekly raise

Input: current weekly pay

Algorithm:
1. enter the current weekly pay
2. calculate the weekly raise by multiplying the current weekly pay by.03
3. calculate the new weekly pay by adding the weekly raise to the current weekly pay
4. display the new weekly pay

Figure 6-15 Information for Exercise 2

INTRODUCTORY

MODIFY THIS

TRY THIS

TRY THIS

Exercises

95

and output items, as well as for any processing items you choose to use. Format the
output with a dollar sign and no decimal places.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm.

b. Create a Visual Basic Windows application. Use the following names for the
solution and project, respectively: Jackson Solution and Jackson Project. Save the
application in the ClearlyVB2010\Chap06 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Include an Exit button.

d. Code the Exit button’s Click event procedure and the problem’s algorithm. Be sure to
use the TryParse method.

e. Save the solution. Desk-check the program using your own sample data.

f. Start and then test the application. Close the Code Editor window and then close the
solution.

5. A concert hall has three seating categories: Orchestra, Main floor, and Balcony.
Orchestra seats are $25, Main floor seats are $30, and Balcony seats are $15. The
manager wants an application that allows him to enter the number of tickets sold in each
seating category. The application should calculate the amount of revenue generated by
each seating category; format the revenue using the “N0” format. It also should calculate
the total revenue; format the total revenue using the “C0” format.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm.

b. Create a Visual Basic Windows application. Use the following names for the
solution and project, respectively: Concert Solution and Concert Project. Save the
application in the ClearlyVB2010\Chap06 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Include an Exit button.

d. Code the Exit button’s Click event procedure and the problem’s algorithm. Be sure to
use the TryParse method.

e. Save the solution. Desk-check the program using your own sample data.

f. Start and then test the application. Close the Code Editor window and then close the
solution.

6. In this exercise, you modify the application from Exercise 5. In addition to calculating
and displaying the revenue for each seating category, as well as the total revenue, the
application should now display the percentage of the total revenue contributed by
each seating category.

a. Use Windows to make a copy of the Concert Solution folder. Save the copy in the
ClearlyVB2010\Chap06 folder. Rename the copy Modified Concert Solution.

b. Open the Concert Solution (Concert Solution.sln) file contained in the Modified
Concert Solution folder. Make the appropriate modifications to the interface and
code. Use Decimal variables to store the percentages. Display the percentages with
a percent sign and one decimal place.

c. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

INTRODUCTORY

INTERMEDIATE

CH A P T E R 6 Where Can I Store This? (Variables and Constants)

96

7. In this exercise, you modify the Circle Area application created in the chapter. For this
exercise, the circle will represent a pizza. In addition to displaying the area of the pizza,
the modified application also will display the number of slices into which you can divide
the pizza. For this exercise, use the number 14.13 as the area of a pizza slice.

a. Use Windows to make a copy of the Circle Area Solution folder. Save the copy in the
ClearlyVB2010\Chap06 folder. Rename the copy Pizza Circle Area Solution.

b. Open the Circle Area Solution (Circle Area Solution.sln) file contained in the Pizza
Circle Area Solution folder. Make the appropriate modifications to the interface and
code. Display the number of slices with no decimal places.

c. Save the solution and then start the application. Test the application using 10 as the
circle’s radius. The area is 314.16, and the number of slices is 22. Now test it using 6 as
the radius. The area and number of slices should be 113.10 and 8, respectively. Close
the Code Editor window and then close the solution.

8. In this exercise, you create an application that converts the number of fluid ounces
entered by the user to the equivalent number of cups, quarts, and liters. Research the
number of fluid ounces in a cup, a quart, and a liter. Use Double named constants for
these values.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Ounces Solution and Ounces Project. Save the application in
the ClearlyVB2010\Chap06 folder. Change the name of the form file on your disk to
frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Include an Exit button.

d. Code the Exit button’s Click event procedure and the problem’s algorithm. Be sure to
use the TryParse method. Display the output using the “N2” format.

e. Save the solution. Desk-check the program using your own sample data.

f. Start and then test the application. Close the Code Editor window and then close the
solution.

9. In this exercise, you create an application for Starbeans. The application’s interface
should allow the user to enter two items: the number of pounds of regular coffee ordered
and the number of pounds of decaffeinated coffee ordered. The application should
display the total number of pounds of coffee ordered and the total price of the order.
A pound of coffee at Starbeans costs $11.65.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Starbeans Solution and Starbeans Project. Save the
application in the ClearlyVB2010\Chap06 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Include an Exit button.

d. Code the Exit button’s Click event procedure and the problem’s algorithm. Be sure to use
the TryParse method. Format the total price with a dollar sign and two decimal places.

e. Save the solution. Desk-check the program using your own sample data.

f. Start and then test the application. Close the Code Editor window and then close the
solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Exercises

97

10. In this exercise, you modify the application from Exercise 10 in Chapter 5. If you did not
complete Chapter 5’s Exercise 10, you will need to do so before you can complete this
exercise.

a. Use Windows to copy the Sun Solution folder from the ClearlyVB2010\Chap05
folder to the ClearlyVB2010\Chap06 folder.

b. Open the Sun Solution (Sun Solution.sln) file contained in the ClearlyVB2010\
Chap06\Sun Solution folder. Modify the code so that it uses Decimal variables
and Decimal named constants. Be sure to use the TryParse method. Format the
gross pay and taxes with two decimal places. Format the net pay with a dollar sign
and two decimal places.

c. Save the solution and then start the application. Test the application using 35.5 as
the hours worked and 9.56 as the pay rate. The gross pay will be 339.38. The
taxes will be 67.88, 27.15, and 6.79. The net pay will be $237.57. Notice that the total
of the taxes and net pay differs by a penny from the gross pay. The “penny off”
problem occurs because the ToString method rounds the gross pay and taxes
before they are displayed. However, the amounts are not rounded when they are
used to calculate the net pay. Stop the application.

d. You can fix the “penny off” problem using the Math.Round method. The method’s
syntax is Math.Round(number, decimalPlaces). In the syntax, number is the
number to be rounded, and decimalPlaces indicates the number of decimal places
to include in the rounding. For example, Math.Round(4.658, 2) evaluates to 4.66.
Use the Math.Round method to fix the “penny off” problem.

e. Save the solution and then start the application. Test the application using 35.5 as
the hours worked and 9.56 as the pay rate. This time, the net pay is $237.56.
Close the Code Editor window and then close the solution.

11. Allen County’s Property Tax Administrator wants an application that calculates the
amount of property tax owed based on a property’s assessed value. Seven different
tax rates are involved in the calculation. Each tax rate is per $100 of assessed value.
The state rate is .124, the county rate is .096, and the school rate is .557. The
remaining four rates are for special services as follows: ambulance is .1, health is
.038, library is .093, and soil conservation is .02. The application should display
each tax as well as the total tax.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Allen Property Solution and Allen Property Project. Save
the application in the ClearlyVB2010\Chap06 folder. Change the name of the
form file on your disk to frmMain.vb. If necessary, change the form’s name to
frmMain.

c. Create a suitable interface. Include an Exit button.

d. Code the Exit button’s Click event procedure and the problem’s algorithm. Be sure
to use the TryParse method. Use the Decimal data type for the variables and named
constants. Display the state, county, school, ambulance, health, library, and soil
conservation taxes with two decimal places. Display the total property tax with a
dollar sign and two decimal places.

e. Save the solution and then start the application. Test the application using 105000
as the assessed value. The total property tax should be $1,079.40.

f. Now test the application using 121920 as the assessed value. Notice that the total
of the taxes differs by a penny from the total property tax. If you add together the

ADVANCED

ADVANCED

CH A P T E R 6 Where Can I Store This? (Variables and Constants)

98

taxes, the total is 1253.33; however, the total property tax appears as $1,253.34.
The “penny off” problem occurs because the ToString method rounds the various
taxes before they are displayed. However, the tax amounts are not rounded when
they are used to calculate the total tax. Stop the application.

g. You can fix the “penny off” problem using the Math.Round method. The method’s
syntax is Math.Round(number, decimalPlaces). In the syntax, number is the
number to be rounded, and decimalPlaces indicates the number of decimal places
to include in the rounding. For example, Math.Round(4.658, 2) evaluates to 4.66.
Use the Math.Round method to fix the “penny off” problem.

h. Save the solution and then start the application. Test the application using 121920 as
the assessed value. This time, the total property tax appears as $1,253.33. Close the
Code Editor window and then close the solution.

12. In this exercise, you experiment with the TryParse method using different data types
and values.

a. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap06\FigureThisOut Solution folder. Open the Code Editor
window and review the code.

b. Start the application. Enter the number 34 in the Number box and then click the
Convert button. The three TryParse methods in the button’s Click event procedure
convert the number 34 to text. The procedure then displays the text in the three
label controls.

c. Enter the values listed in Figure 6-16, one at a time, clicking the Convert button after
each entry. On a piece of paper, record the result of each TryParse method’s
conversion.

d. Close the Code Editor window and then close the solution.

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap06\SwatTheBugs Solution folder. Review the existing code. Start
and then test the application. Notice that the code is not working correctly. Locate and
correct any errors.

Values
12.55
$5.67
–4.23
(4.23)
1,457.99
7%
7.88–
1 345 (notice the space after the number 1)
 33 (the number 33 preceded and followed by a space)
122a
an empty text box

Figure 6-16 Information for Exercise 12

FIGURE THIS OUT

SWAT THE BUGS

Exercises

99

This page intentionally left blank

CHAPTER 7
What’s Wrong with It?
(Syntax and Logic Errors)

After studying Chapter 7, you should be able to:

Locate syntax errors using the Error List window

Locate a logic error by stepping through the code

Locate logic errors by using breakpoints

Fix syntax and logic errors

There’s a Bug in My Soup!
Congratulations on mastering the concepts of variables and named constants in Chapter 6.
As you now know, you can use both types of memory locations to control the data type of
numbers used in calculations. Both types of memory locations also make your code more self-
documenting and easier to understand. In addition, you can use variables to store the values
of processing items, which do not appear in a user interface. The only downside to variables
and named constants is that their use requires additional lines of code. You may have
noticed that you entered several more lines of code in Chapter 6’s applications than you did in
Chapter 5’s applications. The amount of code you need to enter will increase as you learn new
concepts throughout this book. As the amount of code increases, so does the likelihood for
errors. Now would be a good time to start learning ways of finding and correcting the errors.
An error in a program’s code is referred to as a bug. The process of locating and correcting any
bugs in a program is called debugging. Program bugs typically are caused by either syntax
errors or logic errors. (You’ll learn about another type of error, called a run time error, in
Chapter 12.) Syntax errors are the easiest to find, so we’ll tackle those first.

Finding Syntax Errors
As you learned in Chapter 4, the set of rules you must follow when using a programming
language is called the language’s syntax. A syntax error occurs when you break one of
the language’s rules. Most syntax errors are a result of typing errors that occur when
entering instructions, such as typing Me.Clse() instead of Me.Close(). The Code Editor
detects most syntax errors as you enter the instructions. However, if you are not paying
close attention to your computer screen, you may not notice the errors. In the next set of
steps, you will observe what happens when you try to start an application that contains a
syntax error.

To begin debugging the Total Sales Calculator application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display
the Solution Explorer window. Open the Total Sales Solution (Total Sales
Solution.sln) file contained in the ClearlyVB2010\Chap07\Total Sales Solution
folder. If the designer window is not open, double-click frmMain.vb in the
Solution Explorer window. The application calculates and displays the total of the
sales amounts entered by the user.

2. Auto-hide the Solution Explorer window and then open the Code Editor window.
Figure 7-1 shows the code entered in the btnCalc control’s Click event procedure.
The jagged blue lines alert you that three lines of code contain a syntax error.

The Ch07-
Debugging
video
demonstrates
all of the

steps contained in this
chapter. You may find it
helpful to view the steps
before you perform them.

CH A P T E R 7 What’s Wrong with It? (Syntax and Logic Errors)

102

3. Start the application. If the dialog box shown in Figure 7-2 appears, click the No button.

4. The Error List window shown in Figure 7-3 opens at the bottom of the IDE, and the
Code Editor displays a red rectangle next to each error in the code. The Error List
window indicates that the code contains three errors, and it provides a description of
each error and the location of each error in the code. The red rectangles indicate that the
Code Editor has some suggestions for fixing the errors.

syntax error

syntax error

syntax error

Figure 7-1 btnCalc control’s Click event procedure

Figure 7-2 Dialog box

red rectangles

red rectangle

Error List window

Figure 7-3 Error List window

Finding Syntax Errors

103

Important note: You can change the size of the Error List window by positioning your
mouse pointer on the window’s top border until the mouse pointer becomes a vertical
line with an arrow at the top and bottom. Then press and hold down the left mouse
button while you drag the border either up or down.

5. Double-click the first error message in the Error List window. The Code Editor opens
the Error Correction window shown in Figure 7-4.

6. The first error is nothing more than a typing error: the programmer meant to type
Integer. You can type the missing e yourself. Or, you can simply click the appropriate
suggestion in the Error Correction window. Click Change 'Intger' to 'Integer'. in the
list. The Code Editor changes Intger to Integer in the Dim statement and removes the
error from the Error List window.

7. Double-click the first error message in the Error List window. Move the scroll bar in
the Error Correction window all the way to the right. The window indicates that the
missing parenthesis will be inserted at the end of the assignment statement that contains
the syntax error. Click the Insert the missing ')'. suggestion to insert the missing
parenthesis. The Code Editor removes the error from the Error List window.

8. Only one error message remains in the Error List window. The error’s description
indicates that the Code Editor does not recognize the name inTotal. Double-click the
remaining error message in the Error List window. See Figure 7-5.

Neither of the suggestions listed in the Error Correction window in Figure 7-5 is appropriate
for fixing the error. Therefore, you will need to come up with your own solution to the
problem. You do this by studying the line of code that contains the error. First, notice that

Error Correction window

double-click this
error message

Figure 7-4 List of suggestions for fixing the error

description of the error

neither suggestion
is appropriate

Figure 7-5 Error Correction window for the last error message

CH A P T E R 7 What’s Wrong with It? (Syntax and Logic Errors)

104

the unrecognized name appears on the left side of an assignment statement. This tells you
that the name belongs to something that can store information—either a control or a
variable. It doesn’t refer to the Text property, so it’s most likely the name of a variable.
Looking at the beginning of the procedure, where the variables are declared, you will notice
that the procedure declares a variable named intTotal. Obviously, the programmer
mistyped the variable’s name.

To finish debugging the Total Sales Calculator application:

1. Change inTotal to intTotal in the assignment statement and then move the insertion
point to another line in the Code Editor window. When you move the insertion point,
the Code Editor removes the error message from the Error List window.

2. Close the Error List window. Save the solution and then start the application. Test the
application using 2000 as the North sales, 3000 as the South sales, 1200 as the East
sales, and 1800 as the West sales. Click the Calculate button. The total sales are $8,000.
See Figure 7-6.

3. Click the Exit button. Close the Code Editor window and then close the solution.

Locating Logic Errors
Unlike syntax errors, logic errors are much more difficult to find, because they do not trigger an
error message from the Code Editor. A logic error can occur for a variety of reasons, such as
forgetting to enter an instruction or entering the instructions in the wrong order. Some logic
errors occur as a result of calculation statements that are correct syntactically but incorrect
mathematically. For example, consider the statement dblRadiusSquared = dblRadius +
dblRadius, which is supposed to calculate the square of the number stored in the dblRadius
variable. The statement’s syntax is correct, but it is incorrect mathematically because you square
a number by multiplying it by itself, not by adding it to itself. In the remainder of this chapter,
you will debug two applications that contain logic errors.

To debug the Discount Calculator application:

1. Open the Discount Solution (Discount Solution.sln) file contained in the
ClearlyVB2010\Chap07\Discount Solution folder. If the designer window is not open,
double-click frmMain.vb in the Solution Explorer window. The application calculates
and displays three discount amounts, which are based on the price entered by the user.
(The image in the picture box was downloaded from the Microsoft Office site at
http://office.microsoft.com/en-us/images/.)

Figure 7-6 Sample run of the Total Sales Calculator application

Locating Logic Errors

105

2. Open the Code Editor window. Figure 7-7 shows the code entered in the btnCalc
control’s Click event procedure.

3. Start the application. Type 100 in the Price box and then click the Calculate button.
The interface shows that each discount is 0.00, which is incorrect. Click the Exit button.

4. You’ll use the Debug menu to run the Visual Basic debugger, which is a tool that helps
you locate the logic errors in your code. Click Debug on the menu bar. The menu’s Step
Into option will start your application and allow you to step through your code. It does
this by executing the code one statement at a time, pausing immediately before each
statement is executed. Click Step Into. Type 100 in the Price box and then click the
Calculate button. The debugger highlights the first instruction to be executed. In this
case, it highlights the btnCalc_Click procedure header. In addition, an arrow points to
the instruction, as shown in Figure 7-8, and the code’s execution is paused. (If the
interface still appears on the screen, click the Code Editor window’s title bar.)

5. You can use either the Debug menu’s Step Into option or the F8 key on your keyboard to
tell the computer to execute the highlighted instruction. Press the F8 key. After the
computer processes the procedure header, the debugger highlights the next statement to
be processed—in this case, the decDiscount10 = decPrice * 0.1 statement—and then
pauses execution of the code. (The Dim statements are skipped over because they are
not considered executable by the debugger.)

6. While the execution of a procedure’s code is paused, you can view the contents of
controls and variables that appear in the highlighted statement, as well as in the
statements above it in the procedure. Before you view the contents of a control or
variable, however, you should consider the value you expect to find. Before the
decDiscount10 = decPrice * 0.1 statement is processed, the decDiscount10 variable
should contain its initial value, 0. (Recall that the Dim statement initializes numeric

Figure 7-7 btnCalc control’s Click event procedure

Figure 7-8 Result of using the Debug menu’s Step Into option

CH A P T E R 7 What’s Wrong with It? (Syntax and Logic Errors)

106

variables to 0.) Place your mouse pointer on decDiscount10 in the highlighted
statement. The variable’s name (decDiscount10) and current value (0D) appear in a
small box, as shown in Figure 7-9. The letter D indicates that the data type of the value—
in this case, 0—is Decimal. At this point, the decDiscount10 variable’s value is correct.

7. Now consider the value you expect the decPrice variable to contain. Before the
highlighted statement is processed, the decPrice variable should contain the number
100, which is the value you entered in the Price box. Place your mouse pointer on
decPrice in the highlighted statement. As Figure 7-10 shows, the decPrice variable
contains 0D, which is its initial value. Consider why the variable’s value is incorrect. In
this case, the value is incorrect because no statement above the highlighted statement
assigns the Price box’s value to the decPrice variable. In other words, a statement is
missing from the procedure.

8. Click Debug on the menu bar and then click Stop Debugging to stop the debugger.
Click the blank line below the last Dim statement and then press Enter to insert
another blank line. Now, enter the following comment and TryParse method:

' assign price to a variable
Decimal.TryParse(txtPrice.Text, decPrice)

9. Save the solution. ClickDebug on the menu bar and then click Step Into. Type 100 in the
Price box and then click the Calculate button. Press F8 to process the procedure header.
The debugger highlights the TryParse method and then pauses execution of the code.

10. Before the TryParse method is processed, the txtPrice control’s Text property should
contain 100, which is the value you entered in the control. Place your mouse pointer on
txtPrice.Text in the TryParse method. The box shows that the Text property contains
the expected value. The 100 is enclosed in quotation marks because it is considered a
string. As you learned in Chapter 6, a string is text enclosed in double quotation marks.

11. The decPrice variable should contain its initial value, 0D. Place your mouse pointer on
decPrice in the TryParse method. The box shows that the variable contains the
expected value.

12. Press F8 to process the TryParse method. The debugger highlights the
decDiscount10 = decPrice * 0.1 statement before pausing execution of the code. Place
your mouse pointer on decPrice in the TryParse method, as shown in Figure 7-11.

Figure 7-9 Value stored in decDiscount10 before the highlighted statement is executed

Figure 7-10 Value stored in decPrice before the highlighted statement is executed

Locating Logic Errors

107

Notice that after the method is processed by the computer, the decPrice variable
contains the number 100D, which is correct.

13. Before the highlighted statement is processed, the decDiscount10 variable should
contain its initial value, and the decPrice variable should contain the value assigned to
it by the TryParse method. Place your mouse pointer on decDiscount10 in the
highlighted statement. The box shows that the variable contains 0D, which is correct.
Place your mouse pointer on decPrice in the highlighted statement. The box shows
that the variable contains 100D, which also is correct.

14. After the highlighted statement is processed, the decPrice variable should still
contain 100D. However, the decDiscount10 variable should contain 10D, which is 10%
of 100. Press F8 to execute the highlighted statement, and then place your mouse
pointer on decDiscount10 in the statement. The box shows that the variable contains
the expected value. On your own, verify that the decPrice variable in the statement
contains the appropriate value.

15. To continue program execution without the debugger, click Debug on the menu bar
and then click Continue. This time, the correct discount amounts appear in the
interface. See Figure 7-12.

16. Click the Exit button. Close the Code Editor window and then close the solution.

I’ve Reached My Breaking Point
Stepping through code one line at a time is not the only way to search for logic errors. You
also can use a breakpoint to pause execution at a specific line in the code. You will learn
how to set a breakpoint in the next set of steps.

To begin debugging the Hours Worked application:

1. Open the Hours Worked Solution (Hours Worked Solution.sln) file contained
in the ClearlyVB2010\Chap07\Hours Worked Solution folder. If the designer
window is not open, double-click frmMain.vb in the Solution Explorer window.
The application calculates and displays the total number of hours worked in four
weeks. (The image in the picture box was downloaded from the Microsoft Office
site at http://office.microsoft.com/en-us/images/.)

Figure 7-11 Value stored in decPrice after the TryParse method is executed

Figure 7-12 Sample run of the Discount Calculator application

CH A P T E R 7 What’s Wrong with It? (Syntax and Logic Errors)

108

2. Open the Code Editor window. Figure 7-13 shows the code entered in the btnCalculate
control’s Click event procedure.

3. Start the application. Type 1 in the Week 1 box, press Tab, type 2 in the Week 2 box,
press Tab, type 3 in the Week 3 box, press Tab, type 4 in the Week 4 box, and then click
the Calculate button. The interface shows that the total number of hours is 8, which is
incorrect; it should be 10. Click the Exit button.

The statement that calculates the total number of hours worked is not giving the correct result.
Rather than having the computer pause before processing each line of code in the procedure,
you will have it pause only before processing the calculation statement. You do this by setting a
breakpoint on the statement.

To finish debugging the Hours Worked application:

1. Right-click the calculation statement, point to Breakpoint, and then click Insert
Breakpoint. (You also can set a breakpoint by clicking the statement and then using the
Toggle Breakpoint option on the Debug menu. Or, you can simply click in the gray
margin next to the statement.) The debugger highlights the statement and places a circle
next to it, as shown in Figure 7-14.

2. Start the application. Type the numbers 1, 2, 3, and 4 in the Week 1, Week 2, Week 3,
and Week 4 boxes, respectively. Click the Calculate button. The computer begins
processing the code contained in the button’s Click event procedure. It stops processing
when it reaches the breakpoint statement, which it highlights. The highlighting indicates

Figure 7-13 btnCalculate control’s Click event procedure

Figure 7-14 Breakpoint set in the procedure

Locating Logic Errors

109

that the statement is the next one to be processed. Notice that a yellow arrow now
appears in the red dot next to the breakpoint. See Figure 7-15.

3. Before viewing the values contained in each variable in the highlighted statement,
consider the values you expect to find. Before the calculation statement is processed,
the dblTotal variable should contain its initial value (0). Place your mouse pointer on
dblTotal in the highlighted statement. The box shows that the variable’s value is 0.0,
which is correct. (You can verify the variable’s initial value by placing your mouse
pointer on dblTotal in its declaration statement.) Don’t be concerned that 0.0
appears rather than 0. The .0 indicates that the value’s data type is Double.

4. The other four variables should contain the numbers 1 through 4, which are the values
you entered in the text boxes. On your own, view the values contained in the dblWeek1,
dblWeek2, dblWeek3, and dblWeek4 variables. Notice that two of the variables
(dblWeek1 and dblWeek4) contain the correct values (1.0 and 4.0). The dblWeek2
variable, however, contains 3.0 rather than 2.0, and the dblWeek3 variable contains its
initial value (0.0) rather than the number 3.0.

5. Two of the TryParse methods are responsible for assigning the text box values to the
dblWeek2 and dblWeek3 variables. Looking closely at the four TryParse methods in
the procedure, you will notice that the third one is incorrect. After converting the
contents of the txtWeek3 control to a number, the method should assign the number
to the dblWeek3 variable rather than to the dblWeek2 variable. Click Debug on the
menu bar and then click Stop Debugging.

6. Change dblWeek2 in the third TryParse method to dblWeek3.

7. Now you can remove the breakpoint. Right-click the statement containing the
breakpoint, point to Breakpoint, and then click Delete Breakpoint. (Or, you can
simply click the breakpoint circle.)

8. Save the solution and then start the application. Type the numbers 1, 2, 3, and 4 in
the Week 1, Week 2, Week 3, and Week 4 boxes, respectively. Click the Calculate
button. The interface shows that the total number of hours is 10, which is correct.
See Figure 7-16.

9. On your own, test the application using other values for the hours worked in each week.
When you are finished testing, click the Exit button. Close the Code Editor window and
then close the solution.

Figure 7-15 Result of the computer reaching the breakpoint

Figure 7-16 Sample run of the Hours Worked application

CH A P T E R 7 What’s Wrong with It? (Syntax and Logic Errors)

110

Mini-Quiz 7-1
See Appendix B for the answers.

1. When entered in a procedure, which of the following statements will result in a syntax
error?

a. Me.Clse()

b. Integer.TryPars(txtHours.Text, intHours)

c. Dim decRate as Decimel

d. all of the above

2. To step through each line of executable code, click Debug on the menu bar and then
click .

3. When a breakpoint is set, the computer stops processing the code
immediately it processes the breakpoint statement.

a. after

b. before

Summary
l In most cases, program errors (bugs) are caused by either syntax errors or logic errors. The

Code Editor helps you locate and fix the syntax errors in your code. However, it cannot
locate any logic errors in your code.

l Any syntax errors in an application’s code are listed in the Error List window when you start
the application.

l You can locate logic errors by stepping through the code entered in the Code Editor
window. You also can set a breakpoint.

l You can step through the code in the Code Editor window using either the Step Into option
on the Debug menu or the F8 key on your keyboard.

l You can set a breakpoint by right-clicking the desired line of code, pointing to Breakpoint,
and then clicking Insert Breakpoint. You also can click the line of code and then use the
Toggle Breakpoint option on the Debug menu. In addition, you can click in the gray margin
next to the line of code.

l To remove a breakpoint, right-click the line of code containing the breakpoint, point to
Breakpoint, and then click Delete Breakpoint. You also can simply click the breakpoint circle
in the margin.

l The letter D at the end of a value indicates that the value’s data type is Decimal.

l The .0 at the end of a number indicates that the number’s data type is Double.

l Before viewing the value stored in a control or variable, you first should consider the value
you expect to find.

Summary

111

Key Terms
Bug—an error in a program’s code

Debugging—the process of locating and correcting any bugs in a program

Logic error—an error that can occur for a variety of reasons, such as forgetting to enter an
instruction, entering the instructions in the wrong order, or entering a calculation statement
that is incorrect mathematically

Syntax error—an error that occurs when a statement breaks one of a programming language’s
rules

Review Questions
1. The process of locating and fixing any errors in a program is called .

a. bug-proofing

b. bug-eliminating

c. debugging

d. error removal

2. While stepping through code, the debugger highlights the statement that .

a. was just executed

b. will be executed next

c. contains the error

d. none of the above

3. Logic errors are listed in the Error List window.

a. True b. False

4. While stepping through the code in the Code Editor window, you can view the contents
of controls and variables that appear in the highlighted statement only.

a. True b. False

5. Which key is used to step through code?

a. F5

b. F6

c. F7

d. F8

6. The letter D after a number indicates that the number’s data type is .

a. Decimal b. Double

7. You use to pause program execution at a specific line in the code.

a. a breakpoint

b. the Error List window

c. the Step Into option on the Debug menu

d. the Stop Debugging option on the Debug menu

CH A P T E R 7 What’s Wrong with It? (Syntax and Logic Errors)

112

Exercises

1. Open the Commission Calculator Solution (Commission Calculator Solution.sln) file
contained in the ClearlyVB2010\Chap07\Commission Calculator Solution folder. Use
what you learned in the chapter to debug the application. When you are finished
debugging the application, close the Code Editor window and then close the solution.
(See Appendix B for the answer.)

2. Open the New Pay Solution (New Pay Solution.sln) file contained in the ClearlyVB2010\
Chap07\New Pay Solution folder. Use what you learned in the chapter to debug the
application. When you are finished debugging the application, close the Code Editor
window and then close the solution. (See Appendix B for the answer.)

3. Open the Hawkins Solution (Hawkins Solution.sln) file contained in the ClearlyVB2010\
Chap07\Hawkins Solution folder. Use what you learned in the chapter to debug the
application. When you are finished debugging the application, close the Code Editor
window and then close the solution.

4. Open the Allenton Solution (Allenton Solution.sln) file contained in the ClearlyVB2010\
Chap07\Allenton Solution folder. Use what you learned in the chapter to debug the
application. When you are finished debugging the application, close the Code Editor
window and then close the solution.

5. Open the Martins Solution (Martins Solution.sln) file contained in the ClearlyVB2010\
Chap07\Martins Solution folder. Use what you learned in the chapter to debug the
application. When you are finished debugging the application, close the Code Editor
window and then close the solution.

6. Open the Average Score Solution (Average Score Solution.sln) file contained in the
ClearlyVB2010\Chap07\Average Score Solution folder. Use what you learned in the
chapter to debug the application. When you are finished debugging the application, close
the Code Editor window and then close the solution.

7. Open the Beachwood Solution (Beachwood Solution.sln) file contained in the
ClearlyVB2010\Chap07\Beachwood Solution folder. Use what you learned in the chapter
to debug the application. When you are finished debugging the application, close the
Code Editor window and then close the solution.

8. Open the Framington Solution (Framington Solution.sln) file contained in the
ClearlyVB2010\Chap07\Framington Solution folder. Use what you learned in the chapter
to debug the application. When you are finished debugging the application, close the
Code Editor window and then close the solution.

INTERMEDIATE

TRY THIS

INTRODUCTORY

INTRODUCTORY

ADVANCED

ADVANCED

INTERMEDIATE

TRY THIS

Exercises

113

This page intentionally left blank

CHAPTER 8
Decisions, Decisions,
Decisions
(Selection Structure)

After studying Chapter 8, you should be able to:

Show the selection structure in both pseudocode and a flowchart

Write If…Then…Else statements

Include comparison operators in a selection structure’s condition

Add a check box to an interface

Someone Might Need to Make a Decision
As you learned in Chapter 1, all computer programs are written using one or more of
three basic control structures: sequence, selection, and repetition. The procedures you
coded in the previous chapters used the sequence structure only. When one of the
procedures was invoked during run time, the computer processed the procedure’s
instructions sequentially—in other words, in the order the instructions appeared in the
procedure. Every procedure you write will contain the sequence structure.

Many times, however, a procedure will need the computer to make a decision before
selecting the next instruction to process. A procedure that calculates an employee’s gross
pay, for example, typically has the computer determine whether the number of hours the
employee worked is greater than 40. The computer then would select either an instruction
that computes regular pay only or an instruction that computes regular pay plus overtime
pay. Procedures that need the computer to make a decision require the use of the
selection structure (also called the decision structure). The selection structure indicates
that a decision (based on some condition) needs to be made, followed by an appropriate
action derived from that decision. But how does a programmer determine whether a
problem’s solution requires a selection structure? The answer to this question is by
studying the problem specification.

The first problem specification you will examine in this chapter involves Rob, the
mechanical man from Chapter 1. The problem specification and an illustration of the
problem are shown in Figure 8-1. To solve the problem, you need to get Rob from his
hallway into his bedroom. You do this by directing him to take two steps forward, open
the bedroom door, and then take one step forward. The correct algorithm using the
commands that Rob can understand is included in Figure 8-1. The algorithm uses only the
sequence structure, because no decisions need to be made to get Rob from his initial
location in the hallway to his ending location in the bedroom.

2 steps

1. walk forward
2. walk forward
3. open the bedroom door
4. walk forward

Rob is standing in his hallway facing his bedroom door. The door, which is closed, is two
steps away from him. Rob wants to enter his bedroom.

Figure 8-1 A problem that requires the sequence structure only

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

116

Now let’s make a slight change to the problem specification shown in Figure 8-1.
This time, Rob’s bedroom door may or may not be closed. What changes will need to
be made to the original algorithm shown in Figure 8-1 as a result of this minor
modification? The first two instructions in the original algorithm position Rob in front
of his bedroom door; Rob will still need to follow those instructions. The third
instruction tells Rob to open the bedroom door. That instruction was correct for the
original problem specification, which states that the bedroom door is closed. However,
in the modified problem specification, the status of the bedroom door is not known: it
could be closed or it could already be open. As a result, Rob will need to make a
decision and then take the appropriate action based on the result. More specifically, Rob
will need to determine whether the bedroom door is closed, and then open the door
only if it needs to be opened. The last instruction in the original algorithm positions Rob
one step inside his bedroom; Rob will still need to follow that instruction.

Figure 8-2 shows the modified problem specification along with the modified algorithm.
The selection structure begins with the if the bedroom door is closed, do this: line, and it
ends with the end if line. The the bedroom door is closed portion of the selection structure
is called the condition. A selection structure’s condition must be phrased so that it
evaluates to a Boolean value: either True or False. In this case, either the bedroom door is
closed (True) or it’s not closed (False). If the door is closed, Rob needs to follow the open
the bedroom door instruction before walking into his bedroom. If the door is not closed,
Rob can simply walk into his bedroom. The selection structure in Figure 8-2 is referred to
as a single-alternative selection structure, because it requires a special action to be taken
only when its condition evaluates to True. In this case, the special action is to open the
bedroom door. The open the bedroom door instruction is indented within the selection
structure to indicate that it should be followed only when the door is closed.

Figure 8-3 shows another problem specification and illustration involving Rob, along
with the correct algorithm. As the algorithm indicates, the problem’s solution does not
require Rob to make any decisions in order to accomplish his tasks. He needs simply
to lift the Trash container’s lid, drop the bag of trash in the container, and then put the
lid back on the container.

1. walk forward
2. walk forward

3. if the bedroom door is closed, do this:
 open the bedroom door
 end if
 4. walk forward

condition

executed only
when the condition
evaluates to True

Figure 8-2 A problem that requires the sequence structure and a single-alternative selection structure

Someone Might Need to Make a Decision

117

Now we’ll make a slight change to the problem specification from Figure 8-3. In the
modified specification, the contents of the bag that Rob is holding are not certain: The
bag might contain trash or it might contain recyclables. How will this change affect the
original algorithm shown in Figure 8-3? The three instructions in the original algorithm
pertain to the Trash container only. Those instructions were correct for the original
problem specification, which states that Rob is holding a bag of trash. However, in the
modified problem specification, the contents of the bag that Rob is holding are not
certain. As a result, Rob will need to make a decision about the contents of the bag and
then take the appropriate action based on the result. If the bag contains trash, Rob
should follow the three instructions in the original algorithm. If the bag does not contain
trash, it means the bag contains recyclables. In that case, Rob should lift the Recycle
container’s lid before dropping the bag into the container and then replacing the lid.

Figure 8-4 shows the modified problem specification and two versions of a correct
algorithm. Notice that, unlike the algorithm in Figure 8-2, the algorithms in Figure 8-4
require Rob to perform one set of instructions when the condition evaluates to True, but a
different set of instructions when the condition evaluates to False. The instructions to
follow when the condition evaluates to True are called the true path. The instructions to
follow when the condition evaluates to False are called the false path. Notice that the
instructions to follow are indented within their respective paths. Selection structures
that contain instructions in both paths, like the ones in Figure 8-4, are referred to as
dual-alternative selection structures.

1. lift the Trash container’s lid with your left hand
2. drop the bag of trash in the Trash container
3. put the lid back on the Trash container with your left hand

Recycle
Trash

Rob is holding a bag of trash in his right hand. He is directly in front of two containers:
one marked Trash and the other marked Recycle. A lid is on each container. Rob needs
to lift the Trash container’s lid, drop the bag of trash in the container, and then put the lid
back on the container.

Figure 8-3 Another problem that requires the sequence structure only

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

118

Mini-Quiz 8-1
See Appendix B for the answers.

1. Rob is sitting in a chair in his living room. Next to the chair is a table. On top
of the table is Rob’s cell phone. Your task is to direct Rob to pick up his cell
phone. Does the solution to this problem require a decision? If so, what decision
needs to be made?

2. Rob is sitting in a chair in his living room. Next to the chair is a table. On top
of the table is Rob’s cell phone. Your task is to direct Rob to pick up his cell
phone, but only when the phone rings. Does the solution to this problem require
a decision? If so, what decision needs to be made?

3. Rob is holding a red ball and is facing two boxes. One of the boxes is red and the
other is yellow. Your task is to direct Rob to drop the red ball into the red box. Does
the solution to this problem require a decision? If so, what decision needs to be
made?

4. Rob is holding either a red ball or a yellow ball. He is facing two boxes. One of the
boxes is red and the other is yellow. Your task is to direct Rob to drop the ball he is
carrying into the appropriate box. Does the solution to this problem require a
decision? If so, what decision needs to be made?

Version 1

if the bag contains trash, do this:
 lift the Trash container’s lid with your left hand
 drop the bag of trash in the Trash container
 put the lid back on the Trash container with your left hand
otherwise, do this:
 lift the Recycle container’s lid with your left hand
 drop the bag of recyclables in the Recycle container
 put the lid back on the Recycle container with your left hand
end if

Version 2
if the bag contains recyclables, do this:
 lift the Recycle container’s lid with your left hand
 drop the bag of recyclables in the Recycle container
 put the lid back on the Recycle container with your left hand
 otherwise, do this:
 lift the Trash container’s lid with your left hand
 drop the bag of trash in the Trash container
 put the lid back on the Trash container with your left hand
end if

condition

true path

false path

Rob is holding either a bag of trash or a bag of recyclables in his right hand. He is
directly in front of two containers: one marked Trash and the other marked Recycle.
A lid is on each container. Rob needs to lift the lid from the appropriate container,
drop the bag in the container, and then put the lid back on the container.

Figure 8-4 A problem that requires the sequence structure and a dual-alternative selection structure

Someone Might Need to Make a Decision

119

Going Beyond Rob’s Problems
Figure 8-5 shows a problem specification that doesn’t involve Rob, the mechanical man. It
also shows a correct algorithm for the problem. Because no decisions need to be made to
solve the problem, the algorithm uses only the sequence structure.

Consider how you would need to change the algorithm shown in Figure 8-5 if Mary is paid a
2% bonus only when she sells at least $3000 in product; otherwise, she is paid a 1.5%
bonus. The modified problem specification and its algorithm are shown in Figure 8-6.
Unlike the original algorithm, the modified algorithm needs to make a decision about
Mary’s sales amount before the bonus is calculated. Based on the result of that decision,
the algorithm will assign either 2% or 1.5% as the bonus rate.

In the next set of steps, you will begin coding the algorithm shown in Figure 8-6.

Output: bonus

Processing: bonus rate

Input: annual sales

Algorithm:
1. enter the annual sales
2. if the annual sales are at least 3000, do this:
 assign 2% as the bonus rate
 otherwise, do this:
 assign 1.5% as the bonus rate
 end if
3. calculate the bonus by multiplying the annual sales by the bonus rate
4. display the bonus

Mary is paid a 2% bonus on her annual sales when the sales are at least $3000;
otherwise, she is paid a 1.5% bonus. She wants a program that both calculates
and displays the amount of her bonus.

Figure 8-6 Modified bonus problem specification and its algorithm

Output: bonus

Input: annual sales

Algorithm:
1. enter the annual sales
2. calculate the bonus by multiplying the annual sales by 2%
3. display the bonus

Mary is paid a 2% bonus on her annual sales. She wants a program that both calculates and
displays the amount of her bonus.

Figure 8-5 Bonus problem specification and algorithm

For more
experience
in examin-
ing problem
specifica-

tions, see the Problem
Specifications section in
the Ch8WantMore.pdf file.

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

120

To begin coding the Bonus Calculator application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Bonus Solution (Bonus Solution.sln) file
contained in the ClearlyVB2010\Chap08\Bonus Solution folder. If the designer window
is not open, double-click frmMain.vb in the Solution Explorer window. The
application’s interface is shown in Figure 8-7.

2. Auto-hide the Solution Explorer window and then open the Code Editor window, which
contains the code for the btnExit control’s Click event procedure.

3. Open the btnCalc control’s Click event procedure. Type the following comment and
then press Enter twice:

' calculates and displays a bonus amount

4. First, you will enter the variable declaration statements. The procedure will use three
Decimal variables for the input, processing, and output items. Enter the following three
Dim statements. Press Enter twice after typing the last Dim statement.

Dim decSales As Decimal
Dim decRate As Decimal
Dim decBonus As Decimal

5. The first step in the algorithm is to enter the annual sales. The user will enter the
amount in the txtSales control in the interface. The procedure will need to convert the
user’s entry to a number, storing the result in the decSales variable. Enter the following
comment and TryParse method. Press Enter twice after typing the method.

' assign sales to a variable
Decimal.TryParse(txtSales.Text, decSales)

6. Save the solution.

The If…Then…Else Statement
Step 2 in the algorithm from Figure 8-6 is a selection structure. Visual Basic provides the
If…Then…Else statement for coding single-alternative and dual-alternative selection structures.
The statement’s syntax is shown in Figure 8-8. The square brackets in the syntax indicate that the
Else portion, referred to as the Else clause, is optional. Boldfaced items in a statement’s syntax are
required. In this case, the keywords If, Then, and End If are required. The Else keyword is
necessary only in a dual-alternative selection structure. Italicized items in a statement’s syntax
indicate where the programmer must supply information. In the If…Then…Else statement, the
programmer must supply the condition that the computer needs to evaluate before further
processing can occur. The condition must be a Boolean expression, which is an expression that
results in a Boolean value (True or False). Besides providing the condition, the programmer must
provide the statements to be processed in the If…Then…Else statement’s true path and (optionally)
in its false path. The set of statements contained in each path is referred to as a statement block.

The expressions in most conditions are formed using comparison operators. A listing of the
most commonly used comparison operators is included in Figure 8-8 along with examples of
using comparison operators in the If…Then…Else statement’s condition. The operators are

Figure 8-7 Bonus Calculator application’s interface

The If…Then…Else Statement

121

called comparison operators because they are used to compare values. The selection structure
in Example 1 directs the computer to perform one set of tasks when the condition evaluates to
True, but a different set of tasks when the condition evaluates to False. Example 2’s selection
structure, on the other hand, directs the computer to perform the one task only when the
condition evaluates to True. Notice that the expression contained in each example’s condition
evaluates to a Boolean value. All expressions containing a comparison operator will result in
an answer of either True or False only.

If…Then…Else statement
Syntax
If condition Then
 statement block to be processed when the condition evaluates to True
[Else
 statement block to be processed when the condition evaluates to False]
End If

Comparison operator Operation
= equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to
<> not equal to

Example 1
Dim intAge As Integer
Dim decDiscount As Decimal
Integer.TryParse(txtAge.Text, intAge)
If intAge >= 65 Then
 decDiscount = .15
 lblMessage.Text = "Senior Discount"
Else
 decDiscount = .1
 lblMessage.Text = "Regular Discount"
End If

If the intAge variable contains a number that is greater than or equal to 65,
the instructions in the true path assign .15 to the decDiscount variable and
assign the string “Senior Discount” to the lblMessage control’s Text property;
otherwise, the instructions in the false path assign .1 to the decDiscount
variable and assign the string “Regular Discount” to the lblMessage control’s
Text property.

Example 2
Dim decOwed As Decimal
Dim decPaid As Decimal
Dim decDifference As Decimal
Decimal.TryParse(txtOwed.Text, decOwed)
Decimal.TryParse(txtPaid.Text, decPaid)
decDifference = decPaid – decOwed
If decDifference < 0 Then
 lblMessage.Text = "You still owe money"
End If
lblDifference.Text = decDifference.ToString("C2")

If the decDifference variable contains a number that is less than zero,
the instruction in the true path assigns the string “You still owe money”
to the lblMessage control’s Text property.

dual-alternative
selection
structure

single-alternative
selection
structure

Figure 8-8 If…Then…Else statement and comparison operators

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

122

Keep in mind that comparison operators are evaluated after any arithmetic operators in an
expression. When processing the expression 7 > 3 + 5, for example, the computer first
adds the number 3 to the number 5, giving 8. It then compares the number 7 to the
number 8. Because 7 is not greater than 8, the expression evaluates to False.

To complete the btnCalc control’s Click event procedure:

1. According to Step 2 in the algorithm from Figure 8-6, the selection structure’s condition
needs to compare the sales amount with the number 3000. The “at least 3000” in the
algorithm means that the smallest amount that qualifies for the 2% bonus is $3000.
Therefore, the correct comparison operator to use in the condition is the >= (greater
than or equal to) operator. Enter the following comment and If clause. When you press
Enter after typing the If clause, the Code Editor automatically enters the End If clause for
you. It also automatically indents the line between the If and End If clauses.

' determine bonus rate
If decSales >= 3000 Then

2. If the value stored in the decSales variable is greater than or equal to 3000, the
condition will evaluate to True. In that case, the bonus rate should be 2%. You will assign
the bonus rate, converted to its decimal equivalent, to the decRate variable. Enter the
following assignment statement:

decRate = .02

3. If the value stored in the decSales variable is not greater than or equal to 3000, the
condition will evaluate to False. In that case, the bonus rate should be 1.5%, or .015.
Enter the following Else clause and assignment statement:

Else
decRate = .015

4. If necessary, delete the blank line above the End If clause.

5. Steps 3 and 4 in the algorithm are to calculate and then display the bonus. Click
immediately after the letter f in the End If clause and then press Enter twice to insert
two blank lines. Enter the following comment and assignment statements:

' calculate and display the bonus
decBonus = decSales * decRate
lblBonus.Text = decBonus.ToString("C2")

Figure 8-9 shows the code entered in the btnCalc control’s Click event procedure, and Figure 8-
10 shows a desk-check table for the program. On your own, desk-check the program using other
sales amounts.

The If…Then…Else Statement

123

To test the Bonus Calculator application:

1. Save the solution and then start the application. Use the sales amounts shown in Figure
8-10, as well as your own sales amounts, to test the application.

2. When you are finished testing the application, click the Exit button. Close the Code
Editor window and then close the solution.

Examining Another Problem Specification
Figure 8-11 shows another problem specification whose solution requires a selection
structure. The figure also includes a correct algorithm (in flowchart form) for the problem.
In this case, the algorithm needs to determine whether the customer is an employee. Recall
from Chapter 2 that the oval in a flowchart is the start/stop symbol, the rectangle is the
process symbol, and the parallelogram is the input/output symbol. The diamond in a
flowchart is called the decision symbol, because it is used to represent the condition
(decision) in both the selection and repetition structures. In Figure 8-11’s flowchart, the
diamond represents the condition in a selection structure. (You will learn how to use the
diamond to represent a repetition structure’s condition in Chapter 12.) Inside the diamond
is a question whose answer is either True or False. Each diamond also has one flowline

a decSales t decRate d u n l l s decBonus (rounded to two decimal places)
3500.75 .02 70.02
 500.25 .015 7.50

Figure 8-10 Desk-check table for the Bonus Calculator program

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays a bonus amount

 Dim decSales As Decimal
 Dim decRate As Decimal
 Dim decBonus As Decimal

 ' assign sales to a variable
 Decimal.TryParse(txtSales.Text, decSales)

 ' determine bonus rate
 If decSales >= 3000 Then
 decRate = 0.02
 Else
 decRate = 0.015
 End If

 ' calculate and display the bonus
 decBonus = decSales * decRate
 lblBonus.Text = decBonus.ToString("C2")

End Sub

Figure 8-9 btnCalc control’s Click event procedure

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

124

entering the symbol and two flowlines leaving the symbol. The two flowlines leading out of
the diamond should be marked so that anyone reading the flowchart can distinguish the
true path from the false path. You mark the flowline leading to the true path with a T (for
True), and you mark the flowline leading to the false path with an F (for False). You also
can mark the flowlines leading out of the diamond with a Y and an N (for Yes and No).

Before coding the algorithm shown in Figure 8-11, you will add a check box to the application’s
interface. In Windows applications, check boxes are used to offer the user one or more
independent and nonexclusive items from which to choose. The user can select a check box by
clicking it. To deselect a check box, the user simply clicks the check box again. Each check box
in an interface should be labeled to make its purpose obvious. You enter the label using sentence
capitalization in the check box’s Text property. Each check box also should have a unique access

start

enter input items

subtotal = quantity ordered *
item price

quantity ordered
item price
employee?

employee?

discount = 0 discount = subtotal * 10%

total due = subtotal – discount

display total due

stop

F T

Sam wants an application in which he can enter the quantity of an item that
a customer purchases and the item’s price. Customers who work at Sam’s
company are entitled to a 10% employee discount. The application should
both calculate and display the total amount the customer owes.

Output: total due

Processing: subtotal
 discount

Input: quantity ordered
 item price
 employee?

Algorithm:

Figure 8-11 Total Due Calculator problem specification and algorithm

Examining Another Problem Specification

125

key. During run time, you can determine whether a check box is selected or unselected by
looking at the value in its Checked property. If the property contains the Boolean value True,
the check box is selected. If it contains the Boolean value False, the check box is not selected.

To open the Total Due Calculator application and then complete the user interface:

1. Open the Total Due Solution (Total Due Solution.sln) file contained in the
ClearlyVB2010\Chap08\Total Due Solution folder. If the designer window is not open,
double-click frmMain.vb in the Solution Explorer window. The application’s partially
completed interface appears on the screen. The user will enter the quantity ordered and
the item’s price in the two text boxes. The employee information will be entered using a
check box, which you will add to the interface in the next step.

2. Use the CheckBox tool in the toolbox to add a check box control to the form. Position
the check box as shown in Figure 8-12. The three-character ID used when naming check
boxes is chk. Change the check box’s name to chkEmployee. Change its Text property
to &Employee.

3. If the customer is an employee, the user will need to select the check box; otherwise, the
check box should be unselected. Lock the controls on the form. Click View on the menu
bar and then click Tab Order. Use the information shown in Figure 8-13 to set the tab
order.

4. Press Esc to remove the TabIndex boxes from the form, and then save the solution.

Now that the interface is complete, you can begin coding the algorithm shown earlier in
Figure 8-11.

To code the Total Due Calculator application:

1. Open the Code Editor window, which contains the code for the btnExit control’s Click
event procedure. It also contains the partially completed Click event procedure for the
btnCalc control, as shown in Figure 8-14. Notice that the procedure declares a named
constant for the 10% discount rate. It also declares five variables to store the quantity

txtQuantity

txtPrice

chkEmployee

lblTotal

Figure 8-12 Check box included in the interface

Figure 8-13 Correct TabIndex values for the interface

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

126

ordered, item price, subtotal, discount, and total due. In addition, it assigns the quantity
and price information to two of the variables. The assignment statement in the
procedure displays the total due in the lblTotal control.

2. Missing from the btnCalc control’s Click event procedure are the instructions to
calculate the subtotal, discount, and total due. According to the first processing symbol
shown earlier in Figure 8-11, you calculate the subtotal by multiplying the quantity
ordered by the item price. Click the blank line below the ' calculate subtotal,
discount, and total due comment, and then enter the following assignment
statement:

decSubtotal = intQuantity * decPrice

3. The next symbol in the flowchart is a diamond that represents the condition in a
selection structure. The selection structure’s condition should determine whether the
customer is an employee. Recall that the user indicates an employee by selecting the
Employee check box. If the check box is not selected, it means that the customer is not
an employee. You can use a check box’s Checked property to determine its status: If the
check box is selected, its Checked property contains the Boolean value True; otherwise,
it contains the Boolean value False. Enter the following If clause:

If chkEmployee.Checked = True Then

4. Next, you need to code the selection structure’s true path. According to the flowchart, a
customer who is an employee should receive a 10% discount. Enter the following
assignment statement, which completes the selection structure’s true path:

decDiscount = decSubtotal * decDISC_RATE

5. Now you need to code the selection structure’s false path. According to the flowchart, a
customer who is not an employee should not receive a discount. Enter the following Else
clause and assignment statement, which completes the selection structure’s false path:

Else
decDiscount = 0

6. If necessary, delete the blank line above the End If clause.

7. The next symbol to code is the processing symbol located after the selection structure.
The symbol tells you to calculate the total due by subtracting the discount from the

Figure 8-14 Partially completed Click event procedure for the btnCalc control

Examining Another Problem Specification

127

subtotal. Click immediately after the letter f in the End If clause and then press Enter.
Enter the following assignment statement:

decTotal = decSubtotal – decDiscount

8. The procedure already contains the code pertaining to the last parallelogram in the
flowchart. Therefore, you have finished coding the procedure. Save the solution.

Figure 8-15 shows the code entered in the btnCalc control’s Click event procedure, and Figure
8-16 shows a desk-check table for the program. On your own, desk-check the program using
other values for the input items.

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays the total amount due

 Const decDISC_RATE As Decimal = 0.1
 Dim intQuantity As Integer
 Dim decPrice As Decimal
 Dim decSubtotal As Decimal
 Dim decDiscount As Decimal
 Dim decTotal As Decimal

 ' assign quantity and price to variables
 Integer.TryParse(txtQuantity.Text, intQuantity)
 Decimal.TryParse(txtPrice.Text, decPrice)

 ' calculate subtotal, discount, and total due
 decSubtotal = intQuantity * decPrice
 If chkEmployee.Checked = True Then
 decDiscount = decSubtotal * decDISC_RATE
 Else
 decDiscount = 0
 End If
 decTotal = decSubtotal - decDiscount

 ' display total due
 lblTotal.Text = decTotal.ToString("C2")
End Sub

Figure 8-15 Completed Click event procedure for the btnCalc control

E Qua y i E p y hdecDISC_RATE intQuantity decPrice chkEmployee.Checked
 0.1 10 2.50 True
 0.1 10 2.50 False

l i decSubtotal decDiscount l decTotal
 25.00 2.50 22.50
 25.00 0 25.00

Figure 8-16 Desk-check table for the Total Due Calculator program

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

128

To test the Total Due Calculator application:

1. Start the application. Use the quantity, price, and check box information shown in Figure
8-16, as well as your own data, to test the application.

2. When you are finished testing the application, click the Exit button. Close the Code
Editor window and then close the solution.

Hey, That’s Not the Way I Would Have Done It
There always are several ways of solving a problem. Figure 8-17, for example, shows a different
way of solving the problem from the previous section. Notice that this version of the solution
does not use any processing items. Also notice that, unlike the selection structure shown earlier
in Figure 8-11, the selection structure in Figure 8-17 contains an instruction in its true path
only. The instruction multiplies the total due by 90%, because that is the amount the employee
would owe after receiving the 10% discount.

start

enter input items

total due = quantity ordered *
item price

quantity ordered
item price
employee?

employee?

display total due

stop

F T

total due = total due * 90%

Sam wants an application in which he can enter the quantity of an item that a customer
purchases and the item’s price. Customers who work at Sam’s company are entitled to
a 10% employee discount. The application should both calculate and display the total
amount the customer owes.

Output: total due

Input: quantity ordered
 item price
 employee?

Algorithm:

Figure 8-17 Total Due Calculator problem specification along with a different algorithm

Examining Another Problem Specification

129

To code this version of the Total Due Calculator application and then test the code:

1. Open the Total Due Solution (Total Due Solution.sln) file contained in the
ClearlyVB2010\Chap08\Total Due Solution—Version 2 folder. If the designer window is
not open, double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window, which contains the code for the btnExit control’s Click
event procedure. Open the code template for the btnCalc control’s Click event
procedure. Type the following comment and then press Enter twice:

' calculates and displays the total amount due

3. Now enter the remaining comments and code shown in Figure 8-18.

4. Save the solution and then start the application. Use the quantity, price, and check box
information shown earlier in Figure 8-16, as well as your own data, to test the
application.

5. When you are finished testing the application, click the Exit button. Close the Code
Editor window and then close the solution.

Figure 8-19 shows still a different way of solving the Total Due Calculator problem, and Figure
8-20 shows the corresponding code.

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays the total amount due

 Const decDISC_RATE As Decimal = 0.1
 Dim intQuantity As Integer
 Dim decPrice As Decimal
 Dim decTotal As Decimal

 ' assign quantity and price to variables
 Integer.TryParse(txtQuantity.Text, intQuantity)
 Decimal.TryParse(txtPrice.Text, decPrice)

 ' calculate total due
 decTotal = intQuantity * decPrice
 If chkEmployee.Checked = True Then
 decTotal = decTotal * (1 - decDISC_RATE)
 End If

 ' display total due
 lblTotal.Text = decTotal.ToString("C2")
End Sub

calculates the
total due before
any discount

multiplies the
total due by 90%

Figure 8-18 Code corresponding to Figure 8-17’s algorithm

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

130

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays the total amount due

 Const decDISC_RATE As Decimal = 0.1
 Dim intQuantity As Integer
 Dim decPrice As Decimal
 Dim decTotal As Decimal

 ' assign quantity and price to variables
 Integer.TryParse(txtQuantity.Text, intQuantity)
 Decimal.TryParse(txtPrice.Text, decPrice)

 ' calculate total due
 decTotal = intQuantity * decPrice
 If chkEmployee.Checked = True Then
 Dim decDiscount As Decimal
 decDiscount = decTotal * decDISC_RATE
 decTotal = decTotal - decDiscount
 End If

 ' display total due
 lblTotal.Text = decTotal.ToString("C2")
End Sub

block-level variable

Figure 8-20 Code corresponding to Figure 8-19’s algorithm

Sam wants an application in which he can enter the quantity of an item
that a customer purchases and the item’s price. Customers who work at
Sam’s company are entitled to a 10% employee discount. The application
should both calculate and display the total amount the customer owes.

Output: total due

Processing: discount

Input: quantity ordered
 item price
 employee?

Algorithm:
1. enter the quantity ordered, item price, and employee? items
2. calculate the total due by multiplying the quantity ordered by the item price
3. if employee?, do this:
 calculate the discount by multiplying the total due by 10%
 subtract the discount from the total due
 end if
4. display the total due

Figure 8-19 A different way of solving the Total Due Calculator problem

Examining Another Problem Specification

131

Study closely the instructions in the selection structure’s true path in Figure 8-20. The
first instruction, Dim decDiscount As Decimal, declares a variable named decDiscount.
Like the variables declared at the beginning of a procedure, variables declared within a
statement block in a selection structure remain in memory until the procedure ends.
However, unlike variables declared at the beginning of a procedure, variables declared
within a statement block have block scope rather than procedure scope. A variable that
has procedure scope can be used anywhere within the procedure, whereas a variable that
has block scope can be used only within the statement block in which it is declared, and
only after its declaration statement. In this case, for example, the intQuantity,
decPrice, and decTotal variables (and also the decDISC RATE named constant) can be
used anywhere within the btnCalc control’s Click event procedure, but the decDiscount
variable can be used only within the If…Then…Else statement’s true path.

You may be wondering why the decDiscount variable was not declared at the beginning of
the procedure, along with the other variables. Although there is nothing wrong with
declaring all variables at the beginning of a procedure, the decDiscount variable is
necessary only when the discount needs to be calculated, so many programmers prefer to
create the variable only if it is necessary to do so. This is because fewer unintentional errors
occur in applications when the variables are declared using the minimum scope needed. In
this case, the minimum scope for the decDiscount variable is block scope, because only the
selection structure’s true path uses the variable. A variable declared within a statement
block is called a block-level variable.

To code this version of the Total Due Calculator application and then test the code:

1. Open the Total Due Solution (Total Due Solution.sln) file contained in the
ClearlyVB2010\Chap08\Total Due Solution—Version 3 folder. If the designer window is
not open, double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window, which contains the code for the btnExit control’s Click
event procedure. Open the code template for the btnCalc control’s Click event
procedure. Type the following comment and then press Enter twice:

' calculates and displays the total amount due

3. Now enter the remaining comments and code shown earlier in Figure 8-20.

4. Save the solution and then start the application. Use the quantity, price, and check box
information shown earlier in Figure 8-16, as well as your own data, to test the
application.

5. When you are finished testing the application, click the Exit button. Close the Code
Editor window and then close the solution.

Mini-Quiz 8-2
See Appendix B for the answers.

1. Write an If…Then…Else statement that displays the string “Overtime pay” in the
lblMsg control when the number of hours contained in the decHours variable is
greater than 40.

2. Modify the If…Then…Else statement from Question 1 so that it displays the string
“Regular pay only” when the selection structure’s condition evaluates to False.

For more
examples
of selection
structures,
see the

Selection Structure sec-
tion in the Ch8WantMore.
pdf file.

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

132

3. What is the scope of a variable declared in a selection structure’s false path?

a. the entire application

b. the procedure containing the selection structure

c. the entire selection structure

d. only the selection structure’s false path

Summary
l The selection structure is one of the three basic control structures used in programs. It is

used when you need the computer to make a decision and then take an appropriate action.

l Studying the problem specification will help you determine whether a solution requires a
selection structure.

l You should indent the instructions in a selection structure’s true path and also in its false
path. The set of instructions in each path is called a statement block.

l You can use the If…Then…Else statement to code the selection structure in Visual Basic.
The statement’s condition must contain an expression that evaluates to a Boolean value,
either True or False. You will find comparison operators in most conditions.

l An expression containing a comparison operator will always evaluate to either True or False.

l In a flowchart, the selection structure’s condition is represented by a diamond, which is
called the decision symbol. The diamond should contain a question or comparison that
evaluates to either True or False only. The two flowlines leading out of the diamond should
be marked to indicate the true path and the false path.

l The three-character ID for naming check boxes is chk. When a check box is selected, its
Checked property contains the Boolean value True; otherwise, its Checked property contains
the Boolean value False.

l There are many ways to solve the same problem.

l A block-level variable has block scope, which means it can be used only within the statement
block in which it is declared, and only after its declaration statement.

Key Terms
Block scope—the scope of a variable declared within a statement block; a variable with block
scope can be used only within the statement block in which it is declared, and only after its
declaration statement

Block-level variable—a variable declared within a statement block; the variable has block scope

Check boxes—controls used to offer the user one or more independent and nonexclusive choices

Comparison operators—operators used to compare values in an expression

Condition—specifies the decision you are making and must be phrased so that it evaluates to a
Boolean value (either True or False)

Decision symbol—the diamond in a flowchart; used to represent the condition in selection and
repetition structures

Dual-alternative selection structures—selection structures that require the computer to
perform one set of actions when the structure’s condition evaluates to True, but a different set of
actions when the structure’s condition evaluates to False

It’s time to
view the
Ch08-
Selection
Structure
video.

Key Terms

133

False path—contains the instructions to be processed when a selection structure’s condition
evaluates to False

If…Then…Else statement—used to code the single-alternative and dual-alternative forms of the
selection structure in Visual Basic

Selection structure—one of the three basic control structures; directs the computer to make a
decision based on some condition and then select the appropriate action; also called the decision
structure

Single-alternative selection structure—a selection structure that requires the computer to
perform a special set of actions only when the structure’s condition evaluates to True

Statement block—in a selection structure, the set of statements in the true path and the set of
statements in the false path

True path—contains the instructions to be processed when a selection structure’s condition
evaluates to True

Review Questions
1. Which of the following conditions evaluates to True when the intPopulation variable

contains the number 56000?

a. If intPopulation = 56000 Then

b. If intPopulation <> 0 Then

c. If intPopulation > 1 Then

d. all of the above

2. Which of the following conditions evaluates to True when the chkShipping check box is
not selected?

a. If chkShipping.Check = False Then

b. If chkShipping.Checked = False Then

c. If chkShipping.Checked = No Then

d. If chkShipping.Check = No Then

3. Which of the following has block scope?

a. a variable declared at the beginning of a procedure

b. a variable declared within a selection structure’s true path

c. a variable declared within a selection structure’s false path

d. both b and c

4. Which of the following symbols is used to represent the selection structure’s condition in
a flowchart?

a. diamond

b. oval

c. parallelogram

d. rectangle

5. If the decRate variable contains the number .25, the condition decRate > 1 will evaluate
to ___________ .

a. False

b. No

c. True

d. Yes

6. If the intNum1 and intNum2 variables contain the numbers 10 and 7, respectively, the
condition intNum1 + 40 – 1 <= intNum2 ^ 2 evaluates to ___________ .

a. False

b. No

c. True

d. Yes

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

134

7. Which of the following is the “not equal to” comparison operator in Visual Basic?

a. ≠

b. ><

c. Not =

d. <>

Exercises
1. Open the AddSub Solution (AddSub Solution.sln) file contained in the ClearlyVB2010\

Chap08\AddSub Solution folder. The interface provides text boxes for the user to enter
two integers. If the Subtraction check box is selected, the application should subtract the
second integer from the first integer; otherwise, it should add both integers. List the
output and input items, as well as any processing items, and then create an appropriate
algorithm. Code the btnCalc control’s Click event procedure. Save the solution and then
start and test the application. Close the Code Editor window and then close the solution.
(See Appendix B for the answer.)

2. Open the New Pay Solution (New Pay Solution.sln) file contained in the
ClearlyVB2010\Chap08\New Pay Solution folder. The application calculates and
displays the amount of an employee’s new weekly pay. Figure 8-21 shows the output,
processing, and input items; it also shows the algorithm. Code the algorithm using
Decimal variables for everything but the pay code. Format the new weekly pay with a
dollar sign and two decimal places. Save the solution. Desk-check the program twice,
first using 1 as the pay code and 200 as the current weekly pay, and then using 3 as the
pay code and 200 as the current weekly pay. Start and then test the application. Close
the Code Editor window and then close the solution. (See Appendix B for the answer.)

3. In this exercise, you modify one of the Total Due applications completed in the chapter.
Use Windows to make a copy of the Total Due Solution folder. Save the copy in the
ClearlyVB2010\Chap08 folder. Rename the copy Modified Total Due Solution. Open the
Total Due Solution (Total Due Solution.sln) file contained in the Modified Total Due
Solution folder. Currently, the selection structure in the btnCalc control's Click event
procedure determines whether the check box is selected. Modify the selection structure so

TRY THIS

TRY THIS

MODIFY THIS

Output: new weekly pay

Processing: raise rate
 weekly raise

Input: pay code
 current weekly pay

Algorithm:
1. enter the pay code and current weekly pay
2. if the pay code is 1, do this:
 assign .03 as the raise rate
 otherwise, do this:
 assign .05 as the raise rate
 end if
3. calculate the weekly raise by multiplying the current weekly
 pay by the raise rate
4. calculate the new weekly pay by adding the weekly raise to
 the current weekly pay
5. display the new weekly pay

Figure 8-21 Information for Exercise 2

Exercises

135

that it determines whether the check box is not selected. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

4. Computer Haven offers programming seminars to companies. The price per person
depends on the number of people the company registers. If the company registers more
than 10 people, the price per person is $80; otherwise, the price per person is $100.
Computer Haven wants an application that calculates the total amount a company
owes. Display the total amount with a dollar sign and no decimal places.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Seminar Solution and Seminar Project. Save the
application in the ClearlyVB2010\Chap08 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Include an Exit button. Code the Exit button’s Click event
procedure and the problem’s algorithm. Save the solution. Desk-check the program
using your own sample data.

d. Start and then test the application. Close the Code Editor window and then close the
solution.

5. Tea Time Company wants an application that allows the clerk to enter the number of
pounds of tea ordered, the price per pound, and whether the customer should be
charged a $15 shipping fee. Use a check box for the shipping information. The
application should calculate the total due.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Tea Time Solution and Tea Time Project. Save the
application in the ClearlyVB2010\Chap08 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Include an Exit button. Code the Exit button’s Click event
procedure and the problem’s algorithm. Save the solution. Desk-check the program
using your own sample data.

d. Start and then test the application. Close the Code Editor window and then close the
solution.

6. Marcy’s Department Store is having a BoGoHo (Buy One, Get One Half Off) sale. The
store manager wants an application that allows the store clerk to enter the prices of two
items. The application should both calculate and display the total owed. The half-off
should always be taken on the item having the lowest price. For example, if one item costs
$24.99 and the second item costs $12.50, the $12.50 item would be half-off. (In other
words, the item would cost $6.25.) Create a Visual Basic Windows application. Use the
following names for the solution and project, respectively: Marcy Solution and Marcy
Project. Save the application in the ClearlyVB2010\Chap08 folder. Change the name of
the form file on your disk to frmMain.vb. If necessary, change the form’s name to
frmMain. Create a suitable interface. Code the application. Save the solution and then
start and test the application. Close the Code Editor window and then close the solution.

7. Allenton Water Department wants an application that calculates a customer’s monthly
water bill. The clerk will enter the current and previous meter readings. The application
should calculate and display the number of gallons of water used and the total charge for
the water. The charge for water is $7 per 1000 gallons, or .007 per gallon. Make the
calculations only when the current meter reading is greater than or equal to the previous
meter reading; otherwise, display N/A as both the number of gallons used and total charge.
Create a Visual Basic Windows application. Use the following names for the solution and

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTRODUCTORY

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

136

project, respectively: Allenton Solution and Allenton Project. Save the application in
the ClearlyVB2010\Chap08 folder. Change the name of the form file on your disk to
frmMain.vb. If necessary, change the form’s name to frmMain. Create a suitable interface.
Code the application. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

8. Triple County Electric wants an application that calculates a customer’s monthly
electric bill. The clerk will enter the total number of units used during the month. The
application should calculate and display the total charge. The charge per unit is $0.13.
However, there is a minimum charge of $20. (In other words, every customer must pay
at least $20.) Create a Visual Basic Windows application. Use the following names for
the solution and project, respectively: Triple County Solution and Triple County
Project. Save the application in the ClearlyVB2010\Chap08 folder. Change the name of
the form file on your disk to frmMain.vb. If necessary, change the form’s name to
frmMain. Create a suitable interface. Code the application. Save the solution and then
start and test the application. Close the Code Editor window and then close the
solution.

9. Open the Swap Solution (Swap Solution.sln) file contained in the ClearlyVB2010\
Chap08\Swap Solution folder. Open the Code Editor window. The Swap button’s Click
event procedure assigns the values entered in the two text boxes to two variables. The
procedure should determine if the value in the intNum1 variable is greater than the
value in the intNum2 variable. If it is, the procedure should swap the values in both
variables. In other words, the intNum1 variable should always contain a value that is less
than or equal to the value in the intNum2 variable. Complete the procedure accordingly.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

10. In this exercise, you modify the application from Chapter 6’s Exercise 10. If you did not
complete Chapter 6’s Exercise 10, you will need to do so before you can complete this
exercise. Use Windows to copy the Sun Solution folder from the ClearlyVB2010\
Chap06 folder to the ClearlyVB2010\Chap08 folder. Open the Sun Solution (Sun
Solution.sln) file contained in the ClearlyVB2010\Chap08\Sun Solution folder. Modify
the code so that it pays the employee time and one-half for any hours worked over 40.
Save and then start the application. Test the application using 35.5 as the hours worked
and 9.56 as the pay rate. The net pay will be $237.56. Now test the application using 44
as the hours worked and 9.56 as the pay rate. The net pay will be $307.83. Close the
Code Editor window and then close the solution.

11. Ned’s Health Club wants an application that calculates and displays a member’s monthly
dues. Each member is charged a basic fee of $25 per month. However, there are
additional monthly charges for golf ($10), racquetball ($5), and tennis ($20). The
interface should include three check boxes for the additional charge information. Use a
text box for the member’s name and a label to display the monthly dues. Create a Visual
Basic Windows application. Use the following names for the solution and project,
respectively: Health Solution and Health Project. Save the application in the
ClearlyVB2010\Chap08 folder. Change the name of the form file on your disk to
frmMain.vb. If necessary, change the form’s name to frmMain. Create the interface and
then code the application. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

12. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap08\FigureThisOut Solution folder. Start the application. Enter 2 as
the first number and 5 as the second number, and then click the Display button. Enter 7
as the first number and 6 as the second number, and then click the Display button. Stop
the application. Open the Code Editor window and study the btnDisplay control’s Click

INTERMEDIATE

ADVANCED

INTERMEDIATE

FIGURE THIS OUT

ADVANCED

Exercises

137

event procedure. What task is performed by the procedure? What is the purpose of the
selection structure? What is the purpose of the block-level variable? Why is the variable
necessary? Close the Code Editor window and then close the solution.

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap08\SwatTheBugs Solution folder. Open the Code Editor window
and study the code. Start and then test the application. Notice that the code is not
working correctly. Locate and correct any errors. Close the Code Editor window and
then close the solution.

SWAT THE BUGS

CH A P T E R 8 Decisions, Decisions, Decisions (Selection Structure)

138

CHAPTER 9
Time to Leave the Nest
(Nested Selection
Structures)

After studying Chapter 9, you should be able to:

Nest selection structures

Include logical operators in a selection structure’s condition

Nested Selection Structures
As you learned in Chapter 8, you use the selection structure to make a decision and then
select the appropriate path—either the true path or the false path—based on the result. Both
paths in a selection structure can include instructions that declare variables, perform
calculations, and so on. In this chapter, you will learn that both paths also can include other
selection structures. When either a selection structure’s true path or its false path contains
another selection structure, the inner selection structure is referred to as a nested selection
structure, because it is contained (nested) within the outer selection structure.

Similar to the initial examples of selection structures in Chapter 8, the first examples of
nested selection structures will involve Rob, the mechanical man. The first problem
specification and its algorithm are shown in Figure 9-1. (The problem specification and
algorithm are from Figure 8-4 in Chapter 8. Figure 8-3 shows an illustration of Rob and the
containers.) The algorithm requires a selection structure, but not a nested one. This is
because only one decision—whether Rob is holding a bag of trash—is necessary.

Now let’s make a slight change to the problem specification in Figure 9-1. This time,
the status of the lid on each container is not known: one or both of the lids could be on
or off. Consider the changes you will need to make to the original algorithm in Figure 9-1.
The first instruction in the original algorithm represents the selection structure’s
condition. The condition requires Rob to make a decision about the contents of the bag
he is holding; Rob still will need to make this decision. The next three instructions tell
Rob what to do when the condition is true, which is when the bag contains trash. The
first instruction in the true path directs Rob to lift the Trash container’s lid. That
instruction was correct for the original problem specification, which states that the lid
is on the container. However, in the modified problem specification, the status of the lid
is not known. Therefore, Rob first will need to make a decision about the lid’s status
and then only lift the lid if it’s on the container. The last two instructions in the true
path direct Rob to drop the bag of trash in the Trash container and then put the lid
back on the container; Rob still will need to follow both instructions. Now look at the
false path of the selection structure in Figure 9-1. The first instruction in the false path
directs Rob to lift the lid from the Recycle container. Here again, Rob first will need to
determine whether it’s necessary to do this. The last two instructions in the false path
tell Rob to drop the bag of recyclables in the Recycle container and then put the lid
back on the container; Rob still will need to follow both instructions.

condition

Rob is holding either a bag of trash or a bag of recyclables in his right hand.
He is directly in front of two containers: one marked Trash and the other marked
Recycle. A lid is on each container. Rob needs to lift the lid from the appropriate
container, drop the bag in the container, and then put the lid back on the container.

if the bag contains trash, do this:
 lift the Trash container’s lid with your left hand
 drop the bag of trash in the Trash container
 put the lid back on the Trash container with your left hand
otherwise, do this:
 lift the Recycle container’s lid with your left hand
 drop the bag of recyclables in the Recycle container
 put the lid back on the Recycle container with your left hand
end if

true path

false path

Figure 9-1 A problem that requires a dual-alternative selection structure

CH A P T E R 9 Time to Leave the Nest (Nested Selection Structures)

140

Figure 9-2 shows the modified problem specification and algorithm. The modified
algorithm contains an outer dual-alternative selection structure and two nested single-
alternative selection structures. The outer selection structure begins with the if the bag
contains trash, do this: line, and it ends with the last end if line. The otherwise, do this:
line belongs to the outer selection structure and separates the structure’s true path from
its false path. Notice that the instructions in both paths are indented within the outer
selection structure. Indenting in this manner clearly indicates the instructions to be
followed when Rob is holding a bag of trash, as well as the ones to be followed when the
bag does not contain trash.

One of the nested selection structures appears in the outer selection structure’s true path,
and the other appears in its false path. The nested selection structure in the true path
begins with the if the lid is on the Trash container, do this: line, and it ends with the
first end if line. The instruction between both lines is indented to indicate that it is part
of the nested selection structure. The nested selection structure in the false path begins
with the if the lid is on the Recycle container, do this: line, and it ends with the second
end if line. Here again, the instruction between both lines is indented within the nested
selection structure. For a nested selection structure to work correctly, it must be
contained entirely within the outer selection structure. Each nested selection structure in
Figure 9-2, for example, appears entirely within its corresponding path in the outer
selection structure.

Figure 9-3 shows another problem specification and algorithm involving Rob. As the algorithm
indicates, Rob needs to ask the store clerk whether the store accepts the Discovery card.
Depending on the answer, Rob will use either his Discovery card or cash to pay for the items he
is purchasing.

if the bag contains trash, do this:
 if the lid is on the Trash container, do this:
 lift the Trash container’s lid with your left hand
 end if
 drop the bag of trash in the Trash container
 put the lid back on the Trash container with your left hand
otherwise, do this:
 if the lid is on the Recycle container, do this:
 lift the Recycle container’s lid with your left hand
 end if
 drop the bag of recyclables in the Recycle container
 put the lid back on the Recycle container with your left hand
end if

Rob is holding either a bag of trash or a bag of recyclables in his right hand.
He is directly in front of two containers: one marked Trash and the other
marked Recycle. Rob needs to lift the lid from the appropriate container
(if necessary), drop the bag in the container, and then put the lid back on
the container.

outer selection
structure

nested selection
structure

nested selection
structure

Figure 9-2 A problem that requires nested single-alternative selection structures

Nested Selection Structures

141

Here too, let’s change Figure 9-3’s problem specification. This time, Rob would like to use
either his Discovery card or his Vita card, but he prefers to use his Discovery card. If the
store does not take either card, Rob will need to pay cash for the items he is purchasing.
Consider the changes you will need to make to the original algorithm in Figure 9-3. Rob
still will need to ask the store clerk whether the store accepts the Discovery card; and if it
does, he should use that card to pay for his items. Therefore, the first three lines in the
original algorithm do not need to be changed. The next line in the algorithm is the
otherwise, do this: line. The modified algorithm still will need this line to indicate that there
are tasks to be performed when the store does not accept the Discovery card. The next line
in the original algorithm tells Rob to use cash to pay for his items. That instruction was
correct for the original problem specification, which gave Rob only two payment choices:
either his Discovery card or cash. However, in the modified problem specification, Rob has
three payment choices: his Discovery card, his Vita card, or cash. Before paying with cash,
Rob needs to inquire whether the store accepts the Vita card; if it does, Rob should use his
Vita card to pay for his items. Rob should pay with cash only when the store does not
accept either credit card.

Figure 9-4 shows the modified problem specification and algorithm. The modified
algorithm contains an outer dual-alternative selection structure and a nested dual-
alternative selection structure. The outer selection structure begins with the if the
store accepts the Discovery card, do this: line, and it ends with the last end if line. The
first otherwise, do this: line belongs to the outer selection structure and separates the
outer structure’s true path from its false path. Notice that the instructions in the
outer selection structure’s true and false paths are indented. The nested selection
structure, which appears in the outer selection structure’s false path, begins with the
if the store accepts the Vita card, do this: line, and it ends with the first end if line.
The indented otherwise, do this: line belongs to the nested selection structure and
separates the nested structure’s true path from its false path. For clarity, the instructions
in the nested selection structure’s true and false paths are indented within the structure.
Notice that the entire nested selection structure is contained in the outer selection
structure’s false path.

Rob is at a store’s checkout counter. He would like to use his Discovery
credit card to pay for the items he is purchasing, but he’s not sure
whether the store accepts the card. If the store doesn’t accept the
Discovery card, Rob will need to pay cash for the items.

1. ask the store clerk whether the store accepts the Discovery card

2. if the store accepts the Discovery card, do this:
 pay for your items using your Discovery card
 otherwise, do this:
 pay for your items using cash
 end if

condition

true path

false path

Figure 9-3 Another problem that requires a dual-alternative selection structure

CH A P T E R 9 Time to Leave the Nest (Nested Selection Structures)

142

Mini-Quiz 9-1
See Appendix B for the answers.

1. Rob is sitting in a chair in his living room. Next to the chair is a table. On top of the
table is Rob’s cell phone. Your task is to direct Rob to answer his cell phone, but
only when the phone rings. Does the solution to this problem require a nested
selection structure? If so, what decision needs to be made by the nested selection
structure’s condition?

2. Rob is sitting in a chair in his living room. Next to the chair is a table. On top of
the table is Rob’s cell phone. Your task is to direct Rob to answer his cell phone,
but only when the phone rings. If the caller is a telemarketer, Rob should hang
up the phone. Does the solution to this problem require a nested selection
structure? If so, what decision needs to be made by the nested selection
structure’s condition?

3. Rob is holding either a red ball or a yellow ball. He is facing two boxes: one red and
the other yellow. Your task is to direct Rob to drop the ball he is carrying in the
appropriate box, but only if the box is not already full. How many nested selection
structures does this problem require? What decision needs to be made by each
nested selection structure’s condition?

Putting Rob’s Problems Aside
Figure 9-5 shows a problem specification that doesn’t involve Rob, the mechanical man. It also
shows a correct algorithm for the problem. The algorithm requires only one selection structure.
This is because only one decision needs to be made to solve the problem. In this case, the
decision is whether the user wants to perform subtraction.

Rob is at a store’s checkout counter. He would like to use one of his credit
cards—either his Discovery card or his Vita card, but preferably his Discovery
card—to pay for the items he is purchasing. However, Rob is not sure whether
the store accepts either card. If the store doesn’t accept either card, Rob will
need to pay cash for the items.

1. ask the store clerk whether the store accepts the Discovery card
2. if the store accepts the Discovery card, do this:
 pay for your items using your Discovery card
 otherwise, do this:
 ask the store clerk whether the store accepts the Vita card
 if the store accepts the Vita card, do this:
 pay for your items using your Vita card
 otherwise, do this:
 pay for your items using cash
 end if
 end if

outer selection
structure

nested selection
structure

Figure 9-4 A problem that requires a nested dual-alternative selection structure

Nested Selection Structures

143

Consider how you would need to change the algorithm in Figure 9-5 if, when performing
subtraction, Jennifer wants the application to always subtract the smaller integer from the larger
one. The modified problem specification and its algorithm are shown in Figure 9-6. Unlike the
original algorithm, the modified algorithm needs to make two decisions. The first decision
determines whether the user wants to perform subtraction; if she does, a second decision needs
to be made. The second decision determines whether the first integer is greater than the second
integer. You will code Figure 9-6’s algorithm in the next set of steps.

Jennifer wants an application that calculates and displays either the sum of the two
integers she enters or the difference between both integers.

Output: answer

Input: first integer
 second integer
 subtraction?

Algorithm:
1. enter the first integer, second integer, and subtraction? items
2. if subtraction?, do this:
 calculate the answer by subtracting the second integer from the first integer
 otherwise, do this:
 calculate the answer by adding the second integer to the first integer
 end if
3. display the answer

Figure 9-5 Math problem specification and algorithm

Jennifer wants an application that calculates and displays either the sum of the
two integers she enters or the difference between both integers. However, when
calculating the difference, she wants the application to always subtract the
smaller integer from the larger one.

Output: answer

Input: first integer
 second integer
 subtraction?

Algorithm:
1. enter the first integer, second integer, and subtraction? items
2. if subtraction?, do this:
 if the first integer is greater than the second integer, do this:
 calculate the answer by subtracting the second integer from the first integer
 otherwise, do this:
 calculate the answer by subtracting the first integer from the second integer
 end if
 otherwise, do this:
 calculate the answer by adding the second integer to the first integer
 end if
3. display the answer

outer selection structure

nested
selection
structure

Figure 9-6 Modified math problem specification and its algorithm

For more
experience
in examin-
ing problem
specifica-

tions, see the Problem
Specifications section in
the Ch9WantMore.pdf file.

CH A P T E R 9 Time to Leave the Nest (Nested Selection Structures)

144

To code the Addition and Subtraction Calculator application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the AddSub Solution (AddSub Solution.sln) file
contained in the ClearlyVB2010\Chap09\AddSub Solution folder. If the designer window
is not open, double-click frmMain.vb in the Solution Explorer window. The
application’s interface is shown in Figure 9-7.

2. Auto-hide the Solution Explorer window and then open the Code Editor window, which
contains the code for the btnExit control’s Click event procedure. It also contains the
partially completed code for the btnCalc control’s Click event procedure.

3. The first step in the algorithm shown in Figure 9-6 is to enter the input items. The user
will enter the first and second integers in the txtNum1 and txtNum2 controls, respectively,
and use the Subtraction check box to indicate subtraction. The btnCalc control’s Click
event procedure already contains the code to declare the necessary variables, as well as to
assign the integers to variables. The second step in the algorithm is an outer selection
structure whose condition determines whether the user wants to perform subtraction.
This can be determined using the Subtraction check box’s Checked property. Click the
blank line below the ' calculate and display the difference or sum comment in the
btnCalc control’s Click event procedure. Enter the following If clause:

If chkSubtract.Checked = True Then

4. If the Subtraction check box is selected, a nested selection structure should determine
whether the first integer is greater than the second integer. Enter the following If clause:

If intNum1 > intNum2 Then

5. If the first integer is greater than the second integer, the nested selection structure’s true
path should calculate the answer by subtracting the second integer from the first integer.
Enter the following assignment statement:

intAnswer = intNum1 – intNum2

6. If the first integer is not greater than the second integer, the nested selection structure’s
false path should calculate the answer by subtracting the first integer from the second
integer. Enter the following Else clause and assignment statement:

Else
intAnswer = intNum2 – intNum1

7. If necessary, delete the blank line above the nested selection structure’s End If clause.

8. You have finished coding the nested selection structure and the true path of the outer
selection structure. However, you still need to code the outer selection structure’s false
path. If the Subtraction check box is not selected, it means that the user wants addition.

chkSubtract

txtNum1

txtNum2

lblAnswer

Figure 9-7 Addition and Subtraction Calculator application’s interface

Nested Selection Structures

145

Therefore, the outer selection structure’s false path should add together both integers.
Click after the letter f in the first End If clause and then press Enter to insert a
blank line. Enter the following Else clause and assignment statement:

Else
intAnswer = intNum2 + intNum1

9. If necessary, delete the blank line above the outer selection structure’s End If clause.
Figure 9-8 shows the code entered in the procedure.

To test the Addition and Subtraction Calculator application:

1. Save the solution and then start the application. Type 22 in the Number 1 box
and type 12 in the Number 2 box. Click the Calculate button. The button’s Click
event procedure adds together both integers and then displays the sum (34) in the
Answer box.

2. Click the Subtraction check box to select it, and then click the Calculate button.
The button’s Click event procedure subtracts the smaller integer (12) from the larger
integer (22) and then displays the difference (10) in the Answer box.

3. Change the contents of the Number 1 box to 5 and then click the Calculate button.
The button’s Click event procedure subtracts the smaller integer (5) from the larger
integer (12) and then displays the difference (7) in the Answer box. See Figure 9-9.

4. Click the Exit button to stop the application.

outer selection
structurenested selection

structure

Figure 9-8 btnCalc control’s Click event procedure

Figure 9-9 Difference shown in the interface

CH A P T E R 9 Time to Leave the Nest (Nested Selection Structures)

146

Let’s Go to the Swap Meet
Jennifer thinks that the interface shown in Figure 9-9 might be misleading, because it looks as
though the answer (7) is the result of subtracting the number 12 from the number 5. She has
asked you to modify the application to make it obvious that the answer is the result of
subtracting the smaller integer from the larger integer—in this case, subtracting 5 from 12. You
can do this by swapping the contents of both text boxes when the smaller integer appears in the
Number 1 text box. You swap the values by assigning the first integer (which the user enters in
the Number 1 text box) to the Number 2 text box, and assigning the second integer (which the
user enters in the Number 2 text box) to the Number 1 text box. But where do you enter the
swapping instructions? Look carefully at the algorithm shown earlier in Figure 9-6. Locate the
instructions that are followed when the user wants to perform subtraction; you will need to
enter the swapping instructions somewhere in that location. In this case, the instructions in the
nested selection structure are followed when the Subtraction check box is selected. Now
consider where (in the nested selection structure) to enter the swapping instructions. If the
nested selection structure’s condition evaluates to True, it means that the Number 1 text box
already contains the larger integer; so no swap is necessary in the nested selection structure’s
true path. However, if the nested selection structure’s condition evaluates to False, it means that
the number in the Number 1 text box is not larger than the number in the Number 2 text box;
the numbers in both text boxes should be swapped at this point. Figure 9-10 shows the first
modification to the algorithm from Figure 9-6.

When comparing two numbers, keep in mind that the first number can be greater than, less
than, or equal to the second number. Study the comparison made in the nested selection
structure’s condition in Figure 9-10. If the condition evaluates to True, it means that the first
integer (entered in the Number 1 text box) is the larger of the two integers, so the answer can be
calculated by subtracting the second integer from the first integer. However, if the condition
evaluates to False, it doesn’t necessarily mean that the first integer (entered in the Number 1 text
box) is less than the second integer (entered in the Number 2 text box); both integers could be
equal. Therefore, the modified algorithm in Figure 9-10 will swap the text box values when the
first integer is either less than or equal to the second integer. Although you could leave the
algorithm as is, there is no reason to swap the text box values when both integers are equal. You
can fix the algorithm by including the “equal to” comparison in the nested selection structure’s
condition, as shown in the final algorithm in Figure 9-11. In the final algorithm, the nested
selection structure’s condition determines whether the first integer is greater than or equal to
the second integer. If the condition evaluates to True, the answer is calculated by subtracting the

Algorithm:
1. enter the first integer, second integer, and subtraction? items
2. if subtraction?, do this:
 if the first integer is greater than the second integer, do this:
 calculate the answer by subtracting the second integer from the first integer
 otherwise, do this:
 assign the second integer to the Number 1 text box
 assign the first integer to the Number 2 text box
 calculate the answer by subtracting the first integer from the second integer
 end if
 otherwise, do this:
 calculate the answer by adding the second integer to the first integer
 end if
3. display the answer

two instructions added to the nested
selection structure’s false path

Figure 9-10 First modification to the algorithm from Figure 9-6

Nested Selection Structures

147

second integer from the first integer. If the condition evaluates to False, the text box values are
swapped and the answer is calculated by subtracting the first integer from the second integer.

To modify the btnCalc control’s Click event procedure and then test the code:

1. Change the nested selection structure’s condition to intNum1 >= intNum2.

2. Click after the letter e in the nested selection structure’s Else clause, and then press
Enter to insert a blank line in the nested selection structure’s false path. Enter the
following assignment statements:

txtNum1.Text = intNum2
txtNum2.Text = intNum1

3. If necessary, delete the blank line above the last assignment statement in the nested
selection structure’s false path. See Figure 9-12.

Algorithm:
1. enter the first integer, second integer, and subtraction? items

2. if subtraction?, do this:
 if the first integer is greater than or equal to the second integer, do this:
 calculate the answer by subtracting the second integer from the first integer
 otherwise, do this:
 assign the second integer to the Number 1 text box
 assign the first integer to the Number 2 text box
 calculate the answer by subtracting the first integer from the second integer
 end if
 otherwise, do this:
 calculate the answer by adding the second integer to the first integer
 end if
3. display the answer

added to the nested selection
structure’s condition

two instructions added to the nested
selection structure’s false path

Figure 9-11 Final algorithm for the math problem

added to the nested selection
structure’s false path

added to the nested selection
structure’s condition

Figure 9-12 Completed Click event procedure for the btnCalc control

CH A P T E R 9 Time to Leave the Nest (Nested Selection Structures)

148

4. Save the solution and then start the application. Type 22 in the Number 1 box and
type 12 in the Number 2 box. Click the Calculate button. The button’s Click
event procedure adds together both integers and then displays the sum (34) in the
Answer box.

5. Click the Subtraction check box and then click the Calculate button. The button’s
Click event procedure subtracts the smaller integer (12) from the larger integer (22) and
then displays the difference (10) in the Answer box.

6. Change the contents of the Number 1 box to 5 and then click the Calculate button. The
button’s Click event procedure swaps the values in the text boxes. It then subtracts the
smaller integer (5) from the larger integer (12) and displays the difference (7) in the
Answer box. See Figure 9-13.

7. Click the Exit button. Close the Code Editor window and then close the solution.

That’s Way Too Logical for Me
In Chapter 8, you learned how to include comparison operators in an If…Then…Else
statement’s condition. You also can include logical operators in the condition. Logical operators
let you combine two or more conditions, referred to as sub-conditions, into one compound
condition. Logical operators are sometimes referred to as Boolean operators, because the
compound condition in which they are contained always evaluates to a Boolean value (either
True or False). Figure 9-14 lists two of the logical operators available in Visual Basic, along with
their order of precedence. It also contains examples of using logical operators to create
compound conditions. Notice that the compound condition in each example evaluates to either
True or False only.

the text box values
were swapped

Figure 9-13 Interface showing that the values were swapped

That’s Way Too Logical for Me

149

Now, study the problem specification and algorithm shown in Figure 9-15. The selection
structure in the algorithm makes a decision regarding the employee’s hours. More specifically,
it determines whether the hours are within the acceptable range. In this case, the acceptable
range is greater than or equal to 0 but less than or equal to 40. Now compare the selection
structure in the algorithm with the code shown in Figure 9-16. Notice that the if the hours
worked are greater than or equal to 0 but less than or equal to 40, do this: line is coded as If
dblHours >= 0 AndAlso dblHours <= 40 Then in Visual Basic.

Logical operator Operation Precedence number
AndAlso all sub-conditions must be true for the 1
 compound condition to evaluate to True

OrElse only one of the sub-conditions needs to 2
 be true for the compound condition to
 evaluate to True

Example 1
If intPopulation > 25000 AndAlso intPopulation <= 50000 Then
The compound condition evaluates to True when the intPopulation variable’s value
is greater than 25000 but less than or equal to 50000; otherwise, it evaluates to False.

Example 2
If chkBonus.Checked = True AndAlso decSales > 50000 Then
The compound condition evaluates to True when the chkBonus control is selected
and, at the same time, the decSales variable’s value is greater than 50000;
otherwise, it evaluates to False.

Example 3
If intPayCode = 1 OrElse intPayCode = 2 Then
The compound condition evaluates to True when the intPayCode variable contains
either the number 1 or the number 2; otherwise, it evaluates to False.

Example 4
If intRating = 5 OrElse decSales <= 2500 Then
The compound condition evaluates to True when either (or both) of the following is
true: the intRating variable’s value is 5 or the decSales variable’s value is less
than or equal to 2500; otherwise, it evaluates to False.

Example 5
If intCode = 1 OrElse intNum > 0 AndAlso intNum < 100 Then
The compound condition evaluates to True when either (or both) of the following is
true: the intCode variable contains the number 1 or the intNum variable’s value is
between 0 and 100; otherwise, it evaluates to False. (The AndAlso operator is
evaluated before the OrElse operator, because it has a higher precedence.)

Figure 9-14 Logical operators and examples

CH A P T E R 9 Time to Leave the Nest (Nested Selection Structures)

150

To complete the Gross Pay application’s code:

1. Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the
ClearlyVB2010\Chap09\Gross Pay Solution folder. If the designer window is not open,
double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window, which contains the code for the btnExit control’s Click
event procedure. Click the blank line below the ' or display an error message
comment in the btnCalc control’s Click event procedure and then enter the following
selection structure:

If dblHours >= 0 AndAlso dblHours <= 40 Then
dblGross = dblHours * dblRATE
lblGross.Text = dblGross.ToString("C2")

Else

ABC Company wants an application that displays an employee’s gross pay.
All employees earn $8.35 per hour. The payroll clerk will enter the number
of hours worked, which should be greater than or equal to 0 but less than
or equal to 40.

Output: gross pay

Input: hours worked

Algorithm:
1. enter the hours worked
2. if the hours worked are greater than or equal to 0 but less than or equal to 40, do this:
 calculate the gross pay by multiplying the hours worked by 8.35
 display the gross pay
 otherwise, do this:
 display an error message
 end if

Figure 9-15 Gross pay problem specification and algorithm

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays a gross pay amount

 Const dblRATE As Double = 8.35
 Dim dblHours As Double
 Dim dblGross As Double

 Double.TryParse(txtHours.Text, dblHours)
 ' calculate and display gross pay
 ' or display an error message
 If dblHours >= 0 AndAlso dblHours <= 40 Then
 dblGross = dblHours * dblRATE
 lblGross.Text = dblGross.ToString("C2")
 Else
 lblGross.Text = "Incorrect hours"
 End If
End Sub

selection structure

Figure 9-16 Code corresponding to Figure 9-15’s algorithm

That’s Way Too Logical for Me

151

lblGross.Text = "Incorrect hours"
End If

3. Save the solution and then start the application. Type 20 in the Hours worked box
and then click the Calculate button. Because the hours are within the acceptable
range, the btnCalc control’s Click event procedure calculates the gross pay and
displays the result ($167.00) in the Gross pay box.

4. Change the hours entered in the Hours worked box to 45 and then click the Calculate
button. In this case, the hours worked are not within the acceptable range, so the
btnCalc control’s Click event procedure displays the “Incorrect hours” message in the
Gross pay box. See Figure 9-17.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Summary of Operators
Figure 9-18 contains a listing of the arithmetic, comparison, and logical operators you have
learned so far, along with their order of precedence. Notice that arithmetic operators are
evaluated first, followed by comparison operators and then logical operators. As a result, the
expression 12 > 0 AndAlso 12 < 10 * 2 evaluates to True, as shown in the figure.

Figure 9-17 Error message shown in the interface

Operator Operation
^ 1
–
*, /

4
 5

=, >, >=, <, <=, <> 7

AndAlso

OrElse

 Precedence number
exponentiation (raises a number to a power)
negation (reverses the sign of a number) 2
multiplication and division

\ integer division
Mod
+, – addition and subtraction

equal to, greater than, greater than or equal
to, less than, less than or equal to, not
equal to

all sub-conditions must be true for the

only one of the sub-conditions needs to be
true for the compound condition to evaluate
to True

Evaluation steps Result
Original expression 12 > 0 AndAlso 12 < 10 * 2
10 * 2 is evaluated first 12 > 0 AndAlso 12 < 20
12 > 0 is evaluated second True AndAlso 12 < 20
12 < 20 is evaluated third True AndAlso True
True AndAlso True is evaluated last True

arithmetic
operators

comparison
operators

logical
operators

example

modulus
6

compound condition to evaluate to True
8

9

3

Figure 9-18 Listing of arithmetic, comparison, and logical operators

For more
examples
of logical
operators,
see the

Logical Operators sec-
tion in the Ch9WantMore.
pdf file.

CH A P T E R 9 Time to Leave the Nest (Nested Selection Structures)

152

Mini-Quiz 9-2
See Appendix B for the answers.

1. Which of the following conditions determines whether the number in the intNum
variable is less than 0 or greater than 1000?

a. intNum < 0 AndAlso intNum > 1000

b. intNum < 0 OrElse intNum > 1000

c. intNum < 0 AndAlso > 1000

d. intNum < 0 OrElse > 1000

2. Which of the following conditions determines whether the number in the dblPrice
variable is greater than 15.45 but less than 25.75?

a. dblPrice < 15.45 AndAlso dblPrice > 25.75

b. dblPrice > 15.45 OrElse < 25.75

c. dblPrice > 15.45 AndAlso dblPrice < 25.75

d. dblPrice > 15.45 OrElse dblPrice < 25.75

3. Which of the following conditions determines whether both check boxes are selected?

a. chkDiscount.Checked = True AndAlso chkCoupon.Checked = True

b. chkDiscount.Checked = True OrElse chkCoupon.Checked = True

c. chkDiscount.Selected = True AndAlso chkCoupon.Selected = True

d. chkDiscount.Selected = True OrElse chkCoupon.Selected = True

4. The expression 6 + 3 > 7 AndAlso 8 < 4 will evaluate to ___________ .

a. True b. False

Summary
l Both paths in a selection structure can include other selection structures, called nested

selection structures.

l When two numbers are compared, the first number can be greater than, less than, or equal
to the second number.

l Logical operators are used to combine two or more sub-conditions into one compound
condition. The compound condition will always evaluate to either True or False only.

l When a compound condition contains the AndAlso logical operator, all of the sub-
conditions must be true for the compound condition to evaluate to True. When a
compound condition contains the OrElse logical operator, only one of the sub-conditions
needs to be true for the compound condition to evaluate to True.

l The AndAlso operator has a higher precedence than the OrElse operator.

l Arithmetic operators in an expression are evaluated first, followed by comparison operators
and then logical operators.

It’s time to
view the
Ch09-Nested
Selection
Structure
video.

Summary

153

Key Terms
Boolean operators—another term for logical operators

Logical operators—operators used to combine two or more sub-conditions into one compound
condition; examples are the AndAlso and OrElse operators; also called Boolean operators

Nested selection structure—a selection structure that is wholly contained (nested) within either
the true or false path of another selection structure

Swapping—exchanging or switching two values

Review Questions
Use the code shown in Figure 9-19 to answer Review Questions 1 and 2.

