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Going beyond performing simple analyses, researchers involved in 
the highly dynamic field of computational intelligent data analysis 
design algorithms that solve increasingly complex data problems 
in changing environments, including economic, environmental, 
and social data. Computational Intelligent Data Analysis for 
Sustainable Development presents novel methodologies for 
automatically processing these types of data to support rational 
decision making for sustainable development. Through numerous 
case studies and applications, it illustrates important data analysis 
methods, including mathematical optimization, machine learning, 
signal processing, and temporal and spatial analysis, for quantifying 
and describing sustainable development problems. 

The book shows how modern data analysis can improve the 
research and practical implementation of sustainable development 
solutions. It first examines how integrated sustainability analysis 
uniformly measures and reports environmental impacts such as the 
carbon footprint of global trade. It then addresses climate change, 
biodiversity and wildlife conservation, renewable energy and the 
need for smart grids, and economic and sociopolitical sustainability. 

Sustainable development problems, such as global warming, 
resource shortages, global species loss, and pollution, push 
researchers to create powerful data analysis approaches that 
analysts can then use to gain insight into these issues to support 
rational decision making. This volume shows both the data analysis 
and sustainable development communities how to use intelligent 
data analysis tools to address practical problems and encourages 
researchers to develop better methods.
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1.1 � INTRODUCTION TO SUSTAINABLE DEVELOPMENT

The concept of sustainability received worldwide recognition as a 
result of a report that was published in 1987 by the World Commission on 

Environment and Development (known as the Brundtland Commission), 
titled “Our Common Future.” The commission developed today’s generally 
accepted definition of sustainability, stating that sustainable development 
is development that meets the needs of the present without compromising 
the ability of future generations to meet their own needs [1]. The three 
main pillars of sustainable development include economic growth, envi-
ronmental protection, and sociopolitical sustainability (see Figure  1.1). 
While many people agree that each of these three ideas contributes to the 
overall idea of sustainability, it is difficult to find evidence of equal levels 
of initiatives for the three pillars in governmental policies worldwide [2].

Economic growth is the pillar that most groups focus on when attempt-
ing to attain more sustainable efforts and development. In trying to build 
their economies, many countries focus their efforts on resource extrac-
tion, which leads to unsustainable efforts for environmental protection as 
well as economic growth sustainability. However, recent events indicate 
that even short-term economic growth has not been managed success-
fully. The European sovereign debt crisis unleashed that some countries 
in the Euro area rely too much on borrowing instead of improving the 
productivity to finance their welfare system. Overwhelming debt burden 

Economic Sustainability:
Profit, Cost Savings, Economic Growth,

Research & Development

Sociopolitical Sustainability:
Standard of Living, Education, Community,

Equal Opportunity

Environmental Sustainability:
Natural Resource Use, Environmental Management,

Pollution Prevention

FIGURE 1.1  Three pillars of sustainability.
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has made it difficult or impossible for these countries to refinance their 
government debt without the assistance of third parties.

Environmental protection has become more important to government 
and businesses over the past 20 years, leading to greater improvements in 
the number of people willing to invest in green technologies. Bloomberg 
New Energy Finance estimates that a record US$243 billion was invested 
in 2010, well ahead of traditional energy and up more than 30% from the 
year before. In Australia, more than $5.2 billion was invested in renew-
able energy during the 2010–2011 financial year, including approximately 
$4 billion on household solar power alone. This is more than 60% higher 
than during 2009–2010 [3].

Until recently, the “sustainability debate” was largely confined to 
environmental circles, and the social dimensions of sustainability were 
relatively neglected. Social sustainability occurs when the formal and 
informal processes, systems, structures, and relationships actively support 
the capacity of current and future generations to create healthy and livable 
communities. Socially sustainable communities are equitable, diverse, 
connected, and democratic—and provide a good quality of life [4].

In Figure 1.1, the environment supports human society by providing 
natural resources and absorbing human wastes. Human society contains 
not only economic activities, but also includes education, health systems, 
and communities. A strong economy does necessarily lead to a high stan-
dard of living. In many developing countries, high economic growth is 
built upon the poor standard of living, poor working conditions, and sac-
rifice of the natural environment. Clearly, a sustainable economic growth 
must be based on a sustainable society and a sustainable environment. 
Key issues in the development of policies for sustainable development 
will entail complex decisions about the management of natural resources 
and more generally about balancing environmental, economic, and soci-
etal needs [5]. With the ratification of the United Nations and ICLEI 
Triple Bottom Line (TBL) standard for urban and community account-
ing in early 2007, the triple bottom line captures an expanded spectrum 
of values and criteria for measuring organizational (and societal) success: 
economic, ecological, and social. The triple bottom line approach to orga-
nizational reporting (also known as “sustainability reporting”) coincides 
with the three pillars of sustainable development.

Technological evolution is a slow process as compared to population 
growth. It takes a long time to discover new affordable energy sources and 
new forms of natural resources. Population growth happens more quickly 
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than the evolution of technology. To maintain the health of an ecosystem 
and human society, a key issue in environmental and economic policy is 
balancing individual interests and the common good [5, 6].

Here we use “blood tantalum” to illustrate what sustainable develop-
ment is on a global scale.

A typical Nokia mobile phone contains about 40 milligrams 
of Tantalum. Tantalum is a rare metal with a melting point of 
2,996°C, and it is a superlative thermal conductor. Almost two-
thirds of the world’s tantalum production ends up in high-quality 
capacitors that are used in devices such as mobile phones and other 
electronic gadgets.

However, as the mining company supplying more than 50% of 
the world’s tantalum demand, Australia’s Talison Minerals has 
instead spent the past three years scaling down its operations. The 
roots of Talison’s problems lie in a conflict that is being fought 
10,000 kilometers away on the other side of the Indian Ocean.

For much of the past decade, cheap supplies of tantalum derived 
from mines under the control of various rebel groups based in the 
northeastern regions of the Democratic Republic of Congo (DRC) 
have flowed into a long and complex supply chain. Among those 
groups profiting from this trade are Hutu militia associated with 
the 1994 Rwandan genocide. Coltan (columbite-tantalite) is found 
in alluvial deposits or mined in primitive open-cut pits by workers, 
some of whom are children, enslaved or indentured, using the most 
basic of tools.

The International Rescue Committee refugee action group says 
the conflict in the DRC has resulted in the death of over 5.4 million 
Congolese over the past decade. The investigation was part of an 
online project called Making a Killing: The Business of War, which 
explored the world of arms traffickers, resource exploiters, and 
corrupt politicians who profited from wars and also developed an 
interest in perpetuating them.

There is pressure being exerted by manufacturers in the elec-
tronic industry supply chain to keep prices low, which encourages 
buyers to seek the cheapest possible sources. If new compliance is 
created to prohibit the use of “blood tantalum,” that type of com-
pliance is going to make life tougher for the likes of Apple•, Sony•, 
Dell, and Nokia [7].
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An ordinary consumer who simply purchases a mobile phone with the 
lowest price may not only indirectly have sponsored a civil war in Congo 
and Hutu militia associated with the 1994 Rwandan genocide, but also 
accelerated the falling of Talison Minerals. However, without this direct 
information, an ordinary consumer is unable to distinguish a mobile 
phone with or without “blood tantalum.” It is also impossible for an ordi-
nary consumer to track the upper stream of the supply chain to find out 
where the rare materials of a mobile phone come from. Therefore, ordi-
nary consumers should not be blamed for their actions. The invisible 
hand of the market seems to lose its magical power because the global 
supply chain is too complex to indicate where the raw materials come 
from. Government intervention is necessary to force producers to provide 
adequate, clear, and accurate information to support ordinary consumers 
to make ethically correct decisions without any extra costs. This kind of 
intervention requires adequate analysis tools and practice to take account 
of all three pillars of sustainable development to give consumers and pro-
ducers a complete picture. In the meantime, the cost of the extra sustain-
ability analysis should be minimized to avoid disadvantaging producers.

1.2 � INTRODUCTION TO COMPUTATIONAL 
INTELLIGENT DATA ANALYSIS

Over the past 50 years, we have witnessed the creation of high-capacity dig-
ital data storage and powerful CPUs (central processing units) to store and 
process millions and millions of bytes of data. Pens and paper have been 
replaced by computers; days of mindless calculation have been replaced 
by a command to the machine, which then effortlessly, accurately, effec-
tively, and instantaneously carries out the calculation. The popularization 
of computers has enabled modern data analysts to type in a few symbols to 
complete tasks that have previously taken days to perform.

A possible definition of data analysis is the process of computing various 
summaries and derived values from the given collection of data [8]. No one 
sets out simply to analyze data. One always has some objective in mind: 
one wants to answer certain questions. These questions might be high-level 
general questions, perhaps exploratory; or the questions might be more 
specifically confirmatory. Orthogonal to the exploratory/confirmatory 
distinction, we can also distinguish between descriptive and inferential 
analysis. A descriptive (or summarizing) analysis is aimed at making a 
statement about the dataset at hand. In contrast, an inferential analysis 
is aimed at trying to draw conclusions that have more general validity. 
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Often, inferential studies are based on samples from a population, the aim 
of which is to try to make some general statements about some broader 
aspect of that population, most (or some) of which has not been observed.

In practice, data analysis is an iterative process (Figure 1.2). After a goal 
(or a question) is defined to indicate the success of the data analysis, the 
relevant data is collected. One studies the data, examining it using some 
analytic techniques. One might decide to look at it another way, perhaps 
modifying it in the process by transformation or partitioning, and then go 
back to the beginning and apply another data analytics tool. This can 
go round and round many times.

Computational intelligent data analysis does computerize the itera-
tive data analysis process by removing tedious and mindless calculations. 
Computational intelligent data analysis goes beyond this scope. It aims 
to design algorithms to solve increasingly complex data analysis prob-
lems in changing environments. It is the study of adaptive mechanisms 
to enable or facilitate the data analysis process in complex and changing 
environments. These mechanisms include paradigms that exhibit an abil-
ity to learn or adapt to new situations, to generalize, abstract, discover, and 
associate [9]. In simple terms, it is the study of how to make computers do 
things usually associated with human excellence [10]. To a great extent, 
the ambition of totally autonomous data mining has now been abandoned 
[11]. Computational intelligent data analysis does not completely replace 
a human being.

Define Your Goal

Discover More Hypothesis

Find More Data and Improve
Tools: Parametric and Non-

Parametric Methods

Verify Hypothesis: Statistical
Criteria, Back Testing

Find Right Data and Domain
Knowledge: Analyst Interview,

Field Research

Discover Hypothesis

FIGURE 1.2  Iterative process of data analysis.
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New computing and data storage technologies not only enhance tradi-
tional data analysis tools, but also change the landscape of data analysis 
by raising new challenges. Because computer techniques are able to store 
and process the latest data and information with milliseconds delay, com-
putational intelligent data analysis addresses a new problem: how do we 
efficiently and correctly include the latest data, update models, adapt to 
the new circumstance, and eventually provide sufficient evidence to make 
timely and correct decisions?

Another motivation for computational intelligent data analysis has been 
the inability of conventional analytical tools to handle, within reasonable 
time limits, the quantities of data that are now being stored. Computational 
intelligent data analysis is thus being seen as a useful method of providing 
some measure of automated insight into the data being collected. However, 
it has become apparent that while some useful patterns can be discovered 
and the discipline has had a number of notable successes, the potential 
for either logical or statistical error is extremely high. As a result, much 
of the computational intelligent data analysis is, at best, a set of suggested 
topics for further investigation [12]. The high unreliability of the results is 
a major concern to many applications—for example, financial investment. 
In these fields, the decision must be made prudently and transparently to 
avoid any catastrophe. Trial and error is unacceptable.

Computational intelligent data analysis has its origins in statistics and 
machine learning. As a study, it is not a haphazard application of statisti-
cal and machine learning tools, and not a random walk through the space 
of analytics technique, but rather a carefully planned and considered pro-
cess of deciding what will be most useful and revealing. The process of 
data analysis can be considered as having two distinct forms: (1) the ana-
lytical (or modeling) approach in which the real world is modeled in a 
mathematical manner, from which predictions can be computed in some 
way, and (2) pattern matching, or the inductive approach in which predic-
tion is made based on experience [12].

Whereas statistics induction starts with the latter and aims to translate 
the process into one that is predominately the former, machine learning 
largely takes place in the latter. Given a set of observations, machine-
learning algorithms form the null hypothesis space and search this large 
hypothesis space to find the optimal hypothesis. This is as close as one can 
get to achieving the underlying true hypothesis, which may or may not be 
in the hypothesis space. The fallacy of induction comes into play when the 
hypothesis developed from the observations resides in a different part of 
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the space from the true solution and yet it is not contradicted by the avail-
able data. For example, we could build a regression model to relate one 
variable to several potential explanatory variables, and perhaps obtain a 
very accurate predictive model without having any claim or belief that the 
model in any way represented the causal mechanism.

In most cases of machine-learning algorithms, the null hypothesis 
space is infinity. Therefore, machine learning is essentially computation-
ally efficient enough to search the space to find the part of space not only to 
best fit the observations, but also to make correct predictions for the new 
observations. The latter is critical in addressing the problem of achieving 
the balance of bias and variance. In terms of mathematical optimiza-
tion, it is important to find the global optimal instead of the local opti-
mal. However, the design of the search criteria is more important than the 
optimization process. The criteria directly determine which final optimal 
solution will achieve the balance of bias and variance to avoid overfitting. 
The application of machine-learning methods to large databases is called 
data mining or knowledge discovery [13].

In the computational intelligent data analysis community, the ana-
lyst works via more complex and sophisticated, even semiautomatic, 
data analysis tools. Given a clearly defined criterion (e.g., sum of squared 
errors), one can let the computer conduct a much larger search than could 
have been conducted manually. The program has become a key part of the 
analysis and has moved the analyst’s capabilities into realms that would be 
impossible unaided. However, one challenge is to find the clearly defined 
criteria—sometimes not one but a set—to represent the aim of the analy-
sis. The perspective from which the analyst instructs a program to go and 
do the work is essentially a machine-learning perspective.

Machine-learning algorithms are critical to a range of technologies, 
including Web search, recommendation systems, personalized Internet 
advertising, computer vision, and natural language processing. Machine 
learning has also made significant impacts on the natural sciences, for 
example, biology; the interdisciplinary field of bioinformatics has facili-
tated many discoveries in genomics and proteomics [14].

In contrast, modern statistics is almost entirely driven by the notions 
of hypotheses and models. Prior knowledge is often required to specify a 
set of null hypotheses and alternative hypotheses and the structure of 
a model. The data then is used for refutation of a hypothesis, improve 
the model to better reflect the target problem, and also estimate the coef-
ficients via the calibration process. The nature of machine learning is that 



Computational Intelligent Data Analysis for Sustainable Development    ◾    9  

it can also yield spurious, logically and statistically erroneous conjectures 
[12]. The process of modern statistics dramatically reduces the chance 
of yielding spurious hypotheses by incorporating human knowledge. 
However, when a large amount of data is continuously collected, more 
efficient intelligent data analysis methods are required to process the 
data inflow. This kind of situation occurs more and more often when the 
Internet and modern sensor networks are widely used for communication 
and monitoring. Social network mining and data stream mining espe-
cially face the completely new phenomena that no theory or even exist-
ing research has studied. Nevertheless, as with the dictum of Socrates, 
“I know one thing, that I know nothing,” human knowledge is very lim-
ited. Even a lot of knowledge is only true in certain areas and methods.

Data analysis is primarily concerned with numerical data, but other 
kinds certainly exist. Examples include text data and image data. In text 
data, the basic symbols are words rather than numbers, and they can be 
combined in more ways than can numbers. Two major challenges with 
text data analysis are search and structure.

1.2.1 � Process of Computational Intelligent Data Analysis

Traditionally, data analysts have been taught to “familiarize themselves with 
their data” before beginning to model it or test it against algorithms. This 
step is basically a descriptive analysis to understand basic characteristics 
of the data by summarizing and applying simple analysis tools. However, 
with the large size of modern datasets, this is less feasible (or even entirely 
impossible in many cases). Here one must rely on computer programs to 
check data, and also to visualize the data at various aggregated levels.

The first formal step in data analysis is data cleaning and reconcilia-
tion. In many cases, a significant proportion of the data used for analysis 
is collected for other purposes. This results in heterogeneous data sources, 
and requires that data must be reconciled for the given data analysis tool. 
The cleaning and reconciliation process aims to handle the missing val-
ues and distortions—for example, outliers. These flaws can be caused by 
misrecordings in the data collection process and inadequate sampling. 
Missing values can be detected easily, but the distortions are much more 
difficult to identify. Extreme data does not necessarily mean an outlier. 
Many extreme events have been observed within the past few years, such 
as a Japan tsunami, which happens once every hundred years.

The subdisciplines of experimental and survey design have developed 
over the years and are now very sophisticated [8]. They provide a good 
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illustration of the effort that is necessary to ensure good and accurate data 
so that effective answers can be obtained in data analysis. However, no 
matter what analysis tool is being used, the principle is the same: garbage 
in, garbage out. In many cases, a large dataset is one that has many cases 
or records. Sometimes, however, the word “large” can refer to the num-
ber of variables describing each record. The latter introduces the curse of 
dimensionality [16]. Artificial neural network and kernel methods map 
input data into a high-dimensional feature space to convert the nonlinear 
problem to a linear approximation. The price of doing such mapping is 
the curse of dimensionality. Dimension reduction is a set of techniques to 
combine or transform the input data to eliminate less important features.

In scientific communities, the word “experiment” describes an investi-
gation in which (some of) the potentially influential variables can be con-
trolled. Typically, it is not possible to control all the potentially influential 
variables. To overcome this, subjects (or objects) are randomly assigned to 
the classes defined by those variables that one wishes to control.

As a summary, there are two main players in the computational intel-
ligent data analysis: (1) computational intelligent data analysis techniques 
and (2) human analysts. The technique must be efficient enough to pro-
cess a large amount of data, accurate enough to find the best solution, and 
reliable enough to resist noise. Human analysts need to understand the 
problems, define the criteria, and choose the right techniques and analyze 
the outcomes.

1.3 � COMPUTATIONAL INTELLIGENT DATA ANALYSIS 
FOR SUSTAINABLE DEVELOPMENT

As Section 1.1 states, sustainability is a process that tells of a development 
of all aspects of human life affecting sustenance. It means resolving the 
conflict between the various competing goals, and involves the simulta-
neous pursuit of economic prosperity, environmental quality, and social 
equity—known as the three dimensions (triple bottom line). Clearly, any 
thoughtful decision requires the analysis of all three dimensions, and bal-
ances their influence to maximize the benefit. This kind of subtle decision-
making process demands efficient data collection and analysis methods to 
provide sufficient evidence to support the rational decision-making pro-
cess. In the meantime, the characteristics of economic, environmental, and 
social data provide many unique challenges to the data analysis research 
community. This has led to the development and consequent applica-
tion of new methodologies for the automatic processing of economic and 
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environmental data to support the decision-making process for sustain-
able development. Ness et al. consider that the purpose of a sustainability 
assessment is to “provide decision-makers with an evaluation of global to 
local integrated nature-society systems in short and long term perspec-
tives in order to assist decision-makers to determine which actions should 
or should not be taken in an attempt to make society sustainable” [17].

An ecosystem consists of a biological community together with its abi-
otic environment, interacting as a system. As human beings, we all live in 
societies, and interact with other people and surround the environment, 
including ecosystems. Because sustainable development treats the eco-
system and human society as an integrated system, the analysis of this 
integrated system unavoidably deals with extremely complex interactions. 
Due to this complex system, it is difficult to conduct controlled experi-
ments [18]. Intelligent data analysis tools will be useful for sustainable 
development because of the characteristics of the collected data: large-
scale character of environmental, economic, and social data (thousands 
of state variables); temporal (from milliseconds, seconds, minutes, hours, 
weeks, year) and statistical nature of the data; existence of a discrete 
and continuous information mixture; necessity of communication with 
experts through means of visualization; online operation time restriction 
for fast decision making; and the existence of uncertainty (noise, outliers, 
missing information).

First of all, economic, environmental, and social data are often spa-
tial and temporal, because the sustainability problem is often regional or 
interregional, and evolves over time. Major characteristics of spatial data 
are its structural complexity and the levels of uncertainty, being inherited 
from natural systems and the human societies that generate these datasets. 
New opportunities for machine learning can be integrated into a cohesive 
and, importantly, scientifically credible knowledge discovery process. This 
is particularly necessary for spatial and spatio-temporal discovery, as the 
opportunity for meaningless and expensive diversions is high.

Secondly, over the past two decades, long periods of environmental 
observation, monitoring of pollution, rare and extreme events, and recent 
remote sensing technologies generate large databases and allow for the use 
of new analytical and processing tools. Observation only provides identi-
fication of the necessary datasets, but a correct interpretation of the moni-
tored phenomena requires a process of knowledge extraction from data 
aimed at the detection of spatial patterns and the underlying relationships 
among the measured variables. This is possible only through a careful 
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data analysis process. On the other hand, many ecological researchers 
collect over a very limited amount of historical time, the series of which 
only extend back 100 years. The oldest continuous dataset at HJ Andrews 
Experimental Forest is 1909–present; they only began their data collection 
in 1990 [18].

Third, in most cases, economic and environmental data manifolds are 
subject to strong noise and nonlinearity. The relationships among the 
involved variables are often not very clear or are distorted by the noise. 
Low signal-to-noise ratios cause the high variance in the resultant models. 
In the classical machine-learning application, variance can be decreased 
by including more training data. In many cases, disregarding the abun-
dant supply of data, many economic and environmental phenomena are 
time evolving, which shortens the time span of the data and limits its rel-
evance to the present decision making. More real time and coverage data 
analysis is required to process data across a large area promptly.

1.3.1 � Spatio-Temporal Data Analysis

The geographic information system (GIS) recognizes a complex system 
(natural or urban) by having multiple representations of geography. For 
example, in the transport modeling tool EMME, a completed trans-
port system is recorded as multiple layers of networks and matrices: 
geographical surface, road and rail networks, trip flows, and centroids. 
Geographical surface is encoded as latitude/longitude, and trip flows are 
often represented as an origin–destination matrix based on a given spa-
tial unit, such as Statistical Local Area (SLA). For example, the Australian 
Standard Geographical Classification (ASGC) is used to collect and dis-
seminate a broad range of Australian Bureau of Statistics (ABS) social, 
demographic, and economic statistics. The ASGC has five hierarchical 
levels comprising, in ascending order: Census Collection District (CD), 
Statistical Local Area, Statistical Subdivision (SSD), Statistical Division 
(SD), and State and Territory (S/T) [19].

One of the most important tasks of spatial analysis is to determine the 
spatial unit. Each spatial unit has a group of homogeneous populations 
regarding the given purpose. For example, in transport modeling, a strong 
assumption is that the population within each travel zone has uniform 
travel behaviors. Of course, different applications may result in different 
spatial units. Heterogeneous data is integrated via the map overlay.

David O’Sullivan and David Unwin have listed the pitfalls of spatial 
data. Most important among them: conventional statistics assumes that all 
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observations are independent and identically distributed, that is the I.I.D. 
assumption. Clearly, the spatial data violates this assumption by having 
spatial autocorrelation. “Spatial autocorrelation” is a term referring to the 
obvious fact that data from locations near one another in space is more 
likely to be similar than data from locations remote from one another [20].

The uncertainty of the boundary introduces the modifiable areal unit 
problem (MAUP). The aggregation units used are arbitrary with respect 
to the phenomena under investigation, yet the aggregation units used 
will affect statistics determined on the basis of data reported in this way. 
The choice of geographical scale also introduces ecological fallacy. This 
arises when a statistical relationship observed at one level of aggregation 
is assumed to hold because the same relationship holds when looking at a 
more detailed level.

A final significant issue distinguishing spatial analysis from conven-
tional statistics is that space is not uniform. A particular type of nonuni-
formity of space problem is due to edge effects. These effects arise where an 
artificial boundary is imposed on a study, often just to keep it manageable. 
The problem is that sites in the center of the study area can have nearby 
observations in all directions, whereas sites at the edges of the study area 
only have neighbors toward the center of the study area.

One of the goals of temporal analysis is to provide evidence to make 
correct and timely decisions. Temporal analysis (or time-series analysis) 
faces several dilemmas and difficulties. First, because a natural system, or 
human society, constantly evolves either slowly or rapidly, data analysts 
have to decide (1) whether to update the current model, that is, whether 
the new data is pure noise or contains useful new information; and (2) how 
to update the current model, if it is useful new information. Updates will 
cause a structural change or simple parameter updates.

Another related issue is the relevance of historical data. Because the 
goal of temporal analysis is to predict the future, analysts often assume 
that historical data reflects a part of the future—if not the entire future—
in order to build a reasonable model based on the historical data. However, 
which historical period should one use to collect the data? It depends on 
the degree of relevance between a historical and future period. The Hidden 
Markov Process provides a mechanism to deal with region change, but we 
still need to determine multiple relevant time periods [21]. More recently, 
the Internet and sensor networks have generated abundant amounts of 
evolving and streaming data [22]. A powerful computational data analy-
sis method is required to process extracted knowledge structures from 
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continuous, rapid data records. Also, due to the data collection process, 
multifrequency time series often coexist, such as daily, weekly, monthly, 
and yearly time series. It is relatively easy to aggregate the high-frequency 
time series from the lower-frequency ones, such as daily data from 
monthly data. However, vice versa, lower to higher, is extremely difficult.

Finally, an extreme event occurs much more often than what normal 
distribution indicates. We have already witnessed the impact of extreme 
cases (e.g., the “Global Financial Crisis” and natural disasters)—profound 
enough to completely derail so-called normal life. The “black swan theory” 
indicates that the frequency and impact of totally unexpected events is 
generally underestimated. Unfortunately, the disproportionate role of 
high-impact, hard-to-predict, and rare events are beyond the realm of nor-
mal expectations in history, science, finance, and technology. The proba-
bility of consequential rare events is small [23]. A significant proportion of 
sustainable analysis aims to predict, prevent, or recover from these kinds 
of extreme events, such as natural disease or social unrest.

1.3.2 � Integrated Sustainability Analysis

There are a multitude of tools that can be used to describe and/or quantify 
the structure of a technical society and its interactions with the environ-
ment [24]. Ness et al. divide them in three main groups: (1) regional or 
national sustainability indicators and indices, (2) product-related tools, 
and (3) integrated assessment tools [17]. The first group represents mea-
surements of the economic, social, or environmental state of a region or 
nation. The indicators and indices are continuously measured and calcu-
lated and therefore allow for describing long-term sustainability trends 
from a retrospective point of view. The second group is more specific, as it 
focuses on the flows related to the production and consumption of goods 
and services. The goal of these tools is to evaluate the consumption of nat-
ural resources and emission of environmental loads along the production 
or consumption chains or throughout the life cycle of a product or service. 
Examples from this group include the Life-Cycle Assessment (LCA). The 
third group, integrated assessment tools, includes in the analysis the three 
pillars of sustainability and allows analyses at the regional level. Integrated 
sustainability analysis captures the complexities and interdependencies of 
our social, economic, and environmental support systems.

The LCA is the investigation and evaluation of the environmental 
impacts of a given product or service caused or necessitated by its exis-
tence, and an evaluation of the environmental impacts of a product or 
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process over its entire life cycle. Environmental LCA is often thought of 
as “cradle-to-grave” and therefore is the most complete accounting of the 
environmental costs and benefits of a product or service [25]. For exam-
ple, the CO2 footprint of a paper shopping bag might be the sum of CO2 
emitted by logging vehicles, the paper factory, the transport from the fac-
tory to the shop, and the decomposition of the bag after it has been used.

Among the various LCA methods, the Economic Input-Output Life-
Cycle Assessment (EIO-LCA) method uses information about industry 
transactions—purchases of materials by one industry from other industry, 
and the information about direct environmental emissions of industries—
to estimate the total emissions throughout the supply chain [25]. In the 
EIO-LCA method, the input-output table acts as the key engine. The 
input-output table simply uses a matrix representing the intra-industry 
flows and the flow between industrial sections and consumption, or the 
flow between the value-added section and the industrial section. As the 
economy constantly evolves, the input-output table must be updated at 
least annually to reflect the new circumstance. A typical input-output 
table for the Australian economy is represented in the format of seven 
2800-by-2800 matrices.

More than 100 countries worldwide regularly publish input-output 
tables according to guidelines governed by the UN Department of 
Economic and Social Affairs Statistics Division [26]. Unfortunately, in 
most countries, including Australia, the input-output table is released 
every three to four years, due to the large amounts of monetary and human 
costs involved. The Integrated Sustainability Analysis (ISA) group at the 
University of Sydney has developed large-scale computational modeling 
methods comprehensively covering the process of estimating and updat-
ing the input-output tables for different levels of economy, and following 
reporting phases based on the estimated input-output tables.

Globalization, combined with an increasing human population and 
increased consumption, means that the ecological footprint is now fall-
ing more widely and more heavily across the planet. The environmental 
impact is increasing, and lengthening supply chains mean that consumers 
are often far removed from the impacts they drive. To manage and reduce 
our footprint, we must first be able to measure it. The ISA group calculated 
the net trade balances of 187 countries in terms of implicated commodi-
ties to construct a high-resolution global trade input-output table. Using a 
high-resolution global trade input-output table, they traced the implicated 
commodities from the country of their production, often through several 
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intermediate trade and transformation steps, to the country of final con-
sumption [27]. The international trade in biodiversity-implicated com-
modities can be visualized using global trade-flow maps.*

Chapter 2 expands the input-output table from the national scale to the 
multinational scale in order to measure the footprint covering the whole 
supply chain. The multiregional input-output table is a 1,000-by-1,000 
matrix, and this requires estimating multimillion variables. Chapter 2 
provides a mathematical optimization approach to address a few critical 
issues of estimating, such as conflicting information. One of the difficul-
ties of spatial analysis is the impact of the scale on the estimation results. In 
the application of multiregional models to environmental analysis, sector 
reclassification and aggregation are often needed to match environmen-
tal data and economic data. Therefore, sector aggregation is a practical 
and important task for environmentally extended analysis using Multi-
Regional Input-Output (MRIO) models. Chapter 3 quantifies the error 
or dispersion between different reclassification and aggregation schemas, 
and discovers that aggregation errors have a high concentration over spe-
cific regions and sectors, which indicates that these regions and sectors are 
more influential at the level of aggregation errors.

1.3.3 � Computational Intelligent Data Analysis for Climate Change

The Kyoto Protocol was initially adopted on 11 December 1997 in Kyoto, 
Japan, and entered into force on 16 February 2005. As of May 2012, 
192 states have signed and ratified the protocol. In 2005, the European 
Union Emissions Trading System (EU ETS) was the first large emissions 
trading scheme in the world. It was launched to combat climate change and 
is a major pillar of EU climate policy. The EU ETS currently covers more 
than 10,000 installations with a net heat excess of 20 MW (megawatts) 
in the energy and industrial sectors, which are collectively respon-
sible for close to half of the EU’s emissions of CO2 and 40% of its total 
greenhouse gas emissions [28]. In the meantime, numerous debates and 
research efforts occur at government, academic, and community levels. 
The National Science Foundation (NSF) funds the project “Understanding 
Climate Change, a Data Driven Approach,” led by Professor Vipin Kumar, 
University of Minnesota, to provide an improved understanding of the 
complex nature of the Earth system and the mechanisms contributing to 

*	 The ISA group provides an interactive global trade-flow map: http://www.worldmrio.com/​
biodivmap.
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the adverse consequences of climate change, such as increased frequency 
and intensity of hurricanes, and the propensity for extreme weather events 
that result in environmental disasters [29].

Climate Informatics 2011, the First International Workshop on Climate 
Informatics, was organized by a group of data-mining and machine-
learning researchers. As one of the outcomes of this workshop, Chapter 4 
summarizes the latest progress of the contribution of the data analysis com-
munity to climate change. This chapter aims to inspire future work in the 
nascent field of climate informatics. A profuse amount of climate data of 
various types is available, providing a rich and fertile playground for future 
data-mining and machine-learning research. Even exploratory data analy-
sis could prove useful for accelerating discovery in climate informatics.

Based on the introduction of climate informatics, Chapter 5 pays spe-
cial attention to the climate extremes and uncertainty. In the extreme 
value theory, extreme events are at the tail of the probability distribu-
tion, as the frequency of occurrence is very low. However, many natural 
extreme events, such as hurricanes and heat waves, have profound impacts 
that relate to human discomfort and possible loss of life. Due to their rar-
ity, classical data analysis tools, which require sufficient data, may not well 
explain and predict them. Chapter 5 presents several critical challenges in 
the science of climate extremes that are not handled by the current genera-
tion of climate models. These long standing challenges may not be solved 
in the near future by improvements in physics-based modeling, and delta-
driven computational methods may offer novel solutions.

1.3.4 � Computational Intelligent Data Analysis for Biodiversity 
and Species Conservation

The reduction and fragmentation of natural habitats as a result of deforesta-
tion, agriculture, urbanization, and land development are a leading cause 
of species decline and extinction [5]. Ando et al. have shown that a large 
number of endangered species are contained within a relatively small num-
ber of countries and concluded that if conservation efforts and funds can be 
expanded in a few key areas, it should be possible to conserve endangered 
species with great efficiency [30]. They compared two versions of the reserve 
site selection problem—the set coverage problem (SCP) and the maximal 
coverage problem (MCP)—to underline the importance of considering 
both ecological and economic factors in efficient species conservation.
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Three leading research groups have done pioneer work on understand-
ing ecosystem structure and function. At the Institute for Computational 
Sustainability (ICS) at Cornell University, Carla Gomes recently formu-
lated this problem mathematically as a so-called “connection sub-graph 
problem” [31, 32]. The goal was to design wildlife corridors for grizzly bears 
in the U.S. northern Rockies to enable movement between three core eco-
systems—Yellowstone, Salmon-Selway, and Northern Continental Divide 
Ecosystems—that span 64 counties in Idaho, Wyoming, and Montana. 
This large-scale optimization problem places significant demands on cur-
rent computational methods.

At Oregon State University, Thomas Dietterich has pointed out many 
opportunities to apply advanced computer science and artificial intelli-
gence methods in the data pipeline. Sensors capture data to create datasets. 
These are then analyzed to produce models that can support the design of 
policies. Models also guide the formation of hypotheses, which can then 
be tested by designing and executing experiments [18]. One of Dietterich’s 
projects is rapid throughput arthropod identification to measure ecosystem 
functioning. Arthropod counting provides convenient measures of biodi-
versity and ecosystem health, and it is an important dependent variable for 
understanding and restoring ecosystems. Another project is automated data 
cleaning for sensor networks. Sensors fail, particularly when they are placed 
in challenging environments (e.g., glaciers, mountaintops, and seafloor). 
When data is collected on a large scale, it is no longer feasible for people 
to manually detect and diagnose sensor failures. Automated data cleaning 
methods are needed that can detect and correct sensor failures in real time.

At the AT&T• Lab, Steven Phillips leads the Computational and 
Mathematical Research in Conservation Biology group; they have devel-
oped a software package based on the maximum-entropy approach for 
species habitat modeling [33, 34]. Government and nonprofit organiza-
tions throughout the world are the major funding sources of programs to 
conserve ecologically valuable land and ensure environmental services. 
The project selection strategies typically used by conservation organiza-
tions rely on a parcel-rating scheme that involves expert panels or stan-
dardized scoring systems. Chapter 6 presents Multiple-Objective Linear 
Programming (MOLP), which is an alternative to the widely used Benefit 
Targeting (BT) selection process. A case study on the Pennsylvania Dirt 
and Gravel Roads Program demonstrates that MOLP not only addresses 
the inefficiency of the BT approach, but also provides a more versatile 
approach such as handling in-kind cost share, etc.
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1.3.5 � Computational Intelligent Data Analysis for Smart Grid 
and Renewable Energy

The ultimate objective of renewable energy and the smart grid is to supply 
affordable, reliable, clean electricity. The new energy sources should have 
a reasonable price to final consumers, and switching to new energy should 
not lower the current living standard. This requires improving current 
renewable energy technologies to generate the electricity at a lower than or 
equivalent price to the current fossil-fuel generator, thus optimizing assets, 
and operating efficiently to distribute the electricity efficiently. The reliable 
renewable electricity supply provides quality power for the economy and 
society without chronic power shortages, automatically anticipates and 
responds to system disturbances, and operates resiliently in the event of 
attacks or natural disasters.

Renewable energy does not mean zero environmental impact. The 
development of renewable energy can have an unexpected negative envi-
ronmental impact in addition to increasing energy efficiency. For example, 
the greenhouse gas benefits of bioenergy have recently been questioned, 
partly on the basis of economic modeling of indirect land-use changes. The 
actual emissions due to both direct and indirect land-use change depend 
heavily on where and how agriculture expands or intensifies. For example, 
the conversion of tropical forests, peatlands, and savannas to agricultural 
land releases large amounts of carbon into the atmosphere [35]. It has 
been reported that U.S. incentives for biofuel production are promoting 
land conversion and deforestation in Southeast Asia and the Amazon. The 
massive subsidies to promote American corn production for ethanol have 
shifted soy production to Brazil, where large areas of cerrado grasslands 
are being torn up for soybean farms. The expansion of soy in the region is 
contributing to deforestation in the Amazon [36].

Another example is the impact of wind power, a promising renewable 
energy source that has raised concerns about damage to bird and bat pop-
ulations [5]. Chapter 7 demonstrates that ongoing transformation to a sus-
tainable energy system relying on renewable sources leads to a paradigm 
shift from demand-driven generation to generation-driven demand. In 
particular, renewable energies challenge the electricity grid, which needs 
to be stable and should allow everybody at any point in time to consume 
energy. Due to the hard-to-store nature of electrical energy, it is required 
to permanently maintain a constant balance between demand and supply. 
The maintenance of this balance is becoming more difficult as the share 
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of renewable energy sources rises, due to their unsteady and fluctuating 
generation. This calls for so-called smart grids.

Chapter 8 forecasts the short-term supply, which may be frustrating 
due to the changing environment. Renewable energy heavily relies on the 
surrounding environment. For example, the productivity of solar energy 
reaches its daily peak around the lunchtime. From its monthly pattern, 
solar energy presents an alternative seasonality pattern, and reaches its 
peak during the summer period. Chapter 8 demonstrates that maximiz-
ing the penetration of renewable energy sources for supplying electricity 
can be achieved through two disparate techniques: building a supergrid 
or mixing the renewable sources with demand management and storage.

Chapter 9 provides intelligent data analysis for real-time detection of 
disruptive events from power system frequency data collected using an 
existing Internet-based frequency monitoring network. Early detection 
of supply disturbances within a power grid enables the grid operator to 
maintain a continuous balance between generation and load with impres-
sive levels of efficiency and reliability.

Based on 2011 data from the World Wind Energy Association, wind 
power now has the capacity to generate 239 gigawatts, compared with 197 
gigawatts in 2010, which is enough to cover 3% of the world’s electricity 
demand [37]. Between 2005 and 2010, the average annual growth in new 
installations of wind power was 27.6%. Electricity production from wind 
does not depend on customer demand; it depends on wind speed around 
the wind farmers. Chapter 10 evaluates a set of computationally intelligent 
techniques for long-term wind resource assessment. It provides a general 
approach—Measure, Correlate, and Predict (MCP)—to estimate the joint 
distribution of wind speeds at the site and publicly available neighbor-
ing sources.

1.3.6 � Computational Intelligent Data Analysis 
for Sociopolitical Sustainability

Sociopolitical sustainability focuses on the sustainability of human-built 
social systems, including transportation systems; cities; buildings; agri-
culture; health information and health in its environmental, cultural, 
economic, and social contexts; tax information; levels of governance: 
sustainability at local, regional, national, and international levels; plan-
ning for sustainability; population growth and its consequences; theo-
ries of complexity and uncertainty; and knowledge sources, information 
resources, and data collection processes.
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Nathan Eagle uses mobile phone data to gain an in-depth look into and 
understanding of the slum dweller population toward quantitative results 
measuring slum dynamics [38]. Because slums are informally established, 
unplanned, and unrecognized by the government, scientists have a very 
limited understanding of the 200,000 slums worldwide and the billion 
individuals living in them. Chris Barrett of the ICS has studied the socio-
economic interrelationship between poverty, food security, and environ-
mental stress in Africa, particularly the links between resource dynamics 
and the poverty trap in smallholder agrarian systems [39].

Chapter 11 gives an excellent example of how temporal and spatial 
data analysis tools are used to get insight into behavioral data and address 
important social problems such as criminal offense. Over the past several 
years, significant amounts of data have been collected from all aspects of 
human society. As Chapter 11 reveals, there were nearly 1 million theft-
related crimes from year 1991 through 1999, and data on 200,000 reported 
crimes within the City of Philadelphia were collected. This amount of data 
was unimaginable before the invention of digital data storage systems.

Regional planning is the science of efficient placement of activities and 
infrastructures for the sustainable growth of a region [40]. On the regional 
plan, the policy maker must take into account the impact on the environ-
ment, the economy, and the society. Chapter 12 presents an application of 
Constraint Logic Programming (CLP) to a planning problem, the envi-
ronmental and social impact assessment of the regional energy plan of the 
Emilia-Romagna region of Italy.

1.4 � CONCLUSION AND RESEARCH CHALLENGES
Both computational intelligent data analysis and sustainable development 
are relatively new research areas. However, both of them have experienced 
rapid development within the past two decades. Over the past few years, 
we have witnessed increasing interest from the data analysis commu-
nity. Sustainable development has become an important application area 
of intelligent data analysis. For example, three international conferences 
on computational sustainability have been held in the United States and 
Europe. The IEEE International Conference on Data Mining (ICDM) has 
continuously hosted a Workshop on Knowledge Discovery from Climate 
Data: Prediction, Extremes and Impacts since 2009. The ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining (KDD) started its 
Workshop on Data Mining Applications in Sustainability in 2011. The SIAM 
Data Mining Conference hosted a Workshop on Machine Learning and 
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Data Mining for Sustainable Development in 2010. The Neural Information 
Processing Systems (NIPS) had a Mini Symposia, Machine Learning for 
Sustainability, in 2009. Katharina Morik, Kanishka Bhaduri, and Hillol 
Kargupta [41] presented a brief listing of ten projects and groups who are 
performing active research pertaining to the field of sustainable systems.

Modern sensor networks, mobile devices, and society networks deliver 
an explosive amount of environmental, economic, and social data. Indeed, 
history has never had such a large amount of data to analyze and pro-
cess. In the meantime, a changing human society urgently needs com-
prehensive, systematic, and immediate action to address various kinds of 
sustainable development issues, such as global warming, overpopulation, 
poverty, and pollution. None of these issues are independently or easily 
solved. Very often, we have to balance individual interests with the com-
mon good [6]. Invisible hands are not the ultimate solution to these prob-
lems. Intelligent data analysis cannot solve these problems by itself, but it 
provides powerful tools to get insight into these problems to support ratio-
nal decision making. In the meantime, the data provided by sustainable 
development problems creates opportunities and challenges to data analy-
sis researchers in that they can create and apply powerful technologies to 
real-life problems. It presents the need for a new approach to study such 
challenging problems, one in which computational problems are viewed 
as “natural” phenomena, amenable to a scientific methodology in which 
principled experimentation, to explore problem parameter spaces and hid-
den problem structure, plays as prominent a role as formal analysis. It is 
therefore important to develop new approaches to identify and exploit this 
real-world structure, combining principled experimentation with math-
ematical modeling, which will lead to scalable and practical effective solu-
tions [42]. This book is one of the early attempts to explore this new topic. 
We hope this book will attract more researchers to contribute to develop-
ing new methods and applications in this young but promising field.
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This chapter is reproduced from Ecological Footprints and 
International Trade (D. Moran, University of Sydney, 2012) with the 

author’s permission. The section titled “Reconciling Conflicting Constraints: 
Eora as a Solution of a Constrained Optimization Problem” is excerpted 
from AISHA: A Tool to Construct Large-Scale Contingency Matrices 
(A. Geschke, University of Sydney, 2012) with the author’s permission.

2.1 � SUMMARY
Input-output (IO) tables document all the flows between sectors of an 
economy. IO tables are useful in sustainability applications for tracing 
connections between consumers and upstream environmental or social 
harms in secondary and primary industries. IO tables have historically 
been difficult to construct because they are so data intensive. The Eora 
multi-region IO (MRIO) table is a new high-resolution table that records 
the bilateral flows between 15,000 sectors in 187 countries. Such a com-
prehensive, high-resolution model is advantageous for analysis and imple-
mentation of sustainability policy. This chapter provides an overview of 
how the Eora IO table was built. A custom data processing language was 
developed to read, aggregate, disaggregate, and translate raw data from a 
number of government sources into a harmonized tensor. These raw data 
often conflict and do not result in a balanced matrix. A custom optimiza-
tion algorithm was created to reconcile conflicting data and balance the 
table. Building and balancing the Eora MRIO is computationally inten-
sive: it requires approximately 20 hours of compute time per data year on 
a cluster with 66 cores, 600 GB of RAM, and 15Tb of storage. We con-
clude by summarizing some sustainability applications of high-resolution 
MRIO tables, such as calculating carbon footprints.

Globalization combined with an increasing human population and 
increased consumption means that our ecological footprint is now fall-
ing more widely and more heavily across the planet. Our environmental 
impact is increasing. And lengthening supply chains mean that consum-
ers are often far removed from the impacts they drive. In order to manage 
and reduce our footprint we must first be able to measure it. This is the 
aim of environmentally extended input-output analysis.

We want to identify which countries and sectors are directly caus-
ing, and which are ultimately benefiting from, environmental harms. 
We want to link individuals, households, and companies to the upstream 
environmental harms they ultimately drive. This principle is called 
consumer responsibility: the idea that consumers, not producers, should be 
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responsible for pollution. Successful sustainability policies will consider 
both producer and consumer responsibilities, and will need to address 
different challenges at the production, trade, and consumption points 
along the supply chain.

There are two approaches to measuring footprints: bottom-up and top-
down. Bottom-up approaches add up the various components of the foot-
print. For example, the CO2 footprint of a paper shopping bag might be 
the sum of CO2 emitted by logging vehicles, the pulp mill, the transport 
from the factory to the shop, and the decomposition of the bag after it 
has been used. Top-down approaches consider the total footprint first and 
then allocate to different products; for example, of total CO2 emissions, 
how much is from paper products, and what fraction of paper products 
are paper shopping bags.

Life-cycle analysis (LCA) is the main methodology for bottom-up 
analysis. LCA traces inputs, processes, and outputs at all points along a 
production-use-disposal chain. LCA studies are complex, data hungry, 
and often involve difficult boundary issues where it is hard to extract a 
single flow without undercounting (missing some input or output flows) 
or double-counting (when two stocks or flows overlap so the sum of the 
parts exceeds the sum of the whole).

Input-output analysis takes a top-down approach. Generally, the prob-
lem with top-down approaches is that they are low resolution. A top-down 
analysis may be able to tell you the CO2 footprint of the average passenger 
vehicle, but cannot differentiate between an SUV and a hybrid sedan.

The Eora project uses sophisticated data processing to keep original 
data in its native form, resulting in an IO table that has substantially 
higher resolution than any other produced to date. Most multi-region 
IO tables to date have settled on a common low-resolution sector clas-
sification and harmonized all input tables to that classification. The Eora 
MRIO employs many correspondence matrices to link together data in 
different classifications. The Eora high-resolution table enables better top-
down analysis, and makes it easier to combine with bottom-up approaches 
in a so-called hybrid LCA. IO analysis is comprehensive, does not suffer 
boundary issues, and is increasingly accurate.

Input-output tables were originally conceived by Wasily Leontief as 
an economic tool to analyze the flows between sectors of the American 
economy. Using IO tables, Leontief could estimate how shocks to one sec-
tor might affect others. A variety of modern economic models, including 
widely used Computable General Equilibrium (CGE) models, are built 
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upon IO tables. Most national statistical bureaus produce IO tables and 
use them as the basis of their national accounts, following the UN stan-
dard System of National Accounts. A multi-region IO table brings together 
many national IO tables into one large, whole-world IO table. MRIOs are 
not built by national governments but instead by a small number of aca-
demic research teams. They are a powerful tool for international policy 
analysis, and environmentally extended IO tables are extremely useful for 
sustainability analysis. IO-based analysis has become increasingly popular 
in recent years as greater data availability and computational power enable 
the creation of higher resolution, more accurate tables. The Eora multi-
region IO table is the largest and most detailed IO table yet assembled. It 
has been made feasible by using sophisticated data processing automation, 
modern computer hardware, and mathematical rather than manual pro-
cedure to balance and resolve data conflict.

2.2 � STRUCTURE OF IO TABLES
This section provides a brief overview of the structure of IO tables for 
readers unfamiliar with input-output analysis. To learn more, the authori-
tative text by Miller and Blair (2009) is recommended.

The elements of an IO matrix are the sum of sales from one sector to 
another. Each row in the matrix represents the goods and services pro-
duced by one sector, that is, that sector’s output. The columns along that 
row are the various sectors that consume those products. Each element in 
the matrix thus represents the total value of transactions between sector A 
and sector B. In a single-country IO table, the rows and columns represent 
sectors within that economy.

Figure 2.1 shows the layout of a single-country IO table and illustrates 
the element of the transaction matrix recording the total value of Steel sec-
tor inputs to the Vehicles Production sector. This transaction’s matrix T is 
the main block of an IO table. Appended to it on the right is another block 
of columns Y representing final consumption by households, government, 
inventories, and so on. Also added below is a block of rows V for so-called 
“primary inputs.” The most important of these is value added. By treating 
value added as an input to production, a sector can sell its output for more 
than the sum of its other inputs. 

In a multi-region IO table, the sectors represent each country’s sectors. 
For example, instead of one Steel sector, Japanese Steel and Australian Steel 
are two separate rows and two columns. This is illustrated in Figure 2.2. It 
is possible to construct an MRIO where the regions are not countries but 
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FIGURE 2.1  A basic IO table with annotation showing where in the transactions 
matrix the total value of outputs from the Steel sector to the Vehicle Production 
sector is recorded.
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FIGURE 2.2  A two-country MRIO. The transactions tjj, tja, taj, and taa record the 
value of steel used in domestic vehicle industries and exported to another coun-
try’s vehicle industry.
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states, cities, or companies. This obviously depends highly on data avail-
ability. It is also possible to use additional data to further disaggregate 
the table and thus gain higher resolution. For example, additional sales 
and purchasing data might allow the Japanese Steel sector to be split into 
Traditional Steel and Engineered Steel sectors. Highly detailed tables are 
desirable for almost all applications, but disaggregation is data intensive 
and often makes the table more difficult to balance.

Resting below an IO table may be an additional block of rows for non-
monetary inputs such as labor hours or water usage. The rows of this 
so-called satellite indicator block Q are treated as additional inputs into 
production. In IO analysis, pollution, too, is regarded not as a consequence 
of production but as a necessary input, and thus added as an indicator row. 
The Eora model has nearly 2,000 indicator rows covering nonmonetary 
inputs such as energy use, water use, land area required (ecological foot-
print), greenhouse gas (GHG) emissions, and air pollutants.

Figure 2.3 illustrates one path through an environmentally extended 
MRIO. The blocks on the diagonal are domestic IO tables, the off-diagonal 
blocks are trade blocks, and the shaded bottom row contains satellite indi-
cator blocks. The data point at (1) records how many species are threat-
ened by Brazilian coffee growers. Satellite accounts can contain any type 
of metric; this could just as easily be tons of CO2 emitted by Brazilian 
coffee growers or cubic liters of water used. Data point (2) records the 
degree to which this indicator is implicated in Brazilian coffee growing; 
point (3) records the threat-weighted coffee exports to the United States, 
and points (4) and (5) connect those imports to final consumers. These 
five points make up a supply chain connecting U.S. coffee consumers 
with species threats due to coffee plantations in Brazil. The structure of 
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FIGURE 2.3  Diagram of an MRIO with satellite accounts for threatened species.
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environmentally extended IO tables is outlined by the United Nations 
System of Environmental-Economic Accounts (SEEA). In this structure, 
every environmental indicator (the satellite account row sums) is allocated 
among the various sectors (columns) that directly cause that impact.

The Eora MRIO covers 187 countries with a total of over 15,000 sectors. 
Heatmaps help visualize and validate IO tables. Figure 2.4 shows a heat-
map visualization of Eora with a zoom-in on the Korea IO table. The Eora 
MRIO is not homogeneous. Some countries have large, high-resolution 
IO tables while other countries have small tables where the sectors are 
broadly defined. In order to offer the highest resolution and data integrity, 
Eora maintains each national IO table in the national economic classifica-
tion of the country providing it.

The strong downward diagonal band is a notable feature in Figure 2.4. 
One reason for the diagonal band is that transactions between companies 
within the same sector can be large, particularly if the sectors are broadly 
defined, for example, if the Vehicles Production sector includes companies 
selling automotive components as well as assembled vehicles. Same-sector 
transactions account for much of the diagonal band. The band also arises 
from the structure of common economic classification systems. Most sec-
tor classifications start with basic industries, ascend through intermediate 
processing industries, and end with final production and retail industries. 
To the extent that economic value creation follows this same stepwise path, 

International Trade

Domestic Activity

FIGURE 2.4  Heatmap of Eora and zoom-in on the Korean IO table. Each pixel 
represents one element in the transaction matrix, with darker cells representing 
larger transaction values.
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a diagonal band will be seen as value cascades from primary industries 
in the upper left to tertiary production industries in the lower right. For 
example, if the Wheat, Flour, Baking, and Retail Bakery sectors are adja-
cent in the classification system, then much of the output from each will 
directly be used as input into the next, forming a diagonal band in the table.

IO tables should be balanced. The sum of each row should equal the 
sum of each column. If an industry is not balanced, it means the indus-
try is either receiving inputs from, or delivering outputs to, an unknown 
source. A significant challenge in assembling a large MRIO table has been 
to ensure this balancing. We discuss below how the Eora project uses 
an optimizer to ensure the table is balanced.

The Eora MRIO is available in five valuations: sales prices as recorded 
by sellers, the additional cost of taxes paid, the value of subsidies received, 
transportation costs, and retail and distribution costs. These margins allow 
distinction of the several types of middleman price markups between 
producers and purchasers. Taxes, subsidies, transportation, and retail and 
distribution costs are added to the producer’s price to arrive at the pur-
chaser’s price. These markups are represented by four additional sheets 
on top of the basic price IO table (Figure 2.5). Separating these markups 
into separate sheets is useful for analyzing the effects of policy changes on 
taxes, subsidies, and transportation costs, and how these changes differen-
tially affect sellers and purchasers.

Structurally, Eora is a tensor. In the most intuitive representation, it is 
a three-dimensional tensor: a vertical stack of five matrices. However, we 
address it as an eight-dimensional tensor. The rows and columns have a 
logical hierarchical grouping illustrated in Figure 2.6.

To quickly locate a particular element in the tensor, we use an eight-
dimensional address of the form:

Input country/block/sector index
Output country/block/sector index
Sheet
Year

The two “block” dimensions group sectors as value-add sectors, final 
demand sectors, industries, commodities, or satellite (Q block) sectors. 
This eight-dimensional addressing is used in the AISHA (An Automated 
Integration System for Harmonised Accounts) data processing language 
to specify regions of the Eora tensor.
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2.3 � POPULATING THE MRIO

2.3.1 � Data Processing Language, Distributed Database Server

We want to populate the Eora tensor using data from a variety of sources 
(e.g., United Nations, national economic bureau, etc.). The task is essen-
tially the reverse of a database query. SQL and MDX are languages that 
help users easily address and aggregate subsections of a multidimensional 
tensor. We want to do the opposite: populate subsections of the tensor.

FIGURE 2.5  An MRIO with five valuation sheets; structurally, a three-
dimensional tensor.
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FIGURE 2.6  Rows and columns on the sheets follow a tree structure hierarchy.
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We face two challenges. The first is that the source data we want to use 
exists in a variety of formats and aggregation levels. We have to aggregate, 
disaggregate, and reclassify these input datasets so that each nation and its 
trading partner use the same classification scheme. The second challenge 
is more substantial: the raw data inputs often conflict.

The first challenge to building an MRIO is harmonizing all the input 
data so they may be combined in one table. A primary goal of the Eora 
project is to incorporate as many available economic and environmental 
data as possible. These data cover a wide range of aggregation levels, for-
mats, and classification schemes. Some examples of how the input data 
must be translated are:

•	 Reclassification: for example, translate a set of trade data from 
Central Product Classification (CPC) to Harmonized System (HS) 
production classification.

•	 Aggregation: for example, aggregate data in a 400-sector classifica-
tion down to a 60-sector classification.

•	 Disaggregation: for example, allocate a single total value to sectors 
according to each sector’s contribution to gross domestic product 
(GDP).

We created a data processing language to help with this task. This lan-
guage assists with aggregation and disaggregation and facilitates address-
ing and populating areas of the tensor. A disaggregation command in the 
processing language could specify a total value of steel sector sales that 
should be allocated proportionally, or equally, among a number of metal 
manufacturing industries.

Tightly integrated with the language is a large library of correspon-
dence matrices. Correspondence matrices contain a weighted mapping 
that reallocates values in a source vector into a different destination vec-
tor. A correspondence matrix maps a source vector of length N to a des-
tination vector of length M using an N × M matrix. Each row contains 
a set of weights that sum to 1. The first element of the source vector is 
allocated to the destination vector using the weights specified in the first 
row, the second element added to the destination vector using the weights 
of the second row, and so on. Correspondence matrices are an especially 
convenient tool for aggregating and disaggregating data and projecting 
data in one classification scheme into another scheme.
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For each data source (each table from all the agencies supplying data, 
e.g., UN, national agencies, environmental agencies, and so on), we wrote a 
processing language script to populate the tensor with the contents of that 
source. The scripts specify which concordance matrix/matrices to use to 
translate the data into the classification used in the Eora table. The scripts 
also specify the destination address in the Eora tensor where the reclassi-
fied data should be placed.

The data processing language interpreter is called AISHA (An Automated 
System for Harmonised Accounts). AISHA is essentially a database server. 
It reads data processing scripts in batch and populates the tensor. Our 
implementation uses a distributed architecture. A number of workers pro-
cess these scripts autonomously, and then the master process aggregates 
the results.

This would be the end of the story if data sources did not overlap and 
conflict. AISHA does not actually populate a tensor but rather populates 
an initial estimate and constraint matrix, which are run through an opti-
mization package to produce the final tensor.

2.4 � RECONCILING CONFLICTING CONSTRAINTS: 
EORA AS A SOLUTION OF A CONSTRAINED 
OPTIMIZATION PROBLEM

The MRIO should satisfy several constraints. One basic constraint is a 
balancing constraint: the total outputs of a sector must equal the total 
inputs of a sector. Published data provided by statistical agencies adhere to 
this condition. But when constructing a large MRIO like Eora, data from 
a number of different sources have to be combined into one table. This 
newly combined table will most likely not fulfill this balancing constraint. 
Some elements of the table must be slightly adjusted in order to ensure that 
the balancing condition is fulfilled.

Another common problem during the construction of an MRIO is that 
of conflicting data. Consider the following situation: We have an IO table 
from the U.S. government, detailing the sector-wise composition of GDP. 
We also have a figure for total U.S. GDP, provided from the UN. The two 
total GDP figures are not equal. These two figures define lower and upper 
bounds to the final value, and the realized final value must lie in between. 
To reconcile these conflicting constraints, we determine the reliability of 
each datum and ask the optimizer to find a solution value that maximally 
satisfies these two reliability-weighted constraints.
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To build Eora, the problem of generating a table that adheres to all spec-
ified constraints (balancing, conflicting data and/or others) was taken in 
one step. Reconciling the data in order to fulfill any given external condi-
tion was achieved by interpreting this problem as a mathematically con-
strained optimization problem.

We begin the process of building Eora by constructing an initial ver-
sion of the table using raw data from a number of different sources. Let’s 
call this version of MRIO the Raw Data Table. If all these different data 
sources coincided, the MRIO would be finished. But most likely, the chal-
lenges described in the previous section will hold: the MRIO will violate 
our specified constraints.

2.4.1 � Reliability Information

In order to approach the problem, we first have to introduce reliability data. 
The Maximum Entropy Principle introduced by Jaynes (1957) asserts that 
an IO-transaction is a random variable with a best guess and an associ-
ated reliability. IO tables are assembled carefully by statistical bureaus but 
still the individual inter-sectoral transaction values are not 100% certain. 
Hence, both elements of the MRIO and external conditions are subject 
to a certain, individual reliability. Additionally, the elements of an MRIO 
can be assumed to be normally distributed and statistically independent 
from one another. Therefore, each transaction can be interpreted as the 
best guess of the corresponding variable, and the reliability is expressed in 
the standard deviation of this random variable. A transaction value with 
large reliability corresponds to a very small standard deviation; a less reli-
able transaction value corresponds to a larger standard deviation. Usually, 
reliability information is not provided for every transaction of an MRIO. 
In this case, the standard deviation values can be estimated. In general, it 
can be assumed that larger values are far more reliable than smaller values. 
A good approximation is to define the standard deviation of the largest 
value in an MRIO to be 3% of its own absolute value, and 200% for the 
smallest value of the MRIO. The standard deviation of the remaining val-
ues can then be calculated by a logarithmic function whose coefficients 
must be calculated by the user. Lenzen et al. (2010) give a detailed motiva-
tion and explanation of this strategy. Additionally the reliability of some 
constraints might be known. For example, the balancing condition must 
be exact; otherwise an MRIO cannot represent an economy appropriately 
(see Leontief, 1986). This means that the corresponding standard deviation 
of the balancing constraints is 0. Constraints with a standard deviation of 
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0 are called hard constraints. Other hard constraints include upper and 
lower bounds, specifying that transactions may never be negative, or the 
constraint that subsidies (recorded as negative values) may never be posi-
tive. Therefore, these constraints also have standard deviations of 0. Other 
constraints like the previous example of the U.S. GDP might be less reli-
able and have positive standard deviation values. These are soft constraints. 
Clearly, if the same piece of information from two different sources states 
different facts, at least one of the two must be incorrect. In reality, this will 
most likely hold for both. But one of the data sources might be more reli-
able than the other one. In this case, for example, the data for the total U.S. 
GDP provided by a national statistical agency could be far more reliable 
than what the UN reported. Hence, an external condition that is not 100% 
reliable does not have to be 100% fulfilled by the MRIO.

This concept holds for the elements in the MRIO. Each transaction 
value in the MRIO is subject to a certain reliability. That means that every 
element in the Raw Data Table can be adjusted (within a certain range 
determined by its reliability) and still represent the real transaction value 
reasonably well.

Reliability data is usually not published by statistical agencies. In these 
cases, the reliability information can be estimated. We use a variety of 
heuristics to estimate the reliability of various datasets. Large transaction 
values are typically well-measured and thus more reliable than small val-
ues (Lenzen et al., 2010). We assign a higher reliability to national statisti-
cal agency data than to UN data, and higher reliability to UN economic 
data than to trade data. The published Eora results include the informa-
tion about our reliability estimates of every dataset. Because the final 
MRIO table is a composite of these data, we also provide reliability figures 
for the final table showing how reliable each value in the table is, based on 
the combined reliability of the various input data informing that result.

2.4.2 � The Concept of Constrained Optimization

The basic idea of constrained optimization is the following:
Obtain the Final MRIO by reconciling the elements of Raw Data Table 

according to their reliability in such a way that

	 1.	All hard external conditions are fulfilled exactly.
	 2.	All soft external conditions are well satisfied, the degree of fulfill-

ment being determined by their reliability.
	 3.	The original Raw Data Table is minimally disturbed.
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Or in short: Find a Final MRIO that fulfills all external conditions while 
minimally disturbing the Raw Data Table.

2.4.3 � Mathematical Interpretation of an MRIO

In order to apply constrained optimization to the reconciliation problem, 
we have to see the MRIO from a mathematical perspective. Consider a 
small MRIO:

	 T =
t t y
t t y
v v

11 12 1

21 22 1

1 2

In mathematical terminology, the Raw Data Table is called the initial esti-
mate. The term initial estimate sometimes causes confusion as the Raw 
Data Table was sourced from an officially published dataset; hence it is not 
an estimate at all. But from a mathematical point of view, the Final MRIO 
is the solution of an optimization problem and the Raw Data Table is the 
initial estimate of what the solution will be.

In order to fulfill the balancing condition, the sum over all elements 
of the first row of the table must equal the sum over all elements of the 
first column of the table. The same must hold for the second row and sec-
ond column. The equations for the balancing constraints (or balancing 
condition) for the table T are given by

	
t t y t t v

t t y t t v

11 12 1 11 21 1

21 22 2 12 22 2

+ + = + +

+ + = + +

Trivial manipulation of these two equations yields

	
t t y t t v

t t y t t v

11 12 1 11 21 1

21 22 2 12 22

0+ + − − − =

+ + − − − 22 0=

The diagonal elements t11 and t22 appear with altering signs in the equa-
tions; hence they cancel each other out. The final equations for the balanc-
ing constraints are thus
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t y t v

t y t v

12 1 21 1

21 2 12 2

0

0

+ − −

+ − −

=

=
	 (2.1)

All variables and values of these two equations have a corresponding 
reliability. We know from the definition of IO that the balancing con-
straints must be fulfilled. Hence, the 0-values on the right-hand side of 
the equations cannot be violated. That means that the 0-values have stan-
dard deviations of σ = 0. Balancing constraints are hard constraints and 
hard constraints have a standard deviation of σ = 0. An example of a soft 
constraint could be the following. Consider a data source is available that 
provides information that the total final demand of the MRIO M is equal 
to a value a. The corresponding equation for this information is

	 y y a1 2+ =

In this case, we can be almost certain that the value a is not totally reli-
able. Hence, the standard deviation for the value a would not be equal to 
zero, that is, σ > 0. This equation can be violated by the Final MRIO that is 
to be computed. The acceptable amount of violation is determined by the 
standard deviation σ of the value a.

2.4.4 � Summarizing the Balancing Constraints 
in a Single Matrix Equation

Now that the constraints are already available as equations, the first step 
to a mathematical interpretation has been taken. In order to more easily 
work with the MRIO as an optimization problem, we vectorize the trans-
actions matrix T and call the resulting vector a

	 T a= =
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v v
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This allows us to reformulate the first balancing constraint

	 t y t v12 1 21 1 0+ − − =

as a vector-by-vector equation:

	 0 1 1 1 0 0 1 0
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This gives the balancing constraint equation the form

	 gT a = 0	 (2.2)

The vector g is the so-called coefficients vector holding the corresponding coef-
ficients for the elements of the vector p to represent the balancing equation.

Every constraint can be formulated in the form of (Equation 2.2). 
Hence, each constraint provides a constraint vector g. These constraint 
vectors can now be summarized in a constraint matrix G. Every row of 
this constraints matrix represents one constraint. For the three constraint 
examples previously used in this section, the coefficients matrix G is

	
0 1 1 1 0 0 1 0
0 1 0 1 0 1 1 0
0 0 1 0 0 1 0 0
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The values on the right-hand side of the corresponding constraints equa-
tions are summarized in the vector c.

With the concepts of Equation (2.3) we can write the complete set of 
external constraints that an MRIO must adhere to elegantly as

	 Ga = c

The corresponding reliability data for the vectorized MRIO a and the 
right-hand side values c can be stored in two separate vectors σa and σc 
that have the same sizes as the vectors whose reliability information they 
hold, namely a and c.

2.4.5 � Formulating the Constrained Optimization Problem

Let us call the Raw Data Table T 0 and the Final MRIO (that is yet to be cal-
culated) T . Let a0 be the vectorization of T 0 and let a be the vectorization 
of T  and let a be the vectorization of T .

Recall the concept of the optimization problem that was stated before:

Find a Final MRIO that fulfills all external conditions while minimally 
disturbing the Raw Data Table.

With the concepts that were developed so far, the mathematical expres-
sion of the statement “MRIO that fulfills all external conditions” is simply 
given by

	 Ga = c

This system of equation is usually underdetermined, which means that 
there are more unknowns (in this case, the number of elements in the 
MRIO) than constraints. Hence, there is usually more than one solu-
tion that adheres to the constraints (i.e., the Final MRIO is not uniquely 
defined by the constraints).

What remains to be interpreted mathematically is what it actually 
means to “consider the Raw Data Table as well as possible.”

As a0 and a are vectorized representations of the Raw Data Table and 
the Final Table, the change applied to the Raw Data Table a0 in order to 
adhere to the given constraints can be “measured” by a so-called objective 
function f(a0, a). Because the system of constraints equation allows more 
than one solution, the optimizer is designed to find that solution which 
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minimizes the objective function subject to the constraints. The optimiza-
tion problem is therefore given by

	 min ,       f a a Ga c0( ) = subject to

For the Eora model, the objective function was based on Byron’s (1978) 
approach, which uses a quadratic Lagrange function of the form 

	 f a a a a a c
a

= −( ) −( )+ ′ −( )
−∑0 0

1
λ G

where Σa denotes a diagonal matrix with the σa values of the vector as the 
main diagonal. First-order conditions then must be applied in order to 
find the Lagrange multiplier and then the Final MRIO.

To calculate the Lagrange multiplier, a matrix inversion must be cal-
culated, which would have proven to be calculation intensive and pos-
sibly numerically unstable for a very large problem like the Eora problem. 
To avoid the explicit calculation of the Lagrange multipliers and matrix 
inversion, Van der Ploeg (1982) elegantly reformulates Byron’s approach 
using the following ideas:

	 1.	Reorder the rows of matrix G and the right-hand side vector c such 
that all rows for hard constraints are at the top, followed by the rows 
belonging to soft constraints. Let Ghard and Gsoft denote the block of 
constraint lines that belongs to the hard constraints and the soft con-
straints, respectively. Then G and c can take the form

	 G
G
G

=






hard

soft
and c

c
c

=






hard

soft

		  Because soft constraints are not completely reliable, they may be vio-
lated to some extent. These violations are taken care of by introducing 
a disturbance εi for each soft constraint (note that there are no distur-
bances introduced for hard constraints, as they must be adhered to 
exactly). Let ε be the vector of all disturbances; then the system of soft 
constraints becomes

	 G a c G a csoft soft soft soft= + − =ε ε 
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	 2.	Defining

	 p
a

=




ε

		  the system of equation for the soft constraints can then be rewritten as

	 G I p csoft soft−  =

		  Here, I denotes the unity matrix of appropriate dimensions. For the 
hard constraints, we simply obtain

	 G 0 p chard hard  =

		  Here, 0 denotes an all-zero matrix of appropriate dimensions. Hence, 
despite the introduction of disturbances for the soft constraints, the 
equations for the hard constraints have not changed.

By summarizing soft and hard constraints again into one equation, 
we obtain

	

G 0
G I

p
c
c

C

hard

soft

hard

soft−








 =






� ��� ��� 

The diagonal matrix of standard deviations for the vector p then becomes

	 ∑
∑

∑p
a

c
=










0
0

Here, Σa is defined as before and Σc is the diagonal matrix of σc values 
of csoft. Because hard constraints do not obtain a disturbance variable, Σp 
does not contain σ values that are equal to zero.

With these concepts, the optimization problem can be rewritten as

	 min       p p p p Cp c
p

0 0
1

−( ) −( ) =
−∑ subject to
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	 p
a0

0

0
=







The advantage of Van der Ploeg’s approach is that the reliability infor-
mation of the right-hand side vector c has shifted to the iterate, which is 
now called p. The disadvantage is that the iterate (formerly a now p grows 
by as many variables as there are soft constraints and, hence, the prob-
lem becomes significantly bigger). However, the number of constraints 
remains the same. The solution of this problem is the Final MRIO and the 
vector of disturbances of the soft constraints. The Final MRIO adheres to 
all constraints and considers the reliability of the raw data and the con-
straints during the calculation process.

Often, certain values of the MRIO must stay within certain boundaries. 
Transaction values of the basic price table, for example, must be positive 
values. Values in the subsidies sheet can only be negative values. Hence, 
each element pi can be subject to an upper or lower bound, that is, li ≤ pi ≤ 
ui. By allowing positive or negative infinity as a feasible value for the upper 
or lower bound, a bound equation can be formulated for each element pi. 
The upper bound and lower bound values can be summarized in vectors 
of equal size to the size of p. The boundary conditions for the whole MRIO 
can then be summarized as

	 l ≤ p ≤ u

Adding these boundary conditions to the optimization problem, we obtain

	 min ,p p p p Gp c l p u
p

0 0−( ) −( ) = ≤ ≤∑ subject to 	 (2.4)

The Eora model was generated based on the optimization problem 
given by Equation (2.4).

For the Eora project, the total MRIO held roughly 109 elements that 
were subject to 106 constraints. The total amount of data that was consid-
ered during the optimization process was approximately 40 GB. During 
the calculation process, more than 250 GB of RAM were used by the algo-
rithm. As commercial algorithms were not able to solve a problem of this 
size, a custom parallelized optimization algorithm was developed. The 
frequency of iterations, the heavy communication load, and the fact that 
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every worker requires G (the 30-GB constraints matrix) together recom-
mended the use of a large shared memory multiprocessor system. To build 
Eora for one year, the optimizer runs for several hours on a commercial 
24-core system with 288 GB of memory. Solving the constrained opti-
mization problem is tractable but pushes the limits of current comput-
ing hardware.

Because the raw data table and conflicting data are specified as soft con-
straints, the optimizer is also able to generate an estimate of the standard 
deviation of each element in the result table.

Estimating the standard deviation values of the resulting MRIO is—
much like the reconciliation of the table itself—an undetermined opti-
mization problem. Assume that the standard deviations of the initial raw 
data table and the constraints values are known. Let p0 be the vectorized 
raw data MRIO and c the constraints values. Let p be the reconciled MRIO 
so that

	 Gp = c

holds. Then the standard deviations of dp of p and dc of c must fullfill

	 G dp G dp d dc   #    = ( )











=∑

j

ij j

i

g p0 2

The standard deviations dp were part of the input to the optimization process 
and are therefore known. The standard deviations dp are unknown. However, 
the shift that each element of the MRIO experiences during the optimization 
process to obtain p from p0 are known. Using the distance vector p – p0 as the 
initial guess for the standard deviations dp the algorithm SDRAS can solve 
the underdetermined optimization problem

	 G dp G dp dc   #    =

to obtain dp. SDRAS was first presented in Lenzen et al. (2010).
Figure 2.7 illustrates how the optimizer reconciles two conflicting data 

points, both purporting to report the same value. The optimizer would 
report the estimated standard deviation of the solution S as larger than 
the standard deviation of D1 but smaller than the standard deviation of D2. 
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Eora is the first large MRIO to provide results along with an estimate of 
the confidence of those results. Eora provides users with transaction-level 
reliability estimates and comprehensive reporting on which constraints 
(from the various input data sources) are best and least respected in the 
final table.

2.5 � THE LEONTIEF INVERSE
Now we have a complete balanced, harmonized MRIO table. Nearly all 
environmental applications will proceed by calculating the Leontief 
inverse of the MRIO. The Leontief inverse answers the question: How 
much total input, both directly in the product and indirectly required for 
its production, is in a given unit of output? This calculation is the foun-
dation for determining consumer-responsibility footprints, as it makes it 
possible to calculate the total environmental impact, including all impacts 
upstream in the supply chain, required to produce one unit of output.

The Leontief inverse is calculated as follows. Normalizing the transac-
tions matrix T by gross output converts each element into a coefficient 
such that each column sums to one; that is, each coefficient represents 
the relative contribution of each input per unit of output. This matrix is 
called A, the technical coefficients matrix, or direct requirements matrix. 
A car, for example, contains steel directly (chassis, engine, etc.), but it also 
requires steel indirectly as an input to its production. The factory, car 
carrier, and showroom all use some steel as well, some fraction of which 
is needed for the provision of that car. This total requirement matrix L 

Pe
na

lty

ValueD2D1 S

FIGURE 2.7  Schematic of how the optimizer reconciles conflicting constraints. 
Data point D1 has a high confidence and data point D2, purporting to report the 
same value, has a low confidence. The optimal solution S minimizes the viola-
tion of the conflicting constraints and thus lies closer to the higher reliability 
constraint D1.
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(in contrast to the direct requirement matrix) is the sum of an infinite 
series starting with the identity matrix I:

	 L = I + A + A2 + A3 + … = 
n

n

=

∞

∑
0

A

Leontief realized that this is simply the matrix inversion

	 L = (I – A)–1

Each element of the matrix Leontief inverse matrix L thus reports the total 
quantity input required to produce one unit of output. The inputs can be 
weighted by their environmental load, using the satellite indicators, in 
order to find the environmentally weighted total input required for each 
unit product produced.

Structural Path Analysis (SPA) can be used to selectively perform this 
series expansion on individual elements and trace out supply chains. SPA 
is commonly used to search the top-ranked (largest flow) supply chain or 
chains, starting or ending at sectors of interest. The idea of SPA is not dif-
ficult but implementation is an art. SPA algorithms must essentially search a 
15,000 * 15,000 = 225,000,000-branch tree whose leaf node values asymptot-
ically approach zero with depth. In the worst case, a single input could visit 
every single sector in the world before being finally consumed. In practice, 
evaluating each supply chain to 10 to 15 steps captures 99% of the chain’s 
value. Still, intelligent heuristics for pruning and sorting are mandatory. The 
Leontief inverse and SPA are used complementarily. Footprints calculated 
using the Leontief inverse report the total footprint of products and sectors 
and SPA algorithms search for the individual supply chains involved.

2.6 � APPLICATIONS OF THE EORA MRIO
The Eora MRIO provides a time series of MRIO tables with matching envi-
ronmental and social satellite accounts for the entire world economy at a 
high level of sector and country detail. Some 187 countries are represented 
at resolutions of 25 to 500 sectors, depending on raw data availability, 
tracing over 5 billion supply chains. The time series covers 1990 to 2010. 
The Eora MRIO presents a completely harmonized and balanced world 
MRIO table, incorporating millions of raw data points from major sources 
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such as the UN System of National Accounts (SNA), UN COMTRADE, 
Eurostat, Institute of Developing Economies (IDE)/Japan External Trade 
Organization (JETRO), and many national input-output tables. Every 
MRIO element comes with an accompanying estimate of reliability.