1. The intNum variable contains the number 1000 before the code in Figure 9-19 is
processed. What value will be in the variable after the code is processed?

a. 0

b. 1000

c. 2000

d. 3000

2. The intNum variable contains the number 200 before the code in Figure 9-19 is
processed. What value will be in the variable after the code is processed?

a. 0

b. 200

c. 400

d. 600

3. Which of the following expressions evaluates to True?

a. 7 > 4 AndAlso 6 <> 3

b. 9 + 3 < 20 OrElse 8 > 9

c. 67 Mod 2 = 1

d. all of the above

4. If the intUnits and dblPrice variables contain the numbers 5 and 12.45, respectively,
the intUnits > 0 AndAlso intUnits < 10 OrElse dblPrice > 25 expression evaluates
to ___________ .

a. True b. False

5. If the intUnits and dblPrice variables contain the numbers 5 and 12.45, respectively,
the intUnits > 0 AndAlso dblPrice > 0 AndAlso dblPrice < 10 expression evaluates
to ___________ .

a. True b. False

If intNum <= 100 Then
 intNum = intNum * 2
Else
 If intNum > 500 Then
 intNum = intNum * 3
 End If
End If

Figure 9-19 Code for Review Questions 1 and 2

CH A P T E R 9 Time to Leave the Nest (Nested Selection Structures)

154

6. Which of the operators in the expression 6 + 7 * 3 > 25 – 2 is evaluated first?

a. +

b. *

c. >

d. –

7. The expression in Review Question 6 evaluates to ___________ .

a. True b. False

Exercises
1. Open the Total Due Solution (Total Due Solution.sln) file contained in the

ClearlyVB2010\Chap09\Total Due Solution folder. Modify the btnCalc control’s Click
event procedure so that it calculates a 10% discount not only for employees, but for any
customer whose quantity ordered is at least 10. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution. (See
Appendix B for the answer.)

2. Open the Total Due Solution (Total Due Solution.sln) file contained in the
ClearlyVB2010\Chap09\Total Due Solution—Version 2 folder. Sam’s company now
gives a 12% discount to employees. Non-employees ordering more than 20 items receive
a 5% discount. Modify the btnCalc control’s Click event procedure. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution. (See Appendix B for the answer.)

3. In this exercise, you modify the Gross Pay application coded in the chapter. Use Windows
to make a copy of the Gross Pay Solution folder. Save the copy in the ClearlyVB2010\
Chap09 folder. Rename the copy Modified Gross Pay Solution. Open the Gross Pay
Solution (Gross Pay Solution.sln) file contained in the Modified Gross Pay Solution folder.
The selection structure’s condition in the Calculate button's Click event procedure
determines whether the hours worked are in the acceptable range. Modify the condition
so that it determines whether the hours worked are not in the acceptable range. Then
make the appropriate modifications to the instructions within the selection structure.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

4. Professor Jones wants an application that both calculates and displays a student’s
average score on two tests. Open the Jones Solution (Jones Solution.sln) file contained
in the ClearlyVB2010\Chap09\Jones Solution folder. Code the btnCalc control’s Click
event procedure. The procedure should verify that each score is valid. A valid score is
one that is greater than or equal to zero. The procedure should display an appropriate
message in the lblMessage control when one or more scores are not valid; otherwise, it
should calculate and display the average score. Format the average score using the “N1”
format. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

5. Geriatric Medical Supplies pays each salesperson a 3% bonus on his or her annual sales.
In addition, any salesperson who has been with the company for more than 10 years
receives an additional bonus. The additional bonus is $100 for each year the employee
has been with the company. The company wants an application that both calculates and
displays a salesperson’s total bonus. Include a dollar sign and two decimal places in the
total bonus amount.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm. The algorithm should verify that the sales amount entered by
the user is not less than zero. If it is less than zero, an appropriate error message
should be displayed.

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

Exercises

155

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Geriatric Solution and Geriatric Project. Save the
application in the ClearlyVB2010\Chap09 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Include an Exit button. Code the Exit button’s Click event
procedure and the problem’s algorithm. Save the solution. Desk-check the program
using your own sample data.

d. Start and then test the application. Close the Code Editor window and then close the
solution.

6. Small Loans Inc wants an application that displays the maximum amount a customer
can borrow. Use the following rules to determine the amount. Customers whose annual
salary is at least $35000 can borrow up to 25% of their salary, but only if they have been
employed at their current job for at least 5 years. If they have been employed less than 5
years, they can borrow only a maximum of 20% of their salary. Customers who earn less
than $35000 per year can borrow up to 5% of their salary. Create a Visual Basic
Windows application. Use the following names for the solution and project,
respectively: Loans Solution and Loans Project. Save the application in the
ClearlyVB2010\Chap09 folder. Change the name of the form file on your disk to
frmMain.vb. If necessary, change the form’s name to frmMain. Create a suitable
interface. Code the application. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

7. Open the Total Due Solution (Total Due Solution.sln) file contained in the
ClearlyVB2010\Chap09\Total Due Solution—Version 3 folder. Sam’s company now
gives a 15% discount to employees. Non-employees ordering more than 10 items receive
an 8% discount. Modify the btnCalc control’s Click event procedure. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

8. Westmoreland Water Department wants an application that calculates a customer’s
monthly water bill. The clerk will enter the current and previous meter readings. The
application should calculate and display the number of gallons of water used and the
total charge for the water. The charge for water is $6 per 1000 gallons, or .006 per
gallon. However, there is a minimum charge of $15.65. (In other words, every customer
must pay at least $15.65.) The application should determine whether the current meter
reading is greater than or equal to the previous meter reading; if it’s not, the application
should display N/A as both the number of gallons used and total charge. Create a Visual
Basic Windows application. Use the following names for the solution and project,
respectively: Westmoreland Solution and Westmoreland Project. Save the application in
the ClearlyVB2010\Chap09 folder. Change the name of the form file on your disk to
frmMain.vb. If necessary, change the form’s name to frmMain. Create a suitable
interface. Code the application. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

9. Kraton Supply wants an application that both calculates and displays the amount of a
salesperson’s bonus. The clerk will enter the salesperson’s code and sales amount. The
bonus rates are shown in Figure 9-20. Create a Visual Basic Windows application. Use
the following names for the solution and project, respectively: Kraton Solution and
Kraton Project. Save the application in the ClearlyVB2010\Chap09 folder. Change the
name of the form file on your disk to frmMain.vb. If necessary, change the form’s name
to frmMain. Create a suitable interface and then code the application. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

CH A P T E R 9 Time to Leave the Nest (Nested Selection Structures)

156

10. In this exercise, you modify the application from Chapter 8’s Exercise 11. If you did not
complete Chapter 8’s Exercise 11, you will need to do so before you can complete this
exercise. Use Windows to copy the Health Solution folder from the ClearlyVB2010\
Chap08 folder to the ClearlyVB2010\Chap09 folder. Open the Health Solution (Health
Solution.sln) file contained in the ClearlyVB2010\Chap09\Health Solution folder.
Modify the code so that it gives club members a 10% discount on their monthly dues
when they sign up for all three of the additional activities (golf, racquetball, and tennis).
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

11. Johnson Supply wants an application that displays the total price of an order. The price of
each item ordered is based on the number of units ordered and the customer’s status
(either wholesaler or retailer). Use a check box to indicate that the customer is a wholesaler.
The price per unit is shown in Figure 9-21. Create a Visual Basic Windows application. Use
the following names for the solution and project, respectively: Johnson Solution and
Johnson Project. Save the application in the ClearlyVB2010\Chap09 folder. Change the
name of the form file on your disk to frmMain.vb. If necessary, change the form’s name to
frmMain. Create the interface and then code the application. Save the solution and then
start and test the application. Close the Code Editor window and then close the solution.

12. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap09\FigureThisOut Solution folder. Open the Code Editor window
and study the btnDisplay control’s Click event procedure. What task is performed by the
procedure? What are the rules for charging the various fees? In other words, who is
charged $10? Who is charged $5, and who is charged $20? You will test the application
to verify that your answers are correct. Start the application. Enter 21 as the age and
then click the Display Fee button. Select the Member check box and then click the
Display Fee button. Now enter 66 as the age and then click the Display Fee button.
Close the Code Editor window and then close the solution.

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap09\SwatTheBugs Solution folder. The application should calculate an
8% bonus on a salesperson’s sales. However, a salesperson having a sales code of 5 receives
an additional $150 bonus when the sales are at least $10000; otherwise, he or she receives
an additional $125 bonus. Open the Code Editor window and study the code. Start and
then test the application. Notice that the code is not working correctly. Locate and correct
any errors. Close the Code Editor window and then close the solution.

 Wholesaler Retailer
Number of units Price per unit ($) Number of units Price per unit ($)

 1 – 4
 5 and over

10
 9

1 – 3
4 – 8

9 and over

15
14
12

Figure 9-21 Information for Exercise 11

Bonus code Bonus rate
1 2%
2 3%
3 2%
4 3%
All other codes 1%

Figure 9-20 Information for Exercise 9

SWAT THE BUGS

FIGURE THIS OUT

ADVANCED

ADVANCED

Exercises

157

This page intentionally left blank

CHAPTER 10
So Many Paths . . . So
Little Time
(Multiple-Alternative
Selection Structures)

After studying Chapter 10, you should be able to:

Code a multiple-alternative selection structure using If/ElseIf/Else

Declare a variable using the String data type

Convert a string to uppercase or lowercase

Code a multiple-alternative selection structure using Select Case

Include a radio button in an interface

Which Way Should I Go?
At times, you may need to create a selection structure that can choose from several alternatives.
Such selection structures are referred to as either multiple-alternative selection structures or
extended selection structures. Figure 10-1 contains a problem specification that requires a
multiple-alternative selection structure. The figure also contains an appropriate algorithm. The
multiple-alternative selection structure is in Step 2 in the algorithm.

Figure 10-2 shows two ways of coding the multiple-alternative selection structure from
Figure 10-1. Version 1 uses nested If…Then… Else statements, which you learned about
in Chapter 9. Version 2 uses another form of the If … Then… Else statement, called If/
ElseIf/Else. Although both versions of the code produce the same result, Version 2 is a
much more convenient way of coding a multiple-alternative selection structure.

George wants an application that displays a message based on a department
code that he enters. The valid department codes and their corresponding
messages are shown below. If the department code is not valid, the application
should display the message “Invalid code”.

Department code Message
1 Payroll
2 Personnel
3 IT

Output: message

Input: code

Algorithm:
1. enter the code
2. if the code is: do this:

1 display “Payroll”
2 display “Personnel”
3 display “IT”
Invalid display “Invalid code”

 end if

multiple-alternative
selection structure

Figure 10-1 Department code problem specification and algorithm

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

160

Figure 10-3 shows another problem specification that requires a multiple-alternative
selection structure. In this case, the selection structure must determine the membership type
before it can display the correct fee. As the problem specification indicates, the fee for a
Single membership is $40, and the fee for a Family membership is $50. The fees for the Single
Senior and Couple Senior memberships are $30 and $35, respectively. Figure 10-3 also
includes an appropriate algorithm in flowchart form. Recall that the oval in a flowchart is the
start/stop symbol, the parallelogram is the input/output symbol, the diamond is the decision
symbol, and the rectangle is the process symbol.

Version 1—nested If…Then…Else statements
If intCode = 1 Then
 lblName.Text = "Payroll"
Else
 If intCode = 2 Then
 lblName.Text = "Personnel"
 Else
 If intCode = 3 Then
 lblName.Text = "IT"
 Else
 lblName.Text = "Invalid code"
 End If
 End If
End If

Version 2—If/ElseIf/Else form of the If…Then…Else statement
If intCode = 1 Then
 lblName.Text = "Payroll"
ElseIf intCode = 2 Then
 lblName.Text = "Personnel"
ElseIf intCode = 3 Then
 lblName.Text = "IT"
Else
 lblName.Text = "Invalid code"
End If

requires three
End If clauses

requires one
End If clause

Figure 10-2 Two versions of the code for the multiple-alternative selection structure

Which Way Should I Go?

161

Coding the Fitness For Good Application

In this section, you will begin coding the algorithm shown in Figure 10-3. First, however, you
need to open the Fitness For Good application.

To open the Fitness For Good application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Fitness Solution (Fitness Solution.sln) file
contained in the ClearlyVB2010\Chap10\Fitness Solution-If folder. If the designer
window is not open, double-click frmMain.vb in the Solution Explorer window. The
application’s interface is shown in Figure 10-4.

Fitness For Good health club wants an application that displays a member’s monthly fee,
which is based on a code entered by the user. The code corresponds to the membership
type, as shown below. If the user enters an invalid code, display the number 0 as the
monthly fee.

Code Membership type Monthly fee
S Single 40
F Family 50
S65 Single Senior 30
C65 Couple Senior 35

Output: fee

Input: code

Algorithm:

start

stop

enter code

display fee

code?

fee = 40

= S = F = S65 = C65 Invalid

fee = 50 fee = 30 fee = 35 fee = 0

Figure 10-3 Fitness For Good problem specification and algorithm

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

162

2. Open the Code Editor window, which contains the code for the btnExit control’s Click
event procedure. It also contains the partially completed code for the btnDisplay
control’s Click event procedure.

The btnDisplay control’s Click event procedure will use an Integer variable named intFee to
store the monthly fee. The procedure also will use a variable to store the code that represents
the membership type: S, F, S65, or C65. You can’t declare the variable using any of the data
types you learned about in Chapter 6, which are the Integer, Decimal, and Double data types.
This is because variables declared with those data types can store numbers only, and each code
contains a letter. Instead, you declare the variable using a data type called String. Memory
locations declared using the String data type can store alphanumeric text, which is text that
may contain letters, numbers, or special characters. Examples of alphanumeric text include
the membership codes F and S65, as well as the phone number 111-2222. The three-character
ID used when naming String variables (and String named constants) is str. You will name the
variable strCode.

To begin coding the algorithm shown in Figure 10-3:

1. Click the blank line below the last Const statement in the btnDisplay control’s Click
event procedure. Enter the following Dim statements. Press Enter twice after typing the
second Dim statement.

Dim intFee As Integer
Dim strCode As String

2. Now you will use the flowchart from Figure 10-3 to code the procedure. The first symbol
below the Start oval is the “enter code” parallelogram. The user will enter the code in the
txtCode control. You will assign the control’s Text property to the strCode variable.
Recall that the value stored in the Text property is treated as alphanumeric text;
therefore, you can simply assign the value to the variable. Enter the following comment
and assignment statement. Press Enter twice after typing the assignment statement.

' assign code to a variable
strCode = txtCode.text

3. The diamond and rectangles in the flowchart represent a multiple-alternative selection
structure that uses the code to determine the appropriate fee. Enter the comment and
multiple-alternative selection structure shown in Figure 10-5. Be sure to type the codes
using uppercase letters.

Figure 10-4 Fitness For Good application’s interface

Which Way Should I Go?

163

4. Save the solution and then start the application. Test the application’s code by displaying
the Single Senior membership fee, which should be $30. Type S65 (be sure to type an
uppercase letter S) as the code and then click the Display Fee button. The correct fee
appears in the Monthly fee box.

5. Now display the Couple Senior membership fee, which should be $35. Change the code
to C65 (be sure to type an uppercase letter C) and then click the Display Fee button.
The correct fee appears in the Monthly fee box.

6. Next, display the fee for a Family membership. Change the code to the uppercase letter F
and then click the Display Fee button. The correct amount ($50) appears as the
monthly fee.

7. Finally, display the Single membership fee, which should be $40. Change the code to a
lowercase letter s and then click the Display Fee button. The Monthly fee box shows $0,
which is incorrect. You will learn how to fix this problem in the next section.

8. Click the Exit button.

Don’t Be So Sensitive
As is true in most programming languages, string comparisons in Visual Basic are case sensitive.
This means that the uppercase version of a letter is not the same as its lowercase counterpart.
So, although a human being recognizes S and s as simply two different ways of writing the same
letter, a computer does not make this connection between both letters. To a computer, an S is
entirely different from an s, and both characters have no relation to each other. This is because
each character on the computer keyboard is stored in the computer’s internal memory using a
different Unicode value. Unicode is the universal coding scheme for characters. It assigns a
unique numeric value to each character used in the written languages of the world. (For more
information, see The Unicode Standard at www.unicode.org.) As a result, the strCode = "S"
condition in the multiple-alternative selection structure evaluates to False when the strCode
variable contains the lowercase letter s; therefore, the selection structure assigns the number 0
to the intFee variable.

Before using a string in a comparison, you can convert it to either uppercase or lowercase and
then use the converted string in the comparison. You use the ToUpper method to convert a
string to uppercase, and the ToLower method to convert a string to lowercase. Figure 10-6
shows the syntax of both methods and includes examples of using the methods. In each syntax,
string typically is either the name of a String variable or the Text property of an object. Both
methods temporarily convert the string to the specified case. However, you also can use the

enter this comment and
multiple-alternative
selection structure, being
sure to type the codes using
uppercase letters

Figure 10-5 Multiple-alternative selection structure entered in the procedure

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

164

methods to permanently convert the contents of a String variable to uppercase or lowercase; the
same is true for the value stored in a control’s Text property. You do this using an assignment
statement, as illustrated in Example 3. When using the ToUpper method in a comparison, be
sure that everything you are comparing is uppercase. In other words, the clause If txtCode.
Text.ToUpper = "f" Then will not work correctly: the condition will always evaluate to False,
because the uppercase version of a letter will never be equal to its lowercase counterpart.
Likewise, when using the ToLower method in a comparison, be sure that everything you are
comparing is lowercase. The ToUpper and ToLower methods affect only characters that
represent letters of the alphabet, as these are the only characters that have uppercase and
lowercase forms.

To fix the code shown earlier in Figure 10-5, you will use the ToUpper method to convert the
user input to uppercase. One way to accomplish this is by appending the ToUpper method to
the end of the statement that assigns the code to the strCode variable, like this: strCode =
txtCode.Text.ToUpper. When processing the statement, the computer first makes a
temporary copy of the string stored in the txtCode control’s Text property. It then converts the
copy to uppercase and stores the result in the strCode variable. Finally, it removes the copy
from its internal memory.

You also can convert the user input to uppercase in the selection structure. You would do this
by appending the ToUpper method to the strCode variable in each of the four conditions, like
this: strCode.ToUpper. However, keep in mind that each time a condition in the selection
structure is evaluated, the computer will have to make a temporary copy of the user input,
convert the copy to uppercase, and then compare the copy to the membership code. It’s easier
for the programmer, and more efficient for the computer, to convert the user input to uppercase
in the statement that assigns the input to the strCode variable.

Converting a string to uppercase or lowercase

Syntax
string.ToUpper
string.ToLower

Example 1
If txtCode.Text.ToUpper = "F" Then
compares the uppercase version of the string stored in the txtCode’s Text property
with the uppercase string “F”

Example 2
If txtCity.Text.ToLower = "reno" Then
compares the lowercase version of the string stored in the txtCity’s Text property
with the lowercase string “reno”

Example 3
strName = strName.ToUpper
txtState.Text = txtState.Text.ToLower
changes the contents of the strName variable to uppercase, and changes the contents
of the txtState’s Text property to lowercase

Figure 10-6 Syntax and examples of the ToUpper and ToLower methods

Which Way Should I Go?

165

To fix the string comparison problem encountered in the previous set of steps:

1. Change the strCode = txtCode.Text statement to strCode = txtCode.Text.ToUpper.

2. Save the solution and then start the application. First, display the Single membership fee,
which should be $40. Type s as the code and then click the Display Fee button. The
correct fee appears in the Monthly fee box.

3. Next, display the Couple Senior membership fee. Change the code to c65 and then click
the Display Fee button. The correct fee ($35) appears in the Monthly fee box.

4. Now you will test the application using an invalid code; the Monthly fee box should
show $0. Change the code to x and then click the Display Fee button. The correct
amount appears in the Monthly fee box.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 10-7 shows the code entered in the btnDisplay control’s Click event procedure.

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays a monthly membership fee

 Const intSINGLE As Integer = 40
 Const intFAMILY As Integer = 50
 Const intSINGLE_SENIOR As Integer = 30
 Const intCOUPLE_SENIOR As Integer = 35
 Dim intFee As Integer
 Dim strCode As String

 ' assign code to a variable
 strCode = txtCode.Text.ToUpper

 ' determine fee
 If strCode = "S" Then
 intFee = intSINGLE
 ElseIf strCode = "F" Then
 intFee = intFAMILY
 ElseIf strCode = "S65" Then
 intFee = intSINGLE_SENIOR
 ElseIf strCode = "C65" Then
 intFee = intCOUPLE_SENIOR
 Else
 intFee = 0
 End If

 ' display fee
 lblFee.Text = intFee.ToString("C0")
End Sub

Figure 10-7 btnDisplay control’s Click event procedure

For more
examples
of using
the If…
Then…

Else statement to code
a multiple-alternative
selection structure, see
the If… Then… Else
Multiple-Alternative
Selection Structure
section in the
Ch10WantMore.pdf file.

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

166

Mini-Quiz 10-1
See Appendix B for the answers.

1. Write a multiple-alternative selection structure that determines the appropriate
discount rate based on a promotion code entered by the user. The user’s entry is stored
in the intPromoCode variable. The valid promotion codes are 1, 2, 3, and 4. The
corresponding discount rates are 2%, 5%, 10%, and 25%, respectively. Assign the
discount rate (converted to its decimal form) to the decRate variable. If the user enters
an invalid promotion code, assign the number 0 to the decRate variable. Use the If/
ElseIf/Else form of the If…Then… Else statement.

2. Write a statement that assigns the contents of the txtId control, in uppercase, to the
strId variable.

3. Write a multiple-alternative selection structure that displays both the first name and
last name corresponding to an ID entered by the user. The ID is stored in the strId
variable from Question 2. Display the first name in the lblFirst control. Display the last
name in the lblLast control. The valid IDs are 12A, 45B, 67X, and 78Y. The
corresponding names are Jerry Jones, Mark Smith, Jill Batist, and Cheryl Sworski. If the
user enters an invalid ID, assign a question mark to both the lblFirst and lblLast
controls. Use the If/ElseIf/Else form of the If…Then…Else statement.

What’s the Next Case on the Docket?
The If…Then…Else statement is not the only statement you can use to code a multiple-
alternative selection structure in Visual Basic; you also can use the Select Case statement.
Figure 10-8 shows the Select Case statement’s syntax. It also shows how to use the statement to
code a multiple-alternative selection structure that displays a message corresponding to a letter
grade. The Select Case statement begins with the keywords Select Case, followed by a
selectorExpression. The selectorExpression can contain any combination of variables, constants,
methods, operators, or properties. In the example in Figure 10-8, the selectorExpression is a
String variable named strGrade. The Select Case statement ends with the End Select clause.
Between the Select Case and End Select clauses are the individual Case clauses. Each Case clause
represents a different path that the computer can follow. It is customary to indent each Case
clause, as well as the instructions within each Case clause, as shown in the figure. You can have
as many Case clauses as necessary in a Select Case statement. However, if the Select Case
statement includes a Case Else clause, the Case Else clause must be the last clause in the
statement.

Each of the individual Case clauses, except the Case Else clause, must contain an expressionList,
which can include one or more expressions. To include more than one expression in an
expressionList, you separate each expression with a comma, as in the expressionList Case "D",
"F". The selectorExpression needs to match only one of the expressions listed in an
expressionList. The data type of the expressions must be compatible with the data type of the
selectorExpression. If the selectorExpression is numeric, the expressions in the Case clauses
should be numeric. Likewise, if the selectorExpression is a string, the expressions should be
strings. In the example in Figure 10-8, the selectorExpression (strGrade) is a string and so are
the expressions: “A”, “B”, “C”, “D”, and “F”.

What’s the Next Case on the Docket?

167

When processing the Select Case statement, the computer first compares the value of the
selectorExpression with the values listed in expressionList1. If a match is found, the
computer processes the instructions for the first Case, stopping when it reaches either
another Case clause or the End Select clause; it then skips to the instruction following the
End Select clause. If a match is not found in expressionList1, the computer skips to the
second Case clause, where it compares the selectorExpression with the values listed in
expressionList2. If a match is found, the computer processes the instructions for the
second Case clause and then skips to the instruction following the End Select clause. If a
match is not found, the computer skips to the third Case clause, and so on. If the
selectorExpression does not match any of the values listed in any of the expressionLists,
the computer processes the instructions listed in the Case Else clause (if there is one) and
then skips to the instruction following the End Select clause. Keep in mind that if the
selectorExpression matches a value in more than one Case clause, only the instructions in
the first match are processed.

Using Select Case in the Fitness For Good Application
In this section, you will code the Fitness For Good application using the Select Case
statement.

Select Case statement

Syntax
Select Case selectorExpression
 Case expressionList1
 instructions for the first Case
 [Case expressionList2
 instructions for the second Case]
 [Case expressionListN
 instructions for the Nth case]
 [Case Else
 instructions for when the selectorExpression does not match
 any of the expressionLists]
End Select

Example
Dim strGrade As String = txtGrade.Text.ToUpper
Select Case strGrade
 Case "A"
 lblMsg.Text = "Excellent"
 Case "B"
 lblMsg.Text = "Above Average"
 Case "C"
 lblMsg.Text = "Average"
 Case "D", "F"
 lblMsg.Text = "Below Average"
 Case Else
 lblMsg.Text = "Error"
End Select

Figure 10-8 Syntax and an example of the Select Case statement

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

168

To code the Fitness For Good application using the Select Case statement:

1. Open the Fitness Solution (Fitness Solution.sln) file contained in the ClearlyVB2010\
Chap10\Fitness Solution-Select Case folder. If the designer window is not open, double-
click frmMain.vb in the Solution Explorer window. The application’s interface (shown
earlier in Figure 10-4) appears on the screen.

2. Open the Code Editor window. In the btnDisplay control’s Click event procedure, enter
the Select Case statement shown in Figure 10-9.

3. Save the solution and then start the application.

4. Type f as the code and then click the Display Fee button. The strCode = txtCode.
Text.ToUpper statement in the button’s Click event procedure assigns the uppercase
letter F to the strCode variable. The Select Case statement is processed next. When
processing the statement, the computer first compares the contents of the strCode
variable (F) with the first Case clause’s expressionList: "S". F does not equal S, so the
computer skips to the second Case clause, where it compares the contents of the
strCode variable with that case’s expressionList: "F". F equals F, so the computer
processes the intFee = intFAMILY assignment statement in the second Case clause. It
then skips to the instruction following the End Select clause. The instruction displays the
contents of the intFee variable (converted to Currency with zero decimal places) in the
lblFee control; in this case, it displays $50.

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays a monthly membership fee

 Const intSINGLE As Integer = 40
 Const intFAMILY As Integer = 50
 Const intSINGLE_SENIOR As Integer = 30
 Const intCOUPLE_SENIOR As Integer = 35
 Dim intFee As Integer
 Dim strCode As String

 ' assign code to a variable
 strCode = txtCode.Text.ToUpper

 ' determine fee
 Select Case strCode
 Case "S"
 intFee = intSINGLE
 Case "F"
 intFee = intFAMILY
 Case "S65"
 intFee = intSINGLE_SENIOR
 Case "C65"
 intFee = intCOUPLE_SENIOR
 Case Else
 intFee = 0
 End Select

 ' display fee
 lblFee.Text = intFee.ToString("C0")
End Sub

enter this Select
Case statement

Figure 10-9 btnDisplay control’s Click event procedure

What’s the Next Case on the Docket?

169

5. On your own, test the application using the following codes: S, s65, C65, and x. The
monthly fees should be $40, $30, $35, and $0, respectively.

6. Click the Exit button. Close the Code Editor window and then close the solution.

Specifying a Range of Values in a Case Clause’s
ExpressionList
You also can specify a range of values in a Case clause’s expressionList, such as the values 1
through 5 or values greater than 10. You do this using either the keyword To or the keyword Is.
You use the To keyword when you know both the upper and lower bounds of the range, and you
use the Is keyword when you know only one end of the range (either the upper or lower end).
The ABC Corporation’s price chart can be used to illustrate this concept. The price chart is
shown in Figure 10-10. Notice that the price of an item depends on the number of items
ordered. For example, the price for 1 to 5 items is $25 each. Therefore, you could write the first
Case clause in a Select Case statement as follows: Case 1, 2, 3, 4, 5. However, a more
convenient way of writing that range of numbers is to use the keyword To, as shown in the
example in Figure 10-10. To use the To keyword, you must follow this syntax: Case smallest
value in the range To largest value in the range. The expression 1 To 5 in the first Case clause,
for example, specifies the range of numbers from 1 to 5, inclusive. The expression 6 To 10 in
the second Case clause specifies the range of numbers from 6 through 10. Notice that both Case
clauses state both the lower (1 and 6) and upper (5 and 10) ends of each range.

The third Case clause in the example in Figure 10-10 contains the Is keyword rather than the
To keyword. Recall that you use the Is keyword when you know only one end of the range of
values—either the upper end or the lower end. In this case you know only the lower end of the
range, 10. You always use the Is keyword in combination with one of the following comparison
operators: =, <, <=, >, >=, <>. The Case Is > 10 clause specifies all numbers greater than the
number 10. Because intQuantity is an Integer variable, you also can write this Case clause as
Case Is >= 11. The Case Else clause in the example is processed only when the intQuantity
variable contains a value that is not included in any of the previous Case clauses—more
specifically, a zero or a negative number.

ABC Corporation Price Chart
Quantity ordered Price per item
1–5 $ 25
6–10 $ 23
More than 10 $ 20

Example
Select Case intQuantity
 Case 1 To 5
 intPrice = 25
 Case 6 To 10
 intPrice = 23
 Case Is > 10
 intPrice = 20
 Case Else
 intPrice = 0
End Select

Figure 10-10 Example of using the To and Is keywords in a Case clause

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

170

Coding the ABC Corporation Application
In this section, you will code the ABC Corporation application using ranges of values in a Select
Case statement.

To code and then test the ABC Corporation application:

1. Open theABC Solution (ABC Solution.sln) file contained in the ClearlyVB2010\Chap10\
ABC Solution folder. If the designer window is not open, double-click frmMain.vb in
the Solution Explorer window. The application’s interface is shown in Figure 10-11.

2. Open the Code Editor window. In the btnDisplayPrice control’s Click event procedure,
enter the Select Case statement shown in Figure 10-12.

3. Save the solution and then start the application.

Figure 10-11 User interface for the ABC Corporation application

Private Sub btnDisplayPrice_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplayPrice.Click
 ' displays the price per item

 Dim intQuantity As Integer
 Dim intPrice As Integer

 ' assign quantity ordered to a variable
 Integer.TryParse(txtQuantity.Text, intQuantity)

 ' determine the price per item and
 ' then display the price
 Select Case intQuantity
 Case 1 To 5
 intPrice = 25
 Case 6 To 10
 intPrice = 23
 Case Is > 10
 intPrice = 20
 Case Else
 intPrice = 0
 End Select
 lblPrice.Text = intPrice.ToString("C2")
End Sub

enter this Select
Case statement

Figure 10-12 btnDisplayPrice control’s Click event procedure

Specifying a Range of Values in a Case Clause’s ExpressionList

171

4. Type 4 in the Quantity ordered box and then click the Display Price button. The
Integer.TryParse(txtQuantity.Text, intQuantity) statement in the button’s
Click event procedure assigns the number 4 to the intQuantity variable. The Select
Case statement is processed next. When processing the statement, the computer first
compares the contents of the intQuantity variable (4) with the first Case clause’s
expressionList: the range 1 To 5. The number 4 is included in that range, so the
computer assigns the number 25 to the intPrice variable. It then skips to the
instruction following the End Select clause. The instruction displays the contents of the
intPrice variable (converted to Currency with two decimal places) in the lblPrice
control; in this case, it displays $25.00.

5. On your own, test the application using the following numbers: 10, –3, 12, and x. The
prices should be $23.00, $0.00, $20.00, and $0.00, respectively.

6. Click the Exit button. Close the Code Editor window and then close the solution.

Using Radio Buttons
The If/ElseIf/Else and Case forms of the selection structure are often used when coding
interfaces that contain radio buttons. You create a radio button using the RadioButton tool in
the toolbox. Radio buttons allow you to limit the user to only one choice from a group of two or
more related but mutually exclusive choices. Figure 10-13 shows a sample run of the Gentry
Supplies application, which uses radio buttons in its interface. Notice that each radio button is
labeled so the user knows its purpose. You enter the label using sentence capitalization in the
radio button’s Text property. Each radio button also has a unique access key that allows the user
to select the button using the keyboard. The three-character ID for a radio button's name is rad.

Two groups of radio buttons appear in the Gentry Supplies interface: one group contains the
four state radio buttons and the other contains the three delivery radio buttons. To include
two groups of radio buttons in an interface, at least one of the groups must be placed within a
container control, such as a group box. Otherwise, the radio buttons are considered to be in
the same group and only one can be selected at any one time. You create a group box using the
GroupBox tool, which is located in the Containers section of the toolbox. In this case, the
radio buttons pertaining to the state choice are contained in the GroupBox1 control, and the
radio buttons pertaining to the delivery choice are contained in the GroupBox2 control.
Placing each group of radio buttons in a separate group box allows the user to select one
button from each group.

GroupBox1 control GroupBox2 control

Figure 10-13 Sample run of the Gentry Supplies application

For more
examples
of using the
Select
Case state-

ment to code a multiple-
alternative selection
structure, see the Select
Case Multiple-Alternative
Selection Structure sec-
tion in the Ch10Want-
More.pdf file.

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

172

Keep in mind that the minimum number of radio buttons in a group is two, because the only
way to deselect a radio button is to select another radio button. The recommended
maximum number of radio buttons in a group is seven. It is customary in Windows
applications to have one of the radio buttons in each group already selected when the user
interface first appears. The selected button is called the default radio button and is either the
radio button that represents the user’s most likely choice or the first radio button in the
group. You designate a radio button as the default radio button by setting the button’s
Checked property to the Boolean value True. When you set the Checked property to True in
the Properties window, a colored dot appears inside the button’s circle to indicate that the
button is selected.

Coding the Gentry Supplies Application
In this section, you will code the Gentry Supplies application. When the user clicks the Display
Shipping Charge button in the application’s interface, the button’s Click event procedure should
display the appropriate shipping charge. The shipping charges are listed in Figure 10-14.

To code and then test the Gentry Supplies application:

1. Open the Gentry Supplies Solution (Gentry Supplies Solution.sln) file contained in
the ClearlyVB2010\Chap10\Gentry Supplies Solution folder. If the designer window is
not open, double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window. In the btnDisplay control’s Click event procedure, enter
the two selection structures shown in Figure 10-15. Notice that the code uses the
Checked property to determine the radio button selected in both groups of radio
buttons.

Gentry Supplies Shipping Chart
State Standard delivery charge
Alabama 20
Georgia 35
Louisiana 30
North Carolina 28

Overnight delivery add $10 to the standard delivery charge
Two-day delivery add $5 to the standard delivery charge

Figure 10-14 Gentry Supplies shipping chart

Using Radio Buttons

173

3. Save the solution and then start the application. Click the Georgia radio button and then
click the Overnight radio button. Click the Display Shipping Charge button. The
button’s Click event procedure displays $45.00 in the Shipping charge box, as shown
earlier in Figure 10-13.

4. On your own, display the shipping charge for a two-day delivery to Alabama, a standard
delivery to North Carolina, an overnight delivery to North Carolina, and an overnight
delivery to Louisiana. The shipping charges should be $25.00, $28.00, $38.00, and $40.00,
respectively.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 10-2
See Appendix B for the answers.

1. Rewrite Question 1 from Mini-Quiz 10-1 using the Select Case statement.

2. Rewrite Question 3 from Mini-Quiz 10-1 using the Select Case statement.

3. Which of the following Case clauses specifies integers from 10 through 20, inclusive?

a. Case Is 10 To 20

b. Case Is >= 10 AndAlso <= 20

c. Case 20 To 10

d. none of the above

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays the appropriate shipping charge

 Dim intShipping As Integer

 ' determine standard shipping charge
 Select Case True
 Case radAlabama.Checked
 intShipping = 20
 Case radGeorgia.Checked
 intShipping = 35
 Case radLouisiana.Checked
 intShipping = 30
 Case Else
 intShipping = 28
 End Select

 ' add any additional delivery charges
 If radOvernight.Checked = True Then
 intShipping = intShipping + 10
 ElseIf radTwoDay.Checked = True Then
 intShipping = intShipping + 5
 End If

 ' display shipping charge
 lblShipping.Text = intShipping.ToString("C2")
End Sub

enter this
selection structure

enter this
selection structure

Figure 10-15 Selection structures entered in the procedure

To learn
how to add
a group box
and radio
button to a

form, view the Ch10-
Group Box and Radio
Button video.

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

174

4. A form contains three radio buttons: January, February, and March. The radio buttons
are named radJanuary, radFebruary, and radMarch. Write a multiple-alternative
selection structure that displays the name of the birthstone corresponding to the
selected radio button. The birthstones for the three months are Garnet, Amethyst, and
Aquamarine. Display the birthstone's name in the lblBirthstone control. Use the Select
Case statement.

Summary
l The solutions to some problems require a multiple-alternative (or extended) selection

structure.

l You can code a multiple-alternative selection structure using either the If…Then…Else
statement or the Select Case statement.

l String comparisons in Visual Basic are case sensitive.

l Each character on the computer keyboard is associated with a unique Unicode value.

l Before using a string in a comparison, you can convert it (temporarily) to either uppercase or
lowercase using the ToUpper or ToLower methods, respectively.

l The data type of the expressions in a Select Case statement must be compatible with the data
type of the statement’s selectorExpression.

l You can use the To or Is keywords to specify a range of values in a Select Case statement. You
use the To keyword when you know both the upper and lower bounds of the range. You use
the Is keyword when you know only one end of the range (either the upper or lower end).

l You can use radio buttons to limit the user to one choice from a group of two or more
related but mutually exclusive choices.

l To include two groups of radio buttons in an interface, at least one of the groups must be
placed within a container control, such as a group box.

l It is customary to have one radio button in each group of radio buttons selected when the
user interface first appears.

l The Boolean value stored in a radio button’s Checked property determines whether the radio
button is selected (True) or unselected (False).

Key Terms
Default radio button—the radio button that is automatically selected when an interface first
appears

Extended selection structures—another name for multiple-alternative selection structures

Group box—a control that is used to contain other controls; created using the GroupBox tool,
which is located in the Containers section of the toolbox

If/ElseIf/Else—a form of the If…Then…Else statement; provides a convenient way of coding a
multiple-alternative selection structure

Multiple-alternative selection structures—selection structures that contain several alternatives;
also called extended selection structures

Key Terms

175

Radio buttons—used in an interface to limit the user to only one choice from a group of two or
more related but mutually exclusive choices

Select Case statement—like the If…Then..Else statement, this statement can be used to code a
multiple-alternative selection structure

String data type—the data type used for memory locations that store alphanumeric text

ToLower method—temporarily converts a string to lowercase

ToUpper method—temporarily converts a string to uppercase

Review Questions
1. Which of the following calculates a 5% discount when the units sold are from 1 through

100, a 7% discount when the units sold are from 101 through 200, and a 10% discount
when the units sold are over 200? If the number of units sold is less than or equal to 0,
the discount should be 0. The number of units sold is stored in the intUnits variable.
Each unit costs $100.

a. intTotal = intUnits * 100
If intUnits <= 0 Then

decDiscount = 0
ElseIf intUnits < 101 Then

decDiscount = intTotal * .05
ElseIf intUnits < 201 Then

decDiscount = intTotal * .07
Else

decDiscount = intTotal * .1
End If

b. intTotal = intUnits * 100
Select Case intUnits

Case 1 To 100
decDiscount = intTotal * .05

Case 101 To 200
decDiscount = intTotal * .07

Case > 200
decDiscount = intTotal * .1

Case Else
decDiscount = 0

End Case

c. intTotal = intUnits * 100
Select Case intUnits

Case < 1
decDiscount = 0

Case 1 To 100
decDiscount = intTotal * .05

Case 101 To 200
decDiscount = intTotal * .07

Case Else
decDiscount = intTotal * .1

End Case

d. all of the above

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

176

2. Which of the following assigns the contents of the txtState control, in uppercase, to the
strState variable?

a. If strState = txtState.Text.ToUpper Then

b. strState.ToUpper = txtState.Text

c. strState = txtState.Text.ToUpper

d. all of the above

3. Which of the following Case clauses will be processed when the intNum variable
contains one of the following integers: 5, 6, 7, 8, or 9?

a. Case >= 5 AndAlso <= 9

b. Case 5 To 9

c. Case 9 To 5

d. all of the above

4. Which of the following determines whether the radAddition radio button is selected?

a. If radAddition.Checked = True Then

b. If radAddition.Checked = Yes Then

c. If radAddition.Selected = On

d. If radAddition.Selected = True

5. What is the minimum number of radio buttons in a group?

a. one

b. two

c. three

d. there is no minimum

6. Which of the following data types is appropriate for a variable that will store
alphanumeric text?

a. Alpha

b. AlphaNum

c. String

d. Text

7. The Case Other clause must be the last clause in a Select Case statement.

a. True b. False

Exercises
1. Open the Department Solution (Department Solution.sln) file contained in the

ClearlyVB2010\Chap10\Department Solution folder. Replace the selection structure in
the btnDisplay control’s Click event procedure with a Select Case statement. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution. (See Appendix B for the answer.)

2. Open the Total Due Solution (Total Due Solution.sln) file contained in the
ClearlyVB2010\Chap10\Total Due Solution folder. Change the outer If…Then…Else
statement in the btnCalc control’s Click event procedure to a Select Case statement.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution. (See Appendix B for the answer.)

3. In this exercise, you modify one of the Fitness For Good applications coded in the
chapter. Use Windows to make a copy of the Fitness Solution-Select Case folder. Save
the copy in the ClearlyVB2010\Chap10 folder. Rename the copy Modified Fitness
Solution-Select Case. Open the Fitness Solution (Fitness Solution.sln) file contained in
the Modified Fitness Solution-Select Case folder. The health club has added an
additional membership type. The monthly fee for the new Child membership type is $5.
Make the appropriate modifications to both the interface and the code. Save the

TRY THIS

MODIFY THIS

TRY THIS

Exercises

177

solution and then start and test the application. Close the Code Editor window and then
close the solution.

4. The owner of Harry’s Car Sales pays each salesperson a commission based on his or her
monthly sales. The sales ranges and corresponding commission rates are shown in
Figure 10-16.

a. Open the Harry Car Solution (Harry Car Solution.sln) file contained in the
ClearlyVB2010\Chap10\Harry Car Solution folder. Code the btnCalc control’s Click
event procedure so that it both calculates and displays a salesperson’s commission.
Use the If/ElseIf/Else form of the If…Then…Else statement. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

b. Use Windows to make a copy of the Harry Car Solution folder. Save the copy in the
ClearlyVB2010\Chap10 folder. Rename the copy Modified Harry Car Solution.
Open the Harry Car Solution (Harry Car Solution.sln) file contained in the Modified
Harry Car Solution folder. Change the selection structure in the btnCalc control’s
Click event procedure to a Select Case statement. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

5. The owner of Concerts For All wants an application that displays the price of a concert
ticket. The ticket price is based on the seat location. Box seats are $75, pavilion seats are
$30, and lawn seats are $21. However, the owner sometimes offers a 10% discount on
the ticket price. Use radio buttons for the seat locations, and use a check box for the
10% discount.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm using a flowchart.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Concerts Solution and Concerts Project. Save the
application in the ClearlyVB2010\Chap10 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Include an Exit button. Code the Exit button’s Click event
procedure and the problem’s algorithm.

d. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

6. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Songs Solution and Songs Project. Save the application in the
ClearlyVB2010\Chap10 folder. Change the name of the form file on your disk to
frmMain.vb. If necessary, change the form’s name to frmMain. Create the interface
shown in Figure 10-17. The four radio buttons contain song titles. The Artist Name

Monthly sales ($) Commission rate
0–19,999.99 4%
20,000–29,999.99 5%
30,000–39,999.99 6%
40,000–49,999.99 7%
50,000 or more 9%
Less than 0 0%

Figure 10-16 Sales and commission rate information for Exercise 4

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

178

button’s Click event procedure should display the name of the artist associated with the
selected radio button. The names of the artists are Andrea Bocelli, Michael Jackson,
Beyonce, and Josh Groban. Code the application. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

7. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Currency Solution and Currency Project. Save the application
in the ClearlyVB2010\Chap10 folder. Change the name of the form file on your disk to
frmMain.vb. If necessary, change the form’s name to frmMain. The application’s
interface should provide a text box for the user to enter the number of U.S. dollars, and
radio buttons for the seven currencies listed in Figure 10-18. The application should
convert the U.S. dollars to the selected currency and then display the result (formatted
to three decimal places). Use the exchange rates included in Figure 10-18. Save the
solution and then start and test the application. Close the Code Editor window and then

close the solution.

8. Open the Bonus Solution (Bonus Solution.sln) file contained in the ClearlyVB2010\
Chap10\Bonus Solution folder. Figure 10-19 shows the flowchart for the btnCalc
control’s Click event procedure, which should display either a bonus amount or an error
message. Format the bonus amount with a dollar sign and two decimal places. Code the
procedure. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

Figure 10-17 User interface for Exercise 6

Currency Exchange rate
Canada Dollar 1.01615
Eurozone Euro .638490
India Rupee 40.1798
Japan Yen 104.390
Mexico Peso 10.4613
South Africa Rand 7.60310
United Kingdom Pound .504285

Figure 10-18 Currency and exchange rates for Exercise 7

INTERMEDIATE

INTERMEDIATE

Exercises

179

9. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: State Capital Solution and State Capital Project. Save the
application in the ClearlyVB2010\Chap10 folder. Change the name of the form file on
your disk to frmMain.vb. If necessary, change the form’s name to frmMain. Create the
interface shown in Figure 10-20. If the selected capital corresponds to the selected state,
the Am I Right? button’s Click event should display the message “Correct” in the Result
box; otherwise, it should display the message “Try again”. Code the application. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

enter sales
and code

code

1 2, 3, 4 5 Other

rate = .02

bonus = rate *
sales

rate = .05 rate = .10

6, 7

rate = .15 rate = –1

rate = –1 TF

display bonus
in lblBonus

display
“Invalid code”
in lblBonus

start

stop

Figure 10-19 Flowchart for Exercise 8

INTERMEDIATE

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

180

10. In this exercise, you create an application for Willow Health Club. The application
displays the number of daily calories needed to maintain a member’s current weight.
The formulas for calculating the number of daily calories are shown in Figure 10-21.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm using pseudocode.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Willow Solution and Willow Project. Save the application
in the ClearlyVB2010\Chap10 folder. Change the name of the form file on your disk
to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Include an Exit button. Code the Exit button’s Click event
procedure and the problem’s algorithm.

d. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

11. Shopper Stoppers wants an application that displays the number of reward points a
customer earns each month. The reward points are based on the customer’s
membership type and total monthly purchase amount, as shown in Figure 10-22.

Figure 10-20 User interface for Exercise 9

Gender Activity level Total daily calories formula
Female Moderately active weight * 12 calories per pound
Female Relatively inactive weight * 10 calories per pound
Male Moderately active weight * 15 calories per pound
Male Relatively inactive weight * 13 calories per pound

Figure 10-21 Formulas for Exercise 10

ADVANCED

ADVANCED

Exercises

181

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm using pseudocode.

b. Create a Visual Basic Windows application. Use the following names for the
solution and project, respectively: Shopper Solution and Shopper Project. Save
the application in the ClearlyVB2010\Chap10 folder. Change the name of the
form file on your disk to frmMain.vb. If necessary, change the form’s name to
frmMain.

c. Create a suitable interface. Include an Exit button. Code the Exit button’s Click event
procedure and the problem’s algorithm. Display the reward points as whole
numbers.

d. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

12. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap10\FigureThisOut Solution folder. Open the Code Editor
window and study the btnDisplay control’s Click event procedure. What task is
performed by the procedure? What are the rules for charging the various rates? Test
the application to verify that your answers are correct. Close the Code Editor window
and then close the solution.

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap10\SwatTheBugs Solution folder. The application should
display a shipping charge that is based on the total price entered by the user. If
the total price is less than $1, the shipping charge is $0. If the total price is greater
than or equal to $1 but less than $100, the shipping charge is $5. If the total price
is greater than or equal to $100 but less than $501, the shipping charge is $10.
If the total price is greater than or equal to $501 but less than $1001, the shipping
charge is $12. If the total price is greater than or equal to $1001, the shipping
charge is $14. Start the application. Test the application using the following total
prices: 100, 501, 1500, 500.75, 30, and 1000.33. You will notice that the application
does not display the correct shipping charge for some of these total prices. Open
the Code Editor window and study the code. Locate and correct the errors in the
code. Close the Code Editor window and then close the solution.

Total monthly
purchase ($)Membership type Reward points

Basic Less than 100
100 and over

5% of the total monthly purchase
7% of the total monthly purchase

Standard Less than 150
150–299.99
300 and over

6% of the total monthly purchase
8% of the total monthly purchase
10% of the total monthly purchase

Premium Less than 200
200 and over

7% of the total monthly purchase
15% of the total monthly purchase

Figure 10-22 Reward points for Exercise 11

FIGURE THIS OUT

SWAT THE BUGS

CH A P T E R 1 0 So Many Paths . . . So Little Time (Multiple Alternative Selection Structures)

182

CHAPTER 11
Testing, Testing . . . 1, 2, 3
(Selecting Test Data)

After studying Chapter 11, you should be able to:

Select appropriate test data for an application

Prevent the entry of unwanted characters in a text box

Create a message box with the MessageBox.Show method

Trim leading and trailing spaces from a string

Will Your Application Pass the Test?
As you learned in Chapter 2, the last step in the problem-solving process is to rigorously test the
program before releasing it to the user. You test the program using a computer along with a set
of sample data that includes both valid and invalid data. Valid data is data that the program is
expecting the user to enter. You test with valid data to ensure that the program produces the
correct results. Invalid data, on the other hand, is data that the program is not expecting the
user to enter. Invalid data typically is the result of the user making a typing error, entering the
data in an incorrect format, or neglecting to make a required entry. You test with invalid data to
ensure that the program does not display erroneous results or end abruptly because of an input
error. Figure 11-1 lists some guidelines for selecting appropriate test data for an application.
(Additional guidelines will be added to the list in subsequent chapters.) You will use these
guidelines to test several applications in this chapter. As you will notice when working through
this chapter, testing is an iterative process.

The Only Cookies-Version 1 Application
Figure 11-2 shows the interface for the Only Cookies-Version 1 application. The interface
provides a text box for entering the number of pounds of cookies ordered; the number of
pounds may contain a decimal place. Each pound of cookies costs $5. When the user clicks the
Calculate button, the button’s Click event procedure calculates and displays the total price of the
order. The Click event procedure is shown in Figure 11-3. Notice that the procedure uses an
Integer named constant for the pound price, and two Decimal variables for the pounds ordered
and the total price.

Testing guidelines

1. Test the application without entering any data.
2. If the application’s code expects a text box to contain a number, use both valid and invalid
 values for the text box. Typically, the test data should include the number 0, positive and
 negative integers, positive and negative non-integers, and alphanumeric text.
3. If the application’s code contains a selection structure, use values that will test each path.
 If a condition contains a range of values, the test data should include the lowest and
 highest values in the range, as well as a value within the range. If a condition compares
 strings, include uppercase text and lowercase text in the test data.

Figure 11-1 Guidelines for selecting an application’s test data

txtOrdered control
(may contain a number
with a decimal place)

Figure 11-2 Interface for the Only Cookies-Version 1 application

CH A P T E R 1 1 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)

184

Before testing the application, you will use the guidelines from Figure 11-1, as well as the
interface and code shown in Figures 11-2 and 11-3, to create a set of test data. You will
record the test data and the expected results in a testing chart. The first guideline is to
test the application without entering any data. As the interface and code indicate, only
one item of data is entered by the user in this application: the number of pounds of
cookies ordered. If the user clicks the Calculate button without entering a value in the
Pounds ordered box, the procedure should display $0.00 in the Total price box. (The
“C2” in the last assignment statement formats the total price with a dollar sign and two
decimal places.) In the testing chart, you record No data entered and $0.00, as shown
in Figure 11-4.

According to the second guideline in Figure 11-1, you should test the application by entering
both valid and invalid values in the Pounds ordered text box. As the guideline indicates,
typical values used for testing include the number 0, positive and negative integers and non-
integers, and alphanumeric text. Begin by making a list of valid values that the user might
enter as the number of pounds ordered. For example, the user might enter the number 0,
the positive integers 10 and 25, or the positive non-integer 4.5. The expected results are
$0.00, $50.00, $125.00, and $22.50, respectively. (Recall that the price per pound is $5.) If
the user wants to calculate a refund, he or she also might enter a negative number, such as
the negative integer –3 or the negative non-integer –6.5. The expected results using these
values are ($15.00) and ($32.50), respectively. You record the test data and the expected
results in the testing chart, as shown in Figure 11-5.

Integer named constant

Decimal variables

Figure 11-3 Calculate button’s Click event procedure in the Only Cookies-Version 1 application

t d a t d rTest data Expected result
No data entered $0.00

Figure 11-4 First entry in the application’s testing chart

The Only Cookies Version 1 Application

185

Now consider values that the user might enter by mistake. In the current application, the user
might inadvertently enter the letter x, the # symbol, or 3O (the number 3 followed by the
uppercase letter O). If the user enters an invalid value, the application should display $0.00 in
the Total price box. Figure 11-6 shows the invalid values and their expected results entered in
the testing chart. Notice that the test data contains the number 0, positive and negative integers
and non-integers, and alphanumeric text.

The third guideline in Figure 11-1 pertains to selection structures. You can skip the third
guideline because the application’s code does not contain a selection structure. In the
following set of steps, you will test the application using the test data and expected results
listed in Figure 11-6.

To test the Only Cookies-Version 1 application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Only Cookies Solution (Only Cookies
Solution.sln) file contained in the ClearlyVB2010\Chap11\Only Cookies Solution-
Version 1 folder. If the designer window is not open, double-click frmMain.vb in the
Solution Explorer window.

 d E d uTest data Expected result
No data entered $0.00

Valid values
0 $0.00

10 $50.00
25 $125.00
4.5 $22.50
3 ($15.00)
6.5 ($32.50)

Figure 11-5 Valid values entered in the application’s testing chart

t d rTest data Expected result
No data entered $0.00

Valid values
 0 $0.00
 10 $50.00
 25 $125.00
 4.5 $22.50

3 ($15.00)
6.5 ($32.50)

Invalid values
 x, #, 3O $0.00

Figure 11-6 Testing chart for the Only Cookies-Version 1 application

CH A P T E R 1 1 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)

186

2. Start the application. First, you will test the application without entering any data. Click
the Calculate button. The Total price box shows the expected result, $0.00.

3. Type 0 in the Pounds ordered box and then click the Calculate button. Here again, the
Total price box shows the expected result, $0.00.

4. Change the number of pounds ordered to 10 and then click the Calculate button.
$50.00 appears in the Total price box, which is correct.

5. On your own, test the application using the following valid values: 25, 4.5, –3, and –6.5.
The total prices should agree with the corresponding results listed in Figure 11-6.

6. Change the number of pounds ordered to x and then click the Calculate button. The
TryParse method in the button’s Click event procedure cannot convert the letter x to the
Decimal data type, so it assigns the number 0 to the decOrdered variable. The next
statement in the procedure calculates the total price and assigns the result (0) to the
decTotalPrice variable. The last assignment statement in the procedure formats the
total price with a dollar sign and two decimal places, and then displays the expected
result—$0.00—in the Total price box.

7. On your own, test the application using the following two invalid values: # and 3O (be
sure to type the uppercase letter O rather than the number 0). The results should agree
with the ones listed in Figure 11-6.

8. Click the Exit button. Close the Code Editor window and then close the solution.

The Only Cookies-Version 2 Application
Figure 11-7 shows the interface for the Only Cookies-Version 2 application. Except for the
title bar text, the interface is identical to the one in the Only Cookies-Version 1
application. However, in this version of the application, the number of pounds entered in
the Pounds ordered text box must be an integer. Each pound of cookies still costs $5.
Figure 11-8 shows the Calculate button’s Click event procedure, which calculates and
displays the total price of the order. Notice that in this version of the application, the
Click event procedure uses Integer variables (rather than Decimal variables) for the
pounds ordered and total price.

txtOrdered control
(should be an integer)

Figure 11-7 Interface for the Only Cookies-Version 2 application

The Only Cookies Version 2 Application

187

Figure 11-9 shows the testing chart for the Only Cookies-Version 2 application. Comparing
this testing chart with the one shown earlier in Figure 11-6, you will notice that the two
non-integer values (4.5 and –6.5) now appear in the Invalid values section. This is because
the Only Cookies-Version 2 application expects the user to enter an integer in the Pounds
ordered text box.

To test the Only Cookies-Version 2 application:

1. Open the Only Cookies Solution (Only Cookies Solution.sln) file contained in the
ClearlyVB2010\Chap11\Only Cookies Solution-Version 2 folder. If the designer window
is not open, double-click frmMain.vb in the Solution Explorer window.

2. Start the application. First, you will test the application without entering any data. Click
the Calculate button. The Total price box shows the expected result, $0.00.

3. On your own, test the application using the following values: 0, 10, 25, –3, x, #, and 3O
(be sure to type the uppercase letter O rather than the number 0). The total prices
should agree with the corresponding results listed in Figure 11-9.

Integer named constant

Integer variables

Figure 11-8 Calculate button’s Click event procedure in the Only Cookies-Version 2 application

TTeesst ddatt a EExppeectteed reesuulltt
No data entered $0.00

Valid values
 0 $0.00
 10 $50.00
 25 $125.00

3 ($15.00)

Invalid values
 x, #, 3O $0.00
 4.5 $0.00

6.5 $0.00

Figure 11-9 Testing chart for the Only Cookies-Version 2 application

CH A P T E R 1 1 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)

188

4. Change the number of pounds ordered to 4.5 and then click the Calculate button. The
TryParse method in the button’s Click event procedure cannot convert the non-integer
4.5 to the Integer data type, so it assigns the number 0 to the intOrdered variable.
When the intOrdered variable contains the number 0, the total price will be 0.
Because of this, the procedure displays $0.00 in the Total price box. See Figure 11-10.
Although the total price agrees with the expected result, it is very misleading because
it indicates that the cookies are free of charge. You will learn one way to fix this
problem in the next section.

5. Change the number of pounds ordered to –6.5 and then click the Calculate button.
$0.00 appears in the Total price box. Here again, the total price is misleading. Click the
Exit button.

Stop! This Is a Restricted Area!
The Only Cookies-Version 2 application expects the user to enter the number of pounds
as an integer. The number of pounds should not contain any letters, periods, or special
characters. Unfortunately, you can’t stop the user from trying to enter an inappropriate
character into a text box. However, you can prevent the text box from accepting the
character; you do this by coding the text box’s KeyPress event procedure. A control’s
KeyPress event occurs each time the user presses a key while the control has the focus.
When the KeyPress event occurs, a character corresponding to the pressed key is sent to
the KeyPress event’s e parameter, which appears between the parentheses in the event’s
procedure header. For example, when the user presses the period while entering data into
a text box, the text box’s KeyPress event occurs and a period is sent to the event’s
e parameter. Similarly, when the Shift key along with a letter is pressed, the uppercase
version of the letter is sent to the e parameter.

To prevent a text box from accepting an inappropriate character, you first use the e
parameter’s KeyChar property to determine the pressed key. (KeyChar stands for “key
character.”) You then use the e parameter’s Handled property to cancel the pressed key if
it is an inappropriate one. Figure 11-11 shows examples of using the KeyChar and
Handled properties in the KeyPress event procedure. Notice that you refer to the
Backspace key on a computer keyboard using the ControlChars.Back constant. The
Backspace key is necessary for editing the text box entry.

the total price
is misleading

Figure 11-10 Result of entering a non-integer in the text box

The Only Cookies Version 2 Application

189

In the next set of steps, you will modify the Only Cookies-Version 2 application by
entering code in the txtOrdered control’s KeyPress event procedure. The code will
prevent the text box from accepting any character other than a number, the hyphen, and
the Backspace key. Whenever you make a change to an application’s code, you should
retest the application using the test data listed in the testing chart. Figure 11-12 shows the
testing chart for the modified Only Cookies-Version 2 application.

Coding the KeyPress event procedure

Example 1
Private Sub txtRegistered_KeyPress(ByVal sender As Object,
 ByVal e As System.Windows.Forms.KeyPressEventArgs
) Handles txtRegistered.KeyPress
 ' allows the text box to accept only the letters
 ' Y, y, N, and n and the Backspace key

 If e.KeyChar <> "Y" AndAlso e.KeyChar <> "y" AndAlso
 e.KeyChar <> "N" AndAlso e.KeyChar <> "n" AndAlso
 e.KeyChar <> ControlChars.Back Then
 e.Handled = True
 End If
End Sub

Example 2
PrivateSub txtOrdered_KeyPress(ByVal sender As Object,
 ByVal e As System.Windows.Forms.KeyPressEventArgs
) Handles txtOrdered.KeyPress
 ' allows the text box to accept only numbers,
 ' the hyphen, and the Backspace key

 If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
 e.KeyChar <> "-" AndAlso
 e.KeyChar <> ControlChars.Back Then
 e.Handled = True
 End If
End Sub

cancels the key

cancels the key

Figure 11-11 Examples of preventing a text box from accepting certain characters

s d E d suTest data Expected result
No data entered $0.00

Valid values
 0 $0.00
 10 $50.00
 25 $125.00

3 ($15.00)

Invalid values
x, #, 3O, 4.5, 6.5 not allowed in the text box

Figure 11-12 Testing chart for the modified Only Cookies-Version 2 application

CH A P T E R 1 1 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)

190

To modify and then test the Only Cookies-Version 2 application:

1. Open the Code Editor window and then open the code template for the txtOrdered
control’s KeyPress event procedure. Enter the comments and five lines of code shown in
Example 2 in Figure 11-11.

2. Save the solution and then start the application. On your own, test the application
without entering any data, and then test it using the following values: 0, 10, 25, and –3.

3. Now test the application using the following values: x, #, 3O (be sure to type the
uppercase letter O rather than the number 0), 4.5, and –6.5. You will not be able to
enter the letter x, the # symbol, the uppercase letter O, or the period.

4. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 11-1
See Appendix B for the answers

1. What is the first guideline for selecting test data?

2. If the txtSales control contains the number 345.78, what number will the
Integer.TryParse(txtSales.Text, intSales) statement assign to the intSales
variable?

3. When the user types the number 9 in a text box, the 9 is sent to the KeyPress
event’s ___________ parameter.

The Shady Hollow Hotel-Version 1 Application
Figure 11-13 shows the interface for the Shady Hollow Hotel-Version 1 application, which
displays the daily rate for a room at the hotel. The interface uses radio buttons for the room type
selection: Standard, Deluxe, or Suite. The daily rate for a Standard room is $90. The daily rate
for a Deluxe room is $115, and the daily rate for a Suite is $130. Figure 11-14 shows the code
entered in the Display Rate button’s Click event procedure.

For more
examples
of applica-
tions that
require

numeric data, see the
Numeric Data Testing
section in the
Ch11WantMore.pdf file.

Figure 11-13 Interface for the Shady Hollow Hotel-Version 1 application

The Shady Hollow Hotel Version 1 Application

191

Before testing the Shady Hollow Hotel-Version 1 application, you will use the guidelines,
interface, and code from Figures 11-1, 11-13, and 11-14, respectively, to create a set of test
data. The first guideline is to test the application without entering any data. If no radio buttons
are selected, the Daily rate box should show $0. The second guideline pertains to numbers
entered in a text box; you can skip this guideline because the application does not use any text
boxes. The third guideline covers selection structures. The application’s code contains one
selection structure, which is located in the Display Rate button’s Click event procedure.
According to the third guideline, you need to test each path in the selection structure. The first
path’s condition (radStandard.Checked) will evaluate to True when the Standard room radio
button is selected. When this condition evaluates to True, $90 should appear in the Daily rate
box. The second path’s condition (radDeluxe.Checked) will evaluate to True when the Deluxe
room radio button is selected; when this condition is True, $115 should appear in the Daily rate
box. The third path, which is the Case Else path, is processed when the conditions in the other
two paths evaluate to False. When the Case Else path is processed, $130 should appear in the
Daily rate box. Figure 11-15 shows the application’s testing chart.

To test the Shady Hollow Hotel-Version 1 application:

1. Open the Shady Hollow Solution (Shady Hollow Solution.sln) file contained in the
ClearlyVB2010\Chap11\Shady Hollow Solution-Version 1 folder. If the designer window
is not open, double-click frmMain.vb in the Solution Explorer window.

2. Start the application. First, you will test the application without entering any data. Click
the Display Rate button. The Daily rate box shows $130, which is the daily rate for a
Suite. The $130 rate is not correct, because the Suite radio button is not selected in the
interface. Click the Exit button.

you need to test
each path in this
selection structure

Figure 11-14 Display Rate button’s Click event procedure in the Shady Hollow Hotel-Version 1
application

s d E ltTest data Expected result
No data entered $0
Standard room radio button selected $90
Deluxe room radio button selected $115
Suite radio button selected $130

Figure 11-15 Testing chart for the Shady Hollow Hotel-Version 1 application

CH A P T E R 1 1 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)

192

3. Open the Code Editor window. Locate the btnDisplay control’s Click event procedure.
Notice that the Suite rate is assigned in the Case Else clause, which is processed when
the Standard room and Deluxe room radio buttons are not selected. In other words, it’s
processed when the Suite radio button is selected (which is correct) and also when no
radio button is selected (which is incorrect). You can fix the problem by changing the
Case Else clause to Case radSuite.Checked; doing this tells the computer to display
$130 only when the Suite radio button is selected. Another way to fix the problem is by
designating one of the radio buttons as the default radio button. As you learned in
Chapter 10, designating a default radio button ensures that a radio button is
automatically selected when the interface first appears.

4. Close the Code Editor window. Click the Standard room radio button and then set its
Checked property to True. This makes the Standard room radio button the default radio
button.

5. Save the solution and then start the application. Click the Display Rate button. The
Daily rate box shows $90, which is the correct Standard room rate.

6. Click the Deluxe room radio button and then click the Display Rate button. The Daily
rate box shows $115, which is correct.

7. Click the Suite radio button and then click the Display Rate button. The Daily rate box
shows the correct rate, $130.

8. Click the Standard room radio button and then click the Display Rate button. The
correct rate appears in the Daily rate box.

9. Click the Exit button. Close the solution.

Figure 11-16 shows the modified testing chart for the Shady Hollow Hotel-Version 1
application.

The Shady Hollow Hotel-Version 2 Application
The Shady Hollow Hotel is being renovated and now offers only two types of rooms: Standard
and Deluxe. The daily rate for a Standard room is $90; the daily rate for a Deluxe room is $115.
Figure 11-17 shows the interface for the Shady Hollow Hotel-Version 2 application. The
interface uses a text box for the room type selection—either S for Standard or D for Deluxe.
When the user clicks the Display Rate button, its Click event procedure displays the daily rate in
the Daily rate box. The Click event procedure is shown in Figure 11-18.

t d a E s lTest data Expected result
No data entered $90 (Standard room is the default radio button)
Standard room radio button selected $90
Deluxe room radio button selected $115
Suite radio button selected $130

Figure 11-16 Modified testing chart for the Shady Hollow Hotel-Version 1 application

The Shady Hollow Hotel Version 2 Application

193

Before testing the Shady Hollow Hotel-Version 2 application, you will create a set of test
data. Recall that the first guideline in Figure 11-1 is to test the application without
entering any data. This application requires the user to enter only one item of data: the
room type. If the user clicks the Display Rate button without entering the room type, the
procedure should display $0 in the Daily rate box. The second guideline in Figure 11-1
pertains to numbers entered in a text box. In this application, the user will be entering a
string (rather than a number) in the txtType control; therefore, you can skip the second
guideline. The third guideline covers selection structures. The only selection structure in
the application’s code is located in the Display Rate button’s Click event procedure.
According to the third guideline, you need to test each path in the selection structure. If a
path’s condition compares strings, you should include uppercase and lowercase text in the
test data. Begin by making a list of valid values that the user might enter as the room
type. In this case, the user might enter any of the following letters: S, s, D, or d; the
expected results are $90, $90, $115, and $115, respectively. Now consider values that the
user might enter by mistake. In the current application, the user might inadvertently enter
the letter a, the $, or even the number 9. If the user enters an invalid value, the
application should display $0 in the Daily rate box. Figure 11-19 shows the application’s
testing chart.

assigns the contents of
the text box, in uppercase,
to the variable

you need to test each path
in this selection structure

Figure 11-18 Display Rate button’s Click event procedure in the Shady Hollow Hotel-Version 2
application

txtType control

Figure 11-17 Interface for the Shady Hollow Hotel-Version 2 application

CH A P T E R 1 1 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)

194

To test the Shady Hollow Hotel-Version 2 application:

1. Open the Shady Hollow Solution (Shady Hollow Solution.sln) file contained in the
ClearlyVB2010\Chap11\Shady Hollow Solution-Version 2 folder. If the designer window
is not open, double-click frmMain.vb in the Solution Explorer window.

2. Start the application. First, you will test the application without entering any data. Click
the Display Rate button. The expected result, $0, appears in the Daily rate box.

3. On your own, test the application using the following values: S, a, D, $, s, d, and 9. The
results should be $90, $0, $115, $0, $90, $115, and $0, respectively.

4. Click the Exit button.

I Need to Tell You Something
As you observed in the previous set of steps, $0 appears in the Daily rate box when the room
type is either missing or invalid. In situations such as this, many programmers also display a
message alerting the user of the input error. You can display the message either in a label control
in the interface or in a message box; most programmers use a message box. You create a
message box using the MessageBox.Show method. The basic syntax of the method is shown
in Figure 11-20 along with an example of using the method. You enter the message in the
method’s message argument. Typically, the message is entered using sentence capitalization.
The text in the titleBarText argument appears in the form’s title bar. In most cases, the
titleBarText is the name of the application and is entered using book title capitalization. The
MessageBoxButtons.OK and MessageBoxIcon.Information arguments display an OK button
and an Information icon in the message box, as shown in Figure 11-21. The user closes the
message box by clicking the OK button.

MessageBox.Show method

Basic syntax
MessageBox.Show(message, titleBarText,
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

Example
MessageBox.Show("The message appears here",
 "The titleBarText appears here",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

Figure 11-20 Basic syntax and an example of the MessageBox.Show method

t d a E t d rTest data Expected result
No data entered $0

Valid values
 S, s $90
 D, d $115

Invalid values
 a, $, 9 $0

Figure 11-19 Testing chart for the Shady Hollow Hotel-Version 2 application

The Shady Hollow Hotel Version 2 Application

195

To modify the Shady Hollow Hotel-Version 2 application:

1. Open the Code Editor window.

2. Locate the btnDisplay control’s Click event procedure. Modify the If . . . Then . . . Else
statement as indicated in Figure 11-22.

As mentioned earlier, you should retest the application whenever you make a change to its code.
Figure 11-23 shows the modified testing chart for the Shady Hollow Hotel-Version 2
application.

To test the modified Shady Hollow Hotel-Version 2 application:

1. Save the solution and then start the application. Click the Display Rate button. A
message box appears on the screen, as shown in Figure 11-24.

Information icon

Figure 11-21 Message box created by the example in Figure 11-20

t d rTest data Expected result
No data entered message, $0

Valid values
 S, s $90
 D, d $115

Invalid values
 a, $, 9 message, $0

Figure 11-23 Modified testing chart for the Shady Hollow Hotel-Version 2 application

enter these five
lines of code

Figure 11-22 Modified If . . . Then . . . Else statement

CH A P T E R 1 1 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)

196

2. Click the OK button to close the message box. The Daily rate box shows $0, which is
correct.

3. On your own, test the application using the valid and invalid values shown in Figure 11-23.
The results should agree with the ones listed in the figure.

4. Click the Exit button.

Just When You Thought It Was Safe
When you are satisfied that an application is functioning correctly, you can release it to the user.
However, keep this fact in mind: No matter how thoroughly you test an application, chances are
it still will contain some errors, called bugs. This is because it’s almost impossible to create a set
of test data that covers every possible scenario the application will encounter. Typically, the
number of bugs is directly related to the size and complexity of the application. In other words,
large and complex applications usually have more errors than do small and simple ones. Because
of this, most large and complex applications are beta tested by volunteers before being sold in
the marketplace. Beta testers are encouraged to use the application as often as possible, because
some bugs surface only after months of use. When a beta tester finds a bug in the application, he
or she submits a bug report to the programmer. Although you tested the Shady Hollow Hotel-
Version 2 application, which is small and very simple, even it contains a minor bug.

To locate the bug in the Shady Hollow Hotel-Version 2 application:

1. Start the application. When entering data in a text box, it is not uncommon for a user to
inadvertently include a space character at the end of the entry. Type d and then press the
Spacebar on your keyboard. Click the Display Rate button. The message “Please enter a
valid room type.” appears in a message box. At this point, the user most certainly is
thinking, “But I did enter a valid room type: the letter d.” It’s doubtful that the user
remembers pressing the Spacebar, because it’s usually done unconsciously.

2. Click the OK button to close the message box. $0 appears in the Daily rate box, as shown
in Figure 11-25. The interface adds to the user’s confusion, because it appears that the
daily rate for a Deluxe room is $0. (It’s not obvious that a space character follows the
letter d in the text box.)

3. Click the Exit button.

Figure 11-24 Message box

the text box contains a
space after the letter d

Figure 11-25 Result of including a space after the room type

The Shady Hollow Hotel Version 2 Application

197

There are several ways to fix the bug in the application. For example, you can change the
txtType control’s MaxLength property to 1; doing this limits the text box entry to one character
only. You also can use the txtType control’s KeyPress event to prevent the text box from
accepting the space character. You learned about the KeyPress event earlier in this chapter. In
addition, you can use the Trim method to remove any spaces that appear before and after the
room type. Figure 11-26 shows the basic syntax of the Trim method and includes examples of
using the method. In the syntax, string typically is either the Text property of a control or the
name of a String variable. When the computer processes the Trim method, it makes a
temporary copy of the string in memory and then performs the necessary trimming on the copy
only. In other words, the method does not remove any spaces from the original string. To
remove the spaces from the original string, you must assign the result of the Trim method to the
string, as shown in Example 2.

To include the Trim method in the Shady Hollow Hotel-Version 2 application:

1. Locate the statement that assigns the contents of the txtType control to the strType
variable. Change txtType.Text.ToUpper to txtType.Text.ToUpper.Trim.

2. Save the solution and then start the application. Type d and then press the Spacebar on
your keyboard. Click the Display Rate button. The daily rate for a Deluxe room, $115,
appears in the Daily rate box.

3. Click the Exit button.

Figure 11-27 shows the final testing chart for the Shady Hollow Hotel-Version 2 application.

Trim method

Basic syntax
string.Trim

Example 1
strName = txtName.Text.Trim
assigns the contents of the txtName control, excluding any leading and trailing spaces, to the
strName variable

Example 2
txtCity.Text = txtCity.Text.Trim
removes any leading and trailing spaces from the txtCity control

Figure 11-26 Basic syntax and examples of the Trim method

st d Ex d sTest data Expected result
No data entered message, $0

Valid values
 S, s, one or more spaces before and/or after these letters $90
 D, d, one or more spaces before and/or after these letters $115

Invalid values
 a, $, 9, one or more spaces message, $0

Figure 11-27 Final testing chart for the Shady Hollow Hotel-Version 2 application

CH A P T E R 1 1 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)

198

To retest the Shady Hollow Hotel-Version 2 application:

1. Start the application. On your own, test the application using the test data shown in
Figure 11-27.

2. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 11-2
See Appendix B for the answers.

1. Write a MessageBox.Show method that displays a message box with the “You win!”
message, the “Game Over” text in its title bar, an OK button, and an Information icon.

2. Write the statement to remove any leading and/or trailing spaces from the txtState
control.

3. Write a statement that first removes any leading and/or trailing spaces from the
strDept variable and then changes the contents of the variable to uppercase.

Summary
l You should thoroughly test a program, using both valid and invalid data, before releasing the

program to the user.

l The guidelines for selecting test data are listed in Figure 11-1 in the chapter.

l You can use a testing chart to record the test data and the expected results.

l You can prevent a text box from accepting a character by coding the text box’s KeyPress
event procedure. The KeyPress event occurs each time a key is pressed when the text box
has the focus. A character corresponding to the pressed key is sent to the event’s e
parameter. You use the e parameter’s KeyChar property to determine the pressed key. You
cancel the key by setting the e parameter’s Handled property to True.

l Whenever you make a change to an application’s code, you should retest the application
using the data listed in its testing chart.

l You can use the MessageBox.Show method to display a message while an application is
running.

l The Trim method makes a temporary copy of a string. It then performs the necessary
trimming on the copy only.

Key Terms
Bugs—the errors in an application’s code

ControlChars.Back constant—the Visual Basic constant that represents the Backspace key on a
computer keyboard

Handled property—a property of the KeyPress event procedure’s e parameter; used to cancel
the key pressed by the user

KeyChar property—a property of the KeyPress event procedure’s e parameter; stores the
character associated with the key pressed by the user

KeyPress event—occurs each time the user presses a key while the control has the focus

It’s time to
view the
Ch11-
Testing
video.

For more
examples
of applica-
tions that
require

string data, see the
String Data Testing
section in the
Ch11WantMore.pdf file.

Key Terms

199

MaxLength property—the text box property that specifies the maximum number of characters
that the user can enter in the text box

MessageBox.Show method—displays a message box that contains a message, title bar text, a
button, and an icon; allows the application to communicate with the user during run time

Trim method—removes spaces from both the beginning and end of a string

Review Questions
1. Which of the following refers to the Backspace key on a computer keyboard?

a. Control.Back

b. Control.Backspace

c. ControlKey.Back

d. none of the above

2. Which of the following statements can be used in a text box’s KeyPress event to cancel
the key pressed by the user?

a. e.Cancel = True

b. e.Handled = True

c. e.KeyChar = True

d. none of the above

3. Which of the following determines whether the user pressed the $ key?

a. If ControlChars.DollarSign = True Then

b. If e.KeyChar = Chars.DollarSign Then

c. If e.KeyChar = "$" Then

d. If KeyChar.ControlChars = "$" Then

4. Which of the following creates a message box that displays an OK button, an Information
icon, “Hatfield Sales” in the title bar, and the “Please enter a sales amount” message?

a. MessageBox.Show("Please enter a sales amount",
"Hatfield Sales", MessageBoxButtons.OK,
MessageBoxIcon.Information)

b. MessageBox.Display("Hatfield Sales",
"Please enter a sales amount",
MessageBox.OKButton,
MessageBox.InformationIcon)

c. Message.Show("Please enter a sales amount",
"Hatfield Sales", MessageButtons.OK,
MessageIcon.Information)

d. MessageBox.Show("Hatfield Sales",
"Please enter a sales amount",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

5. If a condition contains a range of values, the test data should include which of the following?

a. the lowest value in the range

b. the highest value in the range

c. a value within the range

d. all of the above

6. Which of the following statements removes any leading and trailing spaces from the
strCity variable?

a. strCity = Trim(strCity)

b. strCity = strCity.Trim

c. strCity = strCity.Text.Trim

d. none of the above

CH A P T E R 1 1 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)

200

7. Which of the following determines whether the user pressed a key that is not a number
or the Backspace key?

a. If (e.KeyChar < "0" AndAlso e.KeyChar > "9") OrElse
e.KeyChar <> ControlChars.Back Then

b. If e.KeyChar < "0" AndAlso e.KeyChar > "9" OrElse
e.KeyChar <> ControlChars.Back Then

c. If (e.KeyChar < "0" OrElse e.KeyChar > "9") AndAlso
e.KeyChar <> ControlChars.Back Then

d. If e.KeyChar < "0" OrElse e.KeyChar > "9" AndAlso
e.KeyChar <> ControlChars.Back Then

Exercises
1. Open the Shady Hollow Solution (Shady Hollow Solution.sln) file contained in the

ClearlyVB2010\Chap11\Shady Hollow Solution-Version 3 folder. Open the Code Editor
window and review the existing code. Use the guidelines from Figure 11-1, as well as the
application’s interface and code, to create a testing chart for the application. Start and
then test the application. Close the Code Editor window and then close the solution.
(See Appendix B for the answer.)

2. Open the Bonus Solution (Bonus Solution.sln) file contained in the ClearlyVB2010\
Chap11\Bonus Solution folder. Open the Code Editor window and review the existing
code. Use the guidelines from Figure 11-1, as well as the application’s interface and code,
to create a testing chart for the application. Start and then test the application. Close the
Code Editor window and then close the solution. (See Appendix B for the answer.)

3. Open the Shady Hollow Solution (Shady Hollow Solution.sln) file contained in the
ClearlyVB2010\Chap11\Shady Hollow Solution-Version 4 folder. Change the txtType
control’s MaxLength property to 1. The txtType control should accept only the
Backspace key and the letters S, s, D, and d. Make the appropriate modifications to the
code. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

4. Open the Department Solution (Department Solution.sln) file contained in the
ClearlyVB2010\Chap11\Department Solution folder. Change the text box’s MaxLength
property to 1. Change its CharacterCasing property to Upper. Open the Code Editor
window. The text box should accept only the Backspace key and the letters A, a, B, and
b. If the user clicks the Display button without entering a code, the selection structure
should display the text “Not available” in the lblName control. It also should display a
message box that contains the “Please enter a code” message, the text “Department
Codes” in the title bar, an OK button, and an Information icon. Make the appropriate
modifications to the code. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

5. Open the Sales Tax Solution (Sales Tax Solution.sln) file contained in the
ClearlyVB2010\Chap11\Sales Tax Solution folder. Open the Code Editor window and
review the existing code. The text box should accept only numbers, the period, and
the Backspace key; make the appropriate modifications to the code. Use the
guidelines from Figure 11-1, as well as the application’s interface and code, to create
a testing chart for the application. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

6. Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the
ClearlyVB2010\Chap11\Gross Pay Solution folder. Open the Code Editor window and
review the existing code. Both text boxes should accept only numbers, the period, and
the Backspace key; make the appropriate modifications to the code. Use the guidelines
from Figure 11-1, as well as the application’s interface and code, to create a testing chart

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Exercises

201

for the application. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

7. Open the ABC Solution (ABC Solution.sln) file contained in the ClearlyVB2010\Chap11\
ABC Solution folder. Open the Code Editor window and review the existing code. Modify
the code so that the text box accepts only numbers and the Backspace key. Use the
guidelines from Figure 11-1, as well as the application’s interface and code, to create a
testing chart for the application. Save the solution and then start and test the application.
Make any needed changes to the code and testing chart. Save the solution and then start
and test the application again. Close the Code Editor window and then close the solution.

8. Open the Average Solution (Average Solution.sln) file contained in the ClearlyVB2010\
Chap11\Average Solution folder. Open the Code Editor window and review the existing
code. Start and then test the application, using the testing information included in the
btnCalc control’s Click event procedure. Notice that the code does not always produce
the expected result. Make the necessary changes to the code. (Hint: You can determine
whether a text box is empty by comparing its Text property to the String.Empty
constant.) Save the solution and then start and test the application again. Close the
Code Editor window and then close the solution.

9. Open the Total Due Solution (Total Due Solution.sln) file contained in the
ClearlyVB2010\Chap11\Total Due Solution folder. Open the Code Editor window and
review the existing code. Create a testing chart for the application. Start and then test
the application. Make any needed changes to the application’s code. Save the solution
and then start and test the application again. Close the Code Editor window and then
close the solution.

10. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap11\FigureThisOut Solution folder. Open the Code Editor window
and study the existing code. Start the application. Enter the number 1,200 (be sure to
type the comma) in both text boxes and then click the Calculate button. The answers,
which should be the same, appear in the two label controls. Why are the answers
different? How can you fix the problem? Make the necessary changes to the code. Save
the solution and then start and test the application. Close the Code Editor window and
then close the solution.

11. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap11\SwatTheBugs Solution folder. Create a testing chart. Start and
then test the application. Be sure to verify that the KeyPress procedure works correctly.
Locate and correct the errors in the code. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

ADVANCED

INTERMEDIATE

FIGURE THIS OUT

SWAT THE BUGS

ADVANCED

CH A P T E R 1 1 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)

202

CHAPTER 12
How Long Can
This Go On?
(Pretest Loops)

After studying Chapter 12, you should be able to:

Write a looping condition and its opposing loop exit condition

Show a pretest loop in both pseudocode and a flowchart

Write a pretest loop using the Do…Loop statement

Utilize counter and accumulator variables

Refresh the screen

Delay program execution

Display a dialog box using the InputBox function

Abbreviate assignment statements using the arithmetic
assignment operators

Over and Over Again
Recall that all computer programs are written using one or more of three basic control
structures: sequence, selection, and repetition. You learned about the sequence and
selection structures in previous chapters. This chapter provides an introduction to the
repetition structure. Programmers use the repetition structure, referred to more simply as a
loop, when they need the computer to repeatedly process one or more program
instructions. If and for how long the instructions are repeated are determined by the loop’s
condition. Like the condition in a selection structure, the condition in a loop must evaluate
to either True or False. The condition is evaluated with each repetition (or iteration) of the
loop and can be phrased in one of two ways: It can specify either the requirement for
repeating the instructions or the requirement for not repeating them. The requirement for
repeating the instructions is referred to as the looping condition, because it indicates when
the computer should continue “looping” through the instructions. The requirement for not
repeating the instructions is referred to as the loop exit condition, because it tells the
computer when to exit (or stop) the loop. An example may help illustrate the difference
between the looping condition and the loop exit condition. You’ve probably heard the old
adage “Make hay while the sun shines.” The “while the sun shines” is the looping condition,
because it tells you when to continue making hay. The adage also could be phrased as
“Make hay until the sun stops shining.” In this case, the “until the sun stops shining” is the
loop exit condition, because it indicates when you should stop making hay. Every looping
condition has an opposing loop exit condition; in other words, one is the opposite of the
other. See Figure 12-1.

A repetition structure can be either a pretest loop or a posttest loop. In a pretest loop,
the loop condition is evaluated before the instructions within the loop are processed. In a
posttest loop, the evaluation occurs after the instructions within the loop are processed.
Depending on the result of the evaluation, the instructions in a pretest loop may never be
processed. The instructions in a posttest loop, however, will always be processed at least
once. Of the two types of loops, the pretest loop is the most commonly used. You will
learn about pretest loops in this chapter and in Chapter 14; posttest loops are covered in
Chapter 13.

The programmer determines whether a problem’s solution requires a loop by studying
the problem specification. The first problem specification you will examine in this chapter
involves Rob, the mechanical man from Chapter 1. The problem specification and an
illustration of the problem are shown in Figure 12-2. The figure also includes the correct
algorithm using the commands that Rob can understand. The algorithm uses only the
sequence structure, because no decisions need to be made and no instructions need to
be repeated.

Make hay while the sun shines Make hay until the sun stops shining

a looping condition specifies
when to continue

a loop exit condition specifies
when to stop

Figure 12-1 Example of a looping condition and a loop exit condition

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

204

Now let’s change the problem specification slightly. Rob is still sitting at a table in the
bookstore; but this time, he’s there for a book signing. The store has just opened and
there’s already a long line of customers. Rob doesn’t want to disappoint his fans, so he
plans on staying until every book is signed. Consider how this change will affect the
original algorithm shown in Figure 12-2. The original algorithm contains the instructions
for signing only one customer’s book. In the modified algorithm, Rob will need to repeat
the same instructions for every customer standing in line. Figure 12-3 shows the modified
problem specification along with two versions of the modified algorithm. The repetition
structure in Version 1 begins with repeat while there are customers in line:. The repetition
structure in Version 2 begins with repeat until there are no more customers in line:. The
condition in Version 1 is phrased as a looping condition, because it tells Rob when to
continue repeating the loop instructions. The condition in Version 2 is phrased as a loop
exit condition, because it tells Rob when to stop repeating the loop instructions. Both
repetition structures end with end repeat. The instructions between the first and last lines
in both repetition structures are indented to indicate that they are part of the loop and,
therefore, need to be followed for each customer standing in line.

Rob is sitting at a table in a bookstore. He needs to sign a copy of his bestselling book on
robotics for a customer.

1. accept the book from the customer
2. place the book on the table
3. open the front cover of the book
4. sign your name on the first page
5. close the book
6. return the book to the customer
7. thank the customer

Figure 12-2 First problem using Rob

Over and Over Again

205

Figure 12-4 shows another problem specification and algorithm involving Rob. To solve the
problem, you need to get Rob from his hallway into his bedroom. Notice that the algorithm
contains both the sequence and selection structures. The first instruction positions Rob
directly in front of his bedroom door. The second instruction determines whether the
bedroom door is closed and then takes the appropriate action based on the result. The last
instruction walks Rob into his bedroom.

Figure 12-5 shows a modified version of the previous problem specification. In the
modified version, Rob is 10 steps away from the door. How could you rewrite the original
algorithm to reflect this minor change? One way is by adding nine more walk forward
instructions to the original algorithm; however, that would be quite cumbersome to write.
Imagine if Rob were 500 steps from the door! A better way to modify the original algorithm

Rob is sitting at a table in a bookstore, attending his book signing. He needs to sign a
copy of his bestselling book on robotics for each customer standing in line.

Version 1

repeat while there are customers in line:
 accept the book from the customer
 place the book on the table
 open the front cover of the book
 sign your name on the first page
 close the book
 return the book to the customer
 thank the customer
end repeat

Version 2

repeat until there are no more customers in line:
 accept the book from the customer
 place the book on the table
 open the front cover of the book
 sign your name on the first page
 close the book
 return the book to the customer
 thank the customer
end repeat

looping condition

loop exit condition

Figure 12-3 Second problem using Rob

Rob is standing in his hallway facing his bedroom door. The door, which may or
may not be closed, is one step away from Rob. Rob wants to enter his bedroom.

1. walk forward
2. if the bedroom door is closed, do this:
 open the bedroom door
 end if
3. walk forward

Figure 12-4 Third problem using Rob

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

206

is by adding a repetition structure to it, as shown in the modified algorithm in Figure 12-5. The
repetition structure directs Rob to walk forward 10 times.

Figure 12-6 shows a modified version of the previous problem specification. In this version, the
number of steps between Rob and the door is unknown. He might be 10 steps away or 500
steps away; or, Rob might already be directly in front of the door. How will this affect the
algorithm shown in Figure 12-5? The repetition structure in the algorithm will need to be
changed because the number of steps between Rob and the door is no longer known. Rather
than telling Rob to repeat the walk forward instruction 10 times, the repetition structure will
need to tell him to repeat the instruction either until he is directly in front of the bedroom door
(loop exit condition) or while he is not directly in front of the bedroom door (looping condition).
Once Rob is positioned correctly, he still will need to follow the second and third instructions in
the algorithm. Two versions of the modified algorithm are included in Figure 12-6.

Rob is standing in his hallway facing his bedroom door. The door, which may or
may not be closed, is 10 steps away from Rob. Rob wants to enter his bedroom.

1. repeat 10 times:
 walk forward
 end repeat
2. if the bedroom door is closed, do this:
 open the bedroom door
 end if
3. walk forward

Figure 12-5 Fourth problem using Rob

Rob is standing in his hallway facing his bedroom door. The door, which may or may not be
closed, is an unknown number of steps away from Rob. Rob wants to enter his bedroom.

Version 1

1. repeat until you are directly in front of the bedroom door:
 walk forward
 end repeat
2. if the bedroom door is closed, do this:
 open the bedroom door
 end if
3. walk forward

Version 2

1. repeat while you are not directly in front of the bedroom door:
 walk forward
 end repeat
2. if the bedroom door is closed, do this:
 open the bedroom door
 end if
3. walk forward

loop exit condition

looping condition

Figure 12-6 Fifth problem using Rob

Over and Over Again

207

Both repetition structures in Figure 12-6 end when Rob is standing directly in front of his
bedroom door. If Rob is 10 steps away from the door, both repetition structures direct him to
walk forward 10 times before determining whether the door is closed. Similarly, if Rob is 500
steps away from the door, both repetition structures direct him to walk forward 500 times. If
Rob is directly in front of the bedroom door, the walk forward instruction in both repetition
structures is bypassed.

Mini-Quiz 12-1
See Appendix B for the answers.

1. Rob is sitting in a chair that is next to a table in his living room. On top of the table is
Rob’s cell phone. Your task is to direct Rob to pick up his cell phone. Does the solution
to this problem require a repetition structure? If so, what needs to be repeated?

2. Rob is sitting in a chair in his living room. At the other end of the room is a table. On
top of the table is Rob’s cell phone. Your task is to direct Rob to pick up his cell phone,
but only when the phone rings. Does the solution to this problem require a repetition
structure? If so, what needs to be repeated?

3. Rob wants to pick all of the flowers in his garden. Write an appropriate looping
condition and its opposing loop exit condition.

The Do…Loop Statement
Before solving real-world problems that require a repetition structure, you will learn about the
Do…Loop statement. You can use the Do…Loop statement to code both a pretest loop and a
posttest loop in Visual Basic. As mentioned earlier, this chapter covers pretest loops. Figure 12-7
shows the syntax of the Do…Loop statement when used to code a pretest loop. The statement
begins with the Do clause and ends with the Loop clause. Between both clauses, you enter the
instructions you want the computer to repeat. The instructions between the Do and Loop
clauses are referred to as the loop body.

The {While | Until} portion of the syntax indicates that you can select only one of the keywords
appearing within the braces. You do not type the braces or the pipe symbol (|) when entering
the Do…Loop statement. You follow the keyword with a condition, which can be phrased as
either a looping condition or a loop exit condition. You use the While keyword in a looping
condition to specify that the loop body should be processed while (in other words, as long as)
the condition is true. You use the Until keyword in a loop exit condition to specify that the loop
body should be processed until the condition becomes true, at which time the loop should stop.
Like the condition in an If…Then…Else statement, the condition in a Do…Loop statement can
contain variables, constants, properties, methods, and operators; it also must evaluate to a
Boolean value. The condition is evaluated with each repetition of the loop and determines
whether the computer processes the loop body. Also included in Figure 12-7 are two examples
of pretest loops. In Example 1, the condition is phrased as a looping condition. In Example 2, the
condition is phrased as a loop exit condition. Both examples produce the same result, which is
to display the numbers 1, 2, and 3 in message boxes.

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

208

Counter Variables
Both examples in Figure 12-7 begin by assigning the number 1 to an Integer variable named
intNumber. The intNumber variable is called a counter variable, because it is used to count
something. Repetition structures use counter variables to count such things as the number of
employees paid in a week or the number of positive numbers entered by the user. The repetition
structures in Figure 12-7 use the intNumber counter variable to keep track of the number of
times the loop instructions are processed. Counter variables are always numeric variables and
are typically assigned a beginning value of either 0 or 1, depending on the value required by the
application. Assigning a beginning value to a variable is referred to as initializing. The
initialization task is performed before the loop is processed, because it needs to be performed
only once. In both examples in Figure 12-7, the initialization task is performed by the
intNumber = 1 assignment statement. Counter variables also must be updated. Updating, often
referred to as incrementing, means adding a number to the value stored in the counter variable.
The number can be positive or negative, integer or non-integer. A counter variable is always
incremented by a constant value, usually the number 1. The assignment statement that updates
a counter variable is placed within the loop body, because the update task must be performed
each time the loop instructions are processed. In both examples in Figure 12-7, the counter
variable is updated by the intNumber = intNumber + 1 statement within the loop. Figure 12-8
shows the code from Example 1 in Figure 12-7 and describes the way the computer processes
the code. Notice that the loop ends when the intNumber variable contains the number 4.

looping condition

Do…Loop statement

Syntax for coding a pretest loop
Do {While | Until} condition
 loop body instructions, which will be processed either
 while the condition is true or until the condition becomes true
Loop

Example 1
intNumber = 1

Do While intNumber <= 3
 MessageBox.Show(intNumber)
 intNumber = intNumber + 1
Loop

Example 2
intNumber = 1

Do Until intNumber > 3
 MessageBox.Show(intNumber)
 intNumber = intNumber + 1
Loop

loop exit condition

Figure 12-7 Syntax and examples of the Do…Loop statement for a pretest loop

The Do…Loop Statement

209

My Dream Car-Version 1 Application
Figure 12-9 shows the interface for the My Dream Car-Version 1 application. You will use a
repetition structure to make the I WANT THIS CAR! message blink several times when the
user clicks the Click Me button.

Code from Example 1 in Figure 12-7
intNumber = 1
Do While intNumber <= 3
 MessageBox.Show(intNumber)
 intNumber = intNumber + 1
Loop

Processing steps
1. The computer initializes the intNumber variable to 1.
2. The computer processes the Do clause, which checks whether the intNumber variable’s
 value is less than or equal to 3. It is.
3. The loop instructions display the intNumber variable’s value (1) and then update the value
 by adding 1 to it, giving 2.
4. The computer processes the Loop clause, which returns processing to the Do clause (the
 beginning of the loop).
5. The computer processes the Do clause, which checks whether the intNumber variable’s
 value is less than or equal to 3. It is.
6. The loop instructions display the intNumber variable’s value (2) and then update the value
 by adding 1 to it, giving 3.
7. The computer processes the Loop clause, which returns processing to the Do clause.
8. The Do clause checks whether the intNumber variable’s value is less than or equal to 3.
 It is.
9. The loop instructions display the intNumber variable’s value (3) and then update the value
 by adding 1 to it, giving 4.
10. The computer processes the Loop clause, which returns processing to the Do clause.
11. The computer processes the Do clause, which checks whether the intNumber variable’s
 value is less than or equal to 3. It isn’t, so the computer stops processing the Do…Loop
 statement. Processing continues with the statement following the Loop clause.

Figure 12-8 Code and processing steps for Example 1 in Figure 12-7

For more
examples
of using the
Do…Loop
statement

to code a pretest loop,
see the Do…Loop
Pretest section in the
Ch12WantMore.pdf file.

lblMessage

picCar

Figure 12-9 Interface for the My Dream Car-Version 1 application

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

210

You make a control blink using code that changes the control’s Visible property while the
application is running. The way the property is changed depends on its initial setting. If the
Visible property is set to True in the Properties window, the code will need to set the property to
False and then back to True for each blink. On the other hand, if the Visible property’s
initial setting is False, the code must switch the property to True and then back to False for each
blink. In the My Dream Car-Version 1 application, the lblMessage control’s Visible property is
set to False in the Properties window. Therefore, to make the control blink once, the code
will need to set the Visible property twice: first to True and then to False. Similarly, to make
the control blink twice, the code needs to set the Visible property four times: first to True, then
to False, then to True, and finally to False. The Click Me button’s Click event procedure will
make the control blink 10 times, so it will need to set the Visible property 20 times,
alternating between the True and False settings. You will use a counter variable to keep track
of the number of times the Visible property is set.

Switching the Visible property isn’t all that is necessary to make a control blink. Because the
computer will process the switching instructions so rapidly, you won’t even notice that the
control is blinking. You can solve this problem by refreshing the interface and then delaying
program execution each time you change the Visible property’s setting. You refresh the
interface using the form’s Refresh method. The method’s syntax is Me.Refresh(), where Me
refers to the current form. The Refresh method ensures that the computer processes any
previous lines of code that affect the form’s appearance. You can delay program execution using
the Sleep method in the following syntax: System.Threading.Thread.Sleep(milliseconds). The
milliseconds argument is the number of milliseconds to suspend the program. A millisecond is
1/1000 of a second; in other words, there are 1000 milliseconds in a second.

Figure 12-10 shows the algorithm (in pseudocode and flowchart form) for the Click Me button’s
Click event procedure. Recall that the diamond in a flowchart is called the decision symbol,
because it is used to represent the condition (decision) in both the selection and repetition
structures. The first diamond in Figure 12-10 represents the condition in a repetition structure,
and the second diamond represents the condition in a selection structure. Inside each diamond
is a question whose answer is either True or False. The answer to the question in the first
diamond determines whether the instructions within the loop are processed. Notice that the
first diamond has one flowline entering the symbol and two flowlines leaving the symbol. The
two flowlines leading out of the diamond should be marked so that anyone reading the flowchart
can distinguish the true path from the false path. You mark the flowline leading to the true path
with a T and the flowline leading to the false path with an F. You also can mark the flowlines
leading out of the diamond with a Y and an N (for Yes and No). In the flowchart in Figure 12-10,
the flowline entering the first diamond, along with the diamond and the symbols and flowlines
within the true path, form a circle or loop. It is this loop, or circle, that distinguishes the
repetition structure from the selection structure in a flowchart.

The Do…Loop Statement

211

1. assign 1 to a counter variable
2. repeat while the counter variable’s value is less than or equal to 20:
 if the lblMessage control’s Visible property is set to False
 set the property to True
 else
 set the property to False
 end if
 refresh the interface
 delay program execution for 1/4 second
 add 1 to the counter variable
 end repeat

start

stop

counter <= 20?

lblMessage
Visible = False?

counter = 1

F

T

TF

set lblMessage
Visible to False

refresh interface

delay program for
1/4 second

add 1 to counter

set lblMessage
Visible to True

Figure 12-10 Algorithm (pseudocode and flowchart) for the Click Me button’s Click event procedure

For more
examples
of flow-
charts, see
the Flow-

chart section in the
Ch12WantMore.pdf file.

Before you
begin
coding the
My Dream
Car-Version

1 application, you may
want to view the Ch12-My
Dream Car video. The
video demonstrates the
steps contained in this
section and also shows a
different way of coding
the application. It also
shows you how to stop
an infinite (endless) loop.

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

212

To code and then test the My Dream Car-Version 1 application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Car Solution (Car Solution.sln) file contained in
the ClearlyVB2010\Chap12\Car Solution-Version 1 folder. If the designer window is not
open, double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window, which contains the code for the btnExit control’s Click
event procedure.

3. Open the code template for the btnClickMe control’s Click event procedure. Type the
following comment and then press Enter twice:

' blinks the message in the lblMessage control

4. First, you will declare a counter variable that the computer can use to keep track of the
number of times it processes the loop instructions. Enter the following comment and
Dim statement. Press Enter twice after typing the Dim statement.

' declare counter variable
Dim intCount As Integer

5. The first step in the algorithm assigns the number 1 to the counter variable. Enter the
following comment and assignment statement:

' begin counting
intCount = 1

6. The second step in the algorithm is a repetition structure that repeats its instructions
while the counter variable’s value is less than or equal to 20. Type the following Do
clause and then press Enter. When you press Enter, the Code Editor automatically
enters the Loop clause for you. It also automatically indents the current line.

Do While intCount <= 20

7. The first instruction in the loop is a selection structure whose condition determines
whether the lblMessage control’s Visible property contains the Boolean value, False.
Enter the following If clause:

If lblMessage.Visible = False Then

8. If the Visible property contains False, the selection structure’s true path should assign
True to the property; otherwise, its false path should assign False. Enter the following
three lines of code, but don’t press Enter after typing the last line:

lblMessage.Visible = True
Else

lblMessage.Visible = False

9. The remaining loop instructions refresh the interface, delay program execution for a
quarter of a second, and update the counter variable. Enter the comment and three lines
of code indicated in Figure 12-11.

The Do…Loop Statement

213

10. Save the solution and then start the application. Click the Click Me button. The
message in the lblMessage control blinks 10 times. Click the Exit button. Close the Code
Editor window and then close the solution.

My Dream Car-Version 2 Application
Except for the title bar text, the interface for the My Dream Car-Version 2 application
appears identical to the one shown earlier in Figure 12-9. However, in this version of the
application, the lblMessage control’s Visible property is set to True in the Properties
window, and the picCar control’s Visible property is set to False. When the user clicks the
Click Me button, the button’s Click event procedure will position the picCar control
off the left edge of the form. This can be accomplished by setting the control’s Left
property to a negative number; you will use –400. Next, the procedure will set the
picCar control’s Visible property to True and then slowly drag the control to the center
of the form. You can drag the control by including, in a loop, an instruction that
increments the control’s Left property value; in this case, you will increment the value
by 25. You will include the Refresh and Sleep methods within the loop to prevent the
computer from processing the dragging instructions too rapidly. The loop will stop
when the Left property value is greater than 20. Why 20? Currently, the picCar control is
centered horizontally on the form. If you check its Location property, you will notice
that its X value, which determines the location of its left border on the form, is set to
27 (your property value may differ slightly). The algorithm for the Click Me button’s
Click event procedure is shown in Figure 12-12.

Private Sub btnClickMe_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnClickMe.Click
 ' blinks the message in the lblMessage control

 ' declare counter variable
 Dim intCount As Integer

 ' begin counting
 intCount = 1
 Do While intCount <= 20
 If lblMessage.Visible = False Then
 lblMessage.Visible = True
 Else
 lblMessage.Visible = False
 End If
 Me.Refresh()
 System.Threading.Thread.Sleep(250)
 ' update the counter variable
 intCount = intCount + 1
 Loop
End Sub

enter this comment and
these three lines of code

Figure 12-11 btnClickMe Click procedure in the My Dream Car-Version 1 application

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

214

To code and then test the My Dream Car-Version 2 application:

1. Open the Car Solution (Car Solution.sln) file contained in the ClearlyVB2010\
Chap12\Car Solution-Version 2 folder. If the designer window is not open, double-click
frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window, which contains the code for the btnExit control’s Click
event procedure.

3. Open the code template for the btnClickMe control’s Click event procedure. Type the
following comment and then press Enter twice:

' drags the picCar control to the center of the form

4. The first two steps in the algorithm position the picCar control off the left edge of the
form and then set the control’s Visible property to True. Enter the following comments
and assignment statements. Press Enter twice after typing the last assignment statement.

' position picCar off the left edge of the form
picCar.Left = –400
' show picCar
picCar.Visible = True

5. The third step in the algorithm is a repetition structure that repeats its instructions until
the value in the picCar control’s Left property is greater than 20. Enter the following Do
clause:

Do Until picCar.Left > 20

6. The first instruction in the loop repositions the picCar control by adding 25 to its Left
property. The remaining loop instructions refresh the interface and delay program
execution for a quarter of a second. Enter the comment and three lines of code indicated
in Figure 12-13.

1. position the picCar control off the left edge of the form by setting its Left property to 400
2. set the picCar control’s Visible property to True
3. repeat until the value in the picCar control’s Left property is greater than 20:
 reposition the picCar control by adding 25 to its Left property
 refresh the interface
 delay program execution for 1/4 second
 end repeat

Figure 12-12 Algorithm for the Click Me button’s Click event procedure

The Do…Loop Statement

215

7. Save the solution and then start the application. Click the Click Me button. The car
image is dragged from the left edge of the form to the center of the form. Click the Exit
button. Close the Code Editor window and then close the solution.

Mini-Quiz 12-2
See Appendix B for the answers.

1. Write a Visual Basic Do clause that tells the computer to process the loop instructions
as long as the value in the intQuantity variable is greater than the number 0. Use the
While keyword to create a looping condition.

2. Rewrite the Do clause from Question 1 using the Until keyword to create a loop exit
condition.

3. Write an assignment statement that increments the intNumEmployees variable by 1.

4. Write a statement that tells the computer to pause program execution for 1 second.

The Sales Express Application-Counter and
Accumulator Variables
Figure 12-14 shows another problem specification whose solution requires a repetition
structure. It also shows a correct algorithm for the problem. In addition to a counter variable,
which is used to keep track of the number of sales amounts entered by the sales manager, the
algorithm also uses an accumulator variable. An accumulator variable is a numeric variable
used for accumulating (adding together) something. Repetition structures use accumulator
variables to tally information such as the total dollar amount of a week’s payroll. The loop in
Figure 12-14 uses the accumulator variable to total the sales amounts entered by the user. Like
counter variables, accumulator variables are initialized before the loop is processed. In most
cases, an accumulator variable is initialized to 0. Also like counter variables, accumulator
variables are updated within the loop. However, unlike counter variables, accumulator variables
are incremented by an amount that varies (rather than by a constant value). In the Sales Express
algorithm, the accumulator variable is incremented by the sales amount entered by the sales
manager. The algorithm uses the values in the accumulator and counter variables to calculate
the average sales amount.

Private Sub btnClickMe_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnClickMe.Click
 ' drags the picCar control to the center of the form

 ' position picCar off the left edge of the form
 picCar.Left = -400
 ' show picCar
 picCar.Visible = True

 Do Until picCar.Left > 20
 ' move picCar
 picCar.Left = picCar.Left + 25
 Me.Refresh()
 System.Threading.Thread.Sleep(250)
 Loop
End Sub

enter this comment and
these three lines of code

Figure 12-13 btnClickMe Click procedure in the My Dream Car-Version 2 application

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

216

Notice that enter a sales amount appears twice in the algorithm: immediately above the
loop and also within the loop. The enter a sales amount entry above the loop is referred
to as the priming read, because it is used to prime (prepare or set up) the loop. The
priming read initializes the loop condition by providing its first value. In this case, the
priming read gets only the first salesperson’s sales amount from the user. Because the loop
in Figure 12-14 is a pretest loop, the first sales amount determines whether the
instructions in the loop body are processed at all. If the loop body instructions are
processed, the enter a sales amount instruction in the loop body gets the remaining sales
amounts (if any) from the user. The enter a sales amount instruction in the loop body is
referred to as the update read, because it allows the user to update the value of the input
item (in this case, the sales amount) that controls the loop’s condition. The update read is
often an exact copy of the priming read.

Keep in mind that if you don’t include the update read in the loop body, there will be no
way to enter a value that will stop the loop after it has been processed the first time. This
is because the priming read is processed only once and gets only the first sales amount
from the user. A loop that has no way to end is called an infinite loop or an endless loop.
You can stop a program that has an endless loop by clicking Debug on the menu bar and
then clicking Stop Debugging.

To begin coding the Sales Express application:

1. Open the Sales Express Solution (Sales Express Solution.sln) file contained in the
ClearlyVB2010\Chap12\Sales Express Solution folder. If the designer window is not
open, double-click frmMain.vb in the Solution Explorer window. The application’s
interface is shown in Figure 12-15.

The sales manager at Sales Express wants an application that allows him to enter
the amount of each salesperson’s sales, one at a time. After all of the sales amounts
have been entered, the application should calculate the average sales amount and then
display the result on the screen.

Output: average sales amount

Processing: sales counter variable (start at 0)
 sales accumulator variable (start at 0)

Input: sales amount (for each salesperson)

Algorithm:
1. initialize the sales counter and sales accumulator variables to 0
2. enter a sales amount
3. repeat until there are no more sales amounts to enter:
 add the sales amount to the sales accumulator variable
 add 1 to the sales counter variable
 enter a sales amount
 end repeat
4. calculate the average sales amount by dividing the sales accumulator
 variable by the sales counter variable
5. display the average sales amount

Figure 12-14 Problem specification and algorithm for the Sales Express application

The Sales Express Application Counter and Accumulator Variables

217

2. Open the Code Editor window, which contains the code for the btnExit control’s Click
event procedure.

3. Open the code template for the btnCalc control’s Click event procedure. Type the
following comment and then press Enter twice:

' calculates and displays the average sales amount

4. First, you will declare the necessary variables. The procedure requires four variables
for the output, processing, and input items. Enter the following declaration statements
and comments. Press Enter twice after typing the last declaration statement.

Dim intNumSales As Integer ' counter
Dim decTotalSales As Decimal ' accumulator
Dim decSales As Decimal
Dim decAverage As Decimal

5. The first step in the algorithm is to initialize the counter and accumulator variables to 0.
Both variables are initialized to 0 in their respective declaration statements, so the
first step in the algorithm has already been coded. However, for clarity, some
programmers enter assignment statements that document the initialization step.
Enter the following assignment statements and then save the solution:

intNumSales = 0
decTotalSales = 0

The InputBox Function
The second step in the Sales Express algorithm is to enter the sales amount. You may have
noticed that the Sales Express interface does not provide a text box for the user to enter the sales
amount. Rather than using a text box, the application will use an input dialog box. You display
an input dialog box using Visual Basic’s InputBox function. An example of an input dialog box is
shown in Figure 12-16. The input dialog box contains a message, an OK button, a Cancel
button, and an input area where the user can enter information. The message in the dialog box
should prompt the user to enter the appropriate information in the input area. The user closes
the dialog box by clicking the OK button, Cancel button, or Close button. The value returned by
the InputBox function depends on the button the user chooses. If the user clicks the OK button,
the InputBox function returns the value contained in the input area of the dialog box; the return
value is always treated as a string. If the user clicks either the Cancel button in the dialog box or
the Close button on the dialog box’s title bar, the InputBox function returns an empty string.
The empty string is represented by the String.Empty constant in Visual Basic.

Figure 12-16 Example of an input dialog box created by the InputBox function

Figure 12-15 Sales Express application’s interface

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

218

Figure 12-17 shows the basic syntax of the InputBox function. The prompt argument contains
the message to display inside the dialog box. The optional title and defaultResponse
arguments control the text that appears in the dialog box’s title bar and input area, respectively.
If you omit the title argument, the project name appears in the title bar. If you omit the
defaultResponse argument, a blank input area appears when the dialog box opens. In the dialog
box shown in Figure 12-16, “Enter a sales amount. Click Cancel to end.” is the prompt, “Sales
Entry” is the title, and “0.00” is the defaultResponse. When entering the InputBox function in the
Code Editor window, the prompt, title, and defaultResponse arguments must be enclosed in
quotation marks, unless that information is stored in a String named constant or a String
variable. The Windows standard is to use sentence capitalization for the prompt, but book
title capitalization for the title. The capitalization (if any) you use for the defaultResponse
depends on the text itself. In most cases, you assign the value returned by the InputBox
function to a String variable, as indicated in the first three examples in Figure 12-17. However,
you also can store the value in a numeric variable by first converting the value to the appropriate
numeric data type, as shown in Example 4 in the figure.

InputBox Function

Syntax
InputBox(prompt[, title][, defaultResponse])

Example 1
strName = InputBox("First name:", "Name Entry")
Displays an input dialog box that shows First name: as the prompt, Name Entry in the title bar,
and an empty input area. When the user closes the dialog box, the assignment statement
assigns the user’s response to a String variable named strName.

Example 2
strState = InputBox("State name:", "State", "Alaska")
Displays an input dialog box that shows State name: as the prompt, State in the title bar, and
Alaska in the input area. When the user closes the dialog box, the assignment statement
assigns the user’s response to a String variable named strState.

Example 3
Const strPROMPT As String =
 "Enter a sales amount. Click Cancel to end."
Const strTITLE As String = "Sales Entry"
strInputSales = InputBox(strPROMPT, strTITLE, "0.00")
Displays the input dialog box shown in Figure 12-16. When the user closes the dialog box,
the assignment statement assigns the user’s response to a String variable named
strInputSales.

Example 4
Integer.TryParse(InputBox("How old are you?",
 "Discount Verification"), intAge)
Displays an input dialog box that shows How old are you? as the prompt, Discount Verification
in the title bar, and an empty input area. When the user closes the dialog box, the TryParse
method converts the user’s response from String to Integer and then stores the result in an
Integer variable named intAge.

Figure 12-17 Syntax and examples of the InputBox function

The Sales Express Application Counter and Accumulator Variables

219

To continue coding the Sales Express application:

1. First, you will create named constants for the InputBox function’s prompt and title
arguments. Click the blank line above the first Dim statement and then press Enter to
insert a blank line. Enter the following Const statements:

Const strPROMPT As String =
"Enter a sales amount. Click Cancel to end."

Const strTITLE As String = "Sales Entry"

2. Now you will create a String variable to store the value returned by the InputBox
function. Enter the following Dim statement:

Dim strInputSales As String

3. Next, you will enter the InputBox function in the procedure. Click the blank line below
the decTotalSales = 0 statement and then enter the following comment and
assignment statement:

' get the first sales amount
strInputSales = InputBox(strPROMPT, strTITLE, "0.00")

4. The third step in the algorithm is a loop that repeats its instructions until there are
no more sales amounts to enter. The user indicates that he or she has finished
entering data by clicking the Cancel button in the dialog box. Recall that when the
Cancel button is clicked, the InputBox function returns the empty string. Enter the
following Do clause:

Do Until strInputSales = String.Empty

5. The first instruction in the loop increments the accumulator variable by the sales
amount. Before you can do this, you need to convert the sales amount stored in the
strInputSales variable to the Decimal data type. Enter the following TryParse method
and assignment statement:

Decimal.TryParse(strInputSales, decSales)
decTotalSales = decTotalSales + decSales

6. The next instruction in the loop increments the counter variable by 1. Enter the
following assignment statement:

intNumSales = intNumSales + 1

7. The last instruction in the loop is to enter another sales amount. Enter the following
comment and assignment statement, but don’t press Enter after typing the assignment
statement:

' get another sales amount
strInputSales =

InputBox(strPROMPT, strTITLE, "0.00")

8. The fourth and fifth steps in the algorithm calculate and display the average sales
amount. As the algorithm indicates, both tasks are performed after the loop has finished
processing. Click after the letter p in the Loop clause and then press Enter twice to
insert two blank lines. Enter the following assignment statements:

decAverage = decTotalSales / intNumSales
lblAverage.Text = decAverage.ToString("C2")

Figure 12-18 shows a preliminary testing chart for the Sales Express application. At times,
you may not be sure of the expected result when testing with an invalid value. In those cases,
you can wait until after testing the application to complete the Expected result entry.
However, after determining the result, you should study the code to understand why it
generated that result.

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

220

To begin testing the Sales Express application:

1. Save the solution and then start the application. Click the Calculate button. The input
dialog box shown earlier in Figure 12-16 opens.

2. Click the Cancel button in the dialog box. After a few seconds, the screen appears as
shown in Figure 12-19.

When you click the Calculate button and then click the Cancel button, a run time error occurs.
A run time error is an error that occurs while an application is running. Notice that an arrow
points to the statement where the error was encountered, and the statement is highlighted.
In addition, a help box opens; the help box provides information pertaining to the error. In
this case, the run time error was encountered when the computer tried to process the
decAverage = decTotalSales / intNumSales statement. The help box indicates that the
statement is attempting to divide by zero.

To continue testing the Sales Express application:

1. Place your mouse pointer on intNumSales in the highlighted statement. The variable
contains the number 0, because no sales amounts were entered.

2. Click Debug on the menu bar and then click Stop Debugging.

help box

Figure 12-19 Result of the run time error caused by dividing by zero

t d E p ltTest data Expected result
No data entered $0.00

Valid values
0 $0.00
25.67 $25.67
100, 75.50, 30.25 $68.58
5 ($5.00)

78.56, 4 $37.28

Invalid values
Empty input area
x, $5

Figure 12-18 Preliminary testing chart for the Sales Express application

The Sales Express Application Counter and Accumulator Variables

221

3. Before using a variable as the divisor in an expression, you always should verify
that the variable does not contain the number 0 because, as in mathematics,
division by zero is not possible. Click the blank line below the Loop clause and
then press Enter to insert a blank line. Enter the selection structure shown in
Figure 12-20. (You will need to move the calculation statement to the selection
structure’s true path.)

4. Save the solution and then start the application. Click the Calculate button and then
click the Cancel button in the dialog box. The Average sales amount box shows $0.00,
which is correct.

5. Click the Calculate button. Type 25.67 in the dialog box and then press Enter to
select the OK button. Now click the Cancel button to indicate that you have no
more sales amounts to enter. The Average sales amount box shows $25.67, which
is correct.

6. Click the Calculate button. Type the following three sales amounts, pressing Enter after
typing each one: 100, 75.50, and 30.25. Click the Cancel button. The Average sales
amount box shows $68.58, which is correct.

7. Click the Calculate button. Type –5 and then press Enter. Click the Cancel button.
The Average sales amount box shows ($5.00), which is the expected result.

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays the average sales amount

 Const strPROMPT As String =
 "Enter a sales amount. Click Cancel to end."
 Const strTITLE As String = "Sales Entry"
 Dim strInputSales As String

 Dim intNumSales As Integer ' counter
 Dim decTotalSales As Decimal ' accumulator
 Dim decSales As Decimal
 Dim decAverage As Decimal

 intNumSales = 0
 decTotalSales = 0
 ' get the first sales amount
 strInputSales = InputBox(strPROMPT, strTITLE, "0.00")
 Do Until strInputSales = String.Empty
 Decimal.TryParse(strInputSales, decSales)
 decTotalSales = decTotalSales + decSales
 intNumSales = intNumSales + 1
 ' get another sales amount
 strInputSales =
 InputBox(strPROMPT, strTITLE, "0.00")
 Loop

 If intNumSales <> 0 Then
 decAverage = decTotalSales / intNumSales
 End If
 lblAverage.Text = decAverage.ToString("C2")

End Sub

type the If clause

move this statement
into the true path

Figure 12-20 Selection structure entered in the procedure

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

222

8. Click the Calculate button. Type the following two sales amounts, pressing Enter after
typing each one: 78.56 and –4. Click the Cancel button. The average sales amount is
$37.28, which is correct.

9. Now you will test the application with the invalid values listed in the testing chart
(shown earlier in Figure 12-18). Click the Calculate button. Press the Backspace key to
delete the 0.00 in the dialog box and then press Enter. Because the input area does not
contain a value, the InputBox function returns the empty string. As a result, the loop
ends and the procedure displays $0.00 as the average sales amount.

10. Click the Calculate button. Type the following values, pressing Enter after typing each
one: x and $5. Click the Cancel button. $0.00 appears in the Average sales amount box.
Why $0.00? The TryParse method converts the letter x to the number 0 and then stores
the 0 in the decSales variable. The variable’s value is then added to the accumulator
variable, giving 0. Next, the counter variable is incremented by 1, giving 1. The InputBox
function within the loop prompts you to enter another sales amount. Because the
TryParse method does not recognize the $, it converts your $5 entry to the number 0
and stores the 0 in the decSales variable. The variable’s value is added to the
accumulator variable, giving 0. Next, the counter variable is incremented by 1, giving 2.
The InputBox function within the loop prompts you to enter another sales amount.
When you click the Cancel button, the loop ends and the average sales amount is
calculated by dividing the accumulator variable’s value (0) by the counter variable’s value
(2); the result is 0. The formatted result appears in the lblAverage control. The $0.00 is
an acceptable value to display when the user enters a letter or a special character along
with a number.

11. Click the Exit button. Close the Code Editor window and then close the solution.

Figure 12-21 shows the final testing chart for the Sales Express application.

Can I Abbreviate That Assignment Statement?
In addition to the arithmetic operators listed in Figure 5-5 in Chapter 5, Visual Basic also
provides several arithmetic assignment operators. The arithmetic assignment operators allow
you to abbreviate an assignment statement that contains an arithmetic operator, as long as the
assignment statement has the following format, in which variableName is the name of the same
variable: variableName = variableName arithmeticOperator value. For example, you can use the
addition assignment operator (+=) to abbreviate the statement intAge = intAge + 1 as follows:
intAge += 1. Both statements tell the computer to add the number 1 to the contents of the

 d E Test data Expected result
No data entered $0.00

Valid values
0 $0.00
25.67 $25.67
100, 75.50, 30.25 $68.58
5 ($5.00)

78.56, 4 $37.28

Invalid values
Empty input area $0.00
x, $5 $0.00

Figure 12-21 Final testing chart for the Sales Express application

Can I Abbreviate That Assignment Statement?

223

intAge variable and then store the result in the intAge variable. Figure 12-22 shows the syntax
of a Visual Basic statement that uses an arithmetic assignment operator. The figure also lists the
most commonly used arithmetic assignment operators, and it includes examples of using
arithmetic assignment operators to abbreviate assignment statements. Notice that each
arithmetic assignment operator consists of an arithmetic operator followed immediately by the
assignment operator (=). The arithmetic assignment operators do not contain a space. In other
words, the multiplication assignment operator is *=, not * =. (It’s easy to abbreviate an
assignment statement. Simply remove the variable name that appears on the left side of the
assignment operator in the statement, and then put the assignment operator immediately after
the arithmetic operator.)

Arithmetic assignment operators

Syntax
variableName arithmeticAssignmentOperator value

Operator Purpose
+= addition assignment
–= subtraction assignment
*= multiplication assignment
/= division assignment

Example 1
Original statement: intAge = intAge + 1
Abbreviated statement: intAge += 1
Both statements add 1 to the number stored in the intAge variable and then assign the
result to the variable.

Example 2
Original statement: decPrice = decPrice - decDiscount
Abbreviated statement: decPrice -= decDiscount
Both statements subtract the number stored in the decDiscount variable from the
number stored in the decPrice variable and then assign the result to the decPrice
variable.

Example 3
Original statement: dblSales = dblSales * 1.05
Abbreviated statement: dblSales *= 1.05
Both statements multiply the number stored in the dblSales variable by 1.05 and then
assign the result to the variable.

Example 4
Original statement: decPrice = decPrice / 2
Abbreviated statement: decPrice /= 2
Both statements divide the number stored in the decPrice variable by 2 and then
assign the result to the variable.

Figure 12-22 Syntax and examples of using the arithmetic assignment operators

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

224

To use the addition assignment operator in the Sales Express application:

1. Use Windows to make a copy of the Sales Express Solution folder. Save the copy in the
ClearlyVB2010\Chap12 folder. Rename the copy Sales Express Solution-Arithmetic
Assignment.

2. Open the Sales Express Solution (Sales Express Solution.sln) file contained in the
Sales Express Solution-Arithmetic Assignment folder. Double-click frmMain.vb in the
Solution Explorer window.

3. Open the Code Editor window. In the btnCalc control’s Click event procedure, change
the statement that updates the accumulator variable to decTotalSales += decSales.
Also change the statement that updates the counter variable to intNumSales += 1.

4. Save the solution and then start the application. Test the application using the testing
chart shown earlier in Figure 12-21.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 12-3
See Appendix B for the answers.

1. Write an assignment statement that increments the intTotalNum variable by the
contents of the intNum variable.

2. The empty string in Visual Basic is represented by which named constant?

3. Write a statement that assigns the InputBox function’s return value to the strItem
variable. The text “Item Name” should appear in the dialog box’s title bar. The “Enter
the item:” message should appear inside the dialog box. The input area should be
empty.

4. Use the appropriate arithmetic assignment operator to abbreviate the following
assignment statement: intNum = intNum * 3.

Summary
l You use a repetition structure, also called a loop, to repeatedly process one or more program

instructions either while the looping condition is true or until the loop exit condition has
been met. A loop’s condition must result in an answer of true or false only.

l A repetition structure can be either a pretest loop or a posttest loop. Pretest loops are more
commonly used. The condition in a pretest loop is evaluated before the loop instructions are
processed. The condition in a posttest loop is evaluated after the loop instructions are
processed.

l You can use the Do…Loop statement to code a pretest loop in Visual Basic. The While
keyword in the statement’s condition indicates that the loop instructions should be
processed while (as long as) the condition is true. The Until keyword in the statement’s
condition indicates that the loop instructions should be processed until the condition
becomes true.

l Counter and accumulator variables must be initialized and updated. The initialization is
done outside of the loop that uses the counter or accumulator, and the updating is done
within the loop. Counter variables are updated by a constant value, whereas accumulator
variables are usually updated by an amount that varies.

Summary

225

l In a flowchart, the loop condition is represented by the decision symbol, which is a diamond.

l You can use the Refresh method to refresh (redraw) the form. The method’s syntax is
Me.Refresh().

l You can use the Sleep method to delay program execution. The method’s syntax is
System.Threading.Thread.Sleep(milliseconds).

l The priming read appears above the loop that it controls. The priming read gets only the
first value from the user. The update read appears within the loop and gets any remaining
values from the user. Neglecting to enter the update read will result in an infinite (endless)
loop. You can stop a program that has an infinite loop by clicking Debug on the menu bar
and then clicking Stop Debugging.

l The InputBox function displays an input dialog box that contains a message, an OK button, a
Cancel button, and an input area. The function’s return value is always treated as a string.

l If a run time error occurs, you can stop the application by clicking Debug on the menu bar
and then clicking Stop Debugging.

l Before using a variable as the divisor in an expression, you first should verify that the variable
does not contain the number 0. Dividing by 0 is mathematically impossible and will cause a
run time error to occur.

l You can use an arithmetic assignment operator to abbreviate an assignment statement that
has the following format, in which variableName is the name of the same variable:
variableName = variableName arithmeticOperator value.

Key Terms
Accumulator variable—a numeric variable used for accumulating (adding together) something

Arithmetic assignment operators—composed of an arithmetic operator followed by the
assignment operator; can be used to abbreviate assignment statements that have a specific
format

Counter variable—a numeric variable used for counting something

Do…Loop statement—a Visual Basic statement that can be used to code both pretest loops and
posttest loops

Endless loop—a loop whose instructions are processed indefinitely; also called an infinite loop

Incrementing—another name for updating

Infinite loop—another name for an endless loop

Initializing—the process of assigning a beginning value to a memory location, such as a counter
or accumulator variable

InputBox function—a Visual Basic function that displays an input dialog box containing a
message, OK and Cancel buttons, and an input area

Loop—another name for the repetition structure

Loop body—the instructions within a loop

Loop exit condition—the requirement that must be met for the computer to stop processing the
loop body instructions

Looping condition—the requirement that must be met for the computer to continue processing
the loop body instructions

Posttest loop— a loop whose condition is evaluated after the instructions in its loop body are
processed

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

226

Pretest loop—a loop whose condition is evaluated before the instructions in its loop body are
processed

Priming read—the input instruction that appears above the loop that it controls; used to get the
first input item from the user

Refresh method—used to refresh (redraw) a form

Repetition structure—the control structure used to repeatedly process one or more program
instructions either while a looping condition is true or until a loop exit condition becomes true;
also called a loop

Run time error—an error that occurs while an application is running

Sleep method—used to delay program execution

String.Empty constant—the value that represents the empty string in Visual Basic

Update read—the input instruction that appears within a loop and is associated with the
priming read

Updating—the process of adding a number to the value stored in a counter or accumulator
variable; also called incrementing

Review Questions
1. Which of the following Do clauses will stop the loop only when the intAge variable’s

value is less than the number 0?

a. Do While intAge >= 0

b. Do Until intAge <= 0

c. Do Until intAge >= 0

d. both a and b

2. How many times will the computer process the MessageBox.Show method in the
following code?
intCounter = 0
Do While intCounter > 3

MessageBox.Show("Hello")
intCounter = intCounter + 1

Loop

a. 0 c. 3

b. 1 d. 4

3. What does the InputBox function return when the user clicks the Cancel button in the
dialog box?

a. the number 0

b. the empty string

c. an error message

d. none of the above

4. Which of the following statements displays a dialog box that prompts the user for the
name of a city, and then assigns the user’s response to the strCity variable?

a. InputBox("Enter the city name:",
"City", strCity)

b. InputBox("Enter the city name:", strCity)

c. strCity =
InputBox("Enter the city name:", "City")

d. none of the above

Review Questions

227

5. How many times will the computer process the MessageBox.Show method in the
following code?
intCounter = 0
Do Until intCounter > 3

MessageBox.Show("Hello")
intCounter = intCounter + 1

Loop

a. 0 c. 3

b. 1 d. 4

6. Which of the following statements decreases the intNum variable’s value by 5?

a. intNum = intNum – 5

b. intNum –= 5

c. intNum = intNum + –5

d. all of the above

7. How can you stop a program that has an endless loop?

a. click File on the menu bar and then click Stop

b. click Debug on the menu bar and then click Exit

c. click Debug on the menu bar and then click Stop Debugging

d. none of the above

Exercises
1. In this exercise, you modify the My Dream Car-Version 1 application coded in the

chapter. (See Appendix B for the answer.)

a. Use Windows to make a copy of the Car Solution-Version 1 folder. Save the copy in
the ClearlyVB2010\Chap12 folder. Rename the copy Car Solution-Version 3. Open
the Car Solution (Car Solution.sln) file contained in the Car Solution-Version 3
folder. Change Version 1 in the title bar to Version 3.

b. Open the Code Editor window. Change the Do clause so that it uses the Until
keyword rather than the While keyword. Save the solution and then start and test
the application.

c. Rather than having the counter variable count up from 1, have it count down
from 20. Make the appropriate modifications to the code. Save the solution and
then start and test the application. Close the Code Editor window and then close
the solution.

2. Open the Sales Tax Solution (Sales Tax Solution.sln) file contained in the
ClearlyVB2010\Chap12\Sales Tax Solution folder. The Calculate Sales Tax button’s
Click event procedure should allow the user to enter zero or more sales amounts. After
a sales amount is entered, the procedure should display the amount of a 6% sales tax.
Display the sales tax in a message box before asking the user to enter another sales
amount. Code the procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

3. In this exercise, you modify the Sales Express application coded in the chapter. Use
Windows to make a copy of the Sales Express Solution folder. Save the copy in the
ClearlyVB2010\Chap12 folder. Rename the copy Modified Sales Express Solution. Open
the Sales Express Solution (Sales Express Solution.sln) file contained in the Modified
Sales Express Solution folder. Open the Code Editor window. Change the Do clause so
that it uses the While keyword rather than the Until keyword. If the counter variable
contains the number 0, display a message informing the user that no sales amounts were
entered. Display the message in a message box. After displaying the average sales

MODIFY THIS

TRY THIS

TRY THIS

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

228

amount, change the lblAverage control's BorderStyle property to BorderStyle.None,
blink the text in the control five times, and then change the BorderStyle property back
to BorderStyle.FixedSingle. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

4. Open the Average Score Solution (Average Score Solution.sln) file contained in the
ClearlyVB2010\Chap12\Average Score Solution folder. The Calculate button’s Click event
procedure should allow the user to enter five test scores. It then should both calculate and
display the average test score. Code the procedure. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

5. Open the Weekly Pay Solution (Weekly Pay Solution.sln) file contained in the
ClearlyVB2010\Chap12\Weekly Pay Solution folder. The Calculate button’s Click event
procedure should allow the user to enter zero or more weekly pay amounts. It then
should display the number of amounts entered and the sum of the amounts entered.
After displaying the sum, the procedure should change the lblSum control’s ForeColor
property from Color.Black to Color.Red and back again; it should do this several
times. Code the procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

6. Open the Temperature Solution (Temperature Solution.sln) file contained in the
ClearlyVB2010\Chap12\Temperature Solution folder. The Calculate button’s Click event
procedure should allow the user to enter zero or more temperatures. It then should
display the number of temperatures entered and the average temperature. Include one
decimal place in the average temperature. Code the procedure. Save the solution and then
start and test the application. Close the Code Editor window and then close the solution.

7. Effective January 1st of each year, Gabriela receives a 5% raise on her previous year’s
salary. She wants a program that both calculates and displays the amount of her raises
for the next 3 years. Display the raise amounts in message boxes. Display her total salary
for the 3 years in a label control.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm using pseudocode.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Raise Solution and Raise Project. Save the application in
the ClearlyVB2010\Chap12 folder. Change the name of the form file on your disk to
frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Include a text box for entering the initial salary amount.
Also include an Exit button. Code the Exit button’s Click event procedure and the
problem’s algorithm.

d. Save the solution and then start and test the application. (Hint: For an annual salary
of 10000, the raise amounts are $500.00, $525.00, and $551.25. The total salary is
$33,101.25.) Close the Code Editor window and then close the solution.

8. Open the Sum Even Solution (Sum Even Solution.sln) file contained in the ClearlyVB2010\
Chap12\Sum Even Solution folder. The interface provides text boxes for the user to enter
two numbers, which should be integers. Code the application so each text box accepts only
numbers and the Backspace key. The Display button’s Click event procedure should display
the sum of the even numbers between the two integers entered by the user. If the user’s
entry is even, it should be included in the sum. For example, if the user enters the integers 2
and 7, the procedure should display 12 (2 + 4 + 6). If the user enters the integers 2 and 8,
the procedure should display 20 (2 + 4 + 6 + 8). Code the Display button’s Click event
procedure. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

9. Open the Colfax Solution (Colfax Solution.sln) file contained in the ClearlyVB2010\
Chap12\Colfax Solution folder. Code the Add button’s Click event procedure so that it
adds the amounts entered by the user to an accumulator variable and then displays the

INTERMEDIATE

INTRODUCTORY

INTERMEDIATE

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Exercises

229

variable’s value in the lblSales control. Use an arithmetic assignment operator to update
the accumulator. Display the total sales with a dollar sign and two decimal places. Save
the solution and then start and test the application. Close the Code Editor window and
then close the solution.

10. In this exercise, you create an application for Premium Paper. The application allows
the sales manager to enter the company’s income and expense amounts. The number of
income and expense amounts may vary each time the application is started. For
example, the user may enter five income amounts and three expense amounts. Or, he or
she may enter 20 income amounts and 30 expense amounts. The application should
calculate and display the company’s total income, total expenses, and profit (or loss).
Use the InputBox function to get the individual income and expense amounts. If the
company experienced a loss, display the amount of the loss using a red font; otherwise,
display the profit using a black font. (Hint: Change the label control’s ForeColor
property to either Color.Red or Color.Black.)

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm using pseudocode.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Premium Solution and Premium Project. Save the
application in the ClearlyVB2010\Chap12 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Use label controls to display the total income, total
expenses, and profit (loss) amounts.

d. Code the application. Keep in mind that the income and expense amounts may
contain decimal places. Display the calculated amounts with a dollar sign and two
decimal places.

e. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

11. In this exercise, you modify the Sales Express application coded in the chapter. Use
Windows to make a copy of the Sales Express Solution folder. Save the copy in the
ClearlyVB2010\Chap12 folder. Rename the copy Advanced Sales Express Solution.
Open the Sales Express Solution (Sales Express Solution.sln) file contained in the
Advanced Sales Express Solution folder. Open the Code Editor window. If the user
enters a sales amount that is not greater than 0, do not include the sales amount in the
average; instead, use a message box to display an appropriate message to the user. In
addition to displaying the average sales amount, the application also should display the
number of sales amounts entered. Make the appropriate modifications to the
application’s interface and code. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

12. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap12\FigureThisOut Solution folder. Open the Code Editor window
and study the existing code. List the steps the computer follows when processing the
Calculate button’s code. (You can use the processing steps shown in Figure 12-8 as a
guide.) Start and then test the application. Close the Code Editor window and then close
the solution.

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap12\SwatTheBugs Solution folder. The application should drag the
picture box up and then down again on the form. Start the application and then click
the Up and Down button. Notice that the application is not working correctly. Click the
Exit button. Locate and correct the errors in the code. Save the solution and then start
and test the application again. Close the Code Editor window and then close the
solution.

FIGURE THIS OUT

ADVANCED

SWAT THE BUGS

ADVANCED

CH A P T E R 1 2 How Long Can This Go On? (Pretest Loops)

230

CHAPTER 13
Do It, Then Ask
Permission
(Posttest Loops)

After studying Chapter 13, you should be able to:

Show a posttest loop in both pseudocode and a flowchart

Write a posttest loop using the Do…Loop statement

Testing After the Fact
As you learned in Chapter 12, a repetition structure can be either a pretest loop or a posttest
loop. The difference between both types of loops pertains to when the loop condition is
evaluated. The condition in a pretest loop is evaluated before the instructions within the loop are
processed. The condition in a posttest loop, on the other hand, is evaluated after the
instructions within the loop are processed. Depending on the result of the evaluation, the
instructions in a pretest loop may never be processed. The instructions in a posttest loop,
however, will always be processed at least once. Although most programmers use pretest loops,
it is essential to understand the way posttest loops work because you may encounter a posttest
loop in another programmer’s code that you are either modifying or debugging. You also may
encounter a situation where a posttest loop is the better choice of loops.

The problem specification and algorithms shown in Figure 13-1 will help clarify the difference
between pretest and posttest loops. Algorithm 1 contains a pretest loop, and Algorithm 2
contains a posttest loop. The purpose of the loop in each algorithm is to position Rob (the
mechanical man) directly in front of his bedroom door. Compare the first and last lines in the
pretest loop with the first and last lines in the posttest loop. More specifically, notice the
location of the loop condition: until you are directly in front of the bedroom door. In the pretest
loop, the condition appears in the first line; this indicates that Rob should evaluate it before he
follows the instructions in the loop. In the posttest loop, the condition appears in the last line,
indicating that Rob should evaluate it only after following the instructions in the loop. The
pretest loop in Algorithm 1 will work when Rob is zero or more steps away from his bedroom
door. The posttest loop in Algorithm 2, however, will work only when Rob is at least one step
away from the bedroom door.

To understand why the loops in Figure 13-1 are not interchangeable, you will test them. For the
first test, Rob is one step away from the door. In the pretest loop in Algorithm 1, the loop
condition tells Rob to check his current location. Rob is not directly in front of his bedroom
door, so he is told to walk forward and then the loop condition is evaluated again. Rob is now
positioned correctly in front of the door, so the loop ends and Rob continues to Step 2 in the
algorithm. In the posttest loop in Algorithm 2, Rob is told to walk forward, which places him

Rob is standing in his hallway facing his bedroom door. The door, which may or
may not be closed, is an unknown number of steps away from Rob. Rob wants
to enter his bedroom.

Algorithm 1 – pretest loop
1. repeat until you are directly in front of the bedroom door:
 walk forward
 end repeat
2. if the bedroom door is closed, do this:
 open the bedroom door
 end if
3. walk forward

Algorithm 2 – posttest loop
1. repeat:
 walk forward
 end repeat until you are directly in front of the bedroom door
2. if the bedroom door is closed, do this:
 open the bedroom door
 end if
3. walk forward

works only when Rob
is at least one step
away from the door

works when Rob is
zero or more steps
away from the door

Figure 13-1 Rob algorithms containing pretest and posttest loops

CH A P T E R 1 3 Do It, Then Ask Permission (Posttest Loops)

232

directly in front of his bedroom door. Next, the loop condition tells Rob to check whether he is
positioned correctly; he is, so the loop ends and Rob continues to Step 2 in the algorithm. Notice
that, when Rob is one step away from the door, the pretest and posttest loops produce the same
result; both position Rob in front of the door.

For the second test, Rob is directly in front of his bedroom door. The condition in the
pretest loop in Algorithm 1 tells Rob to check his current location. Rob is already positioned
correctly, so the walk forward instruction is bypassed and the loop ends. In the posttest loop in
Algorithm 2, Rob is told to walk forward before evaluating his current location. But if Rob
walks forward, he will bump into the door. Obviously, the posttest loop in Algorithm 2 does not
work correctly when Rob starts out directly in front of his bedroom door. You can fix this
problem by adding a selection structure to the algorithm, as shown in Figure 13-2.

The posttest loop in Figure 13-2 is identical to the posttest loop in Figure 13-1, except it
is processed only when Rob is not directly in front of his bedroom door. First, test the
algorithm with Rob one step away from the door. The algorithm begins with a selection
structure whose condition tells Rob to check his current location. Rob is not directly in
front of his bedroom door, so the posttest loop instructs him to walk forward. The loop
condition is evaluated next. At this point, Rob is positioned correctly; therefore, the loop
and selection structure end and Rob continues to Step 2 in the algorithm. For the second
test, Rob is directly in front of his bedroom door. Here again, the condition in the
selection structure tells Rob to check his current location. In this case, Rob is already in
front of his bedroom door, so the entire posttest loop is bypassed and Rob continues to
Step 2 in the algorithm. Although the modified algorithm works correctly, most
programmers prefer to use a pretest loop (rather than a posttest loop with a selection
structure) because it is easier to write and understand. Posttest loops should be used only
when their instructions must be processed at least once.

More on the Do…Loop Statement
In Chapter 12, you learned how to use the Do…Loop statement to code a pretest loop. The
statement also is used to code a posttest loop; the syntax for doing this is shown in Figure 13-3.
Comparing the statement’s posttest syntax with its pretest syntax (shown in Figure 12-7 in
Chapter 12), you will notice one difference: the location of the {While | Until} condition
section. In the pretest syntax, that section is part of the Do clause and indicates that the
condition is evaluated before the loop instructions are processed. In the posttest syntax, on
the other hand, it’s part of the Loop clause, indicating that the condition is evaluated after
the loop instructions are processed. In the posttest syntax, the only purpose of the Do clause
is to mark the beginning of the loop. Figure 13-3 also shows how to write the pretest loops
from Figure 12-7 as posttest loops. Like the pretest loops, both posttest loops display the

Modified Algorithm 2 – posttest loop
1. if you are not directly in front of the bedroom door, do this:
 repeat:
 walk forward
 end repeat until you are directly in front of the bedroom door
 end if
2. if the bedroom door is closed, do this:
 open the bedroom door
 end if
3. walk forward

works when Rob is
zero or more steps
away from the door

Figure 13-2 Selection structure added to Algorithm 2 from Figure 13-1

More on the Do…Loop Statement

233

numbers 1, 2, and 3 in message boxes. Notice that the loop’s condition can be phrased as either
a looping condition or a loop exit condition.

Pseudocode and Flowchart Containing a Posttest Loop
Figure 13-4 shows the pseudocode and flowchart for Example 2 in Figure 13-3. Not surprisingly,
the diamond that represents the loop’s condition in a flowchart appears at the bottom of a
posttest loop. (Recall that it appears at the top of a pretest loop.) The loop in the figure is formed
by all of the symbols and flowlines in the loop’s false path.

Do…Loop statement

Syntax for coding a posttest loop
Do
 loop body instructions, which will be processed either
 while the condition is true or until the condition becomes true
Loop {While | Until} condition

Example 1
intNumber = 1
Do
 MessageBox.Show(intNumber)
 intNumber = intNumber + 1
Loop While intNumber <= 3

Example 2
intNumber = 1
Do
 MessageBox.Show(intNumber)
 intNumber = intNumber + 1
Loop Until intNumber > 3

looping condition

loop exit condition

Figure 13-3 Syntax and examples of the Do…Loop statement for a posttest loop

CH A P T E R 1 3 Do It, Then Ask Permission (Posttest Loops)

234

The Bouncing Robot Application
The Bouncing Robot application, which you will finish coding in this section, illustrates the
difference between a pretest loop and a posttest loop. The application bounces a robot up and
down on the form. The number of times the robot bounces is entered in a text box.

To code and then test the Bouncing Robot application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Bouncing Robot Solution (Bouncing Robot
Solution.sln) file contained in the ClearlyVB2010\Chap13\Bouncing Robot Solution
folder. If the designer window is not open, double-click frmMain.vb in the Solution
Explorer window.

2. Open the Code Editor window. Locate the btnPretest control’s Click event procedure
and examine its code.

3. The btnPretest control’s Click event procedure will use a pretest loop to repeat the loop
instructions while the value in the counter variable (intCounter) is less than the value
in the intBounces variable. Change the Do clause to the following:

Do While intCounter < intBounces

4. Next, locate the btnPosttest control’s Click event procedure and examine its code.

5. The btnPosttest control’s Click event procedure will use a posttest loop to repeat the
loop instructions while the value in the counter variable (intCounter) is less than the
value in the intBounces variable. Change the Loop clause to the following:

Loop While intCounter < intBounces

1. assign 1 to a counter variable
2. repeat:
 display the counter variable’s value in a message box
 add 1 to the counter variable
 end repeat until the counter variable’s value is greater than 3

start

counter = 1

display counter

stop

counter > 3?F T

add 1 to counter

Figure 13-4 Pseudocode and flowchart for Example 2 in Figure 13-3

The Bouncing Robot Application

235

6. Save the solution and then start the application.

7. First, you will test the Pretest Loop button’s code. Type 4 in the Number of
bounces box and then click the Pretest Loop button. The robot bounces up
and down four times. Change the number of bounces to 2 and then click the
Pretest Loop button. The robot bounces up and down two times. Change
the number of bounces to 0 and then click the Pretest Loop button. This time,
the robot does not bounce.

8. Now you will test the Posttest Loop button’s code. Change the number of bounces to 4
and then click the Posttest Loop button. The robot bounces up and down four
times. Change the number of bounces to 2 and then click the Posttest Loop button.
The robot bounces up and down two times. Change the number of bounces to 0 and
then click the Posttest Loop button. The robot bounces up and down one time; this is
because the loop’s condition is not evaluated until after the loop instructions are
processed the first time.

9. Click the Exit button.

You can fix the problem in the Posttest Loop button’s code by placing the posttest loop in a
selection structure. The selection structure’s condition will determine whether the
intBounces variable contains a number other than 0. The posttest loop will be processed
only when the selection structure’s condition evaluates to True; otherwise, the loop will be
skipped over.

To modify the Posttest Loop button’s code:

1. Modify the btnPosttest control’s Click event procedure by adding the selection structure
shown in Figure 13-5.

2. Save the solution and then start the application. Test the Posttest Loop button’s code
using the numbers 4, 2, and 0. The robot should bounce up and down four times, two
times, and zero times, respectively.

3. Click the Exit button. Close the Code Editor window and then close the solution.

place the posttest
loop inside this
selection structure

Figure 13-5 Selection structure added to the btnPosttest control’s Click event procedure

For more
examples
of using the
Do…Loop
statement

to code a posttest loop,
see the Do…Loop
Posttest section in the
Ch13WantMore.pdf file.

CH A P T E R 1 3 Do It, Then Ask Permission (Posttest Loops)

236

Mini-Quiz 13-1
See Appendix B for the answers.

1. Write a Visual Basic Loop clause that processes the loop instructions as long as the
value in the intQuantity variable is greater than the number 0. Use the While
keyword.

2. Rewrite the Loop clause from Question 1 using the Until keyword.

Summary
l The instructions in a posttest loop will always be processed at least once.

l You use the Do…Loop statement to code a posttest loop in Visual Basic. The Do clause
simply marks the beginning of the loop. The Loop clause contains either the While keyword
or the Until keyword, followed by the loop condition. The condition can be phrased as
either a looping condition or a loop exit condition.

Key Term
Posttest loop—a loop whose condition is evaluated after the instructions in its loop body are
processed

Review Questions
1. Which of the following Loop clauses will stop the loop only when the intAge variable’s

value is less than the number 0?

a. Loop While intAge >= 0

b. Loop Until intAge <= 0

c. Loop Until intAge >= 0

d. none of the above

2. How many times will the computer process the MessageBox.Show method in the
following code?
intCounter = 0
Do

MessageBox.Show("Hello")
intCounter = intCounter + 1

Loop While intCounter > 3

a. 0

b. 1

c. 3

d. 4

3. What is the value in the intCounter variable when the loop in Review Question 2 ends?

a. 0

b. 1

c. 3

d. 4

It’s time to
view the
Ch13-
Stepping
Through a
Loop video.

Review Questions

237

4. How many times will the computer process the MessageBox.Show method in the
following code?
intCounter = 0
Do

MessageBox.Show("Hello")
intCounter += 1

Loop Until intCounter > 3

a. 0

b. 1

c. 3

d. 4

5. The instructions in a pretest loop will always be processed at least once.

a. True b. False

6. The condition in a posttest loop can be phrased as either a looping condition or a loop
exit condition.

a. True b. False

Exercises
1. Figure 13-6 shows the first four processing steps for the code in Example 1 in Figure 13-3.

Complete the remaining steps. (See Appendix B for the answer.)

2. Open the Car Solution (Car Solution.sln) file contained in the ClearlyVB2010\Chap13\ Car
Solution-Version 1 folder. Change the pretest loop in the btnClickMe control’s Click event
procedure to a posttest loop that uses the Until keyword. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution. (See
Appendix B for the answer.)

3. In this exercise, you modify the Bouncing Robot application coded in the chapter. Use
Windows to make a copy of the Bouncing Robot Solution folder. Save the copy in the
ClearlyVB2010\Chap13 folder. Rename the copy Modified Bouncing Robot Solution.
Open the Bouncing Robot Solution (Bouncing Robot Solution.sln) file contained in the

Processing steps
1. The computer initializes the intNumber variable to 1.
2. The computer processes the Do clause, which marks the beginning of the loop.
3. The loop instructions display the intNumber variable’s value (1) and then update the
 value by adding 1 to it, giving 2.
4. The computer processes the Loop clause, which checks whether the intNumber
 variable’s value is less than or equal to 3. It is, so processing returns to the Do clause.
5.
6.
7.
8.
9.
10.

Figure 13-6 Processing steps for Example 1 in Figure 13-3

TRY THIS

MODIFY THIS

TRY THIS

CH A P T E R 1 3 Do It, Then Ask Permission (Posttest Loops)

238

Modified Bouncing Robot Solution folder. Open the designer and Code Editor windows.
Currently, the pretest loop starts counting at 0 and stops when it reaches the number of
bounces entered by the user. Modify the code so that it starts counting with the number
of bounces entered by the user and stops when it reaches 0. Save the solution and then
start the application. Test the Pretest Loop button’s code. Close the Code Editor window
and then close the solution.

4. Open the Average Score Solution (Average Score Solution.sln) file contained in the
ClearlyVB2010\Chap13\Average Score Solution folder. The Calculate button’s Click
event procedure should use a posttest loop to allow the user to enter five test scores. It
then should both calculate and display the average test score. If the average test score is
greater than 80, the procedure should use a posttest loop to blink the lblAverage control
six times. Code the procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

5. Open the Temperature Solution (Temperature Solution.sln) file contained in the
ClearlyVB2010\Chap13\Temperature Solution folder. The Calculate button’s Click event
procedure should use a posttest loop to allow the user to enter zero or more
temperatures. It then should display the number of temperatures entered and the average
temperature. Code the procedure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

6. Effective January 1st of each year, Gabriela receives a 5% raise on her previous year’s
salary. She wants a program that both calculates and displays the amount of her raises for
the next 3 years. Display the raise amounts in message boxes. Display her total salary
for the 3 years in a label control.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm using a flowchart and a posttest loop.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Raise Solution and Raise Project. Save the application in the
ClearlyVB2010\Chap13 folder. Change the name of the form file on your disk to
frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create a suitable interface. Include a text box for entering the initial salary amount.
Also include an Exit button. Code the Exit button’s Click event procedure and the
problem’s algorithm.

d. Save the solution and then start and test the application. (Hint: For an annual salary of
10000, the raise amounts are $500.00, $525.00, and $551.25. The total salary is
$33,101.25.) Close the Code Editor window and then close the solution.

7. Open the Sum Even Solution (Sum Even Solution.sln) file contained in the
ClearlyVB2010\Chap13\Sum Even Solution folder. The interface provides text boxes
for the user to enter two numbers, which should be integers. Code the application so
each text box accepts only numbers and the Backspace key. The Display button’s
Click event procedure should display the sum of the even numbers between the two
integers entered by the user. If the user’s entry is even, it should be included in the
sum. For example, if the user enters the integers 2 and 7, the procedure should
display 12 (2 + 4 + 6). If the user enters the integers 2 and 8, the procedure should display
20 (2 + 4 + 6 + 8). Code the Display button’s Click event procedure using a posttest loop.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

8. Open the Sales Express Solution (Sales Express Solution.sln) file contained in the
ClearlyVB2010\Chap13\Sales Express Solution folder. Change the pretest loop in the
btnCalc control’s Click event procedure to a posttest loop. Save the solution and
then start and test the application. Close the Code Editor window and then close
the solution.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

ADVANCED

INTERMEDIATE

Exercises

239

9. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap13\FigureThisOut Solution folder. Open the Code Editor window
and study the existing code. Start the application. Click the Display button and then
click the Exit button. Change the intCount = 1 statement to intCount = 0. What
additional changes will need to be made to the code as a result of starting the counter
at 0 rather than at 1? Make the necessary changes. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

10. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap13\SwatTheBugs Solution folder. Start the application and then test
it by trying to enter three commission amounts. Notice that the application is not
working correctly. Click the Exit button. Locate and correct the errors in the code.
Save the solution and then start and test the application again. Close the Code Editor
window and then close the solution.

SWAT THE BUGS

FIGURE THIS OUT

CH A P T E R 1 3 Do It, Then Ask Permission (Posttest Loops)

240

CHAPTER 14
Let Me Count the Ways
(Counter-Controlled
Loops)

After studying Chapter 14, you should be able to:

Code a counter-controlled pretest loop using the For…Next
statement

Play an audio file while an application is running

Calculate a periodic payment using the Financial.Pmt method

Concatenate strings

When Will It Stop?
A loop whose instructions you want processed a precise number of times is often referred to as a
counter-controlled loop, because it uses a counter variable to keep track of the number of
times the loop instructions are processed. A counter-controlled loop can be either a pretest
loop or a posttest loop. You code a posttest counter-controlled loop using the Do…Loop
statement. A pretest counter-controlled loop, on the other hand, can be coded using either
the Do…Loop statement or the For…Next statement. However, the For…Next statement
provides a more convenient way to code that type of loop, because it takes care of initializing
and updating the counter variable, as well as evaluating the loop condition.

Figure 14-1 shows the For…Next statement’s syntax and includes an example of using the
statement. You enter the loop body, which contains the instructions you want the computer to
repeat, between the statement’s For and Next clauses. Notice that counterVariableName
appears in both clauses. CounterVariableName is the name of a numeric variable that the
computer can use to keep track of (in other words, count) the number of times it processes the
loop body. Although, technically, you do not need to specify the name of the counter variable
in the Next clause, doing so is highly recommended because it makes your code more self-
documenting.

You can use the optional As dataType portion of the For clause to declare the counter
variable. When you declare a variable in the For clause, the variable has block scope and can be
used only within the For…Next loop. The variable is removed from the computer’s internal
memory when the loop ends. (You learned about block scope in Chapter 8.) Alternatively, you
can declare the counter variable in a Dim statement, as long as the Dim statement appears
somewhere above the For…Next statement in the procedure. As you know, a variable
declared in a Dim statement at the beginning of a procedure has procedure scope and can be
used within the entire procedure. When deciding where to declare the counter variable, keep in
mind that if a variable is needed only by the For…Next loop, then it is a better programming
practice to declare the variable in the For clause. As mentioned in Chapter 8, fewer
unintentional errors occur in applications when the variables are declared using the
minimum scope needed. Block variables have a smaller scope than do procedure-level
variables. You should declare the counter variable in a Dim statement only when its value is
required by statements outside the For…Next loop in the procedure.

The startValue, endValue, and stepValue items in the For clause control the number of times
the loop body is processed. The three items must be numeric and can be either positive or
negative, integer or non-integer. The startValue and endValue tell the computer where to
begin and end counting, respectively. The stepValue tells the computer how much to count
by—in other words, how much to add to the counter variable each time the loop is processed. If
you omit the stepValue, a stepValue of positive 1 is used. The example in Figure 14-1 uses
the For…Next statement to display (in message boxes) integers from 10 (the startValue)
through 13 (the endValue) in increments of 1 (the stepValue). In addition to the syntax and
example of the For…Next statement, Figure 14-1 also shows the tasks performed by the
computer when processing the statement.

CH A P T E R 1 4 Let Me Count the Ways (Counter Controlled Loops)

242

Figure 14-2 describes the steps the computer follows when processing the code in Figure 14-1’s
example. As Step 2 indicates, the loop’s condition is evaluated before the loop body is
processed. This is because the loop created by the For…Next statement is a pretest loop. The
instruction in the loop body is processed four times and displays the numbers 10, 11, 12,
and 13 (one at a time) in message boxes. Notice that the intPrice variable contains the number
14 when the For…Next statement ends. The number 14 is the first integer that is greater than
the loop’s endValue of 13.

For…Next statement

For counterVariableName [As dataType] = startValue To endValue [Step stepValue]
 loop body instructions

 If the stepValue is a positive number, the computer will process the loop body
 instructions while the counter variable’s value is less than or equal to the endValue.
 It will stop processing the instructions when the counter variable’s value is greater
 than the endValue.

 If the stepValue is a negative number, the computer will process the loop body
 instructions while the counter variable’s value is greater than or equal to the endValue.
 It will stop processing the instructions when the counter variable’s value is less than
 the endValue.
Next counterVariableName

Example
For intPrice As Integer = 10 To 13 Step 1
 MessageBox.Show(intPrice)
Next intPrice

Processing tasks
1. If the counter variable is declared in the For clause, the computer creates and then
 initializes the variable to the startValue; otherwise, it just performs the initialization
 task. This is done only once, at the beginning of the loop.
2. The computer evaluates the loop condition by comparing the value in the counter variable
 with the endValue. If the stepValue is a positive number, the comparison determines
 whether the counter variable’s value is greater than the endValue. If the stepValue is a
 negative number, the comparison determines whether the counter variable’s value is less
 than the endValue. Notice that the computer evaluates the loop condition before
 processing the instructions within the loop.
3. If the loop condition evaluates to True, the computer stops processing the loop;
 processing continues with the statement following the Next clause. If the loop condition
 evaluates to False, the computer processes the loop body and then task 4 is performed.
4. Task 4 is performed only when the loop condition evaluates to False. In this task, the
 computer adds the stepValue to the contents of the counter variable. It then repeats tasks
 2, 3, and 4 until the loop condition evaluates to True.

this portion can be
omitted when the
stepValue is 1

Figure 14-1 Syntax, example, and processing tasks for the For...Next statement

When Will It Stop?

243

Spaceship-Version 1 Application
Figure 14-3 shows the interface for the Spaceship-Version 1 application. (The spaceship image is
from the Microsoft Office Clip Art collection, which is available at http://office.microsoft.com.)
In the Go button’s Click event procedure, you will include a For…Next statement that
displays the numbers 1, 2, and 3 in the lblCountToBlastOff control.

To code and then test the Spaceship-Version 1 application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Spaceship Solution (Spaceship Solution.sln) file
contained in the ClearlyVB2010\Chap14\Spaceship Solution-Version 1 folder. If the
designer window is not open, double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window. Locate the btnGo control’s Click event procedure. The
procedure positions the spaceship at the bottom of the form. It then removes the border
from the lblCountToBlastOff control, sets the control’s Visible property to True, and

Processing steps
1. The computer creates the intPrice variable and initializes it to 10.
2. The computer checks whether the intPrice variable’s value is greater than 13.
 It’s not, so the computer displays the number 10 in a message box and then adds
 1 to the variable’s value, giving 11.
3. The computer again checks whether the intPrice variable’s value is greater than 13.
 It’s not, so the computer displays the number 11 in a message box and then adds 1 to
 the variable’s value, giving 12.
4. The computer again checks whether the intPrice variable’s value is greater than 13.
 It’s not, so the computer displays the number 12 in a message box and then adds 1 to
 the variable’s value, giving 13.
5. The computer again checks whether the intPrice variable’s value is greater than 13.
 It’s not, so the computer displays the number 13 in a message box and then adds 1 to
 the variable’s value, giving 14.
6. The computer again checks whether the intPrice variable’s value is greater than 13.
 It is, so the computer stops processing the loop body. Processing continues with the
 statement following the Next clause.

Figure 14-2 Processing steps for the example in Figure 14-1

For more
examples
of using the
For…Next
statement

to code a counter-
controlled loop, see the
For…Next section in the
Ch14WantMore.pdf file.

Before you
begin
coding the
Spaceship-
Version 1

application, you may
want to view the Ch14-
Spaceship video. The
video demonstrates the
steps contained in the
following section. It also
demonstrates the steps
for coding the Spaceship-
Version 2 application.

lblCountToBlastOff control

Figure 14-3 Interface for the Spaceship-Version 1 application

CH A P T E R 1 4 Let Me Count the Ways (Counter Controlled Loops)

244

displays the “Blast Off!” message in the control. The procedure then pauses program
execution for a short time before hiding the control. The loop in the procedure drags the
spaceship to the top of the form.

3. Start the application and then click the Go button. The “Blast Off!” message appears
in the label control and then the spaceship is dragged to the top of the form. Click the
Exit button.

4. Click the blank line below the ' count up from 1 to 3, pausing execution after
each number comment. Type the following For clause and then press Enter. When you
press Enter, the Code Editor automatically enters the Next clause for you.

For intCount As Integer = 1 To 3

5. Change the Next clause to Next intCount.

6. The first instruction in the loop will display the counter variable’s value in the
lblCountToBlastOff control. Click the blank line below the For clause and then enter
the following assignment statement:

lblCountToBlastOff.Text = intCount

7. Now you will refresh the screen and then pause program execution for half of a second,
allowing the user to view the current number in the lblCountToBlastOff control. Enter
the additional statements shown in Figure 14-4.

Private Sub btnGo_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles btnGo.Click
 ' drags the spaceship from the bottom to the top of the form

 ' position the spaceship at the bottom of the form
 picSpaceship.Top = 355
 ' remove the border from the label control
 ' then show the control
 lblCountToBlastOff.BorderStyle = BorderStyle.None
 lblCountToBlastOff.Visible = True

 ' count up from 1 to 3, pausing execution after each number
 For intCount As Integer = 1 To 3
 lblCountToBlastOff.Text = intCount
 Me.Refresh()
 System.Threading.Thread.Sleep(500)
 Next intCount

 ' display the "Blast Off!" message, then pause execution
 lblCountToBlastOff.Text = "Blast Off!"
 Me.Refresh()
 System.Threading.Thread.Sleep(500)

 ' hide the label control
 lblCountToBlastOff.Visible = False

 ' drag the spaceship to the top of the form
 Do While picSpaceship.Top > 0
 picSpaceship.Top = picSpaceship.Top - 100
 Me.Refresh()
 System.Threading.Thread.Sleep(100)
 Loop
End Sub

enter these two
statements

Figure 14-4 Go button’s Click event procedure in the Spaceship-Version 1 application

When Will It Stop?

245

8. Save the solution and then start the application. Click the Go button. The numbers 1, 2,
and 3 appear (one at a time) in the label control, followed by the “Blast Off!” message.
The spaceship is then dragged to the top of the form.

9. Click the Exit button. Close the Code Editor window and then close the solution.

Spaceship-Version 2 Application
In this version of the Spaceship application, the For…Next statement in the Go button’s Click
event procedure will display the numbers 3, 2, and 1 in the lblCountToBlastOff control.

To code and then test the Spaceship-Version 2 application:

1. Open the Spaceship Solution (Spaceship Solution.sln) file contained in the
ClearlyVB2010\Chap14\Spaceship Solution-Version 2 folder. If the designer window is
not open, double-click frmMain.vb in the Solution Explorer window. Except for the title
bar text, the interface is identical to the one shown earlier in Figure 14-3.

2. Open the Code Editor window. Locate the btnGo control’s Click event procedure.
Except for the For…Next loop and the fifth comment, the procedure contains the same
code shown in Figure 14-4.

3. Click the blank line below the fifth comment and then enter the For…Next statement
shown in Figure 14-5. Because the startValue is greater than the endValue, the stepValue
is a negative number.

4. Save the solution and then start the application. Click the Go button. The numbers 3, 2,
and 1 appear (one at a time) in the label control, followed by the “Blast Off!” message.
The spaceship is then dragged to the top of the form. Click the Exit button.

Mini-Quiz 14-1
See Appendix B for the answers.

1. Write a Visual Basic For clause that creates a counter variable named intX and
initializes it to 10. While the loop is processing, the counter variable should have values
of 10, 12, 14, 16, 18, and 20. The loop should stop when the variable’s value is 22.

2. Rewrite the For clause from Question 1 so that it initializes the counter variable to 30
and stops the loop when the variable’s value is less than 0.

3. If the startValue in a For clause is greater than the endValue, the stepValue must
be a ___________ number for the For…Next loop to be processed.

a. negative b. positive

enter these
five lines of
code

negative stepValue

Figure 14-5 For…Next statement entered in the Go button’s Click event procedure in the
Spaceship-Version 2 application

CH A P T E R 1 4 Let Me Count the Ways (Counter Controlled Loops)

246

Hey, Turn That Noise Down!
You can make the Spaceship-Version 2 application more exciting by having it play the Rising
Zap sound immediately before the spaceship blasts off. The Rising Zap sound is stored in
an audio file named j0388399.wav; the file is contained in the current project’s bin\Debug
folder. (The audio file is from the Microsoft Office Clip Art collection, which is available at
http://office.microsoft.com.) To have an application play an audio file while it is running, you
use the syntax My.Computer.Audio.Play(fileName), in which fileName is the name of the
audio file you want to play. If the audio file is not in the project’s bin\Debug folder, you will
need to include the path to the file in the fileName argument. The My keyword in the syntax
refers to Visual Basic’s My feature, which exposes a set of commonly used objects to the
programmer. One of the objects exposed by the My feature is the My.Computer object. Not
surprisingly, the My.Computer object refers to your computer. The My.Computer object
provides access to other objects, such as your computer’s Audio object. To have the Audio
object play an audio file, you use its Play method.

To modify and then test the Go button’s Click event procedure:

1. Click the blank line above the ' drag the spaceship to the top of the form comment
in the btnGo control’s Click event procedure. Press Enter to insert another blank line
and then enter the following comment and statement:

' play an audio file
My.Computer.Audio.Play("j0388399.wav")

2. Save the solution and then start the application. Click the Go button. The numbers 3, 2,
and 1 appear (one at a time) in the label control, followed by the “Blast Off!” message.
The Rising Zap sound begins playing as the spaceship starts its journey to the top of the
form.

3. Click the Exit button. Close the Code Editor window and then close the solution.

The Monthly Payment Calculator Application
Figure 14-6 shows the interface for the Monthly Payment Calculator application, which
calculates and displays the monthly payments on a loan. The interface provides text boxes for
the user to enter the principal and term. The principal is the amount of the loan, and the term is
the number of years the borrower has to pay off the loan. The application will calculate the
monthly payments using annual interest rates of 4% through 7%. Figure 14-7 shows the
application’s output, processing, and input items, along with its algorithm.

Figure 14-6 Interface for the Monthly Payment Calculator application

The Monthly Payment Calculator Application

247

To begin coding the Monthly Payment Calculator application:

1. Open the Monthly Payment Solution (Monthly Payment Solution.sln) file
contained in the ClearlyVB2010\Chap14\Monthly Payment Solution folder. If the
designer window is not open, double-click frmMain.vb in the Solution Explorer
window.

2. Open the Code Editor window and then open the code template for the btnCalc
control’s Click event procedure. Type the following comment and then press Enter
twice:

' calculates and displays monthly payment amounts

3. First, you will declare the necessary variables. The procedure will use Decimal
variables to store the principal and monthly payment amounts, and an Integer variable
to store the term. Because the counter variable that will keep track of the annual
interest rates will be declared in a For…Next statement, you will not need a Dim
statement for it. Enter the following three Dim statements. Press Enter twice after
typing the last Dim statement.

Dim decPrincipal As Decimal
Dim decPayment As Decimal
Dim intTerm As Integer

4. Now you can store the input items in variables. Enter the following comment and
statements. Press Enter twice after typing the last statement.

' assign input to variables
Decimal.TryParse(txtPrincipal.Text, decPrincipal)
Integer.TryParse(txtTerm.Text, intTerm)

5. Before displaying the rates and payments in the Payments box, which is named
lblPayments, the procedure should remove any previous information from the box. Enter
the following comment and assignment statement. Press Enter twice after typing the
assignment statement.

' clear label control
lblPayments.Text = String.Empty

Output: monthly payment (for each annual interest rate)

Processing: annual interest rate (counter that counts from 4% through 7%
 in increments of 1%)

Input: principal
 term (in years)

Algorithm:
1. enter the principal and term
2. remove any previous monthly payments from the Payments box
3. repeat for annual interest rates from 4% through 7% in increments of 1%:
 calculate the current monthly payment using the principal, term, and
 current annual interest rate
 display the current annual interest rate and the current monthly payment
 end repeat

Figure 14-7 Output, processing, input, and algorithm for the Monthly Payment Calculator application

CH A P T E R 1 4 Let Me Count the Ways (Counter Controlled Loops)

248

6. The next step in the algorithm is a counter-controlled loop whose instructions you want
processed from 4% through 7% in increments of 1%. Enter the following comment and
For clause:

' calculate and display the monthly payments
For decRate As Decimal = .04 to .07 Step .01

7. Change the Next clause to Next decRate and then save the solution.

The Financial.Pmt Method
According to the application’s algorithm, the first instruction in the loop should
calculate the monthly payment using the principal, term, and current annual interest
rate. The mathematical formula for calculating a periodic payment on a loan is rather
complex, so Visual Basic provides a method that performs the calculation for you; the
method is called the Financial.Pmt method. (Pmt stands for Payment.) Figure 14-8
shows the method’s basic syntax and lists the meaning of each argument. The Rate and
NPer (number of periods) arguments must be expressed using the same units. If Rate is
a monthly interest rate, then NPer must specify the number of monthly payments.
Likewise, if Rate is an annual interest rate, then NPer must specify the number of annual
payments.

Also included in Figure 14-8 are examples of using the Financial.Pmt method. Example 1
calculates the annual payment for a loan of $9000 for 3 years at 5% interest. As the example
indicates, the annual payment rounded to the nearest cent is –3304.88. This means that if
you borrow $9000 for 3 years at 5% interest, you will need to make three annual payments
of $3304.88 to pay off the loan. Notice that the Financial.Pmt method returns a negative
number. You can change the negative number to a positive number by preceding the
method with the negation operator, like this: –Financial.Pmt(.05, 3, 9000). As you
learned in Chapter 5, the purpose of the negation operator is to reverse the sign of a
number. A negative number preceded by the negation operator becomes a positive number,
and vice versa.

The Financial.Pmt method shown in Example 2 in Figure 14-8 calculates the monthly
payment for a loan of $12000 for 5 years at 6% interest. In this example, the Rate and NPer
arguments are expressed in monthly terms rather than in annual terms. You change an
annual rate to a monthly rate by dividing the annual rate by 12. You change the term from
years to months by multiplying the number of years by 12. The monthly payment for the
loan in Example 2, rounded to the nearest cent and expressed as a positive number, is
231.99. (The Financial.Pmt method also can be used to calculate a periodic payment on
an investment rather than on a loan. You learn how to do this in Exercise 9 at the end of
the chapter.)

The Monthly Payment Calculator Application

249

To continue coding the btnCalc control’s Click event procedure:

1. Click the blank line above the Next decRate clause.

2. You will use the expressions decRate / 12 and intTerm * 12 as the Financial.Pmt
method’s Rate and NPer arguments, respectively. It is necessary to divide the annual
interest rate by 12 to get a monthly rate, because you want to display monthly
payments rather than annual payments. Similarly, you need to multiply the number of
years by 12 to get the number of monthly payments. The method’s PV argument will
be decPrincipal. Enter the following assignment statement, being sure to type the
hyphen before the Financial.Pmt method:

decPayment =
–Financial.Pmt(decRate / 12, intTerm * 12, decPrincipal)

The next instruction in the loop should display both the current annual interest rate and the
current monthly payment in the interface. Before you can write the code to accomplish this task,
you need to learn about string concatenation.

But They Said There Were No Strings Attached
You use the concatenation operator, which is the ampersand (&), to concatenate (connect or
link together) strings. When concatenating strings, you must be sure to include a space
before and after the ampersand; otherwise, the Code Editor will not recognize the ampersand
as the concatenation operator. Figure 14-9 shows the syntax you use when concatenating
strings. It also includes examples of string concatenation. The ControlChars.NewLine constant
in the last example represents the Enter key on your keyboard and is used to advance the
insertion point to the next line in a control, file, or printout.

Financial.Pmt method

Syntax
Financial.Pmt(Rate, NPer, PV)

Argument Meaning
Rate interest rate per period
NPer total number of payment periods (the term)
PV present value of the loan (the loan amount)

Example 1
Financial.Pmt(.05, 3, 9000)
Calculates the annual payment for a loan of $9000 for 3 years at 5% interest.
Rate is .05, NPer is 3, and PV is 9000. The annual payment (rounded to the
nearest cent) is –3304.88.

Example 2
–Financial.Pmt(.06 / 12, 5 * 12, 12000)
Calculates the monthly payment for a loan of $12000 for 5 years at 6% interest.
Rate is .06 / 12, NPer is 5 * 12, and PV is 12000. The monthly payment
(rounded to the nearest cent and expressed as a positive number) is 231.99.

Figure 14-8 Basic syntax and examples of the Financial.Pmt method

CH A P T E R 1 4 Let Me Count the Ways (Counter Controlled Loops)

250

In the btnCalc control’s Click event procedure, you will use the concatenation operator to
concatenate the following five strings: the Text property of the lblPayments control, the
contents of the decRate variable formatted to Percent with zero decimal places, the string “ -> ”
(a space, a hyphen, a greater than sign, and a space), the contents of the decPayment variable
formatted to Currency with two decimal places, and the ControlChars.NewLine constant.

To continue coding the btnCalc control’s Click event procedure:

1. Enter the additional three lines of code indicated in Figure 14-10.

2. The instructions in the For…Next loop in Figure 14-10 will be processed four times,
using rates of 4%, 5%, 6%, and 7%. Save the solution and then start the application.
First, display the monthly payments for a loan of $12000 for 5 years. Type 12000 in
the Principal box and then type 5 in the Term box. Click the Calculate Monthly
Payments button. The four rates and monthly payments appear in the Payments box.
See Figure 14-11.

String concatenation

Syntax
string & string [& string…]

Variables Contents
strFirst Lucretia
strLast Jackson
intAge 30

Concatenated string Result
strFirst & strLast LucretiaJackson
strFirst & " " & strLast Lucretia Jackson
strLast & ", " & strFirst Jackson, Lucretia
"She is " & intAge.ToString & "!" She is 30!
"Hi" & ControlChars.NewLine & strFirst Hi
 Lucretia

Figure 14-9 Syntax and examples of concatenating strings

enter these three
lines of code

Figure 14-10 Additional code entered in the Click event procedure

The Monthly Payment Calculator Application

251

3. Remove the entries from the Principal and Term boxes and then click the Calculate
Monthly Payments button; doing this results in a run time error, also referred to as an
exception. The Code Editor highlights the statement where the error was encountered.
In addition, a help box opens and provides information pertaining to the error. In this
case, the Code Editor highlights the statement containing the Financial.Pmt method, and
the help box indicates that the NPer argument does not contain a valid value.

4. Position your mouse pointer on intTerm in the highlighted statement, as shown in
Figure 14-12. The variable contains the number 0, because no term was entered in the
Term box.

5. Click Debug on the menu bar and then click Stop Debugging.

As mentioned earlier, the Financial.Pmt method contains a complex mathematical
formula for calculating a periodic payment. The term appears in the divisor portion of
the formula; therefore, its value cannot be 0, because division by zero is not
mathematically possible.

help box

the intTerm
variable contains 0

Figure 14-12 Result of the run time error caused by an invalid NPer value

Figure 14-11 Rates and monthly payments shown in the interface

CH A P T E R 1 4 Let Me Count the Ways (Counter Controlled Loops)

252

To complete the btnCalc control’s Click event procedure and then test the code:

1. Click the blank line above the ' calculate and display the monthly payments
comment, and then press Enter to insert another blank line. Enter the following
comment:

' determine whether the term is valid

2. Enter the selection structure shown in Figure 14-13. You will need to move the
comment and the For…Next statement into the selection structure’s false path.

3. Save the solution and then start the application. Click the Calculate Monthly
Payments button. The message “Please enter a valid term.” appears in a message box.
Click the OK button to close the message box.

4. Type 12000 in the Principal box and then type 5 in the Term box. Click the Calculate
Monthly Payments button. The Payments box lists the rates and monthly payments
shown earlier in Figure 14-11.

5. Click the Exit button. Close the Code Editor window and then close the solution.

The code entered in the btnCalc control’s Click event procedure is shown in Figure 14-14.

enter this selection
structure

Figure 14-13 Selection structure entered in the procedure

The Monthly Payment Calculator Application

253

Mini-Quiz 14-2
See Appendix B for the answers.

1. Write a Visual Basic statement that will play an audio file named Giggle.wav.

2. For the Financial.Pmt method to display an annual payment, you will need
to ___________ .

a. divide the annual interest rate by 12
b. multiply the annual interest rate by 12
c. use the annual interest rate

3. Write an assignment statement that concatenates the message “My favorite city is ”
with the contents of the strCity variable, and then assigns the result to the lblCity
control.

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays monthly payment amounts

 Dim decPrincipal As Decimal
 Dim decPayment As Decimal
 Dim intTerm As Integer

 ' assign input to variables
 Decimal.TryParse(txtPrincipal.Text, decPrincipal)
 Integer.TryParse(txtTerm.Text, intTerm)

 ' clear label control
 lblPayments.Text = String.Empty

 ' determine whether the term is valid
 If intTerm = 0 Then
 MessageBox.Show("Please enter a valid term.",
 "Monthly Payment Calculator",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 Else
 ' calculate and display the monthly payments
 For decRate As Decimal = 0.04 To 0.07 Step 0.01
 decPayment =
 -Financial.Pmt(decRate / 12, intTerm * 12, decPrincipal)
 lblPayments.Text = lblPayments.Text &
 decRate.ToString("P0") & " -> " &
 decPayment.ToString("C2") & ControlChars.NewLine
 Next decRate
 End If
End Sub

Figure 14-14 btnCalc control’s Click event procedure

CH A P T E R 1 4 Let Me Count the Ways (Counter Controlled Loops)

254

Summary
l The For…Next statement provides a convenient way to code a counter-controlled loop. The

loop is a pretest loop, because its condition is evaluated before the instructions in the loop
are processed.

l A variable declared in a For clause has block scope and can be used only within the
For…Next loop.

l The For…Next statement’s counter variable must be numeric. Its startValue, endValue, and
stepValue can be positive or negative numbers, integers or non-integers. If the stepValue is a
positive number, the loop condition checks whether the value in the counter variable is
greater than the endValue. If the stepValue is a negative number, the loop condition checks
whether the value in the counter variable is less than the endValue.

l To have an application play an audio file during run time, you use the syntaxMy.Computer.
Audio.Play(fileName).

l You can use the Financial.Pmt method to calculate a periodic payment on either a loan or an
investment.

l You concatenate strings using the concatenation operator, which is the ampersand (&). The
concatenation operator must be both preceded and followed by a space.

l The Enter key on your keyboard is represented by the ControlChars.NewLine constant. You
can use the constant to advance the insertion point to the next line in a control, file, or
printout.

Key Terms
&—the concatenation operator in Visual Basic

Concatenation operator—the ampersand (&); used to concatenate strings; must be both
preceded and followed by a space character

ControlChars.NewLine constant—a Visual Basic constant that represents the Enter key on your
keyboard; creates a new line

Counter-controlled loop—a loop whose processing is controlled by a counter; the loop body will
be processed a precise number of times

Financial.Pmt method—calculates and returns a periodic payment on either a loan or an
investment

For...Next statement—used to code a pretest counter-controlled loop

My feature—the Visual Basic feature that exposes a set of commonly-used objects (such as the
Computer object) to the programmer

Review Questions
1. A For…Next statement contains the following For clause: For intX As Integer = 2 To

11 Step 2. What value will cause the For…Next loop to stop?

a. 11

b. 12

c. 13

d. none of the above

Review Questions

255

2. How many times will the MessageBox.Show method in the following code be processed?
For intCount As Integer = 4 To 11 Step 3

MessageBox.Show("Hello")
Next intCount

a. 3

b. 4

c. 5

d. none of the above

3. What value will cause the For…Next loop in Review Question 2 to stop?

a. 11

b. 12

c. 13

d. 14

4. Which of the following calculates an annual payment on a $50000 loan? The term is 10
years and the annual interest rate is 3%.

a. –Financial.Pmt(.03 / 12, 10, 50000)

b. –Financial.Pmt(.03 / 12, 10 * 12, 50000)

c. –Financial.Pmt(.03, 10 * 12, 50000)

d. –Financial.Pmt(.03, 10, 50000)

5. Which of the following calculates a monthly payment on a $50000 loan? The term is 10
years and the annual interest rate is 3%.

a. –Financial.Pmt(.03 / 12, 10, 50000)

b. –Financial.Pmt(.03 / 12, 10 * 12, 50000)

c. –Financial.Pmt(.03, 10 * 12, 50000)

d. –Financial.Pmt(.03, 10, 50000)

6. The strCity and strState variables contain the strings “Boston” and “MA”,
respectively. Which of the following assigns the string “Boston, MA” (the city, a comma,
a space, and the state) to the lblAddress control’s Text property?

a. lblAddress.Text = "strCity" & ", " & "strState"

b. lblAddress.Text = strCity $ ", " $ strState

c. lblAddress.Text = strCity & ", " & strState

d. lblAddress.Text = "strCity, " & "strState"

7. Which of the following will play the MySong.wav file stored in the current project’s
bin\Debug folder?

a. My.Computer.Audio.Play("MySong.wav")

b. My.Computer.AudioPlay("MySong.wav")

c. My.Computer.PlayAudio("MySong.wav")

d. MyComputer.AudioPlay("MySong.wav")

8. Which of the following advances the insertion point to the next line in a control?

a. Control.Chars.Advance

b. ControlChars.Advance

c. Control.Chars.NewLine

d. ControlChars.NewLine

CH A P T E R 1 4 Let Me Count the Ways (Counter Controlled Loops)

256

Exercises
1. List the processing steps for the following code. Use Figure 14-2 as a guide. (See

Appendix B for the answer.)
For decX As Decimal = 6.5 To 8.5

MessageBox.Show(decX.ToString("N1"))
Next decX

2. Open the OddEven Solution (OddEven Solution.sln) file contained in the
ClearlyVB2010\Chap14\OddEven Solution folder. The interface provides text boxes for
the user to enter two integers. The application should display all of the odd numbers
from the first integer through the second integer, as well as all of the even numbers in
that range. (See Appendix B for the answer.)

a. Code the application using the For…Next statement. If the integer in the txtNum1
control is greater than the integer in the txtNum2 control, the stepValue should be a
negative number 1; otherwise, it should be a positive number 1.

b. Save the solution and then start the application. Test the application using the
integers 6 and 25. The application should display the following odd numbers: 7, 9, 11,
13, 15, 17, 19, 21, 23, and 25. It also should display the following even numbers: 6, 8,
10, 12, 14, 16, 18, 20, 22, and 24.

c. Now test the application using the integers 25 and 6. The application should display
the following odd numbers: 25, 23, 21, 19, 17, 15, 13, 11, 9, and 7. It also should
display the following even numbers: 24, 22, 20, 18, 16, 14, 12, 10, 8, and 6. Close the
Code Editor window and then close the solution.

3. Open the Car Solution (Car Solution.sln) file contained in the ClearlyVB2010\
Chap14\Car Solution-Version 1 folder. Change the Do…Loop statement in the
btnClickMe control’s Click event procedure to a For…Next statement. Save the solution
and then start and test the application. Close the Code Editor window and then close the
solution.

4. Open the New Salary Solution (New Salary Solution.sln) file contained in the
ClearlyVB2010\Chap14\New Salary Solution folder. The interface provides a text box
for the user to enter his or her current salary. The Calculate button’s Click event
procedure should calculate the new salary amounts using rates of 2% through 6% in
increments of .5%. The procedure should display the rates and salary amounts in the
lblNewSalary control. Code the procedure using the For…Next statement. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

5. Open the Quarterly Payment Solution (Quarterly Payment Solution.sln) file contained
in the ClearlyVB2010\Chap14\Quarterly Payment Solution folder. The interface
provides text boxes for the user to enter the principal and the rate (as a decimal number).
Both text boxes should accept only numbers, the period, and the Backspace key.
The Calculate Quarterly Payments button should calculate the quarterly payments
using the principal and rate entered by the user, and terms of 2, 3, 4, and 5 years. If the
rate is entered as an integer (which means it’s greater than or equal to 1), convert the
integer to its decimal equivalent by dividing it by 100. Display the terms and
quarterly payments in the lblPayments control. Code the appropriate event
procedures. Use the For…Next statement to calculate the quarterly payments. Save
the solution and then start and test the application. Close the Code Editor window
and then close the solution.

6. Open the Bouncing Robot Solution (Bouncing Robot Solution.sln) file contained in the
ClearlyVB2010\Chap14\Bouncing Robot Solution folder. The Bounce button’s Click
event procedure should use the For…Next statement to bounce the robot up and down

MODIFY THIS

INTRODUCTORY

TRY THIS

INTRODUCTORY

INTRODUCTORY

TRY THIS

Exercises

257

10 times. Code the procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

7. In this exercise, you create an application that multiplies the number entered in a text
box by the numbers 1 through 9. It displays the multiplication table in a label control. A
sample run of the application is shown in Figure 14-15.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm using pseudocode.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Multiplication Solution and Multiplication Project. Save the
application in the ClearlyVB2010\Chap14 folder. Change the name of the form file on
your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create the interface shown in Figure 14-15. Code the Display Table button’s Click
event procedure.

d. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

8. In this exercise, you modify the Spaceship-Version 1 application coded in the chapter.
Use Windows to make a copy of the Spaceship Solution-Version 1 folder. Save the copy
in the ClearlyVB2010\Chap14 folder. Rename the copy Modified Spaceship Solution-
Version 1. Open the Spaceship Solution (Spaceship Solution.sln) file contained in the
Modified Spaceship Solution-Version 1 folder. Open the designer window. Modify the
Go button’s Click event procedure so that it uses a For…Next statement (rather than a
Do…Loop statement) to drag the spaceship to the top of the form. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

9. In this exercise, you learn how to use the Financial.Pmt method to calculate a periodic
payment on an investment (rather than on a loan).

a. Open the Investment Solution (Investment Solution.sln) file contained in the
ClearlyVB2010\Chap14\Investment Solution folder. The application should calculate
the amount you need to save each month to accumulate $40000 at the end of 20
years, assuming a 6% annual interest rate. You can calculate this amount using the
syntax Financial.Pmt(Rate, NPer, PV, FV). The Rate argument is the interest rate per
period, and the NPer argument is the total number of payment periods. The PV
argument is the present value of the investment, which is 0 (zero). The FV argument
is the future value of the investment. The future value is the amount you want to
accumulate.

b. Open the Code Editor window. Code the btnCalc control’s Click event procedure.
Display the monthly amount as a positive number. Save the solution and then start
and test the application. (The answer should be $86.57.)

Figure 14-15 Sample run of the application from Exercise 7

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 1 4 Let Me Count the Ways (Counter Controlled Loops)

258

c. Modify the application to allow you to enter any future value. Use the InputBox
function. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

10. In this exercise, you create an application that displays a monthly payment on a loan of
$3000 for 1 year at 7% interest. The application also should display the amount applied
to the loan’s principal each month, and the amount that represents interest. The
application will use the Financial.Pmt method, which you learned about in the chapter, to
calculate the monthly payment. It also will use the Financial.PPmt method to calculate
the portion of the payment applied to the principal each month. The method’s syntax is
Financial.PPmt(Rate, Per, NPer, PV), where Rate is the interest rate, NPer is the number
of payment periods, and PV is the present value of the loan. The Per argument is the
payment period in which you are interested and must be from 1 through NPer.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm using pseudocode.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Principal and Interest Solution, and Principal and Interest
Project. Save the application in the ClearlyVB2010\Chap14 folder. Change the name
of the form file on your disk to frmMain.vb. If necessary, change the form’s name to
frmMain.

c. Create the interface shown in Figure 14-16. Set the text box’s Multiline and ReadOnly
properties to True.

d. Code the application using a For…Next statement to keep track of the
Financial.PPmt method’s Per argument. The Per values will be from 1 through 12.

e. Save the solution and then start and test the application. (Hint: The monthly payment
should be $259.58. In the first month, 242.08 is applied to the principal, and 17.50 is
interest.) Close the Code Editor window and then close the solution.

11. In this exercise, you create an application for the accountant at Sonheim Manufacturing
Company. The application will display an asset’s annual depreciation schedule. The
accountant will enter the asset’s cost, useful life (in years), and salvage value (which is the
asset’s value at the end of its useful life). The application should use the double-declining
balance method to calculate the annual depreciation amounts; you can calculate the
amounts using the Financial.DDB method. The method’s syntax is Financial.DDB(cost,
salvage, life, period), where period is the period for which you want the depreciation
amount calculated.

label control

text box

Figure 14-16 Interface for Exercise 10

ADVANCED

ADVANCED

Exercises

259

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm using pseudocode.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Sonheim Solution and Sonheim Project. Save the
application in the ClearlyVB2010\Chap14 folder. Change the name of the form file on
your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create the interface shown in Figure 14-17. Set the txtSchedule control’s Multiline
and ReadOnly properties to True, and its ScrollBars property to Vertical.

d. Code the application using a For…Next statement to keep track of the Financial.DDB
method’s period argument. The period values will be from 1 through the value in the
life argument. The cost, salvage, and life text boxes should accept numbers and the
Backspace key. The cost and salvage text boxes also should accept the period.

e. Save the solution and then start the application. Enter 1000, 100, and 4 as the cost,
salvage, and life values, respectively. Click the Display Schedule button. The annual
depreciation amounts for the four years should be 500.00, 250.00, 125.00, and 25.00.
Close the Code Editor window and then close the solution.

12. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap14\FigureThisOut Solution folder. Open the Code Editor window
and study the existing code. The btnCalc control’s Click event procedure gets four test
scores from the user and then calculates and displays the number of test scores entered
and the average test score. Start the application and then click the Calculate button. Type
100 and press Enter, and then type 85 and press Enter. Click the Cancel button. Notice
that the InputBox function’s dialog box appears again. Click the Cancel button. Does the
application display the correct number of scores entered and the correct average?
Research the For…Next statement, looking for a way to stop the loop prematurely.
Modify the btnCalc control’s Click event procedure so the loop stops when the user
clicks the Cancel button. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap14\SwatTheBugs Solution folder. Start and then test the application.
Notice that the application is not working correctly. Click the Exit button. Locate and
correct the errors in the code. Save the solution and then start and test the application
again. Close the Code Editor window and then close the solution.

txtSchedule

Figure 14-17 Interface for Exercise 11

FIGURE THIS OUT

SWAT THE BUGS

CH A P T E R 1 4 Let Me Count the Ways (Counter Controlled Loops)

260

CHAPTER 15
I’m on the Inside;
You’re on the Outside
(Nested Loops)

After studying Chapter 15, you should be able to:

Nest repetition structures

Utilize a text box’s Multiline, ReadOnly, and ScrollBars properties

One Loop Within Another Loop
Like selection structures, repetition structures can be nested. In other words, you can place
one loop (called the nested or inner loop) within another loop (called the outer loop). Both loops
can be either pretest loops or posttest loops. Or, one can be a pretest loop and the other a
posttest loop. A programmer determines whether a problem’s solution requires a nested loop by
studying the problem specification. Figure 15-1 shows one of the problem specifications and
algorithms from Chapter 12. The algorithm requires a repetition structure because the
instructions for signing a book need to be repeated while there are customers in line. However,
the algorithm does not require a nested repetition structure. This is because all of the
instructions within the repetition structure should be followed only once per customer.

Now consider the possibility that a customer may have more than one book for Rob to sign. It’s
even possible that a customer, not knowing about the book signing in advance, has left his or her
book at home and is standing in line for the sole purpose of meeting Rob. What changes will
need to be made to the algorithm shown in Figure 15-1? The current instructions within the
loop still must be repeated for each customer. In addition, however, all but the last instruction in
the loop (the thank the customer instruction) must be repeated for each of the customer’s
books. You will need to use a nested loop to include this additional task in the algorithm. Rob
will thank the customer only after all of the customer’s books have been signed, so the thank the
customer instruction should not be part of the nested loop.

Figure 15-2 shows the modified algorithm, which contains an outer loop and a nested loop. The
outer loop begins with repeat while there are customers in line: and it ends with the last end
repeat. The nested loop begins with repeat for each of the customer’s books: and it ends with the
first end repeat. All of the instructions will be followed for each customer; however, six
instructions also will be followed for each book the customer wants signed.

Rob is sitting at a table in a bookstore, attending his book signing. He needs to
sign a copy of his bestselling book on robotics for each customer standing in line.

repeat while there are customers in line:
 accept the book from the customer
 place the book on the table
 open the front cover of the book
 sign your name on the first page
 close the book
 return the book to the customer
 thank the customer
end repeat

follow these
instructions
for each
customer

Figure 15-1 Problem specification and algorithm for signing one book for each customer

CH A P T E R 1 5 I’m on the Inside; You’re on the Outside (Nested Loops)

262

Clock Application
A clock uses nested repetition structures to keep track of the time. For simplicity, consider a
clock’s minute and second hands only. The second hand on a clock moves one position,
clockwise, for every second that has elapsed. After the second hand moves 60 positions, the
minute hand moves one position, also clockwise. The second hand then begins its journey
around the clock again. Figure 15-3 shows the logic used by a clock’s minute and second hands.
The outer loop controls the minute hand, while the inner (nested) loop controls the second
hand. Notice that the entire nested loop is contained within the outer loop; this must be true for
the loop to be nested and for it to work correctly.

Figure 15-4 shows the interface for the Clock application. (The clock image is from the
Microsoft Office Clip Art collection.) In the Start button’s Click event procedure, you will
have an outer loop display the number of minutes, and a nested loop display the number of
seconds. For simplicity in watching the minutes and seconds tick away, you will display minute
values from 0 through 2, and display second values from 0 through 5.

Rob is sitting at a table in a bookstore, attending his book signing.
He needs to sign a copy of his bestselling book on robotics for
each customer standing in line.

repeat while there are customers in line:
 repeat for each of the customer’s books:
 accept the book from the customer
 place the book on the table
 open the front cover of the book
 sign your name on the first page
 close the book
 return the book to the customer
 end repeat
 thank the customer
end repeat

follow these
instructions
for each book

follow these
instructions for
each customer

Figure 15-2 Problem specification and algorithm for signing zero or more books for each customer

repeat for minutes from 0 through 59:
 repeat for seconds from 0 through 59:
 move second hand 1 position, clockwise
 end repeat
 move minute hand 1 position, clockwise
end repeat

nested loop

Figure 15-3 Logic used by a clock’s minute and second hands

One Loop Within Another Loop

263

To code and then test the Clock application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Clock Solution (Clock Solution.sln) file
contained in the ClearlyVB2010\Chap15\Clock Solution folder. If the designer window is
not open, double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window and then open the code template for the btnStart
control’s Click event procedure. Enter the following comments. Press Enter twice after
typing the last comment.

' displays minutes (from 0 through 2 only)
' and seconds (from 0 through 5 only)

3. Now enter the outer and nested loops shown in Figure 15-5. The Refresh and Sleep
methods are required so that you can view each of the minute and second values in the
interface.

4. Save the solution and then start the application. Click the Start button. The number 0
appears in the lblMinutes control, and the numbers 0 through 5 appear (one at a time) in
the lblSeconds control. Notice that the number of minutes is increased by 1 when the
number of seconds changes from 5 to 0. When the procedure ends, the lblMinutes and
lblSeconds controls contain the numbers 2 and 5, respectively. (If you want to end the
procedure prematurely, click Debug on the menu bar and then click Stop Debugging.)

5. Click the Exit button. Close the Code Editor window and then close the solution.

lblMinutes

lblSeconds

Figure 15-4 Clock application’s user interface

the nested
loop controls
the seconds

the outer
loop controls
the minutes

Figure 15-5 Start button’s Click event procedure

Before
coding the
next
application,
it may be

helpful to view the
Ch15Nested Loops video.

For more
examples
of nested
repetition
structures,

see the Nested Repeti-
tion Structures section
in the Ch15WantMore.pdf
file.

CH A P T E R 1 5 I’m on the Inside; You’re on the Outside (Nested Loops)

264

Revisiting the Monthly Payment Calculator Application
Figure 15-6 shows the output, processing, and input items for the Monthly Payment Calculator
application from Chapter 14. It also shows the application’s algorithm. Recall that the
application calculates and displays the monthly payments on a loan. The payments are
calculated using the principal and term entered by the user, along with a loop that varies the
annual interest rates from 4% through 7%.

Now let’s say you are asked to modify the application so that, rather than having the user enter
the term, it automatically uses terms of 2 through 5 years. What changes would need to be made
to the algorithm shown in Figure 15-6? Obviously, you would change the first step in the
algorithm to enter the principal. The algorithm’s second step clears the contents of the
Payments box and would still be necessary. The repetition structure in Step 3 in the algorithm
contains the instructions to calculate and display the monthly payments. Currently, the
instructions are repeated for annual interest rates from 4% through 7%. In the modified
algorithm, those instructions also will need to be repeated for terms from 2 through 5 years. You
can accomplish this task by including an additional loop in the algorithm. You can either nest
the term loop within the rate loop, or nest the rate loop within the term loop. But how do you
determine the nested loop? If you want to display the monthly payments by term within rate—
for example, display the payments for 2 through 5 years using a 4% rate, followed by the
payments for 2 through 5 years using a 5% rate, and so on—you would nest the term loop within
the rate loop. However, if you want to display the monthly payments by rate within term—for
example, display the 2-year payments for 4% through 7%, followed by the 3-year payments for
4% through 7%, and so on—you would nest the rate loop within the term loop. Figure 15-7
shows the planning information for the modified Monthly Payment Calculator application. The
algorithm will display the monthly payments by rate within term.

Output: monthly payment (for each annual interest rate)

Processing: annual interest rate (counter that counts from 4% through 7%
 in increments of 1%)

Input: principal
 term (in years)

Algorithm:
1. enter the principal and term
2. remove any previous monthly payments from the Payments box
3. repeat for annual interest rates from 4% through 7% in increments of 1%:
 calculate the current monthly payment using the principal, term, and
 current annual interest rate
 display the current annual interest rate and the current monthly payment
 end repeat

Figure 15-6 Planning information for the Monthly Payment Calculator application from Chapter 14

Revisiting the Monthly Payment Calculator Application

265

To open the Monthly Payment Calculator application:

1. Open the Monthly Payment Solution (Monthly Payment Solution.sln) file contained
in the ClearlyVB2010\Chap15\Monthly Payment Solution-Version 1 folder. If the
designer window is not open, double-click frmMain.vb in the Solution Explorer
window. The application’s user interface is shown in Figure 15-8. The user will enter the
principal in the txtPrincipal control. When the user clicks the Calculate Monthly
Payments button, the payments will appear in the txtPayments control.

You may be wondering why the interface uses a text box rather than a label control to display
the monthly payments. Although you can display a great deal of information in both types of
controls, a text box can have scroll bars, which allow you to view any information not currently

Output: monthly payment (for each annual interest rate and term)

Processing: annual interest rate (counter that counts from 4% through 7%
 in increments of 1%)
 term (counter that counts from 2 years through 5 years in
 increments of 1 year)

Input: principal

Algorithm:
1. enter the principal
2. remove any previous monthly payments from the Payments box
3. repeat for terms from 2 years through 5 years in increments of 1 year:
 display the current term in the Payments box

 repeat for annual interest rates from 4% through 7% in increments of 1%:
 calculate the current monthly payment using the principal, current
 term, and current annual interest rate
 display the current annual interest rate and the current monthly payment
 end repeat

 display a blank line in the Payments box to separate the current term’s
 information from the next term’s information
 end repeat

Figure 15-7 Planning information for the modified Monthly Payment Calculator application

txtPrincipal txtPayments

Figure 15-8 User interface for the Monthly Payment Calculator application

CH A P T E R 1 5 I’m on the Inside; You’re on the Outside (Nested Loops)

266

showing in the control. However, for a text box to include scroll bars, its ScrollBars and
Multiline properties must be set appropriately. The ScrollBars property indicates whether the
text box has no scroll bars (the default), a horizontal scroll bar, a vertical scroll bar, or both
horizontal and vertical scroll bars. A text box’s Multiline property specifies whether the text box
can accept and display multiple lines of text. For a text box to contain scroll bars, its Multiline
property must be set to True.

To set the txtPayments control’s Multiline and ScrollBars properties:

1. Click the txtPayments control. Change the control’s Multiline property to True.

2. Now change the txtPayments control’s ScrollBars property to Vertical. A vertical scroll
bar appears on the right side of the text box.

As you know, users cannot edit the contents of a label control during run time, but they can edit
the contents of a text box. In this application, however, the user should not be allowed to change
the payments displayed in the txtPayments control. You can prevent the user from editing the
contents of a text box by setting the text box’s ReadOnly property to True.