The Eora MRIO table tracks nearly 2,000 sustainability indicator line 
items covering

•	 Energy

•	 GHG emissions

•	 Air pollutants

•	 Ecological footprint (hectares)

•	 Human appropriated net primary productivity (grams of carbon)

•	 Water use (liters)

•	 Material flow (kilograms of materials)

The Eora MRIO has also been used for studies on the footprint of biodi-
versity, linking 30,000 species threat records from the International Union 
for Conservation of Nature (IUCN) Red List to production industries and 
final consumers, and to study conflict mineral (coltan and rare earth met-
als) supply chains originating in Africa and Asia.

The power of IO analysis to distinguish and link producers, supply 
chains, and consumers makes it useful for developing sustainability poli-
cies. IO analysis can quantify the links between producers and consumers, 
and systematically identify and quantify supply chains of interest. This 
data-rich resource can be used to inform sustainability policies for pro-
ducers, traders, and consumers.

Most environmental legislation is currently designed to control the 
footprint of production. The footprint of production can be constrained 
with regulation requiring cleaner production, protection and conserva-
tion measures, better enforcement of existing legislation, and by buyers 
demanding high environmental standards from suppliers.

Trade flows in environmentally deleterious products can be constrained. 
For example, the Convention on International Trade in Endangered 
Species of Wild Fauna and Flora (CITES) broadly restricts any trade 
in endangered species and derived products. Proposed carbon taxes 
function similarly, effectively restricting trade of an undesirable good. 

www.allitebooks.com
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Sustainability certificates such as those issued by the Forest Stewardship 
Council and Marine Stewardship Council serve to constrain trade in 
illegal and irresponsibly sourced forest and marine products. Currently, 
high-risk tradeflows are discovered and investigated opportunistically, 
not systematically. IO analysis systematically and comprehensively quan-
tifies supply chain paths. This is useful for identifying and ranking at-risk 
supply chains. To constrain consumer demand, sustainability labels, such 
as dolphin-safe tuna, organic produce, and fair trade coffee, can be used 
to shift consumer demand away from high-impact products toward more 
responsibly sourced products. Corporate and government buyers can use 
footprint data to help build sustainable procurement policies ensuring 
those organizations consume products with a lower environmental foot-
print. One major motivation of environmental footprinting is to provide 
more information on helping consumers understand their ecological foot-
print. The Eora MRIO table uses sophisticated computational techniques 
to provide data-rich answers that inform sustainability policy.
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3.1 � INTRODUCTION

In practice, environmental impact assessment and emissions 
accounting are generally conducted at the firm level, project level, or 

product level, where the firsthand data is available. Since the early 1990s, 
input-output analysis (IOA) has been widely used for environmental 
accounting, such as carbon footprint assessment and the calculations of 
embodied emissions and virtual water at the sectoral level for a nation, 
a region, or multiple regions, depending on the purpose of the research. 
One of the advantages of using IOA is that not only direct emissions, but 
also indirect emissions from various upstream processes in a supply chain 
can be taken into account systematically. Every empirical input-output 
(IO) table rests on the definition of industries, which is usually given by 
aggregating similar products into one sector. For each defined industry, 
firm-level data is collected and the input coefficients in an IO table can 
represent an average of the production functions of many different sample 
firms. Therefore, the usefulness of published IO tables for practical envi-
ronmental assessment is challenged by the robustness of the results, which 
can be influenced by different classifications of firms, products, or pro-
cesses into sectors (Gibbons et al., 1982; Wiedmann, 2009a).

The aggregation problem is not new to the society of IOA, which has 
intensively discussed the issue since the 1950s. Fisher (1958, 1962, and 
1966) provided rich theoretical thinking on the optimization of aggre-
gation. Ara (1959) provided theoretical proof of the necessary and suf-
ficient condition for sector aggregation that is acceptable for IOA. Unlike 
conventional methods aiming to reduce the size of an IO model, Leontief 
(1967) alternatively presented a systematic procedure to eliminate certain 
goods and processes from an existing IO table. Doeksen and Little (1968) 
tested the aggregation with both hypothetical models and actual regional 
IO models. They concluded that the model size (level of aggregation) has 
little impact on the multipliers of unaggregated sectors when the remain-
ing sectors were highly aggregated. A useful implication is that even with 
a small regional model, it could be possible to determine the impacts of a 
new plant on local employment and income. By using the survey data and 
other information for Philadelphia, Karaska (1968) tested the variations 
of Leontief coefficients in a regional IO table. He found that variation 
increases with the level of aggregation from the detailed four-digit level to 
the two-digit level defined in the Standard Industrial Classification (SIC) 
system, and the variations of the local coefficients are greater than the 
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variations of technological coefficients. Hewings (1974) examined vari-
ous methods for the identification of key sectors in a regional economy 
and tested with different aggregation levels. He concluded that various 
methods lack the consistency in identifying key sectors and are sensitive 
to the level of aggregation. Gibbons and colleagues (Gibbons et al., 1982) 
developed an iterative process for disaggregating a sector, by which the 
magnitude of aggregation errors can be reduced to a level that satisfies any 
desired tolerance. Blair and Miller (1983) examined aggregation bias by 
aggregating regions in a multi-region IO system and concluded that spa-
tial aggregation does not necessarily lead to unacceptable errors.

In environmentally extended IOA, the aggregation problem will be 
more complicated. Not only will the input and output structure of sectors 
to be aggregated influence the results, but also the environmental nature of 
heterogeneous sectors (usually presented as environmental pressures per 
unit of output) will have certain impacts. Based on our best knowledge, 
there are few experiments exploring the aggregation problem in environ-
mentally extended IOA. Lenzen (2007) discussed the effect of aggrega-
tion on environmental analysis based on shared producer and consumer 
responsibility. He (2011) also provided a theoretical analysis on aggrega-
tion versus disaggregation in IOA of the environment and suggested that 
disaggregating economic IO data is superior to aggregating environmen-
tal data in determining IO multipliers. Andrew and colleagues (2009) 
used a multi-region input-output (MRIO) model based on the dataset pro-
vided by the Global Trade Analysis Project (GTAP) to quantify the errors 
introduced by various approximations of the full MRIO model. Su and 
his colleagues (Su et al., 2010) analyzed the effects of sector aggregation 
on the calculation of CO2 embodied in exports for China and Singapore, 
respectively, based on single-country IO models. Su and Ang (2010) also 
analyzed the effects of spatial aggregation of intra-national IO models on 
the calculation of CO2 embodied in a country’s exports, in particular for a 
large economy like China.

In this chapter, we examine the aggregation effect in carbon footprint 
(CF) accounting using an MRIO model. “Carbon footprint” is increas-
ingly being recognized as a valuable indicator in the field of greenhouse 
gas emissions management, which aims to measure all the direct and 
indirect carbon emissions caused by consumption. There are widespread 
applications of IO models in the estimation of the CFs of nations (e.g., 
Wyckoff and Roop, 1994; Munksgaard and Pedersen, 2001; Peters and 
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Hertwich, 2008; Hertwich and Peters, 2009; Zhou et al., 2010). For reviews 
in this area, see Wiedmann (2009b) and Minx et al. (2012).

The MRIO model used is Asian Input-Output (AIO) Table 2000 (AIO, 
2000), which is published by the Institute of Developing Economies (2006). 
The AIO 2000 is a Chenery-Moses type of model (Chenery, 1953; Moses, 
1955), including 76 sectors for ten Asian-Pacific economies (Indonesia, 
Malaysia, the Philippines, Singapore, Thailand, Mainland China, Taiwan, 
the Republic of Korea, Japan, and the United States). By aggregating 
sectors randomly, we tested the magnitude of aggregation errors and ana-
lyzed them as random variables.

3.2 � TEST OF AGGREGATION EFFECT
A typical MRIO model for the supply-and-demand equilibrium among 
sectors and regions can be expressed as follows:

	 x t fi
r

ij
rs

js
i
rs

s
= +∑∑ ∑ 	 (3.1)

where r and s are regions, i and j are sectors, xi
r is sector i’s outputs in 

region r, tij
rs is sector i’s outputs in region r that are used as inputs to sector j 

in region s (intermediate demand), and fi
rs is final demand of product i in 

region s that is supplied by region r.
By defining the input coefficients aij

rs = tij
rs/xj

s, Equation (3.1) for a k-region 
model can be expressed in a matrix format as follows:
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Introduced by Wassily Leontief in the early 1940s (Leontief, 1941), IOA 
has been widely used to predict a change in sectoral output that is driven 
by a change in final demand (Equation (3.3)). At regional levels, IOA can 
help predict the impacts of the establishment of a new factory on regional 
economy. At multi-region levels, IOA can analyze the trade relations 
among different regions.
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	 x I A f= − −( ) 1 	 (3.3)

where I is an identity matrix and (I – A)–1 is called the Leontief inverse, 
indicating the amount of outputs required directly (by the final demand) 
or indirectly (via intermediate demand in the upstream production) to 
satisfy one unit of final demand.

The convention for matrices and vectors used for the unaggregated 
model and the aggregated model (letters with a bar) is provided in 
Table 3.1. Matrices are expressed in capital letters, while vectors and sca-
lars are expressed in lowercase letters.

Consider there are n sectors and k regions. The size of matrix T before 
aggregation is therefore nk × nk, with the size of each block matrix Trs 
being n × n. The aggregation rules are defined as follows:

	 1.	Sectors within one region can be aggregated but sectors in different 
regions cannot.

	 2.	More than one aggregation within a region is allowed (such as the 
aggregation of Sectors 1 and 2, and the aggregation of Sectors 3, 4, 
and 5 in Region 1 at the same time).

	 3.	Aggregations in several regions simultaneously are allowed (such as 
the aggregation of Sectors 1 and 2 in Region 1 and the aggregation 
of Sectors 1, 2, and 3 in Region 2 at the same time). Assume that n 
sectors in Region r are grouped into n(r) ≤ n sectors.

Define

	 m n r nk
r

k

=










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≤

=
∑ ( )

1

TABLE 3.1  Definitions

Unaggregated Model Aggregated Model
Intermediate demand T = [Trs] = [tij

rs] –T = [–Trs] = [–tij
rs]

Final demand f = [f rs] = [f i
rs] –f = [–f rs] = [–f i

rs]
Total output x = {xr} = {xi

r} –x = {–xr} = {–xi
r}

Input coefficients A = [Ars] = [aij
rs] –A = [–Ars] = [–aij

rs]
Leontief inverse L = [Lrs] = [lij

rs] –L = [–Lrs] = [–lij
rs]

Carbon intensity (emissions per unit output) c = {cr} = {ci
r} –c = {–cr} = {–ci

r}
Carbon footprint w = {ws} = {wj

s} –w = {–w s} = {–wj
s}
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as the size of the aggregate model. The intermediate demand after aggre-
gation, 

—
T, is an m × m square matrix. Each block on the diagonal, 

—
Trr, is an 

n(r) × n(r) square matrix. Off-diagonal matrices are basically rectangular, 
depending on the size of the supply region r and the size of the demand 
region s after aggregation. For example, the size of 

—
Trs is n(r) × n(s).

We define the aggregation matrix as follows:
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Each z(r) on the diagonal is an n(r) × n block aggregation matrix. Each 
column of z(r) must have one and only one “1,” with other entries being 
“0”; and each row must have at least one “1” (can be more than one “1”), 
with other entries being “0.” The locations of “1”s in a row indicate which 
sectors in the unaggregated model will be combined into a new sector 
in the aggregate model. If a matrix is pre-multiplied by z(r), then the 
rows—but not the columns—of the original matrix are grouped into n(r) 
sectors. A prime represents the transpose of a matrix or vector. Post-
multiplying a matrix by z′(r) will therefore aggregate the columns into 
n(r) sectors.

The relationships for intermediate demand, final demand, total output, 
and carbon intensity before and after aggregation are presented as follows:

	 ZTZ T′ = 	 (3.4)

	 Zx x= 	 (3.5)

	 ZF F= 	 (3.6)

	 [Z(c ⊗ x)] ⊗ (Zx)–1 = c	 (3.7)

⊗ is the multiplication of corresponding elements. c is a diagonal matrix 
of carbon intensity for the detailed model with c1, c2, … and ck on the 
diagonal. –c is the corresponding diagonal matrix of carbon intensity 
after aggregation.
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Based on Equation (3.3), we have the following relations for the unag-
gregated model:

	 x I A F Lf= − =−( ) 1 	 (3.8)

The calculation of CFs using MRIO is as follows:

	 C ⊗ x = C ⊗ Lf	 (3.9)

For a particular region s, the carbon footprints, w = {wj
s}, are calculated as 

follows:

	 w c l fj
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For the aggregate model, there are two alternative ways for the calcula-
tion of CFs:

Procedure 1:

	 w Zw= 	 (3.11)

where w is the CFs calculated from the unaggregated model. Because all 
the information of the unaggregated system is known and Procedure 1 is 
only a summation of relevant sectoral CFs in the original model, there 
is no aggregation bias. We define –w as the “true” value.

Procedure 2:
In another procedure, we first aggregate the MRIO model based on 
Equations (3.4) through (3.7). From the aggregated model, we then calcu-
late the CFs:

	 x I A f L f= − =−( ) 1 	 (3.12)

	 C ⊗ x = C ⊗ L 
–
f	 (3.13)
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where ŵ is the CFs calculated from the aggregate model. Procedure 2 is the 
question at issue in which aggregation bias will occur in the calculations 
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of CFs. We define the discrepancy between ŵ and –w as aggregation error. 
At region-sectoral level, this is (ŵj

s – –wj
s). In addition, we use error rate, 

(ŵj
s – –wj

s)/–wj
s, to assess the relative, rather than the absolute, effects of 

aggregation. Error rate is used because the magnitude of aggregation 
errors can be extremely large due to the different economic scales of sec-
tors in a national economy. The aggregation errors of some small sectors, 
although important to the sectors themselves, can be overlooked when 
compared with the aggregation errors of large-scale sectors.

3.3 � RESULTS
To examine aggregation bias, we set aggregation schemes, determined 
by Z, randomly using Monte Carlo simulation. The procedure includes 
the following:

	 1.	Randomly determine the number of regions in which aggregation 
will be conducted.

	 2.	Randomly determine which regions are selected for conducting 
aggregation.

	 3.	Randomly determine the number of sectors for each selected region.

	 4.	Randomly determine which sectors are selected for aggregation in 
each selected region.

We repeated this procedure 100,000 times and obtained 100,000 ran-
domly determined aggregation matrices Zs. For each Zi, we calculate ŵZi 
= {(ŵ j

s)Zi}, –wZi = {(–wj
s)Zi}, (ŵ j

s)Zi – (–wj
s)Zi, and [(ŵ j

s)Zi – (–wj
s)Zi]/(–wj

s)Zi. Because 
aggregation is conducted randomly many times, aggregation errors and 
error rates can be considered random variables.

The unaggregated MRIO model we used for this experiment is the AIO 
2000. Because the inputs and outputs of Malaysian “unclassified sector” 
are all “0”s, which can cause a problem in the calculation of the Leontief 
inverse, we combined the “unclassified sector” with the “public adminis-
tration” sector and named it the “unclassified” sector in the new MRIO 
system. For the calculation of carbon intensity, we used the GTAP-E 
Database Version 6 (Dimaranan, 2006). The GTAP Database Version 
6 is the global database representing the world economy for 87 regions 
and 57 commodities for the year 2001. GTAP-E Database Version 6 pro-
vides the emissions data for corresponding regions and sectors in 2001. 
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We first match sectors in the GTAP Database with those in the AIO 2000 
(see Appendix 3A), based on which we recalculate the carbon intensity for 
75 sectors.

3.3.1 � Magnitude of Aggregation Effect

Because cross-region aggregation is not allowed, we analyzed the results 
based on individual regions. For each simulation, samples were divided 
into two groups: (1) new sectors after aggregation are grouped as “aggre-
gated sectors,” and (2) sectors that remain the same as in the original 
model are grouped as “unaggregated sectors.” The probability distribution 
of the error rates is depicted in Figure 3.1. Most distributions did not show 
a perfectly symmetric normal distribution, but were skewed either to the 
left or to the right. The distribution of unaggregated sectors was more con-
centrated than the distribution of aggregated sectors.
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FIGURE 3.1  Probability distribution of error rates in ten economies.
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For aggregated sectors, the error rates of samples showed a wide range, 
from −479 (aggregation of three sectors in China, i.e., “crude petroleum 
and natural gas,” “iron and steel,” and “finance and insurance”) to 166 
(aggregation of two sectors, “paddy” and “synthetic resins and fiber” in 
Thailand) (Table  3.2). The mean of error rates ranged from 0.029 (for 
Korea) to 0.167 (for China). This indicates that, in general, aggregation of 

0

0.1

0.2

0.3

0.4

0.5

0.6

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

Aggregated sectors
Unaggregated sectors

Malaysia

Error Rate

Density

0

0.1

0.2

0.3

0.4

0.5

0.6

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

Aggregated sectors
Unaggregated sectors

Taiwan

Error Rate

Density

0

0.1

0.2

0.3

0.4

0.5

0.6

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

Aggregated sectors
Unaggregated sectors

Philippines

Error Rate

Density
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the AIO 2000 will have moderate effects on CF accounting; however, the 
aggregation of some sectors can cause considerable bias. For unaggregated 
sectors, the range of error rates were from −0.876 (for Singapore) to more 
than 16 (for Indonesia) (Table  3.3), with mean levels between −2% and 
−5%. The confidence interval showed that, for example, for Indonesia, 95% 
of the error rates fell in the interval of −0.055 and 0.465 for aggregated 
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FIGURE 3.1  (continued) Probability distribution of error rates in ten economies.

TABLE 3.2  Summary of Error Rates for Aggregated Sectors

Region Minimum Mean Maximum
Standard 
Deviation

Confidence Interval

Lower 
2.5%

Upper 
2.5%

Indonesia −0.734 0.107 2.677 0.140 −0.055 0.465
Malaysia −12.176 0.037 11.471 0.162 −0.126 0.377
Philippines −8.139 0.057 29.343 0.271 −0.092 0.380
Singapore −0.438 0.066 1.885 0.162 −0.102 0.536
Thailand −2.941 0.044 165.589 0.713 −0.099 0.326
Mainland China −478.753 0.167 119.134 2.149 −0.013 0.746
Taiwan −1.384 0.072 8.798 0.119 −0.080 0.311
Korea −0.527 0.029 6.869 0.100 −0.096 0.235
Japan −7.846 0.065 4.558 0.100 −0.043 0.289
USA −0.355 0.092 1.574 0.088 −0.007 0.310



Aggregation Effects in Carbon Footprint Accounting    ◾    65  

sectors. The range of confidence intervals were between −0.102 and 
0.746 for aggregated sectors, and between −0.506 and 0.14 for unaggre-
gated sectors.

Comparing results for the two groups, and except for a few cases, the 
range of error rates was larger and the mean levels were higher for the 
aggregated sectors than for the unaggregated sectors. This indicates that 
aggregation has more impact on aggregated sectors than on unaggregated 
sectors. In addition, positive mean values for aggregated sectors indicate 
that, on average, aggregation of the AIO 2000 led to overestimation of CFs 
for aggregated sectors. Negative mean values indicate that there is a ten-
dency of underestimation of the CFs for the nonaggregated sectors when 
other sectors are aggregated.

For individual economies, aggregation of sectors, on average, may 
influence CF accounting of China, Indonesia, and the USA more than 
other economies. From the range of error rates and the standard deviation 
of aggregated sectors, we can find that the aggregation of some sectors in 
China, Thailand, and the Philippines will have considerable impacts. For 
Indonesia, the aggregation of sectors within the country will have large 
effects on some specific unaggregated sectors (Table 3.3).

3.3.2 � Factors Influencing the Aggregation Effect

As inferred by the ranges and standard deviations of error rates, the 
aggregation of some specific sectors may have significant impacts on the 

TABLE 3.3  Summary of Error Rates for Unaggregated Sectors

Region Minimum Mean Maximum
Standard 
Deviation

Confidence Interval

Lower 
2.5%

Upper 
2.5%

Indonesia −0.733 −0.023 16.585 0.162 −0.398 0.113
Malaysia −0.758 −0.040 5.779 0.118 −0.399 0.105
Philippines −0.669 −0.042 5.309 0.100 −0.318 0.108
Singapore −0.876 −0.049 3.349 0.127 −0.506 0.074
Thailand −0.772 −0.030 6.237 0.107 −0.335 0.085
Mainland China −0.806 −0.036 3.548 0.115 −0.383 0.073
Taiwan −0.595 −0.031 5.072 0.094 −0.234 0.140
Korea -0.681 −0.025 4.338 0.066 −0.175 0.075
Japan -0.694 −0.038 2.906 0.074 −0.247 0.034
USA -0.826 −0.043 3.596 0.106 −0.353 0.017
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certainty of CF accounting using the AIO 2000. By ranking the absolute 
value of error rates for aggregated sectors, we identified those sectors 
whose aggregation may cause large bias (an example of top 30 results are 
shown in Appendix 3B).

Among the top 300 samples, with the absolute value of error rates rang-
ing from 479 down to 1.85, 140 occurred in Mainland China (accounting 
for 46.7% of top 300 aggregation results), 105 in the Philippines (35%), 
22 in Indonesia (7.3%), 14 in Malaysia (4.7%), 13 in Korea (4.3%), and 3 (1%) 
in Japan and Singapore, respectively. Among 140 top aggregation errors in 
Mainland China, 87 aggregation schemes included the sector of “iron and 
steel” and 25 aggregation schemes included the sector of “chemical fertil-
izers and pesticides.” For the Philippines, 104 results out of 105 top-error 
aggregation schemes included the sector of “crude petroleum and natural 
gas.” For Indonesia, 20 out of 22 top-error aggregation schemes included the 
sector of “iron and steel.” For Malaysia, 13 out of 14 top-error aggregation 
schemes included the sector of “non-metallic ore and quarrying.” Korea did 
not show such high concentrations over particular sectors. Among 13 top-
error aggregation schemes, sector “timber” appeared 5 times. For Japan, 
sector “cement and cement products” appeared twice out of 3 top-error 
aggregation schemes. For Singapore, sector “electricity and gas” and sec-
tor “building construction” occurred twice (nonexclusively) among 3 top-
error aggregation schemes.

For unaggregated sectors, we conducted similar experiments by ranking 
the absolute value of error rates. Among the top 300 results, with the range 
from 16.585 down to 4.16, sector “milled grain and flour” in Indonesia 
(occurred 282 times) was influenced the most by different aggregations of 
other sectors in the region.

We compared the minimum value, maximum value, mean, and stan-
dard deviation for all the simulations with and without the 300 top-error 
results (see Table 3.4 and Table 3.5). It can be found that the absolute levels 
of the minimum value and the maximum value decreased sharply, in 
particular for China, Thailand, the Philippines, Indonesia, Malaysia, and 
Japan, which have high occurrence in 300 top-error results. Because of the 
large number of samples, the mean levels did not have obvious changes. 
Standard deviations, also because of the large number of samples, did not 
change for most of the regions, except for China and Thailand, for which 
levels decreased considerably.
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3.4 � CONCLUSIONS
The construction of MRIO tables is both time-consuming and expen-
sive. There are still very few MRIO tables available for practical applica-
tions. MRIO tables are generally constructed based on national IO tables 
and bilateral trade data. Different countries have different key sectors and 
national priorities that can influence sector classification and the level 
of aggregation in their national IO tables. In constructing MRIO tables, 
reclassification and aggregation are usually necessary to adjust the dif-
ferences among national IO tables. In the application of MRIO models 

TABLE 3.5  Summary of Error Rates for the Simulation Results Excluding 
300 Top-Error Results

Region Minimum Average Maximum
Standard 
Deviation

Number of 
Samples

Indonesia −0.734 −0.052 4.335 0.253 2,081,086
Malaysia −0.779 −0.090 3.991 0.176 2,092,676
Philippines −0.897 −0.086 4.289 0.142 2,089,059
Singapore −0.876 −0.102 3.349 0.186 2,088,507
Thailand −2.941 −0.067 4.278 0.163 2,105,083
Mainland China −4.199 −0.087 3.883 0.179 2,082,374
Taiwan −1.384 −0.047 4.280 0.142 2,093,638
Korea −0.681 −0.045 3.875 0.094 2,094,985
Japan −0.694 −0.078 2.906 0.103 2,095,600
USA −0.826 −0.107 3.596 0.152 2,089,001

TABLE 3.4  Summary of Error Rates for All Simulation Results

Region Minimum Average Maximum
Standard 
Deviation

Number of 
Samples

Indonesia −0.734 −0.051 16.585 0.260 2,081,316
Malaysia −12.176 −0.090 11.471 0.177 2,092,685
Philippines −8.139 −0.086 29.343 0.147 2,089,085
Singapore −0.876 −0.102 3.349 0.186 2,088,507
Thailand −2.941 −0.067 165.589 0.199 2,105,087
Mainland China −478.753 −0.087 119.134 0.390 2,082,398
Taiwan −1.384 −0.047 8.798 0.142 2,093,642
Korea −0.681 −0.045 6.869 0.094 2,094,986
Japan −7.846 −0.078 4.558 0.104 2,095,602
USA −0.826 −0.107 3.596 0.152 2,089,001
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to environmental analysis, sector reclassification and aggregation are 
needed again to match environmental data and economic data. Therefore, 
sector aggregation is a practical and important task for environmentally 
extended analysis using MRIO models. By examining the magnitude of 
aggregation bias in carbon footprint accounting using an empirical MRIO 
model for Asian-Pacific economies, we have several conclusions.

	 1.	On average, aggregation of the AIO 2000 had moderate effects on 
carbon footprint accounting (with the absolute value of the mean 
error rates less than 20%). However, the aggregation of some sectors 
can cause considerable bias (with extremely high absolute value of 
error rates, e.g., 479).

	 2.	Aggregation exerted more impacts on aggregated sectors than on 
unaggregated sectors. There is a tendency for the AIO 2000 that 
aggregation will cause overestimation of CFs for aggregated sectors 
and underestimation for unaggregated sectors.

	 3.	Different from other empirical literature to which concluded that 
aggregation bias increases with the level of aggregation (e.g., as sug-
gested by Karaska (1968) and Hewings (1974)), we found that for the 
AIO 2000, the level of aggregation is not the key factor, but some 
specific sectors in specific regions do play a key role in affecting 
aggregation bias. The range of error rates can be narrowed sharply by 
excluding limited top-errors, for example, decreased from (−479, 166) 
to (−4, 4) when the top 300 results are excluded. For those who will 
excise the aggregation of the AIO 2000 for environmental analysis, 
the exclusion of specific sectors in their aggregation schemes can 
greatly improve the certainty of the accounting results.

	 4.	Although we identified some sectors that, if aggregated, generate a 
large aggregation error, identifying them by a priori approach is still 
lacking. Because sectoral carbon intensity, Leontief multiplier, and 
the level of final demand influence the aggregation errors simultane-
ously and nonlinearly based on Equations (3.12) through (3.14), it is 
difficult to provide a simple method to check, a priori, which sectors 
will have potential impacts. It is not included in the scope of this 
work but can form an important agenda for future research.
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APPENDIX 3A: SECTOR CLASSIFICATION IN THE AIO 2000 
AND GTAP6 DATABASE

Code Sectors in the AIO 2000
Corresponding Sector Classification 

in the GTAP6 Database
001 Paddy Paddy rice (pdr)
002 Other grain Wheat (wht); cereal grains (gro)
003 Food crops Vegetables (v_f); oil seeds (osd); sugar 

cane, sugar beet (c_b)
004 Non-food crops Plant-based fibers (pfb); crops (ocr)
005 Livestock and poultry Cattle, sheep, goats, houses (ctl); animal 

products (oap); raw milk (rmk); wool, 
silk-worm cocoons (wol)

006 Forestry Forestry (frs)
007 Fishery Fishing (fsh)
008 Crude petroleum and natural gas Oil (oil); gas (gas)
009 Iron ore Minerals (omn); coal (coa)
010 Other metallic ore
011 Non-metallic ore and quarrying
012 Milled grain and flour Processed rice (pcr); vegetable oils and 

fats (vol); sugar (sgr); food products 
(ofd)

013 Fish products Meat of cattle, sheep, goat and horse 
(cmt); meat products (omt); dairy 
products (mil)

014 Slaughtering, meat products and dairy 
products

015 Other food products
016 Beverage Beverages and tobacco products (b_t)
017 Tobacco
018 Spinning Textiles (tex)
019 Weaving and dyeing
020 Knitting
021 Wearing apparel Wearing apparel (wap)
022 Other made-up textile products
023 Leather and leather products Leather products (lea)
024 Timber Wood products (lum)
025 Wooden furniture
026 Other wooden products
027 Pulp and paper Paper products, publishing (ppp)
028 Printing and publishing
029 Synthetic resins and fiber Chemical, rubber, plastic products (crp)
030 Basic industrial chemicals

continued
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Code Sectors in the AIO 2000
Corresponding Sector Classification 

in the GTAP6 Database
031 Chemical fertilizers and pesticides
032 Drugs and medicine
033 Other chemical products
034 Refined petroleum and its products Petroleum, coal products (p_c)
035 Plastic products
036 Tires and tubes
037 Other rubber products
038 Cement and cement products Non-metallic mineral product (nmm)
039 Glass and glass products
040 Other non-metallic mineral products
041 Iron and steel Ferrous metals (i_s)
042 Non-ferrous metal Non-ferrous metals (nfm)
043 Metal products Metal products (fmp)
044 Boilers, engines and turbines Other machinery and equipment (ome)
045 General machinery
046 Metal working machinery
047 Specialized machinery
048 Heavy electrical equipment
049 Television sets, radios, audios and 

communication equipment
Electronic equipment (ele)

050 Electronic computing equipment
051 Semiconductors and integrated circuits
052 Other electronics and electronic 

products
053 Household electrical equipment Other manufactures (omf)
054 Lighting fixtures, batteries, wiring and 

others
055 Motor vehicles Motor vehicles and parts (mvh)
056 Motorcycles Other transport equipment (otn)
057 Shipbuilding
058 Other transport equipment
059 Precision machines
060 Other manufacturing products
061 Electricity and gas Electricity (ely), gas manufacture, 

distribution (gdt)
062 Water supply Water (wtr)
063 Building construction Construction (cns)
064 Other construction
065 Wholesale and retail trade Trade (trd)
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Code Sectors in the AIO 2000
Corresponding Sector Classification 

in the GTAP6 Database
066 Transportation Sea transport (wtp); air transport (atp); 

other transport (otp)
067 Telephone and telecommunication Communication (cmn)
068 Finance and insurance Other financial services (ofi); insurance 

(isr)
069 Real estate Other business services (obs)
070 Education and research Recreation and other services (ros); 

public administration, defense, health 
and education (osg)

071 Medical and health service
072 Restaurants
073 Hotel
074 Other services
075 Unclassified

APPENDIX 3B: RANKING OF TOP 30 AGGREGATION ERRORS
(See table on next page.)
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4.1 � INTRODUCTION

The impacts of present and potential future climate change will be 
one of the most important scientific and societal challenges in the 

21st century. Given observed changes in temperature, sea ice, and sea 
level, improving our understanding of the climate system is an interna-
tional priority. This system is characterized by complex phenomena that 
are imperfectly observed and even more imperfectly simulated. But with 
an ever-growing supply of climate data from satellites and environmental 
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sensors, the magnitude of data and climate model output is beginning 
to overwhelm the relatively simple tools currently used to analyze them. 
A computational approach will therefore be indispensable for these 
analysis challenges. This chapter introduces the fledgling research disci-
pline climate informatics: collaborations between climate scientists and 
machine learning researchers in order to bridge this gap between data and 
understanding. We hope that the study of climate informatics will acceler-
ate discovery in answering pressing questions in climate science.

Machine learning is an active research area at the interface of com-
puter science and statistics, concerned with developing automated tech-
niques, or algorithms, to detect patterns in data. Machine learning (and 
data mining) algorithms are critical to a range of technologies, including 
Web search, recommendation systems, personalized Internet advertis-
ing, computer vision, and natural language processing. Machine learning 
has also made significant impacts on the natural sciences, for example, in 
biology; the interdisciplinary field of bioinformatics has facilitated many 
discoveries in genomics and proteomics. The impact of machine learning 
on climate science promises to be similarly profound.

The goal of this chapter is to define climate informatics and to propose 
some grand challenges for this nascent field. Recent progress on climate 
informatics, by the authors as well as by other groups, reveals that col-
laborations with climate scientists also open up interesting new problems 
for machine learning. There are a myriad of collaborations possible at 
the intersection of these two fields. This chapter uses both top-down and 
bottom-up approaches to stimulate research progress on a range of prob-
lems in climate informatics, some of which have yet to be proposed. For 
the former, we present challenge problems posed by climate scientists, and 
discussed with machine learning, data mining, and statistics researchers 
at Climate Informatics 2011, the First International Workshop on Climate 
Informatics, the inaugural event of a new annual workshop in which all 
co-authors participated. To spur innovation from the bottom-up, we also 
describe and discuss some of the types of data available. In addition to 
summarizing some of the key challenges for climate informatics, this 
chapter also draws on some of the recent climate informatics research of 
the co-authors.

The chapter is organized as follows. First, we discuss the types of cli-
mate data available and outline some challenges for climate informatics, 
including problems in analyzing climate data. Then we go into further 
detail on several key climate informatics problems: seasonal climate 
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forecasting, predicting climate extremes, reconstructing past climate, and 
some problems in polar regions. We then discuss some machine learning 
and statistical approaches that might prove promising (and that were not 
mentioned in previous sections). Finally, we discuss some challenges and 
opportunities for climate science data and data management. Due to the 
broad coverage of the chapter, related work discussions are interspersed 
throughout the sections.

4.2 � MACHINE LEARNING
Over the past few decades, the field of machine learning has matured sig-
nificantly, drawing on ideas from several disciplines, including optimiza-
tion, statistics, and artificial intelligence [4, 34]. Application of machine 
learning has led to important advances in a wide variety of domains rang-
ing from Internet applications to scientific problems. Machine learning 
methods have been developed for a wide variety of predictive modeling 
as well as exploratory data analysis problems. In the context of predictive 
modeling, important advances have been made in linear classification and 
regression, hierarchical linear models, nonlinear models based on kernels, 
as well as ensemble methods that combine outputs from different predic-
tors. In the context of exploratory data analysis, advances have been made 
in clustering and dimensionality reduction, including nonlinear methods 
to detect low-dimensional manifold structures in the data. Some of the 
important themes driving research in modern machine learning are moti-
vated by properties of modern datasets from scientific, societal, and com-
mercial applications. In particular, the datasets are extremely large scale, 
running into millions or billions of data points; are high-dimensional, 
going up to tens of thousands or more dimensions; and have intricate 
statistical dependencies that violate the “independent and identically dis-
tributed” assumption made in traditional approaches. Such properties 
are readily observed in climate datasets, including observations, reanaly-
sis, as well as climate model outputs. These aspects have led to increased 
emphasis on scalable optimization methods [94], online learning methods 
[11], and graphical models [47], which can handle large-scale data in high 
dimensions with statistical dependencies.

4.3 � UNDERSTANDING AND USING CLIMATE DATA
Profuse amounts of climate data of various types are available, providing 
a rich and fertile playground for future data mining and machine learn-
ing research. Here we discuss some of the varieties of data available, and 
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provide some suggestions on how they can be used. The discussion opens 
up some interesting problems. There are multiple sources of climate data, 
ranging from single-site observations scattered in an unstructured way 
across the globe to climate model output that is global and uniformly 
gridded. Each class of data has particular characteristics that should be 
appreciated before it can be successfully used or compared. We provide 
here a brief introduction to each, with a few examples and references for 
further information. Common issues that arise in cross-class syntheses 
are also addressed.

4.3.1  �In-Situ Observations

In-situ measurements refer to raw (or only minimally processed) measure-
ments of diverse climate system properties that can include temperatures, 
rainfall, winds, column ozone, cloud cover, radiation, etc., taken from spe-
cific locations. These locations are often at the surface (e.g., from weather 
stations), but can also include atmospheric measurements from radio-
sonde balloons, subsurface ocean data from floats, data from ships, air-
craft, and special intensive observing platforms.

Much of this data is routinely collected and made available in col-
lated form from National Weather Services or special projects such as 
AEROCOM (for aerosol data), International Comprehensive Ocean-
Atmosphere Data Set (ICOADS) (ocean temperature and salinity from 
ships), Argo (ocean floats), etc. Multivariate data related to single experi-
ments (e.g., the Atmospheric Radiation Measurement (ARM) program or 
the Surface Heat Budget of the Arctic (SHEBA)), are a little less well orga-
nized, although usually available at specialized websites.

This kind of data is useful for looking at coherent multivariate com-
parisons, although usually on limited time and space domains, as input to 
weather model analyses or as the raw material for processed gridded data 
(see next subsection). The principal problem with this data is their sparse-
ness spatially and, in time, inhomogeneities due to differing measurement 
practices or instruments and overall incompleteness (not all variables are 
measured at the same time or place) [45, 62].

4.3.2 � Gridded/Processed Observations

Given a network of raw in-situ data, the next step is synthesizing those 
networks into quality-controlled regularly gridded datasets. These have 
a number of advantages over the raw data in that they are easier to work 
with, are more comparable to model output (discussed below), and have 
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fewer nonclimatic artifacts. Gridded products are usually available on 
5° latitude by 5° longitude grids or even higher resolution. However, these 
products use interpolation, gap-filling in space and time, and correc-
tions for known biases, all of which affect the structural uncertainty in 
the product. The resulting error estimates are often dependent upon space 
and time. Different products targeting the same basic quantity can give 
some idea of the structural uncertainty in these products, and we strongly 
recommend using multiple versions. For example, for different estimates 
of the global mean surface temperature, anomalies can be found from the 
National Climatic Data Center (NCDC), the Hadley Centre, and NASA 
[6, 33, 90] that differ in processing and details but show a large amount of 
agreement at the large scale.

4.3.3 � Satellite Retrievals

Since 1979, global and near-global observations of the Earth’s climate have 
been made from low-earth orbit and geostationary satellites. These obser-
vations are based either on passive radiances (either emitted directly from 
the Earth, or via reflected solar radiation) or by active scanning via lasers or 
radars. These satellites, mainly operated by U.S. agencies (NOAA, NASA), 
the European Space Agency, and the Japanese program (JAXA), and data 
are generally available in near-real-time. There are a number of levels of 
data, ranging from raw radiances (Level 1), processed data as a function 
of time (Level 2), and gridded averaged data at the global scale (Level 3).

Satellite products do have specific and particular views of the climate 
system, which requires that knowledge of the “satellite-eye” view be incor-
porated into any comparison of satellite data with other products. Many 
satellite products are available for specific instruments on specific plat-
forms; synthesis products across multiple instruments and multiple 
platforms are possible, but remain rare.

4.3.4 � Paleoclimate Proxies

In-situ instrumental data only extends on a global basis to the mid-19th 
century, although individual records can extend to the 17th or 18th century. 
For a longer term perspective, climate information must be extracted from 
so-called “proxy” archives, such as ice cores, ocean mud, lake sediments, 
tree rings, pollen records, caves, or corals, which retain information that is 
sometimes highly correlated to specific climate variables or events [41].

As with satellite data, appropriate comparisons often require a for-
ward model of the process by which climate information is stored and that 
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incorporates the multiple variables that influence any particular proxy [75]. 
However, the often dramatically larger signals that can be found in past cli-
mates can overcome the increase in uncertainty due to spatial sparseness 
and nonclimatic noise, especially when combined in a multi-proxy approach 
[58]. Problems in paleoclimate are discussed in further detail in Section 4.8.

4.3.5 � Reanalysis Products

Weather forecast models use as much observational data (in-situ, remote 
sensing, etc.) as can be assimilated in producing 6-hour forecasts (the 
“analyses”), which are excellent estimates of the state of the climate at any 
one time. However, as models have improved over time, the time series of 
weather forecasts can contain trends related only to the change in model 
rather than changes in the real world. Thus, many of the weather forecast-
ing groups have undertaken “reanalyses” that use a fixed model to reprocess 
data from the past in order to have a consistent view of the real world 
(see reanalyses.org for more details). This is somewhat equivalent to a physics-
based interpolation of existing datasets and often provides the best estimate 
of the climate state over the instrumental period (e.g., ERA-Interim [16]).

However, not all variables in the reanalyses are equally constrained 
by observational data. Thus, sea-level pressure and winds are well char-
acterized, but precipitation, cloud fields, and surface fluxes are far more 
model dependent and thus are not as reliable. Additionally, there remain 
unphysical trends in the output as a function of changes in the observing 
network over time. In particular, the onset of large-scale remote sensing in 
1979 imparts jumps in many fields that can be confused with real climate 
trends [105].

4.3.6 � Global Climate Model (GCM) Output

Global climate models are physics-based simulations of the climate sys-
tem, incorporating (optionally) components for the atmosphere, ocean, sea 
ice, land surface, vegetation, ice sheets, atmospheric aerosols and chem-
istry, and carbon cycles. Simulations can either be transient in response 
to changing boundary conditions (such as hindcasts of the 20th century), 
or time slices for periods thought to be relatively stable (such as the mid-
Holocene 6,000 years ago). Variations in output can depend on initial con-
ditions (because of the chaotic nature of the weather), the model used, 
or variations in the forcing fields (due to uncertainties in the time his-
tory, say, of aerosol emissions). A number of coordinated programs, nota-
bly the Coupled Model Intercomparison Project (CMIP), have organized 
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coherent model experiments that have been followed by multiple climate 
modeling groups around the world and which are the dominant source for 
model output [96].

These models are used to define fingerprints of forced climate change 
that can be used in the detection and attribution of climate change [39], 
for hypothesis generation about linkages in the climate system, as test-
beds for evaluating proposed real-world analyses [24], and, of course, 
future predictions [61]. Quantifying the structural uncertainty in model 
parameterizations or the model framework, the impact of known imper-
fections in the realizations of key processes, and the necessity of compro-
mises at small spatial or temporal scales are all important challenges.

4.3.7 � Regional Climate Model (RCM) Output

Global models necessarily need to compromise on horizontal resolution. 
In order to incorporate more details at the local level (particularly regional 
topography), output from the global models or the global reanalyses can 
be used to drive a higher-resolution, regional climate model. The large-
scale fields can then be transformed to higher resolution using physical 
principles embedded in the RCM code. In particular, rainfall patterns that 
are very sensitive to the detailed topography are often far better modeled 
within the RCM than in the global-scale driving model. However, there 
are many variables to consider in RCMs—from variations in how the 
boundary field forcing is implemented and in the physics packages—and 
the utility of using RCMs to improve predictions of change is not yet clear. 
A coordinated experiment to test these issues is the North American 
Regional Climate Change Assessment Program (NARCCAP) [60].

4.4 � SCIENTIFIC PROBLEMS IN CLIMATE INFORMATICS
There are a number of different kinds of problems that climate scientists 
are working on where machine learning and computer science techniques 
may make a big impact. This is a brief description of a few examples 
(with discussion of related work in the literature) that typify these ideas, 
although any specific implementation mentioned should not be consid-
ered the last word. This section provides short descriptions of several chal-
lenging problems in climate informatics broadly defined. In Section 4.5 
we present problems in climate data analysis. In subsequent sections we 
delve into more detail on some specific problems in climate informatics.
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4.4.1 � Parameterization Development

Climate models need to deal with the physics that occurs at scales smaller 
than any finite model can resolve. This can involve cloud formation, tur-
bulence in the ocean, land surface heterogeneity, ice floe interactions, 
chemistry on dust particle surfaces, etc. This is dealt with by using 
parameterizations that attempt to capture the phenomenology of a spe-
cific process and its sensitivity in terms of the (resolved) large scales. This 
is an ongoing task, and is currently driven mainly by scientists’ physical 
intuition and relatively limited calibration data. As observational data 
become more available, and direct numerical simulation of key pro-
cesses becomes more tractable, there is an increase in the potential for 
machine learning and data mining techniques to help define new param-
eterizations and frameworks. For example, neural network frameworks 
have been used to develop radiation models [50].

4.4.2 � Using Multimodel Ensembles of Climate Projections

There are multiple climate models that have been developed and are 
actively being improved at approximately 25 centers across the globe. 
Each model shares some basic features with at least some other models, 
but each has generally been designed and implemented independently 
and has many unique aspects. In coordinated Model Intercomparison 
Projects (MIPs) (most usefully, the Coupled MIP (CMIP3, CMIP5), the 
Atmospheric Chemistry and Climate MIP (ACCMIP), the PaleoClimate 
MIP (PMIP3), etc.), modeling groups have attempted to perform analogous 
simulations with similar boundary conditions but with multiple models. 
These “ensembles” offer the possibility of assessing what is robust across 
models, what are the roles of internal variability, structural uncertainty, 
and scenario uncertainty in assessing the different projections at different 
time and space scales, and multiple opportunities for model-observation 
comparisons. Do there exist skill metrics for model simulations of the 
present and past that are informative for future projections? Are there 
weighting strategies that maximize predictive skill? How would one 
explore this? These are questions that also come up in weather forecasts, 
or seasonal forecasts, but are made more difficult for the climate problem 
because of the long timescales involved [40, 97]. Some recent work has 
applied machine learning to this problem with encouraging results [63].
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4.4.3 � Paleoreconstructions

Understanding how climate varied in the past before the onset of wide-
spread instrumentation is of great interest—not least because the climate 
changes seen in the paleo-record dwarf those seen in the 20th century and 
hence may provide much insight into the significant changes expected this 
century. Paleo-data is, however, even sparser than instrumental data and, 
moreover, is not usually directly commensurate with the instrumental 
record. As mentioned in Section 4.3, paleo-proxies (such as water isotopes, 
tree rings, pollen counts, etc.) are indicators of climate change but often 
have nonclimatic influences on their behavior, or whose relation to what 
would be considered more standard variables (such as temperature or pre-
cipitation) is perhaps nonstationary or convolved. There is an enormous 
challenge in bringing together disparate, multi-proxy evidence to produce 
large-scale patterns of climate change [59], or from the other direction 
build enough “forward modeling” capability into the models to use the 
proxies directly as modeling targets [76]. This topic is discussed in further 
detail in Section 4.8.

4.4.4 � Data Assimilation and Initialized Decadal Predictions

The primary way in which sparse observational data are used to construct 
complete fields is through data assimilation. This is a staple of weather fore-
casts and various reanalyses in the atmosphere and ocean. In many ways, 
this is the most sophisticated use of the combination of models and obser-
vations, but its use in improving climate predictions is still in its infancy. 
For weather timescales, this works well; but for longer term forecasts 
(seasons to decades), the key variables are in the ocean, not the atmosphere, 
and initializing a climate model so that the evolution of ocean variability 
models the real world in useful ways is very much a work in progress [44, 
90]. First results have been intriguing, if not convincing, and many more 
examples are slated to come online in the new CMIP5 archive [61].

4.4.5 � Developing and Understanding Perturbed 
Physics Ensembles (PPEs)

One measure of structural uncertainty in models is the spread among the 
different models from different modeling groups. But these models can-
not be considered a random sample from the space of all possible models. 
Another approach is to take a single model and, within the code, vary mul-
tiple (uncertain) parameters in order to generate a family of similar models 
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that nonetheless sample a good deal of the intrinsic uncertainty that arises 
in choosing any specific set of parameter values. These ”Perturbed Physics 
Ensembles” (PPEs) have been used successfully in the climateprediction.
net and Quantifying Uncertainty in Model Predictions (QUMP) projects 
to generate controlled model ensembles that can be compared systemati-
cally to observed data and make inferences [46, 64]. However, designing 
such experiments and efficiently analyzing sometimes thousands of simu-
lations is a challenge, but one that will increasingly be attempted.

4.5 � CLIMATE DATA ANALYSIS: PROBLEMS AND APPROACHES
Here we discuss some additional challenge problems in analyzing climate 
data. The rate of data acquisition via satellite network and reanalyses proj-
ects is very rapid. Similarly, the amount of model output is equally fast 
growing. Model-observation comparisons based on processes (i.e., the 
multivariate changes that occur in a single event [or collection of events], 
such as a North Atlantic storm, an ocean eddy, an ice floe melting event, 
a hurricane, a jet stream excursion, a stratospheric sudden warming, etc.) 
have the potential to provide very useful information on model credibility, 
physics, and new directions for parameterization improvements. However, 
data services usually deliver data in single-variable, spatially fixed, time-
varying formats that make it very onerous to apply space and time filters 
to the collection of data to extract generic instances of the process in ques-
tion. As a first step, algorithms for clustering data streams will be critical 
for clustering and detecting the patterns listed. There will also be the need 
to collaborate with systems and database researchers on the data chal-
lenges mentioned here and in Section 4.11. Here we present several other 
problems to which cutting-edge data analysis and machine learning tech-
niques are poised to contribute.

4.5.1 � Abrupt Changes

Earth system processes form a nonlinear dynamical system and, as a result, 
changes in climate patterns can be abrupt at times [74]. Moreover, there 
is some evidence, particularly in glacial conditions, that climate tends to 
remain in relatively stable states for some period of time, interrupted by 
sporadic transitions (perhaps associated with so-called tipping points) that 
delineate different climate regimes. Understanding the causes behind sig-
nificant abrupt changes in climate patterns can provide a deeper under-
standing of the complex interactions between Earth system processes. The 
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first step toward realizing this goal is to have the ability to detect and iden-
tify abrupt changes from climate data.

Machine learning methods for detecting abrupt changes, such as 
extensive droughts that last for multiple years over a large region, should 
have the ability to detect changes with spatial and temporal persistence, 
and should be scalable to large datasets. Such methods should be able to 
detect well-known droughts such as the Sahel drought in Africa, the 1930s 
Dust Bowl in the United States, and droughts with similar characteristics 
where the climatic conditions were radically changed for a period of time 
over an extended region [23, 37, 78, 113]. A simple approach for detecting 
droughts is to apply a suitable threshold to a pertinent climate variable, 
such as precipitation or soil moisture content, and label low-precipitation 
regions as droughts. While such an approach will detect major events 
like the Sahel drought and dust bowls, it will also detect isolated events, 
such as low precipitation in one month for a single location that is clearly 
not an abrupt change event. Thus, the number of “false positives” from 
such a simple approach would be high, making subsequent study of each 
detected event difficult.

To identify drought regions that are spatially and temporally persistent, 
one can consider a discrete graphical model that ensures spatiotemporal 
smoothness of identified regions. Consider a discrete Markov Random 
Field (MRF) with a node corresponding to each location at each time 
step and a meaningful neighborhood structure that determines the edges 
in the underlying graph G = (V,E) [111]. Each node can be in one of two 
states: “normal” or “drought.” The maximum a posteriori (MAP) infer-
ence problem in the MRF can be posed as
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where θu,θuv are node-wise and edge-wise potential functions that, respec-
tively, encourage agreement with actual observations and agreement 
among neighbors; and is the state (i.e., “normal” or “drought”) at node 
u ∈ V. The MAP inference problem is an integer programming problem 
often solved using a suitable linear programming (LP) relaxation [70, 111].

Figure  4.1 shows results on drought detection over the past century 
based on the MAP inference method. For the analysis, the Climatic Research 
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Unit (CRU) precipitation dataset was used at 0.5° × 0.5° latitude-longitude 
spatial resolution from 1901 to 2006. The LP involved approximately 
7 million variables and was solved using efficient optimization techniques. 
The method detected almost all well-known droughts over the past cen-
tury. More generally, such a method can be used to detect and study 
abrupt changes for a variety of settings, including heat waves, droughts, 

90°N
180°W 150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E 180°E

75°N

60°N

45°N

30°N

15°N

15°S

30°S

45°S

60°S

75°S

90°S

0°

90°N
180°W 150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E 180°E

75°N

60°N

45°N

30°N

15°N

15°S

30°S

45°S

60°S

75°S

90°S

0°

FIGURE 4.1  (See color insert.) The drought regions detected by our algorithm. 
Each panel shows the drought starting from a particular decade: 1905–1920 (top 
left), 1921–1930 (top right), 1941–1950 (bottom left), and 1961–1970 (bottom right). 
The regions in black rectangles indicate the common droughts found by [63].
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precipitation, and vegetation. The analysis can be performed on observed 
data, reanalysis data, as well as model outputs as appropriate.

4.5.2 � Climate Networks

Identifying dependencies between various climate variables and climate 
processes form a key part of understanding the global climate system. Such 
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FIGURE 4.1  (See color insert.) (continued) The drought regions detected by our 
algorithm. Each panel shows the drought starting from a particular decade: 
1905–1920 (top left), 1921–1930 (top right), 1941–1950 (bottom left), and 
1961–1970 (bottom right). The regions in black rectangles indicate the common 
droughts found by [63].
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dependencies can be represented as climate networks [19, 20, 106, 107], where 
relevant variables or processes are represented as nodes and dependencies 
are captured as edges between them. Climate networks are a rich represen-
tation for the complex processes underlying the global climate system, and 
can be used to understand and explain observed phenomena [95, 108].

A key challenge in the context of climate networks is to construct such 
networks from observed climate variables. From a statistical machine 
learning perspective, the climate network should reflect suitable dependen-
cies captured by the joint distribution of the variables involved. Existing 
methods usually focus on a suitable measure derived from the joint distri-
bution, such as the covariance or the mutual information. From a sample-
based estimate of the pairwise covariance or mutual information matrix, 
one obtains the climate network by suitably thresholding the estimated 
matrix. Such approaches have already shown great promise, often identify-
ing some key dependencies in the global climate system [43] (Figure 4.2).

Going forward, there are a number of other computational and algorith-
mic challenges that must be addressed to achieve more accurate representa-
tions of the global climate system. For instance, current network construction 
methods do not account for the possibility of time-lagged correlations, yet 
we know that such relationships exist. Similarly, temporal autocorrelations 
and signals with varying amplitudes and phases are not explicitly handled. 
There is also a need for better balancing of the dominating signal of spatial 
autocorrelation with that of possible teleconnections (long-range dependen-
cies across regions), which are often of high interest. In addition, there are 
many other processes that are well known and documented in the climate 
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FIGURE 4.2  (See color insert.) Climate dipoles discovered from sea-level pres-
sure (reanalysis) data using graph-based analysis methods (see [42] for details).
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science literature, and network representations should be able to incor-
porate this a priori knowledge in a systematic manner. One of the initial 
motivations and advantages of these network-based approaches is their 
interpretability, and it will be critical that this property be retained as 
these various aspects are integrated into increasingly complex models 
and analysis methods.

4.5.3 � Predictive Modeling: Mean Processes and Extremes

Predictive modeling of observed climatic phenomena can help in under-
standing key factors affecting a certain observed behavior. While the usual 
goal of predictive modeling is to achieve high accuracy for the response 
variable, for example, the temperature or precipitation at a given location, 
in the context of climate data analysis, identifying the covariates having 
the most significant influence on the response is often more important. 
Thus, in addition to getting high predictive accuracy, feature selection will 
be a key focus of predictive modeling. Further, one needs to differentiate 
between mean processes and extremes, which are rather different regimes 
for the response variable. In practice, different covariates may be influenc-
ing the response variable under different regimes and timescales.

In recent literature, important advances have been made in doing fea-
ture selection in the context of high-dimensional regression [66, 101]. For 
concreteness, consider the problem of predicting the mean temperature in 
Brazil based on multiple ocean variables over all ocean locations. While 
the number of covariates p runs into tens of thousands, the number of 
samples n based on monthly means over a few decades are a few hun-
dred to a few thousand. Standard regression theory does not extend to this 
n ≪ p scenario. Because the ocean variables at a particular location are 
naturally grouped, only a few such locations are relevant for the predic-
tion, and only a few variables in each such location are relevant, one can 
pose the regression problem as a sparse group lasso problem [24, 25]:
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where N is the number of ocean locations, m is the number of ocean vari-
ables in each location so that p = Nm, θ is the weight vector over all covari-
ates to be estimated, θg is the set of weights over variables at location g, 
and λ1, λ2 are nonnegative constants. The sparse group lasso regularizer 
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ensures that only few locations get non-zero weights, and even among 
these locations, only a few variables are selected. Figure  4.3 shows the 
locations and features that were consistently selected for the task of tem-
perature prediction in Brazil.

4.6 � SEASONAL CLIMATE FORECASTING
Seasonal climate forecasts are those beyond the time frame of standard 
weather forecasts (e.g., 2 weeks) out to a season or two ahead (up to 
6 months). Fundamental questions concern what is (and is not) predictable 
and exactly how predictable it is. Addressing these questions also often 
gives a good indication of how to make a prediction in practice. These 
are difficult questions because much in the climate system is unpredict-
able and the observational record is short. Methods from data mining and 
machine learning applied to observations and data from numerical cli-
mate prediction models provide promising approaches. Key issues include 
finding components of the climate state-space that are predictable, and 
constructing useful associations between observations and corresponding 
predictions from numerical models.

4.6.1 � What Is the Basis for Seasonal Forecasting?

The chaotic nature of the atmosphere and the associated sensitivity of 
numerical weather forecasts to their initial conditions is described by 
the well-known “butterfly effect”—that the flap of a butterfly’s wings in 
Brazil could set off a tornado in Texas. Small errors in the initial state 

t = Air Temperature
p = Precipitation
r = Rel. Humidity
h = Hor. Wind Speed
v = Vert. Wind Speed
s = Sea Level Press.

TEMP

FIGURE 4.3  Temperature prediction in Brazil: Variables chosen through 
cross-validation.
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of a numerical weather forecast quickly amplify until the forecast has no 
value. This sensitive dependence on initial conditions provides an expla-
nation for the limited time horizon (a few days to a week) for which use-
ful weather forecasts can be issued, and the belief until the early 1980s 
that seasonal forecasting was impossible [81]. This also explains why effort 
is needed to “find the needle of predictability in the haystack of chaos.” 
Given the limited predictability of weather, how is it that quantities such 
as precipitation and near-surface temperature are skillfully forecast sea-
sons (3 to 6 months) in advance?

First, it should be noted that the format of climate predictions is differ-
ent from that of weather forecasts. Weather forecasts target the meteor
ological conditions of a particular day or hour. Climate predictions are 
made in terms of weather statistics over some time range. For instance, 
the most common quantities in current climate forecasts are 3-month 
(seasonal) averages of precipitation and near-surface temperature. Two 
fundamental facts about the Earth system make climate forecasts pos-
sible. First, the oceans evolve on timescales that are generally slower than 
those of the atmosphere, and some ocean structures are predictable sev-
eral months in advance. The outstanding predictable ocean structure is 
associated with the El Niño–Southern Oscillation (ENSO) and is manifest 
in the form of widespread, persistent departures (anomalies) of equatorial 
Pacific sea surface temperature (SST) from its seasonally adjusted long-
term value. The first ENSO forecasts were made in the late 1980s [10]. The 
second fact is that some components of the atmosphere respond to per-
sistent SST anomalies. The atmospheric response to SST on any given day 
tends to be small relative to the usual weather variability. However, because 
the SST forcing and the associated atmospheric response may persist for 
months or seasons, the response of a seasonal average to SST forcing may 
be significant [82]. For instance, ENSO has impacts on temperature, pre-
cipitation, tropical cyclones, human health, and perhaps even conflict 
[31, 38, 49, 72]. Early seasonal forecasts constructed using canonical cor-
relation analysis (CCA) between antecedent SST and climate responses [3] 
took advantage of this persistence of SST. Such statistical (or empirical, in 
the sense of not including explicit fundamental physical laws) forecasts 
remain attractive because of their generally low dimensional and cost rela-
tive to physical process-based models (typically general circulation mod-
els; GCMs) with many millions of degrees of freedom.
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4.6.2 � Data Challenges

Here we introduce some challenges posed by the available data. Data chal-
lenges are further discussed in Section 4.11. Serious constraints come from 
the dimensions of the available data. Reliable climate observations often 
do not extend more than 40 or 50 years into the past. This means that, for 
example, there may be only 40 or 50 available observations of January–
March average precipitation. Moreover, the quality and completeness of 
that data may vary in time and space. Climate forecasts from GCMs often 
do not even cover this limited period. Many seasonal climate forecast 
systems started hindcasts in the early 1980s when satellite observations, 
particularly of SST, became available. In contrast to the sample size, the 
dimension of the GCM state-space may be of the order 106, depending 
on spatial grid resolution. Dimension reduction (principal component 
analysis [PCA] is commonly used) is necessary before applying classical 
methods like canonical correlation analysis to find associated features in 
predictions and observations [5]. There has been some use of more sophis-
ticated dimensionality reduction methods in seasonal climate prediction 
problems [53]. Methods that can handle large state-spaces and small sam-
ple size are needed. An intriguing recent approach that avoids the problem 
of small sample size is to estimate statistical models using long climate 
simulations unconstrained by observations and test the resulting model 
on observations [18, 115]. This approach has the challenge of selecting 
GCMs whose climate variability is “realistic,” which is a remarkably dif-
ficult problem given the observational record.

4.6.3 � Identifying Predictable Quantities

The initial success of climate forecasting has been in the prediction of sea-
sonal averages of quantities such as precipitation and near-surface tem-
perature. In this case, time averaging serves as a filter with which to find 
predictable signals. A spatial average of SST in a region of the equatorial 
Pacific is used to define the NINO3.4 index, which is used in ENSO fore-
casts and observational analysis. This spatial average serves to enhance 
the large-scale predictable ENSO signal by reducing noise. The Madden-
Julian Oscillation (MJO) is a sub-seasonal component of climate variabil-
ity that is detected using time and space filtering. There has been some 
work on constructing spatial filters that were designed to optimize mea-
sures of predictability [17] and there are opportunities for new methods 
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that incorporate optimal time and space filtering and that optimize more 
general measures of predictability.

While predicting the weather of an individual day is not possible in a 
seasonal forecast, it may be possible to forecast statistics of weather such as 
the frequency of dry days or the frequency of consecutive dry days. These 
quantities are often more important to agriculture than seasonal totals. 
Drought has a complex time-space structure that depends on multiple 
meteorological variables. Data mining and machine learning (DM/ML) 
methods can be applied to observations and forecasts to identify drought, 
as discussed in Section 4.5.

Identification of previously unknown predictable climate features may 
benefit from the use of DM/ML methods. Cluster analysis of tropical 
cyclone tracks has been used to identify features that are associated with 
ENSO and MJO variability [9]. Graphical models, the nonhomogeneous 
Hidden Markov Model in particular, have been used to obtain stochastic 
daily sequences of rainfall conditioned on GCM seasonal forecasts [32].

The time and space resolution of GCM forecasts limits the physi-
cal phenomena they can resolve. However, they may be able to predict 
proxies or large-scale antecedents of relevant phenomena. For instance, 
GCMs that do not resolve tropical cyclones (TCs) completely do form TC-
like structures that can be used to make TC seasonal forecasts [8, 110]. 
Identifying and associating GCMs “proxies” with observed phenomena is 
also a DM/ML problem.

Regression methods are used to connect climate quantities to associ-
ated variables that are either unresolved by GCMs or not even climate 
variables. For instance, Poisson regression is used to relate large-scale cli-
mate quantities with hurricanes [104], and generalized additive models 
are used to relate heat waves with increased mortality [68]. Again, the 
length of the observational record makes this challenging.

4.6.4 � Making the Best Use of GCM Data

Data from multiple GCM climate forecasts are routinely available. 
However, converting that data into a useful forecast product is a nontrivial 
task. GCMs have systematic errors that can be identified (and potentially 
corrected) through regression-like procedures with observations. Robust 
estimates of uncertainty are needed to construct probabilistic forecasts. 
Because forecasts are available from multiple GCMs, another question is 
how best to combine information from multiple sources, given the rela-
tively short observation records with which to estimate model performance.
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4.7 � CLIMATE EXTREMES, UNCERTAINTY, AND IMPACTS

4.7.1 � The Climate Change Challenge

The Fourth Assessment Report of the Intergovernmental Panel on 
Climate Change (IPCC, AR4) has resulted in wider acceptance of global 
climate change caused by anthropogenic drivers of emission scenarios. 
However, earth system modelers struggle to develop precise predictions 
of extreme events (e.g., heat waves, cold spells, extreme rainfall events, 
droughts, hurricanes, and tropical storms) or extreme stresses (e.g., tropi-
cal climate in temperate regions or shifting rainfall patterns) at regional 
and decadal scales. In addition, the most significant knowledge gap rel-
evant for policy makers and stakeholders remains the inability to produce 
credible estimates of local-to-regional scale climate extremes and change 
impacts. Uncertainties in process studies, climate models, and associated 
spatiotemporal downscaling strategies may be assessed and reduced by 
statistical evaluations. But a similar treatment for extreme hydrological 
and meteorological events may require novel statistical approaches and 
improved downscaling. Scenario uncertainty for climate change impacts 
is fundamentally intractable, but other sources of uncertainty may be 
amenable to reduction. Regional impacts need to account for additional 
uncertainties in the estimates of anticipatory risks and damages, whether 
on the environment, infrastructures, economy, or society. The cascading 
uncertainties from scenarios, to models, to downscaling, and finally to 
impacts, make costly decisions difficult to assess. This problem grows acute 
if credible attributions must be made to causal drivers or policy impacts.

4.7.2 � The Science of Climate Extremes

One goal is to develop quantifiable insights on the impacts of global cli-
mate change on weather or hydrological extreme stresses and extreme 
events at regional to decadal scales. Precise and local predictions, for 
example, the likelihood of an extreme event on a given day of any given 
year a decade later, will never be achievable, owing to the chaotic nature 
of the climate system as well as the limits to precision of measurements 
and our inability to model all aspects of the process physics. However, 
probability density functions of the weather and hydrology, for example, 
likelihoods of intensity-duration-frequency (IDF) of extreme events or of 
mean change leading to extreme stress, may be achievable targets. The 
tools of choice range from the two traditional pillars of science: theory 
(e.g., advances in physical understanding and high-resolution process 
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models of atmospheric or oceanic climate, weather, or hydrology) to 
experimentation (e.g., development of remote and in-situ sensor systems 
as well as related cyber-infrastructures to monitor the Earth and environ-
mental systems). However, perhaps the most significant breakthroughs 
are expected from the relatively new pillars: computational sciences and 
informatics. Research in the computational sciences for climate extremes 
science include the computational data sciences (e.g., high-performance 
analytics based on extreme value theory and nonlinear data sciences to 
develop predictive insights based on a combination of observations and 
climate model simulations) and computational modeling (e.g., regional 
scale climate models, models of hydrology, improvements in high-
resolution processes within general circulation models, as well as feed-
back to model development based on comparisons of simulations with 
observations), while the informatics aspects include data management 
and discovery (e.g., development of methodologies for geographic data 
integration and management, knowledge discovery from sensor data, and 
geospatial-temporal uncertainty quantification).

4.7.3 � The Science of Climate Impacts

The study of climate extremes is inextricably linked to the study of 
impacts, including risks and damage assessments as well as adaptation 
and mitigation strategies. Thus, an abnormally hot summer or high occur-
rence of hurricanes in unpopulated or remote regions of the world, which 
do not otherwise affect resources or infrastructures, have little or no cli-
mate impact on society. On the other hand, extreme events such as the 
aftereffects of Hurricane Katrina have extreme impacts owing to complex 
interactions among multiple effects: a large hurricane hitting an urban 
area, an already vulnerable levee breaking down because of the flood 
waters, as well as an impacted society and response systems that are nei-
ther robust nor resilient to shocks. In general, climate change mitigation 
(e.g., emission policies and regulations to possible weather modification 
and geoengineering strategies) and adaptation (e.g., hazards and disaster 
preparedness, early warning and humanitarian assistance or the manage-
ment of natural water, nutritional and other resources, as well as possible 
migration and changes in regional population growth or demographics) 
must be based on actionable predictive insights that consider the inter-
action of climate extremes science with the critical infrastructures and 
key resources, population, and society. While the science of impacts can 
be challenging and relatively difficult to quantify, given recent advances 
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in machine learning, geospatial modeling, data fusion, and Geographic 
Information Systems (GIS), this is a fertile area for progress on cli-
mate informatics.

4.8 � RECONSTRUCTING PAST CLIMATE
The most comprehensive observations of Earth’s climate span only the 
past one to two hundred years [105]. This time period includes the estab-
lishment of long-term and widespread meteorological stations across the 
continental landmasses [6], ocean observing networks from ships and 
buoys [114] and, within the more recent past, remote sensing from satel-
lites [109]. Much of our understanding about the climate system and con-
temporary climate change comes from these and related observations and 
their fundamental role in evaluating theories and models of the climate 
system. Despite the valuable collection of modern observations, however, 
two factors limit their use as a description of the Earth’s climate and its 
variability: (1) relative to known timescales of climate variability, they 
span a brief period of time; and (2) much of the modern observational 
interval is during an emergent and anomalous climate response to anthro-
pogenic emissions of greenhouse gases [36]. Both of these factors limit 
assessments of climate variability on multi-decadal and longer times-
cales, or characterizations of climatic mean states under different forcing* 
scenarios (e.g., orbital configurations or greenhouse gas concentrations). 
Efforts to estimate climate variability and mean states prior to the instru-
mental period are thus necessary to fully characterize how the climate can 
change and how it might evolve in the future in response to increasing 
greenhouse gas emissions.

Paleoclimatology is the study of Earth’s climate history and offers 
estimates of climate variability and change over a range of timescales 
and climate regimes. Among the many time periods of relevance, the 
Common Era (CE; the past two millennia) is an important target because 
the abundance of high-resolution paleoclimatic proxies (e.g., tree rings, 
ice cores, cave deposits, corals, and lake sediments) over this time interval 
allows seasonal-to-annual reconstructions on regional-to-global spatial 

*	 A “forcing” is a specific driver of climate change, external to the climate models—for instance, 
changes in the composition of well-mixed greenhouse gases (e.g., CO2 or CH4), changes in the 
land surface due to deforestation or urbanization, changes in air pollution, changes in the sun’s 
input, or the impact of large volcanic eruptions. Each forcing can be usefully characterized by the 
impact it has on the radiative balance at the top of the atmosphere: positive forcings increase 
the energy coming into the climate system and hence warm the planet, while negative forcings 
cool the climate.
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scales [40]. The CE also spans the rise and fall of many human civiliza-
tions, making paleoclimatic information during this time period impor-
tant for understanding the complicated relationships between climate and 
organized societies [7, 15].

Given the broad utility and vast number of proxy systems that are 
involved, the study of CE climate is a wide-ranging and diverse enterprise. 
The purpose of the following discussion is not meant to survey this field 
as a whole, but instead to focus on a relatively recent pursuit in CE paleo-
climatology that seeks to reconstruct global or hemispheric temperatures 
using syntheses of globally distributed multi-proxy networks. This par-
ticular problem is one that may lend itself well to new and emerging data 
analysis techniques, including machine learning and data mining meth-
ods. The motivation of the following discussion therefore is to outline the 
basic reconstruction problem and describe how methods are tested in syn-
thetic experiments.

4.8.1 � The Global Temperature Reconstruction Problem

It is common to separate global or hemispheric (large-scale) tempera-
ture reconstruction methods into two categories. The first involves index 
methods that target large-scale indices such as hemispheric mean tem-
peratures [13, 35, 51, 58]; the second comprises climate field reconstruc-
tion (CFR) methods that target large-scale patterns, that is, global maps of 
temperature change [21, 55, 56, 59, 88]. Although both of these approaches 
often share common methodological foundations, the following discus-
sion focuses principally on the CFR problem.

Large-scale temperature CFRs rely on two primary data sets. The first is 
monthly or annual gridded (5° latitude × 5° longitude) temperature prod-
ucts that have near-global coverage beginning in the mid-to-late 19th cen-
tury. These gridded temperature fields have been derived from analyses 
of land- and sea-based surface temperature measurements from meteoro-
logical stations, and ship- and buoy-based observing networks [6, 42]. The 
second dataset comprises collections of multiple climate proxy archives 
[58], each of which has been independently analyzed to establish their sen-
sitivity to some aspect of local or regional climate variability. These proxy 
records are distributed heterogeneously about the globe (Figure  4.4), 
span variable periods of time, and each is subject to proxy-specific errors 
and uncertainties.

The basic premise of CFR techniques is that a relationship can be deter-
mined between observed climate fields and multi-proxy networks during 
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their common interval of overlap. Once defined, this relationship can be 
used to estimate the climate fields prior to their direct measurement using 
the multi-proxy network that extends further into the past. Figure  4.4 
represents this concept schematically using a data matrix that casts the 
CFR formalism as a missing data problem. Note that this missing data 
approach was originally proposed for CFRs using regularized expectation 
maximization [77], and has since become a common method for recon-
structions targeting the CE [56, 57, 59]. The time-by-space data matrix 
in Figure 4.4 is constructed first from the instrumental data, with rows 
corresponding to years and columns corresponding to the number of grid 
cells in the instrumental field. For a typical CFR targeting an annual and 
global 5° × 5° temperature field, the time dimension is several centuries to 
multiple millennia, and the space dimension is on the order of one to two 
thousand grid cells. The time dimension of the data matrix is determined 
by the length of the calibration interval during which time the temper-
ature observations are available, plus the reconstruction interval that is 
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FIGURE 4.4  (a) Representation of the global distribution of the most up-to-date 
global multi-proxy network used by Mann et al. [58]. Grey squares indicate the 5° 
grid cells that contain at least one proxy in the unscreened network from ref. [58]. 
(b) Schematic of the data matrix for temperature field reconstructions spanning 
all or part of the CE. Grey regions in the data matrix are schematic representa-
tions of data availability in the instrumental temperature field and the multi-
proxy matrix. White regions indicate missing data in the various sections of the 
data matrix.
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determined by the length of available proxy records. The number of spatial 
locations may be less than the 2,592 possible grid cells in a 5° global grid, 
and depends on the employed surface temperature analysis product. A 
reconstruction method may seek to infill grid cells that are missing tem-
perature observations [103], or simply leave them missing, depending on 
the number of years that they span [59]. The second part of the composite 
data matrix is formed from the multi-proxy network, the dimensions of 
which are determined by the longest proxy records and the total number 
of proxies (typically on the order of a few hundred to a thousand). The 
number of records in multi-proxy networks typically decreases back in 
time, and may reduce to a few tens of records in the earliest period of the 
reconstruction interval. The temporal resolution of the proxy series may 
also vary from seasonal to decadal.

Multiple methods have been used for CFRs, including a number of new 
and emerging techniques within Bayesian frameworks [52, 103]. The vast 
majority of CFRs to date, however, have applied forms of regularized, multi
variate linear regression, in which a linear regression operator is estimated 
during a period of overlap between the temperature and proxy matrices. 
Such linear regression approaches work best when the time dimension in 
the calibration interval (Figure 4.4) is much larger than the spatial dimen-
sion, because the covariance between the temperature field and the prox-
ies is more reliably estimated. The challenge for CFR methods involves 
the manner in which the linear regression operator is estimated in practi-
cal situations when this condition is not met. It is often the case in CFR 
applications that the number of target variables exceeds the time dimen-
sion, yielding a rank-deficient problem. The linear regression formalism 
therefore requires some form of regularization. Published linear methods 
for global temperature CFRs vary primarily in their adopted form of reg-
ularization (see [88, 102] for general discussions on the methodological 
formalism). Matrix factorizations such as Singular Value Decomposition 
[29] of the temperature and proxy matrices are common first steps. If the 
squared singular values decrease quickly, as is often the case in climato-
logical data where leading climate patterns dominate over many more 
weakly expressed local patterns or noise, reduced-rank representations of 
the temperature and proxy matrices are typically good approximations of 
the full-rank versions of the matrices. These reduced-rank temperature 
and proxy matrices therefore are used to estimate a linear regression oper-
ator during the calibration interval using various multivariate regression 
techniques. Depending on the method used, this regression operator may 



Climate Informatics    ◾    107  

be further regularized based on analyses of the cross-covariance or cor-
relation of the reduced temperature and proxy matrices. Multiple means 
of selecting rank reductions at each of these steps have been pursued, such 
as selection rules based on analyses of the singular value (or eigenvalue) 
spectrum [57] or minimization of cross-validation statistics calculated for 
the full range of possible rank-reduction combinations [88].

4.8.2 � Pseudoproxy Experiments

The literature is replete with discussions of the variously applied CFR 
methods and their performance (see [29] for a cogent summary of many 
employed methods). Given this large number of proposed approaches, it 
has become important to establish means of comparing methods using 
common datasets. An emerging tool for such comparisons is millennium-
length, forced transient simulations from Coupled General Circulation 
Models (CGCMs) [1, 30]. These model simulations have been used as syn-
thetic climates in which to evaluate the performance of reconstruction 
methods in tests that have been termed pseudoproxy experiments (see 
[85] for a review). The motivation for pseudoproxy experiments is to adopt 
a common framework that can be systematically altered and evaluated. 
They also provide a much longer, albeit synthetic, validation period than 
can be achieved with real-world data, and thus methodological evalua-
tions can extend to lower frequencies and longer timescales. Although one 
must always be mindful of how the results translate into real-world impli-
cations, these design attributes allow researchers to test reconstruction 
techniques beyond what was previously possible and to compare multiple 
methods on common datasets.

The basic approach of a pseudoproxy experiment is to extract a por-
tion of a spatiotemporally complete CGCM field in a way that mimics the 
available proxy and instrumental data used in real-world reconstructions. 
The principal experimental steps proceed as follows: (1) pseudoinstru-
mental and pseudoproxy data are subsampled from the complete CGCM 
field from locations and over temporal periods that approximate their 
real-world data availability; (2) the time series that represent proxy infor-
mation are added to noise series to simulate the temporal (and in some 
cases spatial) noise characteristics that are present in real-world proxy 
networks; and (3) reconstruction algorithms are applied to the model-
sampled pseudo-instrumental data and pseudoproxy network to produce 
a reconstruction of the climate simulated by the CGCM. The culminating 
fourth step is to compare the derived reconstruction to the known model 
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target as a means of evaluating the skill of the applied method and the 
uncertainties expected to accompany a real-world reconstruction product. 
Multi-method comparisons can also be undertaken from this point.