To set the txtPayments control’s ReadOnly property and then size the control:

1. Change the txtPayments control’s ReadOnly property to True. Notice that the text box
is now colored gray rather than white.

2. Change the txtPayments control’s Size property to 130, 195.

Now that the interface is complete, you can code the Click event procedure for the Calculate
Monthly Payments button.

To code and then test the btnCalc control’s Click event procedure:

1. Open the Code Editor window and then open the code template for the btnCalc
control’s Click event procedure. Enter the following comments. Press Enter twice after
typing the last comment.

' calculates and displays monthly payment amounts
' using terms of 2 through 5 years and rates
' of 4% through 7%

2. First, you will declare Decimal variables to store the principal and monthly payment amounts.
Because the counter variables that will keep track of the annual interest rates and terms will
be declared in For…Next statements, you will not need Dim statements for them. Enter the
following two Dim statements. Press Enter twice after typing the last Dim statement.

Dim decPrincipal As Decimal
Dim decPayment As Decimal

3. Next, you will assign the principal to a variable. Enter the following comment and
TryParse method. Press Enter twice after typing the TryParse method.

' assign principal to a variable
Decimal.TryParse(txtPrincipal.Text, decPrincipal)

4. Now you will enter a statement to remove any previous payments from the Payments
box. Enter the following comment and assignment statement. Press Enter twice after
typing the assignment statement.

' clear the Payments box
txtPayments.Text = String.Empty

Revisiting the Monthly Payment Calculator Application

267

5. Step 3 in the algorithm begins with a counter-controlled loop whose instructions should
be processed for values from 2 through 5 in increments of 1. You will use the For…Next
statement to code the loop. Enter the following comment and For clause:

' calculate and display the monthly payments
For intTerm As Integer = 2 To 5

6. Change the Next clause to Next intTerm.

7. The first instruction in the outer loop displays the term in the txtPayments control. Click
the blank line below the For clause and then enter the following two lines of code:

txtPayments.Text = txtPayments.Text &
"Term: " & intTerm & ControlChars.NewLine

8. The next instruction in the outer loop is another counter-controlled loop. The
instructions in the nested loop should be processed for values from 4% through 7% in
increments of 1%. Here again, you will use the For…Next statement to code the loop.
Enter the following For clause:

For decRate As Decimal = .04 To .07 Step .01

9. Change the nested Next clause to Next decRate.

10. The two instructions in the nested loop should calculate and display the monthly
payment amounts along with their corresponding annual interest rate. Click the blank
line below the nested For clause and then enter the assignment statements shown in
Figure 15-9; doing this completes the nested loop.

11. The last instruction in the outer loop displays a blank line in the Payments box. The
blank line will separate the current term’s information from the previous term’s
information. Click after the last e in the Next decRate clause and then press Enter to
insert a blank line below the clause. Type the following line of code and then click any
other line in the Code Editor window:

txtPayments.Text = txtPayments.Text & ControlChars.NewLine

12. Save the solution and then start the application. Type 12000 in the Principal box and
then click the Calculate Monthly Payments button. The terms, rates, and monthly
payments appear in the interface, as shown in Figure 15-10.

enter these
five lines of code

Figure 15-9 Additional code entered in the nested loop

CH A P T E R 1 5 I’m on the Inside; You’re on the Outside (Nested Loops)

268

13. Use the scroll bar to view the monthly payments for the 4-year and 5-year terms.

14. Delete the contents of the Principal box and then click the Calculate Monthly
Payments button. A monthly payment of $0.00 appears for each rate within each term.

15. Click the Exit button. Close the Code Editor window and then close the solution.

The code entered in the btnCalc control’s Click event procedure is shown in Figure 15-11.

you can use the
scroll bar to view
the information for
the 4-year and
5-year terms

Figure 15-10 Interface showing the terms, rates, and monthly payments

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays monthly payment amounts
 ' using terms of 2 through 5 years and rates
 ' of 4% through 7%

 Dim decPrincipal As Decimal
 Dim decPayment As Decimal

 ' assign principal to a variable
 Decimal.TryParse(txtPrincipal.Text, decPrincipal)

 ' clear the Payments box
 txtPayments.Text = String.Empty

 ' calculate and display the monthly payments
 For intTerm As Integer = 2 To 5
 txtPayments.Text = txtPayments.Text &
 "Term: " & intTerm & ControlChars.NewLine
 For decRate As Decimal = 0.04 To 0.07 Step 0.01
 decPayment =
 -Financial.Pmt(decRate / 12, intTerm * 12, decPrincipal)
 txtPayments.Text = txtPayments.Text &
 decRate.ToString("P0") & " -> " &
 decPayment.ToString("C2") & ControlChars.NewLine
 Next decRate
 txtPayments.Text = txtPayments.Text & ControlChars.NewLine
 Next intTerm
End Sub

Figure 15-11 Click event procedure for the btnCalc control

Revisiting the Monthly Payment Calculator Application

269

But I Want to Do It a Different Way
Rather than using two For…Next statements to code the Monthly Payment Calculator
application, you also can use two Do…Loop statements or one For…Next statement and one
Do…Loop statement. In the next set of steps, you will modify the Monthly Payment Calculator
application so that it uses a Do…Loop statement to keep track of the annual interest rates.

To modify and then test the Monthly Payment Calculator application:

1. Use Windows to make a copy of the Monthly Payment Solution-Version 1 folder. Save
the copy in the ClearlyVB2010\Chap15 folder. Rename the copy Monthly Payment
Solution-Version 2.

2. Open the Monthly Payment Solution (Monthly Payment Solution.sln) file contained
in the Monthly Payment Solution-Version 2 folder. Double-click frmMain.vb in the
Solution Explorer window.

3. Open the Code Editor window and then locate the btnCalc control’s Click event
procedure. Modify the procedure’s code as shown in Figure 15-12. The changes are
shaded in the figure. Notice that when you use the Do…Loop statement (rather than the
For…Next statement) to keep track of the annual interest rates, you must include
instructions to declare, initialize, and update the decRate variable.

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays monthly payment amounts
 ' using terms of 2 through 5 years and rates
 ' of 4% through 7%

 Dim decPrincipal As Decimal
 Dim decPayment As Decimal
 Dim decRate As Decimal

 ' assign principal to a variable
 Decimal.TryParse(txtPrincipal.Text, decPrincipal)

 ' clear the Payments box
 txtPayments.Text = String.Empty

 ' calculate and display the monthly payments
 For intTerm As Integer = 2 To 5
 txtPayments.Text = txtPayments.Text &
 "Term: " & intTerm & ControlChars.NewLine
 ' initialize rate counter
 decRate = 0.04
 Do Until decRate > 0.07
 decPayment =
 -Financial.Pmt(decRate / 12, intTerm * 12, decPrincipal)
 txtPayments.Text = txtPayments.Text &
 decRate.ToString("P0") & " -> " &
 decPayment.ToString("C2") & ControlChars.NewLine
 ' update rate counter
 decRate = decRate + 0.01
 Loop
 txtPayments.Text = txtPayments.Text & ControlChars.NewLine
 Next intTerm
End Sub

replace the For
clause with this
Do clause

you also can use
decRate += 0.01 replace the Next clause

with this Loop clause

Figure 15-12 Modified Click event procedure for the btnCalc control

CH A P T E R 1 5 I’m on the Inside; You’re on the Outside (Nested Loops)

270

4. Save the solution and then start the application. Type 12000 in the Principal box and
then click the Calculate Monthly Payments button. The terms, rates, and monthly
payments appear in the interface, as shown earlier in Figure 15-10.

5. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 15-1
See Appendix B for the answers.

1. Write the code to display the following pattern using two pretest loops along with
the letter X. Use the Do…Loop statement for the outer loop. Use the For…Next
statement for the nested loop. Display the pattern in the lblPattern control.

XXXX
XXXX
XXXX

2. Rewrite the code from Question 1 using a For…Next statement for the outer loop
and a Do…Loop statement for the nested loop.

3. For a text box to display scroll bars, which of the following properties must be set
to True?

a. DisplayBars c. Scrollable
b. Multiline d. ScrollBars

Summary
l Repetition structures can be nested, which means you can place one loop within another loop.

l For a nested loop to work correctly, it must be contained entirely within the outer loop.

l When a text box’s Multiline property is set to True, it can accept and display multiple
lines of text.

l A text box’s ScrollBars property determines whether scroll bars appear on the control.
However, for the ScrollBars property to take effect, the text box’s Multiline property must be
set to True.

l You can prevent the user from editing the contents of a text box by setting the text box’s
ReadOnly property to True.

Key Terms
Multiline property—the text box property that specifies whether the text box can accept and
display multiple lines of text

ReadOnly property—the text box property that specifies whether the contents of the text box
can be edited by the user during run time

ScrollBars property—the text box property that indicates whether scroll bars appear on the
control; used in conjunction with the Multiline property

Key Terms

271

Review Questions
1. Which of the following will not display four asterisks on each of three lines in the lblMsg

control?

a. lblMsg.Text = "****" &
ControlChars.NewLine & "****" &
ControlChars.NewLine & "****"

b. For intCounter As Integer = 1 To 3
lblMsg.Text = lblMsg.Text &

"****" & ControlChars.NewLine
Next intCounter

c. For intX As Integer = 1 To 4
For intY As Integer = 1 To 3

lblMsg.Text = lblMsg.Text & "*"
Next intY
lblMsg.Text = lblMsg.Text &

ControlChars.NewLine
Next intX

d. For intX As Integer = 1 To 3
For intY As Integer = 1 To 4

lblMsg.Text = lblMsg.Text & "*"
Next intY
lblMsg.Text = lblMsg.Text &

ControlChars.NewLine
Next intX

2. How many times will the MessageBox.Show method in the following code be processed?
For intX As Integer = 4 To 11 Step 3

For intY As Integer = 1 To 3
MessageBox.Show("Hello")

Next intY
Next intX

a. 9

b. 10

c. 11

d. none of the above

3. What value will cause the nested loop in Review Question 2 to stop?

a. 0

b. 1

c. 3

d. none of the above

4. Which of the following will not display the number 123 on each of two lines in the lblMsg
control? (The intY variable was declared with the statement Dim intY As Integer.)

a. For intX As Integer = 1 To 2
intY = 1
Do

lblMsg.Text = lblMsg.Text & intY
intY = intY + 1

Loop Until intY > 3
lblMsg.Text = lblMsg.Text & ControlChars.NewLine

Next intX

CH A P T E R 1 5 I’m on the Inside; You’re on the Outside (Nested Loops)

272

b. intY = 1
Do Until intY > 2

For intX As Integer = 1 To 3
lblMsg.Text = lblMsg.Text & intX
intY = intY + 1

Next intX
lblMsg.Text = lblMsg.Text & ControlChars.NewLine

Loop

c. For intX As Integer = 1 To 2
intY = 1
Do Until intY > 3

lblMsg.Text = lblMsg.Text & intY
intY = intY + 1

Loop
lblMsg.Text = lblMsg.Text & ControlChars.NewLine

Next intX

d. intY = 1
Do Until intY > 2

For intX As Integer = 1 To 3
lblMsg.Text = lblMsg.Text & intX

Next intX
intY = intY + 1
lblMsg.Text = lblMsg.Text & ControlChars.NewLine

Loop

5. How can you prevent the user from editing the contents of a text box during run time?

a. set the text box’s Editable property to False

b. set the text box’s Changeable property to False

c. set the text box’s ReadOnly property to True

d. set the text box’s WriteOnly property to False

6. What will the following code display in the lblSum control?
Dim intSum As Integer
Dim intY As Integer
Do While intY < 3

For intX As Integer = 1 to 4
intSum += intX

Next intX
intY += 1

Loop
lblSum.Text = intSum

a. 5

b. 8

c. 15

d. 30

7. Which of the following properties determines whether a text box contains a scroll bar?

a. Scrollable

b. ScrollBars

c. Scroller

d. none of the above

Review Questions

273

Exercises
1. In this exercise, you modify the Clock application coded in the chapter. Use Windows

to make a copy of the Clock Solution folder. Save the copy in the ClearlyVB2010\
Chap15 folder. Rename the copy Clock Solution-TRY THIS 1. Open the Clock Solution
(Clock Solution.sln) file contained in the Clock Solution-TRY THIS 1 folder. Open the
designer window. Change the For…Next statements in the Start button’s Click event
procedure to Do…Loop statements. Use the Until keyword in the Do clause. Save
the solution and then start and test the application. Close the Code Editor window
and then close the solution. (See Appendix B for the answer.)

2. In this exercise, you modify the Clock application coded in the chapter. Use Windows to
make a copy of the Clock Solution folder. Save the copy in the ClearlyVB2010\Chap15
folder. Rename the copy Clock Solution-TRY THIS 2. Open the Clock Solution (Clock
Solution.sln) file contained in the Clock Solution-TRY THIS 2 folder. Open the designer
window. Change the nested For…Next statement in the Start button’s Click event
procedure to a posttest loop. Use the While keyword in the Loop clause. Save the
solution and then start and test the application. Close the Code Editor window and
then close the solution. (See Appendix B for the answer.)

3. In this exercise, you modify one of the Monthly Payment Calculator applications coded in
the chapter. Use Windows to make a copy of the Monthly Payment Solution-Version 1
folder. Save the copy in the ClearlyVB2010\Chap15 folder. Rename the copy Modified
Monthly Payment Solution-Version 1. Open the Monthly Payment Solution (Monthly
Payment Solution.sln) file contained in the Modified Monthly Payment Solution-Version
1 folder. Open the designer window. Currently, the Click event procedure for the
Calculate Monthly Payments button displays the payments by rate within term. Modify
the procedure’s code so that it displays the payments by term within rate. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

4. In this exercise, you modify one of the Monthly Payment Calculator applications coded in
the chapter. Use Windows to make a copy of the Monthly Payment Solution-Version 2
folder. Save the copy in the ClearlyVB2010\Chap15 folder. Rename the copy Modified
Monthly Payment Solution-Version 2. Open the Monthly Payment Solution (Monthly
Payment Solution.sln) file contained in the Modified Monthly Payment Solution-Version
2 folder. Open the designer window. Currently, the Click event procedure for the
Calculate Monthly Payments button uses a For…Next statement to keep track of the
terms. Change the For…Next statement to a Do…Loop statement. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

5. Open the Discount Solution (Discount Solution.sln) file contained in the
ClearlyVB2010\Chap15\Discount Solution folder. The Display button’s Click event
procedure should display discount amounts in the txtDiscounts control. Display the
discount amounts using sales amounts of $10 through $15 in increments of $1, and rates
from 5% through 10% in increments of 1%. Display the discount amounts by rate
within sales. (In other words, display the six discount amounts for the $10 sales, then
the six discount amounts for the $11 sales, and so on.) Code the procedure. Save the
solution and then start and test the application. Close the Code Editor window and
then close the solution.

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

CH A P T E R 1 5 I’m on the Inside; You’re on the Outside (Nested Loops)

274

6. Open the Commission Solution (Commission Solution.sln) file contained in the
ClearlyVB2010\Chap15\Commission Solution folder. The Display button’s Click event
procedure should display commission amounts in the txtCommission control. Display
the commission amounts using sales amounts of $10000 through $13000 in increments
of $1000, and rates from 2% through 5% in increments of 1%. Display the commission
amounts by sales amount within rate. (In other words, display the four commission
amounts for the 2% rate, then the four commission amounts for the 3% rate, and so on.)
Code the procedure. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

7. In this exercise, you code an application that displays a bar chart. The bar chart
depicts the ratings for five hotels. Open the Hotel Solution (Hotel Solution.sln) file
contained in the ClearlyVB2010\Chap15\Hotel Solution folder. The Create Bar Chart
button’s Click event procedure should allow the user to enter the hotel rating for each of
five hotels. The rating can be from 1 through 6 only. Use the InputBox function to get
each rating. If the user enters an invalid rating, the procedure should display an
appropriate message in a message box and then ask the user for the hotel’s rating again.
(In other words, the procedure should not accept an invalid rating.) Use each hotel’s
rating to display the appropriate number of asterisks in the bar chart. Figure 15-13 shows
a sample run of the application after the user enters the following ratings: 4, 6, 3, 8, 6,
and 2. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

8. In this exercise, you modify the Clock application coded in the chapter. Use Windows to
make a copy of the Clock Solution folder. Save the copy in the ClearlyVB2010\Chap15
folder. Rename the copy Modified Clock Solution. Open the Clock Solution
(Clock Solution.sln) file contained in the Modified Clock Solution folder. Open the
designer window. Currently, the interface and code display the number of minutes and
seconds. Modify the interface and code to also display the number of hours. Use hour
values of 0 through 3 (rather than 0 through 23). Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

Figure 15-13 Sample run of the application from Exercise 7

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Exercises

275

9. Open the TwoToTenAsterisks Solution (TwoToTenAsterisks Solution.sln) file contained
in the ClearlyVB2010\Chap15\TwoToTenAsterisks Solution folder. The Display
Asterisks button should display the pattern of asterisks shown below. The pattern
contains 2 asterisks, 4 asterisks, 6 asterisks, 8 asterisks, and 10 asterisks. Display the
pattern in the lblAsterisks control. Use a For…Next statement for the outer loop, and a
Do…Loop statement for the nested loop. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

**

10. Open the Cartwright Solution (Cartwright Solution.sln) file contained in the
ClearlyVB2010\Chap15\Cartwright Solution folder. The Display Totals button’s Click
event procedure should allow the user to enter the salesperson ID for any number of
salespeople. It also should allow the user to enter any number of sales amounts for each
salesperson. Use the InputBox function to get the salesperson’s ID and sales amounts.
Total a salesperson’s sales before moving on to the next salesperson. Display each
salesperson’s ID and total sales in the txtTotalSales control. When the user has finished
entering data, display the company’s total sales in the txtTotalSales control. Code the
procedure. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution. Figure 15-14 shows a sample run of the
application after the user enters the IDs and sales amounts shown here:

ID Sales amounts
AB2 300.35, 200.50, and 250.75

BN4 45.67 and 350.05

CR7 100.23, 67.45, and 35.85

11. Open the Table Solution (Table Solution.sln) file contained in the ClearlyVB2010\Chap15\
Table Solution folder. The Display Table button’s Click event procedure should display a
table consisting of three rows and seven columns, as shown in Figure 15-15. The first column
contains the numbers 1 through 3. The second and subsequent columns contain the result of
multiplying the number in the first column by the numbers 0 through 5. Code the
procedure. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

Figure 15-14 Sample run of the application from Exercise 10

INTERMEDIATE

ADVANCED

ADVANCED

CH A P T E R 1 5 I’m on the Inside; You’re on the Outside (Nested Loops)

276

12. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap15\FigureThisOut Solution folder. Open the Code Editor window
and study the existing code. List the steps the computer takes when processing the code
contained in the btnDisplay control’s Click event procedure. What will the procedure
display? Start and then test the application. Close the Code Editor window and then close
the solution.

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap15\SwatTheBugs Solution folder. Open the Code Editor window and
study the existing code. Start and then test the application. Notice that the application is
not working correctly. To stop the application, click Debug on the menu bar and then
click Stop Debugging. Locate and correct the errors in the code. Save the solution and
then start and test the application again. Close the Code Editor window and then close
the solution.

Figure 15-15 Sample run of the application from Exercise 11

FIGURE THIS OUT

SWAT THE BUGS

Exercises

277

This page intentionally left blank

CHAPTER 16
I Hear You Are Breaking Up
(Sub Procedures)

After studying Chapter 16, you should be able to:

Create a Sub procedure

Call a Sub procedure

Pass data by value to a procedure

Pass data by reference to a procedure

What’s the Proper Procedure?
All of the procedures you have coded so far have been event procedures. Recall that an event
procedure is a set of Visual Basic instructions that are processed when a specific event (such as
the Click event) occurs. The Code Editor provides a code template for every event procedure.
The code template contains the procedure’s header and footer. As you know, an event
procedure’s header begins with the keywords Private Sub. The Private keyword indicates that
the procedure can be used only within the current Code Editor window. The Sub keyword is an
abbreviation of the term “Sub procedure,” which is a block of code that performs a specific task.
An event procedure always ends with the keywords End Sub. Figure 16-1 shows a sample Click
event procedure for an Exit button.

Event procedures are not the only Sub procedures available in Visual Basic; you also can create
your own Sub procedures. The Sub procedures you create are called independent Sub procedures,
because they are independent of any object and event. An independent Sub procedure is
processed only when you call (invoke) it from code. But why would you want to create your own
Sub procedure? First, you can use an independent Sub procedure to avoid duplicating code when
different sections of a program need to perform the same task. Rather than entering the same code
in each of those sections, you can enter the code in an independent Sub procedure and then have
each section call the procedure to perform its task when needed. Second, consider an event
procedure that must perform many tasks. To keep the event procedure’s code from getting
unwieldy and difficult to understand, you can assign some of the tasks to one or more independent
Sub procedures. Doing this makes the event procedure easer to code, because it allows the
programmer to concentrate on one small piece of the code at a time. And finally, independent Sub
procedures are used extensively in large and complex programs, which typically are written by a
team of programmers. The programming team will break up the program into small and
manageable tasks, and then assign some of the tasks to different team members to be coded as
independent procedures. Doing this allows more than one programmer to work on the program at
the same time, decreasing the time it takes to write the program.

Figure 16-2 shows the syntax for creating an independent Sub procedure in Visual Basic. It
also includes an example of an independent Sub procedure, as well as the steps for entering
an independent Sub procedure in the Code Editor window. Some programmers enter
independent procedures above the first event procedure, while others enter them below the last
event procedure. Still others enter them either immediately above or immediately below the
procedure from which they are called. In this book, the independent procedures will usually be
entered above the first event procedure in the Code Editor window.

As the syntax in Figure 16-2 shows, independent Sub procedures have both a procedure header
and a procedure footer. In most cases, the procedure header begins with the keywords Private
Sub followed by the procedure name. The rules for naming an independent Sub procedure are the
same as those for naming variables; however, procedure names are usually entered using Pascal
case. When using Pascal case, you capitalize the first letter in the name and the first letter of each
subsequent word in the name. The procedure’s name should indicate the task the procedure
performs. It is a common practice to begin the name with a verb. For example, a good name for a
Sub procedure that clears the contents of the label controls in an interface is ClearLabels.

procedure header

the Me.Close()
statement is processed
when this event occurs

procedure footer

Figure 16-1 Sample Click event procedure for an Exit button

CH A P T E R 1 6 I Hear You Are Breaking Up (Sub Procedures)

280

Following the procedure name in the procedure header is a set of parentheses that contains an
optional parameterList. The parameterList lists the data type and name of one or more memory
locations, called parameters. The parameters store the information passed to the procedure
when it is invoked. The parameters in a procedure header have procedure scope, which means
they can be used only by the procedure. If the procedure does not require any information to be
passed to it, as is the case with the ClearLabels procedure in Figure 16-2, an empty set of
parentheses follows the procedure name in the procedure header. You will learn more about
parameters later in this chapter. An independent Sub procedure ends with its procedure footer,
which is always End Sub. Between the procedure header and procedure footer, you enter the
instructions to be processed when the procedure is invoked.

You can invoke an independent Sub procedure using the Call statement. Figure 16-3 shows the
statement’s syntax and includes an example of using the statement to invoke the ClearLabels
procedure from Figure 16-2. In the syntax, procedureName is the name of the procedure you are
calling (invoking), and argumentList (which is optional) is a comma-separated list of items,
called arguments. Each argument represents an item of information that is passed to the
procedure when the procedure is invoked. If you have no information to pass to the procedure
that you are calling, as is the case with the ClearLabels procedure, you include an empty set of
parentheses after the procedure name in the Call statement. The ClearLabels procedure is used
in the Weekly Pay application, which you view in the next section.

Creating an independent Sub procedure

Syntax
Private Sub procedureName([parameterList])
 statements
End Sub

Example
Private Sub ClearLabels()
 lblRegular.Text = String.Empty
 lblOvertime.Text = String.Empty
 lblGross.Text = String.Empty
End Sub

Steps
1. Click a blank line in the Code Editor window. The blank line can be anywhere between the
 Public Class and End Class clauses. However, it must be outside any other procedure.
2. Type the Sub procedure header and then press Enter. The Code Editor automatically
 enters the End Sub clause for you.

procedure header

procedure footer

clears the
contents of
the labels

Figure 16-2 Syntax, example, and steps for creating an independent Sub procedure

Call statement

Syntax
Call procedureName([argumentList])

Example
Call ClearLabels()

Figure 16-3 Syntax and an example of the Call statement

What’s the Proper Procedure?

281

The Weekly Pay Application
The Weekly Pay application calculates and displays an employee’s regular pay, overtime pay, and
gross pay. Employees are paid on an hourly basis and receive time and one-half for the hours
worked over 40.

To open and then test the Weekly Pay application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Weekly Pay Solution (Weekly Pay Solution.sln)
file contained in the ClearlyVB2010\Chap16\Weekly Pay Solution folder. If the designer
window is not open, double-click frmMain.vb in the Solution Explorer window.

2. Start the application. Type 41 in the Hours box and then type 9 in the Rate box. Click
the Calculate button. The button’s Click event procedure calculates and displays the
regular pay, overtime pay, and gross pay. See Figure 16-4.

3. Change the number of hours from 41 to 4, but don’t click the Calculate button yet.
Notice that the interface still shows the pay amounts for 41 hours; this is because the
amounts aren’t updated until you click the Calculate button. Click the Calculate button
to update the pay amounts and then click the Exit button.

To avoid confusion, it would be better to remove the pay amounts from the interface
whenever a change is made to either the number of hours in the txtHours control or the rate
of pay in the txtRate control. You can do this by entering the following three assignment
statements in each text box’s TextChanged event procedure: lblRegular.Text =
String.Empty, lblOvertime.Text = String.Empty, and lblGross.Text = String.Empty.
A text box’s TextChanged event occurs whenever a change is made to the contents of the text
box. You also can remove the pay amounts by entering the assignment statements in an
independent Sub procedure and then entering the appropriate Call statement in both
TextChanged event procedures. You will use the latter approach, because entering the
assignment statements in an independent Sub procedure saves you from having to enter them
more than once. In addition, if the application is modified—for example, if the user wants you to
assign the string “N/A” rather than the empty string to the labels—you will need to make the
change in only one place in the code.

To enter the ClearLabels Sub procedure and Call statements, and then test the code:

1. Open the Code Editor window. Click the blank line below the Public Class frmMain
clause and then press Enter to insert another blank line. Enter the ClearLabels
procedure shown in Figure 16-5.

Figure 16-4 Pay amounts shown in the interface

CH A P T E R 1 6 I Hear You Are Breaking Up (Sub Procedures)

282

2. Open the code template for the txtHours control’s TextChanged event procedure. Enter
the following Call statement:

Call ClearLabels()

3. Open the code template for the txtRate control’s TextChanged event procedure. Enter
the following Call statement:

Call ClearLabels()

4. Save the solution and then start the application. Type 41 in the Hours box and then
type 9 in the Rate box. Click the Calculate button. The pay amounts shown earlier
in Figure 16-4 appear in the interface.

5. Change the number of hours from 41 to 4. Changing the number of hours causes the
txtHours control’s TextChanged event to occur. As a result, the computer processes the
Call ClearLabels() statement entered in the event procedure. When processing
the statement, the computer temporarily leaves the event procedure to process the code
contained in the ClearLabels procedure. The assignment statements in the ClearLabels
procedure remove the pay amounts from the three label controls in the interface.
After processing the assignment statements, the computer processes the ClearLabels
procedure’s End Sub clause, which ends the procedure. The computer then returns to
the txtHours control’s TextChanged event procedure and processes the line of code
located below the Call statement. In this case, the line below the Call statement is End
Sub, which ends the event procedure.

6. Click the Calculate button. Now change the rate of pay from 9 to 9.55. Notice that the
pay amounts are removed from the interface when you make a change to the rate. Click
the Calculate button and then click the Exit button.

To complete the Weekly Pay application, you need to code the Clear button’s Click event
procedure. The procedure should remove the contents of both text boxes, as well as the pay
amounts from the three label controls.

To code and then test the Clear button’s Click event procedure:

1. Open the code template for the btnClear control’s Click event procedure. Type the
following comment and then press Enter twice:

' clear text boxes and label controls

2. First, you will remove the contents of the two text boxes. Enter the following assignment
statements:

txtHours.Text = String.Empty
txtRate.Text = String.Empty

3. You can use the ClearLabels procedure to remove the pay amounts from the label
controls. Enter the following Call statement:

Call ClearLabels()

enter these
lines of code

Figure 16-5 ClearLabels procedure

What’s the Proper Procedure?

283

4. Save the solution and then start the application. Type 10 in the Hours box and then type
5 in the Rate box. Click the Calculate button. The values 50.00, 0.00, and 50.00 appear
in the label controls.

5. Click the Clear button to remove the contents of the text boxes and label controls, and
then click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 16-1

See Appendix B for the answers.

1. The items in the Call statement are referred to as .

a. arguments
b. parameters

c. passers
d. none of the above

2. Where can you enter an independent Sub procedure in the Code Editor window?

a. above the Public Class clause
b. above the first event procedure

c. below the End Class clause
d. all of the above

3. When the contents of a text box change, the text box’s event occurs.

a. ChangedText
b. ModifiedText

c. TextModified
d. TextChanged

Send Me Something
As mentioned earlier, an independent Sub procedure can contain one or more parameters in its
procedure header; each parameter stores an item of data. The data is passed to the procedure
through the argumentList in the Call statement. The number of arguments in the Call
statement’s argumentList should agree with the number of parameters in the procedure’s
parameterList. In addition, the data type and position of each argument should agree with the
data type and position of its corresponding parameter. For example, if the first parameter has a
data type of String and the second a data type of Decimal, then the first argument in the Call
statement should have the String data type and the second should have the Decimal data type.
This is because, when the procedure is called, the computer stores the value of the first
argument in the procedure’s first parameter, the value of the second argument in the second
parameter, and so on. An argument can be a constant, keyword, or variable; however, in most
cases, it will be a variable.

Every variable has both a value and a unique address that represents its location in the
computer’s internal memory. Visual Basic allows you to pass either a copy of the variable’s value
or the variable’s address to the receiving procedure. Passing a copy of the variable’s value is
referred to as passing by value. Passing a variable’s address is referred to as passing by
reference, and it gives the receiving procedure access to the variable in memory. The method
you choose (by value or by reference) depends on whether you want to allow the receiving
procedure to change the variable’s contents.

Although the idea of passing information by value and by reference may sound confusing at first,
it is a concept with which you already are familiar. To illustrate, Rob (the mechanical man) has a
savings account at a local bank. During a conversation with his friend Jerome, Rob mentions the

CH A P T E R 1 6 I Hear You Are Breaking Up (Sub Procedures)

284

amount of money he has in his account. Sharing this information with Jerome is similar to
passing a variable by value. Knowing Rob’s account balance does not give Jerome access to Rob’s
bank account. It merely provides information that Jerome can use to compare to the balance in
his savings account. Rob’s savings account example also provides an illustration of passing
information by reference. To deposit money to or withdraw money from the account, Rob must
provide the bank teller with his account number. The account number represents the location
of Rob’s account at the bank and allows the teller to change the account balance. Giving the
teller the bank account number is similar to passing a variable by reference. The account number
allows the teller to change the contents of Rob’s bank account, similar to the way a variable’s
address allows the receiving procedure to change the contents of the variable.

Just Give Me Its Value
To pass a variable by value in Visual Basic, you include the keyword ByVal before the name of
its corresponding parameter in the receiving procedure’s parameterList. When you pass a
variable by value, the computer passes a copy of the variable’s contents to the receiving
procedure. When only a copy of the contents is passed, the receiving procedure is not given
access to the variable in memory. Therefore, it cannot change the value stored inside the
variable. It is appropriate to pass a variable by value when the receiving procedure needs to know
the variable’s contents, but it does not need to change the contents. Unless you specify
otherwise, variables in Visual Basic are automatically passed by value. The Happy Birthday
application, which you code in the next set of steps, passes two variables by value to an
independent Sub procedure.

To code the Happy Birthday application:

1. Open the Birthday Solution (Birthday Solution.sln) file contained in the
ClearlyVB2010\Chap16\Birthday Solution folder. If the designer window is not
open, double-click frmMain.vb in the Solution Explorer window. When the user
clicks the Display Message button, the button’s Click event procedure will prompt
the user to enter a first name and an age. It then will call an independent Sub
procedure to display the two input items in a birthday message, like this one: “Happy
18th Birthday, Rob!”.

2. Open the Code Editor window. Locate the btnDisplay control’s Click event procedure.
The code prompts the user to enter the first name and age (in years), and it stores the
values in the strName and strAge variables, respectively.

3. The btnDisplay control’s Click event procedure will call an independent Sub
procedure named ShowMsg to display the birthday message. The ShowMsg
procedure will need to know the person’s name and age, but it will not need to
change either of those values. Therefore, the event procedure will pass the ShowMsg
procedure a copy of the values stored in the strName and strAge variables; in other
words, the variables will be passed by value. The ShowMsg procedure will need two
parameters to store the values passed to it. Because both values are strings, the
parameters must have the String data type. Click the blank line below the Public
Class frmMain clause and then press Enter to insert another blank line. Enter the
ShowMsg procedure shown in Figure 16-6.

Send Me Something

285

4. Next, you will enter the Call statement. Click the blank line above the End Sub clause in
the btnDisplay control’s Click event procedure and then enter the following Call
statement:

Call ShowMsg(strName, strAge)

Figure 16-7 shows the procedure header and Call statement. Notice that the number, data type,
and sequence of the arguments in the Call statement match the number, data type, and
sequence of the parameters in the procedure header. Also notice that the names of the
arguments do not need to be identical to the names of the corresponding parameters. In fact, to
avoid confusion, it usually is better to use different names for the arguments and parameters.

Before testing the application, you will desk-check it using Rob as the name and 18 as the age.
When the user clicks the Display Message button, the button’s Click event procedure creates the
strName and strAge variables. Next, the two InputBox functions prompt the user to enter the
name and age. The functions store the name (Rob) and age (18) in the strName and strAge
variables, respectively. Figure 16-8 shows the desk-check table before the Call statement is
processed.

Private Sub ShowMsg(ByVal strPerson As String,
 ByVal strYears As String)
 ' displays a message containing a name and age

 Dim strAddOn As String
 Dim intYears As Integer

 Integer.TryParse(strYears, intYears)

 Select Case intYears
 Case 1, 21, 31, 41, 51, 61, 71, 81, 91, 101
 strAddOn = "st"
 Case 2, 22, 32, 42, 52, 62, 72, 82, 92, 102
 strAddOn = "nd"
 Case 3, 23, 33, 43, 53, 63, 73, 83, 93, 103
 strAddOn = "rd"
 Case Else
 strAddOn = "th"
 End Select

 lblMessage.Text = "Happy " & strYears &
 strAddOn & " Birthday, " &
 strPerson & "!"

End Sub

enter these
lines of code

Figure 16-6 ShowMsg procedure

Private Sub ShowMsg(ByVal strPerson As String,
 ByVal strYears As String)

Call ShowMsg(strName, strAge)

parameters

arguments

Figure 16-7 ShowMsg procedure header and Call statement

CH A P T E R 1 6 I Hear You Are Breaking Up (Sub Procedures)

286

Next, the Call statement invokes the ShowMsg procedure, passing it the strName and strAge
variables by value. You can tell that the variables are passed by value because the keyword ByVal
appears before each variable’s corresponding parameter in the ShowMsg procedure header.
Passing both variables by value means that only a copy of each variable’s contents—in this case,
the string “Rob” and the string “18”—is passed to the procedure. At this point, the computer
temporarily leaves the btnDisplay control’s Click event procedure to process the ShowMsg
procedure; the procedure header is processed first.

The parameterList in the ShowMsg procedure header tells the computer to create two
procedure-level String variables named strPerson and strYears. The computer stores the
information passed to the procedure in those variables. In this case, it stores the string
“Rob” in the strPerson variable and the string “18” in the strYears variable. Figure 16-9
shows the desk-check table after the computer processes the Call statement and ShowMsg
procedure header.

Next, the computer processes the statements contained within the ShowMsg procedure. The
Dim statements create and initialize the strAddOn and intYears variables. The TryParse
method then converts the string stored in the strYears variable to an integer and stores the
result in the intYears variable. Because the intYears variable contains the number 18,
the Case Else clause in the Select Case statement assigns “th” to the strAddOn variable.
Figure 16-10 shows the desk-check table after the Select Case statement is processed.

The last assignment statement in the ShowMsg procedure uses the values stored in the
strPerson, strYears, and strAddOn variables to display the appropriate message. In this
case, the statement displays the “Happy 18th Birthday, Rob!” message. The ShowMsg
procedure’s End Sub clause is processed next. At this point, the computer removes the

rstrName rstrAge
Rob 18

Figure 16-8 Desk-check table before the Call statement is processed

rstrName tstrAge r r onstrPerson strYears
Rob 18 18Rob

these variables belong to
the btnDisplay control’s
Click event procedure

these variables belong to
the ShowMsg procedure

Figure 16-9 Desk-check table after the Call statement and procedure header are processed

these variables belong to
the btnDisplay control’s
Click event procedure

these variables belong to
the ShowMsg procedure

t NstrName
Rob

strAge r nstrPerson strYears dstrAddOn in arintYears
18 Rob 18 th 18

Figure 16-10 Desk-check table after the Select Case statement is processed

Send Me Something

287

ShowMsg procedure’s variables from internal memory, as illustrated in Figure 16-11.
(Recall that a procedure-level variable is removed from the computer’s memory when the
procedure in which it is declared ends.)

After the ShowMsg procedure ends, the computer returns to the line of code located below the
Call statement in the btnDisplay control’s Click event procedure. In this case, it returns to the
End Sub clause, which marks the end of the event procedure. When the event procedure ends,
the computer removes the strName and strAge variables from internal memory.

To test the Happy Birthday application:

1. Save the solution and then start the application.

2. Click the Display Message button. Type Rob and press Enter, and then type 18 and
press Enter. The birthday message appears in the interface, as shown in Figure 16-12.
Click the Exit button. Close the Code Editor window and then close the solution.

Where Do You Live?
Instead of passing a copy of a variable’s value to a procedure, you can pass the variable’s address.
In other words, you can pass the variable’s location in the computer’s internal memory. As you
learned earlier, passing a variable’s address is referred to as passing by reference, and it gives the
receiving procedure access to the variable being passed. You pass a variable by reference when
you want the receiving procedure to change the contents of the variable. To pass a variable
by reference in Visual Basic, you include the keyword ByRef before the name of its
corresponding parameter in the receiving procedure’s parameterList. The ByRef keyword
tells the computer to pass the variable’s address rather than a copy of its contents. The Total
Due Calculator application, which you code in this section, provides an example of passing
a variable by reference. The application’s interface and planning information are shown in
Figures 16-13 and 16-14, respectively.

these variables belong to
the btnDisplay control’s
Click event procedure

the ShowMsg procedure’s
variables are removed from
internal memory

t mstrName tstrAge r onstrPerson strYears r dd nstrAddOn nintYears
Rob 18 Rob 18 th 18

Figure 16-11 Desk-check table after the ShowMsg procedure ends

Figure 16-12 Birthday message shown in the interface

CH A P T E R 1 6 I Hear You Are Breaking Up (Sub Procedures)

288

Now let’s say it is Friday afternoon and you are anxious to leave work early. Before you can do
so, however, you need to code and test the Total Due Calculator application. You decide to
recruit Sandy, one of your co-workers, to help you with the coding. More specifically, you ask
Sandy to code Step 3 in the algorithm as an independent Sub procedure. Step 3’s task is to assign
the appropriate discount, so you and Sandy agree to name the procedure AssignDiscount. Both
of you determine that the AssignDiscount procedure requires two items of information. First, it
needs to know the value of the subtotal, because some of the discounts are based on that value.
Second, it needs to know where to assign the discount. In other words, it needs to know the
address of the variable that will store the discount.

Figure 16-13 Interface for the Total Due Calculator application

Output: subtotal
 discount
 total due

Input: quantity
 price
 coupon?
 coupon code

Algorithm:
1. enter the quantity, price, and coupon? items
2. calculate the subtotal by multiplying the quantity by the price
3. if coupon?, do this:
 enter the coupon code
 if the coupon code is: do this:
 A05 assign 5 as the discount
 X25 multiply the subtotal by 10% and assign the result
 as the discount
 NE4 multiply the subtotal by 15% and assign the result
 as the discount
 Invalid assign 0 as the discount and then display an
 appropriate message
 end if
 otherwise, do this:
 assign 0 as the discount
 end if
4. calculate the total due by subtracting the discount from the subtotal
5. display the subtotal, discount, and total due

Figure 16-14 Planning information for the Total Due Calculator application

Send Me Something

289

To code the Total Due Calculator application:

1. Open the Total Due Solution (Total Due Solution.sln) file contained in the
ClearlyVB2010\Chap16\Total Due Solution folder. If the designer window is not open,
double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window. First, you will enter the Call statement. Locate
the btnCalc control’s Click event procedure. Click the blank line below the
' assigndiscount comment. The Click event procedure will need to pass a copy of the
value stored in the decSubtotal variable. It also will need to pass the address of the
decDiscount variable. Enter the following Call statement. (Don’t be concerned about
the jagged line that appears below the arguments in the Call statement. The jagged line
will disappear when you enter the procedure’s parameters in the next step.)

Call AssignDiscount(decSubtotal, decDiscount)

3. Now you will enter the parameters in the AssignDiscount procedure header. The
parameters will need to accept a Decimal value followed by the address of a Decimal
variable. Click between the parentheses in the AssignDiscount procedure header and
then type the following parameterList:

ByVal decSub As Decimal, ByRef decDisc As Decimal

Figure 16-15 shows both the AssignDiscount procedure and the btnCalc control’s Click event
procedure.

Private Sub AssignDiscount(ByVal decSub As Decimal,
ByRef decDisc As Decimal)
 ' assigns the discount

 If chkCoupon.Checked = True Then
 Dim strCouponCode As String
 strCouponCode = InputBox("Coupon code:", "Coupon")
 Select Case strCouponCode.ToUpper
 Case "A05"
 decDisc = 5
 Case "X25"
 decDisc = 0.1 * decSub
 Case "NE4"
 decDisc = 0.15 * decSub
 Case Else
 decDisc = 0
 MessageBox.Show("Invalid coupon code",
 "Total Due Calculator",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Select
 Else
 decDisc = 0
 End If
End Sub

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the subtotal, discount, and total due

Figure 16-15 AssignDiscount and btnCalc Click procedures (continues)

CH A P T E R 1 6 I Hear You Are Breaking Up (Sub Procedures)

290

Before testing the application, you will desk-check it using 4 as the quantity, 15 as the price, and
X25 as the coupon code. In addition, the Coupon check box will be selected. When the user
clicks the Calculate button, the btnCalc control’s Click event procedure creates the variables
declared in the five Dim statements. The two TryParse methods in the procedure convert the
quantity and price to the appropriate data types and then store the results in the intQuantity
and decPrice variables, respectively. Next, the decSubtotal = intQuantity * decPrice
statement calculates the subtotal and stores the result (60) in the decSubtotal variable.
Figure 16-16 shows the desk-check table before the Call statement is processed.

The computer processes the Call statement next. The Call statement invokes the AssignDiscount
procedure, passing it two arguments. At this point, the computer temporarily leaves the Click
event procedure to process the code contained in the AssignDiscount procedure; the
procedure header is processed first. The ByVal keyword before the decSub parameter
indicates that the parameter is receiving a value from the Call statement. In this case, it is
receiving a copy of the number stored in the decSubTotal variable. As a result, the computer
creates the decSub variable and then stores the number 60 in the variable. The ByRef keyword

 Dim intQuantity As Integer
 Dim decPrice As Decimal
 Dim decSubtotal As Decimal
 Dim decTotalDue As Decimal
 Dim decDiscount As Decimal

 Integer.TryParse(txtQuantity.Text, intQuantity)
 Decimal.TryParse(txtPrice.Text, decPrice)

 ' calculate subtotal
 decSubtotal = intQuantity * decPrice

 ' assign discount
 Call AssignDiscount(decSubtotal, decDiscount)

 ' calculate total due
 decTotalDue = decSubtotal - decDiscount

 ' display subtotal, discount, and total due
 lblSubtotal.Text = decSubtotal.ToString("N2")
 lblDiscount.Text = decDiscount.ToString("N2")
 lblTotalDue.Text = decTotalDue.ToString("N2")
End Sub

Figure 16-15 AssignDiscount and btnCalc Click procedures

(continued)

n iintQuantity i decPrice b otdecSubtotal lDdecTotalDue idecDiscount
4 15 60

these variables belong to
the btnCalc control’s
Click event procedure

Figure 16-16 Desk-check table before the Call statement is processed

Send Me Something

291

before the decDisc parameter indicates that the parameter is receiving the address of a
variable. When you pass a variable’s address to a procedure, the computer uses the address to
locate the variable in its internal memory. It then assigns the parameter name to the memory
location. In this case, the computer locates the decDiscount variable in memory and assigns
the name decDisc to it. At this point, the memory location has two names: one assigned by
the btnCalc control’s Click event procedure and the other assigned by the AssignDiscount
procedure, as indicated in Figure 16-17.

Notice that four of the variables in Figure 16-17 belong strictly to the btnCalc control’s Click
event procedure, and one belongs strictly to the AssignDiscount procedure; one memory
location, however, belongs to both procedures. Although both procedures can access the
memory location, each procedure uses a different name to do so. The Click event procedure
uses the name decDiscount, whereas the AssignDiscount procedure uses the name decDisc.

After processing the AssignDiscount procedure header, the computer processes the code
contained in the procedure. For this desk-check, the Coupon check box is selected, so
the computer follows the instructions in the selection structure’s true path. The first instruction
creates a variable named strCouponCode. Next, the statement containing the InputBox function
prompts the user to enter the coupon code and stores the user’s response (X25) in the
strCouponCode variable. The Select Case statement is processed next. The instruction in the
Case "X25" clause calculates the discount by multiplying the contents of the decSub variable
(60) by 0.1. It then assigns the result (6) to the decDisc variable. Figure 16-18 shows the desk-
check table after the Select Case statement is processed. Notice that when the value in the
decDisc variable changes, the value in the decDiscount variable also changes. This happens
because the names decDisc and decDiscount refer to the same location in the computer’s
internal memory.

d Dis decDisc [AssignDiscount]an y d r b ot ot intQuantity decPrice decSubtotal decTotalDue
d o nt decDiscount [btnCalc Click]4 15 60

de S bdecSub
60

these variables belong
strictly to the btnCalc
control’s Click event
procedure

this memory location belongs
to both procedures

this variable belongs strictly
to the AssignDiscount procedure

Figure 16-17 Desk-check table after the Call statement and procedure header are processed

d Dis decDisc [AssignDiscount]
an y d r b o Tot intQuantity decPrice decSubtotal decTotalDue d n decDiscount [btnCalc Click]
4 15 60 6

decSub s rC nC dstrCouponCode
60 X25

changing the value in the decDisc
variable also changes the value in
the decDiscount variable

these variables belong strictly to
the AssignDiscount procedure

Figure 16-18 Desk-check table after the Select Case statement is processed

CH A P T E R 1 6 I Hear You Are Breaking Up (Sub Procedures)

292

The AssignDiscount procedure’s End Sub clause is processed next and ends the procedure.
At this point, the computer removes the decSub and strCouponCode variables from memory.
It also removes the decDisc name from the appropriate location in memory, as indicated in
Figure 16-19. Notice that the decDiscount memory location now has only one name: the name
assigned to it by the btnCalc control’s Click event procedure.

After the AssignDiscount procedure ends, the computer returns to the line of code below
the Call statement in the btnCalc control’s Click event procedure. In this case, it returns to the
statement that calculates the total due. Figure 16-20 shows the desk-check table after the
assignment statement is processed.

The last three assignment statements in the Click event procedure display the contents of the
decSubtotal, decDiscount, and decTotalDue variables (formatted with two decimal places)
in the interface. Finally, the computer processes the Click event procedure’s End Sub clause.
When the Click event procedure ends, the computer removes the procedure’s variables from
memory.

To test the Total Due Calculator application:

1. Save the solution and then start the application. Type 4 in the Quantity box and then
type 15 in the Price box. Click the Coupon check box to select it and then click the
Calculate button.

2. Type X25 as the coupon code and then press Enter. The correct subtotal, discount, and
total due appear in the interface, as shown in Figure 16-21. Click the Exit button. Close
the Code Editor window and then close the solution.

d is decDisc [AssignDiscount]
Q nt y d r ub ot t intQuantity decPrice decSubtotal decTotalDue d cD ou tdecDiscount [btnCalc Click]

4 15 60 6

ddecSub Co CstrCouponCode
60 X25

Figure 16-19 Desk-check table after the AssignDiscount procedure ends

i decDisc [AssignDiscount]
Q an y e Pr e ecS b o ecTo D e intQuantity decPrice decSubtotal decTotalDue de D sco n decDiscount [btnCalc Click]

4 15 60 54 6

udecSub st C odstrCouponCode
60 X25

Figure 16-20 Desk-check table after the total due is calculated

Send Me Something

293

Mini-Quiz 16-2

See Appendix B for the answers.

1. A procedure is passed a copy of the value stored in a String variable, followed by a copy
of the value stored in an Integer variable. Which of the following is a valid header for
the procedure?

a. Private Sub Display(ByRef strX As String,
ByRef intY As Integer)

b. Private Sub Display(ByVal strX As String,
ByVal intY As Integer)

c. Private Sub Display(strX As String,
intY As Integer)

d. Private Sub Display(ByVal intX As Integer,
ByRef strY As String)

2. Write a Call statement that invokes the Display procedure from Question 1.
Pass the procedure a copy of the values stored in the strName and intQuantity
variables.

3. In the receiving procedure’s header, you use the keyword to indicate that
a variable is being passed by reference.

Summary
l You can create your own Sub procedures, called independent Sub procedures, in Visual

Basic. Independent Sub procedures allow programmers to avoid duplicating code in different
parts of a program. They also allow the programmer to concentrate on one small piece of a
program at a time. In addition, they allow a team of programmers to work on large and
complex programs.

l It is a common practice to begin a procedure name with a verb and to enter the name using
Pascal case.

l You can use the Call statement to invoke an independent Sub procedure. The Call statement
allows you to pass arguments to the procedure.

Figure 16-21 Calculated amounts shown in the interface

To review
what you
learned
about Sub
procedures,

view the Ch16Sub video.

For more
examples
of Sub pro-
cedures,
see the Sub

Procedures section in the
Ch16WantMore.pdf file.

CH A P T E R 1 6 I Hear You Are Breaking Up (Sub Procedures)

294

l When calling a procedure, the number of arguments listed in the Call statement’s
argumentList should agree with the number of parameters listed in the receiving procedure’s
parameterList. Also, the data type and position of each argument should agree with the data
type and position of its corresponding parameter.

l You can pass information to an independent Sub procedure either by value or by reference.
To pass a variable by value, you precede the variable’s corresponding parameter with the
keyword ByVal. To pass a variable by reference, you precede the variable’s corresponding
parameter with the keyword ByRef. The procedure header indicates whether a variable
is being passed by value or by reference.

l When you pass a variable by value, only a copy of the variable’s contents is passed. When
you pass a variable by reference, the variable’s address is passed.

l Variables that appear in the parameterList in a procedure header have procedure scope,
which means they can be used only by the procedure.

Key Terms
Argument—an item listed within parentheses in a Call statement; represents information passed
to the receiving procedure

Call statement—the statement used to invoke an independent Sub procedure in a Visual Basic
program

Independent Sub procedure—a procedure that is not associated with any specific object or
event and is processed only when invoked (called) from code

Parameters—the memory locations listed in a procedure header

Passing by reference—the process of passing a variable’s address to a procedure

Passing by value—the process of passing a copy of a variable’s value to a procedure

TextChanged event—occurs when a change is made to the Text property of its associated
control

Review Questions
1. To determine whether a variable is being passed to a procedure by value or by reference,

you will need to examine .

a. the Call statement

b. the procedure header

c. the statements entered in the procedure

d. either a or b

2. Which of the following statements invokes the CalcArea Sub procedure, passing it two
variables by value?

a. Call CalcArea(dblLength, dblWidth)

b. Call CalcArea(ByVal dblLength, ByVal dblWidth)

c. Call CalcArea ByVal(dblLength, dblWidth)

d. Call ByVal CalcArea(dblLength, dblWidth)

Review Questions

295

3. Which of the following is a valid header for a procedure that receives an integer followed
by a number with a decimal place?

a. Private Sub CalcFee(intBase As Integer,
decRate As Decimal)

b. Private Sub CalcFee(ByRef intBase As Integer,
ByRef decRate As Decimal)

c. Private Sub CalcFee(ByVal intBase As Integer,
ByVal decRate As Decimal)

d. Private Sub CalcFee(ByValue intBase As Integer,
ByValue decRate As Decimal)

4. Which of the following statements invokes the CalcFee procedure from Review
Question 3?

a. Call CalcFee(intX, decY)

b. Call CalcFee(2, 3.5)

c. Call CalcFee(intX, 25.45)

d. all of the above

5. Which of the following is false?

a. The sequence of the arguments listed in the Call statement should agree with the
sequence of the parameters listed in the receiving procedure’s header.

b. The data type of each argument in the Call statement should match the data type of
its corresponding parameter in the procedure header.

c. The name of each argument in the Call statement should be identical to the name of
its corresponding parameter in the procedure header.

d. When you pass information to a procedure by value, the procedure stores the value
of each item it receives in a separate memory location.

6. The CalcEndInventory procedure is passed four Integer variables named intBegin,
intSales, intPurchases, and intEnding. The procedure should calculate the ending
inventory using the beginning inventory, sales, and purchase amounts passed to the
procedure. The result should be stored in the intEnding variable. Which of the
following procedure headers is correct?

a. Private Sub CalcEndInventory(ByVal intB As Integer,
ByVal intS As Integer, ByVal intP As Integer,
ByRef intFinal As Integer)

b. Private Sub CalcEndInventory(ByVal intB As Integer,
ByVal intS As Integer, ByVal intP As Integer,
ByVal intFinal As Integer)

c. Private Sub CalcEndInventory(ByRef intB As Integer,
ByRef intS As Integer, ByRef intP As Integer,
ByVal intFinal As Integer)

d. Private Sub CalcEndInventory(ByRef intB As Integer,
ByRef intS As Integer, ByRef intP As Integer,
ByRef intFinal As Integer)

7. The items listed between the parentheses in a procedure header are called .

a. arguments

b. parameters

c. receivers

d. none of the above

CH A P T E R 1 6 I Hear You Are Breaking Up (Sub Procedures)

296

Exercises
1. Open the Bonus Solution (Bonus Solution.sln) file contained in the ClearlyVB2010\

Chap16\Bonus Solution-TRY THIS 1 folder. The application should calculate and
display a bonus amount, which is based on two sales amounts entered by the user.
Use the algorithm shown in Figure 16-22 to code the btnCalc control’s Click event
procedure and the independent Sub procedure. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.
(See Appendix B for the answer.)

2. Open the Bonus Solution (Bonus Solution.sln) file contained in the ClearlyVB2010\Chap16\
Bonus Solution-TRY THIS 2 folder. The application should calculate and display a bonus
amount, which is based on two sales amounts entered by the user. Use the algorithm shown
in Figure 16-23 to code the btnCalc control’s Click event procedure and the independent Sub
procedure. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution. (See Appendix B for the answer.)

3. In this exercise, you modify the Total Due Calculator application coded in the chapter.
Use Windows to make a copy of the Total Due Solution folder. Save the copy in the
ClearlyVB2010\Chap16 folder. Rename the copy Total Due Solution-MODIFY THIS.
Open the Total Due Solution (Total Due Solution.sln) file contained in the Total Due
Solution-MODIFY THIS folder. Open the designer and Code Editor windows. Create
an independent Sub procedure that clears the three payment amounts. Call the Sub
procedure when a change is made to the contents of either text box. Also call the Sub
procedure whenever the check box is clicked. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

4. Open the Grade Solution (Grade Solution.sln) file contained in the ClearlyVB2010\
Chap16\Grade Solution folder. The application should display a letter grade, which is
based on the average of three test scores. If the average is at least 90, the grade is A.
If the average is at least 80 but less than 90, the grade is B. If the average is at least
70 but less than 80, the grade is C. If the average is at least 60 but less than 70,
the grade is D. If the average is below 60, the grade is F. Code the application, using an
independent Sub procedure to both determine and display the letter grade. Save the

TRY THIS

1. enter sale 1 and sale 2
2. calculate the sum by adding together sale 1 and sale 2
3. if the sum is greater than 1200, do this:
 calculate the bonus by multiplying the sum by 10%
 otherwise, do this:
 calculate the bonus by multiplying the sum by 8%
 end if
4. display the bonus

create an independent
Sub procedure that will
handle Steps 3 and 4

Figure 16-22 Algorithm for Exercise 1

TRY THIS

create an independent
Sub procedure that will
handle Steps 2 and 3

1. enter sale 1 and sale 2
2. calculate the sum by adding together sale 1 and sale 2
3. if the sum is greater than 1200, do this:
 calculate the bonus by multiplying the sum by 10%
 otherwise, do this:
 calculate the bonus by multiplying the sum by 8%
 end if
4. display the bonus

Figure 16-23 Algorithm for Exercise 2

MODIFY THIS

INTRODUCTORY

Exercises

297

solution and then start and test the application. Close the Code Editor window and then
close the solution.

5. In this exercise, you modify the Grade application from Exercise 4. Use Windows to
make a copy of the Grade Solution folder. Save the copy in the ClearlyVB2010\Chap16
folder. Rename the copy Modified Grade Solution. Open the Grade Solution (Grade
Solution.sln) file contained in the Modified Grade Solution folder. Open the designer
and Code Editor windows. Currently, the independent Sub procedure both determines
and displays the letter grade. Modify the code so that the Sub procedure determines but
does not display the letter grade. The letter grade should be displayed by the btnDisplay
control’s Click event procedure. (Hint: If the Code Editor indicates that a String variable
is being passed before it has been assigned a value, assign the String.Empty constant to
the variable in the Dim statement.) Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

6. Open the Temperature Solution (Temperature Solution.sln) file contained in the
ClearlyVB2010\Chap16\Temperature Solution folder. Code the application so that it uses
two independent Sub procedures: one to convert a temperature from Fahrenheit to Celsius,
and the other to convert a temperature from Celsius to Fahrenheit. Save the solution and
then start and test the application. Close the Code Editor window and then close the solution.

7. Open the Translator Solution (Translator Solution.sln) file contained in the
ClearlyVB2010\Chap16\Translator Solution folder. Code the application so that it uses
independent Sub procedures to translate the English words into French, Spanish, or
Italian. (Hint: If the Code Editor indicates that a String variable is being passed before it
has been assigned a value, assign the String.Empty constant to the variable in the Dim
statement.) Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

8. In this exercise, you modify the Happy Birthday application coded in the chapter.
Use Windows to make a copy of the Birthday Solution folder. Save the copy in the
ClearlyVB2010\Chap16 folder. Rename the copy Birthday Solution-Intermediate. Open
the Birthday Solution (Birthday Solution.sln) file contained in the Birthday Solution-
Intermediate folder. Open the designer window. The ShowMsg procedure should use
another independent Sub procedure to assign the appropriate letters (“st”, “nd”, “rd”, or
“th”). Create the Sub procedure and then modify the ShowMsg procedure appropriately.
Notice that an independent Sub procedure can call another independent Sub procedure.
(Hint: If the Code Editor indicates that a String variable is being passed before it has
been assigned a value, assign the String.Empty constant to the variable in the Dim
statement.) Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

9. In this exercise, you code an application that calculates a water bill. The clerk at the
water department will enter the current meter reading and the previous meter reading
in two text boxes. The application should calculate and display the number of gallons of
water used and the total charge for the water. The charge for water is $2.05 per 1000
gallons, or .00205 per gallon. Use two independent Sub procedures: one to make the
calculations and the other to display the results. Call both Sub procedures from the
Calculate button’s Click event procedure. Make the calculations only when the current
meter reading is greater than or equal to the previous meter reading; otherwise, display
an appropriate message in a message box.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm using pseudocode.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Water Bill Solution and Water Bill Project. Save the
application in the ClearlyVB2010\Chap16 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

INTERMEDIATE

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

CH A P T E R 1 6 I Hear You Are Breaking Up (Sub Procedures)

298

c. Create the interface shown in Figure 16-24 and then code the application. Be sure to code
each text box’s KeyPress and TextChanged event procedures. Save the solution and then
start and test the application. Close the Code Editor window and then close the solution.

10. Sharon Barrow, the billing supervisor at Cable Direct (a local cable company), has asked
you to create an application that she can use to calculate and display a customer’s bill.
Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Cable Direct Solution and Cable Direct Project. Save the application
in the ClearlyVB2010\Chap16 folder. Change the name of the form file on your disk to
frmMain.vb. If necessary, change the form’s name to frmMain. Create the interface shown
in Figure 16-25 and then code the application. Use two independent Sub procedures: one
to calculate the bill for a Residential customer, and the other to calculate the bill for a
Business customer. The cable rates are shown in Figure 16-26. Also, clear the Total due box
when a change is made to either text box, or when either radio button is clicked. Save the
solution and then start and test the application. (Hint: The total due for a Business
customer with three premium channels and 10 connections is $246.50.) Close the Code
Editor window and then close the solution.

11. Employees at Harvey Industries are paid every Friday. All employees are paid on an
hourly basis, with time and one-half paid for the hours worked over 40. The amount of
Social Security and Medicare (or FICA) tax to deduct from an employee’s weekly gross
pay is calculated by multiplying the gross pay amount by 7.65%. The amount of federal

Figure 16-24 Interface for Exercise 9

ADVANCED

Residential customers:
 Processing fee: $4.50
 Basic service fee: $30
 Premium channels: $5 per channel
Business customers (will have at least one connection):
 Processing fee: $16.50
 Basic service fee: $80 for the first 10 connections; $4 for each additional connection
 Premium channels: $50 per channel for any number of connections

Figure 16-26 Cable rates for Exercise 10

Figure 16-25 Interface for Exercise 10

ADVANCED

Exercises

299

withholding tax (FWT) to deduct from an employee’s weekly gross pay is based on the
employee’s filing status—either single (including head of household) or married—and
his or her weekly taxable wages. You calculate the weekly taxable wages by first
multiplying the number of withholding allowances by $70.19 (the value of a withholding
allowance in 2010), and then subtracting the result from the weekly gross pay. For
example, if your weekly gross pay is $400 and you have two withholding allowances,
your weekly taxable wages are $259.62. You use the weekly taxable wages, along with the
filing status and the appropriate weekly federal withholding tax table, to determine the
amount of FWT to withhold. The weekly tax tables for the year 2010 are shown in
Figure 16-27.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Harvey Industries Solution and Harvey Industries Project.
Save the application in the ClearlyVB2010\Chap16 folder. Change the name of the form
file on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

b. Create the interface shown in Figure 16-28 and then code the application. Use the
Math.Round method, which you learned about in Chapter 6’s Exercises 10 and 11.
Use an independent Sub procedure to calculate the federal withholding tax.

c. Create a procedure that clears the contents of the Gross pay, FWT, FICA, and Net
pay boxes. The four boxes should be cleared when a change is made to the Hours,
Rate, or Allowances text boxes, or when one of the radio buttons is clicked.

d. Code the KeyPress event procedures for the Hours, Rate, and Allowances text boxes.
e. Save the solution and then start and test the application. Close the Code Editor

window and then close the solution.

 FWT Tables – Weekly Payroll Period

Single person (including head of household)
If the taxable
wages are: The amount of income tax to withhold is:
Over But not over Base amount Percentage Of excess over
 $ 116 0
$ 116 $ 200 0 10% $ 116
$ 200 $ 693 $ 8.40 plus 15% $ 200
$ 693 $1,302 $ 82.35 plus 25% $ 693
$1,302 $1,624 $ 234.60 plus 27% $1,302
$1,624 $1,687 $ 321.54 plus 30% $1,624
$1,687 $3,344 $ 340.44 plus 28% $1,687
$3,344 $7,225 $ 804.40 plus 33% $3,344
$7,225 $2,085.13 plus 35% $7,225

Married person
If the taxable
wages are: The amount of income tax to withhold is:
Over But not over Base amount Percentage Of excess over
 $ 264 0
$ 264 $ 471 0 10% $ 264
$ 471 $1,457 $ 20.70 plus 15% $ 471
$1,457 $1,809 $ 168.80 plus 25% $1,457
$1,809 $2,386 $ 256.60 plus 27% $1,809
$2,386 $2,789 $ 412.39 plus 25% $2,386
$2,789 $4,173 $ 513.14 plus 28% $2,789
$4,173 $7,335 $ 900.66 plus 33% $4,173
$7,335 $1,944.12 plus 35% $7,335

Figure 16-27 Weekly FWT tables for Exercise 11

CH A P T E R 1 6 I Hear You Are Breaking Up (Sub Procedures)

300

12. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap16\FigureThisOut Solution folder. Open the Code Editor window
and study the existing code. The first statement in the btnClear control’s Click event
procedure assigns the empty string to the txtSales control’s Text property. As you
learned in the chapter, when a change is made to the contents of a text box, the text
box’s TextChanged event occurs. In this case, the TextChanged event procedure calls
the ClearLabels procedure to clear the contents of two label controls. Notice that the
second statement in the btnClear control’s Click event procedure also calls the
ClearLabels procedure; your task is to determine whether the second statement is really
necessary. Insert an apostrophe before the Call statement in the btnClear control’s Click
event procedure to make the statement a comment. Save the solution and then start and
test the application. Why is it necessary for the btnClear control to call the ClearLabels
procedure? Stop the application. Delete the apostrophe you inserted before the Call
statement and then save the solution. Close the Code Editor window and then close the
solution.

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap16\SwatTheBugs Solution folder. Open the Code Editor window
and study the existing code. Start and then test the application. Notice that the
application is not working correctly. Locate and correct the errors in the code. Save the
solution and then start and test the application again. Close the Code Editor window
and then close the solution.

Figure 16-28 Interface for Exercise 11

FIGURE THIS OUT

SWAT THE BUGS

Exercises

301

This page intentionally left blank

CHAPTER 17
Talk to Me
(Function Procedures)

After studying Chapter 17, you should be able to:

Explain the difference between a Sub procedure and a Function
procedure

Create a Function procedure

Invoke a Function procedure

What’s the Answer?
In Chapter 16, you learned how to create independent Sub procedures. In this chapter, you will learn
how to create Function procedures. The difference between both types of procedures is that a
Function procedure returns a value after performing its assigned task, whereas a Sub procedure does
not return a value. Function procedures are referred to more simply as functions. Figure 17-1 shows
the syntax for creating a function in Visual Basic. The header and footer in a function are almost
identical to the header and footer in a Sub procedure, except the function’s header and footer contain
the Function keyword rather than the Sub keyword. Also different from a Sub procedure header, a
function’s header includes the As dataType section. You use this section of the header to specify
the data type of the value returned by the function. If the function returns a string, you enter As
String at the end of the header. If the function returns a Double number, you enter As Double.

As is true with a Sub procedure, a function can receive information either by value or by
reference. The information it receives is listed in the parameterList in the header. Between the
function’s header and footer, you enter the instructions to process when the function is invoked.
In most cases, the Return statement is the last statement within a function. The statement’s
syntax is Return expression, where expression represents the one and only value that will be
returned to the statement invoking the function. The data type of the expressionmust agree with
the data type specified in the As dataType section.

In addition to the syntax, Figure 17-1 also includes two examples of a function, as well as the steps
for entering a function in the Code Editor window. As with Sub procedures, you can enter your
functions above the first event procedure, below the last event procedure, or immediately above or
below the procedure from which they are invoked. In this book, you will enter the functions above
the first event procedure. Like Sub procedure names, function names are entered using Pascal case
and typically begin with a verb. The name should indicate the task the function performs. For
example, a good name for a function that returns a new price is GetNewPrice.

Creating a Function procedure

Syntax
Private Function procedureName([parameterList]) As dataType
 statements
 Return expression
End Function

Example 1
Private Function GetNewPrice(ByVal dblPrice As Double) As Double
 Dim dblNew As Double
 dblNew = dblPrice * 1.05
 Return dblNew
End Function

Example 2
Private Function GetNewPrice(ByVal dblPrice As Double) As Double
 Return dblPrice * 1.05
End Function

Steps
1. Click a blank line in the Code Editor window. The blank line can be anywhere
 between the Public Class and End Class clauses. However, it must be outside
 any other procedure.
2. Type the Function procedure header and then press Enter. The Code Editor
 automatically enters the End Function clause for you.

specifies the data type
of the return value

function header

function footer

returns the
dblNew variable’s
value to the
statement that
called the
function

calculates the new
price and then
returns it to
the statement that
called the function

Figure 17-1 Syntax, example, and steps for creating a Function procedure

C H A P T E R 1 7 Talk to Me (Function Procedures)

304

You can invoke a function from one or more places in an application’s code. You invoke a
function that you create in exactly the same way as you invoke one of Visual Basic’s built-in
functions, such as the InputBox function. You do this by including the function’s name and
arguments (if any) in a statement. The number, data type, and position of the arguments should
agree with the number, data type, and position of the function’s parameters. In most cases, the
statement that invokes a function assigns the function’s return value to a variable. However, it
also may use the return value in a calculation or simply display the return value. Figure 17-2
shows examples of invoking the GetNewPrice function from Figure 17-1. The GetNewPrice
(dblCurrentPrice) entry in each example invokes the function, passing it the value stored in
the dblCurrentPrice variable. In Example 1, the function’s return value is assigned to a
variable. Example 2 uses the return value in a calculation, and Example 3 displays the return
value in a label control. The GetNewPrice function is used in the Price Calculator application,
which you view in the next section.

Price Calculator Application
Figure 17-3 shows the Price Calculator application’s user interface. The interface provides a text
box for the user to enter the current price of an item. When the user clicks the Calculate button,
the button’s Click event procedure will use the GetNewPrice function to calculate and
return the new price, which will be 5% more than the current price. The Click event procedure
will then display the function’s return value in the interface.

Invoking a Function procedure

Example 1 – assign the return value to a variable
dblNewPrice = GetNewPrice(dblCurrentPrice)

Example 2 – use the return value in a calculation
dblTotalDue = intQuantity * GetNewPrice(dblCurrentPrice)
the assignment statement multiplies the value in the intQuantity variable by the function’s
return value and then assigns the result to the dblTotalDue variable

Example 3 – display the return value
lblNewPrice.Text =
 GetNewPrice(dblCurrentPrice).ToString("C2")

Figure 17-2 Examples of invoking the GetNewPrice function

txtCurrentPrice

lblNewPrice

Figure 17-3 Interface for the Price Calculator application

What’s the Answer?

305

To code the Price Calculator application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the Solution
Explorer window. Open the Price Calculator Solution (Price Calculator Solution.sln)
file contained in the ClearlyVB2010\Chap17\Price Calculator Solution folder. If the
designer window is not open, double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window. First, you will enter the GetNewPrice function. Click the
blank line below the Public Class frmMain clause and then press Enter to insert
another blank line. Enter the GetNewPrice function shown in Figure 17-4.

3. In the btnCalc control’s Click event procedure, you will enter a statement that
invokes the GetNewPrice function and assigns the function’s return value to the
dblNewPrice variable. The statement will need to pass the function a copy of the
current price stored in the dblCurrentPrice variable. Click the blank line below
the ' get the new price comment in the btnCalc control’s Click event procedure and
then enter the following assignment statement:

dblNewPrice = GetNewPrice(dblCurrentPrice)

Figure 17-5 shows the GetNewPrice function and the btnCalc control’s Click event procedure.

enter these comments
and lines of code

Figure 17-4 GetNewPrice function

Private Function GetNewPrice(ByVal dblPrice As Double) As Double
 ' increases the current price by 5% and
 ' then returns the new price

 Dim dblNew As Double
 dblNew = dblPrice * 1.05
 Return dblNew
End Function

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calls a function to calculate the new price
 ' and then displays the new price

 Dim dblCurrentPrice As Double
 Dim dblNewPrice As Double

 Double.TryParse(txtCurrentPrice.Text, dblCurrentPrice)

 ' get the new price
 dblNewPrice = GetNewPrice(dblCurrentPrice)

 lblNewPrice.Text = dblNewPrice.ToString("C2")
End Sub

GetNewPrice
function

invokes the
GetNewPrice
function and
assigns the
return value
to the
dblNewPrice
variable

Figure 17-5 GetNewPrice function and btnCalc Click procedure

C H A P T E R 1 7 Talk to Me (Function Procedures)

306

Before testing the application, you will desk-check it using $10.99 as the current price. When the
user clicks the Calculate button, the button’s Click event procedure creates the
dblCurrentPrice and dblNewPrice variables. Next, the TryParse method converts the
contents of the txtCurrentPrice control to the Double data type and stores the result in the
dblCurrentPrice variable. Figure 17-6 shows the desk-check table before the GetNewPrice
function is invoked.

The dblNewPrice = GetNewPrice(dblCurrentPrice) statement is processed next. The
statement invokes the GetNewPrice function, passing it the dblCurrentPrice variable by
value. You can tell that the variable is passed by value because the keyword ByVal appears
before its corresponding parameter in the function header. Recall that passing a variable
by value means that only a copy of the variable’s contents—in this case, the Double number
10.99—is passed to the function. At this point, the computer temporarily leaves the
Click event procedure to process the GetNewPrice function; the function header is
processed first.

The parameterList in the GetNewPrice function header tells the computer to create a
procedure-level Double variable named dblPrice. The computer stores the information
passed to the procedure—in this case, the Double number 10.99—in that variable. Next, the
computer processes the code contained within the function. The Dim statement creates
another procedure-level Double variable; this one is named dblNew. The assignment
statement calculates the new price by multiplying the contents of the dblPrice variable by
1.05. It stores the new price in the dblNew variable. Figure 17-7 shows the desk check table
after the assignment statement is processed.

Next, the Return dblNew statement returns the contents of the dblNew variable to the
statement that invoked the function. In this case, the GetNewPrice function was invoked by a
statement in the btnCalc control’s Click event procedure. More specifically, it was invoked by
the dblNewPrice = GetNewPrice(dblCurrentPrice) statement, which assigns the function’s
return value to the dblNewPrice variable. The End Function clause is processed next and ends
the function. At this point, the computer removes the dblPrice and dblNew variables from its
internal memory. Figure 17-8 shows the desk-check table after the function ends. Notice that
the dblNewPrice variable now contains the new price.

lC r n r dbdblCurrentPrice dblNewPrice
10.99

Figure 17-6 Desk-check table before the GetNewPrice function is invoked

r n ri b rdblCurrentPrice dblNewPrice dbdblNew
10.99 10.99 11.5395

these variables belong to
the btnCalc control’s
Click event procedure

these variables belong
to the GetNewPrice
function

dblPricedblPrice

Figure 17-7 Desk-check table after the new price is assigned to the dblNew variable

What’s the Answer?

307

The last assignment statement in the Click event procedure displays the new price (formatted
with a dollar sign and two decimal places) in the interface. Finally, the computer processes the
event procedure’s End Sub clause. When the Click event procedure ends, the computer removes
the dblCurrentPrice and dblNewPrice variables from its internal memory.

To test the Price Calculator application:

1. Save the solution and then start the application. Type 10.99 in the Current price box
and then click the Calculate button. $11.54 appears in the New price box, as shown in
Figure 17-9.

2. Click the Exit button. Close the Code Editor window and then close the solution.

Revisiting the Total Due Calculator Application
Figure 17-10 shows the interface for the Total Due Calculator application from Chapter 16. As
you may remember, you coded the application using an independent Sub procedure to assign
the discount amount. Figure 17-11 shows the code entered in both the AssignDiscount and
btnCalc_Click procedures in Chapter 16. Notice that the Call statement in the event procedure
passes two items of information to the AssignDiscount procedure: a copy of the value stored in
the decSubtotal variable and the address of the decDiscount variable. You passed the
decSubtotal variable’s value because the AssignDiscount procedure required that information
in two of the discount calculations. You passed the address of the decDiscount variable so that
the AssignDiscount procedure could set the variable’s value.

these variables belong
to the btnCalc control’s
Click event procedure

the function’s variables
are removed from
internal memory

d C rr i bl w rdblCurrentPrice dblNewPrice b wdblNew
10.99 11.5395 10.99 11.5395

l idblPrice

Figure 17-8 Desk-check table after the GetNewPrice function ends

Figure 17-9 New price shown in the interface

Figure 17-10 Interface for the Total Due Calculator application

C H A P T E R 1 7 Talk to Me (Function Procedures)

308

Instead of using an independent Sub procedure to assign the discount amount, you can use a
function. Consider the changes you will need to make to the code shown in Figure 17-11 in
order to use a function. You will make the changes in the following set of steps.

Private Sub AssignDiscount(ByVal decSub As Decimal,
ByRef decDisc As Decimal)
 ' assigns the discount

 If chkCoupon.Checked = True Then
 Dim strCouponCode As String
 strCouponCode = InputBox("Coupon code:", "Coupon")
 Select Case strCouponCode.ToUpper
 Case "A05"
 decDisc = 5
 Case "X25"
 decDisc = 0.1 * decSub
 Case "NE4"
 decDisc = 0.15 * decSub
 Case Else
 decDisc = 0
 MessageBox.Show("Invalid coupon code",
 "Total Due Calculator",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Select
 Else
 decDisc = 0
 End If
End Sub

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the subtotal, discount, and total due

 Dim intQuantity As Integer
 Dim decPrice As Decimal
 Dim decSubtotal As Decimal
 Dim decTotalDue As Decimal
 Dim decDiscount As Decimal

 Integer.TryParse(txtQuantity.Text, intQuantity)
 Decimal.TryParse(txtPrice.Text, decPrice)

 ' calculate subtotal
 decSubtotal = intQuantity * decPrice

 ' assign discount
 Call AssignDiscount(decSubtotal, decDiscount)

 ' calculate total due
 decTotalDue = decSubtotal - decDiscount

 ' display subtotal, discount, and total due
 lblSubtotal.Text = decSubtotal.ToString("N2")
 lblDiscount.Text = decDiscount.ToString("N2")
 lblTotalDue.Text = decTotalDue.ToString("N2")
End Sub

btnCalc control's Click
event procedure

Call statement

AssignDiscount
Sub procedure

Figure 17-11 AssignDiscount Sub procedure and btnCalc control’s Click event procedure

Revisiting the Total Due Calculator Application

309

To modify the Total Due Calculator application’s code to use a function:

1. Open the Total Due Solution (Total Due Solution.sln) file contained in the
ClearlyVB2010\Chap17\Total Due Solution folder. If the designer window is not open,
double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window. Locate the btnCalc control’s Click event procedure. The
Call statement will need to be replaced with a statement that invokes the AssignDiscount
function (rather than the AssignDiscount Sub procedure). Like the independent Sub
procedure, the function will need the statement to pass the value stored in the
decSubtotal variable, because the value is used in two of the discount calculations.
However, it will not need the statement to pass the address of the decDiscount variable,
because the statement itself will store the discount amount in that variable. Replace the
Call AssignDiscount(decSubtotal, decDiscount) statement with the following
assignment statement, and then click another line within the procedure. (Don’t be
concerned about the jagged line that appears below a portion of the statement. It will
disappear when you complete Step 4 below.)

decDiscount = AssignDiscount(decSubtotal)

3. Now locate the AssignDiscount Sub procedure. Change the Sub keyword in the
procedure header to Function and then click another line within the function. The
Code Editor automatically changes the Sub keyword in the footer to the Function
keyword. (Don’t be concerned about the jagged line that appears below the function
footer.)

4. Next, delete , ByRef decDisc As Decimal from the function header. (Be sure to delete
the comma, but don’t delete the ending parenthesis.) Now click another line within the
function. A jagged line appears below each occurrence of decDisc in the function. The
jagged line indicates that the decDisc variable has not been declared.

5. In order to use the decDisc variable, the function will need to declare it in a Dim
statement. Click the blank line below the ' assigns the discount comment and then
press Enter to insert another blank line. Type the following Dim statement and then
press Enter. When you press Enter, the Code Editor removes the jagged line below each
occurrence of decDisc.

Dim decDisc As Decimal

6. Recall that the data type of the function’s return value is specified at the end of the
function header. The AssignDiscount function returns a Decimal value. Click after the)
in the function header, press the Spacebar, and then type As Decimal. Click another
line within the function. (Notice that the jagged line from Step 3 no longer appears
below the function footer.)

7. Finally, you need to tell the function to return the discount amount to the statement that
invoked it. The discount amount is stored in the decDisc variable. Click after the letter
f in the End If clause and then press Enter to insert a blank line. Enter the following
Return statement:

Return decDisc

Figure 17-12 shows the AssignDiscount function and the btnCalc control’s Click event
procedure. The modified lines of code are shaded in the figure.

C H A P T E R 1 7 Talk to Me (Function Procedures)

310

Private Function AssignDiscount(ByVal decSub As Decimal) As Decimal
 ' assigns the discount

 Dim decDisc As Decimal

 If chkCoupon.Checked = True Then
 Dim strCouponCode As String
 strCouponCode = InputBox("Coupon code:", "Coupon")
 Select Case strCouponCode.ToUpper
 Case "A05"
 decDisc = 5
 Case "X25"
 decDisc = 0.1 * decSub
 Case "NE4"
 decDisc = 0.15 * decSub
 Case Else
 decDisc = 0
 MessageBox.Show("Invalid coupon code",
 "Total Due Calculator",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Select
 Else
 decDisc = 0
 End If
 Return decDisc

End Function

Private Sub btnCalc_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles btnCalc.Click
 ' displays the subtotal, discount, and total due

 Dim intQuantity As Integer
 Dim decPrice As Decimal
 Dim decSubtotal As Decimal
 Dim decTotalDue As Decimal
 Dim decDiscount As Decimal

 Integer.TryParse(txtQuantity.Text, intQuantity)
 Decimal.TryParse(txtPrice.Text, decPrice)

 ' calculate subtotal
 decSubtotal = intQuantity * decPrice

 ' assign discount
 decDiscount = AssignDiscount(decSubtotal)

 ' calculate total due
 decTotalDue = decSubtotal - decDiscount

 ' display subtotal, discount, and total due
 lblSubtotal.Text = decSubtotal.ToString("N2")
 lblDiscount.Text = decDiscount.ToString("N2")
 lblTotalDue.Text = decTotalDue.ToString("N2")
End Sub

AssignDiscount
function

btnCalc control's Click
event procedure

invokes the function
and assigns its return
value to a variable

Figure 17-12 AssignDiscount function and btnCalc control’s Click event procedure

Revisiting the Total Due Calculator Application

311

To test the modified Total Due Calculator application:

1. Save the solution and then start the application. Type 4 in the Quantity box and then
type 15 in the Price box. Click the Coupon check box to select it and then click the
Calculate button.

2. Type X25 as the coupon code and then press Enter. The calculated amounts appear in
the interface, as shown in Figure 17-13.

3. Click the Exit button. Close the Code Editor window and then close the solution.

Which Way Is Better?
Now that you’ve seen two different ways of assigning the discount in the Total Due Calculator
application—one using an independent Sub procedure and the other using a function—you may
be wondering whether one way is better than the other. Comparing the Sub procedure header in
Figure 17-11 with the function header in Figure 17-12, you will notice that only the Sub procedure
is passed a memory location by reference. This is because the Sub procedure is responsible for
assigning a value to the memory location. After the computer processes the Sub procedure header,
the memory location has two different names (decDiscount and decDisc) and can be accessed
by two different procedures (the AssignDiscount Sub procedure and the btnCalc_Click event
procedure). Allowing more than one procedure to change the contents of a memory location can
lead to subtle errors that are difficult to find, especially in large applications. As you learned in
Chapter 8, fewer unintentional errors occur in applications when memory locations have the
minimum scope needed. Therefore, using a function to assign the discount is the better way to
code the Total Due Calculator application. Most programmers pass a variable by reference only
when a procedure needs to produce more than one result. For example, a procedure may need to
return the number of hours an employee worked and also whether the hours are valid.

Mini-Quiz 17-1

See Appendix B for the answers.

1. An event procedure invokes the GetBonus function using the statement
dblBonusAmount = GetBonus(dblSales). The function multiplies the sales amount
passed to it by 3% and then returns the result. Which of the following is the
appropriate function header for the GetBonus function?

a. Private Function GetBonus(ByVal dblSold As Double)
b. Private Function GetBonus(ByRef dblSold As Double)
c. Private Function GetBonus(ByVal dblSold As Double) As Double
d. Private Function GetBonus(ByVal dblSold As Double,

ByRef dblBonus As Double)

Figure 17-13 Calculated amounts shown in the interface

To review
what you
learned
about
functions,

view the Ch17Function
video.

For more
examples of
functions,
see the
Function

Procedures section in the
Ch17WantMore.pdf file.

C H A P T E R 1 7 Talk to Me (Function Procedures)

312

2. Write a Visual Basic statement that instructs the GetIncome function to return the
contents of the decIncome variable.

3. Write a Visual Basic statement that invokes the GetSales function, passing it two
Decimal variables named decSale1 and decSale2. The statement should multiply the
function’s return value by .08 and then assign the result to the decTax variable.

Summary
l You can create your own function procedures, called functions, in Visual Basic. Unlike a Sub

procedure, a function returns a value after completing its task.

l Typically, the Return statement appears as the last statement in a function. A function
returns only one value to the statement that invoked it.

l You invoke a function by including the function’s name and arguments (if any) in a
statement. The number of arguments listed in the statement should agree with the number
of parameters listed in the function’s parameterList. Also, the data type and position of each
argument should agree with the data type and position of its corresponding parameter.

l The statement that invokes a function may assign the return value to a variable, use the
return value in a calculation, or display the return value.

l Variables that appear in a function header’s parameterList have procedure scope.

l In most cases, it is better to use a function rather than a Sub procedure that passes a variable
by reference.

Key Terms
Function procedure—a procedure that returns a value after performing its assigned task; also
referred to as a function

Functions—another term for Function procedures

Return statement—the Visual Basic statement that returns a function’s value to the statement
that invoked the function

Review Questions
1. Which of the following is false?

a. A function can return one or more values to the statement that invoked it.

b. A function can accept one or more items of data passed to it.

c. The parameterList in a function header is optional.

d. At times, a memory location inside the computer’s internal memory may have more
than one name.

2. Which of the following statements invokes the GetGross function and assigns its return
value to the decGrossPay variable? The statement passes the contents of two Decimal
variables to the function.

a. decGrossPay = Call GetGross(decHours, decRate)

b. Call GetGross(decHours, decRate, decGrossPay)

Review Questions

313

c. decGrossPay = GetGross(decHours, decRate)

d. decGrossPay = GetGross(ByVal decHours, ByVal decRate)

3. When the GetExpenses function completes its processing, it should send the value stored
in the decTotalExpenses variable to the statement that invoked the function. Which of
the following statements accomplishes this task?

a. Return (ByVal decTotalExpenses)

b. Send ByVal(decTotalExpenses)

c. SendBack decTotalExpenses

d. Return decTotalExpenses

4. Which of the following is false?

a. A function can receive information either by value or by reference.

b. When a function ends, any variables listed in the function’s parameterList can be
used by the statement that invoked the function.

c. The variables listed in a function’s parameterList have procedure scope.

d. When a function ends, the computer removes the function’s variables from its
internal memory.

5. A function named GetEnding is passed three Integer variables named intBegin,
intSales, and intPurchases. The function’s task is to calculate and return the ending
inventory. Which of the following function headers is appropriate?

a. Private Function GetEnding(ByVal intB As Integer,
ByVal intS As Integer, ByVal intP As Integer) As Integer

b. Private Function GetEnding(ByRef intB As Integer,
ByRef intS As Integer, ByRef intP As Integer) As Integer

c. Private Function GetEnding(ByVal intB As Integer,
ByVal intS As Integer, ByVal intP As Integer,
ByRef intE) As Integer

d. Private Sub Function GetEnding(ByVal intB As Integer,
ByVal intS As Integer, ByVal intP As Integer)

6. Which of the following headers indicates that the procedure returns a Decimal number?

a. Private Function Calc() As Decimal

b. Private Sub Calc() As Decimal

c. Private Function Calc(Decimal)

d. both a and b

7. The GetSqRoot function receives an integer and then returns the square root of the
integer as a Double number. Which of the following statements is valid?

a. dblSqRoot = GetSqRoot(100)

b. dblAnswer = GetSqRoot(9) * 4

c. lblAnswer.Text = GetSqRoot(intX).ToString("N2")

d. all of the above

C H A P T E R 1 7 Talk to Me (Function Procedures)

314

Exercises
1. Open the Bonus Solution (Bonus Solution.sln) file contained in the ClearlyVB2010\

Chap17\Bonus Solution-TRY THIS 1 folder. The application should calculate and display
a bonus amount, which is based on two sales amounts entered by the user. Use the
algorithm shown in Figure 17-14 to code the btnCalc control’s Click event procedure and
the GetBonus function. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution. (See Appendix B for the answer.)

2. In this exercise, you modify the application from Exercise 1. Use Windows to make a
copy of the Bonus Solution-TRY THIS 1 folder. Save the copy in the ClearlyVB2010\
Chap17 folder. Rename the copy Bonus Solution-TRY THIS 2. Open the Bonus
Solution (Bonus Solution.sln) file contained in the Bonus Solution-TRY THIS 2 folder.
Open the designer window and then change the form’s Text property to Bonus
Solution-TRY THIS 2. Open the Code Editor window. The btnCalc control’s Click
event procedure should use a function to add together the two sales amounts and then
return the sum. Create the GetSum function and then modify the event procedure’s
code. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution. (See Appendix B for the answer.)

3. In this exercise, you modify the Price Calculator application coded in the chapter. Use
Windows to make a copy of the Price Calculator Solution folder. Save the copy in the
ClearlyVB2010\Chap17 folder. Rename the copy Price Calculator Solution-MODIFY
THIS. Open the Price Calculator Solution (Price Calculator Solution.sln) file contained
in the Price Calculator Solution-MODIFY THIS folder. Open the designer and Code
Editor windows. Modify the code so that it uses an independent Sub procedure (rather
than a function) to calculate the new price. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

4. Open the Grade Solution (Grade Solution.sln) file contained in the ClearlyVB2010\
Chap17\Grade Solution folder. The application should display a letter grade, which is
based on the average of three test scores. If the average is at least 90, the grade is A. If
the average is at least 80 but less than 90, the grade is B. If the average is at least 70 but
less than 80, the grade is C. If the average is at least 60 but less than 70, the grade is D. If
the average is below 60, the grade is F. Code the application, using a function to
determine and return the letter grade. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

5. Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the
ClearlyVB2010\Chap17\Gross Pay Solution folder. The application should display an
employee’s gross pay. Employees working more than 40 hours receive time and one-half
for the hours over 40. Code the application, using a function to calculate and return the
gross pay. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

1. enter sale 1 and sale 2
2. calculate the sum by adding together sale 1 and sale 2
3. if the sum is greater than 1200, do this:
 calculate the bonus by multiplying the sum by 10%
 otherwise, do this:
 calculate the bonus by multiplying the sum by 8%
 end if
4. display the bonus

create a function
named GetBonus
to handle Step 3

Figure 17-14 Algorithm for Exercise 1

TRY THIS

TRY THISTRY THISTRY THIS

INTRODUCTORY

MODIFY THIS

INTRODUCTORY

Exercises

315

6. Open the Temperature Solution (Temperature Solution.sln) file contained in the
ClearlyVB2010\Chap17\Temperature Solution folder. Code the application so that it uses
two functions: one to convert a temperature from Fahrenheit to Celsius, and the other to
convert a temperature from Celsius to Fahrenheit. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

7. Open the Translator Solution (Translator Solution.sln) file contained in the
ClearlyVB2010\Chap17\Translator Solution folder. Code the application so that it uses
functions to translate the English words into French, Spanish, or Italian. Save the solution
and then start and test the application. Close the Code Editor window and then close the
solution.

8. Create a Visual Basic Windows application. Use the following names for the solution and
project, respectively: Wallpaper Warehouse Solution and Wallpaper Warehouse Project.
Save the application in the ClearlyVB2010\Chap17 folder. Change the name of the form
file on your disk to frmMain.vb. If necessary, change the form’s name to frmMain. Create
the interface shown in Figure 17-15 and then code the application, which should calculate
and display the number of single rolls of wallpaper required to cover a room. Use a
function to calculate and return the number of single rolls. The text boxes should accept
only numbers, the period, and the Backspace key. The Single rolls box should be cleared
when a change is made to any of the four text boxes. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

9. In this exercise, you modify the application from Exercise 5. Use Windows to make a
copy of the Gross Pay Solution folder. Save the copy in the ClearlyVB2010\Chap17
folder. Rename the copy Modified Gross Pay Solution. Open the Gross Pay Solution
(Gross Pay Solution.sln) file contained in the Modified Gross Pay Solution folder. Open
the designer window.

a. Change the form’s Text property to Payroll Calculator. The application should
display the federal and state tax amounts and the net pay. Add label controls for
displaying the three amounts.

b. Open the Code Editor window. Create a function that calculates and returns the
federal tax. Also create a function that calculates and returns the state tax. For
simplicity, use a rate of 25% for the federal tax and a rate of 5% for the state tax.
Calculate the taxes by multiplying the tax rate by the gross pay.

c. Modify the btnCalc control’s Click event procedure to call both functions. The
procedure also will need to calculate the net pay, as well as display the federal and
state taxes and the net pay. Use the Math.Round method, which you learned about
in Chapter 6’s Exercises 10 and 11.

d. Modify both TextChanged event procedures to clear the contents of the three new
label controls.

e. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Figure 17-15 Interface for Exercise 8

C H A P T E R 1 7 Talk to Me (Function Procedures)

316

10. The Doughnut Shoppe sells four varieties of doughnuts: Glazed ($.65), Sugar ($.65),
Chocolate ($.85), and Filled ($1.00). It also sells regular coffee ($1.80) and cappuccino
($2.50). The store manager wants an application that she can use to calculate and
display a customer’s subtotal, 3% sales tax, and total due.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Doughnut Shoppe Solution and Doughnut Shoppe Project.
Save the application in the ClearlyVB2010\Chap17 folder. Change the name of the
form file on your disk to frmMain.vb. If necessary, change the form’s name to
frmMain.

b. Create the interface shown in Figure 17-16.
c. Code the application. Use one function to calculate and return the cost of the

doughnut. Use another function to calculate and return the cost of the coffee. Use a
third function to calculate and return the 3% sales tax. Use a Sub procedure to clear
the subtotal, sales tax, and total due amounts when a radio button is clicked.

d. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

11. In this exercise, you modify the Harvey Industries application created in Exercise 11 in
Chapter 16. If you did not complete Chapter 16’s Exercise 11, you will need to do so
before you can complete this exercise. Use Windows to copy the Harvey Industries
Solution folder from the ClearlyVB2010\Chap16 folder to the ClearlyVB2010\Chap17
folder. Open the Harvey Industries Solution (Harvey Industries Solution.sln) file
contained in the ClearlyVB2010\Chap17\Harvey Industries Solution folder. Change the
Sub procedure that calculates the federal withholding tax to a function. Also include
two additional functions: one to calculate the gross pay and the other to calculate the
FICA tax. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

12. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap17\FigureThisOut Solution folder. Open the Code Editor window
and study the existing code. Desk-check the code contained in both the function and
Click event procedure. For the first desk-check, use A, 75, and 83 as the operation, first
number, and second number, respectively; for the second desk-check, use M, 6, and 8.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

FIGURE THIS OUT

Figure 17-16 Interface for Exercise 10

ADVANCED

ADVANCED

Exercises

317

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap17\SwatTheBugs Solution folder. Open the Code Editor window
and study the existing code. Start and then test the application. Notice that the
application is not working correctly. Stop the application. Locate and correct the errors
in the code. Save the solution and then start and test the application again. Close the
Code Editor window and then close the solution.

SWAT THE BUGS

C H A P T E R 1 7 Talk to Me (Function Procedures)

318

CHAPTER 18
A Ray of Sunshine
(One-Dimensional Arrays)

After studying Chapter 18, you should be able to:

Explain the purpose of an array

Create a one-dimensional array

Store data in a one-dimensional array

Sort the contents of a one-dimensional array

Search a one-dimensional array

Let’s Join the Group
All of the applications you have coded since Chapter 6 have used simple variables. A simple
variable, also called a scalar variable, is one that is unrelated to any other variable in memory.
At times, however, you will encounter situations where some of the variables in an application
are related to each other. In those cases, it is easier and more efficient to treat the related
variables as a group. You already are familiar with the concept of grouping. The cutlery in one of
your kitchen drawers is typically separated into groups, such as forks, knives, and spoons. You
also probably have your CD (compact disc) collection grouped either by music type or artist. If
your collection is grouped by artist, it will take only a few seconds to find all your Frank Sinatra CDs
and, depending on the number of Frank Sinatra CDs you own, only a short time after that to locate a
particular CD. When you group together related variables, the group is referred to as an array of
variables or, more simply, an array. Youmight use an array of 12 String variables to store the names
of the 12 months in a year. Or, you might use an array of 50 Decimal variables to store the sales
amounts made in each of the 50 states. Themost commonly used arrays in business applications are
one-dimensional and two-dimensional. You will learn about one-dimensional arrays in this chapter
and also in the next chapter. Two dimensional arrays are covered in Chapter 20.

Each variable in an array has the same name and data type. You distinguish one variable in a
one-dimensional array from another variable in the array using a unique number, called a
subscript. The subscript indicates the variable’s position in the array and is assigned by the
computer when the array is created in internal memory. The first variable in a one-dimensional
array is assigned a subscript of 0, the second a subscript of 1, and so on. You refer to each
variable in an array by the array’s name and the variable’s subscript, which is specified in a set of
parentheses immediately following the array name. To refer to the first variable in a one-
dimensional String array named strFriends, you use strFriends(0)—read “strFriends sub
zero.” Similarly, to refer to the third variable in the strFriends array, you use strFriends(2).
Figure 18-1 shows this naming convention using the storage bin illustration from Chapter 6.
The intAge, decRate, and strMonth variables included in the figure are scalar variables.

intAge

decRate

strMonth

strFriends(0) Sue

Bob

John

Mary

July

.1

21

strFriends(1)

strFriends(2)

strFriends(3)

Figure 18-1 Illustration of the naming convention for the one-dimensional strFriends array

C H A P T E R 1 8 A Ray of Sunshine (One Dimensional Arrays)

320

Figure 18-2 shows two versions of the syntax for declaring a procedure-level one-dimensional
array in Visual Basic. The figure also includes examples of using both versions. In each syntax,
arrayName is the name of the array and dataType is the type of data the array variables, referred
to as elements, will store. In Version 1 of the syntax, highestSubscript is an integer that specifies
the highest subscript in the array. When the array is created, it will contain one element more
than the number specified in the highestSubscript argument; this is because the first element in
a one-dimensional array has a subscript of 0. As a result, the intNumbers array declared in
Example 1 will contain six elements with subscripts of 0, 1, 2, 3, 4, and 5. When you use Version
1 of the syntax, the computer automatically initializes each element in the array when the array
is created. The elements in a numeric array are initialized to the number 0. The elements in a
String array, on the other hand, are initialized using the keyword Nothing. The elements do not
actually contain the word “Nothing”; rather, they contain no data at all.

Rather than having the computer use a default value to initialize each array element, you can use
Version 2 of the syntax to specify each element’s initial value when the array is declared.
Assigning initial values to an array is often referred to as populating the array. You list the initial
values in the initialValues section of the syntax, using commas to separate the values, and you
enclose the list of values in braces ({}). Notice that Version 2’s syntax does not include the
highestSubscript argument; instead, an empty set of parentheses follows the array name. The
computer automatically calculates the highest subscript based on the number of values listed in
the initialValues section. Because the first subscript in a one-dimensional array is the number 0,
the highest subscript is always one number less than the number of values listed in the
initialValues section. The Dim strFriends() As String = {"Sue", "Bob", "John", "Mary"}
statement in Example 2 in Figure 18-2, for instance, creates a four-element array with subscripts
of 0, 1, 2, and 3. The computer assigns the string “Sue” to the strFriends(0) element, “Bob” to
the strFriends(1) element, “John” to the strFriends(2) element, and “Mary” to the
strFriends(3) element, as shown earlier in Figure 18-1.

The variables (elements) in an array can be used just like any other variables: You can assign
values to them, use them in calculations, display their contents, and so on. Figure 18-3 shows
examples of statements that perform these tasks.

Declaring a procedure-level one-dimensional array

Syntax—Version 1
Dim arrayName(highestSubscript) As dataType

Syntax—Version 2
Dim arrayName() As dataType = {initialValues}

Example 1—Version 1’s syntax
Dim intNumbers(5) As Integer
declares and initializes (to 0) a six-element Integer array named intNumbers

Example 2—Version 2’s syntax
Dim strFriends() As String = {"Sue", "Bob", "John", "Mary"}
declares and initializes a four-element String array named strFriends

Figure 18-2 Syntax versions and examples of declaring a procedure-level one-dimensional array

Let’s Join the Group

321

The procedures you code in this chapter will demonstrate some of the ways one-dimensional
arrays are used in an application. In most applications, the values stored in an array come from a
file on the computer’s disk and are assigned to the array after it is declared. However, so that you
can follow the code and its results more easily, the applications in this chapter use the Dim
statement to store the appropriate values in the array.

Mini-Quiz 18-1
See Appendix B for the answers.