Multiple datasets are publicly available for pseudoproxy experiments 
through supplemental Websites of published papers [57, 87, 89, 103]. 
The Paleoclimate Reconstruction Challenge is also a newly established 
online portal through the Paleoclimatology Division of the National 
Oceanographic and Atmospheric Administration that provides additional 
pseudoproxy datasets.* This collection of common datasets is an important 
resource for researchers wishing to propose new methodological applica-
tions for CFRs, and is an excellent starting point for these investigations.

4.8.3 � Climate Reconstructions and the Future

More than a decade of research on deriving large-scale temperature recon-
structions of the CE has yielded many insights into our past climate and 
established the utility of such efforts as a guide to the future. Important 
CFR improvements are nevertheless still necessary and leave open the 
potential for new analysis methods to have significant impacts on the 
field. Broad assessments of the multivariate linear regression framework 
have shown the potential for variance losses and mean biases in recon-
structions on hemispheric scales [13, 51, 86], although some methods have 
demonstrated significant skill for reconstructions of hemispheric and 
global indices [57]. The spatial skill of CFRs, however, has been shown 
in pseudoproxy experiments to vary widely, with some regions showing 
significant errors [89]. Establishing methods with improved spatial skill 
is therefore an important target for alternative CFR approaches. It also 
is critical to establish rigorous uncertainty estimates for derived recon-
structions by incorporating a more comprehensive characterization of 
known errors into the reconstruction problem. Bayesian and ensemble 
approaches lend themselves well to this task and constitute another open 
area of pursuit for new methodological applications. Process-based char-
acterizations of the connection between climate and proxy responses also 
are becoming more widely established [2, 22, 76, 100]. These developments 
make it possible to incorporate physically based forward models as con-
straints on CFR problems and further open the possibility of methodolog-
ical advancement. Recent Bayesian studies have provided the groundwork 

*	 http://www.ncdc.noaa.gov/paleo/pubs/pr-challenge/pr-challenge.html.
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for such approaches [52, 103], while paleoclimatic assimilation techniques 
have also shown promise [112].

In the context of machine learning, the problem of reconstructing parts 
of a missing data matrix has been widely studied as the matrix completion 
problem (see Figure 4.4). A popular example of the problem is encoun-
tered in movie recommendation systems, in which each user of a given 
system rates a few movies out of tens of thousands of available titles. 
The system subsequently predicts a tentative user rating for all possible 
movies, and ultimately displays the ones that the user might like. Unlike 
traditional missing value imputation problems where a few entries in a 
given data matrix are missing, in the context of matrix completion, one 
works with mostly missing entries (e.g., in movie recommendation sys-
tems, 99% or more of the matrix is typically missing). Low-rank matrix 
factorization methods have been shown to be quite successful in such 
matrix completion problems [48, 73]. Further explorations of matrix com-
pletion methods for the paleoclimate reconstruction problem therefore are 
fully warranted. This includes investigations into the applicability of exist-
ing methods, such as probabilistic matrix factorization [73] or low-rank 
and sparse decompositions [114], as well as explorations of new methods 
that take into account aspects specific to the paleoclimate reconstruction. 
Methods that can perform completions along with a confidence score are 
more desirable because uncertainty quantification is an important desid-
eratum for paleoclimate.

Finally, it is important to return to the fact that extensive method-
ological work in the field of CE paleoclimatology is aimed, in part, at 
better constraining natural climate variability on decadal-to-centennial 
timescales. This timescale of variability, in addition to expected forced 
changes, will be the other key contribution to observed climate during the 
21st century. Whether we are seeking improved decadal predictions [93] 
or refined projections of 20th century regional climate impacts [28], these 
estimates must incorporate estimates of both forced and natural variabil-
ity. It therefore is imperative that we fully understand how the climate 
naturally varies across a range of relevant timescales, how it changes when 
forced, and how these two components of change may couple together. 
This understanding cannot be achieved from the modern instrumental 
record alone, and the CE is a strategic paleoclimate target because it pro-
vides both reconstructions with high temporal and spatial resolution and 
an interval over which CGCM simulations are also feasible. Combining 



110    ◾    Computational Intelligent Data Analysis for Sustainable Development

these two sources of information to assess model projections of future cli-
mate therefore is itself an important future area of discovery. Analyses 
that incorporate both the uncertainties in paleoclimatic estimates and the 
ensemble results of multiple model simulations will be essential for these 
assessments and is likely a key component of climate informatics as the 
field evolves into the future.

4.9 � APPLICATIONS TO PROBLEMS IN POLAR REGIONS
Another potential application of machine learning concerns the impact 
of climate change at the poles and the interaction between the poles and 
climate in general. Because of the difficulty in collecting data from polar 
regions, the relatively expensive costs, and logistics, it is important to 
maximize the potential benefit deriving from the data. The paucity of 
surface-measured data is complemented by the richness and increasing 
volume of either satellite/airborne data and model outputs. In this regard, 
powerful tools are needed—not only to analyze, manipulate, and visual-
ize large datasets, but also to search and discover new information from 
different sources—in order to exploit relationships between data and pro-
cesses that are not evident or captured by physical models.

The number of applications of machine learning to study polar regions 
is not high although it has been increasing over the past decade. This is 
especially true in those cases when data collected from spaceborne sensors 
are considered. For example, Tedesco and colleagues [98, 99] use artificial 
neural networks (ANNs) or genetic algorithms to estimate snow param-
eters from spaceborne microwave observations. Soh and Tsatsoulis [91] 
use an Automated Sea Ice Segmentation (ASIS) system that automatically 
segments Synthetic Aperture Radar (SAR) sea ice imagery by integrating 
image processing, data mining, and machine learning methodologies. The 
system is further developed by Soh et al. [92], where an intelligent sys-
tem for satellite sea ice image analysis called Advanced Reasoning using 
Knowledge for Typing Of Sea ice (ARKTOS) “mimicking the reason-
ing process of sea ice experts” is presented. Lu and Leen [54] use semi-
supervised learning to separate snow and non-snow areas over Greenland 
using a multispectral approach. Reusch [71] applies tools from the field 
of ANNs to reconstruct centennial-scale records of West Antarctic sea-
ice variability using ice-core datasets from 18 West Antarctic sites and 
satellite-based records of sea ice. ANNs are used as a nonlinear tool to 
ice-core predictors to sea-ice targets such as sea salt chemistry to sea ice 
edge. One of the results from this study is that, in general, reconstructions 
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are quite sensitive to predictor used, and not all predictors appear to be 
useful. Finally, Gifford [27] shows a detailed study of team learning, col-
laboration, and decision applied to ice-penetrating radar data collected in 
Greenland in May 1999 and September 2007 as part of a model-creation 
effort for subglacial water presence classification.

The above-mentioned examples represent a few cases where machine 
learning tools have been applied to problems focusing on studying the 
polar regions. Although the number of studies appears to be increasing, 
likely because of both the increased research focusing on climate change 
and the poles and the increased computational power allowing machine 
learning tools to expand in their usage, they are still relatively rare com-
pared to simpler but often less efficient techniques.

Machine learning and data mining can be used to enhance the value 
of the data by exposing information that would not be apparent from 
single-dataset analyses. For example, identifying the link between dimin-
ishing sea ice extent and increasing melting in Greenland can be done 
through physical models attempting to model the connections between 
the two through the exchange of atmospheric fluxes. However, large-scale 
connections (or others at different temporal and spatial scales) might be 
revealed through the use of data-driven models or, in a more sophisticated 
fashion, through the combination of both physical and data-driven mod-
els. Such an approach would, among other things, overcome the limitation 
of the physical models that, even if they represent the state-of-the-art in 
the corresponding fields, are limited by our knowledge and understanding 
of the physical processes. ANNs can also be used in understanding not 
only the connections among multiple parameters (through the analysis of 
the neurons connections), but also to understand potential temporal shifts 
in the importance of parameters on the overall process (e.g., increased 
importance of albedo due to the exposure of bare ice and reduced solid 
precipitation in Greenland over the past few years). Applications are not 
limited to a pure scientific analysis but also include the management of 
information, error analysis, missing linkages between databases, and 
improving data acquisition procedures.

In synthesis, there are many areas in which machine learning can 
support studies of the poles within the context of climate and climate 
change. These include climate model parameterizations and multimodel 
ensembles of projections for variables such as sea ice extent, melting in 
Greenland, and sea-level rise contribution, in addition to those discussed 
in previous sections.
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4.10 � TOWARD A CLIMATE INFORMATICS TOOLBOX
Recent additions to the toolbox of modern machine learning have consid-
erable potential to contribute to and greatly improve the prediction and 
inference capability for climate science. Climate prediction has significant 
challenges, including high dimensionality, multiscale behavior, uncer-
tainty, and strong nonlinearity, and also benefits from having historical 
data and physics-based models. It is imperative that we bring all available, 
relevant tools to bear on the climate arena. In addition to the methods 
cited in Section 4.2 and in subsequent sections, here we briefly describe 
several other methods (some proposed recently) that one might consider 
to apply to problems in climate science.

We begin with CalTech and Los Alamos National Laboratory’s recently 
developed Optimal Uncertainty Quantification (OUQ) formalism [67, 79]. 
OUQ is a rigorous, yet practical, approach to uncertainty quantification 
that provides optimal bounds on uncertainties for a given, stated set of 
assumptions. For example, OUQ can provide a guarantee that the proba-
bility that a physical variable exceeds a cutoff is less than some value ϵ. This 
method has been successfully applied to assess the safety of truss struc-
tures to seismic activity. In particular, OUQ can provide the maximum 
and minimum values of the probability of failure of a structure as a func-
tion of earthquake magnitude. These probabilities are calculated by solv-
ing an optimization problem that is determined by the assumptions in the 
problem. As input, OUQ requires a detailed specification of assumptions. 
One form of assumption may be (historical) data. The method’s poten-
tial for practical use resides in a reduction from an infinite-dimensional, 
nonconvex optimization problem to a finite- (typically low) dimensional 
one. For a given set of assumptions, the OUQ method returns one of three 
answers: (1) Yes, the structure will withstand the earthquake with prob-
ability greater than p; (2) No, it will not withstand it with probability p; or 
(3) Given the input, one cannot conclude either (i.e., undetermined). In the 
undetermined case, more/different data/assumptions are then required to 
say something definite. Climate models are typically infinite-dimensional 
dynamical systems, and a given set of assumptions will reduce this to a 
finite-dimensional problem. The OUQ approach could address such ques-
tions as whether (given a potential scenario) the global mean temperature 
increase will exceed some threshold T, with some probability ϵ.

To improve the performance (e.g., reduce the generalization error) in 
statistical learning problems, it sometimes helps to incorporate domain 
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knowledge. This approach is particularly beneficial when there is limited 
data from which to learn, as is often the case in high-dimensional problems 
(genomics is another example). This general philosophy is described in a 
number of approaches such as learning with side information, Universum 
Learning [84], and learning from non-examples [83]. Learning with the 
Universum and learning from non-examples involve augmenting the 
available data with related examples from the same problem domain, but 
not necessarily from the same distribution. Quite often, the generalization 
error for predictions can be shown to be smaller for carefully chosen aug-
mented data, but this is a relatively uncharted field of research and it is not 
yet known how to use this optimally. One can imagine using an ensemble 
of climate models in conjunction with data from model simulations to 
improve predictive capacity. How to optimally select Universum or non-
examples is an open problem.

Domain knowledge in the form of competing models provides the basis 
of a game-theoretic approach of model selection [11]. This relates to recent 
work in applying algorithms for online learning with experts to combin-
ing the predictions of the multimodel ensemble of GCMs [63]. On his-
torical data, this online learning algorithm’s average prediction loss nearly 
matched that of the best performing climate model. Moreover, the perfor-
mance of the algorithm surpassed that of the average model prediction, 
which is a common state-of-the-art method in climate science. A major 
advantage of these approaches, as well as game-theoretic formulations, 
is their robustness, including the lack of assumptions regarding linearity 
and noise. However, because future observations are missing, algorithms 
for unsupervised or semi-supervised learning with experts should be 
developed and explored.

Conformal prediction is a recently developed framework for learning 
based on the theory of algorithmic randomness. The strength of confor-
mal prediction is that it allows one to quantify the confidence in a predic-
tion [80]. Moreover, the reliability of the prediction is never overestimated. 
This is, of course, very important in climate prediction. To apply the suite 
of tools from conformal prediction, however, one needs to have iid (inde-
pendent, identically distributed) or exchangeable data. While this is a 
serious restriction, one can imagine using iid computer simulations and 
checking for robustness. Conformal prediction is fairly easy to use and 
can be implemented as a simple wrapper to existing classifiers or regres-
sion algorithms. Conformal prediction has been applied successfully in 
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genomics and medical diagnoses. It is likely worthwhile to apply confor-
mal prediction to other complex problems in computational science.

Statistical Relational Learning [26] offers a natural framework for infer-
ence in climate. Included within this set of methods are graphical models 
[47], a flexible and powerful formalism with which to carry out inference for 
large, highly complex systems (some of which were discussed in Sections 4.5 
and 4.6). At one extreme, graphical models can be derived solely from data. 
At the other extreme, graphical models provide a generalization of Kalman 
filters or smoothers, where data are integrated with a model. This general 
approach is quite powerful but requires efficient computation of conditional 
probabilities. As a result, one might explore how to adapt or extend the cur-
rent suite of belief propagation methods to climate-specific problems.

Finally, for all of the above methods, it would be helpful if the learn-
ing algorithm could automatically determine which information or data it 
would be useful to get next. The “optimal learning” formalism addresses 
this question [69]. This gradient learning approach can be applied to a whole 
host of problems for learning where one has limited resources to allocate 
for information gathering. Optimal learning has been applied successfully 
to experiment design, in particular in the pharmaceutical industry, where 
it has the potential to reduce the cost (financial, time, etc.) of the drug 
discovery process. Optimal learning might be applied to climate science 
in order to guide the next set of observations and/or the next simulations.

To conclude, there is a suite of recently developed machine learning 
methods whose applicability and usefulness in climate science should be 
explored. At this point, we have only begun to scratch the surface. If these 
methods prove successful in climate studies, we would expect them to 
apply elsewhere—where one has a model of the physical system and can 
access data.

4.11 � DATA CHALLENGES AND OPPORTUNITIES 
IN CLIMATE INFORMATICS

Here we discuss additional challenges and important issues in analyzing 
climate data.

4.11.1 � Issues with Cross-Class Comparisons

There is often a need to compare across different classes of data, whether to 
provide ground truth for a satellite retrieval or to evaluate a climate model 
prediction or to calibrate a proxy measurement. But because of the different 
characteristics of the data, comparing “apples to apples” can be difficult.
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One of the recurring issues is the difference between internal variabil-
ity (or weather) and climate responses tied to a specific external forcing. 
The internal variability is a function of the chaotic dynamics in the atmo-
sphere and cannot be predicted over time periods longer than 10 days or 
so (see Section 4.6). This variability, which can exist on all timescales, 
exists also in climate models; but because of the sensitive dependence on 
initial conditions, any unique simulation will have a different realization 
of the internal variability. Climate changes are then effectively defined as 
the ensemble mean response (i.e., after averaging out any internal vari-
ability). Thus, any single realization (such as the real-world record) must 
be thought of as a forced signal (driven by external drivers) combined with 
a stochastic weather component.

The internal variability increases in relative magnitude as a function 
of decreasing time or spatial scale. Thus, comparisons of the specific 
time evolution of the climate system need to either take the variability 
into account or use specific techniques to minimize the difference from 
the real world. For instance, “nudged” simulations use observed winds 
from the reanalyses to keep the weather in the model loosely tied to the 
observations. Simulations using the observed ocean temperatures as a 
boundary condition can do a good job of synchronizing the impacts of 
variability in the ocean on the atmospheric fields. Another way to mini-
mize the impact of internal variability is to look for property-to-property 
correlations to focus on specific processes that, although they may occur 
at different points in time or space, can nonetheless be compared across 
models and observations.

Another issue is that model output does not necessarily represent exact 
topography or conditions related to an in-situ observation. The aver-
age height of a specific grid box might not correspond to the height of a 
mountain-based observing platform, or the resolved shape of the coastline 
might make a difference of 200 kilometers or so in the distance of a station 
to the shore. These issues can be alleviated to some extent if comparisons 
focus on large-scale gridded data. Another technique is to “downscale” the 
model output to specific locations, either statistically (based on observed 
correlations of a local record to larger-scale features of the circulation) or 
dynamically (using an embedded RCM). These methods have the poten-
tial to correct for biases in the large-scale model, but many practical issues 
remain in assessing by how much.

Finally, observations are a function of a specific observing methodol-
ogy that encompasses technology, practice, and opportunity. These factors 



116    ◾    Computational Intelligent Data Analysis for Sustainable Development

can impart a bias or skewness to the observation relative to what the real 
world may nominally be doing. Examples in satellite remote sensing are 
common—for example, a low cloud record from a satellite will only be 
able to see low clouds when there are no high clouds. Similarly, a satellite 
record of “mid-tropospheric” temperatures might actually be a weighted 
integral of temperatures from the surface to the stratosphere. A paleo
climate record may be of a quantity that while related to temperature or 
precipitation, may be a complex function of both, weighted towards a spe-
cific season. In all these cases, it is often advisable to create a ‘forward 
model’ of the observational process itself to post-process the raw simula-
tion output to create more commensurate diagnostics.

4.11.2 � Climate System Complexity

A further issue arises in creating statistical models of the climate system 
because both the real world and dynamical models have a large number of 
different physical variables.

Even simplified models can have hundreds of variables, and while not 
all of them are essential to determining the state of the system, one var
iable is frequently not sufficient. Land, atmosphere, and ocean processes 
all have different dominant timescales, and thus different components are 
essential at different scales. Some physical understanding is thus neces-
sary to make the proper variable/data choices, even with analysis schemes 
that extract structure from large datasets. Furthermore, these systems are 
chaotic, that is, initial conditions that are practically indistinguishable 
from each other in any given observing system will diverge greatly from 
each other on some short timescale. Thus, extracting useful predictions 
requires more than creating more accurate models—one needs to deter-
mine which aspects are predictable and which are not.

4.11.3 � Challenge: Cloud-Computing-Based Reproducible 
Climate Data Analysis

The study of science requires reproducible results: science is a body of 
work where the community strives to ensure that results are not from 
the unique abilities and circumstances of one particular person or group. 
Traditionally, this has been done in large part by publishing papers, 
but the scale of modern climate modeling and data analysis efforts has far 
outstripped the ability of a journal article to convey enough information 
to allow reproducibility. This is an issue both of size and of complexity: 
model results are much larger than can be conveyed in a few pages, and 
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both models and analysis procedures are too complex to be adequately 
described in a few pages.

The sheer size of GCMs and satellite datasets is also outstripping our 
traditional data storage and distribution methods: frequently, only a few 
variables from a model’s output are saved and distributed at high reso-
lution, and the remaining model output is heavily averaged to generate 
datasets that are sufficiently small.

One promising approach to addressing these problems is cloud-
computing-based reproducible climate data analysis. Having both the data 
and the analyses resident in the computational cloud allows the details of 
the computation to be hidden from the user; so, for example, data-intensive 
portions of the computation could be executed close to where the data 
resides. But these analyses must be reproducible, which brings not only 
technical challenges of archiving and finding, describing, and publishing 
analysis procedures, but also institutional challenges of ensuring that the 
large datasets that form the basis of these analyses remain accessible.

4.11.3.1 � Data Scale
The size of datasets is rapidly outstripping the ability to store and serve the 
data. We have difficulty storing even a single copy of the complete archive 
of the CMIP3 model results, and making complete copies of those results 
and distributing them for analysis becomes both a large undertaking and 
limits the analysis to the few places that have data storage facilities of 
that scale. Analysis done by the host prior to distribution, such as averag-
ing, reduces the size to something more manageable, but currently those 
reductions are chosen far in advance, and there are many other useful 
analyses that are not currently being done.

A cloud-based analysis framework would allow such reductions to be 
chosen and still executed on machines with fast access to the data.

4.11.3.2 � Reproducibility and Provenance Graphs
A cloud-based analysis framework would have to generate reproducible 
documented results; that is, we would not only need the ability to rerun a 
calculation and know that it would generate the same results, but also know 
precisely what analysis had been done. This could be achieved, in part, by 
having standardized analysis schemes, so that one could be sure precisely 
what was calculated in a given data filter, and also important is system-
atically tracking the full provenance of the calculation. This provenance 
graph, showing the full network of data filters and initial, intermediate, 
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and final results, would provide the basis of both reproducibility and com-
munication of results. Provenance graphs provide the information neces-
sary to rerun a calculation and get the same results; they also provide the 
basis of the full documentation of the results. This full network would 
need to have layers of abstraction so that the user could start with an over-
all picture and then proceed to more detailed versions as needed.

4.12 � CONCLUSION
The goal of this chapter is to inspire future work in the nascent field of 
climate informatics. We hope to encourage work not only on some of the 
challenge problems proposed here, but also on new problems. A profuse 
amount of climate data of various types is available, providing a rich and 
fertile playground for future machine learning and data mining research. 
Even exploratory data analysis could prove useful for accelerating discov-
ery. To that end, we have prepared a climate informatics wiki as a result of 
the First International Workshop on Climate Informatics, which includes 
climate data links with descriptions, challenge problems, and tutorials on 
machine learning techniques [14]. We are confident that there are myriad 
collaborations possible at the intersection of climate science and machine 
learning, data mining, and statistics. We hope our work will encourage 
progress on a range of emerging problems in climate informatics.
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5.1 � OVERVIEW AND MOTIVATION

5.1.1 � Climate Extremes: Definitions and Concepts

The Intergovernmental Panel on Climate Change (IPCC) SREX 
(IPCC, 2011) summary for policymakers defines climate extremes 

as follows:

The occurrence of a value of a weather or climate variable above 
(or below) a threshold value near the upper (or lower) ends of 
the range of observed values of the variable. For simplicity, both 
extreme weather events and extreme climate events are referred to 
collectively as “climate extremes.”

Climate extremes in this chapter are defined as extreme weather events, 
or those that may last from several hours to several days. Thus, they may 
include heat waves and cold snaps, rainfall patterns in space and time 
potentially leading to floods and droughts, tropical cyclones, tornadoes, 
and storm surges. Figure 5.1 provides an overview.

There is evidence that statistical attributes of certain climate extremes 
have been growing steadily and significantly worse as a result of human 
influence, and these changes can be projected from analysis of physics-
based computational climate model simulations as well as observations 
from remote or in-situ sensors. However, climate science cannot predict 
any particular event at decadal to centennial scales or assign a specific 
cause, and the confidence in statistical projections differs by the variable 
considered, the extent of spatial or temporal aggregation, regional and 
seasonal characteristics, and other considerations. Thus, we have relatively 
higher confidence in projections of temperature-related extremes, fol-
lowed by extremes of precipitation and tropical cyclones. The climates of 
the extra-tropics are often relatively easier to project than that of the trop-
ics, while statistical properties of extremes and change are typically better 
projected at aggregate space-time scales compared to finer resolutions.

5.1.2 � Societal and Stakeholder Priorities

Stakeholder communities across multiple sectors such as water and 
food security, natural hazards preparedness and humanitarian aid, or 

5.5	 Conclusions and Future Research	 147
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management of natural and engineered infrastructures, as well as policy 
makers dealing with urbanization, population growth, or migration, land 
use or energy and water sustainability, and energy or emissions control, 
require actionable insights about climate extremes at local to regional 
scales. The costs of action and inaction can both be large, as adaptation 
and mitigation strategies designed for climate extremes may be costly for 
the current generation and potentially even more costly for future genera-
tions. Specific examples of prior work that demonstrated the importance 
of climate extremes to the stakeholder community include the follow-
ing: an international climate change policy related to global emissions 
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FIGURE 5.1  Uncertainty quantification for climate extremes, which are broadly 
construed in this context, represents one of the largest knowledge gaps in terms 
of translating the physical science basis of climate to information relevant for 
impacts assessments and adaptation decisions, and eventually to mitigation 
policy. However, the cascade of uncertainties is difficult to quantify. The soci-
etal costs of action and inaction are both potentially large for climate adaptation 
and mitigation policies; hence, uncertainties in climate are important to effec-
tively characterize and communicate. Climate extremes may broadly include 
large shifts in regional climate patterns or severe weather or hydrological events 
caused or exacerbated by natural climate variability or climate change. This 
chapter primarily focuses on the statistical attributes of severe events, or, changes 
in tail behavior.
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negotiations (Engelhaupt, 2008; Tollefson, 2008a, b); national security 
decisions related to regional threat assessments and preparedness, for 
example, the 2010 Quadrennial Defense Review report of the United States 
Department of Defense (Ganguly et al., 2009a); and a war game related to 
the Arctic sea ice (cited in NRC, 2011).

5.1.3 � Computational Data Sciences: Challenges and Opportunities

Computer science, informatics, and computational (or cyber) infrastruc-
tures have played a major role in our current understanding, projections, 
and attributions of climate extremes, primarily through physics-based 
models. The climate system is nonlinear, dynamical (and often chaotic, or 
very sensitive to initial conditions), subject to multiple feedback mecha-
nisms (e.g., among ocean, atmosphere, and land processes), thresholds 
and intermittence (e.g., for precipitation and cloud physics), exhibits low-
frequency (and even “1/f ”) variability and complex dependence structures 
(e.g., long-memory processes over time and long-range spatial dependence 
or “teleconnections” in space), as well as nonstationary (e.g., the relative 
dominance of processes generating extremes may change in a warmer 
world). Thus, purely data-driven extrapolation may not be adequate or 
even appropriate, especially for long lead time projections (e.g., decadal 
to centennial scales), where data assimilation methods may also have 
limited value. State-of-the-art physical climate models are based on fun-
damental physical laws (e.g., laws of motion and conservation of mass 
and momentum). Physical approximations and mathematical discretiza-
tion techniques (e.g., strategically chosen finite difference equation sys-
tem formulations) are applied to these laws, resulting in complex systems 
encapsulated in hundreds of thousands or millions of lines of low-level 
source code (Christensen et al., 2005). Current global climate models are 
composed of multiple interacting components, including atmospheric, 
oceanic, and often land and sea ice models (IPCC, 2007). Such physics-
based models, whether global climate or Earth system models or regional 
climate models used to downscale the outputs of global models, are more 
credible for variables such as mean temperature at continental to global 
scales. The same models are less reliable for climate extremes; for example, 
they are inadequate for precipitation extremes and tropical cyclones, espe-
cially at the precision required for making informed decisions.

The research opportunities for computational data sciences are three-
fold: (1) improved characterization, projections, and attribution of climate 
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extremes; (2) characterization of uncertainties, especially at local to 
regional scales for annual or seasonal projections over decades and cen-
turies; and (3) enhanced predictive insights over and above what may be 
obtained from direct extrapolation of historical trends or analysis of cli-
mate model simulations. The volume of the data (e.g., hundreds of tera-
bytes going on petabytes for archived climate model simulations, and 
gigabytes going on terabytes for remotely sensed observations) and the 
complexity of the methods (Lozano et al., 2009a, b; Steinhaeuser et al., 
2011a, b) require data-intensive computational methods. A schematic is 
shown in Figure 5.2.
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FIGURE 5.2  Remote or in-situ sensor observations and climate model simu-
lations can be investigated through computational data science methods for 
multimodel evaluations, enhanced projections, and multiscale assessments 
to inform decisions and policy. The growth in climate data from models and 
observations is expected to grow exponentially over the next several decades 
(Overpeck et al., 2011), providing a vast set of challenges and opportunities for 
data science communities.
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5.1.3.1 � Overview of Research Areas: 1. Extremes Characterization
Extremes may be characterized based on their relevance to impacts 
(e.g., heat waves based on nighttime minima, which relate to human dis-
comfort and possible loss of lives: Meehl and Tebaldi, 2004) or through 
statistical distributions (e.g., extreme value theory for precipitation 
extremes: Kharin et al., 2007). Thus, our analysis (Ganguly et al., 2009b) 
of model simulations and surrogate observations (reanalysis data gener-
ated by assimilating weather data from disparate sensors into a numerical 
weather prediction model) pointed to higher trends but larger uncertainty 
in heat waves in this century based on a plausible but high emissions sce-
nario, which in turn implies greater urgency but caution in adaptation or 
mitigation decisions. On the other hand, our analysis (Kodra et al., 2011a; 
see report by Tollefson, 2011) of multiple model simulations and reanalysis 
data revealed that while extreme cold events may grow less frequent, the 
intensity and duration of the ones that do occur may often persist at cur-
rent levels. Our analysis of intense precipitation events (Kao and Ganguly, 
2011) suggested an amplification of extremes, especially over the extra-
tropics and in an aggregate sense at continental to global scales. Major 
community-wide efforts are necessary to comprehensively characterize 
the statistical attributes of gradual or sudden changes in extremes over 
space and time, including less well-defined or predictable climate extremes 
such as droughts. A combination of state-of-the-art methods, new meth-
odological adaptations, and novel approaches in spatial or spatiotemporal 
statistics and data mining are motivated.

5.1.3.2 � Overview of Research Areas: 2. Uncertainty Assessments
Uncertainty assessments for extremes (Wehner, 2010) need to consider 
knowledge-gaps in model physics (e.g., based on statistical methods 
to balance model skill in the past and multimodel convergence in the 
future through extensions of approaches such as Smith et al., 2009), and 
the applicability and statistical validity of the definitions or distributions 
of extremes, as well as uncertainties in parameter estimation processes 
(e.g., through the bootstrap as in Kharin et al., 2007 or Kao and Ganguly, 
2011). The potential differences in the nature of the insights and uncer-
tainties based on definitions of extremes become obvious by comparing 
our recent work (Ghosh et al., 2011) with a previous approach (Goswami 
et al., 2006). Current methods for attribution of extremes, e.g., for intense 
precipitation events, include statistical techniques (Min et al., 2011) or 
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numerical simulations (Pall et al., 2011): these methods can benefit from 
rigorous uncertainty quantification approaches. New mathematical meth-
ods for uncertainty are critically needed in these areas.

5.1.3.3 � Overview of Research Areas: 3. Enhanced Predictions
Large gaps continue to exist in our scientific understanding and projec-
tions of certain crucial variables, often related to climate extremes, and 
fine-scale or aggregate processes that drive the extremes. There have been 
claims that the sad truth of climate science is that the most crucial infor-
mation is the least reliable (Schiermeier, 2010). One question relevant 
for enhanced projections of climate extremes is the extent to which the 
variables that are relatively better predicted (e.g., sea surface temperature 
or ocean meteorology in general, atmospheric temperature or humidity 
profiles over land) may have information content about the variables that 
may be more crucial (e.g., precipitation extremes or intensity and fre-
quency of hurricanes), and whether such information can be utilized for 
developing predictive models. There is evidence of information content; 
for example, Liu et al. (2009) and others have reported on temperature 
dependence of precipitation extremes. And there is literature attempting 
to develop physics-based relations; for example, O’Gorman and Schneider 
(2009), Sugiyama et al. (2010), as well as Muller and O’Gorman (2011), 
have sought to develop a better understanding of precipitation processes 
related to extremes based on atmospheric covariates, while Emanuel et al. 
(2008) have attempted to produce projections of the statistical attributes 
of hurricanes based on climate model-simulated oceanic variables. While 
data-driven methods should be explored to develop novel and action-
able predictive insights, the methods have to be able to handle nonlinear 
processes as well as complex dependence patterns, yet remain physically 
interpretable and able to generalize to nonstationary conditions. This area 
may represent a steep challenge for computational data sciences, and per-
haps motivate truly interdisciplinary approaches conceived from tradi-
tionally disparate methods ranging from computational statistics, signal 
processing, and econometrics, to nonlinear dynamics, graph-based meth-
ods, data mining, and machine learning. Our recent efforts (Steinhaeuser 
et al., 2011a, b and Chatterjee et al., 2012) for improved regional predic-
tions over land based on ocean meteorological variables or Kawale et al., 
2011 for understanding climate dipoles) are only initial steps in an area 
that may well represent a grand challenge for data-intensive sciences.
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5.2 � EXTREMES CHARACTERIZATION
There are several challenges in characterizing and analyzing data related 
to climate extremes. One of the first challenges is the nature of the data: 
observational data are of relatively short duration and typically do not 
allow for many important extreme conditions to be manifest, they are 
unevenly spread spatially, and data quality is also uneven. Climate model 
outputs and reanalysis data do not have several of these problems, but 
Mannshardt-Shamseldin et al. (2011) demonstrate that the nature of 
extremes from gridded data differ considerably from observed data. 
Moreover, as Wehner (2010) observes:

…to the extent that climate models can be tuned to reproduce the 
recent past, model developers focus on the mean values of climatic 
observations, not the tails of their distributions. 

Several other studies (O’Gorman and Schneider, 2009; Sugiyama et al., 
2010; Wehner, 2010; Min et al., 2011) have pointed out that our current 
understanding of precipitation extremes has room for improvement and 
that the current generation of climate models probably fails to reflect real-
ity. Recent studies (O’Gorman and Schneider, 2009; Sugiyama et al., 2010) 
suggest a deficiency in our understanding of the relationship between 
precipitation extremes and atmospheric moisture content. Wehner (2010) 
suggests that climate models might actually be able to emulate extreme 
events if they were run at sufficiently high resolution; that is not the case 
for models run at the typical resolution level adopted for the “International 
Panel on Climate Change’s Fourth Assessment Report” (AR4, a landmark 
assessment report on the state of climate change science) (IPCC, 2007), 
and higher-resolution runs are computationally expensive. Min et al. 
(2011) point to the possible underestimation of trends in precipitation 
from a potential lack of accounting for anthropogenic effects on future 
precipitation extreme events. All of these suggest that there is room for 
improvement in the quality of data, and in the development of methodol-
ogy to analyze available extreme data.

Another challenge for statistical and data-driven analysis of climate 
extremes is that the definition of what is extreme should be guided by 
various stakeholders and users. For example, in the case of rainfall, (1) the 
amount of rainfall in a given unit of time, (2) the total amount of rain-
fall, (3) the duration of rainfall, (4) the time gaps between rainfall events, 
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(5) the spatial pattern of rainfall, and several other variables can be of 
interest. Accordingly, the definition and the notion of an extreme may 
be different. The trifecta of intensity, duration, frequency (IDF), which is 
often characterized using extreme value theory (Kao and Ganguly, 2011) 
is useful in many cases, but not all. Another example is that of cold tem-
peratures, which are important for crop production and food security. The 
variables of interest in this example could be the number of days of a cer-
tain level of frost, consecutive frost days, and time spent below a tempera-
ture threshold (Kodra et al., 2011a). Not all such definitions of “extremes” 
lend themselves to common, theoretically satisfying statistical analysis 
(Coles, 2001).

Another potential problem is that of identification of extreme events 
versus rare events, which are not always the same; in other words, an event 
might be extreme in impact but not rare, and vice versa. The definition of 
an extreme event may often be determined by its impact, and this defini-
tion will, in turn, often determine its rarity. The rarity of the defined events, 
along with other data properties, will dictate which statistical inference 
approaches may be appropriate. In some cases, summary measures have 
been used to obtain conclusions about extreme events (Goswami et al., 
2006), although subsequent uses of the extreme-value model have pro-
vided different conclusions on similar data (Ghosh et al., 2011). Also, as 
Ferro and Segers (2003) observe, extremes can be clustered, which may 
present additional challenges related to the independence assumed by 
some extreme value statistical approaches.

From a purely statistical perspective, there is a gap between finite 
sample data-based extreme events and the general asymptotic theory 
that is used for extreme event analysis. Classic extreme-value statisti-
cal approaches attempt to extrapolate the extreme behavior of variables 
by fitting distributions to tail observations, such as annual maxima or 
exceedances above or below some predetermined (quantile) threshold 
(Coles, 2001; Kharin et al., 2007). Note that the generalized extreme value 
distribution or the generalized Pareto distribution, which have been used 
in the climate extremes literature (Kharin and Zwiers, 2000; Perkins 
et al., 2009; Kao and Ganguly, 2011), are asymptotic limits of probabili-
ties relating to finite-sample size extreme events, and need not be exact 
characterizations. Also, most real data are temporally and spatially cor-
related, a fact that is often ignored in computing return-level characteris-
tics, quantifying uncertainty, or making inference. There is no consensus 
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about the best parameter estimation and inference technique for extreme-
value distributions (Hosking and Wallis, 1997; Kharin and Zwiers, 2000; 
Coles and Dixon, 1999; Kharin and Zwiers, 2005), and approaches for 
including information from covariables are still in development (Hall and 
Tajvidi, 2000).

The bootstrap, broadly speaking, is a class of resampling techniques that 
can be employed to quantify sampling variability (uncertainty) in param-
eter estimation, among other uses (Efron, 1979). Parametric bootstrap and 
the traditional nonparametric bootstrap approaches of Efron (1979) were 
used in conjunction with the L-moments method and the maximum like-
lihood method for studying climate extremes in Kharin and Zwiers (2000; 
2005; 2007), who also compared various estimation techniques and listed 
several caveats. Inference for climate extremes may benefit from a bet-
ter understanding of the limits and appropriateness of popular statistical 
inference procedures (such as extreme value theory), as well as the appli-
cation and/or creation of other approaches that relax assumptions or are 
robust to limitations of available extreme data.

5.3 � UNCERTAINTY ASSESSMENTS

5.3.1 � Statistical Modeling of Uncertainty in Multimodel Ensembles

Here we discuss the state-of-the-art in uncertainty quantification (UQ) 
for situations where ensembles of global climate models or Earth system 
models (GCMs/ESMs) are used to assess regional climate change. While 
statistical and dynamical (regional climate models) downscalings are often 
used for regional assessments, they are in turn driven by ESMs, and hence 
UQ in ESMs remains an important challenge. UQ is often inundated with 
a sense of urgency, and ensembles of ESMs are tools from which practical 
and timely uncertainty assessments can be readily formed.

Structural uncertainty, or that which arises from variations in the 
mathematical mechanics of climate models, is the principal focus of 
UQ in approaches discussed in this section; it has been studied in sev-
eral forms with multimodel ensembles where weights are assigned to 
individual models as a measure of their reliability. We distinguish the 
ensemble approaches discussed here from other UQ methodologies—for 
example, physics perturbed ensembles—that have been used to explore 
parameter uncertainty within single climate models (Stainforth et al., 
2005), and approaches based on or similar to polynomial chaos expan-
sion (see Section 5.3.2). It is important to be aware of all approaches for 
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UQ to understand the scope and limitations of multimodel ensembles for 
climate UQ: to date, no statistical multimodel ensemble UQ methodol-
ogy explicitly incorporates uncertainty within climate models (e.g., to 
understand the uncertainties contributed by parameterizations of climate 
processes and the propagation of these uncertainties along the rest of the 
model components). The ensemble methods discussed here, however, pro-
vide a basis for exploring inter-model (i.e., structural) uncertainty.

While the use of multimodel ensembles for prediction has been studied 
extensively in data science disciplines (Seni and Elder, 2010), an important 
distinction must be made for the climate science domain. In many typical 
time series and classification applications, for example, a forecast horizon 
of interest is often one or two (or a few) periods ahead, or the binary clas-
sification is for the next observation (Seni and Elder, 2010). In such cases, 
there is the potential for a predictive model to learn from an ensemble of 
predictions and recalibrate its next prediction upon validation (Fern and 
Givan, 2003). Several key challenges, however, distinguish climate fore-
casting from more typical problem settings: long prediction lead times 
(multidecadal to centennial scales), potential nonstationarity (where the 
validity of processes embedded within a GCM may change), the difficulty 
in selecting metrics that are meaningful for model training (Knutti, 2010), 
and finally the impossibility of true validation for the prediction horizons 
of interest. Many of the methods developed in data sciences, while valu-
able on their own and across applications, do not directly translate well 
to climate prediction. For example, even in the case where past data are 
segmented into multiple training samples in order to rigorously develop a 
multimodel ensemble prediction formula founded on well-chosen, physi-
cally meaningful error metrics, there is no guarantee that nonstation-
arity will not invalidate the prediction formula in the future, given the 
lead time. Thus, while mature data science ensemble methodologies may 
be valuable as foundational approaches, novel and creative methods are 
needed to solve the problem of UQ in climate with multimodel ensembles.

One persisting notion in the climate literature is that the multimodel 
average (MMA), or the average of spatial, temporal, or spatiotemporal fields 
of climate outputs from multiple GCMs, is a robust approach for making 
“most likely” projections; this robustness is largely based on alleged bias 
(noise) cancellation and orthogonal skills of GCMs (Knutti et al., 2010). 
The concept of its potential utility in climate may have followed from suc-
cess in weather forecasting (Krishnamurti et al., 1999; Hagedorn et al., 
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2005) and has been empirically justified in climate attribution studies 
(Pierce et al., 2009; Santer et al, 2009); in fact, the latter studies implicitly 
suggest that the MMA of a random selection of an adequate number of 
GCMs will form a reliable projection, at least for anthropogenic attribu-
tion. Equal-weighted MMAs may represent a more conservative approach, 
as optimum model weighting may hold less potential benefit than risk 
compared to equal weighting (Weigel et al., 2010). The MMA has been a 
default in some climate stakeholder assessment reports (Karl et al., 2009), 
where they are sometimes displayed visually without clear reference to 
uncertainty. This may be a questionable practice, as averaging of dynami-
cally consistent spatial fields or time series may lead to physically mean-
ingless signals, and the exclusion of individual model results may serve to 
obscure plausible lower and upper bounds of climate change (Knutti et al., 
2010). A recent case study (Perkins et al., 2009) has also implicitly ques-
tioned the notion of a priori use of MMAs and inclusion of demonstrably 
poor GCMs. Work with historical (20th century) observations and simu-
lations of Indian monsoon climatology (Kodra et al., 2012) may suggest 
that the MMA should not be a default choice, and that all models within 
an ensemble should be evaluated carefully.

Given this debate surrounding MMAs, the display of worst and best 
cases as derived from archived GCM outputs may be advisable as the 
bare minimum requirement for communicating uncertainty. However, 
because multimodel ensembles are not true random samples of inde-
pendent GCMs from a larger population, they should not be considered 
formal probability distributions (Tebaldi and Knutti, 2007). More rigor-
ous and statistically grounded approaches may be desired; recently, sev-
eral notable probabilistic approaches have been developed: Giorgi and 
Mearns (2002) proposed the Reliability Ensemble Average (REA) method 
for assigning reliability to simulations of regional mean temperature from 
GCMs; this method has since been expanded and developed into a more 
formal Bayesian framework that has become perhaps the most prominent 
method for UQ using multimodel ensembles. Essentially, the REA method 
attempts to weight GCMs based on their alleged reliability, which is a bal-
ance of (1) historical model bias relative to observations and (2) future 
multimodel consensus (convergence), or model distance from the center 
of the ensemble spread. Giorgi and Mearns (2002) define bias and conver-
gence as the following, respectively:
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where Xj is a historical (20th century) temperature output from climate 
model j, and μ is observed (“true”) temperature from the same time 
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In practice, Giorgi and Mearns (2002) arbitrarily set m = n = 1 so that bias 
and consensus received equal favor. Because ~Y and λC,j are both unknowns 
but depend on each other, a recursive procedure was used to compute both 
(Giorgi and Mearns, 2002).

These two criteria suggest that information on the credibility (weights) 
of models can be estimated by performance compared to observed data, 
as well as degree of convergence; if a model falls far from the center of the 
ensemble, it may be treated more like an outlier than a likely outcome. 
The consensus criterion may have been borne at least partially from the 
ideas of bias cancellation and orthogonal skills of MMAs discussed pre-
viously (Krishnamurti et al., 1999; Hagedorn et al., 2005), and strong 
criticisms of the criterion have been acknowledged (Tebaldi and Knutti, 
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2007). Additionally, the criterion of GCM skill (bias in most recent work) 
is difficult to define and evaluate; in most cases, it is difficult to determine 
whether metrics measuring past GCM skill will translate to the future 
(Tebaldi and Knutti, 2007; Knutti et al., 2010).

The REA was admittedly ad hoc; however, its two notions of GCM skill 
and consensus (Giorgi and Mearns, 2002) have formed the foundation for 
a prominent line of work, beginning with Tebaldi et al., (2004), that for-
malized them in a Bayesian model. One of the most recent versions of this 
statistical model can be found in Smith et al. (2009), which also allows for 
the joint consideration of multiple regions. Specifically, using this model, 
a posterior distribution for past or current temperature μ and future tem-
perature υ can be simulated from a Markov Chain Monte Carlo (MCMC) 
sampler using a weight λj for each GCM j. Next, each λj can be simulated 
from a posterior by considering the bias and consensus of GCM j. The 
weights λj then inform a new estimate of μ and υ, which informs a new 
estimate of each λj, and so on. Specifically, λj follows a Gamma posterior 
distribution with the following expectation:
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where a and b are prior parameters (usually uninformative), β is an 
unknown quantity representing the correlation between historical and 
future model outputs, and θ is a random quantity that allows future cli-
mate variance to differ from that of the past. The conditionality serves to 
illustrate the fact that the expectation of λj is contingent upon the values 
of all other random parameters and data. Thus, the value of λj is a func-
tion of the random quantities μ, υ, θ, and β, which in turn have their own 
posterior conditional distributions. In general, it is notable that under this 
formulation all of these random quantities are conditionally independent 
and cannot be readily analyzed marginally.

An initial post-hoc analysis (Kodra et al., 2011b) of simulation results 
from the latest model (Smith et al., 2009) suggested it may rely more on 
consensus and less on bias (i.e., skill), and that the bias criterion may not 
be adequate in representing model skill. Conceptually, in the state-of-the-
art statistical model, holding all else constant, the posterior distribution 
for υ−μ will “shrink” toward the multimodel mean, even if all GCMs 
exhibit poor skill with respect to past data; in such circumstances, it might 
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make sense that that uncertainty should actually increase. The degree of 
shrinkage toward the mean is dictated by the parameter θ. Its impor-
tance is stressed in Figure 5.3 and clear from Equation 5.1: if θ ≫ 1, then 
holding all else constant, consensus is favored by the statistical model. 
Indeed, an earlier work by Tebaldi et al. (2004) featured a slight variant 
of their statistical model with a provision that, through a prior distribu-
tion, restricted the influence of θ; this provision was not included later by 
Smith et al. (2009). While the above represents the most prominent line 
of work on combining multimodel ensembles for quantifying uncertainty 
in regional climate, a few other initial approaches have been developed. 
These approaches have extended the broad multimodel UQ line of work by 
integrating methodology for quantifying inter-model covariance (Greene 
et al., 2006) and spatial variability structure (Furrer et al., 2007; Sain et al., 
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FIGURE 5.3  The univariate (one region) Bayesian model from Smith et al. (2009) 
illustrates the importance of the parameter θ in dictating the spread of the prob-
ability density function (PDF) for change in regional mean temperature. This 
particular set of PDFs is obtained for spatiotemporally averaged Greenland tem-
perature change from 1970 to 1999 to 2070 to 2099. The horizontal axis measures 
change in degrees Celsius, while the vertical axis measures frequency. The legend 
indicates the condition of θ and from top to bottom corresponds to PDFs from 
narrow to wide: “random” is the narrowest density, and treats θ as a random 
unknown quantity as in Smith et al. (2009). For the remaining PDFs, values of θ 
are fixed at different quantities that come to represent the relative importance of 
convergence versus bias (where the importance of bias is 100% minus that of θ). 
Notably, treating θ as a random quantity yields a result where convergence is 
favored much more than bias.
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2008), Bayesian model averaging as a technique for model weighting (Min 
and Hense, 2007), and methodology for quantifying GCM biases (Buser 
et al., 2009).

Monteleoni et al. (2010) proposed an online learning approach where 
weights for GCMs can change with new data. More specifically, α-experts 
predict annual global mean temperature; the experts learn from the mis-
takes (i.e., squared errors) of GCMs and can actually predict one–year-
ahead temperature better than the best prediction of all GCMs or the 
multimodel mean. While this is an intriguing approach for combining 
GCMs and it seems to handle one-step-ahead nonstationarity quite well, 
in its present form it does not allow for long lead time prediction, which is 
the primary goal of climate models in general. Additionally, uncertainty 
bounds have not yet been developed within the algorithm.

The regional climate UQ research area is still relatively nascent and may 
benefit from new approaches (Knutti et al., 2010). Methods must be devel-
oped that simultaneously accommodate long lead times as well as potential 
nonstationarity, where conditions (e.g., relationships between variables) 
could change. In addition, there may be value in considering physical rela-
tionships between multiple variables to encourage robustness and inter-
pretation in the GCM weighting process, as is discussed in Section 5.4. 
Recent UQ work (Tebaldi and Sanso, 2009), along the same line as Smith 
et al. (2009), developed a hierarchical Bayesian model for joint projections 
of mean temperature and precipitation; this model attempted to statisti-
cally utilize correlation between the two variables. Extending this type of 
statistical model to one that considers climate extremes would be valu-
able to the climate community. For instance, O’Gorman and Schneider 
(2009) developed a relatively simple conceptual physical model for an 
increase in precipitation extremes under anthropogenic climate change, 
while Kao and Ganguly (2011) explored conceptual physical bases in their 
characterization of 21st century precipitation extremes. Careful statistical 
utilization of such insights could lead to novel multimodel ensemble UQ 
methodology for extremes, which could be useful for informing various 
impact sectors.

5.3.2 � Parametric Uncertainties in Individual Climate Models

While approaches for quantifying structural uncertainty were discussed 
in Section 5.3.1, accounting for parametric uncertainty is important for 
understanding intrinsic model variability, especially because archived 
global models do not traverse the entire space of plausible prediction space 
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(Stainforth et al., 2005). Climate models employ a wide range of param-
eterizations in land, ocean, atmosphere, and ice sub-model components. 
These parameters are typically calibrated based on data. Bayesian meth-
ods are useful for parameter estimation with quantified uncertainty, as 
they provide estimation of the joint posterior density of the parameters. 
While Bayesian methods have been used for parameter estimation in cli-
mate model components (Jackson et al., 2003, 2004, 2008; Annan and 
Hargreaves, 2006; Govaerts and Lattanzio, 2007; Villagran et al., 2008), 
much more remains to be done in general for estimating the wide variety of 
climate model parameters. One key challenge is the construction of effec-
tive climate model surrogates for facilitating the Bayesian/inverse problem 
solution. Gaussian processes, as well as other surrogate models, have been 
used for representing climate data (Jackson et al., 2004; Banerjee et al., 
2008; Cressie and Johannesson, 2008; Sanso et al., 2008; Villagran et al., 
2008; Drignei et al., 2009; Furrer and Sain, 2009). High dimensionality, 
in the present context largely embodied in the large number of uncertain 
parameters, is a significant challenge for surrogate construction and for 
uncertainty quantification in general. Global sensitivity analysis methods 
(Morris, 1991; Saltelli et al., 2000) have been used to identify a small subset 
of parameters that are critical to the climate system outputs of interest. 
Alternatively, compressed sensing (CS) methods have been developed to 
provide means of constructing sparse representations of high-dimensional 
information (Donoho, 2006; Candès and Wakin, 2008). Bayesian CS meth-
ods have been used for discovering sparsity in land models (S. Babacan 
et al. 2010).

With parameters calibrated using Bayesian methods, and described 
using a posterior density, one can estimate the forward propagation of 
uncertainty in model observables resulting from the input parametric 
uncertainty. While this can be done via random sampling, employing the 
parameter posterior density, model complexity, and computational cost 
render this an infeasible task due to the large number of random samples 
needed for convergence of Monte Carlo methods (Caflisch, 1998). In recent 
years, Polynomial Chaos (PC) UQ methods have been developed and 
used to great advantage in representing uncertain/random variables, and 
in accelerating forward uncertainty propagation in computational mod-
els (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Debusschere 
et al., 2004; Le Maitre et al., 2004; Soize and Ghanem, 2004). PC methods 
rely on a representation of random variables as truncated expansions in 
terms of orthogonal functions of a given random basis. Thus, an uncertain 
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model parameter χ can be written as a PC expansion (PCE) in terms of 
an n-dimensional basis:

	 χ α ξ ξ ξ≈ …( )
=∑ k k n

k

P
Ψ 1 2
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The key task is then the propagation of uncertainty from parameter 
χ to climate model output Z, where Z = ℋ(χ) (Najm, 2009). Generally, 
PC methods come in two variants (Najm, 2009): (1) intrusive methods, 
where the governing equations are transformed employing Galerkin pro-
jection, arriving at a new set of equations for the PC mode coefficients; and 
(2) nonintrusive methods, where the original model is employed as a black 
box in a sampling context. The former approach requires changing the 
source code/forward solvers of the underlying physical model. The latter 
is the more practical, given established legacy codes. In this approach, the 
mode coefficients in the PCE for a model output of interest Z are evalu-
ated employing a chosen set of N samples of the basis ξ, {ξ j}N

j=1 and associ-
ated model output values Z j. Adaptive anisotropic deterministic sampling 
methods, employing sparse-quadrature evaluations of projection inte-
grals for the PC coefficients, are highly effective in this regard (Nobile 
et al., 2008).

The outcome of the PC forward UQ problem is a PCE for the uncertain 
model outputs of interest, which can be employed to generate correspond-
ing probability density functions, or moments of interest. Note that the 
PCE, being a functional representation of model outputs over the range 
of uncertainty in input parameters, is also useful simply as a surrogate for 
the dependence of model outputs on the parameters. PC surrogates have 
been used, very much like GP surrogates, for accelerating Bayesian infer-
ence (Marzouk and Najm, 2009).

The use of PC UQ methods in the global scale climate-modeling con-
text is feasible in principle employing a nonintrusive formalism, although 
it is severely challenged by the high dimensionality of the stochastic input 
space, particularly given the computational expense of a single model run. 
Presuming known uncertainties of model parameters, targeted studies 
exploring small subsets of parameters are quite feasible. Sparsification via 
sensitivity analysis or CS methods, as well as utilization of known param-
eter correlations, and the hierarchical structure of climate models, is use-
ful to reduce the effective dimensionality of the uncertain input space, 
thereby rendering the overall problem more feasible.
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Finally, given that the most damaging consequences of climate change 
are associated with climate extremes, it is worthwhile to discuss the pre-
diction of extreme behavior under uncertainty in model parameters. This 
is a more challenging pursuit than that of estimating means/moments of 
uncertain climate predictions when extreme events of interest are also 
rare. Capturing the tails of probability distributions accurately in a com-
putational setting is challenging when there is small probability of sam-
pling the tail region, and hence implies the need for a very large number of 
samples overall. While PC methods can avoid random sampling, the accu-
racy of the PC representation for modeling the tail-behavior of the under-
lying random variable requires particular attention. In principle, using 
high-order expansions may help; however, that renders the problem even 
more computationally challenging, requiring, for example, a large number 
of samples in a nonintrusive setting. It is also feasible to use a PC basis that 
is tailored to achieve higher accuracy in the tail region than conventional 
constructions. This can be done, for example, by choosing a basis that has 
a density with fat-tail behavior. This approach, however, still requires fur-
ther development to be implemented practically with climate models.

5.4 � ENHANCED PREDICTIONS
The key desiderata from predictive models in the context of extremes 
include accurate and uncertainty-quantified projections of crucial vari-
ables related to extremes as well as succinct characterizations of covariates 
and climate processes collectively influencing extremes. Such character-
izations must be cognizant of complex and possibly nonlinear dependency 
patterns while staying physically interpretable, thereby yielding scien-
tific understanding of extremes and the processes driving them. While 
uncertainty quantification methods were discussed in Section 5.3, we now 
briefly introduce some methodology that could be useful in enhancing 
predictions and perhaps reducing uncertainty in crucial climate variables 
that are not captured well by current-generation physical models.

Standard predictive models, such as least squares or logistic linear 
regression, fall short of such desiderata in multiple ways. The number p 
of covariates and fine-scale climate processes potentially influencing key 
variables such as extreme precipitation far surpass the number of examples 
n of such extreme events. In the n ≪ p regime for regression, consistency 
guarantees from standard theory breakdown, implying that the model 
inferred is not even statistically meaningful (Girko, 1995; Candès and Tao, 
2007). Moreover, such standard models will assign nonzero regression 
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coefficients to all covariates and processes provided as input without any 
model selection (Tibshirani, 1996; Zhao and Yu, 2006). The correspond-
ing model is not likely to have a meaningful physical interpretation or to 
aid hypothesis generation by identifying a small number of covariates or 
processes potentially influencing the key response variable(s).

Sparse regression, a relatively recent development in statistics and 
machine learning, may be a promising approach toward building enhanced 
prediction models. Preliminary studies in the context of multivariate 
autoregressive models and Granger causality have shown promise for 
modeling both normal as well as extreme behavior (Lozano et al., 2009a, b; 
Liu et al., 2009). Sparse regression models attempt to identify a small set 
of predictors out of a large space of candidates by balancing model fit and 
parsimony. Regularization (penalty) terms are combined with error mini-
mization criteria to encourage predictive models that are accurate while 
choosing a relatively small subset of covariates with nonzero coefficients. 
Penalty terms could enforce temporal, spatial, and/or covariate sparsity 
(Lozano et al., 2009a, b), which may be needed to obtain physically sen-
sible solutions. The models can be shown to be statistically consistent even 
in the n ≪ p regime, along with rigorous finite sample rates of convergence 
(Meinshausen and Bühlmann, 2006; Zhao and Yu 2006; Candès and Tao, 
2007; Meinshausen and Yu, 2009; Negahban et al. 2009; Ravikumar et al. 
2010; Negahban and Wainwright, 2011; Obozinski et al. 2011). While the 
number of samples n for extremes will be rather small, sparse regression 
methods will still be able to do model selection in a statistically consis-
tent way. There are, however, a few key assumptions made while develop-
ing statistical consistency guarantees, which need not be true for climate 
data, especially extremes. A typical linear model of the form y = X θ + w 
assumes that (1) y has a linear dependence on the covariates, (2) the noise 
w is Gaussian or sub-Gaussian, and (3) samples are independently drawn 
from a fixed but unknown distribution. Such assumptions can often be 
violated in the context of extremes. In particular, (1) the extremes may 
have a nonlinear dependence on the covariates (Koltchinskii and Yuan, 
2008; Raskutti et al., 2010), (2) the noise component may be non-Gaussian 
and may be even heavy tailed (Falk et al., 2010; Embrechts et al., 2011), and 
(3) the samples (yi, Xi) may be dependent or even from a nonstationary 
distribution, violating the independence assumptions (Meir, 2000; Mohri 
and Rostamizadeh, 2010). The ability to accommodate such nonlinear, 
non-Gaussian, nonstationary behavior using advanced predictive models 
will determine the success of enhanced prediction for extremes.
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An alternative promising approach for regression of unreliable vari-
ables, especially extremes, can be based on correlated but more reli-
able variables, or those that are currently better predicted. For example, 
although rainfall extremes may be difficult to characterize directly in 
terms of a set of covariates, given that rainfall extremes may be corre-
lated with temperature in some way (O’Gorman and Schneider, 2009; 
Sugiyama et al., 2010), and temperature can be effectively characterized 
using suitable (sparse) regression models, one then obtains an indirect but 
reliable way to model rainfall extremes. The above idea is a prominent 
theme in multivariate or multiple output regression, especially in the con-
text of spatial and geostatistics, where such models are studied as Linear 
Models of Coregionalization (LMC) (Wackernagel, 2003; Gelfand and 
Banerjee, 2010) and related spatiotemporal models (Higdon, 2002; Mardia 
and Goodall, 1993). In recent years, correlated multiple-output, nonlin-
ear, nonparametric regression models have been studied in statistical 
machine learning using Gaussian Processes (Agovic et al., 2011; Álvarez 
and Lawrence, 2011). In particular, our recent work on Probabilistic 
Matrix Addition (Agovic et al., 2011) has two additional capabilities that 
may be useful in this context: (1) the ability to utilize a nonlinear covari-
ance function (kernel) Kx among the covariates, as well as a nonlinear 
covariance function Ky among the multivariate output (e.g., precipitation 
and temperature); and (2) the ability to handle data matrices with miss-
ing entries. Recent literature has shown evidence that reliable auxiliary 
variables may contain valuable information on crucial variables that are 
currently difficult to physically model (e.g., O’Gorman and Schneider, 
2009; Sugiyama et al., 2010), and the ideas outlined above may lead to a 
systematic way to leverage such signals. Such an accomplishment might 
not only enhance predictability of such key variables, but also augment 
physical understanding, which could inform future efforts in the climate 
modeling community.

5.5 � CONCLUSIONS AND FUTURE RESEARCH
Computational data sciences may offer a path forward to one of the key sci-
ence challenges relevant for stakeholders, resources managers, and policy 
makers—specifically, the consequences on statistical attributes of extreme 
events as a consequence of climate change. This chapter presented several 
critical challenges in the science of climate extremes that are not handled 
by the current generation of climate models, represent long-standing chal-
lenges in scientific understanding, may not be solved in the near future by 
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improvements in physics-based modeling, and where data-driven compu-
tational methods may offer novel solutions. The chapter presented specific 
details on three interrelated problem areas—extremes characterization, 
uncertainty quantification, and enhanced prediction—as well as several 
potential conceptual and methodological directions for the interdisciplin-
ary computational and data sciences communities to advance the science 
in these areas.

The close integration between physical understanding, or physics-
based modeling, and data-driven insights is emphasized from three inter-
related perspectives.

	 1.	Data-driven insights from observations inform model diagnostics 
and uncertainty quantification.

	 2.	Enhanced projections rely on data-guided functional mappings 
(e.g., between precipitation extremes and temperature), which in turn 
may be derived from both observations and model-simulations but 
remain conditioned on physics-based, model-simulated results in the 
future (e.g., future data-driven insights on precipitation extremes may 
be conditioned on projected temperatures in the future from models).

	 3.	New insights from massive data on multivariate associations derived 
from observed or model-simulated data not only improve our 
understanding of relevant processes but also may inform the physi-
cal formulation and parameter choices within global or regional cli-
mate models.

This chapter made no attempt to comprehensively address two impor-
tant research directions. The first area, on attribution of climate extremes, 
has been primarily motivated by prior and ongoing work led by the cli-
mate science community but has witnessed recent progress by the com-
puter science community. The second area, on graphical models and 
complex networks in climate, has been motivated by nonlinear dynamics 
communities within the geosciences as well as more recently by the inter-
disciplinary data science communities. Attribution of climate extremes to 
global warming and anthropogenic emissions, regional changes in urban-
ization and land use, as well as other plausible causal factors, is a key con-
cern for policy makers. The corresponding methods include data-driven 
approaches such as Granger causality and optimal fingerprinting, that, 
for example, may be used for attribution of global and regional changes 
in rainfall extremes (Min et al., 2011). Numerical modeling techniques 
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have attempted to generate a range of simulations at specific locations 
and time periods to delineate what may be caused by natural variabil-
ity versus what may have to be attributed to climate change, for example, 
with application to location-based precipitation extremes in a given sea-
son (Pall et al., 2011). While data science communities have developed 
(Lozano et al., 2009b) innovative approaches, new developments are moti-
vated. Nonlinear dynamics methods have been used in climate for a while 
(e.g., to relate climate oscillators to the variability of river flows: Khan 
et al., 2006, 2007). Correlation-based complex networks have been used 
in climate to capture multivariate dependence (Steinhaeuser et al., 2011b), 
diagnose model performance through their ability to capture ocean-based 
oscillators (Kawale et al., 2011), relate ocean-based oscillators to regional 
climate (Steinhaeuser et al., 2011a; Chatterjee et al., 2012), as well as for 
abrupt change (Tsonis et al., 2007) and extremes processes (Malik et al., 
2011). Further developments may make these emerging approaches impor-
tant tools for climate extremes.
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6.1 � INTRODUCTION

Programs to conserve ecologically valuable land and ensure envi-
ronmental services are major sources of government and nonprofit 

spending in the United States and throughout the world. At the federal 
level, the U.S. Department of Agriculture (USDA) Conservation Reserve 
Program planned to spend upward of $1.8 billion in 2010 (USDA, 2009), 
while the most recent Farm Bill (2008–2012) included $11.7 billion for con-
servation purposes (Claassen, 2009). State and county programs have spent 
more than $2 billion on permanent agricultural conservation easements in 
a recent 25-year period (American Farmland Trust, 2010), and open-space 
referenda for all of the United States authorized $31 billion between 1996 
and 2009 (Trust for Public Lands, 2009). As of 2005, private land trusts had 
protected 37 million acres (Aldrich and Wyerman, 2006). The European 
Union (EU) anticipated spending €35.4 billion on “agri-environmental” 
programs between 2007 and 2013 (EU, 2009), while China’s Sloping Land 
Conversion Program has a budget estimated at $48 billion (Xu et al., 2010).

Despite the substantial sums available for conservation efforts, pro-
grams typically identify more potential projects than they can fund. 
Given such budgetary constraints among conservation organizations, 
economists have long argued that consideration should be given to maxi-
mizing the value achieved with public funds when selecting projects 
(Underhill, 1994; Babcock et al., 1997). The strategies typically used by 
conservation organizations rely on a parcel-rating scheme that involves 
expert panels or standardized scoring systems. Commonly used systems 
include the USDA’s Natural Resource Conservation Service (NRCS) Land 
Evaluation and Site Assessment (LESA) score for agricultural land and 
the Environmental Benefit Index (EBI), which was originally designed for 
the Conservation Reserve Program. These ratings are used in a Benefit 
Targeting (BT) selection process to rank potential projects from highest to 
lowest. Projects are then sequentially selected for funding based on their 
rank until the budget is exhausted. Numerous studies report that this 
“greedy” algorithm is highly inefficient when compared to alternative 
mathematical optimization approaches (see, for example, Babcock et al. 
(1997), Wu et al. (2000), and Polasky et al. (2001)).

6.1.1 � Background of Optimization in Conservation Planning

Two approaches commonly advocated as better alternatives to the BT 
selection process are Cost-Effectiveness Analysis (CEA) and Binary Linear 
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Programming (BLP). CEA ranks and selects in a manner similar to BT, 
but project rankings are based on the ratio of the benefit score per dollar 
of cost. Consequently, CEA can achieve a greater value per dollar spent. 
It typically performs much better than BT and has the added advantage 
of being intuitive, easy to explain, and relatively easy to sell to program 
managers. On the other hand, it achieves suboptimal results under many 
conditions (Messer, 2006) and is difficult to extend to problems with com-
plex constraint structures or nonlinear benefit functions.

BLP (sometimes referred to as Binary Integer Programming (BIP)) is 
an extension of linear programming in which the decision variables take 
binary values that represent the decision to fund (given a value of zero) 
or not fund a project (given a value of one). An advantage of the binary 
formation of this problem is that the objective function can be represented 
as a vector of benefit scores multiplied by the binary decision variables. 
This objective function is maximized subject to a budget constraint and 
potentially under additional program-specific constraints. A BLP model 
typically is solved with a branch-and-bound algorithm and is a reliable 
algorithm as it will always identify the true optimum when feasible. Its 
performance vis-à-vis CEA ranges from a marginal improvement to, at 
most, twice the level of benefit achieved by CEA (Dantzig, 1957).

Conservation programs generally have been slow to adopt either of 
these methods. Despite the promise of a substantial increase in environ-
mental benefit offered by either CEA or BLP, the only conservation orga-
nization known to be using either one is the Baltimore County Division of 
Environmental Protection and Resource Management (DEPRM), which 
has used CEA for its agricultural protection program since 2007. During 
the first 3 years that DEPRM used CEA, it protected 680 more acres of 
land worth $5.4 million than its previous BT process would have under 
the same budgets (Kaiser and Messer, 2011).

Researchers have studied this lack of adoption (e.g., Prendergast et al., 
1999; Messer, Allen, and Chen, 2011; Pressey and Cowling, 2001) and iden-
tified several barriers in the conservation decision process. For example, 
Prendergast et al. (1999), through an informal interview process involving 
a sampling of ecologists and land managers, identified three main barri-
ers to adoption: (1) lack of knowledge of the alternative methods, (2) lack 
of resources, and (3) real and perceived shortcomings in the methods. A 
recent survey of Maryland’s county-level conservation program admin-
istrators suggested not only that managers were not familiar with either 
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BLP or CEA, but also that these managers did not consider that being 
cost-effective was a major priority, and also reported lacking incentives 
to adopt alternative selection approaches (Messer, Allen, and Chen, 2011).

A common concern identified in these studies was a “black-box” per-
ception of BLP. Program managers’ duties can include more than merely 
maximizing benefit scores. They also must defend the “value” achieved 
from donor, funding agency, and taxpayer money; ensure that partici-
pants get a fair deal from a transparent decision mechanism; and distrib-
ute funds in a manner that is perceived as equitable. BLP, as classically 
implemented, has been seen as lacking transparency and the flexibility 
necessary to address many of these duties, which can be thought of as 
secondary or operational objectives. These objectives may not immedi-
ately impact the primary goal of protecting high-quality land but still may 
be important factors in the decision-making process and thus significant 
barriers to the adoption of new approaches. Operational objectives can be 
incorporated as constraints, as was done by Önal et al. (1998), who used an 
optimization model to address both environmental and equity concerns 
in a watershed management scenario. Their model maximized total profit 
across a watershed with a chance constraint on chemical runoff levels to 
account for the stochastic nature of rainfall and a constraint on the equity 
of the program’s impact that was measured by an index of deviation from 
a uniform loss-sharing level. The study varied these constraints to exam-
ine trade-offs among income, pollution, and equity losses. This approach, 
however, still offered little ability to consider the sensitivity of the single 
solution provided or alternatives to it.

A second option is to format the process as a Multiple-Objective Linear 
Programming (MOLP) problem (also referred to as Goal Programming) 
with the secondary objectives included as weighted goals. MOLP has been 
applied to several conservation programs: a balancing of economic and 
biological objectives over short-term and long-term time frames in fish-
ery management (Drynan and Sandiford, 1985; Mardle and Pascoe, 1999; 
Mardle et al., 2000), an optimization of environmental, social, and eco-
nomic goals in energy production (Silva and Nakata, 2009); and manage-
ment of public water resources (Neely et al., 1977; Ballestero et al., 2002). 
Önal (1997) considered an approach similar to MOLP in a forest man-
agement setting; he employed a model that, instead of minimizing devia-
tions from a goal as is done in MOLP, used constrained deviations from a 
goal to maximize the discounted future harvest value while maintaining 
a minimum value for a species diversity index.
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6.1.2 � An Overview of the Pennsylvania Dirt and Gravel 
Roads Program

As an example of how an optimization approach incorporating MOLP 
could be applied in a nonpoint source pollution context, we present the 
case of the Pennsylvania Dirt and Gravel Roads Program (DGRP).* DGRP 
is an innovative program established in conjunction with Trout Unlimited 
to reduce sediment pollution and improve water quality in sensitive rain-
bow trout habitats in Pennsylvania streams, where sediment is the largest, 
single source of pollution. Sediment pollution has immediate effects on 
the health of fish and other aquatic wildlife that lead to long-term ecosys-
tem disruption and compositional changes downstream in estuaries such 
as the Chesapeake and Delaware Bays. Programs have been developed that 
regulate easily identified point sources of sediment pollution such as large, 
confined animal operations and construction sites with some degree of 
success, but a significant nonpoint source remains: Pennsylvania’s 27,000 
miles of dirt roads. The DGRP was established in 1997 as part of the 
Pennsylvania Vehicle Code to reduce dust and sediment pollution in the 
state’s streams by funding improvements for dirt roads. As part of the pro-
gram, the state annually distributes a fund of $4 million to 63 county con-
servation districts that, in turn, administer the program within a county 
and distribute funds for that county as grants to municipalities. Funds are 
assigned to a county based primarily on the number of miles of dirt road 
it contains, how many miles of those roads traverse specifically protected 
watersheds maintained by the county, and local material costs.

The Pennsylvania DGRP has had some success with more than 1,827 
projects representing 982 miles of road protected as of 2008 (Center for 
Dirt and Gravel Road Studies, 2009). However, because the decision 
process used by many counties is essentially a modified benefit ranking 
scheme, there is likely some room for improvement in efficiency. In this 
chapter, we evaluate the results of a BLP model to determine the maxi-
mum potential environmental benefit available to the DGRP over several 
years. Those results can then be compared to the results of the current 
ranking method. Once a baseline model is developed, it can be extended 
to address specific questions related to the overall efficiency of a program. 
In the DGRP case, the model is extended to improve how the value of 
in-kind contributions is internalized in the decision process, assess the 

*	 The authors would like to acknowledge the generous assistance of Wayne Kober, Robb Piper, and 
Barry Scheetz associated with the state of Pennsylvania’s Dirt and Gravel Roads program.
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effect of uncertainty about the actual cost of each project and in-kind con-
tributions on the optimal solution, and investigate how the distribution of 
funds among counties influences the overall statewide benefit.

Several characteristics of the DGRP are important. First, the program 
focuses on local administration, with all allocation and auditing adminis-
tration done at the county level. The state is involved only in training county 
program managers, reporting overall program results, and establishing 
basic project standards. The state also sets environmentally sustainable 
method (ESM) standards that dictate the methods and materials that may 
be used to ensure that each project represents an environmentally sustain-
able fix over the long term. All grant recipients must have an employee 
who has received ESM training within the previous 5 years to be eligible. 
Sites are ranked in terms of potential environmental impact based on a 
set of 12 criteria relating to road topology, proximity to a stream, stabil-
ity of the drainage infrastructure, and the amount of canopy cover, among 
other considerations. The individual scores from each criterion are totaled 
to generate an overall environmental rank that ranges from 0 to 100, and 
the ranking is used to assign funding priorities. Additionally, in-kind 
contributions from grant applicants play a significant role in the program. 
Those contributions, typically in the form of in-kind equipment and labor, 
are not required by the state, but counties may enact minimum contri-
bution levels or use the level of these in-kind contributions to adjust the 
ranking scores. Over the past several years, in-kind support for the pro-
gram has been in the range of 40% ton 50% of program money spent. Also, 
counties often enact regulations that limit the total number of contracts 
or projects that can be awarded to a township simultaneously, or stipulate 
that all applicants must have received at least one funded project before 
any applicant can be considered for multiple projects. Further details on 
state-level administration of the program are available from Penn State 
University Center for Dirt and Gravel Road Studies (CDGRS), which was 
created to provide technical services for the program (CDGRS, 2009).

The inclusion of in-kind cost sharing and matching funds is a common 
practice in conservation programs and is designed to leverage additional 
resources from partner agencies and individuals to achieve their conser-
vation objectives (Kotani, Messer, and Schulze, 2010). Implementation 
schemes vary, but most require the participating organization to cover 
some percentage of the project’s cost. The numerous other federal, state, 
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and private conservation funding programs that require some sort of 
cost sharing include the USDA Conservation Reserve Program (USDA, 
2010), the U.S. Forest Service’s Forest Legacy Program (Fooks and 
Messer, 2012), and the U.S. Fish and Wildlife Service National Wetlands 
Conservation Grant Program.

In the literature, in-kind cost sharing has been considered a type of 
matching grant program where the agency requesting a grant agrees to 
pay some percentage of the total project cost. Theoretically, matching 
grants are seen as a mechanism that corrects for externalities and “spill-
overs” in federalized agency structures. Oates (1999) pointed out that the 
local benefits from a project under consideration might not justify fund-
ing it for the local agency. However, a project may offer additional nonlo-
cal benefits, and those spillover benefits could make it attractive to society 
as a whole. The matching grant offered by an outside body would repre-
sent a sort of “Pigouvian subsidy” to pay the local agency for the external 
benefits obtained in other jurisdictions. On the other hand, Bucovetsky 
et al. (1998) have offered an informational argument for matching grants, 
starting with the assumption that a government should distribute funds 
to the regions that value public services the most, then justifying a match-
ing grant mechanism as revealing the level of commitment of the poten-
tial grant recipients—in other words, requiring to demonstrate the true 
benefits of the program by having them “put their money where their 
mouth is.” Thus, the matching grant serves as a mechanism by which the 
funder can reveal the private value of funding to the participants.

The evidence thus far offered on the effect of matching grants and 
cost sharing has been mixed.* Baker et al. (1999) found that instituting 
a matching grant system in the Canada Assistance Plan lowered expen-
diture growth by eight to nine percentage points as provinces became 
responsible for a portion of program costs. Using simulations, Borge and 
Rattsø (2008) found that matching grants decreased expenses more than 
block grants but led to unstable service provision over time. Chernick 
(1995) found that conversions from matching grants to fixed block grants 
by U.S. federal welfare programs varied substantially across states but gen-
erally led to a reduction in benefits.

*	 For an in-depth discussion of matching grants and their implementation, see Boadway and Shah 
(2007).
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The project selection literature generally does not address issues asso-
ciated with the incorporation of in-kind requirements into the selection 
process. In-kind contributions are implicitly accounted for by the reduc-
tion in the project cost to the government, but that measure fails to take 
full advantage of the additional information potentially provided by 
the size of the in-kind cost share, such as the degree of commitment of the 
partner organization, and the political benefits of using program funds to 
leverage resources from other organizations, agencies, and individuals. In 
this chapter, we incorporate that additional information into an optimiza-
tion approach by developing a MOLP model that seeks to optimize both 
conservation outcomes and partner in-kind cost sharing contributions. 
Results from the models show that MOLP offers results that are superior 
to approaches currently used by the DGRP while yielding cost-effective 
outcomes that are likely to be more practical than solutions generated by 
the standard BLP approach.

For the DGRP case study, datasets were available for three Pennsylvania 
counties: Bradford, Cambria, and Carbon (displayed in Figure  6.1). 
Bradford County is the largest and most rural of the three. It has the sec-
ond largest dirt road network in the state and has been granted an average 
of $246,000 per year in funding over the course of the program. Carbon 
and Cambria Counties both have a smaller area and are more densely 
populated. Carbon County has received, on average, $24,000 per year over 

Bradford County

Carbon County

Cambria County

FIGURE 6.1  Map of Pennsylvania counties.
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the course of the program, while Cambria County has received $17,000 
annually. These three counties were recommended by state program per-
sonnel for analysis because the local officials were most willing to cooper-
ate by sharing their data, and these counties were the most representative 
of the range of counties participating in the program. Data on the com-
pleted projects and fund distributions were provided by the Center for 
Dirt and Gravel Road Studies (CDRGS, 2009). Data on the submitted proj-
ects and procedures for Bradford County by year were obtained from the 
Bradford County Conservation District (BCCD) (M. Lovegreen, BCCD 
Director, personal communication, November 2, 2009). A map of poten-
tial and funded projects is displayed in Figure 6.2.

Because Cambria and Carbon Counties receive limited funds each year 
(less than $30,000, while many projects cost more than $50,000), their 
project choices are limited and they use less-complex decision criteria. 
Cambria County issued a call for projects when the program was first 
initiated and has since worked its way through the initial applicants and 
funded all of the projects that met the state’s criteria. Carbon County does 
not officially advertise the program, and it funds any appropriate project 
that the conservation district manager comes across during the course of 
his duties. These processes are difficult to approach with a binary program 
as the counties have maintained no data on projects that were not funded. 
That is not to say that the selection processes they use are in any way opti-
mal; but because there is little data on alternative projects, it is impossible 
to say how much opportunity was missed by not soliciting new projects 
on a regular basis.

Potential project

Bradford County
DGRP Projects

Funded project

FIGURE 6.2  Map of Bradford County projects.
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Bradford County uses a more traditional ranking method. Project 
proposals are solicited once a year, and funding decisions are based on 
an environmental ranking that is adjusted based on in-kind contribu-
tions received. The county requires a minimum in-kind contribution of 
10% to consider a project for funding. For every percentage of in-kind 
offered above 10%, 0.5 is added to the environmental benefit score.* Also, 
no township can receive more than one project unless all townships that 
submit projects get funding for at least one project. This modified rank-
ing system can be easily adapted to a binary program and compared for 
potential gains in efficiency.

6.2 � THEORETICAL MODELS AND RESULTS
The basic template used for this case is BLP. In its most general form, it can 
be expressed as

	 Max: Z c xT=

	
Subject to:

1}

Ax b

xi

≤

∈{ ,0

where Z is the total amount of environmental benefit obtainable from the 
county’s funds and is the sum of the individual project’s environmental 
scores, c is a vector of the environmental scores for the projects, x is a vec-
tor of binary variables indicating whether a given project is chosen (1 if 
selected; 0 if not selected), A is a matrix of constraining factors such as 
project costs, and b is a vector of the total endowment for each constrain-
ing factor, such as total budget. The basic model maximizes environmen-
tal scores subject only to budget constraints. However, there are several 
additional factors that must be considered in this case. Specifically, any 
conditions on funding of multiple projects for the same applicant and con-
sideration of in-kind contributions must be part of the model. To capture 
funding restrictions, we can include a constraint that is the sum of all the 

*	 Projects are occasionally specially designated as “Trout Unlimited” based on being located in 
sensitive watersheds. Those projects always get first priority for all funds. Recall that the Trout 
Unlimited organization originally helped organize the DGRP. However, Trout Unlimited projects 
are sufficiently rare (there was only one for 2002 through 2008) so they are left out of this analysis. 
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projects in a township. When set to greater than or equal to 1, this con-
straint ensures that all townships receive at least one funded project. Setting 
this constraint to less than 1, it prevents funding of more than one project 
for each township. One of these conditions must be true for the constraint 
to hold. This can be achieved using a logical condition or a binary switch 
variable; however, those techniques would make the program nonlinear, 
which complicates solving it. As an alternative, because there generally 
is insufficient funding for townships to obtain multiple projects, the first 
condition can be omitted with the caveat that the model must be altered 
slightly if there were ever sufficient funding for at least one project for each 
township. In-kind contributions are considered in depth in the following 
subsection. Thus, for an initial base model, we use the following:
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where xi is a binary variable indicating whether project i is chosen, xi 
j is 

xi for projects submitted by township j, ei is the environmental score for 
project i, pi is the requested grant amount for project i, and B is the total 
budget for the year.

Table 6.1 outlines the results from the model in terms of the total bene-
fit to Bradford County offered by the two methods for 2002 through 2008. 
The key observation here is that BIP offers a significant improvement. 
Specifically, BIP selects a set of projects that would deliver a 57% increase 
in environmental benefit, a 57% increase in in-kind contributions, and a 
102% increase in the number of projects funded. Those results may not 
be realistic, however, due to uncertainty regarding project costs. This is 
discussed further in Issue 2 (see Section 6.2.2).
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6.2.1 � Issue 1: How Best to Account for In-Kind Funding

On the surface, the amount of in-kind funding offered for a project is not 
significant because how the project is funded does not change the environ-
mental benefit the project provides. However, the more in-kind funding a 
township offers, the fewer funds the county has to invest in a single project, 
thus allowing more projects to be funded. Townships do not necessarily have 
an incentive to offer large in-kind contributions, especially given constraints 
that limit the number of projects funded per applicant. As a result, an incen-
tive must be established that maximizes the effectiveness of county funds 
spent by the program over time. The state does not require in-kind offers, so 
it is left to the counties to decide how to address such funding. The approach 
employed by Bradford County involves setting a minimum percentage of 
in-kind contribution and increasing the project’s environmental benefit 
score in the ranking process for every percentage point offered beyond the 
minimum. While it does insert in-kind contributions into the process, this 
ad hoc solution lacks flexibility and is not particularly elegant. As an alter-
native, we propose modestly restructuring the problem as a MOLP model.

As a MOLP model, instead of maximizing only environmental ben-
efits, the algorithm would calculate both a maximum possible environ-
mental benefit and a maximum in-kind funding offer, and the objective is 
to minimize weighted percentage deviations from the two maxima with 
85% of the weight placed on environmental benefit and 15% on in-kind 
contributions. This 85:15 weighting scheme is arbitrary but was set as an 
initial estimation of weights with the purpose of emphasizing environ-
mental benefit while still considering in-kind contribution levels. Other 
weights are explored later.*

*	 An interesting analysis would be to determine if there is an optimal weighting scheme that would 
maximize benefits over time. Unfortunately, such an analysis would require data on if and how 
townships reacted to changes in how in-kind contributions were treated in the decision process. 
This type of data is not currently available.

TABLE 6.1  Results of Multiple-Objective Linear Programming, Binary Linear 
Programming, and Benefit Targeting

Multiple-Objective 
Linear Programming

Binary Linear 
Programming

Benefit 
Targeting

Money spent $1,924,423 $2,027,195 $1,934,422
Environmental score 5,736 6,613 4,208
In-kind contributions $640,170 $603,641 $424,141
Number of projects funded 100 119 59
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The MOLP model can be formally stated as follows:
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where xi is a binary variable indicating whether project i is chosen to be 
funded, xi

j is an xi for projects submitted by township j, ei is the environ-
mental score of the project, ci is the amount of in-kind funding offered, 
E is the maximum level of environmental benefit obtainable, C is the max-
imum level of in-kind contribution obtainable, pi is the requested grant 
amount for project i, B is the total budget for the year, and dk

+/– is the devia-
tion from goal K. Note that, in this case, because the goals represent the 
maximum possible value of E and C, the positive deviations (dk

+) (e redun-
dant, and could be omitted). They do become relevant if there is a goal less 
than the absolute maximum, and are included here for completeness.

Results for both the MOLP and a model that excludes in-kind contribu-
tions are also presented in Table 6.1. They suggest that the environmental 
benefit offered by the MOLP with the 85:15 weighting is very close to the ben-
efit from binary programming. MOLP decreases the environmental benefit 
by 0.3% and increases in-kind contributions by 10%, thus providing a 
much-improved benefit ranking while still incorporating an incentive for 
in-kind contributions.

This model can be extended by parametrically altering the weights, 
which can sketch out an efficiency frontier of sorts. The extended algorithm 
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offers decision makers a menu of weighting frameworks and represents the 
trade-offs that exist between various objectives, as shown in Figure 6.3.

6.2.2 � Issue 2: Sensitivity of Results Given the Uncertainty 
in Project Cost and In-Kind Contribution

A major issue that arises in comparing theoretical optimal solutions to 
actual project funding schedules is the accuracy of grant requestors’ cost 
estimates. Based on the project data from Bradford County, it would 
appear that project expenses have historically been substantially under
estimated. For 2002 through 2008, the average actual cost of projects in 
any given year varied from 30% under the grant request to 85% over it. 
The amount actually paid for an individual project by Bradford County 
ranged from 428% above the quote in the grant proposal to 66% below it, 
and averaged 54% above. There was a similar underestimation of in-kind 
contributions. Actual in-kind contributions provided by a contracted 
township ended up ranging from 738% above the original quote to 87% 
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FIGURE 6.3  Benefit—In-kind frontier.
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below the original quote, with an average of 129% above. From a planning 
perspective, the potential for budget overruns is great.

Traditional sensitivity analysis is not helpful in this case because binary 
programming is used. Ideally, costs and in-kind contributions could be 
systematically varied independently over a range of percentages of over- 
and under-achievement and the results compared. This is not feasible, 
however, because 30 projects with only three such distortions would 
require more than 4 × 1014 separate optimizations.

As an alternative sensitivity analysis, we analyzed this situation using 
a bootstrap type of approach that evaluates the persistence of projects 
in optimal solutions over a series of random variations in price and in-
kind contributions. All costs and in-kind contributions were indepen-
dently varied by a factor within the 10th to 90th percentile range: −28% 
to +140% for costs and −57% to +307% for in-kind funding. The opti-
mal solution was recorded for several random samples, and the “per-
sistence” or percentage of times a particular project was recommended 
was calculated. This persistence score can be used to identify projects 
for which the expense is a “sure thing” versus those that are particularly 
sensitive to cost. This analysis was performed for 2002 using 55 observa-
tions. Table 6.2 offers a selection of results for projects that were actu-
ally funded. Projects that have persistence scores at or near 1.0 are very 
likely to be efficient in granting environmental benefits even under a fair 
degree of cost uncertainty. Projects with a large variance, such as A606 

TABLE 6.2  Selection of Persistence Scores

Project No. Rank
Multiple-Objective Linear 

Programming Value Persistence
Z010   1 1 1.00
Z006   2 0 0.51
X313   3 1 1.00
A398   4 0 1.00
A438   5 1 0.98
A300   6 1 1.00
A872   7 0 0.65
A518   8 1 0.96
A241   9 1 0.15
X353 10 1 1.00
A606 11 1 0.07
A949 12 1 1.00
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in Table 6.2, however, are unlikely to be efficient if costs change substan-
tially, although both the ranking and the MOLP processes recommend 
them, and should be approached more cautiously. It is worth noting that 
the levels of expected benefit achieved under these uncertainties is, over-
all, just slightly lower than the level generated by the initial specification 
of the MOLP model (see Table 6.3). This is under the condition of knowl-
edge of the actual costs when making the decision.

6.2.3 � Issue 3: Sensitivity of Results to State Fund Distribution Rules

Officials from Cambria and Carbon Counties have been frustrated in 
their efforts to develop the DGRP program in their counties because they 
receive such small grants, which sometimes do not even entirely cover the 
costs associated with one project. This raises an interesting question: What 
effect would different fund distribution rules have on the overall environ-
mental benefit to the state and on county programs? To optimize the over-
all program, decisions on projects to fund during a given year could be 
made at the state level. This system, however, would reduce local involve-
ment, which is a stated goal of the DGRP. As an alternative, we considered 
a state distribution mechanism that could redistribute funds from one 
county to another to see how the overall environmental benefit changed.

We used Bradford County’s 2002 project submissions and the projects 
completed to date for Cambria County, which amounts to essentially one 
year’s worth of project submissions. Under a parameter analysis, optimal 
fund distributions were determined by starting with each county’s aver-
age DGRP budget as a baseline and varying the amount budgeted to 
each county symmetrically by unit changes of $10,000. With each county 
receiving its traditional budget allotment of approximately $300,000 for 
Bradford and $15,000 for Cambria, the total environmental benefit score 
for the two counties was 1,923. Figure 6.4 represents the total level of ben-
efit achieved by redistributing some of the Bradford County budget to 
Cambria County. The x-axis represents the total annual amount shifted 

TABLE 6.3  Results of Benefit Targeting, Multiple-Objective Linear 
Programming, and Persistence Selection

Benefit 
Targeting 

Multiple-Objective 
Linear Programming

Persistence 
Selection

Money spent $283,901 $293,962 $293,080
Environmental score 1,342 1,613 1,629
In-kind contributions $57,549 $96,741 $110,907
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from Bradford County to Cambria County, while the y-axis represents 
the total benefit score for the two counties. The maximum occurs at an 
environmental benefit score of 2,070, with a $30,000 redistribution from 
Bradford County to Cambria County.

At the maximum benefit level, Bradford County still receives $270,000 
(90%) while Cambria’s budget grows significantly to $45,000 (300%). The 
total environmental benefit, however, begins to decline steadily after that 
point. So while a minor redistribution to counties receiving fewer funds 
could have a significant advantage, the bulk of the DGRP funds should 
continue to go to the counties with larger dirt road systems.

6.3 � CONCLUSIONS
This chapter has applied optimization through mathematical programming 
to techniques to the problem of water quality conservation in the state of 
Pennsylvania. It demonstrated how Binary Linear Programming can be 
extended to deal with a variety of challenges encountered in an on-the-
ground conservation situation. The Pennsylvania Dirt and Gravel Roads 
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Program is the result of a partnership between Trout Unlimited, the state of 
Pennsylvania, and Pennsylvania county conservation districts. They employ 
an innovative approach to nonpoint solution abatement by funding the stabili-
zation of dirt roads around sensitive waterways. They currently select projects 
using a Benefit Targeting algorithm that ranks and selects the highest-quality 
projects until the budget is exhausted. Their efforts could be improved using 
a Binary Linear Programming approach. This platform offers several natural 
extensions that have the potential to address several challenges faced by the 
program, including the handling of in-kind cost share, uncertainty of project 
costs, and the distribution of funds across county conservation districts.

A minor challenge in this analysis was the availability of data. A significant 
amount of investigation was possible with the data from Bradford County; 
however, with additional data, several other interesting analyses can be done, 
including a statewide analysis of fund distribution and potentially a data 
envelopment analysis to compare differences in decision approaches across 
counties. There were several questions raised that could be interesting to con-
sider further, including an optimal weighting scheme for in-kind contribu-
tions in the MOLP model, and continued study of the effect of cost sensitivity 
as well as environmental score sensitivity on the resulting benefits achieved.

Despite these data challenges, optimization still shows considerable 
promise for gains in this program. First, there is the potential for consid-
erable efficiency gains in larger counties from using BLP in their decision 
process, although this is tempered somewhat by cost uncertainties. Second, 
MOLP could be useful in taking in-kind contributions into account to 
encourage higher contribution rates by townships. Also, due to the uncer-
tainty in project costs, it could be useful to consider the persistence of a 
solution under random disturbances of project costs to help identify proj-
ects most likely to be efficient regardless of actual cost. Finally, statewide 
efficiency could be increased by a minor redistribution of funds to coun-
ties currently receiving only limited funding, but states with larger road 
systems should continue to receive the bulk of the funds.
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7.1 � INTRODUCTION

The energy system currently undergoes major changes, primar-
ily triggered by the need for a more sustainable and secure energy 

supply. The traditional system relying on the combustion of fossil sources 
such as oil, gas, and coal on the one side and nuclear technologies on the 
other side is not sustainable, for three main reasons:

	 1.	Fossil and nuclear resources are limited, and their exploitation will 
become more expensive (not economically sustainable).

	 2.	The combustion of fossil sources leads to CO2 emissions, which drive 
the greenhouse effect (not environmentally sustainable).

	 3.	Nuclear power plants bear certain risks in their operation and produce 
nuclear waste, which needs to be protected from unauthorized access.

Furthermore, up to now, no permanent disposal sites for nuclear waste 
exist, and coming generations—who will not have profited from this kind 
of energy source—will have to deal with it (not socially sustainable and 
probably not economically sustainable if all disposal costs are considered). 
The best way to achieve sustainability is clearly energy efficiency, that is, all 
forms of saving energy. A further way is renewable energy. Luckily, renew-
able energies are evolving rapidly, most remarkably in the form of wind 
energy, photovoltaic systems, water power, and biogas. In Germany, as one 
example, the share of renewable energies in electricity supply crossed the 
20% mark in 2011 [7]. This share is forecast to quadruple by 2050 [3]. In 
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addition to Germany, many other countries have similar plans to reduce 
greenhouse gas emissions and to fight climate change.

The rise of renewable energies comes along with a number of challenges 
regarding the electricity supply. Data-analysis techniques are a crucial 
building block that can facilitate these developments, as we will see later 
in this chapter. In particular, renewable energies challenge the electricity 
grid, which must be stable and should allow everybody at any point in 
time to consume energy. This is difficult to achieve, as the electricity sys-
tems have to permanently maintain a balance between demand and sup-
ply. Storage can help in achieving this, but geographic availability is very 
limited, and the economics of storage do not make it feasible for large-
scale applications at the present time. Maintaining the balance is getting 
more difficult as the share of renewable energy sources rises, due to their 
unsteady and fluctuating generation. This calls for so-called smart grids, 
which are a major topic of this chapter.

In particular, the future energy system—which aims to be less depen-
dent on fossil fuels and nuclear technology and builds on more and more 
renewable energies—is challenged by the following four main factors:

	 1.	Volatile generation. The possibly greatest issue of renewable ener-
gies is their volatile nature. It challenges the electricity system dra-
matically. The production of photovoltaic or wind energy does not 
depend on consumer needs, but solely on external conditions that 
are difficult or impossible to control (e.g., general weather condi-
tions). These do not necessarily match the energy demand patterns 
of consumers. In environments where renewables have a very small 
share of the overall production, such a natural fluctuation can be 
tolerated. However, the larger the share, the more effort is needed to 
compensate for this effect.

	 Compensation for the fluctuating nature of renewables can be done, 
for example, with flexible gas turbines that are permanently held in 
standby operation. They can increase production spontaneously, as 
for example when clouds darken the sun and less electricity is pro-
duced. However, such standby operation is highly inefficient, and 
it is responsible for remarkable greenhouse gas emissions [136]. 
An alternative to extra production of energy is to shift demands, 
which is targeted in more detail in the remainder of this chapter. 
If certain demands can be shifted to points in time where more 
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renewable energy is available, this amount of energy can be consid-
ered a virtual production, energy storage, or buffer. Respective load-
shifting programs and implementations are frequently referred to as 
demand response.*

	 In future scenarios, however, the situation can be even more severe. 
When large shares of electricity production come from renewable fluc-
tuating sources, it might happen that the total production becomes 
larger than the total demand. If the demand (including energy stor-
age facilities) cannot be shifted to such periods anymore, even the 
production of renewable energy must be stopped, which makes its 
generation less efficient. This furthermore brings in the potential to 
substantially damage the energy generation and grid infrastructure.

	 2.	Distributed generation. Future energy generation will be more 
distributed. Today, it builds on a comparatively small number of 
large, central power plants. These power plants feed in energy from 
a higher voltage level to a lower voltage level, resulting in a uni
directional power flow. In the future, in particular due to the rise of 
renewable energies, the number of power-generating units is likely to 
rise dramatically and to be a lot more distributed. On the one side, 
this is due to the increasing number of photovoltaic systems installed 
on private and industrial buildings and also to wind turbines that 
are not always part of larger wind parks. On the other side, small 
biogas-based power plants and co-generation units (combined heat 
and power units (CHP units)) are becoming more and more popular. 
CHP units can contribute to a more sustainable energy generation 
too. This is because they are more efficient compared to pure fossil-
based generation of electricity, which does not make use of the waste 
heat. In addition, they potentially can be used to generate energy 
when production is low. In particular, so-called micro-CHP units are 
increasingly installed in private houses, partly triggered by incen-
tives from government programs. These developments turn many 
consumers into so-called prosumers. Prosumers are consumers own-
ing, for example, photovoltaic systems or micro-CHP units gener-
ating energy that is fed into the electricity grid if it exceeds their 
own demand.

*	 Demand response is considered an element of the broader field of demand-side management, 
which also includes energy efficiency measures [110].
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	 Distributed generation challenges the electricity system, which has 
been designed for more central generation with a comparably small 
number of large power plants. Much of today’s grid infrastructure 
is built on the understanding and technology that power flows from 
higher to lower voltage levels. Distributed generation units, how-
ever, will operate at different voltage levels, which can potentially 
result in a unidirectional power flow within the grid. Issues arise, 
for instance, when photovoltaic panels installed on many roofs in 
a certain neighborhood feed their electricity into the local low-
voltage distribution grid. These grids were originally designed solely 
to distribute energy from higher to lower voltage levels. Massively 
distributed generation can therefore lead to severe grid conditions 
(i.e., voltage and frequency fluctuations) and, in the worst case, to 
power outages [81]. This happens, for instance, when transmission-
system capacities are temporarily not high enough or if there is a 
surplus of energy in a certain grid segment that cannot be trans-
ferred to higher-level parts of the grid. Another issue can be, for 
example, that wind parks in remote areas generate lots of energy 
that cannot be consumed locally. In such cases, the electricity grid 
might not have enough capacity to transport the electricity to areas 
where it is needed. Thus, wind turbines might have to be stopped 
temporarily. Solving such issues by means of increased grid capaci-
ties is surely possible, but very expensive in cases where such peak 
situations occur very rarely. Additionally, the construction of new 
power lines is very often opposed by local residents. In addition to 
enhanced infrastructure, information technology will also play a 
more important role in the future.

	 3.	New loads. Not only does the supply side undergo major changes, 
but also on the demand side new loads are arising. In particular, air 
conditioning, heat pumps, and (hybrid) electric vehicles become more 
and more popular. The latter is caused by the aim to make mobility 
more sustainable by driving vehicles with electric energy generated 
from renewable sources. It also makes countries more independent 
of fossil fuels. Several countries have programs to support such elec-
tric mobility. As one example, the German government has released 
the goal to have 1 million electric vehicles in Germany by 2020 and 
6 million by 2030 [3]. This is ambitious, as by the end of 2010, only 
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40,000 out of 42 million registered cars in Germany were (hybrid) 
electric vehicles [5].

	 Electric mobility can only be sustainable if the consumed energy is 
also sustainable. As electric mobility will lead to an increased con-
sumption of energy, even more renewable sources are needed to 
satisfy this new demand. Furthermore, the demand for charging 
electric vehicles is highly volatile, and peak demands can hardly be 
supplied if they are not aligned with the production and distribu-
tion of energy. In addition, charging too many electric vehicles at the 
same time in the same segment of the electricity grid might lead to 
overloads and, in the worst case, to power outages. At the same time, 
the typical average load of the electricity grid leaves, by far, enough 
capacity to charge electric vehicles. Again, tackling such peak 
demands with increased grid capacities is expensive, and it does not 
solve the issue of insufficient production of renewable electricity at 
certain points in time. Therefore, an intelligent control of charging is 
necessary to integrate electric vehicles with the smart grid.

	 Electric mobility should not only be seen as a challenge, but rather 
as a chance to realize the smart grid. For example, intelligent tech-
niques could schedule the charging processes of electric vehicles in 
order to avoid electricity network issues, to realize demand response 
(e.g., charge when renewable production is high and further demand 
is low), and to fulfill user needs (e.g., have the vehicle charged to a 
certain level when the user needs it). In addition to smart charging, 
the batteries of electric vehicles might also be used as a buffer in the 
electricity grid. That is, energy from the vehicle might be fed into the 
electricity network (vehicle to grid, V2G) when production is low or 
if there are demand peaks [118]. However, as electric mobility is still 
in its infancy, many challenges—including data analysis—must be 
tackled to integrate it with the smart grid. As an example, to achieve 
user acceptance, intelligent systems need to capture and predict user 
behaviors in order to have a vehicle sufficiently charged when the 
user needs it.

	 In addition to electric mobility, heat pumps have become more 
popular in certain regions. Such devices draw thermal energy from 
the environment for heating and/or cooling. They, however, are a 
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nonnegligible load on the electricity system and might be used to 
shift demand to a certain extent.

	 4.	Liberalization. In addition to the aim for sustainability and technolog-
ical developments, the energy system is also challenged by legislation 
[104]. While traditionally electricity generation, transition, distribu-
tion, and retail have been done by regional monopolies, the electricity 
market is now liberalized in many countries. Since the end of the 1990s, 
the mentioned tasks are separated and competition is introduced for 
generation and retail of electrical energy. In addition to generation and 
retail companies, liberalization leads to a number of other actors, such 
as transition and distribution-network operators, balance-responsible 
parties, metering operators, value-added-service providers, etc. In 
particular, actors related to the operation of the grid are typically regu-
lated by governmental authorities. From a more technical perspective, 
a larger number of actors are involved in the electricity system. They 
all generate data, and this distributed data must be exchanged with 
other partners in order to fulfill their respective tasks. This opens up 
new and interesting possibilities for data analyses as well as the need 
for ways of treating data in a privacy-preserving way.

To wrap up the challenges, sustainable energy systems will undergo major 
changes in the future. Generation and production will be more volatile and 
the landscape becomes more fragmented, both from a technical (distributed 
generation, volatile generation, and consumption) and an organizational 
perspective (new and more specialized actors). Most important is the para-
digm shift from demand-driven generation in the past to generation-driven 
demand in the future, triggered by renewable energy generation and new 
loads. Generation-driven management of energy consumption in the smart 
grid is a complex optimization problem [138]. It involves the operation of 
certain distributed energy sources and the control of energy consumption, 
for example, via market-based mechanisms. In the liberalized electricity 
market, different actors will probably contribute to the solution of the opti-
mization problem in a distributed manner. Further, the solution will likely 
be hierarchical: Certain optimizations will be done on the transition grid, 
further optimizations at the distribution grids, the next ones might be more 
fine-grained consumption and generation shifting between neighbor con-
sumers and small energy generators. At these different levels, consumption, 



188    ◾    Computational Intelligent Data Analysis for Sustainable Development

generation, and grid-usage data will arise at different levels of aggregation 
and induce new challenges for data analysis.

Another rather technical development that affects current and future 
energy systems is smart metering. Smart electricity meters facilitate fine-
grained measurements of energy consumption, production and quality, 
and the communication of the respective measurements. They are one of 
the technological foundations of many future energy scenarios described 
in this chapter. Also, from a legislative point of view, their introduction is 
promoted, and many countries have respective programs. As one exam-
ple, the European Union wants to achieve an 80% share of smart meters 
by 2020 [1].

This chapter reviews, in detail, selected scenarios in the field of smart 
grids. Most of them contribute to the realization of the paradigm shift 
from demand-driven generation to generation-driven demand, or to 
achieving energy efficiency. These elaborations reveal a number of data-
analysis challenges that must be tackled to implement the scenarios. These 
challenges are discussed in more detail, along with possible solutions.

The remainder of this chapter is organized as follows: Section 7.2 
describes the current status of the electricity market; Section 7.3 reviews 
selected future energy scenarios that are building blocks of the smart 
grid; based on Sections 7.2 and 7.3; Section 7.4 then describes the result-
ing data-analysis challenges and highlights first solutions; and Section 7.5 
provides conclusions.

7.2 � THE ENERGY MARKET TODAY
In this section we provide a short overview of the current market for elec-
tric energy, with Europe as an example. This section is not only a basis 
for understanding future energy scenarios described in Section 7.3, but 
also bears some data-analysis challenges. In particular, the prediction of 
consumption and generation already plays an important role in today’s 
energy market. In this section, we first introduce the different roles 
in the energy market (Section 7.2.1). Then we describe energy trading 
(Section 7.2.2) and energy balancing in the electricity grid (Section 7.2.3).

7.2.1 � Actors in the Energy Market

As discussed in the introduction, liberalization leads to a number of new 
actors and roles in the energy market. Caused by regulation, this can vary 
in different countries, and some of the roles might be taken on by the 
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same entity (e.g., a generator might also act as a retailer who sells energy 
to consumers). The number of (new) actors in the energy market is also 
interesting from a data-analysis point of view: Most of these actors have 
access to potentially interesting data or could profit from data provided by 
different actors. Investigating the actors and their data leads to interesting 
opportunities for data analysis and maybe even to new roles, such as ana-
lytic service providers. In the following, we introduce the most common 
actors and roles that are relevant for the remainder of this chapter [2]:

•	 Generator. A company that produces electrical energy and feeds it 
into the transportation or distribution grid. Generators might use 
conventional power plants or generate renewable energy.

•	 Consumer. An industrial or private entity or a person who consumes 
electrical energy.

•	 Prosumer. A consumer who also produces electrical energy. A differ-
ence from the generator is that the prosumer might entirely consume 
its own generation. The generation is typically done by renewable 
sources or micro-CHP (combined heat and power) units.

•	 Distribution system operator (DSO). Operates regional electricity 
distribution grids (low and medium voltage) that provide grid access 
to consumers, prosumers, and small generators. Historically, such 
grids were intended to distribute centrally produced energy to the 
consumers. Today, it can also happen that temporarily more energy 
is fed into a grid than energy is taken from the grid. The DSO also 
plans, builds, and maintains the grid infrastructure.

•	 Transmission system operator (TSO). Operates a transmission grid 
(high voltage) and transmits electrical energy in large quantities over 
large distances. This includes providing grid access to large genera-
tors and consumers and to the DSOs. The TSO is responsible for the 
overall stability of its parts of the transmission grid and for provid-
ing balancing power (see Section 7.2.3). The TSO also plans, builds, 
and maintains the grid infrastructure.

•	 Balance-responsible party (BRP). The BRP responsible for ensuring 
that the scheduled supply of energy corresponds to the expected 
consumption of energy in its balance area. To achieve this, the BRP 
eliminates upcoming imbalances using balancing power with the 
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help of the TSOs. The BRP financially regulates for any imbalances 
that arise.

•	 Retailer. A company that buys electrical energy from generators and 
sells it to consumers. The retailer also has to interact with DSOs and 
possibly metering operators to provide grid access to the consumers.

•	 Metering operator. Provides, installs, and maintains metering equip-
ment and measures the consumption and/or generation of electrical 
energy. The readings are then made accessible (possibly in an aggre-
gated manner) to the retailer, to the consumer/prosumer, and/or to 
other actors. Frequently, the role of the metering operator is taken 
on by DSOs.

•	 Energy market operator. An energy market may be operated for dif-
ferent kinds of energy to facilitate the efficient exchange of energy or 
related products such as load-shifting volumes (demand response). 
Typical markets may involve generators selling energy on the whole-
sale market and retailers buying energy. Energy market operators 
may employ different market mechanisms (e.g., auctions, reverse 
auctions) to support the trade of energy in a given legal framework.

•	 Value-added service providers. Such providers can offer various ser-
vices to different actors. One example could be to provide analytic 
services to final customers, based on the data from a metering operator.

7.2.2 � Energy Trading

In order to supply their customers (consumers) with electrical energy, 
retailers must buy energy from generators. In the following, we do not 
consider how prosumers sell their energy, as this varies in different 
countries. While consumers traditionally pay a fixed rate per consumed 
kilowatt-hour (kWh) of energy to the retailers (typically in addition to a 
fixed monthly fee), the retailers can negotiate prices with the generators 
(directly or at an energy exchange). A procurement strategy for a retailer 
may be to procure the larger and predictable amount of their energy need 
in advance on a long-term basis. This requires analytic services and suf-
ficiently large collections of consumption data. The remaining energy 
demand, which is difficult to predict in the long run, is procured on a 
short-term basis for typically higher prices. Similarly, generators of elec-
tricity need to predict in advance what amounts of energy they can sell.
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7.2.2.1 � Long-Term Trading
While electric energy has traditionally been traded by means of bilat-
eral over-the-counter (OTC) contracts, an increasing amount of energy is 
nowadays traded at power exchanges. Such exchanges trade standardized 
products, which makes trading easier and increases the comparability of 
prices. While there are different ways of trading energy, double auctions 
as known from game theory [54] are the dominant means for finding the 
price [137].

As one example, the European Energy Exchange AG (EEX) in Leipzig, 
Germany, trades different kinds of standardized energy futures and options. 
These products describe the potential delivery of a certain amount of energy at 
certain times in the future. The delivery must be within one of the transporta-
tion grids. In addition to the traded products, they also provide clearinghouse 
services for OTC contracts. The volume traded at the EEX derivate market 
for Germany amounted to 313 terawatt-hours (TWh) in 2010, 1,208 TWh 
including OTC transactions [6]. The latter number roughly corresponds to 
two times the energy consumed in Germany in the same time frame.

7.2.2.2 � Short-Term Trading
Short-term trading becomes necessary as both consumption and produc-
tion cannot be predicted with 100% accuracy. Therefore, not all needs for 
energy can be covered by long-term trading. In particular, fluctuating 
renewable energies make correct long-term predictions of production vir-
tually impossible. As one example, wind energy production can only be 
predicted with sufficient accuracy for a few hours in advance. Therefore, 
energy exchanges are used for short-term trading, again making use of 
different kinds of auctions. At such exchanges, retailers can buy electrical 
energy for physical delivery in case their demand is not covered by futures. 
Again, the delivery must be within one of the transportation grids.

The EPEX Spot SE (European Power Exchange) in Paris, France, trades 
energy for several European markets. There, trading is divided as follows:

•	 In day-ahead auctions, electrical energy is traded for delivery on the 
following day in 1-hour intervals [6]. These auctions take place at noon 
on every single day. Bids can be done for individual hours or blocks of 
several hours, and the price can be positive or negative. Negative prices 
may occur, for instance, when the predicted regenerative production is 
very high and the demand is low, possibly on a public holiday.
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•	 In intraday trading, electrical energy is traded for delivery on the 
same or following day, again in 1-hour intervals [6]. Each hour can 
be traded until 45 minutes before delivery; starting at 3:00 p.m., all 
hours of the following day can be traded. Bids can also be done for 
individual hours or blocks of hours, and prices can again be positive 
or negative.

At the EPEX, 267 TWh were traded in 2010 by means of day-ahead 
auctions and 11 TWh during intraday trading (German, French, and 
Austrian market) [6]. The sum of these trades roughly corresponds to half 
of the electrical energy consumed in Germany in the same time frame 
(most of this energy is traded for the German market).

7.2.3 � Energy Balancing

To ensure a reliable and secure provision of electrical energy without any 
power outages, the energy grids must be stable at any point in time. In par-
ticular, there must be assurance that the production always equals the con-
sumption of energy. In practice, avoiding imbalances between generation 
and demand is challenging due to stochastic consumption behavior, unpre-
dictable power-plant outages, and fluctuating renewable production [137].

On a very coarse temporal granularity, a balance is achieved by means 
of energy trading (see Section 7.2.2) and data-analysis mechanisms, in 
particular prediction and forecast: Retailers buy the predicted demand of 
their customers, and generators sell their predicted generation. As men-
tioned in Section 7.2.1, the BRPs make sure that the scheduled supply of 
energy corresponds to the expected consumption of energy. This expected 
consumption is also derived using data-analysis techniques. The TSOs 
are responsible for the stability of the grids. In the following, we describe 
how they do so.

From a technical point of view, a decrease in demand leads to an 
increase in frequency, while a decrease in production leads to a decrease 
in frequency (and vice versa for increases). Deviations from the fixed fre-
quency of 50 Hz in electricity grids should be avoided in real time, as this 
might lead to damage to the devices attached to the grid.

Typically, frequency control is realized in a three-stage process: primary, 
secondary, and tertiary control. The primary control is responsible for very 
short deviations (15 to 30 seconds), the secondary control for short devia-
tions (max. 5 minutes), and the tertiary control for longer deviations (max. 
15 minutes) [137]. The control process can be realized by various means, 
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for example, standby generators, load variation of power plants, or load 
shifting. Different measures involving different types of power plants have 
different reaction times and are therefore used for different control levels.

The capacities needed for balancing the grids are again frequently 
traded by means of auctions: Primary and secondary capacities are traded 
biannually, while tertiary capacity is traded on a daily basis [137]. Usually, 
only prequalified actors are allowed in such balancing markets, as it must 
be ensured that the requirements at the respective level can be fulfilled 
technically. Primary-control bids consist of the offered capacity and the 
price for actual delivery of balancing power. In contrast, bids for second-
ary and tertiary control consist of one price for making available a certain 
capacity and another price for consumed energy [137]. Thus, capacities 
play an important role in the balancing market, and actors are partly paid 
for a potential supply, which hinders a generator from selling this energy 
on the regular market.

For costs that arise from the actual energy delivered for secondary and 
tertiary control, the generators who caused deviations or retailers who did 
not procure the correct amount of energy for their customers are charged 
[81, 137]. Costs for primary control and for the capacities of secondary 
and tertiary control are paid by the corresponding grid operators [137], 
who earn grid-usage fees. Because costs at the balancing market are typi-
cally higher than on the normal energy market, generators and retailers 
are stimulated to make best-possible predictions of energy production and 
consumption [81].

7.3 � FUTURE ENERGY SCENARIOS
In this section we describe a number of visionary energy scenarios for 
the future. They represent building blocks of a possible smart grid. We 
describe the scenarios from a researcher’s point of view—they assume 
certain technical developments and may require legislative changes. We 
have selected scenarios that are commonly discussed in the scientific and 
industrial communities, either in the described form or in some variation.

Scenario 7.1: Access to Smart-Meter Data
Smart metering is a key building block of the smart grid, as many further 
scenarios rely on the availability of fine-grained information of energy 
consumption and production. For instance, smart metering can enhance 
load forecasting and enable demand response, dynamic pricing, etc. 
Some of these scenarios are described in the following. However, smart 
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metering is not only an enabler for other scenarios. Giving users access 
to their energy consumption profiles can make them more aware of their 
consumption and improve energy efficiency. This is important as many 
consumers have little knowledge about their energy consumption.

For purposes of billing, smart-meter data is typically generated in 
15-minute intervals. That is, the meter transfers the accumulated con-
sumption of the consumer every 15 minutes to the metering operator. 
Technically, smart meters can increase the temporal resolution of con-
sumption data, for example, measure the consumption within every sec-
ond or minute. This allows one to obtain a detailed picture of the energy 
consumption—down to the identification of individual devices (e.g., cof-
fee machines), as each device has its typical load curve. Such fine-grained 
data could also be transferred to a metering operator. In addition, meter-
ing data at any granularity can be made available within a home network, 
for example to be accessed via visualization tools on a tablet computer.

Access to consumption profiles for energy consumers can be more 
than pure numbers or simple plots. Respective visualization tools can 
easily show comparisons to previous days, weeks, etc. In the case of ser-
vice providers, they can also provide comparisons to peer groups of con-
sumers having similar households (in terms of size and appliances used). 
Furthermore, devices can be identified by their load profile [113], which 
can be visualized additionally. This leads to an increased awareness of the 
energy consumption of each single device.

A number of studies have investigated the effects of giving users access 
to smart-metering data. Schleich et al. [126] have carried out controlled 
field experiments with 2,000 consumers and came to the conclusion that 
giving access to detailed consumption data may lower the total energy 
consumption moderately, by about 4%. Other (meta) studies suggest that 
savings can be even a little higher [39, 45, 94].

Scenario 7.2: Demand Response with Dynamic Prices
Energy retailers procure parts of their energy needs at the spot market, 
where the prices reflect the actual availability of (renewable) energy (see 
Section 7.2.2.2). At the same time, energy consumers typically procure 
energy for a fixed price per kilowatt-hour, additionally to a consumption-
independent monthly fee. Although this is comfortable for the consum-
ers and the sum of the monthly or annual bill can be easily calculated if 
the consumption is known, there are no incentives to consume energy 
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when large amounts are available (e.g., when wind-energy production 
is high) or to save energy when production is low. As discussed in the 
introduction, such a paradigm shift from demand-driven generation to 
generation-driven demand is necessary to facilitate the integration of 
renewable energies. One approach to realize this is dynamic pricing. In a 
nutshell, the retailer communicates the actual or future prices of energy 
per kilowatt-hour to their consumers, and they can decide if they react 
to such incentives or if they prefer to consume energy when they want it 
while tolerating possibly higher prices.

The predecessors of dynamic prices are tariff schemes where electricity 
is cheaper during the night, reflecting a lower average demand at that time. 
However, this does not consider the fluctuating production of renewable 
energy. Dynamic price mechanisms can take into account these fluctua-
tions and incorporate them in the prediction of renewable generation and 
demand of the consumers. Dynamic price schemes mainly differ in the 
range of possible prices, in the resolution of time ranges in which prices 
are valid, and in the time spans in which the prices are communicated in 
advance. Very short time spans enable highly dynamic demand response, 
but also make it difficult to plan energy consumption. Furthermore, legis-
lation may demand certain minimum time spans. A more detailed review 
of dynamic prices can be found by Jokic et al. [70].

The German research project MeRegio investigates user acceptance of 
so-called “energy traffic lights” (see [4] for more information). These are 
small devices receiving the energy tariffs for the forthcoming 24 hours 
via radio. The granularity of prices comprises three discrete levels: “low,” 
“normal,” and “high.” Consumers can see these levels and plan accord-
ingly. In addition, the device visualizes the three levels in different colors 
(e.g., red stands for “high”), which makes the consumers more aware of 
the current price of electricity. Of course, dynamic prices are not merely 
intended for human interpretation. Intelligent devices can receive such 
price signals and decide when a certain process should be started (e.g., a 
dishwasher can be started automatically when the lowest tariff starts). This 
automation is done to a greater extent in so-called smart homes, which are 
described in Scenario 7.4.

In addition to the promising approach to realize demand response, 
dynamic prices also bear risks. As one example, it might happen that many 
devices start operation when a low-price time span starts. This may chal-
lenge the distribution grid as sudden significant increases in demand can 
hardly be handled by energy-balancing mechanisms and should therefore 
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be avoided. This might be realized by using individual dynamic prices for 
the different consumers (slight differences in order to smoothen demand 
curves), or by having a much finer granularity of prices. If granularity is 
fine enough, different user preferences might lead to a more widespread 
time span in which devices are started.

Many scientific studies have investigated the user acceptance and effi-
ciency of dynamic pricing. A meta study [50] has investigated the results 
of 24 different pilots. The result in almost all these studies was that con-
sumers do accept dynamic prices and adapt their behavior to a certain 
extent. Concretely, these studies show that dynamic pricing schemes are 
an efficient demand-response measure—a median peak reduction of 12% 
could be achieved. Naturally, user acceptance is particularly high if users 
are supported by intelligent technologies such as in a smart home (see 
Scenario 7.4) [109].

Scenario 7.3: Market-Based Demand Response with Control Signals
When energy retailers experience energy shortages during the day, they 
buy energy at intraday exchanges (see Section 7.2.2.2). When renewable 
production is low, this can be very expensive and it might be a better option 
to ask their customers to consume less energy within a certain time frame. 
Similarly, grid operators monitor the electricity grid and may want to ask 
consumers to temporarily reduce their consumption in order to achieve 
grid stability. This scenario describes an alternative to dynamic prices (see 
Scenario 7.2) for demand response, with a focus on solving grid issues. It 
requires respective contracts between the consumers and the involved 
parties that describe the incentives for the consumers to participate in the 
respective measures (e.g., reductions in the energy bill). Concretely, con-
sumers contract with specialized demand-side management companies, 
which might be the local distribution system operators. Further, an infra-
structure is required that can execute demand-response measures. This 
scenario describes market mechanisms different from dynamic prices that 
can be used for trading flexible loads for demand-response purposes, rely-
ing on such an infrastructure.

Energy retailers considering a demand-response measure can send 
their request to an electronic marketplace. As well, if overloads or voltage 
problems are detected, the grid operator can issue a similar request. Then, 
all affected demand-side management companies receive these requests 
from the marketplace, and each company submits an offer for resolving 
the issue. The marketplace selects a combination of offers that fulfills 
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the request. If the retailer or grid operator accepts the assembly of offers 
(the retailer alternatively might prefer to buy energy at the exchange if this 
is cheaper), the respective demand-side management companies are then 
responsible for conducting the demand-response request. The companies 
then send priority signals to the smart-home control boxes of their con-
tracted consumers. The control boxes send the signal to intelligent devices 
at the consumer’s premises as well as the charging infrastructure of elec-
tric vehicles.

Scenario 7.4: Smart Homes
Home automation has been known under the name “smart home” for 
quite some time. However, until lately, this meant mainly providing com-
fort features such as automatically shutting window blinds, switching the 
lights on automatically, or controlling the house’s air-conditioning system 
in accordance with current weather conditions. Smart homes are often 
equipped with some kind of energy production unit (e.g., photovoltaic or 
micro-CHP), and they can employ a central optimization component that 
controls most generation and utilization of energy in the house. Recently, 
the potential of home automation for smart-grid applications was recog-
nized [17]. While control components in smart homes primarily act based 
on the user’s presets, they could also take the current situation in the 
energy grid into account [23].

Some applications in a household have the potential to shift their time 
of operation into the future; others might run earlier than they nor-
mally would. Shifting their power consumption in time realizes demand 
response. Of course, not all applications in a house are suitable for such a 
purpose. Applications such as lighting or cooking bear no potential for a 
time-variable application [60, 111]. The case is different for the dishwasher 
or the washing machine. These appliances normally have no need for an 
immediate start and in that way present a potential for shifting the power 
demand to the future. As one example, users want to have clean dishes 
for dinner. Whether they get cleaned right after lunch or sometime in the 
afternoon does not matter.

Another possibility for shifting power demand is the variation of tem-
perature in heating or cooling applications. Such applications include 
refrigerators, and air-conditioning and heating systems. They all have 
to maintain a temperature within a certain range. The tolerable range in 
a freezer would be around −18° C with a tolerance of ±2° C. In normal 
operation mode, the device would cool down to −20° C, then pause until 
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the temperature reaches −16° C and then start over again. An intelligent 
system would be able to interrupt the cooling at −18° C or start cooling 
already at this temperature without waiting for a further rise, thus shift-
ing the power demand of the cooling device. The same scheme could 
be applied to the room temperature, as the comfort range normally lies 
around 21°C. Extended knowledge of user preferences could expand this 
potential even further. If the resident wants the temperature to be 21°C 
upon return in the evening, the system could heat the house up to 25°C in 
the afternoon and let it cool down slowly to the desired 21°C. This would 
require more energy in total, but could still be feasible in a future energy 
system where a lot of solar energy is available (and is thus cheap) during 
the day [73].

Profiles of typical user behavior could improve the demand shifting 
capabilities of a smart home even further if they were combined with an 
electric vehicle (EV). Not only could the charging profile of the vehicle be 
matched to the user’s and energy system’s demands, but the battery of the 
EV could also be used as temporary energy storage when the vehicle is not 
needed. This concept is known as vehicle to grid (see Scenario 7.5) [118].

Scenario 7.5: Energy Storage
Storing electric energy becomes more important as the share of volatile 
energy production (such as solar or wind power) increases. Although elec-
tric energy is difficult to store, some technical solutions do exist. In the 
context of storage for electrical power, one has to keep in mind some key 
parameters of such systems. The first is the efficiency and refers to the 
percentage of stored energy that can be regained. It is always below 100%. 
Other parameters are the capacity and the peak power of a storage system, 
which refer to the performance of such systems.

Today, the only storage systems with the ability to store a relevant 
amount of energy for a reasonable price are pumped-storage water-power 
plants. They store energy by pumping water from a low reservoir up into 
high storage and regain this potential energy by letting the water run 
down through generators, just like in water-power plants. While this type 
of storage could store energy for an almost unlimited time, its land use is 
quite high and it requires a natural height difference, which makes it dif-
ficult to realize such storage in densely inhabited regions.

Another option is the installation of large battery-based chemical stor-
age facilities. This is already done in some regions of Japan. Battery sys-
tems can be manufactured with almost any desired capacity and peak 
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power. The drawback of battery systems is their relatively high price. With 
the anticipated rise in the market share of EVs, this could change soon. 
Batteries lose capacity constantly during their lifespan. At a certain point 
in time, their power density is not high enough to use them as batteries for 
EVs. However, power density is negligible in the context of immobile stor-
age. Thus, battery storage facilities could benefit from a relevant market 
share of EVs by reusing their old batteries.

A further storage option would be the V2G concept [118]. As vehicles 
spend only about 5% of their lifetime on the road, an EV could potentially 
be used 95% of the time as local energy storage. Assuming 1 million EVs 
in one country (the German government, for instance, aims at reaching this 
number by 2020 [3]), this could sum up to about 15 gigawatt-hours (GWh) 
of storage capacity with a peak power of 3 to 20 gigawatts (GW), resem-
bling two to five typical pumped-storage water-power plants.

The profitability of a storage system is, depending on the business 
model, correlated with its usage, which nowadays is proportional to the 
number of store-drain cycles. As battery-quality factors decrease not only 
with their lifetime but also with each use cycle, the utilization of such sys-
tems must be considered with reservations.

Scenario 7.6: Management Decisions Derived from Energy Data
Energy has become a major cost factor for industry, public facilities, ware-
houses, small and medium enterprises, and even for universities. Thus, 
the management in any of these organizations demands decision sup-
port based on the energy consumption of the organization. Let’s take the 
example of a university where the data center is planning to install a new 
generation of servers. Not only the acquisition costs, but also cooling, 
space, and especially energy consumption must be considered. While for 
most such management decisions, IT solutions are available, yet energy 
consumption remains an open issue ignored by most enterprise resource 
planning (ERP) tools. Energy management opens up several new aspects 
to consider. In particular, with the availability of novel data sources, such 
as smart meters, we observe a high potential for such data-analysis toolkits.

Automated data analysis or semiautomated data exploration can pro-
vide an overview of the entire energy consumption of a university, a 
department, a single institute, or in other dimensions, detailed energy 
consumption for all servers, all personal computers, and many more such 
orthogonal views on energy consumption. It is essential to provide such a 
multitude of views on different aggregation levels as management decisions 
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might demand arbitrary selections of this huge information space. They 
require reports for such selected views, automated detection of suspicious 
consumption, comparison between different views, estimation of future 
consumption, etc.

The essential challenge lies in the large variety of management actions 
that base their decisions on such energy data. Each of these decisions 
poses different challenges on data storage, data analysis, and data inter-
action. Furthermore, they address different management levels, and thus 
subparts of an organization. For example, individual reports might be 
required for each professor about the energy consumption of the insti-
tute in the past few months. Such reports must show a detailed view of 
the energy consumption, distinguishing between different rooms or con-
sumer classes. Optimally, interesting views for each institute would be 
selected (semiautomatically). On the other side, some automated fault-
detection algorithms might be required for the maintenance department 
of a university. Techniques require an intuitive description of failing situ-
ations in contrast to the regular behavior of the facility under observation. 
Going up to the dean of a department or any higher instance in the uni-
versity, one requires more general and aggregated views. Typically, such 
information is required for strategic planning of new facilities, new build-
ings, or the estimation of future energy consumption.

Overall, we have highlighted several, quite different management deci-
sions that pose novel challenges to data analysis. They could be realized by 
novel data acquisition with smart meters. However, neither data storage of 
such large data volumes nor its analysis has been tackled by recent toolkits. 
It is an emerging application domain in database and data-mining research.

Further scenarios are described in subsequent chapters of this book. In 
particular, Chapter 8 describes a scenario that deals with finding the best 
mix of renewable demand management and storage, and Chapter 9 focuses 
on a scenario that deals with real-time identification of grid disruptions.

7.4 � DATA ANALYSIS CHALLENGES
With the rise of the smart grid, more data will be collected than ever before, 
and at finer granularity. This facilitates innovative technologies and bet-
ter control of the whole energy system. As one example, the availability of 
both consumption/generation data and predictions facilitates the realiza-
tion of demand-side management techniques such as demand response. 
Ultimately, this allows a better integration of renewables and a more sus-
tainable energy system. The new data sources and new technologies in 
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the future energy scenarios (see Section 7.3) call for more advanced data 
management and data analysis, as has already been used in the traditional 
energy system (see Section 7.2). This section describes the data-analysis 
challenges in the energy area and presents first solutions. In particular, we 
look at data management (Section 7.4.1); data preparation (Section 7.4.2); 
the wide field of predictions, forecasts, and classifications (Section 7.4.3); 
pattern detection (Section 7.4.4); disaggregation (Section 7.4.5); and inter-
active exploration (Section 7.4.6). Finally, we comment on optimiza-
tion problems (Section 7.4.7) and the emerging and challenging field of 
privacy-preserving data mining (Section 7.4.8).

7.4.1 � Data Management

Before addressing the actual data-analysis challenges, we present some 
considerations regarding data management. As motivated before, the 
rise of the smart grid leads to many large and new data sources. The 
most prominent sources of such data are smart meters (see Scenario 7.1). 
However, there are many more data sources, ranging from dynamic prices 
to data describing demand-response measures, to the use of energy stor-
ages and events in smart homes. In the following, we focus on smart-meter 
data. In Section 7.4.6.1 we deal with further data-management aspects in 
the context of the exploration and comparison of energy datasets.

As described previously, smart meters are able to measure energy con-
sumption and/or generation at high resolution, for example, using inter-
vals of 1 second. Figure 7.1 provides an example of such measurements 
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FIGURE 7.1  Typical electricity consumption in an office.
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and shows a typical electricity-consumption curve in a two-person office 
with a resolution of 1 second (see Section 7.4.2 and [135] for more details 
on the data).

From a data-analysis point of view, storing data at finest granularity for 
long time periods and for many smart meters would certainly be inter-
esting. However, in addition to privacy concerns (see Section 7.4.8), this 
might not be possible from a technical point of view. Therefore, one has to 
decide which amounts of data need to be kept for which purpose. In many 
cases, not the finest granularity is needed and samples or aggregations of 
meter data will suffice.

Table 7.1 illustrates the amounts of measurements and storage needs of 
smart-meter data, assuming that a single meter reading needs 4 bytes (B) 
in a database.* In the rows, the table contains different granularities, rang-
ing from 1 second (finest granularity provided by many meters) to 1 year 
(period of manual meter readings frequently used today). In the columns, 
the table contains the number of measurements and the respective stor-
age needs both for 1 day and 1 year. For instance, data at the 1-second 
granularity sums up to 32 mio meter readings per year, corresponding 
to 120 megabytes (MB). If one would like to collect such data for 40 mio. 
smart meters in one country (roughly in the size of Germany [143]), this 
would sum up to 4 petabytes (PB). As another example, the 15-minute 
granularity typically used for billing purposes still leads to 5 terrabytes 
(TB) in a whole country. Note that real memory consumption can easily 

*	 This does not include metadata such as date, time, and location; Schapranow et al. [125] reports 
that the size including such data could be much larger, that is, by a factor of 12.

TABLE 7.1  Storage Needs for Smart-Meter Data (pure meter readings only)

Metering
Granularity

No. Measurements Storage Need

1 day 1 year 1 day 1 year 1 day 1 year

  1 second 86.400 31,536.000 338 kB 120 MB 13 TB 4 PB
  1 minute   1.440 525.600 6 kB 2 MB 215 GB 76 TB
15 minutes 96 35.040 384 B 137 kB 14 GB 5 TB
  1 hour 24 8.760 96 B 34 kB 4 GB 1 TB
  1 day   1 365 4 B 1 kB 153 MB 54 GB
  1 month 12 48 B 2 GB
  1 year 1 4 B 153 MB

1 smart meter 40 mio. smart meters
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be twelve-old, as mentioned above [125]. Managing these amounts of data 
remains challenging.

As illustrated by Table 7.1, smart meters might lead to huge amounts 
of data. This is similar for other data sources in future energy systems. 
As mentioned previously, every actor involved in the energy system will 
only be responsible for certain subsets of the existing data. This might 
still lead to amounts of data that challenge the data-management infra-
structure. Concrete challenges for the respective actors are the selection of 
relevant data as well as aggregation and sampling of such data without loss 
of important information.

Several researchers have investigated storage architectures for smart-
meter data: Martínez et al. [19] has investigated centralized and distributed 
relational databases, key-value stores, and hybrid database/file-system archi-
tectures; Schapranow et al. [125] presents results with in-memory databases 
[112]; Biseiglia [26] presents experiences with the Hadoop [139] MapReduce 
[41] framework; and Rusitschka et al. [120] has investigated further cloud-
storage techniques. Apart from that, smart-meter readings can be managed 
with techniques from data streams [10], because fine-grained readings can 
be seen as such a stream (see Section 7.4.4).

One approach to deal with huge amounts of data is compression. It 
might ease the storage using one of the architectures mentioned previ-
ously. Schapranow et al. [125], for example, reports a compression factor of 
8 when using lossless compression techniques in database technology (on 
metering data including metadata). Using lossy compression techniques 
on fine-grained data (see Figure 7.1 for an example) that approximate the 
original data seems to make compression factors of several hundred pos-
sible, depending on the required accuracy and granularity of the data. Such 
an approximation of time-series data can be done with various regression 
models, for instance, using straight-line functions [35, 47], linear combina-
tions of basis functions, or nonlinear functions (using respective approxi-
mation techniques, for example, described by Seidel [127] and Tishler and 
Zang [130]). However, the authors of this chapter are not aware of any 
studies that investigate the trade-off between compression ratio, compu-
tational costs, and the usefulness of lossy compressed data for different 
applications based on smart-meter data of differing temporal granularities. 
Further, lossy compression techniques would need to be integrated with 
data-management technology. Investigating respective techniques and val-
idating their deployment in realistic scenarios—in particular with regard 
to the trade-off mentioned—is an open research problem.



204    ◾    Computational Intelligent Data Analysis for Sustainable Development

Data from smart meters belongs to the group of time-series data [86]. 
In addition to compression via regression techniques and the actual stor-
age of such data, many other data-management aspects are of importance. 
This includes indices and similarity-based retrieval of time series (surveys 
of these techniques can be found by Fink and Pratt [52], Hetland [64], and 
Vlachus et al. [134]). Such techniques are of importance for many ana-
lytical applications that are based on such data. For example, indexes and 
similarity searches can be used to retrieve consumers with a similar elec-
tricity demand, which is important in classification and clustering (see 
Sections 7.4.3.2 and 7.4.4.1, respectively). Investigating the usage of the 
mentioned techniques from time-series analysis in the context of energy 
data should be promising as they are rarely mentioned in the literature.

7.4.2 � Data Preprocessing

Data preprocessing is an essential step in data-analysis projects in any 
domain [30]. It deals with preparing data to be stored, processed, or ana-
lyzed and with cleaning it from unnecessary and problematic artifacts. 
It has been stated that preprocessing takes 50% to 70% of the total time 
of analytical projects [30]. This certainly applies to the energy domain as 
well, but the exact value is obviously highly dependent on the project and 
the data. In the following, we highlight some preprocessing challenges 
that are specific to the energy domain. Many further data-quality issues 
are present in many other domains and might be important here as well 
(see, e.g., textbooks by Berthold et al. [24], Han et al. [61], and Witten et al. 
[140] for further issues and techniques).

Data from smart meters frequently contains outliers. Certain outliers 
refer to measurement errors rather than to real consumption, as can be 
seen in the raw data visualized in Figure 7.1: The peaks roughly at 04:30 
and at 10:00 happening at single seconds are caused by a malfunction of 
measurement equipment. The smart meter has malfunctioned for some 
seconds, resulting in an accumulated consumption reported at the next 
measurement point. Such outliers must be eliminated if certain functions 
need to be applied afterward. For example, calculating the maximum con-
sumption of uncleaned data in Figure 7.1 would not be meaningful. Other 
outliers might refer to atypical events or days: Consumption patterns of 
energy might differ significantly when there is, for example, a World Cup 
final on TV or if a weekday becomes a public holiday. (Figure 7.2(b) illus-
trates that load profiles at weekdays and weekends are quite different.) 
Such exceptional consumption patterns should not be used as a basis for 
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predictions of “normal” days, but analyzing them might be particularly 
interesting if one approaches a similar special event. We elaborate a bit 
more on unsupervised learning techniques for preprocessing—in particu-
lar, cluster analysis and outlier detection—in Section 7.4.4.

Another common problem with smart-meter data concerns timing 
issues. It might happen that (1) a smart meter operating at the 1-second 
granularity produces a few measurements too much or too little during one 
day (or week, month, etc.); or (2) that a meter operating at the 15-minute 
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FIGURE 7.2  Typical aggregated demand curves. (Data from Metered Half-
Hourly Electricity Demands[8].)
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granularity does its measurements not exactly on the quarter hour. Both 
cases might be negligible in certain situations, but should be tackled in 
other situations. While one missing second might be quite meaningless, 
ignoring it might be problematic in light of laws on weights and measure-
ments. Billing in the presence of dynamic energy prices (see Scenario 7.2) 
might require measurements at exact points in time. If measurements are, 
say, 5 minutes delayed, this could make significant differences (e.g., when 
the start of energy-intensive processes are scheduled when a cheap time 
span starts). A possible solution for the first problem would be to add/
subtract the missing/additional measurements to/from the neighboring 
ones. The second problem might be solved using regression techniques 
that enable estimations of measurements at arbitrary points in time.

7.4.3 � Predictions, Forecasts, and Classifications

Predictions and classifications belong to the most important data-analysis 
challenges in the energy domain. This is not only true for future scenar-
ios as described in Section 7.3, but is already crucial today: Predictions of 
consumption and generation are essential for making profits in today’s 
energy markets (see Section 7.2). In the following, we elaborate on time-
series forecasting first; then we focus on predictions and classifications of 
consumers and their behavior before discussing time-dependent events.

7.4.3.1 � Time-Series Forecasting
As mentioned previously, numerical predictions of time-dependent 
data—also called time-series forecasting—are crucial in today’s and future 
energy scenarios. In the following, we list a number of scenarios where 
this is the case:

•	 Predicting consumer demand is needed in many different scenarios: 
(1) In energy trading (see Section 7.2.2), retailers are interested in 
predicting the demand of their customers. The more precise this 
prediction is, the more energy can be bought at potentially cheaper 
long-term markets instead of buying it at the intraday market or pay 
for energy balancing. Buying more “cheap” energy than needed is 
also unprofitable, as retailers have to pay for it even if their customers 
do not use it. (2) To realize dynamic pricing (see Scenario 7.2), retail-
ers need to know the predicted consumption of their customers. This 
is to derive the prices in a way that the customers might shift loads 
to other time spans in order to align consumption with previously 
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procured energy or predicted renewable production. (3) To avoid grid 
issues, balance responsible parties need to plan their grid capacities 
based on the predicted load in the respective areas. If predicted high 
loads (e.g., when charging electric vehicles) are supposed to cause 
grid issues, demand-response scenarios could ease the situation (see 
Scenarios 7.2 and 7.3). (4) Smart homes (see Scenario 7.4) typically 
plan their energy consumption and generation in advance, requiring 
the predicted consumption. (5) An operator of energy-storage facili-
ties (see Scenario 7.5) needs to know the predicted consumption in 
order to plan its operation accordingly. (6) Deriving management 
decisions (see Scenario 7.6) frequently requires not only information 
on actual consumption, but also on the forecasts. As an example, this 
allows assessing if a certain unit within an organization consumes 
less or more than predicted.

•	 Predicting renewable generation is needed in exactly the same sce-
narios as predicting consumer consumption of conventional energy. 
This is because generation and consumption must be equal at all 
times. Thus, all mechanisms requiring predicted consumption also 
need to know the predicted generation of energy.

•	 Predicting grid loads is important in the short run and in the long 
run: Knowing the predicted grid load for certain segments for sev-
eral hours in advance is important for planning demand-response 
measures (see Scenarios 7.2 and 7.3) and operating energy-storage 
facilities (see Scenario 7.5). Having an estimate for the grid load in 
several years is important for electricity grid planners (i.e., the dis-
tribution system and transmission system operator, see Section 7.2.1) 
who need “to guide their decisions about what to build, when to 
build, and where to build” [85].

•	 Predicting flexible capacities is needed in several scenarios and is 
related to the prediction of consumer demand, as an energy demand 
can only be shifted if it actually exists. Concretely, the requirements 
of the demand-response scenarios considered in this chapter are as 
follows: (1) To bid for demand shifting, a demand-side manager 
in the control-signal scenario (see Scenario 7.3) needs to know the 
load-shifting potential of its customers as precisely as possible. (2) A 
retailer who uses dynamic prices (see Scenario 7.2) needs to estimate 
the number of customers who react to price incentives, along with 
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the respective volumes. This requires knowing how much load can 
potentially be shifted.

•	 Predicting energy storage capacities is helpful in storage scenarios (see 
Scenario 7.5). As storage operators typically aim to maximize profit 
by means of energy trading (see Section 7.2.2), they need to know the 
future capacities. This can be an input for optimization algorithms that 
determine the scheduling of filling-up and emptying an energy storage.

•	 Predicting energy prices is certainly not easy, but there might be some 
regularity in energy prices that facilitate forecasting. Concretely, 
the following two directions are of interest: (1) If one knows the 
future energy prices with a certain probability in energy trading (see 
Section 7.2.2), then one can obviously reap large benefits. For exam-
ple, in the presence of demand response (see Scenarios 7.2 and 7.3), 
one can shift the loads of customers to cheaper points in time. (2) In 
the presence of dynamic prices (see Scenario 7.2) that are not known 
long in advance, one can make one’s own predictions of the energy 
price and speculatively adjust the consumption. This could be done, 
in particular, in highly automated smart homes (see Scenario 7.4).

All these scenarios are different, but they deal with the same problem 
from a technical point of view: time-series forecasting. However, the differ-
ent scenarios require different data. Historical generation and consump-
tion data from smart meters—possibly aggregated from many of them—is 
the basis for most scenarios. Other scenarios rely on historical storage 
capacities, data on demand-response measures conducted in the past, or 
energy prices, or they require external data such as weather forecasts for 
predicting renewable generation. In the following, we focus on predic-
tions of consumption. The other predictions mentioned previously can be 
treated in a similar way with their own specific data.

Predictions and forecasts can generally be done by learning from 
historical data. In the case of energy consumption, this is a promising 
approach, as there are certain regularities in the data: (1) The consumption 
within 1 day is typically similar. People get up in the morning and switch 
the light on, they cook at noon and watch TV in the evening. Figure 7.2(a) 
illustrates two typical demand curves during two different days, aggre-
gated for all consumers in the United Kingdom (UK). (2) The consump-
tion on weekdays is typically similar, while it is different on weekends 
and national holidays where, for example, factories are not running. 
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Figure 7.2(b) describes the typical energy consumption in the course of 
a week. (3) The electricity consumption in winter is different from that in 
the summer. This is caused by differing usages of electrical light and pos-
sibly heating. Figure 7.2 illustrates this lower demand in summer as well as 
different consumption patterns on winter and summer days.

Probably the easiest approach for predictions of consumption is to aver-
age the curves of a certain number of similar days in the past, days that do 
not refer to special events. As one example, to predict the demand of a par-
ticular Sunday, one could average the demand from the past four Sundays 
where no special events occurred. This could be improved by increasing 
the influence of Sundays having a similar weather forecast.

The different approaches for time-series forecasts differ not only in the 
techniques involved, but also in the time span for the predictions: Are 
predictions needed for the next couple of hours, for the next day, next 
month, or next year? In general, time-series forecast techniques can be 
categorized as follows [36]:

•	 Auto regression is a group of techniques using mathematical models 
that utilize previous values of the time series. Some of these tech-
niques, called moving average, rely on sliding-window approaches 
using historical time series. Various enhancements are used to deal, 
for example, with seasonal effects in energy data.

•	 Exponential-smoothing techniques are moving-average approaches 
but use a weighting with factors decaying exponentially over time.

Many of the concrete approaches for auto-regression and exponential 
smoothing rely on parameter estimation, for which various techniques 
can be used.

Several techniques from machine learning have also been adapted to 
time-series forecasting. This includes artificial neural networks, Bayesian 
networks, and support-vector machines. See, for example, textbooks by 
Berthold et al. [24], Han et al. [61], Mitchell [95], and Witten et al. [140] for 
descriptions of these algorithms.

Dannecker et al. [36] provides an extensive review of all the previously 
mentioned techniques in the context of energy; Alfares and Nazeeruddir [16] 
is another one; and Hippert et al. [66], in particular, reviews neural-network 
approaches, which can be combined with similar-day approaches men-
tioned previously [93]. While a large number of papers focus on predictions 
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of consumption of energy, many of them can also be used for other pre-
dictions. In addition to more general reviews [16, 36, 66], Aggarwal et al. 
[14] reviews price-forecasting techniques in particular. Another direction of 
work is the forecast of wind-power production [20, 84, 89]. The application 
of some of the above-mentioned time-series forecast techniques has been 
investigated in this context for both short- and long-term predictions, based 
on data from wind-energy production and meteorological observations.

Dannecker et al. [37] is a study on hierarchical distributed forecasting of 
time-series of energy demand and supply. Such approaches tackle explic-
itly the huge amounts of data that might need to be considered when mak-
ing forecasts at higher levels, such as a whole country (see Section 7.4.1). In 
addition to distributed forecasting, the authors also deal with the impor-
tant problem of forecast model maintenance and reuse previous models 
and their parameter combinations [38].

Time-series forecasting seems to be quite a mature field, but it is still 
a challenge for the future energy domain. It has been applied to forecast-
ing demand, generation, and prices, but there is little literature available 
regarding the other future energy scenarios listed above. Particularly in 
light of dynamic pricing (see Scenario 7.2), other demand-response mea-
sures (e.g., Scenario 7.3), energy storage (see Scenario 7.5) and distributed 
and volatile small-scale generation (see Section 7.1), predictions of con-
sumer demand, grid usage, etc., has become much more challenging. This 
is because many more factors than pure historical time series are needed 
to make accurate predictions. Section 7.4.3.2 sheds some light on the 
human factor, but many further factors must be integrated in an appropri-
ate way to achieve the high-quality forecasts that are needed in the smart 
grid. (Many future energy scenarios require extremely high accuracies of 
predictions; that is, even small deviations from the optimal result may 
cause huge costs.) This calls for more research on the question of which 
factors are useful in which situation and which forecast model (or ensem-
ble thereof) to use for which task when certain data are available. These 
questions can certainly not be answered in general and must be addressed 
individually. However, some guidance and experience would be of high 
practical relevance for new smart-grid scenarios.

7.4.3.2 � Predicting and Classifying User Behavior
Predicting and classifying users and their behaviors is one of the most pop-
ular applications of data mining. This is also the case in the energy domain. 
We assemble an exemplary list of respective challenges in the following:
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•	 Electricity retailers (see Section 7.2.1) acting in a very competitive 
market want to classify customers for marketing reasons. For exam-
ple, if they would like to introduce a new tariff scheme targeting a 
certain group of consumers, say families living in apartments, they 
would like to select this target group for marketing campaigns, based 
on the energy consumption patterns.

•	 In demand-response scenarios relying on dynamic prices or con-
trol signals (see Scenarios 7.2 and 7.3), the respective parties would 
like to predict which consumers will participate in a certain demand-
response measure (e.g., a price incentive) and how much demand 
could be shifted with this particular measure. Similar predictions are 
of relevance in smart homes.

•	 In smart homes (see Scenario 7.4), user behavior classification can 
decide whether a user will go to work, will stay at home, will use 
an EV, etc. This is important for scheduling energy generation and 
consumption. Similar classifications are important in the field of 
EVs (see the paragraph on new loads in Section 7.1 and Scenario 7.5). 
Intelligent charging and V2G mechanisms [118] need to know, for 
example, whether the user will behave as usual and will solely drive 
to work and back, or if the user might plan any longer or further trips.

Again, individual challenges require different data, ranging from gen-
eral customer data and smart-meter readings to data describing demand-
response measures, events in a smart home, and EV usage. As prediction 
and classification are very mature fields in data mining and machine learn-
ing, a large number of potentially relevant techniques is available. This 
includes decision tree classifiers, neural networks, support vector machines, 
naïve Bayes classifiers, and k-nearest neighbor algorithms. More informa-
tion can be found in the relevant literature [24, 61, 95, 140]. However, such 
classifiers cannot be applied directly to all kinds of relevant data in order 
to predict behavior. If, for example, sequential data of behavioral events 
are available, combined approaches [29] might be needed to deal with the 
data. To cope with time-series data from smart meters, aggregates must 
be calculated to feed the data into standard classifiers. Alternatively, more 
specific time-series techniques [86] can be applied (see Section 7.4.1), for 
example, specialized time-series classification [56, 76].

A few works on classifying electricity consumers are available in the 
literature. Ramos and Vale [116] first uses clustering techniques to identify 
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different groups of customers (see Section 7.4.4.1). Then, the authors 
assemble feature vectors and use a standard decision-tree classifier to learn 
these groups and to automatically assign new consumers to them. They 
assemble the features from averaged and normalized daily load profiles 
of the consumers by defining a number of aggregates. These aggregates 
include ratios between peak demand and average demand, ratios of energy 
consumed at lunchtime, at night, etc. [90] extracts its features differently. 
The authors use the average and the peak demand of a consumer, as well 
as coefficients from time-series forecasting techniques [36]. For classifica-
tion, the authors employ linear discriminate analysis.

Predicting and classifying the behavior of customers has been an impor-
tant application of data analysis in the past. Surprisingly, not that much 
research has been conducted in the context of energy consumer behavior. 
However, as more market roles are arising (see Section 7.2.1) and poten-
tially more data will be collected, the need of such analytics will increase. 
Some analytic challenges can certainly be solved by means of established 
techniques from data mining and machine learning. Because data might 
be complex and come from different sources, there is also a need for fur-
ther developing specific algorithms and to combine different analysis 
techniques [29]. Prediction and classification of energy customer behavior 
is therefore an important field in domain-driven data mining [28].

7.4.3.3 � Predicting and Classifying Consumption Events
In future energy systems, there are a number of challenges involving pre-
diction and classification of events and consumption patterns:

•	 Optimized control and planning in a smart home (see Scenario 7.4) 
requires the detection of load profiles and the prediction of events, 
together with their respective forecasts [117, 141].

•	 In the smart-meter scenario (see Scenario 7.1), the visualization could 
be enhanced by displaying not only a household’s total consumption, 
but also to disaggregate the load curve into the different appliances 
and highlight them in the visualization. This would increase user 
awareness and boost energy efficiency. Pattern-recognition algo-
rithms can be used to identify appliances within the household’s 
load curve [63, 87].

•	 Another use case for load-pattern recognition are cross-selling activi-
ties conducted by, for example, value-added service providers. By 
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analyzing single appliances, special sales offers could be triggered in 
cases where new energy-efficient appliances are available.

•	 Energy-efficiency effects become more important with the size of 
the loads that are considered. Therefore, identifying consumption 
patterns is of importance in complex environments as described in 
Scenario 7.6.

•	 Charging EVs will become a major load in electricity grids. To illus-
trate, driving 10 kilometers to work and back resembles four loads of 
a washing machine. These loads need to be predicted in a reliable way 
in order to allow the future energy system to make appropriate sched-
ules both within a smart home and in the whole electricity grid [118].

•	 Detection and prediction of user behavior events in electric mobility 
(an event could be to start a certain trip) is quite complex, as a vehicle 
is often used by multiple people. Such knowledge and predictions are 
essential to facilitate smart charging of EVs and V2G (see Scenario 7.5).

Massively distributed generation and new loads (see Section 7.1) can 
lead to problematic grid situations. Detecting and predicting such events 
is a major topic in smart grids. Chapter 8 in this book elaborates this in a 
comprehensive way.

From a technical point of view, the mentioned challenges can be divided 
into two parts: (1) prediction of events and (2) classification of consump-
tion patterns. Abundant research has been conducted in the field of pattern 
detection from smart-meter data. This has been published partly in the pri-
vacy domain [96, 113] (see Section 7.4.8). Pattern detection is also a basic 
block for disaggregation techniques, which we describe in more detail along 
with the techniques in Section 7.4.5. Early works have already shown that 
the electricity consumption of a whole house can be disaggregated, with 
high accuracy< into the major appliances [49]. Nizar et al. [108] is a sur-
vey of load profiling methods. Event prediction has received less attention 
in the context of energy. While traditional techniques such as sequence 
mining [62] can be used in principle to predict discrete events [46], fur-
ther techniques from machine learning have been adapted recently. For 
instance, Savio et al. [124] performs event prediction in the field of electric-
ity consumption with neural networks and support vector machines.

To summarize, there is a huge need for the prediction of events and 
for the classification and prediction of consumption patterns. On the 



214    ◾    Computational Intelligent Data Analysis for Sustainable Development

one side, quite a bit of research has been conducted in pattern detection 
(classification of patterns), partly in the context of disaggregation (see 
Section 7.4.5). On the other side, techniques for predicting consumption 
patterns and events of user behavior can still be improved for applica-
tion in the field of future energy. As the demand for accurate techniques 
becomes a given, respective research would be an opportunity to support 
the developments of the smart grid significantly.

7.4.4 � Detection on Unknown Patterns

In many of the described energy scenarios, data analysis is needed to detect 
novel, unknown, and unexpected knowledge. Such knowledge is repre-
sented by hidden patterns describing the correlation of energy measure-
ments, groups of similar consumers, or deviating objects such as a single 
household with unexpected energy consumption. In all these cases, no 
information is given about the type of pattern or its characteristics, and 
there are no example instances known for this pattern. Thus, this unsu-
pervised learning is clearly different from the prediction techniques 
described in Section 7.4.3. In the following, we describe pattern-detection 
techniques focusing on clustering, outlier mining, and subspace analysis. 
We highlight the applicability of these techniques in the energy domain. 
However, we will also point out open challenges not yet addressed by these 
data-analysis paradigms.