1. Write a Visual Basic statement that declares a 20-element one-dimensional Integer
array named intQuantities.

2. What is the highest subscript in the intQuantities array from Question 1?

3. Write a Visual Basic statement that assigns the number 7 to the fourth element in the
intQuantities array.

My Friends Application
The My Friends application will store four names in a one-dimensional String array named
strFriends. It then will display the contents of the array in three label controls named
lblOriginal, lblAscending, and lblDescending. In the lblOriginal control, the names will
appear in the same order as in the array. In the lblAscending and lblDescending controls,
the names will appear in ascending and descending order, respectively.

Example 1
Dim strCities() As String = {"Paris", "Rome", "Lisbon"}
strCities(0) = "Madrid"
assigns the string “Madrid” to the first element in the strCities array, replacing the string
“Paris”

Example 2
Dim intSalaries() As Integer = {25000, 35000, 50000, 23000}
intSalaries(3) = intSalaries(3) + 2000
adds 2000 to the contents of the last element in the intSalaries array (23000) and then
assigns the result (25000) to the element

Example 3
Dim decSales(10) As Decimal
Decimal.TryParse(txtSales.Text, decSales(2))
lblSales.Text = decSales(2).ToString("C2")
assigns the value returned by the TryParse method to the third element in the decSales array
and then displays the value (formatted with a dollar sign and two decimal places) in the lblSales
control

Using an element in a one-dimensional array

Figure 18-3 Examples of using an element in a one-dimensional array

C H A P T E R 1 8 A Ray of Sunshine (One Dimensional Arrays)

322

To begin coding the My Friends application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Friends Solution (Friends Solution.sln) file
contained in the ClearlyVB2010\Chap18\Friends Solution folder. If the designer window
is not open, double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window and then open the code template for the btnDisplay
control’s Click event procedure. Type the following comments and then press Enter
twice:

' displays names in original, ascending,
' and descending order

3. First, you will declare and initialize the strFriends array. Type the following
declaration statement and then press Enter twice:

Dim strFriends() As String =
{"Sue", "Bob", "John", "Mary"}

4. Now you will clear the contents of the three label controls. Type the following comment
and three assignment statements. Press Enter twice after typing the last assignment
statement.

' clear label controls
lblOriginal.Text = String.Empty
lblAscending.Text = String.Empty
lblDescending.Text = String.Empty

Next, you will display the contents of the array in the lblOriginal control. You can
accomplish this task using a loop to access each element in the array, beginning with the
element whose subscript is 0 and ending with the element whose subscript is 3. Because
you want the loop instructions processed a precise number of times—in this case, from
0 to 3—you will code the loop using the For…Next statement. As you learned in Chapter
14, the For…Next statement provides a more convenient way to code a counter-
controlled loop, because it takes care of initializing and updating the counter variable, as
well as evaluating the loop condition.

Figure 18-4 shows two versions of the code for displaying the contents of the strFriends array
in the lblOriginal control. Only the endValue in the For clause is different in each version. In
Version 1, the endValue is 3 (the highest subscript in the array). In Version 2, the endValue is
the expression strFriends.Length – 1. The expression uses the array’s Length property, which
contains an integer that represents the number of elements in the array; in this case, the Length
property contains the number 4. To determine the highest subscript in the array, you simply
subtract the number 1 from the value stored in the array’s Length property, as shown in the
expression. Although both versions of code in Figure 18-4 will work, Version 2’s code is the
preferred one for several reasons. First, if you use the Length property, you won’t have to count
the number of array elements yourself. Second, the Length property is essential when you don’t
know the exact number of array elements; this may be the case when the array values come
from a file. Finally, if the number of array elements changes in the future, the Length property’s
value will automatically adjust.

My Friends Application

323

To continue coding the btnDisplay control’s Click event procedure:

1. Enter the following comment and four lines of code:

' display array in original order
For intSub As Integer = 0 To strFriends.Length – 1

lblOriginal.Text = lblOriginal.Text &
strFriends(intSub) & ControlChars.NewLine

Next intSub

2. Save the solution and then start the application. Click the Display button. The names
Sue, Bob, John, and Mary appear in the lblOriginal control, as shown in Figure 18-5.
Click the Exit button.

Before displaying the array values in the lblAscending and lblDescending controls, you need to
arrange the values in the appropriate order. Arranging data in a specific order is called sorting.
Visual Basic provides the Array.Sort method for sorting the values in a one-dimensional array in
ascending order. When an array is sorted in ascending order, the first element in the array
contains the smallest value and the last element contains the largest value. To sort the array
values in descending order, you first use the Array.Sort method to sort the values in ascending
order and then use the Array.Reverse method to reverse the order of the values. When an array
is sorted in descending order, the first element in the array contains the largest value and the last
element contains the smallest value. Figure 18-6 shows the syntax of both methods and includes
examples of using the methods.

Version 1
For intSub As Integer = 0 To 3
 lblOriginal.Text = lblOriginal.Text &
 strFriends(intSub) & ControlChars.NewLine
Next intSub

Version 2
For intSub As Integer = 0 To strFriends.Length - 1
 lblOriginal.Text = lblOriginal.Text &
 strFriends(intSub) & ControlChars.NewLine
Next intSub

endValue

endValue

Figure 18-4 Two versions of the code for displaying the array’s contents

Figure 18-5 Array contents displayed in the Original order box

C H A P T E R 1 8 A Ray of Sunshine (One Dimensional Arrays)

324

To complete the btnDisplay control’s Click event procedure:

1. Insert two blank lines below the Next intSub clause. Enter the following comment and
five lines of code:

' display array in ascending order
Array.Sort(strFriends)
For intSub As Integer = 0 To strFriends.Length – 1

lblAscending.Text = lblAscending.Text &
strFriends(intSub) & ControlChars.NewLine

Next intSub

2. Insert two blank lines below the Next intSub clause from the previous step. Enter the
following comment and six lines of code:

' display array in descending order
Array.Sort(strFriends)
Array.Reverse(strFriends)
For intSub As Integer = 0 To strFriends.Length – 1

lblDescending.Text = lblDescending.Text &
strFriends(intSub) & ControlChars.NewLine

Next intSub

Figure 18-7 shows the code entered in the btnDisplay control’s Click event procedure.

Array.Sort and Array.Reverse methods

Syntax
Array.Sort(arrayName)
Array.Reverse(arrayName)

Example 1
Dim intNums() As Integer = {1, 3, 10, 2, 4, 23}
Array.Sort(intNums)
sorts the values in the intNums array in ascending order as follows: 1, 2, 3, 4, 10, 23

Example 2
Dim intNums() As Integer = {1, 3, 10, 2, 4, 23}
Array.Reverse(intNums)
reverses the order of the values in the intNums array as follows: 23, 4, 2, 10, 3, 1

Example 3
Dim intNums() As Integer = {1, 3, 10, 2, 4, 23}
Array.Sort(intNums)
Array.Reverse(intNums)
sorts the values in the intNums array in descending order as follows: 23, 10, 4, 3, 2, 1

Figure 18-6 Syntax and examples of the Array.Sort and Array.Reverse methods

My Friends Application

325

To test the btnDisplay control’s Click event procedure:

1. Save the solution and then start the application. Click the Display button. See Figure 18-8.

2. Click the Exit button. Close the Code Editor window and then close the solution.

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays names in original, ascending,
 ' and descending order

 Dim strFriends() As String =
 {"Sue", "Bob", "John", "Mary"}

 ' clear label controls
 lblOriginal.Text = String.Empty
 lblAscending.Text = String.Empty
 lblDescending.Text = String.Empty

 ' display array in original order
 For intSub As Integer = 0 To strFriends.Length - 1
 lblOriginal.Text = lblOriginal.Text &
 strFriends(intSub) & ControlChars.NewLine
 Next intSub

 ' display array in ascending order
 Array.Sort(strFriends)
 For intSub As Integer = 0 To strFriends.Length - 1
 lblAscending.Text = lblAscending.Text &
 strFriends(intSub) & ControlChars.NewLine
 Next intSub

 ' display array in descending order
 Array.Sort(strFriends)
 Array.Reverse(strFriends)
 For intSub As Integer = 0 To strFriends.Length - 1
 lblDescending.Text = lblDescending.Text &
 strFriends(intSub) & ControlChars.NewLine
 Next intSub
End Sub

Figure 18-7 btnDisplay control’s Click event procedure

Figure 18-8 Array values displayed in the three label controls

The Array.
Sort
method is
not the only
way to sort

the contents of an array.
To learn more about
sorting arrays, see the
Sorting Routines section in
the Ch18WantMore.pdf file.

C H A P T E R 1 8 A Ray of Sunshine (One Dimensional Arrays)

326

Salary Application
The Salary application will store six salary amounts in a one-dimensional Integer array named
intSalaries. Each salary amount corresponds to a salary code; the valid codes are the numbers
1 through 6. Code 1’s salary is stored in the intSalaries(0) element in the array, code 2’s
salary in the intSalaries(1) element, and so on. Notice that the code is one number more
than the subscript of its corresponding salary in the array. After storing the salary amounts in
the array, the application will prompt the user to enter a salary code. It then will display the
amount associated with the code. Figure 18-9 shows the planning information for the
application.

To code and then test the Salary application:

1. Open the Salary Solution (Salary Solution.sln) file contained in the ClearlyVB2010\
Chap18\Salary Solution folder. If the designer window is not open, double-click
frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window and then open the code template for the btnDisplay
control’s Click event procedure. Type the following comment and then press Enter
twice:

' displays the salary amount associated with a code

3. First, you will declare and initialize the intSalaries array. Enter the following array
declaration statement:

Dim intSalaries() As Integer = {25000, 35000, 55000,
70000, 80200, 90500}

4. Now you will declare the necessary variables. Enter the following declaration statements.
Press Enter twice after typing the last declaration statement.

Dim intCode As Integer
Dim intSub As Integer

5. The first step in the algorithm is to enter the salary code. The user enters the code in the
txtCode control. You will use the TryParse method to convert the code to the Integer
data type, storing the result in the intCode variable. Enter the following TryParse
method:

Integer.TryParse(txtCode.Text, intCode)

Output: salary amount

Processing: six element one dimensional array of salary amounts
 array subscript

Input: salary code (1 through 6)

Algorithm:
1. enter the salary code
2. calculate the subscript of the array element associated with the salary code
 by subtracting 1 from the salary code
3. use the array subscript to display (in a label control) the associated
 salary amount from the array

Figure 18-9 Planning information for the Salary application

Salary Application

327

6. Step 2 in the algorithm is to calculate the subscript of the array element associated with
the salary code. You do this by subtracting the number 1 from the salary code. Enter the
following comment and assignment statement. Press Enter twice after typing the
assignment statement.

' calculate the appropriate subscript
intSub = intCode – 1

7. The last step in the algorithm is to use the array subscript to display the appropriate
salary amount from the array. Enter the following comment and assignment statement:

' display the salary amount from the array
lblSalary.Text = intSalaries(intSub)

8. Save the solution and then start the application. Type 2 in the Code box and then click
the Display Salary button. The salary amount stored in the intSalaries(1) element
appears in the Salary box, as shown in Figure 18-10.

9. Now you will observe the result of entering an invalid salary code. Replace the 2 in the
Code box with 8 and then click the Display Salary button. A run time error occurs. As a
result, the Code Editor highlights the lblSalary.Text = intSalaries(intSub)
statement, which is the statement where the error was encountered; it also opens a help
box. The help box indicates that the index (which is another term for subscript) is
outside the bounds of the array.

10. Place your mouse pointer on intSub in the highlighted statement, as shown in Figure 18-11.
The variable contains the number 7, which is one number less than the salary code you
entered. The valid subscripts for the array, however, are the numbers 0 through 5 only.

11. Click Debug on the menu bar and then click Stop Debugging.

Figure 18-10 Interface showing the salary for code 2

help boxthe number 7 is an
invalid array subscript

Figure 18-11 Result of the run time error caused by an invalid array subscript

C H A P T E R 1 8 A Ray of Sunshine (One Dimensional Arrays)

328

Before it attempts to access an array element, a procedure should verify that the subscript
being used is valid. This can be accomplished using a selection structure whose condition
verifies that the subscript is within an acceptable range for the array. The acceptable
range is a number that is greater than or equal to 0 but less than the number of array
elements. If the subscript is not in the acceptable range, the procedure should not try to
access the element because doing so results in a run time error. Figure 18-12 shows the
modified algorithm for the Salary application. Notice that Step 3 now validates the array
subscript.

To modify and then test the btnDisplay control’s Click event procedure:

1. Enter the selection structure shown in Figure 18-13. (You will need to move the last
comment and assignment statement, which you entered in Step 7 in the previous set of
steps, into the selection structure’s true path.)

Output: salary amount

Processing: six element one dimensional array of salary amounts
 array subscript

Input: salary code (1 through 6)

Algorithm:
1. enter the salary code
2. calculate the subscript of the array element associated with the salary code
 by subtracting 1 from the salary code
3. if the array subscript is greater than or equal to 0 but less than the
 number of array elements, do this:
 use the array subscript to display (in a label control) the associated
 salary amount from the array
 otherwise, do this:
 clear the salary amount from the label control
 display a message informing the user that the salary code is invalid
 end if

Figure 18-12 Modified algorithm for the Salary application

Salary Application

329

2. Save the solution and then start the application. Type 3 in the Code box and then click
the Display Salary button. The number 55000 appears in the Salary box.

3. Replace the 3 in the Code box with 9 and then click the Display Salary button. The
message “Valid salary codes are 1 through 6” appears in a message box. Close the
message box. Notice that the Salary box is now empty.

4. On your own, test the application using salary codes of 2 through 6. Also test it by
clicking the Display Salary button without entering any data.

5. When you are finished testing the application, click the Exit button. Close the Code
Editor window and then close the solution.

States Application
The States application stores the names of nine states in a one-dimensional String array named
strStates. The names are stored in the order each was visited by the user. For example, the
user visited Hawaii first, followed by Colorado. Therefore, the strings “Hawaii” and “Colorado”
are stored in the strStates(0) and strStates(1) elements, respectively. The application’s
interface provides a text box for the user to enter a state name. The application searches for the
state name in the array, beginning with the first array element. It then displays a message
indicating whether the state name was found. Sample messages include “Hawaii is number 1 in
the list of states you visited” and “You did not visit Illinois”. Figure 18-14 shows the planning
information for the application.

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays the salary amount associated with a code

 Dim intSalaries() As Integer = {25000, 35000, 55000,
 70000, 80200, 90500}
 Dim intCode As Integer
 Dim intSub As Integer

 Integer.TryParse(txtCode.Text, intCode)
 ' calculate the appropriate subscript
 intSub = intCode - 1

If intSub >= 0 AndAlso intSub < intSalaries.Length Then
' display the salary amount from the array
lblSalary.Text = intSalaries(intSub)

 Else
 lblSalary.Text = String.Empty
 MessageBox.Show("Valid salary codes are 1 through 6",
 "Salary", MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If

End Sub

enter this selection
structure

Figure 18-13 Modified btnDisplay control’s Click event procedure

C H A P T E R 1 8 A Ray of Sunshine (One Dimensional Arrays)

330

To code the States application:

1. Open the States Solution (States Solution.sln) file contained in the ClearlyVB2010\
Chap18\States Solution folder. If the designer window is not open, double-click
frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window and then locate the code template for the btnVisited
control’s Click event procedure. The procedure declares and initializes the strStates
array.

3. First, you will declare the necessary variables: strSearchFor, intSub, and strFound. The
strSearchFor variable will store the name of the state to search for in the array. The
intSub variable will keep track of the array subscripts during the search. The strFound
variable will keep track of whether the state name was found in the array. Click the blank
line above the End Sub clause and then press Enter. Enter the following three declaration
statements. Press Enter twice after typing the last declaration statement.

Dim strSearchFor As String
Dim intSub As Integer
Dim strFound As String

4. Now you will convert the contents of the txtState control to uppercase and then assign
the result to the strSearchFor variable. After doing this, the variable will contain the
name of the state to search for in the array. Enter the following assignment statement:

strSearchFor = txtState.Text.ToUpper

Output: message

Processing: nine element one dimensional array of state names
 array subscript
 found

Input: state name to search for

Algorithm:
1. enter the state name to search for, and then convert the state name to uppercase
2. assign 0 to the array subscript
3. assign “N” to found
4. repeat until found “Y” or the array subscript equals the number of
 array elements:

If the contents of the current array element (converted to uppercase)
is the same as the state name to search for, do this:

assign “Y” to found
otherwise, do this:

add 1 to the array subscript
end if

 end repeat
5. if found “Y”, do this:

display the state name and visited rank in an appropriate message
otherwise, do this:

display the state name in an appropriate message
end if

Figure 18-14 Planning information for the States application

States Application

331

5. As mentioned earlier, the search should begin with the first array element. Enter the
following assignment statement:

intSub = 0

6. Before the search begins, the procedure will assume that the state is not contained in the
array. Enter the following assignment statement:

strFound = "N"

7. Step 4 in the algorithm is a loop that repeats its instructions until one of two conditions
is true: either the state name has been found in the array or the subscript equals the
number of array elements (which indicates there are no more elements to search). You
will use the Do…Loop statement to code this loop. The For…Next statement is not
appropriate in this case, because you don’t know the exact number of times the loop
instructions should be repeated. Enter the following Do clause:

Do Until strFound = "Y" OrElse intSub = strStates.Length

8. The first instruction in the loop is a selection structure that compares the contents of the
current array element (converted to uppercase) with the state name stored in the
strSearchFor variable. If both names match, the selection structure’s true path will
assign the string “Y” to the strFound variable to indicate that the name was located in
the array. If both names do not match, the selection structure’s false path will increment
the array subscript by 1; this will allow the loop to search the next element in the array.
Enter the following selection structure:

If strStates(intSub).ToUpper = strSearchFor Then
strFound = "Y"

Else
intSub = intSub + 1

End If

9. The value stored in the strFound variable indicates whether the state name was located
in the array, and it determines the appropriate message to display. Insert two blank lines
below the Loop clause and then enter the following selection structure:

If strFound = "Y" Then
lblMessage.Text = strSearchFor & " is number " &

intSub + 1 & " in the list of states you visited"
Else

lblMessage.Text = "You did not visit " & strSearchFor
End If

Figure 18-15 shows the code entered in the btnVisited control’s Click event procedure.

C H A P T E R 1 8 A Ray of Sunshine (One Dimensional Arrays)

332

To test the btnVisited control’s Click event procedure:

1. Save the solution and then start the application. First, you will enter a state name that is
contained in the array. Type Texas in the State box and then click the Visited? button.
The appropriate message appears in the interface. See Figure 18-16.

2. Now you will enter a state name that is not in the array. Replace Texas in the State box
with Louisiana and then click the Visited? button. The “You did not visit LOUISIANA”
message appears in the interface.

Private Sub btnVisited_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnVisited.Click
 ' searches an array for the name of a state, and
 ' then displays an appropriate message

 Dim strStates() As String = {"Hawaii", "Colorado",
 "Florida", "California",
 "Georgia", "Idaho",
 "North Carolina", "Texas",
 "New York"}

 Dim strSearchFor As String
 Dim intSub As Integer
 Dim strFound As String

 strSearchFor = txtState.Text.ToUpper
 intSub = 0
 strFound = "N"
 Do Until strFound = "Y" OrElse intSub = strStates.Length
 If strStates(intSub).ToUpper = strSearchFor Then
 strFound = "Y"
 Else
 intSub = intSub + 1
 End If
 Loop

 If strFound = "Y" Then
 lblMessage.Text = strSearchFor & " is number " &
 intSub + 1 & " in the list of states you visited"
 Else
 lblMessage.Text = "You did not visit " & strSearchFor
 End If
End Sub

you also can use intSub += 1

Figure 18-15 btnVisited control’s Click event procedure

Figure 18-16 Interface showing the message for Texas

States Application

333

3. On your own, test the application using different state names. When you are finished
testing the application, click the Exit button. Close the Code Editor window and then
close the solution.

Mini-Quiz 18-2
See Appendix B for the answers.

1. Write a Visual Basic statement that sorts the strStates array in ascending order.

2. The number of array elements is stored in an array’s property.

3. If the dblBonus array contains 10 elements, what will happen when the computer
processes the dblBonus(10) = 35.67 statement?

Summary
l All of the variables in an array have the same name and data type.

l Each element in a one-dimensional array is identified by a unique integer, called a subscript.
The subscript appears in parentheses after the array’s name. The first subscript in a one-
dimensional array is 0.

l When declaring a one-dimensional array, you provide either the highest subscript or the
initial values.

l The number of elements in a one-dimensional array is one number more than its highest
subscript.

l You refer to an element in a one-dimensional array using the array’s name followed by the
element’s subscript.

l You can use an array variable just like any other variable.

l A one-dimensional array’s Length property contains an integer that represents the number
of elements in the array.

l The Array.Sort method sorts the elements in a one-dimensional array in ascending order.
The Array.Reverse method reverses the order of the elements in a one-dimensional array.

Key Terms
Array—a group of related variables that have the same name and data type

Array.Reverse method—reverses the order of the values stored in a one-dimensional array

Array.Sort method—sorts the values stored in a one-dimensional array in ascending order

Elements—the variables in an array

Length property—one of the properties of a one-dimensional array; stores an integer that
represents the number of array elements

Populating the array—refers to the process of initializing the elements in an array

Scalar variable—another name for a simple variable

Simple variable—a variable that is unrelated to any other variable in the computer’s internal
memory; also called a scalar variable

To review
what you
learned
about one-
dimensional

arrays, view the
Ch18One-Dimensional
Arrays video.

C H A P T E R 1 8 A Ray of Sunshine (One Dimensional Arrays)

334

Sorting—the process of arranging data in a specific order

Subscript—a unique integer that identifies the position of an element in an array

Review Questions
1. Which of the following declares a four-element one-dimensional array named

strLetters?

a. Dim strLetters(3) As String

b. Dim strLetters() As String =
"A", "B", "C", "D"

c. Dim strLetters(3) As String =
{"A", "B", "C", "D"}

d. both a and c

2. Which of the following assigns (to the lblCount control) the number of elements
contained in the intItems array?

a. lblCount.Text = intItems.Len

b. lblCount.Text = intItems.Length

c. lblCount.Text = Length(intItems)

d. lblCount.Text = intItems.NumElements

3. The intItems array is declared using the Dim intItems(20) As Integer statement. The
intSub variable keeps track of the array subscripts and is initialized to 0. Which of the
following Do clauses tells the computer to process the loop instructions for each element
in the array?

a. Do While intSub < 20

b. Do While intSub > 20

c. Do While intSub <= 20

d. Do While intSub >= 20

4. The decSales array is declared using the Dim decSales(4) As Decimal statement.
Which of the following If clauses can be used to validate the array subscript stored in the
intX variable?

a. If decSales(intX) >= 0 AndAlso
decSales(intX) < 4 Then

b. If decSales(intX) >= 0 AndAlso
decSales(intX) <= 4 Then

c. If intX >= 0 AndAlso intX < 4 Then

d. none of the above

5. The decSales array is declared using the Dim decSales(4) As Decimal statement.
Which of the following loops will correctly add 100 to each element in the array?

a. intX = 0
Do While intX <= 4

decSales(intX) = decSales(intX) + 100
intX = intX + 1

Loop

b. For intSubscript As Integer = 0 To 4
decSales(intSubscript) += 100

Next intSubscript

c. intX = 0
Do

decSales(intX) = decSales(intX) + 100
intX = intX + 1

Loop Until intX > 4

d. all of the above

Review Questions

335

6. The strCities array is declared using the Dim strCities(10) As String statement.
The intSub variable keeps track of the array subscripts and is initialized to 0. Which of
the following Do clauses tells the computer to process the loop instructions for each
element in the array?

a. Do While intSub < strCities.Length

b. Do While intSub <= strCities.Length – 1

c. Do Until intSub = strCities.Length

d. all of the above

7. The strLetters array is declared using the Dim strLetters() As String = {"E", "A",
"C", "G"} statement. Which of the following will sort the array as follows: G, E, C, A?

a. Array.Sort(strLetters)
Array.Reverse(strLetters)

b. Array.Reverse(strLetters)
Array.Sort(strLetters)

c. Array.SortDescending(strLetters)

d. both a and b

Exercises
1. Open the Party List Solution (Party List Solution.sln) file contained in the

ClearlyVB2010\Chap18\Party List Solution folder. The interface provides a text box for
the user to enter a name. When the user clicks the Verify Invitation button, the button’s
Click event procedure should display (in a message box) either the message “NAME is
invited.” or “NAME is not invited.” In each message, NAME is the name entered by the
user. Open the code template for the btnVerify control’s Click event procedure. Declare
an array containing the following names: Jacob, Karen, Gregory, Jerome, Susan,
Michele, Heather, Jennifer, and George. Code the procedure using the While keyword
in the Do clause. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution. (See Appendix B for the answer.)

2. Open the Grades Solution (Grades Solution.sln) file contained in the ClearlyVB2010\
Chap18\Grades Solution folder. The interface provides a text box for the user to enter a
letter grade. When the user clicks the Count button, the button’s Click event procedure
should display (in a message box) the message “Grade: number”, where Grade is the
letter grade entered by the user, and number is the number of times the student earned
the grade. Open the code template for the btnCount control’s Click event procedure.
Declare an array containing the following letter grades: A, B, C, A, B, A, F, A, D, B, and
C. Code the procedure using the For…Next statement. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution. (See
Appendix B for the answer.)

3. In this exercise, you modify the application coded in Exercise 2. Use Windows to make a
copy of the Grades Solution folder. Save the copy in the ClearlyVB2010\Chap18 folder.
Rename the copy Grades Solution-MODIFY THIS. Open the Grades Solution (Grades
Solution.sln) file contained in the Grades Solution-MODIFY THIS folder. Open the
designer window. Change the For…Next statement in the Count button’s Click event
procedure to a Do…Loop statement. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

4. Open the Bonus Solution (Bonus Solution.sln) file contained in the Bonus Solution
folder. Open the Code Editor window. The btnDisplay control’s Click event procedure
should display the total of the values stored in the dblBonus array, formatted with a

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

C H A P T E R 1 8 A Ray of Sunshine (One Dimensional Arrays)

336

dollar sign and two decimal places. Code the procedure. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

5. Open the NumDays Solution (NumDays Solution.sln) file contained in the
ClearlyVB2010\Chap18\NumDays Solution folder. Open the code template for the
btnDisplay control’s Click event procedure. Declare a 12-element one-dimensional
array. Use the number of days in each month to initialize the array. (Use 28 for
February.) The procedure should display (in the lblDays control) the number of days
corresponding to the month number entered by the user. For example, if the user enters
the number 1, the procedure should display 31 in the lblDays control, because there are
31 days in January. The procedure should display an appropriate message in a message
box when the user enters an invalid month number. Code the procedure. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

6. Open the Update Prices (Update Prices Solution.sln) file contained in the
ClearlyVB2010\Chap18\Update Prices Solution folder. The btnUpdate control’s Click
event procedure should display (in the lblOriginal control) each price stored in the
dblPrices array. It then should increase each price by $2 and then display the updated
array values in the lblIncreased control. Display the original and updated prices with
two decimal places. Code the procedure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

7. Open the Scores Solution (Scores Solution.sln) file contained in the ClearlyVB2010\
Chap18\Scores Solution folder. Open the code template for the btnDisplay control’s
Click event procedure. Declare a 20-element one-dimensional array, using the following
numbers to initialize the array: 88, 72, 99, 20, 66, 95, 99, 100, 72, 88, 78, 45, 57, 89, 85,
78, 75, 88, 72, and 88. The procedure should prompt the user to enter a score from 0
through 100. It then should display (in a message box) the number of students who
earned that score. Save the solution and then start the application. How many students
earned a score of 72? How many earned a score of 88? How many earned a score of 20?
How many earned a score of 99? Close the Code Editor window and then close the
solution.

8. In this exercise, you modify the application from Exercise 7. Use Windows to make a copy
of the Scores Solution folder. Save the copy in the ClearlyVB2010\Chap18 folder. Rename
the copy Scores Solution-Range. Open the Scores Solution (Scores Solution.sln) file
contained in the Scores Solution-Range folder. Open the designer and Code Editor
windows. The btnDisplay control’s Click event procedure should prompt the user to
enter a minimum score and a maximum score. It then should display (in a message
box) the number of students who earned a score in that range. Save the solution and
then start the application. How many students earned a score from 70 through 79,
inclusive? How many earned a score from 65 through 85, inclusive? How many earned
a score from 0 through 50, inclusive? Close the Code Editor window and then close
the solution.

9. In this exercise, you modify the application you coded in Exercise 7. Use Windows to
make a copy of the Scores Solution folder. Save the copy in the ClearlyVB2010\Chap18
folder. Rename the copy Scores Solution-Average. Open the Scores Solution (Scores
Solution.sln) file contained in the Scores Solution-Average folder. Open the designer
and Code Editor windows. Remove the existing code from the btnDisplay control’s
Click event procedure; however, leave the array declaration statement. Code the
procedure so that it displays (in a message box) the average score in the array. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

10. JM Sales employs eight salespeople. The sales manager wants an application that allows
him to enter a bonus rate. The application should use the rate, along with the eight sales

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

ADVANCED

Exercises

337

amounts stored in an array, to calculate each salesperson’s bonus amount. It also should
calculate the total bonus paid to the salespeople. The application should display each
salesperson’s number (1 through 8) and bonus amount, as well as the total bonus paid,
in the interface. Figure 18-17 shows a sample run of the application.

a. List the output and input items, as well as any processing items, and then create an
appropriate algorithm using pseudocode.

b. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: JM Sales Solution and JM Sales Project. Save the
application in the ClearlyVB2010\Chap18 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

c. Create the interface shown in Figure 18-17. The txtReport control uses the Courier
New font. The control’s Multiline and ReadOnly properties are set to True, and its
ScrollBars property is set to Vertical.

d. Code the application. The txtRate control should accept only numbers, the period,
and the Backspace key. The contents of the txtReport control should be cleared
when a change is made to the contents of the txtRate control. Use a one-
dimensional array whose elements are initialized to the following sales amounts:
2400, 1500, 1600, 2790, 1000, 6300, 1300, and 2700.

e. Save the solution and then start the application. Enter .1 as the bonus rate and then
click the Create Report button. The interface should appear as shown in Figure 18-17.
Also test the application using your own data. Close the Code Editor window and then
close the solution.

11. In this exercise, you create an application that displays the highest and lowest values
stored in an array.

a. Open the HighLow Solution (HighLow Solution.sln) file contained in the
ClearlyVB2010\Chap18\HighLow Solution folder. Open the Code Editor window.

b. Locate the btnHighest control’s Click event procedure. First, the procedure should
sort the test scores to determine the highest score stored in the array. It then should
count the number of students earning that score. Display the highest score, as well
as the number of students earning that score, in the interface. Code the procedure.
Save the solution and then start and test the application. Stop the application.

txtReport

txtRate

Figure 18-17 Sample run of the JM Sales application

ADVANCED

C H A P T E R 1 8 A Ray of Sunshine (One Dimensional Arrays)

338

c. Locate the btnLowest control’s Click event procedure. The procedure should
determine the lowest score in the array without sorting the array. (Hint: Assign the
first score to a variable and then compare the remaining array values with that
score.) The procedure also should count the number of students earning that score.
Display the lowest score, as well as the number of students earning that score, in the
interface. Code the procedure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

12. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap18\FigureThisOut Solution folder.

a. Open the Code Editor window and study the existing code. Start the application.
Click the Find a Letter button. Type the letter a and press Enter. The message “A is
in array element 0” appears in the interface. Test the application using the letters b,
c, and d. The messages “B is in array element 1”, “C is in array element 2”, and “D is
not in the array” will appear in the interface. Stop the application.

b. Change the Do clause to Do Until strLetters(intSub) = strSearchFor OrElse
intSub = strLetters.Length. Save the solution and then start the application.
Click the Find a Letter button. Type the letter a and press Enter. The message “A is
in array element 0” appears in the interface. Test the application using the letters b
and c. The messages “B is in array element 1” and “C is in array element 2” will
appear in the interface.

c. Click the Find a Letter button and then type the letter d and press Enter. A run time
error occurs. Read the error message. Click Debug on the menu bar and then click
Stop Debugging. Why does a run time error occur when the Do clause is Do Until
strLetters(intSub) = strSearchFor OrElse intSub = strLetters.Length, but
not when it is Do Until intSub = strLetters.Length OrElse strLetters
(intSub) = strSearchFor?

d. Change the Do clause to Do Until intSub = strLetters.Length OrElse
strLetters(intSub) = strSearchFor. Save the solution and then start and test
the application to verify that it is working correctly. Close the Code Editor window
and then close the solution.

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap18\SwatTheBugs Solution folder. Open the Code Editor window
and study the existing code. Start and then test the application. Notice that the
application is not working correctly. Stop the application. Locate and correct the errors
in the code. Save the solution and then start and test the application again. Close the
Code Editor window and then close the solution.

FIGURE THIS OUT

SWAT THE BUGS

Exercises

339

This page intentionally left blank

CHAPTER 19
Parallel and Dynamic
Universes
(More on One-Dimensional
Arrays)

After studying Chapter 19, you should be able to:

Create parallel one-dimensional arrays

Declare a class-level variable

Declare a class-level one-dimensional array

Utilize a dynamic one-dimensional array

We Share the Same Subscripts
In some applications, you may want to use an array to store items that are related but have
different data types. For example, you may want to store employee IDs (which are strings)
and their associated salary amounts (which are numbers) in an array. But how can you
store the employee items in an array when all of the data in an array must have the same
data type? One solution is to use two parallel one-dimensional arrays: a String array to store
the IDs and an Integer array to store the salaries. Parallel arrays are two or more arrays
whose elements are related by their position in the arrays. In other words, the elements are
related by their subscripts. The strIds and intSalaries arrays illustrated in Figure 19-1
are parallel because each element in the strIds array corresponds to the element located in
the same position in the intSalaries array. For example, employee A102’s ID is stored in
the first element in the strIds array, and his salary is stored in the first element in the
intSalaries array. Likewise, employee C220’s ID is stored in the strIds(1) element
and her salary is stored in the intSalaries(1) element. The same relationship is true for
the remaining elements in both arrays. To determine an employee’s salary, you locate his
or her ID in the strIds array and then view the corresponding element in the
intSalaries array.

You will use the strIds and intSalaries arrays in the Employee application, which you
code in the next set of steps. The application’s interface provides a text box for the user to
enter the employee ID. The application will search for the ID in the strIds array,
beginning with the first element in the array. If it finds the ID, it will display the
corresponding salary from the intSalaries array; otherwise, it will display the “Invalid ID”
message. Figure 19-2 shows the planning information for the application. Notice that the
algorithm contains a loop. The loop instructions will be repeated either until the employee
ID is located in the array or until the array subscript equals the number of array elements.
When the array subscript equals the number of array elements, it indicates that there are
no more elements to search.

strIds(0)

strIds(1)

strIds(2)

strIds(3)

strIds(4)

intSalaries(0)

intSalaries(1)

intSalaries(2)

intSalaries(3)

intSalaries(4)

A102

C220

C510

F251

F503 32000

23000

43000

50000

25000

Figure 19-1 Illustration of two parallel one-dimensional arrays

C H A P T E R 1 9 Parallel and Dynamic Universes (More on One Dimensional Arrays)

342

To code the Employee application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Employee Solution (Employee Solution.sln) file
contained in the ClearlyVB2010\Chap19\Employee Solution folder. If the designer
window is not open, double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window. First, you will declare the two parallel arrays. Locate the
code template for the btnDisplay control’s Click event procedure. Click the blank line
below the ' declare parallel arrays comment. Enter the array declaration
statements shown in Figure 19-3, and then position the insertion point as shown in
the figure.

Output: salary or “Invalid ID” message

Processing: five element one dimensional IDs array
 five element one dimensional salaries array
 array subscript
 found

Input: ID to search for

Algorithm:
1. enter the ID to search for and then convert it to uppercase
2. assign 0 to the array subscript
3. assign “N” to found
4. repeat until found “Y” or the array subscript equals
 the number of elements in the IDs array:
 if the contents of the current IDs array element is
 the same as the ID to search for, do this:
 assign “Y” to found
 otherwise, do this:
 add 1 to the array subscript
 end if
 end repeat
5. if found “Y”, do this:
 display the corresponding salary from the salaries array
 otherwise, do this:
 display the “Invalid ID” message
 end if

Figure 19-2 Planning information for Employee application

position the
insertion point here

enter these
array declaration
statements

Figure 19-3 Parallel array declarations entered in the procedure

We Share the Same Subscripts

343

3. Now you will declare the remaining variables: strSearchFor, intSub, and strFound.
The strSearchFor variable will store the ID to search for in the strIds array. The
intSub variable will keep track of the array subscripts during the search. The strFound
variable will keep track of whether the ID was found in the strIds array. Enter the
following three declaration statements:

Dim strSearchFor As String
Dim intSub As Integer
Dim strFound As String

4. The first step in the algorithm is to enter the ID and then convert it to uppercase. The user
enters the ID in the txtId control. You will convert the contents of the control to uppercase
and then store it in the strSearchFor variable. Click the blank line below the ' assign
the ID to a variable comment and then enter the following assignment statement:

strSearchFor = txtId.Text.Trim.ToUpper

5. As mentioned earlier, the search should begin with the first element in the strIds array.
Click the blank line immediately below the ' or the end of the array is reached
comment and then enter the following assignment statement:

intSub = 0

6. Before the search begins, the procedure will assume that the ID is not contained in the
strIds array. Enter the following assignment statement:

strFound = "N"

7. Step 4 in the algorithm is a loop that repeats its instructions until one of two conditions
is true: either the ID has been found in the strIds array or the subscript equals the
number of array elements (which indicates there are no more elements to search). You
will use the Do…Loop statement to code this loop. The For…Next statement is not
appropriate in this case, because you don’t know the exact number of times the loop
instructions should be repeated. Enter the following Do clause:

Do Until strFound = "Y" OrElse intSub = strIds.Length

8. The first instruction in the loop is a selection structure that compares the contents of the
current element in the strIds array with the ID stored in the strSearchFor variable. If
both IDs match, the selection structure’s true path will assign “Y” to the strFound variable
to indicate that the ID was located in the array. If both IDs do not match, the selection
structure’s false path will increment the array subscript by 1; this will allow the loop to
search the next element in the strIds array. Enter the following selection structure:

If strIds(intSub) = strSearchFor Then
strFound = "Y"

Else
intSub = intSub + 1

End If

9. The value stored in the strFound variable indicates whether the ID was located in the
strIds array, and it determines the appropriate information to display. Click the blank
line below the ' determine whether the ID was found comment and then enter the
following selection structure:

If strFound = "Y" Then
lblSalary.Text =

intSalaries(intSub).ToString("C0")
Else

lblSalary.Text = “Invalid ID”

End If

C H A P T E R 1 9 Parallel and Dynamic Universes (More on One Dimensional Arrays)

344

Figure 19-4 shows the code entered in the btnDisplay control’s Click event procedure.

To test the btnDisplay control’s Click event procedure:

1. Save the solution and then start the application. First, you will enter a valid ID. Type
c510 in the Employee ID box. The ID appears in the strIds(2) element, and its
corresponding salary amount (43000) appears in the intSalaries(2) element. Click
the Display Salary button. The correct salary amount appears in the Salary box, as
shown in Figure 19-5.

you also can use
intSub += 1

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' searches an array for an employee ID and then
 ' displays either the salary from another
 ' array or a message

 ' declare parallel arrays
 Dim strIds() As String =
 {"A102", "C220", "C510", "F251", "F503"}
 Dim intSalaries() As Integer =
 {25000, 50000, 43000, 23000, 32000}

 Dim strSearchFor As String
 Dim intSub As Integer
 Dim strFound As String

 ' assign the ID to a variable
 strSearchFor = txtId.Text.Trim.ToUpper

 ' search the strIds array for the ID
 ' continue searching until the ID is found
 ' or the end of the array is reached
 intSub = 0
 strFound = "N"
 Do Until strFound = "Y" OrElse intSub = strIds.Length
 If strIds(intSub) = strSearchFor Then
 strFound = "Y"
 Else
 intSub = intSub + 1
 End If
 Loop

 ' determine whether the ID was found
 If strFound = "Y" Then
 lblSalary.Text =
 intSalaries(intSub).ToString("C0")
 Else
 lblSalary.Text = "Invalid ID"
 End If
End Sub

 parallel one-
dimensional arrays

Figure 19-4 btnDisplay control’s Click event procedure

We Share the Same Subscripts

345

2. Now you will enter an invalid ID. Change the employee ID to c511 and then click the
Display Salary button. The message “Invalid ID” appears in the Salary box.

3. Test the application several more times using valid and invalid IDs. When you are
finished testing the application, click the Exit button. Close the Code Editor window and
then close the solution.

Will You Share That with Me?
In the applications you have coded so far, the variables and arrays were declared in procedures.
This is because the memory locations were needed only by the procedure that declared them. At
times, however, two or more procedures in an application may need to use the same variable or
array. In those cases, you can declare the memory locations in the form’s Declarations section,
which begins with the Public Class clause and ends with the End Class clause in the Code Editor
window. Variables and arrays declared in a form’s Declarations section have class scope and are
referred to as class-level variables and class-level arrays, respectively. As you learned in
Chapter 6, scope refers to the area where a memory location is recognized by an application’s
code. Class-level memory locations are recognized by every procedure contained in the form’s
Code Editor window.

You declare a class-level memory location using the Private keyword rather than the Dim
keyword, which is used to declare a procedure-level memory location. For example, the
Private intNumber As Integer statement declares a class-level variable named intNumber.
Similarly, the Private decSales(4) As Decimal statement declares a class-level one-
dimensional array named decSales. Class-level memory locations retain their values and
remain in the computer’s internal memory until the application ends.

You will use both a class-level array and a class-level variable in the Test Scores application,
which you code in the next set of steps. Figures 19-6 and 19-7 show the application’s user
interface and planning information, respectively. Notice that each algorithm in Figure 19-7 uses
a one-dimensional array of scores. The algorithm for the Enter Test Scores button fills the array
with values. The algorithms for the Average Score and Highest Score buttons use the array
values to determine the average score and highest score, respectively. For the array to be
accessible by each button’s Click event procedure, it will need to be declared as a class-level
array. Rather than having each button’s Click event procedure determine the highest subscript
in the array, you will assign the highest subscript to a class-level variable that each procedure
can use. As you learned in Chapter 18, you can determine the highest subscript in a one-
dimensional array by subtracting 1 from the number of array elements. Recall that the number
of elements in a one-dimensional array is stored in the array’s Length property.

Figure 19-5 Salary amount displayed in the interface

C H A P T E R 1 9 Parallel and Dynamic Universes (More on One Dimensional Arrays)

346

Figure 19-6 Interface for the Test Scores application

Output: average score or highest score

Processing: five element one dimensional scores array (class level)
 highest subscript (class level)
 array subscript
 total scores accumulator (start at 0)

Input: five scores

Algorithm for the Enter Test Scores button:
1. repeat for array subscripts from 0 through the highest
 subscript (in increments of 1):
 get a score from the user
 store the score in the current array element
 end repeat
2. remove the contents of the Result box

Algorithm for the Average Score button:
1. assign 0 to the total scores accumulator
2. repeat for array subscripts from 0 through the highest
 subscript (in increments of 1):
 add the contents of the current array element to the
 total scores accumulator
 end repeat
3. calculate the average score by dividing the total scores
 accumulator by the number of array elements
4. display the average score

 Algorithm for the Highest Score button:
1. assign the contents of the first array element as the highest score
2. repeat for array subscripts from 1 through the highest
 subscript (in increments of 1):
 if the value stored in the current array element
 is greater than the highest score, do this:
 assign the contents of the current array
 element as the highest score
 end if
 end repeat
3. display the highest score

Figure 19-7 Planning information for the Test Scores application

Will You Share That with Me?

347

To begin coding the Test Scores application:

1. Open the Test Scores Solution (Test Scores Solution.sln) file contained in the
ClearlyVB2010\Chap19\Test Scores Solution folder. If the designer window is not open,
double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window. First, you will declare the class-level array and variable.
Recall that class-level memory locations are declared in the form’s Declarations section.
Click the blank line below the Public Class clause. Notice that frmMain and
(Declarations) appear in the Class Name and Method Name boxes, respectively. Enter
the comment and declaration statements shown in Figure 19-8.

The first algorithm you will code is for the Enter Test Scores button. The algorithm
prompts the user to enter five test scores, and it stores each score in an element in the
decScores array.

To code the btnEnter control’s Click event procedure:

1. Locate the btnEnter control’s Click event procedure. Click the blank line below the
comment and then press Enter. The procedure will use the InputBox function to
prompt the user to enter a test score. You will need to declare a String variable to
store the user’s response. Type the following declaration statement and then press
Enter twice:

Dim strScore As String

2. The first step in the algorithm is a loop that repeats its instructions for array subscripts
from 0 through the highest subscript. You can use either the Do…Loop statement or
the For…Next statement to code the loop. In this case, because you know the exact
number of times the loop instructions should be processed, you will use the For…Next
statement. Enter the following For clause:

For intSub As Integer = 0 to intHighSub

3. Change the Next clause to Next intSub.

4. The first instruction in the loop gets a score from the user. Click the blank line below
the For clause and then enter the following assignment statement:

strScore = InputBox("Score:", "Test Score")

Class Name box Method Name box

enter this comment
and these lines
of code

Figure 19-8 Class-level declarations entered in the form’s Declarations section

C H A P T E R 1 9 Parallel and Dynamic Universes (More on One Dimensional Arrays)

348

5. The second instruction in the loop stores the score in the current array element. To
accomplish this, you will need to use the TryParsemethod to convert the score to the Decimal
data type. Type the following statement and then click any other line in the procedure:

Decimal.TryParse(strScore, decScores(intSub))

6. The last step in the algorithm is to remove the contents of the Result box. Insert two
blank lines below the Next intSub clause. Type the following assignment statement and
then click any other line in the procedure:

lblResult.Text = String.Empty

Figure 19-9 shows the code entered in the btnEnter control’s Click event procedure.

You will code the Average Score button’s algorithm next. The algorithm accumulates the values stored
in the array. It then calculates the average value and displays it in the Result box in the interface.

To code the btnAverage control’s Click event procedure:

1. Locate the code template for the btnAverage control’s Click event procedure. Click the
blank line below the comment and then press Enter. The procedure will use an
accumulator variable to total the scores. It also will use a variable to store the average
score. Enter the following declaration statements and comment. Press Enter twice after
typing the second declaration statement.

Dim decTotal As Decimal ' accumulator
Dim decAvg As Decimal

2. Step 1 in the algorithm is to assign the number 0 to the total scores accumulator. Enter
the following comment and assignment statement:

' start accumulator at 0
decTotal = 0

3. The second step in the algorithm is a loop that repeats its instructions for array
subscripts from 0 through the highest subscript. Here again, because you know the exact
number of times the loop instructions should be processed, you will code the loop using
the For…Next statement. Enter the following comment and For clause:

' accumulate the scores
For intSub As Integer = 0 To intHighSub

Private Sub btnEnter_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnEnter.Click
 ' gets test scores and stores them in
 ' the class-level array

 Dim strScore As String

 For intSub As Integer = 0 To intHighSub
 strScore = InputBox("Score:", "Test Score")
 Decimal.TryParse(strScore, decScores(intSub))
 Next intSub

 lblResult.Text = String.Empty
End Sub

Figure 19-9 btnEnter control’s Click event procedure

Will You Share That with Me?

349

4. Change the Next clause to Next intSub.

5. The instruction in the loop should add the contents of the current array element to the
total scores accumulator. You can accomplish this task using either the statement
decTotal = decTotal + decScores(intSub) or the statement decTotal += decScores
(intSub); both statements are equivalent. Click the blank line below the For clause.
Type the following statement and then click any other line in the procedure:

decTotal = decTotal + decScores(intSub)

6. Step 3 in the algorithm is to calculate the average score. You calculate the average score
by dividing the value in the accumulator variable by the number of array elements. Insert
two blank lines below the Next intSub clause and then enter the following comment
and assignment statement:

' calculate and display the average score
decAvg = decTotal / decScores.Length

7. The last step in the algorithm is to display the average score. Type the following
assignment statement and then click any other line in the procedure:

lblResult.Text = "Average: " &
decAvg.ToString("N1")

Figure 19-10 shows the code entered in the btnAverage control’s Click event procedure.

Finally, you will code the Highest Score button’s algorithm. The algorithm finds the highest
value stored in the array. It then displays the value in the Result box in the interface.

To code the btnHighest control’s Click event procedure:

1. Locate the code template for the btnHighest control’s Click event procedure. Click the
blank line below the comment and then press Enter. The procedure will use a variable
to keep track of the highest score. Type the following declaration statement and then
press Enter twice:

Dim decHighest As Decimal

Private Sub btnAverage_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnAverage.Click
 ' calculates and displays the average test score

 Dim decTotal As Decimal ' accumulator
 Dim decAvg As Decimal

 ' start accumulator at 0
 decTotal = 0
 ' accumulate the scores
 For intSub As Integer = 0 To intHighSub
 decTotal = decTotal + decScores(intSub)
 Next intSub

 ' calculate and display the average score
 decAvg = decTotal / decScores.Length
 lblResult.Text = "Average: " &
 decAvg.ToString("N1")
End Sub

Figure 19-10 btnAverage control’s Click event procedure

C H A P T E R 1 9 Parallel and Dynamic Universes (More on One Dimensional Arrays)

350

2. When searching an array for the highest (or lowest) value, it’s a common programming
practice to assign the contents of the first array element to the variable that keeps track
of the highest (or lowest) value. Enter the following comment and assignment statement:

' determine highest score
decHighest = decScores(0)

3. Now you will use a loop to look at the second through the last element in the array. The
loop will contain a selection structure that compares the value in each of those elements
to the value stored in the decHighest variable. (You don’t need to compare the first
element’s value, because that value is already assigned to the variable.) If the value stored
in the current array element is greater than the value stored in the decHighest variable,
the selection structure’s true path should assign the array element’s value to the variable.
Enter the following loop and selection structure:

For intSub As Integer = 1 To intHighSub
If decScores(intSub) > decHighest Then

decHighest = decScores(intSub)
End If

Next intSub

4. Finally, you will display the highest score in the Result box. Insert two blank lines below
the Next intSub clause. Type the following assignment statement and then click any
other line in the procedure:

' display the highest score
lblResult.Text = "Highest: " &

decHighest.ToString("N1")

Figure 19-11 shows the code entered in the btnHighest control’s Click event procedure.

Private Sub btnHighest_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnHighest.Click
 ' calculates and displays the highest test score

 Dim decHighest As Decimal

 ' determine highest score
 decHighest = decScores(0)
 For intSub As Integer = 1 To intHighSub
 If decScores(intSub) > decHighest Then
 decHighest = decScores(intSub)
 End If
 Next intSub

 ' display the highest score
 lblResult.Text = "Highest: " &
 decHighest.ToString("N1")
End Sub

Figure 19-11 btnHighest control’s Click event procedure

Will You Share That with Me?

351

To test the Test Scores application:

1. Save the solution and then start the application. First, you will enter five test scores.
Click the Enter Test Scores button. Type the following five test scores, pressing Enter
after typing each one: 80, 75, 90, 63, and 72. The button’s Click event procedure stores
the scores in the decScores array.

2. Now you will display the average and highest scores. Click the Average Score button.
The message “Average: 76.0” appears in the Result box. Click the Highest Score button.
The message “Highest: 90.0” appears in the Result box.

3. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 19-1
See Appendix B for the answers.

1. The elements in parallel arrays are related by their subscripts and data type.

a. True b. False

2. The strState and strCapital arrays are parallel arrays. If Illinois is stored in the
second element in the strState array, where is Springfield stored?

a. strCapital(1) b. strCapital(2)

3. Class-level variables are declared using the Private keyword.

a. True b. False

But I Don’t Know How Many There Are
At times, you may not know the precise number of array elements needed to store an
application’s data. In those cases, you can use the ReDim statement to change the number of
elements while the application is running. The ReDim statement allows you to make an
array either larger or smaller; however, in most cases you will use it to increase the size of an
array. Figure 19-12 shows the statement’s syntax and includes examples of using the
statement. The optional Preserve keyword in the syntax tells the computer to keep the
current array values when the size of the array changes. For instance, the ReDim Preserve
intNums(4) statement in Example 1 adds two elements to the end of the intNums array
while preserving the values stored in the first three elements. The ReDim intNums(4)
statement in Example 2 also adds two elements to the end of the intNums array; however,
notice that the values stored in the first three elements are not saved. As Example 3
indicates, if you use the ReDim statement to reduce the size of an array, the values in the
truncated elements are not saved. An array whose number of elements changes while an
application is running is referred to as a dynamic array.

To learn
more about
class-level
memory
locations,

see the Class-Level
Memory Locations
section in the
Ch19WantMore.pdf file.

C H A P T E R 1 9 Parallel and Dynamic Universes (More on One Dimensional Arrays)

352

You will use the ReDim statement in the ReDim application, which you finish coding in this
section. The application allows the user to enter as many sales amounts as needed. It stores the
sales amounts in a dynamic one-dimensional array and then displays the sales amounts in the
interface.

To open the ReDim application:

1. Open the ReDim Solution (ReDim Solution.sln) file contained in the
ClearlyVB2010\Chap19\ReDim Solution folder. If the designer window is not open,
double-click frmMain.vb in the Solution Explorer window. The application’s interface is
shown in Figure 19-13.

Redim statement

Syntax
ReDim [Preserve] arrayName(highestSubscript)

Example 1
Dim intNums() As Integer = {100, 120, 230}
ReDim Preserve intNums(4)

Result of Dim statement: Result of ReDim statement:

Example 2
Dim intNums() As Integer = {100, 120, 230}
ReDim intNums(4)

Result of Dim statement: Result of ReDim statement:

Example 3
Dim intNums() As Integer = {100, 120, 230}
ReDim intNums(1)

Result of Dim statement: Result of ReDim statement:

100
120
230

100
120
230
 0
 0

100
120
230

 0
 0
 0
 0
 0

100
120
230

100
120

Figure 19-12 Syntax and examples of the ReDim statement

But I Don’t Know How Many There Are

353

2. Open the Code Editor window and then locate the code template for the btnDisplay
control’s Click event procedure. Most of the procedure has already been coded for you.
Notice that the procedure uses the InputBox function and a loop to get the sales
amounts from the user. Keep in mind that the user may enter one amount, 10 amounts,
or even 100 amounts. It’s also possible that he or she may not enter any sales amounts.

The Click event procedure will store the sales amounts (if any) in an array named decSales.
However, because the number of sales amounts the user will enter is unknown, the array will
need to be declared as an empty array. An empty array is an array that contains no
elements. You declare an empty array using an empty set of braces, like this: Dim decSales() As
Decimal = {}.

To finish coding the btnDisplay control’s Click event procedure:

1. Click the blank line below the ' declare array comment and then enter the following
declaration statement:

Dim decSales() As Decimal = {}

2. The procedure uses the InputBox function to get a sales amount from the user, and it
stores the user’s response in the strSales variable. The procedure’s loop is processed as
long as the variable does not contain the empty string. Before you can store the user’s
input in the decSales array, you first need to add an element to the array. You can
accomplish this task using the statement ReDim Preserve decSales(intSub). The first
time the statement is processed, the intSub variable will contain the number 0. As a
result, the computer will change the size of the array to one element. Click the blank
line below the ' add an element to the array comment and then enter the following
statement:

ReDim Preserve decSales(intSub)

3. Now you will convert the sales amount stored in the strSales variable to the Decimal
data type and then store it in the element added by the ReDim statement. Click the
blank line below the ' store the sales amount in the array comment and then enter
the following statement:

Decimal.TryParse(strSales, decSales(intSub))

4. Finally, you will update the array subscript by adding the number 1 to the contents of the
intSub variable. You can accomplish this task using either the statement intSub =
intSub + 1 or the statement intSub += 1; both statements are equivalent. If the ReDim
statement in the loop is processed a second time, the intSub variable will contain the

txtSales

Figure 19-13 ReDim application’s user interface

C H A P T E R 1 9 Parallel and Dynamic Universes (More on One Dimensional Arrays)

354

number 1. As a result, the computer will change the size of the array to two elements.
Click the blank line below the ' update the subscript comment and then enter the
following statement:

intSub += 1

Figure 19-14 shows the code contained in the btnDisplay control’s Click event procedure. The
code you entered is shaded in the figure.

To test the btnDisplay control’s Click event procedure:

1. Save the solution and then start the application. First, you will enter two sales amounts.
Click the Get/Display Sales button. Type 5000 and press Enter, and then type 7500
and press Enter. Click the Cancel button. The two sales amounts appear in the txtSales
control. See Figure 19-15.

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays the sales amounts stored in an array

 ' declare array
 Dim decSales() As Decimal = {}

 Const strPROMPT As String =
 "Enter a sales amount. Click Cancel to end."
 Dim strSales As String
 Dim intSub As Integer

 intSub = 0
 ' get a sales amount
 strSales = InputBox(strPROMPT, "ReDim")
 Do While strSales <> String.Empty
 ' add an element to the array
 ReDim Preserve decSales(intSub)

 ' store the sales amount in the array
 Decimal.TryParse(strSales, decSales(intSub))

 ' update the subscript
 intSub += 1

 ' get the next sales amount
 strSales = InputBox(strPROMPT, "ReDim")
 Loop

 ' display the sales amounts
 txtSales.Text = String.Empty
 For intX As Integer = 0 To decSales.Length - 1
 txtSales.Text = txtSales.Text &
 decSales(intX).ToString("N2") &
 ControlChars.NewLine
 Next intX
End Sub

Figure 19-14 Completed btnDisplay control’s Click event procedure

But I Don’t Know How Many There Are

355

2. Now you will enter five sales amounts. Click the Get/Display Sales button. Enter the
following five numbers, one at a time: 250.05, 300, 1000, 25.67, and 75. Click the
Cancel button. The five numbers appear in the txtSales control.

3. Click the Exit button. Close the Code Editor window and then close the solution.

Summary
l You can use parallel one-dimensional arrays to store related items of data that have different

data types.

l Class-level memory locations are declared in the form’s Declarations section, which begins
with the Public Class clause and ends with the End Class clause in the Code Editor window.
You use the Private keyword to declare a class-level memory location.

l Class-level memory locations are recognized by every procedure contained in the form’s
Code Editor window.

l You can use the ReDim statement to change the size of an array (in other words, the number
of elements) while an application is running.

Key Terms
Class scope—the scope of a memory location declared in the form’s Declarations section; refers
to the fact that the memory location can be used by any procedure in the form’s Code Editor
window

Class-level arrays—arrays declared in the form’s Declarations section; the arrays have class
scope

Class-level variables—variables declared in the form’s Declarations section; the variables have
class scope

Dynamic array—an array whose number of elements changes during run time

Empty array—an array that contains no elements; declared using an empty set of braces

Parallel arrays—two or more arrays whose elements are related by their position (subscripts) in
the arrays

ReDim statement—used to resize an array (in other words, change the number of its elements)
during run time

Figure 19-15 Interface showing the sales amounts stored in the array
To review
what you
learned
about
dynamic

arrays, view the Ch19-
ReDim video.

C H A P T E R 1 9 Parallel and Dynamic Universes (More on One Dimensional Arrays)

356

Review Questions
1. The names of the 12 months are stored in the strMonth array. The bonus paid for each

month is stored in a parallel array named intBonus. If the sixth element in the
strMonth array contains the string “June”, which of the following assigns the June
bonus amount, which is 34000, to the appropriate element?

a. intBonus(5) = 34000

b. intBonus(5) = "34000"

c. intBonus(6) = 34000

d. intBonus(7) = 34000

2. Which of the following declares a class-level variable named dblAmounts?

a. Class dblAmounts As Double

b. Dim dblAmounts As Class Double

c. Private dblAmounts As Double

d. Double dblAmounts As Class

3. Class-level arrays are declared in .

a. an event procedure

b. a Sub procedure

c. the form’s Class section

d. the form’s Declarations section

4. If elements are added to an array during run time, the array is referred to as
array.

a. an expanding

b. a dynamic

c. a parallel

d. a run time

5. To save the current contents of an array when elements are added to the array, you use
the keyword in the ReDim statement.

a. Preserve

b. Public

c. Save

d. Static

6. If the elements in two arrays are related by their subscripts, the arrays are
called arrays.

a. associated

b. coupled

c. dynamic

d. parallel

7. Which of the following declares an empty array?

a. Dim strStates() As String = ()

b. Dim strStates() As String = []

c. Dim strStates() As String = {}

d. Dim strStates() As String

Exercises
1. Open the Price List Solution (Price List Solution.sln) file contained in the

ClearlyVB2010\Chap19\Price List Solution folder. Open the designer window. The
interface provides a text box for the user to enter a product ID. Open the Code Editor
window and then open the code template for the btnDisplay control’s Click event
procedure. Declare a String array containing the following five product IDs: BX35, CR20,
FE15, KW10, and MM67. The prices corresponding to the product IDs are as follows: 13,
10, 12, 24, and 4. Store the prices in a parallel Integer array. The procedure should display
either the price associated with the product ID or the “Invalid product ID” message. Code
the procedure. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution. (See Appendix B for the answer.)

TRY THIS

Exercises

357

2. Open the Temperature Solution (Temperature Solution.sln) file contained in the
ClearlyVB2010\Chap19\Temperature Solution folder. Open the designer window. When
the user clicks the Get Temperatures button, the button’s Click event procedure should
prompt the user to enter 10 temperatures. The procedure should store the temperatures in
an Integer array. When the user clicks the Display High/Low button, the button’s Click
event procedure should display the highest and lowest temperature contained in the array.
Code the application. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution. (See Appendix B for the answer.)

3. In this exercise, you modify the Test Scores application coded in the chapter. Use
Windows to make a copy of the Test Scores Solution folder. Save the copy in the
ClearlyVB2010\Chap19 folder. Rename the copy Modified Test Scores Solution. Open
the Test Scores Solution (Test Scores Solution.sln) file contained in the Modified Test
Scores Solution folder. Open the designer and Code Editor windows. Modify the code
to allow the user to enter as many test scores as needed. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

4. In this exercise, you code an application that displays a grade based on the number of points
entered by the user. The grading scale is shown in Figure 19-16. Open the Carver Solution
(Carver Solution.sln) file contained in the ClearlyVB2010\Chap19\Carver Solution folder.
Open the Code Editor window and then open the code template for the btnDisplay control’s
Click event procedure. Store theminimum points in a five-element one-dimensional Integer
array. Store the grades in a five-element one-dimensional String array. Both arrays should be
parallel arrays. The procedure should display the grade corresponding to the number of
points entered by the user. Code the procedure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

5. In this exercise, you code an application that displays a shipping charge based on the
number of items ordered by a customer. The shipping charge information is shown in
Figure 19-17. Open the Laury Solution (Laury Solution.sln) file contained in the
ClearlyVB2010\Chap19\Laury Solution folder. Open the code template for the
btnDisplay control’s Click event procedure. Store the minimum order amounts in an
Integer array. Store the shipping charge amounts in a different Integer array. Both
arrays should be parallel arrays. The procedure should display the shipping charge
corresponding to the number of items entered by the user. Code the procedure. Save
the solution and then start and test the application. Close the Code Editor window and
then close the solution.

Minimum points Maximum points Grade
0 299 F

300 349 D
350 399 C
400 449 B
450 500 A

Figure 19-16 Grading scale for Exercise 4

Minimum order Maximum order Shipping charge
1 10 15

11 50 10
51 100 5

101 No maximum 0

Figure 19-17 Shipping charge information for Exercise 5

TRY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

C H A P T E R 1 9 Parallel and Dynamic Universes (More on One Dimensional Arrays)

358

6. Open the Sales Tax Solution (Sales Tax Solution.sln) file contained in the
ClearlyVB2010\Chap19\Sales Tax Solution folder. Open the Code Editor window. The
btnCalc control’s Click event procedure declares two parallel one-dimensional arrays.
The procedure should multiply each element in the decSales array by 10%, storing the
results in the decTax array. Finish coding the procedure. Save the solution and then
start and test the application. Close the Code Editor window and then close the
solution.

7. Open the Commission Solution (Commission Solution.sln) file contained in the
ClearlyVB2010\Chap19\Commission Solution folder. Open the Code Editor
window. The btnCalc control’s Click event procedure declares three parallel one-
dimensional arrays. The procedure should multiply each element in the dblSales
array by its corresponding element in the dblRate array and then store the results
in the dblCommission array. Finish coding the procedure. Save the solution and
then start and test the application. Close the Code Editor window and then close
the solution.

8. Open the Magazine Solution (Magazine Solution.sln) file contained in the
ClearlyVB2010\Chap19\Magazine Solution folder. The interface provides a text box
for the user to enter a salesperson’s ID. When the user clicks the Display button,
the button’s Click event procedure should display the number of magazine
subscriptions sold by the salesperson. Finish coding the procedure. Save the
solution and then start and test the application. Close the Code Editor window and
then close the solution.

9. In this exercise, you code an application that displays a name corresponding to a
letter entered by the user. Open the Letter Solution (Letter Solution.sln) file
contained in the ClearlyVB2010\Chap19\Letter Solution folder. The interface
provides a text box for the user to enter a letter. The text box’s MaxLength property
is set to 1. Open the Code Editor window. Declare a class-level String array. Initialize
the array using the letters A, B, C, G, and K. Open the code template for the btnFood
control’s Click event procedure. Declare a parallel String array and initialize it using
the following values: Apple, Banana, Carrot, Grape, and Kiwi. Code the procedure so
that it searches for the letter in the class-level array and then displays the
corresponding food from the procedure-level array. Open the code template for the
btnAnimal control’s Click event procedure. Declare a parallel String array and
initialize it using the following values: Antelope, Bear, Camel, Goat, and Kangaroo.
Code the procedure so that it searches for the letter in the class-level array and then
displays the corresponding animal from the procedure-level array. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

10. In this exercise, you create an application that allows the user to enter as many
rainfall amounts as needed. The application’s user interface is shown in Figure 19-18.
Each time the user enters a rainfall amount in the text box and then clicks the Add to
Total button, the amount should be added to the total rainfall amount, which then
should be displayed in the interface. In other words, the application should keep a
running total of the rainfall amounts. When the user clicks the Calculate Average
button, the button’s Click event procedure should calculate and display the average
rainfall amount. When the user clicks the Start Over button, the button’s Click event
procedure should reset the counter and accumulator variables to 0 and also clear the
total and average rainfall amounts from the labels.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Rainfall Solution and Rainfall Project. Save the application
in the ClearlyVB2010\Chap19 folder. Change the name of the form file on your disk
to frmMain.vb. If necessary, change the form’s name to frmMain.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

Exercises

359

b. Create the interface shown in Figure 19-18. Code the application. The text box
should accept only numbers, the period, and the Backspace key. Display the average
rainfall with two decimal places. Clear the Total rainfall and Average rainfall boxes
when a change is made to the text box.

c. Save the solution and then start the application. Enter 3.5 in the Rainfall amount box
and then click the Add to Total button. The number 3.5 appears in the Total rainfall
box. Change the entry in the Rainfall amount box to 2 and then click the Add to
Total button. The number 5.5 appears in the Total rainfall box. Change the entry in
the Rainfall amount box to 1.5 and then click the Add to Total button. The number
7.0 appears in the Total rainfall box. Change the entry in the Rainfall amount box to
4 and then click the Add to Total button. The number 11.0 appears in the Total
rainfall box. Click the Calculate Average button. The number 2.75 appears in the
Average rainfall box.

d. Click the Start Over button. Change the entry in the Rainfall amount box to 3 and
then click the Add to Total button. The number 3 appears in the Total rainfall box.
Click the Calculate Average button. The number 3.00 appears in the Average rainfall
box. Close the Code Editor window and then close the solution.

11. In this exercise, you create an application that displays the names of the students
earning a specific grade.

a. Open the Grade Solution (Grade Solution.sln) file contained in the ClearlyVB2010\
Chap19\Grade Solution folder. The interface provides a text box for the user to
enter a letter grade. The text box’s MaxLength property is set to 1.

b. Open the Code Editor window. The txtGrade control should accept only the
following letters and the Backspace key: A, a, B, b, C, c, D, d, F, and f. The contents
of the txtNames control should be cleared when the user changes the grade entered
in the txtGrade control. Code the appropriate event procedures.

c. Locate the btnDisplay control’s Click event procedure. Declare an empty String
array named strNamesFound. The procedure should search the entire
strGrades array for the letter grade entered by the user. When the letter grade
is found in the array, the procedure should store the corresponding name from
the strNames array in the strNamesFound array. After searching the strGrades
array, the procedure should sort the contents of the strNamesFound array in
ascending order and then display the result in the interface. Save the solution
and then start and test the application. Close the Code Editor window and then
close the solution.

Figure 19-18 Interface for Exercise 10

ADVANCED

C H A P T E R 1 9 Parallel and Dynamic Universes (More on One Dimensional Arrays)

360

12. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap19\FigureThisOut Solution folder. Open the Code Editor window
and study the existing code. Start the application. Click the Calculate Average button.
Why does a run time error occur? How can you fix the problem? Click Debug on the
menu bar and then click Stop Debugging. Modify the code to prevent the run time error
from occurring. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap19\SwatTheBugs Solution folder. Open the Code Editor window
and study the existing code. Start and then test the application. Notice that the
application is not working correctly. (The average sales should be $8,377.88.) Stop the
application. Locate and correct the errors in the code. Save the solution and then start
and test the application again. Close the Code Editor window and then close the
solution.

SWAT THE BUGS

FIGURE THIS OUT

Exercises

361

This page intentionally left blank

CHAPTER 20
Table Tennis, Anyone?
(Two-Dimensional Arrays)

After studying Chapter 20, you should be able to:

Create a two-dimensional array

Store data in a two-dimensional array

Search a two-dimensional array

Sum the values in a two-dimensional array

Let’s Table That Idea for Now
As you learned in Chapter 18, the most commonly used arrays in business applications are
one-dimensional and two-dimensional. You can visualize a one-dimensional array as a
column of variables in memory, similar to the column of storage bins shown in Figure 18-1 in
Chapter 18. A two-dimensional array, on the other hand, resembles a table in that the variables
(elements) are in rows and columns. You can determine the number of elements in a
two-dimensional array by multiplying the number of its rows by the number of its columns.
An array that has four rows and three columns, for example, contains 12 elements.

Each element in a two-dimensional array is identified by a unique combination of two subscripts
that the computer assigns to the element when the array is created. The subscripts specify
the element’s row and column positions in the array. Elements located in the first row in a
two-dimensional array are assigned a row subscript of 0. Elements in the second row are
assigned a row subscript of 1, and so on. Similarly, elements located in the first column in a
two-dimensional array are assigned a column subscript of 0. Elements in the second column are
assigned a column subscript of 1, and so on.

You refer to each element in a two-dimensional array by the array’s name and the element’s row
and column subscripts, with the row subscript listed first and the column subscript listed second.
The subscripts are separated by a comma and specified in a set of parentheses immediately
following the array name. For example, to refer to the element located in the first row, first column
in a two-dimensional array named strProducts, you use strProducts(0, 0)—read
“strProducts sub zero comma zero.” Similarly, to refer to the element located in the second
row, third column, you use strProducts(1, 2). Notice that an element’s subscripts are one
number less than the row and column in which the element is located. This is because the row and
column subscripts start at 0 rather than at 1. You will find that the last row subscript in a
two-dimensional array is always one number less than the number of rows in the array. Likewise,
the last column subscript is always one number less than the number of columns in the array.
Figure 20-1 illustrates the elements contained in the two-dimensional strProducts array using
the storage bin analogy.

AC34 Shirt Red

BD12 Coat Blue

CP14 Blouse White

strProducts(0, 1) strProducts(0, 2)

strProducts(0, 0)

strProducts(1, 0)

strProducts(2, 1)

strProducts(2, 2)

Figure 20-1 Illustration of the elements in the strProducts array

C H A P T E R 2 0 Table Tennis, Anyone? (Two Dimensional Arrays)

364

Figure 20-2 shows two versions of the syntax for declaring a two-dimensional array in Visual
Basic. You use the Dim statement in a procedure to declare a procedure-level array. You use the
Private statement in the form’s Declarations section to declare a class-level array. In each version
of the syntax, arrayName is the name of the array and dataType is the type of data the array
elements will store. In Version 1’s syntax, highestRowSubscript and highestColumnSubscript are
integers that specify the highest row and column subscripts, respectively, in the array. When the
array is created, it will contain one row more than the number specified in the
highestRowSubscript argument and one column more than the number specified in the
highestColumnSubscript argument. This is because the first row and column subscripts in a
two-dimensional array are 0.

When you declare a two-dimensional array using the syntax shown in Version 1, the
computer automatically initializes each element in the array when the array is created. You
would use Version 2’s syntax when you want to specify each element’s initial value. You do
this by including a separate initialValues section, enclosed in braces, for each row in the
array. If the array has two rows, then the statement that declares and initializes the array
should have two initialValues sections. If the array has five rows, then the declaration
statement should have five initialValues sections. Within the individual initialValues sections,
you enter one or more values separated by commas. The number of values to enter
corresponds to the number of columns in the array. If the array contains 10 columns, then
each individual initialValues section should contain 10 values. In addition to the set of braces
enclosing each individual initialValues section, Version 2’s syntax also requires all of the
initialValues sections to be enclosed in a set of braces. When using Version 2’s syntax, be sure
to include a comma within the parentheses that follow the array’s name. The comma
indicates that the array is a two-dimensional array. (Recall that a comma is used to separate
the row subscript from the column subscript in a two-dimensional array.) Also included in
Figure 20-2 are examples of using both syntax versions.

The variables (elements) in a two-dimensional array can be used just like any other variables:
You can assign values to them, use them in calculations, display their contents, and so on. Figure
20-3 shows examples of statements that perform these tasks. If you need to access each element
in a two-dimensional array, you typically do so using an outer loop and a nested loop: one loop

Declaring a two-dimensional array

Syntax—Version 1
{Dim | Private} arrayName(highestRowSubscript, highestColumnSubscript) As dataType

Syntax—Version 2
{Dim | Private} arrayName(,) As dataType = {{initialValues},…{initialValues}}

Example 1—Version 1’s syntax
Dim intScores(5, 3) As Integer
declares and initializes (to 0) a procedure-level array named intScores; the array has six rows
and four columns

Example 2—Version 2’s syntax
Private strProducts(,) As String =
 {{"AC34", "Shirt", "Red"},
 {"BD12", "Coat", "Blue"},
 {"CP14", "Blouse", "White"}}
declares and initializes a class-level array named strProducts; the array has three rows and
three columns, as illustrated in Figure 20-1

Figure 20-2 Syntax versions and examples of declaring a two-dimensional array

Let’s Table That Idea for Now

365

for the row subscript and the other for the column subscript. If the outer loop controls the row
subscript, as it does in Example 4, the array is filled with data, row by row. However, if the outer
loop controls the column subscript, the array is filled with data, column by column.

The procedures you code in this chapter will demonstrate some of the ways two-dimensional
arrays are used in an application. As mentioned in Chapter 18, the values stored in an array in
most applications come from a file on the computer’s disk and are assigned to the array after it is
declared. However, so that you can follow the code and its results more easily, the applications
in this chapter use the Dim statement to store the appropriate values in the array.

Mini-Quiz 20-1
See Appendix B for the answers.

1. Write a Dim statement that declares an Integer array named intQuantities. The
array should have four rows and two columns.

2. What is the highest row subscript in the intQuantities array from Question 1?

3. Write a statement that assigns the number 7 to the element located in the third row,
first column in the intQuantities array.

Using an element in a two-dimensional array

Example 1
Dim intScores(5, 3) As Integer
intScores(0, 1) = 95
assigns the number 95 to the element located in the first row, second column in the intScores
array

Example 2
Dim intSalaries(,) As Integer = {{25000, 35000},
 {50000, 23000},
 {75000, 45000},
 {36000, 24000}}
intSalaries(3, 0) = intSalaries(3, 0) + 2000
adds 2000 to the contents of the element located in the fourth row, first column in the
intSalaries array and then assigns the result (38000) to the element

Example 3
Private decSales(10, 2) As Decimal
Decimal.TryParse(txtSales.Text, decSales(2, 1))
lblSales.Text = decSales(2, 1).ToString("C2")
assigns the value returned by the TryParse method to the element located in the third row,
second column in the decSales array and then displays the value (formatted with a dollar
sign and two decimal places) in the lblSales control

Example 4
Private intNumbers(5, 3) As Integer
For intRow As Integer = 0 To 5
 For intColumn As Integer = 0 To 3
 intNumbers(intRow, intColumn) = 0
 Next intColumn
Next intRow
assigns the number 0 to each element in the six-row, four-column intNumbers array

Figure 20-3 Examples of using an element in a two-dimensional array

C H A P T E R 2 0 Table Tennis, Anyone? (Two Dimensional Arrays)

366

Revisiting the Employee Application
You coded the Employee application in Chapter 19. As you may remember, the application
stores five employee IDs in a one-dimensional String array named strIds, and it stores the
corresponding salaries in a parallel one-dimensional Integer array named intSalaries. The
application searches for an ID (which is entered by the user) in the strIds array and then
displays the corresponding salary from the intSalaries array. Instead of storing the employee
information in parallel one-dimensional arrays, you can store it in a two-dimensional array, with
the IDs in the first column and the corresponding salaries in the second column. However, to do
this, you will need to treat the numeric salaries as strings. This is because the IDs are strings and
all of the elements in an array must have the same data type. In this case, the application will
search for the ID in the first column of the array. It will search the column, row by row,
beginning with the first row. If it finds the ID, it will display the corresponding salary from the
second column of the array; otherwise, it will display the “Invalid ID” message. Figure 20-4
shows the planning information for the application, using a two-dimensional array.

To code the Employee application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Employee Solution (Employee Solution.sln) file
contained in the ClearlyVB2010\Chap20\Employee Solution folder. If the designer
window is not open, double-click frmMain.vb in the Solution Explorer window.

Output: salary or “Invalid ID” message

Processing: two dimensional employee information array
 row subscript
 number of rows
 found

Input: ID to search for

Algorithm:
1. enter the ID to search for and then convert it to uppercase
2. assign 0 to the array subscript
3. assign “N” to found
4. determine the number of rows in the array
5. repeat until found “Y” or the row subscript equals
 the number of rows in the array:
 if the ID in the first column of the current row is
 the same as the ID to search for, do this:
 assign “Y” to found
 otherwise, do this:
 add 1 to the row subscript
 end if
 end repeat
6. if found “Y”, do this:
 display the corresponding salary, which is located in the
 second column of the current row
 otherwise, do this:
 display the “Invalid ID” message
 end if

Figure 20-4 Planning information for the Employee application, using a two-dimensional array

Revisiting the Employee Application

367

2. Open the Code Editor window and then locate the code template for the btnDisplay
control’s Click event procedure. First, you will declare the two-dimensional array. Click
the blank line below the ' declare the two-dimensional array comment and then
enter the array declaration statement shown in Figure 20-5. Notice that each ID is stored
in the first column of the array. The salary associated with the ID is stored in the
corresponding row in the second column.

3. Now you will declare the remaining variables: strSearchFor, intRow, intNumRows, and
strFound. The strSearchFor variable will store the ID to search for in the array. The
intRow variable will keep track of the row subscripts while the array is being searched.
The intNumRows variable will store an integer that represents the number of rows in the
array. The strFound variable will keep track of whether the ID was found in the first
column of the array. Enter the following four declaration statements:

Dim strSearchFor As String
Dim intRow As Integer
Dim intNumRows As Integer
Dim strFound As String

4. The first step in the algorithm is to enter the ID and then convert it to uppercase. The
user enters the ID in the txtId control. You will convert the contents of the control to
uppercase and then store it in the strSearchFor variable. Click the blank line below
the ' assign the ID to a variable comment and then enter the following assignment
statement:

strSearchFor = txtId.Text.Trim.ToUpper

5. As mentioned earlier, the search will begin with the first row in the array. Click the
blank line immediately below the ' row has been searched comment and then enter
the following assignment statement:

intRow = 0

6. Before the search begins, the procedure will assume that the ID is not contained in the
array. Enter the following assignment statement:

strFound = "N"

Before coding the fourth step in the algorithm, you will learn about an array’s GetLowerBound
and GetUpperBound methods.

The GetLowerBound and GetUpperBound Methods
Both an array’s GetLowerBound method and GetUpperBound method return an integer that
indicates the lowest subscript and highest subscript, respectively, in the specified dimension in
the array. Figure 20-6 shows the syntax of both methods. In each syntax, arrayName is the name
of the array, and dimension is an integer that specifies the dimension whose upper or lower

enter this array
declaration statement

be sure to include
the comma

Figure 20-5 Two-dimensional array declared in the procedure

C H A P T E R 2 0 Table Tennis, Anyone? (Two Dimensional Arrays)

368

bound you want to retrieve. In a one-dimensional array, the dimension argument will always be
0 (zero). In a two-dimensional array, the dimension argument will be either 0 or 1: The 0
represents the row dimension and the 1 represents the column dimension. Figure 20-6 also
includes examples of using both methods.

You will use the GetUpperBound method to code the fourth step in the algorithm from Figure
20-4. The fourth step is to determine the number of rows in the array. To do this, you first use
the GetUpperBound method to get the highest row subscript. You then increase that value by 1,
because the number of rows in a two-dimensional array is always one number more than the
highest row subscript.

To continue coding the btnDisplay control’s Click event procedure:

1. The insertion point should be positioned below the strFound = "N" statement. Enter the
following assignment statement:

intNumRows = strEmployInfo.GetUpperBound(0) + 1

2. The fifth step in the algorithm is a pretest loop that repeats its instructions until one of
two conditions is true: either the ID has been found in the first column of the array, or
the row subscript equals the number of rows in the array (which indicates there are no
more rows to search). You will code the loop using the Do…Loop statement (rather than
the For…Next statement), because you don’t know the exact number of times the loop
instructions should be processed. Enter the following Do clause:

Do Until strFound = "Y" OrElse intRow = intNumRows

3. The first instruction in the loop is a selection structure that compares the ID stored in
the first column of the current row in the array with the ID stored in the strSearchFor
variable. If both IDs match, the selection structure’s true path will assign “Y” to the
strFound variable to indicate that the ID was located in the array. If both IDs do not
match, the selection structure’s false path will increment the row subscript by 1; this will

GetLowerBound and GetUpperBound methods

Syntax—GetLowerBound method
arrayName.GetLowerBound(dimension)

Syntax—GetUpperBound method
arrayName.GetUpperBound(dimension)

Example 1 (one-dimensional array)
Dim strCities(20) As String
intLowSub = strCities.GetLowerBound(0)
intHighSub = strCities.GetUpperBound(0)
assigns the numbers 0 and 20 to the intLowSub and intHighSub variables,
respectively

Example 2 (two-dimensional array)
Dim intScores(5, 3) As Integer
intLowColSub = intScores.GetLowerBound(1)
intHighRowSub = intScores.GetUpperBound(0)
assigns the numbers 0 and 5 to the intLowColSub and intHighRowSub variables,
respectively

Figure 20-6 Syntax and examples of the GetLowerBound and GetUpperBound methods

Revisiting the Employee Application

369

allow the loop to search the next row in the array. Enter the following selection
structure:

If strEmployInfo(intRow, 0) = strSearchFor Then
strFound = "Y"

Else
intRow = intRow + 1

End If

4. The value stored in the strFound variable indicates whether the ID was located in the
array, and it determines the appropriate information to display. If the ID was found, the
procedure should display the salary stored in the second column of the current row in
the array; otherwise, it should display the “Invalid ID” message. Click the blank line
below the ' determine whether the ID was found comment and then enter the
following selection structure:

If strFound = "Y" Then
lblSalary.Text = strEmployInfo(intRow, 1)

Else
lblSalary.Text = "Invalid ID"

End If

5. Save the solution and then start the application. First, you will enter a valid ID. Type
c510 in the Employee ID box. The ID is contained in the strEmployInfo(2, 0)
element, and its corresponding salary amount (43000) is contained in the
strEmployInfo(2, 1) element. Click the Display Salary button. The correct salary
amount appears in the Salary box, as shown in Figure 20-7. However, unlike the salary
amount shown in Figure 19-5 in Chapter 19, the salary amount in Figure 20-7 is not
formatted.

6. Click the Exit button.

In Chapter 19’s Employee application, the salary amounts are stored in an Integer array. Because
that application treats the salary amounts as numbers, it can use the ToString method to format
the appropriate salary before displaying it in the Salary box. (The code for Chapter 19’s
Employee application is shown in Figure 19-4 in Chapter 19.) As you learned in Chapter 6, the
ToString method can be used only with variables that have a numeric data type. In this chapter’s
Employee application, however, the salary amounts are treated as strings and stored in the
second column of a String array. Before you can use the ToString method to format the
appropriate salary, you first need to convert the salary to a number.

Figure 20-7 Unformatted salary amount shown in the interface

C H A P T E R 2 0 Table Tennis, Anyone? (Two Dimensional Arrays)

370

To complete and then test the btnDisplay control’s Click event procedure:

1. Modify the second selection structure as indicated in Figure 20-8.

2. Save the solution and then start the application. Type c510 in the Employee ID box and
then click the Display Salary button. The formatted salary amount ($43,000) appears in
the Salary box. See Figure 20-9.

3. Now you will enter an invalid ID. Change the employee ID to c511 and then click the
Display Salary button. The message “Invalid ID” appears in the Salary box.

4. Test the application several more times using valid and invalid IDs. When you are
finished testing the application, click the Exit button. Close the Code Editor window and
then close the solution.

Figure 20-10 shows the code entered in the btnDisplay control’s Click event procedure.

enter these two
lines of code

modify this line
of code

Figure 20-8 Modified selection structure

Figure 20-9 Formatted salary amount shown in the interface

Revisiting the Employee Application

371

Calendar Orders Application
The Calendar Orders application displays the total number of calendars ordered by three stores
in each of six months. The number ordered each month by each store is stored in a three-row,
six-column array. Each row in the two-dimensional array represents a store, and each column
represents a month. To display the total number of calendars ordered, you will need to
accumulate the values stored in the array.

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' searches a two-dimensional array for an
 ' employee ID and then displays either the
 ' salary or a message

 ' declare the two-dimensional array
 Dim strEmployInfo(,) As String = {{"A102", "25000"},
 {"C220", "50000"},
 {"C510", "43000"},
 {"F251", "23000"},
 {"F503", "32000"}}
 Dim strSearchFor As String
 Dim intRow As Integer
 Dim intNumRows As Integer
 Dim strFound As String

 ' assign the ID to a variable
 strSearchFor = txtId.Text.Trim.ToUpper

 ' search for the ID in the first column of the array
 ' continue searching until the ID is found or each
 ' row has been searched
 intRow = 0
 strFound = "N"
 intNumRows = strEmployInfo.GetUpperBound(0) + 1
 Do Until strFound = "Y" OrElse intRow = intNumRows
 If strEmployInfo(intRow, 0) = strSearchFor Then
 strFound = "Y"
 Else
 intRow = intRow + 1
 End If
 Loop

 ' determine whether the ID was found
 If strFound = "Y" Then
 Dim intSalary As Integer
 intSalary = strEmployInfo(intRow, 1)
 lblSalary.Text = intSalary.ToString("C0")
 Else
 lblSalary.Text = "Invalid ID"
 End If
End Sub

you also can use
intRow += 1

Figure 20-10 btnDisplay control’s Click event procedure

C H A P T E R 2 0 Table Tennis, Anyone? (Two Dimensional Arrays)

372

To code the Calendar Orders application:

1. Open the Orders Solution (Orders Solution.sln) file contained in the ClearlyVB2010\
Chap20\Orders Solution folder. If the designer window is not open, double-click
frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window and then locate the code template for the btnDisplay
control’s Click event procedure. First, you will declare the two-dimensional array. Click
the blank line below the ' declare the two-dimensional array comment. Enter the
array declaration statement shown in Figure 20-11.

3. The procedure will need an accumulator variable to total the orders. Enter the following
declaration statement and comment:

Dim intTotal As Integer ' accumulator

4. The procedure will use two Integer variables to store the array’s highest row and column
subscripts. Enter the following declaration statements:

Dim intHighRow As Integer = intOrders.GetUpperBound(0)
Dim intHighCol As Integer = intOrders.GetUpperBound(1)

5. You will need to access all array elements in order to accumulate their values. As
mentioned earlier, you access each element in an array using both an outer loop and a
nested loop. You can access the elements either row by row or column by column; in
this case, you will access them column by column. Click the blank line below the
' accumulate the calendars ordered comment and then enter the following
repetition structures:

For intCol As Integer = 0 To intHighCol
For intRow As Integer = 0 To intHighRow

intTotal = intTotal + intOrders(intRow, intCol)
Next intRow

Next intCol

6. Finally, you will display the total number of calendars ordered. Click the blank line
below the last comment in the procedure and then enter the following assignment
statement:

lblTotal.Text = intTotal.ToString("N0")

Figure 20-12 shows the code entered in the btnDisplay control’s Click event procedure.

enter this array
declaration statement

be sure to include
the comma

Figure 20-11 Array declaration entered in the procedure

Calendar Orders Application

373

To test the Calendar Orders application:

1. Save the solution and then start the application. Click the Display Total button.
The total number of calendars ordered appears in the Total ordered box, as shown in
Figure 20-13.

2. Click the Exit button. Close the Code Editor window and then close the solution.

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays the total number of calendars ordered

 ' declare the two-dimensional array
 Dim intOrders(,) As Integer = {{4, 10, 5, 20, 2, 9},
 {20, 10, 5, 7, 10, 3},
 {3, 5, 15, 12, 13, 10}}
 Dim intTotal As Integer ' accumulator
 Dim intHighRow As Integer = intOrders.GetUpperBound(0)
 Dim intHighCol As Integer = intOrders.GetUpperBound(1)

 ' accumulate the calendars ordered
 For intCol As Integer = 0 To intHighCol
 For intRow As Integer = 0 To intHighRow
 intTotal = intTotal + intOrders(intRow, intCol)
 Next intRow
 Next intCol

 ' display the number of calendars ordered
 lblTotal.Text = intTotal.ToString("N0")

End Sub

you also can
use intTotal +=
intOrders(intRow,
intCol)

Figure 20-12 Code entered in the btnDisplay control’s Click event procedure

Figure 20-13 Interface showing the total number of calendars ordered

To learn
more about
two-
dimensional
arrays, see

the Two-Dimensional
Arrays section in the
Ch20WantMore.pdf file.

C H A P T E R 2 0 Table Tennis, Anyone? (Two Dimensional Arrays)

374

Mini-Quiz 20-2
See Appendix B for the answers.

1. If the decSales array is a two-dimensional array, which of the following assigns the
lowest column subscript to the intLowCol variable?

a. intLowCol = decSales.GetLowestSub(0)
b. intLowCol = decSales.GetLowBound(1)
c. intLowCol = decSales.GetLowerBound(0)
d. none of the above

2. Which of the following adds the number 20 to the value stored in the first row, second
column of the decSales array?

a. decSales(0, 1) += 20
b. decSales(1, 2) = decSales(1, 2) + 20
c. decSales(1, 2) += 20
d. both b and c

Summary
l A two-dimensional array resembles a table in that the variables (elements) are in rows and

columns.

l You can determine the number of elements in a two-dimensional array by multiplying the
number of its rows by the number of its columns.

l Each element in a two-dimensional array is identified by a unique combination of two subscripts:
a row subscript and a column subscript. The subscripts appear in parentheses after the array’s
name. You list the row subscript first, followed by a comma and the column subscript.

l The first row subscript in a two-dimensional array is 0. The first column subscript also is 0.

l When declaring a two-dimensional array, you provide either the highest row and column
subscripts or the initial values.

l The number of rows in a two-dimensional array is one number more than its highest row
subscript. Likewise, the number of columns is one numbermore than its highest column subscript.

l You refer to an element in a two-dimensional array using the array’s name followed by the element’s
row and column subscripts, which are separated by a comma and enclosed in parentheses.

l You can use an array’s GetLowerBound and GetUpperBound methods to determine the
lowest subscript and highest subscript, respectively, in a specified dimension of an array.

l You use both an outer loop and a nested loop to access each element in a two-dimensional
array. One loop controls the row subscript and the other loop controls the column subscript.

Key Terms
GetLowerBound method—returns an integer that represents the lowest subscript in a specified
dimension of an array; the dimension is 0 for a one-dimensional array; for a two-dimensional
array, the dimension is 0 for the row subscript, but 1 for the column subscript

GetUpperBound method—returns an integer that represents the highest subscript in a specified
dimension of an array; the dimension is 0 for a one-dimensional array; for a two-dimensional
array, the dimension is 0 for the row subscript, but 1 for the column subscript

To review
what you
learned
about two-
dimensional

arrays, view the
Ch20-Two-Dimensional
Arrays video.

Key Terms

375

Two-dimensional array—an array made up of rows and columns; each element has the same
name and data type and is identified by a unique combination of two subscripts: a row subscript
and a column subscript

Review Questions
1. Which of the following declares a two-dimensional array that contains four rows and two

columns?

a. Dim strLetters(3, 1) As String

b. Private strLetters(3, 1) As String

c. Dim strLetters(,) =
{{"A", "B"}, {"C", "D"},
{"E", "F"}, {"G", "H"}}

d. all of the above

2. Which of the following statements assigns the highest column subscript in the array to
the intHighCol variable?

a. intHighCol = decSales.GetHighest(1)

b. intHighCol = decSales.GetHighSub(1)

c. intHighCol = decSales.GetUpperBound(1)

d. intHighCol = decSales.GetUpperBound(0)

3. Which of the following statements assigns the string “Hawaii” to the variable located in
the third column, fifth row in the strStates array?

a. strStates(4, 2) = "Hawaii"

b. strStates(5, 3) = "Hawaii"

c. strStates(2, 4) = "Hawaii"

d. strStates(3, 5) = "Hawaii"

4. Which of the following assigns the number 0 to each element in the intSums array,
which contains two rows and four columns?

a. For intRow As Integer = 0 To 1
For intCol As Integer = 0 To 3

intSums(intRow, intCol) = 0
Next intCol

Next intRow

b. Dim intRow As Integer
Dim intCol As Integer
Do While intRow < 2

intCol = 0
Do While intCol < 4

intSums(intRow, intCol) = 0
intCol = intCol + 1

Loop
intRow = intRow + 1

Loop

c. For intRow As Integer = 1 To 2
For intCol As Integer = 1 To 4

intSums(intRow - 1, intCol - 1) = 0
Next intCol

Next intRow

d. all of the above

C H A P T E R 2 0 Table Tennis, Anyone? (Two Dimensional Arrays)

376

5. Which of the following increases by 100 the value stored in the element located in the
first row, second column of the array?

a. intNum(0, 1) = intNum(0, 1) + 100

b. intNum(1, 0) = intNum(1, 0) + 100

c. intNum(1, 2) = intNum(1, 2) + 100

d. intNum(2, 1) = intNum(2, 1) + 100

6. How can you determine the number of elements in a two-dimensional array?

a. multiply the number of rows in the array by the number of columns

b. add the number of rows in the array to the number of columns and then multiply
the result by 2

c. add the number 1 to the number returned by the array’s GetUpperBound method

d. none of the above

7. To access the elements in a two-dimensional array, row by row, you use an outer loop to
control the subscript and the nested loop to control the subscript.

a. column, row b. row, column

Exercises
1. Open the Price List Solution (Price List Solution.sln) file contained in the

ClearlyVB2010\Chap20\Price List Solution folder. Open the designer window. The
interface provides a text box for the user to enter a product ID. Open the Code Editor
window and then open the code template for the btnDisplay control’s Click event
procedure. Declare a two-dimensional String array that contains the following product
IDs and prices: BX35, 13, CR20, 10, FE15, 12, KW10, 24, MM67, and 4. The procedure
should display either the price associated with the product ID or the “Invalid product
ID” message. Code the procedure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution. (See Appendix B
for the answer.)

2. Open the Inventory Solution (Inventory Solution.sln) file contained in the
ClearlyVB2010\Chap20\Inventory Solution folder. Open the designer and Code Editor
windows. Locate the btnDisplay control’s Click event procedure. The procedure should
add together the values stored in the intInventory array and then display the total in
the lblTotal control. Code the procedure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution. (See Appendix B
for the answer.)

3. Open the Temperature Solution (Temperature Solution.sln) file contained in the
ClearlyVB2010\Chap20\Temperature Solution folder. Open the designer and Code
Editor windows. Make the following modifications to the code. When the user clicks the
Get Temperatures button, the button’s Click event procedure should prompt the user
to enter the highest and lowest temperatures for seven days. Store the temperatures in a
seven-row, two-column Integer array. The first column should contain the highest
temperatures, and the second column should contain the lowest temperatures. When
the user clicks the Display High/Low button, the button’s Click event procedure should
display the highest and lowest temperature contained in the array. Code the application.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

4. In this exercise, you code an application that displays a grade based on the number of
points entered by the user. The grading scale is shown in Figure 20-14. Open the Carver
Solution (Carver Solution.sln) file contained in the ClearlyVB2010\Chap20\Carver

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

Exercises

377

Solution folder. Open the Code Editor window and then open the code template for the
btnDisplay control’s Click event procedure. Store the minimum points and grades in a
five-row, two-column array. The procedure should display the grade corresponding to
the number of points entered by the user. Code the procedure. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

5. In this exercise, you code an application that displays a shipping charge based on the
number of items ordered by a customer. The shipping charge information is shown in
Figure 20-15. Open the Laury Solution (Laury Solution.sln) file contained in the
ClearlyVB2010\Chap20\Laury Solution folder. Open the code template for the
btnDisplay control’s Click event procedure. Store the minimum order amounts and
shipping charges in a four-row, two-column array. The procedure should display the
shipping charge corresponding to the number of items entered by the user. Code the
procedure. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

6. Open the Sales Tax Solution (Sales Tax Solution.sln) file contained in the
ClearlyVB2010\Chap20\Sales Tax Solution folder. Open the Code Editor window. The
btnCalc control’s Click event procedure declares a two-dimensional array. The
procedure should multiply each element in the first column of the array by 10% and
then store the results in the second column of the array. Finish coding the procedure.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

7. Open the Commission Solution (Commission Solution.sln) file contained in the
ClearlyVB2010\Chap20\Commission Solution folder. Open the Code Editor window.
The btnCalc control’s Click event procedure declares a two-dimensional array. The
procedure should multiply each element in the first column of the array by its
corresponding element in the second column and then store the results in the third
column. Finish coding the procedure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

8. JM Sales employs 10 salespeople. The sales made by the salespeople during the months
of January, February, and March are listed in Figure 20-16. The sales manager wants an

Minimum order Maximum order Shipping charge
 1 10 15
 11 50 10
 51 100 5
 101 No maximum 0

Figure 20-15 Shipping charge information for Exercise 5

Minimum points Maximum points Grade
 0 299 F
 300 349 D
 350 399 C
 400 449 B
 450 500 A

Figure 20-14 Grading scale for Exercise 4

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

C H A P T E R 2 0 Table Tennis, Anyone? (Two Dimensional Arrays)

378

application that allows him to enter the current bonus rate. The application should
display each salesperson’s number (1 through 10), total sales amount, and total bonus
amount. It also should display the total bonus paid to all salespeople. Figure 20-17
shows a sample run of the application.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: JM Sales Solution and JM Sales Project. Save the
application in the ClearlyVB2010\Chap20 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

b. Create the interface shown in Figure 20-17. The txtReport control uses the Courier
New font. Its Multiline and ReadOnly properties are set to True, and its ScrollBars
property is set to Vertical.

c. Store the sales amounts in a two-dimensional Integer array that has 10 rows and
three columns. The txtRate control should accept only numbers, the period, and the
Backspace key. The contents of the txtReport control should be cleared when a
change is made to the contents of the txtRate control. Code the application.

d. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

Salesperson January February March
 1 2400 3500 2000
 2 1500 7000 1000
 3 600 450 2100
 4 790 240 500
 5 1000 1000 1000
 6 6300 7000 8000
 7 1300 450 700
 8 2700 5500 6000
 9 4700 4800 4900

 10 1200 1300 400

Figure 20-16 Sales amounts for Exercise 8

txtReport

txtRate

Figure 20-17 Sample run of the application from Exercise 8

Exercises

379

9. In this exercise, you code an application that displays the number of times a specific
value appears in a two-dimensional array. Open the Count Solution (Count Solution.sln)
file contained in the ClearlyVB2010\Chap20\Count Solution folder. Open the Code
Editor window. The btnDisplay control’s Click event procedure should display the
number of times each of the numbers from 1 through 9 appears in the intNumbers
array. (Hint: Store the counts in a one-dimensional array.) Finish coding the procedure.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

10. Conway Enterprises has both domestic and international sales operations. The
company’s sales manager wants an application that she can use to display the total
domestic, total international, and total company sales made during a six-month period.
The sales amounts are listed in Figure 20-18. Create a Visual Basic Windows
application. Use the following names for the solution and project, respectively: Conway
Solution and Conway Project. Save the application in the ClearlyVB2010\Chap20 folder.
Change the name of the form file on your disk to frmMain.vb. If necessary, change the
form’s name to frmMain. Create the interface shown in Figure 20-19. Code the
application using a six-row, two-column array to store the sales amounts. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

11. Each year, Sabrina Cantrell, the owner of Waterglen Horse Farms, enters four of her
horses in five local horse races. She uses a table similar to the one shown in Figure 20-20
to keep track of her horses’ performances in each race. In the table, a 1 indicates that the

Month Domestic International
 1 100,000 150,000
 2 90,000 120,000
 3 75,000 210,000
 4 88,000 50,000
 5 125,000 220,000
 6 63,000 80,000

Figure 20-18 Sales amounts for Exercise 10

Figure 20-19 Interface for Exercise 10

INTERMEDIATE

ADVANCED

ADVANCED

C H A P T E R 2 0 Table Tennis, Anyone? (Two Dimensional Arrays)

380

horse won the race, a 2 indicates second place, and a 3 indicates third place. A 0
indicates that the horse did not finish in the top three places. Sabrina wants an
application that displays a summary of each horse’s individual performance, as well
as the performances of all the horses. For example, according to the table shown in
Figure 20-20, horse 1 won one race, finished second in one race, finished third in one
race, and didn’t finish in the top three in two races. Overall, Sabrina’s horses won four
races, finished second in three races, finished third in three races, and didn’t finish in the
top three in 10 races. Create a Visual Basic Windows application. Use the following
names for the solution and project, respectively: Waterglen Solution and Waterglen
Project. Save the application in the ClearlyVB2010\Chap20 folder. Change the name of
the form file on your disk to frmMain.vb. If necessary, change the form’s name to
frmMain. Create the interface shown in Figure 20-21. Code the application using a
four-row, five-column array to store the race results. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

12. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap20\FigureThisOut Solution folder. Open the Code Editor window
and then locate the btnCount control’s Click event procedure. The procedure should
display the number of array elements. Finish coding the procedure. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

13. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap20\SwatTheBugs Solution folder. Open the Code Editor window
and study the existing code. Start and then test the application. Notice that the
application is not working correctly. Click Debug on the menu bar and then click Stop
Debugging. Locate and correct the errors in the code. Save the solution and then start
and test the application again. Close the Code Editor window and then close the
solution.