We begin with a brief overview of clustering applications on energy data:

•	 Unsupervised learning as preprocessing step. In most cases, the pro-
posed techniques, such as clustering and outlier mining, are used 
as preprocessing steps to other data-analysis tasks. For example, 
for prediction tasks (see Section 7.4.3), it is essential to know about 
substructures in the data. One can train specific classifiers for each 
individual cluster of customers. In other cases, one can extract novel 
features by cluster analysis and use these features for the prediction 
of unknown objects. Outlier analysis can be used to clean the data; 
it removes rare and unexpected objects that hinder the learning pro-
cess. Pattern detection can assist in all of the previously mentioned 
scenarios (see Section 7.3) as a data preprocessing step. However, it 
is also of high value for knowledge discovery, as described in the fol-
lowing two cases.
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•	 Pattern detection for enhanced demand response. In demand response 
(e.g., for dynamic prices in Scenario 7.2), one tries to match energy 
production with energy consumption, which requires a deep under-
standing of both sides. For the generation side, one has proposed 
prediction techniques that are used to forecast wind or solar energy 
production (see Section 7.4.3.1). For the consumption side, in addi-
tion to forecasts, one is interested in customer profiles that provide 
insights about their daily behavior (see Section 7.4.3.2). As behaviors 
change dramatically over time, one cannot always rely on histori-
cal data and learning algorithms. Thus, unsupervised methods (e.g., 
clustering or outlier mining) are means for this kind of data analysis. 
Clustering algorithms detect groups of customers showing highly 
similar behavior, without any prior knowledge about these groups. 
In particular, for demand-side management, these clusters can be 
used for specific strategies in each customer group. While some cus-
tomers will not be able or willing to participate in some management 
actions, others will show high potential for shifting parts of their 
energy consumption. It is essential to be aware of such groupings to 
utilize the overall potential of demand-side management.

•	 Automatic smart-home surveillance. As one part of smart homes (see 
Scenario 7.4), we discussed demand response in the previous exam-
ple. However, smart homes have further potential for data-analysis 
tasks. Having all the energy consumption data of smart homes avail-
able, one can design automated surveillance mechanisms assisting, 
for example, elderly people in their daily living. Energetic profiles are 
very detailed and reveal a lot of information about our daily behavior 
and can be used for tracking, warning, and assistance systems. For 
example, in assisted home living, it is crucial to know if elderly people 
change their daily habits. A youngster who typically moves around 
and uses many electric devices throughout the day will become 
highly suspicious if she or he stops this behavior for one day. Such 
dramatic changes can be detected as unexpected patterns and used 
as warnings for medical or other assistance parties. This example 
highlights the requirements for unsupervised learning techniques. 
Although some patterns might be learned with supervised tech-
niques, most unexpected behavior will be new for the system and 
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difficult to be learned. In particular, we observe outlier mining as 
one of the key techniques in the area of energy data analysis.

•	 Cluster customers for marketing reasons. Corresponding to the 
case of a classification of the customers (see Section 7.4.3.2), cluster 
analysis can detect the different groups of customers of an electric-
ity retailer. This promises interesting insights into the customer base 
and is a basis for the design of tariffs.

7.4.4.1 � Clustering
Let us now abstract from these individual scenarios and discuss some 
well-known techniques in pattern detection. Clustering is an unsuper-
vised data-mining task for the grouping of objects based on their mutual 
similarity [61]. Algorithms can detect groups of similar objects. Thus, they 
separate pairs of dissimilar objects into different groups. A large variety of 
approaches have been proposed for convex clusters [43, 92], density-based 
clusters [48, 65], and spectral clustering [106, 107]. Further extensions 
have been proposed for specific data types such as time series [76, 114]. All 
these approaches differ in their underlying cluster definitions. However, 
they have one major property in common: they all output a single set of 
clusters, that is, one partitioning of the data that assigns each object to a 
single cluster [102].

We now discuss this single clustering solution for customer segmenta-
tion based on smart-meter data. One has a given database of customers 
(objects) that are described by a number of properties (attributes). These 
attributes can be various types of information derived from smart-meter 
measurements (see Scenario 7.1). For example, each customer has a certain 
set of devices. For each device, one might detect its individual energy con-
sumption and additional information about the time points when these 
devices are used in the household [78] (see Sections 7.4.3.3 and 7.4.5 for 
further details about the identification of devices). Obviously, one can 
detect groups of customers owning different types of devices. This group-
ing can be used to separate customers into different advertisement cam-
paigns (expensive devices, low-budget devices, energy-efficient devices, 
and many more). However, in contrast to this simple partitioning, one 
might be interested in several other groupings: Each customer is part of 
groups with respect to the daily profile (early leaving, home office, part-
time working), or with respect to a current living situation (single house-
hold; family without children, with children, elderly people). This example 
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highlights the need for multiple clustering solutions on a single database 
[102]. In particular, with the large number of attributes given, it is unclear 
which of them are relevant. It is an additional challenge for data analysis 
to select these attributes.

Dimensionality-reduction techniques have been proposed to select a 
set of attributes. They tackle the “curse of dimensionality,” which hinders 
meaningful clustering [25]. Irrelevant attributes obscure the cluster pat-
terns in the data. Global dimensionality techniques, such as principle com-
ponent analysis (PCA), reduce the number of attributes [71]. However, the 
reduction may obtain only a single clustering in the reduced space. For 
locally varying attribute relevance, this means that some clusters will be 
missed that do not show up in the reduced space. Moreover, dimension-
ality reduction techniques are unable to identify clusterings in different 
reduced spaces. Objects may be part of distinct clusters in different data 
projections. Our customer segmentation example highlights this prop-
erty. Each cluster requires an individual set of relevant dimensions.

Recent years have witnessed increasing research in clustering in high-
dimensional spaces. Projected clustering or subspace clustering aims at 
identifying the locally relevant reduction of attributes for each cluster. In 
particular, subspace clustering allows identifying several possible sub-
spaces for any object. Thus, an object may be part of more than one cluster 
in different subspaces [101, 128].

For customer segmentation based on energy profiles, several open chal-
lenges arise in the detection of object groups and the detection of relevant 
attributes for each of these groups. Many private and public organizations 
collect large amounts of energy measurements; however, their relevance 
for individual patterns is still unclear. Neither is clustering on the full set 
of attributes a solution, nor is preselection of relevant attributes by dimen-
sionality reduction techniques. Costly search in all possible projections 
of the data must be performed to identify multiple clustering solutions 
with respect to different attribute combinations. Thus, the scalability of 
such data-mining techniques will be a major challenge, as highlighted by 
a recent study [101]. As described in Section 7.4.1, smart-meter readings 
will provide huge databases. Only a few publications have focused recently 
on such scalability issues [34, 98, 99]. However, most subspace cluster-
ing models are still based on inefficient processing schemes [15, 72, 100]. 
Further challenges arise in the stream processing of such data [11]. It raises 
questions on the detection of clusters, but also on their tracking over time 
[59, 129]. Tracking the change of customer profiles will be an essential 
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means for tracking the energy demands in demand-site management sys-
tems or online adjustment of energy prices in future energy markets.

The literature in the field of energy data analysis has focused only on 
clustering similar consumers or consumption profiles, making use of 
similar preprocessing techniques as in classification (see Section 7.4.3.2). 
Examples of such works are by Li et al. [90], Ramos and Vale [116], and 
Verdú et al. [132]. However, they do not address the mentioned challenges 
in tracing, multiple clustering solutions, and local projection of data, 
which leave a high potential for enhanced clustering results.

7.4.4.2 � Outlier Mining
In contrast to clusters (groups of similar objects), outliers are highly devi-
ating objects. Outliers can be rare, unexpected, and suspicious data objects 
in a database. They can be detected for data cleaning, but in many cases 
they provide additional and useful knowledge about the database. Thus, 
pattern detection considers outliers as very valuable patterns hidden in 
today’s data. In our previous example, suspicious customers might be 
detected that deviate from the residual customers. Considering the neigh-
boring households, one might observe very high energy consumption for 
heating devices. While all other households in this neighborhood use oil 
or gas for heating, the outlier is using electric heating. There have been 
different outlier detection paradigms proposed in the literature to detect 
such outliers. Techniques range from deviation-based methods [119], to 
distance-based methods [80], to density-based methods [27]. For exam-
ple, density-based methods compute a score for each object by measuring 
its degree of deviation with respect to a local neighborhood. Thus, one is 
able to detect local density variations between low-density outliers and their 
high-density (clustered) neighborhood. Note that in our example, the neigh-
borhood has been literally the geographic neighborhood of the household. 
However, it can be an arbitrary neighborhood considering other attributes 
(e.g., similarity to other customers with respect to the set of devices used).

Similar to the clustering task, we observe open challenges in online 
stream analysis for outlier detection [9], the detection of local outliers 
in subspace projections [12, 103], and the scalability to large and high-
dimensional databases [40]. An additional challenge is the description 
of such outlier patterns. Most approaches focus only on the detection of 
highly deviating objects. Only a few consider their description [18, 79]. 
Similar to subspace clustering, it seems very promising to select relevant 
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attribute combinations as descriptions. Based on this general idea of sub-
space mining in arbitrary projections of the data, several preprocessing 
techniques for the selection of subspaces have been proposed [33, 74]. They 
try to measure the contrast between outliers and the clustered regions of a 
database. A first approach proposes a selection based on the entropy mea-
sure [33]. A subspace is selected if it has low entropy, that is, if it shows a 
large variation in the densities. More recent approaches have focused on 
statistical selection of high-contrast regions [74]. They compare the devi-
ation of densities and utilize only the most significant subspaces. Such 
subspaces can be seen as the reasons for high deviation. In our example, 
high-contrast subspaces might be “energy consumption of heating devices” 
and “age of the refrigerator.” This combination might be characteristic for 
the distinction of modern versus old households and might reveal some 
unexpected cases with old refrigerators (that should be exchanged) in an 
energy-efficient house. This example shows that it is important to detect 
these cases. However, it is even more important to provide good explana-
tions of why these cases show high deviation.

Looking at the future users of such outlier-mining techniques in, for 
example, smart homes, we observe that most of them will be people with 
no background in data analysis. This will raise new visualization and 
explanation requirements for result presentation. It requires novel data-
mining techniques that are able to highlight the differences between pat-
terns. For instance, such techniques could reveal the reason for the high 
deviation of a single object or the difference between two groups of cus-
tomers. First techniques in this direction have been proposed [22]. Given 
two different datasets, they try to measure the difference and output char-
acteristic properties to distinguish between these sets. Very promising 
instantiations have been applied to emerging pattern detection or novelty 
detection in the context of stream data [44].

As outlier mining is an established technique in data mining, it has 
been used in several works in the field of energy data. To name some 
examples, Li et al. [90] uses outlier mining to detect abnormal energy use. 
Chen et al. [32] defines so-called load cleansing problems for energy data 
and develops techniques similar to outlier mining. Jakkula and Cook [67] 
presents specialized outlier detection algorithms dedicated to power data-
sets collected in smart homes. All these approaches can be seen as first 
instantiations of simple outlier models. The further potential of energy 
data must be exploited by more enhanced outlier detection techniques.
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7.4.5 � Disaggregation

For achieving energy efficiency, deep knowledge concerning the dis-
tribution of the consumed power among the devices within a facility is 
important (see Scenarios 7.1 and 7.6). In practice, this is often achieved by 
installing metering devices directly on single devices, which is expensive, 
time-consuming, and usually not exhaustive. It would be easier to derive 
the power distribution from the metered data at the interface to the grid 
(see also Section 7.4.3.3).

Smart metering, that is, high-resolution metering and remote trans-
mission of metered data, promises to provide that deep look into the 
infrastructure at all metering points. Techniques for achieving this are 
commonly called nonintrusive (appliance) load monitoring (NILM, some-
times also NALM) or disaggregation of power data. This has potential 
applications in achieving better energy efficiency (see Scenarios 7.1 and 7.6) 
and in facilitating demand response (see Scenarios 7.2 and 7.3) and load 
management (e.g., in a smart home, see Scenario 7.4). Thus, the topic has 
recently sparked increased interest [31, 53, 55, 78, 82, 91, 142] after further 
research (including, e.g., [49, 87]) has been done since the first paper was 
published in 1992 [63].

Common smart meters in residential and industrial environments are 
placed at the interface to the distribution grid. They measure the active and 
reactive energy used by all the devices connected to the electric circuit that 
originates at the meter. Additional values can be measured, such as peak 
loads. Multiple meters can be installed at a single facility, which is usually 
the case if separated billing of the consumed energy is required. For billing 
purposes, such meters pick up the consumed energy typically in intervals 
of fifteen minutes. However, an interface with a higher temporal resolution 
is usually provided at the meter itself, which can be accessed locally.

As these meters are increasingly available, it is tempting to also use the 
metered data for analytical purposes. In a residential setting, transparency 
of energy consumption may lead to energy conservation (see Scenario 7.1). 
NILM has also been proposed as a tool for verifying the effectiveness 
of demand-response measures. In industrial or commercial settings, an 
energy audit is a valuable tool for identifying potentials for energy effi-
ciency (see Scenario 7.6). Such audits can be executed more thoroughly 
the more detailed information is available. The (temporary) installation 
of sub-meters is therefore commonly practiced and could be, at least par-
tially, substituted by NILM.
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An example of real energy data available to load disaggregation is visu-
alized in Figure 7.1. If this load curve would represent what one has been 
doing throughout that day, one would be able to assign labels to certain 
patterns in the load curve. These labels would describe events or activities 
of that day. However, if somebody else looks at the load curve, they cannot 
directly infer information about one’s daily activities. They might be able 
to identify certain devices, such as an oven. The lack of contextual infor-
mation limits the usage of this data. This calls for automated disaggrega-
tion and visualization, as described in Section 7.4.3.3.

The load curve of a factory or a commercial building is much more com-
plex than that of a household or an individual person (see Scenario 7.6). 
Many more individuals and devices are contributing to the load curve, and 
many of them with individual behavior. Complex industrial processes are 
executed at the same time. However, there is a lot of contextual informa-
tion available that can be used to identify individual devices and processes.

In addition to the curve representing the real power over time, values 
such as reactive power, peak current, and possibly other electrical fea-
tures can also be used. From these time series, a lot of higher-level infor-
mation can be deduced, such as features in the frequency domain, the 
instantaneous admittance waveform, and more [91].

A sophisticated energy auditing system should be enabled to map pro-
cess information to load patterns. It should be able to identify recurring 
patterns. It might be necessary to initialize this system with additional 
knowledge. Load disaggregation should be as accurate as possible and 
with a tunable relation between false positives and false negatives.

7.4.5.1 � Approaches to Load Disaggregation
In the following we describe the fundamental problem of load disaggre-
gation. Further, we describe the fundamental approach to the problem, 
and discuss some recent work. For a thorough description of historic 
and recent work in this field, we refer you to Zeifman and Roth [142] and 
Froehlich et al. [53] for an overview of device characteristics that can be 
useful for disaggregation.

A load curve is a function L that describes the complex load (real and 
reactive energy) over time. In each discrete time step t, the real energy con-
sumed by all devices ri and their respective reactive energy qi is summed. 
Noise rb and qb are added as well:
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Given only the resulting sum value over time, we are looking for a state 
matrix that contains the state of each device at any discrete point in time. 
The state spaces of the devices are independent of each other. For most 
practical devices, there exist several constraints on the possible states and 
the state transitions that are caused by their internal electrical structure 
and their usage modes. For example, all practical devices are operating 
between a minimum load and a maximum load, and they have finitely 
many operating states.

There are two fundamental steps to be made for load disaggregation. 
The first step is feature recognition, which extracts features from the 
observed meter data. The second step is the application of an optimization 
algorithm that assigns values to the state matrix.

Pattern recognition is being applied to the observed values (see 
Section 7.4.3.3), in its simplest form to a change in the real power load. 
The objective of this step is to identify a set of devices that may exhibit 
the observed pattern. A naïve algorithm could map a load change to the 
device that exhibits the closest step size of the observed change. An ideal 
algorithm would perfectly identify the cause of an observed event as either 
a fluctuation not caused by a state change, or the very device and its state 
change that caused the change. However, no such perfect algorithm exists 
today and false positive matches and false negatives are unavoidable.

There are a variety of features that can be used to find a valid disaggre-
gation. The most basic feature of a device is its load variance, which was 
used by Hart [63]. Based on this feature, four classes of devices can be 
identified: permanent, on-off, multi-state, and variable. Permanent devices 
are single-state and are consuming the same load at all times (e.g., alarm 
systems that are never switched off). On-off devices have an additional off-
state, where consumption is (near-)zero. Multi-state devices have multiple 
operating modes that are usually executed in certain patterns; for example, 
a washing machine has certain modes, such as heating water, pumping, or 
spinning. Variable load devices expose arbitrary, irregular load patterns that 
may depend on their actual usage mode. It is important to note that most 
practical devices cannot be fully characterized by one of these classes alone. 
Usually, a device exhibits behavior that is a complex mixture of these classes. 
The challenge of disaggregating such loads is complicated by the fact that, of 
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course, the complex load profiles of devices are superimposed on each other, 
which makes an accurate, nonambiguous disaggregation difficult to achieve.

Because basic features, which are also referred to as macroscopic fea-
tures, such as consumption or real and reactive power, have their limita-
tions, features on the microscopic level have been studied in order to obtain 
more accurate results [142]. Microscopic features refer to characteristics of 
the underlying electrical signal, which can be measured at frequencies of 
at least in the kilohertz range. This allows for identification of waveform 
patterns and the harmonics of the signal. Using these features yields bet-
ter results than disaggregation based on basic features alone. However, 
such measurements require dedicated hardware and additional process-
ing capacities, which limits their practical use.

The optimization step (which is a common task in data analysis; see 
Section 7.4.7) tries to find an assignment to the state matrix that best 
matches the observed values. This answers the question of which device 
was active during which period and at which power level.

A common approach to finding the state matrix is to create a hidden 
Markov model (HMM) of the system [31, 78, 82]. Each device is repre-
sented by an HMM, which is a flexible structure that can capture complex 
behavior. Roughly, a sharp change in power consumption corresponds to 
a state change within a device HMM. The challenge is to extract the HMM 
parameters from the observed meter data. This is often supported by a 
supervised training phase where known features are being used.

7.4.5.2 � Practical Applications
Accurate load disaggregation could replace sub-metering, at least for some 
applications. But even with the currently available level of accuracy, use-
ful applications seem feasible. For example, Chen et al. [31] is using meter 
data from water consumption to identify activities such as showering or 
washing. This work improves results by evaluating the specific context in 
which load disaggregation is being used. Usage patterns depending on 
the time of day, household size, and demographics help to derive statisti-
cal information about appliance use, such as the distribution of washing 
machine usage. Reportedly, it also helped people make decisions about 
more efficient resource usage, for example, by replacing appliances with 
more efficient ones.

It remains a challenge to improve the accuracy of NILM for practi-
cal applications. Many studies assume that the features of the involved 
devices are known in advance. In such supervised settings, it is necessary 
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to determine the features of individual devices in a controlled environ-
ment. In contrast, unsupervised techniques have recently been proposed 
[55, 78]. This class of techniques does not rely on a given decomposition of 
power signals from individual devices, but instead automatically separates 
the different consumption signals without training. Although unsuper-
vised techniques seem to work in practice, research shows that the quality 
drops when increasing the number of devices [78].

The accuracy of the existing approaches has only been tested under 
individual lab conditions thus far. A common methodology for evaluation 
is missing; for example, no systematic testing on a common dataset has 
been performed as yet. Only recently, a set of test data has been proposed 
[83] that comprises residential appliances. Similarly, test data for indus-
trial applications are required, but are not freely available. Some notion of 
accuracy is usually used to assess the quality of an approach. As discussed 
by Zeifman and Roth [142], this might not be the desirable measure. Thus, 
the authors propose to use receiver operating characteristic (ROC) curves as 
a quality measure [24, 61, 140].

Notwithstanding the deficiencies of the measure itself, it is clear that 
none of the existing approaches are suitable to completely substitute sub-
metering due to inaccuracy. Thus, disaggregation is not suitable for billing 
and other applications that require accurate and precise measures. It is 
likely that sub-metering or separate metering will be required to satisfy 
these demands—at least in the near future. For “soft” applications such as 
energy-efficiency auditing, the accuracy of load disaggregation might be 
sufficient in many cases. However, no evaluation in a working environ-
ment has been reported thus far. Sub-metering remains state-of-the-art 
when it comes to accurate load disaggregation. Research is still required to 
demonstrate the practicability of NILM as there seem to be no reports of 
large-scale field tests of NILM. Furthermore, the literature mentioned in 
this section employs data at 1-second granularity or at even finer temporal 
resolutions. Further research is needed to investigate if and under which 
conditions disaggregation techniques can be applied to data at the coarser 
granularities that are frequently available in practice.

In the future, a semiautomatic approach to load disaggregation might 
be practically valuable for energy audits. Graphical, interactive exploration 
tools could be used to validate the automatic recognition of devices and 
correct for errors. After the consumption patterns of individual devices (or 
classes of devices) are identified, the next step would be to correlate these 
patterns with additional data, such as operational data from production 
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runs, working hours, or out-of-order events. By doing so, higher accura-
cies could be obtained.

7.4.6 � Exploration and Comparison of Energy Datasets

In previous sections, the focus was on automatic learning: (1) for models 
in prediction tasks (Section 7.4.3), (2) extraction of unexpected and novel 
patterns (Section 7.4.4), and (3) disaggregation of devices by metadata 
extraction (Section 7.4.5). In contrast to these automatic techniques, many 
energy scenarios, such as Scenarios 7.1 and 7.6, require manual explora-
tion of data. Users want to understand the underlying data and use data 
management and analysis techniques to get an overview of their data. In 
many cases, they try to derive knowledge from the data by comparing 
two or more different datasets. Assisting these manual or semiautomated 
exploration tasks will be the main focus of the following discussion.

Let us give some brief examples of semiautomated and manual tasks on 
energy data related to exploration and comparison:

•	 Exploration of energy trades. For the energy market, it is crucial to 
know about the amount of trades with specific conditions. All mar-
ket participants are interested in such manual selections to under-
stand the market. They explore the trades with respect to some 
manually defined condition. For example, how many trades have 
been made with solar energy, in the last month, overall in Germany. 
Others might be interested in the overall volume of energy pro-
duced in wind parks in offshore regions located around the coast of 
Denmark. A third example might be the average capacity of energy 
storage facilities in Europe and how it evolved from 2010 to 2011. 
All these examples are user-driven queries on aggregated subparts of 
the data. Human experts design these queries and data management 
techniques must be designed for efficient processing.

•	 Comparison of different customer behaviors. Many case studies [57] 
have looked at the difference in energy consumption for two or more 
given databases describing the energy behavior of different custom-
ers. One is interested in the characteristic behavior of one group 
of people (or devices, facilities, etc.) compared to a second group. 
These characteristic differences are used to understand the cus-
tomer population. In other cases, the two contrasting data states are 
“before” and “after” an energy-saving campaign. Thus, comparison 
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is required to measure the success of such a campaign. For example, 
semiautomated techniques can derive the reduced energy consump-
tion for lighting and cooling devices. This energy saving can be an 
important result for future campaigns and might reveal some more 
potentials for energy savings.

•	 Manual verification of unexpected events. As discussed in Section 
7.4.3, there are some rare events, such as the World Cup soccer final 
on TV, that dramatically affect the typical energy consumption. In 
simple cases, such as the World Cup final, the understanding of this 
event is quite easy. Experts will not need any assistance in the verifi-
cation of this event. However, for both energy production and energy 
consumption, there are a large variety of factors influencing the sys-
tem. Many of the unexpected events (e.g., the detected outliers as 
described in Section 7.4.4.2, or the emerging events hindering good 
prediction in Section 7.4.3) will require assistance in their verifica-
tion. Providing a time stamp on the unexpected high energy con-
sumption might be very limited information for the human expert. 
Understanding and verifying such events means that we have to 
enrich the set of information provided to the user.

7.4.6.1 � Extending Data Management Techniques
We observe the efficient aggregation of energy data as one of the main 
tasks for manual exploration. Abstracting from our toy example based on 
energy trades, the users are interested in various aggregations of the raw 
production, consumption, distribution, and sales data. In general, such 
processing is well known in the database community as online analyti-
cal processing (OLAP). Based on a user-specified hypothesis, the system 
must provide aggregated information with respect to a specific set of con-
ditions. The conditions are described by the attributes (e.g., location, time, 
production type, etc.) and are structured based on a given hierarchy of 
granularities (e.g., weeks, months, years, etc.). Such OLAP systems have 
been proposed for sales analysis in retail companies. They provide the 
essential means for decision making but do not address the specific sce-
nario of decisions based on energy data (see Scenario 7.6).

Essential properties of energy production, distribution, and consump-
tion are missed by these techniques. Modern data management tech-
niques (see Section 7.4.1) try to overcome these challenges. In particular, 
large data volumes must be aggregated in main memory. This processing 
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can be assisted by modern column-based data storage [112, 125]. In con-
trast to row-based data representation, column-based storage allows for 
efficient aggregation over a single (or multiple) attribute without accessing 
the entire database. This selectivity allows for very efficient processing of 
OLAP queries. In addition, we can utilize automated techniques such as 
disaggregation (see Section 7.4.5) to enrich the set of available attributes. 
This results in large and high-dimensional databases, which pose novel 
scalability issues to both manual (and semiautomated) exploration as 
well as to automatic data analysis. For future energy data, we must extend 
traditional OLAP and data mining techniques to achieve such a scalable 
data analysis.

Currently, most energy case studies rely on traditional techniques in 
OLAP and information management [57]. They are not able to cope with 
the entire set of information available. They design their interactive explo-
ration on a small subset of attributes with quite rough aggregation levels 
(e.g., allowing exploration of energy data only on a daily basis). Further 
restrictions are made for query types and visualization methods. Overall, 
we consider such systems only as first steps to future energy information 
systems. The state-of-the-art has not reached the complexity of data, 
user exploration, and interaction required by most of the energy scenar-
ios envisioned.

7.4.6.2 � Guided Exploration to Unexpected Patterns
One major challenge of OLAP is its manual search for interesting patterns 
in the data. It is highly dependent on the expert using the OLAP system. If 
she or he knows a lot about the energy data, it will be easy to find the right 
aggregation level, the appropriate set of attributes, and the conditions on 
these attributes. Thus, one might be able to reveal the required information 
out of the huge database. However, in most cases, this information is unex-
pected, such that even experts do not know where to search. Furthermore, 
if lay users are involved in the OLAP system, they do not have any idea 
where to start with the aggregation. Thus, it is very important to provide 
semiautomated techniques that guide the user through the database to the 
unexpected aggregates and the right attribute combinations.

In recent years, there have been some interesting approaches for the 
so-called discovery-driven OLAP systems. They add automatic techniques 
to the OLAP system, which guide the users according to unexpected data 
distributions [122]. Comparing the mean and variance of each column of 
the database, one can simply detect unexpected cells in an OLAP cube. 
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For example, if we look at the energy production in each month, one could 
detect a high peak in August, which deviates from the residual months 
due to some unexpected high-energy production. The same statistics can 
be applied for all August months over several years and highlight a spe-
cific year. This leads to a very promising selection of attribute combina-
tions, each with a high deviation in energy production. Overall, these 
unexpected measures can be seen as candidates for manual exploration. 
One can provide some of these attribute combinations to the user, and he 
or she will be able to refine these selections.

Further techniques have been proposed for guided OLAP [121, 123]; they 
focus more on the interaction with the users and provide additional means 
for step-by-step processing through the OLAP cube and additional descrip-
tions on the deviation of data. However, all these techniques are expensive 
in terms of computation. Similar to other automatic data-analysis tech-
niques, they do not scale to energy databases with many attributes and mil-
lions of measurements on the very fine-grained level. Applications of such 
techniques are always limited by efficiency, and energy data pose one of the 
most problematic application areas with respect to scalability issues.

7.4.6.3 � Contrast Analysis and Emerging Patterns
Another automated approach for pattern exploration is contrast analy-
sis. This technique focuses on the extraction of descriptive, distinguish-
ing, emerging, and contrasting patterns for two or more given classes 
in a database [22, 44, 79]. Contrast analysis techniques provide subsets 
of attributes (and attribute values) as contrasting patterns. For example, 
given a database with more than two persons living in the same house-
hold and another database of energy profiles for single households, one 
might be interested in comparing these two groups of customers. Such 
automatic comparison can provide the characteristic differences in the 
behavior of people. On the one side, these differences can be used as input 
to any learning task. On the other side, they provide the essential mean 
for human exploration. We focus here on the latter one and highlight the 
technical challenges in contrast analysis.

For human exploration it is always essential to have outputs that are 
easy to understand. In contrast analysis, one research direction is based 
on so-called contrast sets [22]. They form characteristic attribute combi-
nations that show high deviation in the two databases. For example, the 
energy consumption with respect to washing machines could be one of 
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these characteristic differences between single and family households. 
Contrast analysis detects such deviations and outputs a set of these con-
trasting properties for further investigation by the user. It is quite similar 
to the previous discovery-driven OLAP techniques. However, it is based 
on prior knowledge about the two classes, which is not given in OLAP. 
Hence, it is based on some prior knowledge and provides specific insight 
into these two classes, while discovery-driven OLAP highlights any unex-
pected data distribution. Further relationships can be observed with sub-
space analysis (see Section 7.4.4), which is quite similar to the extraction 
of influential attributes [79].

Overall, we observe a high demand for such exploration and compar-
ison techniques. For energy databases with many unexpected events, it 
is essential to have some descriptive information about the differences 
among other databases or the deviation of an object inside a database. 
In all these cases, automatic techniques provide guidance for humans in 
their manual exploration. Only the combination of manual and automatic 
exploration seems to be able to reveal hidden knowledge out of complex 
databases. With many of the proposed techniques for prediction, pattern 
detection, and disaggregation, one can perform some fully automated data 
analyses. However, in most cases, users are not willing to accept these 
black-box techniques, in which they do not understand the derived mod-
els, patterns, and separation. Furthermore, similar to other domains, such 
as health surveillance, we observe many regulations by law in the energy 
domain. This enforces the manual verification of automatically detected 
patterns. Modern data-analysis techniques should be aware of this addi-
tional requirement and provide more descriptions as outputs of their algo-
rithms. For example, it is more or less useless to detect unexpected energy 
consumption in a single household if one has no information about why 
this consumption profile is unexpected compared to other households.

7.4.7 � Optimization

In the context of future energy and smart grids, there are a large number 
of different optimization problems that must be solved. As elaborating on 
all these problems would be beyond the scope of this chapter, we limit 
ourselves to highlight the most important problems.

Optimization problems in the field of electricity can be roughly parti-
tioned in the demand side and the supply side:
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•	 On the demand side, intelligent devices (e.g., in a smart home, see 
Scenario 7.4) need to react to dynamic prices (see Scenario 7.2) and 
optimize their demand planning accordingly. If consumers own 
micro-CHP units, they have to find optimized schedules for their 
operation. A further challenge is charging of EVs and possibly V2G 
scenarios (see Scenario 7.5). This is not only of importance in con-
sumer premises, but also in so-called smart car parks [115]. They 
have a particularly high impact on the energy systems as they display 
high power consumption. Disaggregation is a further technique that 
makes use of optimization (see Section 7.4.5).

•	 On the supply side, probably the most prominent optimization prob-
lem is finding dynamic prices [70]. In scenarios with control signals, 
optimization is needed to select offers from demand-side managers 
(see Scenario 7.3). Another field where optimization is of relevance 
is the management of energy storages (see Scenario 7.5) where it needs 
to be decided when to charge and when to discharge a storage.

Many of the mentioned optimization problems can become quite 
complex. This, in particular, is due frequently to the many parameters to 
be considered:

•	 Planning of micro-CHP units has constraints concerning their prof-
itability. This includes minimum runtime, uptime, and cycle costs. 
Similar constraints apply to central storages such as pumped-storage 
water-power plants.

•	 Smart charging of EVs and V2G requires one to consider user pref-
erences (when does the car need to be charged to which level?) and 
economic interests of the owner or car-park operator. Furthermore, 
the current situation of the grid and possibly dynamic prices are also 
of importance [115].

•	 Finding dynamic prices aims at achieving the desired profits and 
realizing demand response to prevent grid issues with a low eco-
nomical risk. Furthermore, the predicted generation and demand 
needs to be taken into account (see Section 7.4.3.1), together with the 
predicted willingness and ability of customers to react accordingly 
(see Section 7.4.3.2). Obviously, the current market prices and pos-
sibly existing long-term contracts are further parameters.
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•	 In control-signal scenarios, available demand-shifting offers must be 
selected, taking into account that they are cost-efficient, reliable, and 
located in the correct grid segments.

•	 In energy storages, the operator must consider the (predicted) future 
generation, demand, and prices, as well as the storage-system param-
eters capacity and peak power.

The result of the above-mentioned conditions and constraints are often 
high-dimensional, multivariate optimization problems. In addition to 
classical solving methods [51], heuristic methods [42, 75, 88, 97] have been 
an important field of research in recent years. For smart-charging scenar-
ios, for instance, multi-objective evolutionary optimization algorithms 
have been investigated [115].

7.4.8 � Privacy-Preserving Data Mining

As discussed in this chapter, an increasing number of actors in the liber-
alized electricity markets (see Section 7.2.1) collect more and more data 
(see Section 7.4.1) when realizing the current and future energy scenarios 
(see Section 7.3). Many types of data can be mapped to real persons and 
bear potential privacy risks. Smart-meter data (see Scenario 7.1) is prob-
ably the most common example, but other types of data, such as partici-
pation in demand-response measures (see Scenario 7.3), user behavior in 
a smart home (see Scenario 7.4) or from an electric vehicle might disclose 
private data as well.

As privacy is a wide field, we concentrate on illustrating the possibili-
ties of analyzing smart-meter data in the following discussion. Depending 
on the temporal resolution of such data, different user behaviors can be 
derived. Having smart-meter data at 1-minute granularity, for example, 
enables identifying most electric devices in a typical household [113]. 
Having data at half-second granularity might reveal whether a cutting 
machine was used to cut bread or salami [21]. Needless to say, disclosing 
such data would be a severe privacy risk as one could derive precisely what 
a person does at which moment. Furthermore, recent research suggests 
that it is even possible to identify which TV program (out of a number of 
known programs) someone is watching using a standard smart meter at 
the temporal granularity of half-seconds [58]. Interestingly—and maybe 
frighteningly—even data at the 15-minute granularity frequently used for 
billing scenarios can be a privacy threat. Such data is sufficient to identify 
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which persons are at home and at what times, if they prepare cold or warm 
breakfast, when they are cooking, and when they watch TV or go to bed 
[96]. Jawurek et al. [69] furthermore show that consumption curves of a 
household are typically unique and can be used to identify a household.

There is a myriad of work that identifies the different scenarios of pri-
vacy risks and attacks in the field of energy; an overview can be found, 
for example, by Khurana et al. [77]. A smaller number of studies propose 
particular solutions, mostly for specific problems such as billing in the 
presence of smart meters [68]. However, this field is still quite young, and 
effective methods to provide privacy protection are still needed, ones that 
can easily be applied in the field. In addition to the privacy of consum-
ers, such methods need to ensure that all actors in the energy market can 
obtain the data they need in order to efficiently fulfill their respective role 
in the current and future energy scenarios. This calls for further develop-
ments and new techniques in the fields of security research and privacy-
preserving data mining [13, 131, 133], for which future energy systems and 
markets are an important field of application.

7.5 � CONCLUSIONS
The traditional energy system relying on fossil and nuclear sources is not 
sustainable. The ongoing transformation to a more sustainable energy 
system relying on renewable sources leads to major challenges and to a 
paradigm shift from demand-driven generation to generation-driven 
demand. Further influential factors in the ongoing development are lib-
eralization and the effects of new loads, such as electric vehicles. These 
developments in the future energy domain will be facilitated by a number 
of techniques that are frequently referred to as the smart grid. Most of 
these techniques and scenarios lead to new sources of data and to the chal-
lenge to manage and analyze them in appropriate ways.

In this chapter we highlighted the current developments toward a sus-
tainable energy system. We provided an overview of the current energy 
markets and described a number of future energy scenarios. Based on 
these elaborations, we derived the data-analysis challenges in detail. In 
a nutshell, the conclusion is that there has been a lot of research but that 
there are still many unsolved problems and there is a need for more data-
analysis research. Existing techniques can be applied or need to be further 
developed for use in the smart grid. Thus, the future energy domain is an 
important field for applied data-analysis research and has the potential to 
contribute to sustainable development.



Data Analysis Challenges in the Future Energy Domain    ◾    233  

ACKNOWLEDGMENTS
We thank Pavel Efros for his assistance, Anke Weidlich and many col-
leagues at SAP Research, and Acteno Energy for fruitful discussions and 
proofreading (parts of) the chapter.

REFERENCES
	 1.	 Directive 2009/72/EC of the European Parliament and of the Council of 

13 July 2009 Concerning Common Rule for the Internal Market in Electricity. 
Official Journal of the European Union, L 211: 56–93, 2009.

	 2.	 E-Energy Glossary. Website of the DKE—Deutsche Kommission Elektrotechnik 
Elektronik Informationstechnik im DIN und VDE, Germany: https://
teamwork.dke.de/specials/7/Wiki_EN/Wiki Pages/Home.aspx, 2010.

	 3.	 Energy Concept for an Environmentally Sound, Reliable and Affordable 
Energy Supply. Publication of the German Federal Ministry of Economics 
and Technology and the Federal Ministry for the Environment, Nature 
Conservation and Nuclear Safety, September 2010.

	 4.	 MeRegio—Project Phase 2. Homepage of the MeRegio project: http://www.
meregio.de/en/?page=solution-phasetwo, 2010.

	 5.	 Annual Report 2010. Publication of the German Federal Motor Transport 
Authority, 2011.

	 6.	 Connecting markets. EEX Company and Products brochure, European 
Energy Exchange AG, October 2011.

	 7.	 Federal Environment Minister Röttgen: 20 Percent Renewable Energies Are 
a Great Success. Press Release 108/11 of the German Federal Ministry for the 
Environment, Nature Conservation and Nuclear Safety, August 2011.

	 8.	 Metered Half-Hourly Electricity Demands. Website of National Grid, UK: 
http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/, 2011.

	 9.	 Charu C. Aggarwal. On abnormality detection in spuriously populated data 
streams. In International Conference on Data Mining (SDM), 2005.

	 10.	 Charu C. Aggarwal, Editor. Data Streams: Models and Algorithms, Volume 
31 of Advances in Database Systems. Berlin and New York: Springer, 2007.

	 11.	 Charu C. Aggarwal. On High Dimensional Projected Clustering of Uncertain 
Data Streams. In International Conference on Data Engineering (ICDE), 2009.

	 12.	 Charu C. Aggarwal, and Philip S. Yu. Outlier detection for high dimensional 
data. In International Conference on Management of Data (SIGMOD), 2001.

	 13.	 Charu C. Aggarwal, and Philip S. Yu, Editors. Privacy-Preserving Data Mining: 
Models and Algorithms, Volume 34 of Advances in Database Systems. Berlin 
and New York: Springer, 2008.

	 14.	 Sanjeev Kumar Aggarwal, Lalit Mohan Saini, and Ashwani Kumar. Electricity 
Price Forecasting in Deregulated Markets: A Review and Evaluation. 
International Journal of Electrical Power and Energy Systems, 31(1): 13–22, 2009.

	 15.	 Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar 
Raghavan. Automatic subspace clustering of high dimensional data for data 
mining applications. In International Conference on Management of Data 
(SIGMOD), 1998.



234    ◾    Computational Intelligent Data Analysis for Sustainable Development

	 16.	 Hesham K. Alfares and Mohammad Nazeeruddin. Electric Load Forecasting: 
Literature Survey and Classification of Methods. International Journal of 
Systems Science, 33(1): 23–34, 2002.

	 17.	 Florian Allerding and Hartmut Schmeck. Organic smart home: Architecture 
for energy management in intelligent buildings. In Workshop on Organic 
Computing (OC), 2011.

	 18.	 Fabrizio Angiulli, Fabio Fassetti, and Luigi Palopoli. Detecting Outlying 
Properties of Exceptional Objects. ACM Transactions on Database Systems, 
34(1): 1–62, 2009.

	 19.	 Mariá Arenas-Martínez, Sergio Herrero-Lopez, Abel Sanchez, John R. 
Williams, Paul Roth, Paul Hofmann, and Alexander Zeier. A comparative 
study of data storage and processing architectures for the smart grid. In 
International Conference on Smart Grid Communications (SmartGridComm), 
2010.

	 20.	 Thanasis G. Barbounis, John B. Theocharis, Minas C. Alexiadis, and Petros S. 
Dokopoulos. Long-Term Wind Speed and Power Forecasting Using Local 
Recurrent Neural Network Models. Energy Conversion, IEEE Transactions 
on, 21(1): 273–284, 2006.

	 21.	 Gerald Bauer, Karl Stockinger, and Paul Lukowicz. Recognizing the Use-
Mode of Kitchen Appliances from Their Current Consumption. In Smart 
Sensing and Context Conference, 2009.

	 22.	 Stephen D. Bay and Michael J. Pazzani. Detecting Group Differences: Mining 
Contrast Sets. Data Mining and Knowledge Discovery, 5(3): 213–246, 2001.

	 23.	 Birger Becker, Florian Allerding, Ulrich Reiner, Mattias Kahl, Urban 
Richter, Daniel Pathmaperuma, Hartmut Schmeck, and Thomas Leibfried. 
Decentralized Energy-Management to Control Smart-Home Architectures. 
In Architecture of Computing Systems (ARCS), 2010.

	 24.	 Michael R. Berthold, Christian Borgelt, Frank Höppner, and Frank 
Klawonn. Guide to Intelligent Data Analysis: How to Intelligently Make Sense 
of Real Data, Volume 42 of Texts in Computer Science. Berlin and New York: 
Springer, 2010.

	 25.	 Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 
When Is Nearest Neighbors Meaningful? In International Conference on 
Database Theory (ICDT), 1999.

	 26.	 Christophe Bisciglia. The Smart Grid: Hadoop at the Tennessee Valley 
Authority (TVA). Blog of Cloudera, Inc., USA: http://www.cloudera.com/
blog/2009/06/smart-grid-hadoop-tennessee-valley-authority-tva/, 2009.

	 27.	 Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 
LOF: Identifying Density-Based Local Outliers. In International Conference 
on Management of Data (SIGMOD), 2000.

	 28.	 Longbing Cao, Philip S. Yu, Chengqi Zhang, and Yanchang Zhao. Domain 
Driven Data Mining. Berlin and New York: Springer, 2010.

	 29.	 Longbing Cao, Huaifeng Zhang, Yanchang Zhao, Dan Luo, and Chengqi 
Zhang. Combined Mining: Discovering Informative Knowledge in Complex 
Data. IEEE Transactions on Systems, Man, and Cybernetics, 41(3): 699–712, 
2011.



Data Analysis Challenges in the Future Energy Domain    ◾    235  

	 30.	 Pete Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas 
Reinartz, Colin Shearer, and Rüdiger Wirth. CRISP-DM 1.0. Step-by-Step 
Data Mining Guide, SPSS, Chicago, USA. August 2000.

	 31.	 Feng Chen, Jing Dai, Bingsheng Wang, Sambit Sahu, Milind Naphade, and 
Chang-Tien Lu. Activity Analysis Based on Low Sample Rate Smart Meters. In 
International Conference on Knowledge Discovery and Data Mining (KDD), 2011.

	 32.	 Jiyi Chen, Wenyuan Li, Adriel Lau, Jiguo Cao, and Ke Wang. Automated 
Load Curve Data Cleansing in Power Systems. IEEE Transactions on Smart 
Grid, 1(2): 213–221, 2010.

	 33.	 Chun-Hung Cheng, Ada Waichee Fu, and Yi Zhang. Entropy-Based 
Subspace Clustering for Mining Numerical Data. In International Conference 
on Knowledge Discovery and Data Mining (KDD), 1999.

	 34.	 Robson Leonardo Ferreira Cordeiro, Agma J.M. Traina, Christos Faloutsos, 
and Caetano Traina Jr. Finding Clusters in Subspaces of Very Large, Multi-
Dimensional Datasets. In International Conference on Data Engineering 
(ICDE), 2010.

	 35.	 Marco Dalai and Riccardo Leonardi. Approximations of One-Dimensional 
Digital Signals under the l∞ Norm. IEEE Transactions on Signal Processing, 
54(8): 3111–3124, 2006.

	 36.	 Lars Dannecker, Matthias Böhm, Ulrike Fischer, Frank Rosenthal, 
Gregor Hackenbroich, and Wolfgang Lehner. State-of-the-Art Report on 
Forecasting—A Survey of Forecast Models for Energy Demand and Supply. 
Public Deliverable D4.1, The MIRACLE Consortium (European Commission 
Project Reference: 248195), Dresden, Germany, June 2010.

	 37.	 Lars Dannecker, Matthias Böhm, Wolfgang Lehner, and Gregor 
Hackenbroich. Forecasting Evolving Time Series of Energy Demand 
and Supply. In East-European Conference on Advances in Databases and 
Information Systems (ADBIS), 2011.

	 38.	 Lars Dannecker, Matthias Schulze, Robert Böhm, Wolfgang Lehner, and 
Gregor Hackenbroich. Context-Aware Parameter Estimation for Forecast 
Models in the Energy Domain. In International Conference on Scientific and 
Statistical Database Management (SSDBM), 2011.

	 39.	 Sarah Darby. The Effectiveness of Feedback on Energy Consumption: 
A Review for DEFRA of the Literature on Metering, Billing and Direct 
Displays. Technical report, Environmental Change Institute, University of 
Oxford, UK, April 2006.

	 40.	 Timothy de Vries, Sanjay Chawla, and Michael E. Houle. Finding Local 
Anomalies in Very High Dimensional Space. In International Conference on 
Data Mining (ICDM), 2010.

	 41.	 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing 
on Large Clusters. In Symposium on Operating Systems Design and 
Implementation (OSDI), 2004.

	 42.	 Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A Fast 
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective 
Optimization: NSGA-II. In International Conference on Parallel Problem 
Solving from Nature (PPSN), 2000.



236    ◾    Computational Intelligent Data Analysis for Sustainable Development

	 43.	 Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum 
Likelihood from Incomplete Data Via the EM Algorithm. Journal of the 
Royal Statistical Society, 39(1): 1–38, 1977.

	 44.	 Guozhu Dong and Jinyan Li. Efficient Mining of Emerging Patterns: 
Discovering Trends and Differences. In International Conference on 
Knowledge Discovery and Data Mining (KDD), 1999.

	 45.	 Karen Ehrhardt-Martinez, Kat A. Donnelly, and John A. “Skip” Laitner. 
Advanced Metering Initiatives and Residential Feedback Programs: A Meta-
Review for Household Electricity-Saving Opportunities. Technical Report 
E105, American Council for an Energy-Efficient Economy, Washington, 
D.C. June 2010.

	 46.	 Frank Eichinger, Detlef D. Nauck, and Frank Klawonn. Sequence Mining for 
Customer Behaviour Predictions in Telecommunications. In Workshop on 
Practical Data Mining: Applications, Experiences and Challenges, 2006.

	 47.	 Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel Cecchet, Walid G. 
Aref, and Willy Zwaenepoel. Online Piece-Wise Linear Approximation of 
Numerical Streams with Precision Guarantees. In International Conference 
on Very Large Data Bases (VLDB), 2009.

	 48.	 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases. In 
International Conference on Knowledge Discovery and Data Mining (KDD), 
1996.

	 49.	 Linda Farinaccio and Radu Zmeureanu. Using a Pattern Recognition 
Approach to Disaggregate the Total Electricity Consumption in a House into 
the Major End-Uses. Energy and Buildings, 30(3): 245–259, 1999.

	 50.	 Ahmad Faruqui and Jennifer Palmer. Dynamic Pricing and Its Discontents. 
Regulation Magazine, 34(3): 16–22, 2011.

	 51.	 Michael C. Ferris and Todd S. Munson. Complementarity Problems in 
Games and the Path Solver. Journal of Economic Dynamics and Control, 
24(2): 165–188, 2000.

	 52.	 Eugene Fink and Kevin B. Pratt. Indexing of Compressed Time Series. In 
Last et al. [86], Chapter 3, pages 51–78.

	 53.	 Jon Froehlich, Eric Larson, Sidhant Gupta, Gabe Cohn, Matthew S. Reynolds, 
and Shwetak N. Patel. Disaggregated End-Use Energy Sensing for the Smart 
Grid. Pervasive Computing, 10(1): 28–39, 2011.

	 54.	 Drew Fudenberg and Jean Tirole. Game Theory. Cambridge, MA: MIT Press, 
1991.

	 55.	 Hugo Gonçalves, Adrian Oceanu, and Mario Bergés. Unsupervised 
Disaggregation of Appliances Using Aggregated Consumption Data. In 
Workshop on Data Mining Applications in Sustainability (SustKDD), 2011.

	 56.	 Carlos J. Alonso González and Juan J. Rodríguez Diez. Boosting Interval-
Based Literals: Variable Length and Early Classification. In Last et al. [86], 
Chapter 7, pages 149–171.



Data Analysis Challenges in the Future Energy Domain    ◾    237  

	 57.	 Jessica Granderson, Mary Piette, and Girish Ghatikar. Building Energy 
Information Systems: User Case Studies. Energy Efficiency, 4: 17–30, 2011.

	 58.	 Ulrich Greveler, Benjamin Justus, and Dennis Löhr. Multimedia Content 
Identification through Smart Meter Power Usage Profiles. In International 
Conference on Computers, Privacy and Data Protection (CPDP), 2012.

	 59.	 Stephan Günnemann, Hardy Kremer, Charlotte Laufkötter, and Thomas 
Seidl. Tracing Evolving Subspace Clusters In Temporal Climate Data. Data 
Mining and Knowledge Discovery, 24(2): 387–410, 2011.

	 60.	 Duy Long Ha, Minh Hoang Le, and Stéphane Ploix. An approach for home load 
energy management problem in uncertain context. In International Conference 
on Industrial Engineering and Engineering Management (IEEM), 2008.

	 61.	 Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and 
Techniques. Morgan Kaufmann, Burlington, USA, 2011.

	 62.	 Jiawei Han, Jian Pei, and Xifeng Yan. Sequential Pattern Mining by Pattern-
Growth: Principles and Extensions. In W. Chu and T. Lin, Editors, Studies in 
Fuzziness and Soft Computing, Volume 180 of Foundations and Advances 
in Data Mining, pages 183–220. Berlin and New York: Springer, 2005.

	 63.	 George W. Hart. Nonintrusive Appliance Load Monitoring. Proceedings of 
the IEEE, 80(12): 1870–1891, 1992.

	 64.	 Magnus L. Hetland. A Survey of Recent Methods for Efficient Retrieval of 
Similar Time Sequences. In Last et al. [86], Chapter 2, pages 27–49.

	 65.	 Alexander Hinneburg and Daniel Keim. An Efficient Approach to Clustering 
in Large Multimedia Databases with Noise. In International Conference on 
Knowledge Discovery and Data Mining (KDD), 1998.

	 66.	 Henrique Steinherz Hippert, Carlos Eduardo Pedreira, and Reinaldo Castro 
Souza. Neural Networks for Short-Term Load Forecasting: A Review and 
Evaluation. IEEE Transactions on Power Systems, 16(1): 44–55, 2001.

	 67.	 Vikramaditya Jakkula and Diane Cook. Outlier Detection in Smart 
Environment Structured Power Datasets. In International Conference on 
Intelligent Environments (IE), 2010.

	 68.	 Marek Jawurek, Martin Johns, and Florian Kerschbaum. Plug-In Privacy for 
Smart Metering Billing. In International Symposium on Privacy Enhancing 
Technologies (PETS), 2011.

	 69.	 Marek Jawurek, Martin Johns, and Konrad Rieck. Smart Metering De-
Pseudonymization. In Annual Computer Security Applications Conference 
(ACSAC), 2011.

	 70.	 Andrej Jokić, Mircea Lazar, and Paul P.J. van den Bosch. Price-Based Control 
of Electrical Power Systems. In Negenborn et al. [105], Chapter 5, pages 
109–131.

	 71.	 Ian Joliffe. Principal Component Analysis. Berline and New York: Springer, 1986.
	 72.	 Karin Kailing, Hans-Peter Kriegel, and Peer Kröger. Density-Connected 

Subspace Clustering for High-Dimensional Data. In International Conference 
on Data Mining (SDM), 2004.



238    ◾    Computational Intelligent Data Analysis for Sustainable Development

	 73.	 Andreas Kamper. Dezentrales Lastmanagement zum Ausgleich kurzfris-
tiger Abweichungen im Stromnetz. KIT Scientific Publishing, Korlsruhe, 
Germany, 2009.

	 74.	 Fabian Keller, Emmanuel Müller, and Klemens Böhm. HiCS: High Contrast 
Subspaces for Density-Based Outlier Ranking. In International Conference 
on Data Engineering (ICDE), 2012.

	 75.	 James Kennedy and Russel Eberhart. Particle Swarm Optimization. In 
International Conference on Neural Networks, 1995.

	 76.	 Eamonn Keogh and Shruti Kasetty. On the Need for Time Series Data 
Mining Benchmarks: A Survey and Empirical Demonstration. Data Mining 
and Knowledge Discovery, 7(4): 349–371, 2003.

	 77.	 Himanshu Khurana, Mark Hadley, Ning Lu, and Deborah A. Frincke. Smart-
Grid Security Issues. IEEE Security and Privacy, 8(1): 81–85, 2010.

	 78.	 Hyungsul Kim, Manish Marwah, Martin F. Arlitt, Geoff Lyon, and Jiawei 
Han. Unsupervised Disaggregation of Low Frequency Power Measurements. 
In International Conference on Data Mining (SDM), 2011.

	 79.	 Edwin M. Knorr and Raymond T. Ng. Finding intensional knowledge of 
distance-based outliers. In International Conference on Very Large Data 
Bases (VLDB), 1999.

	 80.	 Edwin M. Knox and Raymond T. Ng. Algorithms for mining distance-based 
outliers in large datasets. In International Conference on Very Large Data 
Bases (VLDB), 1998.

	 81.	 Koen Kok, Martin Scheepers, and René Kamphuis. Intelligence in Electricity 
Networks for Embedding Renewables and Distributed Generation. In 
Negenborn et al. [105], Chapter 8, pages 179–209.

	 82.	 J. Zico Kolter and Tommi Jaakkola. Approximate inference in additive fac-
torial hmms with application to energy disaggregation. In International 
Conference on Artificial Intelligence and Statistics (AISTATS), 2012.

	 83.	 J. Zico Kolter and Matthew Johnson. REDD: A public data set for energy 
disaggregation research. In Workshop on Data Mining Applications in 
Sustainability (SustKDD), 2011.

	 84.	 Andrew Kusiak, Haiyang Zheng, and Zhe Song. Short-Term Prediction of 
Wind Farm Power: A Data Mining Approach. IEEE Transactions on Energy 
Conversion, 24(1): 125–136, 2009.

	 85.	 National Energy Technology Laboratory. A Vision for the Modern Grid. In 
Smart Grid, Chapter 11, pages 283–293. The Capitol Net Inc., 2007.

	 86.	 Mark Last, Abraham Kandel, and Horst Bunke, Editors. Data Mining in Time 
Series Databases, Volume 57 of Series in Machine Perception and Artificial 
Intelligence. World Scientific, Singapore, 2004.

	 87.	 Christopher Laughman, Kwangduk Lee, Robert Cox, Steven Shaw, Steven 
Leeb, Les Norford, and Peter Armstrong. Power Signature Analysis. Power 
and Energy Magazine, 1(2): 56–63, 2003.

	 88.	 Yiu-Wing Leung and Yuping Wang. An Orthogonal Genetic Algorithm with 
Quantization for Global Numerical Optimization. IEEE Transactions on 
Evolutionary Computation, 5(1): 41–53, 2001.



Data Analysis Challenges in the Future Energy Domain    ◾    239  

	 89.	 Shuhui Li, Donald C. Wunsch, Edgar O’Hair, and Michael G. Giesselmann. 
Comparative Analysis of Regression and Artificial Neural Network 
Models for Wind Turbine Power Curve Estimation. Journal of Solar Energy 
Engineering, 123(4): 327–332, 2001.

	 90.	 Xiaoli Li, Chris P. Bowers, and Thorsten Schnier. Classification of Energy 
Consumption in Buildings with Outlier Detection. IEEE Transactions on 
Industrial Electronics, 57(11): 3639–3644, 2010.

	 91.	 Jian Liang, Simon K.K. Ng, Gail Kendall, and John W.M. Cheng. Load 
Signature Study. I. Basic Concept, Structure, and Methodology. IEEE 
Transactions on Power Delivery, 25(2): 551–560, 2010.

	 92.	 J. MacQueen. Some methods for classification and analysis of multivari-
ate observations. In Berkeley Symposium on Mathematical Statistics and 
Probability, 1967.

	 93.	 Paras Mandal, Tomonobu Senjyu, Naomitsu Urasaki, and Toshihisa 
Funabashi. A Neural Network Based Several-Hour-Ahead Electric Load 
Forecasting Using Similar Days Approach. International Journal of Electrical 
Power and Energy Systems, 28(6): 367–373, 2006.

	 94.	 Friedemann Mattern, Thorsten Staake, and Markus Weiss. ICT for green: 
How computers can help us to conserve energy. In International Conference 
on Energy-Efficient Computing and Networking (E-Energy), 2010.

	 95.	 Tom Mitchell. Machine Learning. New York: McGraw Hill, 1997.
	 96.	 Andrés Molina-Markham, Prashant Shenoy, Kevin Fu, Emmanuel Cecchet, 

and David Irwin. Private memoirs of a smart meter. In Workshop on 
Embedded Sensing Systems for Energy-Efficiency in Building (BuildSys), 2010.

	 97.	 Sanaz Mostaghim and Jürgen Teich. Strategies for finding good local guides 
in multi-objective particle swarm optimization (MOPSO). In Swarm 
Intelligence Symposium (SIS), 2003.

	 98.	 Emmanuel Müller, Ira Assent, Stephan Günnemann, and Thomas Seidl. 
Scalable density-based subspace clustering. In International Conference on 
Information and Knowledge Management (CIKM), 2011.

	 99.	 Emmanuel Müller, Ira Assent, Ralph Krieger, Stephan Günnemann, and 
Thomas Seidl. DensEst: Density estimation for data mining in high dimen-
sional spaces. In International Conference on Data Mining (SDM), 2009.

	100.	 Emmanuel Müller, Ira Assent, and Thomas Seidl. HSM: Heterogeneous sub-
space mining in high dimensional data. In Scientific and Statistical Database 
Management (SSDBM Conference Proceedings), 2009.

	101.	 Emmanuel Müller, Stephan Günnemann, Ira Assent, and Thomas Seidl. 
Evaluating clustering in subspace projections of high dimensional data. In 
International Conference on Very Large Data Bases (VLDB), 2009.

	102.	 Emmanuel Müller, Stephan Günnemann, Ines Färber, and Thomas Seidl. 
Discovering multiple clustering solutions: Grouping objects in different 
views of the data. In Internatinal Conference on Data Mining (ICDM), 2010.

	103.	 Emmanuel Müller, Matthias Schiffer, and Thomas Seidl. Statistical selec-
tion of relevant subspace projections for outlier ranking. In International 
Conference on Data Engineering (ICDE), 2011.



240    ◾    Computational Intelligent Data Analysis for Sustainable Development

	104.	 Daniel Müller-Jentsch. The Development of Electricity Markets in the Euro-
Mediterranean Area: Trends and Prospects for Liberalization and Regional 
Integration. Technical Paper 491, The World Bank, Washington, D.C., 2001.

	105.	 Rudy R. Negenborn, Zofia Lukszo, and Hans Hellendoorn, editors. Intelligent 
Infrastructures, Volume 42 of Intelligent Systems, Control and Automation: 
Science and Engineering. Berlin and New York: Springer, 2010.

	106.	 Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: analysis 
and an algorithm. In Conference on Neural Information Processing Systems 
(NIPS), 2001.

	107.	 Donglin Niu, Jennifer G. Dy, and Michael I. Jordan. Multiple non-redundant 
spectral clustering views. In International Conference on Machine Learning 
(ICML), 2010.

	108.	 Anisah H. Nizar, Zhao Y. Dong, and J.H. Zhao. Load profiling and data 
mining techniques in electricity deregulated market. In Power Engineering 
Society General Meeting, 2006.

	109.	 Alexandra-Gwyn Paetz, Birger Becker, Wolf Fichtner, and Hartmut Schmeck. 
Shifting electricity demand with smart home technologies—An experimental 
study on user acceptance. In USAEE/IAEE North American Conference, 2011.

	110.	 Peter Palensky and Dietmar Dietrich. Demand Side Management: Demand 
Response, Intelligent Energy Systems, and Smart Loads. IEEE Transactions 
on Industrial Informatics, 7(3): 381–388, 2011.

	111.	 Peter Palensky, Dietrich Dietrich, Ratko Posta, and Heinrich Reiter. Demand 
side management in private homes by using LonWorks. In International 
Workshop on Factory Communication Systems, 1997.

	112.	 Hasso Plattner and Alexander Zeier. In-Memory Data Management—An 
Inflection Point for Enterprise Applications. Berlin and New York: Springer, 2011.

	113.	 Elias Leake Quinn. Smart Metering and Privacy: Existing Laws and 
Competing Policies. Report for the Colorado public utilities commission, 
University Colorado Law School (CEES), Boulder, CO, May 2009.

	114.	 Thanawin Rakthanmanon, Eamonn Keogh, Stefano Lonardi, and Scott 
Evans. Time series epenthesis: clustering time series streams requires ignor-
ing some data. In International Conference on Data Mining (ICDM), 2011.

	115.	 Maryam Ramezani, Mario Graf, and Harald Vogt. A simulation environment 
for smart charging of electric vehicles using a multi-objective evolutionary 
algorithm. In International Conference on Information and Communication 
on Technology for the Fight against Global Warming (ICT-GLOW), 2011.

	116.	 Sérgio Ramos and Zita Vale. Data mining techniques application in power 
distribution utilities. In Transmission and Distribution Conference and 
Exposition, 2008.

	117.	 Sira Panduranga Rao and Diane J. Cook. Identifying tasks and predict-
ing actions in smart homes using unlabeled data. In The Continuum from 
Labeled to Unlabeled Data in Machine Learning and Data Mining, 2003. 
Published in the “Identifying Tasks and Predicting Actions in Smart Homes 
Using Unlabeled Data” Workshop Proceedings.



Data Analysis Challenges in the Future Energy Domain    ◾    241  

	118.	 Ulrich Reiner, Thomas Leibfried, Florian Allerding, and Hartmut Schmeck. 
Potential of electrical vehicles with feed-back capabilities and controllable 
loads in electrical grids under the use of decentralized energy management. 
In International ETG Congress, 2009.

	119.	 Peter J. Rousseeuw and Annick M. Leroy. Robust Regression and Outlier 
Detection. New York: Wiley, 1987.

	120.	 Sebnem Rusitschka, Kolja Eger, and Christoph Gerdes. Smart grid data 
cloud: A model for utilizing cloud computing in the smart grid domain. In 
International Conference on Smart Grid Communications (SmartGridComm), 
2010.

	121.	 Sunita Sarawagi. User-adaptive exploration of multidimensional data. In 
International Conference on Very Large Data Bases (VLDB), 2000.

	122.	 Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven 
exploration of OLAP data cubes. In International Conference on Extending 
Database Technology (EDBT), 1998.

	123.	 Gayatri Sathe and Sunita Sarawagi. Intelligent rollups in multidimensional 
OLAP data. In International Conference on Very Large Data Bases (VLDB), 2001.

	124.	 Domnic Savio, Lubomir Karlik, and Stamatis Karnouskos. Predicting 
energy measurements of service-enabled devices in the future smartgrid. In 
International Conference on Computer Modeling and Simulation (UKSim), 2010.

	125.	 Matthieu-P. Schapranow, Ralph Kühne, Alexander Zeier, and Hasso Plattner. 
Enabling real-time charging for smart grid infrastructures using in-memory 
databases. In Workshop on Smart Grid Networking Infrastructure, 2010.

	126.	 Joachim Schleich, Marian Klobasa, Marc Brunner, Sebastian Gölz, and 
Konrad Götz. Smart Metering in Germany and Austria: Results of Providing 
Feedback Information in a Field Trial. Working Paper Sustainability and 
Innovation S 6/2011, Fraunhofer Institute for Systems and Innovation 
Research (ISI), Karlsruhe, Germany, 2011.

	127.	 Raimund Seidel. Small-Dimensional Linear Programming and Convex 
Hulls Made Easy. Discrete & Computational Geometry, 6(1): 423–434, 1991.

	128.	 Kelvin Sim, Vivekanand Gopalkrishnan, Arthur Zimek, and Gao Cong. 
A Survey on Enhanced Subspace Clustering. Data Mining and Knowledge 
Discovery, 2012.

	129.	 Myra Spiliopoulou, Irene Ntoutsi, Yannis Theodoridis, and Rene Schult. 
MONIC: Modeling and monitoring cluster transitions. In International 
Conference on Knowledge Discovery and Data Mining (KDD), 2006. Available 
online: http://link.springer.com/article/10.1007/510618-012-0258-X. 
DOI:10.1001/s10618-012-0258-X.

	130.	 Asher Tishler and Israel Zang. A Min-Max Algorithm for Non-Linear 
Regression Models. Applied Mathematics and Computation, 13(1/2): 95–115, 
1983.

	131.	 Jaideep Vaidya, Yu Zhu, and Christopher W. Clifton. Privacy Preserving Data 
Mining, Volume 19 of Advances in Information Security. Berlin and New 
York: Springer, 2006.



242    ◾    Computational Intelligent Data Analysis for Sustainable Development

	132.	 Sergio Valero Verdú, Mario Ortiz García, Carolina Senabre, Antonio Gabaldón 
Marín, and Francisco J. García Franco. Classification, Filtering, and 
Identification of Electrical Customer Load Patterns through the Use of Self-
Organizing Maps. IEEE Transactions on Power Systems, 21(4): 1672–1682, 
2006.

	133.	 Vassilios S. Verykios, Elisa Bertino, Igor Nai Fovino, Loredana Parasiliti 
Provenza, Yucel Saygin, and Yannis Theodoridis. State-of-the-Art in Privacy 
Preserving Data Mining. SIGMOD Record, 33(1): 50–57, 2004.

	134.	 Michail Vlachos, Dimitrios Gunopulos, and Gautam Das. Indexing Time-
Series under Conditions of Noise. In Last et al. [86], Chapter 4, pages 67–100.

	135.	 Harald Vogt, Holger Weiss, Patrik Spiess, and Achim P. Karduck. Market-
based prosumer participation in the smart grid. In International Conference 
on Digital Ecosystems and Technologies (DEST), 2010.

	136.	 Horst F. Wedde, Sebastian Lehnhoff, Christian Rehtanz, and Olav Krause. 
Bottom-up self-organization of unpredictable demand and supply under 
decentralized power management. In International Conference on Self-
Adaptive and Self-Organizing Systems, 2008.

	137.	 Anke Weidlich. Engineering Interrelated Electricity Markets. Physica Verlag, 
Heidelerg, Germany, 2008.

	138.	 Anke Weidlich, Harald Vogt, Wolfgang Krauss, Patrik Spiess, Marek Jawurek, 
Martin Johns, and Stamatis Karnouskos. Decentralized intelligence in 
energy efficient power systems. In Alexey Sorokin, Steffen Rebennack, Panos 
M. Pardalos, Niko A. Iliadis, and Mario V.F. Pereira, Editors, Handbook 
of Networks in Power Systems: Optimization, Modeling, Simulation and 
Economic Aspects. Berlin and New York: Springer, 2012.

	139.	 Tom White. Hadoop: The Definitive Guide. O’Reilly, Sebastopol, USA, 2009.
	140.	 Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine 

Learning Tools and Techniques. Morgan Kaufmann, Burlington, USA, 2011.
	141.	 G. Michael Youngblood and Diane J. Cook. Data Mining for Hierarchical 

Model Creation. IEEE Transactions on Systems, Man, and Cybernetics, 37(4): 
561–572, 2007.

	142.	 Michael Zeifman and Kurt Roth. Nonintrusive Appliance Load Monitoring: 
Review and Outlook. Transactions on Consumer Electronics, 57(1): 76–84, 2011.

	143.	 Roberto V. Zicari. Big Data: Smart Meters—Interview with Markus Gerdes. 
ODBMS Industry Watch Blog: http://www.odbms.org/blog/2012/06/big-
data-smart-meters-interview-with-markus-gerdes/, 2012.



243

C h a p t e r  8

Electricity Supply 
without Fossil Fuels

John Boland, Peter Pudney, and Jerzy Filar

CONTENTS
8.1	 Introduction	 244
8.2	 Approach	 246

8.2.1	 Renewable Generation	 246
8.2.2	 Overcoming Variability	 247

8.2.2.1	 Storage	 247
8.2.3	 Demand Management	 248
8.2.4	 Mechanism Design for Demand Management	 249

8.3	 Forecasting Wind and Solar Power	 250
8.3.1	 Estimating Hourly Solar Irradiation	 252
8.3.2	 Box-Jenkins or ARMA Modeling	 254
8.3.3	 A Resonating Model	 254
8.3.4	 Estimating Volatility	 256

8.3.4.1	 Using Results from Modeling 
High-Frequency Wind Data to Formulate a 
Model at Lower Frequency	 260

8.3.4.2	 Summary for Single Sources	 262
8.3.4.3	 Multiple Sources	 263

8.4	 Portfolio Analysis	 264
8.5	 Conclusion	 268
References	 269



244    ◾    Computational Intelligent Data Analysis for Sustainable Development

8.1 � INTRODUCTION

Australians need to reduce their per-capita greenhouse gas 
emissions to 5% of 2000 levels by 2050 if the international com-

munity is to stabilize the concentration of atmospheric CO2 at 450 
parts per million (ppm) [18]. Since the Garnaut report was published, 
it has become apparent that 350 ppm is a more realistic target if global 
warming is to be limited to 2°C. Either target is a huge challenge 
and will require unprecedented changes to the way we generate and 
use energy. See Figure 8.1 to get a better idea of the challenge.

Some 38% of Australia’s greenhouse gas emissions are due to electricity 
use [11]. This proportion is high by international standards because our 
use of electricity is high, and because 93% of our electricity is generated 
from fossil fuels.

Our use of fossil fuels is unsustainable. We need to imagine, design, 
and transition to a future where all electricity is generated from renewable 
energy sources. The solution will require a mix of generation technologies, 
including solar thermal, solar photovoltaic, and wind. The variability of 
renewable energy sources will be overcome using a combination of reserve 
capacity, spatially diverse generator locations, energy storage, and man-
agement of demand to match supply. This chapter describes the mathe-
matical models and methods required to design and optimize a system 
that can provide Australia with affordable, reliable, clean electricity.

On November 8, 2011, the Australian Senate passed the Clean Energy 
Futures bills, enacting legislation that will put a price on CO2 emissions begin-
ning July 1, 2012. Finance Minister and former Climate Change Minister 
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Penny Wong stated that, “We accept the science and the advice that putting 
a price on carbon is the best way to reduce emissions.” This action sets up the 
environment for a transformation of the electricity supply sector in Australia. 
According to an article in Climate Spectator online on December 7, 2011:

The government’s clean energy policy is currently centred around 
two basic principles—the 20 per cent [large-scale] renewable energy 
target (LRET) is designed to deploy the cheapest available renew-
able technologies, while the Clean Energy Finance Corporation will 
support the commercialization and deployment of those technologies 
that are likely to be the cheapest and the most useful in the future.

The LRET requires that by 2020, 20% of electricity will be supplied from 
renewable sources. This can be done in an ad hoc fashion, as is the pres-
ent situation, with wind farms dominating large-scale installations and an 
intensification of photovoltaic installations on domestic houses (so much 
so that in NSW, for example, there is 300 megawatts (MW) installed). 
This is widely purported to be driving up the costs of electricity for the 
remainder of the population. However, this conjecture is disputed by the 
Australian Energy Market Commission, who estimate that the combined 
costs of feed-in tariffs and renewable energy schemes will make up about 
14% of future price increases, whereas the cost of reinforcing transmission 
and distribution systems to cope with growth in peak demand will make 
up 49% of electricity price rises over the next 3 years* [3]. To maximize 
greenhouse gas reduction, a more coordinated approach is necessary.

Maximizing the penetration of renewable energy sources for supplying 
electricity can be achieved through two disparate techniques: (1) building 
a supergrid, or (2) mixing the renewable sources with demand manage-
ment and storage. In Europe, for example, there are proposals such as the 
Desertec initiative to create a supergrid interconnecting installations of 
renewable generation across Europe, North Africa, and the Middle East [21]. 
The underlying principle is that if you have solar farms distributed east-
west along a latitude, there is an elongation of the solar day for providing 

*	 Another challenge for today’s grid is the growth in air-conditioning penetration. In Western 
Sydney, more than 80% of homes now have air conditioning. This growth is driving energy suppli-
ers such as Integral to spend approximately $3 billion over the next 5 years on grid infrastructure, 
to meet the increased peak loads. But this extra infrastructure will only be needed for a few days a 
year; it’s like building a twenty-seven-lane freeway so that we never have peak-hour traffic jams.—
The Climate Spectator, 14 July 2010.
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energy for the grid. In addition, wind farms distributed north-south along 
a longitude can take advantage of weather systems moving cohesively at 
different latitudes. This concept of using meteorological and astronomi-
cal attributes to enhance the diversity of sources requires significant aug-
mentation of the grid, including provision of high-voltage, direct-current 
transmission systems to minimize distance-related losses. In this configu-
ration, even augmented by other renewable sources, there is a necessity 
for some energy storage for backup and load balancing—Denmark stores 
excess wind power in Norway’s hydroelectric dams through pumping.

An alternative approach is to develop a protocol for combining a renew-
able supply of diverse sources (both in technologies and locations) with 
sophisticated demand management (load follows the supply rather than 
the reverse) and energy storage to maximize the penetration of renew-
ables. This entails a variety of supply options, more directly embedded in 
the transmission and distribution networks than the supergrid option, as 
well as a variety of storage options. The task arising from this more subtle 
approach is deciding on the quantities of each supply option, as well as a 
storage option, where they are positioned in the system, as well as how to 
best use the demand-side management. This results in a portfolio optimi-
zation problem.

In summary, in this chapter we present the mathematical modeling 
tools we argue are necessary to perform a rational, sophisticated analysis 
of the problem of moving to a high penetration of renewable sources in the 
provision of the electricity supply.

8.2 � APPROACH

8.2.1 � Renewable Generation

There are many renewable energy technologies that can generate electric-
ity without consuming finite resources and without producing CO2 emis-
sions, including concentrating solar thermal plants, solar photovoltaic 
panels, wind turbines, tidal generators, and biofuel generators.

Zero Carbon Australia [41] describes an ambitious plan to meet 
Australia’s electricity needs using a combination of 60% concentrating 
solar thermal power (with molten salt storage), 40% wind, and backup 
power from hydroelectricity and biofuels. Elliston et al. [13] have shown 
that it is technically feasible to supply electricity from renewables with the 
same reliability as the present system.
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Renewable generation technologies, particularly those powered by 
solar radiation or wind, are often criticized as not being able to generate 
“baseload” power. A key objective of current and future research should 
be to show how a combination of renewable generation, energy storage, 
and demand-side management can meet our energy needs. This research 
should consider a wider environmental basis that also includes the effects 
on reducing our ecological footprint* from the use of renewable energy for 
electricity supply. From that we obtain an increase in available land for 
ecosystem enhancement, for example.

8.2.2 � Overcoming Variability

The key challenge with renewable energy sources is the variability of the 
supply. Delucci and Jacobson [10] describe seven ways to cope with vari-
ability in an electricity grid powered from wind, water, and the sun:

	 1.	Interconnect geographically dispersed generators

	 2.	Use controllable sources, such as hydroelectric generation, to meet 
temporary shortfalls

	 3.	Manage demand to match the available supply

	 4.	Store energy at generator sites, using batteries, pumped hydroelec-
tric, compressed air, flywheels, hydrogen, or thermal storage

	 5.	Oversize generators to reduce the probability of undersupply (and 
generate hydrogen with excess energy)

	 6.	Store energy at points of end use and in electric vehicle batteries

	 7.	Forecast weather to improve the planning of energy supply.

8.2.2.1 � Storage
Options for storing energy include the following:

•	 Molten salt reservoirs integrated with concentrating solar power plants

•	 Grid-smoothing stationary storage such as vanadium redox flow 
batteries, high-temperature liquid-metal batteries, supercapacitors, 
compressed air storage, pumped water storage, and flywheels

*	 Ecological Footprint accounts track our supply and use of natural capital. They document the 
area of biologically productive land and sea a given population requires to produce the renewable 
resources it consumes and to assimilate the waste it generates, using prevailing technology.
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•	 Short-term storage in electric vehicles

•	 Seasonal heat storage.

Many of these technologies have been demonstrated in medium- to large-
scale installations. The problem is to develop methods that can determine 
which combination of storage technologies and locations will be most 
effective for a given electricity system.

8.2.3 � Demand Management

The current electricity system is designed to supply whatever power is 
demanded, with little or no coordination of loads. As a result, the system 
is sized for peak demands that occur for only a few hours each year. The 
mean demand for power in the Australian National Electricity Market is 
70% of the peak demand; in South Australia, the mean demand is just 50% 
of the peak demand. Figure 8.2 shows hourly demand for power in the 
National Electricity Market for each day of 2010.

Appliances are becoming more efficient, but we are using more of 
them. Increases in peak demand require upgrades to the transmission and 
distribution infrastructure, which adds significantly to the cost of elec-
tricity. Furthermore, fixed retail prices isolate residential and commercial 
consumers from supply constraints and the associated variations in gen-
eration costs. This problem can be partly addressed by time-of-use pric-
ing, where electricity is cheaper during periods when demand is usually 
low; or by critical peak pricing, where the price to consumers varies with 
the cost of supply. An energy price that increases with power use would 
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also encourage load leveling. Ultimately, however, we need appliances to 
respond to changing grid conditions to prevent overload. Demand man-
agement can defer the need for grid reinforcement, reduce the need for 
expensive generation used only during periods of high demand, and 
improve the quality and reliability of supply.

There is another important reason for demand management. As more 
energy is supplied from variable renewable energy sources, we will need 
to move from a system where supply follows demand to a system where 
demand also responds to variations in the available supply.

Over half of Australia’s electricity is used in the domestic and com-
mercial sectors. Many domestic and commercial loads—air condition-
ing, water heaters, clothes and dishwashers, clothes dryers, refrigerators, 
freezers, pool pumps, and electric vehicle chargers—could be automati-
cally rescheduled, to varying extents, without causing inconvenience. 
Australian Standard AS 4755 is defining a simple interface that will allow 
appliances to be controlled. Home Area Networks, Building Management 
Systems, and Smart Grids will also allow appliances and buildings to 
change their power demand in response to signals, including the price of 
electricity and the availability of renewable power. Still needed, however, 
are mechanisms that will encourage participation and allow smart appli-
ances to fairly share the power available at any instant.

8.2.4 � Mechanism Design for Demand Management

Mechanism design is a branch of mathematical game theory that seeks to 
design the rules of a game, for self-interested players with private informa-
tion, to achieve an overall desirable outcome. One must design mecha-
nisms that allocate available power to appliances in such a way that, when 
feasible, each appliance will complete its task on time. Allocation mech-
anisms should be “incentive compatible” so that players cannot gain by 
misreporting their requirements. When it is not possible to complete all 
tasks on time, mechanisms should allocate power as fairly as possible.

The 2007 Nobel Prize for Economic Sciences was awarded to Hurwicz, 
Maskin, and Myerson for their work on mechanism design theory. A 
report from the Royal Swedish Academy of Sciences [35] gives a good 
overview of the topic, as does Nisan et al. [28].

A group at the University of Southampton is currently investigating 
the use of mechanism design for demand-side management, demand 
aggregation, and for pricing electric vehicle charging [19, 32, 33]. Gerding 
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et al.  [19] describe a system for allocating charging to electric vehicles so 
that capacity constraints in a local area are not exceeded. Each vehicle 
owner specifies the value they place on their first hour of charging, second 
hour of charging, and so on, as well as the time interval during which 
the vehicle will be available for charging. An online mechanism allocates 
charging capacity each hour to the vehicles with the greatest value. The 
pricing mechanism is designed so that there is no incentive for owners to 
misreport their values or their charging interval. Further work is required 
to extend the method to work with a mix of different appliances, and to 
compare it to other online mechanisms [29–31].

Fahrioglu and Alvarado [15] describe the use of mechanism design 
when designing electricity supply contracts to encourage participation 
in demand management programs, but do not consider how smart appli-
ances might react to real-time demand management signals.

Closer to the supply side of the electricity system, Zou [42] discusses the 
two schemes commonly used to buy and sell electricity on the wholesale 
market: (1) uniform pricing, where every generator is paid the marginal 
market price; or (2) pay-as-bid, where each generator is paid what they bid. 
It is not clear which of these schemes is better, as the bidding behavior of 
generators is different for each scheme. Zou proposes a new mechanism 
based on the Vickrey-Clarke-Groves mechanism, which can enhance the 
social welfare of the electricity market by only selecting bidders whose 
contribution to social welfare is positive. However, it remains to be seen 
whether these ideas could be applied in the retail electricity market.

Finally, Rothkopf [34] gives 13 reasons why the Vickrey-Clarke-Groves 
mechanism, which underpins much of mechanism design theory, may 
not work in practice. It will be important to consider these issues when 
designing practical systems for demand-side management.

8.3 � FORECASTING WIND AND SOLAR POWER
A key area of research, and a precursor to portfolio optimization, is the 
forecasting of supply from variable renewable energy sources. Recent results 
[1, 40] present a dramatic improvement in methods for the estimation of 
both the level and volatility of wind and solar farms. This is especially 
the case with forecasting the conditional variance of output. Renewable 
energy generation does not exhibit homogeneous variability, and we have 
devised methods of estimating this changing variability rather than using 
ensemble methods [1].
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Our efforts to date have focused on wind farm output for specific loca-
tions. We need to investigate the accumulation of wind farm output over 
wide areas, considering the effects of spatial coherence. How can geo-
graphic diversity reduce variability and improve predictability? For solar 
energy forecasting, we have focused on global solar irradiance, and at 
single locations. The methods should be extended to include forecasting 
of direct solar irradiance, necessary for photovoltaic and thermal concen-
trated solar plants (CSPs). We also need to investigate the spatial diversity 
of solar irradiance, and the mix of solar and wind.

The Australian Energy Market Operator provides 5-minute energy gen-
eration data for each wind farm in Australia. Hourly wind speed data are 
available from the Bureau of Meteorology (BOM) for nearby automatic 
weather stations. By combining this data, we can create an empirical energy 
curve for the output of existing wind farms. The results can then be used 
to estimate power output, given the wind speed for proposed wind farms. 
In a similar manner, we can access solar radiation values for any location 
in Australia (on a 5 kilometer by 5 kilometer grid), wherein hourly irra-
diation is estimated from satellite images. This data can then be used to 
estimate the energy output from various types of solar collectors, includ-
ing photovoltaic (PV) with varying orientations, concentrating PV, and 
concentrating solar thermal. The BOM publishes estimates of global solar 
irradiation on a horizontal plane and direct normal irradiation. Global 
solar irradiation is a combination of direct beam irradiation and diffuse 
irradiation. For estimating the output of concentrating PV and thermal 
solar plants, we need to estimate the direct beam component. This can 
be done by first using the BRL model [36] to estimate the diffuse irradia-
tion on a horizontal surface. The difference between the global and diffuse 
irradiation gives the direct irradiation on a horizontal surface, from which 
a straightforward trigonometric calculation gives the direct irradiance on 
a surface normal to the beam. This is precisely the chain of modeling that 
the BOM uses to infer solar components. They will use this procedure in 
work for the Solar Flagships Program to inform industry on the siting of 
solar farms. The direct beam and diffuse components can be used to esti-
mate the output of fixed, tracking, and concentrating solar generators.

For the purpose of determining the optimal mix of generation tech-
nologies and sites, it is not necessary to develop detailed forecast mod-
els for each generator. However, we will need to rigorously determine the 
stochastic nature of the output from individual sites and also of sets of 
spatially diverse as well as platform-diverse sources.
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For individual stations, we have been developing methods for analy-
sis of series of both wind farm output and solar energy. For forecasting, 
we use a combination of standard time-series techniques such as autore-
gressive moving average (ARMA)(p,q) models and a resonating model 
adapted from research into the firing of synapses in the brain. Lucheroni 
[26] applied the FitzHugh-Nagumo system of coupled nonlinear stochas-
tic differential equations to create a dynamic regime called stochastically 
resonating spiking. The ARMA technique, on its own, cannot effectively 
model the spiking behavior in modeling electricity prices that was the 
focus of Lucheroni, nor similar spiking behavior in climate variables.

8.3.1 � Estimating Hourly Solar Irradiation

When performing time-series analysis of a climate variable or a system 
dependent on one, the first step is to identify and model the seasonality. 
Several significant cycles can be identified using spectral analysis [8]. The 
seasonal component of solar irradiation for hour t of the year can be esti-
mated by a Fourier series:
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Here, α0 is the mean of the data; α1, β1 are coefficients of the yearly cycle; 
α2, β2 of twice yearly; and αi, βi are coefficients of the daily cycle and its 
harmonics and associated beat frequencies. An inspection of the power 
spectrum would show that we need to include the harmonics of the daily 
cycle (n = 2, 3, as well as n = 1) and also the beat frequencies (m = −1, 1). 
The latter modulate the amplitude to fit the time of year—in other words, 
describe the beating of the yearly and daily cycles.

Figure 8.3 shows the daily variation over the year for an example site. 
Figure 8.4 shows 5 days of hourly solar radiation and the Fourier series 
model for that variation. In Figure  8.5 we see the worth of the partic-
ular frequencies variously termed “beat frequencies” or “sidebands,” 
which modulate the amplitude of the daily harmonic to suit the time of 



Electricity Supply without Fossil Fuels    ◾    253  

4000

3500

3000

2500

2000

1500

1000

500

0

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

21
8

22
5

23
2

23
9

24
6

25
3

26
0

26
7

27
4

28
1

28
8

29
5

30
2

30
9

31
6

32
3

33
0

33
7

34
4

35
1

35
8

36
5

FIGURE 8.3  Daily solar radiation.
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year. Note that in the examples we have tested, the amount of variance 
explained by the Fourier series is approximately 80% to 85%.

8.3.2 � Box-Jenkins or ARMA Modeling

Once the seasonal component has been determined, we subtract its contri-
bution from the data and work with the residual series rt. The general form 
of an ARMA (p,q) model is

	 X X X X Z Z Zt t t p t p t t t− − −…− = + − +− − − − −φ φ φ θ θ1 1 2 2 1 1 2 2 ……+ −θq t qZ

where {Xt} are random variables with Xt ~ (0,σX
2) and {Zt} is white noise, 

independent and identically distributed with Zt ~ (0,σZ
2).

Figure 8.6 shows results from an AR(2) model.

8.3.3 � A Resonating Model

Figure  8.6 shows that this AR(2) model works particularly well when 
solar radiation residuals are decreasing. However, the AR(2) model has 
underestimated all the high peaks of the data. So, it is important to find 
another model to help capture these peaks. Lucheroni [26] presented a 
resonating model for the power market that exploits the simultaneous 
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FIGURE 8.5  Effect of beat frequencies—winter.



Electricity Supply without Fossil Fuels    ◾    255  

presence of a Hopf critical point, periodic forcing, and noise in a two-
dimensional, first-order nonautonomous stochastic differential equation 
system for the logarithm of the power price and the derivative of logprice. 
The model that originates from biophysics (known in the literature as the 
FitzHugh-Nagumo system, [17, 25]) performs very well for power market 
modeling; see Lucheroni [26].

This model (written here in its discretized form) was developed by 
Lucheroni [26]:

	 f f z ti i i+ = +1 	 (8.1)

	 z z z f f z f z f bi i i i i i i i i+ = + + − + − − − 1
2 33κ λ ε γ( ) ( ) 

t
ε

	 (8.2)

Here, ωt and at are noise terms, and Δt is the time step. Equation (8.2) 
aims to exploit the fact that the current value of zt is useful to predict the 
future value Rt+1. The parameters κ, λ, ε, γ, and b can be estimated using 
the method of ordinary least squares (OLS). For our deseasoned data, esti-
mated values for the parameters are κ = −2.1, λ = −6 × 10−8, ε = 0.09, 
γ = 0.5, and b = 2. λ is virtually zero, which indicates that the deseasoned 
residuals Rt behave linearly. Further to this, a negative value of κ assures 
the stability of the inherent damped oscillator in Equation (8.2).
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FIGURE 8.6  An AR(2) model fitted to 3 days of residuals.
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The Lucheroni model (Figure 8.7) is good at picking up the peak, and 
the AR(2) model (Figure 8.6) is good at forecasting in the main regions of 
the series, because when the AR(2) model reaches the peak, it is converg-
ing to the mean faster than the Lucheroni model. Is there evidence for this 
other than eyeballing the graphs? Combining the AR(2) model with the 
Lucheroni model could solve those problems. We can also add a second 
derivative component (a proxy for curvature) that adds even more to the 
predictability (Figure 8.8).

8.3.4 � Estimating Volatility

Traditional methods for forecasting volatility are indirect by necessity because 
the volatility is unobservable in a time series. These indirect methods include 
generalized autoregressive conditional heteroscedastic (GARCH) [9] and 
Hidden Markov Models (HMMs) [40]. We have developed a method for esti-
mating the volatility using high-frequency data [1], and then use the resonat-
ing model [26] for forecasting the volatility at the 5-minute and 30-minute 
timescales required by the electricity market. These forecasting methods can 
also be used to delineate the level and variability of output. We are thus able to 
make these estimations for any proposed individual wind or solar installation.
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FIGURE 8.7  Lucheroni model for the 3 sample days.
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Figures 8.9 through 8.11 show wind farm output at two different time
scales and an AR(3) model fitted to the 5-minute output.

The noise is uncorrelated but dependent. This phenomenon is preva-
lent in financial markets—it is called volatility clustering. Periods of high 
volatility are followed by periods of low volatility. Engle [14] developed the 
autoregressive conditional heteroscedastic (ARCH) model to cater to this. 
Figure 8.11 indicates that the model will have to be a long-lag AR model. 
For this lack of parsimony and other reasons, Bollerslev developed the 
generalized ARCH (or GARCH) model, where we replace the long-lag AR 
model with a short-lag ARMA model. The residuals of the AR(3) model of 
wind farm output display this conditional volatility. Often, an ARMA(1,1) 
for the residuals squared is sufficient and the GARCH model is derived 
from that. For this example, the GARCH model for conditional volatility 
is σt

2 = 0.006 + 0.122a2
t–1 + 0.821σ2

t–1.
We developed a method to estimate volatility when high-frequency 

data follow an AR(p) process [1, 2]. Many researchers have made use of 
high-frequency data to estimate the volatility. Their approach involved 
computation of covariance, etc. Our approach is different, as we use a 
model of high-frequency data to estimate the volatility. The following is 
a description of how to use 10-second wind farm output to estimate the 
volatility on a 5-minute timescale.
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FIGURE 8.9  Five minute wind farm output.
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Ten-second data (Xt) can be satisfactorily modeled using an AR(3) process 
(see Figure 8.12):

	 X X X X Zt t t t t= + + +− − −α α α1 1 2 2 3 3

or equivalently,

	 φ( )B X Zt t=

where ϕ(B) = 1 − α1B − α2B2 − α3B3, and B denotes the backshift operator, 
that is, BXt = Xt−1.

As ϕ(B) is invertible, the process is equivalent to an infinite moving 
average process.

	 X B Zt t= ψ( )

where ψ(B) = ψ0 +ψ1B +ψ 2B2 +ψ3B3 + …
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FIGURE 8.11  Five minute output and model.
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Thus, in simple terms,

	 X Z Z Z Zt t t t t= + + + +…− − −ψ ψ ψ ψ0 1 1 2 2 3 3 , 	 (8.3)

It can be shown that

	 ψ α ψ α ψ α ψj j j j= + +− − −1 1 2 2 3 3 	 (8.4)

with ψ0 = 1 and ψj = 0 for j < 0.

8.3.4.1 � Using Results from Modeling High-Frequency Wind Data 
to Formulate a Model at Lower Frequency

The total wind energy on a 5-minute timescale is the sum of the thirty 
10-second energy totals within that 5-minute period, and so we can sum 
the variables on the 10-second timescale that follow an AR(3) process to 
get a 5-minute variable. Let {Xt} denote the time series of wind energy 
output at intervals of 10 seconds, and let {Yt} denote the time series of 
aggregated energy output at every 5 minutes. The 5-minute process as a 
sum of thirty “10-second observations” can be expressed as

	
Y X X X Xt t t t t

= + + +…+
− − −1

30
2

30
29
30 	 (8.5)
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FIGURE 8.12  (See color insert.) AR(3): fit of 10-second data.
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It is understood throughout that 

	 X
t i−

30

represents the wind energy output at the i-th 10-second prior to time t, so 
that t − 1 remains the consistent notation for 5 minutes prior to t.
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Note that in Equation (8.6), coefficients up to the 30th term have a differ-
ent form than those after the 30th term.

Variance σ2(Yt) in terms of ψi values is given below. We assume that 
within each 5-minute interval, the Zt values are independent and identi-
cally distributed with zero mean. The variance of Yt is thus
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Rearranging gives
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The basic components in the expression for σ2(Yt) are
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where the triplets (n1,n2,n3) come from the set A = {(n1,n2,n3)|n1 + n2 + n3 ≤ 
k & n1 + 2n2 + 3n3 = k}. Using Equation 8.8 we obtain the estimated stan-
dard deviation for five minute data shown in Figure 8.13.

8.3.4.2 � Summary for Single Sources
The steps needed to reliably forecast solar and wind outputs include 
the following:

	 1.	Validate the mixture of autoregressive and resonating model (ARR) 
to representative solar datasets for climates throughout Australia.

	 2.	Extend ARR to wind farm output series.

	 3.	Determine what type of volatility modeling is needed for solar 
energy series.
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8.3.4.3 � Multiple Sources
Increasing the spatial diversity of the renewable sources will help smooth 
the volatility of the overall input, subject to there being enough intercon-
nectivity in the grid. One can easily compute pairwise correlation between 
two time series, but how does one evaluate a group connectivity? Getz 
[20] developed the concept of correlative coherence to analyze the overall 
connectedness of movements of individual elephants in a herd. A similar 
method can be used to determine an overall correlation between the out-
puts of multiple wind farms [7]. First, take the correlation matrix R con-
taining the pairwise correlations between the n sources. Its eigenvalues λi, 
i = 1, …, n have the properties that 0 ≤ λi/n ≤ 1, and

	 λi
i

n
n =

=∑ 1
1

Getz [20] presents a Shannon-Weaver measure of the diversity of eigen-
values, which gives us an idea of the degree to which the sources vary in 
concert with each other:
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FIGURE 8.13  (See color insert.) Output and estimated standard deviation.
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If all the off-diagonal elements have the same value r ∈ [0,1] and the diago-
nal elements are all unity, then the eigenvalues of the correlation matrix 
R(r) are λ1 = 1 + (n − 1)r and λi = 1 − r for i = 2, …, n. In this case, we have

	 C r n r ln n r n r ln
n( ) ( ) ( ) ( )( ) (= + −( ) + −( )+ − −1 1 1 1 1 1 1−− r

nlnn
) 	 (8.10)

and so r is the solution of

	 r C C Xn n= ( )−1 ( ) 	 (8.11)

The other option comes from Hoff and Perez [23], who provide a mea-
sure for the short-term power output variability resulting from an ensem-
ble of equally spaced, identical photovoltaic systems. They construct the 
Relative Output Variability measure, defined as the ratio of the Output 
Variability for the ensemble to the Output Variability of the same PV fleet 
concentrated in a single location. The output variability is

	 σ t
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n
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n

C
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
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

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∑1

1

Var 	 (8.12)

where C is the total installed peak power of the ensemble and ΔPΔt
n is a 

random variable that represents the time series of changes in power in the 
nth installation using a sampling time interval of Δt.

8.4 � PORTFOLIO ANALYSIS
Delucchi and Jacobson [10] note that

No…optimization analysis has been done for a 100% [wind, water, 
sun] system in a major region of the world (let alone for all regions 
of the world), so this clearly is a critical area for new research.

The problem of choosing an optimal mix of electricity generation, stor-
age, and efficiency policies is not very different from a portfolio optimiza-
tion problem. Each decision alternative results in more or less electricity 
yield, and carries more or less cost, and more or less variability.

A particular challenge is that the electricity industry requires very high 
levels of coordination between supply and demand at all times and at all 
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locations within the network. Traditional approaches to generation invest-
ment have modeled demand as an exogenous time series that needs to be 
met by some mix of conventional, controllable generation technologies. 
High renewable energy penetrations are not amenable to such approaches 
as they are not dispatchable in the conventional sense and, as noted ear-
lier, they have highly complex, uncertain and correlated primary energy 
fluxes. Because of this, high penetrations will not only impose greater 
requirements on dispatchable generation (both renewable and non
renewable), but are also likely to require far greater demand participation 
to assist in managing supply shortfalls and excess supply. Portfolio tools 
for these challenges are far less advanced. There has been work on incor-
porating renewables into optimal generation mix tools [12, 39]. However, 
there is considerable progress required in this area, particularly in the 
context of optimizing the different possible mixes and locations of renew-
able energy resources. There are also interesting and challenging research 
needs on how energy storage and controllable loads can be appropriately 
integrated into these investment tools.

The problem of choosing an optimal mix of electricity generation tech-
nologies will be modeled in a manner analogous to the problem of finding 
an optimal portfolio of investments. However, instead of a monetary yield 
and its variability, one must consider the energy output and its variability. 
The constraints of the problem will, of course, include the requirement 
that the energy yield equals or exceeds the demand, in addition to many 
other practical requirements.

Suppose that, during a given, fixed time interval, the demand for elec-
tricity is D megawatt-hours (MW-h) and we decide to supply a certain 
proportion of the demanded electricity from n = 4 different sources of 
energy: (ε1) conventional, (ε2) solar, (ε3) wind, and (ε4) storage. Let

	 xr = the proportion of D allocated to source εr, r = 1, …, 4

We require

	 x1 + x2 + x3 + x4 = 1

	 x1, x2, x3, x4 ≥ 0

Without loss of generality, we can interpret the demanded proportion xr 
as corresponding to the amount ar: = xrD, in megawatt-hours, of electricity 
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to be obtained from source εr, for each r = 1, …,  . However, each εr is a 
random variable whose probability distribution is not known precisely.

Suppose, however, that we have historical data for p earlier periods 
showing that when an amount ar: = xrD was allocated to the energy source 
εr, it yielded xrkD MW-h in period k = 1, 2, ⋯, p in the past. We interpret 
this as a probability distribution.
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A weighted distribution could also be used. In the case of uniform 
weights, we can estimate the expected output from source εr by
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Thus, if our “allocation portfolio strategy” is xT = (x1, x2, x3, x4), that means 
that the total energy supplied during this period is the random variable
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	 (8.13)

whose expectation can be estimated by
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=
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Of course, the variability in ε is a problem and hence, by analogy to 
Markowitz’s famous portfolio optimization problem, we may attempt 
to find x*T = (x*

1, x*
2, x*

3, x*
4) that solves

	 (EPVM) = energy portfolio variance minimization problem:

	 minVar(ε)
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In the above, the variance of ε can be estimated by
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Similarly, covariances of outputs from sources εr and εs, for r ≠ s, can 
be estimated by
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Naturally, the above can be generalized to an arbitrary n set of alterna-
tive energy sources ε1, εr, ⋯, εn with the analogous quantities:
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where the estimated variance-covariance matrix V captures the correla-
tion structure.
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Now the energy portfolio variance minimization problem (EPVM) 
becomes

	 minx xTV
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Finally, extensions of this approach to multi-period planning hori-
zons are also possible under appropriate assumptions about interactions 
between successive periods.

Performance criteria other than variance minimization must be con-
sidered. The latter include other risk measures such as CVaR (conditional 
value at risk) and target-percentile criteria [24]. Vithayasrichareon and 
MacGill [39] have applied VaR techniques to generation investment, 
and there are obvious extensions that would strengthen the value of the 
tool. In addition, the stochastic and robust programming versions of 
the associated optimization problems [6] must be utilized.

8.5 � CONCLUSION
In this chapter we canvassed a number of the tools that are needed for 
proper analysis of increasing the proportion of renewable energy for deliv-
ery of electricity supply. This is only for a macro-level study, as we have not 
investigated the power engineering aspects of the problem, nor indeed the 
financial questions.

The benefits of strong, early action considerably outweigh the costs. From 
the Stern Review [37], we have the following from the Executive Summary:

•	 Unabated climate change could cost the world at least 5% of GDP 
each year; if more dramatic predictions come to pass, the cost could 
be more than 20% of GDP.
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•	 The cost of reducing emissions could be limited to around one 
percent of global GDP; people could be charged more for carbon-
intensive goods.

•	 Each tonne of CO2 we emit causes damages worth at least $85, but 
emissions can be cut at a cost of less than $25 a tonne.
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9.1 � INTRODUCTION

The U.S. power grid system comprises multiple distinct intercon-
nections of generations, high-voltage transmission systems, and local 

distribution systems that maintain a continuous balance between genera-
tion and load with impressive levels of efficiency and reliability. This criti-
cal infrastructure is likely to see more changes over the next decade as a 
result of the proposed modernization of the grid system than it has seen 
over the past century. In particular, the widespread deployment of renew-
able generation (centralized and distributed), smart meters, synchropha-
sors, smart-grid controls, energy storage, and new conducting materials 
will require fundamental changes in grid planning and the way we run 
the power grid.

This modernization will lead to an explosive growth in the amount of data 
collected at each level of the power grid system: generation, transmission, 
distribution, and consumption. The data collected at these levels can be 
summarized into three classes: (1) field data (collected by the various 
devices distributed throughout the system, such as digital recorders); 
(2) centralized data archives (from monitoring, control, and operation 
systems, such as supervisory control and data acquisition (SCADA) sys-
tems); and (3) data from simulation (carried out in planning or operation 
environments). At the center of this data collection activity is the abil-
ity to process the information from the massive stock of data to support 
future decision making. It should be noted that the data cannot be left in 
the hands of field experts alone because of the high latency (for example, 
as high as sixty data points per second in case of phasor measurement 
units (PMU)) and the high dimensionality of the datasets. Hence, there is 
a need to develop algorithms capable of synthesizing structures from data. 
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Developing such algorithms, implementing them, and applying them to 
real problems are the purposes of the so-called data mining field.

Data mining is the term for a general approach that is supported to 
varying degrees by a set of technologies: statistics, visualization, machine 
learning, and neural networks. Classification, regression, clustering, sum-
marization, dependency modeling, deviation detection, and temporal 
problems are expected to be solved by data mining tools. Data mining tools 
will be useful in a power grid system because of the characteristics of the 
collected data: large-scale character of the power grid (thousands of state 
variables), temporal (from milliseconds, seconds, minutes, hours, weeks, 
year) and statistical nature of the data, existence of a discrete (e.g., events 
such as generator trip or phase changes) and continuous (analog state 
variables) information mixture, necessity of communication with experts 
through means of visualization, online operation time restriction for 
fast decision making, and existence of uncertainty (noise, outliers, miss-
ing information).

This chapter presents applications of data mining tools to some of the 
problems in power grid systems using some of the data described earlier in 
this section. Section 9.2 discusses some of the identified research problems 
in the power grid system. Section 9.3 describes a methodology for classify-
ing and visualizing frequency data collected using synchrophasors at the 
distribution level. Section 9.4 discusses a methodology for detecting and 
visualizing inter-area oscillatory modes from frequency data. Section 9.5 
describes a spatio-temporal anomaly detection method for fast detection 
of grid events using a statistically principled change detection technique.

9.2 � SOME RESEARCH PROBLEMS 
IN THE POWER GRID SYSTEM

As mentioned earlier, the modernization in the data collection capabilities 
within the power grid is resulting in an explosive growth in the amount of 
data collected at each level of the grid system—generation, transmission, 
distribution, and consumption. As noted earlier, we require new algo-
rithmic approaches as well as parallel formulations to address this data 
explosion. One of the critical components is the prediction of changes and 
detection of anomalies. The state-of-the-art algorithms are not suited to 
handle the demands of streaming data analysis. A recent Department of 
Energy sponsored workshop on “Mathematics for Analysis of Petascale 
Data” has identified a few challenges that are important for this proposal: 
(1) need for events detection algorithms that can scale with the size of 
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data; (2) need for algorithms that can not only handle multidimensional 
nature of the data, but also model both spatial and temporal dependen-
cies in the data, which, for the most part, are highly nonlinear; (3) need 
for algorithms that can operate in an online fashion with streaming data.

As stated above, one element of the modernized power grid system is 
the installation of a wide-area frequency measurement system on the elec-
tric poles in the streets for conditions monitoring of the distribution lines. 
This would provide frequency measurements that reflect the status of the 
electric grid and possible information about impending problems before 
they occur. The timely processing of these frequency data could elimi-
nate impending failures and their subsequent cascading into the entire 
system. The ability to monitor the distribution lines is just one facet of the 
proposed smart grid technology. Other elements include the installation 
of advanced devices such as smart meters, the automation of transmis-
sion lines, the integration of renewable energy technologies such as solar 
and wind, and the advancement of plug-in hybrid electric vehicle technol-
ogy. The overall objective then is to make the electric grid system more 
robust in view of impending national and global operational challenges.

A wide-area frequency disturbance recorder (FDR) is already in use 
at both the transmission and distribution levels of the power grid system 
[1]. These recorders are used to monitor and record the changes in voltage 
frequency in real time at various locations. The FDRs perform local GPS 
synchronized frequency measurements and send data to a central server 
via the Internet, and the information management system handles data 
collection, storage, communication, database operations, and a Web ser-
vice. There are currently more than 50 FDRs deployed around the United 
States. Each FDR measures the voltage phasor and frequency at the distri-
bution level using a 110V outlet and streams ten data points per second, 
with future models expected to have higher streaming rates. One imme-
diate challenge with the massive amount of data streams collected from 
FDRs is how to detect and classify an impending failure of the grid from 
multiple high-speed data streams in real time while minimizing false alarms 
and eliminating missed detection, and then how to identify and evaluate the 
impacts of the detected failures.

In the next three sections we describe three different applications of data 
mining for addressing two electric grid related problems. The first problem 
deals with identifying a specific type of pattern in the data (pattern dis-
covery), while the second problem deals with identifying disruptive events 
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from grid data. Section 9.3 addresses the first problem, while Sections 9.4 
and 9.5 address the second problem.

9.3 � DETECTION AND VISUALIZATION OF 
INTER-AREA OSCILLATORY MODES

Inter-area mode oscillations in power systems are global small-signal sta-
bility problems based on the architecture of the system. Given a specific 
system topology, these oscillatory modes result. Each system will have its 
own characteristic modes that can be excited under a various number of 
stress conditions. When excited, these modes create oscillations in power, 
generating unnecessary power flows, which serve to introduce added 
stress to the system. If under-damped or left unchecked, these oscillations 
have the potential to incite cascading blackouts.

Due to these hazards, several different control schemes have been 
implemented that specifically target modes of known oscillation frequen-
cies. A major pitfall of these methods is that they rely on knowing the 
specific inter-area modal frequencies in advance to design the control 
scheme. These mode frequencies can be calculated from the system topol-
ogy but in many cases the system models may be inaccurate, incomplete, 
or unavailable. Additionally, as the system topology changes over time, 
the mode frequencies will change with it. These factors can contribute to 
an improperly tuned control system.

With the proliferation of high time resolution power system measure-
ment devices, it becomes possible to observe these inter-area modes as 
they occur. As more devices are installed across the system, a more com-
plete picture of the different regions is achieved. The increased number 
of measurement vectors allows for identification of coherent generator 
groups and their associated geographic regions.

The work presented in this section outlines the procedures in develop-
ing a solution to extract an inter-area mode and determine its amplitude, 
phase, and damping at each measurement point, and it is based on the 
paper by Bank, Omitaomu, Fernandez, and Liu [8].

9.3.1 � Signal Preprocessing

In order to provide a better fit of the oscillatory content, the measurement 
data needs to be properly conditioned first. An example of measured fre-
quency data is given in Figure 9.1(a). It is desired to extract the properties 
of this oscillation.
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The data for this example is drawn from FDR measurements that capture 
the system response to a generation trip. The resulting system frequency 
drop is seen in Figure 9.1 as a sharp decline from about 60.05 Hertz (Hz) to 
59.96 Hz. During this drop period, a strong oscillation is also observed with 
power grid systems in Maine oscillating 180 degrees out of phase with sys-
tems in North Dakota. This example dataset will be used throughout this 
section to demonstrate the operation of the modal identification procedure.
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Although this oscillation is easily observed by visual inspection, it is 
difficult to qualify numerically. The main reason for this is the high DC 
component that dominates the frequency spectra. The inter-area band 
of 0.1 Hz to 0.8 Hz is completely overshadowed by the lower-frequency 
components. To resolve this problem, the DC component should be math-
ematically removed from the signal. A simple solution to this problem is 
to subtract the median from the original signal; doing this detrends the 
data and centers the distribution of data points around zero. Although 
doing this removes the DC component, there are still low-frequency com-
ponents overshadowing the inter-area band. These remaining unwanted 
components will be further attenuated by a nonlinear bandpass filter in a 
subsequent stage.

At this point, we consider the noise content of the input signals. 
Observing Figure 9.1(a), it is seen that a noticeable amount of noise is still 
present in the example data. From previous work [13], the nature of noise in 
the frequency monitoring network (FNET) system has been characterized 
as being Laplacian in nature. It has also been shown that a moving median 
filter provides an optimal filter for these noise elements. Because the inter-
area oscillation components occupy the 0.1 Hz to 0.8 Hz band, the selected 
lowpass filter should pass these frequencies with minimal distortion. Thus, 
the lowpass filter used to denoise the FDR data for this application should 
have a break frequency greater than 0.8 Hz and less than 2 Hz. Based on 
this, a moving median filter with a window size of 5 points was selected to 
satisfy these requirements.

Application of the described detrending method and moving median 
filter to the example dataset yields the filtered signals of Figure  9.1(b). 
When compared to the original signals of Figure 9.1(a), the level to which 
the noise elements have been attenuated becomes obvious. Figure 9.1(b) 
demonstrates very little high-frequency noise content and the oscillatory 
content is much clearer.

The filtering process up to this point has helped to condition the input 
data and to isolate the oscillation frequencies of interest. Despite this, the 
data signal still contains a large low-frequency component that masks the 
inter-area band. Our interest at this point is to isolate only those frequen-
cies within the inter-area band so that the dominant oscillation mode can 
be extracted. This was achieved through the implementation of a nonlin-
ear bandpass filter. The filter would be primarily based on an Empirical 
Mode Decomposition (EMD) of the detrended and denoised input signal.
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9.3.1.1 � Signal Decomposition
Empirical Mode Decomposition is a data-driven method that decomposes 
a signal into a set of Intrinsic Mode Functions (IMFs). Each IMF is an oscil-
latory signal that consists of a subset of frequency components from the 
original signal. As opposed to Fourier, wavelet, and similar methods, EMD 
constructs these component signals directly from the data by identifying 
local extrema and setting envelopes around the signal in an iterative pro-
cess. A fit is then performed on the local extrema to create an IMF. After 
the creation of an IMF, it is subtracted from the original signal and the pro-
cess repeats to identify the next IMF. This identification and removal pro-
cess continues until the original signal has been completely described by a 
set of IMFs. The output of the EMD process is the set of IMFs; generally, this 
set is a small number of signals (usually less than ten for the data considered 
here) that, when summed together, completely match the original signal. 
The EMD algorithm does not explicitly compute oscillation frequencies, 
amplitudes, or phase angles as with other signal decomposition techniques; 
instead, the IMFs are derived directly from the input signal based on its 
local extrema. A complete mathematical description of the EMD algorithm 
is beyond the scope of this chapter but can be found in [9–12]. The EMD and 
associated Hilbert-Huang Transform have also been recently proposed as 
methods for isolating inter-area modes in power systems [16, 17].

Performing an EMD on the Bangor trace of Figure 9.1(b) extracts the 
seven IMFs given in Figure 9.1(c). The first and second IMFs extracted in 
this process are given by the blue and green traces in Figure 9.1(c); these 
capture the high-frequency components and noise of the input signal. The 
next three IMFs given by the red, cyan, and violet traces capture the mid-
dle frequencies present in the signal. Finally, the last two IMFs extracted, 
those represented by the mustard and black lines, define the low-frequency 
components of the input, representing the event drop itself in this case.

The Fourier transform of the IMF signals in Figure  9.1(c) is given in 
Figure 9.1(d). The frequency variable is plotted on a log scale to better dem-
onstrate the frequencies in the lower range. The individual Fast Fourier 
Transforms (FFTs) have been scaled by their maximum values so that the low-
frequency components do not dominate the plot. Inspection of IMF signals 
confirms that each IMF is capturing one specific band of the original signal. 
The first IMF extracted, which is plotted in blue, is centered around 3 to 4 Hz, 
and each subsequent one picks up successively lower-frequency components.

Because the inter-area band is 0.1 Hz to 0.8 Hz, we would like to pre-
serve only those IMFs that have a significant portion of their power in 
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this band, and discard the others. The final implementation of this filter 
computes the IMFs and then performs a Fourier transform of each one. 
Using the Fourier transform results, the percentage of power within the 
inter-area band is computed for each IMF. If this percentage exceeds a 
given threshold, the IMF is retained; otherwise, it is discarded. The final 
filter output is the summation of the retained IMFs. Through testing 
on several datasets, it was determined that cut-off frequencies of 0.1 Hz 
and 0.8 Hz with a power percentage threshold of 0.75 provided the best 
response. These settings gave the best preservation of the inter-area band 
while removing most of the other frequency components.

The total input filtering process for this modal identification applica-
tion consists of three stages: first, the median detrending stage; followed 
by a moving median filter; and finally the EMD-based filter. This process 
serves to isolate only the frequency components within the inter-area 
band so that further processing can extract specified modes within this 
region. Applying this multistage filtering process to the set of example 
data results in the signals presented in Figure  9.1(e). Comparing this 
plot with that of Figure 9.1(a), it is seen that the low-frequency trend is 
completely removed, leaving a zero-centered signal. Additionally, the 
higher frequency components and noise have also been removed from 
the raw data vectors. The oscillation in the inter-area band observed 
during the event drop is now the most prominent feature of the data, 
making it easier to extract from a computational viewpoint.

This filtering procedure was found to function well for several types of 
data. It is demonstrated here on frequency measurement derived from the 
FDR system but it performs similarly for angle measurements from FDR 
and Phasor Measurement Unit (PMU) datasets. Given any of these differ-
ent types of data, the filtering process returns a zero-centered signal with 
the isolated inter-area modes similar to that of Figure 9.1(e). The ability of 
this filtering process to work for various different types of datasets makes 
the final modal extraction procedure compatible with all these forms of 
input data. The remainder of the modal extraction procedure is tuned to 
handle data vectors similar to those of Figure 9.1(e); thus, any dataset that 
the input filter can reduce to that form can be processed.

9.3.2 � Identification and Extraction of Dominant Oscillatory Mode

One oscillation frequency is selected and the properties of that mode will 
be extracted over time for each measurement vector. For historic data anal-
ysis, this extraction will focus around some particular event containing an 
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oscillation. The dominant frequency in this oscillation will be extracted 
and then tracked over time for a larger dataset around the event. In order 
to determine the dominant mode in the event, data from the correspond-
ing time span is extracted. Once the necessary time span is determined, 
the data for each measurement vector are filtered and extracted into a 
reduced dataset. Doing this produces a set of signals that are zero centered 
and dominated by the oscillatory mode.

With the event data properly conditioned, the extraction of the domi-
nant modal frequency can begin. In order to extract this mode, a Matrix 
Pencil [14, 15] based analysis was employed across a sliding data window. 
As the window is progressed across the data, an independent Matrix 
Pencil procedure is performed for each measurement vector and each data 
window. The results for one of the Matrix Pencil fits on the example data-
set are given in Figure 9.2(a).

Inspection of Figure 9.2(a) shows that one of the computed modes, MP 
result 3, closely matches the oscillation and captures the majority of the 
original signal. This result is typical of all the tested cases and is primar-
ily due to data detrending of the input filter. In all the observed cases, one 
of the computed modes followed the original signal very closely, with the 
remaining Matrix Pencil results accounting for the difference. The expres-
sion for a modal component is given by Equation (9.1), where A is the 
amplitude, α is the damping, f is the frequency, and θ is the phase angle.

	 y = Ae ∝ tcos(2π ft + θ)	 (9.1)
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The power of this signal is given by Equation (9.2). Note that this equation 
does not give a true electrical power as it is derived from a frequency signal 
instead of a current or voltage.

	 Py = y2	 (9.2)

The total energy of Equation (9.1) can then be expressed as the summa-
tion over time of the power as stated in Equation (9.3). Once again, this 
is not a true physical energy quantity, merely an analogous metric of the 
data signal.

	 Ey = ∑tPy	 (9.3)

Whenever the Matrix Pencil method is performed on a measurement 
vector over a data window, this energy metric is assessed for each result-
ing mode. The mode with the largest energy value is then selected as the 
representative mode for that data vector and data window. This process is 
repeated for each vector and for each data window within the span of the 
oscillation event. A representative mode is then determined for each itera-
tion, giving many possible modal frequencies.

Each of these candidates represents one oscillatory frequency that pre-
vailed during a specific data window on one of the measurement vectors. 
The set of candidate modal frequencies can thus be treated as a probability 
distribution describing the location of the dominant mode. The distribu-
tion of candidate modes for the example dataset is given in Figure 9.2(b). 
This distribution represents an asymmetrical probability density function. 
From this data distribution, we want to determine the most likely value.

Assessing the most commonly occurring value in the candidate mode 
distribution gives an estimate of the most often-occurring frequency com-
ponent. It is this estimate that will be taken as the dominant oscillatory 
mode during an event. Executing this procedure on the set of example 
data determined a modal frequency of 0.428 Hz. This value is within the 
desired inter-area band and when compared with the original data of 
Figure 9.1(a), it is consistent with the observed oscillation frequency.

9.3.3 � Windowing Fit of Dominant Mode to Full Dataset

Now that the dominant oscillatory frequency has been determined, it will 
be applied across the full length of the dataset. Once again, a moving win-
dow will be employed to fit the mode across time. For each measurement 
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vector and window instance, the damping, angle, and phase are derived, 
which provide a best fit to the given data. The moving window is sized such 
that it covers approximately one period of the dominant oscillation fre-
quency. The data window then starts at the first data point to be included 
in the output. It then moves across the full dataset, shifting one time-step 
at a time until the end time is reached. For each instance of the window, 
each measurement vector is filtered according to the process of Section 
9.3.1. After filtering the data, vectors are resampled to increase the discrete 
sampling rate. As before, this resampling serves to increase the stability and 
accuracy of the final fit.

Once these conditioning steps have been performed, the fit is ready to 
be executed. In this case, we want to fit a damped sinusoid of a speci-
fied frequency. A least squares fit of a damped sinusoid function was per-
formed. This function is of the form in Equation (9.4). Here, the variable 
fit parameters are the amplitude A, the damping factor α, the phase θ, 
and a DC offset C. In Equation (9.4), f0 is the dominant modal frequency 
determined previously.

	 y = Ae∝t cos(2πf0t + θ) + C	 (9.4)

Performing this fit results in an optimal least squares solution to the 
four fit parameters. This solution gives the amplitude, damping, and phase 
for the oscillatory mode of interest. As this filtering, resampling, and fit-
ting procedure is iterated across time and measurement vectors, an evo-
lution of the dominant mode is captured. The amplitude, damping, and 
phase angles are computed with respect to a constant mode frequency. 
These values may then be tracked both spatially and temporally to gain an 
understanding of the evolution of this particular mode.

9.3.3.1 � Identification of Coherent Groups
With the mode angle and phase determined for each measurement point 
over time, it is desired to estimate those units that form coherent groups. 
Given a set of phasors computed from a mode, the coherent groups can 
be identified by clustering the phasors according to their phase angle. As 
each group will be oscillating against the other group(s) in the system, the 
different groups should demonstrate differing phase angles. The desired 
cluster centroids in this case become phase angles defining the center of 
each coherent group.
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Figure 9.3 gives the results of the clustering algorithm for a set of mode 
phasors drawn from the example data. Here, each measurement device 
yields one phasor. The clustering algorithm proceeds to identify those form-
ing coherent groups by classifying them according to the direction in 
which they point. In Figure 9.3, each group is identified by a separate color, 
with the group centroid given by the dashed line of the same color.

9.3.4 � Visualization of Modal Extraction Results

A visualization package was developed to display the results from the pre-
ceding modal identification procedure. This visualization is based on a 
geographic display that gives the mode amplitude and phase at each mea-
surement point. These phasors are placed on the map so that the coherent 
groups can be observed spatially. This visualization architecture was used 
to generate movies that run across a given oscillation to present the graph-
ics over time such that the temporal evolution can be observed in real 
time. One such movie is represented in Figure 9.4 by a series of frame cap-
tures. This movie was constructed from a dataset centered on the example 
case used throughout this section.

Figure 9.4(a) gives a movie frame from before the event and demon-
strates a region with very little oscillatory content. The plot at the top of 
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FIGURE 9.3  (See color insert.) Phasor clustering example.
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the frame gives the raw measurement data for several FDRs. The time 
range highlighted in red is the region to which this frame corresponds. 
This plot is intended to provide a timeline of the oscillation event under 
study, as well as give the time point currently being displayed. The main 
body of the frame of Figure 9.4(a) consists of geographic region spanned 
by the power system with each mode phasor plotted at the location of its 
corresponding measurement point. The phasors in this frame are also 
color-coded by the coherent group to which they belong. In the lower-left 
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corner of Figure 9.4(a), the modal frequency being extracted is given along 
with the average damping factor seen across the measurement points of 
the system. To the left of the average damping is a traffic light style indica-
tor. When the damping is greater than zero, this light turns red, specifying 
an alarm condition as the oscillation is growing. If the oscillation is lightly 
damped (−0.1 < α ≤ 0), the light turns yellow. Finally, this indicator is 
green when the oscillation is heavily damped (α < −0.1). The final feature 
of Figure 9.4(a) is a phasor diagram in the lower right-hand corner that 
plots all the mode phasors on the same origin so that the clustering and 
relative magnitudes are better demonstrated. In this diagram, the dashed 
lines represent the centroids of the computed clusters. As indicated by 
the location of highlighted time span (red moving window), Figure 9.4(a) 
is drawn from a time point before the inciting event. At this stage, the 
system is in steady state and not experiencing an inter-area oscillation. 
Because of this, all the mode phasors have very small magnitude and reg-
ister as nearly zero in the diagrams.

As time progresses to Figure  9.4(b), the inter-area oscillation is fully 
developed. Higher amplitudes are seen by FDRs around the Great Lakes 
as well as the FDR located in Bangor. The average damping across the 
system is positive, as the oscillation is growing. The clustering algorithm 
has identified two major coherent groups at this point: the first is the two 
New England FDRs in red and the second covers the Great Lakes regions 
in blue. For the most part, these two groups are oscillating 180 degrees out 
of phase.

The inter-area oscillation has grown to its largest magnitude by 
Figure 9.4(c); here, nearly all the measurement points are registering sig-
nificant amplitude, and the phasors are all observable on the map. Also 
at this point, the oscillation magnitude has begun to decay, indicating 
damping across the system. The average damping factor is –0.902, indi-
cating that the oscillation is decaying sharply throughout the system. 
Then, the two primary groups are defined by the Bangor, ME, unit and the 
Bismarck, ND, units, which are oscillating nearly 180 degrees out of phase.

As time progresses through to Figure 9.4(d), the oscillation continues to 
decay. As a result, the majority of the phasors in this capture are smaller 
than they were in Figure 9.4(c). The average system damping factor here 
has achieved −0.636. The New England units are still forming a coherent 
group with the southern United States, as characterized by the blue and 
pink groups. This group is now oscillating against the rest of the system, 
most notably the Northern Plains area, as seen by the black group of units. 
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A third group oscillating halfway between the other two has been identi-
fied by the clustering algorithm and is shown in red and green.

The oscillation has almost completely died out by the time the movie 
approaches the time span of Figure 9.4(e). At all the measurement points, 
the mode phasors have little to no amplitude. In addition, the computed 
dampings do not expect them to be growing substantially over the next 
cycle. The average system damping is still negative but approaching zero; 
this is not necessarily an alarm but due mainly to the fact that the system 
is not demonstrating any appreciable oscillation. From this it is obvious 
that the oscillation has run its course and the system has achieved its new 
steady-state value.

The visualizations and movie creation described in this section were 
performed in MATLAB. The individual frames are rendered as MATLAB 
figures and then imported into to an *.avi file to create the movie. The 
geographic mapping and coastlines of the displays were achieved with the 
use of M_Map [18], which is a set of MATLAB functions implementing a 
mapping toolbox. The approaches presented in this section can be used by 
engineers and control room operators to identify, extract, and visualize 
inter-area modes within the system in real time.

9.4 � CLASSIFICATION OF POWER GRID FREQUENCY 
DATA STREAMS USING k-MEDIANS APPROACH

This section describes a k-Medians approach for clustering and identify-
ing disruptive events in spatially distributed data streams.

9.4.1 � k-Medians Approach Detecting Disruptive Events

The frequency of the power system provides a great deal of information 
about the health of the system and the prevailing operating conditions. 
The frequency trend indicates the power balance of the system. When the 
amount of power generated is equivalent to the amount of power con-
sumed, the system is in steady state and the frequency remains constant. 
If there is an imbalance in generation/consumption, the system responds 
by converting some of its kinetic energy to electrical energy to make up 
for the power imbalance, causing acceleration toward a new operating 
point. This acceleration can be seen as a change in frequency. An excess 
of generation causes the system to accelerate, resulting in an increase in 
frequency. An excess of load causes the system to decelerate, depressing 
the frequency. This change in frequency is proportional to the magnitude 
of power imbalance. This concept is demonstrated in Figure 9.5(a), which 
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shows the system frequency as monitored by several FDRs over a span of 
60 seconds. During this time span, at about t = 32 seconds, a generator 
went offline, resulting in an instantaneous generation deficiency of about 
1,200 megawatts. This imbalance caused the frequency to drop abruptly. 
After the drop, the system achieves a new operating point and settles into 
relatively stable frequency value.

The power imbalances resulting from these types of system events can 
have detrimental effects on the stability of a system as a whole; thus it 
is desirable to monitor the incoming FDR data in real time to identify 
these sudden changes in frequency. When such an event is detected, fur-
ther information can be extracted from the frequency data [6, 7], and the 
appropriate action can be taken by the system operator.

Streaming data mining is attracting increasing attention in view of its 
growing applications, including electric power grid systems. For stream-
ing data mining, single-pass algorithms that use a small amount of mem-
ory are essential. Several data streaming algorithms have been proposed 
[2–5]. Datasets shown in Figure  9.5(a) are representative of the type of 
feature that needs to be detected. An event is preceded by a relatively stable 
initial operating point, followed by a rapid change in frequency and finally 
settling to a new operating point. This rapid change can be a drop in fre-
quency as shown in Figure 9.5(a). Fitting a step function to a data window 
should provide both the pre-event and the post-event operating points. 
Taking the difference of these two operating points yields the event size. A 
decision boundary can then be placed on this difference to decide between 
datasets containing events and those that do not.

9.4.2 � Using k-Medians to Determine Pre-Event 
and Post-Event Operating Points

A data window containing an event will be dominated by two clusters 
of data points: the set of points belonging to the pre-event condition and 
the set of points belonging to the post-event condition. Each of these sets 
will also contain some points belonging to the event itself. If a window 
size is chosen such that it is sufficiently larger than the event region, these 
points will be overshadowed by the pre-event and post-event clusters. 
Identification of these two clusters was achieved using the k-Medians 
algorithm with k = 2. As discussed by Wang, Gardner, and Liu [7], FDR 
datasets naturally contain a high number of outliers and, as such, the 
median becomes a more appropriate estimator of position than the mean; 
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it is for this reason that k-Medians was chosen as opposed to k-Means. The 
k-Medians algorithm [4] consists of the following steps:

	 1.	Start by assuming two clusters (k = 2) and selecting initial values for 
the centroid of each cluster, cj.

	 2.	For each point in the dataset, πj, find the closest cluster, as measured 
using the 1-norm distance:
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	 3.	Compute the new set of cluster centroids ctj = 1q by computing the 
median of the cluster. The median is used because it is the point that 
minimizes the total 1-norm distance from all points to it.

	 4.	Repeat Steps 2 and 3 until there is no change in the cluster centroids.

Given a window of consecutive measurement points and using the fre-
quency value of each point and a k value of 2 identifies two clusters within 
the input data, one being the measurements with higher frequency val-
ues and the other being those measurements with lower frequency values. 
Taking the difference of the two centroids of these clusters gives a robust 
indication of the size of a possible event within the data window. This 
procedure is demonstrated on two sets of data in Figures 9.5(b) and 9.5(c).

These two figures demonstrate how the k-Medians detection algorithm 
responds to an event. When no event is present within the data, the fre-
quency data is relatively stable and the medians of the two clusters are 
close together, producing a small difference. When the source data con-
tains an event, the data before the event are placed into one cluster with 
the data after the event being placed into the other cluster; as the size of the 
event increases, the medians of these groups will spread apart and their 
difference will increase. The magnitude of this difference will form the 
metric that determines whether an event occurred with the source data.

9.4.3 � Selection of Window Data

Because the FDR measurements are sent continuously in real time, it is 
desirable to implement the event detector in such a way that it can be 
fed continuously. This was accomplished using a sliding data window 
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approach. The k-Medians algorithm would be performed on a window of 
data to determine whether an event had occurred within that time span. 
This window would be moved across the data as it arrives from the mea-
surement devices and be reevaluated. An optimal window size should be 
determined such that the decision metric provides a clear definition for 
event and non-event cases. In order to evaluate this, several data windows 
of differing sizes were tested on events from the training set. A selection 
of these results is presented in Figure 9.5(d). The decision metric value is 
plotted as a function of the data window size. The blue lines are derived 
from a few typical events, and the red lines are derived from datasets with-
out events.

It is seen that as the window size increases past 50 points, there is a sep-
aration between the event and non-event cases. When the window size is 
small, the event drop occupies most of the data window; this pulls the group 
centroids together, reducing the magnitude of the decision metric. As the 
window size increases, more data from the stable regions are included and 
each centroid will be pulled toward the desired position. Increasing the 
size of the data window past a certain point produces diminishing returns, 
with the cluster centroids settling to the desired stable points. This effect 
is seen in the right-hand portion of Figure 9.5(d) as the traces approach 
horizontal. Additionally, it was observed that an excessively large window 
may capture slower data trends that we are not concerned with here, thus 
corrupting the results. Finally, a smaller window size also means that less 
data must be buffered in a real-time application, thereby decreasing the 
delay between an event occurrence and its identification.

Considering all these factors, it was determined that a 150-point 
(15 seconds) data window produced the best results for the training cases. 
In the final implementation, the data window shifts by a quarter of its 
width during each successive evaluation. Shifting in this manner reduced 
the amount of times the metric needed to be computed while ensuring that 
any events would be properly positioned within at least one data window.

9.4.4 � Determination of Decision Boundary

A training set was compiled from 23 datasets containing events; in addi-
tion, several hours of data that contained no events was included in the 
training set. The 150-point sliding window was passed through this data 
and the metric was evaluated for each window. These results were then 
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referenced against the known event times to evaluate the performance of 
the k-Medians difference metric. These results are given in Figure 9.5(e).

Each point in Figure 9.5(e) represents one window within the training 
set data. The blue crosses correspond to windows that contain no event. 
The black circles represent windows that contain a full event signature; 
and the red circles are windows that contain a portion of an event, but 
not the entire drop. The windows containing incomplete events are scat-
tered throughout both of the other groups. These points represent a transi-
tion from a non-event case to an event case and, as such, their appearance 
within each group is expected. Due to the sliding nature of the data win-
dow and the width of an event signature, every event is guaranteed to 
appear fully within at least one window. Because of this, the red points in 
Figure 9.5(e) become “don’t-care” situations as they represent events that 
have either already been detected or that will be detected by an upcoming 
window. An evaluation of Figure 9.5(e) to determine a decision bound-
ary between the blue and black groups revealed that the optimal decision 
boundary occurs when the absolute value of the k-Medians difference 
metric is 0.0165 Hertz. Values less than this indicate no event, while val-
ues greater than 0.0165 Hertz indicate that an event occurred. The deci-
sion boundary determined here is specifically designed for the Eastern 
Interconnection in the U.S. power grid system. Other interconnections 
within the power grid systems will have a different decision boundary.

9.4.5 � Evaluation of Decision Boundary

After constructing the event detection algorithm and setting the decision 
boundary for its metric, it was tested against several datasets outside the 
training set. For all cases, it correctly differentiates between windows that 
contained event signatures and those that did not. A time-based compar-
ison of the event detection metric against the source data is presented in 
Figure 9.5(f). Here, the top chart gives measured data values; the bottom 
chart gives the corresponding values of the k-Medians difference deci-
sion metric during the event. The selected decision boundary appears as 
a horizontal dotted line on the decision metric plot. As demonstrated by 
these plots, the metric is below the decision boundary before the event, 
it exceeds the value during the time frame of the event signature, and 
finally returns below the boundary after the event has passed.
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9.5 � IDENTIFYING GRID DISRUPTIONS USING 
TIME-SERIES CHANGE DETECTION

A challenge associated with the identification of grid disruptions is to 
detect the events as early as possible. The k-Medians approach discussed 
in Section 9.3 requires data before and after the actual event to reliably 
identify an event. This constraint might render the approach undesirable 
for real-time decision-making applications. This section describes a faster 
method to identify grid disruptions in individual data streams that applies 
a time-series change detection algorithm to identify significant changes.

Time-series change detection has been a much researched area in 
statistics, especially in the context of statistical quality control [19, 20]. 
Recently, several data mining approaches have been proposed to identify 
changes in time series [21, 22]. But many of these approaches are either 
not online or are not scalable to the high throughput data as encountered 
in this domain.

An approach based on the widely used quality control method called 
cumulative sum control chart (CUSUM) [23] for time-series change detec-
tion is discussed here. Change detection has been extensively studied in the 
context of time-series analysis and forecasting. The standard approaches 
include various smoothing techniques, the Box-Jenkins autoregressive 
integrated moving average (ARIMA) modeling, innovation and outlier 
analysis, and more recently, wavelet-based methods.

9.5.1 � A CUSUM-Based Fast Time-Series Anomaly Detection Method

In this subsection a CUSUM-based methodology to identify anomalies in 
a univariate time series is discussed. The exact problem can be defined as:

Given a regularly sampled time series T, such that, each value Tt, 
is the measurement at time t, for a given sensor, identify spans of 
the form [t1,t2], such that the underlying system is in an anomalous 
state from time t1 to t2.

While traditionally CUSUM is used to identify changes in a time series, 
it can be adapted for anomaly detection in time series. The core idea 
behind CUSUM is that one can use it to identify the start and the end of 
an anomalous regime in a given time series by identifying a change point.

The CUSUM approach is a sequential method that involves calculation 
of a cumulative sum. For a given time series, at a given time t (> 1), the fol-
lowing two quantities are computed:
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	 St
+ = max(0,S+

t–1 + (Tt – ωt))

	 St
– = max(0,S–

t–1 + (ωt – Tt))

The quantity ωt is the weight assigned at each time instance. While this 
can be dependent on t, it is set to

	 ωt = μ0 + k∙μ0 – μ∙

where μ0 denotes the expected mean of the in-control distribution of T, 
while μ denotes the minimum shift that needs to be detected. The method 
has one parameter, the allowance value k, which is typically set to 0.5 or 1. 
The allowance value k governs how much deviation from the expected 
mean is allowed. If a process is naturally noisy, k is typically set higher, 
while for a relatively stable process k is set to a low value.

The process is initialized with

	 S+
1 = max(0,T1 – ω1)

	 S–
1 = max(0,ω1 – T1)

The S+ statistic monitors the changes in the positive direction (also some-
times referred to as “high-side” CUSUM), and the S- statistic monitors the 
changes in the negative direction (also sometimes referred to as “low-side” 
CUSUM). For monitoring grid disruptions, the low-side CUSUM is rel-
evant because one is interested in detecting events in which the frequency 
of the power falls down.

Figure 9.6 denotes a simple example that illustrates the CUSUM-based 
anomaly detection on a synthetically generated time-series dataset. The 
first 100 and last 100 points in the time series are generated from a normal 
distribution with mean 0 and standard deviation 1. The points from time 
101 to 200 are generated from a normal distribution with mean −0.25 and 
standard deviation 1. It can be seen that although the anomalous region is 
indistinguishable to the naked eye, the CUSUM-based approach can still 
identify the anomalous region. During the anomalous state, the CUSUM 
score increases and starts falling down once the time series is in the nor-
mal state.

Computationally, this approach is fast because it requires a constant 
time operation at every time second, and it is also memory efficient, as we 
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only need to maintain the value of the CUSUM statistic of the previous 
time instance.

The key issue with this approach is that the output of CUSUM requires a 
threshold to declare when the system is in an anomalous state. If the thresh-
old is set very low, the false positive rate is high; and when the threshold is 
set high, it might result in a delay in identifying an event. To alleviate this 
problem, the quality control literature provides a way to set the threshold 
based on the Average Run Length (ARL) metric. Typically, the threshold is 
set based on the number of expected events in an in-control process.

9.5.2 � Results on Grid Data

This section summarizes the performance of the CUSUM-based anomaly 
detector, as described in the previous section, on frequency data collected 
from the FDR sensors described in Section 9.3 of this chapter. The objec-
tives of these experiments are as follows:

	 1.	Can the CUSUM based approach identify useful events?

	 2.	What is the typical false alarm rate?

9.5.2.1 � Data Description and Algorithm Parameters
For the results shown in this section, data came from 21 FDRs located 
within the Eastern Interconnect (EI) of the United States. Data for 
2 months (May 2008 and June 2008, total 61 days) are used. The time 
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series are sampled at the rate of 10 Hertz. The length of the time series 
for each day is 864,000. The data was analyzed separately for each month. 
The frequency data are preprocessed using the k-Medians approach with 
k set to 5.

The allowance value (k) for the CUSUM algorithm is set to 1, the mini-
mum shift (μ) to be detected is set to 0.05, and the in-control distribu-
tion mean (μ0) is 0.* An anomalous event is defined as a subsequence of a 
month-long time series in which the CUSUM statistic is greater than zero. 
Based on an understanding of the domain, an anomalous event is consid-
ered significant if it lasts for at least 2 seconds (20 observations).

9.5.2.2 � Raw Results
Table 9.1 summarizes the number of significant anomalous events identi-
fied for each of the sensors for May 2008 and June 2008. The results show 
that for all the FDRs, the fraction of time in which the system is in an 
anomalous state is a small fraction of the total time, but that fraction itself 
can be a large number. For example, FDR 11 in Grand Rapids, MI, was 
in an anomalous state, 0.0082 fraction of the total time, approximately 
200,000 observations. However, the number of significant anomalous 
events for each sensor for a month is not more than 119.

Evaluation of the output of the anomaly detector is a challenge, given 
the lack of ground truth data about the grid-related events for that time 
period. A possibility is to examine the local news sources for the specific 
days of the events, although that process can be expensive, as well as not 
guaranteed to cover every grid event. To further consolidate the output, a 
spatial co-location constraint can be applied, as discussed below.

9.5.2.3 � Incorporating Spatial Information
Electric grid events (such as outages, trips) typically have a cascading 
effect. Hence, a grid event must manifest itself in data collected at spatially 
colocated sensors. Table 9.2 shows the number of significant events iden-
tified by the CUSUM-based anomaly detection system for each sensor, 
while taking the spatial information into consideration. Thus, an alarm 
raised at a sensor is considered “true” if it was also raised by the neigh-
boring sensors (eight for this study). The number of significant events is 

*	 The data have already been centered using the k-Medians approach by using the medians as cen-
ters to shift the subset of data.
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reduced by incorporating the spatial information. While one cannot infer 
that the events that are thus ignored are not useful, this approach does 
allow a reduced set for further analysis.

As shown in Table  9.2, the number of significant events is sharply 
reduced to 143 by taking the spatial context into account. While the real 
benefit of this approach can be validated only by confirming that the 
detected events are indeed beneficial in terms of identifying the actual 
events, the lack of availability of reliable ground truth regarding grid 
events makes the validation challenging. At the time of writing this chap-
ter, the detected events were being validated through a manual process, 
the results of which will be documented in future publications.

TABLE 9.1  Summary Statistics for CUSUM-Based Anomaly Detection Output 
for Different FDRs

FDR # Location State

May 2008 June 2008

Fraction 
Alarms 

No. 
Anomalous 

Events
Fraction 
Alarms 

No. 
Anomalous 

Events
  11 Grand Rapids MI 0.0082 117 0.0094 115
  13 Carmel IN 0.0081 115 0.0095 113
  38 Holyoke MA 0.007   97 0.0093 106
  40 St Paul MN 0.008 116 0.0092 111
  42 Tallahassee FL 0.0081 116 0.0095 116
510 Blacksburg VA 0.0038   64 0.0046   85
513 State College PA 0.0082 119 0.0095 113
514 Simpsonville SC 0.0009   16 0.0005   13
516 Rochester NY 0.0056   88 0.009 108
519 Newport News VA 0.0034   53 0.0034   37
521 Chillicothe OH 0.0076 117 0.0058   71
523 Oak Ridge TN 0.0033   43 0.0019   19
526 Birmingham AL 0.0082 118 0.0095 113
560 Duluth MN 0.0068   92 0.0079   90
561 Madison WI 0.0081 119 0.0095 115
566 Gulfport MS 0.0081 116 0.0095 113
568 Montgomery AL 0.0082 117 0.0095 113
570 Atlanta GA 0.0082 118 0.004   54
571 Pensacola FL 0.0082 118 0.0095 111
596 Cookeville TN 0.0067   93 0.0062   69
597 Cookeville TN 0.0067   92 0.0056   66
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9.6 � CONCLUSIONS
Data mining has immense significance in terms of addressing several key 
power grid problems, specifically in the arena of rapid event detection, as 
discussed in this chapter, which have the potential of going a long way in 
terms of realizing the promised benefits of the smart grid. The key chal-
lenges associated with this domain, in terms of data analysis, are the mas-
sive nature of the data and the short reaction time allowed (on the order of 
a few seconds) for allowing adequate response. The analytic solutions pro-
posed in this chapter focus primarily on simple analyses that can be scaled 
to the data sizes and the high sampling rate of the incoming power signal. 
In the future, as the synchrophasors become more and more advanced 
(both in terms of sampling rate as well as the number of deployed sen-
sors across the country), more research will be required to make the data 
analysis solutions scalable.

TABLE 9.2  Number of Significant Events for Spatially Aware 
CUSUM-Based Anomaly Detection Output for Different FDRs

FDR # Location State May 2008 June 2008
  11 Grand Rapids MI 8 8
  13 Carmel IN 5 6
  38 Holyoke MA 0 0
  40 St Paul MN 8 8
  42 Tallahassee FL 0 0
510 Blacksburg VA 0 0
513 State College PA 0 0
514 Simpsonville SC 0 0
516 Rochester NY 0 0
519 Newport News VA 0 0
521 Chillicothe OH 0 0
523 Oak Ridge TN 0 0
526 Birmingham AL 9 8
560 Duluth MN 8 8
561 Madison WI 8 8
566 Gulfport MS 9 8
568 Montgomery AL 9 8
570 Atlanta GA 0 0
571 Pensacola FL 9 8
596 Cookeville TN 0 0
597 Cookeville TN 0 0
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10.1 � INTRODUCTION

A wind resource assessment is initiated as part of the decision 
process leading to selecting a wind farm site. There are multiple 

factors that influence site selection. Among them are legal considerations, 
community opinion, ease of construction, maintenance, and cabling cost. 
Arguably, most crucial is whether there is enough wind in the ideal speed 
range that will endure over a long span of time, such as a generation or lon-
ger. Prediction of wind at high frequency, such as hours to days to weeks, is 
fraught with technical and sensing challenges—plus intrinsic uncertainty. 
Wind resource assessment for site selection contrasts with high frequency 
prediction. Its goal is to provide a general estimate that guides selection 
without being a precise prediction. The annual, actual wind resource of a 
farm would be expected to deviate from the assessment with reasonable 
variance. However, when the actual annual resource is averaged over a 
long time span, the goal is that assessment and actuality should match up. 
In this way, wind resource assessment helps inform the question of the 
production capacity of the site over its extended lifetime (which poten-
tially includes successive upgrades of turbines and related facilities).

A wind resource assessment is presented as a set of probability distribu-
tions of wind speed for directional intervals that span 360°. An example of 
three distributions, for the intervals 0° to 15°, 15° to 30°, and 30° to 45° is 
shown on the left of Figure 10.1. Each plotted probability function is mod-
eled with a Weibull distribution that is parameterized by shape and scale. 
Integrating this function (mathematically) allows one to derive the prob-
ability that the wind speed from a given direction range will be within a 
specific range.
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The assessment can also be visualized via a wind rose; see Figure 10.1 
(right). The span of the entire 360° is oriented in the north-south com-
pass direction to inform its alignment to the site. Figure 10.1 (left) shows 
16 direction intervals, each as a discrete “slice” with coloring that depicts 
wind speed. The length and width of the slice conveys probability.

There are multiple methodologies that derive a wind resource assess-
ment. All are subject to great uncertainty. When a wind resource 
assessment is based upon wind maps and publicly available datasets from 
the closest locations, it tends to overestimate the wind speed because the 
maps are so macroscopic. Even when the resource estimated by the wind 
map for a geographical location is improved upon by utilizing a model that 
accounts for surface roughness and other factors, significant inaccuracies 
persist because specific details of the site remain neglected. Alternatively, 
a computational fluid dynamics (CFD) model can be used to achieve a 
better resource assessment. However, CFD also has limitations. It is very 
difficult to incorporate all the local attributes and factors related to tur-
bulence into the simulation. While the wind industry has started to com-
bine CFD and wind map approaches, the current methods are ad-hoc, not 
robust, and more expensive than desired.

In this chapter we provide new techniques for the only assessment 
methodology that takes into account as many years of historical data as 
possible (although those data are remote from the site itself), while also 
integrating site-specific information, albeit short term and relatively noisy. 
We consider the Measure-Correlate-Predict assessment methodology, 
abbreviated as MCP, which exploits anemometers, and/or other sensing 
equipment that provide site-specific data [1–4]. The Measure step involves 
measuring wind speed and direction at the site for a certain duration of 
time. In the Correlate step, these data are then associated with simultane-
ous data from nearby meteorological stations, so-called historical sites that 
also have long-term historical data. A correlation model is built between 
the time-synchronized datasets. In the Predict step, the model is then used 
along with the historical data from the meteorological stations to predict 
the wind resource at the site. The Prediction is expressed as a bivariate 
(speed and direction) statistical distribution or a “wind rose” as shown in 
Figure 10.1.

While MCP does incorporate site-specific data, these data are based 
upon very inexpensive sensors, that is, anemometers, which are conse-
quently very noisy. Additionally, anemometers are frequently moved on 
the site and not deployed for any significant length of time. Thus, the key 
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challenge of MCP is to accurately predict with cheap, noisy, short-term 
sensor measurements. We aim to address how techniques match up with 
data availability. Usually 8 to 10 months is considered the standard in the 
wind industry. However, we seek very simple modeling techniques that 
can reduce the amount of data required to get an accurate estimation of 
the long-term wind speed.

Another challenge is integrating historical site data. The best historical 
site (e.g., airport) to correlate wind speed with a site might be somewhat 
intuitive if only wind direction is considered: for example, when the wind 
blows from the north at the site, its speed might be best correlated with 
speeds from a particular airport meteorological tower immediately to the 
north. However, site conditions such as local terrain height variation or 
terrain features such as forests and large buildings make identifying the 
best correlation sources much more complicated. The sites’ conditions can-
not be observed directly in the data but influence the correlative relation-
ships. Also, the strength of correlations may be sensitive to how the wind 
direction is segmented into aggregative bins and intervals. To date, the 
selection is done with trial-and-error modeling and ad hoc understanding 
of the similarity between the proposed and historical sites. Almost always, 
a single historical site, closest to the test site, is used to build the predic-
tive model. Yet, for any directional bin, better accuracy is obtainable when 
multiple historical sites in different directions with respect to the site are 
candidates for integration into the estimation. In this chapter we address 
how to integrate the wind information from multiple historical sites and 
weigh each historical site according to its correlative strength.

It is not uncommon for wind farms to fall short of their expected energy 
output. A study performed in the United Kingdom monitored small and 
micro wind turbine performance and found that the wind resource was over-
predicted by a factor of 15 [5]. In another example, data analysis of 19 small 
turbines installed in Massachusetts [6] showed, on average, turbines under
performing by a factor of 4. The capacity factor was found to be as low as 3% 
to –4%. Inadequate wind resource assessment was determined to be one of 
the major factors (20%) influencing the underperformance.

In this chapter we describe a set of computational intelligence techniques 
based on statistical inference. Each technique relies on estimating the joint 
distribution of wind speeds at the site and the publicly available neighboring 
sources. The accuracy of any one of these techniques is sensitive to choices 
in the modeling setup and/or parameterizations. We aim to assess which 
technique and choices are best. Our assessment will utilize anemometer 
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measurements for a site at the Boston Museum of Science when the avail-
ability of site data varies between 3, 6, and 8 months while correlating with 
data from 14 airports nearby; see Figure 10.4 and Table 10.1.

We proceed as follows: Section 10.2 presents a detailed description of 
MCP. Section 10.3 presents statistical techniques that can be used in an MCP 
framework. Section 10.4 presents the means by which we evaluate the 
techniques. Section 10.5 presents the empirical evaluation. Finally, Section 
10.6 states our conclusions and outlines future work.

10.2 � MEASURE-CORRELATE-PREDICT
We consider wind resource estimation derived by a methodology known 
as Measure-Correlate-Predict; see Figure 10.2. In terms of notation, the 
wind at a particular location is characterized by speed denoted by x and 
direction θ. Wind speed is measured by anemometers, and wind direction 
is measured by wind vanes. The 360° direction is split into multiple bins 
with a lower limit (θl) and an upper limit (θu). We give an index value of J 
= 1…j for the directional bin. We represent the wind speed measurement 
at the test site (where wind resource needs to be estimated) with y and the 

TABLE 10.1  The Boston Museum of Science Is at Position 
N42.37°, W71.1°

Variable Airport
Distance 
(miles)

Compass Position 
(Lat., Long.)

x1 North Adams 151 (42.69°, −73.16°)
x2 Bedford 18.7 (42.46°, −71.28°)
x3 Beverly 20.6 (42.58°, −70.91°)
x4 Chatham 88.5 (41.68°, −69.99°)
x5 New Bedford 56.2 (41.67°, −70.95°)
x6 Fitchburg 41.2 (42.55°, −71.75°)
x7 Hyannis 72.7 (41.66°, −70.28°)
x8 Lawrence 28.1 (42.71°, −71.11°)
x9 Vineyard Haven 92.9 (41.39°, −70.61°)
x10 Orange 84.7 (42.57°, −72.28°)
x11 Norwood 23.2 (42.18°, −71.17°)
x12 Plymouth 43.9 (41.96°, −70.68°)
x13 Taunton 39.3 (41.87°, −71.01°)
x14 Boston 4.9 (42.36°, −71.02°)

Note:	 Columns 1 and 2 show the airport names and their cor-
responding variable names in our multivariate model. 
Column 3 shows each airport’s line-of-sight distance (in 
miles) from the Boston Museum of Science. Column 4 
shows the compass position of each airport.
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other sites (for whom the long term wind resource is available) as x, and 
we index these other sites with M = 1…m.

The three steps of MCP are:

	 1.	Measure: Short-term sensing measurements on the site are collected. 
This is denoted by Y = {ytk … ytn}. Measurements can be collected 
using anemometers on the site, a newly constructed meteorological 
tower, or even remote sensing technologies such as sonar or lidar. 
Different measurement techniques incur different costs that dictate 
their feasibility for different projects. Measurements from nearby 
sites for the same period are gathered. These sites, called histori-
cal sites, have additional data for the past 10 to 20 years. These are 
denoted by X xt t

m
k n= …
…{ }1 , where each xt t

i
k n…  corresponds to data from 

Direction
Model

Historic Site
Date Time Direction DirectionWind Speed Wind Speed

11/5/2008 8:55

11/5/2008 9:15

11/5/2008 9:25

11/5/2008 9:35

180

140

145

180

1.543

1.543

2.058

1.543

0.724

0.423

0.500

0.705

58.79

83.49

74.13

53.62

2/5/2009 12:15 140 1.801 0.441 277.5

2/5/2009 12:25 145 1.801 0.303 290.67

2/5/2009 12:35 135 1.543

11/5/2009 15:25 110 1.543

11/5/2009 15:35 85 1.801

Test

Speed
Model

FIGURE 10.2  MCP generates a model correlating site wind directions to those 
simultaneously at historical sites. For a directional bin, it generates a model cor-
relating simultaneous speeds.
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one historical site, k and n are time indices and m denotes the total 
number of historical sites. Historical data that are not simultaneous 
in time to the site observations used in modeling will be used in the 
Predict step.

	 2.	Correlate: A single directional model is first built correlating the 
wind directions observed at the site with simultaneous historical 
site wind directions. Next, for each directional interval, called a 
(directional) bin, of a 360° radius, a model is built correlating the 
wind speeds at the site with simultaneous speeds at the historical 
sites, that is, Y f xt t

m
i j i= …

θ ( )1 , where k ≤ i ≤ n. The data available from 
the site at this stage are expected to be sparse and noisy.

	 3.	Predict: To obtain an accurate estimation of long-term wind condi-
tions at the site, we first divide the data from the historical sites (which 
is not simultaneous in time to the site observations used in model-
ing) into subsets that correspond to a directional bin. Prediction of 
the long-term site conditions follows two steps:

	 a.	 We use the model we developed for the direction fθj and the 
data from the historical sites corresponding to this direction 
xt t

m
jk1 1

1
… −
… |θ  to predict what the wind speed Yp = … −yt tk1 1  at the site 

would be.

	 b.	 With the predictions Yp, from Step 3a above, we estimate param-
eters for a Weibull distribution. This distribution is our answer 
to the wind resource assessment problem. We generate a distri-
bution for each directional bin. A few example distributions for 
different bins are shown in Figure 10.1 (left). Alternatively, these 
distributions can be summarized via a wind rose also shown in 
Figure 10.1 (right).

The goal is to generate a predicted long-term wind speed distribution in 
each direction that will be as close as possible to the real (as yet unexperi-
enced) distribution. The result from MCP—the statistical distribution in 
each bin—is then used to estimate the energy that can be expected from 
a wind turbine, given the power curve supplied by its manufacturer. This 
calculation can be extended over an entire farm if wake interactions among 
the turbines are taken into account. See Wagner et al. [7] for more details.

Note that distribution not only captures the mean, but also the variance 
in this speed. This is critical for assessment of long-term wind resource 
and the long-term energy estimate.



310    ◾    Computational Intelligent Data Analysis for Sustainable Development

A variety of methods are developed by Rogers et al. [8] to evaluate the 
accuracy of the predicted wind speed distribution. One method measures 
the accuracy in terms of ratios between true and actual parameters of 
the Weibull distribution: that is, true shape versus estimated shape and 
true scale versus estimated scale. To completely capture any possible inac-
curacy in the predicted distribution, we measure a symmetric Kullback-
Leibler (KL) distance. It is important to note that this measure is different 
from the mean-squared error or mean-absolute error, which measure the 
accuracy in terms of difference between each predicted value and the true 
observation. Methods that minimize these errors would not necessarily 
accurately express how close the approximation is to the true distribution.