Figure 20-21 Interface for Exercise 11

each column
represents a race

1 2 3 4 5
0 1 0 3 2
1 0 2 0 0
0 3 0 1 0
3 2 1 0 0

1
2
3
4

each row
represents a horse

Figure 20-20 Horse race results for Exercise 11

FIGURE THIS OUT

SWAT THE BUGS

Exercises

381

This page intentionally left blank

CHAPTER 21
Building Your
Own Structure
(Structures)

After studying Chapter 21, you should be able to:

Create a structure

Declare and use a structure variable

Understand the advantages of using a structure

Pass a structure variable to a procedure

Create an array of structure variables

Putting the Pieces Together
The data types used in previous chapters, such as the Integer and Decimal data types, are built
into the Visual Basic language. You also can create your own data types in Visual Basic; you do
this using the Structure statement. Data types created by the Structure statement are referred to
as user-defined data types or structures. Similar to an array, a structure allows the programmer
to group related items into a single unit. However, unlike the items in an array, the items in a
structure can have different data types.

Figure 21-1 shows the Structure statement’s syntax. The structure’s name is typically entered
using Pascal case, which means you capitalize the first letter in the name and the first letter of
each subsequent word in the name. Between the statement’s Structure and End Structure
clauses, you define the members included in the structure. The members can be variables,
constants, or procedures. However, in most cases, the members will be variables. This is because
most programmers use the Class statement (rather than the Structure statement) to create data
types that contain procedures. (You will learn about the Class statement in Chapter 26.) In most
applications, you enter the Structure statement in the form’s Declarations section, which begins
with the Public Class clause and ends with the End Class clause.

The variables defined in a structure are referred to as member variables. Each member
variable’s definition contains the keyword Public followed by the variable’s name, which
typically is entered using camel case. Following the variable’s name is the keyword As and the
variable’s dataType. The dataType identifies the type of data the member variable will store and
can be any of the standard data types available in Visual Basic; it also can be another structure
(user-defined data type). The Employee structure shown in the example in Figure 21-1 contains
four member variables: three String variables and one Double variable. The variables are related
in that each is an attribute of an employee.

The Structure statement does not reserve any memory locations inside the computer. Rather, it
merely provides a pattern for a data type that can be used when declaring a memory location.
Variables declared using a structure as their data type are often referred to as structure
variables. The syntax for declaring a structure variable is shown in Figure 21-2. You use the Dim
keyword to declare a procedure-level structure variable, but the Private keyword to declare a
class-level structure variable. (Recall that class-level memory locations are declared in the form’s
Declarations section.) Figure 21-2 also includes examples of declaring structure variables using
the Employee structure from Figure 21-1.

Structure statement

Syntax
Structure structureName
 Public memberVariableName1 As dataType
 [Public memberVariableNameN As dataType]
End Structure

Example
Structure Employee
 Public strId As String
 Public strFirst As String
 Public strLast As String
 Public dblPay As Double
End Structure

Figure 21-1 Syntax and an example of the Structure statement

C H A P T E R 2 1 Building Your Own Structure (Structures)

384

Similar to the way the Dim intAge As Integer instruction declares an Integer variable named
intAge, the Dim hourly As Employee instruction in Example 1 declares an Employee variable
named hourly. However, unlike the intAge variable, the hourly variable contains four
member variables. In code, you refer to the entire structure variable by its name—in this case,
hourly. You refer to a member variable by preceding its name with the name of the structure
variable in which it is defined. You use the dot member access operator (a period) to separate
the structure variable’s name from the member variable’s name. For instance, to refer to the
member variables within the hourly structure variable, you use hourly.strId,
hourly.strFirst, hourly.strLast, and hourly.dblPay. Similarly, the names of the member
variables within the salaried variable in Example 2 are salaried.strId,
salaried.strFirst, salaried.strLast, and salaried.dblPay. The dot member access
operator indicates that strId, strFirst, strLast, and dblPay are members of the hourly and
salaried structure variables. Figure 21-3 uses the storage bin analogy from Chapter 6 to
illustrate the salaried structure variable and its members.

The member variables in a structure variable can be used just like any other variables. You can
assign values to them, use them in calculations, display their contents, and so on. Figure 21-4
shows examples of statements that perform these tasks using the member variables contained in
the hourly and salaried structure variables.

Declaring a structure variable

Syntax
{Dim | Private} structureVariableName As structureName

Example 1
Dim hourly As Employee
declares a procedure-level Employee structure variable named hourly

Example 2
Private salaried As Employee
declares a class-level Employee structure variable named salaried

Figure 21-2 Syntax and an example of declaring a structure variable

A102
John
Jones
25000

salaried.strId

salaried.strLast

salaried structure
variable

salaried.strFirst

salaried.dblPay

Figure 21-3 Illustration of the salaried structure variable

Putting the Pieces Together

385

Programmers use structure variables when they need to pass a group of related items to a
procedure for further processing, because it’s easier to pass one structure variable rather than
many individual variables. Programmers also use structure variables to store related items in an
array, even when the members have different data types. In the next two sections, you will learn
how to pass a structure variable to a procedure and also store a structure variable in an array.

Willow Pools Application
The sales manager at Willow Pools wants an application that determines the amount of water
required to fill a rectangular pool. To perform this task, the application will need to calculate the
volume of the pool. You calculate the volume by first multiplying the pool’s length by its width
and then multiplying the result by the pool’s depth. Assuming the length, width, and depth are
measured in feet, this gives you the volume in cubic feet. To determine the number of gallons of
water, you multiply the number of cubic feet by 7.48, because there are 7.48 gallons in one cubic
foot. Figure 21-5 shows a sample run of the Willow Pools application, and Figure 21-6 shows
one way of coding the application without using a structure. Notice that the btnCalc control’s
Click event procedure calls the GetGallons function, passing it three variables by value. The
GetGallons function uses the values to calculate the number of gallons required to fill the pool.
The function returns the number of gallons as a Double number to the btnCalc control’s Click
event procedure, which assigns the value to the dblGallons variable.

Using a member of a structure variable

Example 1
hourly.strLast = "Williamson"
assigns the string “Williamson” to the hourly.strLast member variable

Example 2
hourly.dblPay = hourly.dblPay * 1.05
multiplies the contents of the hourly.dblPay member variable by 1.05 and then assigns the
result to the member variable; you also can write the statement as hourly.dblPay *= 1.05

Example 3
lblSalary.Text = salaried.dblPay.ToString("C2")
formats the value contained in the salaried.dblPay member variable and then displays the
result in the lblSalary control

Figure 21-4 Examples of using a member of a structure variable

Figure 21-5 Sample run of the Willow Pools application

C H A P T E R 2 1 Building Your Own Structure (Structures)

386

A more convenient way of coding the Willow Pools application is to use a structure to group
together the input items: length, width, and depth. It’s logical to group the three items because
they are related; each represents one of the three dimensions of a rectangular pool.

To begin modifying the Willow Pools application to use a structure:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open theWillow Pools Solution (Willow Pools Solution.sln)
file contained in the ClearlyVB2010\Chap21\Willow Pools Solution folder. If the
designer window is not open, double-click frmMain.vb in the Solution Explorer
window.

2. Open the Code Editor window, which contains the code from Figure 21-6. First, you will
create the structure. Click the blank line below the Public Class frmMain clause. As
the Class Name and Method Name boxes indicate, this is the Declarations section of the
form. The input items represent the pool’s dimensions, so Dimensions would be a
descriptive name for the structure. The Dimensions structure will contain three member
variables named dblLength, dblWidth, and dblDepth. Press Enter to insert another
blank line and then enter the Structure statement shown in Figure 21-7.

Public Function GetGallons(ByVal dblLen As Double,
 ByVal dblWid As Double,
 ByVal dblDep As Double) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return dblLen * dblWid *
 dblDep * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the number of gallons

 Dim dblPoolLen As Double
 Dim dblPoolWid As Double
 Dim dblPoolDep As Double
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, dblPoolLen)
 Double.TryParse(txtWidth.Text, dblPoolWid)
 Double.TryParse(txtDepth.Text, dblPoolDep)

 dblGallons =
 GetGallons(dblPoolLen, dblPoolWid, dblPoolDep)
 lblGallons.Text = dblGallons.ToString("N0")

End Sub

receives three
variables by value

returns the
number of gallons

declares three variables
to store the input data

passes three variables
to the GetGallons function

Figure 21-6 Code for the Willow Pools application (without a structure)

Willow Pools Application

387

3. Locate the code template for the btnCalc control’s Click event procedure. The procedure
will use a structure variable (rather than three scalar variables) to store the input items.
Replace the three Dim statements that declare the dblPoolLen, dblPoolWid, and
dblPoolDep variables with the following Dim statement:

Dim poolSize As Dimensions

4. Now you will store each input item in its corresponding member in the structure
variable. In the first TryParse method, change dblPoolLen to poolSize.dblLength. In
the second TryParse method, change dblPoolWid to poolSize.dblWidth. In the third
TryParse method, change dblPoolDep to poolSize.dblDepth.

Next, consider the changes you will need to make to the statement that invokes the GetGallons
function. Instead of passing three scalar variables to the function, you now need to pass only one
variable: the structure variable. When you pass a structure variable to a procedure, all of its
members are passed automatically. Although passing one structure variable rather than three
scalar variables may not seem like a great advantage, consider the convenience of passing one
structure variable rather than 10 scalar variables!

To continue modifying the btnCalc control’s Click event procedure:

1. Replace the assignment statement that invokes the GetGallons function with the
following statement. (Don’t be concerned about the jagged line that appears below
GetGallons(poolSize) in the statement. It will disappear when you modify the
GetGallons function in the next step.)

dblGallons = GetGallons(poolSize)

2. Locate the GetGallons function’s code. The function will now receive a Dimensions
structure variable rather than three Double variables. Like the Double variables, the
structure variable will be passed by value. Replace the three parameters in the function
header with the following parameter:

ByVal pool As Dimensions

3. The function’s Return statement will need to use the members of the structure variable
(rather than the scalar variables) to calculate the number of gallons. Replace the Return
statement with the following statement:

Return pool.dblLength * pool.dblWidth *
pool.dblDepth * dblGAL_PER_CUBIC_FOOT

Figure 21-8 shows the modified code, which uses a structure.

enter these five
lines of code

Figure 21-7 Dimensions structure entered in the form’s Declarations section

C H A P T E R 2 1 Building Your Own Structure (Structures)

388

To test the modified Willow Pools application:

1. Save the solution and then start the application. Type 100 in the Length box, 30 in the
Width box, and 4 in the Depth box. Click the Calculate button. The number 89,760
appears in the Gallons box, as shown earlier in Figure 21-5.

2. Test the application several more times. When you are finished testing the application,
click the Exit button. Close the Code Editor window and then close the solution.

Revisiting the Employee Application…Again!
As mentioned earlier, another advantage of using a structure is that a structure variable can be
stored in an array, even when its members have different data types. The Employee application
from the previous two chapters can be used to illustrate this concept. As you may remember,
the application’s interface provides a text box for the user to enter an employee ID. The
application searches for the ID in an array. If it finds the ID, it displays the corresponding salary;
otherwise, it displays the “Invalid ID” message. In Chapter 19, you stored the five employee IDs
and corresponding salaries in two parallel one-dimensional arrays: a String array for the IDs and
an Integer array for the salaries. In Chapter 20, you stored the employee information in a two-
dimensional String array. Recall that, in order to do so, you had to treat the numeric salary
amounts as strings. This is because the IDs are strings and all the elements in an array must have
the same data type. Rather than using parallel one-dimensional arrays or a two-dimensional
array, you also can use a one-dimensional array of structure variables. In the Employee

Structure Dimensions
 Public dblLength As Double
 Public dblWidth As Double
 Public dblDepth As Double
End Structure

Public Function GetGallons(ByVal pool As Dimensions) As Double
 ' calculates and returns the number of gallons

 Const dblGAL_PER_CUBIC_FOOT As Double = 7.48

 Return pool.dblLength * pool.dblWidth *
 pool.dblDepth * dblGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the number of gallons

 Dim poolSize As Dimensions
 Dim dblGallons As Double

 Double.TryParse(txtLength.Text, poolSize.dblLength)
 Double.TryParse(txtWidth.Text, poolSize.dblWidth)
 Double.TryParse(txtDepth.Text, poolSize.dblDepth)

 dblGallons = GetGallons(poolSize)
 lblGallons.Text = dblGallons.ToString("N0")

End Sub

entered in the form’s
Declarations section

receives a structure
variable by value

declares a structure variable
to store the input data

passes the structure variable
to the GetGallons function

Figure 21-8 Modified code for the Willow Pools application (using a structure)

Revisiting the Employee Application…Again!

389

application, the array will contain five structure variables, because there are five employees. Each
structure variable will store an employee’s ID and salary amount.

To use a structure in the Employee application:

1. Open the Employee Solution (Employee Solution.sln) file contained in the
ClearlyVB2010\Chap21\Employee Solution folder. If the designer window is not open,
double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window. First, you will create the structure. The IDs and salaries
represent employee information, so EmployInfo would be a descriptive name for the
structure. The EmployInfo structure will contain two member variables named strId
and intSalary. Click the blank line below the Public Class frmMain clause and
then press Enter to insert another blank line. Enter the Structure statement shown in
Figure 21-9.

The btnDisplay control’s Click event procedure will store each employee’s ID and salary in an
EmployInfo structure variable. If the company had only one employee, you could declare the
structure variable using the statement Dim employee As EmployInfo. However, because there
are five employees, you need five structure variables: one for each employee. You can reserve five
structure variables by declaring a five-element, one-dimensional array, using the EmployInfo
structure as the array’s data type.

To begin coding the btnDisplay control’s Click event procedure:

1. Locate the code template for the btnDisplay control’s Click event procedure. Click the
blank line below the ' declare an array of structure variables comment. Type
the following statement and then press Enter twice:

Dim employees(4) As EmployInfo

2. Now you will declare the remaining variables: strSearchFor, intSub, and strFound.
The strSearchFor variable will store the ID to search for in the array. The intSub
variable will keep track of the array subscripts during the search. The strFound variable
will keep track of whether the ID was found in the array. Enter the following three
declaration statements:

Dim strSearchFor As String
Dim intSub As Integer
Dim strFound As String

enter these four lines
of code in the form’s
Declarations section

Figure 21-9 EmployInfo structure entered in the form’s Declarations section

C H A P T E R 2 1 Building Your Own Structure (Structures)

390

Next, you need to store the five IDs and salaries in the employees array. Keep in mind that each
element in the array is a structure variable that contains two member variables: strId and
intSalary. You refer to a member variable in an array using the syntax arrayName(subscript).
memberVariableName. For example, employees(0).strId refers to the strId member
contained in the first element in the employees array. Likewise, employees(4).intSalary
refers to the intSalary member contained in the last element in the employees array. Figure
21-10 illustrates this naming convention.

To finish coding the btnDisplay control’s Click event procedure:

1. Click the blank line below the ' assign the IDs and salaries to the array comment
and then enter the following 10 assignment statements:

employees(0).strId = "A102"
employees(0).intSalary = 25000
employees(1).strId = "C220"
employees(1).intSalary = 50000
employees(2).strId = "C510"
employees(2).intSalary = 43000
employees(3).strId = "F251"
employees(3).intSalary = 23000
employees(4).strId = "F503"
employees(4).intSalary = 32000

2. Now you will assign the employee ID entered by the user to a variable. Click the
blank line below the ' assign the ID to a variable comment and then enter the
following statement:

strSearchFor = txtId.Text.Trim.ToUpper

A102
25000

C220
50000

C510
43000

F251
23000

F503
32000

employees(0).strId

employees(0).intSalary

employees(4).intSalary

employees(0) element

employees(4) element

employees(4).strId

Figure 21-10 Illustration of the employees array of structure variables

Revisiting the Employee Application…Again!

391

3. The search will begin with the first element in the array. Click the blank line
immediately below the ' each row has been searched comment and then enter the
following assignment statement:

intSub = 0

4. Before the search begins, the procedure will assume that the ID is not contained in the
array. Enter the following assignment statement:

strFound = "N"

5. Next, you will enter a loop that repeats its instructions until one of two conditions is
true: either the ID has been found in the array or the subscript equals the number of
array elements (which indicates there are no more elements to search). Enter the
following Do clause:

Do Until strFound = "Y" OrElse intSub = employees.Length

6. Now you will use a selection structure to compare the contents of the strId member in
the current array element with the ID stored in the strSearchFor variable. If both IDs
match, the selection structure’s true path will assign “Y” to the strFound variable to
indicate that the ID was located in the array. If both IDs do not match, the selection
structure’s false path will increment the array subscript by 1; this will allow the loop to
search the next element in the array. Enter the following selection structure:

If employees(intSub).strId = strSearchFor Then
strFound = "Y"

Else
intSub = intSub + 1

End If

7. The value stored in the strFound variable indicates whether the ID was located in the
array, and it determines the appropriate information to display. Click the blank line
below the ' determine whether the ID was found comment and then enter the
following selection structure:

If strFound = "Y" Then
lblSalary.Text =

employees(intSub).intSalary.ToString("C0")
Else

lblSalary.Text = "Invalid ID"
End If

Figure 21-11 shows the code entered in the btnDisplay control’s Click event procedure. The
figure also includes the Structure statement entered in the form’s Declarations section.

C H A P T E R 2 1 Building Your Own Structure (Structures)

392

Structure EmployInfo
 Public strId As String
 Public intSalary As Integer
End Structure

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' searches for an employee ID in an array of
 ' structure variables and then displays either
 ' the salary or a message

 ' declare an array of structure variables
 Dim employees(4) As EmployInfo

 Dim strSearchFor As String
 Dim intSub As Integer
 Dim strFound As String

 ' assign the IDs and salaries to the array
 employees(0).strId = "A102"
 employees(0).intSalary = 25000
 employees(1).strId = "C220"
 employees(1).intSalary = 50000
 employees(2).strId = "C510"
 employees(2).intSalary = 43000
 employees(3).strId = "F251"
 employees(3).intSalary = 23000
 employees(4).strId = "F503"
 employees(4).intSalary = 32000

 ' assign the ID to a variable
 strSearchFor = txtId.Text.Trim.ToUpper

 ' search for the ID in the array
 ' continue searching until the ID is found or
 ' each row has been searched
 intSub = 0
 strFound = "N"
 Do Until strFound = "Y" OrElse intSub = employees.Length
 If employees(intSub).strId = strSearchFor Then
 strFound = "Y"
 Else
 intSub = intSub + 1
 End If
 Loop

 ' determine whether the ID was found
 If strFound = "Y" Then
 lblSalary.Text =
 employees(intSub).intSalary.ToString("C0")
 Else
 lblSalary.Text = "Invalid ID"
 End If
End Sub

Structure
statement

declares an array of
structure variables

you also can use
intSub += 1

Figure 21-11 Structure statement and btnDisplay control’s Click event procedure

Revisiting the Employee Application…Again!

393

To test the Employee application:

1. Save the solution and then start the application. First, you will enter a valid ID. Type
f503 in the Employee ID box. The ID is stored in the employees(4).strId variable,
and its corresponding salary amount (32000) is stored in the employees(4).intSalary
variable. Click the Display Salary button. The correct salary amount appears in the
Salary box, as shown in Figure 21-12.

2. Now you will enter an invalid ID. Change the employee ID to f502 and then click the
Display Salary button. The message “Invalid ID” appears in the Salary box.

3. Test the application several more times using valid and invalid IDs. When you are
finished testing the application, click the Exit button. Close the Code Editor window and
then close the solution.

As you observed by coding the Employee application in this chapter and in the previous two
chapters, there are many different ways of solving the same problem. Most times, the “best” way
is simply a matter of personal preference.

Mini-Quiz 21-1
See Appendix B for the answers.

1. The Structure statement is usually entered in the form’s section in the
Code Editor window.

2. Write a Visual Basic statement that assigns the string “Maple” to the strStreet
member of a structure variable named address.

3. An array of structure variables is declared using the statement Dim inventory(4) As
Product. Write a Visual Basic statement that assigns the number 100 to the
intQuantity member contained in the last array element.

Summary
l You can use the Structure statement to create your own data types in Visual Basic. The Structure

statement is usually entered in the form’s Declarations section in the Code Editor window.

l After a structure is defined, you can use it to declare a structure variable. A structure variable
contains one or more members, usually variables. You refer to the structure variable using its
name. You refer to a member variable within a structure variable using the syntax
structureVariableName.memberVariableName.

l The member variables in a structure variable can be used just like any other variables.

Figure 21-12 Salary amount displayed in the interface

To learn
more
about
structures,
see the

Structures section in the
Ch21WantMore.pdf file.

To review
what you
learned
about
structures,

view the Ch21-Structures
video.

C H A P T E R 2 1 Building Your Own Structure (Structures)

394

l A structure variable can be passed to a procedure or stored in an array.

l You can create a one-dimensional array of structure variables. To do this, you declare the
array using the structure as the array’s data type. You access a member variable in an array of
structure variables using the syntax arrayName(subscript).memberVariableName.

Key Terms
Dot member access operator—a period; used to separate a structure variable’s name from a
member variable’s name

Member variables—the variables contained in a structure

Structure statement—used to create user-defined data types, called structures, in Visual Basic

Structure variables—variables declared using a structure as the data type

Structures—data types created using the Structure statement; allow the programmer to group
related items into one unit; also called user-defined data types

User-defined data types—data types created by the Structure statement; see Structures

Review Questions
1. Which of the following declares a Country structure variable named england?

a. Private england As Country

b. Dim england As Country

c. Dim Country As england

d. both a and b

2. Which of the following statements assigns the string “London” to the strCity member
of the Country variable from Review Question 1?

a. england.strCity = "London"

b. Country.strCity = "London"

c. Country.england.strCity = "London"

d. strCity.england = "London"

3. An application uses a structure named Product. Which of the following creates a
five-element, one-dimensional array of Product structure variables?

a. Dim items(5) As Product

b. Dim items(4) As Product

c. Dim items As Product(5)

d. Dim items As Product(4)

4. Regarding the items array from Review Question 3, which of the following assigns the
number 23 to the intPrice member contained in the first array element?

a. items(0).intPrice = 23

b. intPrice(0) = 23

c. Product.items(1).intPrice = 23

d. items.intPrice(0) = 23

5. Regarding the items array from Review Question 3, which of the following increases by
100 the contents of the intPrice member located in the second array element?

a. intPrice(1) = intPrice(1) + 100

b. items.intPrice(1) = items.intPrice(1) + 100

c. Product.items(1).intPrice =
Product.items(1).intPrice + 100

d. items(1).intPrice = items(1).intPrice + 100

Review Questions

395

6. The member variables in a structure can have different data types.

a. True b. False

7. An application uses the Music structure to declare a structure variable named songs.
Which of the following displays the contents of the strArtist member variable in the
lblArtist control?

a. lblArtist.Text = Music.songs.strArtist

b. lblArtist.Text = Music.strArtist

c. lblArtist.Text = songs.strArtist

d. none of the above

Exercises
1. Open the Commission Solution (Commission Solution.sln) file contained in the

ClearlyVB2010\Chap21\Commission Solution folder. Open the designer window. The
interface provides three text boxes for the user to enter the sales for three regions. Open the
Code Editor window. Declare a structure named SalesInfo. The structure should contain
three Decimal member variables to store the three sales amounts. The btnCalc control’s
Click event procedure should store the contents of the text boxes in a SalesInfo structure
variable. It then should use a function named GetCommission to sum the three sales
amounts. The function also should calculate and return a 3% commission. Finally, the Click
event procedure should display the commission (formatted with a dollar sign and two
decimal places) in the lblComm control. Code the function and Click event procedure. Save
the solution and then start and test the application. Close the Code Editor window and then
close the solution. (See Appendix B for the answer.)

2. Open the Price List Solution (Price List Solution.sln) file contained in the ClearlyVB2010\
Chap21\Price List Solution folder. Open the designer window. The interface provides a text
box for the user to enter a product ID. When the user clicks the Display Price button, the
button’s Click event procedure should display either the price associated with the product
ID or the “Invalid product ID” message. (Display the message in a message box.) Open the
Code Editor window. Declare a structure named Item. The structure should contain two
members: a String variable for the product ID and an Integer variable for the price. Locate
the code template for the btnDisplay control’s Click event procedure. Declare a five-
element array of Item structure variables; name the array gifts. Assign the following IDs
and prices to the gifts array: BX35, 13, CR20, 10, FE15, 12, KW10, 24, MM67, and 4.
Finish coding the procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution. (See Appendix B for the
answer.)

3. In this exercise, you modify the application from TRY THIS Exercise 1. Use Windows to
make a copy of the Commission Solution folder. Save the copy in the ClearlyVB2010\
Chap21 folder. Rename the copy Modified Commission Solution. Open the Commission
Solution (Commission Solution.sln) file contained in the Modified Commission Solution
folder. Open the designer and Code Editor windows. The btnCalc control’s Click event
procedure should prompt the user to enter the commission rate. It then should pass the
rate to the GetCommission function. Make the appropriate modifications to the code.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

4. Open the Test Scores Solution (Test Scores Solution.sln) file contained in the
ClearlyVB2010\Chap21\Test Scores Solution folder. Open the Code Editor window. Create
a structure that contains three member variables; each member variable will represent a test
score. The test scores may contain a decimal place. The btnAverage control’s Click event

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

C H A P T E R 2 1 Building Your Own Structure (Structures)

396

procedure should prompt the user to enter the three test scores. Each test score should be
stored in a member of a structure variable. The procedure should pass the structure
variable to a function that calculates and returns the average score. Finally, the procedure
should display the average score (formatted with one decimal place) in the lblResult control.
Code the procedure and function. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

5. Open the Colors Solution (Colors Solution.sln) file contained in the ClearlyVB2010\
Chap21\Colors Solution folder. Open the Code Editor window. Create a structure that
contains two member variables named strEnglish and strSpanish. The btnTranslate
control’s Click event procedure should use the structure to declare an array of structure
variables. It then should store the values shown in Figure 21-13 in the array. The
procedure should prompt the user to enter an English word. It then should display the
English word and its corresponding Spanish word. If the English word is not in the array,
display “N/A”. Code the procedure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

6. In this exercise, youmodify the application from Exercise 4. If you did not complete Exercise
4, you will need to do so before completing this exercise. UseWindows to make a copy of the
Test Scores Solution folder. Save the copy in the ClearlyVB2010\Chap21 folder. Rename the
copy Modified Test Scores Solution. Open the Test Scores Solution (Test Scores Solution.
sln) file contained in the Modified Test Scores Solution folder. Open the designer and Code
Editor windows. Modify the btnAverage control’s Click event procedure so it uses a
three-element array of structure variables. Each element will contain the test scores for one
student. The procedure should prompt the user for a student’s three test scores and then
store the scores in one of the structure variables in the array. It then should use the function
to determine the student’s average score. Finally, it should display the student’s number
(1, 2, or 3) along with the average score (formatted with one decimal place) in the lblResult
control. Save the solution and then start and test the application. Figure 21-14 shows a
sample run of the application when the user enters the following scores: 100, 100, 100, 90,
85, 78, 73, 72, and 67. Close the Code Editor window and then close the solution.

English Spanish
Blue Azul
Brown Marron
Gray Gris
Green Verde
Orange Anaranjado
Pink Rosa
Purple Morado
Red Rojo
Yellow Amarillo

Figure 21-13 Information for Exercise 5

Figure 21-14 Sample run of the application from Exercise 6

INTRODUCTORY

INTERMEDIATE

Exercises

397

7. In this exercise, you modify the application from Exercise 5. If you did not complete
Exercise 5, you will need to do so before completing this exercise. Use Windows to make
a copy of the Colors Solution folder. Save the copy in the ClearlyVB2010\Chap21 folder.
Rename the copy Modified Colors Solution. Open the Colors Solution (Colors Solution.sln)
file contained in the Modified Colors Solution folder. Open the designer window. Add
two radio buttons to the form. Use the following captions for the radio buttons: Translate
to E_nglish and Translate to S_panish. Also, include the Spanish words in the Label3
control. Open the Code Editor window. If the Translate to English radio button is
selected, the btnTranslate control’s Click event procedure should display the English
word associated with the Spanish word entered by the user. If the Translate to spanish
radio button is selected, the procedure should display the Spanish word associated with
the English word entered by the user. Modify the procedure’s code. Save the solution and
then start and test the application. Close the Code Editor window and then close the
solution.

8. In this exercise, you modify the Willow Pools application coded in the chapter. Use
Windows to make a copy of the Willow Pools Solution folder. Save the copy in the
ClearlyVB2010\Chap21 folder. Rename the copy Modified Willow Pools Solution. Open
the Willow Pools Solution (Willow Pools Solution.sln) file contained in the Modified
Willow Pools Solution folder. Currently, the application assumes that the entire pool has
the same depth. Modify the interface and code so that the application displays the
number of gallons for a pool whose depth may vary. The formula for calculating the
volume for such a pool is length * width * (shallow end’s depth + deep end’s depth) / 2.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

9. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap21\FigureThisOut Solution folder. Open the Code Editor window
and study the existing code. What members are defined in the Structure statement?
What is the purpose of the salesperson.decSales(0) = 2000 statement? Why does the
procedure use salesperson.decSales(0) in the statement rather than salesperson
(0).decSales? Start and then test the application. Close the Code Editor window and
then close the solution.

10. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap21\SwatTheBugs Solution folder. Open the Code Editor window
and study the existing code. Correct the code to remove the jagged lines. Save the
solution and then start and test the application. Notice that the application is not
working correctly. Locate and correct the errors in the code. Save the solution and then
start and test the application again. Close the Code Editor window and then close the
solution.

INTERMEDIATE

ADVANCED

FIGURE THIS OUT

SWAT THE BUGS

C H A P T E R 2 1 Building Your Own Structure (Structures)

398

CHAPTER 22
I’m Saving for the Future
(Sequential Access Files)

After studying Chapter 22, you should be able to:

Open and close a sequential access file

Write data to a sequential access file

Send the focus to a text box

Read data from a sequential access file

Determine whether a sequential access file exists

Test for the end of a sequential access file

Sequential Access Files
In addition to getting data from the keyboard and sending data to the computer screen, an
application also can get data from and send data to a file on a disk. Getting data from a file is
referred to as “reading from the file,” and sending data to a file is referred to as “writing to the
file.” Files to which data is written are called output files, because the files store the output
produced by an application. Files that are read by the computer are called input files, because an
application uses the data in these files as input. Most input and output files are composed of
lines of text that are both read and written sequentially. In other words, they are read and
written in consecutive order, one line at a time, beginning with the first line in the file and
ending with the last line in the file. Such files are referred to as sequential access files, because
of the manner in which the lines of text are accessed. They also are called text files, because they
are composed of lines of text. Examples of text stored in sequential access files include an
employee list, a memo, and a sales report.

You will use a sequential access file in the Game Show Contestants application, which you code
in the remaining sections of this chapter. Figure 22-1 shows the application’s user interface. The
interface provides a text box for entering a contestant’s name. The Write to File button will
write the name to a sequential access file. The Read from File button will read each name from
the sequential access file and display each in the Contestants box. (The txtContestants control’s
Multiline and ReadOnly properties are set to True, and its ScrollBars property is set to Vertical.)
You will code the Write to File button first.

Write Those Lines of Text
An item of data—such as the string “Yolanda”—is viewed differently by a human being and
a computer. To a human being, the string represents a person’s name; to a computer, it is
merely a sequence of characters. Programmers refer to a sequence of characters as a stream
of characters. In Visual Basic, you use a StreamWriter object to write a stream of characters
to a sequential access file. Before you create the StreamWriter object, you first declare a
variable to store the object in the computer’s internal memory. Figure 22-2 shows the
syntax and an example of declaring a StreamWriter variable. The IO in the syntax stands
for Input/Output.

txtName

txtContestants

Figure 22-1 Interface for the Game Show Contestants application

C H A P T E R 2 2 I’m Saving for the Future (Sequential Access Files)

400

To begin coding the Write to File button’s Click event procedure:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Contestant Solution (Contestant Solution.sln)
file contained in the ClearlyVB2010\Chap22\Contestant Solution folder. If the designer
window is not open, double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window. Locate the code template for the btnWrite control’s
Click event procedure. Click the blank line below the ' declare a StreamWriter
variable comment and then enter the following declaration statement:

Dim outFile As IO.StreamWriter

After declaring a StreamWriter variable, you can use the syntax shown in Figure 22-3 to create a
StreamWriter object. As the figure indicates, creating a StreamWriter object involves opening a
sequential access file using one of two methods: CreateText or AppendText. You use the
CreateText method to open a sequential access file for output. When you open a file for output,
the computer creates a new, empty file to which data can be written. If the file already exists, the
computer erases the contents of the file before writing any data to it. You use the AppendText
method to open a sequential access file for append. When a file is opened for append, new data
is written after any existing data in the file. If the file does not exist, the computer creates the file
for you. In addition to opening the file, both methods automatically create a StreamWriter
object to represent the file in the application. You assign the StreamWriter object to a
StreamWriter variable, which you use to refer to the file in code.

Also included in Figure 22-3 are examples of using the CreateText and AppendText methods.
When processing the statement in Example 1, the computer searches for the pay.txt file in the
Chap22 folder on the F drive. If the file exists, its contents are erased and the file is opened for
output; otherwise, a new, empty file is created and opened for output. The statement creates a
StreamWriter object and assigns it to the outFile variable. You should specify the folder path
in the fileName argument only when you are sure that the folder path will not change. (Keep in
mind that a USB drive may have a different letter designation on another computer.) Unlike the
fileName argument in Example 1, the fileName argument in Example 2 does not contain a folder
path. Therefore, the computer will search for the file in the default folder, which is the current
project’s bin\Debug folder. In this case, if the computer locates the report.txt file in the default
folder, it opens the file for append. If it does not find the file, it creates a new, empty file and then
opens the file for append. Like the statement in Example 1, the statement in Example 2 creates a
StreamWriter object and assigns it to the outFile variable.

Declaring a StreamWriter variable

Syntax
{Dim | Private} streamWriterVariableName As IO.StreamWriter

Example
Dim outFile As IO.StreamWriter
declares a StreamWriter variable named outFile

Figure 22-2 Syntax and an example of declaring a StreamWriter variable

Write Those Lines of Text

401

When the user clicks the Write to File button in the Game Show Contestants interface, the
name entered in the Name box should be added to the end of the existing names in the file.
Therefore, you will need to open the sequential access file for append. A descriptive name for a
file that stores the names of contestants is contestants.txt. Although it is not a requirement, the
“txt” (short for “text”) filename extension is commonly used when naming sequential access files;
this is because the files contain text.

To continue coding the btnWrite control’s Click event procedure:

1. Click the blank line below the ' open the file for append comment and then enter
the following assignment statement:

outFile = IO.File.AppendText(''contestants.txt'')

After opening a file for either output or append, you can begin writing data to it. You write data
to a sequential access file using either the Write method or the WriteLine method; however, in
most cases you will use the WriteLine method. The difference between both methods is that the
WriteLine method writes a newline character after the data. Figure 22-4 shows the syntax and
an example of both methods. As the figure indicates, when using the Write method, the next
character written to the file will appear immediately after the letter o in the string “Hello”. When
using the WriteLine method, however, the next character written to the file will appear on the
line immediately below the string. You do not need to include the file’s name in either method’s
syntax, because the data will be written to the file associated with the StreamWriter variable.

Creating a StreamWriter object

Syntax
IO.File.method(fileName)

method Description
CreateText opens a sequential access file for output
AppendText opens a sequential access file for append

Example 1
outFile = IO.File.CreateText("F:\Chap22\pay.txt")
opens the pay.txt file for output; creates a StreamWriter object and assigns it to the
outFile variable

Example 2
outFile = IO.File.AppendText("report.txt")
opens the report.txt file for append; creates a StreamWriter object and assigns it to the
outFile variable

Figure 22-3 Syntax and examples of creating a StreamWriter object by opening a file

C H A P T E R 2 2 I’m Saving for the Future (Sequential Access Files)

402

In the Game Show Contestants application, each contestant’s name should appear on a separate
line in the file, so you will use the WriteLine method to write each name to the file.

To continue coding the btnWrite control’s Click event procedure:

1. Click the blank line below the ' write the name on a separate line in the file
comment and then enter the following statement:

outFile.WriteLine(txtName.Text)

You should use the Close method to close an output sequential access file as soon as you are
finished using it. This ensures that the data is saved and it makes the file available for use
elsewhere in the application. The syntax to close an output sequential access file is
streamWriterVariableName.Close(). Here again, notice that you use the StreamWriter variable
to refer to the file in code.

To continue coding the btnWrite control’s Click event procedure:

1. Click the blank line below the ' close the file comment and then enter the following
statement:

outFile.Close()

To make it more convenient for the user to enter the next name, you will clear the current name
from the Name box and then send the focus to the box. You can use a text box’s Focus method
to send the focus to the text box. The method’s syntax is textbox.Focus().

To complete the btnWrite control’s Click event procedure:

1. Click the blank line below the ' clear the Name box and then set the focus
comment. Enter the following two statements:

txtName.Text = String.Empty
txtName.Focus()

Writing data to a sequential access file

Syntax
streamWriterVariableName.Write(data)
streamWriterVariableName.WriteLine(data)

Example 1
outFile.Write("Hello")

Result
Hello|

Example 2
outFile.WriteLine("Hello")

Result
Hello
|

the next character will appear
immediately after the letter o

the next character will
appear on the next line

Figure 22-4 Syntax and examples of writing data to a sequential access file

Write Those Lines of Text

403

Figure 22-5 shows the code entered in the Write to File button’s Click event procedure.

To test the btnWrite control’s Click event procedure:

1. Save the solution and then start the application. Type Hannah Jones in the Name box
and then click the Write to File button. Use the application to write the following four
names to the file:

Clark Smith
Khalid Shaw
Joe Mendez
Charise Jackson

2. Click the Exit button.

3. Now you will open the contestants.txt file to verify its contents. Click File on the menu
bar and then click Open File. Open the project’s bin\Debug folder. Click contestants.txt
in the list of filenames and then click the Open button. The contestants.txt window opens
and shows the five names contained in the file. See Figure 22-6.

4. Close the contestants.txt window by clicking its Close button.

Private Sub btnWrite_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnWrite.Click
 ' writes a name to a sequential access file

 ' declare a StreamWriter variable
 Dim outFile As IO.StreamWriter

 ' open the file for append
 outFile = IO.File.AppendText("contestants.txt")

 ' write the name on a separate line in the file
 outFile.WriteLine(txtName.Text)

 ' close the file
 outFile.Close()

 ' clear the Name box and then set the focus
 txtName.Text = String.Empty
 txtName.Focus()

End Sub

Figure 22-5 Write to File button’s Click event procedure

each name appears
on a separate line in
the file

Close button

Figure 22-6 Names contained in the contestants.txt file

C H A P T E R 2 2 I’m Saving for the Future (Sequential Access Files)

404

Mini-Quiz 22-1
See Appendix B for the answers.

1. Write the code to declare a variable that can be used to write data to a sequential
access file. Name the variable outFile.

2. The AppendText method creates a object.

3. Write a Visual Basic statement that sends the focus to the txtCity control.

Now Read Those Lines of Text
Next, you will code the Read from File button. In Visual Basic, you use a StreamReader object
to read data from a sequential access file. Before creating the StreamReader object, you first
declare a variable to store the object in the computer’s internal memory. Figure 22-7 shows the
syntax and an example of declaring a StreamReader variable. As mentioned earlier, the IO in the
syntax stands for Input/Output.

To begin coding the Read from File button’s Click event procedure:

1. Locate the code template for the btnRead control’s Click event procedure.

2. Click the blank line below the ' declare variables comment and then enter the
following declaration statement:

Dim inFile As IO.StreamReader

After declaring a StreamReader variable, you can use the OpenText method to open a sequential
access file for input; doing this automatically creates a StreamReader object. When a file is
opened for input, the computer can read the lines of text stored in the file. Figure 22-8 shows
the OpenText method’s syntax along with an example of using the method. The fileName
argument in the example does not include a folder path, so the computer will search for the
report.txt file in the current project’s bin\Debug folder. If the computer finds the file, it opens
the file for input; otherwise, a run time error occurs and causes the application to end abruptly.
You assign the StreamReader object created by the OpenText method to a StreamReader
variable, which you use to refer to the file in code.

Declaring a StreamReader variable

Syntax
{Dim | Private} streamReaderVariableName As IO.StreamReader

Example
Dim inFile As IO.StreamReader
declares a StreamReader variable named inFile

Figure 22-7 Syntax and an example of declaring a StreamReader variable

Now Read Those Lines of Text

405

You can use the Exists method to avoid the run time error that occurs when the computer cannot
locate the file you want opened for input. Figure 22-9 shows the method’s syntax and includes an
example of using the method. If the fileName argument does not include a folder path, the
computer searches for the file in the current project’s bin\Debug folder. The Exists method
returns the Boolean value True if the file exists; otherwise, it returns the Boolean value False.

To continue coding the btnRead control’s Click event procedure:

1. Click the blank line below the ' determine whether the file exists comment and
then enter the following If clause:

If IO.File.Exists(''contestants.txt'') = True Then

2. If the file exists, you will use the OpenText method to open the file. Enter the following
comment and assignment statement. Press Enter twice after typing the assignment
statement.

' open the file for input
inFile = IO.File.OpenText(''contestants.txt'')

3. If the file does not exist, you will display an appropriate message. Enter the additional
lines of code shown in Figure 22-10.

Creating a StreamReader object

Syntax
IO.File.OpenText(fileName)

Example
inFile = IO.File.OpenText("report.txt")
opens the report.txt file for input; creates a StreamReader object and assigns it to the inFile
variable

Figure 22-8 Syntax and an example of creating a StreamReader object by opening a file

Determining whether a sequential access file exists

Syntax
IO.File.Exists(fileName)

Example
If IO.File.Exists("report.txt") = True Then
determines whether the report.txt file exists in the current project’s bin\Debug folder; you also
can write the If clause as If IO.File.Exists("report.txt") Then

Figure 22-9 Syntax and an example of the Exists method

C H A P T E R 2 2 I’m Saving for the Future (Sequential Access Files)

406

After opening a file for input, you can use the ReadLine method to read the file’s contents, one
line at a time. A line is defined as a sequence (stream) of characters followed by the newline
character. The ReadLine method returns a string that contains only the sequence of characters
in the current line; the string does not include the newline character at the end of the line. In
most cases, you assign the string returned by the ReadLine method to a String variable. Figure
22-11 shows the ReadLine method’s syntax and includes an example of using the method. The
ReadLine method does not require you to provide the file’s name, because it uses the file
associated with the StreamReader variable.

In most cases, an application will need to read each line of text contained in a sequential access
file, one line at a time. You can do this using a loop along with the Peek method. The Peek
method “peeks” into the file to determine whether the file contains another character to read. If
the file contains another character, the Peek method returns the character; otherwise, it returns
the number –1 (a negative 1). The Peek method’s syntax is shown in Figure 22-12 along with an
example of using the method. The Do clause in the example tells the computer to process the
loop instructions until the Peek method returns the number –1, which indicates that there are
no more characters to read. In other words, the Do clause tells the computer to process the loop
instructions until it reaches the end of the file.

enter these five
lines of code

Figure 22-10 Code entered in the selection structure’s false path

ReadLine method

Syntax
streamReaderVariableName.ReadLine

Example
strMessage = inFile.ReadLine
reads a line of text from the sequential access file associated with the inFile variable and
assigns the line, excluding the newline character, to the strMessage variable

Figure 22-11 Syntax and an example of the ReadLine method

Now Read Those Lines of Text

407

To continue coding the btnRead control’s Click event procedure:

1. First, you will declare a variable to store the string returned by the ReadLine method.
Click the blank line below the Dim statement. Each line in the contestants.txt file
represents a name, so you will call the variable strName. Enter the following declaration
statement:

Dim strName As String

2. Click the blank line below the statement that opens the contestants.txt file for input.
Enter the following comment and Do clause, being sure to type the minus sign before the
number 1:

' process the loop instructions until the end of the file
Do Until inFile.Peek = –1

3. Now you will tell the computer to read a line of text and assign it (excluding the newline
character) to the strName variable. Enter the following comment and assignment
statement:

' read a name
strName = inFile.ReadLine

4. Next, you will display the name in the Contestants box. Enter the following comment
and assignment statement:

' display the name
txtContestants.Text = txtContestants.Text &

strName & ControlChars.NewLine

5. If necessary, delete the blank line above the Loop clause.

Just as you do with an output sequential access file, you should use the Close method to close an
input sequential access file as soon as you are finished using it. Doing this makes the file available
for use elsewhere in the application. The syntax to close an input sequential access file is
streamReaderVariableName.Close(). Notice that you use the StreamReader variable to refer to
the file in code.

Peek method

Syntax
streamReaderVariableName.Peek

Example
Do Until inFile.Peek = –1
 strLineOfText = inFile.ReadLine
 MessageBox.Show(strLineOfText)
Loop
reads each line of text from the sequential access file associated with the inFile variable,
line by line; each line (excluding the newline character) is assigned to the strLineOfText
variable and is then displayed in a message box

Figure 22-12 Syntax and an example of the Peek method

C H A P T E R 2 2 I’m Saving for the Future (Sequential Access Files)

408

To finish coding the btnRead control’s Click event procedure:

1. Click after the letter p in the Loop clause and then press Enter to insert a blank line.

2. Enter the following comment and statement:

' close the file
inFile.Close()

Figure 22-13 shows the code entered in the Read from File button’s Click event procedure.

To test the btnRead control’s Click event procedure:

1. Save the solution and then start the application. Click the Read from File button. The
five names contained in the contestants.txt file appear in the Contestants box, as shown
in Figure 22-14.

Private Sub btnRead_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnRead.Click
 ' reads names from a sequential access file
 ' and displays them in the interface

 ' declare variables
 Dim inFile As IO.StreamReader
 Dim strName As String

 ' clear previous names from the Contestants box
 txtContestants.Text = String.Empty

 ' determine whether the file exists
 If IO.File.Exists("contestants.txt") = True Then
 ' open the file for input
 inFile = IO.File.OpenText("contestants.txt")
 ' process the loop instructions until the end of the file
 Do Until inFile.Peek = -1
 ' read a name
 strName = inFile.ReadLine
 ' display the name
 txtContestants.Text = txtContestants.Text &
 strName & ControlChars.NewLine
 Loop
 ' close the file
 inFile.Close()

 Else
 MessageBox.Show("Can't find the contestants.txt file",
 "Game Show Contestants",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If
End Sub

Figure 22-13 Read from File button’s Click event procedure

Now Read Those Lines of Text

409

2. On your own, add the following two names to the file:

Ginger Ozark
James Kartony

3. Click the Read from File button to display the seven names in the interface, and then
click the Exit button.

4. Next, you will modify the If clause in the btnRead control’s Click event procedure. More
specifically, you will change the Exists method’s fileName argument from contestants.txt
to Chap22\contestants.txt. Doing this will allow you to test the code entered in the
selection structure’s false path. Change contestants.txt in the If clause to
Chap22\contestants.txt.

5. Save the solution and then start the application. Click the Read from File button.
Because the contestants.txt file does not exist in the Chap22 folder, the Exists method in
the If clause returns the Boolean value False. As a result, the instruction in the selection
structure’s false path is processed. The instruction displays the “Can’t find the
contestants.txt file” message in a message box. Close the message box and then click the
Exit button.

6. Change Chap22\contestants.txt in the If clause to contestants.txt. Save the solution
and then start the application. Click the Read from File button to display the contents
of the contestants.txt file in the Contestants box.

7. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 22-2
See Appendix B for the answers.

1. Write the code to declare a variable that can be used to read data from a sequential
access file. Name the variable inFile.

2. The OpenText method creates a object.

3. The string returned by the ReadLine method contains the newline character.

a. True b. False

Figure 22-14 Contents of the contestants.txt file listed in the Contestants box

To learn
more about
sequential
access
files, see

the Sequential Access
Files section in the
Ch22WantMore.pdf file.

To learn
how to
handle
exceptions
that occur

when using sequential
access files, view the
Ch22-TryCatch video.

C H A P T E R 2 2 I’m Saving for the Future (Sequential Access Files)

410

Summary
l An application can write data to a sequential access file. It also can read data from the file.

The data in a sequential access file is always accessed in consecutive order (sequentially)
from the beginning of the file through the end of the file.

l You use a StreamWriter object to write a sequence (stream) of characters to a
sequential access file. The StreamWriter object is created when you open a file for
either output or append. You use a StreamReader object to read a sequence (stream)
of characters from a sequential access file. The StreamReader object is created when
you open a file for input.

l You can use either the Write method or the WriteLine method to write data to a sequential
access file. You use the ReadLine method to read a line of text from a sequential access file.
The ReadLine method returns a string that includes only the characters on the current line;
it does not include the newline character at the end of the line.

l You should use the Close method to close a sequential access file as soon as you are finished
using the file.

l You can use a text box’s Focus method to send the focus to the text box.

l The Exists method returns a Boolean value that indicates whether a sequential access file
exists.

l If a file contains another character to read, the Peek method returns the character;
otherwise, it returns the number –1.

Key Terms
AppendText method—used with a StreamWriter variable to open a sequential access file for
append

Close method—used with either a StreamWriter variable or a StreamReader variable to close a
sequential access file

CreateText method—used with a StreamWriter variable to open a sequential access file for
output

Exists method—used to determine whether a file exists

Focus method—moves the focus to a specified control during run time

Input files—files from which an application reads data

Line—a sequence (stream) of characters followed by the newline character

OpenText method—used with a StreamReader variable to open a sequential access file for input

Output files—files to which an application writes data

Peek method—used with a StreamReader variable to determine whether a file contains another
character to read

ReadLine method—used with a StreamReader variable to read a line of text from a sequential
access file

Sequential access files—files composed of lines of text that are both read and written
sequentially; also called text files

Stream of characters—a sequence of characters

StreamReader object—used to read a sequence (stream) of characters from a sequential access file

Key Terms

411

StreamWriter object—used to write a sequence (stream) of characters to a sequential
access file

Text files—another name for sequential access files

Write method—used with a StreamWriter variable to write data to a sequential access
file; differs from the WriteLine method in that it does not write a newline character after
the data

WriteLine method—used with a StreamWriter variable to write data to a sequential access file;
differs from the Write method in that it writes a newline character after the data

Review Questions
1. Which of the following opens the cities.txt file and allows the computer to write new data

to the end of the file’s existing data?

a. outFile = IO.File.AddText("cities.txt")

b. outFile = IO.File.AppendText("cities.txt")

c. outFile = IO.File.InsertText("cities.txt")

d. outFile = IO.File.OpenText("cities.txt")

2. If the file to be opened exists, the method erases the file’s contents.

a. AppendText

b. CreateText

c. InsertText

d. OpenText

3. Which of the following reads a line of text from a sequential access file and assigns the
line (excluding the newline character) to the strLine variable?

a. inFile.Read(strLine)

b. inFile.ReadLine(strLine)

c. strLine = inFile.ReadLine

d. strLine = inFile.Read(line)

4. What does the Peek method return when the end of the file is reached?

a. –1

b. 0

c. the last character in the file

d. the newline character

5. Which of the following can be used to determine whether the pay.txt file exists?

a. If IO.File.Exists("pay.txt") = True Then

b. If IO.File("pay.txt").Exists = True Then

c. If IO.Exists("pay.txt") = True Then

d. If IO.Exists.File("pay.txt") = True Then

6. Which of the following closes an input sequential access file named states.txt? The file is
associated with a StreamReader variable named inFile.

a. StreamReader(inFile).Close()

b. StreamReader.Close(inFile)

c. inFile.Close()

d. Close(inFile)

C H A P T E R 2 2 I’m Saving for the Future (Sequential Access Files)

412

7. Which of the following writes the contents of the strFirst and strLast variables on
separate lines in the names.txt file? The file is associated with a StreamWriter object
named outFile.

a. StreamWriter.WriteLine(strFirst)
StreamWriter.Write(strLast)

b. outFile.WriteLine(strFirst)
outFile.WriteLine(strLast)

c. outFile.Write(strFirst)
outFile.Write(strLast)

d. outFile("names.txt").WriteLine(strFirst)
outFile("names.txt").WriteLine(strLast)

Exercises
1. Open the Gross Pay Solution (Gross Pay Solution.sln) file contained in the

ClearlyVB2010\Chap22\Gross Pay Solution folder. If necessary, open the designer
window. The interface provides a text box for entering a gross pay amount. The Save
button should write the gross pay amount to a sequential access file named gross.txt.
Save the file in the project’s bin\Debug folder. The Display button should read the gross
pay amounts from the gross.txt file and display each (formatted with a dollar sign and
two decimal places) in the interface. Open the Code Editor window. Code the Click
event procedures for the btnSave and btnDisplay controls. Save the solution and then
start the application. Write the following 10 gross pay amounts to the file: 600, 1250,
750.67, 350.75, 2000, 450, 125.89, 560, 1400, and 555.78. Click the Display button to
display the gross pay amounts in the interface. Close the Code Editor window and then
close the solution. (See Appendix B for the answer.)

2. Open the Name Solution (Name Solution.sln) file contained in the ClearlyVB2010\
Chap22\Name Solution folder. If necessary, open the designer window. Open the
names.txt file contained in the project’s bin\Debug folder. The sequential access file
contains five names. Close the names.txt window. The Display button’s Click event
procedure should read the five names contained in the names.txt file, storing each in a
five-element one-dimensional array. The procedure should sort the array in ascending
order and then display the contents of the array in the lblFriends control. Code the
procedure. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution. If you need to recreate the names.txt file,
open the file in a window in the IDE. Delete the contents of the file and then type the
following five names, pressing Enter after typing each name: Jennifer, Zelda, Abby,
Bruce, and Karen. (See Appendix B for the answer.)

3. Open the Salary Solution (Salary Solution.sln) file contained in the ClearlyVB2010\
Chap22\Salary Solution folder. If necessary, open the designer window. Open the Code
Editor window and study the existing code. The btnDisplay control’s Click event
procedure stores six salary amounts in a one-dimensional Integer array named
intSalaries. Each salary amount corresponds to a salary code from 1 through 6. Code
1’s salary is stored in the intSalaries(0) element in the array, code 2’s salary is stored
in the intSalaries(1) element, and so on. After storing the salary amounts in the
array, the procedure prompts the user to enter a salary code. It then displays the
amount associated with the code. Currently, the Dim statement assigns the six salary
amounts to the array. Modify the procedure so that it reads the salary amounts from the
salary.txt file and stores each in the array. The salary.txt file is contained in the project’s
bin\Debug folder. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

TRY THIS

TRY THIS

MODIFY THIS

Exercises

413

4. Open the CD Solution (CD Solution.sln) file contained in the ClearlyVB2010\Chap22\
CD Solution-Introductory folder. The interface provides a text box for entering the
name of a CD. The Save CD button’s Click event procedure should write the CD name
to a sequential access file named cds.txt. Save the file in the project’s bin\Debug folder.
The Display CDs button’s Click event procedure should read the CD names from
the cds.txt file and display each in the interface. Open the Code Editor window and code
both procedures. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

5. Open the Test Scores Solution (Test Scores Solution.sln) file contained in the
ClearlyVB2010\Chap22\Test Scores Solution folder. Open the Code Editor window.
The btnSave control’s Click event procedure should allow the user to enter an unknown
number of test scores, saving each score in a sequential access file. The btnCount
control’s Click event procedure should display (in a message box) the number of scores
stored in the file. Code both procedures. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

6. Open the CD Solution (CD Solution.sln) file contained in the ClearlyVB2010\Chap22\
CD Solution-Intermediate folder. The interface allows the user to enter the name of a
CD and the name of the artist associated with the CD. The Save Information button’s
Click event procedure should write the CD and artist names to a sequential access file
named cdInfo.txt. Save the file in the project’s bin\Debug folder. The CD and artist
names should be written on separate lines in the file. In other words, the first CD name
should be written on the first line in the file, and the first artist name should be written
on the second line in the file. The Display Information button’s Click event procedure
should read the names from the cdInfo.txt file and display each in the interface. Display
the CD names in the txtCds control. Display the artist names in the txtArtists
control. Open the Code Editor window and code both procedures. Save the solution
and then start and test the application. Close the Code Editor window and then close
the solution.

7. In this exercise, you code an application that reads five numbers from a sequential
access file and stores the numbers in a one-dimensional array. The application then
increases each number by 1 and writes the numbers to the file. The application also
displays the current contents of the sequential access file. Open the Numbers Solution
(Numbers Solution.sln) file contained in the ClearlyVB2010\Chap22\Numbers Solution
folder. Open the Code Editor window. Code the btnDisplay control’s Click event
procedure so it reads the five numbers stored in the numbers.txt file and displays the
numbers in the lblNumbers control. The numbers.txt file is contained in the project’s
bin\Debug folder. Currently, the file contains the numbers 1 through 5. Code the
btnUpdate control’s Click event procedure so it reads the five numbers from the
numbers.txt file and stores the numbers in an array. It then should increase each
number in the array by 1 and write the array contents to an empty numbers.txt file. Save
the solution and then start the application. Click the Display button. The numbers 1
through 5 appear in the interface. Click the Update button and then click the Display
button. The numbers 2 through 6 appear in the interface. Close the Code Editor
window and then close the solution. If you need to recreate the numbers.txt file, open
the file in a window in the IDE. Delete the contents of the file and then type the
numbers 1 through 5, pressing Enter after typing each number.

8. During July and August of each year, the Political Awareness Organization (PAO) sends
a questionnaire to the voters in its district. The questionnaire asks each voter for his or
her political party (Democratic, Republican, or Independent) and age. From the
returned questionnaires, the organization’s secretary tabulates the number of
Democrats, Republicans, and Independents in the district. The secretary wants an
application that she can use to save each respondent’s information (political party and
age) to a sequential access file. The application also should calculate and display the

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

ADVANCED

C H A P T E R 2 2 I’m Saving for the Future (Sequential Access Files)

414

number of voters in each political party. Create a new Visual Basic Windows
application. Use the following names for the solution and project, respectively: PAO
Solution and PAO Project. Save the application in the ClearlyVB2010\Chap22 folder.
Change the name of the form file on your disk to frmMain.vb. If necessary, change the
form’s name to frmMain. Create the interface shown in Figure 22-15. The Party text
box should accept only the Backspace key and the letters D, d, R, r, I, or i. The Age text
box should accept only numbers and the Backspace key. Code the Click event
procedures for the Write to File and Display Totals buttons. Save the solution and then
start and test the application. Close the Code Editor window and then close the
solution.

9. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap22\FigureThisOut Solution folder. Open the Code Editor window
and study the existing code. Why does the true path in the btnWrite control’s Click
event procedure use the CreateText method to open the sequential access file, while its
false path uses the AppendText method? Start and test the application. Close the Code
Editor window and then close the solution.

10. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap22\SwatTheBugs Solution folder. Open the Code Editor window
and study the existing code. Start the application. Test the application using Sue and
1000, and then using Pete and 5000. After a short time, the application ends with an
error. Read the error message. Click Debug on the menu bar and then click Stop
Debugging. Open the bonus.txt file. Notice that the file is empty. Close the bonus.txt
window. Locate and correct the errors in the code. Save the solution and then start and
test the application again. Close the Code Editor window and then close the solution.

Figure 22-15 Interface for Exercise 8

FIGURE THIS OUT

SWAT THE BUGS

Exercises

415

This page intentionally left blank

CHAPTER 23
The String Section
(String Manipulation)

After studying Chapter 23, you should be able to:

Determine the number of characters in a string

Remove spaces from the beginning and end of a string

Replace characters in a string

Insert characters in a string

Search a string

Access characters in a string

Remove characters located anywhere in a string

Compare strings using pattern-matching

Working with Strings
Many times, an application will need to manipulate (process) string data in some way. For
example, it may need to look at the first character in an inventory part number to determine the
part’s location in the warehouse. Or, it may need to search an address to determine the street
name. In this chapter, you will learn several ways of manipulating strings in Visual Basic. You
will begin by learning how to determine the number of characters in a string.

How Many Characters Are There?
If an application expects the user to enter a seven-digit phone number or a five-digit ZIP code,
you should verify that the user entered the required number of characters. The number of
characters contained in a string is stored in the string’s Length property. Not surprisingly, the
value stored in the property is an integer. Figure 23-1 shows the syntax of the Length property
and includes examples of using the property. In the syntax, string can be a String variable, a
String named constant, or the Text property of a control.

Get Rid of Those Spaces
When entering data in either a text box or an input box, it’s not unusual for a user to
inadvertently press the Spacebar either before or after typing the data. You can use the Trim
method to remove (trim) these extraneous space characters. Figure 23-2 shows the method’s
syntax and includes an example of using the method. In the syntax, string can be a String
variable, a String named constant, or the Text property of a control. When processing the Trim
method, the computer first makes a temporary copy of the string in memory. It then performs
the necessary trimming on the copy only. In other words, the Trim method does not remove
any characters from the original string. The Trim method returns a string that excludes any
leading or trailing spaces. (You learned about the Trim method in Chapter 11.)

Length property

Syntax Purpose
string.Length stores an integer that represents the number of characters
 contained in the string

Example 1
strFullName = "Lee Thompson"
intNumChars = strFullName.Length
assigns the number 12 to the intNumChars variable

Example 2
intNumChars = txtZip.Text.Length
assigns the number of characters in the txtZip control’s Text property to the intNumChars
variable

Example 3
Do
 strZip = InputBox("5-digit ZIP code", "ZIP")
Loop Until strZip.Length = 5
continues prompting the user for a ZIP code until the user enters exactly five characters

Figure 23-1 Syntax and examples of the Length property

C H A P T E R 2 3 The String Section (String Manipulation)

418

You will use both the Length property and the Trim method in the Product ID application,
which you code in the next section.

The Product ID Application
The Product ID application displays (in a label control) a listing of the product IDs entered by
the user. Each product ID must contain exactly five characters.

To code and then test the Product ID application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express and permanently display the
Solution Explorer window. Open the Product Solution (Product Solution.sln) file
contained in the ClearlyVB2010\Chap23\Product Solution folder. If the designer window
is not open, double-click frmMain.vb in the Solution Explorer window. The interface
provides a text box for entering the product ID.

2. Open the Code Editor window and locate the btnAdd control’s Click event procedure.
Before verifying the product ID’s length, you will remove any leading and trailing spaces
from the ID. Click the blank line below the ' remove any leading and trailing
spaces comment and then enter the following assignment statement:

strId = txtId.Text.Trim

3. Now you will determine whether the ID contains exactly five characters. Click the blank
line below the ' verify length comment and then enter the following If clause:

If strId.Length = 5 Then

4. If the ID contains exactly five characters, the selection structure’s true path should
display the ID in the lblListing control. Enter the following assignment statement:

lblListing.Text = lblListing.Text &
strId.ToUpper & ControlChars.NewLine

5. If the ID does not contain exactly five characters, the selection structure’s false path
should display an appropriate message. Enter the additional four lines of code indicated
in Figure 23-3.

Trim method

Syntax Purpose
string.Trim removes any spaces from both the beginning and end of a string

Example
strFullName = txtName.Text.Trim
assigns the contents of the txtName control’s Text property, excluding any leading and trailing
spaces, to the strFullName variable

Figure 23-2 Syntax and an example of the Trim method

Get Rid of Those Spaces

419

6. Save the solution and then start the application. First, you will enter an ID that contains
four characters. Type abc2 as the product ID and then click the Add to List button.
A message box opens and displays the “ID must contain 5 characters.” message.
Close the message box.

7. Now you will include two trailing spaces after the ID. Change the product ID to abc23
and then press the Spacebar twice. Click the Add to List button. ABC23 appears in
the listing of product IDs.

8. On your own, test the application using an ID that contains nine characters. Also test
it using an ID that contains both leading and trailing spaces.

9. When you are finished testing the application, click the Exit button. Close the Code
Editor window and then close the solution.

Let’s Make a Substitution
Visual Basic provides the Replace method for replacing a sequence of characters in a string with
another sequence of characters, such as replacing area code “(800)” with area code “(877)” in
a phone number. Figure 23-4 shows the syntax of the Replace method and includes examples
of using the method. In the syntax, string can be a String variable, a String named constant,
or the Text property of a control. The oldValue argument is the sequence of characters that you
want to replace in the string, and the newValue argument contains the replacement characters.
When processing the Replace method, the computer makes a temporary copy of the string
in memory and then replaces the characters in the copy only. The Replace method returns
a string with all occurrences of oldValue replaced with newValue.

enter these four
lines of code

Figure 23-3 btnAdd control’s Click event procedure

C H A P T E R 2 3 The String Section (String Manipulation)

420

I Need to Fit This in Somewhere
Rather than replacing characters in a string, an application may need to insert characters in a
string. You insert characters using the Insert method. Possible uses for the method include
inserting an employee’s middle initial within his or her name and inserting parentheses around
the area code in a phone number. Figure 23-5 shows the Insert method’s syntax along with
examples of using the method. In the syntax, string can be a String variable, a String named
constant, or the Text property of a control.

When processing the Insert method, the computer makes a temporary copy of the string in
memory. It then performs the specified insertion on the copy only. In other words, the method
does not affect the original string. The startIndex argument in the Insert method is an integer
that specifies where in the string’s copy you want the value inserted. The integer represents
the character’s index—in other words, its position in the string. The first character in a string
has an index of 0; the second character has an index of 1, and so on. To insert the value
beginning with the first character in the string, you use a startIndex of 0, as shown in Example 1 in
Figure 23-5. To insert the value beginning with the fifth character in the string, you use a
startIndex of 4, as shown in Example 2. The Insert method returns a string with the appropriate
characters inserted.

Replace method

Syntax Purpose
string.Replace(oldValue, newValue) replaces every occurrence of oldValue with newValue

Example 1
strPhone = "(800) 111-2222"
strPhone = strPhone.Replace("(800)", "(877)")
changes the contents of the strPhone variable to (877) 111-2222

Example 2
strWord = "latter"
strWord = strWord.Replace("t", "d")
changes the contents of the strWord variable to ladder

Figure 23-4 Syntax and examples of the Replace method

Insert method

Syntax Purpose
string.Insert(startIndex, value) inserts characters anywhere in a string

Example 1
strPhone = "111-2222"
txtPhone.Text = strPhone.Insert(0, "(877) ")
changes the contents of the txtPhone control’s Text property to (877) 111-2222

Example 2
strName = "Rob Smith"
strFullName = strName.Insert(4, "T. ")
changes the contents of the strFullName variable to Rob T. Smith

Figure 23-5 Syntax and examples of the Insert method

I Need to Fit This in Somewhere

421

You will use the Replace and Insert methods in the Phone Numbers application, which you code
in the next section.

The Phone Numbers Application
The Phone Numbers application saves (in a sequential access file) the phone numbers entered
by the user. Each phone number is entered using 12 characters in the following format:
111-222-3333. Before writing a phone number to the file, the application removes the
hyphens and then verifies that the phone number contains 10 characters (the original
12 characters minus the two hyphens). The application also displays the phone numbers
contained in the file, both with and without the hyphens.

To begin coding the Phone Numbers application:

1. Open the Phone Solution (Phone Solution.sln) file contained in the ClearlyVB2010\
Chap23\Phone Solution folder. If the designer window is not open, double-click
frmMain.vb in the Solution Explorer window. The interface provides a text box for
entering a phone number.

2. Open the Code Editor window and locate the txtPhone control’s KeyPress event
procedure. Notice that the text box will accept only numbers, the hyphen, and the
Backspace key.

3. Locate the btnSave control’s Click event procedure. Before saving the phone number to
the sequential access file, the procedure will replace the hyphens with the empty string.
Click the blank line below the ' remove the hyphens comment and then enter the
following assignment statement:

strPhone = txtPhone.Text.Replace("-", String.Empty)

4. Save the solution and then start the application. First, you will enter an invalid phone
number. Type 111-2222 as the phone number and then click the Save button. A message
box opens and displays the “Invalid phone number” message. Close the message box.

5. Next, you will enter two valid phone numbers. Type 111-222-3333 as the phone
number and then click the Save button. Now type 222-333-4444 as the phone number
and then click the Save button.

6. Click the Display button. The button’s Click event procedure reads each phone number
from the phoneNumbers.txt file and displays each in the lblFileContents control. See
Figure 23-6. Notice that the phone numbers do not contain any hyphens.

7. Click the Exit button.

lblFileContents
control

Figure 23-6 Contents of the file displayed in the lblFileContents control

C H A P T E R 2 3 The String Section (String Manipulation)

422

In addition to displaying the phone numbers contained in the phoneNumbers.txt file, the
Display button also should insert the appropriate hyphens in each number and then display the
formatted number in the lblFormattedNumbers control. You can insert the hyphens using the
Insert methods shown in Figure 23-7.

To finish coding the Phone Numbers application:

1. Locate the btnDisplay control’s Click event procedure. Click the blank line below the
' display the phone number with hyphens comment.

2. Enter the following lines of code:

strPhone = strPhone.Insert(3, "-")
strPhone = strPhone.Insert(7, "-")
lblFormattedNumbers.Text =

lblFormattedNumbers.Text &
strPhone & ControlChars.NewLine

Figure 23-8 shows the code entered in the Click event procedures for the btnSave and
btnDisplay controls.

Private Sub btnSave_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnSave.Click
 ' saves the phone number to a sequential access file

 ' declare variables
 Dim strPhone As String
 Dim outFile As IO.StreamWriter

 ' remove the hyphens
 strPhone = txtPhone.Text.Replace("-", String.Empty)

 ' verify the length
 If strPhone.Length = 10 Then
 outFile = IO.File.AppendText("phoneNumbers.txt")
 outFile.WriteLine(strPhone)
 outFile.Close()
 Else
 MessageBox.Show ("Invalid phone number",
 "Phone Numbers",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If

Replace method

Figure 23-8 Click event procedures for the btnSave and btnDisplay controls (continues)

Original phone number: 1112223333

strPhone = strPhone.Insert("-", 3) 111-2223333
strPhone = strPhone.Insert("-", 7) 111-222-3333

insert the first
hyphen in position 3

insert the second
hyphen in position 7

Figure 23-7 Statements needed to insert the two hyphens

I Need to Fit This in Somewhere

423

Insert methods

 ' clear the txtPhone control, then set the focus
 txtPhone.Text = String.Empty
 txtPhone.Focus()
End Sub

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays the phone numbers contained in the file
 ' also displays the phone numbers after inserting hyphens

 ' declare variables
 Dim inFile As IO.StreamReader
 Dim strPhone As String

 ' clear previous phone numbers from the labels
 lblFileContents.Text = String.Empty
 lblFormattedNumbers.Text = String.Empty

 ' determine whether the file exists
 If IO.File.Exists("phoneNumbers.txt") = True Then
 ' open the file for input
 inFile = IO.File.OpenText("phoneNumbers.txt")
 ' process loop until end of the file
 Do Until inFile.Peek = -1
 ' read a phone number, then display the number
 strPhone = inFile.ReadLine
 lblFileContents.Text = lblFileContents.Text &
 strPhone & ControlChars.NewLine
 ' display the phone number with hyphens
 strPhone = strPhone.Insert (3, "-")
 strPhone = strPhone.Insert (7, "-")
 lblFormattedNumbers.Text =
 lblFormattedNumbers.Text &
 strPhone & ControlChars.NewLine

 Loop
 ' close the file
 inFile.Close()
 Else
 MessageBox.Show ("Can't find the phoneNumbers.txt file",
 "Phone Numbers", MessageBoxButtons. OK,
 MessageBoxIcon.Information)
 End If
End Sub

Figure 23-8 Click event procedures for the btnSave and btnDisplay controls

(continued)

C H A P T E R 2 3 The String Section (String Manipulation)

424

To test the Phone Numbers application:

1. Save the solution and then start the application. Click the Display button. The button’s Click
event procedure displays the numbers both with and without hyphens. See Figure 23-9.

2. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 23-1
See Appendix B for the answers.

1. Write the Visual Basic statement to remove the leading and trailing spaces from the
txtAddress control.

2. Write a Visual Basic statement that uses the Insert method to change the contents of
the strWord variable from “men” to “women”.

3. Write the Visual Basic statement that uses the Replace method to change the contents
of the strWord variable from “dog” to “frog”.

Where Does It Begin?
You can use the IndexOf method to search a string to determine whether it contains a
specific sequence of characters. Possible uses for the method include determining whether
the area code “(312)” appears in a phone number, and whether “Elm Street” appears in an
address. Figure 23-10 shows the IndexOf method’s syntax. In the syntax, string can be a String
variable, a String named constant, or the Text property of a control. The subString argument
represents the sequence of characters for which you are searching, and the optional startIndex
argument represents the starting position for the search.

The IndexOf method performs a case-sensitive search, which means the case of the subString
must match the case of the string in order for both to be considered equal. The IndexOf method
returns an integer—either –1 if the subString is not contained in the string, or the character
index that represents the starting position of the subString in the string. Unless you specify
otherwise, the IndexOf method starts the search with the first character in the string. To specify
a different starting location, you use the optional startIndex argument. For instance, to begin the
search with the second character in the string, you use a startIndex of 1.

Figure 23-9 Numbers displayed both with and without hyphens

Where Does It Begin?

425

Also included in Figure 23-10 are examples of using the IndexOf method. Notice that two
methods appear in the expression in Example 1: ToUpper and IndexOf. When an expression
contains more than one method, the computer processes the methods from left to right. In this
case, the computer will process the ToUpper method before it processes the IndexOf method.

I Just Want a Part of It
In some applications, it is necessary to access one or more characters contained in a string. For
instance, you may need to display only the string’s first five characters, which identify an item’s
location in the warehouse. Visual Basic provides the Substring method for accessing any
number of characters in a string. Figure 23-11 shows the method’s syntax and includes examples
of using the method. In the syntax, string can be a String variable, a String named constant, or
the Text property of a control.

When processing the Substring method, the computer first makes a temporary copy of the
string in memory. It then accesses the specified number of characters in the copy only.
The startIndex argument in the syntax is the index of the first character you want to access
in the string. As you already know, the first character in a string has an index of 0. The optional
numCharsToAccess argument specifies the number of characters you want to access. The
Substring method returns a string that contains the number of characters specified in the
numCharsToAccess argument, beginning with the character whose index is startIndex. If you
omit the numCharsToAccess argument, the Substring method returns all characters from the
startIndex position through the end of the string.

IndexOf method

Syntax Purpose
string.IndexOf(subString[, startIndex]) determines whether a string contains a
 specific sequence of characters and then
 returns either –1 or an integer that represents
 the starting position of the characters

Example 1
strMsg = "Visual Basic is fun!"
intIndex = strMsg.ToUpper.IndexOf ("FUN")
assigns the number 16 to the intIndex variable

Example 2
strMsg = "Visual Basic is fun!"
intIndex = strMsg.IndexOf ("is", 7)
assigns the number 13 to the intIndex variable

Example 3
strMsg = "Visual Basic is fun!"
intIndex = strMsg.IndexOf ("S")
assigns the number –1 to the intIndex variable, because the strMsg variable does not
contain an uppercase letter S

character index 16

character index 13

Figure 23-10 Syntax and examples of the IndexOf method

C H A P T E R 2 3 The String Section (String Manipulation)

426

You will use the IndexOf and Substring methods in the Rearrange Name application, which you
code in the next section.

The Rearrange Name Application
The Rearrange Name application’s interface provides a text box for entering a person’s first
name followed by a space and the person’s last name. The application rearranges the name so
that the last name comes first, followed by a comma, a space, and the first name.

To code the Rearrange Name application:

1. Open the Rearrange Name Solution (Rearrange Name Solution.sln) file contained in
the ClearlyVB2010\Chap23\Rearrange Name Solution folder. If the designer window is
not open, double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window and locate the btnRearrange control’s Click event
procedure. The procedure assigns the name entered by the user, excluding any leading
and trailing spaces, to the strName variable.

3. Before you can rearrange the name stored in the strName variable, you need to separate
the first name from the last name. To do this, you first search for the space character
that appears between the names. Click the blank line below the ' search for the
space in the name comment and then enter the following assignment statement, being
sure to include a space character between the quotation marks:

intIndex = strName.IndexOf(" ")

4. If the value in the intIndex variable is not –1, it means that the IndexOf method found
a space character in the strName variable. In that case, the selection structure’s true path
should continue rearranging the name; otherwise, its false path should display the
“Invalid name format” message. Notice that the statement to display the message is
already entered in the selection structure’s false path. Change the If clause in the
procedure to the following:

If intIndex <> –1 Then

Substring method

Syntax Purpose
string.Substring(startIndex[, numCharsToAccess]) accesses any number of characters
 contained in a string

Example 1
strFullName = "Peggy Ryan"
strFirst = strFullName.Substring(0, 5)
strLast = strFullName.Substring(6)
assigns the string “Peggy” to the strFirst variable and the string “Ryan” to the strLast
variable; you also can write the last assignment statement as strLast =
strFullName.Substring(6, 4)

Example 2
strEmployeeNum = "56P34"
strDept = strEmployeeNum.Substring(2, 1)
assigns the string “P” to the strDept variable

character
index 0

character
index 2

character
index 6

Figure 23-11 Syntax and examples of the Substring method

I Just Want a Part of It

427

5. Now you will use the value stored in the intIndex variable to separate the first name
from the last name. Click the blank line below the ' separate the first and last
names comment. All of the characters to the left of the space character represent the
first name, and all of the characters to the right of the space character represent the last
name. Enter the following assignment statements:

strFirstName = strName.Substring(0, intIndex)
strLastName = strName.Substring(intIndex + 1)

6. Finally, you will display the rearranged name in the interface. Click the blank line above
the Else clause and then enter the following line of code, being sure to include a space
character after the comma:

lblRearrangedName.Text =
strLastName & ", " & strFirstName

Figure 23-12 shows the code entered in the btnRearrange control’s Click event procedure.

Private Sub btnRearrange_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnRearrange.Click
 ' rearranges and then displays a name

 Dim strName As String
 Dim strFirstName As String
 Dim strLastName As String
 Dim intIndex As Integer

 ' assign the input to a variable
 strName = txtName.Text.Trim

 ' search for the space in the name
 intIndex = strName.IndexOf (" ")

 ' if the input contains a space
 If intIndex <> -1 Then
 ' separate the first and last names
 strFirstName = strName.Substring(0, intIndex)
 strLastName = strName.Substring(intIndex + 1)

 ' display last name, comma, space, and first name
 lblRearrangedName.Text =
 strLastName & ", " & strFirstName

 Else ' processed when name does not contain a space
 MessageBox.Show ("Invalid name format",
 "Rearrange Name",
 MessageBoxButtons. OK,
 MessageBoxIcon.Information)
 End If
End Sub

IndexOf method

Substring methods

Figure 23-12 btnRearrange control’s Click event procedure

C H A P T E R 2 3 The String Section (String Manipulation)

428

To test the Rearrange Name application’s code:

1. Save the solution and then start the application. Type Veronica Chowski as
the name and then click the Rearrange Name button. The button’s Click
event procedure rearranges the name and then displays it in the interface. See
Figure 23-13.

2. Click the Exit button. Close the Code Editor window and then close the solution.

Throw Away Those Characters
You can use the Remove method to remove a specified number of characters located
anywhere in a string. Figure 23-14 shows the method’s syntax and includes examples of
using the method. In the syntax, string can be a String variable, a String named constant, or
the Text property of a control. When processing the Remove method, the computer first
makes a temporary copy of the string in memory. It then performs the specified removal
on the copy only. In other words, the Remove method does not remove any characters
from the original string. The Remove method returns a string with the appropriate
characters removed.

The Remove method’s startIndex argument is the index of the first character you want
removed from the string. The optional numCharsToRemove argument is the number of
characters you want removed. To remove only the first character from a string, you use 0
as the startIndex and 1 as the numCharsToRemove. To remove the fourth through the
eighth characters, you use 3 as the startIndex and 5 as the numCharsToRemove. If the
numCharsToRemove argument is omitted, the Remove method removes all of the
characters from the startIndex position through the end of the string, as shown in Example
2 in Figure 23-14.

Figure 23-13 Rearranged name shown in the interface

Throw Away Those Characters

429

You will use the Remove method in the Last Name application, which you code in the
next section.

The Last Name Application
The Last Name application’s interface provides a text box for entering a person’s first name
followed by a space and the person’s last name. The application displays only the person’s
last name.

To code the Last Name application:

1. Open the Last Name Solution (Last Name Solution.sln) file contained in the
ClearlyVB2010\Chap23\Last Name Solution folder. If the designer window is not open,
double-click frmMain.vb in the Solution Explorer window.

2. Open the Code Editor window and locate the btnDisplay control’s Click event
procedure. The procedure assigns the name entered by the user, excluding any leading
or trailing spaces, to the strName variable.

3. Before you can display only the last name stored in the strName variable, you need
to separate the last name from the first name. To do this, you first search for
the space character that appears between the names. Click the blank line below
the ' search for the space in the name comment and then enter the following
assignment statement, being sure to include a space character between the
quotation marks:

intIndex = strName.IndexOf(" ")

Remove method

Syntax Purpose
string.Remove(startIndex[, numCharsToRemove]) removes characters from anywhere in a string

Example 1
strName = "Joanne Cromwell"
txtLast.Text = strName.Remove(0, 7)
assigns the string “Cromwell” to the txtLast control’s Text property

Example 2
strName = "Jerry Helperson"
txtFirst.Text = strName.Remove(5)
assigns the string “Jerry” to the txtFirst control’s Text property; you also can write the last
assignment statement as txtFirst.Text = strName.Remove(5, 10)

Example 3
strFirst = "John"
strFirst = strFirst.Remove(2, 1)
assigns the string “Jon” to the strFirst variable

Figure 23-14 Syntax and examples of the Remove method

C H A P T E R 2 3 The String Section (String Manipulation)

430

4. If the value in the intIndex variable is –1, it means that the IndexOf method did not
find a space character in the strName variable. In that case, the selection structure’s true
path should display the “Invalid name format” message. Notice that the procedure
already contains the appropriate code.

5. However, if the value in the intIndex variable is not –1, the selection structure’s false
path should display only the person’s last name. The last name begins with the character
to the right of the space character. To display only the last name, you simply need
to remove the first name and the space character. Click the blank line below the
' display the last name comment and then enter the following assignment statement:

lblLast.Text = strName.Remove(0, intIndex)

Figure 23-15 shows the code entered in the btnDisplay control’s Click event procedure.

Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click
 ' displays the last name

 Dim strName As String
 Dim intIndex As Integer

 ' assign the input to a variable
 strName = txtName.Text.Trim

 ' search for the space in the name
 intIndex = strName.IndexOf(" ")

 ' determine whether the name contains a space
 If intIndex = -1 Then
 MessageBox.Show("Invalid name format",
 "Last Name",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 Else

 ' display the last name
 lblLast.Text = strName.Remove(0, intIndex)
 End If
End Sub

Remove method

Figure 23-15 btnDisplay control’s Click event procedure

Throw Away Those Characters

431

To test the Last Name application’s code:

1. Save the solution and then start the application. Type Susan Paransky as the name
and then click the Display Last Name button. The button’s Click event procedure
displays the last name in the interface, as shown in Figure 23-16.

2. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 23-2
See Appendix B for the answers.

1. If the strAddress variable contains the string “34 Elmset Street”, what value will the
strAddress.IndexOf("Elm") method return?

2. If the strAddress variable contains the string “34 Elmset Street”, what value will the
strAddress.IndexOf("Elm", 4) method return?

3. The strPartNum variable contains the string “ABCD34G”. Write the Visual Basic
statement that assigns the string “CD34” from the strPartNum variable to the strCode
variable. Use the Substring method.

4. The strPartNum variable contains the string “ABCD34G”. Write the Visual Basic
statement that assigns the string “AB34G” from the strPartNum variable to the
strCode variable. Use the Remove method.

I Like This Operator
The Like operator allows you to use pattern-matching characters to determine whether one string
is equal to another string. Figure 23-17 shows the Like operator’s syntax. In the syntax, string
can be a String variable, a String named constant, or the Text property of a control. Pattern is
a String expression containing one or more of the pattern-matching characters listed in the
figure. As the figure indicates, the question mark (?) character in a pattern represents one
character only, whereas the asterisk (*) character represents zero or more characters. To represent
a single digit in a pattern, you use the number sign (#) character. The last two pattern-matching
characters listed in Figure 23-17 contain a characterList, which is simply a listing of characters.
“[A9M]” is a characterList that contains three characters: A, 9, and M. You also can include a
range of values in a characterList. You do this using a hyphen to separate the lowest value in the
range from the highest value in the range. For example, to include all lowercase letters in a
characterList, you use “[a-z]”. To include both lowercase and uppercase letters in the
characterList, you use “[a-zA-Z]”.

The Like operator compares the string to the pattern; the comparison is case-sensitive. If the string
matches the pattern, the Like operator returns the Boolean value True; otherwise, it returns the
Boolean value False. Examples of using the Like operator are included in Figure 23-17.

Figure 23-16 Last name displayed in the interface

C H A P T E R 2 3 The String Section (String Manipulation)

432

Like operator

Syntax Purpose
string Like pattern uses pattern-matching characters to determine whether
 one string is equal to another string

Pattern-matching characters Matches in string
? any single character
∗ zero or more characters
any single digit (0 through 9)
[characterList] any single character in the characterList
 (for example, “[A5T]” matches A, 5, or T,
 whereas “[a-z]” matches any lowercase letter)
[!characterList] any single character not in the characterList
 (for example, “[!A5T]” matches any character other
 than A, 5, or T, whereas “[!a-z]” matches
 any character that is not a lowercase letter)

Example 1
If strFirst.ToUpper Like "B?LL" Then
The condition evaluates to True when the string stored in the strFirst variable (converted to
uppercase) begins with the letter B followed by one character and then the two letters LL;
otherwise, it evaluates to False. Examples of strings that would make the condition evaluate to
True include “Bill”, “Ball”, “bell”, and “bull”. Examples of strings for which the condition would
evaluate to False include “BPL”, “BLL”, and “billy”.

Example 2
If txtState.Text Like "K*" Then
The condition evaluates to True when the value in the txtState control’s Text property begins with
the letter K followed by zero or more characters; otherwise, it evaluates to False. Examples of
strings that would make the condition evaluate to True include “KANSAS”, “Ky”, and
“Kentucky”. Examples of strings for which the condition would evaluate to False include
“kansas” and “ky”.

Example 3
Do While strId Like "###*"
The condition evaluates to True when the string stored in the strId variable begins with three
digits followed by zero or more characters; otherwise, it evaluates to False. Examples of strings
that would make the condition evaluate to True include “178” and “983Ab”. Examples of strings
for which the condition would evaluate to False include “X34” and “34Z5”.

Example 4
If strFirst.ToUpper Like "T[OI]M" Then
The condition evaluates to True when the string stored in the strFirst variable (converted to
uppercase) is either “TOM” or “TIM”. When the variable does not contain “TOM” or “TIM”—
for example, when it contains “TAM” or “Tommy”—the condition evaluates to False.

Example 5
If strLetter Like "[a-z]" Then
The condition evaluates to True when the string stored in the strLetter variable is one
lowercase letter; otherwise, it evaluates to False.

Figure 23-17 Syntax and examples of the Like operator (continues)

I Like This Operator

433

Modifying the Product Id Application
Earlier in this chapter, you coded the Product ID application, which displayed a listing of the
product IDs entered by the user. As you may remember, each product ID contained exactly five
characters. In the following set of steps, you will modify the application to ensure that the five
characters are three letters followed by two numbers.

To modify the Product ID application’s code:

1. Use Windows to make a copy of the Product Solution folder. Save the copy in the
ClearlyVB2010\Chap23 folder. Rename the copy Modified Product Solution.

2. Open the Product Solution (Product Solution.sln) file contained in the Modified
Product Solution folder. Double-click frmMain.vb in the Solution Explorer window to
open the designer window.

3. Open the Code Editor window and locate the btnAdd control’s Click event procedure.
Insert a blank line below the ' remove any leading and trailing spaces comment
and then type ' and then convert to uppercase.

4. Change the strId = txtId.Text.Trim statement to the following:

strId = txtId.Text.Trim.ToUpper

5. Replace the ' verify length comment with the following comments:

' verify that the ID contains 3 letters
' followed by 2 numbers

6. Change the If clause to the following:

If strId Like "[A-Z][A-Z][A-Z]##" Then

7. In the assignment statement below the If clause, change strId.ToUpper to strId.

8. Finally, in the selection structure’s false path, change the message displayed by the
MessageBox.Show method to "Invalid product ID".

Figure 23-18 shows the modified Click event procedure. The modified comments and code are
shaded in the figure.

Example 6
For intIndex As Integer = 0 to strInput.Length – 1
 strChar = strInput.Substring(intIndex, 1)
 If strChar Like "[!a-zA-Z]" Then
 intNonLetter = intNonLetter + 1
 End If
Next intIndex
Compares each character contained in the strInput variable with the lowercase and uppercase
letters of the alphabet, and counts the number of characters that are not letters.

Example 7
If strInput Like "*.*" Then
The condition evaluates to True when a period appears anywhere in the strInput variable;
otherwise, it evaluates to False.

Figure 23-17 Syntax and examples of the Like operator

(continued)

C H A P T E R 2 3 The String Section (String Manipulation)

434

To test the modified Product ID application:

1. Save the solution and then start the application. First, you will enter an invalid ID. Type
abc2f as the product ID and then click the Add to List button. A message box opens
and displays the “Invalid product ID” message. Close the message box.

2. Now you will enter a valid ID. Change the product ID to abc23 and then click the Add
to List button. ABC23 appears in the listing of product IDs.

3. On your own, test the application using different valid and invalid IDs.

4. When you are finished testing the application, click the Exit button. Close the Code
Editor window and then close the solution.

Summary
l A string’s Length property stores an integer that represents the number of characters

contained in the string.

l Visual Basic provides methods that allow you to manipulate strings. Each method covered in
this chapter is listed in the Key Terms section.

l The first character in a string has an index of 0.

Key Terms
IndexOf method—determines whether a string contains a specific sequence of characters; returns
either –1 (if the string does not contain the sequence of characters) or an integer that represents
the starting position of the characters; its syntax is string.IndexOf(subString[, startIndex])

Insert method—inserts characters anywhere in a string; its syntax is string.Insert(startIndex, value)

Private Sub btnAdd_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnAdd.Click
 ' add product ID to listing

 Dim strId As String

 ' remove any leading and trailing spaces
 ' and then convert to uppercase
 strId = txtId.Text.Trim.ToUpper

 ' verify that the ID contains 3 letters
 ' followed by 2 numbers
 If strId Like "[A-Z][A-Z][A-Z]##" Then
 lblListing.Text = lblListing.Text &
 strId & ControlChars.NewLine
 Else
 MessageBox.Show("Invalid product ID",
 "Product ID", MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End If

 txtId.Focus()
End Sub

Like operator

Figure 23-18 Click event procedure for the btnAdd control

To review
what you
learned
about string
manipulation,

view the Ch23-String
Manipulation video.

To learn
more about
other string
manipula-
tion techni-

ques, see the String
Manipulation Techniques
section in the Ch23Want-
More.pdf file.

Key Terms

435

Length property—stores an integer that represents the number of characters contained in a
string; its syntax is string.Length

Like operator—uses pattern-matching characters to determine whether one string is equal to
another string; its syntax is string Like pattern

Remove method—removes characters from anywhere in a string; its syntax is
string.Remove(startindex[, numCharsToRemove])

Replace method—replaces all occurrences of a sequence of characters in a string with another
sequence of characters; its syntax is string.Replace(oldValue, newValue)

Substring method—accesses any number of characters contained in a string; its syntax is
string.Substring(startIndex[, numCharsToAccess])

Trim method—removes any spaces from both the beginning and end of a string; its syntax is
string.Trim

Review Questions
1. Which of the following changes the string stored in the strName variable from “Mary

Smyth” to “Mark Smyth”?

a. strName = strName.Change("y", "k")

b. strName = strName.Replace("y", "k")

c. strName = strName.Replace(3, "k")

d. none of the above

2. Which of the following expressions evaluates to True when the strPart variable
contains the string “123X45”?

a. strPart Like "999[A-Z]99"

b. strPart Like "######"

c. strPart Like "###[A-Z]##"

d. none of the above

3. Which of the following changes the contents of the strCityState variable from “Boise
Idaho” to “Boise, Idaho”?

a. strCityState = strCityState.Insert(5, ",")

b. strCityState = strCityState.Insert(6, ",")

c. strCityState = strCityState.Insert(7, ",")

d. none of the above

4. If the strMessage variable contains the string “Today is Monday”, which of the following
assigns the number 9 to the intNum variable?

a. intNum = strMessage.Substring("M")

b. intNum = strMessage.Substring("M", 1)

c. intNum = strMessage.IndexOf("M")

d. intNum = strMessage.IndexOf(0, "M")

5. If the strName variable contains the string “John Jones”, which of the following changes
the contents of the variable to “John K. Jones”?

a. strName = strName.Replace(" ", " K. ")

b. strName = strName.Insert(5, "K. ")

c. strName= strName.Insert(4, " K.")

d. all of the above

C H A P T E R 2 3 The String Section (String Manipulation)

436

6. Which of the following changes the contents of the strWord variable from “Bells”
to “Bell”?

a. strWord = strWord.Trim(4)

b. strWord = strWord.Trim(5)

c. strWord = strWord.Remove(4)

d. strWord = strWord.Remove(5, 1)

7. Which of the following changes the contents of the strZip variable from 60521
to 60721?

a. strZip = strZip.Insert(2, "7")
strZip = strZip.Remove(3, 1)

b. strZip = strZip.Insert(3, "7")
strZip = strZip.Remove(2, 1)

c. strZip = strZip.Remove(2, 1)
strZip = strZip.Insert(2, "7")

d. all of the above

Exercises
1. The strAmount variable contains the string “3,123,560”. Write the Visual Basic

statement to change the contents of the variable to “3123560”; use the Replace method.
Now that the strAmount variable contains the string “3123560”, write the Visual
Basic statements to change the variable’s contents to “$3,123,560”. (See Appendix B for
the answer.)

2. Open the Zip Solution (Zip Solution.sln) file contained in the ClearlyVB2010\Chap23
\Zip Solution folder. If necessary, open the designer window. The Display Shipping
Charge button’s Click event procedure should display the shipping charge associated
with the ZIP code entered by user. To be valid, the ZIP code must contain exactly five
digits; the first three digits must be either “605” or “606”. The shipping charge for “605”
ZIP codes is $25. The shipping charge for “606” ZIP codes is $30. Display an appropriate
message if the ZIP code is invalid. Code the procedure. Save the solution and then start
the application. Test the application using the following ZIP codes: 60677, 60511, 60344,
and 7130. Close the Code Editor window and then close the solution. (See Appendix B
for the answer.)

3. In this exercise, you modify the Phone Numbers application from the chapter. Use
Windows to make a copy of the Phone Solution folder. Save the copy in the
ClearlyVB2010\Chap23 folder. Rename the copy Modified Phone Solution. Open the
Phone Solution (Phone Solution.sln) file contained in the Modified Phone Solution
folder. Open the designer and Code Editor windows. The btnSave control’s Click event
procedure should determine whether the user entered the phone number in the
required format: three digits, a hyphen, three digits, a hyphen, and four digits. Display
an appropriate message if the format is not correct. Modify the procedure appropriately.
Save the solution and then start the application. Test the application using the following
phone numbers: 1-234-567890 and 999-888-1111. Close the Code Editor window and
then close the solution.

4. Open the CityState Solution (CityState Solution.sln) file contained in the ClearlyVB2010\
Chap23\CityState Solution folder. The interface provides a text box for entering the
name of a city, followed by a comma, a space, and a state name. The Display Message
button’s Click event procedure should display the message “cityName is located in
stateName”, where cityName and stateName are the names of the city and state entered
by the user. Code the procedure. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

5. Open the First Name Solution (First Name Solution.sln) file contained in the
ClearlyVB2010\Chap23\First Name Solution folder. The interface provides a text box
for entering a person’s last name followed by a comma, a space, and the person’s first
name. The Display First Name button’s Click event procedure should display the

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

Exercises

437

person’s first name only. Code the procedure. Save the solution and then start and test
the application. Close the Code Editor window and then close the solution.

6. The strAmount variable contains the string “3,123,560”. Write the Visual Basic
statements to change the contents of the variable to “3123560”; use the Remove
method.

7. Open the Color Solution (Color Solution.sln) file contained in the ClearlyVB2010\
Chap23\Color Solution folder. The Display Color button’s Click event procedure should
display the color of the item whose item number is entered by the user. All item
numbers contain exactly five characters. All items are available in four colors: blue,
green, red, and white. The third character in the item number indicates the item’s color,
as follows: a B or b indicates Blue, a G or g indicates Green, an R or r indicates Red, and
a W or w indicates White. If the item number does not contain exactly five characters,
or if the third character is not one of the valid color characters, the procedure should
display an appropriate message. Code the procedure. Save the solution and then start
the application. Test the application using 12b45 as the item number. The procedure
should display the word “Blue” in the lblColor control. Test the application using the
following valid item numbers: 99G44, abr55, and 78w99. Now test the application using
the following invalid item numbers: 12x and 23abc. Close the Code Editor window and
then close the solution.

8. Open the Proper Case (Proper Case Solution.sln) file contained in the ClearlyVB2010\
Chap23\Proper Case Solution folder. The interface provides a text box for entering a
person’s first and last names. The Proper Case button’s Click event procedure should
display the first and last names in the proper case. In other words, the first and last
names should begin with an uppercase letter and the remaining letters should be
lowercase. Code the procedure. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

9. Open the Jacobson Solution (Jacobson Solution.sln) file contained in the ClearlyVB2010\
Chap23\Jacobson Solution folder. The interface provides a text box for entering a
password. The text box’s CharacterCasing property is set to Upper. The password can
contain five, six, or seven characters, but no space characters. The Display New Password
button should create and display a new password using the following three rules: First,
replace all vowels (A, E, I, O, and U) with the letter X. Second, replace all numbers with
the letter Z. Third, reverse the characters in the password. Code the procedure. Save the
solution and then start and test the application. Close the Code Editor window and then
close the solution.

10. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap23\FigureThisOut Solution folder. Open the Code Editor window
and study the existing code. Explain the condition in the If clause. Start the application.
Test the application using the following valid ID: anyUser@hotmail.com. Now test it
using the following invalid IDs: anyUser, j@, and @hotmail.com. Close the Code Editor
window and then close the solution.

11. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap23\SwatTheBugs Solution folder. Open the Code Editor window
and study the existing code. Start and then test the application, using a sales amount of
100 and rates of 5 and .05. The commission should be $5.00. Notice that the application
is not working correctly. Locate and correct the errors in the code. Save the solution and
then start and test the application again. Close the Code Editor window and then close
the solution.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

ADVANCED

FIGURE THIS OUT

SWAT THE BUGS

C H A P T E R 2 3 The String Section (String Manipulation)

438

CHAPTER 24
I’m Suffering from
Information Overload
(Access Databases)

After studying Chapter 24, you should be able to:

Define basic database terminology

Connect an application to a Microsoft Access database

Bind table and field objects to controls

Customize a DataGridView control

Handle exceptions using the Try…Catch statement

Position the record pointer in a dataset

Keeping Good Records
In order to maintain accurate records, most businesses store information about their employees,
customers, and inventory in computer databases. A computer database is an electronic file that
contains an organized collection of related information. Many products exist for creating
computer databases; such products are called database management systems (or DBMS). Some
of the most popular database management systems are Microsoft Access, Microsoft SQL Server,
and Oracle. You can use Visual Basic to access the data stored in databases created by these
database management systems. As a result, companies can use Visual Basic to create a standard
interface that allows employees to access information stored in a variety of database formats.
Instead of learning each DBMS’s user interface, the employee needs to know only one interface.
The actual format of the database is unimportant and will be transparent to the user.

In this chapter, you will learn how to access the data stored in Microsoft Access databases.
Databases created using Microsoft Access are relational databases. A relational database stores
information in tables composed of columns and rows, similar to the format used in a
spreadsheet. The databases are called relational because the information in the tables can be
related in different ways. Each column in a table represents a field and each row represents a
record. A field is a single item of information about a person, place, or thing—such as a name,
a salary amount, a Social Security number, or a price. A record is a group of related fields that
contain all of the necessary data about a specific person, place, or thing. The college you are
attending keeps a student record on you. Examples of fields contained in your student record
include your Social Security number, name, address, phone number, credits earned, and grades
earned. A group of related records is called a table. Each record in a table pertains to the
same topic and contains the same type of information. In other words, each record in a table
contains the same fields.