We now proceed to describe the set of statistical approaches we intro-
duce for deployment within the MCP framework.

10.3 � METHODOLOGY FOR WIND SPEED ESTIMATION
Notationally, we refer to a training point as l ∈ {1…L} and a point for which 
we have to make a prediction as k ∈ {1…K}. We drop the notation for time 
after having time-synchronized all the measurements across locations. We 
also drop the subscript for directional bin. From this point onward, when 
we refer to a model, it is the model for a particular bin j. Then, fZ(z) refers 
to a probability density function of the variable (or set of variables) z. FZ(z) 
refers to a cumulative distribution function for the variable z such that

	 F z f zZ Z( ) ( )
inf

= =
−∫α
α

for a continuous density function.
Our methodology for MCP has four steps:

Step 1: To start, we build a multivariate distribution with the probabil-
ity density function fX,Y (x,y), where x = {x1…xm} are the wind speeds 
at the historical sites and y is the wind speed at the site. To do this, we 
employ likelihood parameter estimation. The model building pro-
cess is similar for all the bins, and only the data need to be changed.

Step 2: Given the joint distribution from Step 1, we predict the probabil-
ity density of y that corresponds to a given test sample xk = {x1k

…xmk
} 

by estimating the conditional density fY (y|xk). The conditional 
can be estimated by
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Step 3: We now can make a point prediction of ŷk by finding the value 
for y that maximizes the conditional:

	 ˆ ( | )y f y
y Y

= =
∈

argmax X x k 	 (10.2)

Step 4: All the predictions for ŷ1…K are estimated to a Weibull density 
function, which gives an estimate of the long-term wind resource at 
the test site.

The methodology implies two design decisions:

	 1.	Choosing a model: A key decision is which density function should 
be used to model the univariate densities fXi(xi) and the choice of the 
joint density function. A simple and straightforward choice is uni-
variate and multivariate Gaussians. This is because Gaussian den-
sity functions have closed-form analytic equations for estimation of 
parameters and evaluating conditionals that are readily computed. 
Unfortunately, in many cases, this choice could lead to inaccuracies. 
Individual variables may not fit a Gaussian density function with-
out significant error—for example, when they have significant tail 
properties or bimodal distribution. A joint Gaussian density func-
tion only captures the linear correlation between the variables. If 
we choose non-Gaussian univariate densities for xi, then we must 
employ copulas to construct a multivariate joint density function.

	 2.	Assumptions regarding variable dependency structure: Parametric 
estimation of a joint density function is expensive to compute and 
requires a large amount of data. Inference from the joint is also 
expensive. Assuming conditional independency among some vari-
ables offers efficiency in all three respects because it allows the den-
sity function to be factored. As an example, Figure 10.3 shows two 
different possible dependency structures for the variables and the 
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output variable y. Above is the simplest structure, which assumes 
independence among the input variables given the output variable. 
Below shows a possible structure that could be learnt from the data.

In wind resource assessment, a primary advantage of learning the 
dependency structure is the reduction in prediction time despite incor-
porating more airports into a model while not requiring more site data. 
Herein, we will evaluate whether the structure should be learned from the 
data or predefined.

Each of our statistical techniques for wind resource assessment follows 
these steps. Each is distinctive in terms of Step 1 and how it estimates the joint 
multivariate density function. We now proceed to describe each of them.

X1 X2 X3 X14

Y

X1 X2

Y

X3 X4

X5

X9 X10 X11 X12 X13 X14

X6 X7 X8

FIGURE 10.3  Top: Naive Bayes structure. This structure is assumed and no 
learning is required. x1…x14 represents the 14 variables from the airports and 
y represents the variable at the test site in Boston. Bottom: Structure is learned 
using the K2 algorithm. A maximum of two parents is specified. x2 emerges as a 
parent for most of the nodes.
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10.3.1 � Multivariate Normal Model

Here, a multivariate normal model N(μ,Σ) is assumed for the joint density 
fX,Y (x,y) given by

	 fZ
m( ) ( ) det( ) exp ( )( )/ /z z= − −− + − −2 1

2
1 2 1 2 1π Σ Σµµ T (( )z−



µµ 	 (10.3)

where z = {x,y} and det represents determinant of a matrix. The multivari-
ate Gaussian density function has two parameters {μ,Σ}. We estimate these 
parameters by maximizing the likelihood function given a set of L i.i.d 
observations. The greatest advantage of this model is the ease with which 
the model can be built as the maximum likelihood estimates (MLEs) sim-
ply are given by closed-form analytic forms. The MLE for the mean vector 
μ for the variates z is simply the sample mean. The MLE of the covariance 
matrix Σ is given by

	 Σ� = − −
=
∑1

1
n

i

n

i i
T( )( )z z z z 	 (10.4)

Once we estimate the parameters for the joint density given the train-
ing data, using closed-form expressions, we use the joint density function 
to derive the conditional density for y given xk samples in the testing 
data. This density is also Gaussian and has a mean μy|xk

 and variance σy|xk
. 

The value μy|xk is used as the point prediction for  yk�  for the given xk. The 
variance σy|xk

 provides the uncertainty around the prediction. If σy|xk
 is 

high, the uncertainty is high.

10.3.2 � Nonparametric Multivariate Model

Our second model is adapted from Chan et al. [9], in which the authors 
employ a multivariate kernel density estimator. A Gaussian kernel is cho-
sen and the density is estimated using all the data x1…L. The multivariate 
kernel density function is given by

	 f y K x x K y yY

j

m

l

L

j j l lX x, ,( , ) ( ) ( )= − −
==
∏∑

11

	 (10.5)
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For a test point xk, for which we do not know the output, a prediction 
is made by finding the expected value of the conditional density function 
fY (y|xk) given by

	 E Y y f y dy
y

Y( | ) . ( | )X x xk k= = ∫ 	 (10.6)
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In this model there are no parameters and there is no step for esti-
mation. Although Equation (10.5) presents the density function, it is not 
evaluated unless we see a new testing point. For us to be able to evaluate 
the expected value of the wind speed at the test site, we need to store all 
the training points and use them in Equation (10.8) to make predictions. 
In Equation (10.8), given a test point xk = {x1,k…xm,k}, the kernel value is 
evaluated for difference between a training point xl and this test point. 
This value is multiplied with the corresponding value of yl. This is repeated 
for all the training points 1…L and summed. This forms the numera-
tor. The summation, when done without the multiplication of yl , forms 
the denominator in Equation (10.8). This approach has a few drawbacks. 
The designer must choose the kernel. Then the parameters for the kernel 
should be tuned via further splitting of the training data. It also requires 
retaining all the training data in order to make predictions. The evalua-
tion of the kernel is done for L times for each test point.

10.3.3 � Graphical Model with Naive Structure

This technique uses a multivariate Gaussian model assuming indepen-
dent, variable dependency structure. We model the joint density function 
as a Bayesian network with independent variables xi…m, that is,
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A Bayesian network B G= < >,θ  is a probabilistic graphical model that 
represents a joint probability distribution over a set of random variables 
X1, …, Xn. The Bayesian network representation has two components. A 
directed acyclic graph (DAG) G  encodes independence relations between 
variables. Each variable is a node in this graph. A set of local probabil-
ity models θ defines the conditional probability distribution of each node 
given its parents in the graph. Let Pa X denote the parents of node X in G. 
Then the network B encodes the following probability distribution:

	 P X X P Xn

i

n

i Xi( , , )    ( | )1

1

… =
=
∏ Pa

In comparison, the multivariate model previously introduced assumes 
the same naive Bayes structure but uses kernel density estimators for each 
individual variable.

Estimation: Given this structure, also shown in Figure 10.3, we estimate 
the parameters at each node in Figure 10.3 (left) for the bivariate Gaussian 
density function fXi,Y (xi,y). We use maximum likelihood estimation and 
employ similar analytical expressions employed in Section 10.3.1 but this 
time for each pair xi,y individually. Parameters for fY (y) are estimated 
directly using the training data for y.

Prediction: For a test point xk, we derive the following conditional:

	 f y
f x y f y

f
Y

X
i

m

i Y

X
i

m

y

i

i

| ( | )
( | ) ( )

X x kk x=
=

=

=
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1

1
(( | ) ( )x y f y dyi Y

	 (10.10)

If we were to minimize the mean squared error, the optimal prediction 
is the mean of the conditional density function above. If we were to mini-
mize the mean absolute error, the optimal prediction is the median of the 
conditional density function [10]. Because we assume a Gaussian model 
for the joint density function, this also results in a Gaussian model for the 
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conditional; the mean and median for y|xk are the same. This is also 
the value that maximizes the conditional. Hence, ŷk is

	 ˆ ( | )|y y f y dyk
y

Y= ∫ =X x kk x 	 (10.11)

10.3.4 � Graphical Model with Structure Learning

In the model of Section 10.3.3, we assume a naive structure. By contrast, in 
this technique we learn the variable dependency structure (i.e., Bayesian 
network) given the site data. Many structure learning algorithms are 
available in literature and can be readily employed [11–13].

Estimation: Our estimation has two steps. First, we learn the network 
structure G  and then estimate parameters for the conditional prob-
ability distribution at each node in G. In our experiments, we employ 
a heuristic called K2 [13]. The algorithm takes the order of the variables 
and attempts to learn a dependence structure [11]. We then estimate the 
parameters at each node for the conditional joint density via likelihood 
parameter estimation.

Prediction: Given a new test point, multiple inference techniques are 
available to predict the value of yk|xk [11].

We refer the reader to Koller and Friedman [11] for a thorough introduc-
tion to Bayesian networks and a well-known, publicly available MATLAB-
based tool for K2, likelihood parameter estimation, and inference [14].

10.3.5 � Multivariate Copulas

Our previous modeling techniques assume a Gaussian distribution for all 
variables and a Gaussian joint for the multivariate. It is arguable, how-
ever, that Gaussian distributions do not accurately represent the wind 
speed distributions. In fact, conventionally, a univariate Weibull distribu-
tion [15] is used to parametrically describe wind sensor measurements. A 
Weibull distribution is likely also chosen for its flexibility because it can 
express any one of multiple distributions, including Rayleigh or Gaussian.

To the best of our knowledge, however, joint density functions for 
non-Gaussian distributions have not been estimated for wind resource 
assessment. In this chapter, to build a multivariate model from mar-
ginal distributions that are not all Gaussian, we exploit copula functions. 
A copula framework provides a means of modeling a multivariate joint 



Statistical Approaches for Wind Resource Assessment    ◾    317  

distribution from training data. It is then possible to proceed with infer-
ence from the copula function.

Because copula estimation is less well known, we now briefly review 
copula theory. We will then describe how we construct the individual 
parametric distributions that are components of a copula, and then how 
we couple them to form a multivariate density function. Finally, we pres-
ent our approach to predict the value of y given x1…m.

A copula function C(u1,…um+1;θ) with parameter θ represents a joint 
distribution function for multiple uniform random variables U1…Um+1 
such that

	 C u u F U u U um m m( , ; ) ( , )1 1 1 1 1 1… = ≤ … ≤+ + +θ 	 (10.12)

Let U1…Um represent the cumulative distribution functions (CDFs) 
for variables x1,…xm and Um+1 represent the CDF for y. Hence, the copula 
represents the joint distribution function of C(F(x1)…F(xm),F(y)), where 
Ui = F(xi). According to Sklar’s theorem, any copula function taking mar-
ginal distributions F(xi) as its arguments defines a valid joint distribution 
with marginals F(xi). Thus, we are able to construct the joint distribu-
tion function for x1…xm,y given by

	 F x x y C F x F x F ym m( , ) ( ) ( ), ( );1 1… = …( )θ 	 (10.13)

The joint probability density function (PDF) is obtained by taking the 
m + 1th order derivative of the Equation (10.13):

	 f x x y
x x y
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	 = …=Πi
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where c(.,.) is the copula density. Thus, the joint density function is a 
weighted version of independent density functions, where the weight is 
derived via copula density. Multiple copulas exist in the literature. In this 
chapter we consider a multivariate Gaussian copula to form a statistical 
model for our variables given by
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	 C F F u F u F uG G m y( ) ( ( ) ( ), ( ), )Σ Σ= …− − −1
1

1 1
	 (10.16)

where FG is the CDF of the multivariate normal with zero mean vector and 
Σ as covariance, and F−1 is the inverse of the standard normal.

Estimation of parameters: There are two sets of parameters to estimate. The 
first set of parameters for the multivariate Gaussian copula is Σ. The second 
set, denoted by Ψ = {ψ,ψy}, consists of the parameters for the marginals of x,y. 
Given N i.i.d observations of the variables x,y, the log-likelihood function is
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Parameters Ψ are estimated via Iyengar [16]:
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A variety of algorithms are available in the literature to estimate the 
MLE in Equation (10.19). We refer users to Iyengar [16] for a thorough dis-
cussion of estimation methods. For more details about the copula theory, 
readers are referred to Nelsen [17].

Predictions from a copula: For a new observation x, we have to predict y. 
For this, we form the conditional first by

	 P y P y

P y dy
y

( | ) ( , )

( , )
x x

x
=

∫
	 (10.20)

Our predicted ŷ maximizes this conditional probability:
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y Y

=
∈

argmax x 	 (10.21)

Note that the term in the denominator of Equation (10.20) remains con-
stant; hence, for the purposes of finding the optimum, we can ignore its 
evaluation. We simply evaluate this conditional for the entire range of Y in 
discrete steps and pick the value of y∈Y that maximizes the conditional.

10.4 � EVALUATION SETUP
To evaluate and compare our different algorithms, we acquired a variety 
of wind data from the state of Massachusetts. We downloaded the data 
from the ASOS (Automated Surface Observing System) airport database, 
which is public and has wind data from 14 airports in Massachusetts col-
lected over the past 10 to 20 years. These data are frequently used by the 
wind industry. The airports’ locations are shown in Figure 10.4. We then 
acquired data from an anemometer positioned on the rooftop of Boston’s 
Museum of Science where a wind vane is also installed. These anemometers 
are inexpensive and, consequently, noisy. The museum is located among 
buildings, a river, and is close to a harbor as shown in Figure 10.5. This 
provides us with a site that is topographically challenging. At this location 
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FIGURE 10.4  (See color insert.) Data are referenced from fourteen airport loca-
tions in the state of Massachusetts (United States). See Table 10.1.
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we have approximately 2 years’ worth of data collected at a frequency of 
1 sample/second with 10-minute averages stored in a separate database.

To derive the wind resource assessment, we train using data from the 
first year. These data are split into three datasets that we call D3, D6, and D8. 
The split D3 has data for 3 months. The split D6 has 3 additional months, 
for a total of 6; and D8 has yet 2 more months, for a total of 8. We further 
divide each dataset and the second year’s dataset into twelve directional 
bins of equal size, starting at compass point north (0°). We assume that 
a linear regression model can be used to identify the wind direction at 
the Museum of Science. The second year’s dataset becomes our “ground 
truth”—the true wind resource assessment of the site—and allows us to 
evaluate and compare the different techniques. We estimate a Weibull dis-
tribution model of it for this purpose. As a measure of predictive accuracy, 
we compare the final estimated Weibull distribution to the ground truth 
distribution using Kullback-Leibler divergence. The lower this value, the 
more accurate the prediction:

	 D KL P y P yY Y Y Y( || ˆ ) ˆ( )|| ( ˆ)= ( ) 	 (10.22)

KL divergence derives the distance between two probability distributions:

FIGURE 10.5  (See color insert.) Red circles show location of anenometers on 
rooftop of Museum of Science, Boston, Massachusetts.
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For baseline comparison, we also developed a linear regression model 
that is used quite extensively in wind resource assessment [2, 8].

10.5 � RESULTS AND DISCUSSION
In this section we present the results of comparing the described wind 
resource assessment techniques on data acquired from the rooftop 
anemometers at the Boston Museum of Science. We also examine the 
improvement in performance of each of the algorithms as more data are 
made available to each one in the forms of increasing training data from 
3 to 6 to 8 months.

10.5.1 � Comparison of Algorithms

First we compare algorithms when the same amount of data is available 
to each one of them for modeling. Results are presented in Figure  10.6 
through Figure  10.8 for datasets D3, D6, and D8, respectively. Each plot 
shows the KL distance between the ground truth distribution and the dis-
tribution estimated based on the predictions provided by each technique 
for the Year 2 dataset per bin. We plot the KL distance for all 12 bins.

We notice that the copula modeling technique consistently performs 
better than the other four techniques. The graphical model technique 
that assumes a naive variable dependency structure performs second 
best, although it demonstrates poor performance on the first bin. Its per-
formance on this bin, however, improves as we increase the size of the 
dataset. One would expect the graphical model, which has a learned vari-
able dependency structure, to outperform the one with naive structure 
assumptions. Here, except for the first bin, it does not. This may imply 
that a better structure learning algorithm is necessary, or that the one 
used needs further fine-tuning. The latter possibility is likely because the 
structure learning algorithm K2 only looks at a fraction of all possible 
structures when it references an order of the variables. A more robust 
structure learning algorithm that does not assume order could potentially 
yield improvements.

Linear regression is the worst performer of all, but performs well when 
8 months of data are available. This is consistent with many studies in the 
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wind energy area, where it has been found that for an accurate estimation 
of long-term distribution, 8 months worth of data is needed.

10.5.2 � Increasing the Data Available for Modeling

We now examine how each technique approaches robustness when less 
data are made available to it for modeling. Figure 10.9 plots each technique 
in isolation when it is modeled using 3, 6, or 8 months of data (datasets D3, 
D6, and D8), respectively.

We observe that not only was the copula modeling technique superior 
overall, but its performance did not suffer greatly with decreasing amounts 
of data available for modeling. The graphical model with naive variable 
structure overcame its weak performance, predicting the first bin as more 
data was made available to it. Both linear regression and the graphical 
model with learned variable structure improved significantly as more data 
were made available to them.
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FIGURE 10.6  Comparison of different techniques when 3 months’ worth of data 
is modeled and integrated with longer-term historical data from 14 airports. 
These results were derived using D3 and are compared with KL divergence dis-
tance to the Weibull distribution estimate of the second year of measurements at 
the Boston Museum of Science.
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10.6 � CONCLUSIONS AND FUTURE WORK
In this chapter we provided a set of techniques for building a statistical 
model for wind resource assessment. Our goals with these techniques 
were to

•	 Estimate the wind speed density with as minimal site collected data 
as possible.

•	 Estimate as accurately as possible with minimal cost to support inex-
pensive site sensing.

The ability to generate accurate estimates with as minimal data as pos-
sible and with as cheap sensing as possible is critical for wind resource 
assessment during the initial phases of wind farm planning. For commu-
nity or urban wind energy projects, anemometer sensing provides a cost-
effective way to estimate wind resources.
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FIGURE 10.7  Comparison of different techniques when 6 months’ worth of data 
is modeled and integrated with longer-term historical data from 14 airports. 
These results were derived using D6 and are compared with KL divergence dis-
tance to the Weibull distribution estimate of the second year of measurements at 
the Boston Museum of Science.
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By definition, the techniques are different in terms of whether or not 
they are parametric, and whether or not they incorporate all variables into 
the joint distribution. This seems to have an effect on the accuracy of the 
model in wind resource assessment. The copula modeling is more accu-
rate than all other techniques.

We further analyzed the performance of the techniques when differ-
ent amounts of data are made available to the modeling step. The tech-
nique based on Copula theory performs well even when only minimal 
data (3 months) are available. Another, much simpler technique based on 
graphical models produces competent results as well.

Throughout this chapter we emphasize the need for exploration of a 
variety of statistical modeling techniques. A variety of additional advances 
can be made for each of the techniques presented in this chapter. These 
include but are not limited to the following:
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FIGURE 10.8  Comparison of different techniques when 8 months’ worth of 
data is modeled and integrated with longer term historical data from 14 airports. 
These results were derived using D8 and are compared with KL divergence dis-
tance to the Weibull distribution estimate of the second year of measurements at 
the Boston Museum of Science.
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•	 Copula-based functions: One can estimate the marginals using non-
parametric kernel density functions to prepare input to a copula. 
One can also explore systematically which copula is better; however, 
the extent to which tail behavior needs to be accurately modeled is 
open to debate. A variety of copulas are documented in the statistics 
literature, thus opening up opportunities for further study.

•	 Bayesian network functions: A more advanced structure learning 
algorithm can be used to estimate the Bayesian network structure. 
Different parameter estimation techniques can be explored.

•	 Copula Bayesian networks: The network structure can be sought 
while forming the conditional at each node via a copula-based mul-
tivariate density function. This concept has been recently explored 
for classification problems in machine learning [18]
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APPENDIX 10A
Below we describe how to derive the conditional density function param-
eters for y given xk under the assumption that the joint is modeled as a 
normal. We first partition the mean and the covariance matrix for the 
joint distribution of z as follows:
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with sizes

	
1 1 1

1
× ×
× ×













m
m m m

	 (10A.4)

Then, the distribution of y conditional on x = xk is multivariate normal 
with [19]

	 µµ µµ µµy y y|x x xx k xk x= + −( )−Σ Σ 1 	 (10A.5)

and covariance matrix

	 σ y yy y y|x x xx xk = − −Σ Σ Σ Σ1 	 (10A.6)
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C h a p t e r  11

Spatio-Temporal Correlations 
in Criminal Offense Records

Jameson L. Toole, Nathan Eagle, 

and Joshua B. Plotkin

11.1 � INTRODUCTION

An enormous amount of behavioral data is now being generated 
and stored by billions of individuals across countries and cultures. 

The ubiquity of mobile sensors from laptops to cellular phones has ush-
ered in a new age of digital data storage and management. It is now pos-
sible to measure social systems on a massive scale. Mobility patterns of 
city dwellers can be inferred from mobile phone use [4], epidemics can be 
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modeled across distances of many orders of magnitude [20], and the dif-
fusion of information can be measured for large populations [10]. Armed 
with this flood of data, there are very real and important opportunities 
to study and ultimately facilitate sustainability in human-built systems. 
Insight into these systems can help inform the social sciences from eco-
nomics to sociology as well as provide policy makers with critical answers 
that may be used to better allocate scarce resources or implement benefi-
cial social programs.

In order to generate these new and hopefully better solutions, however, 
it has become necessary to use broader combinations of tools to analyze 
the immense and rich stream of information. The goal is to use this data to 
gain a better understanding of the systems that generate it. In this chapter 
we present a novel application of tools and analytical techniques developed 
from a variety of disciplines that identify patterns and signals that capture 
fundamental dynamics of a social system. To explore relationships in both 
space and time, cross- and auto-correlation measures are combined with 
autoregressive models and results from random matrix theory to analyze 
patterns in behavioral data. Similar techniques have been applied recently 
to partition space based on patterns observed in mobile phone data or 
Wi-Fi activity [2, 14]. We show that these techniques can also be applied 
to criminal activity.

The dataset used for this study consists of criminal events within the 
city of Philadelphia from the year 1991 through 1999. It contains nearly 
1 million individual criminal offense reports detailing the time, place, and 
police response to theft, robbery, and burglary-related crimes. In addi-
tion to these minor offenses, for the year 1999, the dataset includes major 
offenses as well, covering crimes from petty theft through homicide. With 
these reported crimes, we examine spatial, temporal, and incident infor-
mation. The goal of our analysis is to explore the spatio-temporal dynam-
ics of criminal events with the hope of identifying patterns that may be 
useful in predicting and preventing future criminal activity. Beyond 
applications to criminology, however, we feel that these techniques can 
be applied to a wide range of systems that exhibit complex correlations in 
many dimensions and on multiple scales.

Early work in criminology, sociology, psychology, and economics 
explored relationships between criminal activity and socioeconomic 
variables such as education, community disorder, ethnicity, etc. [8, 21]. 
Constraints on the availability of data limited these studies to aggregate 
statistics for large populations and vast geographic regions. Wilson and 
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Kelling’s article in the March 1982 edition of The Atlantic popularized 
“Broken windows” and “social disorganization” theories that, for the first 
time, explicitly introduced flow and system dynamics into crime research. 
These theories proposed that crime was a consequence of urban decay and 
lack of community ownership in neighborhoods and that these processes 
worked on a local level [7]. Neglected areas not only attract criminals (the 
neglect is a sign of low police presence), but also act as a feed-forward 
mechanism by damaging community morale. Recent experimental work 
provides more evidence of such dynamics at work in neighborhoods [6].

Following the introduction of more local theories, attempts have 
been made to study crime on the neighborhood level and explore crime 
“hotspots” [15]. More recently, analytic and numerical models of crime 
hotspots have been proposed. These apply nonlinear dynamics systems 
approaches such as reaction-diffusion equations that give rise to behav-
ioral regimes resembling hotspots. Suppression terms (corresponding 
to police interventions) are then introduced, and the stability of hotspot 
dynamics is assessed. Interestingly, in some cases, police suppression is 
able to effectively tame a hotspot without inducing crime in other regions, 
while under other conditions, new hotspots simply pop up elsewhere [17]. 
Other attempts to explain the existence and persistence of hotspots has 
focused on the combination of propensity and ability to commit crime. 
Based on socioeconomic characteristics, researchers have looked at the 
temporal and mobility budget constraints faced by potential criminals. 
This work shows significant correlations between access and exposure to 
the potential to commit crimes and actually doing so [22].

In this chapter we address a gap. Statistical methods have been used 
to characterize large, aggregate datasets over long periods of time, while 
sociological studies have been performed at micro scales. There remains 
a need for high-resolution quantitative analysis of large crime data
sets. Using offense reports generated by a police department, we explore 
how crime here and now affects crime there and then, while also focus-
ing on building a general set of tools to analyze behavioral datasets for 
spatio-temporal systems. More generally, we hope this multidisciplinary 
approach utilizing massive digital datasets provides inspiration for future 
work looking to create and optimize sustainable social systems.

11.2 � DATA
The dataset is analyzed in two parts. The first contains nearly 1 million theft-
related crimes from the year 1991 through 1999, while the second consists 
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of almost all 200,000 reported crimes within the city of Philadelphia dur-
ing 1999 across all types, from petty theft to homicide. In total, crimes 
were reported at 42,000 unique locations across the city and were time 
stamped with the hour they occurred. In addition to time and place, a 
detailed description of the crime (e.g., theft under $200, aggravated assault 
with a handgun, etc.) is provided. Table 11.1 shows an example of one such 
report (note that these data have been generated randomly for anonym-
ity purposes and are not actual reports). With this data, the primary goal 
of this research is to better understand the spatio-temporal structure of 
criminal events.

The spatial resolution of this data is high enough that a block/
neighborhood analysis of crime is possible. Plotting the geocoded events 
reveals features of the city such as the street-grid, parks, bridges, rivers, 
etc. (Figure 11.1). While the time of each report is known to within the 
hour, offenses within a geographic area are generally aggregated to daily, 
weekly, or monthly counts, ensuring that time series are sufficiently popu-
lated. A time series displaying citywide theft-related crimes for different 
levels of aggregation and time windows reveals features on multiple scales. 
Seasonal trends, such as increases in crime during hot summer months as 
well as singular events such as holidays, are visible (Figure 11.2). Finally, 
when applicable, offense reports are aggregated by type (Figure 11.3) so 
relationships between crimes can be tested. Although data on crime other 
than theft are only available for 1999, the 200,000 crimes reported that 
year still represent a very rich and detailed dataset with which we can 
examine interactions between different types of crime.

TABLE 11.1  A Typical Offense Report

Attribute Data (%)
Offense number 0000010
Date and time Saturday, September 12, 1996, 1 p.m.
Address 1700 McKean
Latitude 39.926152
Longitude −75.17267917
Description of crime Theft of car contents, valued at more than $200.
Place of event Automobile
Police district District 11, Sector B
Outcome The reported crime was confirmed. The case was 

closed without investigation or was not solvable.
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11.2.1 � Conditioning the Data

Behavioral information must be transformed into variables that can be 
manipulated numerically. While time and place readily lend themselves to 
such analysis, the type of crime being reported must be inferred from its 
police description. While the first part of the dataset contains theft-related 
crimes only, for richer 1999 data, crimes are aggregated into six broader 
categories by parsing police descriptions for keywords as described in 
Table 11.2. Aggregation ensures that there are sufficient numbers of events 
to populate time series, while still making use of nearly 75% of the data 
available in that year.

We measure crime densities with two different methods of spatial 
aggregation. In the first, a lattice is laid over a map of the city, and crimes 
are aggregated to the nearest grid point. In general, any mesh size can be 
used, but our analysis suggests that a grid producing 50 to 100 locations 
across the city provides good noise reduction without obscuring patterns. 
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FIGURE 11.1  All crimes, major and minor, are plotted on an overlay of census 
tracts in Philadelphia county during the year 1999. Geographic features of the 
city such as rivers, parks, bridges, etc., are immediately visible.
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The flexible mesh grid allows us to use larger spatial bins for rarer crime 
types, such as those that are drug related. The second spatial aggregation 
used were the 381 census tracts from the 2000 U.S. Census for the City of 
Philadelphia. Census tracts have the nice feature of scaling inversely with 
population density; thus, areas of the city with small numbers of people 
(and similarly small amounts of crime) will not be washed out by much 
higher crime counts in the more dense city center. In addition to conve-
nient scaling properties, the use of census tracts also allows us to incorpo-
rate various socioeconomic and demographic data that might be related to 
crime. Finally, census tracts provide an immediately recognizable unit of 
analysis for policy makers.
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FIGURE 11.2  A time series plot of citywide theft-related crimes at different time 
scales. The top figure shows daily theft crimes for the year 1999 where individual 
events such as holidays are visible. The bottom figure aggregates further into 
monthly counts, revealing seasonal trends such as increases in thefts during the 
hot summer months.



Spatio-Temporal Correlations in Criminal Offense Records    ◾    337  

For each spatial unit, be it on a grid or census tract, a time series is 
constructed for each category of crime for which data are available. With 
nearly 10 years of data available, time scales from hours to years are 
examined. These time series are normalized to have zero mean and unit 
variance to make use of various statistical tests and to capture changes 
in crime rates rather than the absolute number of incidents. Overall, the 
time series produced are mostly stable and stationary, having roughly 
constant mean and variance. Those that have obvious serial correlations 
are removed from analysis.
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FIGURE 11.3  A percentage breakdown of different crimes based on incident 
reports.

TABLE 11.2  Categorical Groupings of Different Crime 
Types for the 1999 Data

Category Offenses Included Crimes (%)
All All reported offenses 211,606 (100%)
Automobile Auto theft, major traffic 16,005 (7.6%)
Theft Burglary, robbery, auto 80,290 (38%)
Violent Assault, homicide, gun 29,908 (14%)
Vandalism Vandalism, graffiti 17,880 (8.5%)
Drug Possession, sale, DUI 11,642 (5.5%)
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11.3 � METHODS
Using the conditioned data, we develop analytical tools to achieve the 
following:

	 1.	Identify both spatial and temporal relationships.

	 2.	Select an appropriate scale on which to examine these relationships.

	 3.	 Interpret the sources of any correlation structure.

To address these goals, we combine time-series analysis with results 
from random matrix theory to quantify the magnitude and significance of 
correlation in the data. In the process, we draw upon knowledge of similar 
problems found in neuroscience (correlating spike-train data) and finan-
cial economics (finding signal in noisy time-series data) [5, 9, 12, 13, 18].

Although many methods for detecting correlation in space and time 
exist, the nature of criminal acts and the type of data being used lent itself 
to the particular tools used in this chapter. For example, while we are 
looking for correlations in space, it is important that techniques are able 
to detect nonlocal correlations, wherein two neighborhoods, on opposite 
sides of the city, have similar crime profiles because of socioeconomic rea-
sons. With this in mind, we rule out models that can capture only local 
diffusion. Multivariate auto-regressive (MVAR) models that regress time 
series of a particular location onto other locations and across many lag 
periods can detect such a structure, but given the extremely large number 
of spatial locations and the length of time series, these models quickly 
become large and intractable [11, 23].

We also would like our analysis to speak of specific details of the corre-
lation structure rather than just the distribution of crimes in space or time. 
While models concerned with speciation in heterogeneous landscapes 
may provide insight into properties of the distribution of phenomena or 
events in nonlinear environments (population density, socioeconomic 
factors, etc.), they have more difficulty telling stories of particular realiza-
tions of these distributions in the real geographic space of a city.

Finally, there is also the problem of noise. Our dataset, while large, is 
very noisy, and any tools and methods used must be able to find and sepa-
rate signal with confidence. The methodology that follows has the advan-
tage of providing both analytic and computational null models. Random 
matrix theory presents analytic results for the limiting distributions and 
statistics of covariance matrices, while artificial crime data can reliably 
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be simulated using a Poisson process in order to achieve a computational 
null model. With these considerations in mind, the following algorithms 
and methodology were combined to satisfy our modeling and statisti-
cal requirements.

11.3.1 � Basic Analysis and Statistics

We begin by using basic data analysis techniques and statistics to better 
understand the data. In general, crime is not distributed uniformly across 
the city. Instead, the spatial structure is consistent with descriptions of 
crime “hotspots.” These hotspots are small regions within the city that 
regularly experience high levels of crime. Characterizing the nonuniform 
spatial distribution of crime is important when attempting to find rela-
tionships between types of crime. For example, Figure 11.4 shows the cen-
ter of drug-related crimes occupies northwestern Philadelphia, while theft 
is more prevalent in downtown Philadelphia. We wish to use quantitative 
tools to measure interactions between these locations.
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FIGURE 11.4  The left plot shows the density of drug-related crimes for the year 
1999. Hotspots are located mostly in central Philadelphia, whereas many theft-
related crimes (on the left) are mostly located in the southern areas of the city.
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In the time domain, we can identify general periodicities within the data 
through basic Fourier analysis. Ignoring space for a moment, we consider 
the city in its entirety, creating a time series of citywide crime sampled 
hourly (Figure 11.5). From these methods we can quantify distinct seasonal 
trends. Cycles exist from hourly to yearly scales. These periodicities visually 
coincide with time series showing increases in crime during hot summer 
months, or decreases in certain types of crime on weekends that produce 
weekly trends. Cycles on smaller scales such as days may come from dif-
ferences in day and night crime rates and hourly frequencies may be due to 
police procedure. This analysis, however, is blind to any measure of auto- or 
cross-correlation that may occur between locations within the city.

Running basic regressions on these citywide time series shows a num-
ber of interesting results. Regressing citywide drug offenses on day of the 
week, for example, reveals significant correlation. Considering only the day 
of the week, we are able to account for nearly 60% of the variance in daily 
drug offenses (Table 11.3). With Sunday being the omitted group, coef-
ficients on dummy variables corresponding to Monday through Saturday 
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FIGURE 11.4  (continued) The left plot shows the density of drug-related crimes for 
the year 1999. Hotspots are located mostly in central Philadelphia, whereas many 
theft-related crimes (on the left) are mostly located in the southern areas of the city.
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are interpreted as the change in criminal activity between Sunday and 
that particular day of the week. Thus, we conclude that Sundays have the 
lowest drug-related crime rates while the middle of the week (Tuesday, 
Wednesday, and Thursday) show the highest. This is in sharp contrast to 
violent crimes, which show an increase on weekends, dropping during 
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FIGURE 11.5  The frequency spectrum of the citywide theft crime time series 
sampled hourly from 1991 through 1999. Many periodicities appear on time 
scales ranging from just a few hours to years.

TABLE 11.3  Regression of Citywide Drug 
and Violent Offenses on Day of the Week

Day Drugs Violence
Sunday 16.55a 76.87a

Monday   4.61b −13.20a

Tuesday 22.52a −10.63a

Wednesday 23.99a −10.71a

Thursday 21.63a −11.70a

Friday 15.52a −4.47b

Saturday   8.08a 2.57
Note:	 (R2

drug = .59, R2
viol = .30).

a	 pval < 0.001, b pval < 0.05, c pval < 0.1.
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weekdays. We also note that violent crimes are four to five times more 
frequent than drug crimes.

While in absolute terms most crime occurs during weekdays, observa-
tion of these inverse relationships for certain types of crimes reveals the 
need to carefully choose the amount of aggregation applied to analysis. 
It remains unclear, however, if these relationships exist because of some 
fundamental differences in those committing drug offenses versus violent 
offenses, or if they are some artifact of police strategy or organization.

We also note that environmental factors have small, but statistically 
significant impacts on crime rates. Using daily weather records in 1999 as 
kept by the National Oceanic and Atmospheric Administration (NOAA), 
we regress crime rates on environmental factors. While these effects are 
not overwhelmingly strong, they are statistically significant. We find that 
temperature increases can be associated with an increase in crime and 
that precipitation leads to a decrease. Comparing the coefficients of these 
effects for different crime types, we find interesting differences.

To compare coefficients between crimes that occur with differing fre-
quency, we regress the log of occurrences on both temperature and pre-
cipitation. The coefficient then represents the percentage change in crime 
rates due to an increase of 1°F or 1 inch of precipitation, respectively. 
Table 11.4 shows the results of this regression. We find that drug-related 
crimes, which may be driven by psychological or physiological needs, are 
not affected by weather, while violent crimes, which are more likely to be 
driven by passion and environment, respond significantly to increases in 
temperature or precipitation.

Although these basic statistics provide insight into the types of rela-
tionships that exist within the data, they remind us that complex relation-
ships exist on multiple scales in both space and time. We continue with 
more advanced methods, capable of teasing out these relationships despite 
noisy data.

TABLE 11.4  Impact of Environmental Factors on Crime Occurrence

All Auto Drug Theft Vandal Violent
Constant 6.23a 3.74a 3.30a 5.37a 3.76a 4.23a

Temperature (°F) 0.0014a — — — 0.0018b 0.0026a

Precipitation (in) −0.03a — −0.078c −0.03b −0.11a −0.053b

a	 pval < 0.001, b pval < 0.05, c pval < 0.1, — Insignificant.
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11.3.2 � Auto- and Cross-Correlation

In order to perform higher-resolution analysis, we make use of the scal-
able lattice and census tracts as described in previous sections. Regardless 
of the spatial unit used, we create a time series for each point. The time 
series are then normalized to have zero mean and unit variance so that we 
may compare locations across the city regardless of the absolute number 
of crimes. We select two time series, y1 and y2, from the conditioned data 
and look for correlations between them.

The cross-correlation, r1,2, is a measure of similarity between a pair of 
time series. Mathematically, this quantity is defined as the expectation 
of the inner product between the two time series:

	 r E y t y t
t

n

1 2 1 2 1
1

2, , ( ) ( )= 〈 〉[ ]=
=∑y y

Similarly, it is possible to determine lagged correlation by shifting one 
series by a number of lags, m. The lagged cross-correlation, r1,2(m), is given 
by modification of the previous formula,

	 r m y t m y t
t

n

1 2 1
1

2, ( ) ( ) ( )= +
=∑

The cross-correlation values are then normalized to lie between −1 
and 1, where r1,2 = 1 corresponds to exact correlation between two time 
series. A cross-correlation sequence is defined as the sequence of cross-
correlation values over a range of lags. Examining the cross-correlation 
sequence for two time series, we can identify the existence of a significant 
relationship as well as quantify its power over a number of lags. Not only 
can these measures detect the flow of crime from one area to another, but 
they can also quantify its speed and direction.

We must also define a plausible test for significant correlations to differ-
entiate between real and random connections. To achieve this, we create a 
null model for each pair of time series. Each series is randomly permuted, 
preserving the mean and distribution of counts, but scrambling the order 
and removing any correlations in time. The new cross-correlation value 
is then computed. Repeating this process a large number of times, we 
construct a distribution of random cross-correlation values from which 
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confidence intervals can be constructed. If the cross-correlation between 
the original time series deviates from the random distribution at a given 
confidence level, we consider it significant.

These cross-correlation methods may be used to look for relationships 
between crimes. We may ask if an increase in theft-related crimes leads 
to violent crimes in the future. For a given node, we create a time series 
of daily crime rates for each type of crime for the year 1999. Next, we 
construct the cross-correlation sequence for this pair of series across a 
number of lags (in most cases, lags up to 30 days were included). To visu-
alize these correlations, we create a matrix where each column represents 
the cross-correlation sequence for a given location (Figure 11.6).

As an example, we have included automobile thefts in both the 
“Thefts” category and the “Automobile” category. Not surprisingly, we see 
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FIGURE 11.6  A matrix displaying significant lagged cross-correlations between 
automobile crimes and theft crimes. Because automobile crimes are counted in 
both categories, we find correlation at zero lag, but almost no other significant 
relationships.
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significant correlation between the two crime types at exactly zero lag. 
The lack of significant correlation for other time lags indicates no other 
significant relationships where theft in one location leads to violence in 
that same location at a later time. We find very little significant correlation 
between the two types of crime, suggesting that, at the very least, types of 
crime are not related on temporal scales of less than a month.

11.3.3 � Correlation Matrices

Having established a measure of correlation and corresponding null 
model to assess significance, we seek to couple this analysis with spatial 
dimensions. We would like to detect correlations not only in time, but also 
in space.

To do this, we form a K × T matrix, Y, where K is the number of loca-
tions across the city and T is the length of each time series. Keeping track 
of which location each time series corresponds to, we can associate real 
city locations with correlations. The delayed correlation matrix for a spe-
cific lag m, C(m), is then constructed by matrix multiplication

	 C YY( ) ( )m
T

mT= 1

where T is a regular matrix transposition. The elements of C are given by 

	 C m y t y t mij i
t

T

j( ) ( ) ( )= +
=∑ 1

Note that m = 0 corresponds to zero lag.
To illustrate this procedure, we test for correlations in drug-related 

offenses between different neighborhoods across time over the year 1999. 
Conditioning the data as described above, time series are constructed 
for 35 lattice points. These points are neighborhoods with enough crime 
to sufficiently populate daily time series. The zero-lag cross-correlation, 
measuring real-time correlation is displayed in Figure 11.7(a).

Entry Cij of this matrix represents the cross-correlation between the 
time series of drug-related crimes from locations i and j. In examining 
this matrix, no strong patterns or regions of high correlation are imme-
diately visible. It should be noted that the numbers i and j correspond 
to time series labels and not actual location coordinates, but the labeling 
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FIGURE 11.7  (a) The zero-lag correlation matrix for drug-related crimes aggre-
gated to a spatial lattice. There appears to be little spatial correlation and a lack 
of high correlated locations. (b) Display of zero-lag correlation matrix showing 
theft-related crimes sampled weekly from 1991 through 1999, aggregated by cen-
sus tracts. A stronger correlation signal is seen.
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of neighborhoods is such that locations i and i + 1 are usually close spa-
tially. When random permutation is again used to test significance, we 
find that very few of these correlations can be deemed different from ran-
dom correlation.

The unstructured correlation matrix suggests that daily neighborhood 
crime rates may not be highly correlated spatially. This example, however, 
does not consider any lagged correlations that may exist between loca-
tions. Constructing matrices for lagged cross-correlation of up to 30 days 
(1 month), however, reveals similar results. We do not find any immediate 
spatial correlation structure or flows across space and time for daily drug-
related crime levels.

The lack of correlation structure only shows an inability to visually 
identify correlation structure in daily time scales, but says nothing of 
correlation structure on the scale of weeks and months. Performing the 
same analysis using weekly theft crime rates from 1991 through 1999 
(aggregated to the census tract level), Figure 11.7(b) reveals more signifi-
cant correlation. When comparing lagged cross-correlation matrices over 
a number of lags, cycles of high correlation match yearly seasonal trends 
seen in a Fourier spectrum, but with added spatial resolution.

Even on short time scales, however, the data are noisy enough that identify-
ing significant patterns may be difficult given a largely random background.

11.3.4 � The Eigenvalue Spectrum and Comparison 
to Random Matrices

To quantify the varying degrees of correlation in the above matrices, we 
enlist solutions to similar problems found in fields such as financial eco-
nomics (markets, stocks, equities, etc.) and climate forecasting [9, 18]. 
Work in these areas suggests that the correlation structure of systems 
can be characterized by examining the eigenvalue spectra of correlation 
matrices. Much success has been found in testing the significance of these 
metrics using results from random matrix theory (RMT).

To test for nonrandom structure in our correlation matrices, we consider 
two related groups of matrices: Gaussian and Wishart. Entries of a Gaussian 
matrix, G, are drawn from a standard normal, and a Wishart matrix, W, 
is formed by matrix multiplication of a Gaussian matrix and its transpose, 
W = GGT [3]. The key observation is the direct analogy between formula-
tion of the Wishart matrix and cross-correlation matrix. We use these ran-
dom Wishart matrices as null models to our cross-correlation measures.
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Various analytical results for the distribution of eigenvalues of a ran-
dom Wishart matrix can be found by Edelman [3], Sengupta and Mitra 
[16],  and Utsugi et al. [19]. The eigenvalue density, ρ(λ), is defined as the 
fraction of eigenvalues below some value, λ. Given a random correlation 
matrix whose entries are drawn from the standard normal distribution, 
the eigenvalue density as K and T go to infinity is given by the Marcenko-
Pastur law:

	 ρ λ
π

λ λ λ λ
λ

( ) ( )( )= − −Q max min

2
	 (11.1)

where Q = T∕K ≥ 1 and λmin
max Q Q= + ±1 1 2 1/ /  [9].

That is, we can establish significant correlation structure by comparing 
eigenvalue spectra from the data to those of a random null model. If we 
find eigenvalues significantly outside theoretical thresholds, we conclude 
there is signal buried in the noise. The eigenvectors associated with these 
significant eigenvalues are then interpreted as individual factors contrib-
uting to the correlation structure of the system. For example, the largest 
eigenvalue (and corresponding eigenvector) in the case of financial data 
is identified as the “market” factor, having equally weighted components. 
Mayya et al. have obtained similar analytical results for lagged cross-
correlation matrices [12].

11.3.5 � Daily Drug-Related Crime Rates in 1999

Examining the eigenvalue spectrum of our daily drug data from 1999, we 
find a weak signal. The spectra corresponding to the correlation matrix 
of drug-related crimes are shown in Figure 11.8(a). While the majority of 
eigenvalues cannot be distinguished from noise, there does exist a large 
significant eigenvalue.

Next, we examine the spectra for a series of lagged correlation matrices. 
Plotting the magnitude of the largest eigenvalue for each lagged correla-
tion matrix and comparing this to the largest value expected from random 
data, we see a strong cyclic signal with a period of 7 days (Figure 11.8). 
This analysis suggests that significant correlation structure is present on a 
weekly cycle. We also note that this signal does not decrease in intensity 
over time. This suggests we are detecting some persistent periodic element 
that is not the result of some one-time event.

In addition to the magnitude of eigenvalues, we also examine the dis-
tribution of components within each eigenvector. Again borrowing from 
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FIGURE 11.8  (a, top) Only one eigenvalue, λ1 = 3, can be differentiated from the 
noise indicated by the solid line. (a, bottom) The solid curve is the eigenvalue 
density of the actual matrix spectra, while the dashed curve is the theoretical 
prediction from Equation (11.1). (b) We plot the maximum eigenvalue of the 
delayed correlation matrix for each of 30 lags. For drug-related crimes, we see a 
very clear periodicity at a frequency of 7 days (1 week).
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results in financial economics, we adopt the use of the inverse participa-
tion ratio (IPR) to examine the component structure of the significant 
eigenvectors. The IPR of a vector is given by

	 IPR ui
j

K

ij( ) | |
�
ν =

=∑ 1

4

[1]. A large IPR implies that only a few components contribute to the 
eigenvector, while a small IPR indicates participation of many compo-
nents. It is possible to determine clustering structure from such analysis. 
For example, in financial data, the eigenvector corresponding to the large 
“market” eigenvalue has a low IPR, identifying itself as a force that affects 
all stocks equally. Other eigenvectors, with larger IPRs, have components 
that are concentrated in various sectors of the market [1]. For crime data, 
these components correspond to locations across the city so a cluster of 
eigenvector components would correspond to a cluster of neighborhoods.

Examining the IPRs for significant eigenvectors in lagged correlation 
matrices, our results show that the eigenvector corresponding to the larg-
est eigenvalue has a low IPR and can thus be interpreted as a “market” 
force. For the remaining significant eigenvectors, we find that they too 
have low IPRs, suggesting there is little clustering or community structure 
(Figure 11.9).

Remembering the strong correlation found between day of the week 
and the number of reported crimes from basic regressions outlined above, 
we find that it is possible to recreate this eigenvalue signal by constructing 
artificial time series using the regression coefficients from Table 11.3 and a 
Poisson random number generator. Beyond this single, large market eigen-
value, we cannot distinguish any other significant structure in the spec-
trum of correlation matrices generated by daily drug-related crime rates. 
For drug-related crimes, it appears as though little signal exists beyond 
the weekly rise and fall of offenses reported from weekend to weekday. It 
is unclear if this periodicity is due to some universal truth of drug crimes 
or simply to police procedure.

11.3.6 � Weekly Theft-Related Crime Rates from 1991 to 1999

Having identified only a small correlation structure occurring on the 
scale of days, we next look at crime on a weekly scale. As shown in 
Figure 11.7(b), a more pronounced correlation exists. For these data, we 
construct 381 time series, one for each census tract in the city. Examining 
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the eigenvalue spectrum for the zero-lag correlation matrix of weekly 
theft data from 1991 to 1999, we find more significant eigenvalues than 
in the daily drug data (Figure 11.10). Some blocks of high or low cor-
relation values can be seen, suggesting there is some spatial structure to 
theft crimes.
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FIGURE 11.9  A plot of the IPR of the eigenvectors of the delayed correlation 
matrix for drug crimes with a 7-day lag.
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FIGURE 11.10  The eigenvalue spectrum of the zero-lag correlation matrix from 
weekly counts of theft-related crimes, aggregated at the census tract level. The 
solid line represents the RMT prediction, while the dashed line is a fit to the 
actual distribution using the min and max eigenvalues as fitting parameters.
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Looking at the IPR values for theft-related eigenvectors, we find that 
the large market eigenvalue is much less pronounced. This is likely due 
to using sparser time series at the census tract level rather than a larger 
mesh grid. Now, however, there are other significant eigenvectors (both 
above and below the predicted min and max) that tell different stories. 
Figure 11.11(a) shows that eigenvectors associated with large eigenvalues 
generally have lower IPRs that correspond to factors that influence more 
spatial regions, while significant small eigenvalues have the highest IPRs, 
suggesting they are generated by acting on only a few components (loca-
tions around the city).
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FIGURE 11.11  (a) IPR values for eigenvalues associated with the zero-lag corre-
lation matrix for weekly theft time series. Points outside the gray area represent 
significance outside of the bounds predicted by RMT. There are more significant 
eigenvalues, and these results suggest larger eigenvalues with low IPRs, corre-
sponding to global forces that affect crime across the city, while small eigenvalues 
are associated with signals generated from just a few locations. (b) Component 
density distributions of significant eigenvalues (λ1, λ2, λ4) confirm our interpreta-
tion of a “market” eigenvalue acting on nearly all locations with the same bias. 
Selecting an eigenvector from the random part of the distribution (i.e., λ87) shows 
good agreement with theoretical predictions.
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Looking more closely at the eigenvectors that contribute to the sig-
nal contained in our correlation matrices, we examine the components 
of each, ui = (u1,u2, …, uk). The theoretical distribution of components as 
derived from RMT is a normal distribution with zero mean and unit vari-
ance [13].

	 ρ
π

( ) /u e u= −1
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FIGURE 11.11  (continued). (a) IPR values for eigenvalues associated with the 
zero-lag correlation matrix for weekly theft time series. Points outside the gray 
area represent significance outside of the bounds predicted by RMT. There are 
more significant eigenvalues, and these results suggest larger eigenvalues with 
low IPRs, corresponding to global forces that affect crime across the city, while 
small eigenvalues are associated with signals generated from just a few locations. 
(b) Component density distributions of significant eigenvalues (λ1, λ2, λ4) con-
firm our interpretation of a “market” eigenvalue acting on nearly all locations 
with the same bias. Selecting an eigenvector from the random part of the distri-
bution (i.e., λ87) shows good agreement with theoretical predictions.
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For the correlation matrices of weekly theft time series from 1991 to 1999 
for the city’s 381 census tracts, Figure 11.11(b) compares the component 
distribution to the theoretical distribution. We find that the eigenvector 
associated with the largest eigenvalue has nearly all positive components. 
Despite the modest IPR, it is still possible to identify it as a market force. 
It has a large positive bias across all locations of the city. Other significant 
eigenvectors also have nonuniform distributions. We compare these to an 
eigenvector from the random part of the spectrum that shows good agree-
ment with RMT results.

To accurately quantify and interpret structure in the remaining sig-
nificant eigenvalues, we must first remove the dominating influence of the 
largest. Because the strong “market” eigenvector acts on all locations across 
the city with the same bias, we can recreate this global influence by project-
ing the citywide crime time series onto the eigenvector u1 (this procedure is 
outlined by Plerou et al. [13]). This time series can be viewed as an estimate 
of citywide crime based on the most prominent factor. Denoting the origi-
nal normalized time series as Y(t), we construct the projection

	 Y t u Y tj

j

j
1 1

1

381

( ) ( )=
=
∑ 	 (11.3)

Comparing this time series with the original weekly citywide crime, we 
find strong agreement over nearly 10 years of weekly data with the correla-
tion coefficient of 〈Y(t) Y1(t)〉 = .95.

Having established a reasonable proxy for the market forces acting on 
crime rates at all locations, we regress the location time series on this global 
force and use residuals that are free from its influence. For the time series 
associated with each location yi(t), we perform the following regression:

	 Y t Y t ti i i i( ) ( ) ( )= + +α β ε1 	 (11.4)

where αi and βi are location-specific fit parameters. The residual time series 
ε(t) are then used to compute the same correlation matrices and spectral anal-
ysis as described previously, but this time with the absence of global trends.

We now take the significant eigenvectors of the residual correlation 
matrices and examine their component structure. Large components of 
specific eigenvectors correspond to locations across the city that are all 
similarly biased by whatever force is associated with the vector. When we 
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plot the largest 10% of components for the remaining significant eigen-
vectors geographically, we find that large components of each vector are 
strongly correlated spatially.

Figure 11.12 shows the spatial distribution of the largest components 
for different residual eigenvectors. The vector associated with larger eigen-
values act primarily on neighborhoods in high crime areas near central 
Philadelphia. Other eigenvalues produce similar spatial clusters, although 
interpretation of why these locations are clustered is left as an open ques-
tion. This analysis suggests that weekly time scales reveal much richer 
spatial structure. We found that performing similar procedures using 
monthly time series reduces the amount of correlation, suggesting that 
the weekly time scale is the correct choice for analysis of neighborhood 
crime trends.

The problem of scale selection is one that can be dealt with naturally 
given the algorithms applied in this chapter. While Fourier analysis, 
regressions, and cross-correlation measures all give indications as to the 
amount of signal in the data, none provided our analysis with a satisfactory 
selection of scale. For example, the largest frequency in the Fast Fourier 
Transform (FFT) (Figure 11.5) of citywide theft counts is found at once-
per-3-hours. This result most likely has something to do with police proce-
dures such as shift changes, but selecting the hourly scale for all subsequent 
analysis would surely return time series too noisy and unpopulated for use.

By using results from Random Matrix Theory as a null model, we 
can easily measure how much signal can be distinguished from noise by 
observing eigenvalues above predicted maxima. Furthermore, changes in 
both spatial and temporal scales affect this spectrum in the same way—
increasing or decreasing the number and magnitude of significant eigen-
values. Thus, we can select an appropriate scale by sweeping over time from 
hours to months, and space from a small lattice to a large one. Selecting the 
combination that maximizes these deviations allows us to extract the most 
signal from noisy data, aggregating as much, but not more, than necessary.

We can refine these statements even further by noting that whatever 
social phenomena are behind these significant eigenvectors (or principle 
factors), they are independent in some way. Whatever force is driving 
crime rates in the locations corresponding to large components of the 
second eigenvector is separate enough either in cause or manifestation 
from the force behind the third vector. This is a level of interpretation 
currently not offered by the majority of tools aimed at explaining causal 
relationships. The underlying social dynamics of these factors still remain 
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FIGURE 11.12  Plotting the geographic location of the largest 10% of components 
for the first nine significant eigenvectors reveals strong spatial correlation. We 
conclude that these eigenvectors correspond to neighborhoods or sets of neigh-
borhoods and represent the forces that affect crime rates there.
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unknown, a point we hope to address in future work. What is important, 
however, is that this analysis suggests that there is good reason to treat 
crime differently within different neighborhoods, and policing strategy 
may be improved by introducing more local autonomy into strategy.

11.4 � SUMMARY AND CONCLUSION
In this chapter we presented a novel application of quantitative tools from 
fields such as mathematics, physics, and signal processing that can be used 
to analyze spatial and temporal patterns behavioral datasets. Basic ana-
lytic and statistical techniques revealed periodicities and cycles within the 
data that were then explored further by higher-resolution techniques. Due 
to a low signal-to-noise ratio, we adopted results from Random Matrix 
Theory as a suitable null model to construct significance tests. These 
tests revealed definite structure in the eigenvalue spectra of our correla-
tion matrices.

Given the large portion of daily crime rates that can be explained by 
regressing data onto the day of the week, it is possible that these results 
reflect police procedures such as scheduling more officers on Mondays 
than Sundays. Differences in high crime days across types of crime, how-
ever, may suggest that different types of crime may represent unique aggre-
gate behaviors. Another interesting result from our analysis is the lack 
of correlation between these different crime types. Broken windows and 
social disorganization theories postulate that an influx of minor offenses 
such as graffiti and vandalism might lead to an increase in more serious 
crimes such as assaults or gun violence. We find no evidence of this for 
short time scales. This is not to say, however, that no relationship exists. 
Due to data constraints, we have only looked for interaction on time scales 
of up to 30 days. It may be that these types of flows happen on the monthly 
or yearly time scale.

With 10 years of theft crime data, we are able to look for correlations 
on a weekly scale. Examining the eigenvalue and eigenvectors of correla-
tion matrices, we perform a type of Principle Component Analysis where 
significance is determined by comparison to results from Random Matrix 
Theory. We find that the largest eigenvalue and corresponding eigenvec-
tor can be interpreted as a citywide force that acts on all locations equally.

Removing the influence of this dominating factor, we found a number of 
significant eigenvalues and vectors. Examining the component structure 
of these eigenvectors, we showed that they correspond to neighborhoods 
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or sets of neighborhoods that share correlated crime rates. We drew an 
analogy to similar methods used in the analysis of finance markets where 
the eigenvalue spectrum also contains a “market” influence, and other 
significant eigenvalues are associated with specific industries and market 
sectors. The added value in this type of analysis is the ability to identify cor-
relations due to different eigenvectors as representing independent forces.

We believe there is valuable policy and prevention insight to be gained 
from this work that might be applied to many facets of sustainable soci-
eties. We have demonstrated that daily crime rates are of little use when 
attempting to find significant correlation structure, while weekly crime 
rates may be a much richer choice. Along with the selection of a proper 
time scale, we have identified sets of neighborhoods whose crime rates 
are driven in sync. These connections are not entirely visible to simple 
correlation measures and may include neighborhoods at opposite ends of 
the city. They can also be attributed to different forces, suggesting policy 
that works in certain areas may not be relevant in other areas. Adoption 
of police procedures that take these relationships into account may lead to 
more effective law enforcement.

Aside from the results gained by using these techniques on crime data, 
we hope that they can and will be put to use in more situations calling for 
multiscale analysis. Not only do they prove reliable even given very noisy 
data, but also there are strong theoretic and experimental null hypoth-
eses to verify the significance of results. Already, these methods have been 
shown capable of performing reliable factor analysis of financial markets 
and crime rates, two very complex behavioral systems.
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SYMBOL DEFINITIONS

A Vector of activities. For energy sources, it is measured in mega-
watts (MW).

Na Number of activities: Na = |A|.
ai Element of the A vector: i ∈ {1, …, Na}.
P Vector of pressures.
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Np Number of pressures: Np = |P|.
pi Element of the P vector: i ∈ {1, …, Np}.
R Vector of receptors.
Nr Number of receptors: Nr = |R|.
ri Element of the R vector: i ∈ {1, …, Nr}.
O Vector of the outcomes.
oi Outcome of the activity Ai. For activities that are energy sources, 

it is the energy (in TOE) produced in 1 year by a plant of 1 MW.
To Total outcome of the regional plan. It is the sum of the outcomes of 

the single activities.
M Matrix defining the relation between activities and pressures.
mj

i Element of the matrix M. Dependency of activity ai on pressure pj.
D Matrix defining the dependency between primary and secondary 

activities.
dij Element of the matrix D. It measures the dependency of (second-

ary) activity aj on (primary) activity ai.
N Matrix defining the relation between pressures and receptors.
nj

i Element of the matrix N . It is the effect of pressure pi on receptor rj.
C Vector of costs: |C| = Na.
ci Element of the C vector. Unit cost of activity ai.
AP Set of the indexes of the primary activities; if i ∈ AP, then Ai is a 

primary activity.
AS Set of indexes of the secondary activities; if i ∈ AS, then Ai is a sec-

ondary activity.
AP

ren Set of indexes of those primary activities that provide renewable 
energy.

G Vector of magnitudes.
B Total available budget.
Ui Maximum energy that can be produced by energy source ai in the 

Region.
Li Minimum energy that must be produced by energy source ai in the 

Region.
Fi Minimum fraction (percentage) of energy that should be produced 

by energy source ai in the Region.
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12.1 � THE PROBLEM

Public policy issues are extremely complex, occur in rapidly chang-
ing environments characterized by uncertainty, and involve conflicts 

among different interests. Our society is ever-more complex due to global-
ization, enlargement, and the changing geopolitical situation. This means 
that political activity and intervention become more widespread, and 
so the effects of its interventions become more difficult to assess, while at 
the same time it is becoming ever-more important to ensure that actions 
are effectively tackling the real challenges that this increasing complexity 
entails. Thus, those responsible for creating, implementing, and enforcing 
policies must be able to reach decisions about ill-defined problem situa-
tions that are not well understood, have no single correct answer, involve 
many competing interests, and interact with other policies at multiple lev-
els. It is therefore increasingly important to ensure coherence across these 
complex issues.

In this chapter we consider, in particular, policy issues related to 
regional planning, the science of the efficient placement of activities and 
infrastructures for the sustainable growth of a region. Regional plans 
are classified into types, such as Agriculture, Forest, Fishing, Energy, 
Industry, Transport, Waste, Water, Telecommunication, Tourism, Urban 
Development, and Environment, to name a few. Each plan defines activi-
ties that should be carried out during the plan implementation. On the 
regional plan, the policy maker must take into account impacts on the envi-
ronment, the economy, and the society. The procedure aimed to assess the 
impacts of a regional plan is called Strategic Environmental Assessment 
(SEA) [14] and relates activities defined in the plan to environmental and 
economic impacts. This assessment procedure is now manually imple-
mented by environmental experts, but it is never applied during the plan/
program construction. In addition, this procedure is applied on a given, 
already instantiated plan. Taking into account impacts a posteriori enables 
only corrective interventions that can, at most, reduce the negative effect 
of wrong planning decisions.

One important aspect to consider when supporting policy makers with 
Computational Intelligence approaches is the definition of formal policy 
models. In the literature, the majority of policy models rely on agent-based 
simulation [9, 12, 17], where agents represent the parties involved in the 
decision-making and implementation process. The idea is that agent-based 
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modeling and simulation is suitable for modeling complex systems. In 
particular, agent-based models permit carrying out computer experi-
ments to support a better understanding of the complexity of economic, 
environmental, and social systems, structural changes, and endogenous 
adjustment reactions in response to a policy change.

In addition to agent-based simulation models, which provide “individual-
level models,” we claim that the policy planning activity needs a global 
perspective: in the case of regional planning, we need “a regional perspec-
tive” that faces the problem at a global level while tightly interacting with 
the individual-level model. Thus, rather than proposing an alternative 
approach with respect to simulation, we claim that the two approaches 
should be properly combined as they represent two different perspec-
tives of the same problem: the individual and the global perspective. This 
integration is the subject of our current research activity. In this setting, 
regional planning activities can be cast into complex combinatorial opti-
mization problems. The policy maker must take decisions satisfying a set 
of constraints while at the same time achieving a set of (possibly conflict-
ing) objectives such as reducing negative impacts and enhancing positive 
impacts on the environment, the society, and the economy. For this rea-
son, impact assessment should be integrated into the policy model so as to 
improve the current procedure performed a posteriori.

In previous work [7] we experimented with two different technologies 
to address the Strategic Environmental Assessment of a regional plan, 
that is, assessing the effects on the environment of a given plan. The tech-
nologies we applied were Constraint Logic Programming (CLP) [11] and 
Causal Probabilistic Logic Programming [18]. Gavanelli et al. [8] pro-
posed a fuzzy model for the SEA. While being far more expressive than 
a traditional CLP approach, it is less usable within a regional planning 
decision support system. We evaluated a previous regional plan with 
the two models, and proposed the outputs to an environmental expert. 
The expert compared the two outputs and chose the CLP model as closest 
to a human-made assessment.

In this work we extend the CLP model used for the assessment and 
apply it to the planning problem—that is, deciding which actions should 
be taken in a plan. In the model, decision variables represent political 
decisions (e.g., the magnitude of a given activity in the regional plan), 
potential outcomes are associated with each decision, constraints limit 
possible combinations of assignments of decision variables, and objectives 
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(also referred to as criteria) can be used either to evaluate alternative solu-
tions, or be translated into additional constraints. The model has been 
solved with Constraint Logic Programming [11] techniques, and tested 
on the Emilia-Romagna regional energy plan. The results have been vali-
dated by experts in policy making and impact assessment to evaluate the 
accuracy of the results.

Further constraint-based approaches have been proposed for narrower 
problems in the field of energy, such as locating biomass power plants 
in positions that are economically affordable [2, 5, 6] and environmen-
tally sustainable [4]. Other approaches have been applied to wind turbine 
placement [10]. The problem faced in this chapter is much broader, as the 
region should decide which strategic investments to perform in the next 
2 to 3 years (with a longer vision to 2020) in the energy field. All specific 
details are left to the implementation of the plan, but are not considered at 
the Regional Planning stage. To the best of our knowledge, this is the first 
time that constraint-based reasoning has been applied to such a wide and 
strategic perspective.

12.1.1 � Regional Planning and Impact Assessment

Regional Planning is the result of the main policy-making activity of 
European regions. Each region has a budget distributed by the Operational 
Programme (OP); an OP sets out each region’s priorities for delivering the 
funds. On the basis of these funds, the region has to define its priorities: in 
the field of energy, one example of priority is increasing the use of renew-
able energy sources. Then, a region should decide which activities to insert 
in the plan. Activities may be roughly divided into six types:

	 1.	Infrastructures and plants

	 2.	Buildings and land use transformations

	 3.	Resource extraction

	 4.	Modifications of hydraulic regime

	 5.	Industrial transformations

	 6.	Environmental management

Also, a magnitude for each activity should be decided, describing how 
much of a given activity is performed.
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Each activity has an outcome (such as the amount of energy produced 
or consumed) and a cost. We have two vectors, O = (o1, …, oNa

) and 
C = (c1, …, cNa

), where each element is associated to a specific activity and 
represents the outcome and cost per unit of an activity.

There are constraints linking activities: for example, if a regional plan 
decides to build three biomass power plants (primary activities for an 
energy plan), each of these plants should be equipped with proper infra-
structures (streets, sewage or possibly a small village nearby, power lines), 
also called secondary activities. We thus have a matrix of dependencies 
between activities. In particular, we have an Na × Na square matrix D 
where each element dij represents the magnitude of activity j per unit of 
activity i.

Taking as an example the Emilia-Romagna Regional Energy Plan 
approved in 2007, some objectives of the policy makers are the production 
of a given amount of energy (400 additional megawatts from renewable 
energy sources), while reducing the current greenhouse gas emission per-
centage by 6.5% with respect to 2003. In addition, the budget constraint 
limiting the amount of money allocated to the energy plan by the Regional 
Operational Programme was 30.5M€ in 2007.

The policy maker must also take into account impacts on the environ-
ment, the economy, and the society, as defined by a Strategic Environmental 
Assessment that relates activities defined in the plan to environmental and 
economic impacts. In fact, each activity has impacts on the environment 
in terms of positive and negative pressures. An example of positive pres-
sure is the increased availability of energy, while an example of a negative 
pressure is the production of pollutants. Pressures are further linked to 
environmental receptors such as the quality of the air or of surface water. 
On both pressures and receptors, there are constraints: for example, the 
maximum amount of greenhouse gas emissions of the overall plan.

One of the instruments used for assessing a regional plan in Emilia-
Romagna are the so-called coaxial matrices [3], a development of the net-
work method [16].

One matrix M  defines the dependencies between the above-mentioned 
activities contained in a plan and impacts (also called pressures) on the 
environment. Each element mj

i of the matrix M  defines a qualitative 
dependency between the activity i and the impact j. The dependency can 
be high, medium, low, or null. Examples of negative impacts are energy, 
water, and land consumption; variation of water flows; water and air 
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pollution; and so on. Examples of positive impacts are reduction in water/
air pollution, reduction in greenhouse gas emission, reduction in noise, 
natural resources saving, creation of new ecosystems, and so on.

The second matrix N  defines the dependencies between the impacts 
and environmental receptors. Each element nj

i of the matrix N  defines a 
qualitative dependency between the impact i and an environmental recep-
tor j. Again, the dependency can be high, medium, low, or null. Examples 
of environmental receptors are the quality of surface water and ground-
water, the quality of landscapes, energy availability, wildlife wellness, and 
so on.

The matrices currently used in Emilia-Romagna contain 93 activities, 
29 negative impacts, 19 positive impacts and 23 receptors, and assess 
11 types of plans.

12.2 � WHY CONSTRAINT-BASED APPROACHES?
The regional planning activity is now performed by human experts who 
build a single plan, considering strategic regional objectives that follow 
national and EU guidelines. After devising the plan, the agency for envi-
ronmental protection is asked to assess the plan from an environmental 
point of view. Typically, there is no feedback: the assessment can state 
that the devised plan is environmentally friendly or not, but it cannot 
change the plan. In rare cases, it can propose corrective countermeasures, 
which can only mitigate the negative impact of wrong planning deci-
sions. Moreover, although regulations state that a significant environ-
mental assessment should compare two or more options (different plans), 
this is rarely done in Europe because the assessment is typically manual 
and requires a long effort. Even in the few cases in which two options are 
considered, usually one is the plan and the other is the absence of a plan 
(i.e., do nothing).

Constraint-based modeling overcomes the limitation of a handmade 
process for a number of reasons:

•	 First, it provides a tool that automatically performs planning deci-
sions, considering both the budget allocated to the plan by the 
Regional Operative Plan as well as national/EU guidelines.

•	 Second, it takes into consideration environmental aspects during 
plan construction, thus avoiding trial-and-error schemes.
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•	 Third, constraint reasoning provides a powerful tool in the hand of 
a policy decision maker as the generation of alternative scenarios is 
extremely easy and their comparison and evaluation come with no 
cost. Adjustments can be performed on-the-fly in case the results 
do not satisfy policy makers or environmental experts. For example, 
in the field of energy regional planning, by changing the bounds on 
the amount of energy each source can provide, we can adjust the 
plan by considering market trends and also the potential receptivity 
of the region.

12.2.1 � A CLP Model

To design a constraint-based model for the regional planning activity, we 
have to define variables, constraints, and objectives. Variables represent 
decisions that must be taken. Given a vector of activities A = (a1, …, aNa

), we 
associate to each activity a variable Gi that defines its magnitude. The mag-
nitude can be represented either in an absolute way, as the amount of a given 
activity, or in a relative way, as a percentage with respect to the existing quan-
tity of the same activity. In this chapter we use the absolute representation.

As stated above, we distinguish primary from secondary activities: let 
AP be the set of indexes of primary activities and AS the set of indexes of 
secondary activities. The distinction is motivated by the fact that some 
activities are of primary importance in a given plan. Secondary activi-
ties are those that support the primary activities by providing the needed 
infrastructures. The dependencies between primary and secondary activi-
ties are considered by the following constraint:

	 ∀ ∈ =
∈
∑j A G d GS

j ij i

i AP

Given a budget BPlan available for a given plan, we have a constraint limit-
ing the overall plan cost as follows:

	 G c Bi

i

N

i Plan

a

=
∑ ≤

1

	 (12.1)

Such a constraint can be imposed either on the overall plan or on parts of 
it. For example, if the budget is partitioned into chapters, we can impose 
Equation (12.1) on the activities of a given chapter.
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Moreover, given an expected outcome oPlan of the plan, we have a con-
straint ensuring to reach the outcome:

	 G o oi

i

N

i Plan

a

=
∑ ≥

1

For example, in an energy plan, the outcome can be to have more energy 
available in the region, so oPlan could be the increased availability of elec-
trical power (e.g., in kilo-TOE, Tonnes of Oil Equivalent). In such a case, 
oi will be the production in kTOE for each unit of activity ai.

Concerning the impacts of the regional plan, we sum up the contribu-
tions of all the activities and obtain an estimate of the impact on each 
environmental pressure:

	 ∀ ∈ … =
=
∑j N p m Gp j j

i

i

N

i

a

{ , , }1
1

	 (12.2)

In the same way, given the vector of environmental pressures 
P = (p1, …, pNp

), one can estimate their influence on the environmental 
receptor ri by means of the matrix N  that relates pressures with receptors:

	 ∀ ∈ … =
=
∑j N r n pr j j

i

i

N

i

p

{ , , }1
1

	 (12.3)

Moreover, we can have constraints on receptors and pressures. For exam-
ple, “greenhouse gas emission” (that is, a negative pressure) should not 
exceed a given threshold.

Concerning objectives, there are a number of possibilities suggested 
by planning experts. From an economic perspective, one can decide to 
minimize the overall cost of the plan (that is, in any way subject to budget 
constraints). Clearly, in this case the most economic energy sources are 
preferred, despite their potentially negative environmental effects (which 
could be anyway constrained). On the other hand, one could maintain a 
fixed budget and maximize the produced energy. In this case, the most 
efficient energy sources will be pushed forward. Or the planner might pre-
fer a green plan and optimize environmental receptors. For example, one 
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can maximize, say, the air quality, or the quality of the surface water. In 
this case, the produced plan decisions are less intuitive and the system 
we propose is particularly useful. The link between decisions on primary 
and secondary activities and consequences on the environment are far too 
complex to be manually considered. Clearly, more complex objectives can 
be pursued by properly combining the above-mentioned aspects.

12.3 � THE REGIONAL ENERGY PLAN
We can now describe how to cast the general model for regional planning 
described above into the model for designing a regional energy plan. The 
first step is to identify primary and secondary activities. In the context 
of a regional energy plan, the environmental and planning experts made 
the following distinction. Primary activities are those capable of produc-
ing energy, namely renewable and nonrenewable power plants. Secondary 
activities are those that support energy production, such as activities for 
energy transportations (e.g., power lines) and infrastructures supporting 
the primary activities (e.g., dams, yards).

One important aspect to account for when designing a regional energy 
plan is the energy source diversification: this means that the trend to 
allocate funds should not be directed toward a single energy source, but 
should cover both renewable and nonrenewable energy sources. This 
requirement comes from fluctuations of the price and availability of the 
various resources. For this reason, we have constraints on the minimal 
fraction Fi of the total energy produced by each source i :

	 ∀ ∈ ≥i A G o FTP
i i i

o

where the total outcome To is simply obtained as

	

T G oo
j j

j AP

=
∈
∑

In addition, each region has its own geophysical characteristics. For 
instance, some regions are particularly windy, while others are not. 
Hydroelectric power plants can be built with some careful consideration 
of environmental impacts, the most obvious being the flooding of vast 
areas of land. This poses constraints on the maximum energy Ui that can 
be produced by a given energy source i
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	 ∀ ∈ ≤i A G o UP
i i i

Finally, the region priorities should be compliant with European guide-
lines, such as the 20-20-20 initiative that aims at achieving three ambi-
tious targets by 2020: reducing by 20% greenhouse gas emissions, having 
a 20% share of the final energy consumption produced by renewable 
sources, and improving by 20% its energy efficiency. For this reason, we 
can impose constraints on the minimum amount of energy Lren produced 
by renewable energy sources whose set of activities is referred to as AP

ren. 
The constraint that we can impose is

	 Gi oi Lren
i AP

ren

≥
∈

∑

12.4 � THE REGIONAL ENERGY PLAN 2011–2013
The constraint-based model described in previous sections has been used in 
the planning of the regional energy plan for 2011–2013. The system is imple-
mented in the Constraint Logic Programming language ECLiPSe [1], and in 
particular uses its Eplex library [15], which interfaces ECLiPSe with a (mixed-
integer) linear programming solver. The computation time is not an issue in 
this application, and it was hardly measurable on a modern computer.

The regional energy plan had the objective of paving the way to reach 
the ambitious goal of the 20-20-20 directive, in particular having 20% of 
energy in 2020 produced by renewable sources. This amount considers not 
only electric power, but the entire energy balance in the region, including 
thermal energy and transports.

Transports can use renewable energy by using renewable fuels, such as 
biogas (methane produced from the fermentation of vegetable or animal 
wastes) or oil produced from various types of crops. Currently, we do not 
consider this issue.

Thermal energy can be used, for example, for home heating; renew-
able sources in this case are thermal solar panels (that produce hot water 
for domestic use), geothermal pumps (that are used to heat or to refresh 
houses), and biomass plants (that produce hot water used to heat neigh-
boring houses during winter).

The considered electric power plants that produce energy from renew-
able sources are hydroelectric plants, photovoltaic plants, thermodynamic 
solar plants, wind generators and, again, biomass power plants.
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For each energy source, the plan should provide the following:

•	 The installed power, in megawatts

•	 The total energy produced in a year, in kTOE

•	 The total cost, in M€.

The ratio between installed power and total produced energy is mainly 
influenced by the availability of the source: while a biomass plant can 
(at least in theory) produce energy 24/7, the sun is available only during 
the day, and the wind only occasionally. For unreliable sources an average 
for the whole year is taken.

The cost of the plant, instead, depends mainly on the installed power: 
a solar plant has an installation cost that depends on the square meters of 
installed panels, which on their turn can provide some maximum power 
(peak power).

It is worth noting that the considered cost is the total cost of the plant 
for the regional system, which is not the same as the cost for the taxpay-
ers of the Emilia-Romagna region. In fact, the region can enforce policies 
in many ways, convincing private stakeholders to invest in power pro-
duction. This can be done with financial leverage, or by giving favorable 
conditions (either economic or other) to investors. Some power sources 
are economically profitable, so there is no need for the region to give sub-
sidies. For example, currently in Italy, biomass is economically advan-
tageous for investors, so private entities are proposing projects to build 
biomass plants. On the other hand, biomass also produces pollutants; they 
are not always sustainable (see [4] for a discussion) so local committees 
are rather likely to spawn against the construction of new plants. For these 
reasons, there is a limit on the number of licenses the region gives to pri-
vate stakeholders for building biomass-based plants.

Technicians in the region estimated (considering current energy require-
ments, growth trends, foreseen energy savings) the total energy requirements 
for 2020; out of this, 20% should be provided by renewable sources. They 
also proposed for this amount a percentage to be provided during the plan 
2011 to 2013: about 177 kTOE of electrical energy and 296 kTOE of ther-
mal energy.

Starting from these data, they developed a plan for electrical energy 
and one for thermal energy.
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We used the model presented in Section 12.3, considering initially only 
“extreme” cases, in which only one type of energy source is used.

The application provides the optimal plan, together with its environ-
mental assessment—namely, an evaluation of the environmental receptors 
used by the Environmental Protection Agency (Table 12.1).

To understand the individual contributions of the various energy forms, 
we plotted all the plans that use a single type of energy in Figure  12.1, 
together with the plan developed by the region’s experts. On the x-axis, 
we chose the receptor Air quality because it is probably the most sensitive 
receptor in the Emilia-Romagna region. On the y axis, we plotted the cost 
of the plan. As explained previously, all plans provide the same energy in 
kTOE, while they may require different installation power (in megawatts).

First of all, we notice that some of the energy types improve the air 
quality (positive values on the x-axis), while others worsen it (negative 
values). Of course, no power plant can improve the air quality by itself 
(as it cannot remove pollutants from the air). The point is that the plant 

TABLE 12.1  Environmental Assessment of a Plan Using Only Biomass

Subsidence limitation 25.4475793911422
Embankments stability −696.277574714292
Stability of coasts or seafloor −21.4612152513278
Stability of river banks and beds −267.844653150394
Soil quality −732.083075332985
Quality of seawater −343.348156768071
Quality of inland surface waters −669.53249452972
Groundwater quality −1242.58982368129
Air quality −897.397559402556
Quality of climate −189.576828693382
Wellness of terrestrial vegetation −1531.95274530939
Wellness of wildlife −2156.42423356061
Wellness of aquatic plants −1732.32367634811
Wellness and health of mankind 204.340731338623
Quality of sensitive landscapes −2175.66773468984
Cultural/historical heritage value −1547.2098822988
Recreation resources accessibility −64.6744331658445
Water availability −1163.25455176302
Availability of agricultural fertile land −827.660112502349
Lithoid resource availability 287.089994706276
Energy availability 57.450758535756
Availability of productive resources 3204.83984275847
Value of material goods 2469.68141448106
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provides electrical energy without introducing new pollutants; if such 
energy would not have been provided to the electrical network, it would 
have been imported from neighboring regions. In such a case, the required 
energy would be produced with the same mixture of energy sources as in 
the national production, including those emitting pollutants, so the net 
contribution is positive for the air quality. Note also that the different 
energy sources have different impacts on the air quality—not only due to 
the emissions of the power plants, but also to the impact of the secondary 
activities required by the various sources.

Finally, note that the “extreme” plans are usually not feasible, in the 
sense that the constraint on the real availability of the energy source in 
the region was relaxed. For example, wind turbines provide very good air 
quality at low cost, but the amount required in the corresponding extreme 
plan is not possible in the region considering the average availability of 
wind and of land for installing turbines.

The plan proposed by the region’s experts is more balanced: it considers 
the real availability of the energy source in the region and provides a mix-
ture of all the different renewable types of energy. This is very important 
in particular for renewable sources, which are often discontinuous: wind 
power is only available when the wind is blowing at a sufficient speed, 
solar power is only available during sunny days, etc., so having a mixture 
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FIGURE 12.1  Plot of the extreme plans using only one energy source, compared 
with the plan by the region’s experts.
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of different sources can provide an energy availability more continuous 
during the day.

In addition to assessing the plan proposed by the experts, we also pro-
vided new, alternative plans. In particular, we searched for optimal plans, 
both with respect to the cost and to the air quality. Because we have two 
objective functions, we plotted the Pareto-optimal frontier: each point 
of the frontier is a point such that one cannot improve one of the objec-
tives without sacrificing the other. In our case, the air quality cannot 
be improved without raising the cost; and vice-versa, it is impossible to 
reduce the cost without sacrificing the air quality. The Pareto frontier is 
shown in Figure 12.2, together with the experts’ plan. The objective func-
tion is a weighted sum of single criteria, so our formulation of the problem 
is linear and we can compute the Pareto frontier by changing coefficients 
in the weighted sum.

Figure 12.2 shows that although the plan devised by the experts is close 
to the frontier, it can be improved. In particular, we identified on the fron-
tier two solutions that dominate the experts’ plan: one has the same cost but 
better air quality, while the other has the same air quality but a lower cost.
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FIGURE 12.2  Pareto frontier of air quality against cost.
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Table 12.2 contains the plan developed by the region’s experts, while 
Table 12.3 shows the plan on the Pareto curve that has the same air qual-
ity as the plan of the experts. The energy produced by wind generators is 
almost doubled (as they provide a very convenient ratio (air quality)/cost; 
see Figure 12.1); we have a slight increase in the cheap biomass energy, 
while the other energy sources reduce accordingly.

Concerning the environmental assessment, we plot in Figure 12.3 the 
value of the receptors in significant points of the Pareto front. Each bar 
represents a single environmental receptor for a specific plan on the Pareto 
frontier of Figure 12.2. In this way it is easy to compare how receptors are 
impacted by different plans. In the figure, the white bar is associated to 
the plan on the frontier that has the highest air quality, while bars with 
dark colors are associated to plans that have a low cost (and, thus, a low 
quality of the air). Notice that the receptors have different trends: some of 
them improve as we move in the frontier toward higher air quality (like 
climate quality, mankind wellness, value of material goods), while others 

TABLE 12.3  Energy Plan That Dominates the Experts’ Plan, 
Retaining Same Air Quality but with Lower Cost

Power Power Energy Investments
Electrical 2010 2013 2013
Power plants (MW) (MW) (kTOE) (M€)
Hydroelectric 300 303 67.74 25.2
Photovoltaic 230 782.14 80.7 1932.51
Thermodynamic solar     0 5 0.5 22.5
Wind generators   20 140 18.03 240
Biomass 430 602.23 362.54 602.8
Total 980 1832.37 529.5 2823

TABLE 12.2  Energy Plan Developed by the Region’s Experts

Power Power Energy Investments
Electrical 2010 2013 2013
Power plants (MW) (MW) (kTOE) (M€)
Hydroelectric 300   310 69.3     84
Photovoltaic 230   850 87.7 2170
Thermodynamic solar     0     10 1     45
Wind generators   20     80 10.3   120
Biomass 430   600 361.2   595
Total 980 1850 529.5 3014
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improve when moving to less expensive solutions (like quality of sensitive 
landscapes, wellness of wildlife, soil quality). This is due to several reasons, 
depending both on the type of power plants installed and on the second-
ary activities.

For example, wind turbines have a good effect on the air quality, but 
they are also considered aesthetically unpleasant, so they cannot be 
installed in sensitive zones, such as on hilltops, without having protests 
from the residents (receptor quality of sensitive landscapes). Unluckily, the 
hills are also the most windy zones in Emilia-Romagna.
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Migratory birds follow wind streams to reduce fatigue in their travel 
over long distances; on the other hand, wind turbines should be installed 
in windy zones to be effective. So, during migration, birds would have a 
high likelihood to unexpectedly meet large rotating wind blades, possibly 
impacting with them; this effect cannot be ignored—in particular for 
endangered species (receptor wellness of wildlife).

12.5 � ADDED VALUE OF CLP
The application (including both the assessment and the planning) was 
developed in a few person-months by a CLP expert. It does not have a 
graphical user interface yet and is currently usable only by CLP experts; 
however, it produces spreadsheet files with tables having the same struc-
ture as those used for years by the region’s experts, so the output is easily 
understandable by the end user. We are currently developing a Web-based 
application to let users input the relevant data and try themselves produc-
ing plans on-the-fly.

The assessment module [7] was first tested on a previously developed 
plan and then used during the planning of the 2011–2013 regional energy 
plan. The various alternatives have been submitted to the regional council, 
which will have the ability to choose one of them, instead of accepting/
rejecting the only proposal, as in previous years.

One of the results is the ability to generate easily alternative plans 
with their assessment; this is required by the EU regulations, but it is 
widely disregarded.

Another result is the possibility to provide plans that are optimal; the 
optimization criteria can include the cost, or one of the various environ-
mental receptors. The user can select two objectives, and in this case the 
application generates a Pareto front. This helps the experts or the regional 
council in making choices that are more grounded.

We still do not know which plan the regional council will choose; nei-
ther do we know if and how the directives given in the regional plan will 
be implemented. More refined plans (at the province or municipality level) 
should follow the guidelines in the regional plan, but it is also possible to 
introduce modifications during the plan execution. However, in a perfect 
world in which everything is implemented as expected, the added value of 
CLP in monetary terms could be the difference of the investment columns 
in the plans in Tables 12.2 and 12.3: 191 M€ saved (by the various actors, 
public and private, in the whole region) in 3 years.
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Finally, the choice of Constraint Programming greatly enables model 
flexibility. In discussions with experts, it is often the case that they change 
their minds on some model constraints or on objectives. Therefore, flex-
ibility in dealing with side constraints and in dealing with nonlinear con-
straints facilitates knowledge acquisition making Constraint Programming 
the technique of choice for the problem and its future extensions.

12.6 � CONCLUSION AND FUTURE OPEN ISSUES
Global public policy making is a complex process that is influenced by 
many factors. We believe that the use of constraint reasoning techniques 
could greatly increase the effectiveness of the process by enabling the pol-
icy maker to analyze various aspects and to play with parameters so as to 
obtain alternative solutions along with their environmental assessment. 
Given the amount of financial, human, and environmental resources 
that are involved in regional plans, even a small improvement can have 
a huge effect.

Important features of the system are its efficiency, as a plan is returned 
in a few milliseconds; and its wide applicability to many regional plans, to 
provincial and urban plans, and also to private and public projects. The 
system was used for the environmental assessment of the regional energy 
plan of the Emilia-Romagna region of Italy. In addition to performing 
automatically the assessment (that was performed manually in previous 
years), the assessment for the first time includes the evaluation of alter-
native plans: this is a requirement of EU regulations that is largely dis-
regarded in practice. Moreover, the alternative plans were produced by 
optimizing the quality of the environmental receptors, together with the 
cost for the community of the plan itself.

This work is a first step toward a system that fully supports the decision 
maker in designing public policies. To achieve this objective, the method 
must be extended to take into account the individual level, by investigating 
the effect of a policy over the parties affected by it. This can be achieved by 
integrating constraint reasoning with simulation models that reproduce 
the interactions among the parties. In our current research, we are study-
ing how the region can choose the form of incentives and calibrate them 
in order to push the energy market to invest in the directions foreseen by 
the Regional Energy Plan [13].

In turn, these models can be enriched by adopting e-Participation tools 
that allow citizens and stakeholders to voice their concerns regarding 
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policy decisions. To fully leverage e-Participation tools, the system must 
also be able to extract information from all the available data, includ-
ing natural language. Thus, opinion mining techniques will be useful in 
this context.

At the moment, the system can be used only by IT expert people. In 
order to turn it into a practical tool that is routinely used by decision mak-
ers, we must equip it with a user-friendly interface. In particular, we are in 
the process of developing a Web interface to the constraint solver in order 
to make it easy to use and widely accessible.

Finally, economic indicators will be used to assess the economic aspect 
of the plan. Up to now, only budget and a few economic pressures and 
receptors are considered. We believe that a comprehensive system should 
fully incorporate this aspect. We will integrate a well-established approach 
(UN and Eurostat Guidelines) and robust data from official statistics 
into the system to combine economic accounts (measured in monetary 
terms) and environmental accounts (measured in physical units) into a 
single framework useful for the evaluation of the integrated economic, 
environmental-social performance of regions.
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climate extremes, 101–103
climate system complexity, 116
cross-class comparison issues, 

114–116
data challenges and opportunities, 

114–118
data scale challenges, 117
machine learning and, 84
paleoconstructions, 90
parameterization development, 89
perturbed physics ensembles, 90–91
polar regions applications, 110–111
reconstructing past climate, 103–104
reproducibility and provenance 

graphs, 117–118
scientific problems, 88–91
seasonal climate forecasting, 97–100
top-down and bottom-up approaches, 

83
uncertainty issues, 101–103

Climate Informatics 2011, 17, 83
Climate informatics toolbox, 112–114
Climate mitigation, societal costs of action 

and inaction, 129
Climate model simulations, 

computational data sciences 
methods, 131

Climate models, parametric uncertainties 
in, 142–145

Climate network problem, 94–96
climate prediction.net, 91
Climate projections, multimodel 

ensembles, 89
Climate proxy archives, 104
Climate quality, as environmental 

receptor, 376
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Climate reconstructions, future and, 
108–110

Climate stakeholder assessment reports, 
138

Climate variables, identifying 
dependencies between, 94

Climatic Research Unit (CRU) 
precipitation dataset, 92–93

Cloud-based analysis framework, 117
Cloud-computing-based reproducible 

climate data analysis, 116–117
Cloud formation, 89
Cloud storage techniques, 203
CLP model, 368–370

constraints in, 364
decision variables in, 364
potential outcomes in, 364
resemblance to human assessment, 364
variables, constraints, and objectives, 

368
web-based application, 378, 380

Cluster analysis, 100, 205
in future energy system, 216–217

Cluster centroids, 284
Clustering, 84, 211–212, 214, 215
CMIP3 model results, 117
Co-generation units, 184
Coaxial matrices, 366, 367
Coefficients matrix, 42
Coefficients vector, 42
Coherence, across complex policy issues, 

363
Coherent groups, 287

identifying, 284–285
Cold temperatures, extreme events, 135
Combinatorial optimization problems, 

planning activities as, 364
Combined heat and power units (CHP 

units), 184
Common Era (CE) climate study, 103–104, 

109
Complexity

of planning objectives, 370
in public policy issues, 363

Compressed air storage, 247
Compression factor, smart-meter data, 203
Computable General Equilibrium (CGE) 

model, 29

Computational costs
CUSUM approach, 295
high resolution, 134

Computational data sciences
for actionable insights, 127–128
challenges and opportunities, 130–131
and climate extremes, 127–128
climate model simulations and, 131
motivation, 128
remote observations investigations, 131
research opportunities, 130–131
and uncertainty, 127–128

computational data sciences, societal and 
stakeholder priorities, 128–130

Computational fluid dynamics (CFD) 
model, 305

Computational intelligent data analysis
application to policy making, 363
for biodiversity, 17–18
for climate change, 16–17
integrated sustainability analysis, 

14–16
introduction, 5–10
motivation for, 7
process, 9–10
for renewable energy, 19–20
research challenges, 21–22
for smart grid, 19–20
for sociopolitical sustainability, 20–21
for species conservation, 17–18
for sustainable development, 1, 10–21

Computational modeling, 102
Computational statistics, 133
Concentrated solar plants (CSPs), 251
Conditional density function, parameter 

derivation, 327–328
Conditional value at risk (CVaR), 268
Conducting materials, advances in, 274
Confidence intervals, carbon footprint 

accounting, 65
Conflicting constraints, optimizer 

reconciliation, 48
Conflicting data inputs, 36
Conflicting objectives, in public policy 

making, 364
Conformal prediction, 113–114
Connection sub-graph problem, 18
Connections, tracing with IO tables, 28
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Consensus criterion, 138, 139, 140
Conservation planning. See also Land 

conservation
barriers to alternative method 

adoption, 161
optimization in, 160–162
reluctance to adopt alternative 

methods, 161
Constrained optimization, 39–40

added value, 378–379
CLP model for regional planning, 

368–370
model flexibility with, 379
overcoming manual decision-making 

limitations with, 367
problem formulation, 363–367
rationale, 367–370
for regional planning and impact 

assessment, 365–367
to support policy making, 361
symbol definitions, 361–362

Constrained optimization problem, 37–38
balancing constraints, 41–43
computational requirements, 47
formulating, 43–48
reliability information, 38–39

Constraint Logic Programming (CLP), 
364, 365, 371

Constraint reasoning, 379
integrating with simulation models, 

379
Constraint reliability, 38
Constraints

in CLP model, 364, 368
hard, 39
for MRIO tables, 37–38
on receptors and pressures, 369
soft, 39

Consumer demand prediction, 206–207
Consumer responsibility principle, 28–29

Leontief inverse and, 48
Consumers

energy market roles, 189
linking through IO analysis, 50

Consumption curves, household 
identification through, 232

Consumption events, predicting and 
classifying, 212–214

Consumption imbalance, 288
Consumption patterns, classification, 213
Contrast analysis, 228–229
Contrast sets, 228
Control boxes, smart-home, 197
Controlled experiments, difficulty with 

ecosystems, 11
Convention on International Trade in 

Endangered Species of Wild Fauna 
and Flora (CITES), 50

Convergence, 138
Convex clusters, 216
Copula-based functions, 325
Copula Bayesian networks, 325
Copula density, 317
Copula functions, 316, 317
Copula modeling technique

accuracy, 324
minimal data performance, 324
performance, 321
robustness, 322

Copulas, 311
multivariate, 316–319
wind speed estimation accuracy using, 

325
Correlated variables, 147
Correlation-based complex networks, 149
Correlation matrices, 345–347
Correlative coherence, 263
Correspondence matrices, 29, 36
Cost-Effectiveness Analysis (CEA), 160
Country of final assumption, 16
Coupled General Circulation Models 

(CGCMs), 107
Coupled Model Intercomparison Project 

(CMIP), 87, 89
Coupled nonlinear stochastic differential 

equations, 252
Covariance matrix, 327, 328
Covariates, collective influences on 

climate extremes, 145
Cradle-to-grave analysis, 15
Crime cycles, 340
Crime datasets

high-resolution quantitative analysis, 
333

periodicities, 340
Crime densities, spatial aggregation, 335



390    ◾    Index

Crime hotspots, 333, 339
drug-related crimes in Philadelphia, 

339–340
environmental factors and, 342
persistence of, 333

Crime rates, and correlation structure, 
358

Crime type
categorical groupings, 337
percentage breakdown based on 

incident reports, 337
Criminal activity

access and exposure, 333
aggregation by category, 335
block/neighborhood analysis, 334
component distribution versus 

theoretical distribution, 353
flow and system dynamics approach, 

333
grid size, 335
lagged spatial correlations, 347
local autonomy and, 357
location-specific fit parameters, 354
market factors, 348
proxy for market forces, 354
seasonal trends, 334
and socioeconomic variables, 332–333
spatial distribution, 339
weekday timescales, 340

Criminal offense records
analysis methods, 338–357
applying random matrix theory 

to, 332
auto- and cross-correlation, 343–345
correlation matrices, 345–347
daily drug-related crime rates, 

348–350
eigenvalue distributions, 349
eigenvalue spectrum and comparison 

to random matrices, 347–348
environmental factors and, 342
geocoding on census tracts, 335
lagged cross-correlations, 344
max eigenvalue across lags, 349
percentage breakdown by incident 

reports, 337
spatio-temporal correlations, 331–333
typical offense report, 334

Cross-class comparisons, 114
Cross-correlation, 332

and crime occurrence in Philadelphia, 
343–345

and relationships between crimes, 344
Cross-region aggregation, 61
Cross-selling activities, 212
Cross-validation, variables based on, 97
Cumulative distribution functions 

(CDFs), 317
Cumulative sum control chart (CUSUM), 

294
Curse of dimensionality, 10, 217
Customer behavior. See User behavior
Customer segmentation, based on energy 

profiles, 217
CUSUM-based methodology, 294–299

spatially aware, 299
summary statistics for different FDRs, 

298
threshold requirements, 296

D

Damped sinusoid function, least squares 
fit, 284

Data acquisition rates, 91
Data aggregation, 36
Data analysis

definition, 5
as iterative process, 6
for real-time grid disruption 

identification, 273–275
spatio-temporal, 12–14

Data analysis challenges, 200–201
contrast analysis, 228–229
current energy market, 188–193
data management, 201–204
data preprocessing, 204–206
disaggregation, 220–225
distributed generation, 184–185
emerging patterns, 228–229
energy dataset exploration and 

comparison, 225–229
extending data management 

techniques, 226–227
future energy domain, 181–183
future energy scenarios, 193–200
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guided exploration to unexpected 
patterns, 227–228

market liberalization, 187
new loads, 185–187
optimization, 229–231
predictions, forecasts, and 

classifications, 206–214
privacy-preserving data mining, 

231–232
unknown pattern detection, 214–219
volatile generation, 183–184

Data assimilation, 90
Data availability, 32, 176
Data challenges

in climate informatics, 114–118
climate system complexity, 116
cloud-computing-based reproducible 

climate data analysis, 116–117
cross-class comparisons, 114–116
data scale, 117
reproducibility and provenance 

graphs, 117–118
seasonal climate forecasting, 99
spatio-temporal correlations, 333–337

Data classes, 274
Data conflicts, 36, 37, 38

reconciliation by optimizer, 48
Data disaggregation, 36
Data-driven insights, 148
Data-guided functional mappings, 148
Data management, electric system 

challenges, 201–204
Data management and discovery, 102
Data mining, 8, 133, 275

application to power grid systems, 275
domain-driven, 212
privacy preservation issues, 231–232
streaming, 290

Data preprocessing, 204–206
Data processing language, 36

AISHA, 34
MRIO, 35–37

Data reclassification, 36, 67
Data scale, challenges in climate 

informatics, 117
Data storage

behavioral data, 331
at finest granularity, 202

Data stream mining, 9
Data streaming algorithms, 290
Dataset dimensionality, 274
Day-ahead auctions, 191
DC component, removing from signal, 

279
Decision boundary, 293

determining, 292–293
evaluating, 293

Decision making
automated processing to support, 

10–11, 379
ethically correct, 5

Decision support, based on energy data, 
199

Decision tree classifiers, 211
Decision-tree classifiers, 212
Decision variables, in CLP model, 364
Deforestation, 17
Degrees of freedom, GCMs, 98
Delayed correlation matrices, 345
Dell, blood tantalum involvement, 4
Demand aggregation, 249
Demand curves, aggregated, 205
Demand-driven generation, 19, 232

paradigm shift to generation-driven 
demand, 187, 195

Demand management, 248–249
mechanism design for, 249–250

Demand prediction, 206–207
Demand response, 184, 208

with dynamic prices, 194–196
market-based with control signals, 

196–197
pattern detection for enhanced, 215
scenarios, 207

Demand-response measures, 207, 210, 211
verifying effectiveness, 220

Demand-shifting offers, 231
Demand shifts, 183, 211

in smart homes, 198
through temperature variation, 197

Demand side optimization, 229–230
Demand-supply balance, 19
Density-based clusters, 216, 218
Dependencies, 312

assumptions for wind speed 
estimation, 311–312
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as edges, 95
identifying between climate variables, 

94
between impacts and receptors, 367
between primary and secondary 

activities, 36
Descriptive analysis, 5
Deviation-based methods, 218
Deviation detection, 275
Diagonal matrix, 45
Dietterich, Thomas, 18
Digital data storage, 331
Dimension reduction, 10, 84, 99, 144, 217
Dimensionality, curse of, 10
Direct requirements matrix, 48
Direct solar irradiance, 251
Directional bin, 307, 308

Massachusetts wind speed data, 320
statistical distribution, 309

Disaggregation, 213, 220–221, 225
approaches to load-based, 221–223
automated, 21
practical applications, 223–225

Discovery-driven OLAP systems, 227
Disruptive events

identifying from grid data, 276–277
k-medians approach detecting, 

288–290
real-time detection, 20

Distance-based methods, 218
Distributed database server, MRIO, 35–37
Distributed forecasting, hierarchical, 210
Distributed generation, 210, 213

data analysis challenges, 184–185
Distributed solar farms, 245
Distribution infrastructure upgrades, 248
Distribution line monitoring, 276
Distribution system operators (DSOs), 187

energy market roles, 189
Dolphin-safe tuna, 51
Domain-driven data mining, 212
Domain knowledge, 112–113
Dominant oscillatory mode

coherent groups identification, 284–285
identification/extraction, 281–283
model extraction results visualization, 

285–288
windowing fit to full dataset, 283–285

Don’t-care situations, 293
Double auctions, 191
Double-counting, 29
Downscaling, to specific locations, 115
Drought detection, 81, 82, 92, 100

based on MAP inference method, 
92–93

Drought regions, detection by algorithm, 
81, 82, 93–94

Drug-related crimes, 350
correlations between neighborhoods, 

345
daily timescale, 341, 348–350
density in Philadelphia neighborhoods, 

339–340
frequency relative to violent offenses, 

342
IPR of eigenvectors of delayed 

correlation matrix, 351
regression by day of week, 341
weekday correlations, 340
zero-lag correlation matrix, 346

Dynamic energy prices, 194–196, 195, 
206, 207, 208, 210

consumer acceptance, 196
with control signals, 230
risks, 195
smart home reactions to, 230

E

e-Participation tools, 379
Earth system models (ESMs), 136
Eastern Interconnect (EI), 296
Ecological fallacy, 13
Ecological footprint

bottom-up measurement, 29
globalization effects, 15, 28
sustainability indicator line items, 50
top-down measurement, 29

Econometrics, 133
Economic growth, 2
Economic indicators, 380
Economic Input-Output Life-Cycle 

Assessment (EIO-LCA) method, 15
Economic sustainability, 2
Economic value creation, 33
Ecosystems, 11
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Edge effects, 13
climate dependencies as, 94

Efficiency frontier, 171
Eigenvalue density, 348
Eigenvalue distributions

IPR, delayed correlation matrix for 
drug crimes, 351

Philadelphia crimes, 349
Eigenvalue diversity, 263
Eigenvalue size, and market forces, 352
Eigenvalue spectrum, 348

criminal offense records, 347–348
market influence, 357
theft crimes, 351

Eigenvalues, spatial clusters, 355
Eigenvector distribution, crime data, 354, 

355
El Niño-Southern Oscillation (ENSO), 98
Electric charging

intelligent control, 186
pricing, 249

Electric mobility, 213
Electric poles, installing wide-area 

frequency measurement systems 
on, 276

Electric vehicles, 185, 198
allocating charging to, 250
charging infrastructure, 197, 230
energy storage using, 248
volatile demands for charging, 186

Electricity consumption
office, 201
seasonal fluctuations, 209
weekdays versus weekends, 208

Electricity generation mix, 265
Electricity storage, options, 247–248
Electricity supply

approaches, 246–250
AR(2) model, 255
beat frequencies, 254
Bow-Jenkins or ARMA modeling, 254
daily solar radiation, 253
demand management approaches, 

248–249
estimating hourly solar irradiation, 

252–254
estimating volatility, 256–264
five-day data, 253

Fourier series, 253
mechanism design for demand 

management, 249–250
overcoming variability, 247
portfolio analysis, 264–268
resonating model, 254–256
storage options, 247–248
through renewable generation, 247
wind and solar power forecasting, 

250–264
without fossil fuels, 243–246

Electricity supply contracts, mechanism 
design approach, 250

Embodied CO2, tracing with high-res IO 
tables, 27–30

Embodied emissions testing, 54
EMD-based filter, 281
Emerging patterns, 228–229
Emissions accounting, 54
EMME transport modeling tool, 12
Empirical Mode Decomposition (EMD), 

279, 280
Endangered species, 17
Energy balancing, 192–193
Energy consumption

matching energy production with, 215
measuring at high resolution, 201
predictions, 209

Energy data, management decisions based 
on, 199–200

Energy demand, trade-off with frequency, 
192

Energy efficiency
achieving sustainability through, 182
through consumption awareness, 194, 

213
through generation-driven demand, 

188
Energy incentives, 194–195, 196
Energy market, 188

actors, 188–190
balance-responsible party (BRP), 

189–190
consumer roles, 189
distribution system operators (DSOs) 

in, 189
energy balancing, 192–193
energy market operator roles, 190
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energy trading, 190–192
future fragmentation, 187
generator roles, 189
metering operator roles, 190
prosumer roles, 189
retailer roles, 190
transmission system operators (TSOs) 

in, 189
value-added service provider roles, 190

Energy market operators, 190
Energy planning. See Regional energy plan
Energy portfolio variance minimization 

(EPVM) problem, 266, 268
Energy prices

predicting, 208
strategies, 248, 249

Energy source diversification, 370
Energy storage, 198–199, 246, 274

for backup and load balancing, 246
capacity prediction, 208
at generator sites, 246–248
management, 230
at points of end use, 247

Energy-storage facilities, 207
Energy system

challenges form legislation, 187
current major changes, 182

Energy trading, 190, 192, 208
consumer demand prediction and, 206
day-ahead auctions, 191
exploration in energy datasets, 225
intraday trading, 192
long-term, 191
short-term, 191–192

Energy traffic lights, 195
Enhanced predictions, 133, 145–147, 148
Enterprise resource planning (ERP) tools, 

limitations, 199
Entropy measure, 219
Environmental accounting, 54
Environmental assessment, 373, 376

biomass only plan, 373
Environmental Benefit Index (EBI), 160
Environmental benefits, land conservation 

accounting, 172
Environmental impact

calculating total, 48
countries and sectors impacted by, 28

dependencies, 367
globalization effects, 28
regional energy planning, 363

Environmental impact assessment, 54
Environmental LCA, 15
Environmental pressures, 369
Environmental protection, 3
Environmental quality, mathematical 

programming applications, 159–160
Environmental receptors, 369

air quality, 373
climate quality, 376
dependencies, 367
mankind wellness, 376
pressures linked to, 366
quality of sensitive landscapes, 377
soil quality, 377
value of material goods, 376
wellness of wildlife, 377

Environmental services, ensuring, 160
Environmental sustainability, 2
Environmentally extended IOA, 55
Environmentally sustainable method 

(ESM) standards, 163
Eora MRIO, 30

applications, 49–51
bilateral flows, 38
computational intensity, 28
eight-dimensional tensor, 34
five valuations in, 34
heatmaps in, 33
high resolution, 29
indicator rows in, 32
as solution of constrained optimization 

problem, 37–38
as tensor, 34

Epidemics, modeling, 331–332
Eplex library, 371
Equal-weighted MMAs, 138
Error, potential for, 7
Error minimization criteria, 146
Error rates

absolute value ranking, 66
aggregated sectors, 64
all simulation results, 67
excluding top-error results, 67
probability distributions, 61–64
unaggregated sectors, 62, 63, 65
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Ethically correct decisions, 5
Europe

20-20-20 initiative, 371
current energy market, 188

European Energy Exchange AG, 191
European Power Exchange, 191
European sovereign debt crisis, 2
European Union, anticipated land 

conservation spending, 160
European Union Emissions Trading 

System (EU ETS), 16
Event signatures, differentiating among, 

87, 293
Events detection algorithms, 275
Experimental design, 9
Experimentation, 102
Expert plan, 375, 376

proximity to Pareto frontier, 375
exponential-smoothing techniques, 209
Extreme data, 9

predictive modeling based on, 96–97
Extreme events, 17, 101

changes in tail behavior, 129
cold temperatures, 135
extreme impacts, 102
finite sample data-based, 135
lack of accounting for anthropogenic 

effects, 134
versus rare events, 135
statistical attributes, 129

Extreme plans, 374
Extreme value theory, 17, 102
Extremes characterization, 132, 134–136, 

148

F

Fair trade coffee, 51
False positives

in abrupt change detection, 92
CUSUM approach, 296
minimizing in grid event detection, 

276
Farm Bill, land conservation budget, 160
Fat-tail behavior, 145
FDR measurements, 278, 291

sample, 84

FDR traces, 278
summary statistics, CUSUM-based 

anomaly detection, 298
Feature recognition, 222
Feature selection, 96
Feature vectors, 212
Field data, 274
Final demand, 56, 57, 58

effect on aggregation errors, 68
Final MRIO, 43, 46
First-order nonautonomous stochastic 

differential equation system, 255
FitzHugh-Nagumo system, 252, 255
Five-minute wind farm output, 258
Flexible gas turbines, 183
Flexible generation capacity, predicting, 

207–208
Flow dynamics, and crime research, 333
Flywheels, 247
Food security, socioeconomic 

interrelationships, 21
Forecast model maintenance, 210
Forecasts, future energy system, 206
Forest Stewardship Council, 51
Forward modeling capability, 90
Fossil fuels

Australian energy percentage, 244
electricity supply without, 243–246
unsustainability, 182

Fourier series, 252, 253
Fourier transform, of IMF signals, 280
Fourth Assessment Report of the 

Intergovernmental Panel on 
Climate Change, 101

Frequency control, 192
effects of generation/load excesses, 288

Frequency disturbance recorder (FDR), 
276

Great Lakes area, 287
raw measurement data, 286

Frequency fluctuations, 185
Frequency monitoring network (FNET) 

system, 279
Fund distribution rules, for land 

conservation projects, 174
Future energy domain

data analysis challenges, 181–188
manual verification, 226
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Future energy scenarios, 183, 193
demand response with dynamic prices, 

194–196
energy storage, 198–199
management decisions from energy 

data, 199–200
market-based demand response with 

control signals, 196–197
paradigm shift, 187
smart homes, 197–198
smart-meter data access, 193–194

Future multimodal consensus, 138

G

Galerkin projection, 144
Game-theoretic approach, 113
Gap-filling, 86
Garbage in, garbage out, 10
GARCH model, 256, 257
Garnaut report, 244
Gaussian matrices, 347
GCM bias, quantifying, 142
GCM data

best uses, 100
dimensionality, 99
systematic errors, 100

GCM skill criterion, 140
General asymptotic theory, 135
General circulation models (GCMs), 98
Generalization error, in OUQ method, 112
Generalized autoregressive conditional 

heteroscedastic (GARCH) model, 
256

Generalized Pareto distribution, 135
Generation-demand imbalances, 192
Generation-driven demand, 19, 195, 232

paradigm shift toward, 187
Generation imbalance, 288
Generation investment, VaR techniques, 

268
generation-load balance, 274
Generators, energy market role, 189
Genetic algorithms, 110
Geographic diversity, 251
Geographic information system (GIS), 12
Geographically dispersed generators, 

interconnecting, 247

Germany
electric vehicle goals, 185
MeRegio research project, 195
renewable energies share, 182

Global climate models (GCMs), 136
multiple interacting components, 130
orthogonal skills, 137
output, 87–88

Global dimensionality techniques, 217
Global optimal, 8
Global perspective, 364
Global sensitivity analysis methods, 143
Global temperature reconstruction 

problem, 104–107
Global Trade Analysis Project (GTAP), 55
Global trade-flow maps, 16
Global warming, attribution of climate 

extremes to, 148
Globalization

effects on ecological footprint and 
environmental impact, 28

impacts on ecological footprint, 15
Goal Programming, 162
Government spending, on land 

conservation, 160
Gradient learning approach, 114
Granger causality, 146, 148
Graph-based analysis methods, 95, 133
Graphical models, 84, 100

wind speed estimation accuracy, 325
Green plan, 369
Green technologies, investment in, 3
Greenhouse effect, 182
Greenhouse gas benefits, 19
Greenhouse gas emissions

Australian, 244
cost of reducing, 269
European reduction goals, 371
sustainability indicator line items, 50

Greenhouse gases, international 
reductions, 183

Grid disruptions
coherent group identification, 284–285
detection and visualization of inter-

area oscillatory modes, 277–288
dominant oscillatory mode 

identification/extraction, 281–283
grid event identification, 286
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identifying with time-series change 
detection, 294–299

k-medians approach, 288–293
phasor clustering example, 285
power grid frequency data stream 

classification, 288–293
power grid research problems, 275–277
rapid event detection, 299
real-time identification, 273–275

Grid event identification, 86
Grid load prediction, 207
Grid-smoothing stationary storage, 247
Grid system modernization, 274, 275
Gridded observations, 85–86

versus climate extremes, 134
Gridded temperature fields, 104
Ground truth, 320

distribution, 321
GTAP6 database, 60

sector classification
Guided OLAP, 228

H

Hadoop MapReduce framework, 203
Hard constraints, 39

balancing constraints as, 41
summarizing with soft, 45
upper and lower bounds, 39

Hard external conditions, 39
Heat pumps, 185, 186
Heat waves, relating with increased 

mortality, 100
Heatmaps, Eora MRIO, 33
Hidden Markov Process, 13, 256

finding state matrix with, 223
High-contrast regions, statistical 

selection, 219
High-crime areas, eigenvalues, 355
high-dimensional regression, 96
High-latency datasets, 274
High-side CUSUM, 295
High-temperature liquid metal batteries, 

247
High-to-low voltage design, 185
Hilbert-Huang Transform, 280
Hindcasts, 99

Historical data, 308
accuracy with, 306
integrating into wind predictions, 306
relevance, 13

Home Area Networks, 249
Home automation, 197. See also Smart 

homes
Hopf critical point, 255
Hourly demand profile, 83, 248
Hourly scales, 355
Hourly solar irradiation, estimating, 

252–254
Household identification, through 

consumption curves, 232
Human analysts, role in computational 

intelligent data analysis, 10
Human appropriated net primary 

productivity, 50
Human knowledge, limitations, 9
Hurricane Katrina, 102
Hurricanes, relating large-scale climate 

quantities with, 100
Hybrid LCA, 29
Hybrid vehicles, 185, 276

in Germany, 186
Hydroelectric power plants, 370, 371

I

Ice floe interactions, 89
IEEE International Conference on Data 

Mining (ICDM), 21
Image data, 9
Impact assessment, 365–367

integrating into public policy model, 
364

Impending failures, classifying, 276
In-control distribution mean, 297
In-kind contributions

implicit accounting, 166
underestimation of, 172–173

In-kind cost sharing, 164
as matching grant program, 165
mixed evidence about, 165

In-kind funding
accounting for, 170–172
maximum, 170
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trade-off with single-project funding, 
170

uncertainty and sensitivity of results, 
172–174

In-situ observations, 85
temporal limits, 86

Independent and identically distributed 
(IID) assumption, 13

Indicator rows, 32
Indirect emissions, 54
Indirect forecasting methods, 256
Indonesia

absolute value of error rates, 66
sector aggregation and CF accounting, 

65
Induction fallacy, 7
Industry definitions, 54
Inferential analysis, 5, 6
Infinite moving average process, 259
Initial conditions, dependence on, 98
Initial estimate, 40
Initialized decadal predictions, 90
Input coefficients, 57
Input datasets, 36

aggregation, 36
disaggregation, 36
harmonizing, 36
reclassification, 36

Input-output analysis, 54
applications, 50
top-down approach, 29

Input-output tables, 15
balancing, 34
basic table, 31
data intensive nature of, 28
data processing language, 35–37
distributed data server, 35–37
environmentally extended, 33
Eora MRIO applications, 49–41
high-resolution, 27–30
Korean, 33
Leontief inverse and, 48–49
MRIO mathematical interpretation, 

40–41
by national statistical bureaus, 30
non-monetary inputs, 32
populating, 35–37

reconciling conflicting constraints, 
37–48

reliability information, 38–39
single-country, 30
structure, 30–34
tracing embodied CO2 with high-res, 

27–30
two-country MRIO, 31
Vehicle Production sector outputs, 31

Insight, automated, 7
Institute for Computational Sustainability 

(ICS), 18
Institute of Developing Economies (IDE)/

Japan External Trade Organization 
(JETRO), 50

Integrated assessment tools, 14
Integrated sustainability analysis, 14–16
Integrated Sustainability Analysis (ISA) 

group, 15
Intelligent charging, 211
Intelligent devices, 230
Intensity-duration-frequency (IDF), 101, 

135
Inter-area band, 280

frequency component isolation, 281
Inter-area oscillatory modes, 287

detection and visualization, 277–288
identifying/extracting dominant, 

281–283
matrix pencil results, 282
modal extraction results visualization, 

285–288
post-processing results, 278
sample FDR trades, 278
signal decomposition, 280–281
signal preprocessing, 277–279
windowing fit, dominant mode, 

283–285
Inter-model covariance, 141
Intergovernmental Panel on Climate 

Change (IPCC), 101
Intermediate demand, 57, 58

after aggregation, 58
Intermediate processing industries, 33
International climate change policy, 129
International Comprehensive Ocean-

Atmosphere Data Set (ICOADS), 85
International policy analysis, 30
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Interpolation, 86
Intraday trading, 196

energy market, 192
Intrinsic Mode Functions (IMFs), 280

Fourier transforms, 280, 281
Inverse participation rates, 342, 350, 
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eigenvectors for drug crimes, 351

Invisible hand of the market, 5
IO matrix elements, 30
IPR size, and crime clustering, 350
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biomass incentives, 372
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regional energy planning, 370–371

Iterative processing, 6
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Japan
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Joint density function, 313, 314, 317
Joint distribution function, 317

K
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operating points, 290–291
disruptive event detection using, 

288–290
effect of window size, 289
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289
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Kernel density estimators, 315
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KL divergence, 320
Knowledge discovery, 8, 11

through unsupervised learning, 214

Knowledge gaps, 129
in model physics, 132

Kullback-Leibler (KL) distance, 310, 321
divergence measurements, 320

Kyoto Protocol, 16

L

Lagged correlation, 343
Lagged cross-correlations, 343, 348

automobile and theft crimes, 344
Lagrange multiplier, 44
Land conservation, 163–168

accounting for in-kind funding, 170
benefit-in-kind frontier, 172
benefit ranking schemes for, 163
benefit targeting results, 174
Bradford County project map, 167
budgetary constraints, 160
calculating environmental benefits, 

173
effects of fund distribution rules, 174
funds distribution among counties, 

164
in-kind contribution uncertainty, 

172–174
in-kind cost sharing, 164
intra-county fund distribution, 175
matching funds, 164
mathematical programming 

applications, 159–160
maximum potential environmental 

benefit, 163
multiple-objective linear programming 

value, 173, 174
optimization in conservation 

planning, 160–162
persistence scores, 173
persistence selection, 174
project expense underestimation, 

172–173
project rankings basis, 161
selection of persistence scores, 173
selection process alternatives, 160–161
sensitivity to results, 172–174, 174–175
site ranking by potential 

environmental impact, 164
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total in-kind cost share, 172
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172–174
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to, 148
Land-use change, 19
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criminal activity-related, 333
curse of dimensionality, 10
data scale storage issues, 117

Large-scale remote sensing, 87
Large-scale renewable energy target 

(LRET), 245
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Learned structure

algorithm performance, 321
wind speed estimation accuracy, 325
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Leontief, Wasily, 29, 54, 56
Leontief coefficients, 54
Leontief inverse, 48–49, 57, 60
Leontief multiplier, 68
Life-Cycle Analysis (LCA), 14, 29

bottom-up nature of, 29
environmental, 15
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Linear regressions
performance with 8 months’ data, 321
poor wind speed estimation 

performance, 321
robustness and data amount, 322
wind speed estimation accuracy, 325

Load cleansing problems, 219
Load curves, 221
Load disaggregation approaches, 221–223

semiautomatic approach, 224
Load leveling, encouraging, 249
Load-pattern recognition, 212
Load rescheduling, automatic, 249
Load shifting programs, 184, 207, 211

Load variance, 222
Local coefficients, variations in, 54
Local optimal, 8
Local predictions, unachievability of, 101
Logical error, potential for, 7
Long-term energy trading, 191
Lossless compression, 203
Lossy compression, 203
Low-rank matrix factorization methods, 
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Lowpass filter, 279
Lucheroni model, 83, 256
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Machine learning, 7, 213, 275

adapting to time-series forecasting, 
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climate informatics and, 83, 84
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Machine-learning algorithms, 8
Macroscopic features, 223
Madden-Julian Oscillation (MJO), 99
Major criminal offenses, 332
Making a Killing: The Business of War, 4
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Management decisions, 207
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Manual data exploration, 225

regulatory mandates, 229
Marcenko-Pastur law, 348
Marine Stewardship Council, 51
Market-based demand response, with 

control signals, 196–197
Market factors, 348, 350

in eigenvalue spectrum, 357
proxy for, 354

Market liberalization, 188
data analysis challenges, 187

Markov Random Field (MRF) method, 92
Markowitz portfolio optimization 

problem, 266
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Matching grant programs, 165
Material flow, 50

sustainability indicator line items, 50
Material goods, value of, 376
Mathematical game theory, 249
Mathematical modeling, combining 

experimentation with, 22
Mathematical programming

applications to land conservation and 
environmental quality, 159–160

in Pennsylvania Dirt and Gravel Roads 
Program, 163–168

theoretical models and results, 168–175
MATLAB, 288
Matrix completion problems, 109
Matrix factorizations, 10
Matrix inversion, 49
Matrix Pencil method, 282, 283

results for example data, 282
Maximal coverage problem (MCP), 17
Maximum a posteriori (MAP) inference 

problem, 92
Maximum Entropy Principle, 38
Maximum likelihood estimates (MLEs), 
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Maximum possible environmental 

benefit, 170, 171
Mean processes, predictive modeling 

based on, 96–97
Measure, Correlate and Predict (MCP), 

20, 305
Correlate step, 305, 309
Measure step, 305, 308
methodology, 307–310
noisy data challenges, 306
Predict step, 305, 309
site wind direction correlation model, 

308
Mechanism design, for demand 

management, 249–250
Median detrending stage, 281
MeRegio research project, 195
Metering operators, 187

energy market roles, 190
Micro-CHP units, 184, 189, 230
Microscopic features, 223

Migratory birds, 378
Minimum shift, 297
Missed detection, eliminating, 276
Missing data problems, 105, 109, 147
Mobile phone data, 21

ubiquity, 331
Mobile phones, blood tantalum and, 4, 5
Mobility patterns, 331
Modal extraction results, 285–288
Modal identification, three stages, 281
Model dependence, 87
Model distance from center, 138
Model fit, balancing with parsimony, 146
Model Intercomparison Projects (MIPs), 

89
Model-observation comparisons, 91
Model selection, game-theoretic approach, 

113
Model size, effects on unaggregated 

sectors, 54
Model variability, intrinsic, 142
Model weighting, 142
Modeling approach, 7
Modifiable areal unit problem (MAUP), 

13
Molten salt reservoirs, 247
Monte Carlo methods, 143
Moving averages, 209
Moving median filter, 279, 281
Moving window filter, 283, 284
MRIO. See Multi-Regional Input-Output 

(MRIO) models
Mulivariate Gaussian copula, 317
Multi-objective evolutionary optimization 

algorithms, 231
Multi-period planning horizons, 268
Multi-proxy networks, 106
Multi-Regional Input-Output (MRIO) 

models, 16, 55
3D tensor, 35
as 3D tensor, 34, 35
aggregation effects in carbon footprint 

accounting with, 53–56
Asian Input-Output (AIO) Table 2000, 

56
computational expense, 67
with five valuation sheets, 35
fulfilling all external conditions, 43
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Leontief inverse and, 48–49
mathematical interpretation, 40–41
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with satellite accounts for threatened 

species, 32
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two-country model, 31

Multi-state devices, 222
Multifrequency time series, 14
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Multimodel average (MMA)

equal-weighted, 138
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a priori use, 138

Multimodel ensembles, 89
statistical uncertainty modeling, 

136–142
Multimodel UQ, 141
Multinational scale, 16
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Multiple information sources, 100
Multiple-Objective Linear Programming 
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conservation program process using, 
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maximum in-kind funding offers, 170
maximum possible environmental 

benefit, 170
optimizing cost sharing and 

conservation outcomes with, 166
PA optimization approach, 163
problem formulation, 171
selection of persistence scores, 173

Multiple-objective linear programming 
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Multiple-output models, 147
Multivariate associations, 148
Multivariate autoregressive models, 146

crime data, 338
Multivariate copulas, for wind speed 

estimation, 316–319
Multivariate Gaussian, 311
Multivariate Gaussian copulas, 317

parameter estimation, 318

Multivariate kernel density estimator, 313
Multivariate kernel density function, 313
Multivariate normal model, wind speed 

estimation, 313
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Naive Bayes structure, 312, 315
graphical model with, 314–316
wind speed estimation accuracy, 325

Naive variable dependency, 321
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National security decisions, 130
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National sustainability indicators, 14
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Near-surface temperature, 99
near-surface temperature, 98
Neural Information Processing Systems 
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Neural network frameworks, 211, 275

radiation models with, 89
New loads, 211, 213
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Noise, 255, 257, 355

from anemometer data, 305, 319
in crime time-series data, 338
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in grid disturbance input signals, 279
MCP method challenges, 306
optimal filters for, 279
problems in crime data, 338

Noise series, 107
Nokia, blood tantalum involvement, 4
Non-examples, learning from, 113
Non-Gaussian behavior, 146
Non-monetary inputs, for IO tables, 32
Nonintrusive load monitoring (NILM), 

220
improving accuracy, 223

Nonlinear bandpass filter, 279
Nonlinear covariance function, 147
Nonlinear dynamics methods, 149
Nonlinear methods, 84, 133

accommodating, 146
Nonlinear models, 147
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Nonparametric bootstrap, 136
Nonparametric multivariate model, wind 

speed estimation, 313–314
Nonpoint source pollution, MOLP 

implementation, 163
Nonstationarity, 137

accommodating with advanced 
predictive models, 146

Nonuniformity of space problem, 13
North American Regional Climate 

Change Assessment Program 
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Nuclear power plants, 182
Nuclear waste, 182
Nudged simulations, 115
Null hypothesis space, for machine-

learning algorithms, 8
Numerical data, 9
Numerical simulations, climate extremes, 
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Objectives, 369
in CLP model, 368

Observational data, limitations, 134
Ocean turbulence, 89
On-off devices, 222
Online analytical processing (OLAP), 226, 

227
challenges, 227

Online learning methods, 84
Operational Programme (OP), 365
Opinion mining techniques, 380
Optimal fingerprinting, 148
Optimal learning formalism, 114
Optimal Uncertainty Quantification 

(OUQ) formalism, 112
Optimization problem, 45, 222, 223

conservation planning, 160–162
future energy system, 229–231

Optimization techniques, to support 
policy making, 361

Oregon State University, 18
Organic produce, 51

Orthogonal skills, 137
Oscillation

damping, 286
growth indicators, 287
initial cycle, 286
largest magnitude, 286

Oscillation magnitude, decay in, 287
Out-of-phase oscillations, 287
Outlier detection, 205
Outlier mining, 214, 219

for unknown patterns, 218–219
Outliers, 9

from smart-meter data, 204
Over-the-counter (OTC) contracts, 191
Oversize generators, 247

P

Paleo-data, 90
Paleo-proxies, 90
PaleoClimate MIP (PMIP3), 89
Paleoclimate proxies, 86–87
Paleoclimatic assimilation techniques, 198
Paleoclimatology, 103
Paleoreconstructions, 90
Paradigm shift, 232

energy generation, 187, 195
Parallelized optimization algorithm, 46
Parameterization development, 89, 143
Parametric bootstrap, 136
Parametric uncertainties, in individual 

climate models, 142–145
Pareto curve, 376
Pareto frontier, 375, 378

air quality versus cost, 375
receptor values, 377

Parsimony, balancing model fit with, 146
Past climate reconstruction, 84, 103–104

climate reconstructions and future, 
108–110

global temperature reconstruction 
problem, 104–107

pseudoproxy experiments, 107–108
Pattern detection, 276

in behavioral data, 332
outlier values, 218
unexpected patterns, 227–228
unknown, 214
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Pattern-recognition algorithms, 212
Pay-as-bid pricing, 250
PC forward UQ problem, 144
Peak demands, sizing generation for, 248
Penalty terms, 146
Penn State University Center for Dirt and 

Gravel Road Studies (CDGRS), 164
Pennsylvania county map, 166
Pennsylvania Dirt and Gravel Roads 

Program, 18, 175–176
3-county datasets, 166
program overview, 163–168

Periodic forcing, 255
Periodicities, in crime data, 340
Permanent devices, 222
Persistence scores, selection, 173
Persistence selection, 174
Perturbed physics ensembles (PPEs), 

90–91, 136
Petascale data, 275
Phasor clustering example, 85, 285
Phasor Measurement Unit (PMU) 

datasets, 281
Phasor visualization, 286

grid event identification using, 86
Philadelphia crime records, 332

basic analysis and statistics, 339–342
census tracts and, 335, 336
daily drug-related crime rates, 348–350
drug-related crime density, 339–340
eigenvalue spectrum, zero-lag 

correlation matrix, 351
environmental factors and crime 

occurrence, 342
inverse participation rates, 352–353
methods, 338–357
RMT prediction, 351
spatial correlations, 355
theft-related crimes, 339
time series plots, 336
various time scales, 336
weekly theft-related crime rates, 

350–357
Philippines, absolute value of error rates, 
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Phillips, Steven, 18

Photovoltaic systems, 182, 371
in Australia, 245
impact on distributed generation, 184

Physics-based models
climate extremes, 130
unreliability for climate extremes, 130

Pigouvian subsidy, 165
Planning. See Regional energy plan; 

Regional planning
Poisson random number generator, 350
Polar regions, 84

climate informatics applications, 
110–111

Policing strategy
data analysis applications, 357
weekday scheduling, 357

Policy making
alternative plan generation, 378, 379
CLP added value, 378–379
coaxial matrices, 366
constraint and optimization 

techniques for, 361
dependencies, 366
e-Participation tools, 379–380
economic indicators, 380
energy source diversification, 370
environmental impacts, 366
environmental receptors, 366
future open issues, 379–380
green plan, 369
impacts on environmental pressure, 369
need for global perspective, 364
need for regional perspective, 364
negative impacts, 366
negative pressures, 366
opinion mining techniques, 380
Pareto frontier, air quality versus cost, 

375
positive impacts, 367
positive pressures, 366
problem formulation, 363–367
receptor values, Pareto front, 377
regional energy plan, 370–371
regional planning and impact 

assessment, 365–367
symbol definitions, 361–362
web interface, 379, 380

Policy models, 363
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Political interventions, 363
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Pollution

from biomass, 372
as IO table input, 32

Polynomial chaos (PC) UQ methods, 143
intrusive methods, 144
nonintrusive methods, 144
surrogates, 144

Population growth, relative speed of, 3
Portfolio analysis, 264–268
Portfolio optimization problem, 246
Portfolio tools, 265
Post-event operating points, 290

determining with k-medians approach, 
290–291

Potential outcomes, in CLP model, 364
Potential supply, 193
Poverty, socioeconomic interrelationships, 

21
Power allocation mechanisms, 249
Power balance, frequency trend and, 288
Power demand, changing in response to 

signaling, 249
Power grid frequency data streams

classification with k-medians 
approach, 288–293

decision boundary determination, 
292–293

decision boundary evaluation, 293
window data selection, 291–292

Power grid system, research problems, 
275–277

Power imbalances, 290
Power outages, 185
Pre-event condition, 286, 290

determining with k-medians approach, 
290–291

Precipitation, 98
and crime occurrence, 342

Precipitation extremes
and atmospheric moisture content, 134
predictability, 128
temperature dependence, 133

Predictability
of climate extremes, 128
optimizing through spatial filters, 99
wind at high frequency, 304

Prediction
with auto regression techniques, 209
clustering techniques, 216–218
consumption events, 212–214
from copulas, 318
energy consumption and generation, 

188
energy prices, 208
energy storage capacities, 208
enhanced, 133
with exponential-smoothing 

techniques, 209
flexible capacities, 207–208
future energy system, 206–214
graphical model with structure 

learning, 316
grid loads, 207
recalibrating based on validation, 137
renewable generation, 207
seasonal, 131
in temporal analysis, 13
user behavior, 210–212
wind speed estimation, 315

Prediction horizons, impossibility of 
validation for, 137

Prediction time, reducing through 
dependency structure learning, 
312

Predictive modeling, 96–97
key desiderata, 145
limitations of standard, 145

Pressures, in policy making, 366
Price-forecasting techniques, 210
Primary activities, 368, 370
Primary-control bids, 193
Primary frequency control, 192, 193
Primary inputs, 30
Prime, 58
Principle component analysis (PCA), 217, 

357
Prior knowledge, 8
Privacy concerns

15-minute smart-meter granularity, 
231

data mining, 232
smart meters and, 202

Private land trusts, 160
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temperature, 141
wind speed estimation, 88, 310

Probability distribution, 266
for wind speed at directional intervals, 

304
Problematic grid situations, 213
Processed observations, 85–86
Producer responsibility, 29
Producers, linking through IO analysis, 50
Product-related tools, 14
Production footprint, 50
Production industries, 33
Prosumers

energy market role, 189
turning consumers into, 184

Provenance graphs, 117–118
Proxy archives, 86
Pseudoproxy experiments, 107–108
Public administration sector, 60
Public policy issues, 363. See also Policy 

making
using constraint reasoning with, 379

Pumped-storage water-power plants, 198
Pumped water storage, 247
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Quantifying Uncertainty in Model 

Predictions (QUMP), 91

R

Rainfall, criteria of extreme, 134
Rainfall extremes, difficult 
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Random matrices, comparison to 

eigenvalue spectrum, 347–348
Random matrix theory, 332, 338, 347, 357

combining with time-series analysis, 
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Random permutation, 347
Random time series, CUSUM scores, 296
Rapid event detection, 299
Rapid throughput arthropod 

identification, 18

Rare events, versus extreme events, 135
Raw data table, 38, 40, 43
Raw measurements, 85
Reaction-diffusion equations, 333
Reanalyses.org, 87
Reanalysis products, 87

climate dipole applications, 95
Receiver operating characteristic (ROC) 

curves, 224
Receptor values, Pareto front, 377
Reconstruction interval, 105–106
Regional aggregation, 61
Regional climate model (RCM) output, 88
Regional energy plan, 370–371

2011-2013, 371–378
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371
electrical and thermal energy, 372
environmental assessment using 
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expert plan, 374, 376
extreme plan with single energy 

source, 374
retained air quality with lower cost, 

376
Regional geophysical characteristics, 370
Regional IO tables, 54
Regional mean temperature, PDF for 

change in, 141
Regional perspective, 364
Regional planning

activity cost, 366
activity magnitude, 365
activity outcome, 366
casting as combinatorial optimization 

problems, 364
corrective countermeasures, 367
dependencies between activities, 366
extreme plans, 374
and impact assessment, 365–367
installed power, 372
lack of feedback, 367
optimal plans, 375
policy issues, 363
primary versus secondary activities, 

368
secondary activities, 366



Index    ◾    407

six activity types, 365
total cost, 372
total energy produced, 372

Regional sustainability indicators, 14
Regions, 56
Regression models, 203
Regression problems, 96, 100, 106–107
Regularization terms, 146
Relative Output Variability measure, 264
Reliability, of most crucial information, 

133
Reliability Ensemble Average (REA) 

method, 138
GCM skill and consensus in, 140

Reliability information, 38–39
transaction-level estimates, 48
unpublished nature of, 39

Reliability-weighted constraints, 37
Remote observations

inexpensive options, 323
investigating through computational 

data science methods, 131
Remote sensing technologies, for wind 

speed, 308
Renewable energy, 274, 276

augmenting electricity supply through, 
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challenges to electricity grid, 183
computational intelligent data analysis 

for, 19–20
discontinuity problems, 374
diversifying with nonrenewable 

sources, 370
European goals, 371
fluctuations in, 191, 192, 195
multiple sources, 263–264
predicting generation, 207
sustainability through, 182
ultimate objective, 19
unexpected negative environmental 

impacts, 19
volatile generation, 198

Renewable generation, predicting, 207
Reproducibility, challenges in climate 

informatics, 117–118
Resampling techniques, 136
Research challenges, 21–22
Reserve site selection problem, 17

Residual days
AR(2) model fitting, 255
Lucheroni model, 256

Resource extraction, environmental 
unsustainability with, 2

Retail and distribution costs, 34
Retail industry, 33
Retailers, energy market roles, 190
Risk measures, 268
Rwandan genocide, 4, 5

S

Sahel drought, 92
Sales prices, as valuation, 34
Same-sector transactions, 33
Satellite accounts, 32

for threatened species, 32
Satellite indicator blocks, 32
Satellite retrievals, 86
Scalability

data mining techniques, 217
outlier mining, 218

Scalable optimization methods, 84
Scenario uncertainty, 101
Scientific problems

climate extremes, 101–102
in climate informatics, 88
data assimilation, 90
initialized decadal predictions, 90
multimodel ensembles of climate 

projections, 89
paleoreconstructions, 90
parameterization development, 89
perturbed physics ensembles, 90–91

Sea level rise, 111
Sea surface temperature (SST), 98
Search criteria, design of, 8
Seasonal averages, 99

criminal activity, 334, 347
Seasonal climate forecasting, 83–84, 97

basis, 97–98
best use of GCM data, 100
data challenges, 99
identifying predictable quantities, 

99–100
Seasonal heat storage, 247
Seasonal predictions, 131
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Seasonality, identifying and modeling, 
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Secondary activities, 368, 370
Secondary frequency control, 192, 193
Sector aggregation, 16, 68

effects on embodied CO2 calculations, 
55, 65

random, 56
within-region, 57

Sector classifications, 33
AIO 2000 and GTAP6 databases, 

71–73
Sector disaggregation, iterative process, 55
Sector identification, 55
Sector reclassification, 68
Sectoral carbon intensity, 68
Sectoral output, prediction of change in, 

56
Sectors, 56
Security research, 232
Sediment pollution, 163
Semi-supervised learning, 110
Sensitive landscapes, quality of, 377
Sensor failures, real-time detection and 

correction, 18
Sensor networks, automated data cleaning 

for, 18
Sequence mining, 213
Set coverage problem (SCP), 17
Shannon-Weaver measure, 263
Short-term energy trading, 191–192
SIAM Data Mining Conference, 21
Sidebands, 252
Signal decomposition, inter-area 

oscillatory modes, 280–281
Signal processing, 133

inter-area oscillatory modes, 277–279
Signal-to-noise ratios, 12

behavioral data, 357
Significant eigenvectors, 354

application to social data, 355
Similar-day approaches, 209
Similarity searches, 204
Simulation data, 274
Singapore, absolute value of error rates, 66
Single energy source, extreme plan using, 

374
Single-pass algorithms, 290

Singular Value Decomposition, 106
Site wind directions, MCP model 

correlation, 308
Sliding-window approaches, 209, 282, 291, 
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Slum dynamics, 21
Small sectors, aggregation errors, 60
Small-signal stability problems, 277
Smart appliances, 249, 250
Smart car parks, 230
Smart charging, 186
Smart grid, 20, 183, 193, 201, 249, 276

computational intelligent data analysis 
for, 19–20

electric mobility and, 186
granularity, 200
ultimate objective, 19

Smart-grid controls, 274
Smart-home surveillance, 215–216
Smart homes, 195, 197–198, 207, 208

demand shifts in, 198
reacting to dynamic prices, 230
user behavior classification, 211

Smart-meter data, 212, 231
1-minute granularity, 231
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access to, 193–194
clustering solution based on, 216
outliers from, 204
storage needs, 202
timing issues, 205
user access to, 194

Smart metering, 188, 201, 220, 274, 276
15-minute granularity, 202
data amounts generated by, 203

Social disorganization theory, 333, 357
Social network mining, 9
Social sustainability, 3
Societal costs, of action and inaction, 129
Societal priorities, climate extremes and 

uncertainty, 128–130
Socioeconomic variables

and crime hotspots, 333
criminal activity and, 332–333

Sociopolitical sustainability, 2
computational intelligent data analysis 

for, 20–21
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system of equations, 44, 45
unreliability, 44

Soft external conditions, 39
Soil quality, 377
Solar day elongation, 245
Solar Flagships Program, 251
Solar photovoltaic panels, 246
Solar power, forecasting, 250–252
Solar thermal plants, 246
Sony, blood tantalum involvement, 4
Sparse group lasso problem, 96
Sparse regression, 146, 147

model selection using, 146
Sparsification, via sensitivity analysis, 144
Spatial analysis, 298

crime data, 335–336, 345
drug-related crimes, 346
scale difficulties, 16

Spatial autocorrelation, 13, 95
Spatial co-location constraint, 297
Spatial data

characteristics, 11
pitfalls, 12–13

Spatial diversity, 263
Spatial filters, 99
Spatial information, incorporating into 

time-series change detection, 
297–298

Spatial persistence, 92
Spatial resolution, crime data, 334
Spatial sparsity, 146
Spatial unit, 12
Spatial variability, 141
Spatio-temporal correlations

auto- and cross-correlation, 343–345
correlation matrices, 345
in criminal offense records, 331–33
data, 333–337
eigenvalue spectrum and comparison 

to random matrices, 347–348
geographic location and significant 

eigenvectors, 356
inverse participation rates, 352
methods, 338–357
summary and conclusion, 357–358
weekly theft-related crime rates, 

350–357

Spatio-temporal data analysis, 11, 12–14
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Species decline and extinction, 17
Spectral clustering, 216
Stakeholder priorities, climate extremes 

and uncertainty, 128–130
Standard deviation values, 38, 84

balancing constraints, 38
for balancing constraints, 41
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optimization problem, 47
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Standard Industrial Classification (SIC) 
system, 54

State fund distribution rules, sensitivity of 
results and, 174–175

State matrix, 222
finding with hidden Markov model, 

223
Statistical approaches, wind resource 

assessment, 303–307
Statistical error, potential for, 7
Statistical Local Area (SLA), 12
Statistical quality control, 294
Statistical Relational Learning, 114
Statistical techniques, 132
Statistics, 7
Steady state, 286, 288
Stochastic consumption behaviors, 192
Stochastic sequences, 100
Stochastically resonating spiking, 252
Storage needs

electricity, 183
for smart-meter data, 202

Strategic Environmental Assessment 
(SEA), 363

environmental impact reckoning, 366
fuzzy model, 364

Streaming data mining, 290
Streaming data modeling, 276
Structural Path Analysis (SPA), 49
Structural uncertainty, 136

measures of, 90
Structure learning, in wind speed 

estimation, 316
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Supervisory control and data acquisition 

(SCADA) systems, 274
Supply chains, 16
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linking through IO analysis, 50
need for government intervention, 5
satellite accounts in, 32
searching top-ranked, 49

Supply side optimization, 229–230
Support-vector machines, 209, 211
Suppression terms, 333
Surface Heat Budget of the Arctic 

(SHEBA), 85
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Sustainability

energy system, 182
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through energy efficiency, 182

Sustainability analysis
extended IO tables for, 30
integrated, 14–16

Sustainability certificates, 51
Sustainability debate, 3
Sustainability indicator line items, 50
Sustainability labels, 51
Sustainability policy, computational 

techniques informing, 51
Sustainability reporting, 3
Sustainable development

computational intelligent data analysis 
for, 1, 10–12

introduction, 2–5
Symbol definitions, constraint and 

optimization techniques, 361–362
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System dynamics, and crime research, 
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System stability, detrimental effects of 
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changes in, 129
small probability of sampling, 145

Tail observations, 135
Talison Minerals, 4, 5
Tantalum, case study, 4
Target-percentile criteria, 268
Tariff schemes, 195
Taxes paid, valuations, 34
Technical coefficients matrix, 48
Technological coefficients, variation in, 

54–55
Technological evolution, relative speed 

of, 3
Temperature, and crime occurrence, 342
Temperature prediction, cross-validation 

variables, 97
Temperature-related extremes, confidence 

in projections, 128
Temporal analysis, 275

goals, 13
Temporal autocorrelations, 95
Temporal persistence, 92
Temporal sparsity, 146
Ten-second wind farm output, 258

AR(3) model fit, 260
Tertiary frequency control, 192, 193
Text data, 9
Theft-related crimes, 332, 333

in downtown Philadelphia, 339
eigenvalue spectrum, 351
hourly frequency spectrum, 341
IPR values, weekly time series, 352–353
lagged cross-correlations with 

automobile crimes, 344
plotted by time scales, 336
relationships to violent crimes, 344
time series, 334
weekly timescales, 350–357

Theory and experimentation, 101–102
Thermal energy, 371
Thermodynamic solar plants, 371
Threatened species, satellite accounts for, 

32
Tidal generators, 246
Time-of-use pricing, 248



Index    ◾    411

Time series, 216
adding to noise series, 107
combining with random matrix 

theory, 338
criminal activity, 334, 337
random with anomalous region, 296

Time-series analysis, 13, 49, 252
Time-series change detection

CUSUM-based method, 294–299
data description and algorithm 

parameters, 296–297
grid data results, 296–298
of grid disruptions, 294–299
incorporating spatial information, 

297–298
number of significant events, 299
raw results, 297

Time-series data, 203
from smart meters, 204

Time-series forecasting, 208, 209, 210
consumer demand prediction, 206–207
future energy system, 206

Timescales, 89
crime data, 337, 340
daily drug-related crimes, 348–350
data reliability and, 99
day of week, 350
hourly citywide theft crimes, 341
ocean evolution, 98
Philadelphia theft-related crimes, 336
of variability, 109
weather-related, 90
weekday-based drug and violent 

offenses, 341, 350, 353, 356, 358
weekly theft-related crime rates, 

350–357
Tipping points, 91
Top-down analysis

in climate informatics, 83
with IO tables, 29
low resolution issues, 29

Total output, 57, 58
Total requirements matrix, 48
Trade flows, constraining for 

environmentally deleterious 
products, 50

Trade relations, IOA analysis, 56
Transaction-level reliability estimates, 48

Transaction matrix, 33
Transmission infrastructure upgrades, 

248
Transmission lines, automation, 276
Transmission system operators (TSOs), 

energy market roles, 189
Transport modeling tool, 12
Transportation costs, 34
Tree rings, 90
Triple Bottom Line (TBL) standard, 3, 10
Tropical cyclones (TCs), 100

predictability, 128
Two-country MRIO, 31

U

UN COMTRADE, 50
Unaggregated MRIO model, 60
Unaggregated sectors, 57, 61

absence of model size effects, 54
confidence intervals, 65
error rate ranking, 66
error rates, 62, 63, 65
negative mean values, 65

Uncertainty
characterization at local/regional 

scales, 131
computational data sciences for 

actionable insights, 127–128
estimating forward propagation, 143
in parameter estimation processes, 132
in public policy making, 363
quantification for climate extremes, 

129
statistical modeling, 136–142
in wind speed estimation, 304

Uncertainty assessments, 132–133, 136–145
parametric uncertainties in individual 

climate models, 142–145
statistical modeling in multimodel 

ensembles, 136–142
Uncertainty quantification (UQ), 136, 

141, 148
polynomial chaos methods, 143

Unclassified sector, 60
Unexpected events

manual verification, 226
underestimation of, 14



412    ◾    Index

Unexpected patterns, 215, 218, 225
guided exploration to, 227–228

Unidirectional power flow, 185
Uniform pricing, 250
United Nations Standard System of 

National Accounts, 30, 50
United Nations System of Environmental-

Economic Accounts (SEEA), 33
United States, sector aggregation and CF 

accounting, 65
Univariate Gaussian distribution, 311
Universum Learning, 113
Unknown patterns

automatic smart-home surveillance 
and, 215–216

detecting for enhanced demand 
response, 215

detection, 214–219
outlier mining and, 218–219
unsupervised learning as 

preprocessing step, 214
Unreliability, 7
Unreliable variables, regression of, 147
Unsupervised learning, 214, 215, 224

clustering as, 216
for preprocessing, 205
as preprocessing step, 214

Upper bounds, 39, 46
Urbanization changes, attribution of 

climate extremes to, 148
U.S. Department of Agriculture

Conservation Reserve Program, 160, 
165

Environmental Benefit Index, 160
Land Evaluation and Site Assessment 

scores, 160
Natural Resource Conservation 

Service, 160
U.S. Fish and Wildlife Service, National 

Wetlands Conservation Grant 
Program, 165

U.S. Forest Service, Forest Legacy 
Program, 165

U.S. power grid system, 274
User behavior

capturing and predicting, 186
classification, 211

comparison in energy datasets, 
225–226

pattern detection, 213
predicting and classifying, 210–212

V

Valuation sheets
in Eora MRIO, 34
in MRIO, 35

Value added inputs, 30
Value-added service providers, 187, 212

energy market roles, 190
Van der Ploeg’s approach, 46
Vanadium redox flow batteries, 247
Variability

in electricity supply, 247
reducing through geographic diversity, 

251
Variable devices, 222
Variables

in CLP model, 368
numbers of, 116

Variance, 8
modeling for wind output, 262

Vector IPR, 350
Vehicle to grid (V2G), 186, 198, 199, 211, 

230
Vehicles Production sector, 30, 33
Vickrey-Clarke-Groves mechanism, 250
Violent offenses

day of week and, 341
frequency relative to drug crimes, 342
regression by day of week, 341

Visualization, 275
Volatile generation

data analysis challenges, 183–184
estimating, 256–264
of renewable energy, 198

Volatility clustering, 257
Volatility modeling, 263
Voltage fluctuations, 185

W

Water isotopes, 90
Water power, 182
Water quality conservation, 175



Index    ◾    413

Water use, 50
sustainability indicator line items, 50

Weather forecasts
versus climate predictions, 98
and crime data, 342
data assimilation and, 90
limited predictability, 98

Weekday energy consumption, 208
Weekly timescales, 356
Weibull distribution, 309, 316, 320

density function, 311
for wind speed estimation, 304

Weighted distribution, 266
Wellness of wildlife, 377, 378
Wide-area frequency measurement 

systems, 276
Wildlife corridor design, 18
Wind direction, measurement in MCP 

methodology, 307
Wind farm output

in Australia, 251
fit of ten-second data, 260
five minute, 258
five-minute output and model, 259
output and estimated standard 

deviation, 260
ten-second output, 258

Wind farm siting, role of wind resource 
assessment in, 304

Wind generators, 371
Wind maps, 305
Wind power, 182, 198

discontinuous nature of, 374
five-minute wind farm output, 258
forecasting, 250–252
high-frequency wind data modeling, 

261–263
production forecasting, 210
unexpected impacts, 19

Wind resource assessment
accuracy with multiple historical sites, 

306
algorithm comparisons, 321–322
anemometer locations, Museum of 

Science, 320
as bivariate statistical distribution, 304
Boston Museum of Science airport 

data, 307

conclusions and future work, 323–325
conditional density function 

parameter derivation, 310, 327–328
copulas, 311
data amount needed, 322
design decisions, 311–312
directional bin, 307, 308
estimation accuracy, 325
evaluation setup, 319–321
ground truth, 320
historical data, 305
historical sites, 308
importance to wind farm performance, 

306
increased data availability, 321–323
joint density function, 311, 313
Massachusetts airport data locations, 

319
maximum likelihood estimates 

(MLEs), 313
Measure-Correlate-Predict 

methodology, 305
measure-correlate-predict 

methodology, 307–310
methodology robustness comparison, 

322–323
minimal cost goals, 323
minimal data goals, 323
model choice, 311
multivariate distribution, 310
multivariate Gaussians, 311
non-Gaussian univariate densities, 

311
overprediction problems, 306
parameter estimation, 318
point prediction, 311
remote sensing technologies, 308
results and discussion, 321–323
site conditions, 306
site wind direction MCP model, 308
statistical approaches, 303–307
technique comparisons, short- and 

long-term data, 322, 323, 324
univariate density modeling, 311
univariate Gaussians, 311
variable dependency structure 

assumptions, 311–312
Weibull density function, 311



414    ◾    Index

as wind rose, 304
wind speed estimation methodology, 

310–319
Wind resource estimation, expressions, 304
Wind rose, 88, 304, 305, 309
Wind speed estimation methodology, 

310–312
accuracy evaluation, 310
capturing mean and variance, 309
graphical model with naive structure, 

314–316
graphical model with structure 

learning, 316
historical data, 305
learned K2 algorithm structure, 312
minimal cost goal, 323
with minimal site collected data, 323
multivariate copulas, 316–319
multivariate normal model, 313
naive Bayes structure, 312
nonparametric multivariate model, 

313–314
overestimation trends, 305

probability density function, 88
technical and sensing challenges, 304

Wind turbines, 246
aesthetic drawbacks, 377
placement decisions, 365

Window data selection, 291–292
Window size

effect on k-medians metric, 289
optimal, 292

Wishart matrices, 347
Workshops, on climate informatics, 83
World MRIO table, 49

Z

Zero Carbon Australia, 246
Zero-centered signals, 281
Zero-lag correlation matrix

drug-related crimes, 346
IPR values, weekly theft time series, 

353–353
Zero mean and unit variance, crime data, 

337



90°N
180°W 150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E 180°E

75°N

60°N

45°N

30°N

15°N

15°S

30°S

45°S

60°S

75°S

90°S

0°

90°N
180°W 150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E 180°E

75°N

60°N

45°N

30°N

15°N

15°S

30°S

45°S

60°S

75°S

90°S

0°

90°N
180°W 150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E 180°E

75°N

60°N

45°N

30°N

15°N

15°S

30°S

45°S

60°S

75°S

90°S

0°

FIGURE 4.1  The drought regions detected by our algorithm. Each panel shows the drought start-
ing from a particular decade: 1905–1920 (top left), 1921–1930 (top right), 1941–1950 (bottom left), 
and 1961–1970 (bottom right). The regions in black rectangles indicate the common droughts found 
by [63].
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FIGURE 4.1  (continued) The drought regions detected by our algorithm. Each panel shows the 
drought starting from a particular decade: 1905–1920 (top left), 1921–1930 (top right), 1941–1950 
(bottom left), and 1961–1970 (bottom right). The regions in black rectangles indicate the common 
droughts found by [63].
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FIGURE 4.2  Climate dipoles discovered from sea-level pressure (reanalysis) data using graph-
based analysis methods (see [42] for details).
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