A relational database can contain one or more tables. A one-table database would be a good
choice for storing information about the college courses you have taken. An example of such a
table is shown in Figure 24-1. Each record in the table contains four fields: an ID field that
indicates the department name and course number, a course title field, a field listing the number
of credit hours, and a grade field. Most tables have a primary key, which is a field that uniquely
identifies each record. In the table shown in Figure 24-1, you could use either the ID field or the
Title field as the primary key, because the data in those fields will be unique for each record.

You might use a two-table database to store information about a CD (compact disc) collection.
You would store the general information about each CD (such as the CD’s name and the artist’s
name) in one table and the information about the songs on each CD (such as their title and
track number) in the other table. You then would use a common field—for example, a
CD number—to relate the records contained in both tables. Figure 24-2 shows an example
of a two-table database that stores CD information. The first table is referred to as the
parent table, and the second table is referred to as the child table. The CD_Number field is
the primary key in the parent table, because it uniquely identifies each record in the table.
The CD_Number field in the child table is used solely to link the song title and track
information to the appropriate CD in the parent table. In the child table, the CD_Number
field is called the foreign key. (Parent and child tables also are referred to as master and
detail tables, respectively.)

Figure 24-1 Example of a one-table relational database

C H A P T E R 2 4 I’m Suffering from Information Overload (Access Databases)

440

Storing data in a relational database offers many advantages. The computer can retrieve data
stored in a relational format both quickly and easily, and the data can be displayed in any
order. The information in the CD database, for example, can be arranged by artist name, song
title, and so on. You also can control the amount of information you want to view from a
relational database. You can view all of the information in the CD database, only the information
pertaining to a certain artist, or only the names of the songs contained on a specific CD.

Connecting…Connecting
Raye Industries stores information about its employees in a Microsoft Access database named
Employees. The Employees database is stored in the Employees.accdb file, which is located in
the ClearlyVB2010\Chap24\Access Databases folder. The .accdb filename extension stands for
Access Database and indicates that the database was created using Microsoft Access. The
Employees database contains one table, which is named tblEmploy. The seven fields and 14
records in the table are shown in Figure 24-3. The Emp_Number field is the primary key,
because it uniquely identifies each record in the table. The Status field contains the employment
status, which is either the letter F (for full-time) or the letter P (for part-time). The Code
field identifies the employee’s department: 1 for Accounting, 2 for Advertising, 3 for
Personnel, and 4 for Inventory.

In order to access the data stored in a database, an application needs to be connected to the
database. The Data Source Configuration Wizard in Visual Basic provides an easy way to
connect an application to a database. The wizard also allows you to specify the data you want to
access. The computer makes a copy of the specified data and stores the copy in its internal
memory during run time. The copy of the data you want to access is called a dataset. In the
following set of steps, you will connect the Raye Industries application to the Employees database.

the two tables are related
by the CD_Number field

Figure 24-2 Example of a two-table relational database

field names

records

Figure 24-3 Data contained in the tblEmploy table

Before
completing
Version 1 of
the Raye
Industries

application, it may be
helpful to view the
Ch24-Database 1 video.

Connecting…Connecting

441

To connect the Raye Industries application to the Employees database:

1. Start Visual Studio 2010 or Visual Basic 2010 Express. If necessary, auto-hide the
Properties window and permanently display the Solution Explorer window.

2. Open the Raye Industries Solution (Raye Industries Solution.sln) file contained in
the ClearlyVB2010\Chap24\Raye Industries Solution-Version 1 folder. If the designer
window is not open, double-click frmMain.vb in the Solution Explorer window.

3. If necessary, click View on the menu bar and then click either Server Explorer (Visual
Studio) or Database Explorer (Visual Basic Express) to open the Server (Database)
Explorer window. The window lists the available data connections.

4. Click Data on the menu bar and then click Show Data Sources to open the Data
Sources window.

5. Click Add New Data Source in the Data Sources window to start the Data Source
Configuration Wizard. If necessary, click Database on the Choose a Data Source Type
screen.

6. Click the Next button to display the Choose a Database Model screen. If necessary, click
Dataset.

7. Click the Next button to display the Choose Your Data Connection screen. Click the
New Connection button to open the Add Connection dialog box. If Microsoft Access
Database File (OLE DB) does not appear in the Data source box, click the Change
button to open the Change Data Source dialog box, click Microsoft Access Database
File, and then click the OK button to return to the Add Connection dialog box.

8. Click the Browse button in the Add Connection dialog box. Open the ClearlyVB2010\
Chap24\Access Databases folder and then click Employees.accdb in the list of
filenames. Click the Open button. Figure 24-4 shows the completed Add Connection
dialog box. (The dialog box in the figure was widened to show the entire entry in the
Database file name box. It is not necessary for you to widen the dialog box.)

9. Click the Test Connection button. The “Test connection succeeded.” message appears
in a message box. Close the message box.

10. Click the OK button to close the Add Connection dialog box. Employees.accdb appears
in the Choose Your Data Connection screen. Click the Next button. The message box
shown in Figure 24-5 opens. The message asks whether you want to include the database
file in the current project. By including the file in the current project, you can more
easily copy the application and its database to another computer.

your drive letter
might be different

Figure 24-4 Completed Add Connection dialog box

C H A P T E R 2 4 I’m Suffering from Information Overload (Access Databases)

442

11. Click the Yes button to add the Employees.accdb file to the application’s project folder.
The Save the Connection String to the Application Configuration File screen appears
next. The name of the connection string, EmployeesConnectionString, appears on the
screen. If necessary, select the Yes, save the connection as check box.

12. Click the Next button to display the Choose Your Database Objects screen. Expand the
Tables node and then expand the tblEmploy node. You use this screen to select the table
and/or field objects to include in the dataset, which is automatically named
EmployeesDataSet.

13. In this application, you need the dataset to include all of the fields. Click the empty
box next to tblEmploy. Doing this selects the table and field check boxes, as shown in
Figure 24-6.

14. Click the Finish button. The computer adds the EmployeesDataSet to the Data Sources
window. Expand the tblEmploy node in the Data Sources window. The dataset contains
one table object and seven field objects.

15. Save the solution. Now you will preview the data contained in the dataset. Right-click
EmployeesDataSet in the Data Sources window and then click Preview Data to open
the Preview Data dialog box. Click the Preview button. The EmployeesDataSet contains
the 14 records (rows) shown earlier in Figure 24-3. Each record is composed of seven
fields (columns). Click the Close button to close the Preview Data dialog box.

16. Auto-hide the Solution Explorer window. If necessary, auto-hide the Server (Database)
Explorer and Data Sources windows.

Figure 24-5 Message regarding copying the database file

name of the dataset

Figure 24-6 Objects selected in the Choose Your Database Objects screen

Connecting…Connecting

443

Let the Computer Do It
For the user to view the contents of a dataset while an application is running, you need to
connect one or more objects in the dataset to one or more controls in the interface. Connecting
an object to a control is called binding, and the connected controls are called bound controls (or
data-aware controls). You can bind an object to a control that the computer creates for you; or,
you can bind it to an existing control in the interface. In this section, you will have the computer
create a DataGridView control and then bind the tblEmploy table object to it.

The DataGridView control is one of the most popular controls for displaying table data, because
it allows you to view a great deal of information at the same time. The control displays the
data in a row and column format, similar to a spreadsheet. Each row represents a record, and
each column represents a field. The intersection of a row and column in a DataGridView
control is called a cell. Like the PictureBox control, which you learned about in Chapter 3,
the DataGridView control has a task list. The task list is shown in Figure 24-7. The first three
check boxes on the task list allow you to specify whether the user can add, edit, or delete
records while the application is running. The fourth check box allows you to specify whether
the user can reorder the columns in the DataGridView control during run time.

To have the computer bind the tblEmploy object to a DataGridView control:

1. Temporarily display the Data Sources window and then click tblEmploy to select the
object. The icon that appears before an object’s name in the Data Sources window
indicates the type of control the computer will create when you drag the object to the
form. The icon indicates that a DataGridView control will be created when you drag
the tblEmploy object to the form. (You can use the list arrow that appears next to an
object’s name to change the type of control the computer creates.)

2. Drag the tblEmploy object from the Data Sources window to the form and then release
the mouse button. The computer adds a DataGridView control to the form and then
binds the tblEmploy object to the control. See Figure 24-8.

Figure 24-7 DataGridView control’s task list

C H A P T E R 2 4 I’m Suffering from Information Overload (Access Databases)

444

As Figure 24-8 shows, besides adding a DataGridView control to the form, the computer also
adds a BindingNavigator control. While an application is running, you can use the
BindingNavigator control to move from one record to the next in the dataset, as well as to
add or delete a record and save any changes made to the dataset. The computer also places
five objects in the component tray: a DataSet, BindingSource, TableAdapter,
TableAdapterManager, and BindingNavigator. The component tray stores objects that do not
appear in the user interface while an application is running. An exception to this is the
BindingNavigator object, which appears as the BindingNavigator control during both design
time and run time.

The TableAdapter object connects the database to the DataSet object, which stores the
information you want to access from the database. The TableAdapter is responsible for
retrieving the appropriate information from the database and storing it in the DataSet. It also
can be used to save to the database any changes made to the data contained in the DataSet.
However, in most cases, you will use the TableAdapterManager object to save the changes,
because it can handle saving data to multiple tables in the DataSet. The BindingSource object
provides the connection between the DataSet and the bound controls on the form. The
TblEmployBindingSource in Figure 24-8 connects the EmployeesDataSet to two bound controls:
a DataGridView control and a BindingNavigator control. The TblEmployBindingSource
allows the DataGridView control to display the data contained in the EmployeesDataSet. It also
allows the BindingNavigator control to access the records stored in the EmployeesDataSet.
Figure 24-9 illustrates the relationships among the database, the objects in the component tray,
and the bound controls on the form.

DataGridView control

BindingNavigator control task box

component tray

Figure 24-8 Result of dragging the tblEmploy object to the form

Let the Computer Do It

445

You can use the DataGridView control’s properties to customize the control. Some of the
properties are listed only in the Properties window, while others can be set using either the
Properties window or the control’s task list.

To customize the DataGridView control:

1. Temporarily display the Properties window. Click AutoSizeColumnsMode in the
Properties list and then set the property to Fill. The Fill setting automatically adjusts the
column widths so that all of the columns exactly fill the display area of the control.

2. Click the DataGridView control and then click its task box. A list of tasks associated
with the control appears. First, you will have the grid fill the interior of its parent
container, which is the form. Click Dock in Parent Container.

3. Now you will change the header text for four of the columns. Click Edit Columns on the
task list to open the Edit Columns dialog box. Emp_Number appears highlighted in the
Selected Columns box. Click the Alphabetical button (see Figure 24-10) in the dialog box
to display the property names in alphabetical order. Click HeaderText in the Bound
Column Properties list. Type Employee Number and then press Enter. See Figure 24-10.

4. Click Last_Name in the Selected Columns list and then change the HeaderText property
to Last Name. On your own, change the First_Name column’s HeaderText property to
First Name. Also change the Rate column’s HeaderText property to Pay Rate.

DataSet

Database
Tab

leA
dap

ter
Man

ag
er BindingSourceTab

leA
dap

ter

bound controls
on the form

Figure 24-9 Illustration of the relationships among the database, the objects
in the component tray, and the bound controls

use these buttons to
reorder the columns Categorized button

Alphabetical button

use the scroll box to view
the remaining properties for
the selected column

Figure 24-10 Edit Columns dialog box

C H A P T E R 2 4 I’m Suffering from Information Overload (Access Databases)

446

5. Now you will have the DataGridView control format the pay rates to show two decimal
places. With Pay Rate selected in the Selected Columns list, click DefaultCellStyle in
the Bound Column Properties list and then click the … (ellipsis) button to open the
CellStyle Builder dialog box. Click Format in the Behavior section of the dialog box
and then click the … (ellipsis) button to open the Format String Dialog box. Click
Numeric in the Format type list and then verify that the number 2 appears in the
Decimal places box. Click the OK button to close the Format String Dialog box. You
are returned to the CellStyle Builder dialog box. The Format property now shows N2,
which stands for Numeric format with two decimal places.

6. Next, you will have the DataGridView control align the pay rates in the Pay Rate column.
Click Alignment in the Layout section of the dialog box and then set the property to
MiddleRight. See Figure 24-11.

7. Click the OK button to close the CellStyle Builder dialog box and then click the OK
button to close the Edit Columns dialog box.

8. Click the DataGridView control to close its task list.

9. Save the solution and then start the application. See Figure 24-12.

Format property

Alignment property

Figure 24-11 Completed CellStyle Builder dialog box

Figure 24-12 Records shown in the customized DataGridView control

Let the Computer Do It

447

10. You can use the arrow keys on your keyboard to move the highlight to a different cell.
Press the down arrow key on your keyboard twice and then press the right arrow key
three times.

11. The BindingNavigator control provides buttons for accessing the first, previous, next,
and last records in the dataset. Click the Move first button and then click the Move
last button . Click the Move previous button and then click the Move next
button .

12. You also can use the BindingNavigator control to access a record by its record number.
The first record in a dataset has a record number of 1; the second record has a record
number of 2, and so on. Change the number in the Current position box (which is
located to the right of the Move previous button) to 3 and then press Enter to move the
highlight to the third record.

13. Click the Close button on the form’s title bar to stop the application.

The BindingNavigator control also provides buttons for adding and deleting records and saving
the changes made to the records. The way changes are saved is controlled by the database file’s
Copy to Output Directory property.

The Copy to Output Directory Property
When the Data Source Configuration Wizard connected the Raye Industries application to
the Employees database, it added the database file (Employees.accdb) to the application’s
project folder. (You can verify this in the Solution Explorer window.) A database file
contained in a project is referred to as a local database file. The way Visual Basic saves
changes to a local database file is determined by the file’s Copy to Output Directory property.
When the property is set to its default setting, Copy always, the file is copied from the
project folder to the project folder’s bin\Debug folder each time you start the application. In
this case, the Employees.accdb file is copied from the Raye Industries Project folder to the
Raye Industries Project\bin\Debug folder. As a result, the file will appear in two different
folders in the solution. When you click the Save Data button on the BindingNavigator
control, any changes made in the DataGridView control are recorded in the file stored in the
bin\Debug folder; the file stored in the project folder is not changed. The next time you start
the application, the file in the project folder is copied to the bin\Debug folder, overwriting
the file that contains the changes. One way to fix this problem is to set the database file’s
Copy to Output Directory property to “Copy if newer.” The “Copy if newer” setting tells the
computer to compare the dates on both files to determine which file has the newer (more
current) date. If the database file in the project folder has the newer date, the computer
should copy it to the bin\Debug folder; otherwise, it shouldn’t copy it.

To change the Employees.accdb file’s Copy to Output Directory property:

1. Temporarily display the Solution Explorer window. Right-click Employees.accdb in the
window and then click Properties. Change the Employees.accdb file’s Copy to Output
Directory property to Copy if newer.

2. Save the solution and then start the application. Click the cell located in Carl
Rodriguez’s Status field. When a cell is highlighted, you can modify its existing data
by simply typing the new data. Type F and press Enter to change Carl’s status to
full-time.

C H A P T E R 2 4 I’m Suffering from Information Overload (Access Databases)

448

3. Click the Add new button on the BindingNavigator control to add a new record to
the end of the DataGridView control. Click the cell located in the Employee Number
field in the new record. Type 999 as the employee number, press Tab, and then type
Kral as the last name. Press Tab and then type George as the first name. On your own,
enter 10/23/2009, 12, F, and 2 in the Hired, Pay Rate, Status, and Code fields,
respectively. Press Enter after typing the number 2.

4. Click the Save Data button and then click the Close button on the form’s title bar.

5. Start the application again. Drag the form’s bottom border until all of the records are
visible. Notice that the DataGridView control now contains the record you added, as
well as the change you made to Carl Rodriguez’s Status field. See Figure 24-13.

6. Change Carl Rodriguez’s Status field from F to P. Click the Move last button to move
the highlight to the last record and then click the Delete button to delete the record.
Click the Save Data button.

7. Click the Close button on the form’s title bar. Start the application again to verify that
your changes were saved, and then stop the application.

Mini-Quiz 24-1
See Appendix B for the answers.

1. In a table, a is a single item of information about a person, place, or thing.

2. Which object connects a DataSet object to a bound control?

a. BindingNavigator

b. TableAdapter

c. BindingSource

d. TableAdapterManager

3. The process of connecting an object in a dataset to a control is called .

change made to
Carl’s Status field

new record

Figure 24-13 Changes to the dataset shown in the DataGridView control

449

The Copy to Output Directory Property

How Does Visual Basic Do It?
When a table or field object is dragged to the form, the computer adds the appropriate controls
and objects to the application. It also enters two event procedures in the Code Editor window.

To view the code automatically entered in the Code Editor window:

1. Open the Code Editor window.

2. Locate the two procedures shown in Figure 24-14. Both procedures were automatically
entered when the tblEmploy object was dragged to the form. (In your Code Editor
window, the procedure headers and comments will appear on one line.)

The first event procedure in Figure 24-14, TblEmployBindingNavigatorSaveItem_Click, is
processed when you click the Save Data button on the BindingNavigator control. The
procedure’s code validates the changes made to the data before saving the data to the database.
Two methods are involved in the save operation: the BindingSource object’s EndEdit method
and the TableAdapterManager’s UpdateAll method. The EndEdit method applies any pending
changes (such as new records, deleted records, or changed records) to the dataset. The
UpdateAll method commits the dataset changes to the database. The second event procedure in
Figure 24-14 is the form’s Load event procedure. A form’s Load event occurs when the
application is started and the form is displayed the first time. Any code in the Load event
procedure is processed before the form appears on the screen. The code in this Load event
procedure uses the TableAdapter object’s Fill method to retrieve the data from the database and
store it in the DataSet object. In most applications, the code to fill a dataset belongs in the form’s
Load event procedure. However, as the comments in the Load event procedure indicate, you can
either move or delete the code.

Because it is possible for an error to occur when saving data to a database, it is a good
programming practice to add error handling code to the Save Data button’s Click event
procedure.

Thank You for Catching My Errors
As you learned in Chapter 14, an error that occurs while an application is running is called an
exception. If you do not take deliberate steps in your code to handle the exceptions, Visual Basic
handles them for you. Typically, it does this by displaying an error message and then abruptly
terminating the application. You can prevent your application from behaving in such an

Figure 24-14 Code automatically entered in the Code Editor window

C H A P T E R 2 4 I’m Suffering from Information Overload (Access Databases)

450

unfriendly manner by taking control of the exception handling in your code; you can do this
using the Try…Catch statement. Figure 24-15 shows the statement’s basic syntax and
includes examples of using the syntax. The basic syntax contains a Try block and a Catch block.
Within the Try block, you place the code that could possibly generate an exception. When
an exception occurs in the Try block’s code, the computer processes the code contained in
the Catch block; it then skips to the code following the End Try clause. A description of
the exception that occurred is stored in the Message property of the Catch block’s ex
variable. You can access the description using the code ex.Message, as shown in
Example 2 in the figure.

Try…Catch Statement

Basic syntax
Try
 one or more statements that might generate an exception
Catch ex As Exception
 one or more statements to execute when an exception occurs
End Try

Example 1
Private Sub btnDisplay_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click

 Dim inFile As IO.StreamReader
 Dim strLine As String

 Try
 inFile = IO.File.OpenText("names.txt")
 Do Until inFile.Peek = -1
 strLine = inFile.ReadLine
 MessageBox.Show(strLine)
 Loop
 inFile.Close()
 Catch ex As Exception
 MessageBox.Show("File error", "JK’s",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Try
End Sub

Example 2
Private Sub TblSalesBindingNavigatorSaveItem_Click(
ByVal sender As System.Object, ByVal e As System.EventArgs
) Handles TblSalesBindingNavigatorSaveItem.Click
 Try
 Me.Validate()
 Me.TblSalesBindingSource.EndEdit()
 Me.TableAdapterManager.UpdateAll(Me.SalesDataSet)
 Catch ex As Exception
 MessageBox.Show(ex.Message, "Sales Data",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 End Try
End Sub

Figure 24-15 Syntax and examples of the Try…Catch statement

How Does Visual Basic Do It?

451

To include a Try…Catch statement in the Save Data button’s Click event procedure:

1. Insert a blank line above the Me.Validate statement in the
TblEmployBindingNavigatorSaveItem’s Click event procedure. Type Try and then press
Enter. The Code Editor automatically enters the Catch ex As Exception and End Try
clauses for you.

2. Select (highlight) the three statements and the blank line that appear below the End Try
clause. Press Ctrl+x to place the selected lines on the Clipboard. Click the blank line
below the Try clause and then press Ctrl+v.

3. If the three statements in the Try block do not produce (throw) an exception, the Try
block should display the “Changes saved” message; otherwise, the Catch block should
display a description of the exception. Enter the two MessageBox.Show methods shaded
in Figure 24-16.

4. Save the solution and then start the application. The statement in the form’s Load event
procedure (shown earlier in Figure 24-14) retrieves the appropriate data from the
Employees database and loads the data into the EmployeesDataSet. The data is displayed
in the DataGridView control, which is bound to the tblEmploy table contained in the
dataset.

5. Now you will change Jack Benton’s Code field to 3. Click the cell located in the Code
field in the first record. Type 3 and press Enter.

6. Click the Save Data button on the BindingNavigator control. The “Changes saved”
message appears in a message box. Close the message box and then click the Close
button on the form’s title bar.

7. Start the application again. Change Jack Benton’s Code field to 2 and then click the Save
Data button. Close the “Changes saved” message box and then click the Close button on
the form’s title bar.

8. Close the Code Editor window and then close the solution.

I’ll Use My Own Controls, Thank You
As mentioned earlier, you can bind an object in a dataset to an existing control on the form. The
easiest way to do this is by dragging the object from the Data Sources window to the control.
However, you also can click the control and then set one or more properties in the Properties

enter the shaded
MessageBox.Show
method

enter the shaded
MessageBox.Show
method

Figure 24-16 Try…Catch statement entered in the Save Data button’s Click event procedure

C H A P T E R 2 4 I’m Suffering from Information Overload (Access Databases)

452

window. The appropriate property (or properties) to set depends on the control you are binding.
For example, you use the DataSource property to bind a DataGridView control. However, you
use the DataBindings/Text property to bind label and text box controls.

To bind objects to existing controls:

1. Open the Raye Industries Solution (Raye Industries Solution.sln) file contained in
the ClearlyVB2010\Chap24\Raye Industries Solution-Version 2 folder. If the designer
window is not open, double-click frmMain.vb in the Solution Explorer window. For
your convenience, the application is already connected to the Employees.accdb database.
You can verify the connection in the Server (Database) Explorer window.

2. Permanently display the Data Sources window. If necessary, expand the
EmployeesDataSet and tblEmploy nodes. The dataset contains one table object and four
field objects.

3. Click Emp_Number in the Data Sources window and then drag the field object to the
lblNumber control, as shown in Figure 24-17. When you drag an object from the Data
Sources window to an existing control, the computer does not create a new control;
rather, it merely binds the object to the existing control.

4. Release the mouse button. In addition to binding the Emp_Number object to the
lblNumber control, the computer also adds the DataSet, BindingSource, TableAdapter,
and TableAdapterManager objects to the component tray. It also enters (in the Code
Editor window) the Load event procedure shown earlier in Figure 24-14. Recall that the
procedure uses the TableAdapter object’s Fill method to retrieve the data from the
database and store it in the DataSet object. Notice that when you drag an object from the
Data Sources window to an existing control, the computer does not add a
BindingNavigator object to the component tray, nor does it add a BindingNavigator
control to the form. (You can use the BindingNavigator tool in the toolbox to add a
BindingNavigator control and object to the application. You then would set the
BindingNavigator control’s DataSource property to the name of the BindingSource
object in the application—in this case, TblEmployBindingSource.)

5. On your own, drag the Last_Name, Status, and Code field objects to the lblLastName,
lblStatus, and lblCode controls, respectively.

6. Auto-hide the Data Sources window and then open the Code Editor window. As
mentioned earlier, the window contains the Load event procedure shown earlier in
Figure 24-14. However, it does not contain the Save Data button’s Click event procedure,
because the form does not contain a BindingNavigator control.

7. Save the solution and then start the application. Only the first record in the dataset
appears in the interface, as shown in Figure 24-18.

lblNumber lblLastName lblStatus

lblCode

Figure 24-17 Emp Number field object being dragged to the lblNumber control

Before
completing
Version 2 of
the Raye
Industries

application, it may be
helpful to view the
Ch24-Database 2 video.

I’ll Use My Own Controls, Thank You

453

8. Because the form does not contain a BindingNavigator control, which would allow you
to move from one record to the next, you will need to code the interface’s Next Record
and Previous Record buttons. Click the Exit button.

Coding the Next Record and Previous Record Buttons
The BindingSource object uses an invisible record pointer to keep track of the current record in
the dataset. It stores the position of the record pointer in its Position property. The first record
is in position 0. The second record is in position 1, and so on. Figure 24-19 shows the Position
property’s syntax and includes examples of using the property. As Examples 2 and 3 indicate,
you can use the Position property to move the record pointer to a specific record in the dataset.

Rather than using the Position property to position the record pointer in a dataset, you also
can use the BindingSource object’s Move methods. The Move methods move the record pointer
to the first, last, next, or previous record in the dataset. Figure 24-20 shows each Move
method’s syntax and includes examples of using two of the methods.

Figure 24-18 Interface showing the first record

BindingSource object’s Position property

Syntax
bindingSourceName.Position

Example 1
intRecordNum = TblEmployBindingSource.Position
assigns the current record’s position to the intRecordNum variable

Example 2
TblEmployBindingSource.Position = 4
moves the record pointer to the fifth record in the dataset

Example 3
TblEmployBindingSource.Position =
 TblEmployBindingSource.Position + 1
moves the record pointer to the next record in the dataset; you also can write the statement as
TblEmployBindingSource.Position += 1

Figure 24-19 Syntax and examples of the BindingSource object’s Position property

C H A P T E R 2 4 I’m Suffering from Information Overload (Access Databases)

454

To code the Next Record and Previous Record buttons:

1. Open the code template for the btnNext control’s Click event procedure. Type the
following comment and then press Enter twice:

' moves the record pointer to the next record

2. Now enter the following line of code:

TblEmployBindingSource.MoveNext()

3. Open the code template for the btnPrevious control’s Click event procedure. Type the
following comment and then press Enter twice:

' moves the record pointer to the previous record

4. Now enter the following line of code:

TblEmployBindingSource.MovePrevious()

Figure 24-21 shows the Click event procedures for the btnNext and btnPrevious controls. (The
procedure headers in your Code Editor window will be on one line.)

BindingSource object’s Move methods

Syntax
bindingSourceName.MoveFirst()
bindingSourceName.MoveLast()
bindingSourceName.MoveNext()
bindingSourceName.MovePrevious()

Example 1
TblEmployBindingSource.MoveFirst()
moves the record pointer to the first record in the dataset

Example 2
TblEmployBindingSource.MoveNext()
moves the record pointer to the next record in the dataset

Figure 24-20 Syntax and examples of the BindingSource object’s Move methods

Figure 24-21 Click event procedures for the btnNext and btnPrevious controls

I’ll Use My Own Controls, Thank You

455

To test the Next Record and Previous Record buttons:

1. Save the solution and then start the application. Click the Next Record button to display
the second record. Continue clicking the Next Record button until the last record
appears in the interface.

2. Click the Previous Record button until the first record appears in the interface.

3. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 24-2
See Appendix B for the answers.

1. Write the Visual Basic statement to move the record pointer to the first record
in the dataset. Use the appropriate Move method of the TblInventoryBindingSource
object.

2. A description of the exception that occurred is stored in the Message property of the
Catch block’s variable.

3. When you drag a field object to an existing control in the interface, Visual Basic
replaces the existing control with a new control.

a. True b. False

Summary
l Databases created by Microsoft Access are relational databases. A relational database can

contain one or more tables. Each table contains fields and records.

l You can display the data in a relational database in any order. You also can control the
amount of information you want to view.

l Most tables contain a primary key that uniquely identifies each record.

l To access the data stored in a database, you first connect the application to the database.
Doing this creates a dataset that contains objects, such as table objects and field objects.

l You display the information contained in a dataset by binding one or more of the dataset
objects to one or more controls in the application’s interface.

l The TableAdapter object connects a database to a DataSet object. A BindingSource object
connects a DataSet object to the bound controls on a form.

l The DataGridView control displays data in a row and column format, similar to a
spreadsheet.

l A database file’s Copy to Output Directory property determines when and if the file is copied
from the project folder to the project folder’s bin\Debug folder each time the application is
started.

l In most applications, the statement to fill a dataset is entered in the form’s Load event
procedure.

l You can use the Try…Catch statement to handle exceptions that occur while an
application is running. A description of the exception is stored in the ex variable’s Message
property.

To learn
more about
connecting an
application
to a

database, see the
Database section in the
Ch24WantMore.pdf file.

C H A P T E R 2 4 I’m Suffering from Information Overload (Access Databases)

456

l The BindingSource object uses an invisible record pointer to keep track of the current record
in a dataset. The location of the record pointer is stored in the BindingSource object’s
Position property. You can use the Position property, as well as the BindingSource object’s
Move methods, to move the record pointer in a dataset.

Key Terms
Binding—the process of connecting an object in a dataset to a control on a form

BindingNavigator control—can be used to move the record pointer from one record to another
in a dataset, as well as to add, delete, and save records

BindingSource object—connects a DataSet object to the bound controls on a form

Bound controls—the controls connected to an object in a dataset

Cell—the intersection of a row and column in a DataGridView control

Child table—a table linked to a parent table

Component tray—a special area in the IDE; stores objects that do not appear in the user
interface during run time

Computer database—an electronic file that contains an organized collection of related
information

Copy to Output Directory property—a property of a database file; determines when and if the file
is copied from the project folder to the project folder’s bin\Debug folder

DataGridView control—displays table data in a row and column format

Dataset—a copy of the data (database fields and records) that can be accessed by an
application

DataSet object—stores the information you want to access from a database

Field—a single item of information about a person, place, or thing

Foreign key—the field used to link a child table to a parent table

Load event—occurs when an application is started and the form is displayed the first time

Move methods—methods of a BindingSource object; used to move the record pointer to the
first, last, next, or previous record in a dataset

Parent table—a table linked to a child table

Position property—a property of a BindingSource object; stores the position of the record
pointer

Primary key—a field that uniquely identifies each record in a table

Record—a group of related fields that contain all of the necessary data about a specific person,
place, or thing

Relational database—a database that stores information in tables composed of columns (fields)
and rows (records)

Table—a group of related records

TableAdapter object—connects a database to a DataSet object

TableAdapterManager object—handles saving data to multiple tables in a dataset

Try…Catch statement—used for exception handling in a procedure

Key Terms

457

Review Questions
1. A group of related fields is called a .

a. database

b. record

c. table

d. none of the above

2. The control contains buttons for moving from one record to another in a
dataset.

a. BindingNavigator

b. BindingSource

c. TableAdapter

d. TableAdapterManager

3. The form’s event occurs before the form makes its initial appearance on the
screen.

a. Appearance

b. Initial

c. Load

d. none of the above

4. If the current record is the second record in the dataset, which of the following
statements will position the record pointer on the first record?

a. TblEmployBindingSource.Position = 0

b. TblEmployBindingSource.Position =
TblEmployBindingSource.Position – 1

c. TblEmployBindingSource.MoveFirst()

d. all of the above

5. If a procedure contains the Catch ex As Exception clause, you can use to
access the exception’s description.

a. ex.Description

b. ex.Exception

c. ex.Message

d. none of the above

6. Which of the following statements retrieves data from the Friends database and stores it
in the FriendsDataSet?

a. Me.FriendsDataSet.Fill(Friends.accdb)

b. Me.TblNamesBindingSource.Fill(Me.FriendsDataSet)

c. Me.TblNamesBindingNavigator.Fill(Me.FriendsDataSet.tblNames)

d. Me.TblNamesTableAdapter.Fill(Me.FriendsDataSet.tblNames)

7. Which of the following is true?

a. Data stored in a relational database can be retrieved both quickly and easily by the
computer.

b. Data stored in a relational database can be displayed in any order.

c. A relational database stores data in a column and row format.

d. all of the above

Exercises
1. Open the Morgan Solution (Morgan Solution.sln) file contained in the ClearlyVB2010\

Chap24\Morgan Solution folder. If necessary, open the designer window. Connect the
application to the Employees database. The database is stored in the Employees.accdb
file, which is located in the ClearlyVB2010\Chap24\Access Databases folder. After

TRY THIS

C H A P T E R 2 4 I’m Suffering from Information Overload (Access Databases)

458

connecting the application to the database, click tblEmploy in the Data Sources window
and then click the down arrow that appears next to tblEmploy. Click Details in the list.
Drag the tblEmploy object to the form and then release the mouse button. Click Format
on the menu bar, point to Center in Form, and then click Horizontally. Click Format on
the menu bar, point to Center in Form, and then click Vertically. Add a Try…Catch
statement to the Save Data button’s Click event procedure. Change the database file’s
Copy to Output Directory property to “Copy if newer.” Save the solution and then
start and test the application. Close the Code Editor window and then close the
solution. (See Appendix B for the answer.)

2. In this exercise, you modify one of the Raye Industries applications from the chapter.
Use Windows to make a copy of the Raye Industries Solution-Version 2 folder. Save
the copy in the ClearlyVB2010\Chap24 folder. Rename the copy Modified Raye
Industries Solution-Version 2. Open the Raye Industries Solution (Raye Industries
Solution.sln) file contained in the Modified Raye Industries Solution-Version 2 folder.
Open the designer window. Modify the Click event procedures for the Previous Record
and Next Record buttons to use the Position property rather than a Move method.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

3. Open the Cartwright Solution (Cartwright Solution.sln) file contained in the
ClearlyVB2010\Chap24\Cartwright Solution folder. Connect the application to the
Items database. The database is stored in the Items.accdb file, which is contained in the
ClearlyVB2010\Chap24\Access Databases folder. The database contains one table
named tblItems. The table contains 10 records, each composed of three fields. The
ItemNum and ItemName fields contain text; the Price field contains numbers. Display
the records in a DataGridView control. Add a Try…Catch statement to the Save Data
button’s Click event procedure. Change the database file’s Copy to Output Directory
property appropriately. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

4. Sydney Industries records the item number, name, and price of each of its products in a
database named Products. The Products database is stored in the Products.accdb file,
which is contained in the ClearlyVB2010\Chap24\Access Databases folder. The
database contains a table named tblProducts. The table contains 10 records, each
composed of three fields. The ItemNum and ItemName fields contain text; the Price
field contains numbers. Open the Sydney Solution (Sydney Solution.sln) file contained
in the ClearlyVB2010\Chap24\Sydney Solution folder. Connect the application to the
Products database. Bind the appropriate objects to the existing label controls. Open the
Code Editor window. Code the Click event procedures for the Next Record and
Previous Record buttons. Save the solution and then start and test the application. Close
the Code Editor window and then close the solution.

5. Open the Playhouse Solution (Playhouse Solution.sln) file contained in the
ClearlyVB2010\Chap24\Playhouse Solution folder. Connect the application to the Play
database. The database is contained in the Play.accdb file, which is located in the
ClearlyVB2010\Chap24\Access Databases folder. The Play database contains one table
named tblReservations. The table contains 20 records. Each record has three fields: a
numeric field named Seat and two text fields named Patron and Phone. Drag the field
objects to the appropriate label controls in the interface. Code the Click event
procedures for the First Record, Last Record, Previous Record, and Next Record
buttons. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

6. In this exercise, you modify the application from Exercise 5. Use Windows to make a
copy of the Playhouse Solution folder. Save the copy in the ClearlyVB2010\Chap24
folder. Rename the copy Modified Playhouse Solution. Open the Playhouse Solution

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Exercises

459

(Playhouse Solution.sln) file contained in the Modified Playhouse Solution folder. Open
the designer window. Add another button to the interface. Name the button
btnRecordNumber. Change the button’s Text property to &Record Number. The
button’s Click event procedure should ask the user for a record number from 1 through
20. It then should move the record pointer to the specified record. Code the procedure.
Save the solution and then start and test the application. Close the Code Editor window
and then close the solution.

7. Open the Morgan Industries Solution (Morgan Industries Solution.sln) file contained in
the Morgan Industries Solution-ListBox folder. Connect the application to the
Employees database. The database is stored in the Employees.accdb file, which is located
in the ClearlyVB2010\Chap24\Access Databases folder. Drag the Last_Name, Status,
and Code field objects to the appropriate label controls. Set the lstNumber control’s
DataSource and DisplayMember properties to TblEmployBindingSource and
Emp_Number, respectively. Code the Previous Record and Next Record buttons. Save
the solution and then start and test the application. Close the solution.

8. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap24\FigureThisOut Solution folder. Open the Code Editor window.
What tasks are performed by the form’s Load event procedure? Start and then test the
application. What does the application do? (Hint: Refer to Figure 24-2.) Close the Code
Editor window and then close the solution.

9. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap24\SwatTheBugs Solution folder. Open the Code Editor window.
Correct the code to remove the jagged line and then save the solution. Start and then
test the application. (The dataset contains nine records.) Notice that the application is
not working correctly. Locate and correct the errors in the code. Save the solution and
then start and test the application again. Close the Code Editor window and then close
the solution.

INTERMEDIATE

FIGURE THIS OUT

SWAT THE BUGS

C H A P T E R 2 4 I’m Suffering from Information Overload (Access Databases)

460

CHAPTER 25
The Missing “LINQ”
(Querying a Database)

After studying Chapter 25, you should be able to:

Query a dataset using LINQ

Use the LINQ aggregate operators

Asking Questions
In Chapter 24, you learned how to use the Data Source Configuration Wizard to connect an
application to a database, thereby creating a dataset. Recall that a dataset is a copy of the fields
and records the application can access from the database. The dataset is stored in the
computer’s internal memory while the application is running. You also learned how to display
the fields and records by binding table and field objects to controls in the interface. In Chapter
24, all of the records were displayed in the order they appeared in the database. In this chapter,
you will learn how to display the records in a particular order, as well as how to display only
records that meet specific criteria.

The examples in this chapter use the Employees database from Chapter 24. The database,
which contains one table named tblEmploy, is shown in Figure 25-1. The table contains
seven fields and 14 records. The Emp_Number field is the primary key, because it uniquely
identifies each record in the table. The Status field contains the employment status, which is
either the letter F (for full-time) or the letter P (for part-time). The Code field identifies the
employee’s department: 1 for Accounting, 2 for Advertising, 3 for Personnel, and 4 for
Inventory.

You use a query to specify both the records to select in a dataset and the order in which to
arrange the records. You can create a query in Visual Basic 2010 using a language feature
called Language Integrated Query or, more simply, LINQ. Figure 25-2 shows the basic syntax
of LINQ when used to select and arrange records in a dataset. The figure also includes
examples of using the syntax. In the syntax, variableName and elementName can be any
names you choose, as long as the name follows the naming rules for variables. In other words,
there is nothing special about the records and employee names used in the examples. The
Where and Order By clauses are optional parts of the syntax. You use the Where clause,
which contains a condition, to limit the records you want to view. Similar to the condition in
If…Then…Else and Do…Loop statements, the condition in a Where clause specifies a
requirement that must be met for a record to be selected. The Order By clause is used to
arrange (sort) the records in either ascending (the default) or descending order by one or more
fields. Notice that the syntax does not require you to specify the data type of the variable in the
Dim statement. Instead, the syntax allows the computer to infer the data type from the value
being assigned to the variable.

The statement in Example 1 in Figure 25-2 selects all of the records in the dataset and assigns
the records to the records variable. The statement in Example 2 performs the same task;
however, the records are assigned in ascending order by the Code field. If you are sorting
records in ascending order, you do not need to include the keyword Ascending in the Order By
clause, because Ascending is the default. The statement in Example 3 assigns only the records
for part-time employees to the records variable. The statement in Example 4 performs the
same task; however, the records are assigned in descending order by the Code field. The
statement in Example 5 uses the Like operator and the asterisk pattern-matching character to

field names

records

Figure 25-1 Data contained in the tblEmploy table

C H A P T E R 2 5 The Missing “LINQ” (Querying a Database)

462

select only records whose First_Name field begins with the letter J. You learned about the Like
operator and its pattern-matching characters in Chapter 23.

Revisiting the Raye Industries Application
You coded two versions of the Raye Industries application in Chapter 24. In this chapter, you
will modify the second version of the application. The modified application will display records
whose Last_Name field begins with one or more letters entered by the user. It also will both
calculate and display the average pay rate.

Using LINQ to select and arrange records in a dataset

Basic syntax
Dim variableName = From elementName In dataset.table
 [Where condition]
 [Order By elementName.fieldName1 [Ascending | Descending]
 [, elementName.fieldNameN [Ascending | Descending]]]
 Select elementName

Example 1
Dim records = From employee In EmployeesDataSet.tblEmploy
 Select employee
selects all of the records in the dataset

Example 2
Dim records = From employee In EmployeesDataSet.tblEmploy
 Order By employee.Code
 Select employee
selects all of the records in the dataset and arranges them in ascending order by the Code
field

Example 3
Dim records = From employee In EmployeesDataSet.tblEmploy
 Where employee.Status.ToUpper = "P"
 Select employee
selects only the part-time employee records in the dataset

Example 4
Dim records = From employee In EmployeesDataSet.tblEmploy
 Where employee.Status.ToUpper = "P"
 Order By employee.Code Descending
 Select employee
selects only the part-time employee records in the dataset and arranges them in
descending order by the Code field

Example 5
Dim records = From employee In EmployeesDataSet.tblEmploy
 Where employee.First_Name.ToUpper Like "J*"
 Select employee
selects only the employee records in the dataset whose first name begins with the letter J

Figure 25-2 Basic LINQ syntax and examples for selecting and arranging records in a dataset

Asking Questions

463

To begin modifying the Raye Industries application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express. Open the Raye Industries Solution
(Raye Industries Solution.sln) file contained in the ClearlyVB2010\Chap25\Raye
Industries Solution folder. If the designer window is not open, double-click frmMain.vb in
the Solution Explorer window. The interface was modified to display the First_Name field. It
also includes two new buttons: Find Record and Calculate Average. See Figure 25-3.

2. Open the Code Editor window and locate the btnFind control’s Click event procedure.
First, you will use the InputBox function to prompt the user to either enter one or more
letters or leave the input area empty. Click the blank line below the ' get user input
comment. Enter the following assignment statement:

strSearch = InputBox(strPROMPT,
"Find Last Name").ToUpper

3. Now you will enter the LINQ statement to select the appropriate records. Click the
blank line below the ' select the appropriate records comment and then enter the
following LINQ statement:

Dim records =
From employee In EmployeesDataSet.tblEmploy
Where employee.Last_Name.ToUpper Like strSearch & "*"
Select employee

Important note: If a jagged line appears below records in the LINQ statement, click
Tools on the menu bar and then click Options. Expand the Projects and Solutions node
and then click VB Defaults. Change Option Strict to Off and (if necessary) change
Option Infer to On.

The LINQ statement merely selects the records and assigns them to the records variable. To
actually view the records, you need to assign the variable’s contents to the DataSource property
of a BindingSource object. The syntax for doing this is shown in Figure 25-4 along with an
example of using the syntax.

Figure 25-3 Modified user interface for the Raye Industries application

Assigning a LINQ variable’s contents to a BindingSource object

Basic syntax
bindingSource.DataSource = variableName.AsDataView

Example
TblEmployBindingSource.DataSource = records.AsDataView
assigns the contents of the records variable to the
TblEmployBindingSource object

Figure 25-4 Syntax and an example of assigning a LINQ variable’s contents to a BindingSource object

C H A P T E R 2 5 The Missing “LINQ” (Querying a Database)

464

To complete the btnFind control’s Click event procedure:

1. Click the blank line below the ' display the records comment and then enter the
following assignment statement:

TblEmployBindingSource.DataSource = records.AsDataView

Figure 25-5 shows the code entered in the Find Record button’s Click event procedure.

To test the btnFind control’s Click event procedure:

1. Save the solution and then start the application. First, you will select all of the records
whose Last_Name field begins with the letter i. Click the Find Record button. Type i in
the Find Last Name dialog box and then press Enter. The first record that meets the
criterion—the Asaad Ismal record—appears in the interface. Click the Next Record
button to display Rebecca Iovanelli’s record. Click the Next Record button again. Notice
that Rebecca Iovanelli’s record is the last record that meets the criterion.

2. Now you will have the LINQ statement select all of the records. Click the Find Record
button and then click the OK button. Click the Next Record button repeatedly to verify
that all 14 records have been retrieved.

3. Click the Exit button.

Private Sub btnFind_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnFind.Click
 ' displays records whose last name
 ' begins with the user's entry

 Const strPROMPT As String =
 "Enter one or more characters in the " &
 "last name. " &
 "Leave blank to retrieve all records."
 Dim strSearch As String

 ' get user input
 strSearch = InputBox(strPROMPT,
 "Find Last Name").ToUpper

 ' select the appropriate records
 Dim records =
 From employee In EmployeesDataSet.tblEmploy
 Where employee.Last_Name.ToUpper Like strSearch & "*"
 Select employee

 ' display the records
 TblEmployBindingSource.DataSource = records.AsDataView

End Sub

Figure 25-5 Find Record button’s Click event procedure

Asking Questions

465

Mini-Quiz 25-1
See Appendix B for the answers.

1. Complete the Where clause in the following statement, which should select only
records whose LastName field begins with an uppercase letter A:
Dim records = From name In NamesDataSet.tblNames

Where
Select name

2. Complete the following statement, which should arrange the records in descending
order by the LastName field:
Dim records = From name In NamesDataSet.tblNames

Select name

3. What does LINQ stand for?

4. In a LINQ statement, which clause is used to arrange the selected records in a
particular order?

a. Order

b. Order By

c. Sort

d. Where

5. In a LINQ statement, which clause contains a condition?

a. Order

b. Order By

c. Sort

d. Where

One for All
In addition to using LINQ to sort and select the records in a dataset, you also can use it
to perform arithmetic calculations on the fields in the records. The calculations are
performed using the LINQ aggregate operators. The most commonly used aggregate
operators are Average, Count, Max, Min, and Sum. An aggregate operator returns a
single value from a group of values. The Sum operator, for example, returns the sum of
the values in the group, whereas the Min operator returns the smallest value in the group.
You include an aggregate operator in a LINQ statement using the syntax shown in Figure
25-6. The figure also includes examples of using the syntax. The statement in Example 1
calculates the average of the values contained in the Rate field, assigning the result to the
dblAvgRate variable. The statement in Example 2 first selects only the part-time
employee records. It then determines the highest value stored in the Rate field for those
records. The statement assigns the result to the dblMaxRate variable. Example 3’s
statement counts the number of employees in the Advertising department (Code = 2) and
assigns the result to the intCounter variable.

C H A P T E R 2 5 The Missing “LINQ” (Querying a Database)

466

You will use the Average aggregate operator to code the Calculate Average button’s Click event
procedure.

To code the Calculate Average button’s Click event procedure:

1. Locate the btnCalc control’s Click event procedure. First, you will enter the LINQ
statement to calculate the average pay rate for all employees. Click the blank line below
the ' calculate average pay rate comment and then enter the following LINQ
statement:

Dim dblAvgRate As Double =
Aggregate employee In EmployeesDataSet.tblEmploy
Select employee.Rate Into Average()

2. Now you will display the average pay rate in a message box. Click the blank line below
the ' display average pay rate comment and then enter the following lines of code:

MessageBox.Show("Average pay rate for all employees: " &
dblAvgRate.ToString("C2"),
"Raye Industries",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

Figure 25-7 shows the code entered in the Calculate Average button’s Click event procedure.

LINQ aggregate operators

Syntax
Dim variableName [As dataType] =
 Aggregate elementName In dataset.table
 [Where condition]
 Select elementName.fieldName
 Into aggregateOperator()

Example 1
Dim dblAvgRate As Double =
 Aggregate employee In EmployeesDataSet.tblEmploy
 Select employee.Rate Into Average()
calculates the average of the pay rates in the dataset and assigns the result to the
dblAvgRate variable

Example 2
Dim dblMaxRate As Double =
 Aggregate employee In EmployeesDataSet.tblEmploy
 Where employee.Status.ToUpper = "P"
 Select employee.Rate Into Max()
finds the highest pay rate for a part-time employee and assigns the result to the
dblMaxRate variable

Example 3
Dim intCounter As Integer =
 Aggregate employee In EmployeesDataSet.tblEmploy
 Where employee.Code = 2
 Select employee.Emp_Number Into Count()
counts the number of employees whose department code is 2 and assigns the result to the
intCounter variable

Figure 25-6 Syntax and examples of the LINQ aggregate operators

One for All

467

To test the Calculate Average button’s Click event procedure:

1. Save the solution and then start the application. Click the Calculate Average button. The
average pay rate for all employees appears in a message box, as shown in Figure 25-8.

2. Close the message box and then click the Exit button. Close the Code Editor window
and then close the solution.

Mini-Quiz 25-2
See Appendix B for the answers.

1. Complete the following statement, which should calculate the sum of the values stored
in a numeric field named JanSales:
Dim intTotal As Integer =

Aggregate sales In SalesDataSet.tblSales
Select
Into Sum()

2. Complete the following statement, which should calculate the average of the values
stored in a numeric field named PointsEarned:
Dim dblAvg As Double =

Aggregate points In PointsDataSet.tblPoints

3. Which of the LINQ aggregate operators returns the smallest value in the group?

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the average pay rate

 ' calculate average pay rate
 Dim dblAvgRate As Double =
 Aggregate employee In EmployeesDataSet.tblEmploy
 Select employee.Rate Into Average()

 ' display average pay rate
 MessageBox.Show("Average pay rate for all employees: " &
 dblAvgRate.ToString("C2"),
 "Raye Industries",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
End Sub

Figure 25-7 Calculate Average button’s Click event procedure

Figure 25-8 Average pay rate displayed in a message box

To review
what you
learned
about LINQ,
view the

Ch25-LINQ video.

To learn
more
about
LINQ, see
the LINQ

section in the
Ch25WantMore.pdf file.

C H A P T E R 2 5 The Missing “LINQ” (Querying a Database)

468

Summary
l LINQ stands for Language Integrated Query. You can use LINQ to select and sort the

records in a dataset. You also can use LINQ to perform calculations on the fields in the
dataset.

l LINQ provides the Average, Sum, Count, Min, and Max aggregate operators for performing
calculations.

Key Terms
Aggregate operator—an operator that returns a single value from a group of values; LINQ
provides the Average, Count, Max, Min, and Sum aggregate operators

Language Integrated Query—LINQ; the query language built into Visual Basic 2010

LINQ—an acronym for Language Integrated Query

Order By clause—used in LINQ to arrange (sort) the records in a dataset

Query—specifies the records to select in a dataset and the order in which to arrange the records

Where clause—used in LINQ to limit the records you want to view in a dataset

Review Questions
1. Which of the following LINQ statements selects all of the records in the tblStates table?

a. Dim records =
From state In StatesDataSet.tblStates
Select All state

b. Dim records =
From state In StatesDataSet.tblStates
Select state

c. Dim records =
Select state From StatesDataSet.tblStates

d. Dim records =
From StatesDataSet.tblStates
Select tblStates.state

2. The tblCities table contains a numeric field named Population. Which of the following
LINQ statements selects all cities having a population that exceeds 15000?

a. Dim records =
From city In CitiesDataSet.tblCities
Where Population > 15000 Select city

b. Dim records =
From city In CitiesDataSet.tblCities
Select city.Population > 15000

c. Dim records =
From city In CitiesDataSet.tblCities
Where city.Population > 15000 Select city

d. Dim records =
Select city.Population > 15000
From tblCities

Review Questions

469

3. The tblCities table contains a numeric field named Population. Which of the following
LINQ statements calculates the total population of all the cities in the table?

a. Dim intTotal As Integer =
Aggregate city In CitiesDataSet.tblCities
Select city.Population
Into Sum()

b. Dim intTotal As Integer =
Sum city In CitiesDataSet.tblCities
Select city.Population
Into total

c. Dim intTotal As Integer =
Aggregate CitiesDataSet.tblCities.city
Select city.Population
Into Sum()

d. Dim intTotal As Integer =
Sum city
In CitiesDataSet.tblCities.population

4. Which clause is used in a LINQ statement to limit the records that will be selected?

a. Limit

b. Order By

c. Select

d. Where

5. Which of the following LINQ statements arranges the records in ascending order by the
LastName field, with records having the same last name arranged in descending order by
the FirstName field?

a. Dim records =
From name In NamesDataSet.tblNames
Order By name.LastName Ascending,
name.FirstName Descending
Select name

b. Dim records =
From name In NamesDataSet.tblNames
Order By name.LastName, name.FirstName Descending
Select name

c. Dim records =
Select name From NamesDataSet.tblNames
Order By name.FirstName Descending, name.LastName

d. both a and b

6. Which of the following will select only records whose CityName field begins with an
uppercase letter S?

a. Dim records =
From name In CitiesDataSet.tblCities
Where name.CityName Like "S*"
Select name

b. Dim records =
From CitiesDataSet.tblCities
Select CityName Like "S*"

C H A P T E R 2 5 The Missing “LINQ” (Querying a Database)

470

c. Dim records = From tblCities
Where tblCities.CityName Like "S*"
Select name

d. Dim records =
From name In CitiesDataSet.tblCities
Where tblCities.CityName Like "S*"
Select name

7. Which of the following determines the number of records in the tblBooks table?

a. Dim intNum As Integer =
Aggregate book In BooksDataSet.tblBooks
Select book.Title In Count()

b. Dim intNum As Integer =
Aggregate book In BooksDataSet.tblBooks
Select book.Title Into Count()

c. Dim intNum As Integer =
Aggregate book In BooksDataSet.tblBooks
Select book.Title Into Sum()

d. Dim intNum As Integer =
Aggregate book In BooksDataSet.tblBooks
Select book.Title Into Number()

Exercises
1. Open the Magazine Solution (Magazine Solution.sln) file contained in the

ClearlyVB2010\Chap25\Magazine Solution-TRY THIS 1 folder. If necessary, open the
designer window. The application is connected to the Magazines database, which is
stored in the Magazines.accdb file. The database contains a table named tblMagazine.
The table has three fields; the Cost field is numeric, and the Code and MagName fields
contain text. Start the application to view the records contained in the dataset. Stop the
application and open the Code Editor window. Code the btnSort control’s Click event
procedure so that it displays the records in descending order by the Cost field. Code the
btnDisplayCode control’s Click event procedure so that it displays the record whose
Code field contains PG24. Code the btnDisplayName control’s Click event procedure so
that it displays only the Java record. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution. (See Appendix B
for the answer.)

2. Open the Magazine Solution (Magazine Solution.sln) file contained in the
ClearlyVB2010\Chap25\Magazine Solution-TRY THIS 2 folder. If necessary, open the
designer window. The application is connected to the Magazines database, which is
stored in the Magazines.accdb file. The database contains a table named tblMagazine.
The table has three fields; the Cost field is numeric, and the Code and MagName fields
contain text. Start the application to view the records contained in the dataset. Stop the
application and open the Code Editor window. Code the btnDisplayCost control’s Click
event procedure so that it displays records having a cost of at least $4. Code the
btnDisplayName control’s Click event procedure so that it displays only magazines
whose name begins with the letter C (in either uppercase or lowercase). Code the
btnAverage control’s Click event procedure so that it displays the average cost of a
magazine. Display the average in a message box. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution. (See
Appendix B for the answer.)

TRY THIS

TRY THIS

Exercises

471

3. In this exercise, you modify the Raye Industries application from the chapter. Use
Windows to make a copy of the Raye Industries Solution folder. Save the copy in the
ClearlyVB2010\Chap25 folder. Rename the copy Raye Industries Solution-MODIFY
THIS. Open the Raye Industries Solution (Raye Industries Solution.sln) file contained in
the Raye Industries Solution-MODIFY THIS folder. Open the designer window. Open
the Code Editor window and locate the btnCalc control’s Click event procedure.
Currently, the procedure displays the average pay rate for all employees. Modify the
procedure so it displays three values in the message box: the average pay rate for part-
time employees, the average pay rate for full-time employees, and the average pay rate
for all employees. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

4. In this exercise, you code a different version of the Raye Industries application from the
chapter. Open the Raye Industries Solution (Raye Industries Solution.sln) file contained
in the ClearlyVB2010\Chap25\Raye Industries Solution-INTRODUCTORY folder.
Open the Code Editor window. Code the btnDisplay control’s Click event procedure so
that it asks the user for the department code (1, 2, 3, or 4); use the InputBox function.
The procedure should display only records matching that department code. If the user
enters an invalid department code, display an appropriate message. If the user does not
enter a department code, display all the records. Save the solution and then start and
test the application. Close the Code Editor window and then close the solution.

5. Open the Addison Playhouse Solution (Addison Playhouse Solution.sln) file contained
in the ClearlyVB2010\Chap25\Addison Playhouse Solution folder. The application is
connected to a Microsoft Access database named Play. The Play database contains one
table named tblReservations. The table has 20 records. Each record has three fields: a
numeric field named Seat and two text fields named Patron and Phone. Code the
btnDisplay control’s Click event procedure so that it asks the user for one or more
characters in the patron’s name; use the InputBox function. The procedure should
display only records whose names begin with those characters. If the user does not enter
any characters in the InputBox function’s input area, the procedure should display all
the records. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

6. In this exercise, you modify the Raye Industries application from the chapter. Use
Windows to make a copy of the Raye Industries Solution folder. Save the copy in the
ClearlyVB2010\Chap25 folder. Rename the copy Raye Industries Solution-INTERMEDIATE.
Open the Raye Industries Solution (Raye Industries Solution.sln) file contained in the
Raye Industries Solution-INTERMEDIATE folder. Open the designer window. Open
the Code Editor window and locate the btnFind control’s Click event procedure.
Modify the procedure’s code so that it displays (in a message box) the number of
employees found. Save the solution and then start and test the application. Close the
Code Editor window and then close the solution.

7. Open the Books Solution (Books Solution.sln) file contained in the Books Solution
folder. The application is connected to a Microsoft Access database named Books. The
Books database contains one table named tblBooks. The table has 11 records. Each
record has five fields. The BookNumber, Price, and QuantityInStock fields contain
numbers. The Title and Author fields contain text. The btnCalc control’s Click event
procedure should display (in a message box) the total value of the books in inventory.
The total value is calculated by multiplying the quantity of each book by its price and
then adding together the results. Code the procedure. Save the solution and then start
and test the application. Close the Code Editor window and then close the solution.

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

ADVANCED

C H A P T E R 2 5 The Missing “LINQ” (Querying a Database)

472

8. In this exercise, you use a Microsoft Access database named Courses. The database is
stored in the Courses.accdb file, which is located in the ClearlyVB2010\Chap25\Access
Databases folder. The database contains one table named tblCourses. The table has 10
records, each having four fields: ID, Title, CreditHours, and Grade. The CreditHours
field is numeric; the other fields contain text. Open the College Courses Solution
(College Courses Solution.sln) file contained in the ClearlyVB2010\Chap25\College
Courses Solution folder. Connect the application to the Courses database. Drag the
table into the group box control and then dock the DataGridView control in its parent
container. (In this case, the parent container is the group box control.) Use the
DataGridView control’s task list to disable Adding, Editing, and Deleting. Change
the DataGridView control’s AutoSizeColumnsMode property to Fill. Remove the
BindingNavigator control from the form by deleting the BindingNavigator object from
the component tray. Open the Code Editor window. Delete the Save Data button’s Click
event procedure. Code the Next Record and Previous Record buttons. Code the
btnDisplay control’s Click event procedure so it allows the user to display either all the
records or only the records matching a specific grade. Code the btnCalc control’s Click
event procedure so it displays the student’s GPA. An A grade is worth 4 points, a B is
worth 3 points, and so on. Save the solution and then start and test the application.
Close the Code Editor window and then close the solution.

9. What task is performed by the following LINQ statement?
Dim decArea As Decimal =

Aggregate rec In RectanglesDataSet.tblRectangles
Select rec.Length * rec.Width
Into Min()

10. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap25\SwatTheBugs Solution folder. Open the Code Editor window
and study the existing code. Start and then test the application. Notice that the
application is not working correctly. Locate and correct the errors in the code. Save the
solution and then start and test the application again. Close the Code Editor window
and then close the solution.

ADVANCED

FIGURE THIS OUT

SWAT THE BUGS

Exercises

473

This page intentionally left blank

CHAPTER 26
I Love This Class
(Creating a Class)

After studying Chapter 26, you should be able to:

Explain the terminology used in object-oriented programming

Create a class

Instantiate an object

Add Property procedures to a class

Include data validation in a class

Create a default constructor

Include methods other than constructors in a class

That’s a Real Classy Object
Visual Basic 2010 is an object-oriented programming language, which is a language that
allows the programmer to use objects to accomplish a program’s goal. An object is anything
that can be seen, touched, or used. In other words, an object is nearly any thing. The
objects used in an object-oriented program can take on many different forms. The text
boxes, labels, and buttons included in most Windows applications are objects, and so are
the application’s named constants and variables. An object also can represent something
found in real life, such as a credit card receipt or a paycheck.

Every object used in an object-oriented program is created from a class, which is a pattern
that the computer uses to create the object. Using object-oriented programming (OOP)
terminology, objects are instantiated (created) from a class, and each object is referred to as
an instance of the class. A button control, for example, is an instance of the Button class.
The button is instantiated when you drag the Button tool from the toolbox to the form. A
String variable, on the other hand, is an instance of the String class and is instantiated the
first time you refer to the variable in code. Keep in mind that the class itself is not an
object. Only an instance of a class is an object.

Every object has attributes, which are the characteristics that describe the object. Attributes
are also called properties. Included in the attributes of buttons and text boxes are the
Name and Text properties. DataGridView controls have a DataSource property as well as an
AutoSizeColumnsMode property. In addition to attributes, every object also has behaviors.
An object’s behaviors include methods and events. Methods are the operations (actions)
that the object is capable of performing. For example, a button control can use its Focus
method to send the focus to itself. Events are the actions to which an object can respond.
A button control’s Click event, for instance, allows the button to respond to a mouse click.
A class contains—or, in OOP terms, it encapsulates—all of the attributes and behaviors of
the object it instantiates. The term “encapsulate” means “to enclose in a capsule.” In the
context of OOP, the capsule is a class.

In previous chapters, you instantiated objects using classes that are built into Visual Basic,
such as the TextBox and Label classes. You used the instantiated objects in a variety of
ways in many different applications. In some applications, you used a text box to enter a
name, while in other applications you used it to enter a sales tax rate. Similarly, you used
label controls to identify text boxes and also to display the result of calculations. The ability
to use an object for more than one purpose saves programming time and money—an
advantage that contributes to the popularity of object-oriented programming.

Visual Basic also provides a way for you to define your own classes and then create
instances (objects) from those classes. Like the classes built into Visual Basic, your classes
must specify the attributes and behaviors of the objects they create. You define a class using
the Class statement, which you enter in a class file. Figure 26-1 shows the statement’s
syntax and lists the steps for adding a class file to an open project. Although it is not a
requirement, the convention is to use Pascal case for the class name. Recall that Pascal case
means you capitalize the first letter in the name and the first letter in any subsequent words
in the name. The names of Visual Basic classes (for example, String and TextBox) also
follow this naming convention. Within the Class statement, you define the attributes and
behaviors of the objects the class will create. In most cases, the attributes are represented
by variables and Property procedures. You will learn about Property procedures later in this
chapter. The behaviors are represented by methods, which can be Sub or Function
procedures. (Some behaviors are represented by Event procedures; however, that topic is
beyond the scope of this book.) Also included in Figure 26-1 is an example of a Class
statement that defines a class named RectangularPool.

C H A P T E R 2 6 I Love This Class (Creating a Class)

476

You will use the Class statement in the Willow Pools application, which you begin coding in the
next section.

Revisiting the Willow Pools Application
You coded the Willow Pools application in Chapter 21. As you may remember, the application
determines the amount of water required to fill a rectangular pool. To make this
determination, the application first calculates the volume of the pool. Recall that you calculate
the volume of a rectangular pool by multiplying the pool’s length by its width and then
multiplying the result by the pool’s depth. Assuming the length, width, and depth are
measured in feet, this gives you the volume in cubic feet. To determine the number of gallons
of water, the application multiplies the number of cubic feet by 7.48, because there are 7.48
gallons in one cubic foot. In Chapter 21, you used a structure to group together the pool’s
length, width, and depth measurements. Recall that it’s logical to group the three items
because they are related; each represents one of the three dimensions of a rectangular pool.
Most of the application’s code from Chapter 21 is shown in Figure 26-2. However, unlike the
code from Chapter 21, the code in Figure 26-2 uses the Decimal (rather than Double) data
type. Also, the txtLength.Focus() statement was added to the btnCalc control’s Click event
procedure. In this chapter, you will modify the code to use a class rather than a structure.

Class statement

Syntax
Public Class className
 attributes section
 behaviors section
End Class

Example
Public Class RectangularPool
 attributes
 behaviors
End Class

Adding a class file to an open project
1. Click Project on the menu bar and then click Add Class. The Add New Item dialog box opens
 with Class selected in the middle column of the dialog box.
2. Type the name of the class followed by a period and the letters vb in the Name box, and then
 click the Add button.

Figure 26-1 Class statement syntax, example, and steps

Revisiting the Willow Pools Application

477

To begin creating a class in the Willow Pools application:

1. Start Visual Studio 2010 or Visual Basic 2010 Express. Open theWillow Pools Solution
(Willow Pools Solution.sln) file contained in the ClearlyVB2010\Chap26\Willow Pools
Solution folder. If the designer window is not open, double-click frmMain.vb in the
Solution Explorer window.

2. If necessary, permanently display the Solution Explorer window.

3. First, you will use the Class statement to define a class named RectangularPool. As
mentioned earlier, you enter a Class statement in a class file. Click Project on the menu
bar and then click Add Class. The Add New Item dialog box opens with Class selected
in the middle column of the dialog box. Change the filename in the Name box to
RectangularPool.vb and then click the Add button. The RectangularPool.vb window
opens and shows the code template for the Class statement. In addition, the
RectangularPool.vb filename appears in the Solution Explorer window. See Figure 26-3.

Structure Dimensions
 Public decLength As Decimal
 Public decWidth As Decimal
 Public decDepth As Decimal
End Structure

Public Function GetGallons(ByVal pool As Dimensions) As Decimal
 ' calculates and returns the number of gallons

 Const decGAL_PER_CUBIC_FOOT As Decimal = 7.48

 Return pool.decLength * pool.decWidth *
 pool.decDepth * decGAL_PER_CUBIC_FOOT
End Function

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the number of gallons

 Dim poolSize As Dimensions
 Dim decGallons As Decimal

 Decimal.TryParse(txtLength.Text, poolSize.decLength)
 Decimal.TryParse(txtWidth.Text, poolSize.decWidth)
 Decimal.TryParse(txtDepth.Text, poolSize.decDepth)

 decGallons = GetGallons(poolSize)
 lblGallons.Text = decGallons.ToString("N0")

 txtLength.Focus()
End Sub

entered in the form’s
Declarations section

receives a structure
variable by value

declares a structure
variable to store the
input data

passes the structure
variable to the
GetGallons function

Figure 26-2 Code for the Willow Pools application using a structure

class filename

Figure 26-3 Class statement entered in the RectangularPool.vb window

C H A P T E R 2 6 I Love This Class (Creating a Class)

478

In the context of OOP, a RectangularPool object has three attributes: a length, a width, and a
depth. As mentioned earlier, the attributes are represented in the Class statement by variables
and Property procedures. The variables appear first in the Class statement, followed by the
Property procedures. In most cases, the variables are declared using the keyword Private. The
Private keyword indicates that the variables can be used only within the class in which they are
defined. When naming the Private variables in a class, many programmers use the underscore as
the first character and then camel case for the remainder of the name. Following this naming
convention, you will use the names decLength, decWidth, and decDepth for the Private
variables in the RectangularPool class.

To begin coding the RectangularPool class definition:

1. Auto-hide the Solution Explorer window and then click the blank line below the
Public Class RectangularPool clause.

2. Enter the following three declaration statements. Press Enter twice after typing the last
declaration statement.

Private _decLength As Decimal
Private _decWidth As Decimal
Private _decDepth As Decimal

Who Owns That Property?
When an application instantiates an object, only the Public members of the object’s class are
visible (available) to the application; the application cannot access the Private members of the
class. Using OOP terminology, the Public members are “exposed” to the application, whereas
the Private members are “hidden” from the application. In this case, the decLength,
decWidth, and decDepth variables will be hidden from any application that contains an

instance of the RectangularPool class. For an application to assign data to or retrieve data from a
Private variable in a class, it must use a Public property. In other words, an application cannot
directly refer to a Private variable in a class. Rather, it must refer to the variable indirectly,
through the use of a Public property.

You create a Public property using a Property procedure whose procedure header begins with
the keyword Public. A Public Property procedure creates a property that is visible to any
application that contains an instance of the class. The basic syntax for creating a Public property
is shown in Figure 26-4 along with examples of Public properties. You should use nouns and
adjectives to name a property and enter the name using Pascal case, as in Length and
AnnualSales. The property’s dataType must match the data type of the Private variable
associated with the property. Between a Property procedure’s header and footer, you include a
Get block of code and a Set block of code. The code contained in the Get block allows an
application to retrieve the contents of the Private variable associated with the property. The
code in the Set block allows an application to assign a value to the Private variable associated
with the property.

Revisiting the Willow Pools Application

479

The Get block in a Property procedure contains the Get statement, which begins with the
keyword Get and ends with the keywords End Get. Most times, you will enter only the
Return privateVariable instruction within the Get statement. The instruction directs the
computer to return the contents of the Private variable associated with the property. In Example
1 in Figure 26-4, the Return decLength statement tells the computer to return the contents of
the decLength variable, which is the Private variable associated with the Length property.
Similarly, the Return intAnnualSales statement in Example 2 tells the computer to return
the contents of the intAnnualSales variable, which is the Private variable associated with the
AnnualSales property.

The Set block in a Property procedure contains the Set statement, which begins with the
keyword Set and ends with the keywords End Set. Following the Set keyword is a parameter
enclosed in parentheses. The parameter begins with the keywords ByVal value As. The
keywords are followed by a dataType, which must match the data type of the Private variable

Basic syntax of a Public Property procedure

Syntax
Public Property propertyName As dataType
 Get
 [instructions]
 Return privateVariable
 End Get
 Set(ByVal value As dataType)
 [instructions]
 privateVariable = {value | defaultValue}
 End Set
End Property

Example 1
Private _decLength As Decimal

Public Property Length As Decimal
 Get
 Return _decLength
 End Get
 Set(ByVal value As Decimal)
 If value > 0 Then
 _decLength = value
 Else
 _decLength = 0
 End If
 End Set
End Property

Example 2
Private _intAnnualSales As Integer

Public Property AnnualSales As Integer
 Get
 Return _intAnnualSales
 End Get
 Set(ByVal value As Integer)
 _intAnnualSales = value
 End Set
End Property

procedure header

procedure footer

Figure 26-4 Basic syntax and examples of a Public Property procedure

C H A P T E R 2 6 I Love This Class (Creating a Class)

480

associated with the property. The value parameter temporarily stores the value that is passed to
the Property procedure’s Set statement by the application. You can enter one or more
instructions within the Set statement. One of the instructions should assign the contents
of the value parameter to the Private variable associated with the property. In Example 2 in
Figure 26-4, the intAnnualSales = value statement assigns the contents of the procedure’s
value parameter to the Private intAnnualSales variable.

In the Set statement, you often will include instructions to validate the value received from the
application before assigning it to the Private variable. The Set statement in Example 1 in
Figure 26-4 includes a selection structure that determines whether the length measurement
received from the application is valid. In this case, a valid length measurement is a decimal
number that is greater than the number 0. If the length measurement is valid, the decLength
= value statement assigns the number stored in the value parameter to the Private
decLength variable. Otherwise, the decLength = 0 instruction assigns a default value (in

this case, 0) to the variable.

In the next set of steps, you will create a Public property for each Private variable in the
RectangularPool class. Each Public property will allow an application indirect access to the
Private variable associated with the property.

To enter a Property procedure for each Private variable in the RectangularPool class:

1. The insertion point should be positioned immediately above the End Class clause. First,
you will enter a Public Property procedure for the Private decLength variable. Enter
the following procedure header and Get clause. When you press Enter after typing the
Get clause, the Code Editor automatically enters the End Get clause, the Set statement,
and the End Property clause.

Public Property Length As Decimal
Get

2. Recall that, in most cases, the Get statement simply returns the contents of the Private
variable associated with the Property procedure. Type the following Return statement,
but don’t press Enter:

Return _decLength

3. The Set statement should assign either the contents of its value parameter or a default
value to the Private variable associated with the Property procedure. In this case, you
will assign the number contained in the value parameter only when the number is
greater than 0; otherwise, you will assign the number 0. Click the blank line above the
End Set clause and then enter the following selection structure:

If value > 0 Then
_decLength = value

Else
_decLength = 0

End If

4. Save the solution. Figure 26-5 shows the Length Property procedure associated with
the decLength variable.

Revisiting the Willow Pools Application

481

5. Now you will enter a Public Property procedure for the Private decWidth variable.
Insert two blank lines below the End Property clause. Enter the following Property
procedure header and Get clause:

Public Property Width As Decimal
Get

6. Now type the following Return statement in the line below the Get clause, but don’t
press Enter:

Return _decWidth

7. Click the blank line above the End Set clause and then enter the following selection
structure:

If value > 0 Then
_decWidth = value

Else
_decWidth = 0

End If

8. Finally, you will enter a Public Property procedure for the Private decDepth variable.
Insert two blank lines below the last End Property clause. On your own, enter the
following Public Property procedure:

Public Property Depth As Decimal
Get

Return _decDepth
End Get
Set(ByVal value As Decimal)

If value > 0 Then
_decDepth = value

Else
_decDepth = 0

End If
End Set

End Property

9. Save the solution.

Public Class RectangularPool
 Private _decLength As Decimal
 Private _decWidth As Decimal
 Private _decDepth As Decimal

 Public Property Length As Decimal
 Get
 Return _decLength
 End Get
 Set(ByVal value As Decimal)
 If value > 0 Then
 _decLength = value
 Else
 _decLength = 0
 End If
 End Set
 End Property
End Class

Private _decLength
variable

Public Property
associated with the
Private _decLength
variable

Figure 26-5 Length Property procedure entered in the class

C H A P T E R 2 6 I Love This Class (Creating a Class)

482

Mini-Quiz 26-1
See Appendix B for the answers.

1. OOP stands for .

2. Data validation code is entered in the block of code in a Property procedure.
a. Get b. Set

3. A Property procedure named City is associated with a Private variable named
strCity. Which of the following statements should be entered in the procedure’s Get

block of code?
a. strCity = value

b. City = value

c. Return strCity

d. Return City

Behave Yourself
Besides having attributes, objects also have behaviors. As you learned earlier, behaviors include
the operations (actions) that the object is capable of performing. A RectangularPool object will
have three behaviors. First, it will be able to initialize its Private variables when it is instantiated.
Second, it will be able to calculate its volume. Third, it will be able to calculate the number of
gallons of water required to fill it. The first behavior—initializing the Private variables—requires
a constructor.

Constructive Behavior Is the Key to Success
A constructor is a class method, always named New, whose sole purpose is to initialize the
class’s Private variables. Constructors never return a value, so they are always Sub procedures
rather than Function procedures. The syntax for creating a constructor is shown in Figure 26-6.
Within the constructor you enter the initialization code for the class’s Private variables. The
initialization code will be processed each time an object is instantiated from the class. A class
can have more than one constructor. Each constructor will have the same name (New) but its
optional parameterList must be unique within the class. A constructor that has no parameters,
like the constructor shown in Figure 26-6, is called the default constructor. A class can have
only one default constructor.

Creating a constructor

Syntax
Public Sub New([parameterList])
 instructions to initialize the class’s Private variables
End Sub

Example (default constructor)
Public Sub New()
 _decLength = 0
 _decWidth = 0
 _decDepth = 0
End Sub

Figure 26-6 Syntax and an example of a constructor

Behave Yourself

483

To include a default constructor in the RectangularPool class:

1. Insert two blank lines below the Depth property’s End Property clause.

2. Enter the following default constructor:

Public Sub New()
' default constructor
_decLength = 0
_decWidth = 0
_decDepth = 0

End Sub

Methods Other than Constructors
A class also can contain methods other than constructors. Except for constructors, which must
be Sub procedures, the other methods in a class can be either Sub procedures or Function
procedures. Recall from Chapter 17 that the difference between both types of procedures is that
a Function procedure returns a value after performing its assigned task, whereas a Sub
procedure does not return a value. Figure 26-7 shows the syntax for a method that is not a
constructor. The figure also includes two examples of a method that allows a RectangularPool
object to calculate its volume. Like property names, method names should be entered using
Pascal case. However, unlike property names, the first word in a method name should be a verb
and any subsequent words should be nouns and adjectives. The method name used in the
examples in Figure 26-7, GetVolume, follows this naming convention.

As mentioned earlier, a RectangularPool object should be able to calculate both its volume
and the number of gallons of water required to fill it. For a RectangularPool object to
perform these tasks, you will need to include two additional methods in the class:
GetVolume and GetGallons. In this case, you will code both methods as Function
procedures. Each Function procedure will return its calculated value to the application
that invokes it.

Creating a method that is not a constructor

Syntax
Public {Sub | Function} methodName([parameterList]) [As dataType]
 instructions
End {Sub | Function}

Example 1 (coded as a Function procedure)
Public Function GetVolume() As Decimal
 Return _decLength * _decWidth * _decDepth
End Function

Example 2 (coded as a Sub procedure)
Public Sub GetVolume(ByRef decVol As Decimal)
 decVol = _decLength * _decWidth * _decDepth
End Sub

Figure 26-7 Syntax and examples of a method that is not a constructor

C H A P T E R 2 6 I Love This Class (Creating a Class)

484

To enter the GetVolume and GetGallons methods in the RectangularPool
class definition:

1. First, you will enter the GetVolume function. Insert two blank lines below the default
constructor’s End Sub clause and then enter the following lines of code:

Public Function GetVolume() As Decimal
Return _decLength * _decWidth * _decDepth

End Function

2. Next, you will enter the GetGallons function. Recall that you determine the number of
gallons of water by multiplying the pool’s volume by 7.48. You can use the class’s
GetVolume method to get the volume. Insert two blank lines below the End Function
clause and then enter the following lines of code:

Public Function GetGallons() As Decimal
Dim decVol As Decimal
decVol = GetVolume()
Return decVol * 7.48

End Function

3. Save the solution.

Figure 26-8 shows the RectangularPool class definition. For your convenience, line numbers are
included in the figure. To display line numbers in the Code Editor window, click Tools on the
menu bar, click Options, select the Show all settings check box, expand the Text Editor node,
click Basic, select the Line numbers check box, and then click OK.

 1 Public Class RectangularPool
 2 Private _decLength As Decimal
 3 Private _decWidth As Decimal
 4 Private _decDepth As Decimal
 5
 6 Public Property Length As Decimal
 7 Get
 8 Return _decLength
 9 End Get
10 Set(ByVal value As Decimal)
11 If value > 0 Then
12 _decLength = value
13 Else
14 _decLength = 0
15 End If
16 End Set
17 End Property
18
19 Public Property Width As Decimal
20 Get
21 Return _decWidth
22 End Get
23 Set(ByVal value As Decimal)
24 If value > 0 Then
25 _decWidth = value
26 Else
27 _decWidth = 0
28 End If
29 End Set
30 End Property
31

Figure 26-8 RectangularPool class definition (continues)

Behave Yourself

485

Using the Pattern to Create an Object
After you define a class, it then can be used to instantiate one or more objects. Figure 26-9
shows two versions of the basic syntax for instantiating an object. In both versions, className is
the name of the class, and variableName is the name of a variable that will represent the object.
The difference between both versions relates to when the object is actually created. The
computer creates the object only when it processes the statement containing the New keyword.
Recall that New is the name of a class’s constructor. The New keyword invokes the constructor,
which then creates the object and assigns initial values to the Private variables.

Also included in Figure 26-9 is an example of using each version of the syntax. In Example 1, the
Private pool As RectangularPool instruction creates a variable that can store a
RectangularPool object; however, it does not create the object. The object isn’t created until the
computer processes the pool = New RectangularPool statement, which uses the
RectangularPool class to instantiate a RectangularPool object. In Example 2, the Dim pool As
New RectangularPool instruction creates a variable named pool. It also instantiates a
RectangularPool object and assigns it to the variable.

32 Public Property Depth As Decimal
33 Get
34 Return _decDepth
35 End Get
36 Set(ByVal value As Decimal)
37 If value > 0 Then
38 _decDepth = value
39 Else
40 _decDepth = 0
41 End If
42 End Set
43 End Property
44
45 Public Sub New()
46 ' default constructor
47 _decLength = 0
48 _decWidth = 0
49 _decDepth = 0
50 End Sub
51
52 Public Function GetVolume() As Decimal
53 Return _decLength * _decWidth * _decDepth
54 End Function
55
56 Public Function GetGallons() As Decimal
57 Dim decVol As Decimal
58 decVol = GetVolume()
59 Return decVol * 7.48
60 End Function
61 End Class

Figure 26-8 RectangularPool class definition

(continued)

C H A P T E R 2 6 I Love This Class (Creating a Class)

486

To modify the form’s code to use a RectangularPool object rather than a structure:

1. If necessary, save the solution. Close the RectangularPool.vb window and then open the
form’s Code Editor window. The application will use the RectangularPool class rather
than the Structure statement, so you will delete the Structure statement from the form’s
Declarations section. Click the blank line above the Structure statement. Press and
hold down the Shift key as you click the blank line below the End Structure clause, and
then release the Shift key. Press Delete to remove the Structure statement and the blank
line from the Code Editor window.

2. You also will delete the GetGallons function, because the number of gallons will be
calculated by the GetGallons method in the class. Click the blank line above the Public
Function clause. Press and hold down the Shift key as you click the blank line below the
End Function clause, and then release the Shift key. Press Delete to remove the
GetGallons function and the blank line from the Code Editor window.

3. Next, you will instantiate a RectangularPool object in the btnCalc control’s Click event
procedure. Replace the Dim poolSize As Dimensions instruction with the following
instruction:

Dim pool As New RectangularPool

4. Now you will modify the three TryParse methods to use the object’s Public properties.
Select (highlight) poolSize.decLength in the first TryParse method. Type pool.
(be sure to type the period) and then click the Common tab (if necessary). The
properties and methods for a RectangularPool object appear in the IntelliSense list, as
shown in Figure 26-10. The only method that does not appear in the list is the default
constructor (New).

Instantiating an object from a class

Syntax—Version 1
{Dim | Private} variableName As className
variableName = New className

Syntax—Version 2
{Dim | Private} variableName As New className

Example 1—Version 1’s syntax
Private pool As RectangularPool
pool = New RectangularPool
the Private instruction declares a RectangularPool variable named pool; the New keyword in the
assignment statement instantiates a RectangularPool object and initializes its Private variables;
the assignment statement then assigns the RectangularPool object to the pool variable

Example 2—Version 2’s syntax
Dim pool As New RectangularPool
the New keyword in the instruction instantiates a RectangularPool object and initializes its Private
variables; the instruction creates a RectangularPool variable named pool and then assigns the
RectangularPool object to the variable

Figure 26-9 Syntax and examples of instantiating an object from a class

Using the Pattern to Create an Object

487

5. Click Length in the list and then press Tab. Click another line in the Code Editor
window.

6. On your own, change poolSize.decWidth and poolSize.decDepth in the remaining
TryParse methods to pool.Width and pool.Depth, respectively.

7. Next, you will use the class’s GetGallons method to get the number of gallons. Change
the decGallons = GetGallons(poolSize) statement to the following:

decGallons = pool.GetGallons

Figure 26-11 shows the modified Click event procedure. The changes you made to the
procedure are shaded in the figure.

IntelliSense list

Figure 26-10 IntelliSense list showing a RectangularPool object’s properties and methods

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' displays the number of gallons

 Dim pool As New RectangularPool
 Dim decGallons As Decimal

 Decimal.TryParse(txtLength.Text, pool.Length)
 Decimal.TryParse(txtWidth.Text, pool.Width)
 Decimal.TryParse(txtDepth.Text, pool.Depth)

 decGallons = pool.GetGallons
 lblGallons.Text = decGallons.ToString("N0")

 txtLength.Focus()
End Sub

Figure 26-11 Modified Click event procedure for the btnCalc control

C H A P T E R 2 6 I Love This Class (Creating a Class)

488

To test the application’s code:

1. Save the solution and then start the application. Type 100 in the Length box, 30 in the
Width box, and 4 in the Depth box. Click the Calculate button. The number 89,760
appears in the Gallons box, as shown in Figure 26-12.

2. Click the Exit button. Close the Code Editor window and then close the solution.

At this point, the advantage of creating a class and instantiating objects—in other words, the
advantage of object-oriented programming—may not be apparent. After all, modifying the
Willow Pools application to include a class (rather than a structure) required many more lines of
code. The real advantage of object-oriented programming is the ability to reuse a class in a
different way or in a different application. In the next section, you will use the RectangularPool
class in the Pool Supplies application.

Pool Supplies Application
Pool Supplies sells a water clarifier designed to combat a common problem in swimming pools:
cloudy water. The company recommends one ounce of SoClear clarifier per 5000 gallons of
water. The manager of Pool Supplies wants an application that calculates the number of gallons
of water contained in a pool and the required number of ounces of clarifier. You can code
this application using the RectangularPool class that you created earlier in this chapter. The
RectangularPool.vb file is contained in the ClearlyVB2010\Chap26\Willow Pools Solution\
Willow Pools Project folder.

To code the Pool Supplies application:

1. Use Windows to copy the RectangularPool.vb file from the ClearlyVB2010\Chap26\
Willow Pools Solution\Willow Pools Project folder to the ClearlyVB2010\Chap26\Pool
Supplies Solution\Pool Supplies Project folder.

2. Open the Pool Supplies Solution (Pool Supplies Solution.sln) file contained in the
ClearlyVB2010\Chap26\Pool Supplies Solution folder. If the designer window is not
open, double-click frmMain.vb in the Solution Explorer window. The user interface
provides text boxes for the user to enter the pool’s dimensions.

3. First, you will add the RectangularPool.vb file to the project. Click Project on the
menu bar and then click Add Existing Item to open the Add Existing Item dialog
box. Click RectangularPool.vb in the Pool Supplies Project folder and then click
the Add button. Temporarily display the Solution Explorer window to verify that
it contains the RectangularPool.vb filename.

Figure 26-12 Number of gallons displayed in the interface

Pool Supplies Application

489

4. Open the Code Editor window and locate the btnCalc control’s Click event procedure.
Click the blank line above the procedure’s End Sub clause. First, you will instantiate a
RectangularPool object. Enter the following declaration statement:

Dim pool As New RectangularPool

5. Now you will declare variables to store the number of gallons of water and the number
of ounces of clarifier. Enter the following two declaration statements. Press Enter twice
after typing the second declaration statement.

Dim decGallons As Decimal
Dim decOunces As Decimal

6. Next, you will assign the input items to the RectangularPool object’s properties. Enter
the following three statements. Press Enter twice after typing the third statement.

Decimal.TryParse(txtLength.Text, pool.Length)
Decimal.TryParse(txtWidth.Text, pool.Width)
Decimal.TryParse(txtDepth.Text, pool.Depth)

7. Now you will use the RectangularPool object’s GetGallons method to get the number of
gallons of water. Enter the following assignment statement:

decGallons = pool.GetGallons

8. You calculate the number of ounces of clarifier by dividing the number of gallons of
water by 5000. Type the following assignment statement and then press Enter twice:

decOunces = decGallons / 5000

9. Finally, you will display the calculated amounts in the interface. Enter the following
assignment statements:

lblGallons.Text = decGallons.ToString("N0")
lblClarifier.Text = decOunces.ToString("N1")

Figure 26-13 shows the code entered in the btnCalc control’s Click event procedure.

Private Sub btnCalc_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click
 ' calculates and displays the number of gallons
 ' in a pool and the number of ounces of
 ' clarifier needed

 Dim pool As New RectangularPool
 Dim decGallons As Decimal
 Dim decOunces As Decimal

 Decimal.TryParse(txtLength.Text, pool.Length)
 Decimal.TryParse(txtWidth.Text, pool.Width)
 Decimal.TryParse(txtDepth.Text, pool.Depth)

 decGallons = pool.GetGallons
 decOunces = decGallons / 5000

 lblGallons.Text = decGallons.ToString("N0")
 lblClarifier.Text = decOunces.ToString("N1")

End Sub

Figure 26-13 btnCalc control’s Click event procedure

C H A P T E R 2 6 I Love This Class (Creating a Class)

490

To test the Pool Supplies application’s code:

1. Save the solution and then start the application. Type 100 in the Length box, 30 in
the Width box, and 4 in the Depth box. Click the Calculate button. The interface
shows that the pool contains 89,760 gallons of water and requires 18.0 ounces of clarifier.
See Figure 26-14.

2. Click the Exit button. Close the Code Editor window and then close the solution.

Mini-Quiz 26-2
See Appendix B for the answers.

1. What is the name of the default constructor for a class named Animal?

2. Write a Dim statement that instantiates an Animal object and assigns the object to a
variable named dog.

3. A Private variable in a class can be accessed directly by a Public method in the same
class.
a. True b. False

Summary
l The objects used in an object-oriented program are instantiated (created) from classes. A

class encapsulates (contains) the attributes that describe the object it creates. The class also
contains the behaviors that allow the object to perform tasks and respond to actions.

l You use the Class statement to define a class. Class names are entered using Pascal case. You
enter a class definition in a class file, which you can add to the current project using the
Project menu.

l When naming the Private variables in a class, many programmers begin the name with the
underscore character. Subsequent characters in the name are entered using camel case.

l When an object is instantiated in an application, the Public members of the class are exposed
to the application. However, the Private members are hidden from the application.

l An application must use a Public property to either assign data to or retrieve data from a
Private variable in a class. You create a Public property using a Property procedure. The

Figure 26-14 Calculated amounts shown in the interface

To learn
about a new
feature in
Visual Basic
2010,

called auto-implemented
properties, view the
Ch26-Auto-Implemented
Properties video.

To learn
about
overloading
methods
and

inheritance, see the
Overloading and
Inheritance sections
in the Ch26WantMore.
pdf file.

Summary

491

names of the properties in a class should be entered using Pascal case and consist of nouns
and adjectives.

l The Get block in a Property procedure allows an application to access the contents of the
Private variable associated with the property. The Set block, on the other hand, allows an
application to assign a value to the Private variable.

l A class can have one or more constructors. The purpose of a constructor is to initialize the
class’s Private variables.

l All constructors are Sub procedures that are named New. Each constructor must have a
different parameterList (if any). A constructor that has no parameters is the default
constructor. A class can contain only one default constructor.

l The names of the methods in a class should be entered using Pascal case. You should use a
verb for the first word in the name, and nouns and adjectives for any subsequent words in
the name.

Key Terms
Attributes—the characteristics that describe an object

Behaviors—an object’s methods and events

Class—a pattern that the computer follows when instantiating (creating) an object

Class statement—the statement used to define a class in Visual Basic

Constructor—a method whose instructions are automatically processed each time the class is
used to instantiate an object; its purpose is to initialize the class’s Private variables; always a Sub
procedure named New

Default constructor—a constructor that has no parameters; a class can have only one default
constructor

Encapsulates—an OOP term that means “contains”

Events—the actions to which an object can respond

Get block—the section of a Property procedure that contains the Get statement

Get statement—appears in a Get block in a Property procedure; contains the code that allows an
application to retrieve the contents of the Private variable associated with the property

Instance—an object created from a class

Instantiated—the process of creating an object from a class

Methods—the actions that an object is capable of performing

Object—anything that can be seen, touched, or used; an instance of a class

Object-oriented programming language—a programming language that allows the use of
objects to accomplish a program’s goal

OOP—an acronym for object-oriented programming

Property procedure—used to create a Public property that an application can use to access a
Private variable in a class

Set block—the section of a Property procedure that contains the Set statement

Set statement—appears in a Set block in a Property procedure; contains the code that allows an
application to assign a value to the Private variable associated with the property; may also
contain validation code

C H A P T E R 2 6 I Love This Class (Creating a Class)

492

Review Questions
1. Which of the following statements is false?

a. An example of an attribute is the intMinutes variable in a Time class.

b. An example of a behavior is the SetTime method in a Time class.

c. A class is considered an object.

d. An object created from a class is referred to as an instance of the class.

2. An application can access the Private variables in a class .

a. directly

b. using Public properties created by Property procedures

c. through Private procedures contained in the class

d. none of the above

3. Which of the following instantiates an Animal object and assigns the object to the cat
variable?

a. Dim cat As Animal

b. Dim cat As New Animal

c. Dim cat As Animal
cat = New Animal

d. both b and c

4. An application instantiates an Animal object and assigns it to the cat variable. Which of
the following assigns to the strName variable the value returned by the Animal class’s
GetName method?

a. strName = Animal.GetName

b. strName = cat.GetName

c. strName = Animal.GetName.cat

d. none of the above

5. A constructor must be .

a. a Function procedure

b. a Sub procedure

c. an Event procedure

d. either a Function procedure or a
Sub procedure

6. To expose a method contained in a class, you declare the method using the
keyword .

a. Expose

b. Private

c. Public

d. Viewable

7. The Return statement is entered in the statement in a Property procedure.

a. Get b. Set

Exercises
1. Open the Area Solution (Area Solution.sln) file contained in the ClearlyVB2010\Chap26\

Area Solution folder. If necessary, open the designer window.

a. Use the Project menu to add a new class file named Square.vb to the project. The
Square class should have one attribute: a side measurement (which may contain a
decimal place). It also should have two behaviors: a default constructor that
initializes the class’s Private variable and a function that calculates and returns the
area of the square. Code the Square class. Save the solution and then close the
Square.vb window.

TRY THIS

Exercises

493

b. Open the form’s Code Editor window. Use the comments entered in the btnCalc
control’s Click event procedure to code the procedure.

c. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution. (See Appendix B for the answer.)

2. In this exercise, you modify the Square class from Exercise 1.

a. Use Windows to copy the Square.vb file from the ClearlyVB2010\Chap26\Area
Solution\Area Project folder to the ClearlyVB2010\Chap26\Square Box Solution\
Square Box Project folder.

b. Open the Square Box Solution (Square Box Solution.sln) file contained in the Square
Box Solution folder. If necessary, open the designer window.

c. Use the Project menu to add the Square.vb file to the project. Open the Square.vb
file. Modify the Square class to include a method that calculates and returns the
perimeter of a square. (To calculate the perimeter, you multiply the side
measurement by 4.) Save the solution and then close the Square.vb window.

d. Open the form’s Code Editor window. The btnDisplay control’s Click event
procedure should calculate and display both the area and the perimeter of a square.
Code the procedure.

e. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

3. Open the Sweets Solution (Sweets Solution.sln) file contained in the ClearlyVB2010\
Chap26\Sweets Solution folder. If necessary, open the designer window.

a. Add a new class file named Salesperson.vb to the project. The Salesperson class
should have two attributes: a salesperson’s ID and a sales amount. The ID may
contain letters; the sales amount may contain a decimal place. The class should have
one behavior: the default constructor. Code the Salesperson class. Save the solution
and then close the Salesperson.vb window.

b. Open the form’s Code Editor window. The btnSave control’s Click event procedure
should save each salesperson’s ID and sales amount to a sequential access file. Finish
coding the procedure.

c. Save the solution and then start and test the application. Be sure to verify that the
sales.txt file contains the IDs and sales amounts that you entered. Close the Code
Editor window and then close the solution.

4. In this exercise, you modify both the RectangularPool class and the Willow Pools
application from the chapter. Use Windows to make a copy of the Willow Pools Solution
folder. Save the copy in the ClearlyVB2010\Chap26 folder. Rename the copy Willow
Pools Solution-INTRODUCTORY. Open the Willow Pools Solution (Willow Pools
Solution.sln) file contained in the Willow Pools Solution-INTRODUCTORY folder. Open
the designer window. Open the RectangularPool.vb file. Change the GetGallons function
to a Sub procedure. Save the solution and then close the RectangularPool.vb window.
Open the form’s Code Editor window and then modify the btnCalc control’s Click event
procedure. Save the solution and then start and test the application. Close the Code
Editor window and then close the solution.

5. Open the Grade Solution (Grade Solution.sln) file contained in the ClearlyVB2010\
Chap26\Grade Solution folder. Add a new class file named CourseGrade to the project.
The CourseGrade class should have three attributes: the scores for three tests. Each test
score will be an integer. The class also should have two behaviors: the default
constructor and a method that determines and returns the letter grade. The letter grade
is based on the total score, as indicated in Figure 26-15. Code the CourseGrade class.
Save the solution and then close the CourseGrade.vb window. Open the form’s Code

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

C H A P T E R 2 6 I Love This Class (Creating a Class)

494

Editor window. Code the btnDisplay control’s Click event procedure. Each test score
should be from 0 through 100 only. Save the solution and then start and test the
application. Close the Code Editor window and then close the solution.

6. In this exercise, you modify the RectangularPool class from the chapter. Use
Windows to make a copy of the Willow Pools Solution folder. Save the copy in the
ClearlyVB2010\Chap26 folder. Rename the copy Willow Pools Solution-INTERMEDIATE.
Open the Willow Pools Solution (Willow Pools Solution.sln) file contained in the
Willow Pools Solution-INTERMEDIATE folder. Open the designer window. Open the
RectangularPool.vb file. Change the GetVolume function to a Sub procedure. Save the
solution and then start and test the application. Close the RectangularPool.vb window and
then close the solution.

7. Shelly Jones, the manager of Pennington Book Store, wants an application that
calculates and displays the total amount a customer owes. The interface for this
application is shown in Figure 26-16. A customer can purchase one or more books at
either the same price or different prices. The application should keep a running total of
the amount the customer owes, and display the total in the Total due box. For example,
a customer might purchase two books at $6 and three books at $10. To calculate the
total due, Shelly will need to enter 2 in the Quantity box and 6 in the Price box, and
then click the Add to Sale button. The Total due box should display $12.00. To
complete the order, Shelly will need to enter 3 in the Quantity box and 10 in the Price
box, and then click the Add to Sale button. The Total due box should display $42.00.
Before calculating the next customer’s order, Shelly will need to click the New Order
button.

a. Create a Visual Basic Windows application. Use the following names for the solution
and project, respectively: Pennington Solution and Pennington Project. Save the
application in the ClearlyVB2010\Chap26 folder. Change the name of the form file
on your disk to frmMain.vb. If necessary, change the form’s name to frmMain.

b. Create the interface shown in Figure 26-16.

c. Add a class file named BookSale.vb to the project. The BookSale class should have
three attributes: a quantity, a price, and a total due. It also should have two
behaviors: the default constructor and a method that keeps a running total of the
amount the customer owes. Code the BookSale class. Save the solution and then
close the BookSale.vb window.

d. Open the form’s Code Editor window and code the application.

e. Save the solution and then start and test the application. Close the Code Editor
window and then close the solution.

Total score Grade
270 – 300 A
240 – 269 B
210 – 239 C
180 – 209 D
Less than 180 F

Figure 26-15 Information for Exercise 5

INTERMEDIATE

ADVANCED

Exercises

495

8. Open the FigureThisOut Solution (FigureThisOut Solution.sln) file contained in the
ClearlyVB2010\Chap26\FigureThisOut Solution folder. Open the form’s Code Editor
window and the class’s Code Editor window. Study the existing code. What is the
difference between both constructors? Start and then test the application. Close the
Code Editor windows and then close the solution.

9. Open the SwatTheBugs Solution (SwatTheBugs Solution.sln) file contained in the
ClearlyVB2010\Chap26\SwatTheBugs Solution folder. Open the form’s Code Editor
window and the class’s Code Editor window. Correct the btnCalc_Click procedure to
remove the jagged lines. Save the solution and then start and test the application. Notice
that the application is not working correctly. Locate and correct the errors in the code.
Save the solution and then start and test the application again. Close the Code Editor
windows and then close the solution.

Figure 26-16 Interface for Exercise 7

FIGURE THIS OUT

SWAT THE BUGS

C H A P T E R 2 6 I Love This Class (Creating a Class)

496

CHAPTER 27
Getting “Web-ified”
(Web Applications)

After studying Chapter 27, you should be able to:

Define basic Web terminology

Create a Web application

Add Web pages to an application

Customize a Web page

Add static text to a Web page

Format a Web page’s static text

View a Web page in full screen view

Add controls (link button, image, text box, label, and button) to a
Web page

Start, close, and open a Web application

Reposition a control on a Web page

Code a control on a Web page

Use a RequiredFieldValidator control

Web Applications
The Internet is the world’s largest computer network, connecting millions of computers located
all around the world. One of the most popular features of the Internet is the World Wide Web,
often referred to simply as the Web. The Web consists of documents called Web pages that
are stored on Web servers. A Web server is a computer that contains special software that “serves
up” Web pages in response to requests from client computers. A client computer is a computer
that requests information from a Web server. The information is requested and subsequently
viewed through the use of a program called a Web browser or, more simply, a browser.
Currently, the two most popular browsers are Microsoft Internet Explorer and Mozilla Firefox.

Many Web pages are static. A static Web page is a document whose purpose is merely to
display information to the viewer. Static Web pages are not interactive. The only interaction
that can occur between static Web pages and the viewer is through links that allow the
viewer to “jump” from one Web page to another. Figures 27-1 and 27-2 show examples of
static Web pages created for the Cottage Toy Store. The Web page in Figure 27-1 shows the
store’s name, address, and telephone number. The page also provides a link to the Web page
shown in Figure 27-2. That page shows the store’s business hours and provides a link for
returning to the first Web page. You will create both Web pages in this chapter.

Figure 27-1 Example of a static Web page

Figure 27-2 Another example of a static Web page

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

498

Although static Web pages provide a means for a store to list its location and hours, a
company wanting to do business on the Web must be able to do more than just list
information: It must be able to interact with customers through its Web site. The Web site
should allow customers to submit inquiries, select items for purchase, and submit payment
information. It also should allow the company to track customer inquiries and process
customer orders. Tasks such as these can be accomplished using dynamic Web pages.

Unlike a static Web page, a dynamic Web page is interactive in that it can accept information
from the user and also retrieve information for the user. Examples of dynamic Web pages
that you might have already encountered include forms for purchasing merchandise online
and for submitting online resumes. Figure 27-3 shows a dynamic Web page that you will
create in this chapter. The Web page allows the user to enter the number of American
dollars. When he or she clicks the Submit button, the button’s Click event procedure will
convert the number of dollars to the number of Mexican pesos and then display the result on
the Web page.

The Web applications created in this chapter use a technology called ASP.NET 4.0. ASP
stands for “active server page” and refers to the type of Web page created by the ASP
technology. All ASP pages contain HTML (Hypertext Markup Language) tags that tell the
client’s browser how to render the page on the computer screen. For example, the instruction
<h1>Hello</h1> uses the opening <h1> tag and its closing </h1> tag to display the word
“Hello” as a heading on the Web page. Many ASP pages also contain ASP tags that specify the
controls to include on the Web page. In addition to the HTML and ASP tags, dynamic ASP
pages contain code that tells the objects on the Web page how to respond to the user’s actions.
In this chapter, you will write the appropriate code using the Visual Basic programming
language.

When a client computer’s browser sends a request for an ASP page, the Web server locates the
page and then sends the appropriate HTML instructions to the client. The client’s browser
uses the instructions to render the Web page on the computer screen. If the Web page is a
dynamic one, like the Currency Converter page shown in Figure 27-3, the user can interact
with the page by entering data. In most cases, the user then clicks a button on the Web page to
submit the data to the server for processing. When the server receives the data, it executes the
Visual Basic code associated with the Web page. It then sends back the appropriate HTML,
which now includes the result of processing the code and data, to the client for rendering in
the browser window. Using the Currency Converter Web page as an example, the user first
enters the number of American dollars and then clicks the Submit button, which submits the
user’s entry to the Web server. The server executes the Visual Basic code to convert the
American dollars to Mexican pesos and then sends back the HTML, which now includes the

Figure 27-3 Example of a dynamic Web page

Web Applications

499

number of pesos. Notice that the Web page’s HTML is interpreted and executed by the client
computer, whereas the program code is executed by the Web server. Figure 27-4 illustrates
the relationship between the client computer and the Web server.

Mini-Quiz 27-1
See Appendix B for the answers.

1. ASP is an acronym for .

2. HTML is an acronym for .

3. The HTML instructions in a Web page are processed by the .

a. client computer b. Web server

Creating a Web Application
You create a Web application in Visual Basic using Visual Web Developer 2010, which is
available either as a stand-alone product (called Visual Web Developer 2010 Express) or as part
of Visual Studio 2010. You can download a free copy of Visual Web Developer 2010 Express
from Microsoft’s Web site. At the time of this writing, the address is http://www.microsoft.com/
express/Downloads/#2010-Visual-Web-Developer. The following steps show you how to
configure Visual Web Developer 2010 Express. You should perform these steps only if you are
using Visual Web Developer 2010 Express.

To configure Visual Web Developer 2010 Express:

1. Click the Start button on the Windows 7 taskbar and then point to All Programs.

2. Click Microsoft Visual Studio 2010 Express and then click Microsoft Visual Web
Developer 2010 Express.

3. Click Tools on the menu bar, and then click Options to open the Options dialog box. If
necessary, select the Show all settings check box. Click the Projects and Solutions
node. Use the information shown in Figure 27-5 to select and deselect the appropriate
check boxes.

2. Web server returns HTML

1. Client computer requests ASP page

3. Client computer submits data

4. Web server executes code and returns HTML

Figure 27-4 Illustration of the relationship between a client computer and a Web server

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

500

4. Click the OK button to close the Options dialog box.

5. Click Tools on the menu bar and then point to Settings. If necessary, click Expert
Settings to select it.

In the next set of steps, you begin creating the Cottage Toy Store Web application.

To begin creating the Cottage Toy Store Web application:

1. If necessary, start Visual Studio 2010 or Visual Web Developer 2010 Express.

2. If necessary, open the Solution Explorer and Properties windows, and auto-hide the
Toolbox window.

3. Click File on the menu bar and then click New Web Site to open the New Web
Site dialog box. If necessary, click Visual Basic in the Installed Templates list. Click
ASP.NET Empty Web Site in the middle column of the dialog box.

4. If necessary, change the entry in the Web location box to File System. The File
System selection allows you to store your Web application in any folder on either
your computer or a network drive.

5. In this chapter, you will be instructed to store your Web applications in the F:\
ClearlyVB2010\Chap27 folder; however, you can use any location. In the box that
appears next to the Web location box, replace the existing text with F:\ClearlyVB2010\
Chap27\Cottage. Figure 27-6 shows the completed New Web Site dialog box if you are
using Visual Studio 2010. Your NewWeb Site dialog box will look slightly different if you
are using Visual Web Developer 2010 Express.

select
these five
check
boxes deselect these

three check boxes

Figure 27-5 Options dialog box
Before you
begin
creating the
Cottage Toy
Store Web

application, you may find
it helpful to view the
Ch27-Web video.

Creating a Web Application

501

6. Click the OK button to close the New Web Site dialog box. The computer creates an
empty Web application named Cottage.

Adding the Default.aspx Web Page to the Application
After creating an empty Web application, you need to add a Web page to it. The first Web page
added to an application is usually named Default.aspx.

To add the Default.aspx Web page to the application:

1. Click Website on the menu bar and then click Add New Item to open the Add New
Item dialog box. (If Website does not appear on the menu bar, click the Web
application’s location and name in the Solution Explorer window.)

2. If necessary, click Visual Basic in the Installed Templates list and then (if necessary)
click Web Form in the middle column of the dialog box. Verify that the Place code in
separate file check box is selected, and that the Select master page check box is not
selected. As indicated in Figure 27-7, the Web page will be named Default.aspx.

select this Visual
Basic template

Figure 27-6 New Web Site dialog box

default name for
the Web page

Figure 27-7 Add New Item dialog box

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

502

3. Click the Add button to display the Default.aspx page in the Document window. If
necessary, click the Design tab that appears at the bottom of the IDE. When the
Design tab is selected, the Web page appears in Design view in the Document window,
as shown in Figure 27-8. You can use Design view to add text and controls to the
Web page. If the Formatting toolbar does not appear on your screen, click View on
the menu bar, point to Toolbars, and then click Formatting. If the div tag does not
appear in the Document window, click either the <div> button at the bottom of the
IDE or the rectangle below the body tag.

4. Click the Source tab to display the Web page in Source view. This view shows the
HTML and ASP tags that tell a browser how to render the Web page. The tags are
automatically generated for you as you are creating the Web page in Design view.
Currently, the Web page contains only HTML tags.

5. Click the Split tab to split the Document window into two parts. The upper half displays
the Web page in Source view, and the lower half displays it in Design view.

6. Click the Design tab to return to Design view, and then auto-hide the Solution Explorer
window.

Customizing a Web Page
You can use the Properties window to customize a Web page. The properties appear in the
Properties window when you select DOCUMENT in the window’s Object box. A Web page’s
Title property, for example, determines the value that appears in the browser’s title bar and
also on the page’s tab in the browser window. Its BgColor property controls the page’s
background color.

tabs

Web page’s name

location and name
of the Web application

Web page’s name

Document window

Formatting toolbar

Figure 27-8 Default.aspx Web page shown in Design view

Customizing a Web Page

503

To change the Title and BgColor properties:

1. Click the down arrow button in the Properties window’s Object box and then click
DOCUMENT in the list. (If DOCUMENT does not appear in the Object box, click the
Design tab.) The DOCUMENT object represents the Web page.

2. If necessary, click the Alphabetical button in the Properties window to display the
properties in alphabetical order. Click Title in the Properties list. Type Cottage Toy
Store in the Settings box and then press Enter.

3. Click BgColor in the Properties list and then click the … (ellipsis) button to open the
More Colors dialog box. Click the hexagon indicated in Figure 27-9.

4. Click the OK button to close the More Colors dialog box. The page’s background color
changes from white to a pale yellow.

5. Auto-hide the Properties window. Save the application by clicking either the Save All
button on the Standard toolbar or the Save All option on the File menu.

Adding Static Text to a Web Page
All Web pages contain some text that the user is not allowed to edit, such as a company
name or the caption that identifies a text box. Text that cannot be changed by the user is
referred to as static text. You can add static text to a Web page by simply typing the text on
the page itself. Or, you can use a label control that you dragged to the Web page from the
Toolbox window. In the following set of steps, you will type the static text on the Web page.

To add static text to the Web page:

1. If necessary, click inside the rectangle that appears below the div tag at the top of the
Document window. The div tag defines a division in a Web page. (If the div tag does not
appear in the Document window, click the <div> button at the bottom of the IDE.)

2. Enter the following four lines of text. Press Enter twice after typing the last line.

Cottage Toy Store
123 Elm Street
Bowling Green, KY 42101
(111) 555-5555

3. Save the application.

click this hexagon

Figure 27-9 More Colors dialog box

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

504

You can use either the Format menu or the Formatting toolbar to format the static text on a
Web page. Figure 27-10 indicates some of the tools available on the Formatting toolbar.

To use the Formatting toolbar to format the static text:

1. Select (highlight) the Cottage Toy Store text on the Web page. Click the down arrow in
the Block Format box on the Formatting toolbar. Click Heading 1 <h1>. (If the
Formatting toolbar does not appear on your screen, click View on the menu bar, point to
Toolbars, and then click Formatting.)

2. Select the address and phone number text on the Web page. Click the down arrow in
the Block Format box and then click Heading 2 <h2>.

3. Now, you will use the Formatting toolbar’s Alignment button to center all of the static
text. Select all of the static text on the Web page and then click the down arrow on the
Alignment button. See Figure 27-11.

4. Click Justify Center. The selected text appears centered, horizontally, on the Web page.
Click anywhere below the phone number to deselect the text, and then save the
application.

Viewing a Web Page in Full Screen View
While you are designing a Web page, you can periodically view the page in full screen view to
determine how it will appear to the user. You do this using the Full Screen option on the View
menu.

Block Format box Font Name box Font Size box

Foreground Color button Alignment button

Figure 27-10 Formatting toolbar

Alignment button

Figure 27-11 Result of clicking the Alignment button

Viewing a Web Page in Full Screen View

505

To view the Web page using the Full Screen option:

1. Click View on the menu bar and then click Full Screen on the menu. See Figure 27-12.
Although not identical to viewing in a browser window, full screen view provides a quick
and easy way to verify the placement of controls and text on the Web page.

2. Click the Full Screen button to return to the standard view. (If you mistakenly clicked
the window’s Close button, click the Full Screen button, right-click Default.aspx in the
Solution Explorer window, and then click View Designer.)

Adding Another Web Page to the Application
In the next set of steps, you will add a second Web page to the Cottage Toy Store application.
The Web page will display the store’s hours of operation.

To add another Web page to the application:

1. Click Website on the menu bar and then click Add New Item to open the Add New
Item dialog box. (If Website does not appear on the menu bar, click the Web
application’s location and name in the Solution Explorer window.)

2. If necessary, click Visual Basic in the Installed Templates list and then (if necessary)
click Web Form in the middle column of the dialog box. Change the filename in the
Name box to Hours and then click the Add button. The computer appends the .aspx
extension on the filename and then displays the Hours.aspx Web page in the
Document window.

3. Temporarily display the Solution Explorer window. Notice that the window now
contains the Hours.aspx filename.

4. Temporarily display the Properties window. Click the down arrow button in the
Properties window’s Object box and then click DOCUMENT in the list. (If
DOCUMENT does not appear in the Object box, click the Design tab.) Change the Web
page’s Title property to Cottage Toy Store. Also change its BgColor property to the
same color as the Default.aspx page. (If necessary, refer back to Figure 27-9.) Click the
OK button to close the More Colors dialog box.

5. If necessary, click the Design tab and then click inside the rectangle that appears below
the div tag at the top of the Document window. (If the div tag does not appear in the
Document window, click either the <div> button at the bottom of the IDE or the
rectangle below the body tag.) Type Please visit us during these hours: and press
Enter twice.

blinking insertion point

Full Screen button

Figure 27-12 Default.aspx Web page displayed in full screen view

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

506

6. Next, enter the following three lines of text. Press Enter twice after typing the last line.

Monday – Friday 8am – 10pm
Saturday 9am – 6pm
Closed Sunday

7. Select the Please visit us during these hours: text. Click the down arrow in the Font Size
box and then click x-large (24pt). Also click the I (Italic) button on the Formatting
toolbar.

8. Select the three lines of text that contain the store hours. Click the down arrow in the
Font Size box and then click large (18pt). Also click the B (Bold) button on the
Formatting toolbar.

9. Now, you will change the color of the selected text. Click the Foreground Color button
on the Formatting toolbar to open the More Colors dialog box. Click any dark blue
hexagon and then click the OK button.

10. Select all of the static text on the Web page. Click the down arrow on the Alignment
button and then click Justify Center.

11. Click the blank line below the store hours to deselect the text, and then save the
application.

Adding a Link Button Control to a Web Page
In addition to customizing a Web page by changing its properties and formatting its static
text, you also can add controls to the Web page. You do this using the tools provided in the
Toolbox window. In the next set of steps, you will add a link button control to both Web pages.
The link button control on the Default.aspx page will display the Hours.aspx page. The link
button control on the Hours.aspx page will return the user to the Default.aspx page.

To add a link button control to both Web pages:

1. First, you will add a link button control to the Hours.aspx page. Permanently display
the Toolbox window and then click the LinkButton tool. Drag your mouse pointer
to the location shown in Figure 27-13 and then release the mouse button.

2. Temporarily display the Properties window. Change the control’s Text property to
Home Page and press Enter. Click PostBackUrl in the Properties list and then click
the … (ellipsis) button to open the Select URL dialog box. Click Default.aspx in the
Contents of folder list. See Figure 27-14.

LinkButton tool

Figure 27-13 Link button control added to the Hours.aspx Web page

Adding a Link Button Control to a Web Page

507

3. Click the OK button to close the dialog box and then click the Web page.

4. Now, you will add a link button control to the Default.aspx page. Click the Default.aspx
tab. Click the LinkButton tool. Drag your mouse pointer to the location shown in
Figure 27-15 and then release the mouse button.

5. Temporarily display the Properties window. Change the control’s Text property to Store
Hours and press Enter. Change its PostBackUrl property to Hours.aspx.

6. Click the OK button to close the Select URL dialog box and then click the Web page.
Save the application.

Starting a Web Application
Typically, you start a Web application either by pressing Ctrl+F5 or by clicking the Start
Without Debugging option on the Debug menu. The method you use—either the shortcut
keys or the menu option—is a matter of personal preference. If you prefer to use a menu option,
you might need to add the Start Without Debugging option to the Debug menu, because the
option is not automatically included on the menu in either Visual Studio or Visual Web
Developer Express. You can add the option to the menu by performing the next set of steps.
If you prefer to use the Ctrl+F5 shortcut keys, you can skip the next set of steps.

To add the Start Without Debugging option to the Debug menu:

1. First, you will determine whether your Debug menu already contains the Start Without
Debugging option. Click Debug on the menu bar. If the Debug menu contains the Start
Without Debugging option, close the menu by clicking Debug again, and then skip the
remaining steps in this set of steps.

Figure 27-14 Select URL dialog box

Figure 27-15 Link button control added to the Default.aspx Web page

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

508

2. If the Debug menu does not contain the Start Without Debugging option, close the
menu by clicking Debug again. Click Tools on the menu bar and then click Customize
to open the Customize dialog box.

3. Click the Commands tab. The Menu bar radio button should be selected. Click the
down arrow in the Menu bar list box. Scroll down the list until you see Debug, and then
click Debug.

4. Click the Add Command button to open the Add Command dialog box, and then click
Debug in the Categories list. Scroll down the Commands list until you see Start Without
Debugging, and then click Start Without Debugging. Click the OK button to close the
Add Command dialog box.

5. Click the Move Down button three times. The completed Customize dialog box is
shown in Figure 27-16. Click the Close button to close the Customize dialog box.

When you start a Web application in either Visual Studio 2010 or Visual Web Developer
2010 Express, the computer creates a temporary Web server that allows you to view your
Web page in a browser. However, keep in mind that your Web page will need to be placed on an
actual Web server for others to view it.

To start the Cottage Toy Store Web application:

1. Start the Web application either by pressing Ctrl+F5 or by clicking the Start Without
Debugging option on the Debug menu. Your browser requests the Default.aspx page
from the server. The server locates the page and then sends the appropriate HTML
instructions to your browser for rendering on the screen. Notice that the value in the
page’s Title property appears in the browser’s title bar and on the page’s tab in the
browser window. See Figure 27-17.

Figure 27-16 Customize dialog box

Starting a Web Application

509

2. Click Store Hours to display the Hours.aspx page. See Figure 27-18.

3. Click Home Page to display the Default.aspx page, and then close the browser window.

Adding an Image to a Web Page
In the next set of steps, you will add an image to the Default.aspx page. The image is stored in
the Small_house.jpg file, which is contained in the ClearlyVB2010\Chap27 folder. The image file
was downloaded from the Stock.XCHNG site and was generously contributed by photographer
Gerrit Schneider. (You can browse and optionally download other free images at www.sxc.hu.
However, be sure to read the Web site's copyright policies before downloading any images.)

To add an image to the Web page:

1. First, you will need to add the image file to the application. Click Website on the menu
bar and then click Add Existing Item. Open the ClearlyVB2010\Chap27 folder. Click
the down arrow in the box that controls the file types and then click All Files (*.*) in
the list. Click Small_house.jpg in the list of filenames and then click the Add button.

2. If necessary, insert a blank line below the Store Hours link button control. Click the
blank line below the control and then press Enter to insert another blank line. Click the

the Title property’s
value appears here

Figure 27-17 Default.aspx Web page displayed in a browser window

Figure 27-18 Hours.aspx Web page displayed in a browser window

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

510

Image tool in the toolbox. Drag your mouse pointer to the location shown in Figure 27-
19 and then release the mouse button.

3. Temporarily display the Properties window. Click ImageUrl in the Properties list and
then click the … (ellipsis) button to open the Select Image dialog box. Click
Small_house.jpg in the Contents of folder section and then click the OK button.

4. Next, you will put a colored border around the image control and also change the
border’s width to 10 pixels. Change the image control’s BorderStyle property to
Groove, and then change its BorderWidth property to 10. Press Enter after typing the
number 10.

5. Now, you will change the color of the image’s border to match the Web page’s color.
Click BorderColor in the Properties list and then click the… (ellipsis) button. When the
More Colors dialog box opens, click the same hexagon as you did for the DOCUMENT’s
BgColor. (If necessary, refer back to Figure 27-9.) Click the OK button to close the dialog
box and then click the Web page.

6. Auto-hide the toolbox. Save and then start the application. See Figure 27-20.

Figure 27-19 Image control added to the Default.aspx Web page

Figure 27-20 Default.aspx Web page

Adding an Image to a Web Page

511

7. Verify that the browser window is not maximized. Place your mouse pointer on the
window’s right border and then drag the border to the left to make the window
narrower. Notice that the text and image remain centered in the visible portion of the
window. Now, drag the right border to the right to make the window wider. Here again,
the text and image remain centered in the visible portion of the window.

8. Close the browser window.

Closing and Opening an Existing Web Application
You can use the File menu to close and also open an existing Web application.

To close and then open the Cottage Toy Store application:

1. Click File on the menu bar and then click Close Solution to close the application.

2. Now, you will open the application. Click File on the menu bar and then click Open
Web Site. The Open Web Site dialog box appears. If necessary, click the File System
button. Open the ClearlyVB2010\Chap27 folder. Click the Cottage folder and then
click the Open button. (If you need to open the Web page in the Document window,
right-click the Web page’s name in the Solution Explorer window and then click
View Designer.)

Repositioning a Control on a Web Page
At times, you may want to reposition a control on a Web page. In this section, you will move
the image and link button controls to different locations on the Default.aspx Web page. First,
however, you will create a new Web application and then copy the Cottage files to the
application.

To create a new Web application and then copy files to the application:

1. Close the Cottage application. Use the NewWeb Site option on the File menu to create an
empty Web application named Cottage2. Save the application in the ClearlyVB2010\
Chap27 folder.

2. Close the Cottage2 application.

3. Use Windows to open the Cottage2 folder. Delete the web.config file.

4. Use Windows to open the Cottage folder. Select the folder’s contents, which include six
files (Default.aspx, Default.aspx.vb, Hours.aspx, Hours.aspx.vb, Small_house.jpg, and
web.config). Copy the six files to the Cottage2 folder.

Now, you will open the Cottage2 application and move the two controls to different locations on
the Default.aspx Web page.

To open the Cottage2 application and then move the controls:

1. Open the Cottage2 Web application. Right-click Default.aspx in the Solution Explorer
window and then click View Designer.

2. First, you will move the image control from the bottom of the Web page to the top of the
Web page. If necessary, click immediately before the letter C in the Cottage Toy Store
heading. Press Enter to insert a blank line above the heading.

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

512

3. Click the image control on the Web page. Drag the image control to the blank line
immediately above the heading, and then release the mouse button.

4. Next, you will move the link button control to the empty area below the store’s name.
Click the link button control. Drag the control to the empty area below the store’s
name, and then release the mouse button.

5. Save and then start the application. See Figure 27-21.

6. Close the browser window and then close the application.

Mini-Quiz 27-2
See Appendix B for the answers.

1. A Web page’s property determines the value that appears on the page’s
tab in a browser window.

a. Name
b. Text

c. Title
d. Value

2. The property specifies the image displayed in an image control on a
Web page.

a. Image
b. ImageUrl

c. Url
d. Picture

3. A link button control’s property specifies the Web page that will appear
when the control is clicked.

a. PostBackUrl
b. PostBack

c. Url
d. none of the above

Figure 27-21 Modified Default.aspx Web page

Repositioning a Control on a Web Page

513

Dynamic Web Pages
A dynamic Web page contains controls with which the user can interact. It also contains code
that tells the controls how to respond to the user’s actions. In the following sections, you will
create the dynamic Web page shown earlier in Figure 27-3. Recall that the Web page allows the
user to enter the number of American dollars. When the user clicks the page’s Submit button,
the button’s Click event procedure will convert the dollars to Mexican pesos and then display
the result.

To create the Currency Converter Web application:

1. If necessary, open the Solution Explorer, Properties, and Toolbox windows.

2. Use the New Web Site option on the File menu to create an empty Web application
named Currency. Save the application in the ClearlyVB2010\Chap27 folder.

3. Use the Add New Item option on the Website menu to add a Web page named
Default.aspx to the application. (If Website does not appear on the menu bar, click the
Web application’s location and name in the Solution Explorer window.)

4. If necessary, click the Design tab. Change the DOCUMENT object’s Title property to
Currency Converter.

Before you add any text or controls to a Web page, you should plan the page’s layout.
Figure 27-22 shows a sketch of the Web page for the Currency Converter application. The
Web page will contain static text. It also will contain the following controls: an image, a text
box, a label, and a button.

To begin creating the Web page:

1. Click inside the rectangle that appears below the div (or body) tag at the top of the
Document window. Recall that the div tag defines a division in a Web page. All of the
text in this division will use the Segoe UI font. If necessary, use the View menu to display
the Formatting toolbar. Click the down arrow in the Font Name box and then scroll the
list until you see Segoe UI. Click Segoe UI in the list.

2. Before dragging an image control to the Web page, you will add the American flag image
file to the application. Click Website on the menu bar and then click Add Existing
Item. Open the ClearlyVB2010\Chap27 folder. Click the down arrow in the box that
controls the file types and then click All Files (*.*) in the list. Click USflag.jpg in the list
of filenames and then click the Add button.

3. Drag an image control into the rectangle that appears below the div tag and then release
the mouse button. Change the image control’s ImageUrl property to USflag.jpg and
then click the OK button to close the Select Image dialog box.

Image of the Currency Converter
American flag

American dollars:

Mexican pesos:

Submit

Figure 27-22 Sketch of the Currency Converter application’s Web page

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

514

4. Click an empty area to the right of the flag to deselect the image control, and then press
Enter twice.

5. Next, you will enter the Web page’s static text. Press Tab twice. Type Currency
Converter and then press Enter twice.

6. Press Tab twice. Type American dollars:, press the Spacebar twice, and then press
Enter twice.

7. Press Tab twice. TypeMexican pesos:, press the Spacebar twice, and then press Enter twice.

8. Press Tab twice. Figure 27-23 shows the image control and static text on the Web page.

In addition to the image control and static text, the Web page will contain a text box, a label,
and a button. You will add those controls next.

To add a text box, a label, and a button to the page:

1. Drag a text box control to the Web page. Position the control immediately after the two
spaces that follow the “American dollars:” text, and then release the mouse button.

2. Unlike Windows controls, Web controls have an ID property rather than a Name
property. Use the Properties window to set the TextBox1 control’s ID property
(which appears at the top of the Properties list) to txtDollars. Also set its Width
property to 90px.

3. Drag a label control to the Web page. Position the control immediately after the two
spaces that follow the “Mexican pesos:” text, and then release the mouse button. Set the
following properties for the Label1 control:

ID lblPesos
BorderStyle Solid
BorderWidth 1px
Text 0
Width 90px

4. Change the label control’s BackColor property to a pale yellow.

5. Finally, drag a button control to the Web page. Position the control two blank lines
below the letter M in the “Mexican pesos:” text, and then release the mouse button. Set
the following properties for the Button1 control:

ID btnSubmit
Text Submit

blinking
insertion point

Figure 27-23 Image control and static text on the Web page

Dynamic Web Pages

515

6. Click a blank area on the Web page. See Figure 27-24.

Looking back at the sketch shown earlier in Figure 27-22, you will notice that the heading text
(Currency Converter) is larger than the other text on the page. Also, the image control is
positioned to the left of the static text and other controls. You will make these modifications in
the next set of steps.

To complete the Web page’s interface:

1. Auto-hide the Solution Explorer, Properties, and Toolbox windows.

2. Select (highlight) the Currency Converter text. Use the Font Size box on the Formatting
toolbar to change the font size to xx-large (36pt). (You also can use the Font option on
the Format menu to change the font size.)

3. Click the image control. Click Format on the menu bar and then click Position to
open the Position dialog box. See Figure 27-25.

Figure 27-24 Current status of the Web page

click this button to position
the image to the left of the
static text and other controls

Figure 27-25 Position dialog box

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

516

4. The image control should appear on the left side of the static text and other controls.
Click Left in the Wrapping style section, and then click the OK button.

5. Position your mouse pointer on the image control’s lower-right sizing handle, as
shown in Figure 27-26. Drag the sizing handle until the control is approximately the size
shown in the figure. (The number of pixels may be different on your screen. Just be
sure that all of the static text and other controls appear to the right of the image control.)

6. Click an empty area on the Web page to deselect the image control. Save the
application and then start it by pressing Ctrl+F5. The Web page appears in a browser
window. Close the browser window.

Coding the Submit Button’s Click Event Procedure
In the following set of steps, you will code the Submit button’s Click event procedure so that
it converts the number of American dollars to Mexican pesos and then displays the result on
the Web page. At the time of this writing, an American dollar was equivalent to approximately
12.36 Mexican pesos. As you do when coding a control on a Windows form, you enter the
code for a control on a Web page in the Code Editor window.

To code the Submit button’s Click event procedure:

1. Right-click the Web page and then click View Code to open the Code Editor window.
The Default.aspx.vb window opens. The .vb extension on the filename indicates that the
file is a Visual Basic source file, which is a file that contains Visual Basic code. The file is
referred to as the code-behind file, because it contains code that supports the Web page.
Temporarily display the Solution Explorer window. See Figure 27-27.

drag this sizing handle

Figure 27-26 Size and position of the image control

Code Editor window

code-behind file

Figure 27-27 Code Editor and Solution Explorer windows

Coding the Submit Button’s Click Event Procedure

517

2. Enter the following comments above the Partial Class clause, except replace <your
name> and <current date> with your name and the current date, respectively:

' Name: Currency
' Purpose: Convert dollars to pesos
' Programmer: <your name> on <current date>

3. Open the btnSubmit control’s Click event procedure. Type the following comment and
then press Enter twice:

' converts dollars to pesos

4. The procedure will use a Double named constant to store the conversion rate of 12.36.
Enter the following Const statement:

Const dblPESO_RATE As Double = 12.36

5. The procedure will use two Double variables to store the number of American dollars
and the number of Mexican pesos. Enter the following Dim statements. Press Enter
twice after typing the second Dim statement.

Dim dblDollars As Double
Dim dblPesos As Double

6. Now, you will store the user’s entry in the dblDollars variable. Enter the following
TryParse method:

Double.TryParse(txtDollars.Text, dblDollars)

7. Next, you will convert the dollars to pesos and then store the result in the dblPesos
variable. Enter the following assignment statement:

dblPesos = dblDollars * dblPESO_RATE

8. Finally, you will display the number of pesos in the lblPesos control. Enter the following
assignment statement:

lblPesos.Text = dblPesos.ToString("N2")

Figure 27-28 shows the code entered in the btnSubmit control’s Click event procedure.

Figure 27-28 btnSubmit control’s Click event procedure

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

518

Now you will test the Currency Converter application to verify that it is working correctly.

To test the Currency Converter application:

1. Save and then start the application. Your browser requests the Default.aspx page from
the server. The server locates the page and then sends the appropriate HTML
instructions to your browser for rendering on the screen.

2. Click the American dollars box and then type 10. Click the Submit button; doing
this submits your entry to the server, along with a request for additional services.
The server processes the code contained in the button’s Click event procedure
and then sends the appropriate HTML to the browser for rendering on the screen.
See Figure 27-29.

3. Close the browser window and then close the Code Editor window.

Validating User Input
The Validation section of the toolbox provides several tools for validating user input. The tools
are referred to as validator tools. The name, purpose, and important properties of each
validator tool are listed in Figure 27-30. In the Currency Converter application, you will use a
RequiredFieldValidator control to verify that the user entered the number of American dollars.

Figure 27-29 Result of clicking the Submit button

Validating User Input

519

To verify that the user entered the number of American dollars:

1. If necessary, maximize the Visual Studio (Visual Web Developer) window.

2. Click to the immediate right of the txtDollars control and then press the Spacebar
three times.

3. Temporarily display the Toolbox window. If necessary, expand the Validation section.
Click the RequiredFieldValidator tool and then drag your mouse pointer to the Web
page. Position your mouse pointer to the right of the txtDollars control and then release
the mouse button.

4. Temporarily display the Properties window. Set the following properties for the
RequiredFieldValidator1 control:

ControlToValidate txtDollars
ErrorMessage Required entry
ForeColor choose a red hexagon

5. Click an empty area of the Web page. Save the application and then start it by pressing
Ctrl+F5.

Name Purpose Properties

CompareValidator compare an entry with a ControlToCompare
 constant value or the property ControlToValidate
 stored in a control ErrorMessage
 Type
 ValueToCompare

CustomValidator verify that an entry passes the ClientValidationFunction
 specified validation logic ControlToValidate
 ErrorMessage

RangeValidator verify that an entry is within ControlToValidate
 the specified minimum and ErrorMessage
 maximum values MaximumValue
 MinimumValue
 Type

RegularExpressionValidator verify that an entry matches ControlToValidate
 a specific pattern ErrorMessage
 ValidationExpression

RequiredFieldValidator verify that a control contains data ControlToValidate
 ErrorMessage

ValidationSummary display all of the validation error DisplayMode
 messages in a single location on a HeaderText
 Web page

Figure 27-30 Validator tools

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

520

6. Click the Submit button without entering a value in the txtDollars control. The
RequiredFieldValidator control displays the “Required entry” message, as shown in
Figure 27-31.

7. Click the American dollars box and then type 20. Click the Submit button. The error
message is removed from the Web page and the number 247.20 appears in the
lblPesos control.

8. Close the browser window and then close the application.

Mini-Quiz 27-3
See Appendix B for the answers.

1. If you want text to appear to the left of the selected image control on a Web form, you
would need to click the button in the Position dialog box.

a. Align
b. AlignLeft

c. Left
d. Right

2. The Visual Basic code in a Web page is processed by the .

a. client computer b. Web server

3. You can use a control to verify that a control on a Web page contains data.

a. RequiredFieldValidator
b. RequiredField

c. RequiredValidator
d. none of the above

Summary
l The Web consists of Web pages that are stored on Web servers.

l A client computer uses a browser to request a Web page from a Web server. It also uses the
browser to view the Web page.

l Web pages can be either static or dynamic (interactive).

l HTML tags tell the browser how to render a Web page on the computer screen. ASP tags
specify the controls to include on a Web page.

error message displayed by
the RequiredFieldValidator
control

Figure 27-31 Result of clicking the Submit button when the American dollars box is empty

Summary

521

l Dynamic Web pages contain code that is processed by the Web server.

l You use the New Web Site option on the File menu to create an empty Web application.

l You can use the Add New Item option on the Website menu to add a Web page to an
application.

l You add a title to a Web page by setting the DOCUMENT object’s Title property.

l The DOCUMENT object’s BgColor property determines the background color of a
Web page.

l You can add static text to a Web page by typing the text on the Web page; or, you can use
a label control. You can format the static text using either the Format menu or the
Formatting toolbar.

l You can display a Web page in full screen view using the Full Screen option on the View
menu. You display a Web page in a browser window by starting the Web application.

l You use the LinkButton tool to add a link button control to a Web page. The control’s
PostBackUrl property specifies the Web page to display when the control is clicked.

l You can use an image control to display an image on a Web page. You specify the image in
the control’s ImageUrl property.

l To close a Web application, click File on the menu bar and then click Close Solution.

l To open an existing Web application, click File on the menu bar and then click Open
Web Site.

l You can drag a control to reposition it on a Web page.

l You can use the Position option on the Format menu to wrap text around an image control.

l To have a control on a Web page respond to the user’s action, you enter the appropriate
code in the Code Editor window.

l The Validation section of the toolbox provides validator tools for validating the user input on
a Web page.

Key Terms
ASP—stands for “active server page”

Browser—a program that allows a client computer to request and view Web pages

Client computer—a computer that requests information from a Web server

Dynamic Web page—an interactive document that can accept information from the user and
also retrieve information for the user

Link button control—allows the user to “jump” from one Web page to another Web page

Static text—text that the user is not allowed to edit

Static Web page—a non-interactive document whose purpose is merely to display information
to the viewer

Validator tools—the tools contained in the Validation section of the toolbox; used to validate
user input on a Web page

Web pages—the documents stored on Web servers

Web server—a computer that contains special software that “serves up” Web pages in response
to requests from client computers

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

522

Review Questions
1. A computer that requests an ASP page from a Web server is called a

computer.

a. browser

b. client

c. requesting

d. none of the above

2. A is a program that uses HTML to render a Web page on the computer
screen.

a. browser

b. client

c. server

d. none of the above

3. An online form used to purchase a product is an example of a Web page.

a. dynamic b. static

4. The first Web page in an empty Visual Basic Web application is automatically assigned
the name .

a. Default.aps

b. Default1.vb

c. WebForm1.aspx

d. none of the above

5. The background color of a Web page is determined by the property.

a. BackColor

b. BackgroundColor

c. BgColor

d. none of the above

6. In code, you refer to a control on a Web page using the control’s property.

a. Caption

b. ID

c. Name

d. Text

7. You can use a(n) control to verify that an entry on a Web page is within a
minimum and maximum value.

a. MinMaxValidation

b. MaxMinValidation

c. EntryValidator

d. RangeValidator

Exercises
1. In this exercise, you modify the Currency Converter application from the chapter.

a. Create an empty Web application named CurrencyRangeValidator. Save the
application in the ClearlyVB2010\Chap27 folder. Close the CurrencyRangeValidator
application.

b. Use Windows to open the CurrencyRangeValidator folder. Delete the web.config
file.

c. Use Windows to open the Currency folder. Select the folder’s contents. Copy the
selected contents to the CurrencyRangeValidator folder.

d. Open the CurrencyRangeValidator Web site. Right-click Default.aspx in the
Solution Explorer window and then click View Designer.

e. Add a RangeValidator control to the Web page. Change the control’s Type property
to Double. The control should display an appropriate message when the number of
American dollars is either less than 1 or greater than 100,000.

f. Save the application and then start and test it. Close the browser window and then
close the application.

MODIFY THIS

Exercises

523

2. Create an empty Web application named Johansen. Save the application in the
ClearlyVB2010\Chap27 folder. Add a new Web page named Default.aspx to the
application. Change the DOCUMENT object’s Title property to Johansen Pet Supplies.
Create a Web page similar to the one shown in Figure 27-32. The static text should be
centered, horizontally, on the page. Save and then start the application. Close the
browser window and then close the application.

3. Create an empty Web application named Winterland. Save the application in the
ClearlyVB2010\Chap27 folder. Add a new Web page named Default.aspx to the
application. Change the DOCUMENT object’s Title property to Winterland Farms.
Change the DOCUMENT object’s BgColor property to a light blue. Create a Web page
similar to the one shown in Figure 27-33. The winterland.jpg file is contained in the
ClearlyVB2010\Chap27 folder. Save and then start the application. Close the browser
window and then close the application.

4. Create an empty Web application named Multiplication. Save the application in the
ClearlyVB2010\Chap27 folder.

a. Add a new Web page named Default.aspx to the application. Change the
DOCUMENT object’s Title property to Multiplication Calculator. Create a Web

Heading 1 <h1>

Heading 2 <h2>,
red foreground, italics

Heading 3 <h3>

large (18 pt)

Figure 27-32 Web page for Exercise 2

Figure 27-33 Web page for Exercise 3

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

524

page similar to the one shown in Figure 27-34. The X image is contained in the
ClearlyVB2010\Chap27\Times.jpg file.

b. Add two RequiredFieldValidator controls to the Web page. The controls should
verify that their respective text box contains data.

c. Open the Code Editor window. Code the Submit button’s Click event procedure so
it multiplies the value entered in the txtMultiplier control by the value entered in the
txtMultiplicand control and then displays the result in the lblProduct control.

d. Save the application and then start and test it. Close the browser window. Close the
Code Editor window and then close the application.

5. In this exercise, you create an application that displays the result of converting British
pounds to American dollars. Create an empty Web application named
PoundsToDollars. Save the application in the ClearlyVB2010\Chap27 folder. Add a new
Web page named Default.aspx to the application. Change the DOCUMENT object’s
Title property to Pounds to Dollars. Include a Submit button on the Web page. Also
include an image control that displays the contents of the BritishFlag.jpg image file. The
image file is contained in the ClearlyVB2010\Chap27 folder. Open the Code Editor
window. Use comments to document the application’s name and purpose, as well as
your name and the current date. Code the Submit button’s Click event procedure. Use
1.56 as the number of American dollars for each British pound. Save the application and
then start and test it. Close the browser window. Close the Code Editor window and
then close the application.

6. Create an empty Web application named Gutierrez. Save the application in the
ClearlyVB2010\Chap27 folder. Add two new Web pages named Default.aspx and
Message.aspx to the application. Change the DOCUMENT object’s Title property to
Gutierrez Heating and Cooling. Create Web pages similar to the ones shown in Figures
27-35 and 27-36. The static text and link button control on the Default.aspx page
should be centered, horizontally, on the page. As you are creating the Web pages,
periodically view them in full screen view. Save and then start the application. Close the
browser window and then close the application.

txtMultiplier

txtMultiplicand

btnSubmit

lblProduct

Image1

Figure 27-34 Web page for Exercise 4

INTRODUCTORY

INTERMEDIATE

Exercises

525

7. Create an empty Web application named ZipCode. Save the application in the
ClearlyVB2010\Chap27 folder. Add a new Web page named Default.aspx to the
application. Change the DOCUMENT object’s Title property to ZIP Code Verifier.
Create a Web page similar to the one shown in Figure 27-37. Use labels for the static
text. Also, use the Segoe UI font for the static text and controls. Verify that the user
entered the ZIP code and that the ZIP code is in the appropriate format. (Hint: Use a
RegularExpressionValidator control to verify the format.) If the ZIP code is valid, the
Submit button’s Click event procedure should display the message “Your ZIP code is ”
followed by the ZIP code and a period. Save and then start the application. Test the
application by clicking the Submit button without entering a ZIP code. Then test it
using the following ZIP codes: 60611, 606123, 60611-3456, and 60611-5. Close the
browser window. Close the Code Editor window and then close the application.

Figure 27-35 Default.aspx Web page for Exercise 6

Figure 27-36 Message.aspx Web page for Exercise 6

Figure 27-37 Web page for Exercise 7

ADVANCED

C H A P T E R 2 7 Getting “Web ified” (Web Applications)

526

APPEND I X A
Data Types
Data type Stores Memory required

Boolean a logical value (True, False) 2 bytes

Char one Unicode character 2 bytes

Date date and time information
Date range: January 1, 0001 to December 31, 9999
Time range: 0:00:00 (midnight) to 23:59:59

8 bytes

Decimal a number with a decimal place
Range with no decimal place:
+/–79,228,162,514,264,337,593,543,950,335
Range with a decimal place:
+/–7.9228162514264337593543950335

16 bytes

Double a number with a decimal place
Range: +/–4.94065645841247 X 10 324 to
+/–1.79769313486231 X 10308

8 bytes

Integer integer
Range: –2,147,483,648 to 2,147,483,647

4 bytes

Long integer
Range: –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

8 bytes

Object data of any type 4 bytes

Short integer
Range: –32,768 to 32,767

2 bytes

Single a number with a decimal place
Range: +/–1.401298 X 10 45 to +/–3.402823 X 1038

4 bytes

String text; 0 to approximately 2 billion Unicode characters

This page intentionally left blank

APPEND I X B
Answers to Mini-Quizzes
and TRY THIS Exercises
Chapter 1
TRY THIS 1 (Chapter 1)

1. repeat 5 times:
walk forward

2. jump over the box
3. repeat until you are directly in front of the chair:

walk forward
4. repeat 2 times:

turn to the right 90 degrees
5. sit down

TRY THIS 2 (Chapter 1)

repeat 25 times:
read the student’s answer and the correct answer
if the student’s answer is not the same as the correct answer, do this:

mark the student’s answer incorrect

Chapter 2
Mini-Quiz 2-1

1. Output: annual state income tax

Input: yearly taxable wages
state income tax rate

2. Output: savings

Input: number of CDs purchased
club CD price
store CD price

3. Output: total amount saved

Input: daily savings
number of days

Mini-Quiz 2-2

1. Algorithm:
1. enter the yearly taxable wages and state income tax rate
2. calculate the annual state income tax by multiplying the yearly taxable wages

by the state income tax rate
3. display the annual state income tax

2.

3. Algorithm:
1. enter the number of CDs purchased, the club CD price, and the store CD price
2. calculate the club cost by multiplying the number of CDs purchased by the club

CD price
3. calculate the store cost by multiplying the number of CDs purchased by the

store CD price
4. calculate the savings by subtracting the club cost from the store cost
5. display the savings

Mini-Quiz 2-3

1. Desk-check table

yearly taxable wages state income tax rate annual state income tax

23000 .03 690

14000 .02 280

2. Desk-check table

number of CDs
purchased

club CD price store CD price club cost store cost savings

20 10.50 14.99 210 299.80 89.80

5 9.99 11 49.95 55 5.05

start

Algorithm:

enter yearly taxable
wages and state
income tax rate

calculate annual state income
tax = yearly taxable wages times
state income tax rate

display annual
state income tax

stop

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

530

TRY THIS 1 (Chapter 2)

Output: tip

Input: total bill
liquor charge
tip percentage

Algorithm:
1. enter the total bill, liquor charge, and tip percentage
2. calculate the tip by subtracting the liquor charge from the total bill, and

then multiplying the remainder by the tip percentage
3. display the tip

Desk-check table

total bill liquor charge tip percentage tip

85 20 .2 13

35 0 .15 5.25

TRY THIS 2 (Chapter 2)

Output: total cost of purchase

Processing: total cup cost
total plate cost
subtotal

Input: cup price
plate price
number of cups
number of plates
sales tax rate

Algorithm:
1. enter the cup price, plate price, number of cups, number of plates, and sales tax rate
2. calculate the total cup cost by multiplying the number of cups by the cup price
3. calculate the total plate cost by multiplying the number of plates by the plate price
4. calculate the subtotal by adding together the total cup cost and total plate cost
5. calculate the total cost of purchase by multiplying the subtotal by the sales tax

rate, and then adding the result to the subtotal
6. display the total cost of purchase

Desk-check table

cup price plate price number of cups number of plates sales tax rate

.50 1 35 35 .02

.25 .75 20 10 .06

total cup cost total plate cost subtotal total cost of purchase

17.50 35 52.50 53.55

5 7.50 12.50 13.25

531

Chapter 2

Chapter 3
Mini-Quiz 3-1

1. label

2. Toolbox window

3. graphical user interface

Mini-Quiz 3-2

1. Image

2. Text

3. upper-left

4. PictureBox2

5. Start Debugging

TRY THIS 1 (Chapter 3)

Set the form’s Font property to Segoe UI, 9pt. Set its StartPosition and Text properties to
CenterScreen and Scottsville Library, respectively. Set the Label1 control’s Text property to
WELCOME!. Set the PictureBox1 control’s Image and SizeMode properties to Book_opens.gif
and StretchImage, respectively. Use the Format menu to center the label and picture box
controls.

Chapter 4
Mini-Quiz 4-1

1. label

2. c. txtCity

3. btn

Mini-Quiz 4-2

1. 6

2. a. Alt+t

3. procedure header

TRY THIS 1 (Chapter 4)

Interface:

txtCurrentPay lblNewPay txtRaisePercentage

btnCalculate

btnExit

532

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

Tab order:

Code:

Chapter 5
Mini-Quiz 5-1

1. Val(lblTotal.Text) + 100

2. 0

3. 1

Mini-Quiz 5-2

1. lblGross.Text = Val(txtHours.Text) * Val(txtRate.Text)

2. lblNewPrice.Text = Val(txtOldPrice.Text) + 5

3. assignment operator

4. General Declarations section

TRY THIS 1 (Chapter 5)

533

Chapter 5

Chapter 6
Mini-Quiz 6-1

1. Integer

2. d. dblPay.Rate

3. Dim dblHoursWorked As Double

Mini-Quiz 6-2

1. Decimal.TryParse(txtIncome.Text, decIncome)

2. Const intMINIMUM As Integer = 55

3. lblSales.Text = dblSales.ToString("C0")

TRY THIS 1 (Chapter 6)

TRY THIS 2 (Chapter 6)

534

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

dblRATE dblNewPay dblRaise dblCurrentPay

.03 206 6 200

.03 339.90 9.90 330

Chapter 7
Mini-Quiz 7-1

1. d. all of the above

2. Step Into

3. b. before

TRY THIS 1 (Chapter 7)

TRY THIS 2 (Chapter 7)

535

Chapter 7

Chapter 8
Mini-Quiz 8-1

1. The solution does not require a decision.

2. The solution requires a decision about whether the phone is ringing.

3. The solution does not require a decision.

4. The solution requires a decision about the color of the ball.

Mini-Quiz 8-2

1. If decHours > 40 Then
lblMsg.Text = "Overtime pay"

End If

2. If decHours > 40 Then
lblMsg.Text = "Overtime pay"

Else
lblMsg.Text = "Regular pay only"

End If

3. d. only the selection structure’s false path

TRY THIS 1 (Chapter 8)

Output: answer

Input: first integer
second integer
subtraction?

Algorithm:
1. enter the first integer, second integer, and subtraction? items
2. if subtraction?, do this:

calculate the answer by subtracting the second integer from the first integer
otherwise, do this:

calculate the answer by adding the second integer to the first integer
end if

3. display the answer

536

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

TRY THIS 2 (Chapter 8)

intCode decCurrentPay decRate decRaise decNewPay

1 200 .03 6 206

3 200 .05 10 210

Chapter 9
Mini-Quiz 9-1

1. The solution does not require a nested selection structure.

2. The solution requires a nested selection structure whose condition determines whether
the caller is a telemarketer.

3. The solution requires two nested selection structures. The condition in one of the
nested selection structures should determine whether the red box is full. The condition
in the other nested selection structure should determine whether the yellow box is full.

Mini-Quiz 9-2

1. b. intNum < 0 OrElse intNum > 1000

2. c. dblPrice > 15.45 AndAlso dblPrice < 25.75

3. a. chkDiscount.Checked = True AndAlso chkCoupon.Checked = True

4. b. False

TRY THIS 1 (Chapter 9)

To modify the btnCalc control’s Click event procedure, change the selection structure’s
condition to chkEmployee.Checked = True OrElse intQuantity >= 10.

537

Chapter 9

TRY THIS 2 (Chapter 9)

Private Sub btnCalc Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click

' calculates and displays the total amount due

Const decEMP DISC RATE As Decimal = 0.12
Const decNON EMP DISC RATE As Decimal = 0.05
Dim intQuantity As Integer
Dim decPrice As Decimal
Dim decTotal As Decimal

' assign quantity and price to variables
Integer.TryParse(txtQuantity.Text, intQuantity)
Decimal.TryParse(txtPrice.Text, decPrice)

' calculate total due
decTotal = intQuantity * decPrice
If chkEmployee.Checked = True Then

decTotal = decTotal * (1 decEMP DISC RATE)
Else

If intQuantity > 20 Then
decTotal = decTotal * (1 decNON EMP DISC RATE)

End If
End If

' display total due
lblTotal.Text = decTotal.ToString("C2")

End Sub

Chapter 10
Mini-Quiz 10-1

1. If intPromoCode = 1 Then
decRate = .02

ElseIf intPromoCode = 2 Then
decRate = .05

ElseIf intPromoCode = 3 Then
decRate = .1

ElseIf intPromoCode = 4 Then
decRate = .25

Else
decRate = 0

End If

2. strId = txtId.Text.ToUpper

538

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

3. If strId = "12A" Then
lblFirst.Text = "Jerry"
lblLast.Text = "Jones"

ElseIf strId = "45B" Then
lblFirst.Text = "Mark"
lblLast.Text = "Smith"

ElseIf strId = "67X" Then
lblFirst.Text = "Jill"
lblLast.Text = "Batist"

ElseIf strId = "78Y" Then
lblFirst.Text = "Cheryl"
lblLast.Text = "Sworski"

Else
lblFirst.Text = "?"
lblLast.Text = "?"

End If

Mini-Quiz 10-2

1. Select Case intPromoCode
Case 1

decRate = .02
Case 2

decRate = .05
Case 3

decRate = .1
Case 4

decRate = .25
Case Else

decRate = 0
End Select

2. Select Case strId
Case "12A"

lblFirst.Text = "Jerry"
lblLast.Text = "Jones"

Case "45B"
lblFirst.Text = "Mark"
lblLast.Text = "Smith"

Case "67X"
lblFirst.Text = "Jill"
lblLast.Text = "Batist"

Case "78Y"
lblFirst.Text = "Cheryl"
lblLast.Text = "Sworski"

Case Else
lblFirst.Text = "?"
lblLast.Text = "?"

End Select

3. d. none of the above

539

Chapter 10

4. Select Case True
Case radJanuary.Checked

lblBirthstone.Text = "Garnet"
Case radFebruary.Checked

lblBirthstone.Text = "Amethyst"
Case Else

lblBirthstone.Text = "Aquamarine"
End Select

TRY THIS 1 (Chapter 10)

TRY THIS 2 (Chapter 10)

Chapter 11
Mini-Quiz 11-1

1. Test the application without entering any data.

2. 0

3. e

Mini-Quiz 11-2

1. MessageBox.Show("You win!", "Game Over",
MessageBoxButtons.OK, MessageBoxIcon.Information)

2. txtState.Text = txtState.Text.Trim

3. strDept = strDept.Trim.ToUpper

540

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

TRY THIS 1 (Chapter 11)

Test data Expected result

No data entered $90 (Standard radio button
is the default radio button)

Gold Club member check box not selected

Standard room radio button selected $90

Deluxe room radio button selected $115

Suite radio button selected $130

Gold Club member check box selected

Standard room radio button selected $80

Deluxe room radio button selected $105

Suite radio button selected $120

TRY THIS 2 (Chapter 11)

Some of the values listed in the first column in your testing chart may be different from those
here. However, your values should include 0, a negative integer, a negative non-integer, a
positive integer, a positive non-integer, and alphanumeric text. Your values should test each
path in the selection structure. Recall that when a condition contains a range of values, the test
data should include the lowest and highest values in the range, as well as a value within the
range. Therefore, your values should include the numbers 100 and 5000 (which are the lowest
and highest values in the first condition), as well as a number within that range. Your values
also should include the number 5000.01 (which is the lowest value in the second condition),
as well as another number that would make the second condition evaluate to True.

Test data Expected result

No data entered $0.00

Valid values:

0 $0.00

100 $5.00

2500.75 $125.04

5000 $250.00

5000.01 $500.00

12000 $1,200.00

10 $0.00

–5 $0.00

–6.5 $0.00

Invalid values:

x, $6, 3A $0.00

541

Chapter 11

Chapter 12
Mini-Quiz 12-1

1. The solution does not require a repetition structure.

2. The solution requires a repetition structure. The walk forward instruction will need to
be repeated until Rob is directly in front of the table (or while Rob is not directly in
front of the table).

3. repeat until there are no more flowers to pick (or repeat while there are flowers to pick).

Mini-Quiz 12-2

1. Do While intQuantity > 0

2. Do Until intQuantity <= 0

3. intNumEmployees = intNumEmployees + 1

4. System.Threading.Thread.Sleep(1000)

Mini-Quiz 12-3

1. intTotalNum = intTotalNum + intNum (or intTotalNum += intNum)

2. String.Empty

3. strItem = InputBox("Enter the item:", "Item Name")

4. intNum *= 3

TRY THIS 1 (Chapter 12)

Step b:

542

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

Step c:

TRY THIS 2 (Chapter 12)

Chapter 13
Mini-Quiz 13-1

1. Loop While intQuantity > 0

2. Loop Until intQuantity <= 0

TRY THIS 1 (Chapter 13)

Processing steps

1. The computer initializes the intNumber variable to 1.

2. The computer processes the Do clause, which marks the beginning of the loop.

543

Chapter 13

3. The loop instructions display the intNumber variable’s value (1) and then update the
value by adding 1 to it, giving 2.

4. The computer processes the Loop clause, which checks whether the intNumber
variable’s value is less than or equal to 3. It is, so processing returns to the Do clause.

5. The computer processes the Do clause, which marks the beginning of the loop.

6. The loop instructions display the intNumber variable’s value (2) and then update the
value by adding 1 to it, giving 3.

7. The computer processes the Loop clause, which checks whether the intNumber
variable’s value is less than or equal to 3. It is, so processing returns to the Do clause.

8. The computer processes the Do clause, which marks the beginning of the loop.

9. The loop instructions display the intNumber variable’s value (3) and then update the
value by adding 1 to it, giving 4.

10. The computer processes the Loop clause, which checks whether the intNumber
variable’s value is less than or equal to 3. It’s not, so the loop ends.

TRY THIS 2 (Chapter 13)

Make the changes shaded in the following figure:

Chapter 14
Mini-Quiz 14-1

1. For intX As Integer = 10 To 20 Step 2

2. For intX As Integer = 30 To 0 Step 2

3. a. negative

Mini-Quiz 14-2

1. My.Computer.Audio.Play("Giggle.wav")

2. c. use the annual interest rate

3. lblCity.Text = "My favorite city is " & strCity

544

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

TRY THIS 1 (Chapter 14)

Processing steps

1. The computer creates the decX variable and initializes it to 6.5.

2. The computer checks whether the decX variable’s value is greater than 8.5. It’s not, so
the computer displays the number 6.5 in a message box and then adds 1 to the variable’s
value, giving 7.5.

3. The computer again checks whether the decX variable’s value is greater than 8.5. It’s
not, so the computer displays the number 7.5 in a message box and then adds 1 to the
variable’s value, giving 8.5.

4. The computer again checks whether the decX variable’s value is greater than 8.5. It’s
not, so the computer displays the number 8.5 in a message box and then adds 1 to the
variable’s value, giving 9.5.

5. The computer again checks whether the decX variable’s value is greater than 8.5. It is, so
the computer stops processing the loop body. Processing continues with the statement
following the Next clause.

TRY THIS 2 (Chapter 14)

Private Sub btnDisplay Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click

' displays the odd and even numbers
' from one integer to another

Dim intNum1 As Integer
Dim intNum2 As Integer
Dim intStep As Integer

Integer.TryParse(txtNum1.Text, intNum1)
Integer.TryParse(txtNum2.Text, intNum2)

' determine stepValue
If intNum1 > intNum2 Then

intStep = 1
Else

intStep = 1
End If

lblOdd.Text = String.Empty
lblEven.Text = String.Empty

For intNumber As Integer = intNum1 To intNum2 Step intStep
If intNumber Mod 2 = 0 Then

lblEven.Text = lblEven.Text &
intNumber & ControlChars.NewLine

Else
lblOdd.Text = lblOdd.Text &

intNumber & ControlChars.NewLine
End If

Next intNumber
End Sub

545

Chapter 14

Chapter 15
Mini-Quiz 15-1

1. Dim intOuter As Integer
intOuter = 1
Do While intOuter < 4

For intNested As Integer = 1 To 4
lblPattern.Text =

lblPattern.Text & "X"
Next intNested
lblPattern.Text =

lblPattern.Text & ControlChars.NewLine
intOuter = intOuter + 1

Loop

2. Dim intNested As Integer
For intOuter = 1 To 3

intNested = 1
Do While intNested < 5

lblPattern.Text =
lblPattern.Text & "X"

intNested = intNested + 1
Loop
lblPattern.Text =

lblPattern.Text & ControlChars.NewLine
Next intOuter

3. b. Multiline

TRY THIS 1 (Chapter 15)

546

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

TRY THIS 2 (Chapter 15)

Chapter 16
Mini-Quiz 16-1

1. a. arguments

2. b. above the first event procedure

3. d. TextChanged

Mini-Quiz 16-2

1. b. Private Sub Display(ByVal strX As String,
ByVal intY As Integer)

2. Call Display(strName, intQuantity)

3. ByRef

547

Chapter 16

TRY THIS 1 (Chapter 16)

Private Sub CalcAndDisplayBonus(ByVal decTotal As Decimal)
' calculates and displays the bonus

Dim decBonus As Decimal

If decTotal > 1200 Then
decBonus = decTotal * 0.1

Else
decBonus = decTotal * 0.08

End If
lblBonus.Text = decBonus.ToString("C2")

End Sub

Private Sub btnCalc Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click

' prompts the user to enter two sales amounts,
' then totals both amounts, and then calls a
' sub procedure to calculate and display the bonus

Dim strInputSale1 As String
Dim strInputSale2 As String
Dim decSale1 As Decimal
Dim decSale2 As Decimal
Dim decSum As Decimal

strInputSale1 = InputBox("First sale amount",
"Bonus Solution")

strInputSale2 = InputBox("Second sale amount",
"Bonus Solution")

Decimal.TryParse(strInputSale1, decSale1)
Decimal.TryParse(strInputSale2, decSale2)
decSum = decSale1 + decSale2
Call CalcAndDisplayBonus(decSum)

End Sub

548

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

TRY THIS 2 (Chapter 16)

Private Sub CalcBonus(ByVal decS1 As Decimal,
ByVal decS2 As Decimal,
ByRef decBonusAmt As Decimal)

' calculates the bonus

Dim decSum As Decimal

decSum = decS1 + decS2
If decSum > 1200 Then

decBonusAmt = decSum * 0.1
Else

decBonusAmt = decSum * 0.08
End If

End Sub

Private Sub btnCalc Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click

' prompts the user to enter two sales amounts,
' then calls a sub procedure to calculate the
' bonus, and then displays the bonus

Dim strInputSale1 As String
Dim strInputSale2 As String
Dim decSale1 As Decimal
Dim decSale2 As Decimal
Dim decBonus As Decimal

strInputSale1 = InputBox("First sale amount",
"Bonus Solution")

strInputSale2 = InputBox("Second sale amount",
"Bonus Solution")

Decimal.TryParse(strInputSale1, decSale1)
Decimal.TryParse(strInputSale2, decSale2)
Call CalcBonus(decSale1, decSale2, decBonus)
lblBonus.Text = decBonus.ToString("C2")

End Sub

Chapter 17
Mini-Quiz 17-1

1. c. Private Function GetBonus(ByVal(dblSold As Double) As Double

2. Return decIncome

3. decTax = GetSales(decSale1, decSale2) * .08

549

Chapter 17

TRY THIS 1 (Chapter 17)

Private Function GetBonus(ByVal decTotal As Decimal) As Decimal
' calculates the bonus

Dim decBonus As Decimal

If decTotal > 1200 Then
decBonus = decTotal * 0.1

Else
decBonus = decTotal * 0.08

End If

Return decBonus
End Function

Private Sub btnCalc Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click

' prompts the user to enter two sales amounts,
' then calls a function to total both amounts,
' then calls a function to calculate the bonus,
' and then displays the bonus

Dim strInputSale1 As String
Dim strInputSale2 As String
Dim decSale1 As Decimal
Dim decSale2 As Decimal
Dim decSum As Decimal
Dim decBonus As Decimal

strInputSale1 = InputBox("First sale amount",
"Bonus Solution")

strInputSale2 = InputBox("Second sale amount",
"Bonus Solution")

Decimal.TryParse(strInputSale1, decSale1)
Decimal.TryParse(strInputSale2, decSale2)
decSum = decSale1 + decSale2
decBonus = GetBonus(decSum)
lblBonus.Text = decBonus.ToString("C2")

End Sub

550

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

TRY THIS 2 (Chapter 17)

Private Function GetSum(ByVal decS1 As Decimal,
ByVal decS2 As Decimal) As Decimal

' totals the sales amounts

Return decS1 + decS2
End Function

Private Function GetBonus(ByVal decTotal As Decimal) As Decimal
' calculates the bonus

Dim decBonus As Decimal

If decTotal > 1200 Then
decBonus = decTotal * 0.1

Else
decBonus = decTotal * 0.08

End If

Return decBonus
End Function

Private Sub btnCalc Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click

' prompts the user to enter two sales amounts,
' then calls a function to total both amounts,
' then calls a function to calculate the bonus,
' and then displays the bonus

Dim strInputSale1 As String
Dim strInputSale2 As String
Dim decSale1 As Decimal
Dim decSale2 As Decimal
Dim decSum As Decimal
Dim decBonus As Decimal

strInputSale1 = InputBox("First sale amount",
"Bonus Solution")

strInputSale2 = InputBox("Second sale amount",
"Bonus Solution")

Decimal.TryParse(strInputSale1, decSale1)
Decimal.TryParse(strInputSale2, decSale2)
decSum = GetSum(decSale1, decSale2)
decBonus = GetBonus(decSum)
lblBonus.Text = decBonus.ToString("C2")

End Sub

551

Chapter 17

Chapter 18
Mini-Quiz 18-1

1. Dim intQuantities(19) As Integer

2. 19

3. intQuantities(3) = 7

Mini-Quiz 18-2

1. Array.Sort(strStates)

2. Length

3. a run time error will occur

TRY THIS 1 (Chapter 18)

Private Sub btnVerify Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnVerify.Click

' searches the array for a name and then
' displays an appropriate message

Dim strPartyList() As String =
{"Jacob", "Karen", "Gregory",
"Jerome", "Susan", "Michele",
"Heather", "Jennifer", "George"}

Dim strSearchFor As String
Dim intSub As Integer
Dim strFound As String

strSearchFor = txtGuest.Text.Trim.ToUpper

intSub = 0
strFound = "N"
Do While strFound <>"Y" AndAlso intSub < strPartyList.Length

If strPartyList(intSub).ToUpper = strSearchFor Then
strFound = "Y"

Else
intSub += 1

End If
Loop

If strFound = "Y" Then
MessageBox.Show(strSearchFor & " is invited.",

"Party List", MessageBoxButtons.OK,
MessageBoxIcon.Information)

Else
MessageBox.Show(strSearchFor & " is not invited.",

"Party List", MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If
End Sub

552

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

TRY THIS 2 (Chapter 18)

Private Sub btnCount Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCount.Click

' displays the number of times a specific
' letter appears in the array

Dim strGrades() As String = {"C", "B", "C",
"A", "B", "A",
"F", "A", "D",
"B", "C"}

Dim strSearchFor As String
Dim intCount As Integer ' counter

strSearchFor = txtLetterGrade.Text.Trim.ToUpper
intCount = 0

For intSub As Integer = 0 To strGrades.Length 1
If strGrades(intSub) = strSearchFor Then

intCount += 1
End If

Next intSub

MessageBox.Show(strSearchFor & ": " &
intCount.ToString,
"Grades", MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Sub

Chapter 19
Mini-Quiz 19-1

1. b. False

2. a. strCapital(1)

3. a. True

553

Chapter 19

TRY THIS 1 (Chapter 19)

Private Sub btnDisplay Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click

' displays the price associated with the product
' ID entered by the user

Dim strIds() As String =
{"BX35", "CR20", "FE15", "KW10", "MM67"}

Dim intPrices() As Integer = {13, 10, 12, 24, 4}
Dim strSearchFor As String
Dim strFound As String
Dim intSub As Integer

' assign the product ID to a variable
strSearchFor = txtId.Text.Trim.ToUpper

' search the strIds array for the product ID
' continue searching until there are
' no more array elements to search or
' the product ID is found
strFound = "N"
Do Until intSub = strIds.Length OrElse strFound = "Y"

If strIds(intSub) = strSearchFor Then
strFound = "Y"

Else
intSub += 1

End If
Loop

' determine whether the product ID
' was found in the strIds array
If strFound = "Y" Then

lblPrice.Text = intPrices(intSub).ToString("C0")
Else

MessageBox.Show("Invalid product ID",
"Treasures Gift Shop", MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If
End Sub

554

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

TRY THIS 2 (Chapter 19)

Private intTemps(9) As Integer
Private intHighSub As Integer = intTemps.Length 1

Private Sub btnGet Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnGet.Click

' gets the temperatures and stores them in the array

Dim strInputTemp As String

For intSub As Integer = 0 To intHighSub
strInputTemp = InputBox("Temperature " &

intSub + 1, "Temperatures")
Integer.TryParse(strInputTemp, intTemps(intSub))

Next intSub

lblHighest.Text = String.Empty
lblLowest.Text = String.Empty

End Sub

Private Sub btnDisplay Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click

' display the highest and lowest temperature

Dim intHigh As Integer
Dim intLow As Integer

intHigh = intTemps(0)
intLow = intTemps(0)

For intSub As Integer = 0 To intHighSub
If intTemps(intSub) > intHigh Then

intHigh = intTemps(intSub)
End If
If intTemps(intSub) < intLow Then

intLow = intTemps(intSub)
End If

Next intSub

lblHighest.Text = intHigh.ToString
lblLowest.Text = intLow.ToString

End Sub

Chapter 20
Mini-Quiz 20-1

1. Dim intQuantities(3, 1) As Integer

2. 3

3. intQuantities(2, 0) = 7

Mini-Quiz 20-2

1. d. none of the above

2. a. decSales(0, 1) += 20

555

Chapter 20

TRY THIS 1 (Chapter 20)

Private Sub btnDisplay Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click

' displays the price associated with the product
' ID entered by the user

Dim strPriceList(,) As String = {{"BX35", "13"},
{"CR20", "10"},
{"FE15", "12"},
{"KW10", "24"},
{"MM67", "4"}}

Dim strSearchFor As String
Dim strFound As String
Dim intRow As Integer
Dim intNumRows As Integer

' assign the product ID to a variable
strSearchFor = txtId.Text.Trim.ToUpper

' search for the product ID in the first column
' of the array
' continue searching until there are no more
' rows to search or the product ID is found
intRow = 0
strFound = "N"
intNumRows = strPriceList.GetUpperBound(0) + 1

Do Until intRow = intNumRows OrElse strFound = "Y"
If strPriceList(intRow, 0) = strSearchFor Then

strFound = "Y"
Else

intRow += 1
End If

Loop

' determine whether the product ID
' was found in the array
If strFound = "Y" Then

Dim intPrice As Integer
intPrice = strPriceList(intRow, 1)
lblPrice.Text = intPrice.ToString("C0")

Else
MessageBox.Show("Invalid product ID",

"Treasures Gift Shop",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If
End Sub

556

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

TRY THIS 2 (Chapter 20)

Private Sub btnDisplay Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click

' displays the sum of the values stored in the array

Dim intInventory(,) As Integer = {{34, 56},
{75, 67},
{5, 6}}

Dim intTotal As Integer ' accumulator

' total the array values
For intRow As Integer = 0 To intInventory.GetUpperBound(0)

For intCol As Integer = 0 To intInventory.GetUpperBound(1)
intTotal = intTotal + intInventory(intRow, intCol)

Next intCol
Next intRow

' display the total
lblTotal.Text = intTotal.ToString

End Sub

Chapter 21
Mini-Quiz 21-1

1. Declarations

2. address.strStreet = "Maple"

3. inventory(4).intQuantity = 100

TRY THIS 1 (Chapter 21)

Structure SalesInfo
Public decSale1 As Decimal
Public decSale2 As Decimal
Public decSale3 As Decimal

End Structure

Private Function GetCommission(ByVal company As
SalesInfo) As Decimal

' calculates and returns the commission amount

Dim decTotal As Decimal

decTotal = company.decSale1 + company.decSale2
+ company.decSale3
Return decTotal * 0.03

End Function

557

Chapter 21

Private Sub btnCalc Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click

' displays the commission

Dim companySales As SalesInfo
Dim decCommission As Decimal

Decimal.TryParse(txtRegion1.Text, companySales.decSale1)
Decimal.TryParse(txtRegion2.Text, companySales.decSale2)
Decimal.TryParse(txtRegion3.Text, companySales.decSale3)

decCommission = GetCommission(companySales)
lblComm.Text = decCommission.ToString("C2")

End Sub

TRY THIS 2 (Chapter 21)

Structure Item
Public strId As String
Public intPrice As Integer

End Structure

Private Sub btnDisplay Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click

' displays the price associated with the product
' ID entered by the user

' declare an array of structure variables
Dim gifts(4) As Item

' declare variables
Dim strSearchFor As String
Dim strFound As String
Dim intSub As Integer

' assign IDs and prices to the array
gifts(0).strId = "BX35"
gifts(0).intPrice = 13
gifts(1).strId = "CR20"
gifts(1).intPrice = 10
gifts(2).strId = "FE15"
gifts(2).intPrice = 12
gifts(3).strId = "KW10"
gifts(3).intPrice = 24
gifts(4).strId = "MM67"
gifts(4).intPrice = 4

' assign the product ID to a variable
strSearchFor = txtId.Text.Trim.ToUpper

' search the array for the product ID
' continue searching until there are
' no more array elements to search or
' the product ID is found
strFound = "N"

558

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

Do Until intSub = gifts.Length OrElse strFound = "Y"
If gifts(intSub).strId = strSearchFor Then

strFound = "Y"
Else

intSub += 1
End If

Loop

' determine whether the product ID
' was found in the array
If strFound = "Y" Then

lblPrice.Text =
gifts(intSub).intPrice.ToString("C0")

Else
MessageBox.Show("Invalid product ID",

"Treasures Gift Shop", MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If
End Sub

Chapter 22
Mini-Quiz 22-1

1. Dim outFile As IO.StreamWriter

2. StreamWriter

3. txtCity.Focus()

Mini-Quiz 22-2

1. Dim inFile As IO.StreamReader

2. StreamReader

3. b. False

TRY THIS 1 (Chapter 22)

Private Sub btnSave Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnSave.Click

' writes a gross pay amount to a sequential access file

' declare a StreamWriter variable
Dim outFile As IO.StreamWriter
' open the file for append
outFile = IO.File.AppendText("gross.txt")
' write the amount on a separate line in the file
outFile.WriteLine(txtGrossPay.Text)
' close the file
outFile.Close()
' clear the text boxes and then set the focus
txtGrossPay.Text = String.Empty
txtContents.Text = String.Empty
txtGrossPay.Focus()

End Sub

559

Chapter 22

Private Sub btnDisplay Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click

' displays the gross pay amounts stored in
' a sequential access file

' declare variables
Dim inFile As IO.StreamReader
Dim strGrossPay As String
Dim decGrossPay As Decimal

' clear the contents box
txtContents.Text = String.Empty

' determine whether the file exists
If IO.File.Exists("gross.txt") = True Then

' open the file for input
inFile = IO.File.OpenText("gross.txt")
' process the loop instructions
' until the end of the file
Do Until inFile.Peek = 1

' read an amount
strGrossPay = inFile.ReadLine
' display the amount
Decimal.TryParse(strGrossPay, decGrossPay)
txtContents.Text = txtContents.Text &
decGrossPay.ToString("C2") &

ControlChars.NewLine
Loop
' close the file
inFile.Close()

Else
MessageBox.Show("Can't find the gross.txt file",

"ABC Company",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If
End Sub

TRY THIS 2 (Chapter 22)
Private Sub btnDisplay Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click

' reads the names from a sequential
' access file and stores them in an array
' sorts the names and then displays them

Dim strFriends(4) As String
Dim inFile As IO.StreamReader
Dim intSub As Integer

' clear the My friends box
lblFriends.Text = String.Empty

560

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

' determine whether the file exists
If IO.File.Exists("names.txt") = True Then

' open the file for input
inFile = IO.File.OpenText("names.txt")
' start the subscript at 0
intSub = 0
' process the loop instructions until the
' end of the file or the array is filled
Do Until inFile.Peek = 1 OrElse

intSub = strFriends.Length
' read a name and store it in the array
strFriends(intSub) = inFile.ReadLine
intSub += 1

Loop
' close the file
inFile.Close()

Array.Sort(strFriends)

For intSub = 0 To strFriends.Length 1
lblFriends.Text = lblFriends.Text &

strFriends(intSub) & ControlChars.NewLine
Next intSub

Else
MessageBox.Show("Can't find the file",

"Friends", MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If
End Sub

Chapter 23
Mini-Quiz 23-1

1. txtAddress.Text = txtAddress.Text.Trim

2. strWord = strWord.Insert(0, "wo")

3. strWord = strWord.Replace("d", "fr")

Mini-Quiz 23-2

1. 3

2. –1

3. strCode = strPartNum.Substring(2, 4)

4. strCode = strPartNum.Remove(2, 2)

TRY THIS 1 (Chapter 23)

strAmount = strAmount.Replace(",", String.Empty)
[or strAmount = strAmount.Replace(",","")]

strAmount = strAmount.Insert(0, "$")
strAmount = strAmount.Insert(2, ",")
strAmount = strAmount.Insert(6, ",")

561

Chapter 23

TRY THIS 2 (Chapter 23)

Private Sub btnDisplay Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplay.Click

' displays a shipping charge based on a ZIP code

Dim strZip As String
Dim intShipping As Integer

strZip = txtZip.Text.Trim

' validate the ZIP code
If strZip Like "605##" Then

intShipping = 25
ElseIf strZip Like "606##" Then

intShipping = 30
Else

intShipping = 0
MessageBox.Show("Invalid ZIP code.",

"ZIP Code",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End If

' display shipping charge and set the focus
lblShipping.Text = intShipping.ToString("C0")
txtZip.Focus()

End Sub

Chapter 24
Mini-Quiz 24-1

1. field

2. c. BindingSource

3. binding

Mini-Quiz 24-2

1. TblInventoryBindingSource.MoveFirst()

2. ex

3. b. False

TRY THIS 1 (Chapter 24)

Steps to connect the application to the database:

1. Click Data on the menu bar and then click Show Data Sources to open the Data Sources
window.

2. Click Add New Data Source in the Data Sources window to start the Data Source
Configuration Wizard. If necessary, click Database on the Choose a Data Source Type
screen.

3. Click the Next button to display the Choose a Database Model screen. If necessary, click
Dataset.

562

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

4. Click the Next button to display the Choose Your Data Connection screen. Click the
New Connection button to open the Add Connection dialog box. If Microsoft Access
Database File (OLE DB) does not appear in the Data source box, click the Change button
to open the Change Data Source dialog box, click Microsoft Access Database File, and
then click the OK button to return to the Add Connection dialog box.

5. Click the Browse button in the Add Connection dialog box. Open the ClearlyVB2010\
Chap24\Access Databases folder and then click Employees.accdb in the list of filenames.
Click the Open button.

6. Click the Test Connection button. The “Test connection succeeded.” message appears in
a message box. Close the message box.

7. Click the OK button to close the Add Connection dialog box. Employees.accdb appears
in the Choose Your Data Connection screen. Click the Next button.

8. Click the Yes button to add the Employees.accdb file to the application’s project folder.
The Save the Connection String to the Application Configuration File screen appears
next. If necessary, select the Yes, save the connection as check box. Click the Next
button to display the Choose Your Database Objects screen.

9. Expand the Tables node and then expand the tblEmploy node. Click the empty box next
to tblEmploy and then click the Finish button.

563

Chapter 24

Chapter 25
Mini-Quiz 25-1

1. name.LastName Like "A*"

2. Order By name.LastName Descending

3. Language Integrated Query

4. b. Order By

5. d. Where

Mini-Quiz 25-2

1. sales.JanSales

2. Select points.PointsEarned
Into Average()

3. Min

TRY THIS 1 (Chapter 25)

Private Sub btnSort Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnSort.Click

' displays records in descending order by the Cost field

Dim records = From magazine In MagazinesDataSet.tblMagazine
Order By magazine.Cost Descending
Select magazine

TblMagazineBindingSource.DataSource = records.AsDataView
End Sub

Private Sub btnDisplayCode Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplayCode.Click

' displays the record whose Code field contains PG24

Dim records = From magazine In MagazinesDataSet.tblMagazine
Where magazine.Code.ToUpper = "PG24"
Select magazine

TblMagazineBindingSource.DataSource = records.AsDataView
End Sub

Private Sub btnDisplayName Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplayName.Click

' displays the record whose MagName field contains Java

Dim records = From magazine In MagazinesDataSet.tblMagazine
Where magazine.MagName.ToUpper = "JAVA"
Select magazine

TblMagazineBindingSource.DataSource = records.AsDataView
End Sub

564

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

TRY THIS 2 (Chapter 25)

Private Sub btnDisplayCost Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplayCost.Click

' displays magazines costing $4 or more

Dim records = From magazine In MagazinesDataSet.tblMagazine
Where magazine.Cost >= 4 Select magazine

TblMagazineBindingSource.DataSource = records.AsDataView
End Sub

Private Sub btnDisplayName Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnDisplayName.Click

' displays magazines whose name starts with C

Dim records = From magazine In MagazinesDataSet.tblMagazine
Where magazine.MagName.ToUpper Like "C*"
Select magazine

TblMagazineBindingSource.DataSource = records.AsDataView
End Sub

Private Sub btnAverage Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnAverage.Click

' displays the average cost of a magazine

Dim avgCost =
Aggregate magazine In MagazinesDataSet.tblMagazine
Select magazine.Cost Into Average()

MessageBox.Show("Average cost of a magazine: " &
avgCost.ToString("C2"), "Magazines",
MessageBoxButtons.OK,
MessageBoxIcon.Information)

End Sub

Chapter 26
Mini-Quiz 26-1

1. object-oriented programming

2. b. Set

3. c. Return strCity

Mini-Quiz 26-2

1. New

2. Dim dog As New Animal

3. a. True

565

Chapter 26

TRY THIS 1 (Chapter 26)

Public Class Square
Private decSide As Decimal

Public Property Side As Decimal
Get

Return decSide
End Get
Set(ByVal value As Decimal)

If value > 0 Then
decSide = value

Else
decSide = 0

End If
End Set

End Property

Public Sub New()
decSide = 0

End Sub

Public Function GetArea() As Decimal
Return decSide * decSide

End Function
End Class

Private Sub btnCalc Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnCalc.Click

' calculates and displays the area of a square

' instantiate a Square object
Dim mySquare As New Square

' declare a variable to store the area
Dim decArea As Decimal

' assign input to the Square object's property
Decimal.TryParse(txtSide.Text, mySquare.Side)

' use the Square object's method to calculate the area
decArea = mySquare.GetArea

' display the area
lblArea.Text = decArea.ToString

txtSide.Focus()
End Sub

566

A P P E N D I X B Answers to Mini Quizzes and TRY THIS Exercises

Chapter 27
Mini-Quiz 27-1

1. active server page

2. Hypertext Markup Language

3. a. client computer

Mini-Quiz 27-2

1. c. Title

2. b. ImageUrl

3. a. PostBackUrl

Mini-Quiz 27-3

1. d. Right

2. b. Web server

3. a. RequiredFieldValidator

567

Chapter 27

This page intentionally left blank

Index
Note: Page numbers in boldface indicate key terms.

Special Characters
\~(backslash), 70, 71, 152
(number sign), 432, 433
& (ampersand), 250 254
* (asterisk), 70, 152, 224, 432, 433
+ (plus sign), 70, 152, 224
(minus sign), 70, 152, 224

/ (forward slash), 70, 152, 224
= (equal sign), 73, 224
? (question mark), 432, 433
^ (caret), 70, 152

A
ABC Corporation application, 171 172
access keys, 54

assigning to controls, 55 57
accumulator variables, 216, 216 223
Addition and Subtraction Calculator

application, 145 146
addition assignment operator (+=), 224
addition operator (+), 70, 152
algorithms, 2

desk checking, 18 21
planning step, 14 17

aligning
controls, 40
text, 74

ampersand (&), concatenation operator,
250 254

AppendText method, 401
applications. See also specific application

names
creating, 29 31
starting, 41 42
stopping, 42

arguments, 70,281
arithmetic assignment operators, 223,

223 225
arithmetic operators, 70 72, 152
array(s), 320

class level, 346
dynamic, 352 456
empty, 354
one dimensional, 319 335, 341 356
parallel, 342
populating, 321
two dimensional, 363 376

Array.Reverse method, 324, 324 326
Array.Sort method, 324, 324 326
assignment operator (=), 72
assignment statements, 67 75, 72
asterisk (*)

multiplication operator, 70, 152
pattern matching character, 432, 433

B
backslash (, integer division operator, 70, 71,

152
block level variables, 132
block scope, 132
Bonus Calculator application, 121 124
book title capitalization, 53
Boolean operators, 149, 149 152
Boolean values, 83
Bouncing Robot application, 235 237
bugs, 102,197, 197 199. See also debugging;

errors
buttons, captions, 53

C
Calendar Orders application, 372 375
Call statement, 281
camel case, 51
capitalization

book title, 53
sentence, 52

captions, 53
caret (^), exponentiation operator, 70, 152
Case clause expressionList, specifying a

range of values, 170 172
centering text, 74
check boxes, 125, 125 126
Circle Area application, 85 86, 88 90
class level arrays, 346
class level variables, 346
class scope, 346
Clock application, 263 264
Close method, 403
closing

event procedures, 59
solutions, 42
windows in IDE, 32

code, 57
Code Editor window, 57, 57 58
coding event procedures, 73 74, 87

comments, 69
entering, 74 75

Commission Calculator application, 51 53
comparison operators, 121 124, 122, 152
concatenation operator (&), 250, 250 254
conditions, 117, 117
constants, 89 90

declaring, 90
naming, 89 90

Const statement, 90
control(s), 33

aligning, 40
assigning access keys to, 55 57
locking, 40 41
repositioning on form, 34 35
sizing, 40

ControlChars.Back constant, 189
ControlChars.NewLine constant, 250,

250 251
control structures, 2, 2 4

repetition structure, 3 4
selection structure, 2 3
sequence structure, 2

counter controlled loops, 241 255, 242
concatenation operator, 250 254
Financial.Pmt method, 249 250
For…Next statement, 242, 242 247
My feature, 247

counter variables, 209, 209 210
CreateText method, 401

D
data

invalid, 20
valid, 20

data types, 83
naming variables, 84
user defined. See structure(s)

debugging, 102, 102 111, 197 199
Decimal data type, 83, 84
decision(s), selection structures. See

selection structures
decision structure. See selection structures
decision symbol, 124, 124 133
declaring

constants, 90
two dimensional arrays, 365
variables, 84 85

default radio button, 173
delegating work, 50 53
designing interfaces, 49 61

delegating work, 50 53
event procedures, 57 58
instructions, 58 60
user friendliness, 54 57

desk checking, 18. See also testing
algorithms, 18 21
programs, 88 89

Dim statement, 84, 84
Discount Calculator application, 105 108

Hours Worked application, 108 110
displaying windows in IDE, 32
division assignment operator (/=), 224
division operator (/), 70, 152
documentation, internal, 69
Do…Loop statement, 208

posttest loops, 233 235
pretest loops, 208 216

dot member access operator, 385
Double data type, 83, 84
dual alternative selection structures, 118,

118 119
dynamic arrays, 352, 352 356

E
elements, 321

two dimensional arrays, 366
Employee application, 367 372, 389 394
empty arrays, 354
endless loops, 217
equal sign (=), assignment operator, 73
errors. See also bugs; debugging

logic, 105 111
run time, 221
syntax, 102 105

event(s), 57
event procedures, 57

closing, 59
coding, 73 74, 87
opening, 57 58, 68 69
testing, 59 60

exiting
Visual Basic 2010 Express, 43
Visual Studio 2010, 43

extended selection selection structures. See
multiple alternative selection structures

F
false path, 118
Financial.Pmt method, 249, 249 250
Fitness forGood application, 162 164, 169 170
flowcharts, 15

posttest loops, 234 235
flowlines, 15
Focus method, 403, 403 404
fonts, 37
Format menu, 39 40
formatting, 90, 90 92
forms, 33

repositioning controls, 34 35

For…Next statement, 242 247
forward slash (/), division operator, 70, 152
function(s), 69, 304
function procedures, 303 313

Return statement, 304

G
General Declarations section, 73
Gentry Supplies application, 173 174
GetLowerBound method, 368, 368 372
GetUpperBound method, 368, 368 372
graphical user interfaces (GUIs), 33
Gross Pay application, 151 152
group boxes, 172

H
Handled property, 189
hand tracing. See desk checking
Happy Birthday application, 285 288
Hungarian notation, 84

I
If/Elseif/Else statement, 160, 160 164
If…Then…Else statement, 121, 121 124
incrementing variables, 209
independent Sub procedures, 280
IndexOf method, 425 426
infinite loops, 217
initializing variables, 209
input, 12
InputBox function, 218, 218 223
input files, 400
input/output symbol, 15
Insert method, 421, 421 425
Integer data type, 83, 84
integer division operator, 70, 71, 152
integrated development environment

(IDE), 28
windows, 31 32

interfaces, designing. See designing
interfaces

internal documentation, 69
internal memory, 82
invalid data, 20
iteration. See repetition structures

K
KeyChar property, 189
KeyPress event, 189
keywords, 58

L
label controls, 33
Last Name application, 430 432
Length property, 323, 418
lifetime, 88
Like operator, 432, 432 435
lines, 407
locking controls, 40 41
logical operators, 149, 149 152
logic errors, 105, 105 111
logic structures. See control structures

loop(s), 204. See also repetition structures
counter controlled. See counter

controlled loops
infinite (endless), 217
nested, 260 271
posttest. See posttest loops
pretest. See pretest loops

loop body, 208, 208
loop exit condition, 204
looping condition, 204

M
MaxLength property, 198
Me.Close () instruction, 58 60
member variables, 384
memory, internal, 82
MessageBox.Show method, 195, 195 197
methods, 59
minus sign ()

negation, 70, 152
subtraction operator, 70, 152

modulus operator, 70, 71, 152
Monthly Payment Calculator application,

247 254, 265 271
Multiline property, 267
multiple alternative selection structures,

159 176, 160
case sensitivity, 164 167
If/Elseif/Else statement, 160 164
Select Case statement, 167 170
specifying a range of values in Case clause

expressionList, 170 172
String data type, 163 164

multiplication assignment operator (*=), 224
multiplication operator (*), 70, 152
My Dream Car Version 1 application, 210 214
My Dream Car Version 2 application,

214 223
My feature, 247
My Friends application, 322 326

N
named constants, 89, 89 90
naming

constants, 89 90
variables, 84

nested loops, 260 271
nested selection structures, 139 154, 140

logical (Boolean) operators, 149 152
swapping, 147 149

number sign (#), pattern matching
character, 432, 433

numeric data types, 83

O
Object box, 37
one dimensional arrays, 319 335,

341 356
Only Cookies Version 1 application,

186 187
Only Cookies Version 2 application,

187 191

I N D E X

570

opening
event procedures, 57 58, 68 69
solutions, 42
windows in IDE, 32

OpenText method, 405, 405 407
order of precedence, 70 72, 152
output, 12
output files, 400

P
parallel arrays, Employee application

343 345 342
parameters, 281
passing by reference, 284, 284 285, 288 294
passing by value, 284 288. 284
Peek method, 407, 407 408
Pet application, 34 35
Phone Numbers application, 422 425
picture box, 33
plus sign (+), addition operator, 70, 152
points, 37
populating the array, 321
posttest loops, 204,232, 232 237

Do…Loop statement, 233 235
flowchart containing, 234 235
pseudocode containing, 234 235

pretest loops, 203 227, 204
accumulator variables, 216 223
counter variables, 209 210
Do…Loop statement, 208 216
InputBox function, 218 223
loop body, 208
Refresh method, 211
Sleep method, 211

Price Calculator application, 305 312
priming read, 217
problem(s), multiple ways of solving, 129
problem analysis, 12 14
problem solving process, 11 22

algorithm planning step in, 14 17
desk checking algorithm step in, 18 21
problem analysis step in, 12 14

procedure footers, 58
procedure headers, 58
procedure level variables, 88
procedure scope, 88
processing items, 16
process symbol, 15
Product ID application, 419 420, 434 435
programs, desk checking, 88 89
properties, 36, 36 39

changing, 38 39
changing values assigned to, 37 38
viewing, 36 37

Properties list, 37
Properties window, 36
pseudocode, 15

posttest loops, 234 235

Q
question mark (?), pattern matching

character, 432, 433

R
radio buttons, 172, 172 175
ReadLine method, 407
ReadOnly property, 267
Rearrange Name application, 427 429
ReDim statement, 352
reference, passing variables by, 284 285,

288 294
reference control, 40
Refresh method, 211
Remove method, 429, 429 432
repetition structures, 3, 3 4, 204. See also

loop(s); posttest loops; pretest loops
Replace method, 420, 420 421
reserving variables, 84 85
Return statement, 304
run time, 72
run time errors, 221

S
Salary application, 327 330
Sales Express application, 217 218
saving solutions, 36
scalar variables, 320
scope, 88
ScrollBars property, 267
Select Case statement, 167, 167 170
selecting test data, 183 200
selection structures, 2, 2 3, 11, 115 134

conditions, 117
decision symbol, 124 133
dual alternative, 118 119
extended selection. See multiple

alternative selection structures
If…Then…Else statement, 121 124
multiple alternative. See multiple

alternative selection structures
nested. See nested selection structures
single alternative, 117

sentence capitalization, 52
sequence structure, 2
sequential access files, 399 412, 400
Settings box, 37
Shady Hollow Hotel Version 1 application,

191 193
Shady Hollow Hotel Version 2 application,

193 199
simple variables, 320
single alternative selection structures,

117
sizing controls, 40
Sleep method, 211
sorting, 324, 324 326
Spaceship Version 1 application, 244 246
Spaceship Version 2 application, 246 247
starting

applications, 41 42
Visual Basic 2010 Express, 28 29
Visual Studio 2010, 28 29

start/stop symbol, 15
statement blocks, 121
States application, 330 334

stopping applications, 42
StreamReader object, 406, 406 410
streams of characters, 400
StreamWriter objects, 400, 400 402
string(s), 90, 417 437

accessing characters, 426 429
inserting characters, 421 425
length, 418
pattern matching, 432 435
removing characters, 429 432
removing spaces, 418 420
replacing characters sequences, 420 421
searching, 425 426

String data type, 163, 163 164
String.Empty constant, 218
structure(s), 383 395, 384
structure statements, 384
structure variables, 384, 384 386
Sub procedures, 58, 280 295

arguments, 281
Call statement, 281
independent, 280
parameters, 281

subscripts, 320
Substring method, 426, 426 429
subtraction assignment operator (=), 224
subtraction operator (), 70, 152
swapping, 147, 147 149
syntax, 58
syntax errors, 102, 102 105

T
TabIndex property, 55
tab order, setting, 55 57
testing. See also desk checking

event procedures, 59 60
selecting test data, 183 200

Test Scores application, 346 351
text

aligning, 74
centering, 74

TextAlign property, 73
TextChanged event, 282
text files, 400
ToLower method, 164, 164 167
Toolbox window, 33
ToString method, 90
Total Due Calculator application, 126 132,

288 294, 308 312
Total Sales Calculator application,

102 105
ToUpper method, 164, 164 167
Trim method, 198, 418, 418 420
true path, 118
TryParse method, 87, 87 88
two dimensional arrays, 363 376, 364

declaring, 365
elements, 366

U
update read, 217
updating variables, 209

I N D E X

571

user defined data types. See structure(s)
user interfaces, 28

creating, 33 35
designing, 49 61
user friendliness, 54 57

V
Val function, 69, 69 70
valid data, 20
value, passing variables by, 284 288
variables, 82, 82 89

accumulator, 216 223
class level, 346
counter, 209 210
declaring, 84 85

initializing, 209
member, 384
naming, 84
number to use, 85 89
passing by reference, 284 285,

288 294
passing by value, 284 288
procedure level, 88
reserving, 84 85
scalar, 320
simple, 320
structure, 384
types, 83
updating (incrementing), 209

viewing properties, 36 37

Visual Basic 2010 Express
exiting, 43
starting, 28 29

Visual Studio 2010
exiting, 43
starting, 28 29

W
Weekly Pay application, 282 284
Willow Pools application, 386 389
windows, IDE, 31 32
Windows Form Designer window, 33
Windows Form objects, 33
WriteLine method, 402, 402 403
Write method, 402, 402 403

I N D E X

572

	Cover
	Half Title Page
	Title Page
	Copyright
	Brief Contents
	Contents
	Preface
	CHAPTER 1 I Am Not a Control Freak! (Control Structures)
	Control Structures
	The Sequence Structure
	The Selection Structure
	The Repetition Structure

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 2 First You Need to Plan the Party (Problem-Solving Process)
	How Do Programmers Solve Problems?
	Step 1—Analyze the Problem
	Step 2—Plan the Algorithm
	Step 3—Desk-Check the Algorithm

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 3 I Need a Tour Guide (Introduction to Visual Basic 2010)
	Ok, the Algorithm Is Correct. What’s Next?
	Creating a Visual Basic Windows Application
	So Many Windows!

	Creating the User Interface
	Save, Save, Save
	Whose Property Is It?
	Using the Format Menu
	Lock Them Down
	Ok, Let’s See the Interface in Action!
	Closing the Current Solution
	Opening an Existing Solution
	Exiting Visual Studio 2010 or Visual Basic 2010 Express
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 4 Do It Yourself Designing (Designing Interfaces)
	Delegating the Work
	Making the Interface More User-Friendly
	Do What I Tell You to Do
	The Me.Close() Instruction

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 5 The Secret Code (Assignment Statements)
	The Fun Starts Here
	The Val Function

	Who’s in Charge of This Operation?
	Your Assignment, if You Choose to Accept It
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 6 Where Can I Store This? (Variables and Constants)
	Using Storage Bins
	So, What’s Your Type?
	Let’s Play the Name Game

	You’ll Need a Reservation
	How Many Variables Should I Use?
	The TryParse Method
	Check, Please…I’m Ready to Go

	Using Constants to Keep Things…Well, the Same
	Dressing Up the Output
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 7 What’s Wrong with It? (Syntax and Logic Errors)
	There’s a Bug in My Soup!
	Finding Syntax Errors
	Locating Logic Errors
	I’ve Reached My Breaking Point

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 8 Decisions, Decisions, Decisions (Selection Structure)
	Someone Might Need to Make a Decision
	Going Beyond Rob’s Problems

	The If…Then…Else Statement
	Examining Another Problem Specification
	Hey, That’s Not the Way I Would Have Done It

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 9 Time to Leave the Nest (Nested Selection Structures)
	Nested Selection Structures
	Putting Rob’s Problems Aside
	Let’s Go to the Swap Meet

	That’s Way Too Logical for Me
	Summary of Operators
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 10 So Many Paths . . . So Little Time (Multiple-Alternative Selection Structures)
	Which Way Should I Go?
	Coding the Fitness For Good Application
	Don’t Be So Sensitive

	What’s the Next Case on the Docket?
	Using Select Case in the Fitness For Good Application

	Specifying a Range of Values in a Case Clause’s Expression List
	Coding the ABC Corporation Application

	Using Radio Buttons
	Coding the Gentry Supplies Application

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 11 Testing, Testing . . . 1, 2, 3 (Selecting Test Data)
	Will Your Application Pass the Test?
	The Only Cookies-Version 1 Application
	The Only Cookies-Version 2 Application
	Stop! This Is a Restricted Area!

	The Shady Hollow Hotel-Version 1 Application
	The Shady Hollow Hotel-Version 2 Application
	I Need to Tell You Something
	Just When You Thought It Was Safe

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 12 How Long Can This Go On? (Pretest Loops)
	Over and Over Again
	The Do…Loop Statement
	Counter Variables
	My Dream Car-Version 1 Application
	My Dream Car-Version 2 Application

	The Sales Express Application-Counter and Accumulator Variables
	The InputBox Function

	Can I Abbreviate That Assignment Statement?
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 13 Do It, Then Ask Permission (Posttest Loops)
	Testing After the Fact
	More on the Do…Loop Statement
	Pseudocode and Flowchart Containing a Posttest Loop

	The Bouncing Robot Application
	Summary
	Key Term
	Review Questions
	Exercises

	CHAPTER 14 Let Me Count the Ways (Counter-Controlled Loops)
	When Will It Stop?
	Spaceship-Version 1 Application
	Spaceship-Version 2 Application
	Hey, Turn That Noise Down!

	The Monthly Payment Calculator Application
	The Financial.Pmt Method
	But They Said There Were No Strings Attached

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 15 I’m on the Inside; You’re on the Outside (Nested Loops)
	One Loop Within Another Loop
	Clock Application

	Revisiting the Monthly Payment Calculator Application
	But I Want to Do It a Different Way

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 16 I Hear You Are Breaking Up (Sub Procedures)
	What’s the Proper Procedure?
	The Weekly Pay Application

	Send Me Something
	Just Give Me Its Value
	Where Do You Live?

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 17 Talk to Me (Function Procedures)
	What’s the Answer?
	Price Calculator Application

	Revisiting the Total Due Calculator Application
	Which Way Is Better?

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 18 A Ray of Sunshine (One-Dimensional Arrays)
	Let’s Join the Group
	My Friends Application
	Salary Application
	States Application
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 19 Parallel and Dynamic Universes (More on One-Dimensional Arrays)
	We Share the Same Subscripts
	Will You Share That with Me?
	But I Don’t Know How Many There Are
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 20 Table Tennis, Anyone? (Two-Dimensional Arrays)
	Let’s Table That Idea for Now
	Revisiting the Employee Application
	The GetLowerBound and GetUpperBound Methods

	Calendar Orders Application
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 21 Building Your Own Structure (Structures)
	Putting the Pieces Together
	Willow Pools Application
	Revisiting the Employee Application…Again!
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 22 I’m Saving for the Future (Sequential Access Files)
	Sequential Access Files
	Write Those Lines of Text
	Now Read Those Lines of Text
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 23 The String Section (String Manipulation)
	Working with Strings
	How Many Characters Are There?
	Get Rid of Those Spaces
	The Product ID Application

	Let’s Make a Substitution
	I Need to Fit This in Somewhere
	The Phone Numbers Application

	Where Does It Begin?
	I Just Want a Part of It
	The Rearrange Name Application

	Throw Away Those Characters
	The Last Name Application

	I Like This Operator
	Modifying the Product Id Application

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 24 I’m Suffering from Information Overload (Access Databases)
	Keeping Good Records
	Connecting…Connecting
	Let the Computer Do It
	The Copy to Output Directory Property
	How Does Visual Basic Do It?
	Thank You for Catching My

	I’ll Use My Own Controls, Thank You
	Coding the Next Record and Previous Record Buttons

	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 25 The Missing “LINQ” (Querying a Database)
	Asking Questions
	Revisiting the Raye Industries Application

	One for All
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 26 I Love This Class (Creating a Class)
	That’s a Real Classy Object
	Revisiting the Willow Pools Application
	Who Owns That Property?

	Behave Yourself
	Constructive Behavior Is the Key to Success
	Methods Other than Constructors

	Using the Pattern to Create an Object
	Pool Supplies Application
	Summary
	Key Terms
	Review Questions
	Exercises

	CHAPTER 27 Getting “Web-ified” (Web Applications)
	Web Applications
	Creating a Web Application
	Adding the Default.aspx Web Page to the Application
	Customizing a Web Page
	Adding Static Text to a Web Page

	Viewing a Web Page in Full Screen View
	Adding Another Web Page to the Application
	Adding a Link Button Control to a Web Page
	Starting a Web Application
	Adding an Image to a Web Page
	Closing and Opening an Existing Web Application
	Repositioning a Control on a Web Page
	Dynamic Web Pages
	Coding the Submit Button’s Click Event Procedure
	Validating User Input
	Summary
	Key Terms
	Review Questions
	Exercises

	APPENDIX A: Data Types
	APPENDIX B: Answers to Mini-Quizzes and TRY THIS Exercises
	Index

